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Abstract

We present an Android application able to detect the peaks of the surround-
ing mountains visible from the user point view in that exact position. The
system exploits the on board sensors as the GPS, the magnetometer, the
accelerometer and the gyroscope to find the geographical location, the car-
dinal directions and the axis orientation of the device. Through the camera
the images of the visible mountains are acquired and showed in the camera
preview. The detection of the correct positions of the peaks passes through
several phases. First we harness the sensors to obtain the related synthetic
panorama recovered from the Digital Elevation Model (DEM) related to
that current geographical area. After the peak names are identified and vi-
sualized in the camera preview exploiting the axis orientation and the infor-
mation received together with the panorama. At the end this stage a deeper
content analysis on the images captured from the camera is performed ex-
ploiting algorithms of digital image processing about object recognition to
improve the precision reached from the sensors. The final experience is pro-
posed in Augmented Reality Environment allowing an interactive real-time
visualization with high precision level. In this work several deriving appli-
cations are discussed as the monitoring of environmental resources and the
construction of collective intelligence system designated to the construction
of environmental models and massive social media collections.






Sommario

Si presenta una applicazione Android in grado di riconoscere i picchi delle
montagne circostanti visibili dall’utente dalla specifica posizione in cui si
trova. Il sistema sfrutta i sensori a bordo del dispositivo come il GPS, il
magnetometro, I’accelerometro e il giroscopio per poter ricavare la posizione,
le direzioni cardinali e 'orientamento degli assi del telefono. Attraverso la
camera vengono acquisite le immagini delle montagne visibili dall’utente
poi direttamente visualizzate nell’anteprima della camera. L’individuazione
della corretta posizione dei picchi all’interno delle immagini passa attraverso
varie fasi. Inizialmente vengono sfruttati solamente i sensori per ottenere
il corrispettivo panorama sintetico ricavato dal Modello Digitale di Ele-
vazione (DEM) relativo all’area geografica corrente. Successivamente ven-
gono identificati i nomi delle vette nell’anteprima attraverso etichette sfrut-
tando 'orientamento degli assi e le informazioni ricavate dalla rete insieme al
panorama. Terminata questa fase viene effettuata un’analisi approfondita
del contenuto delle immagini catturate dalla camera attraverso algoritmi
di processamento di immagini per poter migliorare la precisione basata su
sensori. L’esperienza finale proposta in Realt Aumentata consentendo una
visualizzazione interattiva real-time e ad alta precisione. Nell’elaborato sono
discusse le diverse applicazioni che possono derivarne come il monitoraggio
delle risorse ambientali e la costruzione di sistemi di intelligenza colletiva
volte ad esempio alla costruzione di modelli ambientali e raccolta di ingenti
collezioni multimediali.






Acknowledgements

Foremost, I would like to thank Prof. Piero Fraternali and Prof. Marco
Tagliasacchi for the opportunity to work with them on a such interesting
theme and fascinating project, and the support during the preparation of
this thesis.

I would like to thank also:

e Dr. Roman Fedorov for helping with the preparation of this document.

e Dr. Ulrich Deuschle (http://www.udeuschle.de) for his kind permis-
sion of using his mountain panorama generating web tool.

e All my friends and colleagues who have helped and contributed to this
work.

Lastly, but most importantly, I would like to thank my parents, Francesco
and Elisabetta, my brothers, Valentina and Luca, and Chiara for constant
support and motivation.






Contents

1 Introduction
1.1 Human computation . . . ... ... ... ... ... .....
1.2 Augmented Reality . . . . . .. ... ... ... ...
1.3 The MountainWatch Project . . . .. .. .. ... ......
1.3.1 Environmental Monitoring System . . .. ... .. ..
1.3.2 Imnovation. . . . .. ... ... ... ... .......
1.3.3 Potential Impact . . . .. .. ... ... ... ...
1.4 Document Structure . . . . .. .. ... ... ...

2 Related Work and State of the Art
2.1 Mountain Peak Detection . . . . .. . ... ... ... ....
2.1.1 Sensor based Mobile Apps . . . . . .. ... ... ...
2.1.2  Offline Desktop based System . . . . . ... ... ...
2.2 Collective Intelligence . . . . . .. ... ... ... ..
2.2.1 Game with a purpose . . . ... ... ... ... ..
2.3 Augmented Reality . . . . . . ... ... ... ...
2.3.1 Augmented Reality Systems . . . . . . ... ... ...
2.3.2 Augmented Reality On Mobile Devices . . . . . . . ..

3 Problema Statement and Proposed Approach
3.1 The Motivations . . . .. ... ... ... ... ... ...
3.2 The Proposal . . ... ... ... ... ...
3.3 The Application . . . . . . .. ..o
3.3.1 Services initialization . . . . . . . ... ... ... ...
3.3.2 GPS Localization . . . . . ... ... ... .. .....
3.3.3 Building the Mountain Model and Sensor Matching .
3.3.4 Global Matching . . . .. ... ... ..........
3.3.5 Local Matching . . . . ... ... ... ... ... ..
3.3.6 Tracking . . .. .. .. ... ... ...
3.4 Possible Areas of Application . . . .. ... ... ... ....

11



4 Implementation Details

4.1 Adopted Sensors and Functioning . . . . . . . .
4.2 OpenCv Llbraries . .. ... ... .......
4.3 The Activities . . . . . . ... .. ... ... ..
4.4 Sensor Managers . . .. .. .. ... ......
4.5 Camera Handlers . . . ... ... ... .....
4.6 The MountainOverlay View . . . . . ... ...
4.7 The Mountain Downloader . . . ... ... ..
4.8 Location Updaters . . . ... ... ... ....

4.8.1 Global Location Updater . ... .. ..

4.8.2 Local LocationUpdater . .. ... ...

4.8.3 FollowPatch LocationUpdater . . . . . .

5 Experimental Study

51 Datasets . ... .. .. ... ... ...,
5.1.1 Collecting Samples . . . . . . ... ...
5.1.2 Manual Alignment . . . ... ... ...

5.2 Metrics . . ... Lo
5.2.1 Test Flow Execution . . . ... ... ..
5.2.2 Operating parameters . . . ... .. ..

53 Results. . . . .. .. ...

6 Conclusions and Future Work

6.1 Future Enhancements . . ... ... .. .. ..
6.1.1 Matching Performances . .. ... . ..
6.1.2 Local Digital Elevation Model . . . . . .

6.1.3 Safeguard and Environmental Modeling

Bibliography

35
35
40
40
41
42
43
44
46
47
50
o1

53
53
54
55
56
57
58
58

65
65
66
66
67

69



List of Figures

1.1

3.1

3.2

3.3
3.4

3.5

3.6

3.7

3.8

3.9
3.10

3.11

Proposed taxonomy of human computation including all re-
lated paradigms. . . . . . .. ... ... L

Application Schema of the phases composing the entire pro-
cess. The color choice helps to understand the evolution of
process: the first rough sensor peak estimate (white), the
alignment based on first global content analysis (blue) and
on the second local content analysis (light blue) and the end-
ing phase of tracking based on the following patch matching
(green). . . . ...
Compass Calibration: how to move the device to help the
sensor calibration at the application boot. . . . . . . . . . ..
Extracted Patch from Panorama 2D with mountain markers.
The peaks are received from the network are in pixel coordi-
nates in the Panorama 2D Frame. To display the peaks in
the camera preview three transformations are applied passing
from Panorama 3D Frame, Camera 3D Frame and Camera 2D

The overlapping of Panorama 2D and Camera 2D adapted
from [1] . . . . .
Cylindrical Coordinate System applied to rotational axis and
geographical directions of testing mobile device. . . . . . . . .
The Original Panorama 3D Frame on the left and Calculation
System on the right. . . . .. ... ... ... .
Compass Matching Result: the white marker represents the
peak estimate only based on embedded sensors. The green
marker is the estimate obtained from the groundtruth. . . . .
Sobel filters adopted. . . . . . .. ...
Global Matching Result: the blue marker represents the peak
estimate after the Global Matching Algorithm. The green
marker is the estimate obtained from the groundtruth. . . . .
Local Matching Result: the light blue marker represents the
peak estimate after the Local Matching Algorithm. The green
marker is the estimate obtained from the groundtruth. . . . .

13

20
21



3.12 A patch retrieved in two different frames during the same
SEQUENCE. .+« v v v v e e e e e e e e e e e e

4.1 OnePlus One, the device adopted to test and analyze the
application. . . . . . . . ... L
4.2 Smartphone rotational axis: the rotational angles among the
x,y and z axis are respectively azimuth, pitch and roll. . . . .
4.3 Accelerometer and Gyroscope functioning . . . . . .. .. ..
4.4 Coriolis Effect forceinplay . ... ... .. ... ... ....
4.5 Sequence Diagram representing the execution flow of the Ac-
tivities. . . . oL
4.6 Class Diagrams of LocationManager, OrientationManager and
NetworkManager. . . . . . . . . . . . .. .
4.7 Class Diagrams of CameraPreview and CameraShutter.
4.8 Class Diagrams of MountainOverlay. . . . . . .. .. ... ..
4.9 Class Diagrams of MountainDownloader. . . . . . . .. .. ..
4.10 The Graph represents the alignment background processes
based on LocationUpdaters. . . . . . .. .. .. .. ... ...

5.1 Samples taken from the Dataset. . . . . .. .. .. ... ...
5.2 The alignment of the frame with the panorama. . . . . . . . .
5.3 The frame is stretched to overlap perfectly the panorama. . .
5.4 The Confusion Matrix allows visualization of the performance
of the algorithm: P and R are respectively the Precision and
the Recall. . . . . . . .. ... .. ... ... ..
5.5 The Confusion Matrix representing the entire Dataset. . . . .
5.6 The classification of all the resulting peaks divided in four
categories. . . . ... Lo
5.7 The Bar Chart represents the resulting DMD Error of the
entire Data Set. . . . . . .. ... Lo
5.8 The Bar Chart represents the resulting DMD Error of the
entire Data Set. . . . . . . . ... oo

36

43



List of Tables

4.1
4.2
4.3

5.1
5.2
5.3
5.4

5.5

OnePlus One Accelerometer Specifications. . . . . . ... .. 36
OnePlus One Gyroscope Specifications . . . . . .. ... ... 37
OnePlus One Magnetometer Specifications . . . . . . . . . .. 37
Degree Error Classification. . . . . . . .. ... ... ..... 58
Operating parameters (defaults in bold). . . . . . ... . ... 58
Invariant operating parameters . . . . . . ... ... ... .. 59
Result obtained in the Sequences after the Sensor Matching

phase. . . . . . 59

Result obtained in the Sequences after the VCC Matching






Chapter 1

Introduction

The main related topics suitable for this work are crowdsourcing, social
computing and collective intelligence. These paradigms are correlated one
to each other under certain aspects and they differ from others. Given this
ambiguity due to the newness of these computer science themes in this chap-
ter definitions of these basic concepts are explained, stressing the aspects
covered directly by this work. The application purpose is defined presenting
the innovative idea of this project. At the end the structure of the entire
document is outlined.

1.1 Human computation

Human computation can be defined as:

“a paradigm for utilizing human processing power to solve prob-
lems that computer cannot yet solve. ” Alan Turing [2]

The human effort can be harnessed by means of enjoyable tasks with very
simple access as from the vast internet population. Often the required oper-
ations exploit the human abilities that for computer are really tough. The
tasks are often proposed presenting a multi-step processes involving human
collaboration and building systems exposing operations as simple casual
games. As presented in [3] the concept of human computation can be re-
sumed with two main properties that must be satisfied to consider a system
a human computation based system. First to be a human computation the
problems faced from people have to be a computational tasks with the pos-
sibility that in future can be solvable from computers. Secondly the human
participation is managed by the information system.
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Figure 1.1: Proposed taxonomy of human computation including all related paradigms.

This particular work is nestled in a more general system which aims to
build an environmental control system in a innovative way harnessing the
spreading technologies blossomed in the last recent years, the smartphones.
Thanks to our mobile application a new immediate acquisition channel be-
comes possible to populate the data set without the need of fixed and cost-
ing equipment already existing but poorly spread. A cheaper but capillary
amount of data is available exploiting the user sharings and uploads. With
respect to the two main properties defined before our system performs an
hard calculation effort to detect and to identify the peaks inside the pho-
tographs satisfying the first property. About the human participation the
system doesn’t managed it directly since the users autonomously decide to
takes shutters and then to share them. There are several fields that fall in
the human computation. A possible taxonomy, displayed in the Figurel.l,
is presented covering all the related researching field of our application com-
bining definition given by [4] and by [3]:

e Crowdsourcing: This concept, deriving from outsourcing, is the act of
taking a job traditionally performed by a designated agent (usually an
employee) and outsourcing it to an undefined, generally large group
of people in the form of an open call [3]. Our system is based on this
concept since we involve people to use our application and indirectly
we exploit their effort, the shutters, for further environmental analysis.

e Social Computing: In system based on social computing people are fa-
cilitated to share and to exchange multimedia information by means of
information technology systems. The scopes can be broad and various
but in general they do not involve computation but social interactions.
In particular our system is a social computing example helping people
not only to identify peaks but also stimulating the social interaction.



