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ABSTRACT 

 

The remarkable growth of discussions about energy matrix in the last decades and the 

recognition of the necessity of the adoption of renewable energies led to the questioning of 

which would be the ideal energy matrix for a country, in terms of costs, benefits, and risks to the 

population. Hence, with the purpose of supporting politicians in hers decisions, this study 

proposed to create a method to define the optimal portfolio of energy matrix, which considers 

not only the generation costs of each technology, but also its risks. In order to do so, not just 

deviation risk measures (e.g. variance) were taken into consideration: tail measures were also 

used, for example the Value at Risk (VaR) and the Conditional Value at Risk (CVaR), capturing 

as well extreme events, which are very important to the analysis. Therefore, data on seven 

technologies of the United States was analyzed, Monte Carlo simulations were carried out, and 

with the support of the Kriging Method, the Paretto`s efficient frontier and the compositions of 

the optimal portfolio were finally obtained for the years of 2030, 2035, and 2040. The results, 

besides of assuring that tail risk measures are the most applicable in this kind of analysis, also 

pointed out a greater allocation in the future of renewable energies, such as wind and biomass 

technologies, revealing, hence, that environment aggressive technologies (e.g. coal and gas) 

should play a minimal role in future energy matrix. 
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1 INTRODUCTION 

 

 

An important issue that remains a matter of discussion in the engineering field is 

how to allocate resources in uncertainty conditions. From the portfolio manager stand 

point, it is interesting to determine allocations which guarantee a minimum financial 

return from their investment and also have a reasonable safety level. Hence, one 

important question in this field of knowledge is how to minimize risks. 

The risk minimization theme never was so discussed as in the 2008 financial 

crisis. That is so because of the lack of regulation and the constant indiscipline on doing 

practices aiming the risk mitigation led the financial markets of the major developed 

countries (impacting, clearly, the emerging markets as well) into collapse. This fact may 

be easily noticed with a quick observation of the stock indexes, which reveal indirectly 

the investors risk perceptions and the results of the major listed companies of a country. 

Figure 1 shows the evolution during this tough period of one of the major stock indexes 

of the United States, the S&P 500. 

 

Figure 1: S&P 500 Index 

It may be observed that during the year of 2008 the index plunged considerably, 

revealing a lower risk appetite from the investors. This lack of interest on allocating 

capital in companies (i.e. equity) generates a great social damage, since that in the 

capitalism way of living, the companies are in fact the economic agents that move the 

economy, and therefore, create social welfare. 
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Yet in the scope of risk minimization, a theme always very discussed by 

everyone and each time more present in the literature is the issue of allocating risks in 

the energy generation process. In the process of defining a country energy matrix, 

politicians and strategists should take in consideration not just the incurred costs in the 

energy generation, but also involved in this operation. A simple example of energy 

generation risk is the fuel price fluctuation, since, depending on the technology 

employed, this components may be a relevant part of the cost structure. 

The oil, for example, is used as raw material in thermoelectric power plants. 

This input is commercialized in the commodity financial markets and presents high 

price volatility, what may be observed in Figure 2. This great price fluctuation shall turn 

some technology not interesting to use and, therefore, may be considered a risk to 

policy makers in the energy matrix decision process. 

 

Figure 2: Oil prices evolution 

 

1.1 Study`s Objectives 

 

Politicians and energy policymakers need a tool which supports their decision 

making, so an energy matrix portfolio may be created taking in to consideration not 

only the generation costs of each technology, but also its risks. This is in fact the 

objective of this study: use a method of investment portfolio selection, something 

commonly used in the finance field, with the aim of optimizing the relation between risk 

and return of a country energy matrix portfolio.  
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 Regarding the tool that will take place, this study proposes, initially, in using 

risk measures that capture, in its formulation, extraordinary event, since these events, as 

already mentioned, are capable of generating huge crises and recessions. Risk measures 

of this nature are known in the literature as tail risk measures (ROCKAFELLAR e 

URYASEV, 2000). Hence, in this study, it is going to be used not only deviation risk 

measures (e.g. Variance), but also two other tail risk measures, the Value at Risk (VaR) 

and the Conditional Value at Risk (CVaR). 

 These two risk measures, although manage to capture extreme events, present a great 

drawback: require high computational capacity. To solve this issue, this study proposes the use 

of the Kriging Method (RIBEIRO e FERREIRA, 2004). Even if this technique is not 

traditionally employed to portfolio selection, it is believed that with the application of this 

method it is possible, efficiently, to optimize energy matrix portfolios which take in 

consideration any risk measures, including the tail ones. 

 

1.2  Study`s Structure 

 
This study is divided in five parts. In the first chapter, the theme is presented. It is 

shown why it is important and relevant, situating it in the current macro landscape and 

exhibiting its objectives and structure. 

The second chapter reveals the literature review indicating the concepts necessary to the 

study comprehension. Initially, it is established a conceptual base about portfolio 

management, naming its mark in the literature and describing some important definitions 

which distinguish a portfolio. Then, different risk definitions are exposed and three main 

risk measures, which will be used later, are described. After this, four models of portfolio 

selection are presented, being the Kriging Method one of them. Yet in this second chapter, 

finally, the models used in the energy sector are demonstrated. It is worth saying that the 

Kriging Method has not yet been used to such purpose, hence this study proposes an 

innovative application. 

The following chapter refers to the methodology adopted in this study. To such effort, 

first of all, it is analyzed the Market here studied, the energy sector of the United States.  

After such definition, it is analyzed the LCOE (Levelized Cost of Energy), which will be the 

cost measure in this study. Later, data collected is described and treated through the Monte 

Carlo simulation. 
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In the fourth chapter, the results of the application of the proposed method (i.e. the 

Kriging Method) are revealed. Such results are demonstrated in both the forms of efficient 

frontier and optimal portfolio composition, concepts that will be extensively described in 

the literature review section. 

Finally, the fifth chapters the conclusions and future extensions are presented. The 

appendix and the references finish the document. 
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2 LITERATURE REVIEW 

 

In this chapter, it will be presented relevant fundamentals and concepts to the 

completely understanding of this study. First, the portfolio manager theme will be 

discussed, including its objectives, main characteristics and a preliminary analysis of the 

Modern Portfolio Theory. Next, it will be described different definitions of risk, which 

is a highly frequent concept in this study. Then, the portfolio selection models are 

presented, which will be later implemented in the energy matrix theme, what is by the 

way the topic discussed in the end of the literature review. 

 

2.1 Portfolio Management 

 

The portfolio manager is responsible for defining which is the best way of allocating 

capital so that the return expected is achieved, taking in consideration an acceptable risk 

level, or in other words, what degree of risk the investor is willing to incurre. In order to 

do so, the manager has basically two investment options: 

1) Investments whose returns are previously known; 

2) Investments whose returns are unknown and involves uncertainties. 

 

The first option above mentioned deals with fixed-income securities, indicating that the 

acquired asset yields the investor a fixed amount of money, pre-established in its contract. 

Hence, in general, the portfolio manager knowledge previously not just the capital allocation, 

but also the future returns of her investments. Therefore, one might say that the uncertainties 

involved in the process of investing are minimized, leaving just some uncertainties regarding 

the probability of default by the issuer (i.e. credit risk) and possible variations of the benchmark 

(market rate which some securities are commonly indexed, such as the LIBOR). Some examples 

are (LUENBERGER, 2008): 

 

1) Certificates of Deposit (CD); 

2) Treasury bonds and treasury inflation-protected securities; 

3) Asset Backed Securities (ABS); 

4) Collaterized Debt Obligations (CDOs). 
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Although fixed-income investments are broadly used all around the world, it is not the 

scope of this study to analyze it, being its citation and utilization merely illustrative. 

The second form of investment above mentioned includes those whose initial amount of 

capital invested is known, with its returns uncertain though, what one may consider random 

events, from the stochastic stand points. Hence, it is possible to handle the price of an asset, 

in different time periods, as a random variable. 

Both investments forms defined above are valued based on its expected returns, but in 

the second form, these return are unknown due to the characteristics of the random variable, 

turning necessary the analysis of the risks associated with the investments. 

In such field, Harry Markowitz, in 1952, published an article called “Portfolio 

Selection”, what was a considered by many as the born of the modern finance economy 

(RUBISTEIN, 2002). This author’s theory was so hailed that it led the author to receive the 

Nobel Prize in economics in 1990. 

From the beginning of the first paragraph of his article, MARKOWITZ (1952) affirms 

that the investment process and the asset selection consist in, actually, two separate parts: 

initially, one shall observe the available assets, considering theirs historical returns, using 

this data in order to estimate an expected future return. Then, the second part consists in 

choosing which assets are going to compose the portfolio of investments. 

Through its article, the author frequently uses the concept of correlation. The correlation 

between two articles is non-dimensional and varies between -1 and +1(CSOTA NETO, 

2002); may be defined as:  

     
   

        
 

Where           são os desvios padrão e     é a covariância entre os retornos dos ativos. 

Markowitz states that a portfolio manager should diversify its investments. The author 

demonstrates that a investment diversification (i.e. the capital allocation in more than one asset) 

generates better portfolio compositions in terms of the relation risk return when compared to 

investments allocated in just one asset (BREALEY-MEYERS, 2003). 

According to the author, assets that have a low covariance between each other ends up 

generating such a protection to the portfolio, because it decreases the portfolio risk. On the flip 

side, assets that have a high correlation between each other, as it reacts in way similar to the 
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markets, may destroy value, since many times the financial markets do not behavior as the 

investor desires. 

Figure 3 shows, graphically, the main Idea of the Markowitz`s theory, the investment 

diversification. 

 

Figure 3: Diversificatino effect on the risk mitigation 

It may be seen that as the numbers of assets increases the risk of the portfolio decreases, 

minimizing (eliminating, possibly) the Specific Risk, which is defined as the individual risk of 

an asset. In such way, the portfolio risk tends to be Systemic Risk, which cannot be eliminated 

through diversification. The latter is the risk associated to the market as a whole, being 

influenced by many aspects: political, socials, macroeconomics, among others. 

Other factor that directly impacts the portfolio management is the investor risk profile. It is so, 

because not all the investors are willing to tolerate the same risk levels, what obligates the 

portfolio manager to always pay attention in this factor. GIUDICI (2010) defines, according to 

their risk profiles, three types of investors: 

1. Risk Averse: an investor that chooses the lowest risk investment when faced with two 

investments with similar returns, with different risks though. For this kind of investor, 

the sense of unease associated with the loss of a determined amount of money is greater 

than the feeling proportioned by the gain of the same exactly amount of money. 

