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Abstract

Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise

for neuroprosthetics and assistive devices. Here we aim to investigate meth-

ods to combine Electroencephalography (EEG) and Near-infrared Spectroscopy

(NIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We at-

tempted to classify 4 di�erent executed and imagined movements: Right-arm,

Left-arm, Right-hand, and Left-hand tasks.

Previous studies demonstrated the bene�t of EEG-NIRS combination, without

processing the NIRS signal with online implementable methods for an asyn-

chronous paradigm. Since normally the NIRS hemodynamic response shows a

long delay, we investigated new features, involving slope indicators, in order

to immediately detect changes in the signals. Moreover, Common Spatial Pat-

terns (CSPs) have been applied to both EEG and NIRS signals. Fifteen healthy

subjects took part in the experiments, and, because 25 trials per class were

available, CSPs have been regularized with information from the entire popula-

tion of participants and optimized using genetic algorithms.

Di�erent approaches have been investigated for feature extraction, classi�cation,

and signal association. The results showed that a hybrid EEG-NIRS approach

enhances the performance of EEG or NIRS separately. Better performances

are achieved for the motor execution paradigm, probably due to the subjects'

inexperience in motor imagery, despite the small dataset available.



Sommario

Le Brain-Computer Interface (BCI) non invasive si sono dimostrate una grande

promessa per neuroprotesi e dispositivi di assistenza. In questa tesi l'obiettivo

principale é quello di investigare diversi metodi per riuscire ad integrare elet-

troencefalogramma (EEG) e Near-infrared-spectroscopy (NIRS) nello sviluppo

di una BCI asincrona basata sulla modulazione dei ritmi moto-sensoriali (Sen-

sory Motor Rithms - SMR). Abbiamo cercato di classi�care 4 di�erenti task

motori sia eseguiti, sia immaginati. I 4 diversi movimenti erano: elevazione

(continuata) di braccio destro e sinistro e chiusura-apertura di mano destra e

sinistra. Abbiamo utilizzato 21 canali EEG e 34 canali NIRS (12 sorgenti e 12

detettori) uniformemente distribuiti sulla corteccia motoria per acquisire dati

da 15 soggetti sani. Ogni soggetto ha e�ettuato 25 trial per ogni classe, sia per

motor execution, sia per motor imagery. Per quest'ultimo paradigma, é stato

sviluppato un software per fornire al soggetto feedback real-time basato sulla

modulazione dei ritmi moto-sensoriali dell'EEG.

Studi precedentemente e�ettuati hanno provato il bene�cio di combinare EEG

e NIRS nella classi�cazione di task motori, ma, a nostra conoscenza, mai pro-

cessando il segnale NIRS con metodi applicabili real-time ad una BCI con para-

digma asincrono. In questo studio abbiamo valutato la performance nella classi-

�cazione di una Linear Discriminant Analyisis (LDA), utilizzando di�erenti set

di features, estratte in diversi modi dai segnali EEG e NIRS pre-processati. Per

quanto riguarda l'EEG, le caratteristiche utilizzate per classi�care sono state le

potenze in banda µ e β. Filtri spaziali ottimi sono stati stimati usando Common

Spatial Patterns (CSPs), i quali aumentano la discriminabilitá tra due classi in

termini di varianza. Per valutare il vantaggio dell'uso di CSP, classi�catori sono

stati addestrati anche estraendo features dai singoli canali separatamente, senza

�ltri spaziali.

Normalmente la risposta emodinamica rilevata dal NIRS mostra un ritardo rela-

tivamente lungo rispetto all'inizio del task (circa 5-7 s). Per ovviare a questo pro-

blema abbiamo utilizzato features per riconoscere immediatamente cambiamenti

dell'attivitá emodinamica. Le caratteristiche estratte dal NIRS sono state la me-

dia e la pendenza dei segnali di emoglobina ossigenata (HbO) e de-ossigenata

(HbR). Inoltre, anche nel caso del NIRS, sono stati stimati �ltri spaziali tramite

CSP; dai segnali �ltrati i range delle componenti piú informative sono stati usati

come features.



Dal momento che 25 trials sono pochi per applicazioni BCI ed i CSP tendo-

no ad aderire eccessivamente ai dati utilizzati per il training, le covarianze sono

state regolarizzate usando i dati acquisiti da tutti i soggetti. Per ottimizzare

i parametri di regolarizzazione abbiamo adottato algoritmi genetici, che hanno

permesso di limitare il fenomeno dell'over-�tting ed aumentare la performance

dei classi�catori.

I risultati mostrano che il paradigma asincrono, nel quale prima di ogni ulteriore

classi�cazione deve essere riconosciuta la di�erenza tra Rest e Task, puó essere

adottato sia nel caso di motor execution (94.2% di accuratezza), sia nel caso di

motor imagery (85.8%). In entrambi i casi la miglior performance é raggiunta

combinando EEG (con CSP) e NIRS (senza CSP). Per la classi�cazione delle 4

classi sono stati provati due approcci di�erenti: il primo classi�ca destra-sinistra

e braccio-mano; il secondo invece consiste nella classi�cazione di coppie di classi

(ad esempio braccio destro-mano destra o mano sinistra-mano destra). Il primo

approccio si é rivelato il migliore dei due, tenendo conto del setup seprimentale

e del numero di trials per classe. Il limitato numero di esempi da dare in pasto

all'algoritmo di classi�cazione, infatti, ha reso l'over-�tting troppo elevato per

il secondo approccio, nonostante l'uso di tecniche di regolarizzazione.

Per entrambi gli approcci i classi�catori con la piú alta accuratezza sono sta-

ti ottenuti usando features estratte sia dai segnali EEG che dai segnali NIRS.

Inoltre, la performance ottenuta nel classi�care i task eseguiti é stata signi�ca-

tivamente piú elevata rispetto ai task immaginati. L'accuratzza nel classi�care i

task immaginati non si é rivelata su�ciente per poter utilizzare questo paradig-

ma in una BCI con buone prestazioni. Questo risultato puó essere spiegato con

il fatto che i soggetti non avevano alcuna esperienza nell'immaginare i movimen-

ti. Inoltre, probabilmente sarebbe stato necessario un feedback piú articolato

per comunicare ai soggetti in real-time quale classe veniva riconosciuta durante

gli esperimenti.

Il ruolo dei segnali NIRS e delle features estratte da essi si é rivelato estrema-

mente importante per la classi�cazione. Le features utilizzate hanno reso la

risposta dei classi�catori molto piú veloce rispetto alla letteratura, rilanciando

il ruolo del NIRS nella ricerca in ambito BCI. I risultati, in conclusione, dimo-

strano il bene�cio di un approccio ibrido con EEG e NIRS alla classi�cazione

di task motori, rispetto all'uso degli stessi segnali usati separatamente.
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Chapter 1

Introduction

1.1 Project Presentation

The thesis is divided in 6 di�erent chapters, each one with a di�erent purpose.

The chapters can be read separately, but in order to have an overview of the

work it is suggested to go through the chapters sequentially. The present chapter

explains how the thesis is organized and gives a brief summary of the other

chapters; moreover it explains what is the aim of the work. Chapter 2 introduces

the �eld in which the present study is inserted. It explains what is a Brain-

Computer Interface and what is the state of the art in the literature. Chapter

3 deals in detail with the methods used in the work, from the data acquisition

to the data classi�cation and evaluation passing through the signal processing.

Chapter 4 presents the results of the methods and tries to give a meaningful

explanation in the context. Chapter 5 draws the conclusions and it discusses

issues and problems as well as positive aspects and future development. Section

5.7 sums up the entire project and concludes the thesis.

1.2 Aim of the Work

The aim of the work is mainly to develop the Brain-Computer Interface (BCI).

At the start of the project, in fact, there was no previous study on the topic, and

the main goal was to develop and implement the tools and programs to be able

to collect, analyze, and use the BCI. This included the design of the experimen-

tal setup and procedure, the development of the real-time feedback application
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for the data acquisition part, and the investigation of di�erent methods to �nd

the most suitable con�guration in which Electroencephalography (EEG) and

Near-infrared Spectroscopy (NIRS) can be combined to yield a robust BCI. The

EEG-NIRS combination in the BCI �eld, in fact, is poorly understood. One of

the purposes of the project is to understand whether a hybrid BCI including

EEG and NIRS can be bene�cial and feasible. In particular, the use the Com-

mon Spatial Patterns method, which has been widely studied for EEG-based

BCI, is applied for NIRS and compared to more standard processing and feature

extraction methods. Another key point of the project is the use of a minimal ex-

perimental setup distributed only on the motor cortex, in order to allow a faster

setup in a possible product development and/or clinical translation. With the

same philosophy, the experimental procedure is also shortened, yielding a small

number of trials available for optimizing the classi�cation. The performance and

the applicability of the algorithms is therefore tested in a situation that could be

assimilable to a clinical environment. Lastly, in the study both motor execution

and motor imagery are involved, and one of the aims is to understand whether

no experience in the latter is an important factor in the system performance,

since none of the participants have had ever before experienced motor imagery.

2



Chapter 2

Background

The background chapter is divided as follows: section 2.1 introduces the basic

concepts and principles of Brain-Computer Interfacse, section 2.2 describes how

the motor cortex and the motor control work, sections 2.3 and 2.4 present an

overview of the recording systems used in the project, with particular focus

on motor tasks, and section 2.5 reviews the state-of-the-art about EEG-based,

NIRS-based, and EEG-NIRS-based Brain-Computer Interfaces.

2.1 Brain-Computer Interfaces

A Brain-Computer Interface (BCI) is a system that measures Central Nervous

System (CNS) activity and translates it into arti�cial commands to replace,

restore, enhance, supplement, or improve the natural CNS output [66].

The CNS is the part of the nervous system that includes only the brain and

the spinal cord. Almost all BCI research has been focusing on measuring the

signal from the brain itself. The great challenge of Brain-Computer Interfaces is

to manage to decode brain activity without being invasive with the patient-user,

i.e., acquiring signals from outside the brain. Di�erent modalities of signals, rep-

resenting and giving information about various aspects of the complex activity

of the CNS, can be used for BCI purpose, such as signals measuring the elec-

trical activity of populations of neurons, the magnetic �elds induced by their

activity, or the metabolic activity. The di�erent modalities will be discussed in

detail later on in this section.

Let us now make a step back in the past, to understand when, where, and

3



2.1. BRAIN-COMPUTER INTERFACES CHAPTER 2. BACKGROUND

how everything began. In 1924, Professor Hans Berger from the university of

Jena, Germany, made an astonishing discover: the electrical activity of the brain

could be measured by electrodes placed on the scalp, without the need to sur-

gically open the scalp and place the electrodes right on the brain. Berger was

inventing a new and non-invasive way to investigate the brain activity and func-

tions: the Electroencephalography (EEG). Unfortunately, Berger's work, which

culminated in several articles on the use of EEG for clinical diagnosis (Berger

1929, [3]), was prematurely shut down in 1938, when the German government

forced him to an early retirement. His pioneering work was starting to be in-

ternationally recognized from the scienti�c community, and a young American

neurophysiologist, Hebert Jasper, exported the EEG technique for the �rst time

in the USA in 1935. Jasper was so thankful to Berger's work, that in 1938, just

before WWII, he expressed his holiday greetings to the German neurologist with

the drawing shown in Figure 2.1. The drawing can be interpreted as a very early

Figure 2.1: Herbert Jasper's drawing to Hans Berger, an early idea of BCI.

Brain-Computer Interface: brain signals, in fact, �ow out from the head and

are interpreted and translated in another arti�cial output, such as the English

language.

Although the idea of interfacing the human brain with a computer or a

machine was certainly earlier, the �rst appearance of the term Brain-Computer

Interface was in 1977, coined by Jacques Vidal [62, 61]. In his works, Vidal used

VEPs (Visual Evoked Potentials) to determine the direction of the gaze, with the

purpose of controlling a cursor. Throughout the years, the term Brain-Computer

Interface has been juxaposed with the term Brain-Machine Interface (BMI).

This term was initially used to indicate direct cortical stimulation [21]; later it

started to refer to systems that control external machines from cortical activity
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recorded from implanted microelectrodes [9]. At present the two terms (BCI

and BMI) are considered synonyms and they are completely interchangeable. In

this work, the word Brain-Computer Interface will be used, because it suggests

a wider range of applications and more �exibility (the word machine seems too

static with respect to the idea of computer).

BCI can be furtherly classi�ed depending on their implementation:

Dependent/Independent: A dependent BCI uses signals that depends on

a natural CNS output, for example muscular activity. An independent

BCI, instead, uses signals that do not produce a CNS output, e.g., motor

imagery or attention level [69].

Hybrid: A hybrid BCI uses di�erent kind of brain signals. The term is not

limited to those BCIs that use di�erent modalities (e.g., EEG + NIRS or

EEG + Magnetoencefalography), but it can also identify BCIs that use

the same modality, in two diverse ways, for example an EEG-based BCI

that produces its output from Sensory Motor Rhythms (SMRs) and Visual

Evoked Potentials (VEPs).

Synchronous/Asynchronous: A synchronous BCI is not self-paced and the

user can communicate with the BCI only in de�ned time frames, which

are usually indicated by either visual or acoustic cues. On the other hand

an asynchronous BCI does not require external cues and the user can

communicate with it every time.

With this classi�cations, the aim of this work expressed in section 1.2 can be

re-formulated. For motor execution the BCI would be dependent, hybrid, and

synchronous, while for motor imagery it can be de�ned as independent, hybrid,

and synchronous. The only di�erence between the two paradigms is in the

dependency of the output command on natural CNS output.

How do Brain Compute Interface work? How can they translate the user

mental states into application commands? A BCI, �rst of all, must have four

di�erent components. It has to measure brain activity, it has to provide feed-

back, it has to be real-time, and it must be intentional [17]. While the �rst

three components are milestones of a BCI system, the intentionality can be ar-

gued. In fact, some consider a BCI also a so called passive system that does

not require an intention by the user, but is based only on its state (e.g., an

automatic brake system for lack of driver's attention). On the contrary, active

BCI provide control and communication [17]. To understand how a BCI works,
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let us use Fig. 2.2 and 2.3 as support. Fig. 2.2 shows a general scheme of

a Brain-Computer Interface: brain signals are acquired and processed in real-

time. The processing consists of a pre-processing part (usually �ltering and

normalization) and a feature extraction step, that extracts particular character-

istics from the signals, that are used by the translation algorithm to produce

outputs to command and application, e.g., a computer program, a wheelchair

or the grasping of a robotic hand. While Fig. 2.2 only show the �nal use of a

Figure 2.2: Basic design and operation of a Brain-Computer Interface: brain
signals are acquired and processed. Then features are extracted from them and
a translation algorithm is used to output commads to a device from the feature
set. (Figure taken from [69]).

BCI, i.e., the online or feedback application, in order to develop the algorithms

to output the commands (translation algorithms) another phase is needed: the

training or calibration phase. The translation algorithm, in fact, is usually a

classi�cation or regression algorithm that needs to learn the patterns and char-

acteristics of the data in order to produce new output once it is presented new

data. This kind of machine learning algorithms fall in the category of supervised

learning methods, because they need a set of good or right examples to under-

stand what is the best model to produce the desired output (the examples).

For a better understanding of the process, Fig. 2.3 shows the two di�erent
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phases of the supervised learning paradigm applied to an EEG-based BCI. The

calibration phase precedes the feedback phase on a temporal line. First of all,

for the training of the classi�er/translation algorithm, the subject must per-

form a series of tasks multiple times (in this case left- and right-hand motor

imagery), to build the so called training set used to learn the patterns in the

signals. From the classi�ed trials (examples), signals features are extracted,

e.g., powers in di�erent frequency bands or variances of di�erent channels. The

machine learning algorithm creates a model, or more generically a set of rules,

that maps the distributions of these features into outputs that minimizes the

errors between the right examples provided (in the �gure left-hand imagination

is class -1, while right-hand is class +1) and the algorithm outputs. Once the

algorithm is trained, it can be used for the real-time feedback application: from

new brain signals features are extracted and used by the trained classi�er to

output commands to an application. The application itself will be the medium

through which the loop between the user and the BCI is closed.

Figure 2.3: Detailed scheme of the supervised learning paradigm applied to
an EEG-based BCI: in the calibration phase, the classi�er is trained using the
training data. The classi�er is then used in the feedback phase to compute new
outputs given new EEG signals. (Figure taken from [5]).

As far as the possible use of BCIs, the applications are diverse. As stated in

the de�nition given at the very beginning of this section, the BCI output could

serve as replacement, restoration, enhancement, supplement, or improvement.
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Let's give some concrete examples of BCI for all these possible purposes [66]:

Replacement: A BCI could serve as replacement for lost natural functionali-

ties and output due to impairment or injuries. An example could be the

use of a BCI to control the direction of a wheelchair in disabled people or

one to select letters and compose sentences for a person who can no longer

talk.

Restoration: Although restoration and replacement might seem quite alike,

they are slightly di�erent. In fact, as explained above, while a BCI

could replace a lost function with a completely arti�cial device such as

a wheelchair, it could also restore a function no longer accessible, e.g.,

arm movements in a paralyzed person, by triggering an electrical stim-

ulation of the muscles. In this case the functionality of the arm itself

would be restored by intervening on the limb directly, without the use of

a completely and external device.

Enhancement: A BCI could enhance capabilities already present in a person.

Think about a very demanding task such as driving for a long distance:

in this perspective a BCI could be used to detect a lack of attention in the

driver, preventing an accident. The BCI would augment the performance

of the person in the task.

Supplement: A supplement to the natural CNS output could be given by

means of a BCI. In this sense, the BCI would add further capabilities to

the natural muscular output: for example one could control an external

robotic arm with the brain and use it in combination with his/her natural

arms.

Improvement: It has been proven that rehabilitation success (e.g., in stroke

patients) is higher when the patient actively participate in the physiother-

apy sessions by thinking of moving his/her impaired arm, for example,

while the physiotherapist actually moves it [69]. This tends to augment

and facilitate the rehabilitation of the neural pathway due to the high

plasticity of the neural system. In this framework, a BCI could be used

to improve the outcome of a rehabilitative process by triggering the on-

set of an orthotic device when the patient thinks of the movement or by

activating a Functional Electrical Stimulation (FES) on the impaired arm.
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The BCI research, given all the possible and useful applications just described, is

a fast-growing �eld that could and will help many people in improving their life

conditions. Apart from the biomedical uses, which mainly fall in the categories

of replacement, restoration, and improvement, in the last decades BCIs have

been also targeting a wider range of potiential users, overall with the purposes

of enhancement and supplement. They are starting to be accessible and low

cost and they will probably be the new hi-tech trend of the years to come,

for example for videogames and home automation. Probably, in a not-too-far

future, we will be able to interact with virtual realities and to switch on and o�

the living room lights only with our thoughts.

After this ex-cursus with a future perspective, let us go back to the BCI

system. The main complexity of interfacing a computer with a human brain is

probably the fact that we are dealing with really highly plastic and adaptive

systems, that can possibly learn one another. This is a key concept in the BCI

�eld: the computer learns the user brain activity and how to map it in output

commands; the user, during the real-time use of the system, learns to improve

his/her performance through the BCI feedback [67]. This mutual adaptation

makes it very di�cult to evaluate the actual performance of a BCI. In fact,

for the reasons expressed before, a static evaluation of the system, such as the

accuracy of the classi�er (right outputs / total outputs), is not enough, and it

should be accompanied by an online evaluation not only in terms of accuracy,

but also in terms of time, of subject satisfaction and improvement through the

use. A global evaluation that takes into account all these possible factors and

variables is usually very time consuming and di�cult to perform. On the other

hand, a static evaluation is clearly the base of the BCI e�ectiveness, and it can

be seen as a quantitative starting point to improve the user BCI performance.

A metric that is usually suitable to evaluate many aspects of a BCI system is

the Information Transfer Rate (ITR), that depends on the number of classes

used, on the time needed to classify, and on the classi�cation accuracy [5]. ITR

is measured in bits/minute, and it actually indicate the amount of information

that a user can communicate to the BCI system in a minute.

All Brain-Computer Interfaces start from the same point: acquiring or mea-

suring brain activity. The measurement of brain activity can be done in many

ways, di�ering from each other in terms of technology, invasiveness, and nature

of the recorded signals. Brain activity can be measured from three di�erent as-

pects: as electrical, magnetic, and metabolic activity. The �rst one is the result
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of billions of neurons that talk to each other through action potentials or spikes

which have an electric nature: they are �ows of ions, which makes the de�nition

of electric current. The global electrical and highly dynamic activity, for the

well-known relation between electrical and magnetic �elds (Gauss - Faraday-

Neumann laws) can be recorded also by looking at the magnetic �elds pro-

duced by this activity. Whereas electrical and magnetic activity are extremely

connected and correlated, the metabolic activity represents a completely dif-

ferent phenomenon: the consumption of energy from the brain. Usually the

metabolism is measured through bio-markers, for example one can measure the

concentration of hemoglobin, which is the carrier of oxygen in blood, in a re-

gion of the brain and relate it to the actual energy consumption of that region.

The following will give a quick and concise review of the di�erent techniques to

measure brain activity in its many natures.

As far as electrical activity, electroencephalography (EEG) has been intro-

duced and will be treated in detail in subsection 2.3. More invasive techniques

allow us to obtain higher quality signals in terms of Signal-to-Noise Ratio (SNR)

and spatial resolution. The electrocorticogram (ECoG) uses a grid of electrodes

placed just above the cortex on the arachnoid, and the scalp must be surgically

opened. ECoG can acquire signals from a huge portion of the brain with a rel-

atively high spatial resolution (2-10 mm). The most invasive technique to mea-

sure electrical activity of the brain is the Local Field Potential (LFP) recordings:

LFPs are microlevel phenomena recorded within the cortex by microelectrodes

inserted inside the brain. In particular, LFPs can record the synaptic activ-

ity of neurons within ∼1 mm and action potentials within ∼0.1 mm from the

electrode tip [66]. Although their extremely high spatial resolution, it would be

di�cult to cover large areas of the brain using LFPs, and for this reason they

are minimally used for BCI purposes.

The recording of the magnetic activity of the brain is called Magnetoence-

falography (MEG). The main advantage of MEG with respect to EEG (here we

compare MEG with EEG because of their non-invasive nature) is that the skull

and other tissues separating the brain from the outside are transparent to mag-

netic �elds; however, the orientation of magnetic sources play an important role

making the MEG sensor selectively sensitive to sources of di�erent orientations.

Metabolic or functional activity can be recorded through three di�erent tech-

niques: Positron Emission Tomography (PET), functional Magnetic Risonance

Imaging (fMRI) and Near-infrared Spectroscopy (NIRS) (the latter will be dis-

cussed in detail in section 2.4). Due to its very low temporal resolution (∼1
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frame every 40 s), cumbersomeness, and cost, PET has not been targeted as a

possible BCI signal acquisition system. fMRI use for BCI applications could be

feasible in terms of temporal resolution, on the order of 1 s, but it is de�nitely

prohibitive for the non-portability and cost of the system. The only suitable

metabolic signal that satis�es the BCI requirements for temporal resolution and

portability is the NIRS, which will be discussed in detail in section 2.4.

The next section introduces the basic mechanisms involved in motor control

which modulate the non-invasive measurements that are used in the current

work.

2.2 Motor Control and Motor Cortex

The development of the BCI described in this work relies on motor-related brain

activity. This section has the purpose of introducing some general concepts

about the complex and not entirely understood neural mechanisms underlying

motor tasks. First of all, Fig. 2.4 shows the actors mainly involved in motor

control. M1, colored in green, is the primary motor cortex and it has been

identi�ed and studied since 1870, when Eduard Hitzig and Gustav Fritsch dis-

covered that the electrical stimulation of that part of the cortex resulted in

the movement of controlateral parts of the body [66]. M1 is the main area

(primary) involved in motor execution, but other areas, such as the Premotor

Cortex (PMC), the Supplementary Motor Area (SMA), the Posterior Parietal

Cortex (PPC), and somehow the primary Somatosensory cortex (S1) actively

participate in the motor control process.