Examples can be share multimedia information, as the photographs,
and give a contribute to the environment safeguard.

e Data Mining: Systems based on this paradigm have in general the
purpose to extract interesting information from a large amount of data
through the application of specific ad hoc algorithms. In our context
all the entire gathered collection do matter and we do not need to
distinguish valuable information from large collection. We analyze the
whole resulting photographs already processed so our application does
not turn out to be a typical data mining system.

o (Collective Intelligence: Collective intelligence are platforms where groups
of people collaborate in an ”intelligent” manner all together with a
common general purpose. These platforms can be seen as a networks
to connect citizens and ideas for social innovation, leveraging on col-
lective intelligence and actions to address sustainability challenges.
They exploit the emerging ”network effect” by combining open online
social media, distributed knowledge creation and data from real envi-
ronments. Can be built systems where users will have an engaging and
socially rewarding experience, but at the same time they will generate
a stream of Geo-referenced images of mountains, feeding an existing
mountain image analysis model. This paradigm fills perfectly into our
idea since thanks to the collaboration of users is possible to populate
and enrich the collection improving further analysis.

e Game With A Purpose: This line of work focuses on exploiting the
billions of hours that people spend online playing with computer games
to solve complex problems that involve human intelligence [5]. The
emphasis is on embedding a problem solving task into an enjoyable
user experience, which can be conducted by individual users or by
groups. [4]. The gamification is a crucial part of our project that will
be take into account closely and some ideas will be presented in the
Chapter 6 about Future Enhancement.

1.2 Augmented Reality

Augmented reality (AR) is a live direct or indirect view of a physical, real-
world environment whose elements are augmented (or supplemented) by
computer-generated sensory input such as sound, video, graphics or GPS
data. It is related to a more general concept called mediated reality, in
which a view of reality is modified (possibly even diminished rather than
augmented) by a computer. As a result, the technology functions by enhanc-
ing one’s current perception of reality. By contrast, virtual reality replaces
the real world with a simulated one [6]. Augmentation is conventionally in



real-time and in semantic context with environmental elements. With the
help of advanced AR technology (e.g. adding object recognition) the infor-
mation about the surrounding real world of the user becomes interactive and
digitally manipulable. Artificial information about the environment and its
objects can be overlaid on the real world. To obtain this result the AR tech-
nology is based on both hardware and software components. About software
development the amount of works of algorithm solutions designated to ob-
ject recognition is large. In specific the mountain tagging problem has been
already amply faced. From the hardware point of view besides the typical
ones, as processors (CPU and GPU) which computes the calculations and
displays where we visualize the results merging reality and artificial contents,
the main role is played by the sensors and input devices. In our case we
adopted accelerometer, gyroscope, GPS and images from camera. Modern
mobile computing devices like smartphones and tablet computers contain all
these elements making them suitable AR platforms. The principal player is
the camera, through which it’s possible to acquire the surrounding world as-
pect, capturing the visible peaks and then crossing them with the on board
sensors. In our work the choice to exploit the AR technique to display the
results of the mountain peak detection aims to offer to the user an attractive
and immersive experience.

1.3 The MountainWatch Project

The project aims at developing and evaluating MountainWatch, an environ-
ment protection mobile application based on augmented reality and backed
by a social web platform. MountainWatch leverages an algorithm for peak
detection in mountain images and transforms it into a Collective Awareness
Application for citizen-driven environment monitoring. MountainWatch will
run in the user’s mobile phone. It is able to identify mountain peaks in
user-generated photos in real time and then to enrich the photos with peak
name tags. With MountainWatch users will have an engaging and socially
rewarding experience, but at the same time they will generate a stream
of geo-referenced images of mountains, feeding an existing mountain image
analysis model. This stream will be made available as input to an existing
model that performs mountain monitoring through digital terrestrial model-
ing and image processing. It estimates very important physical parameters
such as the extension and depth of snow cover, snow water equivalent, glacier
speed, and vegetation cover. Participation will be boosted by a social web
platform that implements a competitive game based on achievements (e.g.
missions to photograph a given mountain peak) and on the positive envi-
ronmental impact of the user’s activity. MountainWatch can help address
a fundamental social challenge: environment monitoring through the auto-
mated analysis of user generated, low-cost visual content.



1.3.1 Environmental Monitoring System

The ultimate challenge of the MountainWatch is boosting social engagement
for environmental monitoring. In a period of climate change and shrinking
public investments in monitoring infrastructures, the need of a low cost anal-
ysis of environmental and ecological parameters is extremely important. A
few methods are now proposed that try to virtualize the permanent mea-
surement stations using mountain image analysis, using both ground and
aerial images. These methods suffer from the absence or high cost of input
data (e.g., satellite imagery, ground photos of a specific peak).

Most approaches require ad-hoc cameras installed in the mountain regions.
These approaches are insufficient to produce and calibrate a really usable
mountain environmental model. On the other side, publicly available moun-
tain photos are available in great quantity in sites such as Twitter, Insta-
gram, Flickr. The main difficulty that prevents using this content is the
need of an automatic mountain peak identification tool. Mountain peak
detection from casual images is a challenging task and the very few aca-
demic algorithms proposed recently tend to fail due to the the imprecision
of the positioning data associated with the photo. A solution to this uncer-
tainty could be applying the mountain peak identification procedure in real
time when the user is taking the photo with his mobile device. This would
improve significantly the accuracy of the results because the user would be
encouraged to switch on the GPS sensor and thus provide precisely the GPS
data and the direction of view of the camera.

MountainWatch will engage the user in a societal challenge of producing
high quality images, by identifying peaks in real time and overlaying their
name onto the user generated photo, producing a very attractive and aes-
thetically pleasant image, which the user will love to save and post to her
social network neighborhood. As a side effect, the photograph and all its
useful meta-data can be captured by MountainWatch (with the explicit con-
sent of the user). MountainWatch will thus present itself to the user as a
”cool” augmented reality camera for mountain peak detection and mountain
photo processing. Behind the curtain, it will act as an active crowdsourcing
interface for massive environmental data collection. The gathered images
and their meta-data will be processed to feed data environmental monitor-
ing systems, an example of which has been already implemented.

To boost engagement and virality, MountainWatch will be integrated with
major social networks, so to let the user share her beautifully annotated pic-
tures with friends, challenging them to download the app and do the same.
This will turn MountainWatch into a tool for promoting social awareness
about environmental problems, thanks to a competitive game model that
measures the positive impact of the user’s activity and her contribution to
the mountain monitoring network.



1.3.2 Innovation

This work is innovative for two main aspects, from the social point of view
and under the technical aspect. It can be defined as a Digital Social Inno-
vation where a new type of social and collaborative cooperation is created
in which innovators, users and communities collaborate using digital tech-
nologies to build together knowledge and solutions for a wide range of social
needs and at a scale that was unimaginable before the rise of the Internet.
The target of this proposed solution aims at the creation of a collective in-
telligence for monitoring the evolution of the mountain health status and
for predicting important ecological and environmental phenomena, by a so-
cial collaboration (aggregation of user generated photos). Few studies about
the performance of content analysis algorithms were already carried out but
the mountain image data set collected can be tested only at very reduced
scale. Here we propose instead to harness the love of people for mountains
to gather a mass scale dataset, suitable for real life application scenarios,
an objective surely impossible before the rise of the Internet and of social
network applications.

A number of mountain peak augmented reality mobile applications already
exist on the market. Among the most popular ones, we can cite Peak.ar,
Peak Search - Alps, Panorama Tatr, Peak Scanner and ShowMeHills AR
mountain peaks. All the listed applications are based on the same logic:
given the camera GPS position and the three axis orientation (determined
by the built-in gyroscope and accelerometer), the mountain peak position
on the device screen is estimated by projecting the physical position of the
peak (with known GPS and altitude) on the camera screen. Mountain peaks
estimated in this way are not suitable for the environmental analysis, due to
insufficient quality and precision. Our tests with these applications revealed
that although the precision of the peak alignment could be sufficient for
an entertainment purpose, it is not suitable for an automatic analysis for
environmental purposes. In terms of quality, the mountain peaks near the
photographer are always labeled, even when they are not visible.
Collecting photos in this way would introduce a huge amount of noise into
the dataset compromising its usability, while providing a not-so-satisfactory
user’s experience, due to the irrelevant peak labels introduced in the user
generated photo. The technical innovation of the proposed method resides in
an image processing algorithm that aligns the picture viewed by the user to
a synthesized rendered view of the terrain that should be seen from the users
point of view, generated by a (publicly available) Digital Elevation Model.
This alignment allows the application not only to estimate precisely where
a mountain peak is located on the image, but also to detect whether the
peak is visible or not (due to clouds, rain, obstacles etc.). This innovation
greatly improves the user experience by positioning the peaks labels much
more precisely and eliminating invisible peaks, and also makes the photo



and its meta-data usable for mountain environmental analysis.

1.3.3 Potential Impact

The application’s main target group includes professional and amateur moun-
taineers, but also the common people who love to spend the day outdoor
and take pictures of the trip with a nice mountain backdrop. The main
virality factor is the high popularity and frequency of mountain trips among
trekkers and hikers, and consequently the predictable high volumes of pho-
tographs that can be generated, as well as the very high enthusiasm and
passion among both professionals and amateurs about mountain knowledge
acquisition. Especially amateur mountaineers are generally incapable of
identifying all the mountain peaks in the range they are visiting and would
probably love an app that helps them acquire a deeper understanding of the
region they are exploring. A similar effect is achieved, for example, by the
many sky observation apps available in mainstream app stores, which count
millions of downloads and have engaged also common people in sky watch-
ing. The plan to reach the target group is based on the engagement of the
mountaineering associations. The approach to marketing and dissemination
will be graded, so to scale from the local level, to the national level and
finally to European and international level.

Currently, the International Climbing and Mountaineering Federation (UTAA)
has a global presence on five continents with 80 member associations in 50
countries representing about 2.5 million people. The Club Aplino Italiano
(CAI) alone, the major Italian alpine associations, counted 320.000 mem-
bers in December 2011. A contact is already in place between Politecnico di
Milano (through Prof Maria Brovelli and Prof Cesare Alippi) and the CAL
We plan to field test the app with the local chapters of CAI (in Lombardy,
especially in the provinces of Brescia, Como and Lecco); after this phase, we
will disclose the MountainWatch concepts to the CAI President and Steer-
ing Committee to obtain the official endorsement of the institution at the
national level, as a vehicle for dissemination to all CAI members. Similar
contacts will be pursued in other alpine European countries, starting from
France, Switzerland and Austria, where academic contacts with research
groups working on mountain environment problems have already been es-
tablished. These groups will facilitate the connection with other national
Alpine Clubs.

Other communication channels include environment-oriented media compa-
nies, such as LifeGate (www.lifegate.it), a national level, very popular media
company, which has already well established links with Politecnico di Mi-
lano. The media relationship office of Politecnico di Milano has also very
good connections with all the leading Italian television companies; we will
exploit this connections to pursue the objective of obtaining a presentation of
MountainWatch in one of the mainstream ”green” Italian TV programmes,



which have an extremely broad audience.

1.4 Document Structure

In the next chapter I will discuss the related already existing projects pre-
senting the current state of art about AR applications running on mobile
devices and image processing algorithms about to environmental subject
recognition.

In the third chapter the system is described deeply presenting in details all
the components and matching algorithms adopted.

In the fourth chapter the implementation aspects are explained including all
improvement technique developed.

In the fifth chapter the experimental study is described disclosing the per-
formances of executed tests.

In the last chapter are exposed the final conclusions with the possible future
improvements.



Chapter 2

Related Work and State of
the Art

This work combines several different disciplines, starting from Digital Im-
age Processing for the peak detection, to environment modeling able to
perform the matching. More in relation with Social Computing there are
Data Mining and Collective Intelligence to monitoring the mountains and
Game With a Purpose (GWAP) System to stimulate customer interaction
increasing satisfaction and employment. Augmented reality aims to display
in a enchanting and innovative mode outcomes. The innovation consists of
the fusion of all these systems available for mobile devices. In this chapter
i will present some efficacy solutions for each single specific research field
mentioned above.

2.1 Mountain Peak Detection

The real time peak detection is the key aspect of the entire work treated.
Depending on platform type, mobile or classical desktop, where the system
runs the approach is different. In the first case the on board sensors help
to find out the mountain peak orientation and localization obtained respec-
tively through the compass, accelerometer, gyroscope and the GPS signal
but the available computational power is low. In the latter the platform
can perform heavy calculations and the task changes according to the input
photograph details without all the sensor information apart occasionally the
GPS tag.

2.1.1 Sensor based Mobile Apps

In the Android application store ”Google PlayStore” the availability and
spread of such applications is high but until today the adopted approach



leads to an approximate result. In ”"Peak Finder Earth” application they
start from the DEM (Digital Elevation Model) as reference to acquire the
right position of mountains. Combining the geographical coordinates from
GPS localization and the axis orientation by means of magnetometer, gy-
roscope and accelerometer and using them as input of basic equations of
geometric transformation the approximate peak detection result is reached.
In the next chapter i will explain deeply how the orientation is performed.
Other systems as ”"Peak Scanner”, ”Peak.ar” or ”"Peak Search - Alps” all
available on Google PlayStore are based on this same approach producing
not so high profile results mostly due to low accuracy sensors, even on last
recent mobile device models. The eye-catched error has not discouraged it
usage as help for trekking beginners guaranteeing simple but profitable user
experience.

2.1.2 Offline Desktop based System

In this different workplace both the input and output move away a lot from
the above approach. In general the input pictures come from the Web,
mainly social platform, the presence of geographical coordinates and camera
sensor specifications can lead to different problem solving methods.

