
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea in Ingegneria Informatica

CONVOLUTIONAL NEURAL NETWORK BASED METHOD
FOR PEDESTRIAN DETECTION

Relatore: Prof. Marco TAGLIASACCHI

Correlatore: Ing. Luca BONDI

Tesi di Laurea di:

Denis TOME’

Matr. 817538

Anno Accademico 2014 / 2015

Contents

List of Figures 4

List of Tables 7

Abbreviations 8

Sommario 9

Abstract 10

Acknowledgements 11

1 Review of the State of the Art 15

1.1 Viola – Jones detector . 15

1.2 Histogram of Oriented Gradients . 17

1.3 Aggregated Channel Features . 21

1.3.1 Fast Features Pyramids . 21

1.3.2 ACF . 23

1.4 Locally Decorrelated Channel Features . 25

1.5 Convolutional Neural Networks . 26

1.5.1 Architecture . 28

1.5.2 Back propagation . 31

1.5.3 Dropout . 33

1.6 R-CNN . 33

1.6.1 Region Proposal . 34

1.6.2 Feature extraction . 35

2 Datasets 37

2.1 Pascal Visual Object Classes . 37

2.2 Caltech Dataset . 38

2.2.1 Training and Testing Data . 39

3 R-CNN analysis 42

3.1 Analysis on region proposal selector . 42

2

Contents 3

3.2 Result comparison . 45

3.3 Analysis of performance . 47

4 Sliding Window CNN 49

4.1 Sliding Window . 49

4.2 Results . 51

4.3 Training SVM . 51

5 Ldcf-CNN 53

5.1 LDCF selector . 53

5.2 Initial Results . 54

5.3 Finetuning . 55

5.3.1 Caffe . 55

5.3.2 Parameters . 57

5.3.3 Model identification . 61

5.4 Data manipulation . 62

5.4.1 Negative-Positive ratio . 62

5.4.2 Padding . 63

5.4.3 Data decorrelation . 65

5.5 Results . 68

5.5.1 Softmax vs. SVM classifier . 69

5.6 K-Folds cross validation . 70

5.7 Thresholding . 73

5.8 Profiling . 75

6 Model size reduction 78

6.1 Network In Network . 78

6.2 Binarization . 80

6.3 Quantization . 82

6.3.1 K-means . 82

6.3.2 Finetuning 4 centroids model . 85

7 Conclusions and future work 89

List of Figures

1.1 Viola – Jones feature types . 16

1.2 Viola – Jones: Haar Features applied onto a face. 17

1.3 Blocks and Cells in HOG . 18

1.4 Overview of feature extraction and object detection in HOG 18

1.5 Filtering example . 19

1.6 HOG block and cell size [1] . 20

1.7 HOG features ovelapping the original image 20

1.8 Approximating gradient histograms in images resampled by a factor of
two [2] . 21

1.9 Feature channel scaling [2] . 23

1.10 Fast feature pyramids. Color and grayscale icons represent images and
channels [2] . 23

1.11 Overview of the ACF detector. Boosting is used to learn decision trees
over these features (pixels) to distinguish object from background. 23

1.12 ACF channels computed on an image . 24

1.13 A comparison of boosting with orthogonal decision trees on transformed
data. Orthogonal trees with both decorrelation and PCA-whitened fea-
tures show improved generalization, while ZCA-whitening is ineffective. . 26

1.14 First layer of the learned convolutional filters [3] 27

1.15 Test images and the five labels considered most probable by this model . 28

1.16 Illustration of the architecture of the CNN [4] 28

1.17 Convolution layer: example . 29

1.18 AlexNet: visualization of features in a fully trained model, showing the
top 9 activations, projected down to pixels using deconvolutional network
[5] approach. 30

1.19 Max pooling layer: example . 30

2.1 Example of images from the VOC2007 dataset. Bounding boxes indicate
all instances of the corresponding class in the image. 38

2.2 Example images (cropped) and annotations. The solid green boxes denote
the full pedestrian extent while the dashed yellow boxes denote the visible
regions [6] . 39

2.3 Pedestrian height distribution. Most pedestrians are observed at the
medium scale (30-80 pixels) . 39

2.4 Performance on Caltech Pedestrian dataset on unoccluded pedestrians
over 50 pixels tall . 41

4

List of Figures 5

3.1 R-CNN ROC computed on set 06 of the test-set 44

3.2 R-CNN ROC extended to 103 fppi computed on set 06 of the test-set . . . 46

3.3 Total number of misses for both HOG and LDCF selector with average
numbers of regions per image . 47

3.4 R-CNN ROC comparison with HOG and LDCF. Value after the method’s
name represents the LAMR. Computed on set 06 of the test-set 47