2. Risk Indifferent: in this case, the investor does not have a preference in the moment of 

choosing between an investment with greater risk and greater return and an investment 

with lower risk and lower return. 

3. Risk Prone: is the opposite from the risk averse investor, since this one prefers 

choosing an investment with greater return and greater risk to an investment with lower 

risk and lower return. 
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LUENBERGER (1998) proposes the concept of Utility Function, which is a manner of 

classifying the investments regarding the investor risk profile. Figure 4 presents a Return ( ) 

versus Risk ( ) graph where it is illustrated the three curves correspondents to the Utility 

Functions for the three different risk profiles already mentioned. The curve    represents the 

behavior of the risk averse investor, in which to an increment of risk Δσ, demands an increase of 

return such as       . The curve    illustrates the behavior of a risk indifferent investor, in 

which to an increment of risk Δσ demands just that     . The curve    represents the 

behavior of a risk prone investor, which behavior is the opposite from that one described for the 

curve  . 

 

Figure 4: Utility function for three different risk profiles 

It could be seen through this session that the theme risk is much discussed during the process 

of asset selection and allocation, and therefore, will be detailed even further in the next 

session, where it will be revealed a historical perspective of the risk measures present in 

literature, as well as its definitions, advantages and limitations. 

2.2 Risk 

 

Throughout history, many undesired situations from the financial stand point influenced the 

scientific and economic community to study and develop tools and metrics aiming to guarantee 

safer investments, in other words, decreases its risk. Some examples of these occurrences are: 

the 1929 financial crisis, the 1973 oil crisis, and more recently, the 2008 sub-prime crisis. All of 

them, although with its peculiarities, imposed catastrophic consequences on the global economy, 

negatively impacting the population well fare.  



16 
 

 
 

As said before, these financials crisis may be seen in a positive way, as they motivated studies 

on the risk control. Such fact occurred more heavily after the nineteen seventies, a period when 

many changes happened in the global scenario, such as the extinction of the currency fix rate 

regime and the implementation of floating exchange rate in some countries. Besides all of that, 

the rising globalization, which affected the economic, technologic and political parameters of 

such time, turned the countries more dependable from each other. Because of these reasons, the 

war regional effects, inflation differentials, changes in politics (such as the fall of the socialist 

world in the nineteen nineties), and natural disasters started to be reflected, in greater extent, in 

other economies, including on countries located at different continents. Such trend contributed 

even further for the increase the necessity of external risk control by financial institutions, 

encouraging the risk measurement and the study of new risk measures. 

The most recent example of such movement was the enhancement of the Basel Indexes after the 

2008 financial crisis. In 2010, a committee composed by the major political and economic 

authorities of the world gathered in Basel, in Switzerland, in order to create more strict rules to 

be applied into financial markets, more specifically, in the banks. An event of such global 

importance revealed that this theme continues to be relevant in the actual financial landscape. 

But after all, how is risk defined? BARROSA (2015) states that risk, in its general form, is the 

product of an undesired result and its probability of occurrence, measured by monetary values. 

The determination of this undesired event and the knowledge of its probability of occurrence are 

what represent the focus of the definition of many risk measures. 

More specifically, JORION (1997) indicates that risk may be defined as the variability of 

unexpected results (e.g. stock prices, exchange rates, interest rates and etc). ARTZNER (1999) 

emphasises that risk is related to the variability of future values of the portfolio positions due to 

market moves and efects on random variables which compose and charaterize an investment. 

Hence, it is confirmed that all operations are exposed to risk em greater or lesses degree. 

It is interest to note that JORION (1997), besides of revealing a generalized concept of risk, also 

list and classify the many types of risk; presented in Table 1.                 

Table 1: Risk definitions according to JORION (1997) 

Type of Risk Definition according to JORION (1997) 

Operational Risk It is related to the probability of loss caused by fail or inefficiency of internal 

process or even human errors.  
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Liquidity Risk It is related to the capacity of the institutions to raise money and turn 

resources available to respect the cash flow and cover all the illiquid assets. 

Market Risk Risk related to the volatility of the assets prices. It may be directional (when 

related to the portfolio exposure to determined types of investments) or non-

directional. 

Credit Risk Due to the possibility PF the counter-parts to not honor its debt obligations. 

 

There has been lately an intensification of studies about more robust risk metrics, motivated by 

the sub-prime financial crisis of 2008, but observing the literature, is comes clear that this theme 

is not recent. The first author that created a risk metric was Bernoulli in 1738. The author 

proposes the named Utility Function, which may be defined as a relative satisfaction measure of 

an economic agent ((BERNOULLI, 1738). This measure was utilized years later to characterize 

different investor profiles (LUENBERGER, 1998), as it was already mentioned. According to 

Bernoulli, from the analysis of its variation it is possible to explain the behavior of such agent, 

which in turn results in options chosen by the same in a way of increasing its satisfaction degree. 

It is, by the way, a very frequent measure in Economy to investigate the decision of 

consumption of goods and services. In economic terms, one may consider this measure 

revolutionary, since it was the first one to quantify, in fact, the expectation of the economic 

agents. However, its application in measuring investment risks presents a great drawback: its 

degree of subjectivity. It is so because the utility functions may assume many forms, such as 

quadratic, logarithm, exponential, among other, varying according to the economic agent. 

This subjectivity drawback was partially overcame in mid XX Century by, the already 

mentioned, Harry Markowitz. In 1952, the author creates the so famous Modern Portfolio 

Theory, a piece of work considered a milestone in the Finance world and that served as the 

starting point of many other modern studies of risk measurement. MARKOWITZ (1952) 

created the Mean-Variance (which will be described deeply later on this study) to valuate 

investment portfolios. 

In additional to introducing the concept of variance (also known as volatility), which allowed a 

standardization and conceptual alignment of the risk measure, the author also spread the idea 

that the covariance between two assets influences the overall portfolio return. He demonstrates 

that portfolios composed by assets of negative covariance present lower risk, to a certain risk 

level, when compared to portfolios that posses assets with positive covariance. 
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Simultaneously to the work of Markowitz, ROY (1952) developed the Safety First Criterion, in 

which the risk is measured as the probability of the return of certain portfolio being below a pre-

established level, considered disastrous. This study is interesting because it is the first one to 

mention the concept of risk measured named Bellow-Target Models, being the introduction to 

the study of tail distribution of returns as a form of evaluating risk (ROMAN, 2008). 

In Roy`s model, R is considered the return of a given investment and   the level of return 

defined as a disaster. Hence, the Safety First Criterion is formally represented by: 

SFC =   (  ≤  ), 

Being, therefore, considered a measure of probability. However, its application was limited to 

the arbitrariness of the definition of which would be the level of return taken as reference. So, in 

the end it was not broadly utilized in practice. 

Despite of the fact that the Safety First Criterion did not have its practical development 

amplified, Roy introduced new concepts which were essential to the creation of new risk 

measures, mainly on the aspect of the observation of asymmetric distribution of probability of 

return, emphasizing one of the sides of the distribution, the one that represents the loss for the 

investor, called downside risk. Hence, lending continuity to the theme, MARKOWITZ (1970) 

developed a model named Partial Moments, in which the sample semi-variance is considered 

the risk measure. 

The sample semi-variance may be defined as (ANDRADE, 2006): 

  = ∫  [0,( (   )−  )]2   

 In which: 

     is the semi-variance of the asset  ,  

      is the return of the asset   at the moment  , 

  (  ) is the average return of the asset  .  

 

This definition turned the undesired side of the probability distribution of returns as the only 

side considered when analyzing a distribution, as defined by Markowitz. 
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Simultaneously, FISHBURN (1977) and BAWA (1978) enhanced the research through the 

creation of the model ( , ), utilizing, this time, the Lower Partial Moment as risk measure, in a 

project that sums up and gathers the concepts of risk measures previously developed. 

Differently from nowadays, during the nineteen seventies and the nineteen eighties, there were 

no methods and sophisticated computational tools to obtain solutions to the quadratic (or any 

non-linear) optimization problems of great size (PEROLD, 1984). It suited as a stimulus for 

academics to develop linear metrics for analyzing risk. Having this in mind, KONNO and 

YAMAZAKI (1991) proposed the utilization of the first absolute moment of return distribution 

as a risk metric (RIBEIRO, 2004), through the model named Mean Absolute Deviation (MAD), 

enhanced by the innovative work of SHARPE (1971). This risk measured is defined as: 

 

   (  )=  [|  − |], 

 

which turns the portfolio optimization problem a linear programming problem, presenting an 

alternative to the Mean-Variance. However, its optimization is not simple, since it is an absolute 

function and, therefore, presents discontinuities in its derivative. Hence, both analytical and 

numeric methods turn to be non-practical, given the quantity of restriction intrinsic to the 

optimization problem. 

Given sequence to the development of risk measures that consider extremely undesired events 

(as the case of the financial crisis) caused on the tail distribution of loss probability, the G-30 

proposed, in 1994, a risk measure whose objective is to answer one simple question: “How big 

may the loss of an investment in a certain period of time and a probability?” (ROMAN, 2008). 

This risk measure is called Value at Risk – VaR, defined as: 

   (  )= −  (  )= 1− (  ) 

 In which: 

     is the return of a certain risk    

     is the percentile defined in a given confidence level   (G-30, 1994).  

Besides of being applicable as a tool on the portfolio optimization decision making, the Value at 

Risk is also used, throughout the planet, as a regulatory measure. This regulatory process came 

through especially after the notorious publication of the article “Risk Metrics: Technical 

Report”, by the north-American bank JP Morgan, in 1994 (ROMAN, 2008).  
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According to the criteria defined by ARTZNER (1999), the Value at Risk (VaR) is not 

considered a consistent measure of risk. It is due, mainly, by the fact that it does not attend the 

following probability: 

 

  ( 1+ 2)≤   ( 1)+   ( 2)) 

 

In other words, this risk measure does not have the subjectivity property, making the 

diversification not necessarily awarded. Again, it is not possible to guarantee that the risk of a 

portfolio composed by two assets, each other with a risk    1 and    2, respectively, is equal 

or lower than    1 +    2. Moreover, the Value at Risk (VaR), in its non-parametric form, 

presents a variety of quantities of local minimums, turning its optimization a hard task 

(QUARANTA and ZAFFARONI, 2008). Even so, the broad dissemination of the Value at Risk 

as a risk measure and its convenience of conceptual comprehension make it selected for further 

analysis in this study. 