The tasks change according to the availability of GPS tag, changing the
direction of computational effort owing to the different analyzed datasets.
Also the objective is different: with the coordinate the problem consists of
first Pose Estimation and then Mountain Identification phase. With the
lack of localization estimate the challenge starts with a previous additional
step: to analyze and to match the picture with a huge mountains dataset to
recovery the correct geographical position.

An example of estimation of geographic position of a photograph is pro-
posed by Hays and Efros [7] where the estimate of the position is performed
with the analysis of the visual content of the image, a purely data-driven
scene matching approach is applied to find out a geographic area whose the
photograph belongs to.

A sort of inverse study is presented by Ramalingan et al. [8] exposing how
to retrieve the position by means the of orientation. The authors describe
a method to accurately estimate the global position of a moving car using
an omnidirectional camera and untextured 3D city models. The idea of the
algorithm is the same of ours: estimate the pose by matching the input
image to a 3D model (city model in this case, elevation model in case of our
work).

These and other similar works in such context have been done in order to
face with Pose Estimation given the reference 3D model mainly in urban
context rather then in mountains environment. The problem to source the
urban 3D models has been overcome thanks to last years massive growth
of 3D data of buildings and cities. In our context the data source come
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from the terrain elevation data: the elevation data, presented usually as a
geographical grid with the altitude for each point, can be easily seen as a
3D model, and the most interesting objects formed by these models are for
sure mountains.

Fedorov et al. in [1] and [9] has been developed an automatic technique
that, given as input a geo-tagged photograph, estimates its FOV (Field Of
View) and the direction of the camera using a matching algorithm on the
photograph edge maps and a rendered view of the mountain silhouettes that
should be seen from the observer’s point of view. The extraction algorithm
then identifies the mountain peaks present in the photograph and their pro-
files. The outcomes are really interesting: with the best parameters config-
uration the algorithm has correctly estimated the orientation of 64.2%. The
alignment performance depends mostly on three agents: the camera sen-
sor adopted where the cellular phone specification about the FOV are less
accurate than classical camera leading to incorrect scaling estimate. The
presence of the clouds influence the edge extraction introducing noise and
decreasing alignment score. Furthermore as third the composition of skyline
influences the correct matching according to the landscape: with only moun-
tains and terrain the obtained results are significantly better rather then
scenes with foreign objects. The thesis proposal with respect to SnowWatch
project is oriented towards mobile platform to perform the entire matching
process on-the-fly displaying almost instantaneously results in a real-time
way through augmented reality system. The adaptation and re-engineering
to different platform, computing power and context use ranges from differ-
ent algorithm adoptions, exploiting different input information and showing
outcomes in a graceful manner.

The project exposed by Baboud et al. [10] is the another pertinent work and
landmark for the purpose of this project. Given an input geotagged photo-
graph, introduces the matching algorithm for correct overlap identification
between the photograph boundaries and those of the virtually generated
panorama (based on elevation datasets) that should be seen by the observer
placed in the geographical point where the photograph has been taken from.
Naval et al. [11] also describe an interesting solution to perform the position
estimation of mountain image: the distinctive trait derives from the choice of
do not work with the complete picture edges of the image but only with the
skyline extracted using a neural network. The position and the orientation
is then computed by nonlinear least squares.

Excellent outcomes are reach by Baatz et al. [12] with a proposal of an
algorithm that given a photograph, estimates its position and orientation on
large scale elevation models (in case of the article 14 2 a region of 40000 km
was used, but in theory the technique can be applied to position estimation
on a world scale). The algorithm exploits the shape information across the
skyline and searches for similarly shaped configurations in the large scale
database. Evaluation was performed on a data set of photographs with
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manually verified GPS tags or given location, and in the best implementation
88% of the photographs were localized correctly.

2.2 Collective Intelligence

The actual environment monitoring is carried out by means of expensive
and complex systems as e.g. permanent measurement stations using im-
ages collections obtained acquired from ground and aerial images with high
costs also due to ad hoc and rare specific cameras installed in the mountain
regions. Exploiting the Collective Intelligence is possible to build a smart,
widespread and relatively inexpensive environment monitoring system reach-
ing affordable results and contemporaneously transforming the proposal to
Collective Awareness Application.

These exciting findings directly connected to the huge amount of social net-
work sharings brings to create an innovative system to take advantage of this
simply accessible but enormous quantity and by now high quality data. In
fact processing those public uploaded photos is possible to gather precious
and valid information otherwise unexplored and unexploited.

2.2.1 Game with a purpose

Location-based services (LBS) gain a lot of attraction recently. However,
to collect necessary and accurate information to support LBS is always
manpower-consuming, and may be also difficult for machine computation.
Human Computation can therefore be adopted to attack the problems.
These problems which are usually difficult for machines to solve can be
easily completed by human. We can embed our purpose into a designated
game. In this way, players will automatically achieve our purpose while
playing the games.

The popularity acquired from location-based apps, like Foursquare where
people tends to share information of their location with their friends, incen-
tivized the employment of this data collection to gather information about
urban environment leading to further interesting studies about people so-
cial behaviors. This trend of Human Computation connected with a social
mobile GWAP is presented in Urbanopoly [13] project: exploiting a qual-
itative and quantitative approach is possible to discover how the physical
presence in the urban environment together with location based technolo-
gies can prove a valuable contribution to geo-spatial information, and how
the direct experience and human sensing can play an important role in solv-
ing these tasks related to the physical space. The stressed key aspects are
the introduction of set of several tasks to be performed, generalizing the
approach to achieve multiple purposes; assuring a long term engagement of
the player increasing the Average Life Play (ALP) and exploiting the social
dimension by integrating Facebook within the gameplay.
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2.3 Augmented Reality

In representing results the choice of Augmented Reality (AR) allows the
users to be engaged, being more interactive and immediate. This approach
can guarantee social acceptance due to the subtle, discrete and unobtrusive
experience given the size device, moreover the user is able to interact in a
natural and instinctive way. The AR systems can bring a better solution to
some areas, a cheaper solution to others, or simply create a new service. The
covered fields of AR applications are several and quite different, covering a
large range of interests from advertising and commercials, to entertainment
and education and to medical applications.

2.3.1 Augmented Reality Systems

Taking into account the educational and cultural aspects in Huang et al [14]
this system reconstruct ancient ruins where is possible to admire the Yuan-
mingyuan magnificent royal garden otherwise impossible to be perceived. In
this specific case the 3D superimposition comes from an ad hoc optoelec-
tronic imaging system strictly designed and adopted for this scope. In a
museum or cultural exhibitions in the case of smart-phone interface based
application can be reached efficient communication with the user through
multimedia presentations, natural and intuitive technique and low mainte-
nance and acquisition costs for the museum operator’s presentation technol-
ogy.

Around the most profitable field in AR gaming applications besides the
obvious entertainment aspects acquires a relative importance the ability to
introduce animations can not only add excitement to a game, but it can also
serve a learning purpose with, for example, indication to help players learn
the game or know when they are making an invalid move.

Changing sector most of the medical applications deal with image guided
and robot-assisted surgery. As a result, significant research has been made
to incorporate AR with medical imaging and instruments incorporating the
physicians intuitive abilities. Significant breakthrough has been provided
by the use of diverse types of medical imaging and instruments, such as
video images recorded by an endoscopic camera device presented on a mon-
itor viewing the operating site inside the patient. Bichlmeier et al. [15]
introduced an AR system for viewing through the "real” skin onto virtual
anatomy using polygonal surface models for real time visualization. The
authors also integrated the use of navigated surgical tools to augment the
physicians view inside the human body during surgery. Teleoperated robot-
assisted surgery provide the surgeons with additional advantages over mini-
mally invasive surgery with improved precision, dexterity, and visualization.
However, implementing direct haptic feedback has been limited by sensing
and control technology and thus is restricting the surgeon’s natural skills.
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The lack of haptic feedback has been proved to affect the performance of
several surgical operations. In [16] the authors propose a method of sensory
substitution that provides an intuitive form of haptic feedback to the user.
The need to reduce surgical operations is not the only one to depend upon
seeing medical imaging data on the patient in real time; the necessity to
improve medical diagnosis also relies on it. In general the use of AR in the
medical field to provide better solutions to current problems than already
existing solutions is infinite.

2.3.2 Augmented Reality On Mobile Devices

The nowadays availability of Augmented Application on mobile devices is
mainly due to the large step forward of the computational power of modern
portable platform and the parallel rise of social web platforms. Thanks
to the first aspect is now possible to perform heavy calculations exploiting
accurate and precise algorithms and approaches obtaining never seen results.
The Porzi et al. [6] proposal is the most suitable project with respect to
this research sector. The system relies on a diverse approach for robust reg-
istration between the real scene and a synthetic representation of the world,
i.e. profiles automatically generated from Digital Elevation Models (DEM).
This method starts with a rough estimate of the orientation and position of
the device that is computed by processing data from on board sensors, i.e.
GPS, magnetometer, gyroscope and accelerometer. This estimate is then
refined by means of a different alignment algorithm that exploits visual in-
formation. The adopted algorithm matches edges extracted from the given
image against synthetic profiles, guided by a scoring function supporting
the best alignment. With respect to [10] Porzi et al. adopts a simpler and
faster scoring function and devise a learning-based edge detection approach.
This prevents the occurrence of many spurious edges, thus lightening the
subsequent alignment process. Once the photo-to-world registration proce-
dure is completed, virtual content is rendered and overlaid on the real scene.
As in Ozuysal et al. [17] they exploit a simple and efficient way to detect
pixels corresponding to mountain profiles, according to visual features ex-
tracted from their neighborhood. Standard edge detectors, such as Canny
[18] and Compass [19], treat image edges equally regardless of their context.
However, the edges of a specific object (i.e. mountains) have the charac-
teristic local color or texture of that object on one side. A learning-based
approach, oppositely to standard algorithms, is able to capture this informa-
tion, filtering out spurious edges corresponding to other objects (e.g. man
made structures). The outcomes of the experimental evaluation confirmed
accurate registrations unite to almost computationally efficient algorithm.

Similar approach with a different pertinence the Bottari et al. [20] presents
an augmented reality application that offers personalized and localized rec-
ommendation of Point of Interest (POI) based on temporally weighted opin-
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ions of social media community. This service continuously analyzes the so-
cial media streams understanding how the social medias users collectively
perceive the POlIs in a given area.

Finally Wikitude Driven project is a real time augmented application avail-
able for Android and iOS platform suitable for navigation purpose: super-
impose onto the image street the correct path to be follow to reach the
destination.
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Chapter 3

Problema Statement and
Proposed Approach

In this Chapter I will present the adopted approach to build our system
supplying the reasons of our choices. I will describe all the phases composing
the entire process and the possible areas of applications where our solution
can be adopted.

3.1 The Motivations

There are many motivations leading to a development of this new innovative
application. The reasons have to be searched in several aspects. First,
the society evolves and becomes more and more technological. People have
more social predisposition, inclination and pays attention about ecology and
safeguard of the nature.

The possibility of photo sharing on the principal social networks brings useful
content as the geographical position and information about the surrounding
environment, in specific mountains. These resources could reveal important
for nature monitoring and safeguard of the environment.

Particular importance derives from the excellent outcomes reached in such
research fields as mountain peak detection inside professional photographs.
The photos are taken generally with reflex cameras and detection exploits
robust and heavy algorithms achieving high level precision.

Easily to perceive is also the elevate request and relative spread of mobile
social applications designed for mountain context as the localization of sur-
rounding peaks. These applications typically still make errors with a visible
imprecision; often the user experience is not so satisfactory given the lack
of efficient and precise content analysis.

Increase of the mobile systems computing power plays also an important
role. These devices are almost comparable with desktop systems and photo-



graphic industry for mobile platform has really equalize the level of nowadays
digital cameras.

3.2 The Proposal

Given all these aspects we decided to create a new type of user experience:
wherever in presence of mountains, typically during a mountain trip, when
we find in front of an interesting landscape with as subject a majestic visible
peak a beginner trekker or climber, or simply interested observer, is able to
recognize which mountain he is looking at. He can obtains some interest-
ing information about the peak, the whole reachable instantaneously simply
using his smartphone through an augmented reality experience. The infor-
mation about the peak is overlapped on the current preview frame, obtained
thanks a long and deep process of image content analysis, augmenting preci-
sion step by step exploiting cross platform information as on board sensors
and external web services. The smartness and goodness of adopted algo-
rithms giving also the possibility to detect if the current peak in front of
the user is really visible or maybe some obstacle shadow the view as trees,
buildings or whatever not belong to nature world. A key aspect is the pos-
sibility to augment the reached precision step by step, visualizing almost in
real time the boost without waiting the end of the whole process, given the
heaviness of the whole system.

To underline the step by step progression of process the marker on the
camera preview representing the peak position changes color according to
the current phase. This feature is adopted for each forward step, passing
from ”red” color to inspire wrong position to yellow of the first step to
underline an improvement. The the light blue explain the reached good
estimate of the global alignment, adding some shades to green reaching the
final stages.

The application, keeping always active the camera preview during the execu-
tion, gives to the user the possibility to focus the interested areas visualizing
it directly on the display. To help there is an over layer representing the
compass indicating the the cardinal directions. There are also some func-
tionality to configure according to the user preferences; set the maximum
distance within which the mountains can be marked as visible. During all
the execution is possible to take photo to share and show the result of the
peak recognition immediately or later. The advanced mountain updater can
be also activated or deactivated corresponding to the image processing.

