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Abstract

In this thesis we discuss the mathematical analysis of the Cahn-Hilliard partial
differential equation, which describes the time evolution of the physical phe-
nomenon called spinodal decomposition. This phenomenon occurs, for exam-
ple, when a binary alloy, which is initially very hot, is abruptly cooled down.
Throughout this cooling process, the alloy follows various specific stages during
which one can observe distinctive geometric patterns. These configurations are
approximated by the solution of the Cahn-Hilliard equation. Such equation also
applies to other phenomena occurring in fields such as tumor growth, population
dynamics, image impainting.

We first describe the spinodal decomposition phenomenon and provide a con-
cise physical motivation of the structure of the equation. We then move to a
detailed mathematical analysis of some known results associated with both the
deterministic and stochastic versions of the Cahn-Hilliard equation. Finally, we
prove some new theorems of existence, uniqueness and measurability of suitable
solutions to a specific stochastic extension of a nonlocal Cahn-Hilliard equation.



Sommario

In questa tesi trattiamo l’analisi matematica dell’equazione alle derivate parzia-
li di Cahn-Hilliard, la quale descrive l’evoluzione temporale del fenomeno fisico
chiamato decomposizione spinodale. Questo fenomeno si verifica, per esempio,
quando una lega metallica binaria, che inizialmente è molto calda, viene bru-
scamente raffreddata. Nel corso di questo processo di raffreddamento, la lega
passa attraverso alcuni stadi durante i quali si possono osservare configurazioni
geometriche caratteristiche. Queste configurazioni vengono approssimate dalla
soluzione dell’equazione di Cahn-Hilliard. Tale equazione si applica anche ad
altri fenomeni attinenti a campi come la diffusione dei tumori, la dinamica delle
popolazioni, la ricostruzione di immagini.

Per prima cosa descriviamo il fenomeno della decomposizione spinodale e for-
niamo una breve motivazione fisica della struttura dell’equazione. Quindi passia-
mo ad una analisi matematica dettagliata di alcuni risultati noti attinenti sia alla
versione deterministica dell’equazione di Cahn-Hilliard sia alla versione stocasti-
ca della medesima. Infine dimostriamo alcuni teoremi originali sull’esistenza,
l’unicità e la misurabilità di appropriate soluzioni per una specifica versione sto-
castica di una equazione di Cahn-Hilliard in forma non locale.
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Chapter 1

Introduction

1.1 Physics of the Cahn-Hilliard model
During the last century many reseachers attempted to formulate a mathemati-
cal model to properly describe a physical phenomenon commonly referred to as
spinodal decomposition. This phenomenon is a special type of phase separation
process in a two-phase system and it is studied extensively in materials science.
In order to analytically describe this phenomenon, a partial differential equation,
known as the Cahn-Hilliard equation, was proposed by scientist John W. Cahn
in 1961 [12] after a joint collaboration with scientist John E. Hilliard.
In Subsection (1.1.1) we illustrate the key qualitative features of the spinodal
decomposition phenomenon by means of its basic motivating example. For its
complete treatment, the reader may consult [43], [46]. Relying on this example,
we illustrate the physical formulation of the deterministic Cahn-Hilliard equa-
tion in Subsections (1.1.2)-(1.1.3) and the physical formulation of the stochastic
Cahn-Hilliard equation in Section (1.2). In Section (1.3) we give a review of some
related applications.
The remaining part of this Introduction and the following chapters constitute
the very core of this thesis, which is devoted to a purely mathematical analysis
of suitable versions of the Cahn-Hilliard equation. In particular, we present some
new results in Chapter 4.

1.1.1 The motivating example

Let us consider a spatial domain D ⊂ Rd, d ∈ {1; 2; 3}, to which a binary alloy is
confined. The alloy is composed of two different metallic elements A and B (e.g.,
aluminum and zinc, gold and platinum, gold and nickel). The alloy’s temperature
T0 is initially extremely high, so that the metallic elements A and B are melted
together and the material is quite homogeneous. Clearly, at this stage, A and B
are not distinguishable at all. After a while the alloy is cooled down abruptly and

1
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it reaches a much lower temperature T1. During the cooling period, the elements
A and B separate from one another and the material becomes inhomogeneous.
This phenomenon is most commonly referred to as the spinodal decomposition
phenomenon.
The phase separation follows a number of different stages: in the first place
one can observe a partial nucleation (i.e., the appearance of some nucleides of
element A or B in some portions of the domain D) or a total nucleation (i. e.,
the division of the entire alloy in nucleides of A or B). The material quickly
becomes inhomogeneous, forming a (possibly incomplete) fine-grained structure
composed of separate blocks of A and B. Then there is a second stage which
occurs more slowly, called coarsening, during which the blocks of A and B grow
and finally form a set of well-defined spatial domains composed either by A or
B. The interface between two spatial domains of A and B is not sharp, but has a
non degenerate thickness. In this interface the composition of the alloy changes
gradually between A and B. See Figure I.I. The presence of a thick interface

Figure I.I: a) The diffuse interface is the greyscaled region between the black
rectangle (metal A) and the white rectangle (metal B). b) A sharp interface
(related to other phenomena, not to the spinodal decomposition phenomenon)
abruptly separates the black and white regions. Image b) has the only purpose
of being put in contrast with a).

is distinctive and it characterizes a specific class of phenomena. A graphical
description of the progress of the binary alloy system is shown in Figure I.II.

1.1.2 The local Cahn-Hilliard equation

In this Subsection we give a concise derivation of the Cahn-Hilliard equation by
means of some physical considerations associated with the motivating example
described in Subsection (1.1.1). The necessary physical assumptions are specified
in the forthcoming Remark (1.1.3). For a complete treatment, the reader is
referred to [28] and, since the motivating example is related to thermodynamics,
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Figure I.II: Evolution of the binary alloy during the cooling process. The spa-
tial domains dominated by metal A are coloured in red, the spatial domains
dominated by metal B are coloured in blue. Windows labeled with time units
0/100/300/500 illustrate the nucleation stage, the remaining windows illustrate
the coarsening stage. The latter show the distinctive patterns associated to the
spinodal decomposition phenomenon.

also to [13], [37], [61] for the basic thermodynamical discussions.

In order to keep track of the advancing binary alloy cooling process and to fully
describe it, it is reasonable to monitor the relative concentration of A with respect
to B in space and time by means of a (unknown) function

φ = φ(x, t), x ∈ D ⊂ Rd, t ≥ 0,

φ ∈ [0, 1]. (1.1)

Ideally, the function φ approximates, with its “heat map”, the patterns shown in
Figure I.II. It should take values in [0, 1] for physical consistency reasons.

Remark 1.1.1. It is not always possible to guarantee (1.1) in the mathematical
analysis of the forthcoming Cahn-Hilliard equation. See [30, p. 405-406].

Remark 1.1.2. Instead of φ, we might choose to investigate the unknown u
representing the difference between the mass densities of the two components
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of the alloy. Consequently u should take values in [−1, 1]. If we did so, there
would be almost no difference in the forthcoming physical derivation of the Cahn-
Hilliard equation.

In order to write down a mathematical equation accurately describing the
spinodal decomposition process and having φ(x, t) as approximate solution, J.
W. Cahn and J. E. Hilliard introduced in 1958 [13] the following functional of φ

E[φ] =

∫
D

{
ε2

2
|∇φ|2 + F (φ)

}
dx. (1.2)

E[φ] represents the (total) free energy of the system, also called Ginzburg-Landau
free energy : this name is derived from the associated superconductivity theory.
In the context of statistical mechanics, the square gradient in (1.2) arises from
attractive long-range interactions between molecules of the binary alloy. The co-
efficient ε2 can be related to the pair correlation function (see [3] and references
therein). In fact, the square gradient represents an energy which takes large
values if the material is strongly inhomogeneous (we recall that φ is the relative
concentration of element A, therefore in an inhomogeneous material its gradi-
ent’s norm is quite large). The parameter ε2 represents the interaction distance
and is related to the thickness of the diffusion interface between two different
domains dominated by A and B respectively. The second term F (φ) is an en-
ergy associated with the presence of element A in the material: it is often called
Helmholtz free energy density per molecule.

Remark 1.1.3. The expression of E in (1.2) has been rigorously derived by J.
W. Cahn and J. E. Hilliard under a certain number of physical assumptions,
among which:

- the molar masses of A and B are independent of composition and pressure.

- the solid solution is free from imperfections.

- the solid solution is isotropic at a given temperature.

- the fluid solution is initially isothermal (with temperature T0).

We now examine the term F (φ) which appears in (1.2). As we have said, this
term keeps track of the free energy associated with the presence of component A.
Many different analitic expressions of F (φ) have been proposed. We introduce
one which is thermodynamically relevant, namely

F (φ) = 2kBTcφ(1− φ) + kBTa{φ lnφ+ (1− φ) ln(1− φ)}, (1.3)

where kB is the Boltzmann constant, Tc is a specific critical temperature and
Ta is the absolute temperature of the system. A graphical rapresentation of F
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Figure I.III: Free energy F : dependence on Ta.

can be found in Figure I.III. The considerations made in [13] show that (1.3)
is a physically well motivated term; because of its expression, it is often called
a logarithmic potential. However, it is very difficult to deal with and for this
reason it is often approximated with more tractable analytical functions, typically
polynomials: a standard expression for F is a polynomial double well potential
such as

F (φ) =
1

4

(
φ2 − 1

)2
. (1.4)

We will discuss the topic of the choice of the expression F in more detail through-
out the whole thesis.

Let’s go back to E[φ]. The quantity which is crucial in order to formulate
the Cahn-Hilliard equation is not E itself, but its first variation. A physical
motivation of this fact resides in the minimization of E. Thanks to (1.2), we can
take its Fréchet derivative and define the chemical potential

µ := E ′[φ] = −ε2∆φ+ F ′(φ) = −ε2∆φ+ f(φ), (1.5)

where f(φ) := F ′(φ). See [49, Appendix] and references therein for a detailed
discussion of the chemical potential.

Remark 1.1.4. In the following, with the single word potential we refer to F ,
not to µ.

We now define the mass flux of the system as

J := −M(φ)∇µ. (1.6)

The term M(φ) in (1.6), is called (concentration) mobility coefficient and it
was introduced in [14]. It basically determines the local speed of the mass flux.
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Originally it was assigned a polynomial expression in [45] and later on in [16], [15].
These expressions are closely related to the following one1

M(φ) ∝ φ(1− φ). (1.7)

Remark 1.1.5. The mobility coefficient appearing in (1.7) presents some prob-
lems, since it may assume negative values if φ /∈ [−1; 1]. For this reason, it is
commonly referred to as a degenerate mobility coefficient. To face this problem,
the following modification, given in terms of the unknown u, was proposed in [30]

M̃(u) = (1− u2)mB(u),

where m is positive integer and B ∈ C1(R) is a function such that

B(u) ∈ [b0, B0], if u ∈ [−1, 1],

B(u) = 0, if u /∈ [−1, 1],

where B0 > b0 > 0 are given constants. By so doing M̃ does not assume negative
values and it is hence more tractable.

In a real physical scenario, if the alloy is confined to D and there is no mass
flux in and out of D, the quantity

φ =
1

|D|

∫
D

φ(x, t)dx (1.8)

where |D| denotes the Lebesgue measure of D, is conserved in time. Relation
(1.8) implies that the relation

φt = −div(J) (1.9)

is a sensible consitutive equation for the mass transport of the system2. If we
insert (1.6) into (1.9) we obtain the so called (local) Cahn-Hilliard partial differ-
ential equation

φt = −div{−M(φ)∇µ}. (1.10)

This equation was derived by J. W. Cahn in 1961 in [12].

Remark 1.1.6. Equation (1.10) is referred to as the local Cahn-Hilliard differ-
ential equation. In this specific setting, the term local indicates that each single
component of the equation can be computed, for each x ∈ D, by means of some
functions and their derivatives evaluated at x only. Therefore, the information

1in these works, the expression is given with dependence by the unknown u and it is related
to M̃(u) ∝ 1− u2. This relation is analogous to (1.7).

2subscript t in φt denotes the time derivative of φ. See Section (1.4).
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being used, due to the nature of the (classical) derivatives, refers to an arbitrary
small open set contaning x, hence the term local. In the next subsection, we will
see that the expression of the free energy E, hence the structure of the equation,
can be properly modified with the introduction of typical nonlocal elements, such
as spatial convolutions.

Remark 1.1.7. One of the most striking advantages of using the Cahn-Hilliard
equation for simulating microstructural evolution is the avoidance of the explicit
tracking of the diffuse interface, the latter having been introduced in Subsection
(1.1.1) and Figure I.I. The concept of diffuse interface has been adopted to model
various physical phenomena involving moving interfaces in order to describe the
spatial distribution of the entire microstructure of a system.

Equation (1.10) can be written, thanks to (1.5), as

φt = −div{−M(φ)∇(−ε2∆φ+ f(φ))}. (1.11)

Similarly to the case of F , the expression of M can be drastically simplified.
The term M(φ) is often considered to be constant (M(φ) = κ), therefore (1.11)
simplifies to

φt = −κε2∆2φ+ κ∆f(φ). (1.12)

Equation (1.12) is an evolutional, fourth-order, nonlinear partial differential
equation. It is usually endowed with suitable initial and boundary conditions,
e.g. Neumann’s type conditions

∂φ

∂ν
= 0 on Γ,

∂µ

∂ν
= 0 on Γ, (1.13)

where Γ = ∂D and ν is the unit outer normal to the boundary. Condition (1.13)
is quite natural because it implies the conservation of mass in the system. In
fact, if we integrate (1.12) over D and we use (1.13), we obtain that the quantity
(1.8) (the normalized total mass) is conserved in time, in accordance with the
construction of the equation. In this particular case, we may use the invariant
quantity φ to better characterize the evolution of the system.

We recall that the phenomenon which is being investigated is called spinodal
decomposition. We are now able to give a proper motivation for this name.

Let us consider the plot shown in Figure I.IV. In this plot we can see two different
curves both relating φ and T . The dotted blue line is called spinodal curve: it
is defined by the vanishing of the second derivative of the Helmholtz free energy
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Figure I.IV: Spinodal and binodal curves. Here T := T1/Tc.

with respect to φ. Such curve gives the name to the physical process we are
describing. The continuous red line is called binodal curve: it defines the region
of composition and temperature in a phase diagram in which a transition occurs
from miscibility of the components to conditions where single-phase mixtures are
metastable or stable (i.e., chemical potentials on both phases are equal).
These curves are obtained experimentally (the plot is meant to describe their
general behaviour) and the position of (φ, T ) in relation to them determines the
evolution of the system during the cooling period. We are able to distinguish
two relevant cases:

(i) (φ, T ) lies between the binodal and spinodal curve. In this case the partial
nucleation and block growth we have previously described take place, al-
though the Cahn-Hilliard equation (1.11) does not faithfully adhere to the
physics of the phenomenon.

(ii) (φ, T ) lies under the spinodal curve. In this case a total nucleation can be
observed and (1.11) gives a satisfactory approximation of the true physical
model.

Remark 1.1.8. Equation (1.10) is a basic version of a large class of physical
equations related to the spinodal decomposition phenomenon. Similarly to what
happens with the standard heat equation, one may add to (1.10) a convective
term like div{uφ}, where u is a vector field rapresenting a velocity. In addition,
(1.10) may be coupled with other relevant equations, such as a Navier-Stokes
system, a reaction-diffusion equation or an elasticity equation.

Remark 1.1.9. The expression of the free energy E indicated in (1.2) goes
back to 1958. Afterwards, other forms for E were proposed. Some of them
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mantain the property of having integrals over D in their expressions and are at
least conceptually similar to (1.2), in the sense that they rapresent comparable
physical properties. However, other forms keep track of physical aspects which
are completely neglected in the expression of E appearing in (1.2). They often
include integrals on Γ = ∂D. We discuss an alternative form of E in Subsection
(1.1.3).

1.1.3 The nonlocal Cahn-Hilliard equation

Keeping Remarks (1.1.6) and (1.1.9) in mind, one may define an alternative total
free energy E

E [φ] =
1

4

∫
D×D

J(x− y)(φ(x)− φ(y))2dxdy + η

∫
D

F (φ(x))dx (1.14)

replacing E in (1.2). Here J : Rd → R is a smooth, positive function such
that J(x) = J(−x), ∀x ∈ Rd. This expression was proposed in [39], [40] and
rigorously justified as a macroscopic limit of microscopic phase segregation mod-
els with particle conserving dynamics (see also [18]). Therefore the chemical
potential (the first variation of E with respect to φ) is

µ(x) = φ(x)

∫
D

J(x− y)dy − (J ∗ φ)(x) + ηf(φ(x)), (1.15)

where ∗ indicates the convolution operation over D, namely

(J ∗ φ)(x) =

∫
D

J(x− y)φ(y)dy, x ∈ D.

In contrast to (1.5), this expression of µ contains a nonlocal term, namely a
spatial convolution. The corresponding nonlocal Cahn-Hilliard equation with
constant mobility

φt = m∆µ (1.16)

can be derived from idealized microscopic models through suitable limits such
as the heat diffusion equation and the Boltzmann equation. In addition, the
evolution in the sharp interface limits are the same as those derived from the
classical (local) Cahn-Hilliard equation in the corresponding limits. Hence the
two models are quite similar for ε ≈ 0, see [40].

Remark 1.1.10. The nonlocal Cahn-Hilliard equation is widely regarded as a
better mathematical rapresentation of the spinodal decomposition phenomenon
than the local equation, the latter being a “local approximation” of the nonlocal
one. Nevertheless, due to its integrodifferential nature, it is quite delicate to
handle. The reader may consult [8], [9], [22], [34], [35], [44], [55].
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A more tractable version of (1.16) can be obtained by adding a convective
term, resulting in

φt + u · ∇φ = m∆µ, (1.17)

where u is as in Remark (1.1.8). In this context, u represents a capillarity force
called Korteweg force.

1.2 The introduction of randomness
In Section (1.1) we have briefly introduced the physical model which led to the
formulation of the Cahn-Hilliard differential equation in the case of a binary alloy
suddenly quenched to a lower temperature. While this model has been widely
accepted, it presents some flaws.
As already highlighted Subsection (1.1.2), page 8, if (φ, T ) lies between the bin-
odal and spinodal curve, equation (1.11) does not exactly adhere to the ongoing
physical process. In particular, the equation fails to provide a satisfactory repre-
sentation of the phenomenon in the early stages of the spinodal decomposition.
We now give a concise explanation of the reason behind this: for a complete
reference on this subject, see [23].
When formulating their differential equation, Cahn and Hilliard proposed the
following formula regulating the mass flux in the binary alloy

J := −M(φ)∇µ = −M(φ)∇E ′[φ]. (1.18)

If ww have already mentioned such equation in Section (1.1). If we reasonably
assume that the binary alloy reaches a stable solid condition after a long time,
we obtain that ∇E ′[φ] = 0 for very large t (ideally t = ∞). This means that
after a long time there is no mass flux in any point of the domain, namely

J = 0, ∀x ∈ D.

However, it is well known that, for the case of a stable, single phase, binary solid
solution, atomic movement always takes place: an appreciable flux of solute oc-
curs at equilibrium with clusters or ordered arrangements of atoms continually
forming and dissolving, as shown in Figure I.VI. These movements are associ-
ated with the quantity kBTa, where kB denotes the Boltzmann constant and Ta
is the absolute system temperature. For this reason they are called thermal fluc-
tuations. In addition, the physical discussion carried out in Subsection (1.1.2)
by means of [28] intentionally fails to take into account some other “dynamical”
aspects of the solute, such as vibrational, electronic and magnetic properties, as
clarified in [28, p. 217].
The thermal fluctuations and these dynamical aspects of the atoms cause col-
lisions between them. These collisions themselves cause further atomic move-
ments. See Figure I.V. This atomic process necessarily has to be represented
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Figure I.V: Sketch of random solute movements, resulting from collisions with
the surrounding atoms.

by means of some quasi-random3 process. The most direct way to keep track of
them in the Cahn-Hilliard equation is that of modifying the formulation of the
flux J by adding a random term, namely

J = −M(φ)∇µ+ w, (1.19)

wgere w is a random term4 which indicates the presence of the thermal fluctua-
tions and dynamical aspects previously discussed.

Let us now rewrite in mathematical language the new elements we have been dis-
cussing. Due to the randomness of w, it is unavoidable to introduce a probability
space (Ω,F ,m) along with the spatial domain D. As a natural consequence our
solution φ will be a stochastic process taking values in a proper Hilbert space H,
namely

φ = φ(t, ω) : [0, T ]× Ω→ H, ω ∈ Ω, t > 0.

We will often drop ω in the notation. We now have to define the stochastic
Cahn-Hilliard equation whose solution will be the random process φ. Recalling
what we have said in Subsection (1.1.2), the Cahn-Hilliard equation is derived
via the mass flux equation, thus we simply have to define the random term w.
A reasonable, physically-consistent choice for w is that of a random process such

3we use the term quasi-random instead of random because, while the collisions are de-
termistic, they cannot be observed and one must rely on a statistical approach to describe
them.

4it will formally become a suitable stochastic process
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Figure I.VI: Sketch of random paths of single atoms.

that div(w) is a Wiener process5 defined on a proper infinite-dimensional Hilbert
space. Thanks to (1.5), (1.9) and (1.19) we are now able to write down the basic
version of the stochastic Cahn-Hilliard equation, namely6

dφ(t) = −div{−M(φ(t))∇(−ε2∆φ(t) + f(φ(t)))}dt+ dw(t), (1.20)

where w(t) is a Q-Wiener process. Equation (1.20), which as interpreted as a
formal relation, is an improved version of the deterministic one, though it is
obviously more difficult to deal with because of the presence of a random term.
However, it is more faithful to the physics underlying the model. Of course,
(1.20) can take many shapes according to the expression of E, and hence of µ; in
addition to that, one may add a non trivial stochastic integrand σ(φ(t)) to better
describe the thermal fluctuations and the influence of the dynamical aspects in
the model, thus obtaining

dφ(t) = −div{−M(φ(t))∇(−ε2∆φ(t) + f(φ(t)))}dt+ σ(φ(t))dw(t). (1.21)

Remark 1.2.1. In this thesis we restrict ourselves to the study of the stochastic
Cahn-Hilliard equation with an additive noise with constant stochastic integrand

5we recall that a Q-Wiener process defined on an infinite-dimensional Hilbert space Y is
given by the formula

w(t) =

∞∑
i=1

√
αiβi(t)fi,

where αi ↓ 0, {βi(t),Ft,ΩF ,m}i∈N is a family of independent real brownian motions adapted
to a filtration {Ft}t≥0, {fi}i∈N is an orthonormal basis of Y , Q ∈ L(Y ) is a positive,
symmetric, finite trace operator such that Qfi = αifi, ∀i ∈ N. The series converges in
L2((Ω,F ,m); C([0, T ]);Y ) for each T > 0. See [62, p. 13, Proposition 2.1.10] for full details.

6we will sometimes drop the indication of the dependence on time and simply write φ instead
of φ(t).
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such as in (1.20), since it is tractable and physically consistent. This is not the
only way of introducing some kind of randomness in the problem. One may
add, e.g., noise on Γ = ∂D, stochastic dynamical boundary conditions, Poisson
processes instead of Wiener processes, random mobility coefficient or random
interaction distance.

1.3 Other phenomena related to the Cahn-Hilliard
equation

Although the Cahn-Hilliard equation was originally formulated in relation to
the motivating example described in Subsection (1.1.1), subsequently its basic
structure, possibly modified or enriched, was applied to a variety of different
settings. We now list some relevant cases in which it has been used. We first
mention some applications along with the respective leading equations; we then
quote some other applications without the leading equations; we finally examine
in detail a peculiar and certainly hilarious case study.

I. Examples accompanied by leading equations.

• Population dynamics: this variant was proposed in [51] to describe the
proliferation and interaction via adhesion of cells in tumor growth

φt = ∆
(
ln(1− q)(−ε2∆φ) + f(φ)

)
+ αφ(1− φ),

where φ is the local density of the cells, q, α are parameters associated with
adhesion and proliferation.

• Skin Cancer model: see [7]{
φt = div {ωφ(1− φ)∇(−ε2∆φ+ f(φ))}+ φ(η − δ),
−∆η + φη − β(1− η) = 0.

Here φ represents the volume fraction of a cancerous cellular phase, η is the
concentration of a diffusing nutrient, δ is the nutrient consumption rate, ω
and β are free parameters.

• Image inpainting: see [10]

φt = ∆

(
−ε∆φ+

1

ε
f(φ)

)
+ λχEC (f − φ),

where f is a given binary image, φ is an inpainted version of f , λ is a real
positive coefficient, E ⊂ D ⊂ R2 is the inpainting domain.
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• Saturn’s rings: (see [69]) this is a simple model for the irregular structure
of Saturn’s rings:

φt =
∂

∂x2

(
−ε∂

2φ

∂x2
+

1

σ
g(φ)

)
.

