
Performance Measurement of Heterogeneous Workflow Engines

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Faculty of Ingegneria dell’Informazione of the Politecnico di Milano

in partial fulfillment of the requirements for the degree of

Laurea Magistrale in Ingegneria Informatica

presented by

Marco Argenti
ID number at Università della Svizzera Italiana : 13980115

ID number at Politecnico di Milano: 798165

under the supervision of

Prof. Cesare Pautasso

co-supervised by

Vincenzo Ferme

at Università della Svizzera Italiana

and

under the supervision of

Prof. Barbara Pernici

at Politecnico di Milano

September 2015
Accademic Year 2014/2015

To my beloved

ii

If today were the last day of my life,
would I want to do what I am about to do
today?
The only way to do great work is to love
what you do.
Don’t settle.
You have to trust that the dots will
somehow connect in your future.

Steve Jobs, conference at Stanford
University.

iii

iv

Abstract

Nowadays companies formalize their business processes to maximize their efficiency and ef-
fectiveness. Workflows are business processes with components that automate companies’
processes and the workflow executions are managed by the Workflow Management System
(WfMS). In the last years the number of WfMSs, and in particular the WfMSs supporting the
latest version of Business Process Model and Notation (BPMN 2.0), has increased. Even if a
benchmark of WfMS BPMN 2.0 is recognized as necessary and similar tools for benchmarking
WfMSs exist, a benchmark of WfMS BPMN 2.0 has still not been developed. In this context,
the BenchFlow project has the goal to be the first BPMN 2.0 WfMS benchmark. The BenchFlow
framework is formed by a set of services and its components are: the driver, the collector, the
monitor, the data cleaner and reconciler and the performance meter and data aggregator.

This thesis is a contribution to the BenchFlow project and it focuses on the design, implemen-
tation and evaluation of the data cleaner and reconciler and of the performance meter and
data aggregator. Additionally, in this thesis, WfMS metrics are defined employing the Software
Measure Definition Method; Processes Completion Time, Number of Completed Processes and
Number of Uncompleted Processes metrics are implemented in the performance meter and data
aggregator. Finally, to prove that the application of the two tools developed is feasible, as proof
of concept, load tests are performed on two WfMSs and the implemented WfMS metrics are
applied to compare their performance.

Thus, the main contributions of this thesis to the research community are the creation of two
tools, one that standardizes data from all the source databases of different WfMSs, and one
that aggregates stored data to obtain information about WfMS BPMN 2.0 metrics, belonging
to the BenchFlow framework, and their application on one trial experiment run as a proof of
concept.

v

vi

Sintesi

Da qualche decennio, esistono società di notevoli dimensioni e con l’aumentare della dimen-
sione la complessità dell’azienda è incrementata esponenzialmente. Questa complessità può
rendere difficoltoso, o almeno non sempre efficiente, il raggiungimento degli obiettivi che
l’azienda si è posta; perciò le imprese si sono rese conto della necessità di formalizzare in modo
facile, comprensibile ed immediato i meccanismi di funzionamento della società stessa. Questi
meccanismi di funzionamento sono chiamati processi aziendali.

I processi aziendali sono formati da attività collegate e correlate tra loro. Tali processi aziendali
sono progettati per acquisire input e trasformarli in specifici output [96]. In particolare, il
Business Progress Management (BPM) è una disciplina che si occupa della gestione dei processi
di business in aziende. Lo scopo del BPM è fornire all’azienda uno strumento che definisca,
esercisca e controlli i processi di business in modo tale che l’azienda riesca a raggiungere le
proprie strategie di business [102].

Infatti, i sistemi BPM offrono risultati in termini di riduzione dei costi e aumento del fatturato
quando supportano attività molto complesse, critiche per l’azienda e che vedono interagire un
numero elevato di persone appartenenti a funzioni differenti. Ad ogni modo, affinché il BPM
supporti realmente gli obiettivi aziendali, è necessario che tutti gli utenti, anche con diverse
conoscenze, siano in grado di comprendere i modelli e le notazioni che descrivono tali processi
[44].

In passato le notazioni utilizzate per la modellazione dei processi potevano essere molto di-
verse; invece ora viene utilizzata una notazione standard chiamata Business Process Model and
Notation (BPMN) e l’ultima versione è il BPMN 2.0 [55].

Per garantire lo scopo di fornire un meccanismo semplice per la modellizzazione dei processi
di business, gestire e soddisfare le relative complessità, l’aspetto grafico della notazione è orga-
nizzato in specifiche categorie. Nella notazione BPMN sono presenti cinque diverse categorie
di elementi base: i flow objects, i connecting objects, gli swimlanes, i data e gli artifacts.

Inoltre, con il passare degli anni vi è stata la possibilità di velocizzare l’esecuzione dei processi
aziendali con l’introduzione di nuove tecnologie. Una di queste tecnologie riguarda l’uso di
Workflow Management Systems (WfMSs), i quali hanno permesso, parzialmente o totalmente,
l’esecuzione automatica dei processi aziendali [49]. I Workflow Management Systems hanno
principalmente tre aree funzionali:

• Build-time functions, riguardano la funzionalità di modellazione dei processi e delle rel-
ative attività, quindi questa funzionalità è utilizzata soprattutto dai designer di processi.

vii

viii

• Run-time functions, riguardano la gestione dell’esecuzione del modello del processo facendo
rispettare il flusso definito e gestendo le attività ed i requisiti che tali attività richiedono,
come ad esempio dati di input. Inoltre, devono gestire anche l’aspetto di ripristino dell’esecuzione
e perciò mantengono anche dati riguardanti la storia dell’esecuzione.

• Run-time interactions, riguardano la gestione delle interazioni del WfMS con l’esterno.
Le interazioni con l’esterno si dividono principalmente in interazioni con l’utente e in-
terazioni con i Web Services. Questi due tipi di interazioni hanno bisogno dell’uso di
interfacce: User interface e Application interface. Inoltre, le interazioni con gli utenti
e con i Web Services hanno bisogno anche di gestori, ed in particolare nel caso degli
utenti il gestore si chiama Worklist. Infine le interazioni vengono definite nel processo
dai designer di processo tramite le funzionalità di Build-time.

Inoltre, l’utilizzo dei WfMS comporta una serie di vantaggi per l’azienda che li utilizza. In-
nanzitutto, l’automazione dei processi aziendali comporta una riduzione dei costi e dei tempi
per eseguirli e un efficientamento dei processi stessi, poiché i passaggi inefficienti vengono
eliminati. Oltre a ciò, grazie alla minore incertezza nell’esecuzione dei processi, i WfMSs in-
crementano la produttività e il customer service. In aggiunta, essi amplificano la flessibilità
aziendale poiché la loro riprogettazione non comporta un’onerosa riconfigurazione. Infine, i
WfMSs incrementano il controllo sui processi grazie alla standardizzazione degli strumenti di
controllo e supportano le decisioni e le pianificazioni aziendali dato che aumentano l’accesso
alle informazioni da parte del management aziendale.

Questi vantaggi hanno portato ad una rapida diffusione dei Workflow Management Systems
[97], soprattutto di quelli che supportano il BPMN 2.0 [87]. Dato che l’utilizzo di un Workflow
Management System rispetto ad un altro può impattare fortemente l’esecuzione dei processi di
un’azienda, è importante avere una metodologia per comparare i diversi Workflow Management
Systems e poter eseguire delle analisi che permettano di identificare il migliore WfMS per la
tipologia di processi che le imprese eseguono. Nonostante ciò, ci sono poche informazioni
riguardanti la performance dei WfMSs, [29, 41, 43] e i pochi studi empirici si focalizzano, ad
esempio:

• sull’apprezzamento della tecnologia da parte degli utenti finali [62];

• sull’implementazione dei WfMSs[76];

• sulla riduzione del WfMS lead time [74];

• sull’efficienza delle individuali attività strutturali e sulla comparazione dei diversi engines
[15];

• sull’impatto del database utilizzato nei server e nei sistemi throughput [41];

• sull’impatto del database utilizzato nel carico di lavoro (workflow) [17].

Lo studio che può essere considerato una valutazione della performance dei WfMSs è "engine
performance evaluation by a black-box approach" scritto da Daniel, F., Pozzi, G., Zhang, Y.
[29], dove, attraverso l’approccio chiamato black box, vengono comparati cinque Workflow
Management Systems. Questo approccio, però, si focalizza sullâĂŹutilizzo di diverse macchine
virtuali, ognuna configurata in base alle impostazioni di default del rispettivo WfMS.

Anche se sono presenti pochi studi empirici, è universalmente riconosciuto il bisogno di un

ix

benchmark per la performance dei WfMSs [58, 64, 100]. Questa necessità di un performance
benchmark è presente anche per i BPMN 2.0 WfMSs [100], soprattutto poiché nel 2014 quasi
20 Workflow Management Systems supportano il BPMN 2.0. [87].

In questo contesto, l’Università di Lugano e l’Università di Stuttgard hanno iniziato un progetto
chiamato BenchFlow, il quale ha come scopo lo sviluppo del primo benchmark framework per
i WfMSs BPMN 2.0 [13]. Il BenchFlow framework è formato da una serie di servizi che non
devono interferire con la normale esecuzione dei componenti del sistema. I componenti del
BenchFlow framework sono:

• Driver, è responsabile dell’infrastruttura. Esso gestisce il set-up delle configurazioni, il
workload e la funzionalità dell’intero sistema durante l’esecuzione e la pulizia quando
l’esecuzione è terminata.

• Monitor, controlla l’esecuzione del workload. Esso ha il compito di capire quando il sis-
tema ha finito di eseguire il carico, evitando di interferire con l’esecuzione.

• Collector, raccoglie i dati generate dai componenti del sistema e, in particolare recupera
i log files o database records. Esso agisce dopo che il monitor ha assicurato che il WfMS
ha completato tutte le richieste inviate del driver.

• Data cleaner and reconciler, il quale pulisce e riconcilia i dati collettati dai database
dei vari WfMSs. Quindi, il suo obiettivo è la standardizzazione dei dati provenienti da
database di diversi Workflow Management Systems.

• Performance meter and data aggregator, il quale è l’aggregatore di dati e il misuratore
della performance. Esso struttura e organizza i dati in modo chiaro e comprensibile,
affinché possano essere utilizzati per le decisioni dagli utilizzatori.

Questa tesi è un contributo al progetto BenchFlow. Essa si focalizza sulla progettazione, im-
plementazione e valutazione del data cleaner and reconciler e del performance meter and data
aggregator. Inoltre, descrive i vari componenti del BenchFlow, identifica le metriche dei WfMSs
e provvede a presentare una proof of concept con lo scopo di dimostrarne la fattibilità delle
analisi di confronto dei WfMSs utilizzando i due componenti implementati.

Riguardo la definizione delle principali metriche dei WfMSs, esse vengono identificate appli-
cando il Software Measure Definition Method (SMDM) [19] e prendendo spunto dal paper "A
Framework for Benchmarking BPMN 2.0 Workflow Management Systems" [37] di Vincenzo
Ferme, Ana Ivanchikj e Cesare Pautasso.

La metodologia SMDM è basata su quattro fasi:

• definizione della metrica, la quale consiste nella identificazione e creazione della metrica;

• validazione teorica attraverso il SMART framework [32], il quale valuta la specificità, la
misurabilità, l’ attendibilità, la rilevanza e la tempestività della metrica;

• validazione teorica, la quale consiste nell’uso di dati sperimentali per validare la metrica
nella pratica;

• validazione psicologica, la quale descrive come la metrica influenza i soggetti coinvolti e
usualmente è aggregata alla validazione teorica.

x

Le metriche identificate, riguardano le tre principali entità del WfMS [8, 38] che sono il Work-
flow Engine (WfE), il process e il construct. Il Workflow Engine esegue i processi che sono
richiesti dall’utente. Il process è il processo che viene eseguito dal Workflow Engine quando
l’utente lo richiede. Il construct è un componente del process. Il Business Process Model and
Notation identifica come costrutti: i flow objects, i connecting objects, le swimlanes, i data e
gli artifacts. Quindi, il termine costrutto può essere riferito a differenti elementi BPMN. Come
è deducibile dalla loro definizione, queste tre entità sono in relazione tra di loro; infatti esse
compongono una gerarchia, dove il Workflow Engine esegue i processi i quali sono composti
da costrutti.

Le metriche identificate per il Workflow Engine sono:

• Response time;

• Throughput;

• Latency;

• DB usage;

• Network usage;

• Disk usage;

• CPU usage;

• Capability;

• NumCompletedProcesses.

Invece, quella per il process è il complition time.

Infine, quelle per il construct sono:

• Completion time;

• Delay;

• Latency;

• Construct capability;

• NumCompletedConstruct.

Dunque, secondo le attività di identificazione e creazione della metrica della metodologia SMDM
per ogni metrica è stato definito il nome, il goal, la descrizione e la pseudo formula. Inoltre,
alle metriche definite è stato applicato il SMART framework [32]. Tutte le metriche identificate
sono state ritenute SMART poiché soddisfano tutte le caratteristiche SMART.

Infine, le metriche SMART implementate nel performance meter and data aggregator sono: pro-
cesses completion time, number of completed processes and number of uncompleted processes;
dove quest’ultima è la metrica complementare a number of completed processes. Le metriche
individuate con la metodologia SMDM sono fondamentali per la loro implementazione nel per-
formance meter and data aggregator e poiché esse evidenziano i requisiti minimi che devono
essere considerati per realizzare lo schema del database del data cleaner and reconciler.

xi

Il data cleaner and reconciler ha l’obiettivo di standardizzare i dati provenienti da database
di differenti Workflow Management Systems. Questa standardizzazione è richiesta poiché i
WfMSs immagazzinano i dati rilevanti per l’analisi con differenti strutture e notazioni; inoltre
permette di avere una struttura che semplifica l’analisi dei dati rendendo palese le relazioni
tra i dati stessi. Quindi il data cleaner and reconciler esegue il processo di estrazione, trasfor-
mazione e immagazzinamento (ETL), cioè esso è il componente del BenchFlow che recupera
i dati dai database dei WfMSs e li trasforma in un altro formato in modo automatico e li in-
serisce in un database di destinazione chiamato CleanRawData. Infine, il data cleaner and
reconciler gestisce anche le statistiche generate dall’API di Docker riguardanti l’utilizzo delle
risorse dell’environment, e.g. il database che permette l’esecuzione del WfMS.

I dati che vengono immagazzinati nel database del WfMS ed il contesto dei WfMSs perme-
ttono di identificare due entità: l’entità dei costrutti e l’entità dei processi. La prima entità
riguarda i costrutti utilizzati per costruire un modello di processo, mentre l’entità dei processi
riguarda le istanze di processo; tali istanze di processo sono state eseguite secondo un trial, che
è un’esecuzione di un esperimento composto da richieste di esecuzioni di modelli di processo.
Quindi è utilizzata anche un’entità esperimento che riguarda i trial eseguiti degli esperimenti.
In aggiunta, un’entità environment è necessaria per gestire i dati riguardanti le statistiche di
utilizzo dell’environment durante l’esecuzione dei trial. Dalle entità evidenziate, si possono
riconoscere le relazioni tra le entità environment ed esperimento e la relazione tra le entità
esperimento, processo e costrutto.

Particolare attenzione va posta nelle relazioni tra le entità esperimento e processo e tra le entità
processo e costrutto; infatti, queste due relazioni applicano le tre regole di normalizzazione. In-
oltre in fase di analisi è rilevante sapere quali costrutti appartengo ad una particolare esecuzione
di un esperimento, cioè a quale trial. Ad ogni modo, questa analisi richiede di usare entrambe
le relazioni rendendo tale analisi onerosa. Per questo motivo è stata effettuata una denormaliz-
zazione dell’entità costrutto che avrà anche una relazione diretta con l’entità esperimento. Un
altro dettaglio sul design ed implementazione del data cleaner and recinciler database riguarda
le chiavi primarie delle diverse entità che vengono determinate utilizzando MD5 hash function,
la quale permette di utilizzare un singolo campo come chiave primaria dell’entità. Inoltre, è
veloce da computare, è sufficientemente resistente alle collisioni e grazie alla lunghezza fissa
dell’output permette di ridurre lo spazio di memoria utilizzato.

Il data cleaner and reconciler è stato realizzato con Java e la struttura principale si basa su
una gerarchia che ha Cleaner come superclasse. Dunque, Cleaner è una superclasse astratta
e provvede alle funzionalità di connessione con il database CleanRawData e al relativo carica-
mento dei dati. La superclasse Cleaner ha due sottoclassi: EnvCleaner e DBCleaner. La sotto-
classe EnvCleaner è una classe concreta e gestisce i dati generati dell’API di Docker riguardanti
l’environment, mentre DBCleaner gestisce i dati appartenenti ai database dei WfMSs e quando
viene aggiunto un nuovo WfMS questa classe deve venir estesa specificando quali dati del
WfMS devono essere trasformati. Inoltre, per gestire le interazioni con i database, sia quelli
dei WfMSs che il database CleanRawData, viene sfruttato il framework Java Object Oriented
Query Language (jOOQ) che è un Object-Oriented Query Language specifico per Java che sem-
plifica l’interazione con i database e la gestione dei dati derivati. In aggiunta, vengono utilizzate
delle classi di supporto per l’interazione con i databases: StoreCleanData e DB. In particolare
la classe StoreCleanData gestisce l’inserimento dei dati nel CleanRawData attraverso immis-
sioni di dati in batch per ridurre gli overhead di comunicazione, mentre la classe DB gestisce le

xii

connessioni ai database attraverso i meccanismi di connection pool.

Infine, il data cleaner and reconciler è valutato; in particolare sono analizzate le performance,
le quali mostrano che l’operazione più onerosa è l’interazione per l’inserimento dei dati, in
quanto è necessario costruire la query per inserire i dati, trasmettere la richiesta di inserimento
al database e inserire effettivamente i dati nel CleanRawData. Inoltre la memoria RAM è iden-
tificata come un bottleneck del componente. Per quanto riguarda la correttezza dei dati, essa
viene garantita sfruttando i vincoli di integrità referenziale, con un controllo basato sul numero
di record e applicando dei JUnit tests. Inoltre, viene valutata e descritta anche la possibilità di
identificare i dati originali da cui sono stati generati i dati salvati sul database CleanRawData e
la possibilità di aggiungere nuovi WfMSs da cui poter ottenere dati.

Invece, il performance meter and data aggregator ha l’obiettivo di aggregare i dati, presenti nel
CleanRawData, per ottenere informazioni. Questa aggregazione è eseguita basandosi sull’ ap-
plicazione delle metriche, sugli esperimenti e sui trial legati ad uno specifico esperimento.

Inoltre, i dati generati dal performance meter and data aggregator devono essere mantenuti
per permettere di fare analisi future; perciò è necessario utilizzare un database che contenga
tali dati. Dato che i dati mantengono i valori delle metriche e nuove metriche possono essere
aggiunte, il dato deve poter essere modificabile aggiungendo ulteriori valori. Per soddisfare
tale requisito, MongoDB è stato scelto come database in quanto è un database non-relazionale
e permette di mantenere dati senza specificare a priori lo schema del dato stesso, come in-
vece avviene nei database relazionali. In aggiunta, MongoDB è stato scelto perché mantiene
una meta-struttura del dato, permette di accedere ai dati rapidamente ed ha un’alta curva
d’apprendimento data dalla sua similarità con i database relazionali.

Per quanto riguarda l’implementazione del componente, Java è utilizzato per la sua realiz-
zazione. Dato che nuove metriche devono poter essere aggiunte incrementalmente, una ger-
archia riguardante le metriche è creata. La superclasse Metric è astratta ed oltre a gestire
l’interazione con il database del performance meter and data aggregator contiene un metodo
che deve essere implementato dalle sue sottoclassi concrete. Tale metodo riguarda la com-
putazione della metrica sia a livello di trial, cioè di una singola esecuzione di un esperimento,
sia a livello di esperimento, cioè aggregando dati di più esecuzioni dello stesso esperimento.
La superclasse Metric ha due sottoclassi astratte: ProcessMetric e ConstructMetric che ver-
ranno estese per implementare concretamente le metriche che riguardano rispettivamente i
processi ed i costrutti. Tali sottoclassi concrete vengono utilizzate nella classe MetricCalculator,
la quale istanzia l’oggetto concreto di tale metrica e calcola la metrica sfruttando il metodo es-
posto dalla superclasse Metric. Inoltre, la classe MetricCalculator gestisce le interazioni con il
database CleanRawData per ottenere i dati da utilizzare per calcolare le metriche e, se richiesto
dall’analisi da effetturare, ha una opzione per identificare se il trial da analizzare ha dei pro-
cessi che non sono stati completati prima di calcolare le metriche. Le metriche implementate
nel performance meter and data aggregator sono: ProcessCompletionTime, NumberComplet-
edProcess e NumberUncompletedProcess. La classe ProcessCompletionTime calcola il tempo di
completamento dei modelli di processo; la classe NumberCompletedProcess computa il numero
di instanze di processo che hanno raggiunto il completamento; e la classe NumberUncomplet-
edProcess quantifica il numero di instanze di processo che non hanno raggiunto il completa-
mento.

Infine il performance meter and data aggregator è valutato; in particolare sono valutate le

xiii

performance, le quali mostrano che l’operazione più onerosa è l’ottenimento dei dati dal Clean-
RawData. Ad ogni modo bisogna considerare che questa operazione viene eseguita un’unica
volta ed i dati ottenuti vengono forniti a tutte le metriche da calcolare. Inoltre, ogni volta che
viene aggiunta una nuova metrica e che viene valutato un nuovo trial, la quantità di dati da
immagazzinare all’interno del database cresce notevolmente; quindi viene valutato che appli-
cando il meccanismo di sharding, si ha la possibilità di estendere la capacità di storage del
database del performance meter and data aggregator. Infatti, lo sharding risponde alla neces-
sità di un incremento della domanda di mantenimento dei dati dividendoli in base alla chiave
di shard su diverse macchine.

Inoltre, è realizzata una proof of concept con lo scopo di dimostrarne la fattibilità delle analisi
di confronto dei WfMSs utilizzando solamente i due componenti implementati. L’infrastruttura
utilizzata è basata su un computer singolo, un MacBook Pro machine con la versione 10.9.5 OSX
e 64 bit di architettura; quindi essa non rispetta gli standard del BenchFlow che prevedono una
controllata infrastruttura Cloud.

L’analisi è compiuta per due WfMSs (Activiti e Camunda); attraverso l’esecuzione di load tests
rappresentativi per imprese di: piccole, medie, medie-grandi e grandi dimensioni. In particolare
i load tests sono basati sul numero di utenti che interagiscono con il WfMS e sono considerati:
50 utenti per le piccole aziende, 250 utenti per le medie aziende, 400 utenti per le medie-
grandi aziende e 1000 utenti per le grandi aziende. Gli utenti che interagiscono con il WfMS
aumentano secondo un periodo di rampa che è equivalente al numero di utenti che il test
considera. Quindi, il test usa una stepwise continuous injection di utenti e ogni secondo un
nuovo utente è iniettato nel sistema fino a che il numero di utenti del test non è raggiunto.
Lo stesso avviene nella fase di declino, dove, però, ad ogni secondo un utente è rimosso dal
test.

I modelli di processo utilizzati nei tests, derivano da una reale collezione di processi chiamata
"Insurance Process and Service Models" fornita da IBM. La collezione presenta 400 modelli di
processo che possono essere classificati, secondo la tesi di Ivanchikj [53], in sei cluster, basan-
dosi sulle loro caratteristiche statiche [28, 53]. I workload dei tests sono effettuati su quattro
modelli di processo basati su due cluster: cluster 3 e cluster 4, dove ogni cluster ha due modelli
di processo.

In generale ogni test mantiene il workload per novanta minuti, solo il test con 50 utenti del
cluster 4 è eseguito per trecento minuti. Ogni test per 50, 250, 400 e 1000 utenti è eseguito
conseguentemente e anche per i due clusters i tests vengono eseguiti uno alla volta. Inoltre,
ogni test è eseguito una volta sola, quindi l’analisi è basata su un singolo trial.

Le metriche utilizzate per determinare la performance dei WfMSs sono:

• completion time of processes, è il tempo richiesto dal WfMS per eseguire completamente
le istanze di processo e nell’analisi viene considerata la media di questa metrica;

• number of completed processes, è il numero d’istanze di processo eseguite che sono state
completate;

• request error percentage, è computato dal driver e considerato per capire quante richieste
di esecuzione di processo sono state rigettate dal WfMS;

• responce time, la quale media è computata dal driver ed è considerata per interpretare i

xiv

risultati ottenuti.

Come la tabella 1 riassume, il miglior WfMSs, tra i due analizzati, non è sempre lo stesso, ma
la performance varia a seconda della grandezza dell’azienda e delle caratteristiche dei clus-
ters.

Table 1. Sintesi dei risultati dei tests

Test con
Media del tempo di Numero di processi Best

completamento (ms) completati (#processi) performed
Camunda Activiti Camunda Activiti WfMS

C
lu

st
er

3 50 users ∼ ∼ Ø Activiti
250 users Ø ∼ ∼ Camunda
400 users ∼ ∼ Ø Activiti

1000 users ∼ ∼ Ø Activiti

C
lu

st
er

4 50 users Ø ∼ ∼ Camunda
250 users Ø ∼ ∼ Camunda
400 users ∼ ∼ Ø Activiti

1000 users ∼ ∼ Ø Activiti
∼: value difference is not relevant; Ø: value difference is relevant.

Infatti, basandosi sui risultati e sull’analisi effettuata, per il cluster 3, Activiti risulta essere il
WfMS migliore tra i due per piccole, medio-grandi e grandi aziende. Invece, Camunda dovrebbe
essere scelto nel caso di medie imprese. Per il cluster 4, Camunda può essere considerato come
migliore WfMS tra i due, per piccole e medie aziende, viceversa dovrebbe essere scelto Activiti
se la dimensione dell’impresa è maggiore.

Per quanto riguarda la percentuale di errore essa è rilevante solo per i tests con 400 e con 1000
utenti. Gli errori principali di Activiti sono socket exceptions ed errori di internal servers, invece
per Camunda gli errori maggiormente rilevanti sono exceptions, connection exception ed errori
di internal server.

La proof of concept effettuata ha varie limitazioni e le principali riguardano: l’uso di un’unica
macchina con ridotta potenza per gestire l’infrastruttura, la trasformazione dei modelli di pro-
cesso per renderli eseguibili e l’utilizzo dei soli componenti implementati.

Invece, la limitazione principale dei due componenti riguarda la metodologia di interazione
che richiede l’uso della command line. Inoltre, le limitazioni del data cleaner and recociler
riguardano: la memoria RAM disponibile, l’utilizzo del framework jOOQ che supporta solo
database relazionali e la necessità che i dati dell’environment siano derivati tramite le API di
Docker. Mentre la principale limitazione del performace meter and data aggregator riguarda la
velocità di lettura dei dati dal CleanRawData.

Per finire, il maggiore contributo di questa tesi alla comunità di ricerca è la creazione di due
componenti appartenenti al BenchFlow framework [13]: il data cleaner and reconciler che
standardizza i dati provenienti da database di differenti WfMSs e il performance meter and
data aggregator che aggrega i dati immagazzinati e ottiene informazioni riguardo alle metriche
dei WfMSs; oltre alla loro applicazione compiuta per due WfMSs, attraverso l’esecuzione di
load tests e l’analisi dei rispettivi risultati.

xv

I principali lavori futuri sono l’estensione del data cleaner and reconciler ad altri WfMSs, l’aggiunta
di nuove metriche per il performance meter and data aggregator e l’utilizzo del BenchFlow
framework per effettuare analisi riguardanti l’individuazione di parametri rilevanti per valutare
le performance dei WfMSs in modo tale che le aziende possano avere tutte le informazioni nec-
essarie per confrontare i WfMSs e scegliere consapevolmente quale adottare.

xvi

Acknowledgements

First of all, I would like to thank my family that has been with me during all the steps of this
journey.

Moreover my thanks go to my advisors, Prof. Dr. Cesare Pautasso and Prof. Dr. Barbara
Pernici, who gave me the opportunity to do my thesis as a contribution to the BenchFlow project
and so allowing me to better understand BPMN 2.0, Workflow Management Systems and their
benchmark state of art. I really appreciate their knowledge sharing and their guidance helped
me in all the time of research and writing of this thesis.

Additionally, I would like to express my gratitude to Vincenzo Ferme, a PhD student working
on the BenchFlow project. He supported me during all my work and he was always avail-
able.

Finally, I would like to thank my relatives and friends for supporting me.

xvii

xviii

Contents

Contents xix

List of Figures xxiii

List of Tables xxv

Terminology 1

1 Introduction 3
1.1 Context . 4
1.2 Goals . 5
1.3 Challenges . 6

1.3.1 Data cleaner and reconciler . 6
1.3.2 Performance meter and data aggregator . 7
1.3.3 Proof of concept demonstration . 7

1.4 Thesis structure . 7

2 State of the Art 9
2.1 Business Process Management . 9

2.1.1 BPMN introduction . 9
2.1.2 BPMN standard . 10

2.2 Workflow Management System . 11
2.2.1 WfMS functional division . 12
2.2.2 WfMS architecture . 14
2.2.3 Advantages of WfMS . 17

2.3 Benchmark framework . 17
2.3.1 Performance tests design . 17
2.3.2 Workload performance benchmark . 18
2.3.3 Workload intensity . 19
2.3.4 Database benchmark . 20
2.3.5 WfMS benchmark . 21

3 BenchFlow framework 23
3.1 Driver . 25
3.2 Monitor . 26
3.3 Collector . 27

xix

xx Contents

3.4 Data cleaner and reconciler . 27
3.5 Performance meter and data aggregator . 28

4 Metrics 29
4.1 Metric definition process . 31

4.1.1 Metric identification activity . 31
4.1.2 Metric creation activity . 36

4.2 Theoretical validation . 41
4.3 Empirical validation . 42

5 Data cleaner and reconciler 43
5.1 Background of ETL . 43

5.1.1 ETL conceptual model . 44
5.2 Design of the data cleaner and reconciler database 45

5.2.1 Requirements . 45
5.2.2 Entity schema details . 48

5.3 Implementation of the data cleaner and reconciler database 50
5.4 Design of the data cleaner and reconciler . 51
5.5 Implementation of the data cleaner and reconciler 55
5.6 Evaluation of the data cleaner and reconciler . 57

5.6.1 Source data generation for evaluation . 58
5.6.2 Amount of managed data . 58
5.6.3 Correctness . 62
5.6.4 Reverse mapping . 63
5.6.5 Scalability to the adding of new WfMSs . 63

6 Performance meter and data aggregator 65
6.1 Design performance meter and data aggregator database 65
6.2 Implementation of performance meter and data aggregator database 66
6.3 Design of the performance meter and data aggregator 68
6.4 Implementation of the performance meter and data aggregator 71

6.4.1 Performance meter and data aggregator: implemented metrics 71
6.5 Performance meter and data aggregator evaluation 74

6.5.1 Performance . 74
6.5.2 Scalability in amount of metrics . 77

7 Proof of concept 79
7.1 Disclaimer . 79
7.2 Infrastructure and System Under Test . 79

7.2.1 Camunda . 80
7.2.2 Activiti . 81

7.3 Test design . 81
7.3.1 Performance test and workload . 81
7.3.2 Workload intensity . 87
7.3.3 Test characteristics . 89

7.4 Evaluated Metrics . 89
7.5 Test results discussion and analysis . 90

7.5.1 Cluster 3 . 91

xxi Contents

7.5.2 Cluster 4 . 95
7.6 Limitations and conclusion . 100

8 Conclusion 101
8.1 Summary and conclusion . 101
8.2 Current limitations and future work . 102

A Metric theoretical validation 105

Bibliography 119

xxii Contents

Figures

1 .