3.3 The Application

The general overview of the phases that compose the process is shown in
Figure 3.1.
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Figure 3.1: Application Schema of the phases composing the entire process. The
color choice helps to understand the evolution of process: the first rough sensor peak
estimate (white), the alignment based on first global content analysis (blue) and on
the second local content analysis (light blue) and the ending phase of tracking based
on the following patch matching (green).

After the Services Initialization and GPS Localization the Mountain Model
is built. From now on the visualization of peak names is based only on
sensor keeping track of the device orientation. Also after the updates on the
model coming from the Global Matching and Local matching the labels in
the camera preview are based on the orientation. In the final stage when the
Following Patch phase starts the mountain names are not anymore estimated
by sensors. Given the last peak positions updated during the Local Matching
the patches around the visible peaks are extracted. Now the displayed labels
are the result of the matching of the stored patches inside the current frame.
Now I will present deeply all the local processes and external active services
during the entire application lifetime.

3.3.1 Services initialization

First of all a small hint is given at each application boot: a simple gesture
explained through a brief animated Graphics Interchange Format (GIF) im-
age to encourage a sort of sensor calibration moving the device drawing the
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number "eight” as shown in Figure 3.2. This helps the magnetometer to
reset and restart the estimate of the cardinal directions.

Wave the phone
in a figure 8 motion to calibrate

Figure 3.2: Compass Calibration: how to move the device to help the sensor calibration
at the application boot.

Another little feature is inserted in the application boot: to perform the
image processing we decide to adopt an external multi platform library,
OpenCV exploiting the java interface for android and we have to check
the presence of these modules. In the Chapter 4 I will present deeply the
motivations about the adoption of this strategy.

After the installation of MountainWatch, in future available simply in the
official store, at the first start an immediate check controls if the library
is already present in the OS. In a positive ending the user remains totally
transparent, otherwise a pop-up is show to present the possibility to install
the required application directly from the store simply clicking on ”yes, i
want to install”.

As suggested before to progressively acquire more and more precision almost
all available on board sensors are adopted. As before the OpenCV external
app they cannot be avoided because otherwise it’s impossible to start entire
process. The OS gives instant access to all the needed instrument, helping
the user to set properly everything. So at start together with the linked
reference check a simple pop-up making conscious the user about the ne-
cessity of switch-on GPS and internet connectivity. The accelerometers and
gyroscope don’t need any check and work in background managed directly
by the OS routines.

The requirements are perfectly aligned with nowadays released applications.
The mobile Internet connectivity is available almost on the whole territory
and the percentage of smartphone user without any data connectivity is
very low. On this point it will then analyzed deeply in the Chapter ”Future
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improvements about possible enhancement” where a possible solution only
local based is presented.

3.3.2 GPS Localization

After these initialization tasks, the GPS localization is the very first start-
ing point. This gives the possibility to localize and so understand the actual
mountain chain present in that area. Acquired the information about lati-
tude, longitude and altitude the detection about which peak is really visible
from the camera can start.

The GPS tag precision achieved is suitable for our target, even if the Egnos
system has been taking into account. This solution can lead to a precision
of the final GPS tag improved from 8-10 meters to estimates under the 7-5
meters. The enhancement it’s relevant but contextualizing in our situation
the imprecision coming from the other sources involve a no real improve-
ment. This no real enhancement derives from the 2D projection of digital
elevation model received from the external service udeuschle.de: even if the
final localization becomes more precise the subject still remains far from the
viewer and some meters doesn’t affect a lot the final projection. In Fig-
ure 3.3 a typical Panorama 2D reconstruction from this external service is
shown. In future developing our internal service with higher precision can
be taken into account more reasonably.

The concrete problem comes from the precision of the Digital Elevation
Model (DEM). The DEM is the representation of altitude distribution of a
territory. The digital model is generally produced in a raster format asso-
ciating at each pixel the corresponding absolute height. If the initial model
represents not so faithfully the real mountain model all the subsequent pas-
sages will have less probability to augment the final peak estimates.

Monte Preaola {141 7m)

Monte Palanzone (1436m) Monte Bolettone (1317m)

Figure 3.3: Extracted Patch from Panorama 2D with mountain markers.

Once all the checks are gone, now it’s possible to send the request to our

21



internal services to acquire all the necessary data to finally start the peak
position recognition.

3.3.3 Building the Mountain Model and Sensor Matching

Once recovered the location a request containing the outcome GPS tag is
sent to our internal server. Server side a request to an external service,
udeuschle.de, is sent. This service receiving as input the location and some
configuration parameters returns the projection the 3D model of mountains,
recovered from the open source DEM, to a 2D plane representing the 360
view of the user, the Panorama 2D. Together with the Panorama 2D server
side we acquire information about the mountain, as the name, the altitude
and the peak positions inside the received panorama image. An analysis on
the contained is executed to understand which peaks can be really visible:
only the nearer one are preferred in order to avoid confusion due to too many
overlapping peak markers. When a request from the mobile app has the same
locations coordinates a cached version is available and is immediately send in
the response, otherwise a new request to the external service is sent. When
in the application Panorama 2D and all the related details are received the
first representation of peak estimation starts.

In Figure 3.4 is shown the sequence of working frames starting from the
initial data downloaded from the network and finishing to the pixel coor-
dinates on the mobile device display. There are four working frames: the
Panorama 3D Frame, the Panorama 2D Frame, the Camera 3D Frame and
the Camera 2D Frame.

Panorama Camera Camera

3D Frame 3D Frame 2D Frame
Figure 3.4: The peaks are received from the network are in pixel coordinates in the
Panorama 2D Frame. To display the peaks in the camera preview three transformations

are applied passing from Panorama 3D Frame, Camera 3D Frame and Camera 2D
Frame.

Panorama
2D Frame

From Panorama 2D Frame to Panorama 3D Frame

The 2D frames correspond to panorama and image pictures, as presented
before. They coincide to the lateral surfaces of cylinders as shown in Figure
3.5. The 3D frames represent the concentric cylinder systems as described
in Figure 3.6.
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Figure 3.5: The overlapping of Panorama 2D and Camera 2D adapted from [1]

First we extract from the received file the position of the peaks inside the
downloaded panorama in pixel coordinate, the Panorama 2D. Then we trans-
form this pixel coordinate to Panorama 3D space coordinate.

AV
bAZImut

O

P(cos(@),Py, sin(a))

ar

Z North

Figure 3.6: Cylindrical Coordinate System applied to rotational axis and geographical
directions of testing mobile device.

The peak pixel coordinates (mx, my) in the 2D panorama frame received by
the JSON file have to be transformed into a vector to representing mountain
in Panorama 3D frame. To apply trigonometric rules we have to pass from
the Original Panorama System to the Calculation System as presented in
Figure 3.7.
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Figure 3.7: The Original Panorama 3D Frame on the left and Calculation System on
the right.

The original peak in the Panorama 3D is 3.1

peak, = (x,y, 2) = (cos(aw), py, sin(a,)) (3.1)
where the angle representing the direction of the peak is 3.2.

ap = —Symx + g (3.2)

We have to change system so I1/2 is added and the direction of rotation is
inverted. The scaling factor s; 3.3 represents the quantity of degreeperpizvel
of panorama picture along both direction, vertical and horizontal.

HFovpan . HFoveum
Wpan ! Wcam
HFovpan, Wpan, HEF0Veqm and Weqn, are respectively the horizontal Panorama
Fov, the vertical Panorama Fov, the horizontal Camera Fov and the vertical
Camera Fov. The Fov is the Field of view. 3.4 represents the height of the
peak in the Panorama 3D, where R} is the panorama height.

(3.3)

(3.4)

From now on the peak will be represented always in Panorama 3D frame,
so the future updates will fix the vector instead of the pixel coordinates.

From Panorama 3D Frame to Camera 3D Frame

Now applying the Transformation Matrix to the original peak vector the
peak in Camera 3D frame is found. The peak in Camera 3D frame is the
peak saw from the viewer point of view.

The Transformation matrix is the product of the Viewing Matrix and the
Projection Matrix 3.5. The panorama picture received is already the pro-
jection of the mountain model so the projection matrix is an Orthographic
Projection, and identity matrix.
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Mtransf = Mviewing * Mortho (3-5)

The Viewing Matrix is obtained by the reading of the orientation sensor so
the azimuth, pitch and roll. The Viewing Matrix is the result of the product
of four transformations 3.6.

Mm‘ewmg = ((Mtranslation * M'rotazimuth) * Mrotpitch> * Mrotm” (3'6)

Given the angles of azimuth, pitch and roll respectively «, 5 and v and the
camera eye vector 3.7

Eye = | e, (3.7)

€z

the transformation matrices are 3.8, 3.9, 3.10 and 3.11.

1 0 0 ey
01 0 e
Mtranslation - 00 1 ey (38)
00 0 1
cos(a) 0 sin(a) O
0 1 0 0
M’I”Otazimuth - —Sin(a) 0 COS(Oé) 0 (39)
0 0 0 1
1 0 0 0
|10 cos(B) —sin(B)0 0
rotpiten — | () sin(B)  cos(B) 0O (3.10)
0 0 0 1
cos(y) —sin(y) 0 0
sin(y) cos(B) 0 O
Mot = 0( ) 0( ) 0 0 (3.11)
0 0 0 1

We apply the Transformation Matrix to find the peak; in the Camera 3D
3.12

peaks = Mypanst * peak, (3.12)
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From Camera 3D Frame to Camera 2D Frame

The final step is the projection of the peak from the Camera 3D to the
Camera 2D, so the current frame visible in the camera preview by the user.
First the horizontal and vertical scaling factors along = and y are found 3.13.

m  HFovem

(ka, by) = (cos(5 — 2

V Fovegm
"V Fovpan

) (3.13)

Then they are applied to the resulting peak 3.14.

peakys(x) peakys(y) )

3.14
ky 7 Ky (3:.14)

peaky = (

Finally we find the peak in pixel coordinate in Camera 2D 3.15.

peaky,, = (peaky(z) +1) = (72 (1~ peaks(y)) » (122))  (3.15)

where Wegm and Hegy, are the width and height of the camera frame.

The immediate result showed is the estimate based only on the on board
sensors. Given the 3D coordinate of the peaks, at each frame the Transfor-
mation Matrix updated according to the current orientation of the device is
applied to recover the respectively Camera 3D and then pixel coordinates.

A little maker representing a mountain is placed on the preview as shown
in Figure 3.8, with an inclined label specifying the maximum altitude of the
peak and its name. All the label with the names are oblique to be more
readable in case of close peaks horizontally.
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Figure 3.8: Compass Matching Result: the white marker represents the peak estimate
only based on embedded sensors. The green marker is the estimate obtained from the
groundtruth.

The result is a camera preview focused on the peak with an over layer
containing the essential information about the in front of mountains. Those
peaks fall outside the field of view in that specific moment are not visualized,
until the user start to focus on them. Meanwhile the sensor matching goes
ahead, there is the possibility to capture the visualized detection taking a
shutter comprehensive of the over layer. Each time the user is moving and
reach a new position where the distance with respect to the initial position
at the boot app is higher than a certain threshold and a new GPS tag is
revealed: if it corresponds to a new panorama projection then it has to be
downloaded and the entire process has to restart.

3.3.4 Global Matching

When the first camera preview frame is available together with the panorama
picture and the mountain coordinates in Panorama 3D, the image processing
can start.

The adopted algorithms are taken from the SnowWatch project and now
the differences due to the different context will be explained. In the first
place thanks to the estimate of compass the range of the panorama to be
taken into account is by far reduced. From the initial view of 360 degrees
a slice of 75 degree is extracted. The center of the picture in the Cam-
era 2D is reported into the Panorama 3D with the inverse transformation
matrix. Reprojecting this 3D point vector on the Panorama 2D we obtain
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the estimation of the center of the current frame onto the Panorama 2D.
A panorama patch on the frame center projection is extracted, representing
a larger slice of panorama at which the camera is pointing to. The hori-
zontal Fov is about 60 degrees, the slice is 75 degrees. The frame is scaled
adopting a simplified formula: with respect to the professional camera the
OS directly offer access to the vertical and horizontal Fov avoiding the cal-
culations necessary given the specs of reflex cameras, as focal length and
sensor size. Before to apply the Vector Cross Correlation (VCC) several
steps are performed. The edges extraction is performed adopting different
horizontal and vertical filters to both the picture, panorama and frame. The
impact on computational effort is otherwise unacceptable: there are other
better edge detectors, as compass [21]. They are largely more precise and
suitable for this application field but need too much computational power to
be executed locally on portable device. To maintain the application flowing
and reactive the Sobel filters 3.9 reach good trade off among computational
effort, performance and outcomes.

/4| Q | /4 -1/4 |-1/2 |-1/4
/2| 0 |12 0|00
-1/4| Q | 1/4 1/4 |-1/2 | 1/4

Figure 3.9: Sobel filters adopted.

About the thresholding, the threshold value has been obtained from a dataset
of hundreds of shutters in different conditions, with and without fogs, at high
altitude in a snow context and on-the-lake banks. The skyline detection fol-
lows the same idea, a simplified version has been developed to highlight the
upper edges given the bigger probability to find the mountain profile 3.16.