Since the VaR presents such controversial aspects as risk measure, it was proposed in 200 the 

creation of a new measure, the named Conditional Value at Risk (CVaR). ROCKAFELLAR 

and URYASEV (2000) defined the CVaR as: 

 

    (  )= {(  )|  ≤ } 

  

In which: 

     represents the return f the asset  , 

    represents the Value at Risk (VaR) of the probability distribution of returns of 

this same asset. 

 

In other words, the CVaR is the average of the values which exceed the Value at Risk. The 

CVaR, in turn, attends the properties defined by ARTZNER (1999), being therefore coherent 

(LIM, 2011). However, as its definition is representative of the modeling of the tail probability 
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distribution of returns, it presents great complexity, turning its optimization very hard and by no 

means trivial (RIBEIRO, 2004). 

ROCKAFELLAR e URYASEV (2000) proposed, aside from the risk measure itself, 

sophisticated techniques of optimization of this function. Hence, for this reason and for being 

the goal of many researches around the globe, the CVaR, in addition to the Variance and the 

VaR is selected to deeper analysis in this study. 

Figure 5 gives a historical perspective of risk measures available on literature until nowadays, 

which were already described in this study. 

 

Figure 5: Historical perspective of the risk measures 

From what has been revealed in this study, it is possible to classify the main risk measures 

proposed in literature in two categories: 

 1) Deviation from Target 

 2) Tail Measures  

Given that the first category may be sub-divided in two other categories: 

 1.1) Symmetrics: consider both sides of the probability distribution of returns. 

1.2) Non-symmetrics: consider just the side of the losses of the probability distribution 

of returns. 
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Table 2 classifies each risk measure described in this session within this classification.  

Table 2: Categories and descriptions of the risk measures 

 

2.2.1 Variance 
 

Proposed by MARKOWITZ (1952), the variance indicates the mean of the quadratic deviation 

of a random variable and the distribution average. Regarding the portfolio management subject, 

it common to say that the variance measures the degree of deviation between the expected 

returns of the assets. 

For a random variable, the variance is defined as: 

                        

In which:    

                                     

According to COSTA NETO (2002), depending on the nature of the random variable (i.e. if it is 

discrete or continuous), the variance is calculated as the following: 

                   , for discrete variables 

                      
 

  
 , for continuous variables 

In which: 

                       

                                        

Category

Deviation from Target

Tail Risk Measures 
(seriousness of potential 
loss)

Symmetrical

Asymmetrical

Description Examples

Considers the worst case 
scenario at α confidence 

level

Variance

MAD

Lower Partial Moments

Central Semi deviation

VaR

CVaR
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This statiscal measure is broadly utilized for the risk measurement, and, in the specific case of a 

portfolio composed by different assets, it may be applied with the support of a covariance 

matrix. However, the variance has some restrictions regarding it use and may be utilized in 

asymmetrical probability distributions (SZEGÖ, 2002). Therefore, it is possible to use the 

variance model merely to analyze elipitical distributions, such as normal and t Student 

distributions, which does not represent the majority of the existing distributions. 

There are two main characteristics of the variance that hamper its utilization as an efficient risk 

measure in the portfolio management:  

a. The variance does not consider the difference between negative and positives returns in 

relation to the expected returns, which have opposite impacts on the return of the 

investors and in their perception, who gives priority to those assets that present a greater 

return than the expected value; 

b. This risk measure also does not analyze the tail distribution (RIBEIRO and FERREIRA, 

2004); what may represent great losses in stressed scenarios. 

As such flaws started to be highlighted, came up in the literature other studies regarding more 

robust risk measures which solved the problems revealed by the variance. Hence, in 1994, it 

was figured out the concept of Value at Risk (VaR) (SZEGÖ, 2002).  

2.2.2 Value at Risk (VaR) 
 

It is a risk measure used by many economic agents: regulatory agencies, financial institutions, 

portfolio managers and central banks (HULL, 1999). According to this author, the Value at Risk 

was created as an attempt to summarize, in just one number, the risk involved in a certain 

portfolio of financial assets. 

This metric involves the definition of level of reliability, time horizon and percentiles. The VaR 

may be defined as the value that represents the great loss that will occur with a probability α% 

in a certain time horizon. 

Depending on the sector that the company is placed and on the portfolio to be analyzed, the time 

horizon for the VaR analysis will vary. For a company that has a great asset turnover, the time 

horizon will b short, for example, a month. Now, in companies whose assets are traded at a slow 

pace, the time horizon could be a year (RIBEIRO and FERREIRA, 2004). 

According to Quaranta e Zaffaroni (2008), considering K a random variable and F its 

distribution function,               e                      , for a fixed level of 

reliability (α), it is given that: 
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Erro! Fonte de referência não encontrada. presents the VaR`s graphic definition. 

 

Figure 6: VaR graphic representation 

JORION (1997) demonstrate two methods to calculate the VaR: 

1) Parametric: considers that the portfolio return presents a normal distribution what 

simplifies its calculation. It receives such name because the parameters are estimated 

instead of identifying its percentiles; in this method, the VaR derives directly from the 

standard deviation using a multiplication factor that depends on the level of reliability 

               

 In which: 

    is the average of the returns 

    is the standard deviation of the returns 

     is the value that representd the inverse of the normal cumulative distribution. 

2) Non-parametric: also known as the historical series method, considers the N portfolio 

returns sorted, so that the VaR consists on the ((1-α)-N)th worst value of the series. This 

method assumes as assumption that the future return is linked to the past return. 

Besides the methods proposed by Jorion, this measure may be calculated by Monte Carlo 

simulation. This method uses this simulation to construct a variety of scenarios to generate a 

prediction if future returns for each one of them, based on the historical series of returns 

(RIBEIRO, 2004). 
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BARROSA (2015) performed, as an example, a study in order to demonstrate the VaR`s 

behavior, both the parametric and the non-parametric. The author utilized a portfolio composed 

by two assets, Itaú-Unibanco (ITUB4) and Petrobrás (PETR4), both traded in the BOVESPA 

(i.e. the Brazilian stock exchange) and a sample of the historical series between May 27
th
, 2009 

and May 11
th
, 2012, totalizing 718 observations. To facilitate the visualization of the results, the 

author takes  = 1 and  2=1− , being   a portfolio. The result of such study is demonstrated 

on Figure 7. 

 

Figure 7: Exemple of application of the VaR 

When analyzing Figure 7, it is possible to notice that the normality hypothesis of the returns 

assumed on the application of the parametric method is not necessarily true, so that the 

estimators obtained through the historical series samples of the assets returns, assuming 

normality, present error. In this sense, COSTA and BAIDYA (2001) verified empirically the 

non-conformity of many Brazilian assets with the hypothesis of symmetry on the probability 

distribution of returns. The assessment of the surface VaR(x) through its broadest method of 

calculation, the non-parametric, relaxes this hypothesis, but its optimization becomes 

significantly more complex, mainly due to the existence of many local minimums. 

Even knowing that the VaR provides information about the tail distribution of returns, SEIGÖ 

(2002) presents many problems related to the application if this risk measure. Among them, it 

may be highlighted: 

a. It does not measure the losses that exceed the VaR, in other words, this risk measure 

does not accomplishes in given information about the dispersion o the tail distribution 

beyond its value, given a certain level of reliability; 
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b. It may generate conflicting results for different levels of reliability; 

c. It is not considered a coherent risk measure. 

ARTZNER (1999) defines the properties for a risk measure to be considered coherent: 

a) Invariation of translations:                                  

b) Subadditionality:                                    

c) Positive homogeneity:                           

d) Monotonicity:                         

The VaR does not present the property of subadditionality, in other words, does not guarantee 

that the risk of a portfolio composed by two assets with      and     is equal or lower than 

           The risk of this portfolio cannot be predicted, and this complicates its 

optimization (QUARANTA and ZAFFARONI, 2008). 

2.2.3 Conditional Value at Risk (CVaR) 
 

The risk measures presented so far are not convex, or in other words, if those are applied to non-

elliptical distributions it provides inconsistent results. Furthermore, these measures do not 

analyze the tail distribution for extreme scenarios. 

Within the objective of solving these problems, the literature has been given in the last decade a 

great importance to the Conditional Value at Risk (CVaR), a coherent risk measure that may be 

defined as the average of the values that exceed the VaR, for a certain level of reliability. In 

other words, considering the worst case scenario, this measure provides the mean value of the 

tail. This definition guarantees that the VaR is never greater than the CVaR in absolute value 

(ROCKAFELLAR and URYASEV, 2000). 

Having x   X    , a decision vector representing the portfolio and y   Y    the future 

values of returns of those assets which compose the portfolio,         the function of the 

portfolio losses; the CVaR is given by (QUARANTA and ZAFFARONI, 2008): 

                    

In which: 

   is the portfolio`s VaR. 
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Erro! Fonte de referência não encontrada. presents the graphic definition of the CVaR. 

 

One may observe that the VaR and the CVaR measure different properties of the distribution, 

since the former refers to the percentile and the latter to the tail average  (PFLUG, 2000). The 

CVaR presents consistency with the VaR only in normal distributions (or elliptical) 

(ROCKAFELLAR and URYASEV, 2002). 

 Despite of the fact that the CVaR depends on the VaR determination, it is possible to define 

simultaneously these two risk measures through the following function (ROCKAFELLAR and 

URYASEV, 2002): 

          
 

   
               

In which: 

                           

Hence, one may affirm that the CVaR presents some advantages over the VaR: 

 It is a coherent risk measure, respecting all the axioms proposed by ARTZNER (1999); 

 It provides information about the distributions` tail, analyzing stressed scenarios. 

 It may be algebraically expressed by a formulation that pursues to change the portfolio 

composition problem in a linear programming problem, which will be presented in the 

next section. 

Figure 8: CVaR graphic representation 
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Again, BARROSA (2015), as an example, perform a similar study: the author considers the 

same example from the previous section (i.e. a portfolio compose by Itaú-Unibanco (ITUB4) 

and Petrobrás (PETR4), both traded in the BOVESPA  and a sample of the historical series 

between May 27
th
, 2009 and May 11

th
, 2012) in order to calculate the portfolio`s CVaR. The 

author takes  = 1 and  2=1− , being   a portfolio. Results are presented in Figure 9. 

 

Figure 9: Example of application of the CVaR 

The author (BARROSA, 2015) notes that the behavior of the presented curve, including once 

again the existence o local minimums and discontinuities, making substantially harder its 

optimization through conventional methods, turning its large scale application not favored. 

Nowadays, there is no consensus on literature about which is the most adequate risk measure on 

practice, since the CVaR, even being coherent, is not easy to be applied (as demonstrated by 

Barrosa), demanding a great computational effort. 