Here φ is the shear in the x direction, σ is a surface density of the viscous
incompressible fluid, g(s) = as3 + bs|s|+ cs, where a, c > 0, b > −

√
4ac.

In all the cases quoted above, the main cores of the equations are some modifi-
cations of (1.5), which is used to derive the “standard” Cahn-Hilliard equation.

II. Examples without leading equations.

(a) Multi-phase fluid flows, [11], [52].

(b) Taylor flow in mini/microchannels, [36].

(c) Ternary liquid mixture, [2].

(d) Two-dimensional two-layer channel with sharp topografical features, [73].

(e) Spinodal decomposition with with compisition-dependent heat conductivi-
ties, [56].

(f) Phase decomposition and coarsening in solder balls, [1].

(g) Thermal-induced phase separation phenomenon, [68].

(h) Evolution of arbitrary morphologies and complex microstructures such as
solidification and solid-state structural phase transformations, [19].

(i) Grain growth, [72].

(j) Meta-stable chemical composition modulations in the spinodal region, [38].

III. Pattern formation in biological systems.

We finally illustrate a striking (and also hilarious) analogy related to the Cahn-
Hilliard equation. The reader is first invited to take a close look at the fifth and
sixth windows of Figure (I.II). As said, these windows show the final stage of the
previously discussed cooling process of a metallic binary alloy. A similar pattern
can be observed with the metallic elements A and B replaced by empty spaces
and mussels (mussels !!!) respectively. This last sentence may sound peculiar
and needs to be clarified. We refer to [54] and to the references therein.

The phenomenon being analysed is the following: let us suppose to place, with
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a uniform distribution, a considerable amount of mussels on intertidal flats. If
the colony is then left free to act on his own will, then mussels beds exhibit
spatial self-organization by forming a pattern of regularly spaced clumps. By so
doing, they balance optimal protection against predation with optimal access to
food. This self-organization process has been attributed to the dependence of the
speed of movement on local mussel density. Mussels move at high speed when
they occur in low density and decrease their speed of movement once they are
included in small clusters. However, when occurring in large and dense clusters,
they tend to move faster again, due to food shortage. Mussel pattern formation
is a fast process, giving rise to stable patterning within a few hours, and clearly
is independent from birth or death processes (Figure I.VII, A and B).

The surprising thing is that the physical modeling underlying the mussel pattern-
formation phenomenon adheres to the Cahn-Hilliard binary alloy physical model.
As a result, we have a close similarity between the pattern formations at the final
stage of the two processes. The reader is hence invited to compare Figure I.II
(5th and 6th windows) and Figure I.VII, D.

The reader is also invited to visit the webpage

https://www.youtube.com/watch?v=u-mEjfBaYks

for a nice dynamic visualization of the intermadiate stages between Figure I.VII,
A and Figure I.VII, B.

1.4 Notation and basic functional setup
In this section we define a few basic mathematical objects, whose notation will
be kept throughout the entire thesis.

• The spatial domain where the Cahn-Hilliard equation lives is denoted by
D and D ⊂ Rd, d ∈ {1; 2; 3}. Its boundary is indicated as Γ := ∂D. The
time interval in which we make all our considerations is [0, T ], for a given
T > 0.

• We use the notation Lp (where p ∈ [1; +∞]) to indicate both Lp(D) and
[Lp(D)]d. We use the notation Hs (where s ≥ 0) to indicate both Hs(D)
and [Hs(D)]d. For s ≥ 0, we denote by H−s the dual space of Hs. For
a Banach space W , we denote by Lp([0, T ];W ), where p ∈ [1,+∞], the
Lp-space of W -valued, Bochner-integrable functions on [0, T ]. We denote
by C([0, T ];W ) (resp. Cβ([0, T ];W )) the set of W -valued continuous (resp.
β-Hölder continuous) functions on [0, T ], for β ∈ (0, 1).
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Figure I.VII: (A and B) Mussels that were laid out evenly under controlled
conditions on a homogeneous substrate developed spatial patterns similar to
“labyrinth-like” after 24 hours (images represent a surface of 60 cm × 80 cm). (C)
Relation between movement speed and density within a series of mussels clusters.
The blue line V(m) describes the rescaled second-order polynomial curve which
tries to fit the rescaled speed g(m). The red line depicts the effective diffusion
g(m) of mussels as a function of the local densities according to the diffusion-drift
theory. The green open circles show the original experiment data. (D) A spe-
cific numerical simulation associated with [54, Equation [4]], which is a proposed
equation regulating the mussel pattern-formation process, with a nearly uniform
initial mussel distribution.

• We define

H := L2, U := H1, V :=

{
u ∈ H2 :

∂u

∂ν
= 0 on Γ

}
,

QT := (0, T )×D.

We denote by (·, ·) and ‖ · ‖ the inner product and norm in H, respectively.

• For a Banach space W which is not H, we denote its dual space by W ′, its
inner product by (·, ·)W , its duality pairing by 〈·, ·〉W ′,W , and its norm by
‖ · ‖W .
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• For a Banach space Z and a subsetW ⊂ Z, we indicate the Borel σ-algebra
of W with respect to the topology of Z as BZ(W ), namely BZ(W ) :=
B(Z) ∩ W . In addition B(Z) denotes the natural Borel σ-algebra of Z.
The previous definitions are consistent if W ∈ B(Z).

• We indifferently use the notations ux1···xm and ∂mu/∂x1 · · · ∂xm to indicate
the m-th derivative of u with respect to the spatial coordinates x1, · · · , xm.
For the time derivative we use the notations ∂u/∂t, ut, (d/dt)u, u′. For
the normal outer derivative we use the notations ∂νu, ∂u/∂ν, uν . The
meaning of each time derivative (e.g., classical, distributional, etc...) will
be specified when necessary. For a functional E[u], we use the notations
E ′[u] or Eu[u] to denote its Fréchet derivative with respect to u.

• (Ω,F ,m) denotes the probability space, i. e. the domain of all random
variables. We use bold characters to indicate measures on measurable
spaces. We use the bold characters along with a hat (̂·) to indicate the
characteristic functionals of measures. Finally, the symbol E stands for
the expected value operator.

• For a given sequence {xn}n∈N (also denoted by {xn} or xn) taking values
in an abstract set X, we may use the compact notation xn to indicate the
entire sequence or one of its subsequences: namely, we do not (always)
relabel subsequences in order to avoid too heavy a notation.

• When integrating on a set X (different from the probability space Ω),
we will often simplify the differential notation and write

∫
X
f ,
∫
X
f(x) or∫

X
fµ(dx) instead of

∫
X
f(x)µ(dx), where µ is a measure on a suitable σ-

algebra of X. If X is D or [0, T ] and µ is the Lebesgue meausure we will
simply write dx instead of µ(dx) to denote the differential.

• We use the concise notations a.e. and a.s. to say almost everywhere and
almost surely. These terms are obviously related to measure theory. We
will mainly use the notation a.e. when referring to measures on spatial or
time domains and the notation a.s. when referring to probability measures
on a probability space.

• When referring to constant quantities whose exact value is irrelevant, we
may often share the same symbol for more than one of these objects. Typi-
cally, but not always, these constant are indicated by Cα, α being an index.

More specialized funtional and probabilistic tools will be specified when neces-
sary.
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1.5 Plan of the work
This thesis has two aims. Firstly, it is meant to provide the reader with a detailed
analysis of a restricted number of articles dealing with the deterministic and
stochastic Cahn-Hilliard differential equation. These articles deal with a number
of relevant topics whose analysis is crucial for a mathematical discussion of some
basics concepts associated with the equation. Such concepts range from the
possible definitions of solutions, theorems of existence and uniqueness of solutions
and long time behaviour, to the introduction of critical boundary conditions
and analysis of systems of coupled equations, one of which is the Cahn-Hilliard
equation.

Secondly, this thesis provides a new contribution to the subject. An exten-
sive analysis of a stochastic extension for a specific version of the deterministic
nonlocal Cahn-Hilliard equation is carried out using some general ideas from
two of the articles presented in this thesis. Some ad hoc results for this specific
problem are proved. This second part is the most important one: for this reason
every single statement, auxiliary lemma and theorem is proved in detail. We
will discuss this specific part in the forthcoming description of Chapter 4 and in
Chapter 4 itself.

We now go through the contents of the subsequent chapters.

Chapter 2. This chapter is devoted to the deterministic Cahn-Hilliard equa-
tion. After a quick review of the literature on the subject, we focus our attention
on some works. The first one [31] is presented without proofs. This article stud-
ies aspects of the spatial monodimensional (d = 1) Cahn-Hilliard equation. In
particular, global existence and long time behaviour are mentioned.

The second work [20] states similar results for the multidimensional case.
Finally, we study a nonlocal Cahn-Hilliard equation presented in [21]. This

article is exposed in detailed way, since the main original contribution of this
thesis (contained in Chapter 4) is the study of a stochastic version of the nonlocal
Cahn-Hilliard that appears in the coupled Cahn-Hilliard-Navier-Stokes system
studied in the paper.

Chapter 3. This Chapter is the twin brother of Chapter 2. It deals with the
stochastic Cahn-Hilliard equation. After a brief review of the literature on the
subject, we turn to the analysis of two specific papers.

The first one [29] provides two different types of solution for a given Cahn-
Hilliard stochastic equation and shows results of existence and uniqueness by
means of stochastic tools. Some ideas described in this article are used in Chapter
4 in a suitably modified form in order to study our new stochastic version of the
nonlocal equation appearing in [21].
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The second paper [24] rewrites a similar Cahn-Hilliard equation as a system of
infinitely many deterministic evolutional differential equations. The stochasticity
is basically reshaped and handled by means of deterministic arguments.

Chapter 4. This is the main original part of the thesis and hence we provide
an extended outline of its contents, in contrast with the concise description of
we have given Chapters 2 and 3.

In Chapter 4 we formally study the stochastic partial differential equation

(SCHE)



dφ = (−u · ∇φ+ ∆µ)dt+ dw,
µ = aφ− J ∗ φ+ F ′(φ),

∂µ

∂ν
= 0 on Γ× (0, T ),

φ(0) = φ0 ∈ U,

(1.22a)
(1.22b)

for a given velocity field u, a specific Helmholtz free energy F , a regular H-
valued Wiener process w, a regular kernel J . Problem (SCHE) is characterised
by (1.22a)-(1.22b), which are stochastic extensions of [21, p. 429, (1.9)-(1.10)].
(1.22a) is a nonlocal equation due to the presence of the spatial convolution J ∗φ
in the definition (1.22b) of the chemical potential µ.

Our approach to the analysis of problem (1.22) is a variational approach: we
do not look for regular solutions of (1.22) (e.g., in the sense given in [62, p. 73,
Definition 4.2.1.]) because of the complexity of the equation. Instead, we define
a proper test function space V , two suitable function spaces U , Z , and give
two different definitions of solution to Problem (1.22).

Definition (A). A weak statistical solution (or simply a weak solution) to
Problem (1.22) is a probability measure P (concentrated) on BZ (U ) which, for
every ξ ∈ Hε and v ∈ V , satisfies∫

Z

exp {i〈φ(0), ξ〉H−ε,Hε + iC(φ, v)}P(dφ) = Ξ̂(ξ)N̂(v), (1.23)

where ε ∈ (0, 1/4) and
C(φ, v) := −(φ0, v(0))−

∫ T

0

∫
D

φu · ∇v +

−
∫ T

0

∫
D

(aφ+ φ3 − φ− J ∗ φ)∆v −
∫ T

0

(
φ,
∂v

∂t

)
.

Here Ξ indicates the distribution of the random variable φ0 on H and N
indicates the distribution of the white noise ∂w/∂t. The symbol ·̂ denotes the
characteristic functional operator, see Section (1.4). Definition (A) and the ex-
pression of C are motivated by the nature of V .
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Definition (B). A process φ = φ(t, x, ω) defined on the probability space (Ω,F ,m)
is a strong solution to problem (1.22) if

1. φ satisfies

D(φ(ω)) =

{
φ0(ω),

∂w

∂t
(ω)

}
m− a.s. (1.24)

where C(u) ∈ V ′, 〈C(u), v〉V ′,V := C(u, v) and D : Z → H−ε × V ′ : u 7→
{u(0), C(u)}.

2. the mapping ω 7→ φ(ω) is a random variable from (Ω,F) to (U1,BZ (U1)).
Here U1 is a regular subset of U .

We now state the main results of existence and uniqueness we have proved
for Problem (1.22). We also provide a sketch of their proofs, which are carried
out in detail in Chapter 4.

Theorem (T1). Let d ≤ 3. Let w be a H-valued Q-Wiener process and let w,
u, Q, J , F , φ0 and {ej}j∈N satisfy some suitable properties (which will be stated
in Chapter 4). Let φ0 be a U-valued random variable such that

E
[
‖φ0‖2

U +

∫
D

φ4
0

4
−
∫
D

φ2
0

2

]
< +∞.

Then problem (1.22) admits a weak statistical solution in the sense of Definition
(A).

Outline of the Proof of Theorem (T1). We build a Galerkin scheme (indexed by
a positive integer m) for Problem (1.22) and we show the existence and unique-
ness of a solution φm to an approximated, m-dimensional version of (1.22). We
then use the Itö formula to obtain some uniform7 estimates of a suitable norm
of φm. These estimates are used to deduce that φm is defined on [0, T ] (a.s.)
for each m. We then deduce some further estimates which imply that {Pm}m∈N
(the family of the distributions of φm on Z ) is uniformly concentrated on U .
Since the injection U ↪→ Z is compact, we use Prohorov’s Theorem to deduce
the existence of a weakly convergent (not relabeled) subsequence {Pm}m∈N to
a probability measure P on Z . We then exploit a passage to the limit and a
density argument on some suitable expressions satisfied by Pm and deduce that
P is a weak statistical solution in the sense of Definition (A).

Theorem (T2). Let φ1, φ2 ∈ U1 be two strong solutions for problem (1.22) (for
the same φ0 ∈ U , i. e. φ1(0) = φ2(0) = φ0) in the sense of Definition (B). Then

φ1(t) = φ2(t) in U ′, for a.e. t ∈ [0, T ].

7with respect to m ∈ N.
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Outline of the Proof of Theorem (T2). This Proof is a suitable application of
some parts of [29, pp. 1195-1198, Proof of Theorem 8.1.] and [32, Section 4,
Proof of Proposition 5]. This proof is carried out by means of purely determin-
istic arguments; this is possible because the stochastic noise is additive and has
a constant stochastic integrand (the identity operator).

Theorem (T3). Let d ≤ 3. Let w be a H-valued Q-Wiener process and let w,
u, Q, J , F , φ0 and {ej}j∈N satisfy the same properties as in Theorem (A). Let
φ0 be a U-valued random variable such that

E
[
‖φ0‖2

U +

∫
D

φ4
0

4
−
∫
D

φ2
0

2

]
< +∞.

Then problem (1.22) admits a unique strong solution (in the sense that two strong
solutions coincide for all ω ∈ Ω except for a set of m-measure zero).

Outline of the Proof of Theorem (T3). Let P be the weak statistical solution
built in Theorem (A). We first build a set X which is the countable union of
Z -compact sets Cj ⊂ U1 and such that P(X) = 1. We define the mapping
D1 as the restriction of D to X. The mapping D is bijective on U1 because of
Theorem (T2). Hence D1 is one-to-one. Thanks to the regularity of X, D−1

1

has some measurability properties which are used to build a strong solution φ
by applying D−1

1 on the trajectories of (φ0, ∂w/∂t), (a.s.). The uniqueness is a
consequence of the injectivity of the restriction of D to U1. We also show that
P is the distribution of φ.

The previous Theorem also uses this auxiliary lemma.

Lemma (L1). With the notation of Theorem (T1), we have∫
Z

‖∇µ(φ)‖2
L2([0,T ];H)P(dφ) ≤ C4, (1.25)∫

Z

‖φ‖2
L2([0,T ];U)P(dφ) ≤ C1, (1.26)

where µ(φ) := aφ+φ3−φ−J ∗φ. The integrands are meant to assume the value
+∞ whenever ∇µ(φ) /∈ L2([0, T ];H) or φ /∈ L2([0, T ];U). Constants C1, C4

derive from the Proof of Theorem (A).

Outline of the Proof of Lemma (L1). It is an application of Portmanteau The-
orem applied to suitable finite-dimensional approximations of the integrands
of (1.25) and (1.26). Some estimates from the Proof of Theorem (A) are ex-
ploited.
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1.6 New results
We now provide, for each chapter, a complete list of the parts of this thesis in
which we provide an original contribution.

Chapter 2. The proof of Theorem (2.2.8) is a reduced and modified version
of [21, p. 432, Proof of Theorem 1.]. We added a few comments and footnotes
here and there.

Chapter 3. The spaces U and V of [29] have been modified for our purposes.
In [29, p. 1183, Proof of Theorem 5.2.] the estimate concerning the Hölder conti-
nuity of φm has been reshaped and some computations have been expanded. The
proof of Theorem (3.2.9) is a modified version of [29, p. 1187, Proof of Theorem
6.2.]. The proof of Theorem (3.2.20) is a expansion of [24, p. 249, Proofs of Propo-
sition 2.1., Theorem 2.1., Theorem 2.2.]. In particular, we show that the function
called v is a solution to (3.38) in the sense of distributions. In addition, we prove
the homogeneous boundary conditions for v and ∆v in the sense of (3.47), (3.48).

Chapter 4. This chapter is completely original as previously mentioned.



Chapter 2

Deterministic Cahn-Hilliard
equations

The discussions made throughout the Introduction show that we cannot simply
refer to the Cahn-Hilliard equation, since it presents a lot of variants. In fact,
the following aspects of the equation have be specified:

(a) the equation may be local or nonlocal.

(b) the equation may be deterministic or stochastic.

(c) the mobility coefficientM may be degenerate, constant or none of the above.

(d) the Helmholtz free energy F may have a logarithmic expression, a polyno-
mial expression or none of the above.

(e) the equation may present additional terms (e.g., a convective term) or may
be coupled with other equations (e.g., the Navier-Stokes equation).

In this chapter we study specific versions of the deterministic Cahn-Hilliard equa-
tion (i.e., specific choices of (a)-(c)-(d)-(e)). In particular we will discuss topics
such as:

(i) theorems of existence and uniqueness of the solution φ(x, t)

(ii) different types of solution.

(iii) asymptotic behaviour of φ.

(iv) introduction of dynamic boundary conditions.

(v) coupling of the Cahn-Hilliard equation with other differential equations,
e.g., the Navier-Stokes equation.

23
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In Section (2.1) we provide a brief historical summary of the main analytical
results which have been proved for the deterministic Cahn-Hilliard equation. In
Section (2.2) we focus on a set of selected results. Our goal is to give an overview
of the main analytical theorems and to describe the relevant features which arise
when dealing with issues (i)-(v). We will put more emphasis on some articles
rather than on others. We follow the chronological order of appearance of the
works.

2.1 A brief history
Reference [31] is one of the first mathematical articles dealing with the deter-
ministic Cahn-Hilliard equation. The setting is a simple one: the equation is
local, the mobility is constant, the potential is a fourth-order polynomial, the
boundary condition are of standard Neumann type. The potential depends on
a specific constant parameter. According to the nature of this parameter and of
the mobility coefficient, the authors either prove the global existence of a classical
solution and some longtime behaviour properties, or the blow up of the solution
in finite time. The argument uses classic Sobolev space analysis.
In [50], a local Cahn-Hilliard equation with constant mobility, logarithmic poten-
tial and physical constraints is studied. These physical constraints are in accor-
dance with Remark (1.1.1). The topics of existence, uniqueness and asymptotic
behaviour of solutions are argued with subdifferential operator techniques.
A subsequent reference related to [50] is [26]; in particular, topics such as global
attractors and their fractal and Hausdorff dimensions are added to the analysis.
We now move to [30], in which an existence result for the local Cahn-Hilliard
equation with a degenerate mobility coefficient and irregular potential is pre-
sented. In particular, the mobility is allowed to vanish when the scaled concen-
tration u assumes the values ±1, and it is shown that the solution is bounded
by 1 in magnitude.
In article [63], the dynamic boundary conditions are introducted for a local Cahn-
Hilliard equation with constant mobility and regular potential. A pertubation
element governed by a parameter ε ∈ (0, 1) is added to the equation, which is
then decoupled into a Cahn-Hilliard/heat equation system with dynamic bound-
ary conditions. The equations are solved seperately. Suitable estimates are
shown and used to exploit a passage to the limit with respect to ε. Existence
and uniqueness of a solution for the original equation is recovered.
In [35], a simplified Cahn-Hilliard model of phase separation for two-phase sys-
tems is given. The model is derived from a free energy with a nonlocal interacting
term. Using the free energy as a Lyapunov functional, the asymptotic state of
the system is investigated and characterized by a variational principle.
In [9], the authors study the existence, uniqueness and continuous dependence
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on initial data of the solution to a nonlocal Cahn-Hilliard equation. A nonlinear
Poincaré inequality is applied to show the existence of an absorbing set in each
constant mass affine space.
We now turn to the most recent references. Work [41] presents a complicated
version of the Cahn-Hilliard equation: highly irregular potentials1 and dynamic
boundary conditions are jointly considered. Well-posedness theorems are ob-
tained by means of many ad hoc preliminary results and the exploitation of
Galerkin and noise parameter-dependent schemes.
Article [5] must be quoted even though it deals with a generalized Cahn-Hilliard
equation with forcing terms: this setting goes far beyond the physical context
discussed in the Introduction and we won’t provide any further detail.
We finally mention works [21], [32]. These are some of the most recent contri-
butions to the study of the nonlocal Cahn-Hilliard-Navier-Stokes system. In [21]
the global existence of a weak solution for spatial dimensions d ∈ {2; 3} is proved.
In the case d = 2, under suitable assumptions on the free energy F , an energy
identity and a dissipative estimate are shown. Work [32] is a prosecution of the
previous one. Relying on the energy identity previously mentioned, the authors
define, following J. M. Ball’s approach, a generalized semiflow which has a global
attractor. The existence of a connected global attractor for the convective non-
local Cahn-Hilliard equation with a given velocity field is proved for d ∈ {2; 3}.
Finally, it is shown that any weak solution fulfilling the energy inequality also
satisfies a dissipative estimate. Hence the existence of the trajectory attractor
with a time dependent external force is established for d ∈ {2; 3}.

2.2 The Cahn-Hilliard differential equation. Some
deterministic results

Here we mention in some details some meaningful theoretical results on the
deterministic Cahn-Hilliard equation. The first and the oldest is concerned with
the one dimensional case and polynomial potential. The second and more recent
is related to singular potentials. The third and fourth are related to the analysis
of the nonlocal equation. These are just a few examples and we remind that
the theoretical aspects of the deterministic Cahn-Hilliard equation have been
analysed in many papers (see also Introduction).

2.2.1 Well-posedness results in spatial dimension d = 1

One of the first papers concerning the theoretical aspects of the Cahn-Hilliard
equation appeared in 1986, see [31]. In this paper Elliott and Zheng prove,

1possibly more problematic than logarithmic ones.
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in particular, some results of well-posedness for a unidimensional Cahn-Hilliard
equation with constant mobility and polynomial potential.
The equation being analysed is

φt = −ε2∂
4φ

∂x4
+
∂2f(φ)

∂x2
, x ∈ D = (0, L), t ∈ (0, T ),

∂

∂x
φ(0, t) =

∂

∂x
φ(L, t) =

∂3

∂x3
φ(0, t) =

∂3

∂x3
φ(L, t) = 0, t ∈ (0, T ),

φ(x, 0) = φ0(x), x ∈ D,

(2.1)

where
f(φ) = −φ+ γ1φ

2 + γ2φ
3,

and ε2, γ1, γ2 are given constants. We are ready to state a preliminary theorem
(see [31, p. 342, Theorem 2.1.]).

Theorem 2.2.1. Let γ2 > 0. For any intial condition φ0 ∈ V there exists a
unique global solution of (2.1) belonging to H4,1(QT ). Morever, if φ0 ∈ H6 ∩ V
and ∂2φ0/∂x

2 ∈ V , then the solution is a classical one.

Morever, if we add some additional conditions, we may also get information
about the asymptotic behaviour of the (unique) solution of (2.1). More precisely,
we have the following theorem (see [31, p. 345, Theorem 2.2.]).

Theorem 2.2.2. Let the hypothesis of Theorem (2.2.1) be true. If ε2 > L2/π2

and ‖φ0‖H2 is sufficiently small, then the unique global solution φ of (2.1) satis-
fies

lim
t→+∞

‖φ−M‖L∞ = lim
t→+∞

‖φx‖L∞ = lim
t→+∞

‖φxx‖H = 0.

where M = L−1
∫ L

0
φ0(x)dx = L−1

∫ L
0
φ(x, t)dx.