0 if img(r,c) <=th

img(r, c) * kg if img(r, c) > th (3.16)

img(r,c) = {
where rows is the frame height. The edge filtering approach analyze the
picture column by column: starting from the top pixels towards the bottom,
only pixel values higher then a predefined threshold th are multiplied by the

factor
rows — r

ksk:y - rows

This filtering helps in several context as cloudy shutters, photographs with
different mountains one in front each other with low visibility or a lot of
annoying objects.
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Finally the VCC is performed giving as output the most probable offset to be
applied to find the better overlapping of the frame onto the panorama. The
output matrix is weighted with a Gaussian Kernel; this kernel function is
centered in the middle of the frame with the scope to highlight the edges that
belong to the center of the frame projected onto the panorama estimated
thought the compass.

Figure 3.10: Global Matching Result: the blue marker represents the peak estimate
after the Global Matching Algorithm. The green marker is the estimate obtained from
the groundtruth.

This offset has to be applied to all the peaks, first to the Panorama 2D
system updating the position directly on the panorama. Then the transfor-
mation to the corresponding 3D vector point in the panorama 3D coordinate
system is found exactly in the same way as before.

Once this entire process has finished all the peaks in Camera 3D systems
are updated and ready to be visualized in the consecutive frames as shown
in Figure 3.10. The user can take advantage simply remaining in the same
position or also walking around (he cannot take trip on car or other vehicle
because the GPS detects new position and the process has to restart) still
staring the surrounding mountains. All mountains have been updated be-
cause this first alignment has to be intended global, as a correction of the
compass error. Also those doesn’t fall in the Fov of the current frame taken
into account during the alignment are updated. The previous estimate is
hidden but the vector point indicating the original mountain position into
the Panorama 3D system is not canceled, simply a new value is added. The
reason is simple: when the user stop the advanced alignment or the ap-
plication is paused the original estimate is still require to redo the entire
process.
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3.3.5 Local Matching

To improve the outcomes obtained from the Global Matching a different
approach is taken into account. Due to a not enough precise DEM the cor-
responding panorama picture received is not so similar to the real mountain
profile, the optical distortion can be a possible cause of projection impre-
cision. Sometime some parts are perfectly overlapped and other are not so
well stretched and maybe an area of the frame is precisely aligned while the
opposite region remains consequently quite imprecise. To avoid this situa-
tion another alignment matching can be applied in a different manner: local
patch alignment.
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Figure 3.11: Local Matching Result: the light blue marker represents the peak estimate
after the Local Matching Algorithm. The green marker is the estimate obtained from
the groundtruth.

For each peak visible in the image, and only those peaks visible in the user
Fov, only a small patch around it is extracted. In this way different patches
belong to the same frame can have a different alignment offset overcoming
the panorama imperfections. So all the peaks are not aligned in one time all
together as before but singularly each offset is calculated. Moreover only the
peaks that are quite far from the edge. The reason is simple: if the mountain
remains too close the border it means that it’s often not entirely visible. To
perform a good matching the patch needs to contain at least the central
profile. Also the same reasoning is applied to the corresponding panorama,
where a small region is extracted with a similar dimension patch as for the
current frame. The peaks have not been processed will be take in the next
iteration when the user focus the camera in their direction. If only one of
the two patches cannot be extracted the alignment for this specific peak is
jumped. In the next iteration a new check is executed:if the peak has at
least a minimum distance from the border then the alignment can start. The
iterations continues until all the mountains has been processed The process,
a part the reduced dimensions, is the same as before, so edge extraction,
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edge filtering and skyline detection. Reducing dimension means reducing
computational effort and the resulting effect is more smooth, reactive and
pleasant. The VCC is found and the Gaussian kernel as before is applied to
the result.

To understand if a peak is really visible and not shadowed from obstacles
a Potential Edge is estimated. It represents a threshold obtained from an
empirical approach: only the values of the matrix higher then the Potential
Edge are taken into account as new offset for the mountain updater.

At the end once the offset is available one by one all the vector 3D peaks are
individually aligned, updating the value of the global alignment as shown
in 3.11. This method give the possibility to increase precision working on
local details around the peaks. As soon as the peak vector are updated the
further frame will show the marker with a new color and with a less degree
erTor.

3.3.6 Tracking

After the double matching phase is completed the mountains coordinates
onto the image represent the best superimposition. From now on the tar-
get of matching algorithm changes: we do not have anymore need to align
panorama and the updated 3D positional vector has taken as the best ap-
proximation. This stage is named tracking because now start the ”following
stage” where the outcome positions of the peak obtained from the Local
Matching is researched in the subsequent frames. This tracking phase is
performed locally adopting a similar approach of Local Matching: for each
peak is extracted a surrounding patch representing the object to be tracked
in the future frames.

The patch will not be updated: the future frames will search for the original
patch extracted as the local alignment has finish for that peak. The Peak
Tracking can be seen as a Template Matching, a technique for finding areas
of an image (the current frame) that matches a template image (peak patch).
Two primary components are necessary: the Source image I, the image in
which we expect to find a match to the template image, in this case the
current frame, and the Template image T, the peak patch image which
will be compared to the template image. The goal is to detect the highest
matching area.
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Figure 3.12: A patch retrieved in two different frames during the same sequence.

To identify the matching area, we have to compare the template image
against the source image by sliding it: by sliding, we mean moving the
patch one pixel at a time (left to right, up to down). At each location, a
metric is calculated so it represents how is good or bad the match at that
location is (or how similar the patch is to that particular area of the source
image).For each location of T over I, you store the metric in the result matrix
(R). Each location (x,y) in R contains the match metric: the image above
is the result R of sliding the patch with a metric Normalized Correlation.
The brightest locations indicate the highest matches. In practice, we use
the function minMaxLoc to locate the highest value (or lower, depending of
the type of matching method) in the R matrix.

Thanks to the adopted external libraries Opencv the performance of Nor-
malized Correlation built in function gives the chance to display the output
in real-time, bringing the experience of Augmented Reality: the peaks will
be updated almost in Real Time while the user can rotate or simply move
the camera looking all the mountain chain. In Figure 3.12 is presented the
result of Tracking.

3.4 Possible Areas of Application

There are several application areas where this system can be exploited. This
application is suitable for trekkers and mountain lovers to help the orienta-
tion and localization. The recognition of the surrounding peaks is displayed
in a captivating experience. Another interesting aspect is the possibility to
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evaluate of the sensor precision. The first phase of Sensor Matching can
be possible method to analyze the compass precision of accelerometer and
gyroscope estimating the error in a typical situation of mountain context.
As already mentioned the environmental protection and monitoring is not
the secondary one and now a particular proposal will be proposed.
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Chapter 4

Implementation Details

In this chapter the implementation aspects of the approach proposed in
the previous chapter are presented, from the general description of sensor
functioning, to the main developed components and detailed presentation
of the classes and methods created. The adopted programming language to
develop application for Android is Java.

4.1 Adopted Sensors and Functioning

Inside almost all smartphones the vendors insert several types of sensors
ever more precise. It’s very common finds sensors as the gyroscope, the
magnetometer and the sensor to receive the USAs Global Positioning Sys-
tem (GPS). A lot of applications exploit sensors to build several gaming,
navigation or augmented reality app. This sensor integration gives to the
developers new possibilities to enrich user experience in a more interactive
and creative way. The available APT gives to developers simple instruments
and easy high level access. The result looking at the Play Store, the Official
Android market of Google, are really impressive.

Now we analyze the orientation sensors, the gyroscope, the accelerometer
and the magnetometer. As long the precision is related to the device ori-
entation of the device the outcomes are optimal. When the scope changes
direction towards the estimate of the cardinal directions the results are quite
different. Depending on the goal in our mind the sensor can be or not suit-
able; anyway the estimation is sufficient for the classical use of smartphone.
In fact the imprecision gives us the idea to correct it exploiting digital im-
age. In fact with infallible orientation system the correction thanks to the
content analysis it would be totally meaningless. The errors are present and
perceivable and they are unstable over the time. The smartphones adopt
concretely better and better sensors but they still remain not comparable
to ad hoc and specific products. I carried on several practical tests, also



personally, in different situations and conditions explained in the papers
[22] and [23]. As explained in these studies the sensors suffer terribly from
external agents, mostly due magnet fields, without the possibility to directly
control and eventually intervene on it.

Now I will present in details which ones we adopt, how they work and then
I will show the related problems.

The device used for testing is OnePlus One showed in Figure 4.1, high-end
smartphone available from march 2014. On board there is the embedded
Qualcomm Izat GNSS WTRI1625L chipset; it’s embedded into the Qual-
comm Snapdragon 801 together with the cpu, gpu and other modules. It
supports a GPS, GLONASS and BEIDU satellite navigation systems.

Figure 4.1: OnePlus One, the device adopted to test and analyze the application.

The accelerometer and the gyroscope models are respectively the LIS3DH
and the L3GD20 both produced by Microelectrics; instead the magnetome-
ter is the AK8963 produced by AKM. The Specifications are shown in Table
4.1,4.2 and 4.3 .

Model LIS33DH
Vendor Microelectrics
Range 39.226593 m/s
Resolution 0.019607544 m/s
Power 0.011 mA
Delay 8333 s

Table 4.1: OnePlus One Accelerometer Specifications.
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Model L3GD20
Vendor Microelectrics
Range 34.906586 rad/s
Resolution 0.0012207031 rad/s
Power 6.1 mA
Delay 5000 s

Table 4.2: OnePlus One Gyroscope Specifications

Model AK8963
Vendor AKM
Range 4911.9995 T
Resolution 0.14953613 T
Power 5.0 mA
Delay 16666 s

Table 4.3: OnePlus One Magnetometer Specifications

The magnetometer detects the terrestrial magnetism along three axis, the
x,y and z axis. Combining its measures with the output of the other two
the north direction can be estimated. It’s an electronic compass integrated
circuit with high sensitive Hall sensor technology. The main noising agent
is the external magnetic field in the surrounding environment. Its sufficient
walking in a urban context close to buildings and car and the sensor already
suffer their influence.

The accelerometer sensor measures the linear acceleration along the x,y and
z axis represented in Figure 4.2 [24]. In general is adopted to capture the
motion activities, as the orientation of display to put for example the device
in landscape or vertical mode. The source of error derives mainly from the
bias, the offset of its output signal from the true value.

The gyroscope calculates the angular velocities along the x,y and z axis as
described in Figure 4.3. It useful to recover the correct orientation when
the device is still in motion. In fact the estimate of the accelerometer is
accurate only along stationary periods. While accelerometers measure linear
acceleration as long as there is no rotation, gyroscopes generate an output
signal directly proportional to the angular rate applied to the device.

In particular, the on board gyroscope measure the force generated by the
Coriolis effect as shown in Figure 4.4. When an accelerometer is rotated,
the projection of gravity acceleration is measured as well and there is no
way to distinguish between the two different contributions. By using a
gyroscope, angular rotations are measured while linear displacements are
not. Accelerometers and Gyroscopes can be combined to create an Inertial
Measurement Unit (IMU) able to reconstruct the movement.
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Figure 4.2: Smartphone rotational axis: the rotational angles among the x,y and z axis
are respectively azimuth, pitch and roll.

Accelerometers and Newton Gyroscope and Coriolis
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Figure 4.3: Accelerometer and Gyroscope functioning: V is the velocity of the particle
with respect to the rotating system, and W is the angular velocity vector which has

magnitude equal to the rotation rate w and is directed along the axis of rotation of the
rotating reference frame. [25]

The Gyroscopes use the Coriolis force to measure angular movement. When
a mass moves in a particular direction with a velocity V and an external
angular rate is applied (red arrow), the Coriolis effect generates a force,
shown here with the yellow arrow, that causes a perpendicular displacement

of the mass. The value of this displacement is directly related to the Angular
rate applied.
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Figure 4.4: Coriolis Effect force in play: consider a mass moving in direction V. When
an angular movement is applied (red arrow) the mass experiences a force in the direction
of the yellow arrow as result of the Coriolis Effect. The light blue arrow represent the
movement. [25]

The reliability problems of the gyroscope come from as the preceding sensor
because of the magnetic interference and the bias and the numerical errors.
In our specific field, the sum of all these errors lead two main problems:
the initial estimate of the north and the bias over the time. Once received
the information about the surrounding mountains the north direction is the
crucial point to determine where the mountains are located. When this esti-
mate contains evident error all the future work will be affected. During the
classic use the user rotates and moves the device pointing towards the de-
sired mountain to acquire the info related to. These movements are exactly
the ones mentioned before where the sensors betray their vulnerabilities.

Regarding the localization, the services to recover the user position to im-
prove the final experience are spread in almost every application. The scope
can be the most various and each one can need several level of precision;
starting from the estimate through the radio cell and Wifi connections, ar-
riving to the most precise estimate exploiting also the GPS sensor helped
from the previous two drastically decreasing the time to acquire the signal
and then to recover the exact position. The final results are quite good as for
typical navigation systems as for our specific scope. A recent localization sys-
tem has been taken into account, The European Geostationary Navigation
Overlay Service (EGNOS) [26]. EGNOS is an Europe venture into satel-
lite navigation improves the open public service offered by the GPS. Known
as a Satellite-Based Augmentation System, it provides both correction and
integrity information about the GPS system, delivering opportunities for
Europeans to use the more accurate positioning data for improving existing
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services or developing a wide range of new services.