4.1 Sliding Window approach. Two different scales are shown. 49

4.2 Distribution of bounding boxes aspect ratio [7] 50

4.3 Sliding Window ROC. Overall comparison on set 06 of the test-set 51

4.4 Sliding Window with trained SVM ROC. Overall comparison on set 06 of
the test-set . 52

5.1 Overview LDCF-CNN . 53

5.2 LDCF-CNN ROC. Overall comparison on set 06 of the test-set 54

5.3 LDCF and LDCF-CNN normalized score analysis to prove code correctness 56

5.4 AlexNet architecture representation . 57

5.5 Plot of the ReLU (blue) and Softplus (green) functions near x = 0 58

5.6 Example of loss function. Model at iteration 1000 is the one that produces
the lowest loss value over the validation set. 62

5.7 LDCF-CNN ROC. Overall comparison after finetuning the model with
Ldcf negative region proposals and ground truth regions. Computed on
set 06 of the test-set . 63

5.8 Uncertainty in BB proposals by the selector 64

5.9 Caltech Dataset padding distribution using LDCF generated region pro-
posals over the train set. 64

5.10 Random cropping of 227× 227 size from the given image 65

5.11 Generate images for finetuning process . 65

5.12 (A) RGB histogram of a region proposals which is used to compute the H
matrix; (B) H matrix is vectorized; (C) The normalized vector represents
the features for that region proposal; . 66

5.13 (A) Distance matrix computed over all the regions of the first subset of the
train set: average L2 distance between feature vectors 3.67; (B) Distance
matrix computed by taking from A only the selected regions: average L2

distance between feature vectors 4.71. 68

5.14 Ldcf-CNN best result: ROC overal comparison 69

5.15 ROC CNN model with Softmax and SVM classifiers 70

5.16 K-folds loss function for each fold . 71

5.17 K-folds average loss function. In red the smoothed version. 72

5.18 LDCF-CNN with model identified using k-folds 73

5.19 Thresholding: log average miss rate on set-05, achieved using a certain
threshold value on the selector of LDCF-CNN method. 74

5.20 LDCF-CNN model identified using k-folds with thresholding on selector . 75

5.21 Execution time of each layer in ms in GPU mode on a NVIDIA JET-
SON TK1 board. 77

List of Figures 6

5.22 Size of each layer expressed in MB . 77

6.1 ROC: ACF vs. ACF-CNN . 79

6.2 Network In Network architecture structure 79

6.3 Network in Network ROC: comparison with the Acf-CNN model 80

6.4 Binarization: ROC comparing results after training the SVM classifier . . 81

6.5 Quantization: k-means clustering example with two features. 82

6.6 Quantization: k-means scalar clustering of elements 83

6.7 CNN quantization using 16 centroids . 84

6.8 CNN quantization using 8 and 4 centroids 84

6.9 CNN quantization using 2 centroids . 85

6.10 Compression factor vs. loss . 86

6.11 Finetuned quantized model with 4 centroids 87

6.12 Finetuned quantized model with 4 centroids and thresholding 87

6.13 ACF vs. ACF-CNN according to STMicroelectronics standards 88

List of Tables

1.1 Detection average precision on VOC 2010 test. 36

2.1 Caltech statistics . 40

2.2 Caltech dataset: number of images per set 40

4.1 Sliding window parameters . 50

5.1 R-CNN layers’ parameters . 59

5.2 LDCF profiling . 75

5.3 CNN profiling . 76

7

Abbreviations

CNN Convolutional Neural Network

RCNN Regions with Convolutional Neural Network

ReLU Rectified Linear Unit

DL Deep Learning

NN Neural Network

SVM Support Vector Machine

ACF Aggregated Channel Features

LDCF Locally Decorrelated Channel Features

HOG Histogram of Oriented Gradients

LAMR Log Average Miss Rate

IoU Intersection over Union

GPU Grahpical Processing Unit

LDA Linear Discriminant Analysis

CTA Compress Then Analize

ATC Analyze Then Compress

BB Bounding Box

TP True Positives

FP False Positives

FN False Negatives

FPPI False Positive Per Image

ROC Receiver Operating Characteristic

8

Sommario

Nell’ambito dell’ intelligenza artificiale, uno degli obbiettivi che negli ultimi tempi si è

cercato di raggiungere, è la creazione di sistemi migliori degli esseri umani (o comunque

comparabili), nei sensi primari come vista e udito.

Lo stato dell’arte nell’ambito del riconoscimento visivo è rappresentato da algoritmi

basati su Reti Neurali Convolutive. In particolare, queste hanno dimostrato essere molto

più accurate rispetto ad altri metodi nel riconoscimento di vari oggetti.

Per il riconoscimento di pedoni, metodi basati su Aggregated Channel Features sono

quelli che invece garantiscono risultati migliori in termini di tempo di elaborazione ed

accuracy.