2.1 System architecture history [95, pg. 162] . 12
2.2 Workflow Management System functional division [49, pg. 7] 13
2.3 Workflow Management System components architecture [49, pg. 13] 15
2.4 Types of performance benchmark [68, pg. 266] . 19

3.1 System under study . 24
3.2 Framework components and the system . 25

4.1 Time behaviour schema . 40

5.1 Target database schema . 46
5.2 Example entities of data cleaner and reconciler requirements 47
5.3 Data cleaner and reconciler Java classes - part 1 . 52
5.4 Data cleaner and reconciler Java classes - part 2 . 53
5.5 Evaluation of the execution time of the cleaner and reconciler according to process 60
5.6 Evaluation of the execution time of the cleaner and reconciler according to con-

struct . 60

6.1 Performance meter and data aggregator Java classes - part 1 69
6.2 Performance meter and data aggregator Java classes - part 2 70
6.3 Extraction step evaluation . 76
6.4 Computation step evaluation . 77

7.1 Process model 1 of cluster 3 . 83
7.2 Process model 2 of cluster 3 . 84
7.3 Process model 1 of cluster 4 . 85
7.4 Process model 2 of cluster 4 . 86

xxiii

xxiv Figures

Tables

1 Sintesi dei risultati dei tests . xiv

4.1 Entity external properties and internal attributes relationship 36
4.2 Metrics Summary Table . 42

5.1 Cleaner and reconciler executions . 59
5.2 Performance evaluation of data cleaner and reconciler 59
5.3 Performance evaluation of data cleaner and reconciler according to process . . . 61
5.4 Performance evaluation of data cleaner and reconciler according to construct . . 61

6.1 Extraction step evaluation . 75
6.2 Evaluation at trial level of metrics computation step 75
6.3 Evaluation at experiment level of metric computation step 75

7.1 Process models characteristics . 82
7.2 Tests summary . 88
7.3 Tests results summary . 90
7.4 Cluster 3 metrics: completion time . 92
7.5 Cluster 3 metrics: number completed processes . 92
7.6 Cluster 3 metrics: request error percentage and response time 92
7.7 Cluster 4 metrics: completion time . 95
7.8 Cluster 4 metrics: number completed processes . 95
7.9 Cluster 4 metrics: request error percentage and response time 96

xxv

xxvi Tables

Terminology

To better benefit the content of the thesis the follow terminology description can be useful. The
key terminologies are:

• BenchFlow Framework, it is a set of services and its components are: driver, monitor,
collector, data cleaner and reconciler, performance meter and data aggregator [78].

• Business process, it is a process that focused upon the production of particular products.
These may be either physical products, such as an aircraft or bridge or less tangible ones
such as a design, a consultation paper, or an assessment. So the product could also be a
service [96].

• Business Process Management (BPM), is a management discipline that deals and manages
business processes into a company. The purpose of BPM is to provide to companies a tool
that defines, executes and controls business process so that companies might reach their
business strategies [102].

• Business Process Model and Notation (BPMN), is the most commonly used processes mod-
elling standard [55]. It is a language that standardises the gap between the business
process design and the process implementation decreasing the existing fragmentation
between the enormous amount of notations and the process modelling tools.

• Construct, it is a general element of the BPMN notation [75].

• Construct entity, it contains information regarding the constructs used to build the pro-
cess.

• Data cleaner and reconciler, it cleans and reconciles the data collected by the BenchFlow
framework [78] and it is a BenchFlow component.

• Environments, they are all systems that allow the execution of trials.

• Experiment entity, it contains information about experiment trials, which are executions
of the experiment. Experiment, it consists of procedures to test WfMS. Trial, it is an
execution of an experiment.

• Extraction, Transformation and Loading (ETL) tool it is a tool that retrieve data from
source database, transforms the date in another format in an automatic way and refreshes
or updates or insert the data in the destination database [99].

• Hash functions, they are functions that operate and map an input string of different length
to an output of bit string with a fixed length, called hash [69].

1

2 Tables

• Load test, it is a type of test that sends to the system a volume of requests that is expected
to match real request volume [67].

• MD5, it is a type of hash functions and it is a strengthened version of MD4 [84].

• Measure, it is defined as a mapping from the empirical world to the formal, relational
world. Consequently, a measure is the number or symbol assigned to an entity by this
mapping in order to characterize an attribute [36].

• Metric, it is a measurement function [7].

• MongoDB, it is a NoSQL database and it is a type of Document Store [27].

• Non-relational databases, they are databases which have schema-less data structures,
very simple replication, high availability. They scale horizontally and they use alternative
querying methods. [77, 98]

• NoSQL, it is a class of database. In a NoSQL database, SQL is not the only data query
language used and the data store does not follow the relational model [94].

• Object-Oriented Query Language (OQL), it is designed to provide an object-oriented query
interface for traditional relational database systems [65].

• Object relational mapper (ORM), it is a tool which enables fetching objects from relational
databases [40].

• Performance meter and data aggregator, it aggregates stored data to obtain information
[78] and it is a BenchFlow component.

• Process entity, it contains information about the process instance of a specific experiment
trial.

• Process instance, it is a process model under execution [34].

• Process model, it is a visualization of a process which specifies how tasks have to be
performed and in which order to successfully complete the process [96]. It can also be
referred to as process definition.

• Relation databases, they are databases where relationships between data items are based
on item values [24].

• Workflow, it is a partial or total automation of a business process [49].

• Workflow Engine (WfE), it is a service that enable and enact the run time functions and its
main functionalities are to execute process models, manage process instances and interact
with external sources [49].

• Workflow Management System (WfMS), it is a system for the processes execution man-
agement, it especially runs workflows.

• Workload, it is defined as all the inputs that are sent to the system under test [39].

• Throughput, it is the amount of work that the Workflow Engine is able to handle in a unit
of time [63].

Chapter 1

Introduction

With the increasing of a company size, the firm’s complexity boosts exponentially. This com-
plexity could hinder the company’s goals achievement or could make the firm lose efficiency.
Thus the companies understood the necessity of formalizing in an easy, comprehensible and
immediate way the firm’s operation mechanisms that allow the company to operate and serve
particular goals.

The operating mechanisms interest almost everything; for instance, software product devel-
opment, customer acquisition, and so on. Those operating mechanisms, which do not affect
only the big companies but all firms, are called business processes. Indeed, each company has
more than one process to carry on and some processes are common to all firms, such as the
management of taxes.

Other business processes are specific of the company sector where the company operates and
only a very limited number of processes are specific to a firm. However also common processes
among firms might be slightly different. Anyway, inside a company, the business processes’
individuation and formalization allow the optimization, the simplification or the faster and eas-
ier application of those processes. The individuation of a firm’s business processes could be
hard if the processes are embedded in the firm’s operation, whereas during the business pro-
cess formalization there is the necessity of considering the point of view of the various process
actors.

Finally, to be able to improve an existing process, a considerable intellectual activity is always
needed. Over the years the business processes’ execution has become quicker due to the in-
troduction of new technologies. One of those new technologies is the Workflow Management
System (WfMS), which grants partially or totally the automatic execution of the processes and
it allows the simplification of other relevant execution aspects such as the communication, the
data retrieval, the handover of the execution process responsibilities, the consistent execution
state maintenance, and so on. Ultimately, the use of the Workflow Management System in the
processes execution of the company’s business processes can significantly affect the firm per-
formance and the achievement of the company’s goals. Workflow Management Systems start
their diffusion since the nineties, whereas their concept is older [35], and they are "one of the
most successful genres of systems supporting cooperative working" [33].

3

4 1.1 Context

There are few information about the performance of WfMSs [43] and the few empirical studies
about WfMSs do not focus on their performance, whereas they focus on appreciation of the
technology by final users, [62], or their implementation [76].

Due to the lack of a performance benchmark of WfMSs it is important to design and develop a
benchmark for assessing and comparing the performance of Workflow Management Systems.
The first benchmark with this goal is the BenchFlow [13], that plans to use a model-driven,
self-/recursive testing approach to eliminate the impact of the external services by having them
implemented as processes and it focuses mainly on BPMN 2.0 WfMS.

This thesis is born in the context of the BenchFlow project. As a matter of fact, in this study to
allow the analysis and management of the data from different Workflow Management Systems
a data cleaning and reconciling tool is designed and implemented. Moreover, in this thesis, a
performance meter and data aggregator is designed and implemented to examine the data, so
that it is possible to obtain information about the used Workflow Management System, such as
average completion time of executed processes and number of executed processes in a given
amount of time. Thus, the thesis scope is Workflow Management System performance.

Finally, to demonstrate that those types of analyses are feasible and the two tools developed
work properly, a proof of concept is provided. Thus, given the data cleaner and reconciler and
the performance meter and data aggregator these kind of analyses are enabled in the BenchFlow
framework and a first proof of concept is provided. On a single low-power machine load tests
are performed and the different data from two WfMSs databases are cleaned and reconciled
through the data cleaning and reconciling and the clean data are structured and organized to
obtain the WfMSs metrics and to compare the WfMSs performance through the performance
meter and data aggregator.

1.1 Context

The business processes are a composition of activities connected and correlated to each other.
They are modelled to acquire inputs and to transform them into specific outputs [96]. To define
business processes using notations that allow to execute and to control process instances, a
software system called Business Process Management (BPM) is used.

In the past, notations used to model processes could be very different, whereas nowadays a
common standard notation is used: the Business Process Model and Notation [102], whose last
version is the BPMN 2.0 [55].

One of the main goals of BPMN is to allow the modelling of executable processes. Indeed the
BPMN execution semantic specifies how every element has to be translated to perform in a BPM
system [102].

Moreover, the companies have to manage an enormous amount of data so their business pro-
cesses need to be automatic. Workflows are business processes with components that autom-
atize completely or partially the process and the workflow executions are managed by the
Workflow Management System [49]. In particular the WfMSs have mainly three functional
areas:

5 1.2 Goals

• Build time functions, which concern modelling functionality of the processes and their
activities;

• Run time functions, which concern the process execution management;

• Run Time interactions, which concern the management of the WfMS external interaction.

In the last years the number of Workflow Management System, and in particular the WfMSs
supporting BPMN 2.0 [87], has been increasing [97]. Besides the evident necessity for bench-
mark to compare the different WfMS BPMN 2.0 [100], not many attempts have been made to
define one up until now. In this context the University of Lugano and the University of Stuttgart
initiated a project named BenchFlow with the ultimate goal of developing such a benchmark
framework [13].

The BenchFlow framework enables the automation of the performance tests execution on WfMSs.
It does so by providing a set of services and libraries that simplify and automate the definition
and the execution of performance tests, as well as the data gathering and analysis. The Bench-
Flow framework components are:

• Driver, which is responsible of the infrastructure. In particular it manages set-up config-
urations, the workload, the functioning of the whole system during execution, the clean
up when the execution is finished and so on.

• Monitor, which watches the workload execution. It tries to understand when the system
has finished executing the load without interfering with the execution itself.

• Collector, which collects the data generated by the system components, in particular by
retrieving log files or database records. It is executed after that the monitor has ensured
that the WfMS has completed all requests sent by the driver.

• Data cleaner and reconciler, which cleans and reconciles data collected from WfMS database.
Thus its objective is to allow standardizing data from databases of different Workflow
Management Systems.

• Analyzer, which is the data aggregator and performance meter. It has to structure and
organize the data in a way that they can be understandable and clear for the users’ deci-
sions.

1.2 Goals

The BenchFlow framework enables the automation of the performance tests execution on WfMSs,
providing the execution of performance tests, as well as the data gathering and analyses. WfMSs
collect the data in different structured forms in their databases, so a tool is needed to standardize
those data; moreover the clean data should be structured and organized to have understandable
and clear information about the WfMSs performance.

Thus, the goals of this thesis are:

• to build a data cleaning and reconciling tool that allows the analysis and management of
the data from different WfMSs;

6 1.3 Challenges

• to build a performance meter and data aggregator tool to examine the data, so that it is
possible to obtain information from the Workflow Management System used;

• to demonstrate the feasibility of the application of the two tools developed testing them
and applying the implemented WfMS metrics on two real world open source Workflow
Management Systems.

1.3 Challenges

During the implementation of the data cleaner and reconciler and the performance meter and
aggregator, there have been some challenges. In particular the data cleaner and reconciler has
to perform the Extraction, Transformation, Loading process because it has to standardize data
from databases of different WfMSs to enable analyses on data. Instead the performance meter
and data aggregator has to aggregate stored data into the data cleaner and reconciler database
to gain information and the data aggregation is performed according to metrics; for this reason
it needs to have a schema that can easily have additional fields, which will contain new metrics
values. Thus, the faced challenges are:

• for the data cleaner and reconciler:

– allowing reverse mapping from clean data to source data;

– managing the integrity of data;

– managing the possibility to interact with different types of database.

• for the performance meter and data aggregator:

– having a schema that can easily have new additional fields.

• for the proof of concept demonstration:

– defining workload intensity.

1.3.1 Data cleaner and reconciler

1.3.1.1 Reverse mapping

The reverse mapping regards the possibility of mapping from clean data to source data. So that,
in case it is required, it is possible to observe the source data. Moreover since only some data
are cleaned, it is required to allow a more in-depth analysis.

1.3.1.2 Data integrity

Data integrity regards consistency and accuracy of data. In particular during data cleaning the
meaning of the data must be preserved.

7 1.4 Thesis structure

1.3.1.3 Database interaction

The data cleaner and reconciler has to interact with many different source databases. Source
databases might be based on different Database Management Systems (DBMS). This means
that the interaction with source databases might require using different SQL dialects and the
cleaner has to manage different database schemas.

1.3.2 Performance meter and data aggregator

1.3.2.1 Schemaless database

The performance meter and data aggregator database needs to have a schemaless structure,
where new additional fields, which will contain new metrics values, can be added easily.

1.3.3 Proof of concept demonstration

1.3.3.1 Workload intensity

Workload intensity must be determined representing as much as possible the interactions that
a WfMS is subject to.

1.4 Thesis structure

The rest of the thesis is organized as follows: Chapter 2 illustrates the State of the Art of Busi-
ness Process Modelling, the Business Process Model and Notation, the Workflow Management
Systems architecture and its effects on the various components and the benchmark framework.
Chapter 3 describes the BenchFlow framework and its components. Chapter 4 identifies the
Workflow Management Systems metrics applying the Software Measure Definition Method and
it defines the implemented metrics. Chapter 5 is about the extraction, transformation, and load-
ing of performance data. It illustrates the design implementation detail of the data cleaner and
reconciler and it evaluates the amount of managed data, correctness, reverse mapping of the
data cleaner and reconciler and it analyses the scalability to different Workflow Management
Systems. Chapter 6 describes the design and implementation details of the performance meter
and data aggregator and it evaluates their performance and scalability. Chapter 7 applies the
defined metrics on two different WfMSs and performs one trial of load tests. The workload of
the tests are based on two different clusters, each one containing two process models. Thus, it
demonstrates the feasibility of the analysis through the application of the two developed tools.
Chapter 8 concludes the thesis and states future work possibilities.

8 1.4 Thesis structure

Chapter 2

State of the Art

2.1 Business Process Management

2.1.1 BPMN introduction

"Each company has business processes, which are focused upon the production of particular
products. These may be either physical products, such as an aircraft or bridge or less tangible
ones such as a design, a consultation paper, or an assessment. In other words, the product can
also be a service" [96].

Indeed according to Rummler and Brache business process is "the series of steps that a business
executes to produce a product or service" [86]. So each company has business processes, which
are a composition of activities connected and correlated to each other. These business processes
are modelled to acquire inputs and transform them into specific output.

In particular the Business Process Management (BPM), is a management discipline that deals
and manages business processes into a company. The purpose of BPM is to provide to companies
a tool that defines, executes and controls business processes so that companies might reach their
business strategies.

Then the BPM supports company performances aligning strategies and management and pro-
ductive processes, such as processes that manage production, innovation, management of finan-
cial resources, human resources and clients. Indeed BPM systems offer advantages in terms of
cost reduction and earnings increment; this advantages are increased when BPM systems sup-
port very complex and critical processes for companies that interact with a very high number
of person that belongs to different functions.

Business processes, usually, are not expressed formally and they are implicit into companies.
BPM system is a software system that defines business processes using notations that allow to
execute and to control process instances. Companies have to collect all information regarding
business process to allow that BPM supports the real business objectives. Moreover different
users of companies must be able to understand the notation used to model processes. This

9

10 2.1 Business Process Management

should occur also in case that user belongs to different function and area of company and even
if users have different knowledge [44].

In the past, notations used to processes modelling could be very different. In the last years those
notions have been reduced, reaching a limited numbers of standards [44]. The beginning of
the standardization of the modelling notations started with the book "Improving performance"
written by G. Rummler and A. Brache in the 1990 [86]. In this book the authors represent some
BPMN notations concepts. Before 1990 the models made by the business users were technically
autonomous from the ways of representations used to implementing them.

2.1.2 BPMN standard

The use of standards allows different type of users to understand models realized by other
people; the different understanding of the same model, by different type of users, highlights that
a model can be read from different points of view. Indeed, the processes modelling are based
on how user, who realises the model, take part at it and on how user knows and understands
it. Anyway, in general the process model should be able to represent all the different points of
view because whoever has a part in the process should be able to see its activities and other
activities that do not belong to him/her but are made during the process.

The main standards of a process can be labeled as:

• Graphics standard: it responds to the requirement of simplicity; the process should be
easily understood with a graphic representation;

• Interchange standard: it responds to the requirement of changing the executions platform
without adapt the process to the new platform. The main characteristic of the interchange
standard is the common format used to represent the processes;

• Execution standard: it responds to the requirement of process execution feasibility on the
BPM system. It is characterized by a semantic and syntax that allow the execution of the
represented process.

In 2004, after two years of work, the Business Process Management Initiative (BPMI), has pub-
lished a standard: the Business Process Modelling Notation (BPMN) 1.0. The main objective
of BPMN is to deliver a notation readily understandable by all type of users. The most relevant
category of users are:

• process model analyst,

• developer,

• process responsible,

• process executor.

The work of process model analysts is to identify and to represent process models. Developers
have to implement the technologies that will perform those process models defined by ana-
lysts. Finally process executors execute the process model activities, while process responsible
manage the execution of the processes and monitor their progress [101].

11 2.2 Workflow Management System

Thus, the BPMN tries to create a language that standardises the gap between the business
process design and the process implementation decreasing the existing fragmentation between
the enormous amount of notations and the process modelling tools. All this is possible due to
its wide use in the sector.

For the following years the BPMN is run by Object Management Group (OMG), after the merge
between OMG with BPMI. Today the last version is the BPMN 2.0 released by OMG in 2011,
where BPMN stands for Business Process Model and Notation. Nowadays, even if there are a
lot of processes modelling standards, one of the most common and most used by the BPM tools
producers are the BPMN standard [23].

In the BPMN the Business Process Diagram (BPD) is defined as a flowcharting technique cus-
tomized for realising graphical models of business process operations. The BPMN is developed
with the goal to supply an easy method to model the business processes and be able to handle
the complexity of possible processes [101].

Another important objective of BPMN is to allow the modelling processes execution. To reach
this goal the BPMN has a correspondence between the graphics elements and the execution
semantics, namely that a semantic XML execution can formalize all the BPMN elements. The
BPMN execution semantic specifies how each element should be translated to perform in a
BPM system. The use of XML standard supplies also the possibility of interoperability between
different BPM systems. Indeed the process models can be interchanged among different BPM
systems.

2.2 Workflow Management System

Workflow Management System (WfMS) is a system for the processes execution management,
it especially runs workflows. Workflows are business processes with components that automa-
tize completely or partially the process. In the Workflow Reference Model [49], the Workflow
Management Coalition (WfMC) defines both the workflow and the Workflow Management Sys-
tem:

• "Workflow: The computerised facilitation or automation of a business process, in whole
or part."

• "Workflow Management System: A system that completely defines, manages and executes
"workflows" through the execution of software whose order of execution is driven by a
computer representation of the workflow logic."

The Workflow Management Coalition is a consortium founded with the aim to supply standards
for the processes and for the Workflow Management Systems to allow their interoperability. In
1993 the consortium was founded by a group of various subjects, among them there were
companies of the sector such as IBM, HP, Oracle and Sun Microsystems.

Nowadays, due to the changing market condition and enterprises requirements, a system for
the processes execution management needs to support more complex business processes. Ac-
cording to K. Hayes and K. Lavery [47] the need of controlling, monitoring and managing the
business process creates the term workflow. Indeed the first Workflow Management Systems
are introduced in the market to help the enterprise to automatize completely or partially their

12 2.2 Workflow Management System

processes in the eighties; before there were not generic tool to support WfMS. Currently a lot
of vendors are offering WfMSs; see Figure 2.1 for the WfMS history.

Figure 2.1. System architecture history [95, pg. 162]

The WfMSs coordinate the activities conduction so that they execute the flow described by
process models. Thus the WfMS allows the process purpose achievement. Anyway the process
or workflow representation has to specify some additional characteristics to allow its control
and coordination.

In the majority of the processes, the process has to be executed by the various participants. Thus
it is necessary that the WfMS coordinates the various participants’ jobs. Indeed each process’s
participant has to carry out activities to allow the process execution’s continuation. Moreover,
the WfMS has to consider that the participants could be people or machine and therefore they
require different management methodologies.

2.2.1 WfMS functional division

The Workflow Management Systems have mainly three functional areas [10, 49, 82] as it is
shown in Figure 2.2:

• Build time functions;

• Run time functions;

• Run Time interactions.

2.2.1.1 Build time functions

They concern the modelling functionality of the processes and their activities. They are used
mainly by processes designers. In this phase predetermined WfMS tools’ are used to create the
workflow.

2.2.1.2 Run time functions

They concern the process execution management of the model. They ensure the defined flow
and they manage activities and requirements that the activities request such as input data.

13 2.2 Workflow Management System

Figure 2.2. Workflow Management System functional division [49, pg. 7]

Moreover they manage the execution restore and they store history execution data.

2.2.1.3 Run time interactions

They concern the management of the WfMS external interactions. The external interaction can
be:

• Interaction with the user;

• Interaction with web services.

Those two interactions need interfaces:

• User interface;

• Application interface.

Moreover interactions, with users and with web services, need managers. The user manager
is called Worklist Handler. Finally the interactions are defined by processes designers in the
process through build time functions.

14 2.2 Workflow Management System

According to the build time and run time functions the WfMS architecture has two key compo-
nents:

• Definitions tool

• Workflow enactment service

The workflow enactment service’s main component is the Workflow Engine (WfE) with a col-
lection of other components that allow the correct WfMS operation.

2.2.2 WfMS architecture

The Workflow Management System architecture could be very different according to the used
WfMS. Anyway every WfMS implementation has to be built with components that manage
common issues.

According to the Workflow Reference Model of Workflow Management Coalition, as it is shown
in Figure 2.3, the WfMS architecture is composed by:

• Definition Tools or Workflow Modeller,

• Workflow Client Applications or Worklist Handler,

• Invoked Applications,

• Workflow Engine,

• External Workflow Engines,

• Administration & Monitoring Tools.

Moreover there is the DBMS component.

2.2.2.1 Definition Tool or Workflow Modeller

It is used to model the workflows that will be executed. It uses a notation that is understood
by the WfMS. Usually, if the WfMS language is BPMN the definition tool allows graphics repre-
sentations of the process model in addition to the XML language.

Moreover the definition tool does not have to be specific for a WfMS if the language used is an
interchangeable standard and the WfMS allows that language. This is the BPMN case, even if
it depends from how the specific WfMSs are implemented compared to the standards.

The workflow realized by the definition tool must be executed, so it has to be written in a
language which is supported by the WfMS and it has to contain all the information needed for
its execution.

2.2.2.2 Workflow Engine

It mainly provides the environment to execute workflows and it must be able to maintain mul-
tiple workflows. In practice it is a service that enables and enacts the run time functions and

15 2.2 Workflow Management System

Figure 2.3. Workflow Management System components architecture [49, pg. 13]

its main functionalities are to:

• execute process models by interpreting them;

• manage process instances;

• interact with external resources;

• allow process monitoring.

Therefore it has to manage interactions that the process instances require and to ensure the
correct execution of process instances according to process models by managing resources,
communication and information.

Moreover it is possible to have different Workflow Engines to handle runtime functions. Work-
flow Engines can work as centralized systems or as distributed systems; moreover it can interact
with external Workflow Engines. Indeed it is possible to have inter-business workflow instances.
In particular having sub-process instances among different Workflow Engines is a consequence
of interoperability among them.

16 2.2 Workflow Management System

2.2.2.3 Invoked application

Invoked applications are web services that are external to the WfMS and that are called accord-
ing to process model requirements. To call Invoked application is necessary to know:

• application location,

• parameter required by the invoked application to be executed.

Moreover it is necessary that there is a suitable interface that allows the interaction between
WfMS and invoked application. Usually standard interfaces are used, indeed interoperability is
a key characteristic of WfMSs.

2.2.2.4 Administration & monitoring tool

It is used by administrators to manage the Workflow Engine and to audit functions. In particular
it allows to monitor workflow instances by accessing WfMS logs and database data. Moreover
it might be able to perform statistical analysis and to manage workflow instance termination
and restart in case of failure.

2.2.2.5 Worklist Handler

The WfMS might have users that execute some tasks of processes. The WfMC has decided to
separate the user interaction model, therefore Workflow Engine delegates to Worklist Handler
the management of the tasks which require interaction with the users.

Thus, the Worklist Handler collects all the tasks which have to be executed by users and it man-
ages the tasks dispatch and allocation to users. Moreover the Worklist Handler keeps additional
data for each task, such as the task deadline, the necessary data for the task execution and the
data that the task has to produce.

The dispatchment of the task that should be executed could be based on priorities decided by
the Worklist Handler or by the user’s discretion. The Worklist Handler complexity depends on
how the WfMS is developed.

2.2.2.6 DBMS

During the processes execution the WfMS has to maintain progress state of processes execution,
therefore it has to store data. The WfMS data storage has to happen for different reasons such
as process execution development, the conservation of data which will be used for monitoring,
execution reinstatement of all the process in case of system failure. It might maintain, also,
other information which are about the WfMS execution configuration, data history of previous
executions and so on.

Moreover the stored data could be used to understand the process execution performance on
the specific WfMS and if problems happened inside the WfMS. Finally, beyond the process data
storage, also the executed processes models have to be saved to allow their instantiation in
future.

17 2.3 Benchmark framework

The DBMS allows separating WfMS job from the data storage management and usually the
DBMS used is a relational database [66]. Moreover there is a remarkable literature about
DBMS and they have reached a notable state of art. For this reason, the DBMS usage allows a
better efficiency given by the considerable experience and literature in this sector. Moreover,
some WfMS problems are solved by the DBMS, such as the concurrent accesses to data.

Anyway the DBMS has to be configured according to the used WfMS. The configuration should
happen by both ways: DBMS and WfMS. Certainly the WfMS must have the components to
interact with the DBMS, such as drivers and connectors. Whereas the DBMS must be configured
to contain the tables required by the WfMS and respect some limitations such as data consistency
or data access.

2.2.3 Advantages of WfMS

WfMS embraces a set of advantages. Firstly its business processes automation entails cost and
time reduction to execute these business processes and efficiency increase by decreasing the
unnecessary or inefficient steps and it also causes the reduction in the time required to execute
a process instance. Moreover, WfMS increases productivity and customer services due to the
less uncertainty in the processes execution. Furthermore, it improves flexibility because in
general process redesign does not require expensive reconfigurations. Finally, WfMS increases
processes control due to processes standardization and control tools implementation and it
supports decisions planning due to the fact that it improves the access of information to the
management.

2.3 Benchmark framework

2.3.1 Performance tests design

To design a test is very important to know and to understand the context of the test, so that
the test can be focused on relevant aspects [67]. Indeed state of the art regarding BPMN and
Workflow Management System were discussed so far.

There are different types of performance testing for system under study [67]:

• Basic performance test or baseline test [85]: it sends to the system only one request when
the system is not executing any request. Since baseline test check system characteristic
during underload system period, this test usually provides best case characteristics. Best
case performance characteristics are never reached in practice, but they can be used as
base to compare results of other test’s types. For example a metric such as process execu-
tion delay, which is the difference between process execution time and minimum or ideal
execution time, can be computed as difference between process execution time provided
by load test and process execution time provided by baseline test. Moreover it might
be applied to set requirements on system characteristics providing as base the best case
system characteristics.

18 2.3 Benchmark framework

• Load test, it sends to the system a volume of requests that is expected to match real
requests volume. Which means that a system has to handle normal and peak loads. Load
test is used to determine performance characteristics of the system under real workload.
A particular type of load test is the endurance test, which is similar to load test, but it is
executed for a longer time interval. The purpose of the endurance test is to understand
possible problems that might arise using the system as a long term solution. Therefore it
might show also performance degradation. Load test might identify if the system is not
able to manage normal application loads. Indeed if workload is too high for the system
under study, load test might expose system performance problems that are usually showed
in stress test.

• Stress test, sends to the system a volume of requests that exceed the working condition of
the systems. The request volume is above both normal and peak load, where peak load
is the maximum number of requests that the system receives. This type of test is used to
identify possible system bugs on extreme load situation; it shows conditions that might
cause system failure, so that indicators of system failure are monitored, and it shows
which are components that will fail. Finally it expresses how much a system can go
beyond its actual utilization. A particular type of stress test is spike test, which overloads
the system in a short period of time with a high volume of requests.

2.3.2 Workload performance benchmark

Workload is used to study system behaviour. Workload should represent an interaction with the
system under study by means of workload mix and volume of requests. In addition workload
could include also users and data. In Workflow Management Systems, workload describes
which and how processes are executed.

The workload mix is represented as a set of process models that are executed on the WfMS
under study. Each process models used has different characteristics with respects to the others.
Workloads of software performance benchmark can be classified in four categories, as it is shown
in Figure 2.4 [68]:

• Basic operations performance benchmark, it is a synthetic performance benchmark work-
load, so they do not represent any possible real request. Therefore they are especially used
to test specific isolated characteristics as micro-benchmark. Anyway their usage is very
limited due to their limited possibilities to provide meaningful insights on real systems.

• Toy performance benchmark workload, it represents a possible request to system, there-
fore it might provide insights on the system under study. Anyway they are not very use-
ful to predict real application performance, because it is difficult to understand possible
performance of real problem workload given proof of concept workload. Indeed toy per-
formance benchmark workload do not analyse any real problem requests.