Remark 2.2.3. Well-posedness and regularity issues for the multidimensional
case (d ∈ {2; 3}) when F has a polynomial growth are treated, for instance,
in [57]. There, also the large time behaviour of the corresponding dynamical
system is analyzed.

2.2.2 Well-posedness results in spatial dimensions d ∈ {2; 3}
We quote a classical well-posedness result in the multidimensional case. See,
for instance, [20] and the references therein. In the setting of such work, the
potential F is assumed to be singular, i.e., defined on a bounded interval with
infinite derivative at the endpoints, namely

lim
s→±1

f(s) = ±∞, lim
s→±1

f ′(s) = +∞, (2.2)
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where f = F ′. This assumption allows F to have the logarithmic expression
shown in (1.3). Such expression is the most physically relevant one, as anticipated
in the Introduction. See also [26]. We now define the following space

Dm0 :=

{
q ∈ H2,

∂q

∂ν
= 0 on Γ, ‖q‖L∞ ≤ 1,

1

|D|

∫
D

q = m0,

f(q) ∈ H, ∆2q −∆f(q) ∈ H−1

}
,

where m0 is such that |m0| ≤ 1− η, where η ∈ (0, 1) is given.

Theorem 2.2.4. Let us consider the problem
φt + ∆2φ−∆f(φ) = 0,

∂φ

∂ν
=
∂µ

∂ν
= 0 on Γ,

φ(0, x) = φ0(x) on D.

(2.3a)

(2.3b)

(2.3c)

where φ0 ∈ Dm0, µ := −∆φ+f(φ), and f satisfies (2.2). Then problem (2.3) has
a unique solution φ ∈ L∞([0, T ];Dm0)∩C([0, T ];H−1). In addition, ‖φ(t)‖L∞ ≤ 1
for almost every t ∈ [0, T ].

2.2.3 A nonlocal Cahn-Hilliard equation

We now discuss in detail the properties of a weak solution to a nonlocal Cahn-
Hilliard equation (see [21]). More precisely, let the free energy E [φ] be defined
as in (1.14). Then its first variation is µ = aφ− J ∗ φ+ ηF ′(φ), where ∗ denotes
the convolution operator over D and

a(x) =

∫
D

J(x− y)dy, x ∈ D.

For the sake of semplicity we take η = 1 and we consider the problem

(NL)



φt + u · ∇φ = ∆µ,

µ = aφ− J ∗ φ+ F ′(φ),

∂µ

∂ν
= 0 on ∂D × (0, T ),

φ(0) = φ0 in D.

(2.4a)

where D ⊂ Rd, d ∈ {2, 3}, is a bounded domain with regular boundary, and
u ∈ L∞([0, T ];L∞) ∩ U , div(u) = 0, u = 0 on Γ.
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Remark 2.2.5. In the original work [21], system (2.4) also contains the Navier-
Stokes equation, hence u is an unknown. We focus our analysis of the Cahn-
Hilliard equation only.

Physical hypothesis. We will assume the following physical hypothesis to
hold2:

(H1) J ∈ W 1,1(Rd), J(x) = J(−x), a(x) :=
∫
D
J(x− y)dy ≥ 0, a.e. x ∈ D.

(H3) F ∈ C2,1
loc (R) and there exists c0 > 0 such that

F ′′(s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ D.

(H4) There exist c1 ≥ 1
2
‖J‖L1(Rd) and c2 ∈ R such that

F (s) ≥ c1s
2 − c2, ∀s ∈ R.

(H5) There exist c3 > 0, c4 ≥ 0 and p ∈ (1, 2] such that

|F ′(s)|p ≤ c3|F (s)|+ c4, ∀s ∈ R.

Remark 2.2.6. Assumption (H3) implies that F can be expressed as follows

F (s) = G(s)− a∗

2
s2, a∗ = ‖a‖L∞ , (2.5)

with G ∈ C2,1(R) strictly convex, since G′′ ≥ c0 in R.

Weak solution per problem (NL). We shall now define what we mean by
weak solution for problem (NL).

Definition 2.2.7. Let φ0 ∈ H be given. Then φ is said to be a weak solution to
problem (NL) on [0, T ] with initial data φ0 if

(i) φ, µ satisfy 
φ ∈ L∞([0, T ];H) ∩ L2([0, T ];U),

φt ∈ L4/3([0, T ];U ′), if d = 3,

φt ∈ L2−δ([0, T ];U ′), ∀δ ∈ (0, 1) if d = 2,

µ := aφ− J ∗ φ+ F ′(φ) ∈ L2([0, T ];U).

(2.6a)

(2.6b)
(2.6c)
(2.6d)

(ii) setting
ρ := aφ+ F ′(φ), (2.7)

2their numbering has been kept from the original article.
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we have, for every ψ ∈ U and for almost every t ∈ (0, T )

〈φt, ψ〉+ (∇ρ,∇ψ) =

∫
D

(u · ∇ψ)φ+

∫
D

(∇J ∗ φ) · ∇ψ. (2.8)

(iii) The initial conditions hold in the following weak sense

(φ(t), χ)→ (φ0, χ) as t→ 0, ∀χ ∈ U. (2.9)

We are now ready to state and prove the main theorem of this Subsection.

Theorem 2.2.8. Let φ0 ∈ H such that F (φ0) ∈ L1. Suppose that hypothe-
sis (H1)/(H3)/(H4)/(H5) are satisfied. Suppose that u ∈ L∞([0, T ];L∞) ∩ U ,
div(u) = 0, u = 0 on Γ. Then, for every T > 0, there exists a weak solution φ to
problem (NL) on [0, T ] corresponding to initial data φ0. Moreover φt satisfies

φt ∈ L∞([0, T ];V ′s ), if 1 < p <
d

d− 1
, s =

(4− d)p+ 2d

2p
,

φt ∈ L∞([0, T ];V ′s ) ∩ Lr([0, T ];V ′d+2
d

), if p =
d

d− 1
, s >

d+ 2

d
, r ≥ 2,

φt ∈ L2p/(2p−3)([0, T ];V ′s ), if d = 3, 3/2 < p ≤ 2, s =
p+ 6

2p
.

Remark 2.2.9. The proof of Theorem (2.2.8) is a reduced and adapted version
of [21, p. 432, Theorem 1].

Proof of Theorem (2.2.8). Step 1: Galerkin approximation. We first assume that
φ0 ∈ V . We define the Neumann operator

B : D(B) = V → H : v 7→ −∆v + v.

Let {ψj}j≥1 be the eigenfunctions of B forming a Galerkin base3 in U . For each
n ∈ N we define the n-dimensional subspace Ψn = span{ψ1, · · · , ψn}. Let Pn be
the orthogonal projectors on Ψn in H. We look for functions of the form

φn(t) =
n∑
k=1

b
(n)
k (t)ψk, µn(t) =

n∑
k=1

c
(n)
k (t)ψk,

solving the following approximating problem4

(φ′n, ψ) + (∇ρ(·, φn),∇ψ) =∫
D

(u · ∇ψ)φn +

∫
D

(∇J ∗ φn) · ∇ψ,

ρ(·, φn) := a(·)φn + F ′(φn),

µn = Pn(ρ(·, φn)− J ∗ φn),

φn(0) = φ0n,

(2.11a)

(2.11b)
(2.11c)
(2.11d)

3i. e. {ψj}j≥1 is an orthonormal base in H and an orthogonal base in U .
4primes denote the derivatives with respect to time.
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for every ψ ∈ Ψn, where φ0n = Pnφ0. Problem (2.11) is a system of ordinary
differential equations in the n unknowns b(n)

i . Since F ′ ∈ C1,1
loc thanks to (H3), we

conclude by the Cauchy-Lipschitz theorem that there exists T ∗n ∈ (0,+∞) such
that the system has a unique maximal solution b(n) = (b

(n)
1 , · · · , b(n)

n ) on [0, T ∗n)
and b(n) ∈ C1([0, T ∗n ;Rn).

Step 2: Bounds. We will now derive some a priori estimates on φn, µn in order
to prove that T ∗n ≥ T for every n ≥ 1. By using µn as a test function in (2.11a)
we obtain

(φ′n, µn) + (∇ρ(·, φn),∇µn) =

∫
D

(u · ∇µn)φn +

∫
D

(∇J ∗ φn) · ∇µn,

Since J(x) = J(−x) we have (φ, J ∗ ψ) = (ψ, J ∗ φ), hence

(φ′n, µn) = (φ′n, aφn + F ′(φn)− J ∗ φn)

=
d
dt

[
1

2
‖
√
aφn‖2 +

∫
D

F (φn)− 1

2
(φn, J ∗ φn)

]
=

d
dt

[
1

4

∫
D

∫
D

J(x− y)(φn(x)− φn(y))2dxdy +

∫
D

F (φn)

]
. (2.12)

Moreover, since ∂µn/∂ν = 0 on Γ, we have

(∇ρ(·, φn),∇µn) = (−ρ(·, φn),∆µn) = (−ρn,∆µn) = (∇ρn,∇µn),

where ρn = Pnρ(·, φn) = µn + Pn(J ∗ φn). Moreover, we observe that

‖∇(Pn(J ∗ φn))‖ ≤ ‖B1/2Pn(J ∗ φn)‖ ≤ ‖∇J ∗ φn‖+ ‖J ∗ φn‖ ≤ ‖J‖W 1,1‖φn‖,
(2.13)

and that, by means of (H4), we obtain

1

2

∫
D

∫
D

J(x− y)(φn(x)− φn(y))2dxdy + 2

∫
D

F (φn)

= ‖
√
aφn‖2 + 2

∫
D

F (φn)− (φn, J ∗ φn)

≥
∫
D

(a+ 2c1 − ‖J‖L1)φ2
n − 2c2|D| ≥ α‖φn‖2 − c, (2.14)

where α = 2c1 − ‖J‖L1 > 0. If we integrate (2.12) with respect to time between
0 and t ∈ (0, T ∗n), using (2.13), (2.14), and the fact that b(n) ∈ C1([0, T ∗n);Rn) we
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obtain the following inequality for every t ∈ (0, T ∗n)

α‖φn(t)‖2 + C ′
∫ t

0

‖∇µn‖2dτ

≤ c‖J‖2
W 1,1

∫ t

0

‖φn‖2dτ +
1

2

∫
D

∫
D

J(x− y)(φ0n(x)− φ0n(y))2dxdy

+ 2

∫
D

F (φ0n) ≤M + c

∫ t

0

‖φn‖2dτ , ∀t ∈ [0, T ∗n), (2.15)

where C ′, c may depend on J , |D| and M may depend on φ0, F, c, T . In (2.15)
we have used the fact that φ0 ∈ D(B), hence φ0n → φ0 in H2 ({ψn}n≥1 is a
orthogonal basis in D(B)) and therefore in L∞ (d = 2, 3). Moreover we observe
that ‖φn(t)‖ = |b(n)(t)|, therefore we can apply Gronwall Lemma to (2.15) and
get that T ∗n ≥ T for every n ≥ 1. It follows that problem (2.11) has a unique
solution defined on (0, T ) and the following estimates hold

‖φn‖L∞([0,T ];H) ≤ N, (2.16)

‖∇µn‖L2([0,T ];H) ≤ N, (2.17)

where N might depend on T, J, F, φ0. We recall the inequality ‖x ∗ y‖Lp ≤
‖x‖L1‖y‖Lp , valid for each x ∈ L1, y ∈ Lp. Since ∂∆φn/∂ν = 0 and ∇a(x) =∫
D
∇J(x− y)dy, using (H3), integration by parts, Young inequality and defining

k := (2/c0)‖∇J‖2
L1(Rd)

, we can write

(∇µn,∇φn) = (−∆φn, µn) = (−∆φn, Pn(aφn + F ′(φn)− J ∗ φn))

= (−∆φn, aφn + F ′(φn)− J ∗ φn)

= (∇φn, a∇φn + φn∇a+ F ′′(φn)∇φn −∇J ∗ φn)

≥ c0‖∇φn‖2 − 2‖∇J‖L1(Rd)‖∇φn‖‖φn‖

≥ c0

2
‖∇φn‖2 − k‖φn‖2. (2.18)

Young inequality also yields

(∇µn,∇φn) ≤ c0

4
‖∇φn‖2 +

1

c0

‖∇µn‖2,

which implies, in combination with (2.18), that

‖∇µn‖2 ≥ c2
0

4
‖∇φn‖2 − c‖φn‖2. (2.19)

Inequalities (2.16), (2.17) and (2.19) yield

‖φn‖L2([0,T ];U) ≤ N. (2.20)
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We shall now derive an estimate for µn in L2([0, T ];U). Since |x| ≤ |x|p+1, ∀x ∈
R, thanks to (H5) we have that |F ′(s)| ≤ c|F (s)| + c for every s ∈ R and we
obtain∣∣∣∣∫

D

µn

∣∣∣∣ = |(µn, 1)| = |(F ′(φn), 1)| ≤
∫
D

|F ′(φn)| ≤
∫
D

c|F (φn)|+ c ≤ N. (2.21)

We have used the identity5 (Pn(−J ∗ φn + aφn), 1) = 0 and the uniform bound
‖F (φn)‖L∞([0,T ];L1) ≤ N , which can be derived integrating (2.12) in time over
(0, T ) and using (2.14), (2.16), (2.17). Hence, by means of Poincaré-Wirtinger
inequality, from (2.17) and (2.21) we get

‖µn‖L2([0,T ];U) ≤ N. (2.22)

From (H5) we obtain

‖ρ(·, φn)‖Lp ≤ (c‖a‖L∞‖φn‖+ ‖F ′(φn)‖Lp) ≤ c

((∫
D

|F (φn)|
)1/p

+ 1

)
≤ N,

(2.23)
and hence we get

‖ρ(·, φn)‖L∞([0,T ];Lp) ≤ N. (2.24)

We now need to estimate φ′n in a suitable space. We investigate an estimate
for the sequence of φ′n taking values in V ′s , for a suitable s. More precisely, we
take a Gelfand triple Vs ↪→ L2 ↪→ V ′s , where s ≥ 2 is such that, if ψ ∈ Vs, then
∆ψ ∈ Hs−2 ↪→ Lp

′ , with p′ being the conjugate of p. Since Hs−2 ↪→ Lp
∗ , where

p∗ = 2d/(d+ 4− 2s), it is sufficient to take

s ≥ (4− d)p+ 2d

2p

If ψ ∈ Vs, we can decompose it as ψ = ψ1 + ψ2, where

ψ1 = Pnψ =
n∑
k=1

(ψ, ψk)ψk ∈ Ψn

and

ψ2 = (I − Pn)ψ =
∞∑

k=n+1

(ψ, ψk)ψk ∈ Ψ⊥n .

We notice that ψ1 and ψ2 are orthogonal in Vr, 0 ≤ r ≤ s. Thanks to (2.24) we
can write

|(∇ρ(·, φn),∇ψ1)| = |(ρ(·, φn),∆ψ1)| ≤ N‖∆ψ1‖Lp′ ≤ N‖ψ1‖Vs ≤ N‖ψ‖Vs .
(2.25)

5since the eigenvalues of the Neumann operator B are equal or greater than 1, we can choose
ψ1 = 1, so that Pn(1) = 1, ∀n.
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We also notice that∣∣∣∣∫
D

(∇J ∗ φn) · ∇ψ1

∣∣∣∣ ≤ c‖∇J‖L1(Rd)‖ψn‖‖ψ‖Vs ≤ N‖ψ‖Vs . (2.26)

We now notice that ∇ψ1 ∈ Hs−1. Therefore, if 1 < p < d/(d − 1) and s =
((4− d)p+ 2d)/2p or p = d/(d− 1) and s > ((4− d)p+ 2d)/2p = (d+ 2)/2, due
to the embedding Hs−1 ↪→ L∞, we have∣∣∣∣∫

D

(u · ∇ψ1)φn

∣∣∣∣ ≤ c‖u‖L∞([0,T ];L∞)‖φn‖‖ψ‖Vs ≤ c‖u‖L∞([0,T ];L∞)‖ψ‖Vs . (2.27)

If p = d/(d − 1) and s = ((4 − d)p + 2d)/2p = (d + 2)/2 due to the embedding
Hs−1 ↪→ Lq for every 1 ≤ q < +∞ and the interpolation results in the Lp spaces,
we have, for every r ≥ 2∣∣∣∣∫

D

(u · ∇ψ1)φn

∣∣∣∣ ≤ c‖u‖L∞([0,T ];L∞)‖ψ‖Vs‖φn‖L2r/(r−1)

≤ c‖u‖L∞([0,T ];L∞)ψ‖Vs‖φn‖(r−2)/r‖φn‖2/r

L4 ≤ C ′′‖ψ‖Vs‖φn‖
2/r
U . (2.28)

Finally, in the case d = 3, when 3/2 < p ≤ 2 and s = ((4 − d)p + 2d)/2p =
(p+ 6)/2p, due to the embedding Hs−1 ↪→ L3p/(2p−3), we obtain∣∣∣∣∫

D

(u · ∇ψ1)φn

∣∣∣∣ ≤ c‖u‖L∞([0,T ];L∞)‖ψ‖Vs‖φn‖L6p/(6−p)

≤ C ′′′‖ψ‖Vs‖φn‖(3−p)/p‖φn‖(2p−3)/p

L6 ≤ C ′′′‖ψ‖Vs‖φn‖
(2p−3)/p
U . (2.29)

Taking into account (2.25)-(2.29) we deduce from (2.11a) that

‖φ′n‖L∞([0,T ];V ′s ) ≤ L, if 1 < p < d/(d− 1), s =
(4− d)p+ 2d

2p
, (2.30)

‖φ′n‖L∞([0,T ];V ′s )∩Lr([0,T ];V ′d+2
d

) ≤ L, if p = d/(d− 1), s >
d+ 2

d
, r ≥ 2,

(2.31)

‖φ′n‖L2p/(2p−3)([0,T ];V ′s ) ≤ L, if d = 3, 3/2 < p ≤ 2, s =
p+ 6

2p
, (2.32)

where L is a constant depending from T, u, J, F, φ0.

Step 3: Existence of suitable limits. By putting together (2.17), (2.20), (2.22),
(2.24), (2.30)-(2.32) and on the account of the compact embedding

L2([0, T ];U) ∩H1([0, T ];V ′s )
c
↪→ L2([0, T ];H),
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we deduce that there exist

φ ∈ L∞([0, T ];H) ∩ L2([0, T ];U), (2.33)

µ ∈ L2([0, T ];U), (2.34)

ρ ∈ L∞([0, T ];Lp), (2.35)

with

φt ∈ L∞([0, T ];V ′s ), if 1 < p < d/(d− 1), s =
(4− d)p+ 2d

2p
,

φt ∈ L∞([0, T ];V ′s ) ∩ Lr([0, T ];V ′d+2
d

), if p = d/(d− 1), s >
d+ 2

d
, r ≥ 2,

φt ∈ L2p/(2p−3)([0, T ];V ′s ), if d = 3, 3/2 < p ≤ 2, s =
p+ 6

2p
, (2.36)

such that, for a not relabeled subsequence, we have

φn
∗
⇀ φ in L∞([0, T ];H), (2.37)

φn ⇀ φ in L2([0, T ];U), (2.38)

φn → φ in L2([0, T ];H), a.e. in D × (0, T ), (2.39)

µn ⇀ µ in L2([0, T ];U), (2.40)

ρ(·, φn)
∗
⇀ ρ in L∞([0, T ];Lp), (2.41)

and
φ′n

∗
⇀ φt in L∞([0, T ];V ′s ), (2.42)

if 1 < p < d/(d− 1), with s = {(4− d)p+ 2d}/(2p),

φ′n
∗
⇀ φt in L∞([0, T ];V ′s ), φ′n ⇀ φt in Lr([0, T ];V ′d+2

d

), (2.43)

if p = d/(d− 1), with s > d+2
d

and r ≥ 2,

φ′n ⇀ φt in L2p/(2p−3)([0, T ];V ′s ), (2.44)

if d = 3, 3/2 < p ≤ 2, and s = p+6
2p

.

Step 4: Passage to limit and existence of a weak solution. We now show that
φ is a weak solution to Problem (NL), i.e., φ, µ and ρ satisfy (2.4a), (2.7), (2.9).
From the pointwise convergence in (2.39) we have ρ(·, φn)→ aφ+ F ′(φ) almost
everywhere inD×(0, T ) and therefore from (2.41), the fact that Lp′([0, T ];Lp

′
) ↪→
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L1([0, T ];Lp
′
) and [60, Proposition 3.19], we deduce that ρ = aφ + F ′(φ), i.e.

(2.7). Moreover, since µk = Pk(ρ(·, φk)− J ∗ φk), we have, for every v ∈ Ψn and
every k ≥ n (n is fixed)∫ T

0

(µk, v)χ(t)dt =

∫ T

0

(ρ(·, φk)− J ∗ φk, v)χ(t)dt, ∀χ ∈ C∞0 (0, T ).

By passing to the limit as k → +∞ in the previous identity and using (2.39),
(2.40) (which implies in particular J ∗ φk → J ∗ φ in L2([0, T ];U)) and (2.41),
because of the density of {Ψn}n≥1 in H we get µ = ρ−J ∗φ = aφ+F ′(φ)−J ∗φ,
i. e. (2.4a). In particular, ρ ∈ L2([0, T ];U).
We can also pass to the limit in (2.11a), to recover (2.8). We multiply (2.11a)
by χ, where χ ∈ C∞0 (0, T ) and integrate between 0 and T . If we pass to limit, we
write the term (∇ρ(·, φn),∇ψ) as (ρ(·, φn),−∆ψ) and we use (2.41). The limit
equation ∫ T

0

〈φt, ψ〉χdt+

∫ T

0

(∇ρ,∇ψ)χdt

=

∫ T

0

∫
D

(u · ∇ψ)φχdxdt+

∫ T

0

∫
D

(∇J ∗ φ)∇ψχdxdt,

holds for every ψ ∈ Ψn (for fixed n) and every χ ∈ C∞0 (0, T ). Since each of
the temporal functions appearing in (2.8) (with ψ ∈ Ψn for some n) belong to
Lq(0, T ) for some q > 1, because of the density of C∞0 (0, T ) in Lq′(0, T ), because
of the density of {Ψn}n≥1 in Vs, we conclude that φ, µ and ρ satisfy6 (2.8) for
every ψ ∈ Vs. In addition to that, (2.8) can be written as follows

〈φt, ψ〉 = −(∇µ,∇ψ) + (u, φ∇ψ). (2.45)

If the case d = 3 we have

|(u, φ∇ψ)| ≤ N1/2‖∇u‖‖φ‖1/2
U ‖∇ψ‖, (2.46)

while, in the case d = 2 we have

|(u, φ∇ψ)| ≤ N2(1−δ)/(2−δ)‖∇u‖‖φ‖δ/(2−δ)U ‖∇ψ‖, (2.47)

for every δ ∈ (0, 1). From (2.46) and (2.47) we deduce that φt(t) can be con-
tinuosly extended to U for almost every t > 0 (see footnote (6)) and from these
equations and (2.45) we also infer that

φt ∈ L4/3([0, T ];U ′), if d = 3; φt ∈ L2−δ([0, T ];U ′), ∀δ ∈ (0, 1), if d = 2.

6(2.8) is satisfied for every t ∈ C ⊂ [0, T ] such that [0, T ] \C has Lebesgue measure 0. This
happens because these equations are linear in ψ and because Vs is separable.
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Hence (2.6b), (2.6c) hold and (2.45), (2.8) are satisfied for every ψ ∈ U .
Finally, if we integrate (2.11a), between 0 and t and we pass to the limit for
n→ +∞ we get (2.9).

Step 5: General initial conditions. Let us now assume u0 ∈ Gdiv and φ0 ∈ H
such that F (φ0) ∈ L1. For every k ∈ N we define φ0k ∈ D(B) as

φ0k :=

(
I +

1

k
B

)−1

φ0.

From the maximal monotone operators theory we deduce that φ0k → φ0 in H.
Let φk be the weak solution corresponding to initial data φ0k constructed by the
Faedo-Galerkin scheme described in Steps 1-4 of this proof. Recalling (2.5), we
can write ∫

D

F (φ0k) =

∫
D

G(φ0k)−
a∗

2
‖φ0k‖2. (2.48)

We now multiply the equation φ0k − φ0 = − 1
k
Bφ0k by g(φ0k), where g = G′. We

get ∫
D

g(φ0k)(φ0k − φ0) = −1

k

∫
D

g(φ0k)Bφ0k

= −1

k

∫
D

g′(φ0k)‖∇φ0k‖2 − 1

k

∫
D

g(φ0k)φ0k ≤ 0, (2.49)

since g is monotone nondecreasing and we can suppose, without loss of generality,
that g(0) = 0. Due to the convexity of G we have∫

D

G(φ0k) ≤
∫
D

G(φ0) +

∫
D

g(φ0k)(φ0k − φ0) ≤
∫
D

G(φ0). (2.50)

Hence, thanks to (2.48), (2.50), written for each φk, by means of (H4) and of
Gronwall lemma, we deduce the estimates (2.16)-(2.17) for the sequences φk and
∇µk respectively. By taking the H-inner product of ∇µk = ∇(aφk − J ∗ φk +
F ′(φk)) and ∇φk in H, using (H3), we obtain the estimates of ∇φk from ∇µk
(see (2.19)) and therefore we get estimate (2.20) for φk. Moreover we can argue
as we have done in the previous steps of the proof to get (2.22), (2.24) for µk
and ρ(·, φk), and (2.30)-(2.32) for φ′k. Using a compactness argument we deduce
the existence of three functions φ, µ and ρ satisfying (2.33)-(2.36) and such that
the convergences (2.37)-(2.41) hold. It is now immediate to see that φ is a weak
solution for φ0 ∈ H such that F (φ0) ∈ L1.