One of the most important discoveries about how the motor cortex function-

ality was made by Pen�eld, a pioneer neurosurgeon who mapped for the �rst

time the somatotopic organization of the primary motor cortex [41]. His studies

led to the familiar Pen�eld's (or motor) homunculus, displayed in Fig. 2.5. The

areas devoted to control more complex parts of the body, such as hands or the

face, are spatially more extended than others mapped for easier motor control

functions, like the leg or the arm (made up of a less number of bigger muscles).

The somatotopic organization of M1, though, is not as simple as depicted in

Pen�eld's homunculus. More accurate cortical maps were obtained later, e.g.,

by Park et al. [39], using microstimulation of the primary cortex in monkey.

They demonstrated that di�erent areas of M1 are involved in the control of

distal and proximal parts of limbs and body parts. For the aim of this study,
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Figure 2.4: Motor cortex areas involved in motor control: M1 - Primary Motor
Cortex, PMC - Pre Motor Cortex, SMA - Supplementary Motor Area, PPC -
Posterior Parietal Cortex, and S1 - Primary Sensorymotor Cortex.

because non-invasive brain imaging cannot detect such small spatial features,

as explained in sections 2.3 and 2.4, Pen�eld's homunculus can be considered

an appropriate model to deal with the somatotopicity of the motor cortex.

Motor control has been widely studied, mainly through spike recordings and

neuronal �ring rates, which carry the information of when and to what extent

a neuron �res action potentials, i.e., communicates with other neural circuits.

By investigating the associations and response of neurons in di�erent cortical

locations, many aspects of motor control have been understood and the role of

di�erent motor areas have been identi�ed. Of course, due to the complexity of

brain connectivity and neural circuits, many aspects of motor control are still

unknown, but an overview of the basic mechanisms involved in the control of

movements can be outlined.

Motor control can be seen as a set of functions that are hierarchically orga-

nized and performed in series. The hierarchy concept can be treated having in

mind four di�erent dimensions: time, encoding, complexity, and source [66].

� The time dimension usually refers to the di�erence between planning and

execution of a movement. Straightforwardly, planning precedes execution

12
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Figure 2.5: Pen�eld's homunculus. The drawing shows how the primary motor
cortex (M1) is somatotopically organized, i.e., di�erent motor cortex areas map
the movements of di�erent body parts.

on the time scale, and di�erent motor areas are involved: planning mainly

takes place in the PMC, while execution is caused by activation in M1.

Under the hierarchical point of view, therefore, PMC precedes M1 in the

time dimension.

� The encoding dimension represents the level of abstraction in which a

movement is described. For example, a movement can be thought as a

target position, or, in a less abstract way, as a set of movement to reach

that position, or, in the most concrete view, as a precise sequence of mus-

cular contraction to achieve the di�erent movements to reach that position.

M1 neurons encode the kinematics of a movement [12], i.e., the position of

the di�erent joints and its derivatives (velocity and acceleration), as well

as the direction of the movement (M1 are directionally tuned, i.e., their

�ring rate is higher when a movement is performed in a certain direction

[16]). The PMC, instead, appears to be involved more in the target lo-

cation rather than kinematic and dynamic aspects of the movements [2].

Also in the encoding dimension PMC hierarchically precedes M1.

� The complexity dimension refers to the di�erences between simple and

complex movements. A complex movement can be seen as a sequence

of simpler movements performed in series, but it is not always the case.

13
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Sometimes a complex movement requires a higher level control because an

elementary movement could a�ect the execution of another one. Complex

movements, therefore, are thought to be controlled by specialized neural

circuits that coordinate and connect many simple movements. One of the

main area involved in complex movement execution and coordination is

the SMA.

� The source dimension indicates the di�erence between an internal or an

external initiation of a movement. For example, a pianist can play reading

the music (external initiation) or by heart (internal initiation). Experi-

mental evidence suggest that when the initiation is internal, that is com-

pletely volitional, the SMA is the main area involved, whereas when the

movement is external, the PMC plays an important role [31]. It is inter-

esting to observe how neurons belonging to M1, which are more involved

in the execution of the movement, do not di�erentiate between internally

and externally generated movements, providing support for the fact that

M1 succeed both PMC and SMA in the hierarchical organization.

PPC and S1 areas have not been mentioned yet. The PPC contains areas

devoted to the visual information processing, and it is involved in associating

stimuli coming from di�erent sensory inputs. This activity is strictly related

to motor control, for example in the feed-forward mechanisms that adjusts the

movements in order to catch a �ying object perceived by the visual system. The

S1 is important for motor control mainly because of the proprioception system,

which consists of muscle spindles and Golgi tendon organs, and informs the CNS

about the kinematics (position, velocity, and acceleration) and dynamics (load

and torques) of the di�erent body parts. Proprioception is clearly extremely

important in motor control mainly for its feedback.

Motor control, as described so far, appears as a set of articulated mechanisms

that can be seen from di�erent perspectives. Nevertheless, the cortical activities

which have been treated are not accessible with non-invasive measurements

techniques. The next two sections describe the Electroencephalography and

Near-infrared Spectroscopy techniques, with particular interest in how the over

described motor control mechanisms are projected and related to the measured

activity.
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2.3 EEG (Electroencephalography)

EEG, as introduced brie�y in 2.1, is a medical imaging technique that reads

scalp electrical activity generated by brain structures. Electroencephalography

is de�ned as the electrical activity recorded from the scalp surface after being

picked up by metal electrodes and conductive media [34]. The electrical activ-

ity measured on the scalp is hypothesized to be generated by changes in the

membrane potentials of somas of large populations of pyramidal cortical neu-

rons, which can be excitatory (EPSP - Excitatory Post Synaptic Potential) or

inhibitory (IPSP - Inhibitory Post Synaptic Potential). The modulation of a

post-synaptic neuron body would not be detectable from scalp recording. The

oscillations of EEG signals must derive from the synchronous activity of tens of

thousands of neurons [36].

EEG signals represent the di�erence in potential between two electrodes, an

active electrode and the so-called reference electrode. The electrode placement

adhere to a standard that was �rst introduced by Jasper in 1958, the 10-20

system [20]. The name recalls the fact that electrode locations are determined

by measuring the distance between two �duciary points, nasion and inion, and

dividing it in portions of 10% and 20%, as shown in Fig. 2.6. The original 10-

20 locations allows the placement of 19 electrodes homogeneously distributed

on the scalp. More recently, the international 10-20 con�guration has been

extended (American Electroencephalography Society, 1991 [52]) to the 10-10

system, which allows a larger number of electrodes, as shown in Fig. 2.6, panel

C.

The �normal� EEG signal is usually composed of di�erent brain waves that

can be observed by means of spectral analysis. Some of those rhythms are

so prevalent that they can also be observed from raw EEG signals, such as

α activity, that can be, in most of cases, easily detected when subjects relax

and close their eyes. Brain waves are classi�ed depending on their frequency.

Usually, for EEG, 5 di�erent waves can be recognized: δ-band (1-4 Hz), θ-band

(4-8 Hz), α-band (8-13 Hz), β-band (13-30 Hz), and γ-band (30-50 Hz).

Another identi�ed rhythm, which is extremely important for sensorimotor

modulations, is the µ rhythm. µ rhythm is between 8-12 Hz and it is located

mainly over the motor cortex. It was �rst identi�ed by Chatrian in 1959 [6], who

called it wicket rhythm and observed that it is desynchronized during movement.

The other important rhythm that is recognized as a Sensory Motor Rhythm

(SMR), in EEG recordings, is the β rhythm. The blockage of a rhythm due to
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Figure 2.6: A: lateral view of 10-20 system electrode placement; B: top view
of 10-20 system electrode placement; C: top view of electrode locations for the
extended 10-10 standard con�guration.
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a motor task is usually addressed as Event Related Desynchronization (ERD),

while the reappearance of the activity when the movement is ceased is known

as Event Related Synchronization (ERS). SMR are modulated during motor

execution, as well as during motor imagery [45]: in particular, prior to the

movements, ERDs start in the controlateral areas, and then they spread and

become bilaterally symmetrical during the execution of the movement [54]. This

symmetry in the brain response to motor tasks makes it very challenging to

detect the side of the movements in BCI applications, and it requires complex

methods and algorithm to enhance the di�erences. Moreover, as shown in [17],

motor imagery is a skill that takes a while to be learnt (in best cases 1 to 4

hours of practice are needed to achieve an acceptable performance).

Synchronization and desynchronization of EEG signals, measured on the

scalp, re�ect the activity of a large number of neurons, and they seem very

di�erent from the neural activity presented in section 2.2. Due to the volume

conduction of the issues between the cortex, i.e., the main source of the activity

captured by EEG, and the EEG electrodes, such as cerebro-spinal �uid, skull,

and scalp (skin), the activity measured on the scalp is only a small and blurry

portion of the underlying current sources generated in the cortex, and in this

macro-scale the meaningful information that can be recorded is represented by

large neuronal population �ring synchronously and resulting in the previously

described rhythms (or bands).

2.4 NIRS (Near-infrared Spectroscopy)

NIRS is an imaging technique involving the use of continuous light to non-

invasively investigate brain tissue oxygenation. In other words, NIRS measures

the changes in the concentration of oxygenated (HbO) and deoxygenated (HbR)

hemoglobin. Hemoglobin is one of the most important protein in humans. It is

contained in red blood cells and its role is to bind with oxygen molecules and

deliver it to the di�erent parts of the body. Oxygen is then used to produce

energy, and therefore the measurement of the hemoglobin concentration can be

correlated to the metabolic activity. NIRS is a spectroscopy technique, as the

name suggests, and it estimates the hemoglobin concentration by lighting the

investigated tissue with red and infra-red light and detecting the light intensity

after it traversed the tissue.

The principle on which NIRS is based relies on the fact that the hemoglobin
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interacts with light in a di�erent way depending on its oxygenation. In a homo-

geneus medium, the attenuation of light is expressed by the Beer-Lambert Law

[64], which states that the attenuation for the i-th chromophore Ai [unitless],

de�ned as the logarithm to the base 10 of the input light, and the output light

power (Io and I), is proportional to the concentration of the absorbing molecule

ci [M], its molar extinction coe�cient εi [M
−1cm−1], and the optical path length

l [cm] (considered linear):

Ai = log10(
I0
I

) = ciεil (2.1)

The assumptions for applying Beer-Lambert Law, i.e., homogeneous medium

and linear optical path, are not satis�ed in case of NIRS, because the tissues

traversed by light from the source to the detector is highly heterogeneous and

the optical path length is not linear but it has a banana shape, as shown in Fig.

2.7a. Therefore, a modi�cation of the Beer-Lambert Law has been introduced,

and it is addressed as Modi�ed Beer-Lambert Law (MBLL) [64]. MBLL makes

use of two corrective factors, DPF [unitless] that accounts for the increased

length traveled by light, and G [unitless], which is a scattering dependent pa-

rameter (for further information on tissue optics refer to [64] and [11]). The

MBLL, though, only corrects for the non-linear path length, but it still assumes

a homogeneous medium. The MBLL, at time t and for wavelength λ, can be

written as:

A(t, λ) = log10(
I0(t, λ)

I(t, λ)
) =

∑
i

εi(λ)ci(t)DPF (λ)d+G(λ) (2.2)

where εi and ci are the wavelength-dependent molar extinction coe�cient and

concentration for chromophore i (i can be either oxy- or deoxy hemoglobin),

and d is the source-detector distance. G can be assumed time-invariant, since

the change in scattering can be neglected when compared with changes in ab-

sorption. Therefore, when considering the change of attenuation ∆A between

the initial time point t0 and a time point t1the factor G(λ) is canceled out [50]:

∆A(∆t, λ) = log10(
I(t0, λ)

I(t1, λ)
) =

∑
i

εi(λ)∆ciDPF (λ)d (2.3)

where ∆ci = ci(t1) − ci(t0). The non-homogeneity of the tissues traversed
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(a)

(b)

Figure 2.7: (a) Scheme of the banana shape optical path that light travels from
source (Emitter Optode) and detector (Receiver Optode). (b) Molar extinction
coe�cient in function of light wavelength (ε) for oxy- and deoxy- hemoglobin,
red and blue line respectively.

by light, though, causes an error in the quanti�cation of the concentration of

chromophores. For many applications of NIRS, including the one described

in this work, an exact quanti�cation of HbO and HbR concentration is not

necessary, but only the trends of the signals are needed.

The last step involved in the estimation of HbO and HbR concentration

relies on the fact that the molar extinction coe�cient ε is wavelength dependent

and it is di�erent between HbO and HbR (εHbO and εHbR). As shown in Fig.

2.7b, by sampling the attenuation at two di�erent wavelengths, usually one in

the red spectrum (around 700 nm) and the other one in the infra-red spectrum

(around 900 nm), a linear system of two equations and two unknowns can be

obtained (one equation for each wavelength, λ1and λ2, unknowns are ∆cHbO
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and ∆cHbR):

[
∆A(λ1)

∆A(λ2)

]
= d

[
εHbO(λ1)DPF (λ1) εHbR(λ1)DPF (λ1)

εHbO(λ2)DPF (λ2) εHbR(λ2)DPF (λ2)

][
∆cHbO

∆cHbR

]

and ∆cHbO and ∆cHbR are computed by solving the system. The solution with

respect to ∆cHbO and ∆cHbR is Eq. 2.4, and it is used to compute the actual

estimation of HbO and HbR changes in concentration.

[
∆cHbO

∆cHbR

]
= d−1

[
εHbO(λ1) εHbR(λ1)

εHbO(λ2) εHbR(λ2)

]−1 [
∆A(λ1)/DPF (λ1)

∆A(λ2)/DPF (λ2)

]
(2.4)

As far as motor-related changes in NIRS signals, the activation of a motor

cortical area certainly results in a hemodynamic change, revealed by the estima-

tion of HbO and HbR concentration. Nevertheless, the actual contribution of

cortical vessels in NIRS signal is a wider and more complex topic, because light,

before reaching the cortical blood vessels, passes through other non-cortical vas-

cularized tissues (such as skin and pial veins, located above the surface of the

cerebral cortex), which contribute to the detected changes. However, NIRS-

fMRI combined studies conducted on motor-related activity, such as [56, 14],

showed a high correlation between NIRS signals and blood-oxygenation level-

dependent (BOLD) fMRI images, con�rming that NIRS can be used with the

purpose of detecting changes in the hemodynamic response due to motor areas

activation.

2.5 State-of-the-art

This section presents an overview of the past and current research involving

SMR-based BCI. Other BCI paradigms exist and are used, but since the BCI

development in this project can be considered SMR-based, only the state of the

art about this approach is covered. For a wider overview on BCI methods and

approaches refer to [68, 60].

This section separately treats EEG-based, NIRS-based, and EEG-NIRS-

based BCI. EEG is the oldest measuring technique for BCI and the literature

about it is huge. In the following subsection the review is particularly focused

on the methods used to process and classify the signals.
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2.5.1 EEG-based BCI

EEG is the most common and well established approach to BCI. Many dif-

ferent studies have been conducted throughout the last decades, and currently

EEG seems to be the most suitable uni-modal approach to develop high per-

formance BCI due to its high temporal resolution. The low spatial resolution

problem is tackled by means of di�erent techniques that allow us to increase

the Signal-to-Noise Ratio (SNR) of the signals, managing to achieve high ac-

curacy and performances. Nevertheless, several variables must be considered

to describe a BCI. The �rst great di�erence among BCI studies is about the

paradigm involved in the motor tasks, which can be either motor execution or

motor imagery. In the latter case, as explained in section 2.3, the experience of

the subjects should also be taken into account. Other factors are the number

of classes involved in the classi�cation (binary or multi-class), the number of

trials per class that are used for training, the experimental design, the signal

processing involved, the classi�cation methods, and the performance of the sys-

tem, which can be expressed as accuracy or Information Transfer Rate. Since a

detailed and comprehensive review including all this aspects would be too wide

and inadequate for the purpose of this work, here particular focus is given to the

signal processing methods applied to separate the di�erent classes. It should be

emphasized that signal processing and classi�cation methods are greatly cor-

related, in the sense that their choice is not independent, but often a certain

analysis method calls for a speci�c classi�cation approach. Due to the previ-

ously described ERD/ERS and the somatotopical distribution of motor related

activity, most of the methods presented in various ways extract features that

represent the frequency, time-frequency, and spatial contents of EEG signals

from di�erent channels.

The �rst approach describes the frequency-content of each measurement

channel with auto-regressive (AR) estimates of signal spectra. AR estimate

is a parametric method to compute the power spectrum of a signal and to rep-

resent it with a small number of coe�cients, which are then used to extract

features to classify the signals as in [42]. A more sophisticated approach derived

by AR, implemented in [46] and [43], involves the adaptive estimation of AR

coe�cients (AAR) by means of Kalman �lter.

Another approach used for EEG processing is wavelets. The Wavelet Trans-

form (WT) projects the signal on a family of frequency bands either con-

tinuous (CWT) or discrete (DWT). WT allows to represent the signal in a
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time-frequency representation, which is clearly bene�cial in the detection of

ERD/ERS patterns. Wavelet approaches can vary regarding feature extraction,

selection, and classi�cation methods, as shown in [18], [65], and [70].

The third most common method to classify EEG signals related to di�erent

motor tasks makes use of Common Spatial Patterns (CSPs). CSPs are used in

this project with a regularization approach and are described in detail in the

Methods chapter, section 3.2.2. Brie�y, CSPs act overall in on the spatial con-

tent of the signals, optimizing linear spatial �lters to maximize the separability

between classes. CSPs have been widely used in SMR-based BCI, for exam-

ple in [30], [44], and [5]. The latter work presents an exhaustive and complete

description and review of the method.

Every methodology over described has advantages and disadvantages, and it

should usually be considered the general framework of the study, including all

the variables named at the beginning of this section, in order to fully appreciate

and evaluate each of the methods. Whereas for EEG the literature is rich

and full of well established and interesting approaches, for NIRS-based BCI the

state-of-the-art is much more circumscribed, due to the NIRS late appearance as

communication system for BCIs. The following subsection reviews the studies

performed in NIRS-based BCI involving motor-related tasks.

2.5.2 NIRS-based BCI

The �rst study investigating the use of NIRS for BCI was made by Coyle et

al. in 2004 [7], followed by another one in 2007 by the same authors [8]. The

two studies are very similar regarding the instrumentation and the experimental

procedure. In particular, in [7] a single NIRS channel centered on C3 position

of the EEG 10-20 system (see Fig. 2.6) was used to detect hand motor imagery,

while in [8], two channels were placed in correspondence of C3 and C4 with

3 healthy subjects involved. Online feedback based on previous hand-gripping

execution tasks was given to the subjects to enhance the performance. The

Mindswitch paradigm allowed the user to select or not a particular goal (on-

o�). NIRS signals, in particular HbO, showed a peak in the response around

5-8 s, making the response quite slow for BCI purposes, despite the overall good

accuracy (75% on average in [7] and around 80% in [8]). These two papers

represented an important incentive in the consideration of NIRS for BCIs, but

they certainly had the limitation of performing only a binary on-o� classi�cation

between rest and an unde�ned motor imagery task.

22



2.5. STATE-OF-THE-ART CHAPTER 2. BACKGROUND

In 2007, Sitaram et al. [53], studied the use of NIRS for the classi�cation of

right-left motor imagery on 5 healthy subjects. Using 20 measurement channels,

they performed an o�ine analysis, in which a feature vector was extracted from

every 10 s trial, and they managed to classify right and left motor imagery

with an average accuracy of 73%, using Support Vector Machine (SVM), and

89% using Hidden Markov Model (HMM). Clearly, since the construction of the

feature vector was done using an 8 s interval after the stimulus onset, the main

drawback of this approach would be its long delay in a real-time performance, for

which the time factor is extremely important. On the other hand, they managed

to recognize with particularly high accuracy the laterality of the motor imagery.

Kanoh et al. in 2009 [22] investigated the changes in mental strategies in-

volved right-hand motor imagery sessions performed in 5 consecutive days. They

used a feedback based on the average concentration of HbO on 3 measurement

channels (around C3, Cz, and C4), and they showed how the feedback becomes

more robust as the three subjects used the online system. They also observed

that the spatial distribution of HbO concentration (visualized with 52 channels)

presents di�erences before and after training. Despite the interesting conclu-

sions, the article cannot be considered as a comprehensive BCI study, but it

focused on the importance of the feedback with a NIRS-based approach. More-

over, also in this case the paradigm only involved either rest or right-hand motor

imagery, i.e., an on-o� approach.

More recently (in 2013), Naseer et al. [32] performed a study about motor

imagery of right and left wrist �exion. 10 healthy subjects had to imagine the

execution of the movements after a preparatory training session. From the 17

channels, a single feature set was extracted for every trial. Features consisted of

the average of HbO and HbR values over the task period and the slopes of the

two sets of signals, computed as the coe�cients of the line �tting the data. The

accuracies obtained were 78% using average features, and 87% using slope ones.

The main issue of this approach, in spite of the high classi�cation performance,

is its inapplicability in real-time systems, since the feature vector is computed

using the entire task signals.

As shown in this brief NIRS-based BCI review, the main concern about the

use of NIRS signals is the delay of the hemodynamic response, which makes the

online performance quite low in terms of Information Transfer Rate.
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2.5.3 EEG-NIRS hybrid BCI

A multi-modal EEG-NIRS approach for BCI applications have been minimally

investigated in the literature of the BCI �eld. Both the systems, though, have

issues of diverse nature, such as spatial resolution for EEG and temporal reso-

lution for NIRS: the combination of them, therefore, can no doubt improve and

enhance the robustness and reliability of the application and have been studied

in di�erent ways. Surprisingly enough, only three articles of an hybrid EEG-

NIRS approach for BCI have been found in the literature, probably due to the

technical di�culty in the simultaneous and non-standardized setup of the two

imaging systems together.

Khan et al. in 2014 [23] implemented a system capable of recognizing 4

di�erent states. The EEG was used to detect motor related activity changes to

control right and left commands, while NIRS signals from the prefrontal cortex

(PFC) allowed to choose between forward and backward by means of arithmetic

mental tasks. In 2014 as well, Tomita et al. [58] studied the possibility of

integrating NIRS with EEG in a steady-state visual evoked potentials (SSVEPs)

paradigm, which is a complete di�erent approach from the one used in this work

and therefore will not be discussed.

The only work investigating whether NIRS signals can enhance the per-

formance in SMR-based BCI is by Fazli et al. in 2012 [13]. This study is of

particular interest for the current work, because it represents the �rst (and only)

attempt to combine EEG and NIRS for motor classi�cation. The purpose of Fa-

zli's work was to investigate the performance of EEG- and NIRS-based classi�ers

on Right-hand - Left-hand motor execution and imagery tasks. In particular,

the experimental setup consisted of 37 EEG electrodes, distributed along the

whole head, and 24 NIRS optodes (12 sources and 12 detectors) arranged in

24 measurement channels. The experimental design included 48 trials per class

for motor execution and 100 trials per class for motor imagery. It is important

to specify that motor imagery tasks were divided in two blocks: during the

�rst run a subject-independent classi�er gave feedback to the subjects. During

the second run a subject-speci�c classi�er, estimated from the data of the �rst

block, was used to improve the e�ectiveness of the feedback (this approach has

been recently developed in [63] and it is called Co-adaptive calibration). The

o�ine performance of the data involved the use of subject-dependent temporal

�lters and CSP for the EEG, while for the NIRS the baseline of each trial was

subtracted (this kind of processing is unlikely applicable online for an asyn-
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chronous BCI) and the average of HbO and HbR served as features. Features

were computed in time segments of 1 s with 50% overlap between each other.