Questo lavoro ha come obiettivo quello dell’addestramento di una Rete Neurale Convo-

lutiva per il riconoscimento di pedoni, partendo da quello che è stato fatto, in modo da

verificare se, come è accaduto nel riconoscimento di altri oggetti, l’utilizzo di CNN porta

a risultati con un accuratezza almeno comparabile con i metodi allo stato dell’arte.

I risultati trovati confermano le aspettative: CNN ha successo nell’operazione di ri-

conoscimento di persone, con prestazioni comparabili con quello di metodi allo stato

dell’arte. Applicazioni come quelle per scopi militari, di sorveglianza o di tracciamento

di pedoni per sistemi di assistenza su veicoli [8], [9], [10] possono trarre particolare

beneficio dall’utilizzo da questi modelli, con il potenziale per salvare numerose vite.

Abstract

In the field of Artificial Intelligence, one of the latest goal that has recently been tried

to achieve is the creation of systems with better “primary senses” than humans, or at

least similar, like hearing and sight.

The state of the art in visual recognition is represented by Convolutional Neural Net-

works based algorithms. In particular, they have been proved to produce much more

accurate results than other methods in classification tasks on a variety of objects.

In the case of pedestrian detection instead, Aggregated Channel Features achieves the

best results in terms of both execution time and accuracy.

This work aims at training a Convolutional Neural Network for pedestrian detection,

starting from what has been done so far to verify, like has happened detecting other

objects, if CNNs produce results that are at least comparable with the state of the art

ones.

The results confirm the trend: CNNs succeed in the task of pedestrian detection, with

comparable performance to the state of the art methods. Applications such as military

surveillance or automotive applications [8], [9], [10] are particularly compelling as they

have the potential to save numerous lives.

Acknowledgements

I would like to express my gratitude to my advisor Prof. Marco Tagliasacchi for his

willingness and for the support offered during the preparation of my thesis. This has been

a very challenging yet incredible experience and I am really happy for the opportunity

of working on this new topic which is defining the new frontier of computer vision.

I would like also to thank my assistant advisors, Luca Bondi and Luca Baroffio, for

helping me to solve problems I faced with throughout all the thesis, supporting me and

teaching me how to face problems in the research world.

My sincere thanks goes to Federico Monti for the mutual collaboration in our theses

that led us at developing a method that compete with the state of the art ones.

Lastly, I would like to thank my family who always supported me and believed in me,

making all of this possible.

11

Introduction

In the field of computer vision, the capability of reliably detect pedestrians in real-world

images is interesting for several applications, such as

• intelligent video surveillance systems: it provides the fundamental information for

semantic understanding of the video footage

• automatic driver-assistance systems in vehicles: due to the potential for improving

safety systems

• part of driverless vehicle navigation systems.

At the same time, pedestrian detection is one of the most challenging categories for

object detection, for a variety of reasons:

• Various style of clothing in appearance

• Different possible articulations

• The presence of occluding accessories

• Frequent occlusion between pedestrians

Finally, in many applications several people may be present in the same image region,

partially occluding each other and adding to the difficulty.

Despite the challenges, pedestrian detection still remains an active research area in

computer vision in recent years.

12

Introduction 13

Many pedestrian detectors have been developed to address these challenges, such as

holistic detection, e.g. the image features inside the local search window meet certain

criteria [11] or histogram of oriented gradients [1]. Others use part-based detection, e.g.

pedestrians are modeled as collections of parts [12],[13],[14], silhouettes [15],[16],[17]; or

an assembly of local feature [18], and then employ classifiers such as boosting [19], and

SVM [1] to decide wether a detected window should be classified as a pedestrian or not.

In recent years, deep learning has been applied to pedestrian detection and achieved

promising results [20], [21]. Instead of using handcrafted features, it can automatically

learn features in an unsupervised or supervised fashion. They are stacked into multiple

layers so as to map the raw data into gradually higher-level representations [20]. The

entire network is fine-tuned with label information and the top layer output is often

adopted as features to train classifiers.

The growing number of low-power pervasive computing platforms available nowadays

in industrial and scientific applications enforces the development of distributed intelli-

gence Visual Sensor Networks. In particular, a basic Visual Sensor Network consists of a

group of nodes, each equipped with a low power embedded processor, an energy source,

one or more image sensors and a network adapter for communications [22]. These low

power sensor nodes send data to a powerful central node, the sink, which takes care of

collecting and processing all the data coming from the sensor nodes or even from other

VSNs, in the workflow known as Compress-Then-Analyze.

Conversely the Analyze-Then-Compress paradigm [23] proposes another working schema:

features extraction is performed directly on sensor nodes and a compact representation

of the features is sent to the sink node. The ATC paradigm also reduces the load at

the sink node, allowing more sensor nodes to send data to a single sink node sharing a

limited bandwidth communication channel.