Remark 2.2.10. The original nonlocal Cahn-Hilliard equation does not contain
the convective term u · ∇φ. For the sake of completeness, we quote a classical
result well-posedness result for a nonlocal Cahn-Hilliard equation without the
convective term. See [9].
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Theorem 2.2.11. Let us consider the problem
φt = ∆

(
φ(x)

∫
D

J(x− y)dy −
∫
D

J(x− y)φ(y)dy + f(φ)

)
in D,

∂
(
φ(x)

∫
D
J(x− y)dy −

∫
D
J(x− y)φ(y)dy + f(φ)

)
∂ν

= 0 on Γ,

φ(0, x) = φ0(x) on D.

(2.51a)

(2.51b)

(2.51c)

We assume that

•
∫
D
J(x− y)dy ∈ C2+β(D), f ∈ C2+β(R) for some β > 0.

• There exist c1 > 0, c2 > 0, r > 0 such that∫
D

J(x− y)dy + f ′(φ) ≥ c1 + c2|φ|2r

• Γ is of class C2+β.

• φ0 ∈ C2+β,(2+β)/2 and satifies

∂
(
φ0(x)

∫
D
J(x− y)dy −

∫
D
J(x− y)φ0(y)dy + f(φ0)

)
∂ν

= 0 on Γ.

Then Problem (2.51) has a unique solution φ ∈ C2+β,(2+β)/2(QT ). In addition,
the following dependence on initial data holds

sup
0≤t≤T

∫
D

|φ1 − φ2| ≤ C

∫
D

|φ0,1 − φ0,2|

where C depends on T only. The subscripts 1, 2 have obvious meaning.



Chapter 3

Stochastic Cahn-Hilliard equations

This chapter is meant to be the specular version of the previous one. We are
now interested in the stochastic Cahn-Hilliard equation. In this case, along with
topics (i)-(v) listed at page 23, one may investigate some further aspects such as:

(vi) existence and uniqueness of invariant measures for the transition semigroup
and Dirichlet form.

(vii) strong Feller property and irreducibility of the transition semigroup.

(viii) differentiable properties (in the sense of Malliavin calculus) of solutions.

In Section (3.1) we provide a brief historical summary of the main analytical
results which have been proved for the stochastic Cahn-Hilliard equation. In
Section (3.2) we focus on a set of selected results concerning the stochastic Cahn-
Hilliard equation and we analyze them. We follow the chronological order of
appearance of the articles.

3.1 A brief history
First of all, we specify that the literature associated with the stochastic version
of the Cahn-Hilliard equation is more restricted than the one dealing with the
deterministic equation. Nevertheless a considerable amount of results have been
proved in the last decades.

The majority of the relevant works dealing with this topic is devoted to the
analysis of local stochastic versions of the Cahn-Hilliard equation with constant
mobility, regular potential and standard boundary condition (e.g., homogenous
Neumann boundary condition). In [29], the authors enstablish the existence of a
weak statistical solution and existence, uniqueness and measurability of a strong
solution for a local Cahn-Hilliard equation with additive constant stochastic noise

38



CHAPTER 3. STOCHASTIC CAHN-HILLIARD EQUATIONS 39

(see Remark (1.2.1)) by means of a variational approach, a Galerkin scheme and
a Prohorov compactness argument. In this case, the free energy is a polynomial
of fourth grade, and no improvement can be done without major modifications
of the reasoning.
In [24], an analogous equation having an arbitrary even-grade polynomial as free
energy is examined by means of a pathwise approach in which, for each ω ∈ Ω,
a single determinisitic differential equation is solved. A Galerkin scheme and
the stochastic convolution operator are exploited. Existence and uniqueness of a
classical solution is proved, along with existence and uniqueness of an invariant
measure for the transition semigroup. This approach is completely different from
the one argued in [29].
In [17], an equation with noise having a nonlinear diffusion coefficient1 is consid-
ered. The author proves existence and uniqueness of a classical solution, proves
that this solution is differentiable in the sense of the Malliavian calculus, and,
under some further assumptions, proves that the law of the solution is absolutely
continuous with respect to Lebesgue measure.
In [27], a stochastic Cahn-Hilliard equation with reflection on a portion of Γ and
with the constraint of conservation of the space average is considered. Existence
and uniqueness of a strong solution is shown for all continuous nonnegative ini-
tial conditions using a method based on infinite-dimensional integration by parts
formulae. Detailed information on the associated invariant measure and Dirich-
let form is provided.
In [4], the authors study a generalized stochastic Cahn-Hilliard equation with
multiplicative white noise posed on bounded spatial convex domains, with piece-
wise smooth boundary, and an additive time dependent white noise term in the
chemical potential. The equation is presented in a weak stochastic integral for-
mulation and the existence of solutions is carried out distinguishing the case
d ∈ {1; 2} and d = 3. The analysis is based on stochastic integral calculus,
the galerkin approximation scheme and the asymptotic spectral properties of
the Neumann Laplacian operator. Existence is also derived for some non-convex
cases when the boundary Γ is smooth.

3.2 A local stochastic Cahn-Hilliard equation with
regular potential

We now carefully study two articles previously mentioned in Section (3.1). These
works deal with a stochastic local Cahn-Hilliard equation with constant mobility
and regular potential. They follow two completely different approaches and it is
worth analyzing both of them.

1similar to (1.21).
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3.2.1 Probabilistic approach

One of the first articles concerning the stochastic Cahn-Hilliard equation was
published in 1991 by N. Elezović and A. Mikelić (see [29]). In this work the
authors choose the Helmholtz free energy to be

F (φ) =
1

4
φ4 − β

2
φ2, β > 0.

The random term is introduced in the right side of (1.12), which becomes

φt = −γ∆2φ+ ∆f(φ) + θ. (3.1)

Here γ > 0, f(φ) = F ′(φ) = φ3 − βφ and θ is a white noise type process with
the following covariance

E[θ(t, x)θ(s, y)] = −2Mδ(t− s)k(x, y).

Here M > 0 is a given constant and k is a sufficiently smooth function. The
domain D is supposed to have a smooth boundary Γ ∈ C∞.
In our case θ will be the time derivative of Wiener process w. We will remind the
reader with the necessary definitions later. In particular, we will give two different
definitions of solution (weak and strong solutions) for problem (3.1) and we will
prove existence for both type of solution and uniqueness and measurability for
the strong one.

Remark 3.2.1. We present a slight modification of the arguments contained
in [29]: we do that in order to complete certain proofs, in which a few details
are missing. However, these modifications leave intact the nature of the results
exposed in the original article.

We shall use the Gelfand triple V
c
↪→ H ↪→ V ′. On H we consider the

symmetric operator ∆2 + I associated with the bilinear form

a(u, v) =

∫
D

∆u∆v +

∫
D

uv.

The spectral theory implies that there exists an orthonormal basis {ei}i∈N of H
made of eigenvectors of ∆2 + I with eigenvalues {λi}i∈N, λ→ +∞. The {ei}i∈N
belong to V and they are also eigenvectors of the operator −∆+I corresponding
to

b(u, v) =

∫
D

∇u∇v +

∫
D

uv.

Their eigenvalues {µi}i∈N satisfy the formula λi − 1 = (µi − 1)2 for every i.
We now introduce the following time dependent function spaces

U := L2([0, T ];V ) ∩ L∞([0, T ];H) ∩ C1/4([0, T ];V ′),
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Z := L2([0, T ];H2−ε
E ) ∩ C([0, T ];H−ε), ε ∈ (0, 1/4).

Note that we have changed the exponent of the Hölder-continuity in the definition
of U . (it is 2/5 in [29, p. 1172, (2.9)].) We will also need the following lemma,
whose proof is identical to that in [29, p. 1173, Lemmas 2.3. and 2.4.].

Lemma 3.2.2. The space U is compactly embedded in Z , which is continuously
embedded in L4(QT ).

We will also need the Hilbert space

V :=

{
u ∈ L2([0, T ];H3) :

∂u

∂ν
= 0,

∂u

∂t
∈ L2([0, T ];H), u(T ) = 0

}
,

which makes part of the Gelfand triple V ↪→ L2([0, T ];H) ↪→ V ′. We also define
the nonlinear operator A : L2([0, T ];V )→ L2([0, T ];V ′) as∫ T

0

〈A (φ), ξ〉V ′,V := γ

∫ T

0

∫
D

∆φ∆ξ −
∫ T

0

∫
D

f(φ)∆ξ, ∀ξ ∈ L2([0, T ];V ),

and the nonlinear operator2

R(φ) : U (1) → L5/3([0, T ];V ′) : φ 7→ φt + A (φ),

where φt is a formal time derivative.
Given a Banach space X, we call Cw([0, T ];X) the space of all functions u ∈
C([0, T ];X) such that

sup
0≤t1<t2≤T

‖u(t1)− u(t2)‖X
hT (t1 − t2)

< +∞, hT (t) :=

{
2t ln

T

t

}1/2

.

It also holds that Cw([0, T ];X) ⊂ Cκ([0, T ];X) for 0 ≤ κ < 1/2. Finally, let
Vm = span{e1, · · · , em} and let πm be the H-orthogonal projector on Vm.

Introduction of the Wiener Process. We introduce a Q-Wiener process
w = w(t) = w(t, x, ω), t ∈ [0, T ], x ∈ D, ω ∈ Ω, where Q : H → H is a
Hilbert-Schmidt operator defined by

(Qu)(x) :=

∫
D

k(x, y)u(y)dy, u ∈ H.

2note that R can be extended to a continuous operator R : Z → V ′ using the formula∫ T

0

〈R(φ), v〉V ′,V = −
∫
D

φ0v(0)−
∫ T

0

∫
D

φvt − γ
∫ T

0

∫
D

∇φ∇(∆v)−
∫ T

0

∫
D

f(φ)∆v, ∀v ∈ V .
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Here k is a sufficiently smooth kernel function such that Q is symmetric, positive
definite and nuclear3. We will also need the finite dimensional Wiener processes

wm(t) := πmw(t) =
m∑
j=1

wjm(t)ej, (3.2)

where wjm are real-valued Wiener processes satisfying

E[|wjm(t)|2] = t(Qej, ej)H .

We indicate with W, Wm the probability measures on L2([0, T ];H) associated
with w and wm.
For our purposes, we define the distributional time derivative wt of a L2([0, T ];H)-
valued Wiener process w as the element of V ′ such that

〈wt, v〉V ′,V := − (w, vt)L2([0,T ];H) . (3.3)

Let N denote the probability measure on V ′ associated with wt. Then we have
the relation

N̂(v) = Ŵ

(
−∂v
∂t

)
, ∀v ∈ V .

The stochastic Cahn-Hilliard equation. The problem being studied is the
following

(SCHE)


φt = −γ∆2φ+ ∆f(φ) + wt,

∂φ

∂ν
=
∂∆φ

∂ν
= 0 on Γ,

φ(0, x) = φ0(x) on D, (a.s.).

(3.4a)

(3.4b)

(3.4c)

Here φ0 is an H-valued random variable such that E[‖φ0‖4
H ] < +∞. We shall

denote by Ξ its corresponding measure. We also assume that w and φ0 are
independent and that the mass conservation occurs, namely∫

D

φ(t) =

∫
D

φ(0), ∀t ∈ [0, T ].

We now give two different definitions of solution for Problem (SCHE).

Definition 3.2.3. A weak statistical solution of the Cahn-Hilliard equation is
a measure P (concentrated) on the σ-algebra BZ (U ) which, for every ξ ∈ Hε

and v ∈ V , satisfies∫
Z

exp

{
i〈φ(0), ξ〉H−ε,Hε + i

∫ T

0

〈R(φ), v〉V ′,V
}
P(dφ) = Ξ̂(ξ)N̂(v). (3.5)

3a nuclear operator also has finite trace, namely tr(Q) =
∑∞

j=1 (Qej , ej)H < +∞.
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Remark 3.2.4. If we define the operator D : Z → H−ε×V ′ : φ 7→ {φ(0),R(φ)}
we see that (3.5) is equivalent to

P(D−1(C)) = (Ξ×N)(C), ∀C ∈ B(H−ε × V ′). (3.6)

Relation (3.6) does not guarantee uniqueness for weak solutions of the Cahn-
Hilliard equation since D may not be one-to-one.

We give another definition.

Definition 3.2.5. A strong solution of the Cahn-Hilliard equation is a stochastic
process φ(t) such that

(i) φ satisfies

D(φ(ω)) =

{
φ0(ω),

∂w

∂t
(ω)

}
, a.s.

(ii) The random variable ω 7→ φ(t, x, ω) is measurable from (Ω,F) to (U ,BZ (U )).

Galerkin approximation. We now consider a finite-dimensional approxi-
mation of (3.4a)

(φm)t = −γ∆2φm + πm[∆f(φm)] + (wm)t, (3.7)

In fact (3.7) is a compact notation that indicates the following finite-dimensional
stochastic equation

dφm =
{
−γ∆2φm + πm[∆f(φm)]

}
dt+ dwm. (3.8)

We also remind the following Theorem.

Theorem 3.2.6. Let wm be given by (3.2) and let X ↪→ H ↪→ X ′ be a Gelfand
triple. Then

E
[
‖wm‖2

Cw([0,T ];X′)

]
≤ C(T )tr(Q).

In the following we need the fact the U is a borel set in Z (see [59] and [66,
p. 119]) to assure the measurability of the various norms we will encounter. We
are now ready to state the following4

Theorem 3.2.7. Let φ0 satisfy

E
[
‖φ0‖4

H

]
< +∞. (3.9)

Then (3.8) has a weak statistical solution Pm concentrated on U which satisfies∫
Z

‖φ‖2
L2([0,T ];V )Pm(dφ) < C1

[
1 + E

[
‖φ0‖2

H

]]
, (3.10)

4Proof of Theorem (3.2.7) is a modification of [29, p. 1183-1187, Proof of Theorem 5.2.].
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∫
Z

‖φ‖2
L∞([0,T ];H)Pm(dφ) < C2

[
1 + E

[
‖φ0‖2

H

]]
, (3.11)∫

Z

‖φ‖C1/4([0,T ];V ′)Pm(dφ) < C3

[
1 + E

[
‖φ0‖4

H

]]
. (3.12)

Proof. Step 1: Existence of a solution to (3.8). Let φm(t) =
∑m

j=1 c
j
m(t)ej. We

take the scalar product inH of (3.8) with e1, · · · , em, use the boundary conditions
and rewrite (3.8) as a differential stochastic equation in Rm, namely

cm(t) = cm(0) +

∫ t

0

−Dcm −G(cm)︸ ︷︷ ︸
b(cm)

dt+

∫ t

0

dwm, (3.13)

where cm = (c1
m, · · · , cmm) ∈ Rm and wm = (w1

m, · · · , wmm) is a Wiener pro-
cess in Rm with covariance matrix Qm. Here D is a diagonal matrix and
[G(cm)]i = −

∫
D
f(φm)∆ei = −

∫
D

(φ3
m − βφm)∆ei. It can be easily seen that

G and hence b are locally Lipschitz functions. By using the theory of finite-
dimensional stochastic differential equations, we deduce that, for every initial
condition πmφ0, there exists a unique solution cm(t) of the system (3.8) (see [47,
Theorem 3.1]). The solution is defined, in principle, up to some random moment
ζm(ω). We will show that ζm(ω) ≥ T a.s.

Step 2: Estimates. We now look for some proper estimates of φm. If we apply
the Itö formula with the function F (t, cm(t)) = |cm(t)|2+2α = ‖φm(t)‖2+2α

H , for
some α ≥ 0, we get

|cm(t)|2+2α = |cm(0)|2+2α +

∫ t

0

〈2(1 + α)|cm(s)|2αcm(s)Idwm(s)〉

+

∫ t

0

{
〈2(1 + α)|cm(s)|2αcm(s), b(cm(s))〉+

1

2
tr(Hes(|cm(s)|2+2α)Qm)

}
ds

= |cm(0)|2+2α +

∫ t

0

〈2(1 + α)|cm(s)|2αcm(s), Idwm(s)〉

+

∫ t

0

〈2(1 + α)|cm(s)|2αcm(s), b(cm(s))〉ds

+

∫ t

0

{
1α>02α(1 + α)|cm(s)|2α−2〈Qmcm(s), cm(s)〉

}
ds

+

∫ t

0

{
(1 + α)|cm(s)|2αtr(Qm)

}
ds, (3.14)

where 〈·, ·〉 denotes the standard scalar product in Rm. We now observe that,
thanks to integration by parts, Young inequality and the spectral properties of
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the family {ei}i∈N we have

(∆φm(t), f(φm(t)))H = −
∫
D

(3φ2
m(t)− β)|∇φm(t)|2 ≤ β

∫
D

|∇φm(t)|2

≤ β‖φm(t)‖H‖φm(t)‖V ≤
γ

2
‖φm(t)‖2

V +
β2

2γ
‖φm(t)‖2

H .

Moreover (Qmcm(t), cm(t)) ≤ ‖Qm‖|cm(t)|2 ≤ ‖Q‖‖φm(t)‖2
H . Let us now define

τN(ω) :=

{
inf {τ > 0 : ‖φm(τ, ·, ω)‖H ≥ N},
+∞, if ‖φm(τ, ·, ω)‖H < N, ∀τ > 0.

Using the previous relations and recalling that the expectation of a stochastic
integral is equal to 0 and that Cz2α+z2+2α ≤ 1+2Cz2+2α if z ≥ 0, for a suitable
constant C = C(α) > 0, we obtain from (3.14)

E
[
‖φm(t ∧ τN)‖2+2α

H

]
+ γ(1 + α)E

[∫ t∧τN

0

‖φm‖2α
H ‖φm‖2

V

]
≤ E

[
‖φm(0)‖2+2α

H

]
+ C E

[∫ t∧τN

0

‖φm(s)‖2α
H (‖φm(s)‖2

H + C1)ds
]

≤ E
[
‖φm(0)‖2+2α

H

]
+ C

∫ t∧τN

0

(
1 + E

[
‖φm(s)‖2+2α

H

])
ds. (3.15)

Let us prove that {Pm}m∈N, the family of the distributions of {φm}m∈N, is con-
centrated on U .
By the Gronwall inequality it follows that

E
[
‖φm(t ∧ τN)‖2+2α

H

]
≤ C(T )

(
1 + E

[
‖φm(0)‖2+2α

H

])
. (3.16)

The previous inequality implies that ζ(ω) = T (a.s.), see [33, p. 352] for a similar
discussion. In addition, for every N ∈ N there exists a process φNm which satisfies
(3.4) for all 0 < s < t∧τN . In addition to that, t∧τN ↑ t a.s. and φNm(t)→ um(t)
a.s.
Hence, for α = 0, we apply Fatou lemma twice and get

E
[
‖φm‖2

L2([0,T ];H)

]
≤ E

[∫ T

0

lim inf
N

∫
D

(φNm)2

]
=

∫ T

0

E
[
lim inf

N
‖φNm‖2

H

]
≤

∫ T

0

lim inf
N

E
[
‖φNm‖2

H

]
≤ C1(T )

(
1 + E

[
‖φ(0)‖2

H

])
, (3.17)

and similarly, for α > 0, we get

E
[
‖φm‖2+2α

L2+2α([0,T ];H)

]
≤ C(T )

(
1 + E

[
‖φ0‖2+2α

H

])
. (3.18)
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In addition, using the simple estimate ‖∇φm‖4
H ≤ ‖φ‖2

H‖φ‖2
V , picking α = 1,

using the monotone convergence theorem in (3.15) and recalling the hypothesis
on φ0, we obtain

E
[
‖∇φm‖4

L4([0,T ];H)

]
≤ C(T )

(
1 + E

[
‖φ0‖4

H

])
. (3.19)

Moreover φm ∈ C([0, T ]; C∞(D)). By putting α = 0, we deduce from (3.14) that

‖φm(t)‖2
H ≤ ‖φm(0)‖2

H + C

∫ t

0

(
1 + ‖φm(s)‖2

H

)
ds+ 2

∫ t

0

〈cm(s), Idwm(s)〉,

which implies

E
[

sup
0≤t≤T

‖φm(t)‖2
H

]
≤ E

[
‖φm(0)‖2

H

]
+ C

(
T + E

[
‖φm‖2

L2([0,T ];H)

])
+ 2E

[
sup

0≤t≤T

∫ t

0

〈cm, Idwm〉
]
. (3.20)

By means of the Doob submartingale inequality we obtain{
E
[

sup
0≤t≤T

∫ t

0

〈cm, Idwm〉
]}2

≤ E

[
sup

0≤t≤T

{∫ t

0

〈cm, Idwm〉
}2
]

≤ 4E

[{∫ T

0

〈cm, Idwm〉
}2
]

= 4E
[∫ T

0

〈Qmcm, cm〉
]

≤ 4‖Q‖E
[
‖φm‖2

L2([0,T ];H)

]
. (3.21)

Hence we obtain (3.11) from (3.9), (3.20) and (3.21).
Taking α = 0 again, if we do not remove the term with the V -norm of φm in
the estimation of the right hand side of (3.14) and we apply Fatou lemma as we
have done in (3.17), we get

E
[
‖φm(t)‖2

H

]
+
γ

2
E
[∫ t

0

‖φm(s)‖2
V ds

]
≤ CE

[∫ t

0

‖φm(s)‖2
Hds

]
+ C1t+ E

[
‖φm(0)‖2

H

]
.

Thus

E
[
‖φm‖2

L2([0,T ];V )

]
= E

[∫ T

0

‖φm(s)‖2
V ds

]
≤ C ′

∫ T

0

E
[
‖φm(s)‖2

H

]
ds

≤ +C ′1t+ C ′2 + C(T )
[
1 + E

[
‖φm(0)‖2

H

]]
≤ C(T )

[
1 + E

[
‖φ(0)‖2

H

]]
,



CHAPTER 3. STOCHASTIC CAHN-HILLIARD EQUATIONS 47

so that Pm satisfies (3.10). To prove (3.12), we write, for 0 ≤ t1 < t2 ≤ T and
for every v ∈ V

|〈φm(t2)− φm(t1), v〉V ′,V | ≤
∣∣∣∣∫ t2

t1

(−γ∆φm + f(φm), v)

∣∣∣∣
+ |〈wm(t2)− wm(t1), v〉V ′,V | ≤

{∫ t2

t1

(γ‖∆φm‖+ ‖f(φm)‖)

+ ‖wm(t2)− wm(t1)‖V ′
}
‖v‖V . (3.22)

We now observe that, thanks to the embedding U ↪→ L6, we have∫ t2

t1

‖φ3
m‖4/3 =

∫ t2

t1

‖φm‖4
L6 ≤ C

∫ t2

t1

(
‖∇φm‖4 + ‖φm‖4

)
,

and using Theorem (3.2.6), (3.19) and (3.18) with α = 1 we deduce (3.12). Hence
{Pm}m∈N is thus concentrated on U .

Step 3: Final properties. Since φm(0) and wm(t) are independent random vari-
ables, we have

E
[
exp

{
i〈φm(0), ξ〉H−ε,Hε + i

∫ T

0

〈R(φm), v〉V ′,V
}]

= Ξ̂(ξ)Ŵm

(
−∂v
∂t

)
,

∀ξ ∈ Vm, ∀v ∈ Vm,

where
Vm := {u ∈ V : ∃v : u(t) = πmv(t), for a.e. t ∈ [0, T ]}.

Thus all assertions in the theorem are proved.

We now turn to prove the existence of a weak solution for the infinite-
dimensional original problem. We use a compactness argument.

Theorem 3.2.8. The family {Pm}m∈N of Theorem (3.2.7) is relatively compact
in Z .

Proof. We will check the hypothesis of the Phokhorov’s theorem. It is sufficient
to show that {Pm}m∈N is uniformly concentrated on some compact set in Z .
Let ε > 0 be arbitrary. Since U

c
↪→ Z (see Lemma (3.2.2)), the set Kρ(U ) :=

{u ∈ U : ‖u‖U ≤ ρ} is relatively compact in Z . Inequalities (3.10)-(3.12) imply
that

∫
Z
‖u‖U Pm(du) < C. Hence, we have

Pm(Z \Kρ(U )) =

∫
Z \Kρ(U )

Pm(du) ≤ 1

ρ

∫
Z

‖u‖U Pm(du) ≤ C

ρ
≤ ε,

for ρ large enough. Thus there exists a (not relabeled) subsequence {Pm}m∈N
which converges weakly to some probability measure P on Z .
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We can now state a crucial theorem.