The results showed that the improvement in accuracy when EEG and NIRS

features are combined using a feature selection method is signi�cant. The accu-

racy was computed dynamically, obtaining an accuracy signal over the trial (see

section 3.4 for a detailed explanation of the dynamic accuracy computation).

The accuracy peaks obtained were 93.2% for motor execution (when combining

EEG and HbR derived features) and 83.2% for motor imagery (with EEG-HbO

combination). The authors showed that EEG and NIRS provide information

which is complementary in terms of mutual information. On the other hand,

as shown in Fig. 2.8 in the second and third rows, the trend of the accuracy

over the trials for NIRS signals is very slow, reaching a peak in accuracy after

6.5-7.5 s from the stimulus onset.

With the work just described in mind, it is important to emphasize the

di�erences and developments proposed in this study. First of all, the current

study has been performed with a remarkably shorter training time (in [13] the

training lasted around 4 hours): this allows us to evaluate the capability of the

system when only a small dataset is available (only 25 trials per class for both

execution and imagery). The second main di�erence, which can be considered

an improvement, regards the number of classes: whereas a binary classi�cation

was performed by Fazli et al., in this study 4 di�erent motor tasks are involved,

namely, right-arm, left-arm, right-hand, and left-hand. Moreover, here it has

been tried to develop a compete asynchronous BCI, which needs the online

detection of rest or task before performing any further classi�cation. Under

the setup point of view, the EEG electrodes density is lighter, with 21 active

electrodes around the motor cortex only (see Fig. 3.5). For the NIRS the same

number of optodes is used, i.e., 24, but they are arranged in 34 measurement

channels. For the experimental procedure, such an advanced feedback system

was not available, and an EEG-based online feedback was implemented based

on SMR, telling the subject whether rest or task was detected. The signal

processing of the EEG data is similar, apart from the use of regularization

techniques for CSP, while for processing the NIRS data, in order to limit the

delay observed in the accuracy trend, new methods were investigated, including

CSP and slope-based features. Particular attention should be given to the fact

that both EEG and NIRS signals analysis, although performed o�ine, were

treated with methods easily implementable in an online system.
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Figure 2.8: Figure from [13] that shows the trends of the accuracy of the di�erent
subjects (colored lines) and their average (black thick line). The �rst column
represents executed movements, while the second one shows motor imagery
performance. The �rst row re�ects the accuracy of EEG-based classi�er, the
second one of HbO-based ones, and the third one of HbR-based ones.
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Chapter 3

Methods

The following chapter will explain in details all the materials, instrumentation,

and methods used in this work in order to achieve the aim of developing the

multi-class Brain-Computer Interface. The �rst section (3.1) deals with the

data acquisition, from the instrumentation to the protocol de�nition and exper-

imental setup. Particular emphasis is given to the explanation of the real-time

EEG-based feedback C++ software. Section 3.2 describes how the raw signals

are processed to extract informative features, while section 3.4 treats the clas-

si�cation and validation aspect. Section 3.5 explains what kind of hypothesis

tests are performed in order to �nd di�erences among tasks (e.g., motor execu-

tion and imagery), and processing techniques. Finally, section 3.6, deals witht

the design of an online setup to evaluate the BCI in real-time.

3.1 Data Acquisition

3.1.1 Instrumentation

The following section will describe all the hardware and software used. All

software were running on a Windows 7 workstation (WS) for recording and

visualization, and on a Windows 7 laptop (LT) for presentation and feedback

purposes.

EEG : The EEG system used for this project was microEEG from BioSignal

Group [1]. The microEEG System is capable of recording 26 channels, it is easy

to set up, it is portable, battery powered, and connects wireless via Bluetooth
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Figure 3.1: microEEG System.

to the controller software, namely, microEEGCtrl, running on the WS. Despite

its small size and ease of use, the system performs as standard clinical EEG

systems: the only small di�erence, mainly due to the concentrated electronics,

is in the lower amount of 60 Hz power line [37], which did not a�ect the current

study because all EEG signals were �ltered o�ine and online with a low-pass

frequency cuto� of 25 Hz (within β band). As far as recording speci�cations, the

Analog-to-Digital Converter (ADC) resolution is 16 bits, the input impedance

is greater than 100 MΩ, and the Common-Mode-Rejection-Ratio (CMRR) of

the operational ampli�er is 85 dB. The compact microEEG system (weight: 88

g, size: 9.4Ö 4.4Ö 3.8 cm) is shown in Fig. 3.1. The controller software, mi-

croEEGCtrl, allows us to search and connect to the detected device (the device

needed to be previously paired to the WS). The two main uses of microEEGC-

trl were the resistance check and the signal visualization, which allowed us to

assess (from an engineer) the EEG quality. The resistance threshold for which

an electrode was considered good was set to 20 kΩ, but sometimes even higher

resistances have been accepted if a lower resistance could not be reached, after

assessing the time course of the EEG signal. The visualization of the signals

have been also extremely useful for performing basic EEG tests, such as α-wave

test and eye blinking, and to assess whether there was a major interference with

the NIRS lighting system and the passive EEG electrodes. The electrodes were

standard Ag/AgCl ones, and in order to reduce the resistance between the elec-

trode itself and the scalp, a conductive gel was injected inside the hole of the

electrode holder with a syringe. The electrode holder is shown in Fig. 3.3a.
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NIRS : The NIRS acquisition system was the NIRScout, by NIRx [35], in the

extended con�guration, that is equipped with 128 LED sources and 64 �ber-

optic-wired detector (Si photodiode, sensitivity < 1 pW) for a maximum of

4096 measurement channel (Fig. 3.3a shows the system optodes). The LED

light wavelengths used for oxy- and deoxy- hemoglobin estimation were 760 nm

(red) and 850 nm (infra-red). The sources and detectors can be arranged in

di�erent ways, and every source can build up a measurement channel if the

emitted light is acquired by one or more detectors. The sampling frequency

can range between 2.5 and 62.5 Hz. The sampling frequency depends on the

number of sources, detectors, and channels and can be increased by changing

the lighting pattern on the recording software (NIRStar, running on the WS).

In fact, the system has the capabilty of lighting up more than one source at

the same time, resulting in a faster sampling rate. On the other hand, the

simultaneous channels should be far enough apart to avoid cross-talk between

di�erent channels [35]. In the present work the latter capability has been used

and simultaneous channels were always at least at 10 cm distance, assuring

the absence of cross-talk and allowing a relative high sampling frequency of

10.42 Hz (12 sources, 12 detectors, 34 channels). Another important feature of

the NIRScout system is the possibility of receiving and acquiring trigger/event

signals through a 8 bit TTL parallel port (up to 28 − 1 possible codes). This

capability has been used to keep log of the experiment events and to synchronize

NIRS and EEG signals. The entire NIRScout system, along with the running

NIRStar software, is represented in Fig. 3.2.

CAP : The cap adopted for the equipment of EEG electrodes and NIRS

probes was actiCAP 128, produced by BrainProducts. The cap is easy to wear,

relatively comfortable, as con�rmed by the experiment subjects, and it takes

only some seconds to put it on the subject's head and fasten the chin belt. As

the name suggests the cap is capable of holding up to 128 electrodes, but in

this study we integrated the NIRScout holders inside the cap holes as well as

EEG electrodes for multi-modal imaging. In order to maintain the proper dis-

tance between NIRS sources and detectors (3 cm, as speci�ed in manual) plastic

holders provided by NIRScout were used. To keep the relative position between

NIRS probes and EEG electrodes, custom made laser-cut plastic holders were

applied, consisting of a bigger circular hole of 7 mm radius for the electrode

and a smaller 3.5 mm radius hole for the NIRS probe holder. Since, due to the

disposition of the cap holes, electrodes and optodes happened to be at di�erent
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Figure 3.2: NIRScout instrumentation and workstation rinning NIRStar soft-
ware.

distances, the center of the plastic holder holes ranged from 2.25 cm to 2.6 cm.

Fig. 3.3b shows the internal part of the cap, with the NIRS and EEG-NIRS

holders, while Fig. 3.5b shows the cap completely set up.

PRESENTATION : The software for presenting and guiding the subject

through the experiment was Presentation, from NeuroBehaviouralSystems, run-

ning on the LT. The software is designed for precise stimulus delivery and accu-

rate event logging, it can interface external hardware devices for input/output

communication, it is highly �exible and programmable. The programming lan-

guage is a high level C-like object-oriented language, and it allows the pro-

grammer to create and precisely deliver stimuli of di�erent nature (visual, and

auditory), to include them in trials with controlled timing, and to �exibly decide

the order the trials succeed each other and interact with external input/output.

In particular the LT was equipped with a standard 25-pin TTL parallel port,

which was used to send di�erent event codes to the NIRS and EEG system,

while a USB port was used as an input port to receive EEG-based real time

feedback (explained in detail in section 3.1.3).

SYNCHRONIZATION : Since the acquisition systems were not the same

for EEG and NIRS signals, they needed to be synchronized for o�ine analy-
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(a) (b)

Figure 3.3: (a) Sensors, from left to right: NIRS LED, NIRS Si photodiode,
EEG Ag/AgCl passive electrode. (b) EEG-NIRS laser-cut holders (pointed by
blue arrows) and NIRScout holders (ocra arrow) between NIRS sensor plastic
spacers.

sis (conversely, for real-time applications, synchronization is not needed for the

data �ows are exactly simultaneous). The LT parallel port was directly inter-

faced with the NIRScout TTL input/output connector by means of a standard

parallel cable. For the EEG it has been observed that a direct interface with the

microEEG event channel resulted in a highly noisy signal, full of spiky artifact

due to the fast transition of the digital signals. In order to avoid this problem,

an opto-isolator (Motorola 4N26) was used to uncouple the parallel port digital

signal and the microEEG event channel. Only 1 pin out of the 8 data pins of the

parallel port was opto-coupled to the microEEG, so the recognition of the event

code was done using the NIRScout input trigger log rather than the microEEG

event channel signal. For synchronization, at the beginning of the experiment,

one single 255 code was sent by Presentation software and captured by both the

NIRScout system and the microEEG event channel (as a high-amplitude spike,

over 1-2 V).

3.1.2 Experimental Setup

Fig. 3.4 shows how the di�erent systems described in section 3.1.1 are connected

and work with each other. The subject interacts with the system by looking at

the screen of the laptop on which Presentation is running. Presentation keeps log

of the events of the experiment by sending triggers of di�erent codes depending

on the experiment phase through the parallel port. The latter is connected to

the parallel event/trigger input port of NIRScout, and a single pin of the port
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Figure 3.4: Experimental setup block diagram.

is sent to the opto-isolator and recorded by the microEEG event channel. The

NIRScout LEDs are wired through normal twisted cables, while the detectors

are �ber-optic wired. Due to the nature of the LED wires, particular precaution

must be taken during the disposition of EEG electrodes and NIRS LED probes.

In fact, if the electrode and LED wires are too close to each other, a strong

interference is found in the EEG signals and can be often detected just by

inspecting the EEG signal. In order to avoid this issue, when all the probes

are in place and the NIRS channels have been calibrated, the source wires are

pulled up and hung on supports, so that the distance between the electrode

wires and them is increased (as shown in Fig. 3.5b). The EEG is recorded

by microEEG, which sends the data stream in real-time to the WS (which is

paired to the device through a Bluetooth dongle). Through microEEGCtrl

application the EEG signals can be visualized in real-time and streamed by

third-party application. In the current setup, the EEG data were broadcast by

a custom-developed C++ application (programmed in Microsoft Visual Studio

Express 2013), that performed the online normalization, µand β band �ltering,

and average power computation (an extensive explanation of the application can

be found in 3.1.3). The EEG band-powers averaged over custom chosen EEG

channels were sent via UDP-IP local connection to a custom Python application

designed for real-time plotting of the signal. The experiment consisted of a

motor execution and a motor imagery part: the green arrows in Fig. 3.4 were

active only during the motor imagery block, with the purpose of giving real-

32



3.1. DATA ACQUISITION CHAPTER 3. METHODS

time feedback to the subject performing the experiment. In particular, one

single signal of µ or β EEG band-powers computed by the C++ application

and averaged over signi�cant channels chosen by the operators (usually from

the ones in correspondence of the motor and/or parietal cortex) was sent back

to the LT and read by Presentation via USB connection. For the USB host-

to-host connection a normal USB cable could not be used, for it can interface

only a host (a computer) with a device (such as a printer). To connect two

computers a particular integrated circuit (IC), namely, a FTDI, has to be serially

connected to both the USB ports. The FTDI circuit usually comes integrated

in a cable and it provides connectivity between a USB and a serial UART

(Universal Asynchronous Receive Transmit) port. The interface of an FTDI

cable has a USB connector at one edge and Tx (Transmit), Rx (receive), Vcc,

and GND pins at the other. The communication between the two computers

is achieved by connecting the Tx pin of one FTDI cable to the Rx pin of the

other, and vice versa.

The cap was equipped with 23 EEG electrodes (21 recording channel plus

REF and GND), 12 NIRS sources, and 12 NIRS detectors combined in 34 mea-

surement channels. As explained in the Introduction (section 1.2), one of the

main aim of the entire project has been the investigation of a BCI system whose

measurement probes are distributed only in a restricted area throughout the mo-

tor cortex. For this reason, EEG electrodes lay all between the F and the P

parallel of the 10-20 system, apart from GND that was placed in Fpz. As shown

in Fig. 3.5a, the list of EEG electrodes, from left to right and from top to bot-

tom was: F3, Fz, F4, Fc5, Fc1, Fcz (REF), Fc2, Fc6, C5, C3, C1, Cz, C2, C6,

T4, P3, Pz, and P4. It is important to address the fact that the placement of

the reference in Fpz does not a�ect the main part of the EEG analysis because

of the use of spatial �lter, which result in a change in the reference of the signals.

Although the GND electrode was not placed within F and P parallels, as that

would violate the design for which all the electrode and probes were within the

F and P parallel, its location was chosen for its ease to setup and to get good

conductivity, being placed on the forehead. Actually the GND, since all the

measurement are bipolar, is used only to subtract di�erential voltage to mea-

suring and reference electrodes, and it is considered as common mode voltage

when it comes to di�erential ampli�ers. Given that, the GND electrode could

be placed, in theory, everywhere on the body. The NIRS probes were organized

in a 4 by 3 grid for each of the two emispheres as shown in Fig. 3.5a. Sources

and detectors were alternating to allow to pair the same source with multiple
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(a) (b)

Figure 3.5: (a) EEG electrodes and NIRS optodes con�guration on the cap.
(b) Real picture of a subject wearing the cap completely mounted (with EEG
electrodes, NIRS sources and detectors).

detectors. Each source was paired with a minimum of two detectors for corner

sources, and a maximum of 4 detectors for internal ones. NIRS channels have

been labeled according to their relative position (Anterior = A, Posterior = P,

Medial = M, and Lateral = L) with respect to 10-20 system EEG location: for

example the channel anterior to C3 was named C3A. With this in mind, the

list of the channels from left to right and from top to bottom was: Fc3A, Fc1A,

Fc2A, Fc3A, Fc3L, Fc3M, Fc1M, Fc2M, Fc4M, Fc4L, C3A, C1A, C2A, C4A,

C3L, C3M, C1M, C2M, C4M, C4L, Cp3A, Cp1A, Cp2A, Cp4A, Cp3L, Cp3M,

Cp1M, Cp2M, Cp4M, Cp4L, Cp3P, Cp1P, Cp2P, and Cp4P. The labeling of the

NIRS channel has demonstrated to be extremely straightforward and useful in

the signal visualization and processing.

The following section explains the experimental procedure for the data col-

lection.

3.1.3 Experimental Procedure

For the study, 15 healthy subject participated in the experiments. The subject

were all male, aged between 22 and 54 (only one subject was above 30 years old).
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An important factor that needs to be taken into consideration is the fact that

the subject never experienced motor imagery before: this topic will be discussed

in more detail in section 5.3. The use of the NIRS technique forced the choice

of having only male subjects. In fact, the hair represent the most important

issue in the NIRS setup, preventing the sources and detectors to be in direct

contact with the scalp and yielding bad quality signals. The subject were seated

on a comfortable chair during the entire duration of the experiment, facing the

LT screen at a distance of approximately 1 m. The subject preparation of the

subject include the following steps:

� measurement of the nasion-inion distance

� cap placement in the correct position with Cz at a half of the nasion-inion

distance

� conductive gel application as shown in [26] and resistance check through

microEEGCtrl

� optical gel application to all NIRS probes, moving aside the hair in order

to allow the probes to couple directly with the scalp

� NIRS calibration with NIRStar and adjustments to probes

� EEG-NIRS interference check

Although the subject have been selected basing on the amount and thickness of

hair, it must be said that for some of them (at least 4) the NIRS setup was far

from perfect. When the setup time exceeded one entire hour (in some cases even

some more) it was decided to settle and accept the lower quality of some of the

channels. Often, though, noise was present only in relatively high frequencies,

and it has been �ltered out using the pre-processing described in section 3.2.1.

For further processing techniques, in particular for the regularization of the

Common Spatial Patterns (section 3.2.2), the entire set of channels was needed

for all the subjects: no channels, thus, could be discarded from the analysis.

Protocol : A single experiment consisted of three separate parts: the motor

execution part, the motor imagery �practice�, and the actual motor imagery

part. The entire experiment, not including the setup, lasted a maximum one

and half hours.

The �rst part was the motor execution one; the subject was instructed to

perform 4 di�erent upper limb tasks, namely, right- and left- hand-gripping and
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right- and left- arm-raising. The subject was instructed to repeat continuously

every movement for at approximately 1 Hz during the task phase of every trial.

The experiment was guided by the screen of the LT, on which visual stimuli were

presented. The stimuli, for this part, were images with a black background and

with a big colored text in the middle. The texts presented for both the motor

execution and motor imagery part were: REST, READY, RIGHT ARM, LEFT

ARM, RIGHT HAND, and LEFT HAND. In order to ease the subject reaction

when presented a task, the 4 di�erent movement had di�erent colors: red for

right arm, blue for left arm, magenta for right hand, and cyan for left hand.

The motor execution part, as well as the motor imagery one, consisted of 100

trials divided in 5 blocks of 25 blocks each. Trials in each block were presented

in a random order, but the balance of the tasks was preserved for each block, so

that in every block the subject was asked to perform each movement 5 times.

Every trial started with the REST stimulus for approximately 5 s, followed by

the READY one for 1 s and one of the 4 task stimuli for 6 s. After every

block the subject could rest and relax for some seconds or start back with the

next block at his pleasure. The motor execution part, thus, lasted a couple of

minutes more than 20 minutes, usually between 22 and 25 minutes.

During the motor execution part, the C++ application running on the WS

estimated online the EEG �ltered signals and output (µ and β band-powers of

every channel) parameters to perform a normalization of the feedback. This step

was necessary to know a-priori the range of the output signal and to provide a

signi�cant feedback. The detailed explanation of the feedback application can

be found in the next paragraph. The feedback consisted of a big circle at the

center of the LT screen with a color code: red meant that a resting state was

detected, while green, on the contrary, stood for motor imagery detection. The

color ranged from the red to green passing to yellow and it could be every hue

of the RGB model. The motor imagery �practice� was designed to allow the

subject to familiarize with the feedback and to �nd the best strategy for motor

imagery. This part of the experiment lasted from 5 to 20 minutes, depending

on how comfortable the subject felt in using the feedback.

The third and last part of the experiment was the motor imagery part. The

only di�erences between the motor imagery part and the motor execution part

were the presence of the feedback and the timing. The organization and division

of blocks and trials were exactly the same. Feedback was given to the subject

only during the task because during the resting phase it could have made him

focus more on the color of the circle than on the relaxation itself. The timings
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were longer than the motor execution part, because it has been observed that

subject found more di�cult to stop imagining the movement instantaneously:

each trial started with the REST stimulus for approximately 8 s, followed by

the READY one for 1 s and one of the 4 task stimuli with the feedback circle

for 7 s. The motor imagery part, thus, lasted around 27 min plus the inter-block

breaks.

Real-time Feedback Application : The C++ application used to compute

the real-time feedback was developed with a highly object-oriented paradigm.

This yielded an organized and thoughtful design, in which many di�erent objects

with di�erent purposes strictly interact with each other in order to achieve the

�nal purpose of the program. In order to give an overview of the program, every

class is brie�y described by its task and how it talks with other classes.

Main The main, which is not actually a C++ class, �rst of all opens the COM

interface to interact with the microEEGCtrl application. Only if a mi-

croEEG is connected and the streaming status is RECEIVING, informa-

tion about the number and the name of channels are their names are

retrieved from microEEGCtrl and a UDP port is set for the data broad-

cast. The user is then prompted for: the COM port on which the USB

transmission is going to be, whether online normalization has to be per-

formed or parameters have to be loaded from �le, whether the feedback

should be µ or β power band, and which channels have to be averaged for

the feedback. After that, a Controller object is created with all these pa-

rameters and the Start() member function of the Controller object created

is called.

Controller The Controller class only contains a StreamingThread and a Pro-

cessingThread member variables. When the Start() method is invoked the

two StreamingThread and ProcessingThread objects �join� their threads.

The threads start and keep running in parallel until the application is

stopped. For the thread classes, boost libraries have been used (please

refer to www.boost.org site for further information)

StreamingThread The StreamingThread class, as the name suggests, con-

tains the actual thread. The thread is assigned to a the Stream() member

function. This class contains a MicroEEGController class, which is de-

signed for the low-level streaming of the data. The StreamingThread class
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has two important member variables: tw_reached, where tw stands for

time window, and stopped, which are both boolean. Whereas the stopped

variable task is straightforward (it is set to true when the user decides to

stop the application by pressing any key), the role of the tw_reached �ag

needs more explanation. This �ag is set to false from the class constructor,

and the streaming of the data is done only if this �ag is false. The actual

timing is given by the receiveEEG() method of the MicroEEGConnector

class, that, when a time window span is reached, returns a true boolean;

the return value of the MicroEEGConnector receiveEEG() function is as-

signed to tw_reached. When tw_reached is true, the streaming stops for

a moment to allow other classes (in particular the ProcessingThread one)

to copy the raw data, and it is then reset to false once the data are copied.

This mechanism assures that the raw data are always consistent and in-

creases the robustness of the program.

ProcessingThread The ProcessingThread class contains a thread that is as-

signed to the Process() function. This class contains, as member vari-

ables, a StreamingThread, an EEGHandler, an USBController, and an

UDPClient object, among others. The StreamingThread member variable

is necessary, because it registers the ProcessingThread with the Stream-

ingThread object that is streaming the data. The Process() function,

which is the worker of the class, keeps polling (checking) the status of

the tw_reached �ag of the StreamingThread variable. When it is found

to be true, it copies the new raw EEG data, resets tw_reached to false

(so that the streaming resumes), and calls the HandleEEG() method of

the EEGHandler class, which does all the low-level processing and returns

the normalized band-powers for µand β of all the channels. The feedback

value is then computed with the µ or β powers by averaging over the user-

chosen channels. The feedback value is then sent via USB by means of

the USBController object, while both the µ and β grand averages (user-

chosen) and the average over C3 and C4 are sent via UDP to the Python

application through the UDPClient object, for the real-time plot. C3 and

C4 were chosen to monitor the motor cortex only.