Hence, academics concentrate their attentions in two main research topics: 

1) The definition of new risk measures, so that better characterize the probability 

distribution of returns; 

2) Enhancing the studies on existing risk measures, focusing not just on those used in 

practical terms, as the VaR, but also on those coherent and considered innovative, 

as the CVaR. Both having the purpose of analyzing their behavior, and finally, 

enabling their use as an object function in decision processes.  

Table 3 presents the three risk measures which are presented in literature and that will be used 

in this study.  
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Table 3: Coherence and limitations of the risk measures 

Risk Measure Category Coherency Limitations 

Variance Deviation Yes 

-Applicable just in symmetric distributions 

-Does not different positive returns from 

negative returns 

-Does not consider the distribution tail 

VaR Tail No 

-Does not provide information of events that 

exceed the VaR 

-Not coherent 

CVaR Tail Yes 
-Tough practical application 

 

 

2.3 Portfolio Selection Models 

 

The determination of the portfolio composition is directly linked to the risk associated with this 

portfolio and the return yielded. The objective of a portfolio manager is, for a given level of risk, 

maximize the return, or similarly, for a given return, minimize its risk. 

However, this is a non-trivial issue, since the financial assets are exposed to many types of risk, 

such as market risk, liquidity risk, credit and/or operational risk. For example, one single stock 

is subject to risks related to the company image, its directors’ reputation, or even market and 

liquidity risks. In the case of the portfolio composition, the problem is hampered by the existing 

correlations of the many assets involved (MARKOWITZ, 1952). 

Given   a fix amount of money available to the investment allocation, measured in monetary 

terms, and n the number of pre-selected assets, the portfolio is defined as the asset obtained 

through the allocation from    to  . It is the same as stating: 

         

With:     
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The vector             represents the allocation of the amount    in each asset i which 

compose the portfolio, or the weight of each asset, and more importantly, it represents the 

variables of the portfolio optimization problem. 

The portfolio return is calculated by the weighted average of the individual returns of each asset 

the compose the portfolio, what may be easily expressed by: 

   
       
 
   

  
      

 

   

 

Hence, the portfolio management problem has the purpose to minimize certain function Risk(x), 

which represents the portfolio risk as a function of its composition subject to restrictions 

regarding the expected return   . In order to define more precisely this problem, two elementary 

assumptions of the human behavior are necessary (LUENBERGER, 2008): 

(1) Non-satiety: the investor prefers more money over less money; 

(2) Risk aversion: given two portfolios with the same return and different risks, the 

investor opts for the lower risk.  

Therefore, the portfolio optimization problem, in its general form, is defined as(BARROSA, 

2015): 

 

Minimize:              

  Subject to: 

        

 

   

   

   

 

   

   

             

The first constrain refers to the model`s parameterization regarding the average expected return 

of the portfolio, which is necessarily greater or equal to the minimum value stipulated G by the 

investor. 
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The second constraint guarantees that the exact same amount of resources available for 

investing is allocated, what is surely accomplished, since the sum of the weights of all the assets 

which composed the portfolio is equal to one.  

Finally, the third constraint guarantee that all portfolio allocations are non-negative. In other 

others, this restriction does not allow short selling. 

The problem was presented, in this section, in its general form and, additionally, in the next 

sections, will be revealed its specific application using the following risk measures: the 

Variance (Markowitz Model), the Value at Risk (VaR), the Conditional Value at Risk (CVaR), 

and at last, the method hear proposed, the Kriging Method, which allow its application within 

any risk measure. 

2.3.1 The Markowitz Model 
 

Harry Markowitz, through his famous publication in 1952, called Modern Portfolio Theory, 

attempted to develop a universal metric of market risk for a given investment. The risk 

measured used is the Variance, which will be detailed in this study. 

Now, let Σ be the covariance matrix between the assets that compose a certain portfolio, in 

which: 

                                            , 

                Or:         
  
     
   

      
 
  , 

which represents a symmetric matrix with individual variances from the historical series of each 

asset that compose the main diagonal, and with the covariance between these assets, for every 

   , it is given that the risk of this portfolio is: 

           
        , 

which is a quadratic function that represents the portfolio variance depending on its composition 

(MARKOWITZ, 1952). 

This definition led the creation of the original concept of diversification of Markowitz, 

considered a milestone in his time and continues until now being a dogma among the portfolio 

manager. This concept says that the portfolio composed by assets with negative correlation may 
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presents a better risk-return relation when compared to an investment in one single assets or in 

assets with a positive correlation (LUENBERGER, 2008). 

Thus, the portfolio composition problem using the variance as the risk measure may be 

expressed in the following manner: 

 

Minimize:               

  Subject to: 

        

 

   

   

   

 

   

   

             

 

Given that the three constraints here presented are equal to those described in the former section 

of this study and the objective function, which represents the portfolio risk, is the variance in 

itself. 

In practice, the parameters of the function       are estimated through a sample study of the 

historical returns of each of the assets that compose a certain portfolio. 

BARROSA (2015) creates an example to clarify the above described concepts. In Figure 10 it is 

possible to see the curve Risk x Return for a simulation of a portfolio composed by three assets, 

providing different portfolio compositions. 
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Figure 10: Return x risk relation for a three asset portfolio 

It stays clear through the graph observation that the Risk (x) function assumed in the example 

(in this case, the variance) is a quadratic function. It is worth noting also that there are three 

bordering points, which represent the three portfolio composed by an asset weighted one, or in 

other words, portfolio composed by one single asset. 

Considering that a portfolio optimization problem presents assumptions of non-satiety, return 

maximization, and risk aversion, minimizing the potential losses, it stays clear with the support 

of Figure 10 that only one small portion of the different portfolios with different compositions 

would in fact satisfy both assumptions. 

The region of the graph that, in fact, is capable of satisfying both simultaneously is obtained 

through an optimization method (e.g. the Kuhn-Tucker method), minimizing therefore the 

function   ( )= ′Σ  and parameterizing the minimum return desired by the investor 

through the restriction    ≥ . The results of these optimization problems assuming different 

values o G are presented in Figure 11. This curve is denominated Paretto’s Optimality Frontier 

for conflicting objectives ((PAPALAMBROS, 2000). 
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Figure 11: Markowitz efficent frontier example 

It is important to note that any portfolio compositions that are not placed on this curve present, 

necessarily, a relation Risk-Return inferior to the points on such curve. In other words, the 

points that were generated with a greater risk level for a given return, or with a lower return for 

a given risk, are not, thus, considered in the optimal compositions. 

At this stage of the study, it is important to utilize the concepts of Utility Function and different 

investor profiles regarding the risk. It is so, because this function sorts the investments by the 

investor risk profile (LUENBERGER, 2008), and therefore, it is it that, considering the basic 

idea that greater risks imply in greater return and vice-versa, will define which point on the 

Efficient Frontier curve the investor will pick. 

Since it presents a quadratic function optimization problem, subject to linear constraints, the 

Markowitz model is not perfect, in a way that it is based upon the hypothesis of symmetry of the 

probability distribution of returns of the assets which compose the portfolio. Moreover, this 

model also deals with another weakness: its fragility on representing stressed scenarios (tail 

risk), which will be surpassed with the utilization of the models VaR and CVaR 

 

2.3.2 The VaR Model 
 

Given the weakness of the Mean-Variance model in not considering the analysis of the tail 

distribution (i.e. scenarios with significant losses, such as losses during financial crisis), it is 

necessary to use other risk measures when dealing with portfolio optimization problems. This 

was, thus, one of the motivations for the development of the Value at Risk (VaR). 
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This model generates the same efficient frontier of the former model when faced with normal 

distributions. The difference comes up in the case of non-normal and asymmetric distributions, 

which represents the behavior of many random variables. Another great difference between this 

model and the Markowitz one consists on the fact that the later consider the mean deviations, 

for both positive and negative values, what does not match with the investor way of thinking. In 

the VaR model, it is considered just the tail distribution that represents a loss in risk analysis. 

Similarly to the Markowitz model, to solve this kind of problem using the VaR as risk measure, 

it is common to perform a sample of the historical series of the return in order to obtain 

estimators for the main parameters of the probability distribution. Analogous to the parametric 

calculation method for the portfolio variance, the portfolio VaR may be calculated through the 

following relation (JANABI, 2012): 

                       

Where   represents the vector of the individual VaRs of each asset, in function of its individual 

assets,   and  , represent the correlation matrix between the assets that compose the portfolio, 

being: 

   
     
   

     
  

The matrix   is symmetric to the main unit diagonal, indicating the correlation between the 

historical series of returns of the asset i and itself. The other values of the correlation matrix 

represent the Pearson Coefficient of Correlation, obtained through the sample of historical 

returns between each asset i and j. 

And now, regarding the VaR calculation by the non-parametric method, the methodology is 

simple: the ordination of the asset VaR is substituted by the ordination of the different portfolio 

VaRs and, hence, the technique is applied as it was presented before. 

In such way, the portfolio optimization problem considering the VaR as risk measure may be 

written in the following manner: 

   

Minimize:                            

  Subject to: 
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Again, the constraints of this problem are the same of those in the base models, but this time the 

objective function to be minimized is the function that calculates the portfolio VaR. 

However, as it has already been noted, the VaR has a few limitations, among them: it does not 

offer information about the dispersion of the distribution tail beyond a certain value depending 

on the level of reliability; and it is not considered a coherent risk measure (ARTZNER, 1999). 

Aiming on solving these drawbacks, ROCKAFELLAR and URYASEV (2000) developed and 

applied the Conditional Value at Risk (CVaR) in portfolio optimization problems. 

2.3.3 The CVaR Model 
 

The critics to the Mean-Variance model (Markowitz model) in addition to the search for a 

coherent risk measure (attempting to overcome one of the VaR’s limitations), made the CVaR 

model notorious in the literature. This model is based on the portfolio CVaR and leads to more 

reliable results regarding the portfolio risk, since it considers the tail risk, and moreover, the 

values that surpass the VaR. 

As previously presented, the CVaR calculation depends on the determination of the portfolio 

VaR, what may seem complex in practice. However, ROCKAFELLAR and URYASEV (2000) 

proposed a simpler approach to this problem, in which the VaR is calculated and at the same 

time the CVaR is minimized. 

Yet according to the same authors, being        the loss function associated to a decision 

vector X     and a random vector Y    , for each vector X, the loss        is a distribution 

random variable in R inducted by the vector Y, which has density     . 

The portfolio return is calculated through the sum of the product of the weights and returns of 

the individual assets. The function loss is the opposite of this return 
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And when negative represents a gain. 