Theorem 3.2.9. Let the random variable φ0 ∈ H satisfy E[‖φ0‖4
H ] < +∞. Then

(3.4) has a weak statistical solution P concentrated on U . Moreover, P satisfies∫
Z

‖φ‖2
L2([0,T ];V )P(dφ) < C1

[
1 + E

[
‖φ0‖2

H

]]
, (3.23)∫

Z

‖φ‖2
L∞([0,T ];H)P(dφ) < C2

[
1 + E

[
‖φ0‖2

H

]]
, (3.24)∫

Z

‖φ‖5/3

C2/5([0,T ];V ′)
P(dφ) < C1

[
1 + E

[
‖φ0‖3

H

]]
, (3.25)

and there exists a set X ⊂ U , X closed in the topology of Z , X ∈ BZ (U ) such
that P(X) = 1.

Proof. Let r ∈ N. For every m ≥ r it holds from Theorem (3.2.7) that∫
Z

exp

{
i〈φm(0), ξ〉H−ε,Hε + i

∫ T

0

〈R(φm), v〉V ′,V
}
Pm(dφ) = Ξ̂(ξ)Ŵm

(
−∂v
∂t

)
,

∀ξ ∈ Vr,∀v ∈ Vr.

Since the functional φ 7→
∫ T

0
〈R(φ(t)), v(t)〉V ′,V is continuous on Z and Pm

converges weakly to P we have that (3.5) holds for each ξ ∈ Vr, v ∈ Vr; hence,
by a density argument (see [59, p. 830 and Lemma 3.2]), (3.5) holds for every
ξ ∈ Hε and v ∈ V .
To prove inequalities (3.23)-(3.25), we observe that the following statement is
true thanks to the Fatou Lemma:
Let Φ(u),Φr(u), u ∈ U , r ∈ N be nonnegative functionals such that Φr(u) is
continuous and bounded on Z , Φr(u)→ Φ(u) as r → +∞. If

∫
Φr(u)Pm(du) ≤

C ∀m > r and Pm → P weakly on Z , then
∫

Φ(u)P(du) ≤ C.
For Φ(u) = ‖u‖2

L2([0,T ];V ), we put Φr(u) := min{Φ(πru); r} and the hypothesis
of the previous statement are met. Similiarly, for Φ(u) = ‖u‖2

L∞([0,T ];H), we put
once again Φr(u) := min{Φ(πru); r}. Finally, if Φ(u) = ‖u‖5/3

C2/5([0,T ];V ′)
, we put

Φr(u) := min

 sup
1/r<|t1−t2|<1

0≤t1<t2≤T

(
‖u(t1)− u(t2)‖V ′
|t1 − t2|2/5

)
; r



5/3

,

and the estimates (3.23)-(3.25) follow, hence P(U ) = 1. We omit the proof of
the existence of X.
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We now turn to build the preliminary steps which will lead to prove the
existence of a strong solution to Problem (3.4). We need two ingredients:

(i) the existence of a weak solution P on an appropriate space.

(ii) the injectivity of the operator R(φ) := ∂φ/∂t+ A (φ).

To prove (ii) we need to reinforce the assumption on the initial condition u0. We
will assume that

φ0 ∈ U (a.s.).
We introduce the following Banach space

Uw := L2([0, T ];V ) ∩ L∞([0, T ];U) ∩ Cw([0, T ];U ′),

and we prove the following

Theorem 3.2.10. Let φ0 ∈ U satisfy E [‖φ0‖4
H ] < +∞ and E [E[φ0]] < +∞,

where E is the free energy introduced in (1.2). Then the weak solution of (3.8)
is concentrated on Uw and the following estimates hold uniformly5 on m:∫

Z

‖φ‖2
L2([0,T ];V )Pm(dφ) ≤ C1E

[
‖φ0‖2

H

]
, (3.26)∫

Z

‖φ‖2
L∞([0,T ];U)Pm(dφ) ≤ C2 [1 + E [E[φ0]]] , (3.27)∫

Z

‖φ‖2
Cw([0,T ];U ′)Pm(dφ) ≤ C3 [1 + E [E[φ0]]] . (3.28)

Proof. The existence of {Pm}m∈N is proved in Theorem (3.2.7), along with (3.26).
Let us prove (3.27). Let us denote

zm := −γ∆φm + πm [f(φm)] .

If we apply Itô Rule6 to the function F (t, φm(t)) := E[φm(t)], we get

γ

2

∫
D

|∇φm(t)|2 +
1

4

∫
D

φ4
m(t) +

∫ t

0

∫
D

|∇zm|2

= E [φm(0)] +
(γ

2
− β

)
tr(Qm)t+

β

2

∫
D

φ2
m(t)

+
3

2

∫ t

0

∫
D

φ2
m

m∑
i,j=1

Qijeiej +

∫ t

0

∫
D

zmdwm. (3.29)

5Unlike the constants in Theorem (3.2.7), the following constants C1, C2, C3 might depend
on u0. This is of absolutely no harm because we are not interested in the dependence of the
solution on the initial data. The same happens in Theorem (3.2.14).

6from now on, wm resume its meaning given in (3.2) andQm indicates its covariance operator
whose matrix with respect to the basis {ei} is indicated by [Qij ]i,j . Note that, since F is defined
in U , we must apply Itô Formula computing the Fréchet derivatives with respect to the U -norm,
and similarly for the trace.
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Let us estimate the right hand side in (3.29). Since Qm is definite positive, we
have

sup
0≤t≤T

∫ t

0

∫
D

φ2
m

m∑
i,j=1

Qijeiej ≤
∫ T

0

sup
x∈D

φ2
m

m∑
i,j=1

Qij

∫
D

eiej

= ‖φm‖2
L2([0,T ];L∞)

m∑
i=1

Qii ≤ ‖φm‖2
L2([0,T ];V )tr(Q). (3.30)

In order to estimate the last term in (3.29), we act as in the proof of Theorem
(3.2.7), computation (3.21), and we get

E
[

sup
0≤t≤T

∫ t

0

∫
D

z0
mdwm

]
≤ 2‖Q‖1/2

{
E
[∫ T

0

‖z0
m‖2

H

]}1/2

,

where z0
m := zm − |D|−1

∫
D
zm. Since ‖z0

m‖2
H ≤ ‖z0

m‖2
U ≤ CP‖∇zm‖2

H , we use
Young inequality and we get

E
[

sup
0≤t≤T

∫ t

0

∫
D

zmdwm
]
≤ C

{
E
[∫ T

0

‖∇zm‖2
H

]}1/2

≤ 1

2
E
[∫ T

0

‖∇zm‖2
H

]
+ C ′.

(3.31)
From (3.29)-(3.31) it follows that

γ

2
E
[

sup
0≤t≤T

‖∇φm(t)‖2
H

]
+

1

2
E
[∫ T

0

‖∇zm‖2
H

]
≤

∣∣∣γ
2
− β

∣∣∣ tr(Q)T + E [E[φm(0)]] +
β

2
E
[

sup
0≤t≤T

‖φm(t)‖2
H

]
+

3

2
tr(Q)‖φm‖2

L2([0,T ];V ) + C ′′.

Hence, by means of (3.10) and (3.11), we obtain (3.27).
To prove (3.28) we introduce vm = φm − wm and arguing as in the proof of
Theorem (3.2.7) we get

E
[
‖vm‖2

C1/2([0,T ];U ′)

]
≤ E

[∫ T

0

‖(vm)t‖2
U ′

]
≤ E

[∫ T

0

‖∇zm‖2
H

]
≤ C [1 + E [E[φ0]]] ,

because of the previous inequalities. Since C1/2([0, T ];U ′) ↪→ Cw([0, T ];U ′), we
deduce (3.28) as in Theorem (3.2.7). We may now proceed as in the last part of
Theorem (3.2.7). For 0 < κ < 1/2 it holds that Cw([0, T ];U ′) ↪→ Cκ([0, T ];V ′)

and so Uw ↪→ U . It follows that Uw
c
↪→ Z and that R : Uw → V ′. Notice that

Uw is a Borel set of Z . By a compactness argument we deduce that there exists
a (not relabeled) subsequence Pm weakly convergent to a probability measure
P. We deduce the remainig the properties of P as in Theorem (3.2.9).
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We can summarize what we have obtained in the following

Theorem 3.2.11. Let the random variable φ0 ∈ U satisfy E [‖φ0‖4
H ] < +∞

and E [E[φ0])] < +∞. Then Cahn-Hilliard equation (3.4) has a weak statistical
solution P concentrated on Uw. Moreover, P satisfies∫

Z

‖φ‖2
UwP(dφ) ≤ C [1 + E [E[φ0]]] , (3.32)

and there exists a set X ⊂ Uw, X closed in the topology of Z , X ∈ BZ (Uw)
such that P(X) = 1.

Thus we have achieved item (i), pag. 49. We now state a uniqueness theorem
which guarantees item (ii), pag. 49. We omit the proof, which is technical but
uninteresting. The attentive reader may consult [29, pages 1195-1198, Theorem
8.1.].

Theorem 3.2.12. Let d ∈ {2; 3} and φ1, φ2 ∈ Uw satisfy (3.4) for the same
u0 ∈ U and ∂w/∂t ∈ V ′. Then φ1(t) = φ2(t) in U ′, a.e. on [0, T ].

Therefore we have an immediate

Corollary 3.2.13. The operator D : Uw → H−ε × V ′ is injective.

We are now ready to introduce our last

Theorem 3.2.14. Let d ∈ {2; 3}, φ0 ∈ U (a.s.) and E [‖φ0‖4
H ] < +∞, E [E[φ0]] <

+∞. Then the Cahn-Hilliard stochastic equation has a strong solution φ, with
trajectories in Uw. In addition φ satisfies

E
[
‖φ‖2

Uw

]
≤ C [1 + E [E[φ0]]] . (3.33)

Furthermore, such solution is unique (in the sense that two strong solutions co-
incide a.s.) and its distribution coincides with the weak statistical solution P of
the Cahn-Hilliard equation with the same initial data.

Proof. Let X be the set constructed in Theorem (3.2.11), P(X) = 1. Since
Z is a Polish space, for each m ∈ N there exists a compact set Km ⊂ Z ,
P(Km) > 1 − 1/m. Let K̃m := Km ∩ X ∈ BZ (Uw) and U0 := ∪∞m=1K̃m.
Then U0 ∈ BZ (Uw) and P(U0) = 1. Km ∩ X is a compact set in Z and
D : Z → Y := {H−ε,V ′} is continuous. Hence D(Km∩X) is compact in Y and
F := D(U0) = ∪∞m=1D(Km ∩X) ∈ B(Y ). We have P(D−1(F )) ≥ P(U0) = 1.
Denote U1 := (D−1(F )) ∩ U0 ∈ BZ (Uw). It follows that D(U1) = F . Let
D1 := D |U1 . By Corollary (3.2.13), D1 is bijective. Furthermore D−1

1 : F → U1
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is a measurable mapping from (F ,BY (F )) to (U1,BZ (U1)) (in analogy with [33,
p. 369]). Denote

Ω1 :=

{
ω ∈ Ω :

{
φ0(ω),

∂w

∂t
(ω)

}
∈ F

}
.

Because of the measurability of u0 and wt, we have Ω1 ∈ F and m(Ω1) =
P(D−1(F )) = 1. We define

φ(ω) :=

D−1
1

({
φ0(ω),

∂w

∂t
(ω)

})
, if ω ∈ Ω1,

0, otherwise.

The injectivity of the operator D : Uw → H−ε × V ′ implies the uniqueness of
a strong solution. The measurability of D−1

1 and the properties of U1 imply
that φ is measurable from (Ω,F) to (Uw,BZ (Uw)), hence the requirements of
Definition (3.2.5) are satisfied. It is also obvious that in this context the weak
statistical solution of the Cahn-Hilliard is unique. It is also easy to see that the
distribution of φ is a weak statistical solution, hence it coincides with P and
consequentially (3.33) holds.

3.2.2 Pathwise deterministic approach

Reference [24] certainly is among the basic and most important articles in this
field. In this work G. Da Prato and A. Debussche prove existence and unique-
ness of a solution of (1.20) in the most “simple” setting: we have the following
ingredients7

(a) The problem being analysed is{
dφ+ (∆2φ−∆f(φ)) dt = dw,

u(0) = u0.
(3.34)

(b) The domain D ⊂ Rd is D = ×di=1[0, Li], Li > 0 for i = 1, · · · , d. Here
d ∈ {2; 3}.

(c) The boundary conditions are

φν = (∆φ)ν = 0 on Γ. (3.35)
7the reader must be warned: even if these preliminaries provide strong hypothesis, the proof

of uniqueness and existence is anyway complicated.
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(d) The free energy derivative f has a simple polynomial form, namely

f(x) =

2p−1∑
k=1

akx
k, a2p−1 > 0, p ∈ N.

(e) Let8 H̃ = {u ∈ L2 : m(u) := 1
|D|

∫
D
u = 0}. We define the linear unbounded

operator with dense domain

A : D(A) = V ⊂ H → H̃ : u 7→ Au := −∆u,

where D(A) := V . The operator A is self-adjoint, positive and has compact
resolvent. It possesses a basis of eigenvectors9 {ei}i∈N which is orthonormal
in H. The respective sequence of eigenvalues {λi}i∈N diverges

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞.

Later we will also need the Hilbert spaces defined by means of the real
powers As of the operator10 A (see [71]). For s ≥ 0, the domain of As/2 is

Vs =

{
u =

∞∑
j=0

ujej :
∞∑
j=1

λsju
2
j < +∞

}
.

For s < 0, the domain of As/2 is the completion of H with respect to the
norm {

∞∑
j=1

λsj(·, uj)2

}1/2

.

We may define a seminorm | · |s, an inner product (·, ·)s and a norm ‖ · ‖s
in Vs in the following way

|u|s := ‖As/2u‖, (u, v)s := (As/2u,As/2v), ‖u‖s :=
(
|u|2s +m2(u)

)1/2
.

(f) w is a Q-Wiener process with values in H, such that fi = ei,∀i ∈ N and
Tr[AQ] < +∞.

8here |D| denotes the Lebesgue measure of D.
9thanks to the simple structure ofD, we recall that the eigenvalues of A form a trigonometric

basis of H, namely

e0(x) = |D|−1/2, ei(x) ∝ cos(i1x1/L1) cos(i2x2/L2) cos(i3x3/L3), i ∈ N3,

They also are a Schauder basis of Lp, where p ∈ (1,+∞).
10the reader must notice that in general As and ∆s are not the same operator on Hs when

s ∈ N. In fact, As is simmetric while ∆s is not.
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After these preliminary considerations, we recall some properties of the solution
of the auxiliary problem {

dφ+ A2φ dt = dw,

u(0) = 0.
(3.36)

We have the following theorem (see [25]).

Theorem 3.2.15. The linear equation (3.36) has a unique solution, called stochas-
tic convolution, given by

WA(t) =

∫ t

0

e−(t−s)A2

dw(s). (3.37)

The process WA has many regularity properties11, which we are going to
summarize in the following Lemma (see [24, Propositions 1.1., 1.2., 1.3.]).

Lemma 3.2.16. Let WA be defined as in (3.37). Then

(i) WA has a version which is α-Hölder continuous with respect to (t, x) ∈
[0,+∞)×D for any α ∈ [0, 1/8).

(ii) ∇WA has a version which is α-Hölder continuous with respect to (t, x) ∈
[0,+∞)×D for any α ∈ [0, 1/2).

(iii) Let Pm be the orthogonal projection operator on Span{e0, · · · , em}. If we
define Wm

A := PmWA then, for any r ∈ [1,+∞) we have

lim
m→∞

E
[
‖WA −Wm

A ‖rLr([0,T ]×D)

]
= 0,

lim
m→∞

E
[
‖∇WA −∇Wm

A ‖rLr([0,T ]×D)

]
= 0.

Remark 3.2.17. Item (i) of Lemma (3.2.16) is a slight modification of [24,
Proposition 1.1].

Remark 3.2.18. We have introduced the random processWA(t) and its proper-
ties for the following reason: the solve problem (3.34), it is preferable to write an
equivalent set of infinitely many deterministic differential equations12; in order
to do so, it is crucial to introduce the translated unknown process

v(t) = φ(t)−WA(t),

11the reader is referred to [25] for the definition and the properties of WA.
12in Theorem (3.2.20) we will solve a differential equation for each ω ∈ B, m(B) = 1.
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where φ is a solution of (3.34). It can been easily seen that v(t) satisfies
dv
dt

+ A2v + Af(v +WA) = 0,

v(0) = u0.
(3.38)

for ω ∈ Ω (a.s.). Expression (3.38) may seem a litte weird if seen as a stochastic
differential equation, due to the presence of an actual time derivative of the
unknown v. However the definition of v contains WA in a way such that the Itö
integral in (3.34) is “erased”.

In order to prove existence and uniqueness of the solution of (3.38), and thus
of (3.34), we need the following auxiliary

Lemma 3.2.19. Let u be a function in L2([0, T ];V1)∩L2p([0, T ]×D) such that

A−1d(u−m(u))

dt
∈ L2([0, T ], V−1) + L2p/(2p−1)([0, T ]×D),

and such that t 7→ m(u(t)) is continuous. Then u ∈ C([0, T ], V−1) and the
following equality holds(

A−1d(u−m(u))

dt
, u−m(u)

)
=

1

2

d
dt
|u|2−1.

We are now ready to state and prove the main uniqueness and existence
theorem.

Theorem 3.2.20. Let Tr[AQ] < ∞. If u0 is F0-measurable and belongs to H
m-a.s., then (3.34) admits a unique solution u ∈ C([0, T ];V−1) ∩ L∞([0, T ];H)
m-a.s. Morever t 7→ u(t) is continuous with respect to t with values in H m-a.s.

Proof. Step 1: Uniqueness. As we have anticipated in Remark (3.2.18), we
consider the deterministic problems

du
dt

+ A2u+ Af(u+ g) = 0,

u(0) = u0,


dv
dt

+ A2v + Af(v + h) = 0,

v(0) = v0,

where u, v ∈ L2([0, T ];V1) ∩ L2p([0, T ]×D), u0, v0 ∈ V−1, g, h ∈ L2p([0, T ]×D)
and ∂g/∂ν = ∂h/∂ν = 0 on Γ. Let z = u− v. Then z satisfies

dz
dt

+ A2z + A(f(u+ g)− f(v + h)) = 0,

z(0) = u0 − v0.
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Thanks to the homogeneous Neumann’s boundary conditions, we deducem(z(t)) =
m(u0−v0). Moreover, recalling hypothesis (d) at page 53, since z ∈ L2([0, T ], V1),
we have that

A−1dz
dt

= −Az︸︷︷︸
∈L2([0,T ];V−1)

− (f(u+ g)− f(v + h))︸ ︷︷ ︸
∈L2p/(2p−1)([0,T ]×D)

and therefore we may take the H-inner product with z−m(z) in the last equality,
apply Lemma (3.2.19) and obtain

1

2

d
dt
|z|2−1 + |z|21 + (f(u+ g)− f(v + h), z −m(z)) = 0. (3.39)

We act on the last scalar product as follows

(f(u+ g)− f(v + h), z −m(z)) =

∫
D

(f(u+ g)− f(v + h))(z + g − h)dx

−
∫
D

(f(u+ g)− f(v + h))(m(z) + g − h)dx.

Since f ′ has even degree, there is C1 > 0 such that f ′(x) ≥ −C1, ∀x ∈ R.
Moreover, by means of Lagrange theorem, Hölder inequality and the elementary
inequality (

m∑
i=1

yi

)2

≤ m
m∑
i=1

y2
i , ∀y = (y1, · · · , ym) ∈ Rm,

we deduce∫
D

(f(u+ g)− f(v + h))(z + g − h)dx ≥ −C1

∫
D

|z + g − h|2dx

≥ −3C1

(
|z|20 + |D|m2(z) + |G|(p−1)/p‖g − h‖2

L2p

)
. (3.40)

We may also find C2 > 0 such that f(x) ≤ 2a2p−1|x|2p−1 + C2. Therefore∫
D

(f(u+ g)− f(v + h))(m(z) + g − h)dx

≤ 2a2p−1

∫
D

(|u+ g|2p−1 + |v + h|2p−1)(|g − h|+ |m(z)|)dx

+ C2

∫
D

(|g − h|+ |m(z)|)dx

≤ 2a2p−1

(
‖u+ g‖2p−1

L2p + ‖v + h‖2p−1
L2p

) (
‖g − h‖L2p + |D|1/2|m(z)|

)
+ C2(|D||m(z)|+ |D|(2p−1)/2p‖g − h‖L2p). (3.41)
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Putting together (3.39), (3.40), (3.41) we get

1

2

d
dt
|z|2−1 + |z|21 ≤ 3C1|z|20 + C3m

2(z)

+ C4

(
‖u‖2p−1

L2p + ‖v‖2p−1
L2p + ‖g‖2p−1

L2p + ‖h‖2p−1
L2p + 1

)
× (‖g − h‖L2p + |m(z)|) ,

where C3, C4 depend on D, p, f . Using a simple interpolatory property of the
{Vs} spaces and Young’s inequality we obtain

|z|20 ≤ |z|−1|z|1 ≤
1

3C1

|z|21 +
3C1

4
|z|2−1,

and we deduce

d
dt
|z|2−1 ≤

3C1

2
|z|2−1 + 2C3m

2(z)

+ 2C4

(
‖u‖2p−1

L2p + ‖v‖2p−1
L2p + ‖g‖2p−1

L2p + ‖h‖2p−1
L2p + 1

)
× (‖g − h‖L2p + |m(z)|) .

By means of Gronwall Lemma and Hölder inequality we finally get

|z(t)|2−1 ≤ e
3C1
2
t

(
|z(0)|2−1 +

4C3

3C1

m2(z(0))

)
+ 2C4

(
‖u‖2p−1

L2p([0,T ]×D) + ‖v‖2p−1
L2p([0,T ]×D)) + ‖g‖2p−1

L2p([0,T ]×D))

+ ‖h‖2p−1
L2p([0,T ]×D)) + T (2p−1)/2p

)
× (‖g − h‖L2p([0,T ]×D)) + T 1/2p|m(z(0))|). (3.42)

WA(t) ∈ L2p([0, T ] × D) m-a.s. thanks to Lemma (3.2.16). Hence, if we take
g = h = WA(t) and v0 = u0, the uniqueness of the solution of (3.34) follows from
(3.42).

Step 2: Galerkin approximation, estimates in V−1 and passage to the limit. Since
u0 belongs to H for every ω ∈ B, m(B) = 1, u0 also belongs to V−1 for every
ω ∈ B. We will now construct a deterministic solution of (3.38) for almost every
ω by means of a Galerkin method.
Let ω ∈ B be fixed. Let Pm and Wm

A be defined as in Lemma (3.2.16). For each
m ∈ N we consider the Galerkin approximation

dvm
dt

+ A2vm + PmAf(vm +Wm
A ) = 0,

vm(0) = Pmu0,
(3.43)
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where vm takes values in Span{e0, · · · , em}. Since Pm is a finite-rank operator,
it can be shown that (3.43) possesses a unique F -measurable solution defined on
[0,+∞). If we take the V−1-semiscalar product of (3.43) with vm, we get

1

2

d
dt
|vm|2−1 + |vm|21 + (Pmf(vm +Wm

A ), vm −m(vm)) = 0. (3.44)

Since Pm is self-adjoint, we have

(Pmf(vm +Wm
A ), vm −m(vm)) = (f(vm +Wm

A ), vm −m(vm))

= (f(vm +Wm
A ), vm +Wm

A )− (f(vm +Wm
A ),m(vm) +Wm

A ).

Take C5, C6 > 0 such that

xf(x) ≥ 1

2
a2p−1x

2p − C5

|G|
, |f(x)| ≤ 2a2p−1x

2p−1 + C6, ∀x ∈ R.