• Kernels performance benchmark, it represents requests extracted from real requests to
running systems. Since it focuses only on most important part of system and on the
majority of real requests, performance information relevant for end users might not have
a high degree of precision and accuracy with respect to actual performance.

19 2.3 Benchmark framework

Figure 2.4. Types of performance benchmark [68, pg. 266]

• Real programs performance benchmark, they provide real requests to system used in real
world applications. This type of performance benchmark workload is the most accurate
one, even if it is specific for the real world application studied.

In Workflow Management System, basic operation performance benchmark workload is given
by requests defined by process models that study single BPMN elements. For example a basic
operation process might be a process that contains message or timer event, or even a process
that contains a gateway connected to some activities. Therefore this synthetic performance
benchmark workload does not constitute a real performance test, but it can be used to under-
stand Workflow Engine capability to execute BPMN elements.

Toy performance benchmark workload uses process models which correlates different BPMN
elements without a real application. Process models might be also really complex. Potentially
a toy performance benchmark workload might use a process model that contains all possible
type of BPMN elements, but this kind of process is very unlikely to be executed on real applica-
tions.

Kernel performance benchmark workload is composed of processes that are derived by analysing
real processes and by applying their main characteristics. In practice it uses process model pat-
terns.

In WfMS, real program performance benchmark workload uses process models that might be
obtained by businesses. Anyway it is very difficult to find businesses, which are willing to
provide their business processes to test. Indeed business processes might expose insights of
company competitive advantage to competitors. However when business processes are not
available, there are also public domain processes that might be used. For example BPM Academic
Initiative provides a set of publicly available processes.

2.3.3 Workload intensity

When workload is determined, it should be determined also the workload intensity at which
workload is loaded to the system under study. Usually workload generator is located on a
different system, so that there are no interference between the workload generator and the
studied system. For example the studied system might drain resources from workload generator
and it might alter how many request the system has received.

So there are different ways to load the workload [60, 85]:

20 2.3 Benchmark framework

• with arrival rate: arrival rate is the mean number of requests that arrives to system per
time unit. So it is a rate at which system receive requests. By definition arrival rate r(t)
at time t is expressed as:

r(t) = R′(t) (2.1)

where R(t) is the number of requests ut0
with arrival time t0 and that are arrived until

time t
R(t) = count({ut0

|t0 ≤ t}) (2.2)

The arrival rate can be:

– variable: variable arrival rate might be used to perform spike test. It could be also
used to perform stress test by increasing arrival rate until the system does not re-
spond any longer or a certain performance threshold is achieved. Finally variable
arrival rate is used when system trace of requests is available, so that it allows to
simulate real request behaviour in system under study.

– constant: constant arrival rate can be used for both load and stress tests. In stress
tests, it is used a constant arrival rate extremely high to check if the system is able to
manage such generated workload. In load tests, constant arrival rate should almost
match real request arrival rate to estimate system performance.

• with continuous injection [70, pg. 55]: requests arrive to the system continuously until a
plateau is reached and the number of requests remain constant. Continuous injection is
most suitable for concurrent user consideration, indeed it considers that the requests to
systems are performed by users that progressively decide to perform action on system until
the normal number of user is reached. Therefore the number of users that interact with
the system and their requests increases gradually. However there are different possibilities
to reach the plateau; the stage before the plateau is usually called ramp-up and it could be
characterized by how it allows to reach the plateau stage according: stepwise approach or
big bang approach. Big bang approach considers a little ramp-up stage in which all user
and their respective requests are injected all at once. While stepwise continuous injection
gradually increases the number of users by steps.

2.3.4 Database benchmark

The idea to evaluate and to compare relational database goes back to a paper written by J.Gray
et al. in 1985 [16] and Gray’s following paper written in the nineties [42].

The studies about the performance database benchmark are flourishing. Indeed as the database
technology evolved and new type of databases were created, also their benchmark is produced
according to the new databases. A few examples of benchmark proposals for different type of
databases are:

• Object oriented database benchmark [21];

• XML database benchmark [73, 103];

• Stream data management system benchmark [11];

• NoSQL benchmark [20, 93];

21 2.3 Benchmark framework

• database management system benchmark [17, 88, 92].

2.3.5 WfMS benchmark

There are few information about the performance of WfMSs [29, 41, 43] and the few empirical
researches about WfMSs do not focus on their performance, whereas they are, for example,
about:

• the metamorphosis of the project objectives [48];

• appreciation of the technology by final users, [62];

• their implementation [76];

• the reduction of WfMS lead time [74];

• the efficiency of individual structural activities and the different service oriented middle-
wares performance comparison [15];

• the impact of database work on the server and systems throughput [41];

• the impact of the database on the workflow [17].

The study that could be considered as a performance evaluation of the WFMSs is the "engine
performance evaluation by a black-box approach" by Daniel, F., Pozzi, G., Zhang, Y. [29]. Their
approach, called black box, compares the performance of five WfMSs, comparing their con-
stituent elements. Indeed in the study the WfMSs are installed considering default configuration
in their respective five different virtual machines.

Even if there are few empirical researches there is a common understanding about the need of
having a WfMSs benchmark. Indeed many authors recognize the necessity of a WfMS bench-
mark [58, 64, 100]. The lack of a performance benchmark is present also among BPMN 2.0
WfMSs; even if there is a recognized necessity for a BPMN 2.0 WfMSs benchmark [100]. The
BPMN 2.0 WfMSs benchmark is particularly important due to the rapid spread of the BPMN
2.0 standard. Indeed at the end of 2014, almost 20 Workflow Engine systems were supporting
BPMN 2.0. [87].

In this context of lack of a performance benchmark among BPMN 2.0 Workflow Management
Systems, the BenchFlow [13], project is born; due to the importance to design and develop a
benchmark for assessing and comparing the performance of Workflow Management Systems.
Indeed, the first benchmark with this goal is the BenchFlow, that plan to use a model-driven,
self-/recursive testing approach to eliminate the impact of the external services by having them
implemented as processes. Indeed the BenchFlow considers:

• the number and heterogeneity of the WfEs under test,

• the growing complexity of the workload mix, and

• the type of performance test that will observe a broader spectrum of raw performance
metrics and aggregate them into meaningful KPIs. [87]

22 2.3 Benchmark framework

Chapter 3

BenchFlow framework

Given the growth in number of Workflow Management Systems [37, 97], particularly the ones
supporting BPMN 2.0 [87], a benchmark of WfMS BPMN 2.0 is recognized as necessary [100].
BenchFlow [13] is the first BPMN 2.0 Workflow Management Systems benchmark. As a matter
of fact, even if similar tools exist for benchmarking WfMSs [14], they do not focus on BPMN
2.0 Workflow Management Systems performance evaluation and benchmark [46], as discussed
in Section 2.3.

In this context the Università della Svizzera Italiana (USI) and the University of Stuttgart have
started to develop the BenchFlow project with the goal to provide a benchmark framework for
WfMS BPMN 2.0. Undeniably having a benchmark framework would fix the boundary condi-
tion around the WfE and allow the measure and the quantitatively comparison of WfMSs. To
do it one of the most important requirement of the BenchFlow framework is the elimination
of the impact of external service and components. Thus, BenchFlow is a model-driven, self
recursive testing approach that eliminates the impact of the external services by having them
implemented as processes [78]. In point of fact, the BenchFlow framework has an efficient
and flexible architecture to assure the quality of the benchmark. For instance the flexibility is
offered using Docker [3], which is a tool that exploits different hardware resources in a flexi-
ble way through lightweight virtualization and assure a good level of isolation, compatibility,
configurability and quick start up [87].

In particular the BenchFlow requirements [87] are:

• a model driven approach;

• a flexible deployment mechanism;

• a flexible way to configure different hardware resources and switch between different
configurations;

• the best level of scalability to new WfMSs, so that the effort of adding a new WfMS is
reduced;

• frozen initial condition, which means that the initial state of the different WfMS compo-
nents is the same for every benchmark execution;

23

24

Figure 3.1. System under study

• reliable and non-intrusive data collections;

• flexible and extensible metrics computation.

The BenchFlow framework is a set of services (see Figure 3.1); the choice to use services has
been made because these services must not interfere with the normal execution of components
of the system. Undoubtedly, it is important for companies to have a framework that allows the
data retrieval in a way that the framework has the least impact on the processes execution.
Moreover if this is not the case the framework can influence the performance of the targeted
system, and therefore be less useful in taking an informed decision.

As Figure 3.2 shows, the framework components are:

• Driver;

• Monitor;

• Collector;

• Data cleaner and reconciler;

• Performance meter and data aggregator.

The driver manages set-up configurations, the workload, the functioning of the whole system
during execution. It is the component responsible of the infrastructure and it allows guar-
anteeing the BenchFlow framework flexibility, model driven approach and switch with past
configuration.

The monitor observes the workload execution and, without interfering, tries to understand
when the system has finished executing the workload. The monitor is a service formed by a
distributed system of many monitors, that in this thesis is going to be called with the generic
term monitor.

The collector, as the name implies, collects the data generated by the system components, specif-
ically it retrieves log files or database records. It is utilized after that the monitor has ensured
that the WfMS has completed all requests sent by the Driver. The collector is a service formed
by a system of many collectors, that in this thesis is going to be called with the generic term
collector.

25 3.1 Driver

The data cleaner and reconciler standardizes data extracted from databases of different Work-
flow Management Systems and it ensures the best level of scalability with different WfMSs.
Moreover it stores also data about the environment.

Finally the performance meter and data aggregator structures and organizes the WfMS data
and perform the WfMS metrics computation.

Figure 3.2. Framework components and the system

3.1 Driver

The driver ensures that the starting states of the different components are the same for ev-
ery workload execution by using Docker containers [3]. The driver is part of the benchmark
environment and it is responsible of the infrastructure. In particular it manages set-up configu-
rations, the workload, the functioning of the whole system during execution, the clean up when
the execution is finished and so on. The driver is the backbone of the infrastructure and it trig-
gers all the system components; moreover it can manage both synchronous and asynchronous
workloads. In addition, the driver writes logs, which report information such as: request er-
rors and response time of API calls, that might be useful to understand the functioning of the
system.

26 3.2 Monitor

3.2 Monitor

The monitor has to understand when the WfMS has finished to execute the requests sent by
the driver and it must fulfil its duty trying not to interfere with the requests execution on the
WfMS. In particular each architectural component of the WfMS has attached a monitor, which
controls the component execution status. The monitor uses an indirect and low demanding
resource request to control the current execution status of the requests execution. When this
request shows the possibility that the execution is finished, the monitor has the possibility to
use a direct and more demanding resource request to have a more accurate reply.

The monitor should start to perform its duty after that the driver has finished to send requests
to the WfMS. To reduce interferences, the monitor interacts with the WfMS according to a two
phases interaction:

1. During the first phase the monitor interacts with the environment to understand the re-
source utilization of the component to which it is attached. This means that it checks the
CPU utilization and network utilization to avoid a direct interaction with the WfMS com-
ponent, which might still be executing process instances. So in this phase, the monitor
objective is to interfere as little as possible with the WfMS execution and to understand
with high probability when the WfMS has finished to execute requests. When the monitor
sees low CPU utilization and low network utilization for a long enough time, the second
phase of interaction can take place, because the Workflow Management System might
have finished executing process instances, but this condition cannot be ensured in this
first phase.

2. During the second phase the monitor directly interacts with the Workflow Management
System components to understand if there are some process instances that are still under
execution. This interaction does not necessary require to interact directly with the Work-
flow Engine; indeed it is possible to check the execution status using WfMS database,
due to the fact that the database usually contains all information about executed process
instances and process instances under execution. In this second phase, the monitor objec-
tive is to ensure with higher accuracy the completion of the execution requests sent by the
driver and this phase is more resource expensive than the first phase, because the monitor
interacts directly with the WfMS components and in particular the WfMS database.

In addition the monitor has to check that WfE can run without interferences caused by problems
of other WfMS components, such as DBMS, Web Services and User interfaces. In particular
problems might arise in case that these components have a high number of job requests in their
queues, because this leads to a high response time degradation and causes a negative influence
to the whole performance of the Workflow Management System [63]. Moreover, in the worst
case scenario, WfMS components might manage long queue rejecting new job requests or, even
worst, losing job requests already in queue. This could cause the WfE inability to complete
process instances and the monitor should be able to recognize this situation.

27 3.3 Collector

3.3 Collector

The collector is used to collect the data generated by the system components, in particular by
retrieving log files or database records. It is performed after that the monitor has ensured that
the WfMS has completed all requests sent by the driver. In particular, when the driver has
received a positive reply about the completed requests execution from the monitor, it asks the
collector to retrieve the useful data.

The collector knows where WfMS components store their data on the file system or database.
Indeed, whenever it is possible the collector has to avoid to interact directly with the WfMS
components, because the API interface, exposed by the WfMS, might limit the collector. For
example the WfMS can expose an API method about retrieving completed process instances,
but it might happen that if there are too many completed process instances, so the API method
might not be able to retrieve them all. However, in some cases the collector has to interact with
the system components, for example it has to interact with the Database Management System
to collect database data. Moreover, it must be ensured that the collector is not able to modify
data, therefore it has only to read them and it must have only the read privilege when it is
possible to specify it.

Finally the collector has to write data read to a new location, which contains data from all
WfMS components related to the same experiment trial. Moreover data must be categorized
and organized according to their origin component, in other word their provenance, so that it
is possible to determine which data are related to a specific system component.

Therefore the hierarchical organization of the new location is:

1. experiment trial;

2. system component.

The most important data collections performed by the collector are those that allow to deter-
mine the WfMS metrics. One of the most important task of the collector is the gathering of data
from the WfMS database, because it contains data about Workflow Management System execu-
tions. Other important data collections occur when the collector collects data from the driver
and from the environment, because driver data allows understanding the interaction with the
WfMS and the workload it were subjected to during the experiment.

3.4 Data cleaner and reconciler

The data cleaner and reconciler has the duty to clean and reconcile data collected, thus its
objective is to allow standardizing data from databases of different Workflow Management Sys-
tems. This standardization is required because different Workflow Engine stores relevant data
for analysis with different data structures and different notations. In addition the cleaner and
reconciler loads statistics from environments. For more information refer to Chapter 5.

28 3.5 Performance meter and data aggregator

3.5 Performance meter and data aggregator

The performance meter and data aggregator has to aggregate stored data into the cleaner
database to obtain information. Data aggregation is performed according to metrics appli-
cation based on the experiments and on the trials related to a specific experiment. Thus, it
has to structure and to organize the data in a way that they can be understandable. For more
information refer to Chapter 6.

Chapter 4

Metrics

According to Fenton and Pfleeger [36], a measure is defined: "as a mapping from the empir-
ical world to the formal, relational world. Consequently, a measure is the number or symbol
assigned to an entity by this mapping in order to characterize an attribute." and a metric is a
measurement function [7].

Metric is a quantity that can be used as a measurement standard. Metric, in particular, focuses
on attributes of the metric context and, to apply a metric, it is necessary that the metric is clearly
defined. Metrics are used to identify possible improvements and to monitor progress. They
provide information to support quantitative managerial decision-making during the software
lifecycle [89] and they will provide objective evidences to take decisions upon.

The thesis scope is performance metrics of Workflow Management System and about the def-
inition of the main WfMSs metrics, they are identified applying Software Measure Definition
Method (SMDM) [19] and they arise from the paper "A Framework for Benchmarking BPMN
2.0 Workflow Management Systems" [37]written by Vincenzo Ferme, Ana Ivanchikj and Cesare
Pautasso.

To identify metrics there are two questions that can be asked:

• what to measure?

• how to measure?

At first to identify metrics [80], the question should be: "what to measure", instead of "how to
measure". Indeed the how question might remove some valuable metrics from being considered.
Moreover the how question focuses on data collection, which affects metric costs. Therefore
after that relevant metrics have been identified, the how question should be answered to identify
which metrics are cost effective. In this study, for the "what to measure" question is used the
Software Measure Definition Method [19]methodology and the "how to measure" question will
be treated at one point of the methodology.

The Software Measure Definition Method is used to determine metrics in the Workflow Man-
agement System context. This methodology is based on four steps [19]:

29

30

1. metric definition: it is about determining metrics considering characteristics of the con-
text and experience with the context of users, developers and modellers;

2. theoretical validation: tries to determine if the metric is valid from a measurement point
of view. So theoretical validation checks that metrics measure properly characteristics of
the context;

3. empirical validation: it uses experimental data to validate metrics and to understand
metrics validity in practice;

4. psychological explanation: it wants to describe how metric influences subjects that deal
with the context. Moreover psychological explanation might be combined into theoretical
validation.

Metric definition is realised by two main activities [83]:

1. Identification: is the most important activity, because the following activities and follow-
ing steps of metric definition are influenced by this one. Therefore it is required to apply
an accurate process to perform this activity. Identification activity has to establish mea-
surement goals, questions, abstractions and hypothesis. At this stage it is important to
focus also on available literature;

2. Creation: formally define metrics with clear specification.

The SMDM suggests using the GQM framework for the metric definition step by following a
structured process. Indeed GQM framework focuses on [12]

• Goal;

• Question;

• Measure.

Goal and question concern the identification activity, while measure consists of the creation
activity. However SMDM provides an extended process to reach the final metrics, which consists
of [83]:

1. determine entities in the context of study;

2. determine on which external properties of the entities to focus on; external properties
can also be called quality attributes. Indeed attribute is a detail of the property. For
example some of quality attributes are: accuracy, availability, compatibility, extensibility,
maintainability, responsiveness, scalability;

3. determine the goals according to the GQM framework; in particular by determining the
objective to measure quality attributes of entities. In other words, GQM goals detail
what objects (in this thesis the objects are the entities: WfE, process and construct) are
measured for what purposes. Moreover, it must be defined also a point of view for the
whole analysis;

4. determine which internal attributes of the entities should be measured;

5. determine abstractions to measure the attributes;

6. determine the questions from the goals;

31 4.1 Metric definition process

7. state hypotheses which identifies relationship between external properties and internal
attributes of entities.

Continuing from the identification activity to the creation activity, the following step is to define
metrics by providing proper and clear definition. In particular it should be stated:

1. metric’s name;

2. metric’s goal: it must be coherent with the identification step and GQM framework;

3. metric description of what metric indicates;

4. how compute metric values. In particular formulas might be provided.

The theoretical validation can be performed by applying the Doran’s [32] SMART framework,
where metrics

• specificity: metrics should be goal oriented and metric’s goals should be specific to the
metric context. Moreover metrics should be understandable by workers of the metric
context. Indeed metrics should be well written by specifying assumptions and definition,
so that they can be well interpreted;

• measurability: metrics should be quantified in order to compare metric results. Workers
of metric context should be able to monitor the context to perform, e.g., corrective actions;

• attainability: metrics should be credible and realistic. It should be possible to compute
the metrics and metric data must be collectable. This characteristic responses to the "how
to measure" question;

• relevance: metrics should be important in the metric context. Importance can be esti-
mated in relation to the metric context objectives;

• timeliness: metric should be ready when you need them. So a predetermined time bound
should be applicable considering execution time requirements.

The empirical validation is obtained by testing the derived metrics applying the benchmark-
ing system according to different experiments trial and by studying the results of these trials.
Thus, empirical validation is achieved by obtaining empirical evidence of the metrics in practice
thought experiments.

Finally metrics are usually distinguished between performance metrics and quality of service
metrics. Quality of service metrics are not going to be analysed in this thesis and they should
be considered in future works; for example the thesis does not analyse the quality of services
regarding requirement such as the security of the WfMS or WfMS portability or the level of
documentation available.

4.1 Metric definition process

4.1.1 Metric identification activity

Metric identification requires to determine a point of view for the analysis. What is applied in
this thesis is the point of view of the user. The user is intended as client of the WfMS service

32 4.1 Metric definition process

who instantiates processes; so the user is the final user that receives the process outputs.

In Workflow Management Systems context, it is possible to identify mainly three entities [8,
37].

• Workflow Engine, which executes process instances that are requested by the user. It
is defined by a specific architecture that conditions its process instance execution per-
formance. Moreover the Workflow Engine is executed on specific machine and interacts
with external environments, which constitute Workflow Engine context. Furthermore the
Workflow Engine is a software component.

• Process, it is the process model that is executed by the Workflow Engine when user in-
stantiates it. Usually process models are incident to a specific sector, so it is possible
to classify processes according to their belonging sectors. This characteristic of process
model can be identified as process scope and it is implied in Process entity. The Process
entity requires a Workflow Engine entity that executes its executable part.

• Construct, it is a component of process model. Referring to Business Process Model and
Notation, construct identifies BPMN elements: flow objects, connecting objects, swim-
lanes, data and artifacts. Therefore Construct entity particularity is that it can refer to
different BPMN elements.

Finally these three entities are in relationship to each other and in particular process and con-
struct entities has a strong relationship. Indeed the Workflow Engine can instantiate Processes
and Process is composed by Constructs.

4.1.1.1 Quality attributes of the entities: Workflow Engine, process and construct

The thesis focus is about performance of WfMS. Performance of a system is the characteris-
tics respect to its quality attributes such as responsiveness, scalability, and resource usage dur-
ing entity utilization. The ISO/IEC 9126 and later the ISO/IEC 25010:2011 [51] address the
need to define an international standard regarding system and software quality. The ISO/IEC
25010:2011 identifies that quality model can be categorized into eight categories:

• Functional suitability;

• Performance efficiency;

• Compatibility;

• Usability;

• Reliability;

• Security;

• Maintainability;

• Portability.

In particular, in this thesis the performance efficiency is composed by three subcategories:

• time behaviour: regards throughput rates, response and processing time when the system
is responding to requests.

33 4.1 Metric definition process

• resource utilization: regards how much a resource is used and which resource is used
when the system is responding to requests.

• capacity: ability of the system to fulfil a request and amount of requests that the system
is able to handle.

The following set of quality attributes related to performance are considered for each en-
tity:

• The selected Workflow Engine entity quality attributes are:

– time behaviour;

– resource utilization;

– capacity.

• The selected Process entity quality attributes are:

– time behaviour.

• The selected Construct entity quality attributes are:

– time behaviour;

– capacity.

Only these quality attributes have been selected for each entity due to the relationships between
the entities that make quality attribute redundant; especially capacity attribute of the process
entity is contained in the capacity attribute of the Workflow Engine entity. However, it could be
interesting to add also to Process and Construct entities the resource utilization attribute, but
usually this type of attributes is applied to the system under study and to other systems which
interact with the system under study [70]. In particular, the reason why it is not selected is that
evaluating resource utilization attribute for entities that are not system component might not
be accurate.

4.1.1.2 Determine the goals and the internal entities attributes

The goals are determined from the viewpoint of the user and they are:

• Workflow Engine entity: analyses the Workflow Engine with the purpose of evaluate its
performance from the user viewpoint to understand if they meet the user performance
requirements. So Workflow Engine is analysed to understand its time behaviour and
resource utilization for the user requests and its capacity to satisfy increasing number of
user requests.

• Process entity: analyses the time behaviour required to execute a process and to under-
stand if the WfMS is able to meet time expectations from the user viewpoint.

• Construct entity: analyses the ability to execute or not a construct and the ability to
understand if the WfMS can handle a construct with proper performance from the user
viewpoint.

34 4.1 Metric definition process

So, this study’s goal is to evaluate the entities by judging their value according to the perfor-
mance efficiency attributes, which are time behaviour, resource utilization and capacity, from
the point of view of the user, who is the client of the WfMS service and the one who instantiates
processes.

Furthermore, internal attributes of Workflow Management System are:

1. start time of the test;

2. number of requests submitted by the test;

3. start time of each request of the test;

4. connection time required for each request of the test;

5. response time required for each request of the test, it is also identified as sample time;

6. utilized WfE RAM memory;

7. utilized WfE processor time;

8. amount of utilized Bytes in network communication in and out;

9. start time of a process instance;

10. end time of a process instance;

11. start time of a construct;

12. end time of a construct;

The internal attributes till the 8 attribute are used for the Workflow Engine entity. Attributes
from the 9 to 10 are used for the Process entity and for the Workflow Engine entity. The final
two internal attributes are used for the Construct entity and the Process entity.

4.1.1.3 Abstractions to measure the attributes

It is possible to identify three categories of internal attributes according to the abstraction re-
quired for their measurement. Attributes from 1 to 5 refer to a test, therefore data about these
internal attributes can be measured by tools of load testing, such as the driver (refer to Section
3.1) or JMeter [4] , which might maintain record of the test launched. Attributes from 6 to
8 refer to how the system exploits resources and it is required a resource monitor to retrieve
these information. The final internal attributes from 9 to 12 are all related to the execution of
process models, therefore are attributes that depend on the Workflow Management System and
its configuration.

4.1.1.4 Determine the questions from the goals

In this study, to determine the set of possible questions related to WfMS, it is used the advanced
brainstorming technique to brainstorm by yourself [57] (thus the participant of the brainstorm
by yourself is only the author of the thesis). As conventional brainstorming, in this phase all
questions are considered and any raised questions are considered. Indeed during brainstorming
the objective regards quantity of ideas and not quality of ideas. To avoid wasted time and come

35 4.1 Metric definition process

to a conclusion of this step, it is applied a time frame mechanism. At first, the question from
which the brainstorm starts must be clearly stated. In particular, questions for each entity are
stated for their quality attributes.

Questions related to Workflow Engine entity:

• time behaviour property: Which time behaviour characteristics of the Workflow Engine
are relevant for the user?

– how much time is required to create the process instance when a process execution
request is queried to the WfMS?

– at which rate are processes completed?

– how many processes can be completed over a specific time interval defined as the
complete test duration?

• resource utilization property:

– how much external storage is used to store process data and execution information?

– which are the minimum resources requested to complete a process? Resources in
term of: space resources (e.g. disk space, RAM memory usage), processing resources
(e.g. CPU usage) and communication resources (e.g. network usage regarding pack-
ets received and sent)

• capacity property:

– which is the maximum number of processes that can be executed successfully?

– how many process instances has the engine handled without any error?

Questions related to Process entity:

• time behaviour property:

– how much time is the time range required for processes to be completed?

– which is the most time consuming process of the workload mix?

Questions related to Construct entity:

• time behaviour property:

– how much time is required to start a new activity when the previous ones have been
completed? So which is the latency of connecting flow?

– how much time is required to communicate to a service task? How much time is
required to complete construct execution?

– which is the most time consuming activity of a process in term of time needed by
the WfMS to handle the BPMN elements?

– when the user has work to do, how much time is required for a user to get assigned
an activity by the Worklist Handler?

• capacity property:

– which is the maximum number of activities that can wait in the Worklist Handler?

36 4.1 Metric definition process

– how many constructs can a process contain at maximum without performance degra-
dation?

4.1.1.5 Identify relationship between external properties and internal attributes

Quality attributes or external properties depend on more than one internal attribute as it is
shown in the Table 4.1. In particular it is possible to state that time behaviour attribute de-
pends on all time related internal attributes. Also capacity quality attributes depend on these
time related internal attributes, because the increase in requests produces an increase in time
behaviour that is beneficial to be studied [63]. Moreover, capacity property is also related to the
number of requests submitted by the test driver. Finally resource utilization has relationships
with internal attributes that regards how the resources are used.

Table 4.1. Entity external properties and internal attributes relationship

Time Behaviour depends on: Capacity depends on: Resource utilization depends on:
start time of a process instance start time of a process instance utilized WfE RAM memory
end time of a process instance end time of a process instance utilized WfE processor time
start time of a construct start time of a construct amount of received bytes
end time of a construct end time of a construct amount of transmitted bytes
start time of the test start time of the test
start time of each test request start time of each test request
connection time of each test request connection time of each test request
response time of each test request response time of each test request

number of submitted test requests

4.1.2 Metric creation activity

The metric creation is composed of mainly four components: name of the metric, metric goal,
metric description and pseudo-formulas for computing the metric. Since metrics are derived
from the previous identified questions that were divided according to the quality attributes of
the entity under study, the same approach is used also for metrics creation [37]. In particular
the metrics, which can be defined for the Workflow Engine entity, can be divided according
to:

• time behaviour in:

– response time

37 4.1 Metric definition process

Name Response time
Goal Determine the time required by the Workflow Engine

to respond to a request.
Description Response time is the time between the time of the re-

quest and the time of the response [63]. It is the time
that the user experience when he/she performs a re-
quest to the WfE and response time considers when the
user sends the request and when the user receives a
response. So response time considers the time from
the sending of the process execution request to the
process completion communication reception, which
means that it considers process execution and the time
to transmit the request and communicate a response.
In case that the request is asynchronous, the response
time time considers the time from the process execu-
tion request sending to the process completion.

Pseudo-formula Response time =

=

¨

end request time - start request time, synchronous request

end process instance time - start request time, asynchronous request

– throughput

Name Throughput
Goal Determine the process completion rate
Description The throughput is the rate at which processes are com-

pleted [63]. It is the number of request completed over
an interval of time. Throughput is also related with
the number of requests that are submitted. Indeed the
Workflow Engine cannot complete more requests that
those which it has received. Throughput considers all
requests that are completed in the time interval; there-
fore it is computed on requests that are started and
completed in the time interval and requests that are
started before the time interval and that are completed
in the time interval.

Pseudo-formula Throughput = number of completed requests
time interval

– process execution latency

38 4.1 Metric definition process

Name Latency
Goal Determine overhead introduced by the Workflow En-

gine
Description The latency is the time required to instantiate a process

after the request to execute the process models. So it
corresponds to the time between the request and the
actual instantiation of the process instance, where the
actual instantiation of the process instance indicates
the creation of the process instance. It is influenced by
communication latency and instantiation requirement.

Pseudo-formula Latency= start request time - start process instance cre-
ation

• resource utilization in:

– database bandwidth usage

Name DB bandwidth usage
Goal Determine how much the Workflow Engine exploits

database
Description DB bandwidth usage is the amount of bytes used by the

Workflow Engine to transmit or to receive data from the
DB.

Pseudo-formula DB bandwidth usage = sum of the amount of bytes uti-
lized in network communication in and out to the DB

– RAM memory usage

Name RAM memory usage
Goal Determine how much the Workflow Engine relies on

RAM memory
Description RAM memory usage is the amount of bytes used by

the Workflow Engine to store temporary data on RAM
memory and to be operational.

Pseudo-formula RAM memory usage = sum of the RAM memory uti-
lized by the WfE

– CPU usage

Name CPU usage
Goal Determine processing requirement of the Workflow En-

gine
Description CPU usage is the percentage of processing time used by

the Workflow Engine to operate.
Pseudo-formula CPU usage = CPU utilization time

time interval %

– network usage

39 4.1 Metric definition process

Name Network usage
Goal Determine Workflow Engine communication require-

ments
Description Network usage is the amount of communication re-

ceived and transmitted by the Workflow Engine to
be functional, so it is the amount of communication
among WfMS components, such as WfMS database,
Web Applications, and WfE.

Pseudo-formula Network usage = sum of the amount of bytes utilized
in network communication in and out to the WfE

• capacity in:

– capability

Name Capability
Goal Determine the ability of the Workflow Engine to man-

age incremental number of process instantiation re-
quests

Description Capability is the number of processes that the Workflow
Engine is able to handle at maximum. To determine
the capability a time interval should be defined and all
processes instances that are in execution in that time
interval should be considered.