Therefore, the mean and the variance of the loss function associated to the portfolio X may be 

defined in terms of the average m and the covariance matrix ∑ of the returns: 

 

       

        

The probability that        does not exceed a level       is: 

               
        

 

It is assumed that         is non-decreasing and continuous regarding the VaR, in order to 

simplify the mathematical formulation which follows the CVaR calculation. This function 

determines the behavior of the random variable and is fundamental to the determination of the 

risk. 

For a given level of probability α between (0,1), in which α may assume values as        or 

      , for example, the VaR and the CVaR may be defined as: 

                                

                    
 

     
                  
    

 

In which: 

                            

ROCKAFELLAR and URYASEV (2002) proposed a mathematical formulation which 

transforms the CVaR calculation problem into a linear programming problem. What the model 

proposes is a manner of discretizing the integer to facilitate an approximation of the CVaR. For 

this purpose, the authors suggest the use of samples of the probability distributions of Y, 

according to its density     , generating many vectors           . Moreover, associated to 

the creation of base cases scenarios, it may be applied for analyzing and optimizing the risk of a 

portfolio composed by a great number of assets, without many computational resources. 
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Therefore, taking in consideration the quantity of scenarios generated (q), an approximation to 

the function         is given by: 

                    
 

      
             
 

   

 

Substituting the term              by auxiliary variables   that comply with constraints that 

guarantee that its value is equal to         , transforming the model resolution into a linear 

programming problem. 

It may be described in the following manner: 

                            
 

      
   

 

   

 

  Subject to: 

                 

   
 

   
   

      

            

                         

In which: 

   is the number of scenarios generated 

   is the minimum accepted return 

    are auxiliary variables that substitute           

The first constraint refers to the requirement that the asset allocation is positive, not considering 

thus, short selling positions. 

The second one guarantees that all capital available will be invested.  

The third one imposes that just the portfolios with a minimum return R are considered. 
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At last, the fourth and fifth constraints deal with the variable   , which must be positive, 

satisfying the restriction described in the fourth constraint. 

The solution for the problem is the approximation of         by          and later 

minimization of the same, which is a function convex, linear, and differentiated in relation to X 

and to the VaR, and also may be minimized using regular methods of linear programming, what 

makes its implementation attractive. 

Although the attention is not aimed directly to VaR itself, since the CVaR ≥ VaR, the portfolio 

which minimizes the former tends to be a good solution for the minimization problem of the 

later. 

The transformation for the linear programming problem of the CVaR optimization does not 

depend that Y have a normal distribution previously known, which brings the model preferred 

over the Markowitz one. In addition, it is also considered a more robust model than the VaR, 

since the CVaR analyzes better the tail of the probability of the returns, and moreover, includes 

the calculation of the VaR itself implicitly.  

2.3.4 Proposed Method: Kriging 

The model revealed above, the CVaR model, presents a drawback: its hardship on the practical 

application. It happens, because in order to turn the model into a linear programming problem it 

is necessary to include more variables and constraints according to the number of scenarios; a 

number that turns greater as bigger the sample generated by the Monte Carlo simulation is. 

This study has the objective to propose an optimization problem that aims to decrease the 

number of variables and the computational work to obtain the optimal portfolio composition. 

This method seeks to create an approximate surface of the function to be minimized. 

In the models described in the previous sections, the past behavior of the returns of the assets is 

used in order to predict what is going to happen in the future, considering a covariance matrix in 

the generation and analysis of scenarios. This basic principle is used in the proposed method as 

well, since it models the tail of the distribution, proposing an approximation of the surface of 

the function, based on the historical values which suit as input to the problem solution. 

It is known that, in order to approximate a function, one shall choose the appropriate points of 

the grid, or in other words, points that will represent the data in the space. There are many 

techniques to approximate a function, but in this study it will be proposed the Kriging Method, 

also known as DACE fit (Design and Analysis of Computer Experiments). This technique has 

its origins in the study of geology problems and is known as Kriging (RIBEIRO and 
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FERREIRA, 2004), which is a regression model used in geostatistics to interpolate data (YIN, J 

and NG, 2011). 

Although this method is not traditionally applied to financial problems and initially had been 

used for geology problems, it is believed that are some similarities in both applications that 

justify its use in this study. In the case of the land composition, there is no hindering on 

obtaining the real values of the composition in all the researched area. In the case of the CVaR 

problem, despite of being possible to determine its value for a great part of the portfolio 

conFiguretions, the behavior of this theoretical function hampers its optimization. 

The Kriging method proposes a fit on the surface of answer of the collected data, valuating the 

objective function and the problem restrictions in a few determined points. This answer surface 

is used to analyze the relations between the inputs and outputs of the problem, as well as the 

estimation of its optimal value  (JONES, SCHONLAU e WELCH, 1998). 

This technique has its objective function treated as the result of a stochastic process previously 

defined, characterized by a correlation function between the calculated values in different pair 

of points (JONES, SCHONLAU and WELCH, 1998). It is usually used in cases such that the 

computational cost of the objective function is high, not necessarily, in the case of the CVaR. 

Considering the vector         (           and the vector                    , in which 

n represents the number of assets which compose the portfolio and q the number of points 

observed in the grid, the DACE fit provides a polynomial approximation of the function 

        , interpolating the points observed through the equation: 

               

Where      are the random errors, correlated, normally distributed, with mean zero and 

constant variance,   . 

The correlation between       and      , cited above, depends on the distance between the 

points. It will be greater when    e    are close to each other, what is the same  as saying that it 

will tend to one when the distance is small and to zero when these grid points are distant from 

each other. The errors covariance is given by: 

                       

In which     is the correlation between the two errors                          . 
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In the Kriging Model, it is considered the following correlation functions (LOPHAVEN, 

NIELSEN and SONDERGAARD, 2002): 

 

Table 4: Correlation functions available for the Kriging Method application 

Correlation Function 

Exponential                       

Gaussian                   
   

Linear                          

Spherical 
                     

   

                 

Spline 
               

          

   

The term          refers to the distance between the points and are not based on the Euclidian 

model       
    

 
 
 

 
   , as a form of dealing with all points on the same weigh. 

The measure of this distance between the two points is a function of the parameters    and   . 

 

               
    

 
    

 

   

 

According to JONES et al (1998), the parameter     measures the influence of the variable   , 

or in other words, if the variable is active, it means that even small values of    
    

 
  may 
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influence on all major differences of the values of the function in    e   .Statiscally, it means 

that the same small values of    
    

 
  must imply in a lower correlation between the points    

e   as greater the value of     is. 

Yet according to the same author, the exponent   is related to the softness of the function 

regarding the points h. values of      correspond to less soft functions and      to more 

soft functions. 

 

 

Figure 12: Parameters applied for the Kriging Method 

In a similar approach to QUEIPO et al. (2002), it is adopted      and      . And, therefore, 

the estimator non-biased of quadratic minimum quadratics for        is given by (RIBEIRO & 

FERREIRA, 2004), (LOPHAVEN, NIELSEN, & SONDERGAARD, 2002): 

          
   

 

   

                  

In which: 

                     

  is the vector of correlations between the error regarding the point    and the 

others points of the sample 

Σ is the correlation matrix between the sample points 
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y is the vector of values observed to the CVaR 

F is the matrix with the values of the functions calculated on the sample points 

The first step to the application of the proposed model is related to the obtaining of the adequate 

sample for the experiment. Since the study`s objective is to analyze the portfolio composition 

problem, the grid points represent the percentage of capital allocated in each asset. To do so, 

these grid points assume values such as           . 

The decision regarding the generation of the points that will be used for analysis is important as 

a manner of increasing the method`s efficiency and of decreasing its statistical uncertainty. 

There are three major methods for generating the sample: 

1) Random generation: the points generated are normally distributed in the range      , 

having the mean sequence equals to zero and unitary variance; 

2) Deterministic generation: each of the hypercube       is subdivided in a certain 

number of ranges which origin other hypercube whose vertices are the sample points 

(RIBEIRO & FERREIRA, 2004); 

3) Latin hypercube generation: guarantee that all portions of the space are represented. 

Initially, it is determined the m ranges non-overlapped and with the same probability, 

and then, it is generated a random sample, uniformly distributed, in each range and in 

all the dimensions for further sample selection of these to compose the group of points 

for analysis. 

 

LOPHAVEN, NIELSEN & SONDEGAARD (2002) present three regression models which 

may be used to approximate the problem`s response surface. In the first model, one 

approximates the surface to the value of a constant through a zero degree polynomial. The 

second alternative is to approximate it to a polynomial with degree of one, representing a liner 

regression, and finally, the third one, a quadratic regression, using a polynomial of second 

degree. The approach proposed in this study will use the linear regression, in order to decrease 

the problem complexity and facilitating its graphic representation. Therefore: 

                                        

Defined the methodology to the sample generation, to the correlation and to the regression 

which will be used, the model continues with the following steps: 

a) The set of points         
 

 is generated, according to one of the methods above presented, 

subject to the following constraints: 
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b) For each vector    it is calculated the        ; 

c) For each set of points   e   , it is determined the approximate function through the 

Kriging  Method, according to the regression and correlation models chosen, and also 

the parameters      and   ; 

d) It is generated a new set of points        
 

, subject to the same constraints so that it is 

possible to analyze the estimation error between the value provided by the approximate 

function    and the value of the portfolio`s CVaR.  

According to QUEIPO et al (2002), the benefits of using this probabilistic approach for 

modeling deterministic functions rely on the fact that the model uses an impartial estimator for 

representing a problem and providing the approximation estimated error. 

2.4 Portfolio Selection on the Energy Sector  

 

The Fundamentals of the Modern Portfolio Theory (i.e. a portfolio composed by assets which 

have negative correlated returns offers a better risk-return relation than a portfolio composed by 

just one asset), introduced by Harry Markowitz in 1952, also started to be used on the energy 

sector. 

The utilization of the Markowitz theory in a different field from that originally created (i.e. the 

financial markets) is not recent: it was introduced for the first time by BAR-LEV & KATZ 

(1976). However, more solid results were obtained by AWERBUCH & BERGER (2003), 

AWERBUCH (2006) & KREY and ZWEIFEL (2006) and ended up becoming reference on the 

literature. According to these authors, the study`s objective is to select the optimal composition 

of country`s energy matrix portfolio (or maybe of a continent, in the case of Europe), formed by 

different generating technologies, such as wind, gas, nuclear, among others. In this context, the 

unit cost of energy production [kWh/$] is considered the return of an energy portfolio and the 

standard deviation of this return is given as a risk measure. 