MicroEEGConnector This class is the one that interface directly with mi-

croEEGCtrl to stream the data via UDP. The streaming is done by means

of a socket using WinSock library from Windows. It is the receiveEEG()

that gives the timing to the rest of the program, and, as anticipated be-
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fore, it returns a boolean which is true if a time window has been reached;

otherwise it returns a false. The timing is managed using the Queue class.

When a new datagram is received, it is decoded, i.e., translated from a

packet of bytes into meaningful µV values, and the raw values of every

channel are enququed in a Queue object, after dequeuing the oldest values.

By setting the length of the Queue as the number of EEG samples in a

time window (in this case, since the EEG is sampled at 250 Hz and the

time window is 1 s, every Queue has a length of 250), it is assured that

in every Queue there is a the last 1 s of each EEG channel. The overlap

between consecutive time windows is managed as follows: the number of

samples that corresponds to the not overlapped values is computed, e.g.,

if the overlap is 90% (as in this case), the number of new values to be

added to the Queues will be 0.1 x 250=25, and a counter is increased ev-

ery time a new UDP datagram is received. When the counter is equal to

the number of non-overlapped samples, it means that a time window is

reached. The counter is then set to 0, and the Queues values are returned

as a reference to a vector of vectors (the Queue is parsed to a vector).

The returned matrix has size of the number of channels by the number of

samples per time window and it represents the raw EEG data that will be

processed.

EEGHandler This is the class that performs all the EEG processing. The

main member function is HandleEEG() and it takes as input the raw

EEG matrix and returns two di�erent vectors, one containing the µ band-

powers and the other with the β band-powers of every channel. Since the

computation of the FIR (Finite Impulse Response) �ltered signal is very

time consuming due to the convolution operator, every channel is pro-

cessed using a separate thread, making the processing massively parallel

and less time consuming. Another hint used to diminish the time com-

plexity is to �lter only the new values, i.e., the non-overlapped ones, and,

after having processed them, to shift all the resulting vectors backwards

to make room for the values of the next time window. With this strategy,

only 25 samples over 250 (the non-overlapped 10%) undergo the convo-

lution operator with the �lter coe�cients. Another comment is needed

for the normalization and saturation step; in order to perform online nor-

malization, mean and standard deviation of the signals and of the output

values are computed as shown in Appendix A. For normalization, Eq. 3.1
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in section 3.2.1 has been used. The log2 transform of the output signals

has the purpose of making the output distribution more normal around

the 0, which results in a more balanced feedback. The saturation stage has

the role of limiting the e�ect of EEG artifacts of non-cerebral origin, such

as EMG activity, talking, or yawning. This said, the processing consists

of:

1. Band-pass FIR �ltering (using MATLAB-designed �lters)

2. Saturation of the signals at ±15 µV

3. Normalization of the µ and β �ltered signals

4. Low-pass �ltering (moving average over 250 samples) of the absolute value

of the signals (envelope)

5. Average over the time window

6. Normalization of the output values

7. log2 transform of the output values (to adjust for right skewness)

8. Saturation of the output signals at ±3

USBConnector This class is used to send data via the USB port. It uses boost

serial port classes, creating a serial_port object with the port de�ned by

the user. The writing member function, USBWrite(), takes as input a

single unsigned char and writes it on the speci�ed serial port using boost

write_some method. When the user terminates the program the port is

closed.

UDPClient This class is used to send out data to the Python application for

the real-time plot. As the MicroEEGConnector class, the UDP connection

is performed using WinSock libraries. In particular, the member function

sendData() allows to send out a bu�er of char of any length. The values

to be sent via UDP, thus, must be parsed to a char array before they are

sent.

The application has the feature of allowing the estimation the normalization

parameters beforehand and to load them in following sessions. This capability

has been added because, due to how the parameters are computed (see Appendix

A), some time is needed in order to obtain signi�cant output values (usually at

40



3.2. SIGNAL PROCESSING CHAPTER 3. METHODS

least 5-7 minutes). In the current experimental procedure, thus, the parameters

were estimated during the motor execution part and then loaded for the motor

imagery part. This strategy made the feedback e�ective and well-normalized as

soon as the subject started the �practice� session.

3.2 Signal Processing

3.2.1 Pre-processing

The pre-processing of the signals, described in this section, includes all the

operations and transforms which are used in order to obtain signals on which

the feature extraction step can be applied either directly or by means of further

and more sophisticated techniques (such as Common Spatial Patterns, in section

3.2.2).

The starting point are the raw signals, i.e., the recorded EEG µV values and

the light attenuation detected by the NIRS detectors for the red and infra-red

wavelengths (wl1 and wl2 ). Since the two modes are acquired with di�erent

hardware, the �rst step is the synchronization of the signals. This is achieved

by clipping both the EEG and the NIRS signals from the �rst occurrence of the

triggers on. In order to make the EEG and NIRS signals have the same time

span, also the tails of the longer signal (either EEG or NIRS) are clipped. After

synchronization, both the signals are from 0 s to the same terminal time.

The pre-processing of the EEG and NIRS consisted of band-pass �ltering and

normalization; however, for the NIRS signal, the oxy- and deoxy- hemoglobin

(HbO and HbR) were computed before every other operation by means of the

Modi�ed Beer-Lambert law (MBLL, in Eq. 2.4).

The choice of the �lters regarded both the type of �lters (Finite Impulse

Response - FIR, or In�nite Impulse Response - IIR) and the cuto� frequen-

cies. It was anticipated in section 3.1.3 that µ and β bands were used in the

study. In particular, µ band was �ltered between 8-12 Hz, while a restricted β

band was considered, ranging 18-25 Hz (same band-pass used in [30]), because

it is mainly in those bands that Event Related Synchronization and Desyn-

chronization (ERS/ERD) take place [43]. In order to �lter out both the DC,

the extremely low frequencies, and the heart beat, NIRS signals were �ltered

between 0.01-0.2 Hz.

Regarding the type of �lters, both FIR and IIR have their advantages and

disadvantages. In short, the main advantages of FIR �lters are the fact that they
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Figure 3.6: Group delay of a 250-coe�cient FIR �lter (red horizontal line) and
a 4th-order IIR Butterworth �lter with band-pass between 8 and 12 Hz.

are all-zeros �lters, and thus they always assure the stability of the system. In

addition, their phase response is linear, meaning that the �ltered signal has no

distortion. On the other hand, in order to obtain a high order in the amplitude

response (dB/decades), an elevate number of coe�cients is needed; however,

the group delay, i.e., the lag in number of samples by which every frequency

is delayed, is linear with respect to the number of coe�cients. Given n =

the number of coe�cients, if n is even, the group delay of the FIR �lter is

constant and is Φ = n/2; if n is odd, Φ = n+1/2 . On the contrary, IIR �lters

are not assured to be stable for they also contain poles. Their group delay

is not constant, which causes distortions in the output signals; however, their

performance in terms of steepness of the amplitude response is higher with

respect to FIR �lters [38].

In the current study for the EEG signals, IIR �lters (Butterworth 4th-order)

have been preferred to FIR ones. In order to obtain an acceptable �lter perfor-

mance using a FIR �lter, in fact, more than 200 coe�cients would have been

needed, meaning that the output signals would be delayed by around 0.5 s,

given the EEG sampling frequency of 250 Hz. Fig. 3.6 shows the group delay

of a FIR �lter (250 coe�cients) and an IIR (Butterworth 4th-order). It can be

observed that the FIR �lter has a constant group delay of 125 (0.5 s delay),

while the IIR one has a maximum of 40 samples of delay (160 ms delay). The

phase displacement of di�erent frequencies does not exceed 20 samples in the
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�ltered band, i.e., the distortion caused by the �lter is not excessive. Moreover,

band-power features are extracted from EEG signals and for this reason the

distortions, which appear in the time domain, can be neglected.

For the NIRS signals, the choice of IIR �lters over FIR ones was dictated

by a simple fact: too many FIR coe�cients would have been needed to �lter

out the DC, yielding an unacceptable delay of the �ltered signals given the

low sampling frequency of the NIRS system (10.42 Hz). Filtering out the DC

is needed to avoid low-frequency trends of the signals. Fig. 3.7a shows the

di�erence between an HbO signal �ltered between 0.01-0.2 Hz (red line), and

the same signal only low-pass �ltered at 0.2 Hz (blue signal). It is clear that

the low-pass �ltered signal has a low descending trend from the beginning to

the end, which is not present in the band-pass �ltered one. The upper cuto�

frequency of the band-pass �lter was chosen at 0.2 Hz (as in [13]) because higher

frequency contents actually contains only noise with respect to the purpose of

this study. Fig. 3.7b shows how the heart beat component is more present using

a band-pass between 0.01-0.5 Hz (blue line) than using 0.01-0.2 Hz (both �lters

were Butterworth, 2nd-order). This said, the �lter chosen for the NIRS signals

was a 2nd-order Butterworth band-pass �lter between 0.01-0.2 Hz. The order is

only 2nd because higher orders yielded an unacceptably elevated group delay.

Normalization was performed by means of a Gaussian transform, where every

signal was subtracted by its mean µ and divided by its standard deviation σ:

xnorm(t) =
x(t)− µ

σ
(3.1)

Before the normalization step, the EEG signals were clipped between±20µV ,

in order to prevent any artifact to a�ect excessively the estimation of mean and

standard deviation.

EEG-NIRS GUI : This short paragraph will describe the design and the

main features of a custom-designed MATLAB GUI, used to pre-process and

visualize the data. A GUI can speed up and ease the screening of the data

and the choice of some pre-processing parameters (such as the choice of the

�lters) when dealing with multiple channel signals, even more for multi-modal

imaging. Without the GUI, in fact, the visualization of time signals, spectra

or even combination of signals of di�erent nature (e.g., EEG band-powers and

HbO signals) would have been extremely tiring and time consuming. The GUI

has been designed for combined EEG-NIRS only, and it cannot be used for
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Figure 3.7: (a) Comparison between low-pass (0-0.2 Hz, blue) and band-pass
(0.01-0.2 Hz, red) �lters on NIRS HbO signal (b) Comparison between 2 band-
pass �lter: 0.01-0.5 Hz (blue) and 0.01-0.2 Hz (red).
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visualization of the two kind of signals separately.

The GUI presents itself as shown in Fig. 3.8. It is composed by four main

panels, namely, LOAD, PRE PROCESS, VISUALIZE, and ANALYZE. The

ANALYZE feature will not be discussed here, but it was designed to add further

GUI for more speci�c purposes. From the LOAD panel the user can easily load

raw or pre-processed data (the latter can be saved from the GUI itself after

the pre-processing). When a Load button is clicked, it opens a window and

the user can select the �les that s/he wants to open. After loading raw data

(in the extension of .edf and .wl1 for EEG and NIRS, respectively) from the

pre-processing panel, the �lter cuto� frequencies can be decided with the sliders

or by manually inserting the text box at their sides. It must be emphasized that

the pre-processing performed for visualization is di�erent with respect to the one

described in section 3.2.1. The main purpose of the GUI is in fact, the screening

of the data, and in order to achieve a better visualization, zero-phase 4th-order

Butterworth �lters have been used both for the EEG and the NIRS signals. The

user can also apply notch �lters to eliminate the power line interference at 50

or 60 Hz. The user can also de�ne what EEG channels s/he wants to consider

for visualization and the con�guration of the NIRS channels (source-detector

pairs) using .txt �les. Once the data are pre-processed they can be saved and

visualized in the VISUALIZATION panel. The following are the time signals

and spectra that can be plotted: raw NIRS signals (wl1 and wl2 ), raw NIRS

power spectra (HbO and HbR), pre-processed EEG spectra, and pre-processed

time signals (EEG, HbO, HbR, HbT - total hemoglobin concetration, EEG +

HbO, EEG + HbR, HbO + HbR, EEG + EEG, EEG + HbO, EEG + HbR,

and HbO + HbR). For all the time signals involving the EEG, the latter can be

visualized as the pre-processed signal, or �ltering it in the di�erent EEG bands

described in section 2.3. Another very important feature is the possibility of

visualizing the EEG signals as band-power in the di�erent frequency bands (as

in Fig. 3.8). Last but not least, through the EVENT toggle button the user can

visualize the di�erent trigger events received during the experiment; di�erent

colors are assigned to di�erent event codes, as shown in Fig. 3.8.

The GUI just described has been demonstrated to be extremely helpful in

order to pre-process the signals and decide the best �lter parameters.
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3.2.2 Common Spatial Patterns (CSPs)

This section is about the Common Spatial Pattern (CSP) technique: a powerful

transformation of spatially distributed signals in order to increase di�erences

between mental states. It includes an overview of the CSP algorithm, including

principles, implementation, and limitations. The next section (3.2.3) deals with

the regularization techniques that are applied to overcome the limitations, in

particular the over-�tting phenomenon. CSPs have been widely used for EEG-

based BCI [30, 48, 5, 44, 13], and in this project a possible application on NIRS

signals has also been investigated.

The Common Spatial Pattern performs a data-driven, supervised transform

of the data that maximizes the di�erence in the variance of two di�erent classes

[5]. The output of the CSP algorithm is a matrix W ∈ RNxN, where N is the

number of channels (either EEG or NIRS channels), on which the original data

are projected. Given x(t) ∈ RN, the CSP �ltered signals are:

xCSP (t) = WTx(t) (3.2)

The resulting signal, xCSP (t), is still of dimension N . Every column of W ,

namely wj ∈ RN, is considered a spatial �lter, because it project the vector x(t)

by weighing every channel with a di�erent component (element of wj). The

result of the multiplication of a single time sample x(t0) of dimension Nx1 by

wj will be, in fact, a scalar value. Considering a generative model, in which a

set of sources at time t is s(t) ∈ RNis projected on the scalp, where the signals

are measured, by means of a matrix A = (W−1)T , the recorded signals can be

written as:

x(t) = AT s(t) =

N∑
j=1

ajsj(t) (3.3)

where aj , i.e., the j-th column of A, is called a spatial pattern. It is easy to

demonstrate that by �ltering x(t) with the spatial �lter wj only the j-th source

sj(t) is isolated and the sources s(t) are identical the xCSP (t) de�ned in Eq.

3.2:

xCSP (t) = WTx(t) = WTAT s(t) = WT
[
(W−1)T

]T
s(t) = Is(t) = s(t) (3.4)
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where I is the NxN identity matrix. In the �lter-pattern view, the matrices A

and W are also called mixing and de-mixing matrices, respectively. In fact the

matrix A mixes the generative source activities among all the recording channels

(Eq. 3.3 is a forward model), while the matrix W goes back, or in other word

de-mixes the recorded signals back to the sources (Eq. 3.2 is a backward model).

The main principle of the CSP method, considering a linear mixing model

that generates the signals [40], and assuming two di�erent sets of sources for

two separate classes, sC1 and sC2 (for the classes {1 , 2}), is to �nd the spatial

�lters that maximize the di�erence in variance in the �ltered signals. The �rst

components of the �ltered signal (xCSP (t)) will have maximum variance for class

C1 and minimum for the class C2, while the last components, on the contrary,

will have maximum variance for class C2 and minimum for C1. The extraction

of these �lters, under a discriminative view, can be seen as the optimization of

an objective function [28, 5]. Since the purpose is to maximize the covariance for

C1 and at the same time minimizing the one for C2, given the two covariance

matrices ΣC1 and ΣC2, the objective function can be written as:

J(ω) =
ωTΣC1ω

ωTΣC2ω
(3.5)

Since the �lter ω can be re-scaled at pleasure, maintaining the vector directions,

Eq. 3.5 can be subjected to the constraint that ωTΣC2ω = 1. The optimization

problem can be now solved with Lagrange multipliers [4]:

L(ω, λ) = ωTΣC1ω − λ(ωTΣC2ω − 1) (3.6)

and the optimization occurs when the derivative with respect to ω is equal to 0:

∂L(ω, λ)

∂ω
= 2ωTΣC1 − 2λΣC2 = 0⇐⇒ ΣC1ω = λΣC2ω (3.7)

Eq. 3.7 is a generalized eigenvalue problem and its solution yields a simultaneous

diagonalization of the two covariance matrices, as shown in Eq. 3.8.WTΣC1W = ΛC1

WTΣC2W = ΛC2

(3.8)
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Figure 3.9: Time signals of 1st, 2nd (top 2 rows), Last and 2nd Last (bottom 2
rows) CSP components for Right - Left classi�cation: red and blue vertical lines
represent the beginning of right and left tasks, respectively, and black vertical
lines show the beginning of rest phase. The time between the beginning of the
task and the beginning of the rest is 4 s. The �rst 2 signals have higher variance
for left tasks and lower for right ones, while the last 2 rows have the opposite
behavior, i.e., higher variance for right tasks and low for left ones.

It is important to notice thatW can be re-scaled so that ΛC1 +ΛC2 = I (I is the

NxN identity matrix) [5]. This identity regarding the eigenvalues corresponding

to di�erent eigenvectors wj is the key to increase the discrimination between C1

and C2: in fact the �rst components ofW , i.e., the �rst eigenvectors, correspond

to high eigenvalues in ΛC1, meaning that the projection of the initial signals

on those �lters will have high variance for time samples belonging toC1 class

and low variance for those belonging to C2. Conversely, the last components

correspond to high eigenvalues for ΛC2 and low for ΛC1: projections on them,

thus, will yield high variance for samples belonging to C2 class and low variance

for those belonging to C1. Fig. 3.9 shows this behavior: the two top signals

are EEG projected on the �rst and second component, while the two signals at

the bottom are projected on the last two. CSP were computed to discriminate

between LEFT and RIGHT tasks. Red and blue vertical lines represent the

beginning of the right and left tasks, respectively, while the black vertical line
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is the starting of the rest period. It can be observed that the �rst two signals

have higher variance during right tasks, and lower during left ones, and the last

two signals have higher variance for left tasks than right ones.

The application of CSP, as explained above, requires the estimation of the

covariance matrices for di�erent pair of classes. Before their computation, the

signals must be scaled and centered, as suggested in [5]:

X =
1√
T
Xoriginal(IT − 1T 1TT )

where Xoriginal is a short segment of signal corresponding to a certain class

of size NxT (where N is the number of channels and T is the number of time

points in the segment), IT is the T -dimension identity matrix, and 1T is a column

vector of ones. X is the scaled and centered matrix of size NxT that is used

for the estimation of the covariance. It should be emphasized that Xoriginal,

di�erently from what it could be inferred, does not refer to the raw data, but to

the pre-processed ones (both for the NIRS and the EEG signals). After scaling

and centering the tracts of the signals belonging to the two classes (e.g., Right

- Left or Rest - Task), the covariance matrices for the two classes are computed

by averaging the covariance matrices obtained in every trial belonging to the

class (Eq. 3.9). Let X
(k)
i ∈ RNxT be a signal segment of the k-th trial belonging

to class i. The covariance matrix for class Ci (ΣCi ∈ RNxN) is estimated as

follows:

ΣCi =
1

TCi

∑
k

X
(k)
i X

(k)T
i

trace(X
(k)
i X

(k)T
i )

(3.9)

Here, TCi is the number of trials for class Ci. In order to normalize the

covariances computed in separate trials, which, because of non-stationarities in

the signals, can have a di�erent baseline energy, each estimate regarding every

trial is divided by its trace (total amount of energy).

One of the main advantage of the CSP algorithm is interpretability. For the

reasons explained so far, it is straightforward that the �lters and the patterns

can be easily plotted on a brain map in order to visualize the activity of every

channel and relate it to a neurophysiological behavior of the brain activity.

Fig. 3.10, for example, shows the CSP estimated from the EEG data shown in

Fig. 3.9, in particular the �rst and last components, which should resemble the

minimum variance for right and left movement tasks, respectively.
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FILTER PATTERN

RIGHT

LEFT

Figure 3.10: Scalp plots of CSP �lters (on the left) and corresponding pattern
(on the right) for Right - Left motor execution classi�cation: the top row,
representing the �rst component of CSP, enhances most of all the channels
on the left emisphere, i.e., the controlateral side of right movements, while the
bottom row, displaying the last CSP components, enhances the right emisphere,
which is the controlateral side of left movements.

CSP also has well-known limitations. First of all, the main problem of this

method is its tendency to over-�t the data used to compute the covariance

matrices [49]. If the matrices are computed from a small sample size the CSP

algorithm has too many degrees of freedom with respect to the quantity of trials

provided to estimate the covariances. This phenomenon will be shown and

quanti�ed in detail in chapter 4, where a comparison between its performance

using all the data or within the cross-validation (CV, explained in 3.4) is made.

The bias of the sample-based estimate of the covariance matrices can be partially

mitigated by applying regularizing techniques, that will be discussed in more

depth in the following section. In short, regularization aims at generalizing the

covariance matrices to make them less dependent on the sample used for their

estimation. Another issue regarding CSP is inter-subject translation. Being

based on subject speci�c covariances, this algorithm tends to be extremely tuned

on each subject separately. Also in this case, though, regularization strategies

can provide help in generalizing the �lter extraction among di�erent subjects.
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3.2.3 Regularized Common Spatial Patterns (RCSPs)

In this section there are references to concepts and terms that will be extensively

treated in section 3.4; however, in order to allow an essential understanding of

the arguments, each of them is brie�y explained.

As introduced in the previous section, CSP particularly su�ers from over-

�tting, especially when few trials are available for training, i.e., to estimate the

most suitable parameters of a model that allow to predict the output (class)

from input data (feature vector). Over-�tting, in a broad sense, refers to the

phenomenon for which the estimated model adheres excessively to the data

used to estimate it, but it does not perform as well when it is applied to other

data. In a machine learning or model identi�cation view, over-�tting occurs

when the model does not generalize over new observations, but it includes also

the stochastic noise present in the training data. This phenomenon can be

quantitatively observed in the performance of the classi�cation algorithms on the

training set, testing set, or the combination of the two. In particular, over-�tting

can be identi�ed when the accuracy (correct predictions / total predictions) on

the testing set is signi�cantly lower than the one obtained on the training set.

Clearly, this issue is much more severe for small training sets, and it is also

a�ected by the number of degrees of freedom that can be tuned by the model.

In this work CSP has been applied both to EEG and NIRS signals. Because

of the very low sampling frequency of the NIRS (10.42 Hz) with respect to

the one of the EEG (250 Hz), it is likely that the NIRS signals will be more

a�ected by over-�tting than the EEG ones. Although the term is usually referred

to classi�cation or regression algorithm, it is extended to CSPs because they

perform a supervised decomposition of the signals, in other words they need

labeled data to be computed. Chapter 4 will show how CSP dramatically over-

�t the data when they are computed using the entire dataset (before CV),

instead of estimating covariances and spatial �lter within each fold of the CV.

By looking at how CSPs are computed in Eqs. 3.5 and 3.7, it is clear that the

only possible way to over-�t the data is in the estimate of the covariance matrix

of the two classes. In order to overcome the sensitivity to over-�tting, one can

add an a-priori knowledge to the model, or, in other words, regularize it. In

this case regularization can be done at two di�erent levels: at the covariance

matrix estimation or at the objective function computation level [28, 29]. In the

current study a regularization method regularizes only at the matrices level has

been used, and the second kind of regularization is only mentioned and shortly
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introduced for completeness.

The covariance matrix can be regularized as follows:

Σ̃C = (1− γ)Σ̂C + γI (3.10)

where:

Σ̂C = (1− β)sCΣC + βΓC (3.11)

In Eqs. 3.10 and 3.11, ΣC denotes the sample-based covariance for class C, Σ̃C

is the regularized estimate, sC is a constant scalar, γ and β are the regularizing

parameters (γ, β ∈ [0, 1]), and ΓC is a generic covariance matrix estimated from

all the subject data. The regularized covariance matrix can be shrunk towards

both a generic and global matrix and towards the identity matrix, by adjusting

the parameters β and γ, respectively.