Pseudo-formula Capability=max (# process instance in time interval)

– number of completed processes

Name Number of completed processes
Goal Determine the ability of the Workflow Engine to man-

age incremental number of process instantiation re-
quests

Description Number of completed processes is the number of pro-
cesses instances that the Workflow Engine has han-
dled. To determine the number of completed processes
a time interval defined as test duration should be used
and all processes instances that are in execution in that
time interval should be considered.

Pseudo-formula NumCompletedProcesses = # completed process in-
stance in time interval

The metrics that can be defined for the Process entity for the time behaviour quality attribute
are:

• completion time

40 4.1 Metric definition process

Name Completion time
Goal Determine the time required by the Workflow Engine

to execute a process instance
Description Completion time is the time between start of the pro-

cess instance and the time of its completion. It is the
running time of the process instance on the Workflow
Engine.

Pseudo-formula Completion time = end process instance time - start
process instance time

Finally the metrics that can be defined for the Construct entity can be divided according to:

• time behaviour in (see Figure 4.1):

Figure 4.1. Time behaviour schema

– completion time

Name Completion time
Goal Determine the time required by the Workflow Engine

to execute a construct of a process instance.
Description Completion time is the time between start of the con-

struct and the time of its completion. It is the running
time of the construct of process instance on the Work-
flow Engine.

Pseudo-formula Completion time = end construct time - start construct
time

– delay

Name Delay
Goal Determine the delay introduced by the Workflow En-

gine to execute the construct.
Description Delay is the time required by the Workflow Engine to

execute the construct respect the ideal time required to
execute it. So it is the time difference between actual
execution time and expected or ideal execution time
[37].

Pseudo-formula Delay = actual construct completion time - ideal con-
struct completion time

41 4.2 Theoretical validation

– latency

Name Latency
Goal Determine the time required by the Workflow Engine

to start the execution of the construct.
Description Latency is the time between end of a previous construct

and the start of next one. It is determined by the time
required by the WfE to follow the execution path, to
determine the next construct to instantiate and to in-
stantiate it.

Pseudo-formula Latency = start next construct time - end previous con-
struct time

• capacity in:

– construct capability

Name Construct capability
Goal Determine the amount of construct that the Workflow

Engine can process simultaneously
Description Construct capability indicates how many constructs the

WfE can execute and handle in waiting state at maxi-
mum. To determine the construct capability a time in-
terval should be defined and all constructs that are in
execution in that time interval should be considered.

Pseudo-formula Construct capability = max (# construct in time inter-
val)

– number of completed constructs

Name Number of completed constructs
Goal Determine the ability of the Workflow Engine to man-

age incremental unit of work
Description Number of completed constructs is the number of con-

structs that the Workflow Engine has handled. To de-
termine the number of completed constructs a time in-
terval should be defined and all constructs that are in
execution in that time interval should be considered.

Formula NumCompletedConstruct = # completed constructs in
time interval

4.2 Theoretical validation

The theoretical validation is conducted applying the SMART framework [32]. The table 4.2
shows which metrics should be considered as SMART and which are the metrics implemented
in this thesis. All the metrics are SMART, because they respect all the SMART characteristics.
For further details on the SMART framework applied to each metric see Appendix A.

42 4.3 Empirical validation

Due to time limitations not all the metrics are implemented, besides the set of implemented
metrics allow achieving a first analysis of WfMS performance, as it is shown in Chapter 7. In
particular, the construct metrics are not implemented, because they can be considered as an in-
depth analysis of the process metric; indeed constructs execution is tightly correlated to process
instances execution.

Table 4.2. Metrics Summary Table

Entity Metric name SMART Implemented

W
or

kfl
ow

En
gi

n
e

Response time yes no
Throughput yes no

Latency yes no
Capability yes no

NumCompletedProcesses yes yes
DB bandwidth usage yes no

Network usage yes no
RAM memory usage yes no

CPU usage yes no

Pr
oc

es
s

Completion time yes yes

C
on

st
ru

ct

Completion time yes no
Delay yes no

Latency yes no
Construct capability yes no

NumCompletedConstruct yes no

4.3 Empirical validation

The empirical validation is presented in Chapter 7. Due to the fact that the Chapter 7 is an
empirical validation made only using the implemented tools: data cleaner and reconciler, per-
formance meter and data aggregator, a more complete empirical validation is proposed as a
future work (see Section 8.2). The metrics considered are the metric implemented in the per-
formance meter and data aggregator and, in particular, these metrics are called:

• ProcessCompletionTime,

• NumberCompletedProcess,

• NumberUncompletedProcess.

Where the NumberUncompletedProcess metric is a complementary metric of the NumberCom-
pletedProcess. For more information on the implemented metrics see Section 6.4.1.

Chapter 5

Data cleaner and reconciler

The data cleaner and reconciler has the objective to standardize data from databases of differ-
ent Workflow Management Systems. This standardization is required because different WfMSs
store relevant data for analysis with different data structures and different notations. In prac-
tice the data cleaner and reconciler performs the Extraction, Transformation, Loading (ETL)
process.

5.1 Background of ETL

Extraction, Transformation and Loading is a consolidation process that involves retrieving data
from a source database, transforming it to meet business needs, and ultimately loading into a
destination database, called data warehouse.

Although ETL processes are very important, ETL has little research. This is because of its dif-
ficulty and lack of formal model for representing ETL activities that map the incoming data
from different source database to be in a suitable format for loading to the destination database
[30, 50, 59].

In this thesis the conceptual model of ETL process proposed by Vassiliadis et al. [99] is ex-
plored, and the conceptual model is applied to the data cleaner and reconciler component of
the framework.

Indeed, in this thesis the data cleaner and reconciler is the ETL tool and its steps are:

• data extraction, it extracts data from a source database that corresponds to the Workflow
Engine database or a dump of it;

• data transformation, it transforms the data cleaning them, so that without other modifi-
cations the data can be used for query and analysis about the WfMS metrics;

• data loading, finally it loads the clean data in a destination database, which corresponds
to data cleaner and reconciler database or CleanRawData database.

43

44 5.1 Background of ETL

Summing up, the implemented data cleaner and reconciler brings heterogeneous and asyn-
chronous source extracted data to a homogeneous environment. Moreover ETL is a complex
process due to the fact that it has to reliably manage big amount of data.

5.1.1 ETL conceptual model

The ETL conceptual modeling goal is to map the attributes of the data, extracted from the data
source, to the attributes of the data destination schema. In particular, the conceptual part of
the definition of the ETL deals with the first stages of the destination database design. During
those stages the destination database designer have to manage:

• the collection of requirements needed in the destination data;

• the analysis of the structure and contents of the data, present in the data sources, and
their intentional mapping to the destination database.

In their paper [99] Vassiliadis et al. focus on the interrelationships of attributes and concepts,
that are caught through provider relationships that map data attributes from the source to
the destination data; and the needed transformations that the source data has to take before
loading. More specifically, the ETL conceptual model phases are: Extraction, Transformation
and Loading, and the advantages of ETL process are:

• adjusting and conforming data from multiple sources to be used together;

• structuring data;

• documenting measures of confidence in data;

• capturing the flow of transactional data;

• enabling subsequent analytical data processing.

5.1.1.1 Extraction

During this phase the relevant data are extracted from a source database. There are three types
of extraction:

• static extraction;

• incremental extraction;

• full extraction.

The static extraction is done when the destination database has to be populated for the first
time. The incremental extraction is used for a periodic update of the destination database
and it captures only the changes happened in the data of the source database from the last
extraction. The full extraction is used when the destination database has to be populated with
all the source databases; the data cleaner and reconciler applies this type of extraction.

45 5.2 Design of the data cleaner and reconciler database

5.1.1.2 Transformation

During the transformation phase the data, extracted from the source database, are converted
from the source database format to the destination database format, so that they can be used for
query and analysis conformed to the business needs. During the transformation the data must
be converted, a common standard has to be created to transform the source data in destination
data that can be analyzed and evaluated. Thus the data are translated into the desired design
and required form of the destination database. This phase is the most critical and important of
the ETL process [99].

5.1.1.3 Loading

The last phase of the ETL process is the loading, which consists of the insertion of the cleaned
data to the destination database.

5.2 Design of the data cleaner and reconciler database

The data cleaner and reconciler has to maintain the clean data; therefore a common database,
which will contain data from all the source databases, must be realized. At first it is required
to design such common database or data warehouse. The design is based on [99]:

• collection of basic requirements,

• context knowledge.

5.2.1 Requirements

The requirements are mainly derived from the metrics that are going to be considered. The
considered metrics are fundamental; they highlight the minimum requested entities and the
information required in each table, because entities define the tables that must be designed,
indeed each entity requires a specific table.

In particular the metric considered can be derived from data that can be stored by the WfMS
into its database and in general these data are related to the process and construct executed by
WfMS. Therefore accordingly to stored data in WfMS database, the possible entities that can
be identified in the Workflow Management System context are:

• Process;

• Construct.

It is evident that these levels compose a hierarchy. As a matter of fact the WfMS executes process
instances, where process instances are composed of constructs that are executed during the
execution flow of the process instance. Therefore two entities can be determined: process and
construct and the process entity must have a relationship with the construct entity, because a
process is a composition of constructs.

46 5.2 Design of the data cleaner and reconciler database

Figure 5.1. Target database schema

47 5.2 Design of the data cleaner and reconciler database

Moreover each process executed is related to a test, which is refereed as experiment to general-
ize the term. The experiment entity is related to the type of testing that is running to obtain the
data. In particular in WfMS context, the experiment consists in requesting the execution of pro-
cess models; so the experiment entity must have a relationship with the process entity, because
the experiment is composed of process instances that are executed on the WfMS.

In addition the data cleaner and reconciler loads statistics from environments. Thus experiment
entity also requires additional information about the environment and an environment entity
might be used for this purpose.

Figure 5.2. Example entities of data cleaner and reconciler requirements

The example shown in the Figure 5.2 is provided to better explain the role of the mentioned
entities. It is possible to understand that there is an experiment entity that is characterized
by performing one request every second for one minute and in particular the request regards
the execution of a process instance. So the process entity is related to the experiment entity.
Moreover the process instance execution requires to perform three constructs, which are a start
event, a task and an end event; therefore it is shown also the construct entity and its relation
with the process entity. Instead the environment entity is not shown in the Figure 5.2, but the
WfMS to execute process instances must be deployed on a machine and it has to interact with
its components, such as the DBMS (see section 2.2.2), which are the environment.

Finally no information should be removed. Hence for more detailed analysis it is preferable
to store also the original data from which the cleaned data are derived from, because the data
cleaner and reconciler database does not contain all files and data produced. For example it does
not contain original data and it might not contain some logs. Therefore for each experiment
execution, called trial, it should be created an external folder that contains all files that might
be useful to further investigation on the trial. This duty is of the collector component, however

48 5.2 Design of the data cleaner and reconciler database

this principle introduces requirements according to which it is necessary to backtrack original
data from the cleaned data.

5.2.2 Entity schema details

As discussed in Section 5.2, entities are represented by the following tables in the database:
experiment, process, construct and environment data. See Figure 5.1.

5.2.2.1 Experiment entity

The experiment entity contains information about experiment trials, which are executions of
the experiment. It might be related to an entity modeled in an external database which spec-
ifies the experiment characteristics, in particular this relationship is allowed by ExperimentID.
ExperimentID specifies which experiment has been performed as a trial. Since an experiment
can be repeated multiple times, the ReplicationNum specifies the trial number, therefore it is a
incremental number increased by one for each trial of the experiment.

This means that for each ExperimentID should not be possible to have the same ReplicationNum,
because every time that an experiment is performed the ReplicationNum should increase by one
for that specific experiment. Finally the Experiment table is identified by the TrialID field.

5.2.2.2 Process entity

The process entity contains information about the process instances of a specific experiment
trial, which means that each record of the process entity refers to one trial. Indeed, as identifier
process entity has ProcessInstanceID, which distinguishes the process instances executed and
it has a reference through TrialID to the Experiment entity to obtain information about the
experiment itself. The ProcessModelID field identifies which is the process model that was
instantiated and it might refer to an external database that holds information about process
models.

Every time a process model is instantiated there is a related start time, which indicates when
the process instance has started its execution. Of course if the process instance terminates it
also has an end time, which determines when the process instance has been completed. Both
these data time are stored respectively into StartTime and EndTime fields. Moreover, if process
instance duration is not already computed, it is possible to determine the duration of a process
instance, which is defined as difference between the time at which the process instance began
and the time at which the process instance is completed. This information is stored into the
Duration field, because it allows fastening future analyses that exploit this value.

Finally the process entity contains SourceProcessInstanceID field, which is used to allow users
to backtrack process instances in source database. Therefore SourceProcessInstanceID field has
the same value of the identifier used in the source database for the process instance, with the
exception that it might be required a data type conversion.

49 5.2 Design of the data cleaner and reconciler database

5.2.2.3 Construct entity

The construct entity contains information regarding the constructs used to build the process and
in particular it includes information about flow objects [55, pg. 27]. Since constructs belong
to a specific process, each instance of the construct entity holds a reference to process entity
by using the ProcessInstanceID field. In addition the ConstructID field univocally identifies an
instance of the construct entity.

Since the construct entity contains different types of objects, such as gateways and tasks, Con-
structType field is used to understand which type of construct it is. Similarly to a process in-
stance a construct has a StartTime, Duration and EndTime fields. In addition there is the Con-
structName field that is used to identify the same construct of different process instances.

Finally SourceConstructID field is used to allow users to backtrack constructs in the data source.
Therefore SourceConstructID field has the same value of the identifier used in the data source,
with exception that it might be required a data type conversion.

5.2.2.4 EnvironmentData entity

The environments are all systems that allow the execution of trials. For example environments
in the Workflow Management System are the database used to store information of the WfMS
and the Workflow Engine. An external database might contain data regarding environments
on which experiment trials are running. Instead, EnvironmentData entity holds data regarding
the run time statistics of the environments.

The EnvironmentData entity uses ID field as identifier of the instances and this entity also holds
the EnvironmentID field, which specifies the environment. Moreover each instance of the En-
vironmentData entity also refers to a specific experiment trial, which is specified by TrialID
field. Therefore each EnvironmentData entity’s instance has a relationship with both a specific
environment and a specific experiment trial.

In particular the environment statistics could be derived by means of commands to obtain statis-
tics, for instance, when Docker is used, Docker stats API data regards the CPU usage,RAM mem-
ory usage and network usage. CPU usage is a percentage of CPU used over time intervals and
it is computed considering both user and system time. The user time is the time during which
the environment process is directly controlling the CPU, whereas system time is the time during
which the system is operating to complete requests performed by the environment process. RAM
memory usage is composed by different values: RAM memory occupied by the environment,
maximum RAM memory available and a percentage that represents how much of the maximum
RAM memory is occupied. The network usage is composed by two values, one indicates the
bytes received and the other the bytes sent.

Finally CPUPercent field is used to store CPU usage; MemoryUsed, MemoryTot and MemoryPer-
cent fields are used to store RAM memory usage respectively to: RAM memory used, total RAM
memory available and RAM memory percentage used; NetworkIn and NetworkOut fields are
used to keep track of bytes received over network and bytes sent.

50 5.3 Implementation of the data cleaner and reconciler database

5.3 Implementation of the data cleaner and reconciler database

The key fields of the different tables, identified by the entities (refer to Section 5.2), are deter-
mined by the MD5 hash function of one or more of the following possibilities: other fields of
the entity, fields of the source database and a seed determined by the data cleaner and recon-
ciler, which is a value. Hash function is used because it can map source key fields to one single
key field, indeed hash functions are functions that operate and map an input string of different
length to an output of bit string with a fixed length, called hash. In general hash function is a
one-way function that maps a domain value to a range value. Therefore it is an optimal solution
to determine the identification key for two reasons: fixed length and the large range of output
values. In particular the fixed length is useful to limit the storage size required to store the
identification key itself and to increase the performance, because the key comparison will be
quicker. In this study the MD5 is chosen, being considered an enough good collision resistant
hash function. Indeed it is able to obtain 2128 output combinations, since its hash result is 128
bit long.

In the last years the hash functions, including the MD5, were objects of criticism about their
security [90, 91]. Some of those criticisms are valid, but in this thesis the MD5 hash function
is used because of:

• fast computation;

• resistance to the collisions;

• low space requirement.

Moreover the framework is not used for security reasons, thus possible MD5 security breaches
are not considered as a real threats in this application due to their limited impact. In partic-
ular the key fields determined by the MD5 are: TrialID, ProcessInstanceID and ConstructID.
Instead the ID field of the EnvironmentData entity is obtained by the auto increment function
implemented by databases.

The current design of the cleaner database (see Section 5.2) applies the three normalization
rules [24, 25]. The three normalization rules are usually applied to eliminate redundant data
and to ensure correct data relationships. In particular, the first normal form states that each
table contains atomic value attributes, which means that each attribute of a tuple, i.e. each
attribute of a row of a table, does not have multiple values belonging to the attribute domain
values. The second normal form requires that the first normal form is satisfied and that the non
primary key attributes are fully dependent on the primary key attribute. The third normal form
requires that the second normal form is satisfied and that the non primary key attributes does
not depend on non primary key attributes. However during data analysis the access to process
records and construct records is mainly based on the trial interested. This requirement does
not provide any difficulties for process records, which have their foreign key at trial records.
Whereas construct records have to be joined to their process record to determine the trial at
which they belong.

This can be translated by the following SQL queries:

se l ec t ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ ConstructID ‘ , ‘ CleanRawData ‘ . ‘
Construct ‘ . ‘ SourceConstructID ‘ , ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘
ConstructType ‘ , ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ ConstructName ‘ , ‘

51 5.4 Design of the data cleaner and reconciler

CleanRawData ‘ . ‘ Construct ‘ . ‘ StartTime ‘ , ‘ CleanRawData ‘ . ‘ Construct
‘ . ‘ EndTime ‘ , ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ Duration ‘ , ‘
CleanRawData ‘ . ‘ Construct ‘ . ‘ P rocess Ins tance ID ‘

from ‘ CleanRawData ‘ . ‘ Construct ‘

where ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ P rocess Ins tance ID ‘ in

(se l ec t ‘ CleanRawData ‘ . ‘ Process ‘ . ‘ P rocess Ins tance ID ‘
from ‘ CleanRawData ‘ . ‘ Process ‘
where ‘ CleanRawData ‘ . ‘ Process ‘ . ‘ T r ia l ID ‘ = ’ T r i a l IDva lue ’) ;

or

se l ec t ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ ConstructID ‘ , ‘ CleanRawData ‘ . ‘
Construct ‘ . ‘ SourceConstructID ‘ , ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘
ConstructType ‘ , ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ ConstructName ‘ , ‘
CleanRawData ‘ . ‘ Construct ‘ . ‘ StartTime ‘ , ‘ CleanRawData ‘ . ‘ Construct
‘ . ‘ EndTime ‘ , ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ Duration ‘ , ‘
CleanRawData ‘ . ‘ Construct ‘ . ‘ P rocess Ins tance ID ‘ , ‘ CleanRawData ‘ . ‘
Process ‘ . ‘ T r ia l ID ‘

from ‘ CleanRawData ‘ . ‘ Construct ‘ jo in ‘ CleanRawData ‘ . ‘ Process ‘
on ‘ CleanRawData ‘ . ‘ Construct ‘ . ‘ P rocess Ins tance ID ‘ = ‘ CleanRawData ‘ . ‘

Process ‘ . ‘ P rocess Ins tance ID ‘

where ‘ CleanRawData ‘ . ‘ Process ‘ . ‘ T r ia l ID ‘ = ’ T r i a l IDva lue ’

By analysing the queries, it is possible to see that even the optimal query, which uses "in" op-
erator, and considering indexing on primary and foreign key, which is the best case scenario
for these select queries, requires a O (cn + cm × n) where n is the number of process instances
belonging to the trial and c is the access time through indexes of process instances (cn) and of
constructs (cm). In particular the access time through index is logarithmic, because indexes are
stored in B-tree [6].

To avoid expensive time access on construct record related to trial, the third normalization rule
[25] is ignored. Therefore, trial field is added to construct table and this causes an increase of
disk space, but it is compensated by a faster access of records related to trials. Indeed access
time is O (cm).

5.4 Design of the data cleaner and reconciler

The data cleaner and reconciler has a hierarchy structure since it can be used to clean data
from different WfMSs and also environments data. See Figures 5.3 and 5.4. Moreover the
data cleaner and reconciler hierarchy has additional support for database management by two
external classes to the hierarchy. These two classes are:

52 5.4 Design of the data cleaner and reconciler

Figure 5.3. Data cleaner and reconciler Java classes - part 1

• DB;

• StoreCleanData.

DB class completely manages database parameters initialization and a connection pooling to
database. While the StoreCleanData class is designed specifically to store clean data.

The hierarchy of the data cleaner and reconciler is based on an abstract class called Cleaner
class. Cleaner class is composed by a set of fields and methods and Cleaner fields are mainly
used to identify the location of the source data and of the destination database. Source data
location could be a file or a database according to the required cleaning type. In particular
the support class is used for the destination database and it manages database connection and
requires the following parameters:

• Uniform Resource Locator (URL), which identifies location of the CleanRawData database;

• username to access the destination database and it must have write privileges;

• password to connect to the destination database and it is used for authentication.

Cleaner class has additional fields which are used to identify the experiment trial. In point of
fact each time that the data cleaner and reconciler is used a specific trial must be specified,
because clean data must refers to trials. According to the CleanRawData database schema 5.1,
the Cleaner class requires to know the identifier of the experiment and the replication number,
which is the value of how many times the experiment has been replicated respect to the specific
trial; so that the trial identifier can be determine by applying the MD5 hashing function of the
experiment identifier and replication number. Hence trialID is automatically computed given
experimentID and replicationNum fields.

53 5.4 Design of the data cleaner and reconciler

Figure 5.4. Data cleaner and reconciler Java classes - part 2

54 5.4 Design of the data cleaner and reconciler

The Cleaner class is also composed of methods, which might be divided between abstract and
concrete methods. The Cleaner class concrete functionality regards loading clean data in the
clean database and provides some additional support functions. So Cleaner class methods can
be also identified according to their use, which can be summarized to:

• access data resource by connecting the Cleaner class to source database or file and to
destination database. For this purpose there are two methods:

– connectDestDB(), it is a concrete method and it is used to connect objects with
CleanRawData database.

– connectSource(), it is used to open a connection with data source and it is an abstract
method. Indeed data source type might be a file or a database depending on data
involved refers to an environment or to process execution.

• store data into CleanRawData. Given cleaned data, the method uses the support class for
load data. This method in the Cleaner class is concrete, but it requires that the input data
respects clean database schema, because given a well formatted input data, it is possible
to store data directly without requiring to reimplement store method.

• determine ID values according to MD5 hashing function and inputs (for more details on
ID values see Section 5.3). For this purpose there are two methods; these two methods
are almost identical except for their parameters, which can be a single valued variable or
an array.

The Cleaner class is the root of inheritance and it has two direct subclasses:

• EnvCleaner, it has to clean data relative to environments;

• DBCleaner, it has to clean data relative to the execution of experiment trials, so it treats
data that are stored from WfMSs in databases.

EnvCleaner class is a concrete subclass, because all the environment statistics data are collected
by applying docker stats API. Therefore it is possible to assume that an output data has similar
format for all type of environments and it does not depend on the environment itself. So En-
vCleaner class reads statistics file, translates data in destination database schema format and
loads translated data into the CleanRawData database. EnvCleaner has another field in addi-
tion to Cleaner class fields, which is the identifier of the environment and it is provided as input
in the constructor of the class. Moreover the field sourceURL in EnvCleaner class will be valued
with a path to a file containing environment statistics.

Instead DBCleaner is an abstract subclass, because it depends on the source database and its
data structure. Furthermore DBCleaner assumes that data source is a Database Management
System (DBMS). Indeed most of Workflow Management Systems uses DBMS to store infor-
mation about execution. Hence, in addition to Cleaner class fields, DBCleaner fields are the
username and password to access the source database with read privileges, the dialect to in-
teract with the source database, transformation map field that allows to map source fields into
destination fields of the CleanRawData database and a seed that can be added to create unique
ID values.

DBCleaner has also additional methods that will be useful, since DB cleaning is more complex
than environment cleaning. These methods functionalities regard:

55 5.5 Implementation of the data cleaner and reconciler

• unit of measurement conversion: these methods convert values from a unit of measure-
ment into values in the standard DataRawClean unit of measurement by exploiting the
metadata that are contained in the data extracted from the source database;

• transformation, these methods allow to map input data into a well formated output data,
that can simplify cleaning;

• data selection and database connection, they consist of methods that interact with source
database. In particular data selection method extracts data from specified tables in the
source databases.

The DBCleaner does not provide a full cleaning range of source database, because it must be
as less specific as possible, but it provides a structured hierarchy to extend WfMS database
cleaning jointly with implemented functions. So when a new WfMS database must be added,
the required functions to implement are limited to the cleaning phase. In particular when it is
required to clean data from a new WfMS, the DBCleaner class should be extended and cleaning
methods require to be implemented according to the new data source. Instead if data are from
a new version of an already implemented WfMS, it might be sufficient to extend the already
implemented WfMS and override only the cleaning methods that treat data modified in the new
version.

During the cleaning phase, the least amount of information should be removed. Only redundant
and superfluous data might be removed, for example some application stores data that help the
execution of the application itself and these data might not be interesting for other purpose and
too much domain specific.

5.5 Implementation of the data cleaner and reconciler

The data cleaner and reconciler is developed in Java. Since the data cleaner and reconciler
has to interact with databases, Object-relational mapping technique could be applied. Object
relational mapper (ORM) is a tool which enables fetching objects from relational databases, thus
the ORM is a technique able to translate objects to relational data. Indeed the most commonly
used programming languages are object oriented, whereas some of the generally used databases
are relational database.

Moreover according to Juneau [56] a ORM might allow to use the following features:

• definition of abstract entities, the development process makes sure that the used termi-
nologies are the same and it eliminates languages that are non conformed;

• automatic synchronization, ORM uses database agnostics, called adapters, to synchronize
specification with database schema;

• relationship modelization between defined entities;

• easiness of queries writing, using ORM is easy to write query because it does not depend
on the language of the storage database;

• possibility to develop behaviour triggers that simulate business process;

56 5.5 Implementation of the data cleaner and reconciler

• possibility to add validation objects attributes to have better data integrity and consis-
tency.

So the main advantages of the ORM are:

• time saving with the automatic synchronization;

• developer performance thanks to the development process;

• the automatically generation of SQL queries, making data access more abstract and portable;

• integrity and consistency with the possible customizer configuration options to specify an
object or a collection fetching;

• easiness of the language.

However the development of an effective ORM mechanism is difficult and not all these possible
features are available [72] and for the following disadvantages it has been decided to use Java
Object Oriented Query Language (jOOQ). Specifically one of the limit of the ORM is that the user
is not able to go beyond simple SQL operation such as joins, nested, selects and aggregation.
In addition the disadvantage of the ORM are classified in six categories by Ireland, C., Bowers,
D., Newton, M., & Waugh, K. [52] and they are called ORM Mismatch Problems. The mismatch
problems are:

• Granularity, relational databases do not have the same granularity of object language thus
the representation of an object language class could not find direct correspondence with
the relational database and the synchronization could be difficult.

• Encapsulation, ORM could have consistency problem due to the structural differences and
functional units organization in object language programmes and relational database.

• Association, there are some limitations in the ORM when the state of the object is repre-
sented in a relational database because its state cannot be fully preserved.

• Identity, the problem of having two objects with different identity and same state due to
difference concept of identity between object language and relational database.

• Navigation, there could be synchronized problems due to differences in terms of envi-
ronmentals, manipulations and transactions between object language programmes and
relational databases.

• Ownership, if the schema database and the class model are made by two different users
there could be correlation problems.

Indeed a powerful option to the Object Relational access layer is the Object-Oriented Query
Language (OQL). According to Zhongling Li [65], Object-Oriented Query Language (OQL) is
designed to provide an object-oriented query interface for traditional relational database sys-
tems. The goal is to bridge the gap between object-oriented programming language (specifically
Java) and set-oriented Standard Query Language (SQL), and make the persistence layer fit bet-
ter in an Object-Oriented (OO) system design.

In particular jOOQ is a query Object-Oriented language originated from SQL and it maps SQL
queries to objects. jOOQ assumes that the user wants a low level control over the queries
execution, so it provides an easy interface for queries execution, rather than mapping objects
from relational databases like ORM. The main advantages of the jOOQ are:

57 5.6 Evaluation of the data cleaner and reconciler

• that all operations are characterized at class level such as Create, Read, Update, Delete
(CRUD) operations;

• the simple language due to similar simple syntax and grammar as Java;

• the easy integration with other frameworks;

• the portability, Java runs almost in every operating system.

Especially StoreCleanData class exploits the jOOQ framework and, instead of a single insert of
single data, it applies a batch insert of the data to reduce communication overhead and thus
improve loading performances. Moreover it implements Runnable interface to allow concurrent
data load.

In addition to jOOQ, the DB class uses a connection pool mechanism, which is applied to im-
prove the extraction and the loading performance of the data cleaner and reconciler. Indeed
these two phases require to connect to databases to read or to store data. Specifically, the
connection pool creates a pool of readily available connections anticipating the need to create
a connection with the database, which is an expensive activity in term of resource and time.
Thus, when a connection is required, the connection pool provides it immediately and later,
when connection is not used any longer, it can be returned to the connection pool. Hence the
connection is not closed and destroyed, but it is again available for a new use.

Furthermore sometimes duration of processes and of constructs are already computed and
stored into data source. When this happens, it is a good practice to use this value instead
of computing the duration by the difference of EndTime and StartTime fields. As a matter of
fact a more accurate and precise computation might have been applied to compute this field
in the data source. Moreover it must be noticed that EndTime and Duration fields might be
null, if the process instance did not complete its execution. Maintaining these process instances
with null EndTime and Duration fields is a good practice to avoid to lose possible valuable
information.

Moreover the data cleaner and reconciler does not manage continuous data streaming, which
means that it extracts all the data from source databases and all extracted data are maintained
in RAM memory for fastening their access. Finally extraction from source database cannot
occur during trials, which means that the source database is completely populated before an
extraction occurs, because if the extraction is incremental, it might interfere with the experiment
trial conducted on the Workflow Management System and so the data cleaner and reconciler
could interact with WfMS database during its execution and remove resources to the WfMS
execution. So the data cleaner and reconciler should be used when all process executions are
finished and the state of the WfMS database is stable and at rest.

5.6 Evaluation of the data cleaner and reconciler

The objective of the data cleaner and the reconciler is to allow standardizing data from databases
of different Workflow Management Systems. To evaluate if the data cleaner and reconciler is
able to reach its objective , the most important characteristics to evaluate are:

• Amount of managed data;

58 5.6 Evaluation of the data cleaner and reconciler

• Correctness;

• Reverse Mapping;

• Scalability to the adding of new WfMSs.