LOSEKANN et al (2013) and DELARUE et al (2011) perform a similar approach: these 

consider as the objective function of the problem the unit cost of the energy production [$/kWh], 

and the standard deviation of such cost, expressed as a percentage of the average cost, with the 

risk associated to each technology, which is considered an asset. The general form of this 

problem may be expressed as: 

Min                     
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Subject to  (1)             

(2)       
  

(3)              

The objective function COST (x) represents the total unit cost of energy production in terms of 

the decision vector x, which represent the allocation in each technology of the energy matrix 

portfolio. Notably, the total unit cost is expressed as the sum of the average unit cost of each 

technology, symbolized as UTCOi (DELARUE ET AL, 2011). 

 The first constraint to the problem represents the standard deviation (risk measure used) of the 

portfolio in terms of x (allocation in each technology), given that   refers to the covariance 

matrix between the historical values of the unit costs. This constraint is parameterized in 

R, which is the greatest acceptable portfolio risk. 

The second constraint guarantees the total allocation of the energy supply provided by the 

different studied technologies. 

At last, the third constraint assures that there is no negative allocation in the portfolio, 

since there is a physical restriction for that. 

In order to turn the presented problem a reasonable representation of the reality, the 

UTCO is decomposed in many components (DELARUE et al, 2011): 

                                

 

 

Being: 

     represents the component cost k of the technology I [$/kWh] 

      represents the invesment cost of the technology i [$/kWh] 

   represents the fuel cost of the technology i [$/kWh] 

      represents the fixed cost of Operations and Maintenance of the technology i 

[$/kWh] 

     represents the variable cost of Operations and Maintenance of the technology i 

[$/kWh] 
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LOSEKANN et al. (2013) presents in their study a scatter plot relating the unit cost of energy 

generation with the standard deviation of this cost, expressed as a percentage of the average cost, 

for multiples technologies available in the Brazilian market. Such results are presented in Figure 

13. 

 

Figure 13: Average cost and risk (standard deviation) for different technologies 

It is possible to notice that there is a negative correlation between the average unit cost and the 

standard deviation of this cost. This correlation is analogous to the classic relation between risk 

and return, which states that the bigger the risk incurred by the investor, the bigger the return 

required by him. In the case of the energy sector, however, the objective is to minimize the cost 

variable (and not maximizing the return), thus, this relation is inverted, and in other words, a 

greater risk (the standard deviation, for example) requires a lower energy generation. 

Yet regarding this theme, it is worth saying that the conflict between minimizing the average 

unit cost of energy generation of a portfolio with multiples technologies and its risk may be 

represented by the Paretto`s Efficient Frontier, exhibited in Figure 14. 
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Figure 14: Paretto`s Efficent Frontier 

 

Alternatively to the optimization problem above, it is equivalent to present in another form 

(BARROSA 2015). According to the author, it is convenient to rewrite the problem`s objective 

function as being a function of the energy matrix portfolio risk, subject to a parameterized 

constraint which represents the greatest unit cost acceptable. Hence, the problem is formulated 

as: 

Min        

Subject to  (1)       
 
  

   

(2)       
  

(3)              

This new form of representing the energy matrix optimization problem enables the use of 

different risk measures, and therefore, it will be implemented in this study, since it is proposed 

here to use not just the standard deviation as risk measure, but also the Value at Risk (VaR) and 

the Conditional value at Risk (CVaR). 
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3 METHODOLOGY 

In this chapter, it is presented, initially, the motivation of the choice of the energy sector analyze 

in this study and its characteristics. Then, it is described the cost measure used, the  Levelized 

Cost of Energy (LCOE). It is presented also the database chosen for the application of the 

Kriging Method. Finally, it is demonstrated how Monte Carlo simulations are carried on in 

order to support the data preparation. 

3.1 The United States Energy Sector 

3.1.1 Motivation 
 

The original idea of this study was to analyze the energy sector on the native country of the 

author, Brazil. But, some limitations and drawbacks emerged on the data collection phase: 

1) There is in Brazil a huge lack of public data on energy generation costs. It is worth 

saying that the major regulatory agency of energy in the country, the ANEEL (National 

Agency of Electrical Energy) does not disclosure data on the generation plants, since 

the majority belongs to private non-listed companies, and therefore, are not required to 

report their results. 

2) Yet regarding the private companies responsible for managing the energy generation 

plants, the author tried to establish contact with them in order to gather information, but, 

unfortunately, most of these companies refused to disclosure data, stating that these 

numbers are strictly confidential data. 

3) Governmental policies, as federal, as state related, of subsidies and incentives are highly 

frequent in Brazil. One of the reasons why it takes place is because the State, by many 

political reasons, has the willingness to keep control on the energy sector. The 

government does so, for example, through price control over fuel, what, consequently, 

directly impacts on the costs of a generation plant. This interventionism hinders the 

market rationale, or in other words, basic “laws” of economy (e.g. the supply and 

demand law) are put aside. All in, it ends up jeopardizing the implementation of the 

model proposed in this study, the Kriging Method, since this model is based not in 

governmental policies, but in market logics, as the risk return relation. As an example of 

action of this kind by the State, it is possible to verify in Figure 15 the average variable 

cost of energy generation of four power plants located at the Rio de Janeiro state. 

Despite of the fact that the four plants have the exact same generation technology, each 

of them has a different generation cost. It might be explained by the observation that 

each was constructed in a different date (years apart from each other) and in each date 
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which the contracts were signed, there was a different governmental subsidy taking 

place. 

 

 

 

Figure 15: Variable cost of the power plants 

Hence, this study`s objective is to analyze the United States energy sector. It is so, because there 

is a great availability of data regarding this market, especially by public agencies that 

consolidate date, such as the Department of Energy of the United States (DOE) and the Energy 

Information Agency (EIA). Furthermore, one of the strongest characteristics of this market is 

the economical liberalism, in which the market is driven by the players` willingness influencing 

costs and generation prices. Therefore, the proposed method becomes valid in such market, and 

consequently, a potential tool on the support of energy policies development. 

3.1.2 Main Characteristics 
 

The United States are second biggest producer and consumer o energy in the world, lagging 

behind just from China. The country consumes approximately twenty percent of the world 

production and, notably, has a relevant role in the global market. It stays clear through 

observation of the Figure 16 that in the past few centuries the per capita demand in the United 

States increased considerably. However, it is important to notice that also, in the last decades 

there has been a decreasing on the per capita consumption, which may explained by the surge of 

more efficient technologies in energy terms, and also explained by the population increase and 

by environmental policies aiming the reduction of the energy consumption. 
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Figure 16: Energy consumption in the United States 

It is possible to verify in Figure 17 that the sector responsible for the greatest energy 

consumption is in fact the electrical, which is by the way, the sector analyzed in this study. 

 

Figure 17: Participation of each sector in the energy consumption of the United States 

It is important also to define which are the main sources of energy of the electrical sector of the 

United States, what is exhibited in Figure 18. One may note that almost half of the electrical 

energy is provided by technologies which use coal as generation source.  
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Figure 18: Energy matrix in the United States 

It is worth noting also the greater importance to renewable energies: according to the Energy 

Information Agency (EIA), in 2003, the renewable sources represented six percent of the 

country`s energy matrix, and in 2015, on its turn, represent ten percent of the total electric 

energy in the country. 

Given the recent increase of renewable sources in the country, it is important also to highlight 

which are the main renewable technologies used, what may be seen in Figure 19. 

 

Figure 19: Participation of renewable technologies 

Hydro, wind and biomass technologies stand out, representing ninety percent of the country`s 

total renewable production. Because of their relevance, these three technologies, together with 

solar technologies, were the renewable technologies chosen to further analysis in this study. 

 

3.2 LCOE 
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The cost measure that will be used in this work is the LCOE (Levelized Cost of Energy). The 

LCOE is a convenient measure to compare the overall competiveness of different energetic 

generation technologies. It represents the cost per megawatt hour (in real terms) of construction 

and operation of a generating plant in one financial and one operation cycle previously defined. 

The main parameters are necessary to calculate the LCOE the capital cost, the fuel cost, base 

and variable costs of operations and maintenance, the financing cost, and a certain utilization 

rate of the generating technology. So, it a general form, it is possible to note that: 

                                       
  

   
  

Before demonstrating its general form, it is important to define first the CRF (Capital Recovery 

Factor), which is a factor uses to annualize the capital cost, or in other words, the incurred 

capital expenditures to construct the plant. It, depending on the technology adopted, may 

represent an important part of the total generation cost. The CRF is calculated through the 

following formula: 

 

     
        

          
 

In which: 

D is equal to the discount rate in which the cash flows are discounted to Present Value. 

This rate is different to each technology. 

N represents the activity time of the generating plant. 

Therefore, the LCOE`s calculated as: 

      
                

        
 
    

  
                 

  

   
  

In which: 

CC represents the cost of capital to construct a generating plant; 

I is the tax rate (%) applied by the government; 

DPV represents the present value of the power plant`s depreciation;  
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CF represents the capacity factor, which is defined as the proportion between the plant`s 

effective production and the its total capacity in this period; 

O&Mf represents the fixed costs of operation and maintenance; 

O&Mv represents the variable costs of operation and maintenance; 

Fuel represents the costs incurred with fuel acquisition; 

HR represents the heat rate, which is the plant`s efficiency in converting fuel into 

energy. 

It is worth noting that the weight of each parameter varies between each technology. For 

example, in the case of solar and Wind generations, the fuel cost is nil, and the costs with 

operation and maintenance are low. Yet, in these cases, the capital costs are the costs that 

represents the biggest weighs on the LCOE, since these power plants require high levels of 

capital expenditures. On the other hand, technologies like gas, have a different cost structure: 

the factor that weighs the most on the LCOE is the fuel cost. 

3.3 Data Collection 

3.3.1 Database 
 

The data used on this study`s analysis were collected on the Transparent Cost Database, which 

is a public database that gathers data belonging to different sources, not only academics, but 

also from governmental agencies, such as the Department of Energy of the United States (DoE), 

the Energy Information Administration (EIA), the Environmental Protection Agency (EPA), 

among others. 

The data collected are estimates for the LCOE for many technologies in the United States for 

the next twenty five years, from 2016 to 2040. In this study, it will be analyzed the main 

generation technologies in the United States, which are: solar, wind, hydro, biomass, nuclear, 

gas, and coal. Table 4 presents the number of data collected for each technology. 