We have (f(vm +Wm
A ), vm +Wm

A ) ≥ 1
2
a2p−1‖vm +Wm

A ‖
2p
L2p −C5 and, by Hölder’s

inequality

(f(vm +Wm
A ),m(vm) +Wm

A )

≤ 2a2p−1

∫
D

|vm +Wm
A |2p−1(|m(vm)|+ |Wm

A |)dx+ C6

∫
D

(|m(vm)|+ |Wm
A |)dx

≤ 2a2p−1‖vm +Wm
A ‖

2p−1
L2p

(
|D|1/2p|m(vm)|+ ‖Wm

A ‖L2p

)
+ C6

(
|D||m(vm)|+G(2p−1)/2p‖Wm

A ‖L2p

)
≤ 1

4
a2p−1‖vm +Wm

A ‖
2p
L2p + C7

(
|m(vm)|2p + ‖Wm

A ‖
2p
L2p + 1

)
,

where C7 depends again on f,G, p. We deduce from (3.44) and the previous
computations that there exists C8 > 0 such that

1

2

d
dt
|vm|2−1 + |vm|21 +

1

4
a2p−1‖vm +Wm

A ‖
2p
L2p

≤ C8 + C7

(
|m(vm)|2p + ‖Wm

A ‖
2p
L2p

)
. (3.45)

By taking the H-scalar product of (3.43) with e0 we get that m(vm(t)) =
m(u0),∀m ∈ N,∀t ∈ [0, T ]. Using this fact, Lemma (3.2.16) and integrating
(3.45) with respect to time we deduce that {vm}m∈N is bounded in L∞([0, T ];V−1),
L2p([0, T ]×D), L2([0, T ];V1). These estimates imply that {Avm}m∈N is bounded
in L2([0, T ];V−1) and {f(vm+Wm

A )}m∈N is bounded in L2p/(2p−1)([0, T ]×D). Since
L2([0, T ], V−1) and L2p/(2p−1)([0, T ] ×D) are embedded in L2p/(2p−1)([0, T ];V−2),
we deduce that {dvm/dt}m∈N is bounded in L2p/(2p−1)([0, T ];V−4). Since

V1
c
↪→ V0 ↪→ V−4,
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the Aubin compactness theorem implies that there exists a (not relabeled) sub-
sequence {vm}m∈N such that vm → v in L2([0, T ];V0), where v ∈ L2([0, T ], V1) ∩
L2p([0, T ]×D). We notice that dvm/dt ⇀ dv/dt in L2([0, T ];V−4). Moreover, by
taking another (not relabeled) subsequence {vmk}k∈N it is easy to see from what
we have said that f(vm +Wm

A ) ⇀ f(v +WA) in L2p/(2p−1)([0, T ]×D).

Step 3: Solution to (3.38). We show that v is a solution to (3.38) in the sense
of the distributions13. Let ϕ ∈ C∞0 (D). Since ∆ϕ ∈ C∞0 (D) ⊂ L2p(D), we have
that Pm∆ϕ → ∆ϕ in L2p and that ϕ may be written as ϕ = A−4ξ + ϕ0, where
ξ ∈ C∞0 (D) and ϕ0 is costant. Since Pm is self-adjoint andm (dvm/dt) = 0, we ob-
tainm (dv/dt) = 0 thanks to the weak convergence of the sequence {dvm/dt}m∈N.
We can integrate (3.43) on [0, t]×D for every t ∈ [0, T ] and get14

0 =

∫ t

0

∫
D

dvm
dt

ϕ+

∫ t

0

∫
D

A2vmϕ−
∫ t

0

∫
D

APmf(vm +Wm
A )ϕ

=

∫ t

0

∫
D

A−2dvm
dt

A−2ξ +

∫ t

0

∫
D

vm∆2ϕ−
∫ t

0

∫
D

Pmf(vm +Wm
A )∆ϕ

=

∫ t

0

∫
D

A−2dvm
dt

A−2ξ +

∫ t

0

∫
D

vm∆2ϕ−
∫ t

0

∫
D

f(vm +Wm
A )Pm∆ϕ

→
∫ t

0

∫
D

dv
dt

(ϕ− ϕ0) +

∫ t

0

∫
D

v∆2ϕ−
∫ t

0

∫
D

f(v +WA)∆ϕ

=

∫ t

0

∫
D

dv
dt
ϕ+

∫ t

0

∫
D

∆2v ϕ−
∫ t

0

∫
D

∆f(v +WA)ϕ, (3.46)

as m → +∞. We are done. Moreover, taking suitable limits in the Galerkin
scheme, it is easy to see that

A−1v ∈ L2([0, T ];V−1) + L2p/(2p−1)([0, T ]×D),

so v ∈ C([0, T ];V−1) because of Lemma (3.2.19). In addition, it is easy to see that
v is a solution of (3.38). From Step 1 we know that (3.38) has a unique solution,
therefore the entire sequence {vm}m∈N converges to v, so v is F -measurable being
pointwise limit of measurable functions. We will verify that v satisfies (3.35) in
Step 5.

Step 4: v H-norm properties. Let ω ∈ B. From Step 2 we know that vm ∈ H
for almost every t ∈ [0, T ]. For such t we take the scalar product of (3.38) with
vm and we obtain

1

2

d
dt
‖vm‖2 + |vm|22 + (Af(vm +Wm

A ), vm) = 0.

13therefore we do not require v and f(v+WA) to take values in V4 = D(A2) and V2 = D(A1)
respectively as one may think when reading (3.38).

14for every ϕ ∈ C∞0 (D) it is clear that Anϕ = ∆nϕ for all n ∈ N.
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Integrating by parts we obtain

(Af(vm +Wm
A ), vm) =

∫
D

f ′(vm +Wm
A )|∇vm|2 +

∫
D

f ′(vm +Wm
A )∇Wm

A ∇vm.

We take C9, C10 > 0 such that

f ′(x) ≥ 2p− 1

2
a2p−1x

2p−2 − C9 |f ′(x)| ≤ 2(2p− 1)a2p−1x
2p−2 + C10.

Thanks to Hölder’s and Young’s inequalities, we obtain

(Af(vm +Wm
A ), vm) ≥ 2p− 1

2
a2p−1

∫
D

|vm +Wm
A |2p−2|∇vm|2dx

− C9

∫
D

|∇vm|2dx− 2(2p− 1)a2p−1

∫
D

|vm +Wm
A |2p−2|∇vm||∇Wm

A |dx

− C10

∫
D

|∇vm||∇Wm
A |dx

≥ 1

4
(2p− 1)a2p−1

∫
D

|vm +Wm
A |2p−2|∇vm|2dx− 2C10

∫
D

|∇vm|2dx

− C11

(∫
D

|vm +Wm
A |2pdx+

∫
D

|∇Wm
A |2pdx+

∫
D

|∇Wm
A |2dx

)
.

We deduce

1

2

d
dt
‖vm‖2 + |vm|22 +

1

4
(2p− 1)a2p−1

∫
D

|vm +Wm
A |2p−2|∇vm|2dx

≤ 2C9

∫
D

|∇vm|2dx

+ C11

(∫
D

|vm +Wm
A |2pdx+

∫
D

|∇Wm
A |2pdx+

∫
D

|∇Wm
A |2dx

)
.

We notice that ∫
D

|∇vm|2dx = ‖vm‖2
1.

After integration in time we obtain

1

2
‖vm‖2 +

∫ t

0

|vm|22ds+
2p− 1

4
a2p−1

∫ t

0

∫
D

|vm +Wm
A |2p−2|∇vm|2dxds

≤ 2C9

∫ t

0

‖vm‖2
1ds+ C11

∫ t

0

(
‖vm +Wm

A ‖
2p
L2p + ‖∇Wm

A ‖
2p
L2p + ‖∇Wm

A ‖2
L2

)
ds.

From Step 2 we know that {vm + Wm
A }m∈N is bounded in L2p([0, T ] × D) and

{vm}m∈N is bounded in L2([0, T ];V1). Furthermore, {∇Wm
A }m∈N is bounded in
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L2p([0, T ]×D) and L2([0, T ]×D) thanks to Lemma (3.2.16). Thus {vm}m∈N is
bounded in L∞([0, T ];H) and L2([0, T ];V2): as a straightforward consequence,
we deduce that v ∈ L∞([0, T ];H) ∩ L2([0, T ];V2). We now prove that t 7→ v(t)
is strongly continuous with values in H. We have∣∣∣∣ ddt‖vm‖2

∣∣∣∣ = 2

∣∣∣∣|vm|22 + 2

∫
D

f ′(vm +Wm
A )∇vmdx

∣∣∣∣
≤ 2|vm|22 + 2

∫
D

|f ′(vm +Wm
A )∇(vm +Wm

A )∇vm|dx.

Thanks to the estimates proved above, we integrate on [0, T ] and get∫ T

0

∣∣∣∣ ddt‖vm‖2

∣∣∣∣ ds ≤ C12,

which implies, because of the lower semicontinuity of the norm, that∫ T

0

∣∣∣∣ ddt‖v‖2

∣∣∣∣ ds ≤ C12.

We have shown that ∂‖v‖2/∂t belongs to L1(0, T ). It follows that t 7→ ‖v(t)‖2

is continuous. Moreover, since we know from Step 2 that v ∈ C([0, T ];V−1), the
mapping t 7→ v(t) is weakly continuous with values in H. The last assertions
combined give the strong continuity of v with values in H.

Step 5: Boundary conditions. Finally, it remains to prove that v satisfies (3.35).
The approximate solutions vm satisfy (3.35). We can therefore write, for every
ψ ∈ U and every t ∈ [0, T ]∫ t

0

∫
D

∆vmψ︸ ︷︷ ︸
↓ for m→+∞

= −
∫ t

0

∫
D

∇vm∇ψ︸ ︷︷ ︸
↓ for m→+∞

.

∫ t

0

∫
D

∆vψ = −
∫ t

0

∫
D

∇v∇ψ. (3.47)

so ∂νv = 0 almost everywhere on Γ × [0, T ]. On the other hand we can only
say that, since ∆v ∈ H, ∂ν(∆v) = 0 in the following weak sense: for every
ψ ∈ D(A) ∩ V8, we can act as we’ve done in (3.46) to get∫ t

0

∫
D

dv
dt
ψ +

∫ t

0

∫
D

∆v∆ψ −
∫ t

0

∫
D

∆f(v +WA)ψ = 0, (3.48)

for every t ∈ [0, T ].



Chapter 4

A nonlocal stochastic Cahn-Hilliard
equation

Chapters 2 and 3 of this thesis both provide a review of some articles dealing
with the deterministic Cahn-Hilliard equation (Chapter 2) and the stochastic
Cahn-Hilliard equation (Chapter 3). They illustrate in a detailed and accessible
way certain proofs contained in the quoted articles. This fourth chapter, on the
other hand, is the creative part of the thesis: it contains the new results we have
obtained on a stochastic extension of a nonlocal Cahn-Hilliard equation.
We first introduce a suitable analytical setting and make same mathematical and
physical assumptions. We then show, in a variational context, the existence of a
weak statistical solution for this problem. Finally we prove existence, uniqueness
and measurability of a strong solution. We use ideas from [21], [29], [33]. We
refer the reader to Section (1.4) for a very concise review of the basic notation
and the functional setup.

4.1 Abstract definition of the Problem
We formally study the stochastic partial differential equation

(SNL)



dφ = (−u · ∇φ+ ∆µ)dt+ dw,
µ = aφ− J ∗ φ+ F ′(φ),

∂µ

∂ν
= 0 on Γ× (0, T ),

φ(0) = φ0 ∈ U,

(4.1a)
(4.1b)

(4.1c)

where w, u, J , a, F , φ0 are mathematical objects whose nature will be specified
in the following section. The symbol ∗ in (4.1b) denotes the convolution operator

62
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over D, namely

(J ∗ φ)(x) :=

∫
D

J(x− y)φ(y)dy, ∀x ∈ D.

Remark 4.1.1. The reader is invited to remark the strong analogy between
Problem (4.1) and Problem (2.4).

4.2 Hypotheses
We now give a precise meaning to the elements componing Problem (4.1). More
precisely, we work under the following mathematical and physical assumptions1.

(i) u is a given velocity field satisfying u ∈ L∞([0, T ] × D), div(u) = 0 in D,
u = 0 on Γ.

(ii) w = w(t), t ∈ [0, T ] is a H-valued Q-Wiener process2 defined on the prob-
ability space (Ω,F ,m), where Q : H → H is a continuous, symmetric,
definite positive, finite trace linear operator.

(iii) J is a kernel function3 satisfying the following properties:

J ∈ W 1,1(Rd), J(x) = J(−x), ∀x ∈ Rd

a(x) :=

∫
D

J(x− y)dy ≥ 0 for a.e. x ∈ D.

(iv) We choose the density of potential energy4 F to be

F (s) =
s4

4
− s2

2
,

so that F ′(s) = s3 − s. Obviously F ∈ C2,1
loc (R). We assume that there

exists c0 > 0 such that

F ′′(s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ D. (4.2)

It is straightforward to verify that there exist c1 > (1/2)‖J‖L1(Rd), c2 ∈ R,
c3 > 0, c4 ≥ 0, p ∈ (1, 2] such that

F (s) ≥ c1s
2 − c2, ∀s ∈ R,

1Hypotheses (i),(iii),(iv) are physically consistent hypotheses. The remaining ones are dic-
tated by the forthcoming mathematical analysis of the problem.

2in the sense of [62, p. 13, Definition 2.1.9.].
3which must not be confused with the mass flux defined at page 5.
4previously called Helmholtz free energy, see page 4 and (1.2).
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|F ′(s)|p ≤ c3|F (s)|+ c4, ∀s ∈ R.
The properties we have just listed for F and J are exactly [21, p. 431,
hypotheses (H1)/(H3)/(H4)/(H5)].

(v) H has a orthonormal basis {ei}i∈N made of the eigenvectors of the operator
A : D(A) = V : v 7→ (−∆ + I)v with associated eigenvalues {µi}i∈N, i.e.,
Aei = µiei, ∀i ∈ N. We remind that µi ≥ 1,∀i ∈ N and ei → +∞.
The space V is endowed with the norm

‖v‖V :=
(
‖v‖2 + ‖∆v‖2

)1/2
, ∀v ∈ V.

Due to the regularity of D, such norm is equivalent to the standard H2-
norm. It follows that {ei}i∈N is an orthogonal basis in V . In addition,
{ei}i∈N is also an orthogonal basis in U .
We also indentify H with its dual space by means of Riesz isomorphism
and hence use the continuous injections

V ↪→ Hε ↪→ H ≡ H ′ ↪→ H−ε ↪→ V ′.

(vi) D ⊂ Rd, d ∈ {2; 3}, is regular enough to apply [65, p. 470, Teorema 8.5.]
and [42, p. 1285, Theorem 1]. As consequences we have that U is compactly
embedded in L4, that {ei}i∈N ⊂ C∞(D), and that

‖ei‖L∞ ≤ C(D)(µi − 1)(d−1)/4.

D is also regular enough such that H is complactly embedded in the in-
terpolation space [H, V ′]θ = H−2θ, θ ∈ (0, 1/8). For the details on such
embedding, the reader is referred to [53, pages 99-103].

(vii) {ei}i∈N are eigenvectors for Q as well, namely there is sequence of nonneg-
ative real numbers {ϑi}i∈N such that Qei = ϑiei for each i ∈ N. In addition
we require that

K(Q) :=
∞∑
i=1

(µi − 1)(d−1)/2ϑi < +∞. (4.3)

(viii) φ0 is a U -valued random variable which is independent of w. In addition
we define the white noise ∂w/∂t as the distributional time derivative of the
Wiener process w. Namely, ∂w/∂t is an element of V ′ such that〈

∂w

∂t
, v

〉
V ′,V

:= −
(
w,
∂v

∂t

)
L2([0,T ];H)

, ∀v ∈ V . (4.4)

The function space V will be specified in the Section (4.3). We require
∂w/∂t to be a V ′-valued, measurable random variable. We will discuss the
relation between ∂w/∂t and φ0 in the forthcoming Remark (4.3.3).
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Remark 4.2.1. Due to the nature of w, equation (4.1) is a stochastic infinite-
dimensional differential equation. It can interpreted, with the due careful analo-
gies and generalisations, as in [62, p. 73, Definition 4.2.1.] or [25, Chapter 7].

Remark 4.2.2. Condition (4.3) is stronger than requiring Q to have finite trace.
However, it enables us not to make any harmful assumption on the geometry of
Γ. The geometry of Γ, in fact, affects many interpolation results.
We could have replaced condition (4.3) with a condition of uniform boundness
of the family {ei}i∈N in L∞; by so doing, however, we would have been forced
to require additional conditions on the geometry of Γ and, consequentially, we
would have had to check the validity of some interpolation results. The latter
approach is very tough and hence unadvisable.

4.3 Existence of a weak statistical solution
In this section we prove the existence of a weak statistical solution (whose defi-
nition is in analogy to the one given in [29, p. 1181, Definition 5.1.]) for Problem
(4.1).
We first introduce some function spaces for a given time T > 0.

U := L2([0, T ];U) ∩ L∞([0, T ];H) ∩ C2/5([0, T ];V ′) ∩ L4([0, T ];L4),

Z := Lp
′
([0, T ];L4) ∩ C([0, T ];H−ε), p′ ∈ (3, 4), ε ∈ (0, 1/4).

Because of the compatible nature of the Banach spaces componing the definition
U and Z , we can define their norms in the following trivial way

‖v‖U := ‖v‖L2([0,T ];U) + ‖v‖L∞([0,T ];H) + ‖v‖C2/5([0,T ];V ′) + ‖v‖L4([0,T ];L4), ∀v ∈ U,

‖v‖Z := ‖v‖Lp′ ([0,T ];L4) + ‖v‖C([0,T ];H−ε), ∀v ∈ Z .

We state and prove a preliminary result.

Theorem 4.3.1. U is compactly embedded in Z .

Proof. Let F be a bounded set in U . If we apply [67, p. 86, Theorem 6] with
X = U , B = L4, Y = V ′, q = 4, p = p′, we deduce that F is relatively
compact in Lp

′
([0, T ];L4). If we apply [67, p. 84, Theorem 5] with X = H,

B = [H,V ′]ε/2 = H−ε (ε ∈ (0, 1/4)), Y = V ′, p = ∞, we deduce that F is
relatively compact in C([0, T ];H−ε), hence the conclusion.

We define
Vm := span{e1, · · · , em},
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Vm :=
{
v ∈ L2([0, T ];V ) ∩ Lq′([0, T ];W 2,4) ∩H2([0, T ];H) :

v(t) ∈ Vm for a.e. t ∈ [0, T ], v(T ) = 0

}
,

where

W 2,4 :=
{
v ∈ L4 : Dαu ∈ L4 for each multi-index α such that |α| ≤ 2

}
is a classical Sobolev space and

2

3
+

1

p′
+

1

q′
= 1. (4.5)

Remark 4.3.2. We remind that ∪∞r=1Vr is dense in Hε.

We now define a proper test function space for our problem as

V := completion of
∞⋃
m=1

Vm with respect to the norm ‖ · ‖V , where

‖v‖2
V := ‖v‖2

L2([0,T ];V ) + ‖v‖2
Lq′ ([0,T ];W 2,4)

+ ‖v‖2
H2([0,T ];H).

We point out that L2([0, T ];V ) is continuously embedded in Lq
′
([0, T ];W 2,4),

hence the definition on V is in fact redundant. However, we leave it as it is for
the clarity of future computations.

Remark 4.3.3. The reader can now fully understand the definition of the white
noise ∂w/∂t given in (viii), page 64. In addition, the operator

A : L2([0, T ];H)→ V ′ : w 7→ ∂w

∂t
,

with the time derivative defined as in (4.4), is continuous, hence measurable.
Using [48, p. 65, Theorem 10.1., item (c)] we deduce that φ0 and ∂w/∂t are
independent, hence the mapping

ω 7→
{
φ0(ω),

∂w

∂t
(ω)

}
is a random variable from (Ω,F) to (H−ε × V ′,B(H−ε × V ′)).

Remark 4.3.4. The test function space V is reflexive and separable. To see
this, let us consider the space

W := L2([0, T ];V ) ∩ Lq′([0, T ];W 2,4) ∩H2([0, T ];H).

The space W is clearly reflexive and separable, being the intersection of reflexive
and separable banach spaces. Since V is a closed subspace of W , it is reflexive
and separable.
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We now specify what we mean by weak statistical solution.

Definition 4.3.5. A weak statistical solution (or simply a weak solution) to
Problem (4.1) is a probability measure P (concentrated) on BZ (U ) which, for
every ξ ∈ Hε and v ∈ V , satisfies∫

Z

exp {i〈φ(0), ξ〉H−ε,Hε + iC(φ, v)}P(dφ) = Ξ̂(ξ)N̂(v), (4.6)

where
C(φ, v) := −(φ0, v(0))−

∫ T

0

∫
D

φu · ∇v +

−
∫ T

0

∫
D

(aφ+ φ3 − φ− J ∗ φ)∆v −
∫ T

0

(
φ,
∂v

∂t

)
.

Here Ξ indicates the distribution of the random variable φ0 on H. N̂ is a
functional on V defined by

N̂(v) := Ŵ

(
−∂v
∂t

)
, ∀v ∈ V ,

where W is the distribution of w. The symbol ·̂ over W and Ξ indicates the
characteristic functional operator5.

Remark 4.3.6. A weak solution is defined (more precisely, concentrated) on the
σ-algebra BZ (U ), since U is not separable. For a similar discussion, see [29,
p. 1181]. Such solution may not be unique. In addition, we warn the reader not
to confuse φ(0) and φ0 in Definition (4.3.5).

Remark 4.3.7. We here give a formal6 derivation of Definition (4.3.5). If φ is
a solution of the infinite dimensional stochastic equation (4.1a)-(4.1b) (e.g., in

5given a separable Banach space Y and a probability measure ν defined on (Y,B(Y )), the
characteristic functional of ν is a C-valued functional with domain Y ′, defined as

ν̂(f) :=

∫
Y

exp {i〈f, y〉Y ′,Y } ν(dy), ∀f ∈ Y ′.

If X is a Y -valued random variable, the characteristic functional of X is the characteristic
functional of the law of X, namely

L̂X(f) :=

∫
Y

exp {i〈f, y〉Y ′,Y }LX(dy) = E [exp{i〈f,X〉Y ′,Y }] , ∀f ∈ Y ′,

where LX denotes the law of X. If Y is a separable Hilbert space, we adapt the previous
definitions by replacing the duality 〈·, ·〉Y ′,Y with the Y -inner product (·, ·)Y and by considering
f ∈ Y instead of f ∈ Y ′.

6hence it may lack of rigors.
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the sense of [62, p. 73, Definition 4.2.1.]), then we may compute, by means of
the Itö formula7, the stochastic differential equation which is satisfied by the real
functional B(φ) := (φ, v), for each v ∈ ∪∞m=1Vm. We obtain

0 = (φ0, v(0))−
∫ T

0

∫
D

vu · ∇φ+

+

∫ T

0

∫
D

(∆µ)v +

∫ T

0

(
φ,
∂v

∂t

)
−
∫ T

0

(
∂v

∂t
, w

)
.

If we recall the definition of white noise, condition (4.1c) and we observe that
(v, u · ∇φ) = −(φ, u · ∇v) thanks to the properties of u listed in (i), page 63, we
derive

C(φ, v) =

〈
∂w

∂t
, v

〉
V ′,V

. (4.7)

Relation (4.7) can be extended by a formal density argument (with respect to
norm ‖ · ‖V ) to all v ∈ V , provided that φ is sufficiently regular.
If we add the term 〈φ(0), ξ〉H−ε,Hε to both sides of (4.7), we multiply by i, apply
the exponential function, take to expected value and use the independence of w
and φ0 we see that (4.6) holds with P being the distribution of φ. Obviously
we may generalize (4.6) omitting the requirement that P is the distribution of
a given process, thus obtaining Definition (4.3.5). We emphasize the fact that

7we here recall the Itö formula. Let H be a Hilbert space; let ϕ be a H-valued, [0, T ]-
Bochner integrable, predictable process; let Φ be a L0

2-valued process stochastically integrable
in [0, T ]; let X(0) be a F0-measurable H-valued random variable. Then the process X

X(t) := X(0) +

∫ t

0

ϕ(s)ds+

∫ t

0

Φ(s)dw(s)

is well defined. Assume that a function F : [0, T ]×H → R and its partial Fréchet derivatives
Ft, Fx, Fxx are uniformly continuous on bounded subsets of [0, T ]×H. Then the following (Itö)
formula holds a.s. for all t ∈ [0, T ]

F (t,X(t)) = F (0, X(0)) +

∫ t

0

(Fx(s,X(s)),Φ(s)dw(s))

+

∫ t

0

{Ft(s,X(s)) + (Fx(s,X(s)), ϕ(s))}ds

+

∫ t

0

{
1

2
tr
[
Fxx(s,X(s))

(
Φ(s)Q1/2

)(
Φ(s)Q1/2

)∗]}
ds

where Q is the covariance of the (H-valued) Wiener process w. For the meaning of the stochas-
tic integral in the previous relation we refer the reader to [62, p. 36, Lemma 2.4.2.]. For a
detailed discussion on the Itö formula we refer the reader to [25, p. 105, Paragraph 4.5]. For
the sake of clarity, in the following we apply a slightly different version of such formula, valid
for each time interval [0, ζm(ω)).
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relation (4.7) also plays an important role in the forthcoming Definition (4.4.1),
aside from the fact that it justifies the expression of C(φ, v).