In point of fact the data cleaner and reconciler should be able to manage hundreds megabytes
of data1 in a short period of time. The most important information is the time required for the
operations and the ones evaluated are the extract, transformation and load time considered
both for the processes and for the constructs data. Secondly, the data cleaner and reconciler
should be able to clean the data without altering them, thus the correctness is an important
characteristic that this tool should have. Thirdly, the user could need to go back to see the
original data, so the data cleaner and reconciler should be able to enable the reverse mapping.
Fourthly the data cleaner and reconciler should be able to work with different WfMSs, so its
scalability to the adding of new WfMSs is evaluated.

The evaluation of the data cleaner and reconciler is performed on MacBook Pro machine with
the 10.9.5 OSX version, 64 bit architecture, 8GB of DDR3 RAM and 2.4 GHz quad cores pro-
cessor. The source and destination databases are two MySQL databases running on localhost
through Docker containers and Docker is run on Virtualbox in a Ubuntu 14.04 LTS Virtual Ma-
chine; while the data cleaner and reconciler is run by Eclipse version 4.4.1 with default settings
and with Java version 1.8.0_05. For more details about the used infrastructure read Section
7.2.

5.6.1 Source data generation for evaluation

The data cleaner and reconciler has been implemented for two WfMS: Camunda and Activ-
iti. The implementation of these WfMSs was straightforward also due to the similarity of its
database structure (see the migration guide at [2]).

For the evaluation the data cleaner and reconciler is applied only on Camunda, which has been
chosen at random between the two WfMSs available due to the data similarity among them.
The process model is designed by using the Camunda Process Definition tool and it consists in
three constructs: a start event, a script task and an end event.

5.6.2 Amount of managed data

In this analysis, to evaluate the amount of managed data by the data cleaner and reconciler,
some process instances and, as a consequence constructs, are submitted to the data cleaner and
reconciler, in particular eight executions are made. The data cleaner and reconciler executions
have a number of process instances and construct instances according to Table 5.1.

To evaluate the data cleaner and reconciler the considered time data are:

• process extraction time;

• process transformation time;

1The data of the execution number 8 occupy 616 MB of source database disk space

59 5.6 Evaluation of the data cleaner and reconciler

Table 5.1. Cleaner and reconciler executions

Execution number Number of processes Number of constructs
1 10,000 30,000
2 20,000 60,000
3 30,000 90,000
4 50,000 150,000
5 75,000 225,000
6 100,000 300,000
7 150,000 450,000
8 200,000 600,000

• process load time;

• construct extraction time;

• construct transformation time;

• construct load time.

The units of measure of all the time data are millisecond. Moreover, another important infor-
mation for the data cleaner and reconciler evaluation is the throughput, which is the amount
of work that the system component is able to handle in a unit of time [63]. In this thesis, in
Workflow Management System context, the throughput is be defined as the number of pro-
cess instances executed over the time required for the test to be performed. Thus, throughputs
are considered for extraction, transformation, load operation for both processes and constructs
data.

The results are shown on Tables 5.2, 5.4 and 5.3; in addition Figure 5.6 shows how the time
related to the operations of extraction, transformation and loading varies when each operation
is applied to an increasing number of constructs and similarly the Figure 5.5 shows the relation
between the operations time and the increasing number of processes.

Table 5.2. Performance evaluation of data cleaner and reconciler

Execution Total Maximum Total number
number time (s) RAM used (MB) of threads (#)

1 4 235 10
2 7 321 18
3 10 410 26
4 19 658 42
5 64 891 62
6 85 1014 82
7 181 1208 122
8 331 1547 162

During all the executions, the number of cores used is 4.

Of course those data are linked, because the throughput is defined as the number of pro-

60 5.6 Evaluation of the data cleaner and reconciler

Figure 5.5. Evaluation of the execution time of the cleaner and reconciler according to
process

0 0.1 0.2 0.3 0.5 0.75 1 1.5 2

·105

0

0.5

1

2

3

4

5
·104

Number of process instances

Ti
m

e
(m

s)
Processes

Extract time (ms)
Trasform time (ms)

Load time (ms)

Figure 5.6. Evaluation of the execution time of the cleaner and reconciler according to
construct

0 0.3 0.6 0.9 1.5 2.25 3 4.5 6

·105

0

0.5

1

1.5

2

2.5

3
·105

Number of constructs

Ti
m

e
(m

s)

Construct

Extract time (ms)
Transform time (ms)

Load time (ms)

61 5.6 Evaluation of the data cleaner and reconciler

Table 5.3. Performance evaluation of data cleaner and reconciler according to process

Execution Number of Time (ms) Throughput (#process
ms)

number processes Extract Transform Load Extraction Transformation Load
1 10000 599 249 952 16.69 40.16 10.50
2 20000 867 307 2193 23.07 65.15 9.12
3 30000 1047 571 3836 28.65 52.54 7.82
4 50000 1652 1286 6317 30.27 38.88 7.92
5 75000 2183 1601 16018 34.36 46.85 4.68
6 100000 3882 1823 18417 25.76 54.85 5.43
7 150000 4308 4626 26671 34.82 32.43 5.62
8 200000 9576 5647 44576 20.89 35.42 4.49

Table 5.4. Performance evaluation of data cleaner and reconciler according to construct

Execution Number of Time (ms) Throughput (#construct
ms)

number constructs Extract Transform Load Extraction Transformation Load
1 30000 1497 838 1675 20.04 35.80 17.91
2 60000 2966 1068 3490 20.23 56.18 17.19
3 90000 3987 1838 4423 22.57 48.97 20.35
4 150000 6634 2966 9884 22.61 50.57 15.18
5 225000 14208 3339 44226 15.84 67.39 5.09
6 300000 20644 4433 60104 14.53 67.67 4.99
7 450000 31885 6435 142389 14.11 69.93 3.16
8 600000 42820 9180 271506 14.01 65.36 2.21

cess instances or construct instances executed over the time required for the test to be per-
formed.

It is possible to see that the load phase is the most time expensive among the three phases
and in particular the total time is mainly related to load time. Therefore, the majority of the
optimization effort has been focused on the load phase. Additional performance incrementation
can be achieved by removing some constraints, such as referential integrity, so that load times
can be reduced causing a reduction of the total time. However this option should not take place,
because it increases the possibility of having inconsistent data.

The load phase time depends mainly on two aspects:

• time required to build the insert query to execute;

• time required by the DBMS to actually insert records.

Moreover if the DBMS and the data cleaner and reconciler are not on the same machine, there
is to consider also the time required to transmit the insert query to the DBMS. Indeed this time
cannot be neglected, because each insert query consists of several thousands of records.

Additionally it is possible to see that the Extraction, Transformation and Load phases of pro-
cesses are strongly related with Extraction and Transformation phases of construct. Their corre-
lation is especially shown during the execution number 4, 5 and 6. Indeed they occur in parallel

62 5.6 Evaluation of the data cleaner and reconciler

and the resources are asked concurrently between process transformation and construct trans-
formation; whereas the Load phase of construct does not influence the ETL phases of processes,
because it occurs only after that the process load phase is concluded.

Finally the RAM memory used for the application should be considered, in point of fact all
the data required by the data cleaner and reconciler component are temporarily maintained
in the RAM memory. For the test performed, it has not been necessary to modify the default
run configuration of stack memory and heap memory of Eclipse. Specifically the heap memory
contains all the objects created by the application and it is by default to 2 GigaBytes in Eclipse.
Therefore it is possible to conclude that for all the performed executions, this limit is never
reached.

Anyway to have a more precise upper limit, VisualVM is used to analyze the RAM memory as
shown in Table 5.2. This operation is performed on the execution number 8, which has the
highest number of process instances and constructs compared to other executions, and it shows
that the maximum amount of RAM memory used is 1547MB, which is approximately 25% less
than the maximum RAM memory available for the execution.

In conclusion it is possible to state that the data cleaner and reconciler is able to manage WfMS’s
data considering that the RAM memory is a bottleneck of the tool, because all the data must be
kept in RAM memory for being processed and that the load phase is the most time consuming
phase.

5.6.3 Correctness

The correctness of data is very important when cleaning occurs. In particular it must be ensure
that the transformed data maintain the original information and meaning [79].

Correctness is ensured by performing controls, which regard data aggregation on both source
and destination databases. Mainly, the performed controls are counting the number of records
in the Workflow Management System database and the number of new records in the Clean-
RawData database and these values must be equal to ensure that no data record is lost.

Additional control can be done by performing data aggregation on field values. Specifically
Duration field in Process and Construct tables of the CleanRawData database is optimal to
perform this check. Whereas on the WfMS database performing this computation might require
more complex computation.

Another important characteristic is that the relationship between process instances and con-
structs of these process instances is maintained. In particular this characteristic is ensured by
the referential integrity constraint enforced on the database. Indeed each process instance in the
Construct table is a foreign key with a reference to the primary key of the Process table.

This constraint has dictated the requirement to load at first the process records into their specific
table and only when the process load is completed to start construct storing. By removing this
constraint it is possible to reduce cleaning duration, but it will be required to apply an expensive
control at the end of the loading phase that might nullify the time reduction.

In addition, during data cleaner and reconciler testing by applying JUnit tests, it has been possi-
ble to verify the correctness of data transformation to clean record. The unit tests have covered

63 5.6 Evaluation of the data cleaner and reconciler

both Process, Construct and Environment tables fields and records transformation.

Finally correctness can be ensured by checking that the value of a record in the data cleaner and
reconciler database is equivalent to the record on the source database from which it is derived.
This control is performed by applying the reverse mapping (See Section 5.6.4).

5.6.4 Reverse mapping

The reverse mapping is made easier since the data reference cannot change. Indeed the refer-
ences do not change, since the trial is concluded when the data is cleaned. However, reverse
mapping requires that the user must be able to retrieve the location where he/she has stored the
original data. This is helped by providing to the user the possibility to know the trial at which
the data refers to by accessing the Experiment table. In any case the users have to organize the
source data to access them according to the trial.

For environment records the reverse mapping is enabled by specifying the line of the log file at
which the record refers to. For process records, the reverse mapping is possible by SoucePro-
cessID field. As a matter of fact this field contains the original identification values used by the
Workflow Management System database. Hence it enables to identify all records related to the
process instances on the WfMS database. For construct records, the reverse mapping is possible
by SouceConstructID field. Indeed this field contains the original identification values used by
the Workflow Management System database. Therefore it enables to identify all records related
to the constructs on the WfMS database.

In addition, thanks to the referential constraint between the Process table and the Construct
table, it is possible:

• given a process instance in the CleanRawData database, to determine the constructs of a
process instance and to get the original data of these constructs.

• given a construct in the CleanRawData database, to determine the process instance of
which the construct belong to and to get the original data of this process instance.

5.6.5 Scalability to the adding of new WfMSs

WfMSs use DBMS to store persistently their data and the data cleaner and reconciler is designed
to integrate different source databases of different Workflow Management Systems. The stages
required by the data cleaner and reconciler are extraction, transformation and loading.

The extraction phase is simplified and standardized by applying OQL technology; indeed when
a new WfMS is added, it is not required to implement this stage. It is possible to decide which
table should be extracted from the database and the type of SQL dialect to apply to interact with
the database. However according to the jOOQ framework applied, it is required to generate the
Java classes that model the source database schema of WfMS DBMS. Specifically the framework
creates Java classes related to the tables and their fields.

Also the loading phase is standardized and it does not require any type of modification when a
new Workflow Management System is added. In point of fact loading occurs only for records

64 5.6 Evaluation of the data cleaner and reconciler

that are already transformed according to the destination schema. Therefore, until the schema
of the database remains similar to the actual one, it is not required to change it.

Finally the transformation phase is the only phase that requires to be actually modified when a
new Workflow Management System is added. Indeed in general the database schema between
different WfMS is different. However Java classes that represent the database schema with its
tables and fields are very useful during the transformation phase; in effect they simplify the
mapping between source and destination fields.

Chapter 6

Performance meter and data
aggregator

The objective of the performance meter and data aggregator is to aggregate stored data into
the data cleaner and reconciler database to obtain information. Data aggregation is performed
according to metrics application based on the experiments and on the trials related to a specific
experiment.

6.1 Design performance meter and data aggregator database

To realize the performance meter and data aggregator, a common database, which will contain
aggregated data, must be used. The main requirement for this database is the possibility to have
a schema that can be easily extended by adding additional fields, which will contain new metrics
values. As a matter of fact it is fundamental that the performance meter and data aggregator
can increase the applicable metrics range avoiding additional costs as much as possible.

In addition it is important to have the possibility to add additional metrics to a record after the
record’s creation. Since non-relational databases have native schemaless structure, it is used
MongoDB (for more details see Section 6.2). The metric level of aggregation can occur at two
levels:

• process

• construct

The process aggregation level combines data related to the process instances that belong to
process models instantiated by trial experiment. Instead the construct aggregation level groups
together data related to the constructs that belong to the process instances executed by trial
experiment. Therefore two collections are used: one for each aggregation level. In particular
records at process aggregation level have as basic fields: experiment, repetition number, process
model and metrics fields. Whereas records at construct aggregation level have as basic fields:
experiment, repetition number, construct name and metrics fields.

65

66 6.2 Implementation of performance meter and data aggregator database

Listing 6.1. Process record
{

" _ id " : Ob jec t Id (value) ,
" experiment " : value ,
" r e p e t i t i o n " : value ,
" p r o c e s s D e f i n i t i o n " : value ,
" metricName " : metr icValue ,
}

Listing 6.2. Construct record
{

" _ id " : Ob jec t Id (value) ,
" experiment " : value ,
" r e p e t i t i o n " : value ,
" con s t ruc t " : value ,
" metricName " : metr icValue ,
}

6.2 Implementation of performance meter and data aggregator
database

To satisfy the requirement of the performance meter and data aggregator database (see Section
6.1), it is possible to apply an Entity Attribute Value (EAV) data model [54] or use a non-
relational database.

The Entity Attribute Value (EAV) pattern [54] is used in databases where a potentially large
number of parameters could describe something and relatively few apply to a given instance.
Thus the EAV pattern is applied to relational database to compensate the problems of having a
fixed schema in the database [54]. In particular the EAV table, consists of three fields:

• an Entity field, it describes the data item in the EAV database;

• an Attribute field, it describes attributes of entities, the attribute is a foreign key that has
general information of every thing, called object, in the EAV database;

• a Value field contains the attribute value, that depends on the type of data.

All the type of facts are in the same "value" column so EAV data have the necessity to be trans-
formed into one column per parameter structure, this operation is called pivoting. EAV pattern
is widely used for clinical data repositories [31], but in other fields is not so popular due to its
disadvantages. The main disadvantages of EAV are:

• Size of data: according to Chen et al. "the EAV representation consumed approximately
four times the storage of our conventional schema." [22]. Indeed the application of EAV
pattern implies a redundancy of the information.

• Data retrieval: relational databases are not designed to effectively organize and retrieve
data in the EVA format. As a matter of fact relational database supports attribute centric
queries, whereas EAV uses entry centric operation. Thus the query could be slower using
EAV pattern, particularly if multiple criteria exist. [22, 31, 71]

• Columnar attribute representation: EAV does not work well for a class with a potentially
high number of attributes due to its storage characteristic of information redundancy. In
effect EAV is applied in clinical database because only a small number of parameters are
recorded for each patient. [31]

67 6.2 Implementation of performance meter and data aggregator database

• Relational databases advantage lost: applying EAV pattern some advantages of the rela-
tional databases are lost, such as the data integrity.

So applying EAV pattern to a relational database limits relational database advantages and it
has significant drawback; in fact it is considered an antipattern. For these disadvantages, an
alternative to relational databases are non-relational databases. The non-relational databases
are generally called NoSQL databases, [81], and one DBMS belonging to this family is chosen
for the implementation of the performance meter and data aggregator database.

In the last years the increase number of distributed databases has pushed researchers to develop
alternative options of handling data at scale. Developers have started to use not only relational
databases, which organization is found on relational model data, [24]. For more information
about relational database used in WfMS, read Section 2.2.2. They have also developed and
used non-relational databases, which have schemaless data structures, very simple replication,
high availability, scale horizontally and alternative querying methods.

According to Vaish [94], the NoSQL databases are able to solve the horizontal scale which is a
challenge to obtain in a relational database, due to the consistency among the units of relational
database data. Thus the advantages of a NoSQL database are:

• Representation of schemaless data; so the database allows the storage of any type of data
without any definition given before. The user can modify the database structure over
time due to the schemaless data.

• Uninterrupted data availability; it prevents the failure of the system. Indeed even if a
server fails, the system is able to do not lose data and continue to operate.

• Consistency, Availability, Partition tolerance (CAP) theorem1 [18]; anyway the NoSQL
database does not have the four key characteristics that belong to the relational database:
atomicity, consistency, isolation and durability.

The NoSQL database can be categorized by the characteristic of their data store. The four
database types are:

• Key-Value Store, which stores data as pair of key and values;

• Column Oriented Store, which stores data as section of columns;

• Document Store, which stores data as documents;

• Graph Store, which stores data as nodes, edges and properties according to graphs design.

In this thesis the database management system chosen is MongoDB. Even if MongoDB’s charac-
teristics are less performant compared to other NoSQL database, especially in updating docu-
ments [9]. However it is chosen, because stored document has an internal structure, the reading
of an entire document is fast and implementing programs, using MongoDB, is easy enough due
to its similarities with relational database.

MongoDB is a NoSQL database and it is a type of Document Store database type, which means
that it stores data as binary-encoded serialization document, which are called BSON. It orga-
nizes together BSONs with similar characteristics in collection like tables in relational database,

1 CAP theorem is not required to reach the goal of this thesis; however future works might have to consider the CAP
theorem.

68 6.3 Design of the performance meter and data aggregator

but each document in the same collection can have a different structure. In particular each
database can organize documents according to collections, which are a set of documents inside
a database and, in principle, documents inside the same collection should have some similari-
ties. For these reasons the data performance meter and data aggregator uses a process collection
and a construct collection.

MongoDB provides availability, reliability and high performance without separating application
to handle any kind of operations. Indeed it can use a primary replica2, which is a server that
manages the totals of the write operations and secondary replicas, which read and apply the
write operations. MongoDB has a strong reliability because if the primary replica is discon-
nected, one of the secondary replicas can replace it through an election process and the system
does not fail. Moreover, it has a high availability due to the duplication of the data, it is very
flexible due to its schemaless characteristic and at the same time it has a full query language and
consistency. Finally, MongoDB can apply horizontal scalability. De facto MongoDB can spread
data among various servers, called shards3, overcoming the hardware limitation of the use of a
single server.

Considering the schemaless structure of data in MongoDB databases, the set of metrics fields
that each document has, depends on metrics computed over the experiment or the trial at which
the document refers to, on the type of collection which the document belongs and to the user
decision. In addition each document has a unique identification that is automatically generated
and managed by MongoDB.

6.3 Design of the performance meter and data aggregator

The performance meter and data aggregator must allow to add new metrics incrementally, so a
hierarchy relative to metrics is created, where the superclass is called Metric. Metric class is an
abstract class with an abstract method called compute, which must be implemented to aggregate
data according to the metric implemented. In addition Metric class contains all information
related to the experiment and the trial that has to be processed. In effect, the user must specify
which trial or experiment the performance meter and data aggregator has to deal with when it
is used.

The Metric class has two abstract subclasses: ProcessMetric and ConstructMetric subclasses.
The ProcessMetric class is designed to be extended for metrics that compute process level met-
rics, whereas construct level metric extends the ConstructMetric subclass. Moreover Metric,
ProcessMetric, ConstructMetric classes manage the connection and basic interactions with the
performance meter and data aggregator database. For example these basic interactions regard
the extraction of documents related to an experiment or a trial, the insertion of a new document
and the update of an already inserted one.

The concrete subclasses of ProcessMetric and ConstructMetric classes have to compute the met-
ric according to their specification and they have insertion methods exposed by their superclass
to store computed metric values. This is obtained by overriding and implementing the compute

2 The described mechanism has not been applied and it is described to show the possibilities enabled by the use of
MongoDB.

3 See Footnote 2

69 6.3 Design of the performance meter and data aggregator

Figure 6.1. Performance meter and data aggregator Java classes - part 1

70 6.3 Design of the performance meter and data aggregator

Figure 6.2. Performance meter and data aggregator Java classes - part 2

method. Moreover they have to allow computing the metric for both experiments and trials.
Therefore to add new metrics it is necessary to extend one of the two types of metric subclass:
ProcessMetric and ConstructMetric. In addition if an already implemented metric requires to
be modified to include a new value it is possible to extend directly the metric implemented and
extend its compute method.

Finally, MetricCalculator class uses the Metric class to actually instantiate concrete Metric’s
subclasses to compute their related metric. The MetricCalculator has to instantiate the concrete
Metric object and call the compute method, which is defined in the Metric class. It provides data
to concrete Metric’s subclasses, so it manages interaction functionalities with the CleanRawData
database; in particular it establishes the connection with the database and it reads interesting
records that are passed to concrete Metric’s objects for computations. In addition it determines
the list of process models and constructs belonging to process models, so that the concrete
Metric’s subclasses can have these additional information for their computations. Moreover,
MetricCalulator has an additional option that identity if a trial has process instances that are
not completed before that metrics computation is performed. This option can be used when
there are trials that test WfMS on heavy workload and uncompleted processes instances are
unwanted.

71 6.4 Implementation of the performance meter and data aggregator

6.4 Implementation of the performance meter and data aggrega-
tor

The performance meter and data aggregator is implemented in Java. Since it has to inter-
act with the CleanRawData database, as the data cleaner and reconciler, Java Object Oriented
Querying framework is used as Object-Oriented Query Language (OQL) technique. In addi-
tion the analyser has, also, to interact with the non-relational MongoDB database and for this
interaction is used the default MongoDB driver. The connection to the MongoDB database is
performed by providing a connection string and a database name. Even if different connection
and authentication mechanisms exist, connection string is chosen, because it is the only one
that remains consistent for different versions of MongoDB.

About the Metric subclasses, ProcessMetric and ConstructMetric maintain the interesting records
for metric computations and additional fields that simplify the metric computations, such as the
list of process models belonging to trial or experiment. Moreover they provide the duration-
Array method to retrieve partially processed data about durations that can be used to simplify
metric computation. In addition multiple metric computation can be performed simultaneously,
since the Metric class extends the Runnable interface.

Finally the data must be read from the data cleaner and reconciler database only once and used
for all metrics without further readings. So that multiple reading of the same data from different
metrics are avoided. As a matter of fact if different metrics have to read same data, every metric
creates a high overhead and it will cause a reduction of overall performance. For this reason
MetricCalculator is the only component that interact with the CleanRawData database.

6.4.1 Performance meter and data aggregator: implemented metrics

Finally some metrics are implemented according to the performed analysis on Chapter 4. They
extend the ProcessMetric class (see Figure 6.2) and, in particular, the following classes, which
are created in Section 4.1.2, are defined:

• ProcessCompletionTime,

• NumberCompletedProcess,

• NumberUncompletedProcess.

ProcessCompletionTime class computes the completion time metric of process models belonging
to trials and experiments. According to completion time specification, the class computes the
different metrics values, such as: average, standard deviation, minimum, maximum and median
value. The ProcessCompletionTime compute method pseudocode shown in Listing 6.3.

Listing 6.3. Pseudo-code of ProcessCompletionTime compute method
i f (i s T r i a l ()) { // t r i a l aggregat ion l e v e l

f o r each process_model {
dura t ion_ar ray = get_dura t ion (process_model)
avg = S t a t U t i l s . avg (dura t ion_ar ray)
std_dev = FastMath . s q r t (S t a t U t i l s . var iance (dura t ion_ar ray))

72 6.4 Implementation of the performance meter and data aggregator

max = S t a t U t i l s . max(dura t ion_ar ray)
min = S t a t U t i l s . min(dura t ion_ar ray)
median = S t a t U t i l s . median (dura t ion_ar ray)
i n s e r t (process_model , " avgCompletionTime " , avg)
i n s e r t (process_model , " maxCompletionTime " , max)
i n s e r t (process_model , " minCompletionTime " , min)
i n s e r t (process_model , " stdDevCompletionTime " , std_dev)
i n s e r t (process_model , " medianCompletionTime " , median)

}
} e l s e { // experiment aggregat ion l e v e l

f o r each process_model {
docs = getExperimentDocuments (experiment , process)
f o r each docs {

avg_comp_time . add(doc . get (" avgCompletionTime "))
min_comp_time . add(doc . get (" minCompletionTime "))
max_comp_time . add(doc . get (" maxCompletionTime "))
median_comp_time . add(doc . get (" medianCompletionTime "))

}
avg = S t a t U t i l s . avg (avg_comp_time)
std_dev = FastMath . s q r t (S t a t U t i l s . var iance (avg_comp_time))
max = S t a t U t i l s . max(max_comp_time)
min = S t a t U t i l s . min(min_comp_time)
median = S t a t U t i l s . median (median_comp_time)
i n s e r t (process_model , " avgCompletionTime " , avg)
i n s e r t (process_model , " maxCompletionTime " , max)
i n s e r t (process_model , " minCompletionTime " , min)
i n s e r t (process_model , " stdDevCompletionTime " , std_dev)
i n s e r t (process_model , " medianCompletionTime " , median)

}
}

NumberCompletedProcess class computes the number of process instances that have reached
process completion according to process models. The metric aggregation can be performed
at trial level or experiment level. At trial aggregation level, the class produces a single value.
Whereas in the latter case it is used an aggregation of data retrieved from the performance
meter and data aggregator database and it is possible to compute average, standard devia-
tion, minimum, maximum and median value at experiment level. The pseudo-code of compute
method in the NumberCompletedProcess class is shown in Listing 6.4.

Listing 6.4. Pseudo-code of NumberCompletedProcess compute method
i f (i s T r i a l ()) { // t r i a l aggregat ion l e v e l

f o r each process_model {
count = 0
f o r each processRecord {

i f (processRecord . get (" Duration ") != NULL){
count++

}

73 6.4 Implementation of the performance meter and data aggregator

}
i n s e r t (process_model , " numberCompletedProcess " , count)
}

} e l s e { // experiment aggregat ion l e v e l
f o r each process_model {

docs = getExperimentDocuments (experiment , process)
f o r each docs {

process_count . add(doc . get (" numberCompletedProcess "))
}
avg = S t a t U t i l s . avg (process_count)
std_dev = FastMath . s q r t (S t a t U t i l s . var iance (process_count))
max = S t a t U t i l s . max(process_count)
min = S t a t U t i l s . min(process_count)
med = S t a t U t i l s . median (process_count)
i n s e r t (process_model , " avgNumberCompletedProcess " , avg)
i n s e r t (process_model , " maxNumberCompletedProcess " , max)
i n s e r t (process_model , " minNumberCompletedProcess " , min)
i n s e r t (process_model , " medianNumberCompletedProcess " , med)
i n s e r t (process_model , " stdNumberCompletedProcess " , s td_dev)

}
}

Finally NumberUncompletedProcess class is similar to the NumberCompletedProcess class, but
it is used to compute number of process instances that have not reached process completion. In
addition to the compute method, it provides additional methods which are used by the Metric-
Calculator to identity if a trial has process instances that are not completed. The pseudo-code
of compute method in the the NumberUncompletedProcess class is shown in Listing 6.5.

Listing 6.5. Pseudo-code of NumberUncompletedProcess compute method
i f (i s T r i a l ()) { // t r i a l aggregat ion l e v e l

f o r each process_model {
count = 0
f o r each processRecord {

i f (processRecord . get (" Duration ") == NULL){
count++

}
}
i n s e r t (process_model , " numberUncompletedProcess " , count)

}
} e l s e { // experiment aggregat ion l e v e l

f o r each process_model {
docs = getExperimentDocuments (experiment , process)
f o r each docs {

process_count . add(doc . get (" numberUncompletedProcess "))
}
avg = S t a t U t i l s . avg (process_count)
s td = FastMath . s q r t (S t a t U t i l s . var iance (process_count))

74 6.5 Performance meter and data aggregator evaluation

max = S t a t U t i l s . max(process_count)
min = S t a t U t i l s . min(process_count)
med = S t a t U t i l s . median (process_count)
i n s e r t (process_model , " avgNumberUncompletedProcess " , avg)
i n s e r t (process_model , " maxNumberUncompletedProcess " , max)
i n s e r t (process_model , " minNumberUncompletedProcess " , min)
i n s e r t (process_model , " medianNumberUncompletedProcess " , med)
i n s e r t (process_model , " stdNumberUncompletedProcess " , s td)

}
}

For the computation of statistical value is used the Apache Commons Math, which is a math-
ematical library. It is used, because it is well-documented, it provides a large set of math-
ematical operators that can be used for metrics computation and its components are highly
reusable.

6.5 Performance meter and data aggregator evaluation

The objective of the performance meter and the data aggregator evaluation is to aggregate
standardized data from the CleanRawData databases. To evaluate if the tool is able to reach its
objective, the most important characteristics to consider are:

• Performance

• Scalability

The performance meter and the data aggregator must be able to compute metrics requiring the
lower time as possible. Effectively it has to process a large amount of data and it produces
an less large amount of information. Last, but not least the performance meter and the data
aggregator must be able to manage and store the information generated by the standardized
data; thus, its scalability in amount of data is evaluated.

The evaluation is performed on MacBook Pro machine with the 10.9.5 OSX version, 8GB of
DDR3 RAM and 2.4 GHz quad cores processor. The source databases are 5.5 version of MySQL
database, while the performance meter and data aggregator database is 2.6.10 version of Mon-
goDB database. Both databases are run on localhost through Docker containers and Docker is
run in a Ubuntu 14.04 LTS Virtual Machine using Virtualbox, whereas the performance meter
and data aggregator is run by Eclipse version 4.4.1 with default settings and with Java version
1.8.0_05. For more details about the used infrastructure read Section 7.2.

6.5.1 Performance

To understand performance of the performance meter and the data aggregator, the times to
compute the following operations are measured:

• computation of the ProcessCompletionTime,

• computation of the NumberCompletedProcess,

75 6.5 Performance meter and data aggregator evaluation

• computation of the NumberUncompletedProcess.

In addition for trial metric computation also the extraction of clean process data and the extrac-
tion of clean construct data are considered. For trial metrics computation, these durations are
evaluated for all the eight executions that have been performed for the data cleaner and rec-
onciler (see Table 5.1). Instead the evaluation of the performance meter and data aggregator
about the computation of the metrics at experiment level of aggregation is performed consid-
ering 10 trials of the execution 8. Only 10 trials are chosen, because 10 can be considered a
relevant number [61].

The results about the computation of the metrics at trial level of aggregation are shown on
Tables 6.1 and 6.2. Whereas the results of the computation at experiment level is shown in
Table 6.3. The unit of measurement of all the time data is millisecond.