4.2 OpenCv Llbraries

Given all the advantages coming from a mature platform the interesting
aspect leading us to the adoption of this particular API is the outcome per-
formance obtained from natively implemented API in C. Thanks to this low
level programming the control on the hardware is deeper and working on
images the improvement is also more evident. Nothing is given for free, a
little price has to be payed. This API has been released as a standalone
application on the official android market Google Play Store. It’s free and
easy to install as all the other classical applications, and once installed and
launched give only the possibility to check the current version installed and
eventually to download and apply latest updates. Apart maybe other de-
veloper colleagues none obviously has already installed this application but
the app is absolutely required to run the our. The solution is very simple
and with low price effort.

4.3 The Activities

i Compéias CalkralionMay GifView MainAdtivity MainView

Startup
setContentView)

new Intent

Figure 4.5: Sequence Diagram representing the execution flow of the Activities.

The application is based on two activities: the CompassCalibrationM sg
and the M ain Activity as shown in Figure 4.5. The purpose of CompassCalibrationM sg
is to suggest the Compass Calibration to the user as mentioned in Chap-
ter 3. The corresponding View is the GifView, a simple View where the
parameters of the GIF image are set, as the positioning, the duration, the
refresh rate and the dimension. In the OnDraw method, the method re-
sponsible to custom drawing, the GIF is drawn on the screen as specified
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by the previous parameters. As soon as in the CompassCalibrationM sg
the Compass calibration message has been shown a new Activity starts, the
MainActivity. In the MainActivity we find the most interesting implemen-
tation aspects about the GUI, the Sensors Managers, the Mountain models
and Utilities containing the adopted algorithms. From now an overview
of the MainActivity implementation is exposed also through code snippets,
focusing mostly on the matching algorithms running in the background asyn-
chronous processes.

4.4 Sensor Managers

LocationManager implements LocationListener Or istener
- minterval: int - mOrientation: float []
- mMinDistance: int - mRotationM float [|
- mLastLatitude: Double - S8ensManager: SensorManager

- mLastLongitude: Double
- mLastAltitude: Double

onSensorChanged(SensorEvent): void

- onLocationChanged(Location):void
- onProviderEnabled (String): void
- onProviderDisabled(String):void

NetworkManager

- mConnectorManager: ConnectivityManager

- isNetWorkOnline(): boolean

Figure 4.6: Class Diagrams of LocationManager, OrientationManager and Network-
Manager.

The Sensor Managers are the LocationManager, the OrientationManager
and the NetworkManager as shown in the Figure 4.6. They handle the em-
bedded sensors presented in Chapter 3. LocationManager manages the GPS
sensor checking the running status and recovering the position by means the
altitude, longitude and latitude values. Every time new location is found a
callback provides to update the coordinates in the MainActivity. The Ori-
entationManager similarly to the previous one handles the axis orientation
recovering the values of azimuth, pitch and roll and the cardinal directions.
The NetworkManager provides control on the data connectivity, granting
the availability to connect to our Polimi servers.
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4.5 Camera Handlers

(& extend CameraShutter
-mCamera: Camera - mPreview: CameraPreview
- mHolder: SurfaceHalder - mQverlay: MountainOverlay
- mListener: OnPreviewEventListener - mListener: OnPicture Taken
- mHFov: float - mGurrentyShutting

- mVFov: float
- mFrameApplicant: BackgroundProcess

- isCurrentlyShutting(): boolean

- takePicture():void

- onAutoFocus(boolean, Camera): void
- onShutter(): void
-onPictureTaken(byte[l, Camera): void

- getCurrentFrame(): void

- surfaceChanged(SurfaceHolder, int, int): void
- requestCalibration(): void

- onPreviewFrame(byte[]):void

- getCameralnstance(): Camera

Figure 4.7: Class Diagrams of CameraPreview and CameraShutter.

As the MainActivity starts the CameraPreview is available. This class con-
figures the preview visualized on the display. For instance provides a safe
way to get an instance of the Camera object, it sets the optimal preview
size and aspect ratio and it also rotates the preview when the device has
been rotated as shown in Figure 4.7. Two important methods are imple-
mented here: requestCalibration and onPreviewFrame. RequestCalibration
is called by the MainActivity class when the execution flow needs the cur-
rent frame and sets the PreviewCallback. When the preview frame is ready
the onPreviewFrame is executed and it returns the required frame. At any
time the user can take a photograph to store the current matching results.
The CameraShutter class checks the status of the camera if it’s currently
shutting or not and performs the shutter setting the best configuration with
respect to the available camera specifications.
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4.6 The MountainOverlay View

MountainOverlay extends View

- memento:Memento

- mMountainCompassBMP: Bitmap

- mMountainHiddenBMP: Bitmap

- mMountainGlobalCorrectedBMP: Bitmap
- mMountainLocalCorrectedBMP: Bitmap
- mMountainTrackedBMP: Bitmap

- mAzimuth: float ]

- mPitch: fioat []

- mRaoll: float [

- mHFov: fioat

- mVFov: float

- mMountains: List<Mountain>

- setFov(float, flaot): void

- onMeasure(int, int): void

- onDraw(Canvas): void

- onDrawCompass(Canvas, Memento): void

- onDrawMountains(Canvas, Memento): void

- getTransformationMatrix(float, Memento): Matrix
- getProjectionMatrix(float, Memeanto): Matrix

- getViewMatrix()

Figure 4.8: Class Diagrams of MountainOverlay.

The MountainOverlay is the View where the mountains are drawn on the
preview camera frame. The most interesting methods are drawCompass
and drawMountains, both called in the onDraw callback at every frame
as described in Figure 4.8. DrawCompass draws the result of the magne-
tometer displaying the cardinal directions in the bottom of the screen. The
drawMountains method instead exploits the mountain collection, set by the
MountainDownloader, and the Memento to draws the peak markers on the
preview frame according to the last available results of background matching
processes. Memento is an inner class of MountainOverlay representing the
orientation status at that precise moment. It contains the values of azimuth,
pitch and roll together with the camera FOV. At each frame in drawMoun-
tain given the stored coordinates of the peaks in the Panorama 3D frame
the Transformation Matrix based on the memento is calculated. Thanks to
this matrix each vector peak mountain is projected from the Panorama 3D
to the Camera 2D frame, the preview frame. The implementation of this
coordinate system change is presented in the Listing 4.1:

float imgHFovRad = (float) Math.toRadians(imgHFov);

float imgWidthScaled = imgHFovspanoramaWidth/panoramaHFov;
float imgSfX = imgWidthScaled /imgWidth;

float imgHeightScaled = imgVFovspanoramaHeight/panoramaVFov;
float imgSfY = imgHeightScaled/imgHeight;
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Vector4 location = transformationMatrix.multiply (mountain);
final Vector3 peak = location.toVector3();

if (peak.z>0) {

float clipYMax = imgVFov/panoramaVFov;
float clipXMax = (float) Math.cos(Math.PI/2 — imgHFovRad/2);

float peakImgXScaledClip = peak.x/clipXMax;
float peaklmgYScaledClip = peak.y/clipYMax;

float peakImgSXcaled = (peakImgXScaledClip+1)*imgWidthScaled/2;
float peaklmgYScaled = (1—peakImgY ScaledClip)+imgHeightScaled /2;

int x = (int) (peakImgSXcaled/imgSfX);
int y = (int) (peaklmgYScaled/imgSfY);

if (x>0&& y>0&& x < imgWidth && y < imgHeight){
return new int[] {x,y};
}
}

Listing 4.1: Transformation from Panorama 3D to Camera 2D Frame

where the panoramaHeight is 750 pixels, the panoramaWidth 3600 pixels,
the vertical and horizontal panorama Fovs are respectively 75 degrees and
360 degrees and the imgHFOV is the vFov checked runtime and it depends
on the device. All the mountain vectors containing the coordinates will be
updated during the application execution by means the LocationUpdater
processes.

4.7 The Mountain Downloader

MountainDownloader

- mid: String

- mJpegData: byte(l

- mListener: mOnPanoramalpdateEventListener
- mJpegTask: HitpJPEGTask

- midTask: HitpldTask

- mMountainTask: HitpMountainsTask

- setCoordinates(double, double): void
- convertinputStreamToByteArray(InputStream: byte[]
- setMountains{JSOMArray): void

Figure 4.9: Class Diagrams of MountainDownloader.

When the GPS tag is available the instance of the MountainDownloader
class, shown in Figure 4.9, manages the connection with the Polimi sever to
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recover all the necessary information. Given the values of altitude, longitude
and latitude recovered from the LocationManager the first HTTPRequest
is executed passing the geographical position recovered. Once received the
response containing the related panorama Id a second HTTPRequest to
download the corresponding panorama JPEG image is performed. The last
HTTPRequest is executed to download the JSON file containing the moun-
tain details corresponding to the panorama Id received. In the method
setMountains the peaks are bring from Panorama 2D to Panorama 3D and
then the result is stored in a list of Mountain objects as shown in Listing
4.2

float scaleFactor = (float) (Math.PI % 2f) / panoramaWidth;

float angleOrigin = (float) (—(scaleFactorsx) + Math.PI1/2);

float peaky = ((hHeight) — y)/(hHeight);

Vector3 peak = new Vector3((float)Math.cos(angleOrigin), peaky,
(float)Math.sin(angleOrigin));

mountains.add( new Mountain<Bitmap>(name, alt, distance, x, y, peak, id));

Listing 4.2: Transformation from Panorama 2D to Panorama 3D Frame

The scaleFactor is degreePer Pixel panorama density and the angleOrigin
is the angle of the peak in the Operational Calculation System presented in
the Chapter 3. The class Mountain represents the model with all the related
info taken from the JSON file received.
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4.8 Location Updaters

Start Alignment

Frame Globally ™~ NO Global Alignment
Aligned (Frame)

YES

Update all Peaks in
Panorama 3D

Peak Locally NO Local Alignment
Aligned (Peak)

YES
Update Peak in
Panorama 3D and
store Patch

Follow Patch
Alignment
Update Peak in
Camera 2D

Figure 4.10: The Graph represents the alignment background processes based on Lo-
cationUpdaters.

The core implementation aspects are related to the matching algorithms
inside the LocationUpdaters where the alignment based on the digital im-
age processing occurs. Given the computational cost the algorithms runs
in background threads by means the AsyncTask abstract class. The Async-
Task enables a proper and easy use of threads optimized directly from the
OS. In the MainActivity there are three LocationUpdaters: the GlobalLo-
cationUpdater, the LocalLocationUpdater and the FollowPatchLocationUp-
dater. They are activated in different steps during the application execution,
some at the same time and multiple times and some other only once as shown

46



36

38

40

42

44

46

48

50

in the Figure 4.10.

4.8.1 Global Location Updater

The Global Location Updater is the first Location Updater based on image
processing. As soon as all the information about mountains and panorama
are available the current frame is required to the CameraPreview in start-
GlobalUpdate method. When the frame is received the onGlobalFrameReady
method is executed. First the necessary parameters to perform the Vce-
Matching are set, as the TransformationMatrix, the vertical and horizontal
FOVs, the panorama received and the frame just required. Then the back-
ground thread GlobalLocationUpdater starts. The are several steps to pass
through this GlobalLocationUpdater and now will be presented the most in-
teresting ones. To find the correct overlapping between frame and panorama
the first must be scaled to obtain the same degreeperpizel density of the
latter as shown in Listing 4.3.

final float pPixelByDegree = panoramaWidth / 360f;
final float fPixelByDegree = originalFrameWidth / hFov;
final float scaleFactor = pPixelByDegree / fPixelByDegree;

it . polimi.snowwatch.utils. Bitmap<android.graphics.Bitmap> scaledPicture =
new BitmapWrapper(android.graphics.Bitmap.createScaled Bitmap(
cameraPicture.get WrappedBitmap(),
Math.round(cameraPicture.getWidth() * scaleFactor),
Math.round(cameraPicture.getHeight() * scaleFactor), false));

Listing 4.3: Scaling frame to match the panorama degreeperpixel density.

During our test cases the originalFrame dimension is 1920x1080 pixels and
the vertical and horizontal FOVs of the device are 53 degrees and 61 degrees.
To extract the corresponding panorama patch, the frame center is projected
on the panorama as presented in Listing 4.4.

Matrix invTransMatrix = transformationMatrix.invert();
Vectord peak4 = invTransMatrix.multiply(new Vector3(0, 0, 1));
Vector3 peak = peak4.toVector3();

int ] panCoordinate =

ImageToolkit.fromPanoramaFrame3d ToPanoramaFrame2d (peak);
int panx = panCoordinate[0];

int pany = panCoordinate[1];

Listing 4.4: Find the frame center projected on the panorama.

The invTransMatrix is the inverse of the TransformationMatrix obtained
from the Memento in the MountainOverlay instance where the orientation
estimate of the processed frame is available. Thanks to the invTransMatrix
the peak coordinates pass from Camera 3D to Panorama 3D Frame. The
implementation to pass from Panorama 3D to Panorama 2D Frame is shown
in the Listing 4.5.
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double px = (float) peak.x;
double py = (float) peak.z;

float angleOrigin = (float) Math.acos(px);

if (py<0)
angleOrigin = — angleOrigin;

float angleOriginDeg = (float) Math.toDegrees(angleOrigin);
if (angleOriginDeg < 0)
angleOriginDeg = 360 + angleOriginDeg;

float angle = —angleOriginDeg + 90;
if (angle<0) angle = 360 + angle;

int pixelPerDegree = panoramaWidth/panoramaHFov;

int panx = (int) (angle x pixelPerDegree);
int pany = (int) (renderHeight/2x(1—(float) peak.y));

Listing 4.5: Transformation from Panorama 3D to Panorama 2D Frame.