Table 4: Number of data collected for each technology 

Technology Number of Data Collected 

Solar 692 

Wind 795 

Hydro 114 
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Biomass 350 

Nuclear 131 

Gas 207 

Coal 524 

Total 2813 

 

In order to compare the estimates from the different sources of this database, which were done 

in different years, they were adjusted to the actual monetary value (2015 U$ Dollar) through the 

inflation incurred in the United States. The values of the estimates for the LCOE already 

adjusted by inflation of the wind technology are presented in Figure 20. For convenience, the 

others estimates are presented in the Appendix A. 

 

Figure 20: Estimates of the wind costs until 2040 

Additionally to the total values of the LCOE, it was extracted also from the database its sub-

factors, which are the cost of capital, the cost with operations and maintenance and the fuel cost. 

It is possible to observe in Figure 21 the LCOE composition for each technology studied. 

 

Figure 21: Composition of the cost of each technology 
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Figure 21 proves what was stated in the last chapter, since it is possible to see that in the case of 

the wind and solar technologies, the greatest sub-factor is in fact the cost of capital. Now, in the 

case of technologies such gas and coal, the most relevant factor is the fuel. It is worth noting 

that the biomass generation technology is a special case, in which the cost factor that weighs the 

most in the cost composition is the Operations and Maintenance factor. 

 

3.3.2 Monte Carlo Simulation 
 

It is important to remember that in the application of the proposed method the Kriging Method, 

as input for the model, it is necessary many scenarios to the chosen variable (i.e. the LCOE). 

The more scenarios as input, so better is the model`s precision, and therefore, more valid it is. 

Since data collected is not vast (16 points for each year), it was realized that it was important to 

generate more data points. In order to do so, the solution was applying Monte Carlo simulations 

so it could be generated more points based on the existing characteristics. 

GLASSERMAN (2003) defines the Monte Carlo method as a statistical method based in a 

sample base and use heuristic probabilities in order to obtain numeric results. The author defines 

also a particular class of methods, called Brownian Motion. The idea of such class of methods is 

to generate random walks from the statistical parameters previously known. In its simplest form, 

from a data point it is generated a new point supported by a random variable. The generic 

formulation of the Brownian Motion follows: 

                                              

In which: 

X(t) represents the simulated value in the point t; 

   represents an independent normally random variable, whose value ranges from 0 to 1. 

In the case of a sample with mean µ for each point t and with a standard deviation σ for each 

point t (the point t represents in this study the year analyzed and the LCOE mean and standard 

deviation are calculated from the database for each year), it may be formulated 

(GLASSERMAN, 2003): 

                                                                 

From this equation and from the Monte Carlo simulation it is generated the random walks for 

the LCOR from 2016 to 2040 for each of the seven technologies studied. It was obtained a 
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thousand scenarios, given that each scenario represents one random walk. As example, it is 

demonstrated in Figure 22 ten random walks for the wind technology. 

A partir dessa equação e da simulação de Monte Carlo são gerados caminhos aleatórios para o 

LCOE entre 2016 e 2040 para cada uma das sete tecnologias estudadas. Foram obtidos mil 

cenários, sendo que cada cenário representa um caminho aleatório. A título de exemplo, são 

demonstrados na Erro! Fonte de referência não encontrada. dez caminhos aleatórios para a 

tecnologia eólica. For convenience, the others Monte Carlo simulations are presented in the 

Appendix B. 

 

Figure 22: Ten examples of the Monte Carlo simulations for the wind technology 

It is worth saying that in this study it will be analyzed the energy matrix composition and its 

costs for three specific years: 2030, 2035 and 2040. The year of 2030 was chosen as the first 

year analyzed because one of the motivation of this study is to create the decision making 

process of formulating an optimal energy matrix and for such purpose, a policymaker needs to 

have a long term perspective, since it takes time to formulate and implement such policies. It is 

considered, therefore, fifteen years as being a reasonable time period to make such decisions. 

The Monte Carlo simulation results are summed up in Figure 23. 



57 
 

 
 

 

Figure 23: Average LCOE and risk for the years of 2030, 2035 and 2040 

 

Furthermore, from the Monte Carlo simulations it is possible to obtain a scatter plot relating the 

average cost (LCOE) with the standard deviation for each technology, what provides the overall 

situation for each year. These charts are presented in Figure 24. It is worth noting that the solar 

technology was omitted in order to facilitate the chart comprehension, since its cost is much 

greater than the other technologies ones. 
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Figure 24: Scattered plot for the technologies analyzed 

From Figures 23 and 24, is possible to note that the generating technology that uses the gas as 

input present, in all the years, the lowest cost (lowest LCOE). On the flip side, the technology 

with the greatest cost (ex-solar) differs from year to year, being in 2030 the wind, in 2035 the 

biomass, and in 2040 again the wind. By the way, observing Figure 24, it stays clear that the 

solar technology present much greater cost compared to the others. A preliminary conclusion 

from this fact is that this technology will not be considered in the optimal matrix, since it does 

not present a decent risk versus return relation. 

It is worth noting also that, as said in the previous chapter, the LCOE present a negative 

correlation with the standard deviation (risk). For example, the gas technology presents always 

the lowest total cost, but it is one of the technologies with the greatest risk. The fact that does 

not exist a dominant technology (i.e. with lower cost and risk), excluding the solar technology, 

is what turns the proposed method useful in the decision making process of formulating the 

optimal energy matrix. 
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4 RESULTS 
 

The objective of this study is to apply a new methodology to approximate the solution of the 

optimal composition of a country`s energy matrix through (i) the simulation to obtain known 

values of the function Risk(x), and (ii) the interpolation of these data points through the Kriging 

Method for later optimization. 

In this section, it is illustrated initially the sample and correlation function selection, which will 

be used during the simulations. Follows the proposed application into a energy matrix portfolio, 

composed by seven technologies (solar, wind, nuclear, gas, coal, biomass and hydro), using 

three risk measures as objective function: (i) Variance ( ), (ii) Value at Risk (VaR), and (iii) 

Conditional Value at Risk (CVaR). 

4.1 Sample and Correlation Function Selection 

 

It was detailed in section 2.3.4 the three main methods to generate a sample of points necessary 

for the experiment application: random, deterministic and Latin hypercube. Given the similarity 

of the last two methods, it will be done an analysis between the fit done by the random and 

deterministic samples. This last analysis aims to assess the influence of the grid selection on the 

efficiency of the Kriging Method solution. 

In the case of the random sample, the weights of each of the seven technologies are generated 

randomly, such as       
   

   and       
   . On the other hand, in the deterministic 

sample, the values of   
   

 are obtained maintaining them equally spaced from each other in 

the function domain, forming hypercube of equal dimension constraining the domain of the 

function Risk (x). 

Figures 25 represents two sample techniques previously described and used for simulation, 

relaxing the constraint       
    and applied for two assets arbitrarily obtained, in order to 

facilitate its representation in   . 
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Figure 25: Examples of random and deterministic sample 

Other important parameter for the Kriging Method application is the quantity of scenarios used 

in the simulation process. In the case of random sample, the number of points is arbitrarily 

defined. In the deterministic sample, in turn, the sample size varies according to the number of 

assets, to the distance defined between the grid points in the simulations. Hence, given n assets 

composing the portfolio, a distance d between the simulated points, and defining   

   the deterministic sample size, respecting the restriction       
   , will be given by 

(BARROSA, 2015):  

   
     

 
  

        

        
 

In order to verify which will be the type of sample used in the study, the proposed method was 

applied for the year of 2030 with the two different sample types, and then, the Mean Squared 

Errors (i.e.     
 

 
               
   ) were calculated for each risk measur considered. The 

results are exhibited in Table 5. It is worth noting that in the case of the deterministic sample, a 

distance of 0.2 (i.e. d=0.2) generates 669 points, a distance of 0.1 generates 3,003 points, and 

finally, a distance of 0.05 generates a total of 53,130 points. 

Table 5: Mean Squared Error for different samples in 2030 

 

669 points 3.003 points 53.130 points d=0,2 d=0,1 d=0,05

Standard Deviation 8,4E-02 2,7E-02 3,1E-03 1,1E-02 7,8E-04 8,2E-05

VaR 4,3E-02 1,2E-02 8,6E-04 2,3E-03 5,3E-05 1,1E-05

CVaR 3,1E-02 9,2E-03 6,3E-04 4,9E-03 8,0E-05 7,8E-06

Random Sample Deterministic Sample

Mean Squared Error (MSE) - 2030
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It stays clear that the Kriging Method is sensible to sample selection criteria used for the fit. 

Table 5 reveals that when applied to random points, the method presents greater errors 

compared to its application using the deterministic sample, which manages to occupy the whole 

grid. It is clear also that as the number of simulated points increase, the mean squared error 

decreases. 

In this study, therefore, it will be used the deterministic sample with distance of 0.1. This 

distance was chosen because, it is noticeable that the precision gain with the distance of 0.05 is 

not that big, and it is important to remember that there is a trade-off between the precision gain 

the computation efficiency, what justify the choice of distance 0.1.  

In the previous phase (i.e. the sample selection) it was used the Gaussian correlation function in 

order to apply the Kriging Method. However, given the possible correlation functions, presented 

by LOPHAVEN, NIELSEN & SONDEGAARD (2002) and named in section 2.3.4, it is 

important to make an analysis to assess which function better fit for the data collected. 

For such analysis, it is applied the same method used in the previous phase, in other words, the 

proposed method is applied for the year of 2030 with a deterministic sample (distance of 0.1) 

regarding all existing types of correlation functions and the Mean Squared Errors are calculated 

for each simulation. The results are exhibited on Table 6. 

Tabela 6: Mean Squared Error for different correlation functions in the year of 2030 

 

It is noticeable that the simulation which presented the lowest MSE for the three risk measures 

was the one that used the Exponential correlation function, and hence, is the one considered the 

most suitable to be applied in this study. 

4.2 Kriging Method Application 

 

 In the last section it was carried out a study in order to define the best input parameters for the 

application of the proposed method (i.e. sample and correlation function selections). 

It is known that this model is a function of the grid sample, the response values (Risk(x)), the 

regression and the correlation chosen, and the value of θ. So, the input parameters are defined as: 

Correlation Function: Exponential Gaussian Linear Spheric Spline

Standard Deviation 1,3E-04 7,8E-04 1,7E-03 3,3E-02 7,1E-04

VaR 5,9E-06 5,3E-05 7,2E-05 8,2E-03 1,1E-04

CVaR 1,1E-06 8,0E-05 2,6E-04 5,9E-03 9,6E-05

Mean Squared Error (MSE) - 2030
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 The sample composed by seven technologies was generated by a deterministic process 

which divided the grid in k equidistant intervals, defining what is called the pace, in 

other words, the distance d between two consecutive intervals for   
   

; 

 The regression method chosen was the linear, which uses a polynomial of first degree to 

approximate the function; 

 The correlation function chosen was the Exponential, which provides the best 

approximation of the function, according to the MSE analysis; 

 The definition of the correlation model implies on the determination of the value of   , 

which, in the case of the exponential correlation, is equal to 2; 

 In a similar approach to QUEIPO (2002), it will be used    . 