Remark 4.3.8. It can be seen that the real-valued functional φ 7→ C(φ, v) is
continuous on Z for each fixed v ∈ V . To show this, let φn be a sequence
such that φn → φ in Z . Because of the convergence in Lp

′
([0, T ];L4), it is

straightforward to deduce the convergence of all the elements componing C which
are linear in φ. We only have to treat the nonlinearity φ3 with a little bit of care.
In fact, reminding (4.5) and using Hölder inequality in space and time, we obtain∣∣∣∣∫ T

0

∫
D

(φ3
n − φ3)∆v

∣∣∣∣ ≤ 3

2

∫ T

0

∫
D

|φn − φ|(φ2
n + φ2)|∆v|

≤ 3
√

2

2

∫ T

0

‖φn − φ‖L4(‖φn‖2
L4 + ‖φ‖2

L4)‖∆v‖L4

≤ 3‖φn − φ‖Lp′ ([0,T ];L4)

[
‖φn‖2

L3([0,T ];L4) + ‖φ‖2
L3([0,T ];L4)

]
‖∆v‖Lq′ ([0,T ];L4)

≤ 3‖φn − φ‖Lp′ ([0,T ];L4)

[
‖φn‖2

L3([0,T ];L4) + ‖φ‖2
L3([0,T ];L4)

]
‖v‖V . (4.8)

We deduce ∣∣∣∣∫ T

0

∫
D

(φ3
n − φ3)∆v

∣∣∣∣→ 0

as n → +∞, hence the conclusion. The definition of V and property (4.8) also
allow us to define C(φ) ∈ V ′ as

〈C(φ), v〉V ′,V := C(φ, v)

for every φ ∈ Z .

Remark 4.3.9. It is straightforward to deduce two facts from Remark (4.3.8).

(a) For each ξ ∈ Hε and each v ∈ V , the functional

φ 7→ exp {i〈φ(0), ξ〉H−ε,Hε + iC(φ, v)}

is continuous on Z , since 〈φn(0), ξ〉H−ε,Hε → 〈φ(0), ξ〉H−ε,Hε (thanks to
the convergence in C([0, T ];H−ε)) and since C(φn, v) → C(φ, v), for any
sequence φn → φ in Z .

(b) The mapping
D : Z → H−ε × V ′ : φ 7→ {φ(0), C(φ)}

is continuous as a mapping from (Z ,B(Z )) to (H−ε × V ′,B(H−ε × V ′)).
This is consequence of the nature of ‖ · ‖V and of (4.8).
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In the forthcoming sections, we will need the following equivalent character-
ization on (4.6).

Lemma 4.3.10. Equality (4.6) implies that

P(D−1(C)) = (Ξ×N)(C), ∀C ∈ B(H−ε × V ′). (4.9)

The left hand side of equality (4.9) is well defined since D is continuous, as stated
in Remark (4.3.9).

Proof. Let ξ ∈ Hε, v ∈ V be arbitrarily fixed. We rely on the theory of pushfor-
ward measures8. In accordance with the notation introduced in Definition (4.3.5)
and footnote 8, we set X1 := Z , X2 := H−ε × V ′, f := D , ν := P, and

g : X2 → C : {x, y} 7→ exp {i〈x, ξ〉H−ε,Hε + i〈y, v〉V ′,V } .

If we use the integral equality stated in footnote 8 and the definition of weak
statistical solution, we deduce∫

Z

exp {i〈φ(0), ξ〉H−ε,Hε + iC(φ, v)}P(dφ) =

∫
X1

(g ◦ f) dν =

∫
X2

g dν∗

=

∫
H−ε×V ′

exp {i〈x, ξ〉H−ε,Hε + i〈y, v〉V ′,V }P∗(d{x, y}) = Ξ̂(ξ)N̂(v)

=

∫
H−ε×V ′

exp {i〈x, ξ〉H−ε,Hε + i〈y, v〉V ′,V } (Ξ×N) (d{x, y}). (4.10)

Remarks (4.3.2), (4.3.4) imply that Hε and V are reflexive and separable, thus
Hε × V is reflexive and separable. Since ξ and v are arbitrarily chosen in Hε

and V , the reflexivity of Hε, V and relation (4.10) imply that∫
H−ε×V ′

exp {iL({x, y})}P∗(d{x, y}) =

∫
H−ε×V ′

exp {iL({x, y})} (Ξ×N)(d{x, y})

(4.11)
8we recall the definition of pushforward measure and a related integral property.

Let (X1,F1), (X2,F2) be two measurable spaces. Let f : X1 → X2 be a measurable function
and let ν be a probability measure on (X1,F1). The pushforward measure of ν associated to
f is a probability measure ν∗ on (X2,F2) defined as

ν∗(C) := ν
(
f−1(C)

)
, ∀C ∈ F2.

The following fact holds: let g : X2 → C be a measurable function. Then g is integrable on
X2 with respect to ν∗ if and only if g ◦ f is integrable on X1 with respect to µ. In this case,
the integrals coincide, i.e. ∫

X2

g dν∗ =

∫
X1

(g ◦ f)dν.



CHAPTER 4. A NONLOCAL CAHN-HILLIARD SPDE 71

for each L ∈ (H−ε × V ′)′. See [70, Proposition 1.1] for the characterization of
the reflexivity and separability properties of the product of two banach spaces.
Since Hε × V is reflexive and separable, it follows that (Hε × V )′ is separable.
Since there is an isometric isomorphism between (Hε × V )′ and H−ε × V ′, it
follows that H−ε × V ′ is separable. We can hence apply [6, p. 28, Proposition
4.15.] and deduce that P∗ ≡ (Ξ×N), i.e. (4.9).

We can now state and prove the main theorem of this section.

Theorem 4.3.11. Let d ≤ 3. Let w be a H-valued Q-Wiener process and let w,
u, Q, J , F , φ0 and {ej}j∈N satisfy the properties (i)-(viii) previously listed (page
63 and following). Let φ0 be a U-valued random variable satisfying

E
[
‖φ0‖2

U +

∫
D

φ4
0

4
−
∫
D

φ2
0

2

]
< +∞.

Then problem (4.1) admits a weak statistical solution in the sense of Definition
(4.3.5).

Remark 4.3.12. In the hypotheses of the previous Theorem we do not require
E
[∫
D
φ4

0/4
]
< +∞ but only E

[∫
D
φ4

0/4−
∫
D
φ2

0/2
]
< +∞. This requirement is

motivated by [29, p. 1190, (7.6)]: such computation will be used in the forth-
coming proof.

Proof of Theorem (4.3.11). Step 1: Galerkin Approximation of Problem (4.1).
For each m ∈ N, we denote by πm the H-orthogonal projection operator on Vm.
More precisely, we use the extended operator

πm : L1 → Vm : v 7→
m∑
j=1

(v, ej)ej. (4.12)

The previous expression is well defined thanks to the regularity of the family
{ei}i∈N; in addition, it permits to apply such projector to functions not belonging
to H. This will be useful, e.g., in the forthcoming Lemma (4.3.14).
We are ready to write down a Galerkin approximation scheme for problem (4.1).
For each m ∈ N, we look for a stochastic process φm =

∑m
j=1 cj(t)ej(x) such that

dφm = πm(−u · ∇φm + ∆µm)dt+ dwm, (4.13)

µm := πm(aφm + φ3
m − φm − J ∗ φm),

φm(0) = πmφ0,

where wm := πmw is a Vm-valued Wiener process. If we take the H-inner product
of (4.13) with e1, · · · , em we see that the resulting Rm-valued stochastic differ-
ential equation has a locally lipschitz deterministic integrand, therefore for each
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m ∈ N problem (4.13) admits a solution, which is in principle defined up to some
random variable ζm, hence for all t ∈ [0, ζm(ω)). See [47, Theorem 3.1.] for full
details. We will show in the forthcoming Step 3 that the solutions φm exist (a.s.)
for every t ∈ [0, T ].

Step 2: Some inequalities for the family {φm}m∈N. We apply the Ito formula to
the functional F (φm(t)) := ‖φm(t)‖2 and obtain9 the following equality for each
t ∈ [0, ζ(ω) ∧ T )

‖φm(t)‖2 = ‖φm(0)‖2 + 2

∫ t

0

(φm(s),−u · ∇φm(s) + ∆µm(s))ds

+

∫ t

0

tr(Qm) + 2

∫ t

0

(φm(s), dwm(s)).

Since div(u) = 0 and u = 0 on Γ we have (φm, u·∇φm) = 0. If we use estimate [21,
p. 436, (4.15)] we deduce

‖φm(t)‖2 +

∫ t

0

c0

2
‖∇φm(s)‖2ds ≤ ‖φm(0)‖2 +

∫ t

0

k‖φm(s)‖2ds

+ C1 + 2

∫ t

0

(φm(s), dwm(s)), (4.14)

where k = (2/c0)‖J‖2
L1(Rd)

, c0 being the positive costant from (4.2).

Step 3: Time domain of {φm}m∈N and further inequalities. We now prove that

ζm(ω) ≥ T, a.s. in Ω, ∀m ∈ N. (4.15)

which implies that φm is defined on [0, T ] (a.s.). We use some ideas from [64,
p. 132, Proof of Theorem 12.1], which however cannot be applied directly since
condition [64, p. 132, (12.3)] is not satisfied for our finite-dimensional stochastic
differential equations.

Let us fixm ∈ N. If we consider the Rm-valued stochastic differential equation
associated with φm, we see that its determistic integrand bm and its stochastic
integrand σm are locally lipschitz. In addition, they depend on time exclusively
by means of φm. For eachN ∈ N, we may define a sequence (bm,N , σm,N), agreeing
with (bm, σm) on {(s, x) : x ∈ Rm, s ≥ 0, |x| ≤ N}, such that (bm,N , σm,N) are
globally lipschitz. As a consequence, [64, p. 128, Theorem 11.2] guarantees that
there is a unique solution φm,N associated to (bN , σN) and defined on [0,+∞)
(a.s.). Finally, we define a sequence of R+-valued stopping times as follows

τN := inf{τ > 0 : ‖φm,N(τ)‖ ≥ N} ∧N
9In the following, Qm denotes the covariance operator of wm and [Q]ij , i, j ∈ {1, · · · ,m},

denote the entries of its matrix representation with respect to the basis {e1, · · · , em}.
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The sequence {τN}N∈N is obviously increasing. Moreover [64, p. 131, Corollary
11.10] implies that

φm = φm,N on [0, τN ]. (4.16)

Therefore for each t ∈ [0, T ] we have

E
[
‖φm(t ∧ τN)‖2

]
+
c0

2
E
[∫ t∧τN

0

‖∇φm(s)‖2

]
≤ E

[
‖φ0‖2

]
+ kE

[∫ t∧τN

0

‖φm(s)‖2

]
+ C2, (4.17)

which implies

E
[
‖φm(t ∧ τN)‖2

]
≤ C2

+ E
[
‖φ0‖2

]
+ k

∫ t

0

E
[
‖φm(s ∧ τN)‖2

]
.

Gronwall inequality consequently gives

E
[
‖φm(t ∧ τN)‖2

]
≤ C3, for t ∈ [0, T ]. (4.18)

We notice that the previous relation holds for every T > 0. Hence we may take
K = 2T , use Markov inequality (see [48, p. 29, Corollary 5.2 (a)]) and recall
(4.16) to deduce that, for N > K, we have

m(τN < K) ≤m(‖φm,N(τN ∧K)‖ ≥ N) ≤m(‖φm(τN ∧K)‖ ≥ N)

≤ E [‖φm(K ∧ τN)‖2]

N2
≤ C(K,φ0)

N2
→ 0 (4.19)

for N → +∞. Computation (4.19) clearly implies that m(supN τN > T ) = 1.
Hence (4.15) holds. In addition

φm ∈ C([0, T ]; C∞(D)), m ∈ N. (4.20)

Step 4: Main estimates for the family {φm}m∈N. The processes φNm(t) := φm(t ∧
τN) are non anticipating and φN+1

m (s) = φNm(s) for all 0 < s < t ∧ τN (a.s.).
Therefore t ∧ τN ↑ t (a.s.) and φm(t) = limN→+∞ φ

N
m(t) (a.s.). We can therefore

use Fatou Lemma twice (both on the spatial domain and on the probability
space) to deduce that

E
[
‖φm‖2

L2([0,T ];H)

]
= E

[∫ T

0

‖φm‖2

]
≤ E

[∫ T

0

lim inf
N
‖φNm‖2

]
=

∫ T

0

E
[
lim inf

N
‖φNm‖2

]
≤
∫ T

0

lim inf
N

E
[
‖φNm‖2

]
≤ C4, (4.21)
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where we have used (4.18). We apply the monotone convergence theorem in
(4.17) and we conclude that

E
[
‖φm‖2

L2([0,T ];U)

]
≤ C5. (4.22)

We now take the superior extreme in (4.14) for 0 ≤ t ≤ T and get

E
[

sup
0≤t≤T

‖φm(t)‖2

]
≤ E

[
‖φm(0)‖2

]
+ C1

+ kE
[
‖φm‖2

L2([0,T ];H)

]
+ 2E

[
sup

0≤t≤T

∫ t

0

(φm(s), dwm(s))

]
(4.23)

We estimate the last term of the right hand side of (4.23) by means of Doob
submartingale inequality, obtaining{

E
[

sup
0≤t≤T

∫ t

0

(φm(s), dwm(s))

]}2

≤ E
[

sup
0≤t≤T

∫ t

0

(φm(s), dwm(s))

]2

≤ 4E

[{∫ T

0

(φm(s), dwm(s))

}2
]

= 4E
[∫ T

0

(Qmφm, φm)

]
≤ 4‖Q‖E

[∫ T

0

‖φm‖2

]
≤ 4‖Q‖C6,

hence we deduce
E
[
‖φm‖2

L∞([0,T ];H)

]
≤ C7. (4.24)

We now apply the Itö formula once again to the functional

Z(φ) : U → R : φ 7→
∫
D

{
a
φ2

2
+
φ4

4
− φ2

2

}
− 1

2
(J ∗ φ, φ).

We defined Z such that its Fréchet derivative is Zφ(φ) = aφ + φ3 − φ − J ∗ φ,
hence πm(Zφ(φ)) = µm. Thus we obtain, recalling the hypotheses on Q, u and
the family {ei}i∈N, that

Z(φm(t)) = Z(φm(0)) +

∫ t

0

(µm,−u · ∇φm + ∆µm)

+

∫ t

0

(Zφ(φm(s)), dwm(s))U

+
1

2

(∫ t

0

∫
D

(3φ2
m + a− 1)

m∑
i,j=1

Qijeiej −
∫ t

0

m∑
i=1

(J ∗Qmei, ei)

)
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≤ Z(φm(0)) +

∫ t

0

(
‖u‖L∞([0,T ]×Ω)‖∇µm(s)‖‖φm(s)‖ − ‖∇µm(s)‖2

)
+

∫ t

0

(Zφ(φm(s)), dwm(s))U

+ C8tr(Q)

∫ t

0

[
‖φm(s)‖2 + ‖a‖L∞ + ‖J‖L1(Rd)

]
,

which, thanks to Young inequality, implies

Z(φm(t)) +
1

2

∫ t

0

‖∇µm(s)‖2 ≤ Z(φm(0))

+

∫ t

0

(Zφ(φm(s)), dwm(s))U + C(T, u,Q)

∫ t

0

‖φm(s)‖2

+ C9(K(Q))

∫ t

0

[
‖φm(s)‖2 + ‖a‖L∞ + ‖J‖L1(Rd)

]
. (4.25)

If we define

τ 1
N =

{
inf{τ > 0 : ‖Zφ(φm(τ))‖U ≥ N} if ∃τ > 0 : ‖Zφ(φm(τ))‖H1 ≥ N,
+∞ if ‖Zφ(φm(τ))‖U < N, ∀τ > 0,

we may act on (4.25) and τ 1
N similarly to the computations previously done with

τN . We deduce

E
[
Z(φm(t ∧ τ 1

N))
]

+
1

2
E

[∫ t∧τ1N

0

‖∇µm(s)‖2

]
≤ E [Z(φm(0))] + C10 (4.26)

In addition, the regularity of the trajectories of φm highlighted in (4.20) imply
that τ 1

N definitely coincides with T , (a.s.). Computation [29, p. 1190, (7.6)]
permits to estimate E [Z(φm(0))] uniformly in m ∈ N. In addition we can rely
on estimates (4.22),(4.24) and get

E
[
‖φm(t ∧ τ 1

N)‖4
L4

]
≤ C11 (4.27)

We replicate the application of Fatou Lemma as we have done in (4.21) and
obtain10

E
[
‖φm‖4

L4([0,T ];L4)

]
= E

[∫ T

0

‖φm‖4
L4

]
≤ E

[∫ T

0

lim inf
N
‖φNm‖4

L4

]
=

∫ T

0

E
[
lim inf

N
‖φNm‖4

L4

]
≤
∫ T

0

lim inf
N

E
[
‖φNm‖4

L4

]
≤ C12, (4.28)

10in (4.26), we denote φNm(t) := φm(t ∧ τ1N ), with no reference to previous similar notations.
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where we have used (4.27). We can apply the monotone convergence theorem in
(4.26) by passing to limit with respect to N → +∞ and deduce

E
[
‖∇µm‖2

L2([0,T ];H)

]
≤ C13. (4.29)

Using the Gelfand triple V ↪→ H ↪→ V ′, we recall [29, p. 1179, Theorem 4.2.]
and we write, for every v ∈ V and for every 0 ≤ t1 < t2 ≤ T

|〈φm(t2)− φm(t1), v〉V ′,V | = |(φm(t2)− φm(t1), v)|

=

∣∣∣∣∫ t2

t1

(−u · ∇φm + ∆µm, v) + (wm(t2)− wm(t1), v)

∣∣∣∣
≤

([∫ t2

t1

‖u‖L∞([0,T ]×D)‖∇φm‖+ ‖∇µm‖
]

+ |t2 − t1|
2
5‖wm‖C 2

5 ([0,T ];V ′)

)
‖v‖V

≤ C6(u)|t2 − t1|
2
5

×
[
‖φm‖L2([0,T ];U) + ‖∇µm‖L2([0,T ];H) + ‖wm‖C 2

5 ([0,T ];V ′)

]
‖v‖V . (4.30)

In addition, (4.24) and (4.20) imply

E
[
‖φm‖2

C([0,T ];H)

]
≤ C7. (4.31)

The combination of (4.30)-(4.31) allows us to deduce

E
[
‖φm‖C2/5([0,T ];V ′)

]
≤ C14. (4.32)

The constants C1, · · · , C14 are independent of m but may depend on φ0, T , u,
J , Q. Inequalities (4.22), (4.24), (4.28), (4.32) imply that {Pm}m∈N, the family
of the distributions of {φm}m∈N on Z , is uniformly concentrated on U .

Step 5: Existence of a weak limit. Since U is compactly embedded in Z as
proved in Theorem (4.3.1), we can use a compactness argument by means of
Prohorov Theorem. Estimates (4.22), (4.24), (4.28), (4.32), the definition of the
U -norm and the Lp embeddings imply that∫

Z

‖φ‖U Pm(dφ) ≤ C15, ∀m ∈ N, (4.33)

where C15 is independent of m. In addition we have that the sets Gn(U ) defined
as follows

Gn(U ) := {v ∈ U : ‖v‖L2([0,T ];U) ≤ n, ‖v‖L∞([0,T ];H) ≤ n,

‖v‖L4([0,T ];L4) ≤ n, ‖v‖C2/5([0,T ];V ′) ≤ n}
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are compact in Z , see the first part of the forthcoming Step 1 of Proof of Theorem
(4.4.7), footnote (14). Thanks to (4.33), we deduce

Pm(Z \Gn(U )) =

∫
Z \Gn(U )

Pm(dφ) =

∫
U \Gn(U )

Pm(dφ)

≤ 1

n

∫
U \Gn(U )

‖φ‖U Pm(dφ) ≤ 1

n

∫
Z

‖φ‖U Pm(dφ) ≤ C15

n
≤ ε,

where the last inequality holds if n is large enough. We have verified the validity
of the Prohorov theorem hypotheses. Hence we deduce that there is a (not
relabeled) subsequence {Pm}m∈N and a probablity P defined on (Z ,B(Z )) such
that {Pm}m∈N weakly converges to P.

Step 6: Passage to the limit. The probablity Pm satisfies∫
Z

exp {i〈φ(0), ξ〉H−ε,Hε + iC(φ, v)}Pm(dφ) = Ξ̂(ξ)Ŵm

(
−∂v
∂t

)
,

∀ξ ∈ Vr, ∀v ∈ Vr, m ≥ r, (4.34)

where Ŵm denotes the characteristic functional of wm. Equality (4.34) can
be proved as follows: we initially replicate the computations we have done in
Remark (4.3.7). Let r ≤ m be positive integers. For each v ∈ Vr, we apply the
Itö formula to the functional B(φm) := (φm, v) and obtain11

0 = (φm(0), v(0)) +

∫ T

0

∫
D

πm(−u · ∇φm + ∆µm)v

+

∫ T

0

(
φm,

∂v

∂t

)
−
∫ T

0

(
∂v

∂t
, wm

)
. (4.35)

Since v takes values in Vm, we can integrate by parts and rewrite (4.35) as

0 = (φ0, v(0)) +

∫ T

0

∫
D

{−uv · ∇φm + µ∆v}

+

∫ T

0

(
φm,

∂v

∂t

)
−
∫ T

0

(
∂v

∂t
, wm

)
.

Hence we can rearrange the terms and add the term 〈φm(0), ξ〉H−ε,Hε in the last
equality to obtain

〈φm(0), ξ〉H−ε,Hε + C(φm, v) = 〈φm(0), ξ〉H−ε,Hε −
∫ T

0

(
wm,

∂v

∂t

)
,

11unlike the computations made in Remark (4.3.7), we here need to be rigorous: the func-
tion B(φm(t), t) := (φm(t), v(t)) satisfies the hypotheses of the application of the Itö formula
because, in particular, v ∈ H2([0, T ];H).
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which, since ξ ∈ Vm and Hε ↪→ H ↪→ H−ε, becomes

〈φm(0), ξ〉H−ε,Hε + C(φm, v) = (φ0, ξ)−
∫ T

0

(
wm,

∂v

∂t

)
. (4.36)

We observe that wm and φm(0) are independent random variables because of
the independence of w and φ0. We multiply (4.36) by i, apply the exponential
function, take the expected value, use the independence of wm and φm(0). Hence
we deduce (4.34).
In Remark (4.3.8) we have seen that φ 7→ C(φ, v) is continuous on Z for every
v ∈ V . In addition, we recall that wm → w in L2((Ω,F ,m); C([0, T ];H)) (see [62,
p. 13, Proposition 2.1.10]). Therefore we can rely on the weak convergence of
the sequence {Pm}m∈N, hence take the limit for m→ +∞ in (4.34) and deduce
that (4.6) holds for P and ξ ∈ ∪∞r=1Vr, v ∈ ∪∞r=1Vr. By the density of ∪∞r=1Vr in
Hε (see Remark (4.3.2)) and the density of ∪∞r=1Vr in V , by means of Lebesgue
dominated theorem12, we deduce that P satisfies (4.6) for each ξ ∈ Hε and
v ∈ V . To prove that P is a weak solution to Problem (4.1) in the sense of
Definition (4.3.5), it remains to show that P is concentrated on BZ (U ).

Step 7: P is concentrated on BZ (U ). It is straightforward to notice that

U =
∞⋃
n=1

Gn(U ). (4.37)

It follows from (4.37) that U ∈ BZ (U ). Moreover, as already said in Step 5,
Gn(U ) is compact in Z and hence closed in Z . As a consequence of Step 5, for
each ε > 0 there is n ∈ N such that Pm(Gn(U )) ≥ 1 − ε for each m ∈ N. We
may use the Portmanteau Theorem to deduce that P(Gn(U )) ≥ 1 − ε. Hence
P(U ) = 1.

The proof is complete.

Remark 4.3.13. Estimate (4.29) gives a uniform estimate on someH-projections
µm of the chemical potential µ. In the following section, however, we need to
act on the “full” chemical potential µ. To this purpose, we need the following
lemma, which shows some further regularity of the weak solution P we have built
in Proof of Theorem (4.3.11).

Lemma 4.3.14. With the notation of Theorem (4.3.11), we have∫
Z

‖∇µ(φ)‖2
L2([0,T ];H)P(dφ) ≤ C13, (4.38)

12which can be applied since trivially | exp {iα}| ≤ 1, ∀α ∈ R.
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Z

‖φ‖2
L2([0,T ];U)P(dφ) ≤ C5, (4.39)

where µ(φ) := aφ+φ3−φ−J ∗φ. The integrands are meant to assume the value
+∞ whenever ∇µ(φ) /∈ L2([0, T ];H) or φ /∈ L2([0, T ];U).