Table 6.1. Extraction step evaluation

Number Extract (ms)
of processes constructs processes

10000 3065 491
20000 3864 1102
30000 4629 1401
50000 6870 2138
75000 9428 2796

100000 11058 3165
150000 18018 5299
200000 23383 5979

Table 6.2. Evaluation at trial level of metrics computation step

Number Time to compute (ms)
of processes CompletionTime NumCompletedProcess NumUncompletedProcess

10000 199 50 42
20000 196 50 39
30000 195 51 50
50000 221 44 30
75000 252 62 35

100000 274 68 40
150000 317 89 51
200000 403 90 69

Table 6.3. Evaluation at experiment level of metric computation step

Number Time to compute (ms)
of trial CompletionTime NumCompletedProcess NumUncompletedProcess

10 289 79 59

76 6.5 Performance meter and data aggregator evaluation

Figure 6.3. Extraction step evaluation

0 0.1 0.2 0.3 0.5 0.75 1 1.5 2

·105

0

0.5

1

1.5

2

2.5
·104

Number of process instances

Ti
m

e
(m

s)
Extract constructs
Extract processes

About metrics computation it is possible to see that the time required by the ProcessComple-
tionTime is about four times the other two metrics computation duration. It can be explained
by considering that this metric computes five values more than the other metrics (see Section
6.4.1).

At trial level, the increase of the amount of data for computing metrics can be also analyzed by
looking the Figures 6.3 and 6.4. It is possible to understand that the time duration, required
to compute the metric and to write the document to the MongoDB, increases approximately
linearly with the increase of the data to be processed. In addition metrics computation can
be performed simultaneously, since the Metric class extends the Runnable interface. Therefore
each metric can be computed on a dedicated thread. Anyway it should be noticed that some
metric could be dependent on other metrics, therefore these special cases should be appropri-
ately addressed in the MetricCalculator class by computing the independent metrics first and
the dependent metrics later.

Instead, comparing at trial aggregation level, the extraction operations with the metric com-
putation operations, approximately the first operations require more than ten time the time of
the latter operations. So it is possible to see that retrieving the clean data from the CleanRaw-
Data database is an expensive task in term of resources and time (see Table 6.1). Fortunately
data extraction is performed only one time for all metrics, so that each metric does not have
to repeat the same operation, and its duration can be split over metric computations. More-
over the one time extraction reduces overheads on the DBMS, which can better exploit the
resources available to respond to this single request. In addition connecting to the clean DBMS
is one of the most time expensive operation and for this reason it is managed centrally by the
MetricCalculator class.

77 6.5 Performance meter and data aggregator evaluation

Figure 6.4. Computation step evaluation

0 0.1 0.2 0.3 0.5 0.75 1 1.5 2

·105

0

50

100

150

200

250

300

350

400

450

Number of process instances

Ti
m

e
(m

s)

Time to compute CompletitionTime
Time to compute NumCompletedProcess

Time to compute NumUncompletedProcess

Finally the RAM memory used for the trial metric computations of the execution 8 is analyzed
by applying VisualVM. This operation is performed for the execution number 8, because it has
the highest number of process instances and constructs compared to other executions. The
result is that the maximum amount of RAM memory used is 614MB, which is less than half the
RAM required by the data cleaner and reconciler (See Section 5.6).

6.5.2 Scalability in amount of metrics

To add a new metric it is required to extend one of the two abstract Metric subclasses: Process-
Metric or ConstructMetric. According to the metric’s characteristics, the compute method must
be implemented considering that this method calculates both trial metric values and experiment
metric values. In addition this new metric must be added to the MetricCalculator in the method
for computing metrics by creating a Metric object that instantiates the new metric and calls the
compute class. This is necessary, because discovery of subclasses is not implemented and it is
left as future work.

Every new metric, added to the tool, increases the number of fields that have to be stored in
the database. So it is possible to understand that the performance meter and data aggregator
can potentially generate an infinitely large amount of data. Moreover every trial generates an
elevate number of new documents that must be stored in the performance meter and data ag-
gregator database. Anyway a non-relational database such as MongoDB ensures the possibility
to store an almost infinite amount of data. Indeed MongoDB has a mechanism called sharding4

that allows to split data among different machines, responding to the increasing demand of

4The sharding mechanism has not been applied and the following discussion is based on theoretical deductions [27].

78 6.5 Performance meter and data aggregator evaluation

data storage [27].

To apply the sharding mechanism it is required to configure MongoDB and to apply a shard key,
which determines how data are split among the different shards. The decision of the shard key
is based mainly on four characteristics:

1. shard key should have a high cardinality, so the number of values that shard key can take
is large;

2. shard key improves the writing operations if shard key is able to identify different shards
on which to write to;

3. shard key improves the querying operations if the documents selected by the query are
on the same shard;

4. every document must have the shard key; it is required to write the document on the
correct shard.

According to the first and third characteristics of shard key, it is suggested to apply a compound
shard key that uses the experiment and the repetition number field. This should not improve
write operations, but it should improve query operations.

Chapter 7

Proof of concept

7.1 Disclaimer

This Chapter of the thesis is provided as a proof of concept, with all limitations and simplifica-
tions that a proof of concept can have. Only the two tools developed are used and not the entire
BenchFlow framework. Hence this Chapter must not be considered as part of the BenchFlow
project, because only the two tools developed are applied, instead of its entire infrastructure and
components. In particular, the infrastructure does not respect the BenchFlow project standards
and requirements, in fact the proof of concept is performed on a single low-power machine,
instead of using a well controlled Cloud infrastructure [45]. See Section 7.2 for the detailed
information about the used infrastructure in the thesis.

In addition, the results obtained are derived from only one trial of the experiment due to time
constraint reasons and they are influenced by the used infrastructure, due to the single ma-
chine supporting the WfMSs’ executions together with the driver and the DBMSs of the WfMSs.
Therefore the results obtained are only intended to demonstrate that the types of discussed
analyses are feasible.

7.2 Infrastructure and System Under Test

The infrastructure is based on a single machine: one MacBook Pro machine with the 10.9.5
OSX version and 64 bit architecture. It has 8 GigaBytes of DDR3 RAM memory with frequency
of 1600 MHz and 2.4 GHz Intel Core i7 quad cores CPU processor.

The WfMSs’ DBMSs and also the CleanRawData databases uses of MySQL 5.5.43. Instead the
MongoDB 2.6.10 database is used by the performance meter and data aggregator to store data.
All the databases run on localhost through Docker containers pulled from the official Docker
repository. Since the machine uses OSX operating system, Docker is run in a Ubuntu 14.04 LTS
Virtual Machine using Virtualbox. The MySQL Docker image is pulled from the official MySQL
repository and the image is called "mysql:5.5"; whereas the MongoDB image is pulled from the
tutum repository and the image name is "tutum/mongodb:latest".

79

80 7.2 Infrastructure and System Under Test

The data cleaner and reconciler and the performance meter and data aggregator are run as Java
Application through Eclipse Integrated Development Environment (IDE). The Eclipse version
used is Luna Service Release 1 (4.4.1) and the Oracle Java version used is the 1.8.0_05.

Instead, Activiti 5.17.0 and Camunda 7.2.0 are deployed on a TomCat 7.0.59 server ran on
localhost. For the evaluations, Camunda is used to generate the data that are processed by
the data cleaner and reconciler. For both WfMSs data generation is performed by exploiting
the REST API services that they provide. Whereas JMeter is used to send request of processes
instantiations, in fact it is a load tool that is able to interact through REST requests; in particular
after that a request is sent, it waits a reply before that a new request can be issued. The version
used is the 2.13 and it is used in its graphical interface mode. After that the data are generated,
they are dumped manually from the source database by using the mysqldump command, since
the collector component is not yet implemented.

7.2.1 Camunda

Camunda is an open source Business Process Management System and thus a Workflow Man-
agement System [2]. According to Camunda terminology, the main components are:

• Process Engine, which is the Workflow Engine in the standard terminology;

• Tasklist, which is the Worklist Handler in the standard terminology;

• Camunda Modeler, which is the Workflow Modeler in the standard terminology;

• Custom Applications, which are the invoked applications in the standard terminology and
they interact with the Process Engine by REST API or Java interfaces;

• Database and file repository.

In particular, it has to be noticed that the key component of Camunda is the Process Engine
that allows Camunda to support BPMN 2.0 constructs. It is written in Java and it executes
process models that respect BPMN 2.0 notation and that are written in XML format. Additionally
process models must be transformed into graph structures to be executed by the Process Engine.
Specifically Process Engine parses BPMN 2.0 files and each construct is transformed into an
object that implements constructs behaviours.

The Process Engine is composed by [2]:

• BPMN 2.0 Core Engine, that is the main part of the Process Engine. It is used to parse pro-
cess models written in XML format, produces the graph structure and constructs objects,
and finally it executes the graph structure that translates the process models instantiated.

• Job Executor, it manages asynchronous executions of constructs.

• Public API, since Camunda is developed in Java, it provides a service oriented API in
Java for interactions and, in addition, it provides REST API to connect to its services.
Therefore, for interactions it has Java interfaces and REST APIs.

• Persistence Layer, it stores data received from the Process Engine on the database, which
is a relational database. In particular, Process Engine maintains the state or process in-

81 7.3 Test design

stances in the database and it uses the Persistence Layer to access stored data in the
database.

7.2.2 Activiti

Activiti is Java based and it runs BPMN 2.0 process models according to the Process Virtual
Machine design pattern, which is used to create executable state machines; so that process
models and constructs are translated into graphs and objects [1].

Activiti WfE is composed by a set of services that allow the processes execution and the most
important services are:

• Repository service, it manages the process models and their deployment, which consists
in inspecting, parsing and storing the process models for later executions.

• Runtime service, it regards starting and execution of process instances from process mod-
els previously deployed and it is also responsible of the data required for the process
instances execution.

• Task service, it deals with constructs that require a human user’s interaction, so it interacts
with the Worklist Handler.

• History service, it retrieves data from the Workflow Engine, it stores them on the database
and it allows the Activiti WfE to access stored data such as process models. The database
is also used as repository, which means that it stores process models in addition to static
information, runtime data and other data.

Other Activiti WfE services are: identity service, which manages groups and users; form service,
which is an optional functionality that manages forms; and management service that is used
for managing the metadata.

7.3 Test design

7.3.1 Performance test and workload

The performances of the WfMSs are the focus of the BenchFlow framework, for this reason the
proof of concept applies performance tests and in particular load tests are used, because they
simulate real workload applications to the WfMS (see Section 2.3). The workload defines inter-
actions with the WfMS and, according to Menasce and Almeida [68] definition, the workload
used for testing can be classified as the kernel one (see Section 2.3). As a matter of fact, it is
characterized by requests of process models executions, where process models have similarities
with real process models. In fact, the process models used are based on real processes and
they have the main BPMN elements and structures of real process models. Specifically pro-
cesses models are extracted from a collection provided by IBM regarding insurance sector (see
Section 7.3.1.1). Moreover, since the process model used are real business process, they are
anonymized.

82 7.3 Test design

7.3.1.1 Process models derivation

The workload is defined as all the inputs that are sent to the system under test [39] and, in
the WfMS context, it is composed by a set of process models execution requests that are sent to
WfMS.

In this thesis, the process models are derived from a collection of real insurance processes
called "Insurance Process and Service Models" provided by IBM. The collection has 400 process
models and, according to Ivanchikj work [53], they are classified in clusters based on their
static characteristics [28, 53]: in particular, those 400 process models are divided in six clusters.
Executing all process models of the collection is highly expensive and time consuming, because
they have to be made executable on the selected Workflow Management Systems. For this
reason only four process models from "Insurance Process and Service Models" collection are
selected to identify a set of process models for the kernel workload.

Two of the selected process models are the ones Ivanchikj identifies as the representative process
models of the cluster 3 and 4 of the "Insurance Process and Service Models" collection. The
representative process model of the cluster 3 has distance of 1.049 from the derived model of
the cluster itself; whereas the representative process model of the cluster 4 has a 1.273 distance
from the derived model of the cluster 4 (see [53] for more details). The distance of a process
model to the derived model of the cluster expresses the similarity that the first has with the
later and a distance closer to 1 means higher similarity. The structural characteristics of the
representative process model of the cluster 3 shows that it can follow a single path without
loops; whereas the representative process model of the cluster 4 has a complex structure that
allows to loop. In addition to these two process models, arbitrarily other two process models are
selected that represent similarities with the discussed process models in term of their structural
characteristics.

Table 7.1. Process models characteristics

Process model Number of Number of Number of Number of
name Activities Exclusive Gateways Parallel Gateways End events

processC3P1 10 4 0 1
processC3P2 8 3 0 3
processC4P1 14 3 2 2
processC4P2 14 5 2 2

In the Table 7.1 the process models selected are described according to the static characteris-
tics and, in particular, the number of: activities, start and end events, exclusive and parallel
gateways. Instead the process models images are shown in the Figures: 7.1, 7.2, 7.3 and 7.4;
where Figures 7.2 and 7.4 are the representative process models of cluster 3 and 4 respectively
and the Figures 7.1 and 7.3 are the process models of cluster 3 and 4 respectively that have
similar structural characteristics to the representative process models.

83 7.3 Test design

Figure 7.1. Process model 1 of cluster 3

84 7.3 Test design

Figure 7.2. Process model 2 of cluster 3

85 7.3 Test design

Figure 7.3. Process model 1 of cluster 4

86 7.3 Test design

Figure 7.4. Process model 2 of cluster 4

87 7.3 Test design

7.3.1.2 Process models transformation

The following transformations are applied to make the process models easily executable on
WfMSs without the human interaction:

• Activities are transformed into script tasks which wait 1 second before continuing the ex-
ecution. Since the execution log of the process models is not available and the real task
duration is not known, 1 second is arbitrarily choose as the task duration. This simplifi-
cation is based on project management studies and in particular on Program Evaluation
and Review Technique (PERT) [26], which considers tasks duration as probabilistic and
modeled by a Beta distribution or Gaussian distribution. The distribution parameters are
determined according to summary descriptors of the distribution, such as mean expected
time and time variance; these summary descriptors are computed based on three main
values:

– minimum time A: it is the minimum time required to complete the task and it is an
optimistic time estimation based on favorable circumstances. It is impossible that
tasks are completed before the minimum time.

– most likely time M : it is the normal time required to complete the task, which is
completed frequently in this time period. In statistical term it is the median time of
probability distribution.

– pessimistic time B: it is the time required to complete the task in the worst case
scenario and it considers that all possible delays and inconveniences occur.

In practice task duration d is enclosed between minimum times A and pessimistic time B,
so A≤ d ≤ B.

• Gateway execution requires to determine which flows should be executed; in particular
this problem occurs for exclusive gateways that are almost ubiquitous in the process col-
lection. Since process models in the collection express execution probabilities of flows
connected to exclusive gateways, the execution flow is determined at run time according
to flow probabilities. Specifically each process has tasks which generate probabilities and
the gateways compare the generated probabilities with the flow probabilities and they
decide the execution flow accordingly.

According to these transformations, process models can be converted and made easily exe-
cutable on different WfMSs.

7.3.2 Workload intensity

In this analysis, according to Molyneaux definition [70, pg. 55], workload intensity is based
on continuous injection, because determining request arrival rate is difficult without having
request logs and because request arrival rate is better applied to really specific cases. For more
information read Section 2.3. Moreover once that workload intensity has been determined,
using benchmark to compare arrival rates could be difficult for companies who want to use the
benchmark to compare WfMSs.

88 7.3 Test design

Instead the enterprises have a clear idea of how many users will make requests to the system;
i.e: it is possible to approximate how many concurrent users make requests to WfMS depending
on the company size. In particular businesses can be divided into: small, medium and big
company. Enterprise size is straightforward by definition: small enterprises have maximum
50 employees, medium enterprises have maximum 250 employees and big enterprises have
more than 250 employees. Therefore, it has been decided to consider concurrent users as an
important parameter to determine the workload intensity. In particular it has been decided to
consider that all possible employees of an enterprise interact with WfMS, so there are tests that
consider 50 users for small enterprise and 250 users for medium enterprise. Since it is undefined
how many employees big companies might have at maximum, it is used the approximation of
400 and 1000 users for big companies, where medium-large enterprises have 400 users and
large enterprises have 1000 users.

Moreover, the used continuous injection is stepwise, because it is more likely to happen in
real cases. Indeed, concurrent user will start to interact with the system at different times.
Finally, also the stopping of requests decreases according to steps, considering that users leave
progressively. Especially, users interacting with the WfMS increase according to a ramp up
period that is equivalent to the number of users that the test considers. This means that tests
use stepwise continuous injection of users and every second, one new user is injected into the
system, until the required number of users is reached. The same happens in the ramp down
phase, except that every second a single user is removed from the test.

In addition, the continuous injection requires the definition of a plateau and in particular, in-
stead of apply an arbitrary plateau, it has been determined by a test pre-run which did not
applied any limit to the number of requests sent to the system. So, through the test pre-run,
it has been determined the number of requests to send to the system, which is represented in
Table 7.2. Activiti has been used to determine the plateau and it has been chosen at random.
For example in the test pre-run the plateau of test with 50 users for cluster 3 is determined
by applying the test without specifying the plateau; after that the test pre-run is launched, it
is waited until the plateau is stable for approximately 10 minutes, which is arbitrarily chosen
to have a stable plateau, and then the test pre-run is stopped and the stable plateau value is
used for the tests with 50 users for cluster 3. The same procedure is applied for all the tests of
both clusters. Furthermore it should be considered that the plateau might not be reached due
to the limitations of the proof of concept (see Sections 7.1 and 7.2). A matter of fact, in general
workload generator and the system under study should be located on different machines, so
that there are no interference between the workload generator and the system studied, because
the system studied might drain resources from workload generator and it might alter how many
requests the system has received and viceversa.

Table 7.2. Tests summary

Number of Ramp up Plateau (requests/min) Load duration (min)
test users duration (s) Cluster 3 Cluster 4 Cluster 3 Cluster 4

50 50 450 50 90 300
250 250 800 160 90 90
400 400 1100 350 90 90

1000 1000 1650 1250 90 90

89 7.4 Evaluated Metrics

7.3.3 Test characteristics

In general, each test maintains its workload for one hour and a half, which is a reasonable time
between time required to execute all tests and time required to have an enough large number
of process instances. Only the test with 50 users for cluster 4 is run for five hours, instead of
the usual one hour and a half of other tests, to have a large number of process instances (see
Table 7.2); indeed, if the test runs as the others, the number of process instances started for
each process model of cluster 4 is about 2000.

Each test for 50, 250, 400 and 1000 users is executed independently, so that only one test is
run at a time, and also cluster 3 and 4 are treated independently. Therefore each test exe-
cutes both process models together of one single cluster at a time and only one test is executed
every time. In addition the load distribution between the requests of instantiation is equally
divided between the two process models of a cluster; which means that the number of instan-
tiation requests of one process model belonging to a cluster should be equal to the number of
instantiation requests of the other process model of the same cluster.

Finally, each test is executed only once, which means that the proof of concept is based on one
single trial. This is reasonable in a proof of concept, however an accurate analysis of WfMSs
performance should consist on more than one trial according to statistical sample size [61],
because the number of trials increases the reliability of the obtained results.

7.4 Evaluated Metrics

The metrics used to determine the best WfMS are:

• completion time of processes;

• number of completed processes;

• request error percentage.

As Section 6.4.1 describes, completion time is the time required by the WfMS to completely
execute process instances. In particular, in the analysis discussion for the completion time of
processes the considered values are averages. Instead, the number of completed processes,
as the name express, is the number of process instances that are executed and that reach the
completion state.

Moreover, request error percentage, computed by the driver, is considered because it indicates
how many process execution requests are rejected by the Workflow Management System. Even
if it is not a performance metric, it is useful, because WfMSs might loss requests on purpose or
not; in effect by rejecting requests WfMSs might increase their performance because they have
a lighter load of work. In addition, to interpret the results obtained by the previous metrics
analysis average request response time metric is considered.

Therefore, the metrics can be distinguished between those computed by JMeter loader and by
the performance meter and data aggregator; in particular completion time of processes and
number of completed processes are computed by applying the performance meter and data

90 7.5 Test results discussion and analysis

aggregator, whereas request error percentage and average request response time is obtained by
JMeter.

7.5 Test results discussion and analysis

According to the test results and analysis, as Table 7.3 summarises, the best performer WfMS is
not always the same, because the performance depends on the cluster characteristics and the
number of users that interact with the WfMS.

Table 7.3. Tests results summary

Test with
Average Completion Number Completed Best

Time (ms) Processes (#) performed
Camunda Activiti Camunda Activiti WfMS

C
lu

st
er

3 50 users ∼ ∼ Ø Activiti
250 users Ø ∼ ∼ Camunda
400 users ∼ ∼ Ø Activiti

1000 users ∼ ∼ Ø Activiti

C
lu

st
er

4 50 users Ø ∼ ∼ Camunda
250 users Ø ∼ ∼ Camunda
400 users ∼ ∼ Ø Activiti

1000 users ∼ ∼ Ø Activiti
∼: value difference is not relevant; Ø: value difference is relevant.

As a matter of fact, according to the tests results and analysis discussion of cluster 3, it is
possible to state that Activiti has better performances than Camunda executing process models
if the number of users interacting with WfMS are 50, 400 and 1000 users; whereas Camunda
should be preferred for medium enterprises.

Indeed in the 50 users test the average completion time values of Camunda and Activiti are
very close, whereas Activiti outstands Camunda in the number of completed processes due to
the higher response time of Camunda. The 250 users test is the only case of the tests of cluster
3 where the average completion time difference between the two WfMSs is relevant in favour
of Camunda, even if it is only 0.41% and 0.48% for process 1 and 2 respectively. In this test
the number of completed processes are very close. The 400 and 1000 users tests have the same
characteristic of the 50 users test: the average completion time values of the two WfMSs are
very close, whereas Activiti outstands Camunda in the number of completed processes due to
the higher request error percentage of Camunda.

Instead for cluster 4, according to the tests results and analysis discussion, it is possible to
state that Camunda has better performances than Activiti executing cluster 4 process models if
the number of users interacting with WfMS are 50 and 250 users; whereas Activiti should be
preferred if the number of users interacting with WfMS are 400 and 1000 users.

As a matter of fact, in the 50 and 250 users tests Camunda on average executes processes in-
stances faster than Activiti for relevant values, whereas the number of completed processes are

91 7.5 Test results discussion and analysis

close. Instead, in 400 and 1000 users tests happen the contrary, the two WfMSs average com-
pletion times are close whereas Activiti performs better for the number of completed processes.
For the 400 users tests the reason is due to the higher request error percentage of Camunda.
Whereas for the 1000 users tests it is due to the fact that Activiti has a low response time, because
request of execution are rejected before their instantiation or anyway before that Camunda re-
jects them. For 1000 users test this explains also why the number of completed processes delta
between the WfMSs is much higher than the request error percentage delta.

For the request errors they happen more often when the number of users interacting with the
WfMS is higher because a greater number of users generate a higher number of requests and
the WfE could not be able to manage them all, especially using a single machine (see Section
7.2).

As a matter of fact for the 50 and 250 users tests of cluster 3 the request error percentage is zero
and for the same tests for the cluster 4 only Camunda has request errors, but they are 0.05% and
0.04% respectively for the two tests and those request errors are caused by the loop structure
of cluster 4 process models. For both clusters in the 400 and 1000 users tests, the request error
percentage is relevant. In particular the main Activiti errors consist of socket exceptions and
internal servers errors; the first type of error is caused by connection reset by Activiti or by
socket closure without communication of its closure to JMeter; whereas the latter type of error
is caused by connection establishment between the WfE and the WfMS database. Instead the
main Camunda errors consist of socket exceptions, connection exception and internal server
errors. Socket exceptions are caused by connection reset and broken pipe, where the first one
indicates that the WfE opens the connection, but it communicates that the connection will not be
listened, whereas in the second error type the connection is closed while it is used; connection
exception is caused by timeout triggered on JMeter. Finally, internal server errors occur only in
cluster 4 and they are caused by the high number of loop iterations which uses the whole RAM
memory available for the process instances execution and causes a stack overflow.

7.5.1 Cluster 3

Cluster 3 is composed by two process models, which can follow a single execution path without
loops. Moreover the process models belonging to cluster 3 are shown on Figures 7.1, 7.2 and
their characteristics are described in the Table 7.1. For cluster 3 the test results are shown on
tables 7.4, 7.5 and 7.6 and discussed in details for tests with 50, 250, 400 and 1000 users.

7.5.1.1 Test with 50 users

As the Table 7.4 shows, the completion time average values of Activiti and Camunda are very
close for every process of this cluster. In particular process 1 and process 2 have a delta of only
0.10% and 0.08%; where the average completion time values for both process models is lower
for Activiti.

Number of completed processes metric values show a predominance of Activiti. See Table 7.5.
Activiti has executed about 6% process instances more than Camunda for each process model of
the cluster (6.48% and 6.51%). This result is motivated by Activiti ability to transmit responses

92 7.5 Test results discussion and analysis

Table 7.4. Cluster 3 metrics: completion time

Cluster 3

Test with
Process Average completion time (ms)
model Activiti (A) Camunda (C) ∆(A− C) ∆(A− C) %

50 users
processC3P1 7230.86 7237.80 -6.94 -0.10%
processC3P2 5603.90 5608.64 -4.74 -0.08%

250 users
processC3P1 7262.37 7232.41 29.95 0.41%
processC3P2 5630.96 5603.86 27.10 0.48%

400 users
processC3P1 7233.24 7231.95 1.29 0.02%
processC3P2 5601.31 5603.12 -1.81 -0.03%

1000 users
processC3P1 7235.27 7234.74 0.53 0.01%
processC3P2 5604.14 5604.88 -0.74 -0.01%

Table 7.5. Cluster 3 metrics: number completed processes

Cluster 3

Test with
Process Number completed processes (#)
model Activiti (A) Camunda (C) ∆(A− C) ∆(A− C) %

50 users
processC3P1 20115 18811 1304 6.48%
processC3P2 20087 18779 1308 6.51%

250 users
processC3P1 38178 37075 1103 2.89%
processC3P2 38058 36923 1135 2.98%

400 users
processC3P1 54692 46268 8424 15.40%
processC3P2 54423 47324 7099 13.04%

1000 users
processC3P1 73969 42895 31074 42.01%
processC3P2 73523 43810 29713 40.41%

Table 7.6. Cluster 3 metrics: request error percentage and response time

Cluster 3

Test with
Process % Request error Average response time (ms)
model Activiti Camunda Activiti Camunda

50 users
processC3P1 0.00% 0.00% 7590 7810
processC3P2 0.00% 0.00% 5933 6162

250 users
processC3P1 0.00% 0.00% 7471 7510
processC3P2 0.00% 0.00% 5826 5861

400 users
processC3P1 1.30% 14.20% 7894 17429
processC3P2 1.32% 11.88% 6274 16394

1000 users
processC3P1 25.30% 57.64% 7201 14456
processC3P2 25.39% 56.51% 5994 13718

93 7.5 Test results discussion and analysis

in lower time than Camunda, indeed Activiti response time is lower than Camunda response
time.

Finally the request error percentage is zero for both Workflow Engines, so it can be neglected
in the decision of which is the best WfMS.

In conclusion, according to only completion time values is not possible to prefer one or the
other Workflow Management System because the delta are too narrow. However, Activiti has
managed the execution of more process instances than Camunda for all process models of clus-
ter 3. Therefore, it is possible to state that Activiti should be used by small enterprises that have
process models and workload similar to those expressed in this test.

7.5.1.2 Test with 250 users

The completion time values show that all processes of cluster 3 are executed faster on Ca-
munda, see Table 7.4. Camunda executes process 1 and 2 faster than Activiti by 0.41% and
0.48%.

Whereas the number of completed processes values of Camunda are lower than Activiti by
2.89% and by 2.98% (see Table 7.5), indeed the response time is slightly better for Activ-
iti.

Finally the request error percentage is zero for both Workflow Management Systems, so it can
be neglected in the decision of which is the best WfMS.

Considering that the delta between the number of completed processes values is close and
that the completion time metric values are more relevant, it is possible to state that Camunda
should be used by medium enterprises that have process models and workload similar to those
expressed in this test.

7.5.1.3 Test with 400 users

As Table 7.4 displays, the completion time values of the WfMSs are very close for both the
process models. Indeed, the difference for process model 1 is 0.02%, where Camunda is faster;
and the difference for process model 2 is 0.03%, where Activiti is faster.

Instead, for the number of completed processes values Activiti outstands Camunda. For process
1 and 2, it executes more process instances by 15.40% and 13.04% than Camunda due to the
better response time and lower request errors of Activiti.

As a matter of fact also the request error percentage is lower in Activiti, it is 1.30% and 1.32%
in Activiti and 14.20% and 11.88% in Camunda. Activiti errors are caused by Internal server
errors due to high number of connections with the database; this is a limitation of database
manager used by default by Activiti. Instead, Camunda errors are caused by:

• Connection closure after timeout raised and it occurs only 0.63% of times on the total
amount of errors;

• Socket exception

– due to closure of the connection by the WfMS during data communication (26.48%);

94 7.5 Test results discussion and analysis

– due to Connection reset by Camunda; in practice the Workflow Engine opens the
connection, but it communicates that the connection will not be listened. It is the
main error with almost 73.89% occurrences.

In conclusion, given that the completion time value are not distinguishing, there is to consider
the number of completed processes values to determinate which is the better WfMS for cluster
3, 400 user test. Thus, considering that Activiti has managed the execution of more process
instances than Camunda and it has lower request errors, it is the best Workflow Management
System for process models and workload similar to those expressed in this test when there are
400 users that interact with the WfMS.

7.5.1.4 Test with 1000 users

For this test the completion time metric cannot determinate which is the best WfMS because
for process 1 is faster Camunda by 0.01% and for process 2 is faster Activiti by 0.01%.

Instead, considering the number of completed processes metric, Activiti is able to execute more
process instances than Camunda; it executes 42.01% and 40.41% process instances more than
Camunda respectively for process models 1 and 2. This occurs because the response time and
request error percentage of Camunda is higher than response time and request error percentage
of Activiti.

The request error percentages for the test with 1000 users are different from zero for both
WfMSs. Its values for Activiti are 25.30% for process 1 and 25.39% for process 2. The values
for Camunda are 57.64% and 56.51% respectively for process 1 and process 2, thus Activiti
outstands Camunda.

Camunda errors are of two types:

• Connection exception, in particular it is raised by timeout on JMeter and it causes more
than 4% of the total errors;

• Socket exception:

– due to Broken pipe; with approximately 2.75% occurrences;

– due to connection closed by Camunda after that the WfMS has send a communica-
tion of connection closure. It is the main error with about 93% occurrences.

Instead Activiti errors types are:

• Socket exception raised by socket closed by Activiti providing a communication to JMeter
has 10.55% occurrences, whereas Socket exception raised by socket closed by the WfMS
without providing a communication to JMeter occurs 1% of the total errors;

• Internal server errors with about the 88.50% occurrences; they are caused by the high
number of connections with the database.

Since the request error percentage and the number of completed processes metrics show that
Activiti is better than Camunda to execute process models and the completion time values are
not distinguishing, it is possible to conclude that Activiti is the best Workflow Management

95 7.5 Test results discussion and analysis

System for large enterprises that have processes and workload similar to those expressed in
this test.