The next step is to apply the proposed method with the input parameters above mentioned for 

the three risk measures named previously, the Variance, the VaR and the CVaR. It is worth 

noting that in the case of the variance, it will be done an experiment control, applying also the 

Markowitz Model, described in section 2.3.1, in order to assess the validation of the results of 

the Kriging Method. 

4.2.1 Variance 
 

In this and in the following two sections (i.e. in sections 4.2.2 and 4.2.3), the results obtained in 

the simulation in the software MATLAB are exhibited in both the forms of efficient frontier (i.e. 

Paretto`s Optimality Frontier) and of composition of energy matrix for different risk levels. 

First of all, the Markowitz and the Kriging Methods are applied with the same input data for the 

year of 2040, in order to validate the proposed method. It is worth remembering that the 

Markowitz Method uses as risk measure the variance (here exhibited in the form of standard 

deviation). Figure 26 shows the two efficient frontiers and Figure 27 demonstrates the optimal 

compositions for both methods. 

 

Figure 26: Efficient frontier for the year of 2040, for the Markowitz and Kriging Methods 
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Figure 27: Optimal composition portfolio for the year of 2040 

As it may be observed, the proposed method revealed being very similar to the original method 

of Harry Markowitz, not just on the efficient frontier, but also on the optimal composition. It is 

worth remembering that the Kriging Method is robust, in the sense that it allows considering 

different risk measures, including those which considers the tail risks, such as the VaR and the 

CVaR. It also provides a better computational efficiency when compared to the VaR and CVaR 

models, previously described. 

Follows the application of the Kriging Method for the years of 2030 and 2035, always with the 

input parameters described in the beginning of this section, using the standard deviation as risk 

measure and for an energy matrix portfolio composed of seven technologies. 
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Figure 28: Efficient frontier and optimal portfolio composition for the year of 2030, taking the standard deviation 
as risk measure 
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As it may be seen, the results for the three years (i.e. 2030, 2035 and 2040) revealed to be very 

similar, but not exactly the same, as it was already expected, since throughout ten years it is 

practically impossible to appear technology improvements so innovative that completely change 

the cost structures of one technology. 

Regarding the similarities, it is noticeable in the charts of the efficient frontier that, as observed 

in section 2.4, the optimal cost (i.e. the LCOE) is negatively correlated with the portfolio`s 

standard deviation. It is explained by the fact that it is required (by the policymaker, in this case) 

a lower cost for a greater risk level. Now, in the case of the compositions charts, it may be 

observed a total allocation on the gas technology for high levels of risk, what is completely 

reasonable given that this technology presents a lower cost but also a greater risk, preventing its 

allocation on low risk portfolios. Also, as expected, the solar technology was not allocated in 

any of the portfolios, since it does not present an adequate risk versus return relation. 

It is important to note the impact of the diversification theory in the three years that the 

simulations were applied. In other words, the MARKOWITZ (1952) theory is valid for this set 

of data: it is possible to minimize the portfolio`s risk by diversifying the assets allocated. 

Moreover, regarding the differences of the simulations, it may be seen that there is a greater 

allocation in the hydro technology on low risk portfolios through the years. It may be explained 

by the fact that this technology kept on a low degree of level, despite of the high costs, 

differently from the other technologies, such as the wind, which has a high cost (high costs of 

capital) and presented a risk increase through the years. Another rationale to explain such fact is 

that the hydro technology presents greater risks in its construction phases (e.g. environmental 

and/or labor related), turning this technology more allocated in long term portfolios. 

Furthermore, it is observed a grater allocation on nuclear technology, what may be explained by: 

Figure 29: Efficient frontier and optimal portfolio composition for the year of 2035, taking the standard deviation 
as risk measure 
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(i) lower costs with the acquisition of the uranium ore; and (ii) lower environmental and/or 

regulatory risks. 

4.2.2 Value at Risk (VaR) 
 

In this phase of the study, the Kriging Method is applied with the same inputs, but now using 

the VaR as risk measure. Again, results are exhibited in the form of efficient frontier and 

optimal portfolio composition. 

  

Figure 30: Efficient frontier and optimal portfolio composition for the year of 2030, taking the VaR as risk 
measure 

 

  

Figure 31: Efficient frontier and optimal portfolio composition for the year of 2035, taking the VaR as risk 
measure 
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Figure 32: Efficient frontier and optimal portfolio composition for the year of 2040, taking the VaR as risk 
measure 

One can notice that despite of the general forms being the same, there are evidently some 

differences between the application of the VaR and the variance as risk measures. Initially, it is 

worth high lightening that the risk demonstrated on the efficient frontier, given a certain LCOE, 

is greater when the VaR is used as risk measure. This is so, because the VaR is a tail risk 

measure and so captures more efficiently extreme events, which should be taking into account. 

Now, regarding the composition chart, ideal low risk portfolios in 2030 present a greater 

allocation in wind technology in detriment of the biomass technology. It may be explained by 

the fact that the VaR is a tail risk measure and is able to capture some risk that the standard 

deviation is not able to do so, such as strikes and workers` claims, which is very common within 

the biomass technology, since it is a labor-intensive business. 

 

4.2.3 Conditional Value at Risk (CVaR) 
 

Finally, the Kriging Method is applied using the CVaR as risk measure, with the same input 

parameters. Results are showed in the following figures: 
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Figure 33: Efficient frontier and optimal portfolio composition for the year of 2030, taking the CVaR as risk 
measure 

 
 

Figure 34: Efficient frontier and optimal portfolio composition for the year of 2035, taking the CVaR as risk 
measure 

  

Figure 35: Efficient frontier and optimal portfolio composition for the year of 2040, taking the CVaR as risk 
measure 
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what may be explained by the fact that the CVaR is defined as the average of the values that 

exceed the VaR. Finally, it is important to state that these soft changes in the composition charts 

(compared to these VaR`s charts) are again explained by the fact that the CVaR captures events 

even more drastic than those captured by the VaR. In this sense, the CVaR may be considered 

more efficient, since policymakers should take in consideration such events when allocating and 

selecting a country`s energy matrix portfolio. 

4.2.4 Minimum Risk Portfolios` Compositions 
 

In this section, it is exhibited the optimal portfolios for each year regarding the minimum 

possible risk to be reached for such portfolio. This portfolio is important because, many times, it 

is in fact the portfolio that is intended to achieve.  

 

Figure 36: Minimum risk portfolio for the year of 2030 

 

Figure 37: Minimum risk portfolio for the year of 2035 
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Figure 38: Minimum risk portfolio for the year of 2040 

Again, it is noticeable that the portfolios have similar allocation, with soft alterations. First, it is 

possible to observe that there is a trend throughout the years, for the three measures used: a 

greater allocation in hydro technology in detriment of wind technology. As explained before, 

this trend is given by the fact that it is estimated that occurs a reduction of the risks associated 

with the hydro technology, since the greatest risk incurs in the project`s initial phase. Secondly, 

the decrease of the allocation in gas technology is due to the fact that the risk associated with 

this technology increases through the years. Finally, it is worth saying that there are differences 

between the CVaR and the VaR portfolios and it is due to the fact that the former manages to 

capture event more adverse which negatively impact on the generation cost. 
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5 CONCLUSIONS 
 

This study aimed to use a portfolio selection method capable of optimizing the risk-return 

relation of an energy matrix portfolio. It was chosen seven generation technologies to compose 

the portfolio, and the data analyzed was from the United States energy market. 

Initially, it was presented the Modern Portfolio Theory, which was created by Harry Markowitz 

in 1952, standing as the first formulation considered efficient on maximizing a portfolio utility 

function. Based on it, it was possible to further deepen the analysis, describing other models 

which use other risk measures than the variance used by Markowitz. 

The VaR and the CVaR surged in the literature as risk measures that overcome the drawbacks 

presented on the variance, given that the CVaR is considered more complete as it is coherent 

according to Artzner et al (1999), and also as it analyze the probability distribution tail 

(ROCKAFELLAR e URYASEV, 2002). 

Therefore, the Variance, the VaR and the CVaR were studied as risk measures used to evaluate 

the risk-return relation in the energy matrix optimization problem. In the case of the VaR and 

the CVaR, theirs traditional models are very complex to be optimized, since it has a great 

number of variable and constraints, what implies in a non-convenient problem regarding the 

computational stand point.  

In order to overcome these drawbacks, it was proposed the application of the Kriging Method, 

also known as DACE fit, which is a tool frequently used to solve engineering problems 

(QUEIPO, et al., 2002). This method creates a response surface which is smoothed based on a 

sample previously defined. It makes the problem a simple form of resolving the optimization, 

without losing its validation, what implies in great decrease of the necessity of computation 

capacity to solve the problem. 

Therefore, based on estimates done by north-American public agencies, Monte Carlo 

simulations were carried out and the Kriging  Method was applied through the use of the 

software Matlab for the years of 2030, 2035, and 2040, using as risks measures the Variance, 

the VaR, and the CVaR. In a preliminary observation of the results, it is possible to observe that 

the solar technology was not allocated in any of the portfolios  generated, indicating that this 

technology still needs improvements in order to reduce and stabilize its costs. 

The results suggest that, in the future, there will be a higher concentration in renewable energies 

if compared to the country`s actual portfolio, mainly the hydro and wind technologies. 

Moreover, the model also reveals that the technology which uses the biomass as input will 



71 
 

 
 

present a greater participation in the country`s energy matrix, given that, nowadays, it represents 

only one percent of the total allocation. Hence, it is possible to assume that environment 

aggressive technologies (namely coal, gas and nuclear) should play a minimal role in future 

energy matrix.  

It is important to highlight that the model used in the study is a simplified representation of the 

reality, which may be more robust as new constraints are added to the problem. A possible 

additional constraint to the problem is one that considers certain environmental issues, such as 

one related to the abusive use of nuclear energy. Another future extension to this study would be 

analyzing the probability distributions of each technology cost and incorporate it on the 

simulation process. 

Finally, even with possible extensions, one may consider the initially proposed objective 

accomplished, since: it was created an energy matrix portfolio optimization problem which 

allowed (i) considering the tail risks, using risk measures as the VaR and the CVaR; (ii)the 

increase of the tool`s computational efficiency through the use of the proposed method, the 

Kriging Method. 
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Appendix A 
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