The Gaussian Kernel function implemented as described in Listing 4.6 is set
to fit the extracted patch dimension:

final int mu = Math.round(size/2);
float [|[] shiftedkernel = new float[size][size |;

for ( int c¢=0; c<size; c++){
for (int r=0; r<size; r++){
shiftedkernel [c][r] = (float) Math.exp(—kernelValuex(—Math.pow(c—mu,
2)—Math.pow(r—mu, 2)));
}
}

gaussianKernel = mFactory.shiftMatrix(shiftedkernel, 0, 0, size, size, true, true,
false);

Listing 4.6: The GaussianKernel implementation.

In fact the kernel size is equal to the scaledPicure size, in the test cases is
630x350 pixels and the kernelValue is 5 - 1075.

Finally the VectorCrossCorrelation, all the code is shown in the Listing 4.7
algorithm is executed.

float [][] fPanorama = factory.imageToMatrix(panorama, panx, pany,
panoramaPatchSize, panoramaPatchSize, true, false, false);

float [J[] fexPanorama = ImageToolkit.createMatrix(panoramaPatchSize,
panoramaPatchSize);
float [][] feyPanorama = ImageToolkit.createMatrix(panoramaPatchSize,
panoramaPatchSize);

ImageToolkit.Convolve(fPanorama, ImageToolkit.HorizontalEdges, fexPanorama, 5);
ImageToolkit.Convolve(fPanorama, ImageToolkit. VerticalEdges, feyPanorama, 5);
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fPanorama = null,;

fexPanorama = ImageToolkit.SkylineRoman (fexPanorama, panSkylineTh);
feyPanorama = ImageToolkit.SkylineRoman (feyPanorama, panSkylineTh);

int scaledPictureWidth = scaledPicture.getWidth();
int scaledPictureHeight = scaledPicture.getHeight();
int fx = Math.round(scaledPictureWidth/2);

int fy = Math.round(scaledPictureHeight/2);

float [|[] fPicture = factory.imageToMatrix(scaledPicture, fx, fy,
scaledPictureWidth, scaledPictureHeight, false, false, false);

float [][] fexpicture = ImageToolkit.createMatrix(scaledPictureHeight,
scaledPictureWidth);
float [|[] feypicture = ImageToolkit.createMatrix(scaledPictureHeight,
scaledPictureWidth);

ImageToolkit.Convolve(fPicture, ImageToolkit.HorizontalEdges, fexpicture, 5);
ImageToolkit.Convolve(fPicture, ImageToolkit. VerticalEdges, feypicture, 5);
fPicture = null,;

//Edge Filtering
fexpicture = ImageToolkit.Threshold(fexpicture, picTh);
feypicture = ImageToolkit. Threshold(feypicture, picTh);

//Skyline Detection
fexpicture = ImageToolkit.Skyline(fexpicture, picSkylineTh);
feypicture = ImageToolkit.Skyline(feypicture, picSkylineTh);

float potentialEdge = ImageToolkit.potentialEdge(fexPanorama, feyPanorama);

float [][] fexpictureResized = resizelmage(fexpicture, panoramaPatchSize);
float [J[] feypictureResized = resizelmage(feypicture, panoramaPatchSize);
//Square

ImageToolkit.Square(fexPanorama, feyPanorama);
ImageToolkit.Square(fexpictureResized, feypictureResized);

//DFFT
Fft2D.transform(fexPanorama, feyPanorama);
Fft2D.transform(fexpictureResized, feypictureResized);

//Conjugate
ImageToolkit.Conjugate(fexPanorama, feyPanorama);

//Product

ImageToolkit.Multiply(fexpictureResized, feypictureResized, fexPanorama,
feyPanorama);

fexPanorama = null;

feyPanorama = null;

//IDFFT
Fft2D.inverseTransform (fexpictureResized, feypictureResized);
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//Real part needed
feypictureResized = null,;

//Gaussian Kernel filter
ImageToolkit.gaussianKernel (fexpictureResized, shiftedKernel);

//Max

ImageToolkit.ImagePoint[] points = ImageToolkit.getMaximum (fexpictureResized,
1);

if ( points [0]. value<potentialEdge) return null;

int xoffset = (int) (fexpictureResized.length — points[0].x);

if (xoffset >= fexpictureResized.length/2) xoffset —= fexpictureResized.length;
int yoffset = (int) (fexpictureResized [0]. length — points[0].y);

if (yoffset >= fexpictureResized[0].length/2) yoffset —=
fexpictureResized[0].length;

Listing 4.7: The VectorCrossCorrelation implementation.

The threshold parameters picT'h and picSkylineT h adopted are respectively
0.15 and 0.28.

At the end there is the check to understand if the viewing mountains are
really visible or there are some obstacles occluding the peaks. If the max
extracted from the resulting matrix representing the VectorCrossCorrelation
output is higher than the potentialEidge then the quality of alignment is
enough consistent and all the peaks are updated. With the obtained offsets
the peak in the Panorama 2D frame are updated and as in the beginning
stage the peaks are projected from the Panorama 2D into the Panorama
3D Frame. From now on in the MountainOverlay View the peaks will be
displayed with the fixed position just updated.

4.8.2 Local LocationUpdater

The GlobalLocationUpdater is executed only one time to obtain the global
alignment. The LocalLocationUpdater instead is performed multiple times,
once per each peak. The execution flow is similar: the steps are the same
but the source images are not the entire frame and the panorama patch
corresponding to the overlapping of the entire frame. The source images of
the matching process are the patches containing only the single peaks. At
the end after the resulting offset are applied and the peaks are updated in
Panorama 3D frame per each peak a patch from the current frame is stored.
These patches will be necessary in the future Following Patch step. The
patches are 50x50 pixels and are store inside the corresponding Mountain
object.
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4.8.3 FollowPatch LocationUpdater

Until all the peaks have been processed in the LocalLocationUpdater the
background threads still continue. For each mountain already locally fixed
the last FollowPatchLocationUpdater starts. Here the OpenCV libraries are
exploited: the input are the extracted patch from the frame on which we
performed the local alignment and the current frame. The implementation
is shown in the Listing 4.8.

152| Mat img = fromBitmapToMat(image);

Mat templ = fromBitmapToMat(m.getPatch());
154
int resultCols = img.cols() — templ.cols() + 1;

156 int resultRows = img.rows() — templ.rows() + 1;

Mat result = new Mat(resultRows, resultCols, CvType.CV_32FC1);

158
Imgproc.matchTemplate(img, templ, result, matchMethod);
160
Core.normalize(result, result, 0, 1, Core. NORM_MINMAX, —1, new Mat());
162 MinMaxLocResult mmr = Core.minMaxLoc(result);
164 Point matchLoc = mmr.maxLoc;

166/ double xOff = matchLoc.x + templ.cols();

double yOff = matchLoc.y + templ.rows();
168
int px = (int) xOff — templ.cols()/2;
170 int py = (int) yOff — templ.rows()/2;

Listing 4.8: The FollowingPatch implementation.

The Imgproc.matchTemplate is core method where takes place the match-
ing: the best overlapping of the patch inside of the current frame. In
Core.normalize occurs the normalization and MinMaxLocResult.MatchLoc
gets the maximum from the resulting matrix of the matching. The matchM ethod
adopted is CvT'mCoef f Normed. To maintain the experience as smooth as
possible both input images are scaled with a scale factor of 0.25.
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Chapter 5

Experimental Study

In this chapter a sample collection is analyzed to evaluate the performances
of the developed application. The precision of the estimate is computed
varying the operating parameters and different thresholds are set to classify
the resulting peaks. Now I will present the test approach with the related
difficulties and all the features needed to build the Test Environment. At
the end some consideration about results will be exposed.

To analyze the precision and robustness of MountainWatch an ad-hoc test-
ing environment has been built. Performing test on mobile platforms brings
additional difficulties with respect to the ”typical” applications. In partic-
ular the application is based on data recovered from sensors and cameras
carrying additional labor also for the simple debugging phase where a vir-
tual running instance in the developing environment is not possible. The
peak detection evaluation directly on the device is not possible for many
reasons. The correctness of the peak positions on the Camera 2D Frame
can be evaluate only thanks to a groundtruth. The groundtruth is the set
of all the samples where the alignment among the Panorama 2D and the
Frame 2D is performed manually, so it represents the perfect alignment that
application can reach. This manual alignment must be created manually for
the entire Data Set to be analyzed and it is performed with an application
presented in this Chapter in the section Manual Alignment.

5.1 Data sets

The Data Set is composed by photographs taken from the bank of the Como
city with a typical landscape of mountains overlooking the lake and near
a skiing area in Valtellina with peaks snow covered captured from high
altitudes. The photographs are 100 with various weather conditions, from
none or minimal to massive cloud presence, from clean shutter with no
obstacle to picture with cumbersome object occluding the view as shown in



the Figure 5.1.

Figure 5.1: Samples taken from the Dataset.

5.1.1 Collecting Samples

The GPS coordinates are necessary at the boot of the application, and
eventually at each relevant position change, to download the Panorama 2D
and the contained peaks in that specific location. The sensor readings about
the orientation are needed during all the application runtime. In the Test
Environment must be reproduced the identical situation as the application
runs exactly on the device in the same position, orientation and capturing
the same frame. The idea is to capture the Memento, as presented in the
Chapter 4, to store the status of the sensors at each taken frame. To recover
the test samples a series of frames is stored with an interval of 1 second
among them. The hypothesis is that the GPS coordinates does not change
so during the entire sequence the GPS tag is unique. For each frame the
Memento is stored keeping track of azimuth, pitch and roll together with
the GPS tag relative to the entire sequence. These details are stored inside
the local storage of the device in a JSON file together with the frames.

To store the samples a new feature to the original application is added. It is
accessible from the main view simply via a Button as the other functionali-
ties. Before to start the GPS tag must be available but it is not necessary to
have already downloaded the Panorama 2D. Through an AsyncTask, used
for the other LocationUpdater as presented in the Chapter 4, at each second
the screenshot of the visible camera preview is stored, without the Moun-
tainOverlay layer. The result of LocationUpdater printed by the Mountain-
Overlay is not needed because the same results will be reproduced ”offline”
in the Simulator, the reproduction of the mobile application in the Test
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Environment. This layer also with peak markers and compass directions
added artificially are misleading elements for the matching test. Given the
device adopted for the test, OnePlus One, each frame of the Screenvideo has
Full HD resolution, 1920x1080 pixels. The shots are available in the folder
emulated /M ountainW atch/SampleT est.

5.1.2 Manual Alignment

To create the groundtruth a tool has been developed by a collaboration
of several colleagues and Homeria [27]. It’s a web application able to align
manually the Panorama 2D and the Camera 2D Frame, so the sample frames
stored for the test in the application and the corresponding panorama.
Through a simple graphical interface is possible to align the two pictures
and it returns the results in a JSON file available for the download. The
first operation is to upload the sequence of frames and the relative JSON file
from the device. Then the Camera 2D is set in the center of the page in the
foreground and the Panorama 2D is put in the background. With a simple
mouse scroll movement the user can align the frame over the panorama as
shown in Figure 5.2.

Figure 5.2: The alignment of the frame with the panorama.

Once the best overlapping alignment is found also the position of the Panorama
2D is fixed. The DEM as presented in the Chapter 3 does not correspond
perfectly to the real mountain profiles. This application provides a func-
tionality to stretch the Panorama to be correctly aligned with the Camera
frame. To obtain the pixel position of all the visible peaks in the Camera 2D
Frame the estimate of the frame’s center on the panorama has to be found
when the Panorama Stretching, described in Figure 5.3, is performed.
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Figure 5.3: The frame is stretched to overlap perfectly the panorama.

At the end the JSON file containing the pixel coordinates of all visible
peaks is available. The stretching leads to calculate the resulting center of
the frame. An estimate of the least square error is recovered.

5.2 Metrics

The matching process is based on several steps so the evaluation must takes
care of the results at each stage as well as the final result. The evalua-
tion of embedded sensor consists of the calculation of the distances among
the resulting peaks coming from the readings sensor in the Camera 2D with
respect to the resulting peaks obtained from the Manual Alignment. The pa-
rameters are the Euclidean Pixel Mean Distance (EPMD), the Degree Mean
Distance (DMD), the Center Euclidean Pixel Mean Distance (CEPMD) and
the Center Degree Mean Distance(CDMD). The EPMD is the mean in pix-
els of the Distance Error peak by peak of each photograph; the DMD is the
same Distance Error in degrees. The CDMD is the Degree Error among the
picture center projected on the Panorama 2D with respect to the picture
center calculated with the Manual Alignment representing the best approx-
imation of the center after the image Stretching. The CEPMD is the same
Error in pixels. The EPMD and DMD estimate the absolute error visible
from the user on the picture. These parameters contain an inside intrinsic
error coming from the downloaded panorama: as described in the previous
chapters the DEM and its projection have some imprecision and the algo-
rithm cannot reach the absolute precision with these initial data. To better
evaluate the goodness of the algorithm both will be take into account. The
Azimuth Error and Pitch Error are respectively the error along the horizon-
tal and vertical axis. After each stage of alignment process the Confusion
Matrix (CF), described in the Table 5.4, is calculated.