Proof. Estimate (4.29) implies∫
Z

‖∇µr(φ)‖2
L2([0,T ];H)Pm(dφ) ≤ C13, for r ≤ m. (4.40)

For each r ∈ N, we define

Φr : Z → R ∪ {+∞} : φ 7→ ‖∇µr(φ)‖2
L2([0,T ];H).

We use the definition of πr given in Proof of Theorem (4.3.11), Step 1, since
µ(φ) takes values in L4/3, a.e. t ∈ [0, T ], for φ ∈ Z . The functional Φr is lower
semicontinuous in Z . To prove this, let φn → φ in Z . Then, for any (not
relabeled) subsequence, there is another (not relabeled subsequence) φn such
that φn(t) → φ(t) in L4 for a.e. t ∈ [0, T ]. By taking the H-inner product of
φn(t) − φ(t) with e1, · · ·, em and using Hölder inequality along with the regu-
larity of e1, · · ·, em, we deduce that µr(φn)(t) → µr(φ)(t) in H. Hence, relying
on the equivalence of norms of finite-dimensional vector spaces, we deduce that
∇µr(φn)(t)→ ∇µr(φ)(t) in H for a.e. t ∈ [0, T ]. Since the original subsequence
φn was arbitrary, we may apply Fatou Lemma to deduce that Φr is lower semi-
continuous in Z .
In addition, Φr, being nonnegative, is trivially bounded from below. Hence we
may apply Portmanteau Theorem and write∫

Z

Φr(φ)P(dφ) ≤ lim inf
m

∫
Z

Φr(φ)Pm(dφ) ≤ C13, (4.41)

where the last inequality follows from (4.40). But now, thanks to the mono-
tonicity of H-norm under the projection on growing subspaces, we may use the
monotone convergence Theorem in (4.41) to deduce∫

Z

‖∇µ(φ)‖2
L2([0,T ];H)P(dφ) ≤ C13,

i.e., (4.38). The proof of (4.39) is similar. It suffices to consider Φr(φ) =
‖πrφ‖L2([0,T ];U). A finite-dimensional argument identical to the one used before
shows that Φr is lower semicontinuous in Z and bounded from below. Hence we
once again apply Portmanteau theorem and get∫

Z

Φr(φ)P(dφ) ≤ lim inf
m

∫
Z

Φr(φ)Pm(dφ) ≤ C5, (4.42)
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where the last inequality follows from (4.22). Thanks to the monotonicity of
H-norm under the projection on growing subspaces, we replicate the application
of the monotone convergence Theorem in (4.42) and deduce∫

Z

‖φ‖2
L2([0,T ];U)P(dφ) ≤ C5.

The proof is complete.

Remark 4.3.15. In the previous lemma, we have implicitly used the fact that,
for every x ∈ L4/3:
- the series {‖∇(πrx)‖}r∈N converges to ‖∇x‖ if x ∈ U , and diverges to +∞ if
∇x /∈ H.
- the series {‖πrx‖U}r∈N converges to ‖x‖U if x ∈ U , and diverges to +∞ if

x /∈ U .

Remark 4.3.16. Let P be the weak solution built in Theorem (4.3.11). Lemma
(4.3.14) and Remark (4.3.15) imply that

P({v : ∇µ(v) ∈ L2([0, T ];H)}) = 1,

P({v : ∇(av − v) ∈ L2([0, T ];H)}) = 1,

P({v : ∇(J ∗ v) ∈ L2([0, T ];H)}) = 1.

Hence, recalling Proof of Theorem (4.3.11), Step 6, we deduce that the set{
v ∈ U : ∇(av − v) ∈ L2([0, T ];H),

∇(J ∗ v) ∈ L2([0, T ];H), 3v2∇v ∈ L2([0, T ];H)
}

has P-probability one. This fact will be useful in the next section.

4.4 Existence and uniqueness of a strong solution
We now proceed to prove existence, uniqueness and measurability of a strong
solution for Problem (4.1).
Estimate (4.29) suggests the definition of a space more regular than U , namely

U1 := {v ∈ U : ∇µ(v) ∈ L2([0, T ];H)},

where as usual µ(v) := av + v3 − v − J ∗ v. We provide the reader with the
necessary definition.

Definition 4.4.1. A process φ = φ(t, x, ω) defined on the probability space
(Ω,F ,m) is a strong solution for problem (4.1) if
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1. φ satisfies

D(φ(ω)) =

{
φ0(ω),

∂w

∂t
(ω)

}
m− a.s. (4.43)

We recall from the previous section that C(φ) ∈ V ′, 〈C(φ), v〉V ′,V :=
C(φ, v) if φ ∈ Z and D : Z → H−ε × V ′ : φ 7→ {φ(0), C(φ)}.

2. the mapping ω 7→ φ(ω) is a random variable from (Ω,F) to (U1,BZ (U1)).

Remark 4.4.2. Our definition of strong solution to Problem (4.1) is in fact a
little weaker than the definition of classical strong solution for a stochastic par-
tial differential equation. We have [62, p. 73, Definition 4.2.1.] in mind. As a
matter of fact, our solution is a variational solution, hence it is always joined by
a test function v ∈ V , while in the classical contest ( [62, p. 73, Definition 4.2.1.]
again) there is no need of test functions whatsoever. In addition, even though
there is no restriction on the final positive time T (we did not have to make any
assumptions up to now and the same will happen in the remaining part of this
chapter), our solution satisfies a relation which involves the entire time interval
[0, T ] instead of any arbitrary interval [0, t], for t ∈ [0, T ].
The reason for which we gave the previous definition of strong solution is moti-
vated by the relative lack of regularity of the equation (lack of sublinear growth
conditions in particular) which forbids to apply the classical theorems of exis-
tence and uniqueness of a classical strong solution. We have [62, p. 75, Theorem
4.2.4.] in mind.

We now state and prove an auxiliary result which will be used to deduce the
uniqueness of a strong solution.

Theorem 4.4.3. Let φ1, φ2 be two strong solutions for problem (4.1) (for the
same φ0 ∈ U , i.e. φ1(0) = φ2(0) = φ0) in the sense of Definition (4.4.1). Then

φ1(t) = φ2(t) in U ′, for a.e. t ∈ [0, T ].

Remark 4.4.4. The Proof of Theorem (4.4.3) will show that it suffices to take
φ0 ∈ H. However, the stronger condition φ0 ∈ U will be required in the con-
clusive and most important theorem of this section, so it is natural to require it
straight away.

Remark 4.4.5. The Proof of Theorem (4.4.3) is argued by means of purely
deterministic arguments. The stochastic noise of our version of Cahn-Hilliard
equation is additive and its stochastic integrand is constant (the identity op-
erator); hence, when we subtract the expressions associated with two strong
solutions the stochastic noise vanishes from the computations. If the stochastic
were not constant but, e.g., were as in (1.21), the proof of the uniqueness would
be significantly more complicated and we would be forced to rely on a neatly
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different theory: in fact, the stochasticity could not be removed. An even worse
scenario would occur if the noise wasn’t additive.

Proof of Theorem (4.4.3). Let r := φ1 − φ2. In analogy with [29, p. 1195, com-
putations (8.1)-(8.3)], we can define, for every ξ ∈ Vj and t ∈ [0, T ], the sequence

vn(s) :=


(t− s)ξ, if s ∈

[
0, t− 1/(4n2)

]
,

(n(s− [t+ 1/(4n2)]))
2
ξ, if s ∈ [t− 1/(4n2), t+ 1/(4n2)],

0, if s ∈ (t+ 1/(4n2), T ].

Here j is an arbitrary nonnegative integer. As a result, vn ∈ V and

∂vn
∂s

=


−ξ, if s ∈ [0, t− 1/(4n2)],

2n2(s− [t+ 1/(4n2)])ξ, if s ∈ [t− 1/(4n2), t+ 1/(4n2)],

0, if s ∈ (t+ 1/(4n2), T ].

We now evaluate C(φ1, vn)− C(φ2, vn). We can write

0 = −
∫ T

0

∫
D

ru · ∇vn −
∫ T

0

∫
D

(µ1 − µ2)∆vn −
∫ T

0

(
r,
∂vn
∂s

)
= −

∫ t−1/(4n2)

0

∫
D

ru · (t− s)∇ξ −
∫ t−1/(4n2)

0

∫
D

(µ1 − µ2)(t− s)∆ξ

−
∫ t+1/(4n2)

t−1/(4n2)

∫
D

ru · (n(s− [t− 1/(4n2)]))2∇ξ

−
∫ t+1/(4n2)

t−1/(4n2)

∫
D

(µ1 − µ2)(n(s− [t− 1/(4n2)]))2∆ξ

+

∫ t−1/(4n2)

0

(r, ξ)−
∫ t+1/(4n2)

t−1/(4n2)

(r, 2n2(s− [t+ 1/(4n2)])ξ) (4.44)

where µ1 := µ(φ1), µ2 := µ(φ2). We may use the Lebesgue dominated theorem
in (4.44) and deduce

−
∫ t

0

∫
D

ru · (t− s)∇ξ +

∫ t

0

∫
D

∇(µ1 − µ2) · (t− s)∇ξ +

∫ t

0

(r, ξ) = 0 (4.45)

where µ1 := µ(φ1), µ2 := µ(φ2). We have also used integration by parts to treat
the term (µ1−µ2,∆v). If we differentiate the last equality in (4.45) with respect
to t, we obtain

〈r(t), ξ〉V ′,V −
∫ t

0

∫
D

ru · ∇ξ +

∫ t

0

∫
D

(∇µ1 −∇µ2) · ∇ξ = 0, ∀ξ ∈ Vj.
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Since j is an arbitrary nonnegative integer, we may use the density of ∪∞j=1Vj in
V and deduce that

〈r(t), ξ〉V ′,V −
∫ t

0

∫
D

ru · ∇ξ +

∫ t

0

∫
D

(∇µ1 −∇µ2) · ∇ξ = 0, ∀ξ ∈ V.

Thanks to the density of V in U , the Gelfand theory and the definition of U1 we
get

〈r(t), ξ〉U ′,U −
∫ t

0

∫
D

ru · ∇ξ +

∫ t

0

∫
D

(∇µ1 −∇µ2) · ∇ξ = 0, ∀ξ ∈ U. (4.46)

Equation (4.46) implies that ∂r/∂t ∈ L2([0, T ];U ′) since, for every ξ ∈ U and
φ ∈ C∞0 [0, T ]∫ T

0

〈r(t), ξ〉U ′,Uφ′(t) =

∫ T

0

[∫ t

0

(ru,∇ξ)−
∫ t

0

(∇µ1 −∇µ2,∇ξ)
]
φ′(t)

= −
∫ T

0

[(ru,∇ξ)− (∇µ1 −∇µ2,∇ξ)]φ(t) = −
∫ T

0

〈
∂r

∂t
, ξ

〉
U ′,U

φ(t),

where we have defined 〈∂r/∂t, ξ〉U ′,U := (ru−(∇µ1−∇µ2),∇ξ). Hence equation
(4.46) leads to〈

∂r

∂t
, ξ

〉
U ′,U

+ (∇µ1 −∇µ2,∇ξ) = (ru,∇ξ), ξ ∈ U. (4.47)

We can therefore act as in [32, Section 4, Proposition 5]13, of which we reproduce
only the computations we need. Since r(0) = φ1(0)− φ2(0) = 0, it is clear that
(r(t), 1) = 0. We consider the operator

B : D(B) = V → H̃ : u 7→ −∆u,

where H̃ := {u ∈ H : (u, 1) = 0}. Then, if we take ξ = B−1r(t) ∈ D(B), for
almost every t ∈ [0, T ], (4.47) implies

d
dt
‖B−1/2r‖2 + 2(µ1 − µ2, r) = 2(u, r∇B−1r).

If we apply Lagrange theorem to F ′′ (F is regular enough to do so, recall hy-
phothesis (iv) of Section (4.2)) and use (4.2) we obtain

d
dt
‖B−1/2r‖2 + 2c0‖r‖2 ≤ 2(J ∗ r, r) + C‖u‖L∞([0,T ]×D)‖r‖‖B−1/2r‖. (4.48)

13we do not need certain hyphotesis contained in the statement of this proposition because
we are arguing only the uniqueness argument. In particular, there is no additional requirement
upon the spatial dimension d.
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Moreover, assumption (iii) and Young inequality imply

|(J ∗ r, r)| ≤ ‖B−1/2(J ∗ r)‖‖B−1/2r‖ ≤ c0

4
‖r‖2 + C ′‖B−1/2r‖2. (4.49)

If we combine (4.48)-(4.49) and use once again Young inequality to control the
last term of the righthand side of (4.48) we obtain that r ≡ 0.

As an immediate consequence we get the following.

Corollary 4.4.6. The (restricted) operator D |U1 : U1 → H−ε × V ′ : φ 7→
{φ(0), C(φ)} is injective.

We can now state and prove our conclusive theorem. We will use many facts
which have been proved in Section (4.3); the theorem constitutes itself a “bridge”
between this section and the previous one.

Theorem 4.4.7. Let d ≤ 3. Let w be a H-valued Q-Wiener process and let w,
u, Q, J , F , φ0 and {ej}j∈N satisfy properties (i)-(viii) previously listed at page
63 and following. Let φ0 be a U-valued random variable such that

E
[
‖φ0‖2

U +

∫
D

φ4
0

4
−
∫
D

φ2
0

2

]
< +∞.

Then problem (4.1) admits a unique strong solution (in the sense that two strong
solutions coincide for all ω ∈ Ω except for a set of m-measure zero).

Proof. The hypothesis of Theorem (4.3.11) are satisfied, thus we have the weak
solution P built in Proof of Theorem (4.3.11).

Step 1: Costruction of suitable Z -compact sets. Let us consider the countable
family of the sets

Cj :=

{
v ∈ Z : ‖v‖L2([0,T ];U) ≤ j, ‖v‖L∞([0,T ];H) ≤ j, ‖v‖L4([0,T ];L4) ≤ j,

‖v‖C2/5([0,T ];V ′) ≤ j, ‖∇(J ∗ v)‖L2([0,T ];H) ≤ j, ‖3v2∇v‖L2([0,T ];H) ≤ j,

‖∇(av − v)‖L2([0,T ];H) ≤ j.

}
,

indexed by j ∈ N. We show that Cj is a compact set in Z . Let vn be an
arbitrary sequence in Cj. Because of the compact injection U ↪→ Z , there is a
(not relabeled) subsequence vn → v in Z . We show that v ∈ Cj. Since vn → v
in C([0, T ];H−ε), we deduce vn → v in C([0, T ];V ′). It is also obvious that

‖vn‖C([0,T ];V ′) +
‖vn(t1)− vn(t2)‖V ′
|t1 − t2|2/5

≤ j, ∀n ∈ N, ∀t1, t2 : 0 ≤ t1 < t2 ≤ T.
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If, in the previous inequality, we first take the limit for n → +∞ and then the
extreme superior for all 0 ≤ t1 < t2 ≤ T we deduce

‖v‖C2/5([0,T ];V ′) ≤ j.

Since vn is bounded in L2([0, T ];U) and L4([0, T ];L4), we deduce, using [60, p. 75,
Esercizio 54], that v is the weak limit both in L2([0, T ];U) and L4([0, T ];L4) for
a (not relabeled) subsequence vn. Hence

‖v‖L2([0,T ];U) ≤ j,

‖v‖L4([0,T ];L4) ≤ j.

We may use a similar argument for the weak convergences in Lp([0, T ];H) and
deduce

‖v‖L∞([0,T ];H) = lim
p→+∞

‖v‖Lp([0,T ];H) ≤ lim
p→+∞

{lim inf
n
‖vn‖Lp([0,T ];H)}

≤ lim
p→+∞

T 1/pj = j.

It follows that v ∈ Gj(U )14.
Once again, we rely on the [0, T ]-almost sure convergence in L4 previously noticed
to apply Fatou lemma and deduce

‖∇(J ∗ v)‖L2([0,T ];H) = ‖∇(J) ∗ v‖L2([0,T ];H) ≤ j.

Since vn ⇀ v in L2([0, T ];U), we deduce that

‖∇(av − v)‖L2([0,T ];H) ≤ j,

thanks to the regularity of a. We now turn to the last and most delicate term
appearing in the definition of Cj. Let us consider a (not relabeled) subsequence
vn ⇀ v in L2([0, T ];U) such that vn(t)→ v(t) in L4 for a.e. t ∈ [0, T ]. For each
k ∈ N and n ∈ N, we define some suitable truncated functions as follows

zkn := min{3v2
n; k},

zk := min{3v2; k}.

The sequence {zkn}n∈N is clearly bounded in L∞([0, T ];L∞). Using the time
almost sure convergence vn(t) → v(t) in L4 and Hölder inequality we deduce

14the computations done so far in this proof show that Gj(U ) is a compact set in Z . This
fact is used in Proof of Theorem (4.3.11), Steps 5 and 7.
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that, for a.e. t ∈ [0, T ]

‖zkn − zk‖2 =

∫
D

∣∣min{3v2
n; k} −min{3v2; k}

∣∣2
≤ 9

∫
D

|v2
n − v2|2 = 9

∫
D

|vn − v|2|vn + v|2

≤ 36‖vn − v‖2
L4

{
‖vn‖2

L4 + ‖v‖2
L4

}
→ 0 (4.50)

as n→ +∞. In computations (4.50) we have also used to elementary inequalities

|min{a; c} −min{b; c}| ≤ |a− b|, ∀a, b, c ∈ [0,+∞),

(a+ b)p ≤ ap + bp, ∀a, b ∈ [0,+∞), p ∈ (0, 1).

In addition, ‖zkn − zk‖2 ≤ |D|k2 for every t ∈ [0, T ] and every n ∈ N. Hence the
Lebesgue dominated convergence theorem implies that zkn → zk in L2([0, T ];H)
as n → +∞. Moreover, {zkn∇vn}n∈N is bounded in L2([0, T ];H), hence a (not
relabeled) subsequence zkn∇vn ⇀ h in L2([0, T ];H) as n → +∞. In addition
∇vn ⇀ ∇v in L2([0, T ];H) since vn ⇀ v in L2([0, T ];U). Hence, for each ` ∈
L∞([0, T ];L∞), we deduce

∣∣(zkn∇vn − zk∇v , `)L2([0,T ];H)

∣∣ ≤ ∣∣∣∣∫ T

0

(zkn − zk)∇vn · `
∣∣∣∣

+

∣∣∣∣∫ T

0

zk(∇vn −∇v) · `
∣∣∣∣ ≤ ‖`‖L∞([0,T ];L∞)‖zkn − zk‖L2([0,T ];H)‖∇vn‖L2([0,T ];H)

+

∣∣∣∣∫ T

0

zk(∇vn −∇v) · `
∣∣∣∣→ 0,

as n→ +∞. Because of the density of L∞([0, T ];L∞) in L2([0, T ];H), we deduce
h = zk∇v. We can hence rely on the lower semicontinuity property for weakly
convergent sequences and deduce∫ T

0

‖zk∇v‖2 ≤

[
lim inf

n

(∫ T

0

‖zkn∇vn‖2

)1/2
]2

≤

[
lim inf

n

(∫ T

0

‖3v2
n∇vn‖2

)1/2
]2

≤ j2. (4.51)

For a.e. t ∈ [0, T ] we have that zk → 3v2 a.e. in D for k → +∞. Hence we
deduce, applying Fatou lemma in space and time and using (4.51)∫ T

0

‖3v2∇v‖2 ≤
∫ T

0

lim inf
k
‖zk∇v‖2 ≤ lim inf

k

∫ T

0

‖zk∇v‖2 ≤ j2



CHAPTER 4. A NONLOCAL CAHN-HILLIARD SPDE 87

and consequently

‖3v2∇v‖L2([0,T ];H) =

(∫ T

0

‖3v2∇v‖2

)1/2

≤ j.

We conclude that Cj is compact in Z .

Step 2: Costruction of a suitable restriction of D . Let X := ∪j∈NCj ∈ BZ (U ).
Thanks to Remark (4.3.16) we deduce that P(X) = 1.
Since any v ∈ Cj takes values in U , it is easy to verify that ∇(v3) = 3v2∇v for
a.e. t ∈ [0, T ]. This fact, along with Step 1, implies that Cj ⊂ U1, ∀j ∈ N.
Since X is a countable union of Z -compact sets contained in U1 and D : Z →
H−ε × V ′ =: Y is continuous as observed in Remark (4.3.9), it follows that
X ∈ BZ (U1) and that F := D(X) ∈ B(Y ). In addition

(Ξ×N)(F ) = P(D−1(F )) ≥ P(X) = 1, (4.52)

where we have used (4.9). Let D1 : X → F be the restriction D |X . Since
X ⊂ U1, Corollary (4.4.6) implies that D1 is one-to-one.

Step 3: Measurability of D−1
1 . The mapping D−1

1 : (F ,BY (F )) → (X,BZ (X))
is measurable. To prove this, we only need to show that D(B) ∈ BY (F ) for
every B closed set in X in the topology of Z , i.e. B = B1 ∩X for B1 closed set
in Z . Since X = ∪j∈NCj, we have

D(B) = D(B1 ∩X) = D(B1 ∩ (∪j∈NCj))
= D(∪j∈N(B1 ∩ Cj)) = ∪j∈ND(B1 ∩ Cj) ∈ BY (F ),

since B1 ∩ Cj is compact for each j ∈ N, D : Z → Y is continuous and hence
D(B1 ∩ Cj) ∈ BY (F ).

Step 4: Construction of the unique strong solution φ. We now denote

Ω1 :=

{
ω ∈ Ω :

{
φ0(ω),

∂w

∂t
(ω)

}
∈ F

}
.

Thanks to the measurability of φ0 and ∂w/∂t and to Remark (4.3.3), we have
Ω1 ∈ F . Relying on (4.52), we get m(Ω1) = (Ξ×N)(F ) = 1. We finally define

φ(ω) :=

D−1
1

({
φ0(ω),

∂w

∂t
(ω)

})
, if ω ∈ Ω1,

0, otherwise.
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It is clear that φ satisfies (4.43). Since X ∈ BZ (U1), for each G ∈ BZ (U1) we
have G ∩X ∈ BZ (X). In addition, we get

{ω ∈ Ω : φ(ω) ∈ G}

=

{
ω ∈ Ω1 : D−1

1

({
φ0(ω),

∂w

∂t
(ω)

})
∈ G ∩X

}
∪
{
ω ∈ ΩC

1 : 0 ∈ G
}

=

{
ω ∈ Ω1 :

{
φ0(ω),

∂w

∂t
(ω)

}
∈ D1(G ∩X)

}
︸ ︷︷ ︸

Ω2

∪
{
ω ∈ ΩC

1 : 0 ∈ G
}︸ ︷︷ ︸

Ω3

∈ F .

We have used the bijectivity of D−1
1 in the second equality, the measurability of

D−1
1 to see that D1(G ∩X) ∈ BY (F ), the measurability of the random variable

ω 7→ {φ0(ω), ∂w/∂t(ω)} to deduce that Ω2 ∈ F and the fact that Ω3 is either ∅
or ΩC

1 , hence Ω3 ∈ F in both cases.
Hence, φ is measurable as a random variable from (Ω,F) to (U1,BZ (U1)) and
is then a strong solution in the sense of Definition (4.4.1). In addition, the in-
jectivity of D : U1 → Y also implies the uniqueness of a strong solution.

Step 5: Distribution of φ. It is also clear, from the computations made in Remark
(4.3.7), that the distribution of a strong solution is a weak solution. In addition,
P is the distribution of φ: to prove this, let P1 be another weak solution con-
centrated on BZ (X)15. We rely on the bijectivity of D1 and write, for any given
subset C ∈ BZ (X),

P1(C) = P1(D−1
1 (D1(C))) = P1(D−1(D1(C))) = (Ξ×N)(D1(C))

= P(D−1(D1(C))) = P(D−1
1 (D1(C))) = P(C).

Hence P = P1. Since the distribution of φ clearly is a weak solution concentrated
on BZ (X), we deduce that P is the distribution of φ.

The proof is complete.

Remark 4.4.8. We point out that Proof of Theorem (4.4.7), Step 5 can be seen
as a result of partial uniqueness for a weak solution, since the requirement upon
the σ-algebra BZ (X) restricts the set of probability measures in which we look
for a weak solution. We do not investigate the uniqueness of a weak solution
concentrated on the σ-algebra BZ (U ) since, in such a context, we cannot rely
on the bijectivity of D .

Remark 4.4.9. The spatial dimension requirement d ≤ 3 is needed only in Proof
of Theorem (4.3.1) to guarantee the compact embedding U ↪→ L4 and in Proof

15note that we require this other weak solution to be concentrated on BZ (X) instead of the
σ-algebra BZ (U ) appearing in Definition (4.3.5).
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of Theorem (4.4.7), Step 2, to compute the distributional gradient of v3, for any
v ∈ U .

Remark 4.4.10. Apparently it does not seem straightforward to relax the
growth restriction on F (i.e. to consider a higher-order polynomial growth)
we have used to prove Theorems (4.3.11) and (4.4.7).
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