The objective function can be regularized by adding a regularizing term in

it, in order to penalize solutions that do not satisfy a given condition:

J(ω) =
ωTΣC1ω

ωTΣC2ω + αP (ω)
(3.12)

The term α represents the degree to which the objective function is penalized

if it does not satisfy the prior P (ω).

There exist in the literature many kinds of regularization methods that usu-

ally di�er in the use of the regularizing parameters. In the current study it has

been decided to use the Generic Learning Regularized CSP (GLRCSP) proposed

by [29]. Generic Learning regularization makes use of both β and γ, but it does

not use α: therefore, the objective function is the one in Eq. 3.5, while it is

only the covariance matrix to be regularized. Before describing in detail how to

compute Σ̃C , which indeed is slightly more complex than Eqs. 3.10 and 3.11,

one comment is due on what the shrinkage parameters α and β are actually

doing. The parameter β, as anticipated before, make the sample-based covari-

ance tend to a generic covariance matrix estimated from all the subject except

the one for which the covariance is being regularized. This should improve the

performance of the CSP, because they are not being estimated from the train-

ing data only; however, some information about the �average� behavior among
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all the population is added. The parameter γ, instead, by shrinking toward a

scaled identity matrix, weighs less the correlations found in the training set.

Generic Learning Regularized CSP : The regularization of the covariance

matrix for each class ΣC is performed in two steps. First of all the shrinkage

towards the generic matrix is applied and afterwards the one towards the identity

matrix. In GLRCSP there is actually not a direct computation of ΣC and ΓC ;

Σ̂C in fact is computed by normalizing the sums of the sample and the generic

covariance, SCand S̃C . In particular:

SC =
M∑
m=1

SC,m (3.13)

S̃C =

T∑
t=1

SC,t (3.14)

and:

SC =
XCX

T
C

trace(XCXT
C )

(3.15)

In other words, SC,i is a covariance matrix estimated from a single trial of class

C, m and t are trials belonging to the speci�c subject or tho other subject

respectively. M and T represent the total number of trials for the speci�c

subject and the sum of all the trials belonging to the other subjects (for class

C), respectively. The �rst step of regularization allows to compute Σ̂C as:

Σ̂C(β) =
(1− β)SC + βS̃C
(1− β)M + βT

(3.16)

Eq. (3.16) shows that the shrinkage towards the generic behavior of the pop-

ulation is not a simple average between the initial covariance and the generic

one, but it also takes into account how many trials are available for the current

subject and for the rest of them.

To shrink towards the identity matrix, the latter (I) is re-scaled basing on

the total energy of the matrix computed at the �rst step (Σ̂C) and the number

of channels N :

Σ̃C(β, γ) = (1− γ)Σ̂C + γ
trace[Σ̂C(β)]

N
I (3.17)
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Eq. (3.17) yields the regularized matrix for class C. After both the sample-based

covariance matrices have been regularized, Σ̃C1 and Σ̃C2, CSP can be estimated

from Eq. (3.7) simply by substituting the sample-based covariances (ΣC1 and

ΣC2) with the regularized ones (Σ̃C1 and Σ̃C2).

It can be noticed, that in order to apply GLRCSP for a binary classi�cation,

4 di�erent parameters can be adjusted (γ1, γ2, β1, and β2). The performance

of the regularization technique can be extremely a�ected by the choice of those

parameters, but the selection of the optimal ones can be very time consuming.

The goodness of a certain set of parameters, in fact, must be computed with

CV. For k times (in this case k = 10), covariance matrices must be computed

and regularized, CSPs have to be estimated, features extracted, and classi�ers

optimized from the training set, while the accuracy is obtained from the testing

data of each fold. For example, considering the µ power EEG signals, in order

to perform a single evaluation, around 30 s were needed. If one imagine to

evaluate all the possible combinations for one binary classi�cation (in this work

at least 3 binary classi�cation are performed) of γ1, γ2, β1, and β2, constraining

their value to be [0, 0.1, 0.2, ..., 0.9], 104 possible combination could exist,

which means 300000 seconds, i.e., around 83 hours, would be needed. And

this is only for one of four signals (µ and β �ltered signals for EEG; HbO and

HbR for NIRS) and a single binary classi�cation (e.g., Right - Left). Another

faster optimization technique, from what was just said, was required in order

to regularize all the single signal covariances for the di�erent classi�cation (see

section (3.4)). Apart from the time, the over described method has also the

disadvantage of discretizing the parameters, that by de�nition are real numbers.

In order to overcome these issues, it was decided to opt for a stochastic

optimization, in particular using genetic algorithms.

Genetic Algorithm : Genetic algorithms belong to the evolutionary pro-

gramming class and are biologically inspired, resembling the way that natural

selection makes species evolve based on their �tness.

In short, the fundamental unit of genetic algorithms is a chromosome, i.e.,

a representation of a possible solution. In the current case, a chromosome will

be coded as 4 real numbers, representing γ1, γ2, β1, and β2. A chromosome

is good if it has a high �tness value, which is computed by means of a �tness

function. Related to this case, the �tness function will output the accuracy of

the chromosome using a k-fold CV. The genetic search is achieved using the
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algorithm 3.1. The new population are generated with di�erent genetic opera-

Algorithm 3.1 GENETIC ALGORITHM:
Given the population size L, and the stopping criteria Γ

1: Initialize population with L random chromosomes: xi, i = 1, 2, ..., L
2: repeat
3: Compute �tness value for each chromosome: fi = fitness(xi)
4: Rank the chromosomes based on their �tness
5: Generate a new population using genetic operators
6: until Γ not satis�ed

return xmax

tors. The selection decides how the chromosomes to be mated are selected. The

crossover operator is used to mix two di�erent solutions and the mutation oper-

ator randomly changes a solution in order to add randomness in the population.

In order to maintain the best �tness of a population in the o�spring, elitism is

used, i.e., copying the best solutions of a population in the newly generated one.

Di�erent parameters had to be set to regulate the generation of new popula-

tions and the stopping criteria: L is the number of solutions per population, N

the maximum number of generations, S is the number of stall generations, and

e is the number of elite solutions. Other genetic algorithm parameters, such as

the probability of crossover and mutation or the selection method, were left as

default (MATLAB ga() function was used). For the EEG searches (µ and β

�ltered signals), the following parameters were set: L = 10, N = 15, S = 5, and

e = 1. For the NIRS signals, since CSP and CV steps were faster due to the

lower sampling frequency, a larger population size has been used, with increased

iterations: L = 20, N = 30, S = 10, and e = 2.

The genetic algorithms are much faster than other search algorithms, but

their main drawback is that they are not assured of �nding an optimal solution.

The genetic algorithm can sometimes get stuck in local minima, and the usually

the way to avoid this issue is to run the search multiple times with di�erent initial

points. In the current work, multiple initialization is not used, since a wider

exploration of the parameter space with respect to the method, introduced in the

previous paragraph, is already performed by the application of genetic algorithm

itself. For the purpose of the study, a sub-optimal solution is acceptable when

taking in consideration the high time complexity of the problem.
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3.3 Feature Extraction

Starting from an initial set of data, in this case already pre-processed, feature

extraction consists of deriving informative values from the data. Practically,

extracting features transforms the initial set into a more compact and signi�cant

one, from which predictive models are built. For most of BCI applications,

signals are usually segmented in blocks or time windows, possibly overlapped

with each other, and for every time window a set of features is computed [66],

the feature vector. To every feature vector there is a correspondent output

value, which in he case of classi�cation is a label of a class (e.g., +1 for right

movement and -1 for left ones). After feature extraction, the initial dataset

is shrunk into a new one with M observation (representing M time windows

in the initial signals) and N features. Every observation has a corresponding

label, as anticipated before; therefore the label vector has size Mx1. In the

current work the time signals were segmented using a time window of 1 s with

50% overlap (as in [13]). These parameters were chosen because they provide

enough information in a single time segment and they can yield a relative fast

output command (1 command every 0.5).

The main role of the feature extraction step is to �ne characteristics of the

signals which are informative and signi�cant for predicting the output. This task

is usually achieved by further processing of the signal. The entire information

inside every time segment, in fact, must be collapsed into a relatively small

dimensional vector, to avoid a high dimensionality of the feature space, which

can result in a lower classi�cation performance to to lack of generalization [24,

28].

In this work, two di�erent kind of features were extracted from the EEG

and NIRS signals: one from the CSP-�ltered signals (named CSP features), and

another one from the original non-CSP-�ltered pre-processed signals (named

NCSP features). For CSP-�ltered signals, since the algorithms increase the

di�erences between classes in terms of variances, feature extraction aims at cap-

turing this di�erence. Using non-CSP-�ltered signals, especially for the NIRS,

features of di�erent nature have been used. In chapter 4, the performance of

the di�erent feature extraction methods will be shown and evaluated. Since

the feature extraction depends on the nature of the signals, it is described in

separate paragraph for EEG and NIRS.
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EEG : For the EEG, features were extracted separately from µ and β �ltered

signals. Actually, the processing for CSP- and NCSP-based features computa-

tion was exactly the same, but feature vectors di�ered in terms of number of

channels used and number of time segment features concatenated. The variance

indicator chosen was the Band-Power [45], which is equivalent of computing the

envelope of the signals. The time signals, after the band �ltering, were recti�ed

and then a low-pass �lter was used. The low-pass �lter adopted in this work

was a 250 coe�cients rectangular FIR �lter, i.e., a moving average �lter.

For the NCSP-�ltered signals, a feature vector consisted of the average of the

band-power of each EEG channel. In this case, the size of the feature vector

was 21. A variance indicator was also chosen for NCSP features because of the

stochastic nature of the EEG signal, which is usually translated into spectral

features [66]. For the CSP-�ltered signals, since most of the discriminative infor-

mation lies in the �rst and last set of components, the �rst three and last three

components were used and features were computed as the average band-power

over the time window. Due to the small dimensionality of the CSP-derived fea-

ture vector, three consecutive feature vectors were concatenated to form a new

feature vector that includes also information regarding the time evolution of the

signals [27]. After this step the feature vector became an 18 dimension feature

vector. The same concatenation was not performed for NCSP-derived features,

for it would result in a very high dimensional feature space (63 features). Fea-

tures were extracted separately from µ and β �ltered signals.

NIRS : NIRS signals were processed in completely di�erent ways to extract

CSP and NCSP features and, such as EEG, HbO, and HbR signals were treated

separately. For CSP ones, since only 10 NIRS samples are found in a time

segment, the range of the signals seemed to represent a good indicator of the

variance. It should be added that while for EEG an increase of variance is

usually perceived as an average higher amplitude, for the NIRS signals it is

easier to see it as an increase of low frequency oscillations (NIRS signals were

�ltered between 0.01-0.2 Hz). Fig. 3.11 shows how the amount of oscillations is

modulated after CSP �lters. Also for the NIRS, ranges were computed for the

�rst and last three components of the CSP-�ltered signals and three consecutive

time segment features were concatenated to give an 18 dimension feature vector.

For NCSP features, two di�erent kind of features were used: the average and

a slope indicator. Averages were computed only by extracting the mean of

58



3.3. FEATURE EXTRACTION CHAPTER 3. METHODS

Figure 3.11: NIRS HbO time series of �rst 4 (top panel) and last 4 (bottom
panel) CSP components for Right - Left classi�cation. The x-axis represents the
time [s], while the y-axis is uniteless because the signals are normalized. Red and
Blue shaded areas correspond to right and left trials, respectively. Black lines are
the beginning of rest. It can be observed that for right tasks (red areas) the �rst
components have lower oscillations, whereas they start oscillating remarkably
for left tasks (blue areas). The last components show an opposite behavior:
they have minimum oscillations for left tasks (blue areas) and maximum for
right ones (red areas).

pre-processed NIRS signals, while the slope indicator, which was demonstrated

to be very signi�cant in motor execution/imagery classi�cation in [32], was

computed as the slope of the average features, i.e., by subtracting the previous

time window average from the current one. Concatenation was avoided in order

to not increase the feature space dimension, since the number of features was

already 68 for both HbO and HbR. One last comment regards the use of the

average over a time segment as feature; in NIRS BCI literature, e.g., [13] and

[32], the average is also referred to a baseline preceding the task. Clearly, this

approach is not translatable in an online application for an asynchronous BCI,

since there is no cue when the task begins. The current study tried to overcome

the real-time inapplicability of these feature by using band-pass �lters instead

of low-pass only [13, 32].

Both the EEG and NIRS features were log2 transformed and normalized

with Eq. 3.1, in order to adjust for the right skewness of the features (the

mode of the distribution is not centered and the right tail is longer) and to

prepare to feature dataset for the classi�cation step. The classi�cation, in fact,

is performed by means of Fischer's Linear Discriminant Analysis, which works
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better when dealing with normal distributions (achieved by log transform) and

with equal variance (achieved with normalization) [10, 5].

3.4 Classi�cation and Validation

Classi�cation, in machine learning, means predicting an output class or label for

a given input vector (feature vector); therefore, it basically consists in mapping

the feature vectors with the labels of the classes.

Classi�cation is usually performed in two steps: �rst, a model or hypothesis

or classi�er is estimated from the data, so that, second, new data can be classi�ed

by means of the classi�er. In other words, a classi�er has to learn from the data

particular patterns, in order to recognize these peculiar patterns in new input

data and predict their output. In this section only a binary classi�cation is

covered in detail. The multi-class classi�cation used in the current study is, in

fact, achieved by combining multiple binary ones.

When the model is tuned too much on the particularities of the speci�c

dataset and does not aim at generalizing over new data, the estimation of a

classi�er parameters can result in over-�tting of the data used to estimate it.

In practice, over-�tting yields a much worse performance when predicting the

output of new unlabeled data. In order to overcome this issue, or at least to

quantify it, usually the initial dataset is split into a training set and a testing

set. The training set is used to estimate the parameters of the model, while the

testing one is used to evaluate the capability of generalization of the model, since

the testing data are hidden during the learning phase and they are labeled. The

performance on the testing set, therefore, can be quanti�ed in terms of accuracy:

AccTEST =
correct predictionsTEST
total observationsTEST

(3.18)

In order to evaluate the real expected performance of a classi�er, though, the

division between training and testing set is not enough. The choice of the

observations that will be part of the two sets, in fact, can bias the evaluation of

the model. For a better evaluation, a k-fold cross-validation (CV) is performed.

The k-fold cross-validation consists of repeating k times the split of the dataset,

so that the training and testing sets are di�erent for every fold. Every trial,

thus, is part of the training set for k − 1 times, and part of the training once.

Before the trials were assigned to one of the two sets, they were randomized; in
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order to compare the performance of di�erent sets of features, the random seed

of the pseudo-random generator was always the same. In each fold, a model

is estimated from the training set and evaluated on the testing one, and after

the k iterations the accuracy is computed as the mean of the k accuracies. In

this work two di�erent approaches have been used to classify the data, and as

explained later in this section, k was set to 10 or 5 (10-fold and 5-fold CV).

Accuracies were computed on a subset of the features. In particular the �rst 2

seconds of every rest and task were discarded to consider only the steady states

of rest and motor tasks.

Since in BCI application it is also important to have a temporal view, a

dynamic evaluation of the performance was performed as follows. For each

iteration:

� testing observations (n = nTRIALS

k ) were aligned and clipped in a time

scale of the trial, creating a 3D matrix X ∈ RnxTxM (where T is the

number of time segment in the trial and M the dimension of the feature

vector)

� predictions were performed using the trained classi�er (P ∈ RnxT) corre-

sponding to the correct labels L ∈ RnxT

� dynamic accuracies were computed time segment by time segment by ap-

plying Eq. 3.18 over the columns of P and L.

This dynamic accuracy resulted in a time signal over the trial length for each

classi�er, allowing to evaluate the role of time. Standard accuracy in Eq. 3.18,

in fact, is only static and does not include the dynamic aspect, which is so

crucial for BCI applications.

There are really many di�erent classi�ers that approach the problem in many

ways. Some make use of Baesyan probabilities (e.g., Baesyan Decision theory),

others use linear or quadradic models (Linear or Quadratic Discriminant Anal-

ysis), some of them try to cluster the data depending on their entropy (Decision

Trees), and others use more complicated principle and optimization techniques

that will not be discussed here (e.g., Arti�cial Neural Networks or Support Vec-

tor Machines). In the current project a Fischer's Linear Discriminant Analysis

was used and it is described in the following paragraph. The choice of a linear

classi�er rather than more complex ones was recommended by di�erent obser-

vations. First of all, when using CSP, the separability between classes is done

by the spatial �lters and a more complex classi�er is not needed; moreover the
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use of a complex classi�er would add a high number of degree of freedom in

the estimate of a model, worsening the phenomenon of over-�tting. A simple

linear classi�er was used also for NCSP features in order to obtain a standard

evaluation of the performances.

Fischer's Linear Discriminant Analysis (LDA) : As the name suggests,

LDA is a linear classi�er, i.e., it assigns predictions to a feature vector by ap-

plying a linear combination of the features. Let x be the feature vector, then:

g(x) = wTx + w0 (3.19)

The classi�er output depends on the sign of g(x): e.g. if it is positive it predicts

class +1 and if it is negative it predicts -1. Eq. 3.19 can be referred to as the

decision rule of the classi�er, and it can be graphically seen as a projection of

the feature vector x on the weight vector w. For a binary classi�cation, for

which LDA is designed, one can imagine an optimal hyperplane that divides

the feature space in two regions (one for each class); let us call this optimal

hyperplane decision boundary d. Since the classes are separated based on the

sign of g(x), it is straightforward that the decision boundary equation would be

g(x) = 0 ⇐⇒ wTx + w0 = 0. Assuming 2 points x1 and x2 that lie on d, the

following equality is satis�ed:

wTx1 + w0 = 0 , wx2 + w0 = 0 =⇒ wT (x1 − x2) = 0 =⇒ w ⊥ d

The decision boundary is, therefore, perpendicular to the weight vector w.

The classi�er training can be reduced to an optimization problem that �nds

the direction w for which the 2 classes are maximally separable. Assuming

normality and equal covariance for the distributions of the two classes, which

have means µ0, µ1 and covariances Σ0 and Σ1(= Σ), then the separation between

the classes is de�ned by Fischer as:

S =
σ2
between

σ2
within

(3.20)

where σ2
between = (µ1−µ0)(µ1−µ0)T and σ2

within = Σ0 +Σ1. The denominator,

which expresses to what extent the two distributions are �far� from each other,
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Figure 3.12: Image representing the maximized separation given by the projec-
tion on the optimized weight vector: whereas the right and left distributions are
not separable in the standard reference system, the become completely separable
if projected on w.

is to be maximized, while the denominator, which represents the �expansion� of

the distributions around their means, should be minimized in order to achieve a

better separability. By projecting S on w the estimation of the optimal weight

vector is reduced to an optimization problem, i.e., the maximization of the

objective function:

J(w) =
wTσ2

betweenw

wTσ2
withinw

(3.21)

The projection that maximize Eq. 3.21 will yield the best performance of the

classi�er. The estimation of w can be visually appreciated in the 2D example

in Fig. 3.12.

Under a probabilistic point of view, the posterior probability of a feature

vector x belonging to a class i can be estimated applying the logistic �nction to

g(x) in Eq. 3.19:

P (Ci|x) =
1

1− e(−g(x))
(3.22)

This metric can be used as a score of the prediction, indicating the con�dence

(posterior probability) in the classi�cation. It can be extremely useful when

LDA is used for multi-class classi�cation, because it suggests which of the mul-

tiple classes is more likely given the features.

Classi�cation Approaches : Two di�erent approaches were used to perform

the complete 5 classes -Rest (Re), Right-Arm (RA), Right-Hand (RH), Left-
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Arm (LA), and Left-Hand (LH)- classi�cation. Both the approaches require the

estimation of multiple binary classi�ers, that combined allow to predict each

of the 5 classes. They have their advantages and disadvantages and will be

evaluated and discussed in chapter 4.

The �rst approach requires the estimation of 3 di�erent classi�ers in order

to discriminate between the following classes:

1. Rest vs Task (Re-T)

2. Right vs Left (R-L)

3. Arm vs Hand (A-H)

After the model estimation, in order to predict the one of the 5 classes, the 3

classi�ers must be run in cascade. The Re-T classi�er predicts �rst: if Re is

predicted then the class is 0, otherwise R-L and A-H classi�ers will predict one

of the remaining 4 classes. The order in which classi�er 2 and 3 predict is not

important. This approach has the advantages of giving as output an univocal

class (the second approach does not), and it increases the number of trials per

class by grouping together RA and RH into R, LA and LH into L, RA and

LA into A, and RH and LH into H. This way there are 50 trials available for

classi�cation 2 and 3, and 100 for classi�cation 1. The latter advantage, though,

can have a downside: by grouping the classes, in fact, one can argue that some

physiological information is lost, because di�erent brain areas are involved. To

evaluate this possibility, a second approach is adopted.

The second approach is built by 5 di�erent classi�ers:

1. Rest vs Task (Re-T)

2. Right-Arm vs Left-Arm (RA-LA)

3. Right-Hand vs Left-Hand (RH-LH)

4. Right-Arm vs Right-Hand (RA-RH)

5. Left-Arm vs Left-Hand (LA-LH)

Also in this case, the Re-T classi�cation precedes all the others. If T is predicted,

the others classi�ers are run in parallel giving 4 outputs. The assignment to a

class can be done using a majority voting principle and taking into account

the score of every prediction. To provide a concrete example, imagine that

for a feature vector, the classi�er predicted task and for the other 4 classi�er
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the output were the following: classi�er 2 predicts RA with 85% con�dence,

classi�er 3 predicts LH with 60%, classi�er 4 predicts RH with 55% of accuracy,

and classi�er 4 predicts LA with 70% con�dence. Clearly, even if none of the

class is predicted twice and, thus, the majority voting cannot be applied, the

most likely class is RA because it has the higher con�dence to be true. Of

course it could be a misclassi�cation, but the probability of error would be the

minimum when predicting RA.

For each the above mentioned classi�ers, di�erent sets of CSP have been

computed. The performance of every classi�cation step has been evaluated with

a 10-fold CV for the �rst approach and a 5-fold CV for the second one. Only

5 folds have been used for the second approach in order to assure that in every

testing set there were 5 trials belonging to each class. The testing trials were

non-randomized in this case, but at every fold, 4 experimental blocks were used

as a training set and the other as a testing set (see section 3.4 for a detailed

explanation on the experimental procedure). Moreover, every classi�er was

tested using features derived from di�erent signals, with di�erent CSP variants

(including NCSP features explained before).

SIGNALS:

� µ �ltered EEG

� β �ltered EEG

� HbO

� HbR

� µ+ β (EEG)

� HbO + HbR (NIRS)

� µ+ β + HbO + HbR (COM)

CSP:

� computed before CV (batch)

� computed within CV (cv)

� regularized and within CS (reg)

� no CSP (noCSP)
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� CSP only for EEG (CSPeeg)

The abbreviations in parentheses refer to the ones that are going to be used in

the statistical analysis to identify the di�erent signals and CSP approaches. In

order to identify the most suitable signals and CSP approach, as well as the best

classi�cation approach, the data need to be statistically analyzed, as described

in the next section.

3.5 Statistical Analysis

The statistical analysis involves the use of tests in order to �nd signi�cant dif-

ferences among the data. To sum up, the datasets analyzed are made of the

accuracies obtained by the classi�ers with combination of features and CSP

approaches, and the purpose is to �nd which are the best con�gurations that

yield the highest accuracy. The statistical analysis has been performed in R

environment.

Before performing any kind of test, though, the data are to be explored. Data

exploration in practice consists of plotting the di�erent distributions in order

to get an idea of where the signi�cant di�erences might be. Boxplots of the

di�erent signals, divided by the CSP approach for motor execution and motor

imagery can give a �rst insight on the dataset, driving further hypotheses and

analyses. Therefore, the data exploration step is crucial in a statistical analysis

to not waste any time looking for di�erences where they do not exist.