In this model each peak of all series pictures is evaluated: the True Posi-
tive(TP) represents the peak marked thanks to the sensors matching and
matched also in the groundtruth, without taking care of the Distance Er-
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 relevant TP +FN

Figure 5.4: The Confusion Matrix allows visualization of the performance of the algo-
rithm: P and R are respectively the Precision and the Recall.

ror but only the presence. The False Positive (FP) is the peak found from
the Matching and not from the groundtruth. The True Negative(TN) is
the peak not found from both sensor matching and groundtruth. The False
Negative (FN) is the peak retrieved in the groundtruth set and not in the
sensor matching. The values of Precision and Recall give an overview of the
result goodness.

5.2.1 Test Flow Execution

For each sequence thanks to the collected information obtained as explained
before in Section Collecting Samples the Panorama 2D is downloaded with
the details about the contained peaks. For each photograph of the sequence
the same execution is reproduced exactly as on the mobile device. At first
the estimation of the Sensor Matching is reproduced thanks to the Trans-
formation Matrix obtained from the Memento. Then the Global Updater
and Local Updater are proposed again exactly as in the mobile application.
The evaluation of the last phase of Following Patch is a different from the
original execution on the device. During the execution of the application
after the Local Location Updater has finished all the corrected mountains
are tracked in the following frames. Given the entire sequence of 10 frames
taken in a short range of time the extracted patch from previous steps can
be tracked on the entire sequence, not only the frame successive frames. For
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each extracted patch we perform the tracking on all the other nine frame
augmenting the test cases. For example when the fifth frame is analyzed we
will search its peak patches not only in the subsequent frames 6,7,8,9 and
10 but also in the previous frames 1,2,3 and 4. Once all these estimations
are calculated a threshold must be set to declare if the resulting peak is
correctly matched or not and how much is precised. As described in Table
5.1 there are 3 threshold levels to classify the Degree Error € of resulting
peak detection.

Level of Precision Degree Error
High €<3
Medium 3<e<h
Low D<e<T
Not Found e>"T

Table 5.1: Degree Error Classification.

5.2.2 Operating parameters

The Test is performed evaluating the algorithm presented in the Chapter 3
changing the operating parameters as presented in the Table 5.2. The values
in bold defines the default value adopted for the final release and that gives
the best evaluation results.

Full name Parameter | Tested values
Panorama Edge Filtering Threshold Pp 0.1, 0.2
Picture Edge Filtering Threshold Pr 0.2, 0.3
Panorama Skyline Filtering Threshold by 0.2, 0.3
Picture skyline Filtering Threshold by 0.3, 0.4

Table 5.2: Operating parameters (defaults in bold).

All the operating parameters have been tested. The default configuration
is set and one parameter at time is evaluated. For each parameters all
values are tested estimating the DMD: the default value corresponds to the
minimum DMD found. Table 5.3 represents the other invariant parameters.

5.3 Results

The Dataset is divided in 10 sequences are analyzed taking into account
some important aspects as the landscape context, the obstacles present in
the scene, the presence of clouds on the skyline horizon and the precision of
the initial Panorama 2D how much is similar and accurate the DEM with
respect to the real mountains profile first and contour after. As shown in
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Full name Adopter values
Render global patch size 750
Render local patch size 250
Picture local patch size 100
Patch Scale Factor 0.25
Extraction Patch Size 50

Table 5.3: Invariant operating parameters .

Table 5.4 and 5.5 for each sequence the estimates of DMD, PMED, CDMD
and CPMED explained in the Section Metrics together with the value of the
Precision and Recall. The first table refers to the peak estimation after the
Sensor Matching to evaluate the precision of sensors; the latter represent
the results after the Local VCC Matching. The entire collection refers to
the same location revealing the fluctuating behavior of the entire detection
process. The situation differs a lot one sequence from the others about
the context, the weather conditions and presence of obstacle in the FOV.
Also inside the same sequence the results can be really different: the DEM
accuracy and the compass measures changing over the time also during a
small periods of time to perform shutter sequence, about a dozens of seconds.

Sequence DMD | PMED | CDMD | CPMED | Recall | Precision
One 15.85 490 13.70 428 0.57 0.13
Two 104 325 11.65 364 0.81 0.77
Three 15.85 490 13.70 428 0.86 0.94
Four 3.75 114 4.40 134 0.89 0.89
Five 3.37 102 3.61 110 0.91 0.88
Six 5.03 153 4.81 146 0.59 0.96
Seven 4.29 130 4.45 135 0.77 1
Fight 5.91 180 6.13 186 0.60 0.92
Nine 12.63 684 12.34 428 0.79 0.91
Ten 4.40 122 4.69 142 0.85 1
Mean 7.09 246 7.08 222 0.76 0.84
Median 5.18 157 4.9 1449 0.82 0.91

Table 5.4: Result obtained in the Sequences after the Sensor Matching phase.

In sequences One, Two, Four, Five, Six, Eight, Nine and Ten the improve-
ment thanks to VCC Matching is positive and evident. In certain cases the
initial error due to the compass estimate is so pronounced that the improve-
ment is not sufficient to reach the optimal peak detection as in sequences
One and Two. In the sequence One the presence of clouds is low, none obsta-
cles and good wide view but the Panorama 2D is not accurate. In sequence
Two the Panorama 2D is quite accurate but the there are several obstacles
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and restricted narrow view. In the sequences Four, Five and Ten the clean
and wide view, the absence of obstacles and clear skyline together with the
accurate DEM lead to good results. In sequence Three, Seven and Nine the
improvements obtained from the image processing are negative but analyz-
ing deeply the single frame the real final detection precision is not always
worse than the one obtained through the sensors.

Seq | DMD | PMED | CDMD | CPMED | Recall | Precision | Imp
One | 7.45 332 7.25 226 0.75 0.70 45%
Two | 5.27 164 5.47 170 0.81 0.77 53%
Thre¢ 5.76 175 6.31 192 0.81 0.77 10%
Four | 2.56 72 1.57 47 0.93 0.96 64%
Five | 2.46 75 1.97 60 0.91 0.94 45%
Six 3.07 93 2.61 79 0.53 0.96 46%
Seven 7.61 231 7.19 219 0.72 0.95 10%
Eight 3.12 97 3.31 103 0.75 0.94 47%
Nine| 1.93 98 1.37 41 0.84 091 89%
Ten 4.68 142 2.73 83 0.92 1 42%
Ma | 4.39 143 3.97 122 0.78 0.89 45%
Me 3.9 119 3.02 93 0.81 0.94 45%

Table 5.5: Result obtained in the Sequences after the VCC Matching phases.

In sequence Three the result of the VCC Matching is not representative:
looking at the single frames the frame 1,2,3,4 and 8 the final DMD is under
the 3 degrees. The remaining frames due to the DEM imperfection the
alignment leads to the negative improvement. In sequence Seven the results
of the entire series are negatives due to the presence of obstacles. The initial
error compass estimate is quite high and in the frames 7, 8 and 9 with a good
skyline profile and without obstacle the improvement lead to DMD less then
3. In the other frames the large imprecision given from the compass affects
the image processing resulting not able to recover the correct alignment
getting worse detection.

Now we consider the Data Set not any more divided by sequence but we
analyze the entire set of peaks. As shown in the Figure 5.5 the total amount
of True Negative peaks available is very high. This result leads to the
consideration of the large quantity of peaks that are present in that specific
geographic area but not directly visible from the viewer. This estimation
is the first evident difference with respect the actual applications available
in the Google Playstore where all the possible mountains are detected. In
Figure 5.6 is shown the final result where all the peaks are classified as
described in Table ?7. The classical arithmetic mean tends to not describe
faithfully the goodness of our system and tends to under estimate the results.
In Figure 5.7 can be appreciated the general improvement starting from the
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Figure 5.5: The Confusion Matrix representing the entire Dataset.
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Figure 5.6: The classification of all the resulting peaks divided in four categories.

Sensor Matching arriving to Following Patch stages.

The stable trend of the change from the last two steps is not related to a
neutral detection improvement but to the adopted approach. In the last
phase the purpose of this different strategy is to reduce the time of execu-
tion and not anymore to augment precision. The target is to maintain the
same detection of the Local VCC matching granting a better smoothness.
The frame rate during the Following Patch step decreases but still remains
acceptable granting the user experience satisfactory.

For each sequence of the Dataset the execution time is analyzed. The Sensor
matching consists of a not computationally heavy calculations in fact there
is no latency and it’s immediately displayed. The stages taken into account
time are the Global VCC Matching, Local VCC Matching and the Following
Patch. During the data collection at each of these stages the duration of
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Figure 5.7: The Bar Chart represents the resulting DMD Error of the entire Data Set.

the alignment of all the peaks present in each frame is stored. In the Global
Matching the time is fixed: we align the Panorama 2D and the Camera 2D
one single time. In the other stages the duration refers to the alignment of
all the peaks visible in that specific frame so it can vary according to the
quantity of visible mountains. A weighted estimation is calculated simply
dividing the amount of time by the number of detected peaks. In Figure 5.8
are represented the overall mean execution times of the entire Data Set of
the 3 phases.

Though Local VCC Matching obtains similar errors, the alignment of a single
peak with Local VCC Matching requires 1.71s while a peak alignment with
Following Patch approach requires 0.81s, i.e. an 52% time reduction.
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Figure 5.8: The Bar Chart represents the resulting DMD Error of the entire Data Set.
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Chapter 6

Conclusions and Future
Work

In this work a AR mobile system for the estimation and the detection of
peaks based on sensors first and image processing after is presented. The
system as shown in the Chapter 5 detects the peaks with a precision = 0.80
and recall = 0.90. It reaches a Degree Error € < 3 in 23% and 3 < e < 5 in
44% of the data set. The precision of the final detection depends from many
factors and the most important are the mounted sensors, the camera and
the computing power. The user experience results to be really comfortable
using recent devices granting a general level of smoothness. Thanks to the
available power computing and the great precision of the mounted sensors
the subsequent image processing can overcome the initial starting errors
about orientation and localization. The direction of the components used
for mobile device lead us an happy future given the huge improvement in the
last few years giving the possibility to improve the reached results adopting
new more precise matching algorithms and greater general smoothness.

6.1 Future Enhancements

The main aspects of this work are related to the precision reached in the final
mountain tags and the possibility to exploit passively as much as possible
these results. The possibility for the users to directly share the photographs
containing the tagged mountains on the main social platforms inside our
application is already arranged. It can be an involvement for people to
share easily and immediately the resulting mountain detection. In this way
releasing this additional feature the user experience is richer and at the same
time the data acquisition results simplified.

Now some considerations about new different technical strategies are pre-
sented.



6.1.1 Matching Performances

A possible additional feature to improve the matching algorithm perfor-
mance is also to give the possibility to the user the correct manually the
final alignment. With an intuitive interface the user can drag the resulting
marker more precisely to the correct peak position only over the peak profile
exploiting for example an audio signal guide and visual hints. Once acquired
the new position it will substitute the previous one in the Camera 3D Frame
correcting the peak label. In this approach the role of the user changes. He
becomes an important actor in the alignment process helping our system in
a typical touch task for computer system.

A specific work on the sensor precision evaluating the possibilities is pre-
sented in [23] where a Drift and Noise Removal Filter (DNRF) is described.
It is implemented by sensor fusion of gyroscope, magnetometer and ac-
celerometer which minimizes the drift and noise in output orientation. A
numerical error correction approach is also mentioned to minimize the er-
rors caused by gyro signal integration. The orientation result obtained by
proposed DNRF method are smooth and less noisy as compared to digital
compass. The adoption of this system can reduce the initial errors coming
from the sensors.

6.1.2 Local Digital Elevation Model

The Panorama 2D derived from the DEM is a crucial aspect of future im-
provements about precision and execution time. A possibility to reduce the
global execution time is that the Panorama 2D can be downloaded with the
mountain profiles already extracted without processing the image locally.
Performing these operations of edge extraction and edge filtering server side
is possible to adopt heavier but more accurate algorithms also obtaining bet-
ter performance during the alignment phase. Another expensive solution is
to develop a owner panorama generator inside the application and available
locally. In this way the precision of the peak detection can be augmented
reaching better alignments and enhancing the correspondence between the
3D model and real mountains environment. A local database installed on
the device is concretely feasible given the storage capacity of new generation
devices. The user has the possibility to select the preferred regions according
to his geographical position and download only the DEM of the interesting
zone just once. The DEM locally stored allows to not need to download
the Panorama 2D every time reducing the execution time of the final peak
tagging. A possible solution can be to generate only the projection from the
3D model, the Panorama 2D, at execution time without the need of data
connectivity. This solution has been already adopted with good results in
several other similar applications giving more freedom to the user.
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6.1.3 Safeguard and Environmental Modeling

An idea can be the creation of challenge contests suggesting people to explore
and take shutters of a certain mountainous areas on which some environ-
mental associations are strictly interested. The motivations can be simply
the lack of information of that particular zone or maybe a more recent data
to perform cyclic long-term analysis. An example can be to put up for grab
as rewards a quantity of premium points thanks to which the user can access
to discounts from the same associations mentioned before (for example the
Club Alpino Italiano CAI) for event participation or gadgets.
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