7.5.1.5 Cluster 3 conclusions

Considering the tests results and analysis of cluster 3, it is possible to state that Activiti has bet-
ter performances than Camunda executing cluster 3 process models if enterprises considered
are small, medium-large or large; instead Camunda should be preferred for medium enter-
prises.

7.5.2 Cluster 4

Cluster 4 is composed by two process models, which have a complex structure that includes
loops. Moreover the process models belonging to cluster 4 are shown on Figures 7.3, 7.4 and
their characteristics are described in the Table 7.1. For cluster 4 the test results are shown on Ta-
bles 7.7, 7.8 and 7.9 and discussed in details for tests with 50, 250, 400 and 1000 users.

Table 7.7. Cluster 4 metrics: completion time

Cluster 4
Test with Process Average completion time (ms)

model Activiti (A) Camunda (C) ∆(A− C) ∆(A− C) %

50 users
processC4P1 31931.27 30869.69 1061.59 3.32%
processC4P2 9694.89 9567.30 127.59 1.32%

250 users
processC4P1 31876.77 31407.91 468.86 1.47%
processC4P2 9707.23 9648.15 59.08 0.61%

400 users
processC4P1 31129.78 31023.96 105.82 0.34%
processC4P2 9687.33 9613.55 73.78 0.76%

1000 users
processC4P1 31370.19 31205.94 164.25 0.52%
processC4P2 9714.87 9643.47 71.40 0.73%

Table 7.8. Cluster 4 metrics: number completed processes

Cluster 4
Test with Process Number completed processes (#)

model Activiti (A) Camunda (C) ∆(A− C) ∆(A− C) %

50 users
processC4P1 6327 6295 32 0.51%
processC4P2 6289 6267 22 0.35%

250 users
processC4P1 7803 7482 321 4.11%
processC4P2 7619 7283 336 4.41%

400 users
processC4P1 17334 14806 2528 14.58%
processC4P2 17076 14998 2078 12.17%

1000 users
processC4P1 24580 17763 6817 27.73%
processC4P2 27798 17493 10305 37.07%

96 7.5 Test results discussion and analysis

Table 7.9. Cluster 4 metrics: request error percentage and response time

Cluster 4
Test with Process % Request error Average response time (ms)

model Activiti Camunda Activiti Camunda

50 users
processC4P1 0.00% 0.05% 32446 32808
processC4P2 0.00% 0.00% 10060 11287

250 users
processC4P1 0.00% 0.04% 32262 32333
processC4P2 0.00% 0.00% 9956 10306

400 users
processC4P1 0.23% 7.56% 31544 65921
processC4P2 0.18% 4.84% 10000 47175

1000 users
processC4P1 72.03% 71.16% 9389 49173
processC4P2 68.16% 71.32% 3532 42983

7.5.2.1 Test with 50 users

The test with 50 users for cluster 4 is run for 5 hours, instead of the usual one hour and a half
of the other tests, because extra time is required to have a large number of process instances.
Indeed, if the test runs as the others, the number of process instances started for each process
model of cluster 4 is about 2000.

Evaluating the completion time values of the test with 50 users of Activiti and Camunda, it
is possible to state that Camunda executes process instances faster than Activiti. In particular
Camunda completes 3.32% faster than Activiti the execution of process instances of process
model 1 and 1.32% faster than Activiti the execution of process instances of process model 2.
Thus Camunda performs better than Activiti considering the completion time metric.

The number of completed processes metric, in this test, has values very similar for both Activiti
and Camunda. Indeed, the difference of process instances executed is lower than 1% for all
process models; in particular, Activiti executes more process instances than Camunda, but the
delta has little relevance (0.51% and 0.35%).

Furthermore the request error percentage is zero for Activiti, while Camunda has a 0.05% value
for this metric on process model 1. This means that three requests are not satisfied over the
total number of requests. Since the value is not significant it can be neglected in the decision
of which is the best WfMS.

Anyway, by analyzing the stack trace of these errors, it is possible to determine that they derive
from internal server errors. Therefore, it is possible that process instances started might have
been suspended or cancelled; thus a further analysis is required. This analysis shows that there
are process instances, which have not been completed; specifically they have been suspended
during the execution. An additional information obtained by the stack trace is that the internal
server errors are caused by stack overflow. This is a common error that occurs during recursions
and both process models of cluster 4 have loops. In fact these errors are caused by the two loops
that occur in the process model 1; indeed during the test, the suspended process instances of
process model 1 take the loops more than 18 times. This problem might be partially overcome
by adding additional RAM memory that Camunda can use for the process execution, otherwise
it is required to modify the process model structure. In particular additional RAM memory

97 7.5 Test results discussion and analysis

for Camunda execution is a partial solution because every time that a loop is iterated, the RAM
memory used for the execution increases due to the execution of new constructs that are written
in memory; when the available RAM memory is finished, stack overflow occurs.

In conclusion Camunda performs better than Activiti and it should be chosen as Workflow Man-
agement System from small enterprises that have process models and workload similar to those
expressed in this test. However, enterprises must be aware of the limitation in the number of
loops that it can enforce. Therefore, they should design process models according to it, or apply
one of the solution proposed. Alternatively, they could choose Activiti, but they have to consider
that they will have lower performance than by using Camunda.

7.5.2.2 Test with 250 users

The test with 250 users shows similarities with the test with 50 users. Indeed the average
completion time values of the test with 250 users display that Camunda executes process in-
stances faster than Activiti (see Table 7.7). The highest completion time delta corresponds
to the process model 1 executions, where Camunda completes process instances 1.47% faster
than Activiti, whereas the delta completion time of process instances of process model 2 is
0.61%.

In this test, the number of completed processes metric shows similar values, where Activiti
executes 4.11% and 4.41% more process instances than Camunda. This difference is due to the
fact that Activiti is able to have lower response time, thus in the number of completed processes
metric shows a preference for Activiti.

Furthermore the request error percentage is zero for Actitivi. Instead Camunda request error
percentage is 0.04% in process 1. Anyway the value is not significant and it can be neglected
in the decision of which is the best WfMS as the number of completed processes metric.

As for the previous test, all Camunda errors are derived by internal server errors. By analysing
stack trace of these errors, it is possible to determine that errors occur during the execution of
tasks and they are derived from process instances that have not been completed. As in the test
with 50 users the error is caused by loops executed more than 18 times.

In conclusion medium enterprises, which have the majority of process models and workload
similar to those expressed in this test, should prefer Camunda if they know that the loops
of their process models do not executed indefinitely. They can apply a partial solution to the
problem such as increase the RAM memory available to the JVM, to reach the maximum number
of loops required. Alternatively they could choose Activiti, considering that they will have
lower performance than by using Camunda, according to the average completion time metric
values.

7.5.2.3 Test with 400 users

As Table 7.7 exhibits, the average completion time values of Camunda are slightly better than
Activiti; indeed it is 0.34% and 0.76% faster than Activiti in executing process instance of
process 1 and 2 respectively. Anyway process average completion time shows that its values

98 7.5 Test results discussion and analysis

difference between Activiti and Camunda is decreasing comparing it with 50 and 250 users
tests.

The number of completed processes metric states the predominance of Activiti over Camunda
for more than 10%. In fact, Activiti executes 14.58% more of process instance for process 1 and
12.17% more process instances for process 2 than Camunda. This occurs because the response
time of Camunda is higher than the response time of Activiti.

Also for the request error percentage Activiti is better than Camunda, its errors are 0.23%
and 0.18%, whereas for Camunda they are 7.56% and 4.84%. Activiti errors are all caused
by Activiti limitation in managing connections with database by its default manager. Instead
Camunda errors are:

• socket exception, which is caused by connection reset for almost 34% of total errors and
by broken pipe for more than 58% of total errors;

• connection exception, which is raised by timeout on JMeter and it occurs 7.60%;

• internal servers error due to stack overflow with about 0.30% occurrences.

Camunda and Activiti performances for cluster 4, 400 users test are very close. Camunda is
better according to completion time metrics, whereas Activity has higher number of completed
processes values and better request error percentage. Thus, according to the high deltas of
the number of completed processes values, the considered best WfMS is Activiti for medium-
large enterprises, which have process models and workload similar to those expressed in this
test.

7.5.2.4 Test with 1000 users

For cluster 4 all the tests with different number of users show a similar outline about completion
time metric, where completion time metric values are lower for Camunda, so Camunda is faster
than Activiti for all processes of cluster 4. Anyway only for 50 and 250 users tests the completion
time difference between the two WfMSs is relevant.

In particular, the test with 1000 users shows that Camunda is only slightly better than Activiti,
which requires 0.52% and 0.73% more time to execute and to complete process instances of
the process models.

In addition, Activiti executes 27.73% more process instances of process models 1 than Camunda
and, for the process model 2, Activiti executes 37.07% more process instances than Camunda.
Thus, it is possible to determine that according to number of completed processes values Ac-
tiviti is able to manage more processes instances. The number of completed processes values
of the two WfMSs are mainly influenced by the request errors and the response time of the
WfMSs. As a matter of fact the response time value of Activiti is much lower than the value
of Camunda. This might be explained by the fact that Camunda requests reach timeout, as
the following request error analysis shows. Whereas Activiti has a low response time, because
requests of execution are rejected before their instantiation or anyway before that Camunda
rejects them. This explains the reason why the delta between the WfMSs of the number of
completed processes metric is much higher than the request error percentage delta.

99 7.5 Test results discussion and analysis

Request error percentage is high for both Activiti and Camunda. Camunda has about 71% of
request error percentage for all process models of cluster 4, whereas Activiti requests of execu-
tion of process models 1 and 2 are affected by 72.03% and 68.16% of request error percentage
respectively. Therefore Activiti and Camunda have the same level of errors.

Camunda main errors consist of:

• Socket exception due to connection closure by Camunda after a communication of con-
nection closure consisting for the 40.72% of total errors. In addition, also socket exception
due to broken pipe error is present with 0.71% occurrences.

• Connection exception; in particular it is raised by timeout on JMeter and it occurs 58.56%
of total errors.

Thus Camunda is unable to manage the connection and after that the connection is estab-
lished, Camunda closes it before that communication is finished. Another problem is that when
Camunda does not serve a request, it does not send keep alive messages to JMeter, so the
connection must be aborted by JMeter after that JMeter timeout timer triggers. In particular,
the Workflow Engine is using almost all the RAM memory available, so probably Camunda is
not able to manage additional connections and it needs to close or reject them. In addition,
there are few internal server errors that are caused by process instances that exceeded the stack
available to Camunda. As previously discussed, it occurs when loops of process instances are
executed multiple times.

Activiti errors are:

• Socket exception raised by socket closed;

• Internal server errors; they provide additional information than other errors, because they
provide a stack trace of error causes.

The majority of errors are internal server errors (99.98%) and only 26 errors correspond to
Socket exception over more than one hundred thousand total errors. A short analysis of the
socket exception shows that its errors appear only for the final requests, so they might be caused
by the stopping of JMeter load. Therefore it can be considered as a negligible type of error and
it will not occur during application production. Instead, the internal server errors are caused
by the high number of connections with the database, which Activiti requires to open. This
means that for the process models of this test, Activiti requires to open more connections than
it requires with process models of other tests.

However this requirement to open a high number of connection hits with the limitation im-
posed by the Workflow Engine by default. In particular by default Activiti exploits MyBatis [5]
framework to interact with the database and to manage the connection pooling. MyBatis is an
Object-relation Mapping framework that maps Java methods to SQL statements. This frame-
work limits Activiti and according to Activiti team, users do not care about the default con-
nection pool manager, because they prefer to change the connection pool manager with their
own preferred one when they use the WfMS in production [1]. Finally, since internal server
error might be caused also after process instantiation, a further analysis is performed to ensure
that connection errors with the database do no occurs after that process execution is started.
According to this last analysis there is no process instance suspended or cancelled.

In conclusion, even if Camunda has lower completion time values than Activiti, Activiti is able

100 7.6 Limitations and conclusion

to better manage process instances; indeed Activiti has high number of completed processes
metric values (24580 and 27798). Therefore, if a large company has to choose between the
two Workflow Management Systems and it has process models and workload similar to those
expressed in this test, it should choose Activiti.

7.5.2.5 Cluster 4 conclusions

Considering the tests results of cluster 4, it is possible to state that Camunda has better perfor-
mances than Activiti executing cluster 4 process models if enterprises considered are small or
medium. However, if enterprise dimension grows, it should be preferred Activiti.

7.6 Limitations and conclusion

The tests and analyses made as proof of concept have all limitations and simplification that a
proof of concept can have. In particular, only the two tools developed are used and not the
entire BenchFlow framework.

Moreover, the tests are run on a single low-power machine instead of using a well controlled
Cloud infrastructure, so the test results are heavily influenced by the infrastructure, especially
for the load tests with 1000 users, and they are derived from only one trial of the experiment.
In addition, the process models transformations reduce the used constructs and they remove
interactions so they are only intended to provide process models usable in the proof of concept.
Furthermore, the analysis are performed using the metrics of the performance meter and data
aggregator and of the driver, so a limit is the unavailability of the constructs metrics. Finally,
the proof of concept limitations are the ones of the two implemented tools, so for additional
information about the data cleaner and reconciler and performance meter and data aggregation
limitations, read Section 8.2.

Even considering the proof of concept limitations, it is possible to conclude that those types
of analyses are feasible and that the best performer WfMS depends on the process models
characteristics and the enterprise dimension.

Chapter 8

Conclusion

8.1 Summary and conclusion

As part of the BenchFlow project [13], this thesis focuses on the design, implementation and
evaluation of the data cleaner and reconciler and the performance meter and data aggregator
components of the BenchFlow framework, to allow the analysis and management of the data
from different WfMSs and to be able to examine the data about the performance of Workflow
Management Systems. To achieve these goals:

• the data cleaner and reconciler is realized; it uses a common destination database, which
contains standardized data generated by applying the ETL process from source databases
of different Workflow Management Systems. The design of the destination database is
based on a collection of basic requirements according to metrics and context knowledge
[99].

• the performance meter and data aggregator is realized; it aggregates data from the data
cleaner and reconciler database to obtain information. Data aggregation is performed
according to metrics application based on the experiments and on the trials related to a
specific experiment.

Both the data cleaner and reconciler and performance meter and data aggregator are developed
in Java. Since both components have to interact with the CleanRawData database, Java Ob-
ject Oriented Querying (jOOQ) framework is used as Object-Oriented Query Language (OQL)
technique. Indeed, this technique allows reducing code errors and it facilitates software de-
velopment. In addition, the performance meter and data aggregator has to interact also with
the non-relational MongoDB database, because it needs to have a schema that can be easily ex-
tended by adding additional fields, which will contain new metrics values. For this interaction
the default MongoDB driver is used.

Thus, the thesis starts with an excursus of the BPMN 2.0 standard, the Workflow Management
System architecture and benchmark frameworks. In addition, the BenchFlow framework is pre-
sented and the driver, collector, monitor, data cleaner and reconciler and performance meter
and data aggregator components are depicted. Then, the SMDM methodology is applied to de-

101

102 8.2 Current limitations and future work

fine the main WfMSs metrics among which there are the ones implemented in the performance
meter and data aggregator: processes completion time metric, number of completed processes
metric and number of uncompleted processes metric. Furthermore, the design and implemen-
tation of the data cleaner and reconciler and the performance meter and data aggregator are
described and their performances are evaluated.

Finally, a proof of concept is provided to demonstrate the feasibility of analysis through the
application of the two tools developed and to apply the implemented metrics on two different
WfMSs. The performances of the WfMSs are the focus of the BenchFlow framework, for this
reason in this thesis the proof of concept applies performance tests and specifically load tests
are used. As proof of concept, the tests are performed on a single low-power machine and only
one trial of the experiment is obtained for each load test ran. The load tests are based on the
number of users interacting with WfMS and they consider: 50 users for small enterprises, 250
users for medium enterprises, 400 users for medium-large enterprises and 1000 users for large
enterprises. The workload of the tests are based on two different clusters: cluster 3 and cluster
4, each one contains two process models, for a total of four process models. According to the
analysis of the proof of concept, based on the implemented metrics, the best performer WfMS is
not always the same, because WfMSs performance depend on the number of users that interact
with the WfMS and the cluster characteristics.

Thus, the main contributions of this thesis to the research community are the creation of two
tools belonging to the BenchFlow framework [13], one that standardizes data from all the
source databases of different WfMSs and one that aggregates stored data to obtain information
about WfMS BPMN 2.0 metrics; moreover, first results of the feasibility of performance testing
and benchmarking of WfMSs are provided in a proof of concept. The data cleaner and reconciler
tool can be further extended to standardize additional WfMS data and the performance meter
and data aggregator tool can be further expanded and customised arranging stored data to
obtain additional WfMS metrics.

8.2 Current limitations and future work

About the implemented components, a current limitation is the requirement to use the com-
mand line to interact. Indeed, components that use a command line interface make automated
interactions difficult between them, so a future work is to introduce an interaction paradigm
based on socket or a REST API interface. Additionally, new WfMSs should be added to the
data cleaner and reconciler and additional metrics should be implemented in the performance
meter and data aggregator; in particular the restricted number of implemented metrics is a lim-
itation of the tool and of its evaluation. Another current limitation might be the storage on the
databases of the two implemented components; due to the fact that data could grow infinitely.
Hence, a future work is to analyze the possibility to partition the MySQL database, used for
the data cleaner and reconciler, and to shard the MongoDB database, used by the performance
meter and data aggregator.

In addition, a limitation of the data cleaner and reconciler is that it processes only environ-
mental data derived from Docker stats API, since the BenchFlow infrastructure exploits Docker
containers. Moreover, the jOOQ framework only supports SQL compliant databases, thus this
is a limitation to the databases that the data cleaner and reconciler can support. About the

103 8.2 Current limitations and future work

evaluation of the data cleaner and reconciler, it is limited by the application of a process model
with 3 constructs; furthermore, from the evaluation, the data cleaner and reconciler available
RAM memory is identified as a bottleneck of the tool.

Moreover, the performance meter and data aggregator limitation is imposed by MongoDB per-
formances compared to other NoSQL databases, especially Cassandra. For this reason, a future
work could be to analyze and, in case to implement, the performance meter and data aggre-
gator using a more performant database such as Cassandra [9]. In addition, also reading the
data from the CleanRawData database is an expensive operation and a future work could be
to discuss the possibility to apply a data caching system. As a matter of fact its application
would allow the performance meter and data aggregator to have faster access to data. Fur-
thermore, the performance meter and data aggregator does not support automatic discovery
of Metric subclasses and a future work is to analyze and to implement a service locator in the
MetricCalculator class.

Last but not least, a future work will consist in the evaluation of the WfMS metrics through
their application on different WfMSs by taking advantage of the BenchFlow framework on a
real testbed. This will allow to determine which parameters are the most important in the
evaluation of WfMSs and it will allow companies to take an informed decision about which
Workflow Management System should be used for their business.

104 8.2 Current limitations and future work

Appendix A

Metric theoretical validation

The theoretical validation is conducted applying the SMART framework [32]. See Chapter 4
for more details about the metrics.

The metrics defined for the Workflow Engine entity are divided according to:

• time behaviour in:

– response time

Metric name Response time
Specificity It is useful to determine the behaviour of the WfE re-

garding how the WfE will respond to requests. So the
metric is goal oriented. In any case workers, who do
not have this metric clear definition in mind, might
misinterpret its meaning with other; for example they
might interpret it as residence time [63], which is only
the time which the request is into the system, so the
time to execute the process. Anyway these two mea-
sures are strictly related, therefore the impact of such
misinterpretation is reduced. Moreover the definition
of this metric has been clearly defined in previous steps
(see Section 4.1.2) and this problem is less probable.

Measurability It is a single value expressed in time unit, therefore it
can be easily compared to other response time values.
In particular it is cardinal variable.

105

106

Attainability It can be measured by means of the load driver dur-
ing benchmarking. Usually workload loaders store into
logs files data related to response time; in some case
they could store response time directly. Indeed for real
world request it might not be easily computed due to
lack in the system, anyway this metric might be stored
into log file of the systems. Finally it depends also
on how workload loader and WfMS interacts, so it de-
pends on how request are sent to Workflow Manage-
ment System and responses are received.

Relevance It is relevant, because it represent the time experienced
by the user that uses the WfMS.

Timeliness The time required to compute response time depends
on the time required by the Workflow Engine to re-
spond to a request. Therefore it depends on the com-
munication time and the execution time of the process
instance requested.

Thus, the response time metric respects all five SMART characteristics and even if it
is difficult to obtain data to compute the metric, it is not impossible.

– throughput

Metric name Throughput
Specificity It is useful to determine the behaviour of the WfE ac-

cording to time requirements. So the metric is goal
oriented. Moreover workers, usually, have this metric
clear definition in mind of throughput and by specify-
ing the correct unit of measurement it is hard to misin-
terpret it.

Measurability It is a single value expressed in rates and it can be easily
compared to other throughput rates. In particular it is
cardinal variable.

Attainability It can be measured by means of the load driver dur-
ing benchmarking. Usually workload loaders store into
logs files data related to request completed and their
time interval; in some case they could store through-
put directly. Indeed for real world request it might not
be easily computed due to lack in the system. In some
case data related to this metric might be stored into
log file of the systems. In addition this metric can be
computed from stored data by the WfMS.

107

Relevance It is relevant, because it represent how many request
of the user can be performed by the WfMS. Anyway
it might be misleading, due to the intrinsic time re-
quired by the process instance to be executed. There-
fore a good workload must be applied to have relevant
throughput measurement.

Timeliness The time required to compute throughput depends on
how many and how fast the WfE receive requests and
execute them. So if the Workflow Engine receives
enough requests all at once, the results depends only on
the time required by the WfE to execute the requests.

Thus, the throughput time metric respects all five SMART characteristics.

– process execution latency

Metric name Latency
Specificity It is useful to determine the behaviour of the WfE ac-

cording to time requirements and in particular deter-
mine if the WfE is managing efficiently time. So the
metric is goal oriented. However workers do not have
a clear definition in mind and might misinterpret its
meaning with other. Anyway the definition of this met-
ric has been clearly defined in previous steps (see Sec-
tion 4.1.2).

Measurability It is a single value expressed in time unit, therefore it
can be easily compared to other response time values.
In particular it is cardinal variable.

Attainability It is very difficult to measure it, because it requires cor-
relating data between load driver or the system and
Workflow Engine per each request. Usually workload
loaders store into logs files data related to request
query, but in this data it is necessary to have a corre-
lation key that relates the data of the loader with data
of the WfE and it is improbable to have a correlation
key directly. Moreover in real world request it might
be even harder due to lack in the system logging.

Relevance It is relevant, because it represent the time inefficien-
cies of the WfMS. However it is considered as a part of
response time metric.

108

Timeliness The time required to compute latency depends on the
time required by the Workflow Engine to start the exe-
cution of a process instance and, if contemplated by the
WfE, to interact with the requestor to transmit related
information. Therefore it does not strictly require the
complete process instance execution, but this depends
on the WfE.

Thus, the process execution latency metric respects all five SMART characteristics
and even if it is very difficult to obtain data to compute the metric, it is not impos-
sible.

• resource utilization in:

– database bandwidth usage

Metric name DB bandwidth usage
Specificity It is useful to determine external resources usage by the

WfE. So the metric is goal oriented. In any case work-
ers might easily misinterpret this metric meaning with
other and they might not understand what it actually
measures. This problem is important respect to previ-
ous, because it might lead to misinterpret the whole
metric. Indeed workers might prefer a WfE with lower
or higher values according to the point of view that they
attribute to the metric. For example two points of view
for the metric are: use less communication with the
DB as possible to spare bandwidth and store more data
persistently as possible, which means increasing com-
munication, to improve reliability.

Measurability It is a single value expressed in unit of measurement for
information size, therefore it can be easily compared to
other values. In particular it is cardinal variable.

Attainability It is difficult to measure in real world particularly. Usu-
ally databases do not store information on how many
data are transmitted and received. Therefore it might
be necessary to add network traffic sniffer, that add
overhead to the Workflow Engine performance. More-
over it is unreliable, because it might best metric might
depends on metric point of view and it might be influ-
enced by hidden variable such as the design of database
schemas.

Relevance It might be relevant in case of restricted network band-
width between WfMS and DB. In other cases its rele-
vance might be reduced by hidden variables.

109

Timeliness The time required to compute DB usage depends on
completion of the process instances in the Workflow
Engine and how much time after process completion
the WfE continues to store data.

Thus, the database bandwidth usage metric respects all five SMART characteristics
and even if it is difficult to obtain reliable data to compute the metric, it is not
impossible.

– Network usage

Metric name Network usage
Specificity It is useful to determine external resources usage by the

WfE. So the metric is goal oriented.
Measurability It is a single value expressed in unit of measurement for

information size, therefore it can be easily compared to
other values. In particular it is cardinal variable.

Attainability It is difficult to measure in real world particularly. Usu-
ally WfE does not store information on how many data
are transmitted and received. Therefore it might be
necessary to add network traffic sniffer, that add over-
head to the Workflow Engine performance. In real
world application this might be even more difficult.

Relevance It might be relevant in case of restricted network band-
width.

Timeliness The time required to compute Network usage depends
on the interaction of the Workflow Engine with external
resources.

Thus, the network usage metric respects all five SMART characteristics and even if
it is difficult to obtain data to compute the metric, it is not impossible.

– RAM memory usage

Metric name RAM memory usage
Specificity It is useful to determine resources usage by the WfE. So

the metric is goal oriented.
Measurability It is a single value expressed in information size unit of

measurement, therefore it can be easily compared to
other values. In particular it is cardinal variable.

110

Attainability It is difficult to measure the real RAM memory usage
due to RAM memory management in systems and due
to possible support services used by WfE. Moreover it
should be evaluated together with additional informa-
tion provided by the WfE, such as actual WfE execution
load. This might introduce synchronization problem
between data.

Relevance It might be relevant in case of limited RAM memory
availability and if the resource is shared with other ap-
plications.

Timeliness It is instantaneously ready by using monitoring tool.
Anyway to have realistic metrics might be important to
evaluate data together with additional information pro-
vided by the WfE, such as actual WfE execution load.

Thus, the RAM memory usage metric respects all five SMART characteristics and
even if it is difficult to obtain reliable data to compute the metric, it is not impossible.

– CPU usage

Metric name CPU usage
Specificity It is useful to determine resources usage by the WfE. So

the metric is goal oriented.
Measurability It is a percentage, therefore it can be compared to other

values.
Attainability It is difficult to measure the real CPU usage due

to overhead introduced by monitoring. Anyway it
should be evaluated together with additional informa-
tion provided by the WfE, such as actual WfE execution
load. This might introduce synchronization problem
between data.

Relevance It might be relevant in case of limited processing capac-
ity or if the resource is shared with other applications

Timeliness It is instantaneously ready by using monitoring tool.
Anyway to have realistic metrics might be important to
evaluate data together with additional information pro-
vided by the WfE, such as actual WfE execution load.

Thus, the CPU usage metric respects all five SMART characteristics and even if it is
difficult to obtain reliable data to compute the metric, it is not impossible.

• capacity in:

– capability

111

Metric name Capability
Specificity It is useful to determine the behaviour of the WfE

to manage workload. So the metric is goal oriented.
Moreover workers, usually, have at least an approxi-
mate idea of capability definition and by specifying the
correct unit of measurement it is should not be misin-
terpreted.

Measurability It is a value expressed by a quantitative measurement
unit, therefore it can be easily compared to other val-
ues. In particular it is cardinal variable.

Attainability It can be measured by exploiting stored data by WfE
or by load driver during benchmarking or the system.
Using stored data by WfE should be more accurate and
precise, because this metric is related to the process in-
stances executions and WfE data might contains addi-
tional informations. Anyway determine which is the
maximum number of process that the WfMS can han-
dle require specific testing.

Relevance It is relevant, because it represents the ability of the
WfMS to process execution request and it is important
to know WfE limitation. Anyway this metric might be
restricted by resource limitations, but this problem is
limited by running benchmarks with the same configu-
ration for all engine under analysis. Therefore the com-
parison between benchmark results should be applied
only for engine that have been runned under the same
configuration.

Timeliness The time required to compute capability depends on
the time required by the Workflow Engine to execute
process instances. Therefore it requires the completion
of process instances execution.

Thus, the capability metric respects all five SMART characteristics and even if it is
difficult to obtain data to compute the metric, it is not impossible.

– number of completed processes

Metric name NumCompletedProcesses
Specificity It is useful to determine the behaviour of the WfE

to manage workload. So the metric is goal oriented.
Moreover workers, usually, have an approximate idea
of the definition and by specifying the correct unit of
measurement it is should not be misinterpreted.

112

Measurability It is a value expressed by a quantitative measurement
unit, therefore it can be easily compared to other val-
ues. In particular it is cardinal variable.

Attainability It can be measured by exploiting stored data by WfE
or by load driver during benchmarking or the system.
Using stored data by WfE should be more accurate and
precise, because this metric is related to the process in-
stances executions and WfE data might contains addi-
tional informations.

Relevance It is relevant, because it represents the ability of the
WfMS to process execution request.

Timeliness The time required to compute the number of completed
processes depends on the time required by the Work-
flow Engine to execute process instances. Therefore it
requires the completion of process instances execution.

Thus, the number of completed processes metric does respect all five SMART char-
acteristics.

The metrics that can be defined for the Process entity for the time behaviour quality attribute
are:

• completion time

Metric name Completion time
Specificity It is useful to determine the time behaviour of the WfE

and how process instance are executed by WfE. So the
metric is goal oriented. Moreover its name is self-
explanatory and workers should not have difficulties
to understand its meaning.

Measurability It is a single value expressed in time unit, therefore it
can be easily compared to other response time values.
In particular it is cardinal variable.

Attainability It can be measured by analysing WfE data. By default
WfE should stores into logs files or in databases data
related to process instance start time and end time; in
some case they could store directly the time required to
complete a process instance. If WfE does not store this
information by default, it is possible to enable history
option to store these data.

Relevance It is relevant, because it represents the minimum time
to fulfil a request by the user that request executions
to the WfMS. It is the minimum time, because it does
not consider overhead such as request communication
overhead.

113

Timeliness The time required to compute completion time depends
on the time that the Workflow Engine needs to com-
pletely execute process instance and after the time re-
quired to store those data.

Thus, the completion time metric does respect all five SMART characteristics.

Finally the metrics that can be defined for the Construct entity can be divided according to:

• time behaviour in:

– completion time

Metric name Completion time
Specificity It is useful to determine construct time behaviour and

how WfE manages the construct. So the metric is goal
oriented. Moreover its name is self-explanatory and
workers should not have difficulties to understand its
meaning.

Measurability It is a single value expressed in time unit, therefore it
can be easily compared to other response time values.
In particular it is cardinal variable.

Attainability It can be measured by analysing WfE data. By default
WfE should stores into logs files or in databases data re-
lated to construct start time and end time; in some case
they could store directly the time required to complete
a construct. If WfE does not store this information by
default, it is possible to enable history option to store
these data. Anyway it is a volatile metric, because it
might depends on external factors that are not under
the control of the WfE; anyway according to the rule of
large numbers, its result should be close to the actual
value on average.