A hypothesis test can be performed using parametric or non-parametric

statistics. Parametric statistical tests assume that the data are generated by a

normal distribution (that can be described with a set of parameters) and that

they have equal variance. When these assumptions are not satis�ed, the only

way to obtain reliable results is to opt for non-parametric statistical tests, which

do not assume any particular distribution of the data, but instead are based

on ordering the observations and considering the rank to extract signi�cant

di�erences. In order to assess the normality of the data, for every distribution

the Shapiro-Wilk test was performed [51], while for equality of variance the

Levene test was used [25]. If both the assumptions are satis�ed, then the t-test

and the ANOVA test can be used for 2 and multiple populations, respectively;

otherwise theMann-Whitney U test and the Krukcal-Wallis test should be used.

Statistical analysis is performed on Rest - Task classi�cation separately, be-

cause it is common between both the classi�cation approaches. For each of
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Figure 3.13: Setup block design for an online evaluation of the system. Note
that the 2 �Bluetooth dongle� blocks are actually the same and they are divided
for sake of presentation.

the approaches, then, the best con�guration of signals and CSP methods is

investigated in detail.

3.6 Online Evaluation

The online evaluation of the entire system is very important, as introduced in

section 2.1, in order to understand and quantify the real potential and capabil-

ity of the BCI. The real-time evaluation, in fact, goes beyond the concept of

accuracy, taking into account a metric, the Information Bit Rate (ITR), that

comprehend the accuracy, the time, and the possible choices. It is clear that two

BCI with the same accuracy, but with the di�erence that one classi�es between

2 classes and the other between 4 classes, may have completely di�erent com-

munication power (the 4-class BCI allows the user to perform more actions).

However, the development of the real-time system that allows the computation

of the ITR is very challenging and time consuming. In this section the design of

such a system will be presented, but unfortunately it has not been implemented

yet.

Fig. 3.13 shows the block diagram of the setup. Comparing it with the

one in Fig. 3.4, it can be noticed that the laptop (LT) running Presentation

software is no longer used, because the synchronization is not needed anymore

since the data stream of the EEG and NIRS system occurs at the same time,
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and because there is no need to present stimuli for the subject. In fact the

subject interacts only with a tablet with an Android application developed to

test the performance in real-time. On the WS side, the C++ application is built

on the basis of the one explained in section 3.1.3, with three main di�erences:

� �rst of all, NIRS signals must be streamed too. The application, then,

behaves as a Client of NIRStar, the server that provides real-time data

via TCP/IP. The raw signals are extracted and �ltered online with the

same IIR �lter used in the pre-processing (see section 3.2.1). In order to

avoid the program to wait for NIRStar data packets while �losing� EEG

ones, the NIRS streaming must be performed on another thread that run

in parallel with StreamingThread and ProcessingThread ones.

� the second main di�erence lies on the fact that now the application not

only has to compute EEG power bands, but it has to compute the features

described in section 3.3 and to classify using the subject-dependent trained

classi�ers. In particular it should compute the feature set accordingly to

the con�guration and approach that yields the best performance for the

subject using the BCI.

� and last, instead of sending the output via USB to Presentation, the pro-

gram sends it to the Android application via Bluetooth.

In order calculate the ITR, the Android and the C++ applications needs to

communicate; the implementation can be uni-directional if the Android appli-

cation acts as a Master, deciding the timing and the nature of the evaluation.

In that case it would be the Android app itself that computes the ITR. For

example, a possible design could be a cue-based one, in which 4 arrows point-

ing left, right, up, or down tell the subject which movement to perform: right

arm, left arm, right hand, or left hand. One of the four arrows appears ran-

domly on the screen, let us say the left one which corresponds to the left arm;

then the Android app waits until a classi�cation output is delivered from the

C++ application: if the classi�cation matches the expected one, it counts one

hit, otherwise one error. Then the arrow disappears and after some seconds

(e.g., 2-3 s) another arrow appears and so on for a �xed amount of time (e.g.,

2 minutes). Given C the number of classes (C=4), the accuracy measured p,

the number of decisions (number of arrows presented) d , and the duration in
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minutes T , the ITR can be computed as [5]:

ITR =
d

T
(p log2(p) + (1− p)log2(

1− p
C − 1

) + log2C) (3.23)

Of course a crucial point in the real-time evaluation and use of the BCI is the

classi�cation step. In fact, although speed is a key factor of a BCI performance,

it is probably more important to have a higher accuracy with a slower speed than

the opposite. With this perspective, the classi�cation should not be forced to

output a decision at every time segment (0.5 s). The output could be �ltered out

to increase the robustness of the system using to di�erent approaches. The �rst

way takes into account the score of the LDA classi�er output in Eq. 3.22, i.e., the

degree of certainty of the classi�cation. In order to minimize mistakes, the C++

application would send classi�cation output only when the con�dence of the

classi�cation is above a certain threshold. Another way to increase robustness

is to �lter the outputs with a majority vote approach, which means classifying

not only in base of the current output, but also taking into account the previous

ones (e.g., the last 3 or 4). Without an online test, though, it is di�cult, if

not impossible, to simulate these approaches and to decide what is the best

one (which can also be a hybrid approach) and what are the most suitable

parameters.

The reader can notice that this cue-based design is not exploiting the asyn-

chronous capability, i.e., the possibility of detecting rest and task in a continuous

way. A self-paced design could consist of a maze that the subject could traverse

in 4 di�erent directions (left, right, up, or down) trying to get to the end in the

minimum amount of time. Nevertheless, even though this design could resem-

ble more closely a real application (e.g., a wheelchair control), in this case the

evaluation in terms of ITR would not be as straightforward as the cue-based

design.
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Chapter 4

Results

The results are divided into three sections. The �rst one presents the results

about the Rest - Task classi�cation (section 4.1), which is common between

the 2 approaches as described in section 3.4. The second part focuses on the

�rst approach, i.e., Right - Left and Arm - Hand classi�cation (section 4.2),

while the third section is about the second approach, which consists of pairwise

classi�cation among the 4 classes (section 4.3). In every section there is a

data exploration part and an analysis of the CSP approaches for Execution

and Imagery tasks separately, as well as a comparison between Execution and

Imagery tasks. Moreover, the dynamic accuracy evaluation is presented for each

classi�er. All the �gures involving box plots and signi�cance levels are depicted

in Appendix B for sake of conciseness. As explained in section 3.5, parametric

statistics is applied when possible (when assumptions are satis�ed), but it will

not be speci�ed in the text - only the signi�cant di�erences are reported.

The CSP approaches that appear in the box plots and are used in this chapter

have the following labels:

batch CSP are computed before CV

cv CSP are computed within CV

reg CSP are computed within CV with regularization and optimized parame-

ters

noCSP CSP are not used

CSPeeg reg is used for EEG signals and noCSP for NIRS ones

70



4.1. REST - TASK CHAPTER 4. RESULTS

4.1 Rest - Task

4.1.1 Execution

First of all, let us see whether there are signi�cant di�erences among accuracies

depending on the CSP approaches. The EEG and NIRS signals are considered

separately, and afterwards the combination of the signals is taken into account.

Table 4.1 contains the accuracies of all signal-derived features and their combi-

nation divided by CSP approach.

Fig. B.1a (Appendix B) shows the µ and β performance with box plots;

however, the di�erence is signi�cant only between the µ-batch and µ-noCSP

approaches. For both the signals it can be observed that CSP over-�t, but not

excessively, and that the regularization process improves the performance (see

Table 4.1). Accuracy is de�nitely worse without using CSP (noCSP around

5% less than reg). For the NIRS signals, box plots and signi�cance levels are

shown in Fig. B.1b (Appendix B). Even if NIRS regularization increases the

performance (batch accuracy is higher than cv accuracy), the noCSP approach

yields extremely high accuracy that outperforms the use of CSP (reg). There is

no doubt that the noCSP is the best strategy for Rest - Task classi�cation using

NIRS-based classi�ers. For the combination of features, only the regularized

approach is reported, because it improves the performance with respect to cv

and is not biased as is the batch approach. Therefore, as shown in Fig. B.2, only

reg and noCSP are shown for EEG (µ + β) and NIRS (HbO + HbR), while reg,

noCSP, and CSPeeg are shown for COM (all 4 signals together). For the EEG

signals, regularization is signi�cantly better than noCSP at the 5% signi�cance

level. The NIRS-based classi�er yields a signi�cantly higher accuracy when

CSP are not used (p<0.001), and the combination of EEG and NIRS features

improves the overall accuracy (but not signi�cantly with respect to noCSP).

µ β HbO HbR EEG NIRS COM

batch 80.3±4.4 83.5±4.6 74.3±3.9 71.1±3.6

cv 77.7±6 82.3±5.7 65.5±4.2 62.2±3.6

reg 78.6±5.7 82.8±5 69.4±4.1 65.9±4 85.2±4.6 69.8±4.5 86.2±4

noCSP 73.3±6.4 77.5±7.5 90.5±6 89±7.1 80.4±6.7 92.4±5.3 93.7±4.1

CSPeeg 94.2±3.4

Table 4.1: Rest - Task Motor Execution: accuracies obtained with a 10-fold CV
for single signals features and combination of them. The combination of the
features improves the overall accuracy.
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Observing the performance of the classi�ers in terms of accuracy, it can be

observed that both for EEG and NIRS, the combination of the signals improves

the accuracy, and that the use of features derived from the all four signals

yields the highest accuracy. Such a high accuracy (94.2%) in the Rest - Task

classi�cation for motor execution could allow the use of the BCI in a synchronous

or self-paced mode, in which the user can control the BCI output any time,

without the need of visual or auditory cues.

4.1.2 Imagery

Table 4.2 shows the accuracies in motor imagery tasks for the 4 signals separately

and for their combination. Box plots of performances for EEG and NIRS signals

are displayed in Figs. B.3a and B.3b (Appendix B). For EEG signals there is

no signi�cant di�erence, but regularization slightly improves the performance.

As in motor execution, the best approach for NIRS is without the use of CSP,

which is signi�cantly better than all the other possibilities (noCSP accuracy is

∼10-15% higher with respect to reg). Combining features improves the accuracy

both for EEG and NIRS (Fig. B.4). The di�erence between noCSP and reg is

not signi�cant for EEG; however, it is highly signi�cant for the NIRS (also in

this case noCSP is the best approach). By using features derived from all the

di�erent signals the highest accuracy is achieved (85.8%); such a high accuracy

could be translated in an asynchronous BCI for motor imagery paradigm.

µ β HbO HbR EEG NIRS COM

batch 75.4±7.1 72.2±7 66.7±5.1 65.6±3.7

cv 72.3±9.2 66.9±8.9 59.1±5.8 58.1±4.8

reg 73.8±9.1 70.4±7.8 63.6±6.1 61.2±4.8 74.8±9.2 63.1±6.4 76.3±8.5

noCSP 69.1±8 66.5±6.7 79.1±8.6 77.9±8.7 71.3±8 82.8±7.9 84.9±7.4

CSPeeg 85.8±7.2

Table 4.2: Rest-task Motor Imagery: accuracies obtained with a 10-fold CV
for single signals features and combination of them. The combination of the
features improves the overall accuracy.

4.1.3 Execution vs Imagery

Tables 4.1 and 4.2 showed that for both execution and imagery tasks, the high-

est accuracy for Rest - Task classi�cation is obtained when features derived from

all channels are combined, applying regularized CSP on EEG signals and not
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using CSP for NIRS ones. In order to look for di�erences between execution

and imagery performance, only the con�guration COM-CSPeeg is taken in con-

sideration, because it resulted in the highest performance. The distributions of

accuracies for execution (EXE) and imagery (IM) is shown in Fig. 4.1. There is

a remarkably signi�cant di�erence between the two tasks (p<0.001), and motor

execution yields a higher accuracy with respect to motor imagery.

Figure 4.1: Rest-task classi�er performance using CSPeeg approach for motor
execution (EXE) and motor imagery (IM).

Whereas, it has been shown that the mental strategies for motor execution

and motor imagery are similar (in section 2.3), it can be concluded that execu-

tion is a more reliable strategy in this case. One of the reason that could explain

the worse performance of motor imagery is that the subjects had no experience

at all in this kind of mental exercise and they found it very di�cult. With more

practice and a more robust feedback, the second distribution would probably

approach the �rst one, �lling the gap between performances.

4.1.4 Dynamic Evaluation

The dynamic evaluation, as described in section 3.4, consists of plotting the

mean accuracy of the di�erent testing trials averaging on the time windows. Fig.

4.2 displays the trend of the accuracy for Rest - Task classi�cation. The black

vertical lines mark the beginning and end of the task. The feature con�guration

used is CSPeeg for both execution and imagery tasks, because it yielded the

highest accuracy. The colored lines are the accuracies of the di�erent subjects,

and the black thicker line is the average of them. It can be noticed that right
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after the cues the accuracy drops. This is not due to a de�cit of the classi�er,

but it can be explained due to the fact that it takes some reaction time for the

subject to actually start the motor task and also to end it when told to do so.

Moreover, the classi�ers have been trained by discarding the �rst two seconds

of task and rest periods and this for sure contributes to the worse performance

when the label changes. As observed in Tables 4.1 and 4.2, the best performance

for both motor execution and imagery is obtained when EEG and NIRS features

are combined. The NIRS-based classi�ers do not su�er from the hemodynamic

delay that is usually observable in NIRS signals. This can be explained by the

fact that not only the average of the signal is used as a feature, but so is the

slope, and since the signals start increasing as soon as the movement begins, the

accuracy is not delayed. As shown in Fig. 4.1, then, executed movements are

better classi�ed than imagery ones, and this is re�ected in the dynamic accuracy

trends.
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Figure 4.2: Dynamic accuracy plots for Rest - Task classi�ers: the �rst column
shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and
the third one the combination of EEG and NIRS features. The x axis is time in
seconds and the y axis the accuracy (from 0 to 1). The vertical lines delimit the
task phase of the trial. Colored lines represent single subjects, the black thick
line is the average of all subjects.
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4.2 First Approach

The �rst approach to classi�cation, after having classi�ed task with the Rest -

Task classi�er, consists of recognizing if the movement is right or left and then

arm or hand, or vice versa.

4.2.1 Execution

Table 4.3 contains the results of the Right - Left classi�ers (for the combination

of features only reg, noCSP, and CSPeeg con�gurations are shown). It can be

observed that neither the separate signals, nor the combination of EEG and

NIRS, result in a high accuracy. The combination of all signals allows to reach

an accuracy of 72.2% with CSPeeg con�guration. For EEG signals, though, CSP

signi�cantly outperforms noCSP approach by around 5% of accuracy (p<0.1 for

µ and p<0.05 for β), while for NIRS the best performance is achieved without

the use of CSP (signi�cantly only for HbO, p<0.01). The reader can notice

how prevailing the phenomenon of over-�tting is; for EEG the drop between

batch and cv is around 15-18% for µ and β, and for NIRS it is 20% in both

cases. Regularization improves the performance (around 4% for EEG and 7-8%

for NIRS signals), but de�nitively not enough to consider the use of single-

signal-based classi�ers. In Figs. B.5a, B.5b, and B.6 (Appendix B) all the box

plots and the signi�cant di�erences are displayed. Regarding the classi�cation

µ β HbO HbR EEG NIRS COM

batch 73.8±6.5 72.1±5.5 74.8±5.7 72.8±4

cv 57.5±11.1 54.4±8.6 54.1±5.3 52.1±4.2

reg 61±9.8 58.7±7.3 62.2±4.3 60.9±4.6 62.2±8.9 63.1±5.8 67.1±7.4

noCSP 55.5±8.6 53.7±6.3 70.6±9.4 65±8.5 56.9±6.5 70±7.8 71.2±7.4

CSPeeg 72.2±6.9

Table 4.3: Right - Left Motor Execution: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

between arm and hand tasks, Table 4.4 shows the performance of the di�erent

classi�ers. Also for the Arm - Hand classi�ers, a great amount of over-�tting is

observed, which is partially corrected with regularization (drop of around 8-10%

for both EEG and NIRS signals after regularization, while before regularization

it is between 12-14%). The best performance is achieved by combining EEG

and NIRS features, but unlike Rest - Task and Right - Left classi�ers, though,
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CSP perform slightlt better than noCSP. The highest accuracy, in fact, occurs

when regularized CSPs are applied to both EEG and NIRS signals (83.6%).

Box plots with signi�cant di�erences can be found in Figs. B.7a, B.7b, and B.8

(Appendix B).

µ β HbO HbR EEG NIRS COM

batch 78.5±6.7 74.4±5.5 85.9±6.2 83.9±6

cv 66.3±13.5 60.1±9.5 73.9±9.7 71.2±10.7

reg 69.3±12.3 65.8±8.1 79.4±8.7 76.7±10.7 71±11.9 80.4±9.1 83.6±9.6

noCSP 63±10.9 60.2±6 75.5±8.1 73.4±7.4 66.1±10 76.9±6.4 78.3±6.1

CSPeeg 79.9±7.1

Table 4.4: Arm - Hand Motor Execution: accuracies obtained with a 10-fold
CV for classi�ers trained on features derived from the 4 signals separately and
with combinations of them with di�erent approaches for CSP.

4.2.2 Imagery

Table 4.5 shows the accuracies obtained for Right - Left classi�cation in motor

imagery tasks. It can be observed that imagining a motor task does not yield

results as high as executing a task: for Right - Left classi�cation the maxi-

mum accuracy is obtained combining EEG and NIRS features without the use

of CSP (63.2%), even though it is only slightly higher than CSPeeg approach,

which results in 62.5% of accuracy. The average accuracy, though, is low; it

would probably be not enough to be translated in a working BCI. An important

observation is that the noCSP approach allows to reach the maximum perfor-

mance, even if the single signal classi�ers have equal or lower performance with

respect to the reg approach. This means that the information carried by the

separate signals is somehow mixed when CSPs are applied. Nevertheless, this is

only a suggestion, and further experiments should be conducted to prove that.

Figs. B.9a, B.9b, and B.9b (Appendix B) show the box plots of all the con�gu-

rations. Arm - Hand classi�cation performance is in line with the Right - Left

one for motor imagery tasks; the maximum accuracy is 63.4% when combining

all features and applying regularized CSP (same con�guration as motor execu-

tion tasks). In this case, however, the accuracy would probably be too low for a

BCI application. The distributions of the performances for Arm - Hand motor

imagery classi�cation are shown in Figs. B.11a, B.11b, and B.12 (Appendix B).
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µ β HbO HbR EEG NIRS COM

batch 75.4±7.4 72.1±5.1 68.7±5.3 68.1±2.9

cv 58.4±11.8 52.9±7.7 48.5±3 48.8±3.2

reg 61.9±10.1 57.6±6 55.5±1.4 55.5±2.3 62.1±8.9 56.6±2 58.7±7.8

noCSP 57.2±9.2 50.5±7.1 54.9±6.6 55.5±6 56.8±9.4 56.4±7.7 63.4±7.5

CSPeeg 62±7.9

Table 4.5: Right - Left Motor Imagery: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

µ β HbO HbR EEG NIRS COM

batch 73.6±3.7 70.5±4.9 67.8±3.3 67.1±2.2

cv 55.6±6.7 50.8±6.1 48.3±2.9 49.3±2.8

reg 58.7±5.9 55.4±4.6 55.6±1.7 54.1±2.5 59.5±6 55.5±2 60.8±4.4

noCSP 52.8±6.8 50.5±6.1 53.3±5.2 52.3±5.3 53.5±7.5 51.7±4.6 53.6±5.8

CSPeeg 56.5±6

Table 4.6: Arm - Hand Motor Imagery: accuracies obtained with a 10-fold CV
for classi�ers trained on features derived from the 4 signals separately and with
combinations of them with di�erent approaches for CSP.

4.2.3 Execution vs Imagery

The comparison between execution and imagery motor tasks is presented using

the con�guration of features that yielded the highest performance for Right

- Left and Arm - Hand classi�ers, i.e., the combination of all signal features

(COM) and CSPeeg for R-L execution, noCSP for R-L imagery, and reg for

both A-H execution and imagery. Fig. 4.3 displays the distributions of the

accuracies for Right - Left classi�cation divided by execution (EXE) and imagery

(IM). A paired statistical test showed that they are highly signi�cantly di�erent

(p<0.001), and the performance for executed movements overcomes the one for

imagined ones.

Also, the di�erence for Arm - Hand classi�cation is highly signi�cant in favor

of execution tasks. Both Right - Left and Arm - Hand classi�cations are much

better for execution than imagery tasks. The main reason why this occurs is

most likely the lack of experience of the subject in motor imagery strategy and

the inadequacy of the feedback. A more in depth discussion on motor imagery

classi�cation performance can be found in section 5.3.

77



4.2. FIRST APPROACH CHAPTER 4. RESULTS

Figure 4.3: Right - Left classi�er performance using CSPeeg approach for motor
execution (EXE) and noCSP for motor imagery (IM).

Figure 4.4: Arm - Hand classi�er performance using reg approach for both
motor execution (EXE) and motor imagery (IM).

4.2.4 Dynamic Evaluation

Fig. 4.5 displays the trend of the accuracy along the trials for Right - Left

classi�ers, divided between motor execution and motor imagery. The colored

lines are the performances of single subjects and the black line is the average

accuracy. The con�guration of features is CSPeeg for both execution and im-

agery. The trend of the accuracy con�rms that NIRS classi�ers outperforms

EEG ones for executed movements, while for imagined ones, despite the overall

low performance, EEG-based classi�ers seems slightly better than NIRS ones.
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The combination of EEG- and NIRS-derived features improves the performance

in all cases. The signals outside the vertical lines, which represent the begin-

ning and the end of the task, are not signi�cant, because being in the resting

phase they would not be classi�ed. The performance of Right - Left classi�er

is not very high for motor execution, and it seems to increase slowly, reaching

a maximum around 3 s after the task. Nevertheless, it must be noticed that

the readiness of NIRS classi�ers is higher than the EEG ones, i.e., the slope is

steeper and the accuracy raises faster. However, for a working BCI, probably

the Right - Left classi�cation would cause many errors and it should be im-

proved, mainly by means of considering a larger dataset for training the CSP

and the classi�ers. A further discussion on this topic can be found in section

5.2. Regarding motor imagery, the performance is on average unacceptable (as

shown in Table 4.5), being slightly over 0.5, which indicates the performance of

a completely random classi�er.
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Figure 4.5: Dynamic accuracy plots for Right - Left classi�ers: the �rst column
shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and
the third one the combination of EEG and NIRS features. The x axis is time in
seconds and the y axis the accuracy (from 0 to 1). The vertical lines delimit the
task phase of the trial. Colored lines represent single subjects, the black thick
line is the average of all subjects.

Fig. 4.6 shows the dynamic accuracy for the Arm - Hand classi�ers. For

this classi�cation, the use of regularized CSP has shown the best results both
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for EEG and NIRS. For the Right - Left classi�cation the performance for

motor imagery is excessively low and not enough for a BCI; however, for motor

execution, displayed in the left column of the �gure, the average accuracy is

high (around 80%) and steady during the entire task. The use of CSP makes

the response of the NIRS-based classi�er faster (it gets to a steady point around

2 s after the task visual cue), and the overall accuracy over time could certainly

be translated in a working BCI. By enlarging the training set, though, the

performance probably would increase.
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Figure 4.6: Dynamic accuracy plots for Arm - Hand classi�ers: the �rst column
shows executed tasks, the second one imagined ones. The �rst row represents
the accuracy obtained with EEG features, the second row with NIRS ones, and
the third one the combination of EEG and NIRS features. The x axis is time in
seconds and the y axis the accuracy (from 0 to 1). The vertical lines delimit the
task phase of the trial. Colored lines represent single subjects, the black thick
line is the average of all subjects.