Relevance It is relevant, because it represents the time to fulfil an
atomic part of process instances requested by the user.
Therefore the sum of all construct completion time pro-
duces the expected minimum time to execute the pro-
cess instance without considering the overhead of com-
munication between construct of process instances. In
some case it might be misleading and it is required to
have enough samples that allow applying the rule of
large numbers. Therefore it is necessary to run enough
process instance of the same process model to have con-
sistent and valuable data for this metric.

114

Timeliness The time required to compute completion time depends
on the time that the Workflow Engine needs to exe-
cute construct and after the time required to store those
data. Moreover in some cases it is necessary to execute
enough samples and it should be taken into account
when considering the timing of this metric.

Thus, the completion time metric respects all five SMART characteristics and even
if it is difficult to reliably compute the metric, it is not impossible.

– delay

Metric name Delay
Specificity It is useful to determine construct time behaviour and

how WfE manages the construct. So the metric is goal
oriented. However workers might not have a clear defi-
nition in mind and might misinterpret its meaning with
other. Anyway the definition of this metric has been
clearly defined in previous steps (see Section 4.1.2).

Measurability It is a single value expressed in time unit, therefore it
can be easily compared to other response time values.
In particular it is cardinal variable.

Attainability It is difficult to compute, because it is composed by
two parts: one part is the ideal expected duration and
the other is the completion time. Completion time can
be measured by analysing WfE data. By default WfE
should stores into logs files or in databases data re-
lated to construct start time and end time; in some case
they could store directly the time required to complete
a construct. If WfE does not store this information by
default, it is possible to enable history option to store
these data. Moreover this value is a volatile value, be-
cause it might depend on external factors that are not
under the control of the WfE; therefore according to
the rule of large numbers, its value should be evaluated
having enough samples. Instead the ideal expected du-
ration is based on the construct. In addition it might be
evaluated empirically by a baseline test or basic opera-
tion test. In this case the value is related to the WfE.

Relevance It is relevant, because it represents the time inefficien-
cies of the WfMS. However it is considered as a part of
completion time.

115

Timeliness The time required to compute completion time depends
on the time that the Workflow Engine needs to exe-
cute construct and after the time required to store those
data. Moreover in some cases it is necessary to execute
enough samples and it should be taken into account
when considering the timing of this metric.

Thus, the delay metric respects all five SMART characteristics and even if it is difficult
to compute the metric, it is not impossible.

– latency

Metric name Latency
Specificity It is useful to determine time behaviour of WfE, how

WfE manages the communication among constructs
and the execution flow of processes. So the metric is
goal oriented. However workers might not have a clear
definition in mind and might misinterpret its mean-
ing with other. Anyway the definition of this metric
has been clearly defined in previous steps (see Section
4.1.2).

Measurability It is a single value expressed in time unit, therefore it
can be easily compared to other response time values.
In particular it is cardinal variable.

Attainability It requires knowing exactly process model to determine
the execution path and which construct come before
and after the analysed one. Moreover additional prob-
lem are introduced considering process model with
loops. Because it might cause error in identify the cor-
rect relationship between constructs. Regarding the
data, WfE should stores into logs files or in databases
data related to construct start time and end time. If
WfE does not store this information by default, it is pos-
sible to enable history option to store these data. Any-
way there might be precision problem, which means
that the unit of measurement of stored data might not
allow determining a precise and valuable metric.

Relevance It is relevant, because it represents the time inefficien-
cies of the WfMS and in particular it affects the com-
pletion time of process instances. Moreover it is consid-
ered as a part of completion time of process instances.

116

Timeliness The time required to compute completion time depends
on the time that the Workflow Engine needs to exe-
cute construct and after the time required to store those
data. Moreover in some cases it is necessary to execute
enough samples and it should be taken into account
when considering the timing of this metric.

Thus, the latency metric respects all five SMART characteristics and even if it is
difficult to compute the metric, it is not impossible.

• capacity in:

– construct capability

Metric name Construct capability
Specificity It is useful to determine the behaviour of the WfE

to manage workload. So the metric is goal oriented.
Moreover workers, usually, have at least an approxi-
mate idea of capability definition and by specifying the
correct unit of measurement it is should not be misin-
terpreted.

Measurability It is a value expressed by a quantitative measurement
unit, therefore it can be easily compared to other val-
ues. In particular it is cardinal variable.

Attainability It can be measured by exploiting stored data by WfE.
If WfE does not store this information by default, it is
possible to enable history option to store these data.
Anyway determine which is the maximum number of
constructs that the WfMS can handle require specific
testing and it might be influenced by the process.

Relevance It is relevant, because it represents the ability to iden-
tify WfE limitation in the execution of particular con-
structs. Anyway this metric might be restricted by re-
source limitations, but this problem is limited by run-
ning benchmarks with the same configuration for all
engines under analysis. Therefore the comparison be-
tween benchmark results should be applied only for en-
gine that have been run under the same configuration.

Timeliness The time required to compute capability depends on
the time required by the Workflow Engine to execute
process instances. Therefore it requires the completion
of process instances execution, or at least the comple-
tion of the analysed construct of the process instances
in execution.

117

Thus, the construct capability metric respects all five SMART characteristics and
even if it is difficult to obtain data to compute the metric, it is not impossible.

– number of completed constructs

Metric name NumCompletedConstructs
Specificity It is useful to determine the behaviour of the WfE

to manage workload. So the metric is goal oriented.
Moreover workers, usually, have an approximate idea
of the definition and by specifying the correct unit of
measurement it is should not be misinterpreted.

Measurability It is a value expressed by a quantitative measurement
unit, therefore it can be easily compared to other val-
ues. In particular it is cardinal variable.

Attainability It can be measured by exploiting stored data by WfMS.
If WfMS does not store this information by default, it is
possible to enable history option to store these data.

Relevance It is relevant, because it represents the ability of the
WfMS to process execution request of constructs.

Timeliness The time required to compute number of completed
constructs depends on the time required by the Work-
flow Engine to execute the constructs..

Thus, the number of completed constructs metric does respect all five SMART char-
acteristics.

118

Bibliography

[1] Activiti. URL http://forums.activiti.org/.

[2] Camunda BPM docs. URL http://docs.camunda.org/.

[3] Docker. URL https://www.docker.com/.

[4] Apache jmeter. URL http://jmeter.apache.org/.

[5] MyBatis, . URL https://mybatis.github.io/mybatis-3/.

[6] MySQL Reference Manual, . URL https://dev.mysql.com/doc/refman/5.5/en/

index.html.

[7] IEEE Standard for a Software Quality Metrics Methodology. IEEE Std 1061-1992, 1993.
doi: 10.1109/IEEESTD.1993.115124.

[8] Abdul Azim Abd Ghani, Tieng Wei Koh, Geoffrey Muchiri Muketha, and Pei Wen Wong.
Complexity metrics for measuring the understandability and maintainability of Business
Process Models using Goal-Question-Metric (GQM). International Journal of Computer
Science and Network Security, 8(5):219–225, 2008. ISSN 1738-7906. URL http://

psasir.upm.edu.my/13726/.

[9] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. Which nosql database? a
performance overview. Open Journal of Databases (OJDB), pages 17–24, 2014.

[10] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionality and limitations of
current workflow management systems. IEEE Expert, 12, 1997.

[11] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey, Es-
ther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a stream data
management benchmark. In Proc. of the Thirtieth international conference on Very large
data bases (VLDB 2004), VLDB 2004, pages 480–491. VLDB Endowment, 2004. ISBN
0-12-088469-0. URL http://dl.acm.org/citation.cfm?id=1316689.1316732.

[12] Victor R Basili, Gianluigi Caldeira, and H Dieter Rombach. The Goal Question Metric
Approach. Encyclopedia of Software Engineering, 2006.

[13] BenchFlow. BenchFlow - a benchmark for workflow management systems. http://

benchflow.inf.usi.ch, August 2014. URL http://benchflow.inf.usi.ch. http:

//benchflow.inf.usi.ch.

119

http://forums.activiti.org/
http://docs.camunda.org/
https://www.docker.com/
http://jmeter.apache.org/
https://mybatis.github.io/mybatis-3/
https://dev.mysql.com/doc/refman/5.5/en/index.html
https://dev.mysql.com/doc/refman/5.5/en/index.html
http://psasir.upm.edu.my/13726/
http://psasir.upm.edu.my/13726/
http://dl.acm.org/citation.cfm?id=1316689.1316732
http://benchflow.inf.usi.ch
http://benchflow.inf.usi.ch
http://benchflow.inf.usi.ch
http://benchflow.inf.usi.ch
http://benchflow.inf.usi.ch

120 Bibliography

[14] Domenico Bianculli, Walter Binder, and Mauro Luigi Drago. Automated performance
assessment for service-oriented middleware: A case study on BPEL engines. In Proc. of
the 19th International World Wide Web Conference (WWW ’10), WWW ’10, pages 141–
150, 2010.

[15] Domenico Bianculli, Walter Binder, and Mauro Luigi Drago. SOABench: Performance
evaluation of service-oriented middleware made easy. In Proc. of the 32nd International
Conference on Software Engineering (ICSE ’10) - Volume 2, ICSE’10, pages 301–302, 2010.
ISBN 978-1-60558-719-6. doi: 10.1145/1810295.1810361. URL http://doi.acm.

org/10.1145/1810295.1810361.

[16] Dina Bitton, Mark Brown, Rick Catell, Stefano Ceri, Tim Chou, Dave DeWitt, Dieter
Gawlick, Hector Garcia-Molina, Bob Good, Jim Gray, et al. A measure of transaction
processing power. Datamation, 31(7):112–118, 1985.

[17] Anthony J. Bonner, Adel Shrufi, and Steve Rozen. Labflow-1: A database benchmark
for high-throughput workflow management. In Proc. of the 5th International Conference
on Extending Database Technology (EDBT ’96), EDBT ’96, pages 463–478, 1996. ISBN
3-540-61057-X.

[18] E. Brewer. CAP twelve years later: How the "rules" have changed. Computer, 45(2):
23–29, February 2012. ISSN 0018-9162.

[19] Coral Calero, Mario Piattini, and Marcela Genero. Method for Obtaining Correct Metrics.
In ICEIS (2), pages 779–784, 2001.

[20] Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12–27,
2011. ISSN 0163-5808. doi: 10.1145/1978915.1978919.

[21] Akmal B. Chaudhri. An annotated bibliography of benchmarks for object databases.
SIGMOD Rec., 24(1):50–57, 1995. ISSN 0163-5808. doi: 10.1145/202660.202668.
URL http://doi.acm.org/10.1145/202660.202668.

[22] R. S. Chen, P. Nadkarni, L. Marenco, F. Levin, J. Erdos, and P. L. Miller. Exploring perfor-
mance issues for a clinical database organized using an entity-attribute-value represen-
tation. Journal of the American Medical Informatics Association: JAMIA, 7(5):475–487,
October 2000. ISSN 1067-5027.

[23] Michele Chinosi and Alberto Trombetta. Bpmn: An introduction to the standard. Com-
puter Standards & Interfaces, 34(1):124–134, 2012.

[24] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun. ACM,
13(6):377–387, June 1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL
http://doi.acm.org/10.1145/362384.362685.

[25] Edgar F Codd. Further normalization of the data base relational model. Data base
systems, pages 33–64, 1972.

[26] Desmond Lawrence Cook. Program Evaluation and Review Technique: Applications in
Education. University Press of America, 1966. ISBN 978-0-8191-0657-5.

http://doi.acm.org/10.1145/1810295.1810361
http://doi.acm.org/10.1145/1810295.1810361
http://doi.acm.org/10.1145/202660.202668
http://doi.acm.org/10.1145/362384.362685

121 Bibliography

[27] Rick Copeland. MongoDB Applied Design Patterns. O’Reilly Media, Inc., March 2013.
ISBN 978-1-4493-4004-9.

[28] Carlo Corti. Bpmetrics: a software system for the evaluation of some metrics for business
process. Master’s thesis, Politecnico di Milano, 2012.

[29] Florian Daniel, Giuseppe Pozzi, and Ye Zhang. Workflow engine performance evaluation
by a black-box approach. In Proc. of the International Conference on Informatics Engineer-
ing & Information Science (ICIEIS ’11), ICIEIS ’11, pages 189–203. Springer, November
2011.

[30] Marc Demarest. The politics of data warehousing. Retrieved January, 2:2008, 1997.

[31] Valentin Dinu and Prakash Nadkarni. Guidelines for the Effective Use of Entity-Attribute-
Value Modeling for Biomedical Databases. International journal of medical informatics,
76(11-12):769–779, 2007. ISSN 1386-5056. doi: 10.1016/j.ijmedinf.2006.09.023. URL
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110957/.

[32] George T Doran. There’sa SMART way to write management’s goals and objectives.
Management review, 70(11):35–36, 1981.

[33] Paul Dourish. Process Descriptions As Organisational Accounting Devices: The Dual
Use of Workflow Technologies. In Proceedings of the 2001 International ACM SIGGROUP
Conference on Supporting Group Work, GROUP ’01, pages 52–60, New York, NY, USA,
2001. ACM. ISBN 1-58113-294-8. doi: 10.1145/500286.500297. URL http://doi.

acm.org/10.1145/500286.500297.

[34] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers. Fundamentals of
business process management. Springer, 2013.

[35] Clarence A Ellis. Information control nets: A mathematical model of office informa-
tion flow. In Proceedings of the Conference on Simulation, Measurement and Modeling of
Computer Systems, volume 3670. Boulder, CO, 1979.

[36] Norman Fenton and James Bieman. Software metrics: a rigorous and practical approach.
CRC Press, 3rd edition, 2014.

[37] Vincenzo Ferme, Ana Ivanchikj, and Cesare Pautasso. A framework for benchmarking
BPMN 2.0 workflow management systems. In Proc. of the 13th International Conference
on Business Process Management (BPM ’15), BPM ’15. Springer, 2015.

[38] Vincenzo Ferme, Ana Ivanchikj, and Cesare Pautasso. Performance metrics for bench-
marking BPMN 2.0 workflow management systems. 2015.

[39] Domenico Ferrari. Computer systems performance evaluation. Prentice Hall, 1978.

[40] Mark L Fussell. Foundations of Object-Relational Mapping. URL: http://www.chimu.
com/publications/objectRelational/index.html, 1997.

[41] Michael Gillmann, Ralf Mindermann, and Gerhard Weikum. Benchmarking and config-
uration of workflow management systems. In Proc. of the 7th International Conference
on Cooperative Information Systems (CoopIS ’00), CoopIS ’00, pages 186–197, 2000.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110957/
http://doi.acm.org/10.1145/500286.500297
http://doi.acm.org/10.1145/500286.500297
http://www.chimu.com/publications/objectRelational/index.html
http://www.chimu.com/publications/objectRelational/index.html

122 Bibliography

[42] Jim Gray. The Benchmark Handbook for Database and Transaction Systems. Morgan
Kaufmann, 2nd edition, 1992.

[43] Reijersa Hajo A. and Wil van der Aalst. The effectiveness of worflow management sys-
tems:predictions and lessons learned. International Journal of Information Management,
25:458–472, 2005.

[44] Paul Harmon and Business Process Trends. Business Process Change: A Guide for Business
Managers and BPM and Six Sigma Professionals. Morgan Kaufmann, July 2010. ISBN
978-0-08-055367-2.

[45] Paul Harmon and Celia Wolf. The state of business process management
2014. http://www.bptrends.com/bpt/wp-content/uploads/BPTrends-State-of-BPM-
Survey-Report.pdf, March 2014.

[46] S. Harrer, C. Rock, and G. Wirtz. Automated and Isolated Tests for Complex Middleware
Products: The Case of BPEL Engines. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages 390–398, March
2014. doi: 10.1109/ICSTW.2014.45.

[47] K. Hayes and K. Lavery. Workflow management software: the business opportunity. Ovum
Ltd, London, 1991.

[48] Thomas Herrmann and Marcel Hoffmann. The Metamorphoses of Workflow Projects
in their Early Stages. Computer Supported Cooperative Work (CSCW), 14(5):399–432,
November 2005. ISSN 0925-9724, 1573-7551. doi: 10.1007/s10606-005-9006-8. URL
http://link.springer.com/article/10.1007/s10606-005-9006-8.

[49] David Hollingsworth. Workflow management coalition the workflow reference model.
Workflow Management Coalition, 68, 1995.

[50] William H Inmon. Building the data warehouse. John Wiley & Sons, 2005.

[51] International Organization for Standardization. ISO/IEC 25010".2011. Systems and soft-
ware engineering-Systems and software Quality Requirements and Evaluation (SQuaRE)-
System and software quality models, 2011.

[52] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. Understand-
ing object-relational mapping: A framework based approach. International Journal on
Advances in Software, 1, Numbers 2&3, 2009.

[53] Ana Ivanchikj. Characterising representative models for BPMN 2.0 workflow engine
performance evaluation. Master’s thesis, Università della Svizzera Italiana, September
2014.

[54] S B Johnson. Generic data modeling for clinical repositories. Journal of the American
Medical Informatics Association, 3(5):328–339, 1996. ISSN 1067-5027. URL http://

www.ncbi.nlm.nih.gov/pmc/articles/PMC116317/.

[55] Diane Jordan and John Evdemon. Business Process Model And Notation (BPMN) version
2.0. Object Management Group, Inc, January 2011. http://www.omg.org/spec/BPMN/
2.0/.

http://link.springer.com/article/10.1007/s10606-005-9006-8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC116317/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC116317/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

123 Bibliography

[56] Josh Juneau. Object-Relational Mapping. Beginning Database-Driven Application Devel-
opment in Java EE: Using GlassFish, pages 369–408, 2013. URL http://link.springer.
com/chapter/10.1007/978-1-4302-4426-4_8.

[57] Stylianos Kavadias and Svenja C. Sommer. The Effects of Problem Structure and
Team Diversity on Brainstorming Effectiveness. Management Science, 55(12):1899–
1913, September 2009. ISSN 0025-1909. doi: 10.1287/mnsc.1090.1079. URL
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1090.1079.

[58] R. Khalaf, A. Keller, and F. Leymann. Business processes for Web Services: Principles
and applications. IBM Systems Journal, 45(2):425–446, 2006. ISSN 0018-8670. doi:
10.1147/sj.452.0425.

[59] Ralph Kimball and Joe Caserta. The data warehouse ETL toolkit. John Wiley & Sons,
2004.

[60] Joakim v Kistowski, Nikolas Herbst, Daniel Zoller, Samuel Kounev, and Andreas Hotho.
Modeling and extracting load intensity profiles. 2015. URL http://se2.informatik.

uni-wuerzburg.de/pa/uploads/papers/paper-780.pdf.

[61] Robert V. Krejcie and Daryle W. Morgan. Determining Sample Size for Research Activities.
Educ Psychol Meas, January 1970.

[62] Peter Kueng. The Effects of Workflow Systems on Organizations: A Qualitative Study. In
Wil van der Aalst, Jorg Desel, and Andreas Oberweis, editors, Business Process Manage-
ment, number 1806 in Lecture Notes in Computer Science, pages 301–316. Springer
Berlin Heidelberg, 2000. ISBN 978-3-540-67454-2 978-3-540-45594-3. URL http:

//link.springer.com/chapter/10.1007/3-540-45594-9_19.

[63] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quan-
titative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984. ISBN 0-13-746975-6.

[64] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A distributed service-oriented
architecture for business process execution. ACM Transactions on the Web, 4(1):2:1–
2:33, January 2010. ISSN 1559-1131. doi: 10.1145/1658373.1658375.

[65] Zhongling Li. Object-Oriented Query Language. IEEE A Technical White Paper, 2006.

[66] M Sultan Mahmud, Saad Abdullah, and Shazzad Hosain. Gwdl: A graphical workflow
definition language for business workflows. In Recent Progress in Data Engineering and
Internet Technology, pages 205–210. Springer, 2013.

[67] J. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. Performance
Testing Guidance for Web Applications: Patterns & Practices. Microsoft Press. ISBN 978-
0-7356-2570-9.

[68] Daniel A. Menasce and Virgilio Almeida. Capacity Planning for Web Services: metrics,
models, and methods. Prentice Hall, 1st edition, 2001. ISBN 0130659037.

http://link.springer.com/chapter/10.1007/978-1-4302-4426-4_8
http://link.springer.com/chapter/10.1007/978-1-4302-4426-4_8
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1090.1079
http://se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-780.pdf
http://se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-780.pdf
http://link.springer.com/chapter/10.1007/3-540-45594-9_19
http://link.springer.com/chapter/10.1007/3-540-45594-9_19

124 Bibliography

[69] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor, Advances
in Cryptology - CRYPTO’ 89 Proceedings, number 435 in Lecture Notes in Computer Sci-
ence, pages 428–446. Springer New York, 1990. ISBN 978-0-387-97317-3 978-0-387-
34805-6. URL http://link.springer.com/chapter/10.1007/0-387-34805-0_40.

[70] Ian Molyneaux. The Art of Application Performance Testing: From Strategy to Tools.
O’Reilly Media, Inc., 2nd edition, 2014.

[71] Prakash M. Nadkarni. QAV: querying entity-attribute-value metadata in a biomedi-
cal database. Computer Methods and Programs in Biomedicine, 53(2):93–103, June
1997. ISSN 0169-2607. doi: 10.1016/S0169-2607(97)01815-4. URL http://www.

cmpbjournal.com/article/S0169260797018154/abstract.

[72] Ted Neward. The vietnam of computer science. The Blog Ride, Ted Neward’s Technical
Blog, 2006.

[73] Matthias Nicola, Irina Kogan, and Berni Schiefer. An xml transaction processing bench-
mark. In Proc. of the 2007 ACM SIGMOD international conference on Management of
(SIGMOD/PODS ’07), SIGMOD/PODS ’07, pages 937–948, 2007. ISBN 978-1-59593-
686-8. doi: 10.1145/1247480.1247590.

[74] M. Oba, S. Onoda, and N. Komoda. Evaluating the quantitative effects of workflow
systems based on real cases. In Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, 2000, volume 2, January 2000. doi: 10.1109/HICSS.
2000.926852.

[75] Business Process Model OMG. Notation BPMN Version 2.0. OMG Specification, Object
Management Group, 2011. URL http://www.omg.org/spec/BPMN/2.0.

[76] Alison Parkes. Critical success factors in workflow implementation. In Proceedings of the
Sixth Pacific Asia Conference on Information Systems, Jasmin, pages 363–380, 2002.

[77] Giuseppe Paterno. NoSQL Tutorial: A Comprehensive Look at the NoSQL Database.
Linux J., 1999(67es), November 1999. ISSN 1075-3583. URL http://dl.acm.org/

citation.cfm?id=328036.328059.

[78] Cesare Pautasso, Vincenzo Ferme, Dieter Roller, Frank Leymann, and Marigianna Sk-
ouradaki. Towards workflow benchmarking: Open research challenges. In Proc. of the
16th conference on Database Systems for Business, Technology, and Web (BTW 2015), BTW
2015, pages 331–350, 2015.

[79] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull., 23(4):3–13, 2000.

[80] Alan Ramias and Cherie Wilkins. Building metrics for a process, 2010. URL http:

//www.performancedesignlab.com/building-metrics-for-a-process.

[81] Eric Redmond, Jim R. Wilson, and Jacquelyn Carter. Seven databases in seven weeks: a
guide to modern databases and the NoSQL movement. Pragmatic Bookshelf, Dallas, Tex,
2012.

http://link.springer.com/chapter/10.1007/0-387-34805-0_40
http://www.cmpbjournal.com/article/S0169260797018154/abstract
http://www.cmpbjournal.com/article/S0169260797018154/abstract
http://www.omg.org/spec/BPMN/2.0
http://dl.acm.org/citation.cfm?id=328036.328059
http://dl.acm.org/citation.cfm?id=328036.328059
http://www.performancedesignlab.com/building-metrics-for-a-process
http://www.performancedesignlab.com/building-metrics-for-a-process

125 Bibliography

[82] Spiridon Reveliotis. Real-Time Management of Resource Allocation Systems: A Discrete
Event Systems Approach. Springer Science & Business Media, 2006. ISBN 978-0-387-
23967-5.

[83] Luis Reynoso, Marcela Genero, and Mario Piattini. Refinement and extension of smdm,
a method for defining valid measures. J. UCS, 16(21):3210–3244, 2010.

[84] Ronald L. Rivest. The md5 message-digest algorithm. Internet activities board, 1992.

[85] Cedric Röck and Simon Harrer. Literature survey of performance benchmarking ap-
proaches of BPEL engines. Technical report, Otto-Friedrich University of Bamberg, 2014.

[86] Geary A. Rummler and Alan P. Brache. Improving Performance: How To Manage the White
Space on the Organization Chart. Jossey-Bass, January 1990.

[87] Marigianna Skouradaki, Dieter H. Roller, Leymann Frank, Vincenzo Ferme, and Cesare
Pautasso. On the road to benchmarking BPMN 2.0 workflow engines. In Proc. of the 6th
ACM/SPEC International Conference on Performance Engineering (ICPE ’15), ICPE ’15,
pages 301–304, 2015. doi: 10.1145/2668930.2695527. URL http://dx.doi.org/10.

1145/2668930.2695527.

[88] Standard Performance Evaluation Corporation. SPEC CPU2006 Version 1.2, September
2011.

[89] G. Stark, Robert C. Durst, and C.W. Vowell. Using metrics in management decision
making. Computer, 27(9):42–48, September 1994. ISSN 0018-9162. doi: 10.1109/
2.312037.

[90] Marc Stevens. Fast Collision Attack on MD5. IACR Cryptology ePrint Archive, 2006:104,
2006.

[91] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. Short Chosen-Prefix Collisions for MD5 and
the Creation of a Rogue CA Certificate. In Shai Halevi, editor, Advances in Cryptol-
ogy - CRYPTO 2009, number 5677 in Lecture Notes in Computer Science, pages 55–69.
Springer Berlin Heidelberg, 2009. ISBN 978-3-642-03355-1 978-3-642-03356-8. URL
http://link.springer.com/chapter/10.1007/978-3-642-03356-8_4.

[92] Transaction Processing Council (TPC). TPC Benchmark C (Online Transaction Processing
Benchmark) Version 5.11, February 1997.

[93] B.G. Tudorica and C. Bucur. A comparison between several nosql databases with com-
ments and notes. In Proc. of the 10th Roedunet International Conference (RoEduNet 2011),
RoEduNet 2011, pages 1–5, 2011. doi: 10.1109/RoEduNet.2011.5993686.

[94] Gaurav Vaish. Getting Started with Nosql. Packt Publishing Ltd, March 2013. ISBN
978-1-84969-499-5.

[95] Wil van der Aalst. Three Good Reasons for Using a Petri-Net-Based Workflow Manage-
ment System. In Toshiro Wakayama, Srikanth Kannapan, Chan Meng Khoong, Shamkant
Navathe, and JoAnne Yates, editors, Information and Process Integration in Enterprises,
number 428 in The Springer International Series in Engineering and Computer Science,

http://dx.doi.org/10.1145/2668930.2695527
http://dx.doi.org/10.1145/2668930.2695527
http://link.springer.com/chapter/10.1007/978-3-642-03356-8_4

126 Bibliography

pages 161–182. Springer US, 1998. ISBN 978-1-4613-7512-8 978-1-4615-5499-8. URL
http://link.springer.com/chapter/10.1007/978-1-4615-5499-8_10.

[96] Wil van der Aalst and Kees Max van Hee. Workflow Management: Models, Methods, and
Systems. MIT Press, 2004. ISBN 978-0-262-72046-5.

[97] Wil van der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business process man-
agement: A survey. In Business Process Management (BPM 2003), BPM 2003, pages 1–12.
Springer, 2003.

[98] Ian Thomas Varley, Adnan Aziz, Co-supervisors Adnan Aziz, and Daniel Miranker. No
relation: the mixed blessings of non-relational databases. Master’s thesis, The University
of Texas at Austin, August 2009.

[99] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual Modeling for ETL
Processes. In Proceedings of the 5th ACM International Workshop on Data Warehousing and
OLAP, DOLAP ’02, pages 14–21, New York, NY, USA, 2002. ACM. ISBN 1-58113-590-4.
doi: 10.1145/583890.583893. URL http://doi.acm.org/10.1145/583890.583893.

[100] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Ivona Brandic, Schahram Dust-
dar, and Frank Leymann. Monitoring and analyzing influential factors of business process
performance. In Proc. of the IEEE International on Enterprise Distributed Object Computing
Conference (EDOC ’09), EDOC ’09, pages 141–150, 2009. doi: 10.1109/EDOC.2009.18.

[101] Stephen White. Process modeling notations and workflow patterns. Workflow handbook,
2004:265–294, 2004.

[102] Stephen White. Introduction to BPMN. IBM Cooperation, 2, 2004. URL http://www.

omg.org/bpmn/Documents/Introduction_to_BPMN.pdf.

[103] Benjamin B Yao, M Tamer Özsu, and John Keenleyside. Xbench-a family of benchmarks
for XML DBMSs. In Efficiency and Effectiveness of XML Tools and Techniques and Data
Integration over the Web, pages 162–164. Springer, 2003.

http://link.springer.com/chapter/10.1007/978-1-4615-5499-8_10
http://doi.acm.org/10.1145/583890.583893
http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf

	Contents
	List of Figures
	List of Tables
	Terminology
	Introduction
	Context
	Goals
	Challenges
	Data cleaner and reconciler
	Performance meter and data aggregator
	Proof of concept demonstration

	Thesis structure

	State of the Art
	Business Process Management
	BPMN introduction
	BPMN standard

	Workflow Management System
	WfMS functional division
	WfMS architecture
	Advantages of WfMS

	Benchmark framework
	Performance tests design
	Workload performance benchmark
	Workload intensity
	Database benchmark
	WfMS benchmark

	BenchFlow framework
	Driver
	Monitor
	Collector
	Data cleaner and reconciler
	Performance meter and data aggregator

	Metrics
	Metric definition process
	Metric identification activity
	Metric creation activity

	Theoretical validation
	Empirical validation

	Data cleaner and reconciler
	Background of ETL
	ETL conceptual model

	Design of the data cleaner and reconciler database
	Requirements
	Entity schema details

	Implementation of the data cleaner and reconciler database
	Design of the data cleaner and reconciler
	Implementation of the data cleaner and reconciler
	Evaluation of the data cleaner and reconciler
	Source data generation for evaluation
	Amount of managed data
	Correctness
	Reverse mapping
	Scalability to the adding of new WfMSs

	Performance meter and data aggregator
	Design performance meter and data aggregator database
	Implementation of performance meter and data aggregator database
	Design of the performance meter and data aggregator
	Implementation of the performance meter and data aggregator
	Performance meter and data aggregator: implemented metrics

	Performance meter and data aggregator evaluation
	Performance
	Scalability in amount of metrics

	Proof of concept
	Disclaimer
	Infrastructure and System Under Test
	Camunda
	Activiti

	Test design
	Performance test and workload
	Workload intensity
	Test characteristics

	Evaluated Metrics
	Test results discussion and analysis
	Cluster 3
	Cluster 4

	Limitations and conclusion

	Conclusion
	Summary and conclusion
	Current limitations and future work

	Metric theoretical validation
	Bibliography