4.3 Second Approach

For the second approach the 4 di�erent pairwise classi�ers are analyzed sepa-

rately, both for motor execution and motor imagery.
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4.3.1 Execution

Table 4.7 and Figs. B.13a, B.21b, and B.14 (Appendix B) show the performance

in Right-arm - Left-arm classi�cation. The best performances are obtained

when regularized CSP are applied for both EEG and NIRS and the features are

combined (72.3%). In comparison with Right - Left motor execution classi�er,

though, it can be observed that here the NIRS performs better when CSP are

used, while by clustering together right and left tasks, the best performance is

obtained in noCSP con�guration. The highest accuracy is in line with Right -

Left classi�cation one (72.2%, in Table 4.3). Over-�tting is severe (16-22% of

accuracy drop with respect to batch), but the performance is improved signi�-

cantly (except for the µ-based classi�er) by regularization (12-14% of accuracy

drop with respect to batch). While regularization is signi�cantly better than

noCSP for EEG, it is not the case for NIRS, as can be inferred from the box

plots.

µ β HbO HbR EEG NIRS COM

batch 82.8±6.1 80±5.1 82.8±5.6 79.9±4

cv 63.6±14.5 58.9±9.1 56.4±5 53.6±4.6

reg 69.5±11.2 66.7±7.3 67.8±6.3 66.3±5.6 69.3±10 67.7±6.7 72.3±9.5

noCSP 59.3±9.2 57.6±8.8 72.3±7.2 64.2±8.6 60.1±7.6 68.4±7.7 66.4±8

CSPeeg 69.9±5.6

Table 4.7: Right-arm - Left-arm Motor Execution: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

The performance of the Right-hand - Left-hand classi�er is contained in

Table 4.8, and the distributions are displayed in Figs. B.15a, B.15b, and B.16

(Appendix B). In this case the maximum accuracy (65.3%, using EEG and

NIRS features with regularized CSP) is around 7% lower than the Right - Left

classi�er one. It can be observed that the over-�tting phenomenon is higher

than in the Right-arm - Left-arm case; the accuracy drop from batch to cv is

around 23-27%. Even with regularization, the over-�tting is partially corrected

and the accuracy drop from batch to reg is 15-19%. Regularization signi�cantly

improves the performance for both the EEG-based and NIRS-based classi�ers

(from cv to reg). Also in this case, the reg approach is signi�cantly better than

the noCSP only for EEG signals, while for NIRS not only there is no signi�cance

di�erence. Also, the noCSP approach has better performance for HbO-, HbR-,

and NIRS-based classi�ers. When combining EEG and NIRS features, though,

81



4.3. SECOND APPROACH CHAPTER 4. RESULTS

the best performance is obtained with the use of CSP for both the signals.

Given the performances just presented, the recognition of right and left hand

can be identi�ed as the less accurate classi�cation among the others (for both

approaches); chapter 5 will develop further explanations on the topic.

µ β HbO HbR EEG NIRS COM

batch 78.1±7.1 75.8±5.3 82.7±5.4 80±4

cv 55.7±12.7 52±9.4 55.5±6.4 52.9±59.7

reg 62.3±9.6 61±6.8 63.4±6.2 61.8±4.2 61.5±7.9 63.5±4.9 65.3±7

noCSP 54.9±8.5 52.7±6.9 67.1±10.9 64.5±8.3 54±8.8 63.9±10.9 61.9±9.9

CSPeeg 64.2±9.7

Table 4.8: Right-hand - Left-hand Motor Execution: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

Table 4.9 displays the performances for the Right-arm - Right-hand classi-

�ers. Even for this classi�cation the highest accuracy is reached when EEG and

NIRS are combined with the reg approach (80%). The accuracy is only slightly

lower than the Arm - Hand motor execution classi�er one (83.6% in Table 4.4).

Over-�tting is staunched by regularization, which limits the accuracy drop from

batch to reg to 10-13%. The application of regularizing techniques improves

signi�cantly the performance for all classi�ers and yields the highest accuracy

both for EEG-based and NIRS-based classi�ers. Box plots are shown in Figs.

B.17a, B.17b, and B.18.

µ β HbO HbR EEG NIRS COM

batch 83.3±5.4 80.4±2.7 88.9±4.2 85.8±5.9

cv 64.9±12.3 60.1±8.3 69.2±8.6 66.9±12

reg 71.3±10.8 67.3±7.2 77.7±8.9 75.7±9.3 71.5±11 78.4±8.9 80±9.7

noCSP 61.6±10.5 60.8±6.6 71±10 69.8±9 65.5±8.9 68.2±10.6 67.9±8.2

CSPeeg 70±9.3

Table 4.9: Right-arm - Right-hand Motor Execution: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

The results for the Left-arm - Left-hand classi�ers are shown in Table 4.10

and the box plots are displayed in Figs. B.19a, B.19b, and B.20 (Appendix

B). Except for the µ-based classi�er, regularization is signi�cantly better and

it stems over-�tting. Before regularization, in fact, the drop in accuracy from

batch is around 19-20% for all signals, while with regularization it is around
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9-11%. Regularization, like for the Right-arm - Right-hand classi�er case, im-

proves the accuracy of both EEG- and NIRS-based classi�ers. In fact, the best

performance is reached when EEG and NIRS features are joined with regularized

CSP (80.1%), being only slightly lower than Arm - Hand classi�er performance.

µ β HbO HbR EEG NIRS COM

batch 82.3±5.6 78.8±5.5 88.2±5.4 87.5±4.9

cv 63.9±16.2 58.3±12.7 69.3±9.2 68.6±11.4

reg 71.9±12.2 66.3±9.1 79.3±8 76.5±9.4 70.5±13 79.9±9.1 80.1±9.7

noCSP 61.3±12.3 59.7±7.7 74.7±8.5 71.3±7.1 63±11.6 71.3±8.5 71.7±7.3

CSPeeg 72±8.8

Table 4.10: Left-arm - Left-hand Motor Execution: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

The next section will present the results of the same 4 classi�ers for motor

imagery tasks.

4.3.2 Imagery

For Right-arm - Left-arm motor imagery classi�ers, the results are displayed

in Table 4.11 and Figs. B.21a, B.21b, and B.22(Appendix B). The best perfor-

mance is obtained when EEG and NIRS features are combined using regularized

CSP (67.9%). The accuracy is not extremely lower than in case of motor execu-

tion; an analysis of the di�erence between motor execution and motor imagery

performances can be found in the next subsection (4.3.3). Over-�tting (22-27%

drop from batch to cv) is severe and it is diminished with regularization down

to 14-16%, from batch to reg. It can be noticed that regularization is clearly

the best strategy both for EEG- and NIRS-based classi�ers. In fact, reg perfor-

mance is signi�cantly better than noCSP for all classi�ers.

Table 4.12 shows the performances of Right-arm - Right-hand motor imagery

classi�ers. Di�erently from the same classi�cation in motor execution tasks, for

motor imagery regularization performs better than noCSP also for NIRS (for

motor execution the best performance was obtained with the noCSP approach).

For the COM con�guration, the performance of reg with respect to noCSP and

CSPeeg is signi�cantly higher, and it yields an accuracy of 64.3%. In terms of

over-�tting, regularization signi�cantly increases the performance with respect

to cv ; the drop from batch to cv in fact is around 23-28% and from batch to reg
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µ β HbO HbR EEG NIRS COM

batch 81.8±6.3 77.8±6.3 78.7±5.8 75.9±4

cv 59.1±13.4 53.4±7 51.1±4.1 50±5.2

reg 67.1±11 63±6.8 60.8±3.7 59±2.8 67.8±9.8 59.5±2.5 67.9±8.7

noCSP 58.8±11.6 55.4±7.2 53.9±8 53.8±5.5 59.2±10 53.8±7.1 55.1±6.2

CSPeeg 58±7.9

Table 4.11: Right-arm - Left-arm Motor Imagery: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

it is diminished to 16-18%. The box plots are shown in Figs. B.23a, B.23b, and

B.24.

µ β HbO HbR EEG NIRS COM

batch 80.1±4.4 76.6±5.1 76.9±5.2 74.6±3.6

cv 56.8±9.9 50.9±7.6 48.5±3.5 47.6±3.8

reg 64.1±7.6 58.6±4.1 59.2±2.5 58.9±2.6 63.2±5.9 59.3±3.4 64.3±5.1

noCSP 56.1±8.3 51.2±5 56.3±8.1 56.6±7.3 55.7±6.7 57±6.7 56.7±6.8

CSPeeg 58.9±4.9

Table 4.12: Right-hand - Left-hand Motor Imagery: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

In Table 4.13 displays the accuracies of the classi�ers for Right-arm - Right-

hand motor imagery classi�cation. Box plots are displayed in Figs B.25a, B.25b,

and B.26. Regularization in this case is signi�cantly better than the noCSP ap-

proach both for EEG and NIRS. Over-�tting, before regularization, causes a

drop in accuracy of around 24-27% from batch to cv, and the use of regular-

ization makes it decrease to 16-18%. The highest performance is 63.2% and it

is obtained when using regularized CSP on the combination of EEG and NIRS

derived features.

The results for Left-arm - Left-hand motor imagery clasi�ers can be found in

Table 4.14 and Figs. B.27a, B.27b, and B.28. The maximum accuracy is 63.2%

(exactly like Right-arm - Right-hand classi�cation), and it occurs when EEG

and NIRS features are joined in reg con�guration. The over-�tting phenomenon

can be observed in the accuracy drop from batch to cv (26-27%), and for all

the classi�ers the use of regularization improves signi�cantly the performance,

as it is shown in the box plots. The use of CSP makes the performance highly

signi�cantly better than not using it for both EEG and NIRS derived classi�ers
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µ β HbO HbR EEG NIRS COM

batch 78±4.8 76.9±4.6 78.2±4.9 75.6±4.6

cv 53.6±4.5 52.3±4.8 52.7±4.9 48.2±4.5

reg 62±7.4 59.6±3.5 60.2±2.6 59.2±2.6 61.8±6.3 59±3.2 63.2±6.1

noCSP 54.1±8.9 53±5.3 54.7±4.7 53.6±6.7 55±6.5 52.8±5.6 53.9±5.6

CSPeeg 55.4±5.1

Table 4.13: Right-arm - Right-hand Motor Imagery: accuracies obtained with a
10-fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

and for the combination of all features.

µ β HbO HbR EEG NIRS COM

batch 79.6±4.4 76±3.9 78.4±4.8 75.3±3.9

cv 54.9±7.6 50±5 51.1±4 49.3±4.8

reg 62.8±5.8 59.5±4.3 59.1±3.1 58±2 61.4±6.3 59.4±3.1 63.2±5.1

noCSP 53.4±6.9 52.5±5.3 52.5±6.9 52.1±5.9 54.1±6.5 52.2±5.6 51.8±6.3

CSPeeg 54.2±5.9

Table 4.14: Left-arm - Left-hand Motor Imagery: accuracies obtained with a 10-
fold CV for classi�ers trained on features derived from the 4 signals separately
and with combinations of them with di�erent approaches for CSP.

4.3.3 Execution vs Imagery

Exactly like the �rst classi�cation approach analysis, the comparison between

execution and imagery performance has been done on the con�guration that

allowed the highest accuracy. For all the 4 classi�ers (RA-LA, RH-LH, RA-RH,

and LA-LH) the best performance is achieved with regularized CSP using EEG-

and NIRS-derived features all together (COM-reg).

Fig. 4.7 displays the distributions of the accuracy of the Right-arm - Left-

arm classi�er, on the left, and of the Right-hand - Left-hand classi�er, on the

right. For both classi�ers, there is not a signi�cant di�erence between executed

and imagined tasks. This result is di�erent than the one presented in section

4.2.3, where the performance of the Right - Left classi�er was signi�cantly higher

for execution than for imagery. Although there is no signi�cant di�erence for

the Right-arm - Left-arm classi�ers, by looking at the distributions it is clear

that the executed movements allow, on average, higher performance. Moreover,

the accuracy obtained with the motor execution is almost the same as the one
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reached for the Right - Left classi�ers from the �rst classi�cation approach.

Instead, the motor imagery classi�cation for Right-arm - Left-arm is higher than

the Right - Left one by around 4%. In the Right-hand - Left-hand classi�cation

accuracy, it can be noticed that the two distributions are almost the same,

and there is no clear di�erence performance between executed and imagined

movements. While the accuracy of the motor imagery classi�er is more or less

the same as the one obtained by the Right - Left classi�er, for motor execution

tasks the classi�cation is much worse than the Right - Left classi�er (Right -

Left: 72.2%; Right-hand - Left-hand: 65.3%). The worse performance could be

due to the small amount of data used for training and the subsequent severe

over-�tting. This result also con�rms that the worst performance among all the

classi�er is the one obtained in the Right-hand - Left-hand classi�cation.

Figure 4.7: Left panel: Right-arm - Left-arm classi�er performance using reg
approach for motor execution (EXE) and motor imagery (IM). Right panel:
Right-hand - Left-hand classi�er performance using reg approach for motor
execution (EXE) and motor imagery (IM).

Fig. 4.8 displays the distributions of the Right-arm - Right-hand classi-

�er (on the left) and of the Left-arm - Left-hand one (on the right), divided

by executed and imagined tasks. For both the classi�ers the motor execution

performance is signi�cantly higher than the motor imagery one. Although the

accuracy of imagined tasks, which is 63.2% for both the classi�ers, is slightly

higher than the accuracy obtained for the Arm - Hand classi�er of the �rst

approach (60.8%), the gap between motor execution and motor imagery is still

wide. The low performance of the Arm - Hand recognition for imagery can be

due to the fact that the mental strategies to imagine arm and hand movements
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is quite di�cult to learn without a feedback telling the subject whether it is

recognizing one or the other mental imagery. This topic is discussed widely in

section 5.3.

Figure 4.8: Left panel: Right-arm - Right-hand classi�er performance using reg
approach for motor execution (EXE) and motor imagery (IM). Right panel:
Left-arm - Left-hand classi�er performance using reg approach for motor exe-
cution (EXE) and motor imagery (IM).

4.3.4 Dynamic Evaluation

For all the 4 classi�ers the accuracy along time over the task has been computed.

In all �gures the top row shows the EEG-based classi�er performance, the middle

row the NIRS-based one, and the bottom row represents the accuracy for a

classi�er based on both EEG and NIRS features. All the classi�ers used are the

ones trained using the regularized CSP approach, because it resulted in the best

results in all cases. The left column of each �gure contains the performances for

motor execution, while the right column the ones for motor imagery tasks. For

how the dynamic accuracy is computed, the only tract of interest is between

the vertical lines, i.e., during the task. In fact the other classi�ers are used only

when the Rest - Task classi�er outputs task.

Fig. 4.9 displays the dynamic accuracy for the Right-arm - Left-arm classi-

�er. As observed in Tables 4.7 and 4.11, the combination of features from EEG

and NIRS yields the best performance (on the bottom), and the main contrib-

utor is for sure the EEG signals, which de�nitely performs better than NIRS

both for execution and imagery. Regarding the time response of classi�cation,

the response for EEG seems to have a highest slope than NIRS, but the com-
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bination of them outperforms both of them also in terms of speed, i.e., slope of

the accuracy trend.
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Figure 4.9: Dynamic accuracy plots for Right-arm - Left-arm classi�ers: the
�rst column shows executed tasks, the second one imagined ones. The �rst row
represents the accuracy obtained with EEG features, the second row with NIRS
ones, and the third one the combination of EEG and NIRS features. The x axis
is time in seconds and the y axis the accuracy (from 0 to 1). The vertical lines
delimit the task phase of the trial. Colored lines represent single subjects, the
black thick line is the average of all subjects.

Fig. 4.10 shows the accuracy trend over the trial for the Right-hand - Left-

hand classi�er. Apart from a very good performing subject in motor execution

tasks mainly due to the EEG signals (top row, left column), the EEG accuracy is

mediocre, and it seems exactly like the imagery one. The NIRS-based classi�er

appears to be slightly better than the EEG-based one, and a di�erence between

execution and imagery is more perceptible. Despite the combination of features,

the trend of the accuracy for this classi�cation seems extremely inadequate in

order to recognize Right-hand and Left-hand. It should not be ignored, though,

that for this second approach all the 4 classi�ers work together in order to select

the output class. A more comprehensive dynamic evaluation should investigate

the synergy in the classi�cation, but that can only be done with an online

setup that allows the evaluation of the parameters for the classi�cation, as

introduced in section 3.6. A further discussion on the appropriateness of the
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current dynamic evaluation with respect to an online one can be found in section

5.4.
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Figure 4.10: Dynamic accuracy plots for Right-hand - Left-hand classi�ers: the
�rst column shows executed tasks, the second one imagined ones. The �rst row
represents the accuracy obtained with EEG features, the second row with NIRS
ones, and the third one the combination of EEG and NIRS features. The x axis
is time in seconds and the y axis the accuracy (from 0 to 1). The vertical lines
delimit the task phase of the trial. Colored lines represent single subjects, the
black thick line is the average of all subjects.

The performance over time of Right-arm - Right-hand classi�ers for execu-

tion and imagery can be found in Fig. 4.11. The trends clearly re�ects the

results observed in Tables 4.9 and 4.13. There is a large di�erence in the results

between motor execution and motor imagery, and for motor execution both

EEG and NIRS contribute to the improvement in classi�cation of the COM

con�guration. Some subjects clearly bene�t from the combined use of EEG and

NIRS: for example, for the subject represented by the red line in the EEG per-

formance of motor execution (top row on the left) the use of EEG only would

be de�nitely inadequate to reach a su�cient accuracy; however, when NIRS

features are added, the overall accuracy gets between 70% and 80% for all the

task duration. As far as readiness of response, one can notice that the slope of

the NIRS classi�er is higher than the EEG slope. In the COM con�guration

the accuracy gets steady after around 2 seconds from when the subjects are
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presented the task cue. If 1 s of reaction time is accounted, then only 1 s is

necessary for the classi�er to perform well.
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Figure 4.11: Dynamic accuracy plots for Right-arm - Right-hand classi�ers: the
�rst column shows executed tasks, the second one imagined ones. The �rst row
represents the accuracy obtained with EEG features, the second row with NIRS
ones, and the third one the combination of EEG and NIRS features. The x axis
is time in seconds and the y axis the accuracy (from 0 to 1). The vertical lines
delimit the task phase of the trial. Colored lines represent single subjects, the
black thick line is the average of all subjects.

Fig. 4.12 contains the accuracy trend over the trial for the Left-arm - Left-

hand classi�ers. The performance of these classi�ers is very similar to the one

just described, namely, Right-arm - Right-hand. Also for this classi�cation, in

fact, a huge di�erence between execution and imagery performance is observed.

Moreover, the EEG-NIRS combination is very bene�cial for some subjects, for

example the two subjects represented by the purple lines, for which the EEG

performance is quite low and �uctuating, while the NIRS performance is higher

and stable. The advantages and disadvantages of an EEG-NIRS combination

will be dealt in detail in section 5.1. Lastly, the response of the classi�er is quite

fast, with the COM con�guration that reaches a steady state after 2-2.5 s from

the task cue.
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Figure 4.12: Dynamic accuracy plots for Left-arm - Left-hand classi�ers: the
�rst column shows executed tasks, the second one imagined ones. The �rst row
represents the accuracy obtained with EEG features, the second row with NIRS
ones, and the third one the combination of EEG and NIRS features. The x axis
is time in seconds and the y axis the accuracy (from 0 to 1). The vertical lines
delimit the task phase of the trial. Colored lines represent single subjects, the
black thick line is the average of all subjects.
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Chapter 5

Discussion

The discussion chapter is divided in multiple sections, each of them treating a

di�erent topic that emerged during the study.

5.1 EEG-NIRS combination

The results show that the combination of EEG and NIRS for BCI purposes

can enhance the classi�cation accuracy, especially when a low-resolution EEG

con�guration is used. In the current study, for example, the EEG spatial res-

olution chosen in the experimental setup (21 measuring channels distributed

from Frontal to Parietal 10-20 system parallels, see Fig. 3.5) was lower than

many other studies of SMR-based BCIs involving EEG only (55 in [5], 60 in

[43], 118 in [29]), or in combination with NIRS (37 electrodes in [13]). Due to

the volume conduction of the tissues between the cortex, i.e., the main source of

activity captured by EEG, and the EEG electrodes (such as cerebro-spinal �uid,

skull, and scalp), the activity measured by a single electrode is much smaller

than the one that could be measured on the brain membrane (up to 1000 time

smaller, from mV to µV). This drop of potential makes it very di�cult to lo-

calize the di�erent sources from the EEG signals [59] and it calls for the use

of high-resolution EEG, in which the elevate number of sampling points on the

scalp makes the localization much more accurate. On the other hand the use

of high-resolution con�gurations makes the translation of BCIs into the clinical

environment more complex.

The NIRS experimental setup can be considered as complex as the EEG
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one, consisting of 24 optodes (12 sources and 12 detectors) with respect to

the 23 electrodes (21 measuring electrodes, a GND electrode, and a Reference

electrode). In most cases, with this con�guration, the NIRS-based classi�ers

allowed higher performances to be reached than the EEG alone, especially for

motor execution (motor imagery is discussed aside in section 5.3). This was

the case for Rest - Task (without CSP), Right - Left (without CSP), Arm -

Hand (using CSP), Right-arm - Right-hand and Left-arm - Left-hand (using

CSP) classi�ers. Only for Right-arm - Left-arm and Right-hand - Left-hand

classi�cation the EEG and NIRS performance was about the same, as shown

in Tables 4.7 and 4.8. The main concern about the use of NIRS is that the

hemodynamic signals are slow and it takes some seconds for them to reach their

peak. This a�ects on classi�cation accuracy, which in [13] reaches its peak

around 6-7 seconds after the movement onset. The results obtained in this

study, though, do not show such a long delay of the NIRS-based classi�ers, and

this is probably because of the features used (this issue is explored in section

5.4).

The better outcome of the NIRS with respect to the EEG can be tackled in

terms of spatial resolution and source localization. The classi�cation of di�erent

motor tasks, or whatsoever other kind of activities, can be seen as the recog-

nition of patterns in the signals generated by di�erent sources localized along

the cortex. For example, having in mind the Pen�eld's homunculus in Fig. 2.5,

the activity that generates an arm movements will be more central than the one

causing a hand movement. As explained above, it is very di�cult to localize

those sources from a low-resolution EEG, and, in other words, the activity mea-

sured for the arm and the hand movements will be extremely similar (of course

this is very subject-dependent and it accounts for di�erent electric conduction

conditions, brain patterns, etc.). The NIRS signals, on the contrary, do not

su�er because of volume conduction, as the measurement is performed around

the middle point between the source and the detector location. What each

NIRS measurement channel picks up, then, is the oxy- an deoxy- hemoglobin

concentration estimation over the light pathway between the source and the

detector, and nothing else. It is clear then that for localizing the source of a

brain activity, a higher resolution EEG signal is needed in order to yield a good

BCI performance; however, the combination with the NIRS de�nitely improves

the accuracy of the system and can be bene�cial in the development of robust

BCIs.

One of the key factors when dealing with BCI research and development is

93



5.1. EEG-NIRS COMBINATION CHAPTER 5. DISCUSSION

the clinical translation, e.g., how easy would be for medical doctors to include a

BCI in a rehabilitation therapy. One of the main issue about current BCI is their

complexity from the setup point of view. If every time it takes one hour or more

to setup a system for a patient, then it would be extremely unlikely to be used in

the clinical world. The challenge is to try to reduce the setup in order to diminish

the time to prepare the BCI. Another layer of complexity is added by how the

BCI algorithm needs to be trained with the subject's data. A training dataset,

in fact, is needed to learn each subject's characteristics, and a smaller setup may

result in the need of a bigger training dataset. The combination of EEG and

NIRS for sure is worse with respect to a single system under this perspective,

because not one system, but two need to be setup. The time required can vary,

not only because of the �density� of the setup, but also and especially because

of the technology used for the two systems. For the EEG, dry electrodes are

being used more and more, and they provide measurements comparable with

standard clinical wet electrodes [57, 15]. They can be equipped in measurement

systems that can be setup in around 2 minutes [47]. With such a technology

the EEG setup could be redesigned in order to have a higher spatial resolution,

which would certainly improve the performance. Regarding the NIRS, in the

current study the setup has been very time consuming and sometimes troubled,

depending on the subjects. The main problem, as explained in section 3.1.1,

is represented by the hair, that needs to be moved aside for every optode in

order to guarantee the optical coupling between the optode ans the scalp. On

possible solution, that is also being developed by NIRx, is to place a holder

on every optode with a spring inside that pushes it down, making the optical

coupling easier. With this technology the setup time for NIRS would diminish

dramatically; time would also decrease because in some cases the use of gel to

move the hair is not needed at all.

The combined use of EEG and NIRS has been seen to be bene�cial, increas-

ing the performance of each of the two systems used separately. When combin-

ing features derived from the two measurement systems, though, a further step

should be added to maximize the performance of the classi�ers: feature selec-

tion. Feature selection is a technique to reduce the dimensions of the problem

and selects the most signi�cant features. The selection of features indeed sim-

pli�es the model, and it can enhance the generalization by reducing over-�tting

[19].

Another important topic that contributes massively on the �nal performance,

because of the methods that have been used, is the experimental design, and in
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particular the amount of data available for training.

5.2 Experimental Design, CSP, and Over-�tting

As suggested in the previous sections, the performance of the classi�cation can-

not be detached from the amount of available data. Clearly, a bigger dataset for

training the models would result in a better performance, because intuitively

more examples are provided to learn from. On the other hand, collecting data

is extremely time consuming, and it can be boring for the subject if it takes too

long. For the current experiment, since it has been decided to acquire data of

di�erent kinds (di�erent tasks and both motor execution and motor imagery)

instead of focusing on a restricted problem (e.g.,the recognition of only exe-

cuted right-left hand movements), the training datasets are small, i.e., only 25

trials per class for executed and imagined movements in a total of 200 trials. Of

course, in case of the restricted problem described before, there could be 100 tri-

als for each class, and that would have certainly resulted in a better performance.

Moreover, since the aim of the study was more exploratory than exploiting, it

has been opted for the solution that allowed us to have more classes for both

motor execution and imagery, maintaining a bearable experimental time for the

subjects. In the trade-o� between number of classes/conditions and numbers

of trials, the �rst one has been preferred. In the literature the number of trials

per class is usually higher than the one used in the current work, for example

[43] used 60 trials per class, [13] had 48 executed movements and 100 imagined

trials per class, and 140 trials per class were used in [29].

After having provided the motivation behind the experimental design and

procedure, let us analyze the drawbacks of such choices. The main disadvantage

of having a small training dataset is the use of CSP. CSPs are known to over-�t

the data in case of small datasets, as widely treated in section 3.2.2. The over-

�tting is mainly due to the fact that the CSP method is powerful, in the sense

that it can make use of many degrees of freedom in order to �nd the optimal

�lters that increase the separability of the training data. When the optimized

�lters excessively adhere on the data used for training, they perform much worse

on testing data not used for training and never �seen� by the algorithm.

The amount of over-�tting is severe in the current study, as seen in the drop

accuracy that is observed between the batch CSP approach (CSP computed

with all the data before CV) and the cv one (CSP computed on training data
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within CV). In the Results chapter it can be noticed that the accuracy drop

in every classi�cation is always between 12%, in the best cases, and up to 30%

in the worst ones. The phenomenon is, in most cases, more prevalent when

CSP is applied on NIRS signals. This is because in case of NIRS the estimation

of covariance matrices, on which CSPs are built, is done on fewer time points

with respect to the EEG signal, resulting in a higher bias in the estimation. In

order to limit the over-�tting phenomenon, regularized CSPs have been used.

As described in section 3.2.3, the idea is to add a-priori information to the co-

variance estimation based on the rest of the population. Clearly, regularization

also would de�nitely bene�t from having a bigger training dataset. In fact, the

covariance matrices of each subject would be better estimated, resulting in a

generic covariance (see Eq. 3.17) which better represents the behavior of the all

population. Moreover, one cannot expect that regularization would magically

�x everything from such a small dataset. No doubt it improves the performance

drastically in some cases, but the solution for a real improvement of the perfor-

mance can only be found along with a bigger initial dataset for each class for

each subject.

An increased a-priori knowledge of the brain activity, which could be ac-

quired by collecting more data, not only would de�nitely enhance the regular-

ization performance, but it could also be used for another purpose of extreme

importance. The current study tried to also collect data on motor imagery

tasks. Nevertheless, the imagination of movements is a very di�cult task at the

beginning, and it certainly needs practice. An initial dataset on motor executed

and/or motor imagery tasks can indeed be used to train general classi�ers that

can be used to give feedback to the subject and make the get used to the BCI

system, as explained in the next section.

5.3 Motor Imagery and Execution

It has been shown that when a movement is imagined rather than executed, the

brain activity patterns are similar to the ones observed when the movement is

actually executed [45]. Motor imagery, though, is a complex mental strategy

and it needs to be learnt. In particular, the brain activity that most resembles

the motor execution patterns occur when the motor imagination is kinesthetic

[33, 55], i.e., when the subject is able to picture his/her muscles contracting,

even if they are not. Graimann and Pfurtscheller in [17] state that training is
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necessary for motor imagery, and it takes at least from 1 to 4 hours on average

for a subject to be able to control with good performance a 2-choice BCI. For

many subjects a longer training session is needed to achieve a good control.

In the current study there has not been the possibility to train the subjects

su�ciently before motor imagery tasks. The only training, as described in

setion 3.1.3, lasted about 10-20 minutes and allowed the subject to familiarize

with the feedback, which could respond based on ERD/ERS in the EEG signals.

The feedback, therefore, told the subject whether an imagined movement was

perceived or the subject was resting. Such a feedback is probably too naive to

really make the subject practice and learn the best motor imagery strategy. The

feedback, in fact, is essential for understanding how to perform a certain mental

activity, especially when multiple motor tasks need to be imagined. This was

the case in this study, where the subjects were asked to imagine the movement

of right and left arms and hands. A proper feedback would communicate to the

subject which of the classes is being recognized, e.g., right-hand, left-hand, right-

arm, or left-arm, so that the user could adjust his/her mental strategy in order

to meet what the classi�er �expects�. As introduced in section 2.1, in fact, the

feedback is a founding part of a BCI and it allows the subject to learn and adapt

to the system. For this work, though, the development of a complex feedback

system was not feasible. In fact, a subject-independent feedback is usually built

on a great amount of data (usually EEG) previously available. In particular the

entire set of labeled data is used to train a generic classi�er that will tell the

subject what is the behavior of the average population. Sometimes, as in [63],

the experimental procedure is even split into multiple sessions, and the feedback

passes from being completely subject-independent, to include subject-dependent

features that result in a customized feedback for every subject. Due to the

unavailability of previous data on which building up a more complex feedback,

a SMR feedback has been developed. The lack of information provided by the

feedback and the complete inexperience of the subjects on motor imagery tasks

can be probably addressed as the main reasons for the motor imagery failure.

The performance of the classi�ers for motor imagery tasks was in fact below an

acceptable level for a BCI application (around 70%) for every classi�er trained,

except for one; the only case in which motor imagery resulted in a relatively high

accuracy was for the Rest - Task classi�cation. Clearly, this classi�cation can be

considered easier with respect to the others, but such a high accuracy (85.8%)

could be in part due to the feedback used. As stated before, the feedback gave

information about Rest - Task to the subjects, who may have learned how the
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system responded and how to adjust their mental strategy to meet the visual

positive feedback (the feedback circle turned green), rather than the negative one

(the feedback circle turned red). Because of the overall low accuracy of motor

imagery mental strategy due to the reasons just explained, in the following

sections its performance is neglected and the discussion will deal only with

motor execution tasks.

Lastly, feedback is not only extremely important during data collection,

but it is the end e�ector of every BCI system. In order to actually measure

the e�ectiveness of a BCI, the user should be able to observe the output of the

classi�cation and get used to the control command provided by the system. The

only way to evaluate a BCI as a whole and complex is to develop a real-time

feedback session.

5.4 Dynamic and Real-time Evaluation

In the Results chapter a dynamic evaluation of each classi�er has been proposed.

The dynamic evaluation, though, is performed o�ine, and even if it adds a new

point of view on the classi�ers' performance, it does not take into account the

whole complexity of a real-time evaluation. The dynamic accuracy evaluation

that has been implemented has certainly been helpful in drawing conclusions

about some aspects of the classi�cation. An important point that emerged

from the dynamic evaluation is about the response of NIRS-based classi�ers.

Di�erently from what has been shown in [13], i.e. NIRS classi�cation has a

lag in the accuracy peak of 6-7 s, the proposed methods used to classify using

NIRS did not su�er from the same delay. The reason why the delay is not as

severe as previous results can be found in the set of features computed from the

NIRS signals. Both the regularized CSP approach and the use of HbO and HbR

slopes in combination with the averages seems promising in advancing the NIRS

as a valuable alternative for BCI purposes, with or without the use of EEG. In

particular, for Arm - Hand, Right-arm - Right-hand, and Left-arm - Left-hand

classi�ers, for which regularized CSP have been adopted, the readiness of the

NIRS response allows to reach a steady classi�cation accuracy after around 2 s

from the presentation of the task cue, as shown in Figs. 4.6, 4.11, and 4.12. Even

when CSP are not used to process the NIRS signals before feature extraction,

the inclusion of HbO and HbR slopes as features results in classi�ers that do

not present a long delay in the reaching of the accuracy peak: this is the case of
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the Rest - Task and Right - Left classi�ers. For the Rest - Task classi�ers the

accuracy peak is reached after about 2 s from the cue appearance (Fig. 4.2),

while for the Right - Left classi�er (Fig. 4.5), the accuracy takes about 3-3.5 s

to get to a steady point. The performance of the Right-arm - Left-arm and the

Right-hand - Left-hand is not considered here because it is extremely biased by

the over-�tting of the CSP.

Whereas the dynamic evaluation proposed allowed to observe helpful and

interesting hints about the classi�cation dynamics, it cannot be regarded as

su�cient to evaluate the entire BCI system. First of all, the dynamic accuracy

has been done on the single classi�ers separately, without combining to out-

put only one of the 4 classes. The translation of the classi�ers output into a

BCI command, in fact, is a delicate matter. For the �rst approach of classi�-

cation, described in section 3.4, the BCI command can be assigned trivially by

outputting the classi�ed class at every time segment, i.e., having one new and

independent output every 0.5 s. For example, if at a certain time point the Rest

- Task classi�ers predicts task, the Right - Left one predicts right, and the Arm

- Hand predicts arm, then the right-arm class is used as BCI command for that

time segment. The problem of such an approach is mainly due to the high num-

ber of mistakes that the combination of classi�ers will commit, which can be due

to an error in one of each of the 3 classi�ers. One way to avoid misclassi�cation

and develop a more robust BCI could be �ltering the last 4 classi�cation out-

puts, for example, with a majority vote approach. Practically, if the Rest - Task

classi�er output task/rest/task/task, the Right - Left one right/-/left/right, and

the Arm - Hand predicted arm/-/arm/hand, then the �nal prediction would be

right-arm, because 3 of the 4 last predictions were task, 2 of the 3 were right, and

2 of the 3 were hand. The drawback of this approach is that the responsiveness

of the system to a new class would be slower (it acts as a low-pass �lter). An-

other possibility to clean out the BCI output could be to consider the con�dence

of each classi�cation. This approach is applicable to both of the classi�cation

paradigms in section 3.4. An output command can be delivered only when the

classi�ers are �sure� about their prediction, i.e., when the likelihood of of the

prediction being correct (expressed in Eq. 3.22) is above a certain threshold

for all the classi�cations. In case of uncertainty, the BCI could stop and reject

the classi�cation, waiting for more con�dent predictions.This technique would,

though, worsen the performance in terms of time.

What has just been stated should make clear that a real-time classi�cation

with feedback is necessary for a BCI system to be entirely evaluated. An online
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setup would give the possibility to decide which of the classi�cation approaches

and BCI output translations described above have the best online performance.

The Information Transfer Rate (ITR in Eq. 3.23) could be used as term of

reference to evaluate in a complete sense the entire system, including informa-

tion about accuracy, complexity of the classi�cation, and time, which has been

ignored so far. Moreover, being composed of a highly adaptive system as the

human brain, the online use of the BCI would de�nitely become better perform-

ing as the user experiences it, and the e�ect of �practice� could be investigated

as well.

5.5 Classi�cation Approaches: Which One is the

Best?

As described in section 3.4, two di�erent approaches were investigated for clas-

si�cation. The �rst approach made use of 3 classi�ers (Rest - Task, Right - Left,

and Arm - Hand); the second approach consisted of 5 di�erent classi�ers (Rest

- Task, Right-arm - Left-arm, Right-hand - Left-hand, Right-arm - Right-hand,

and Left-arm - Left-hand). What is the best one?

From the performance tables displayed in the Results chapter, the best

method seems to be the �rst one, composed by Rest - Task, Right - Left and

Arm - Hand classi�ers. Although the small amount of trials used to estimate

the CSP and the classi�ers, the accuracies obtained for all 3 classi�ers, on av-

erage, is above 70%: i.e. 94.2% for Rest - Task, 72.2% for Right - Left, and

83.6% for Arm - Hand. The enhanced performance of the �rst approach with

respect to the second one, which consists of 4 pairwise classi�cation between the

di�erent classes, can be explained in terms of number of training samples and

over-�tting. The �rst approach, in fact, merges two classes into a single one for

each classi�cation, doubling the training set size. This is the reason why over-

�tting seems to be prevalent in the second approach, in which a drop from batch

to cv of around 16-27% is observed, rather than the �rst one, where the drop

is around 12-18%. On the other hand it would be interesting to evaluate the

second approach having the double amount of training data. If the performance

of the single classi�ers would increase and reach the one of the �rst approach

ones, then probably the second approach would be more reliable, because the

information provided by the di�erent classi�ers could be synergistically com-

bined to obtain a more robust classi�cation. The synergy of the classi�ers used
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in the second approach could be evaluated also o�ine, deciding a rule to arrange

the con�dence of the predictions of the single classi�cations into one single pre-

diction. Nevertheless, an online evaluation would be much more reliable and

truthful and it should be used to really establish which one of the approaches

works best.

5.6 Future Development

In the previous sections of this chapter, several new ideas and possible develop-

ments have been proposed to tackle di�erent issues that have emerged during

the work. Let us list all the future development and possible improvements in

a clear and concise way:

� Investigate a smarter combination of features for hybrid EEG-NIRS clas-

si�ers involving a feature selection methods

� Tackle the over-�tting problem by designing an experimental procedure

that allows to have an increased number of trials for each class and evaluate

and quantify the bene�t in the classi�cation accuracy

� Design and build a generic classi�er based on the data collected for this

study to develop a more complex feedback system and investigate the

performance of motor imagery tasks

� Develop a real-time setup for the online evaluation of the BCI, as outlined

in section 3.6

� Evaluate the performance of classi�cation online

5.7 Conclusions

In conclusion, the work presented in this thesis has been very challenging and

fascinating. Let us sum up the main points in terms of methods used and results

obtained.

The project has been broad and it included di�erent activities. First of all,

the experimental setup needed to be chosen and the procedure de�ned. The

setup consisted of 21 EEG and 34 NIRS channels (the latter composed by 12

sources and 12 detectors) distributed along the motor cortex, between the F and

the P parallel of the international 10-20 system. The data were collected from
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15 healthy subjects (all males). Each subject was asked to perform 4 di�erent

executed and imagined motor tasks (right arm, right hand, left arm, and left

hand) and 25 trials per class per condition were recorded. During imagery tasks,

subjects were given a real-time feedback based on EEG ERD/ERS.

The recorded data were pre-processed and synchronized. Features were ex-

tracted using regularized CSP for EEG, while for NIRS both regularized CSP

and averages and slopes of each channel were separately investigated. As a

classi�er, LDA was chosen for its simplicity and its robustness against over-

�tting. Performances were evaluated both in terms of static accuracy (correct

predictions / total predictions) and by computing a dynamic accuracy during

the trial.

Results showed that a hybrid approach combining EEG and NIRS measure-

ments enhances the performance of the classi�ers in all cases. NIRS accuracy

outperformed EEG accuracy most of the times, mainly because CSP tends to

over-�tting the training data when the dataset is small. Over-�tting was, in fact,

one of the main issues encountered in the study, and it was so severe because of

the experimental setup and procedure previously chosen. An asynchronous BCI

appeared to be feasible because of the motor execution performance (94.2%)

in the Rest - Task classi�cation. Motor execution on average allowed to reach

acceptable accuracies, possibly translatable in a real-time BCI. Motor imagery

paradigm, instead, did not yield su�cient results, probably because of the to-

tal inexperience of the subjects in such activity and for the simplicity of the

provided feedback. Two approaches have been proposed for the 4-class classi�-

cation: the results obtained with the current setup suggested that the best one

is the �rst one (consisting of classifying Rest - Task, Right - Left, and Arm -

Hand), which yielded an accuracy of 94.2% for Rest - Task, 72.2% for Right -

Left, and 83.6% for Arm - Hand.

The wish of the author is that the work done will be helpful in the fast-

growing �eld of the BCI research and that hopefully within a few years BCI

systems will be translatable systematically in the clinical environment or in the

houses of impaired patients and improve life conditions of many people.
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Online Normalization

Mean Estimation

Starting from the optimal mean estimation, having N samples xi, with i =

1, 2, ..., N :

µ̂ =
1

N

N∑
i=1

xi

the sum over the N samples can be split in the sum from 1 to N − 1 plus the

last sample available, xN :

µ̂ =
1

N

N∑
i=1

xi =
1

N

(
N−1∑
i=1

xi + xN

)
=

1

N

N−1∑
i=1

xi +
1

N
xN

The only variables needed to apply this algorithm are: N , which counts the

number of samples received online starting from 1, and
∑N−1
i=1 xi, which is an

accumulator that sums up all the values received from the �rst (i = 1) to the one

before he current one (i = N − 1). The variance estimation uses the estimate of

the µ̂ parameter. It can be noticed that the sum is split into one part containing

only values from the past (
∑N−1
i=1 xi) and a part with the current or update value

(xN ).

Variance Estimation

The variance estimation is based on the expansion of the square in the correct

variance formula and, as for the mean, on the splitting of the sum of all values
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in a past and a current part.

σ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 =
1

N − 1

[
N−1∑
i=1

(xi − µ̂)2 + (xN − µ̂)2

]

By expanding the square in the sum:

σ̂2 =
1

N − 1

N−1∑
i=1

x2
i +

N − 1

N − 1
µ̂2 − 2µ̂

N − 1

N−1∑
i=1

xi +
(xN − µ̂)2

N − 1

which simpli�ed bring to:

σ̂2 =
1

N − 1

(
N−1∑
i=1

x2
i − 2µ̂

N−1∑
i=1

xi

)
+ µ̂2 +

(xN − µ̂)2

N − 1

The variance can be correctly estimated online by means of 3 variables that

are updated every time a new sample is received: N and
∑N−1
i=1 xi are the same

as the mean estimation, and
∑N−1
i=1 x2

i , that accumulates the squared values

from i = 1 to i = N − 1. Also for the variance estimation it is clear the division

between a past part ( 1
N−1

(∑N−1
i=1 x2

i − 2µ̂
∑N−1
i=1 xi

)
+ µ̂), and a current part

( (xN−µ̂)2

N−1 ), which represents the update.

The estimation of variance must follow the estimation of mean, because

it makes use of the current mean parameter µ̂. After mean and variance are

updated, the count of the samples is increased (N = N + 1), and the current

value has to be accumulated in
∑N−1
i=1 xi and

∑N−1
i=1 x2

i .

Online normalization is used in the real-time C++ feedback application to

normalize:

� the EEG signals from every channel, after they have been �ltered

� the output values (band-powers in µ and β), to provide a standardized

feedback to all subjects
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Box Plots and Signi�cance

Box plots and signi�cance of statistical tests performed. In the following �gures

the symbols refers to:

o p < 0.1

* p < 0.05

** p < 0.01

*** p < 0.001
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(a)

(b)

Figure B.1: Rest - Task Motor Execution: a) EEG-based classi�ers. b) NIRS-
based classi�ers.

Figure B.2: Rest - Task Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.3: Rest - Task Motor Imagery: a) EEG-based classi�ers. b) NIRS-
based classi�ers.

Figure B.4: Rest - Task Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.5: Right - Left Motor Execution: a) EEG-based classi�ers. b) NIRS-
based classi�ers.

Figure B.6: Right - Left Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.7: Arm - Hand Motor Execution: a) EEG-based classi�ers. b) NIRS-
based classi�ers.

Figure B.8: Arm - Hand Motor Execution: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.9: Right - Left Motor Imagery: a) EEG-based classi�ers. b) NIRS-
based classi�ers.

Figure B.10: Right - Left Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.11: Arm - Hand Motor Imagery: a) EEG-based classi�ers. b) NIRS-
based classi�ers.

Figure B.12: Arm - Hand Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.13: Right-arm - Left-arm Motor Execution: a) EEG-based classi�ers.
b) NIRS-based classi�ers.

Figure B.14: Right-arm - Left-arm Motor Execution: EEG-NIRS-based classi-
�ers.
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(a)

(b)

Figure B.15: Right-hand - Left-hand Motor Execution: a) EEG-based classi�ers.
b) NIRS-based classi�ers.

Figure B.16: Right-hand - Left-hand Motor Execution: EEG-NIRS-based clas-
si�ers.
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(a)

(b)

Figure B.17: Right-arm - Right-hand Motor Execution: a) EEG-based classi-
�ers. b) NIRS-based classi�ers.

Figure B.18: Right-arm - Right-hand Motor Execution: EEG-NIRS-based clas-
si�ers.
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(a)

(b)

Figure B.19: Left-arm - Left-hand Motor Execution: a) EEG-based classi�ers.
b) NIRS-based classi�ers.

Figure B.20: Left-arm - Left-hand Motor Execution: EEG-NIRS-based classi-
�ers.
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(a)

(b)

Figure B.21: Right-arm - Left-arm Motor Imagery: a) EEG-based classi�ers.
b) NIRS-based classi�ers.

Figure B.22: Right-arm - Left-arm Motor Imagery: EEG-NIRS-based classi�ers.
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(a)

(b)

Figure B.23: Right-hand - Left-hand Motor Imagery: a) EEG-based classi�ers.
b) NIRS-based classi�ers.

Figure B.24: Right-hand - Left-hand Motor Imagery: EEG-NIRS-based classi-
�ers.
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(a)

(b)

Figure B.25: Right-arm - Right-hand Motor Imagery: a) EEG-based classi�ers.
b) NIRS-based classi�ers.

Figure B.26: Right-arm - Right-hand Motor Imagery: EEG-NIRS-based classi-
�ers.
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(a)

(b)

Figure B.27: Left-arm - Left-hand Motor Imagery: a) EEG-based classi�ers. b)
NIRS-based classi�ers.

Figure B.28: Left-arm - Left-hand Motor Imagery: EEG-NIRS-based classi�ers.
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