Neural networks are inherently parallel algorithms [24] that can be used with both ATC

and CTA paradigms

• CTA: The node could be just the camera that compresses the video footage, and

the sink node is a very powerful GPU that can quickly process all the incoming

data from the different nodes.

Introduction 14

• ATC: The node could be a dedicated hardware that acquires the content, processes

it resorting to the CNN model, compresses the data and transmit them to the

central controller that just interpret the information coming from the different

nodes.

Ad-hoc hardware specifically designed on the neural network model, can take advantage

of this parallelism, making fast parallel computation with a limited computational power.

The present work shows the sequence of steps performed for optimizing the accuracy of

Convolutional Neural Network for pedestrian detection. Starting from a state-of-the-art

method called R-CNN, this is extended by substituting some of its modules with other

techniques that lead to better results. Using this, then some operations like filtering,

tuning the model, ecc. are performed for a further result improvement.

Chapter 1 recaps the State of the Art for Pedestrian Detection analyzing all the methods,

with particular interest in those that are extended by the proposed method.

Chapter 2 recaps the pedestrian datasets, showing which are the most used and the

statistics of those datasets.

Chapter 3 analyzes the R-CNN method that has been used as a starting point, defining

what we need to better perform in term of time and accuracy.

Chapter 4 defines a sliding window approach to prove the observations done in the

previous chapter.

Chapter 5 defines an extended version of the sliding window approach that achieves

state-of-the-art results.

Chapter 6 shows how the defined method has to be transformed in order to be able to

apply the ATC paradigm on a specific hardware.

Finally, in Chapter 7 possible future works are proposed to continue the investigation

on model compression, without loosing to much accuracy.

Chapter 1

Review of the State of the Art

In this section the state-of-the-art methods for pedestrian detection are analyzed. These

are the milestones which defined the path for the presented work: from the first detection

framework (Viola–Jones), moving to a very robust and widely used method (HOG),

which has been integrated into the more recent ACF and LDCF methods, to finally

consider the starting point of the thesis (AlexNet and R-CNN).

1.1 Viola – Jones detector

The Viola – Jones object detection framework is the first object detection framework

to provide competitive object detection rates in real-time, proposed in 2001 by Paul Viola

and Michael Jones [25]. Although it can be trained to detect a variety of object classes,

it was motivated primarily by the problem of face detection.

The main characteristics of Viola–Jones algorithm which makes it a good detection

algorithm are:

• Robust: very high true-positive rate and very low false-positive rate

• Real time

• Face detection and not recognition: distinguish faces from non-faces

15

Chapter 1. State of the Art 16

The algorithm has mainly three stages:

1. Haar Features Selection

2. Creating Integral Image

3. Adaboost Classifier

The features employed by the detection framework universally involve the sums of image

pixels within rectangular areas. Figure 1.1 illustrates the different types of features used

in the framework. The value of any given feature is always simply the sum of the pixels

within clear rectangles subtracted from the sum of the pixels within shaded rectangles.

They are sensitive to vertical and horizontal features, and their feedback is considerably

coarser.

Figure 1.1: Viola – Jones feature types

All human faces share some similar properties. This knowledge is used to construct

certain features known as Haar Features. The properties that are similar for a human

face are:

• The eyes region is darker than the upper-cheeks

• The nose bridge region is brighter than the eyes

Chapter 1. State of the Art 17

Haar Feature that looks similar to the bridge of
the nose is applied onto the face

Haar Feature that looks similar to the eye region
which is darker than the upper cheeks is applied

onto a face

3rd and 4th kind of Haar Feature

Figure 1.2: Viola – Jones: Haar Features applied onto a face.

Knowing this, one can apply what is show in Figure 1.2.

To speed up the overall process, then with the use of an image representation called the

integral image, rectangular features can be evaluated in constant time, which gives

them a considerable speed advantage.

Finally, the identified features are input to the classifier.

1.2 Histogram of Oriented Gradients

The Histogram of Oriented Gradients is a feature descriptor used in computer vision and

image processing for the purpose of object detection. The technique counts occurrences

of gradient orientation in localized portions of an image.

The essential thought behind the HOG descriptor is that local object appearance and

shape within an image can be described by the distribution of intensity gradients and

Chapter 1. State of the Art 18

edge directions. The image is divided in small connected regions called cells (see Fig-

ure 1.3), and for the pixels within each cell, a HOG detection is compiled. The de-

scriptor is then the concatenation of these histograms. For improved accuracy, the local

histograms can be contrast-normalized by calculating a measure of the intensity across

a larger region of the image, called a block (see Figure 1.3), and then using this value

to normalize all cells within a block. This normalization results in better invariance to

changes in illumination and shadowing. The overview of feature extraction and object

detection is showed in Figure 1.4.

Figure 1.3: Blocks and Cells in HOG

Figure 1.4: Overview of feature extraction and object detection in HOG

The first step consists in the computation of the gradient values. This is done by

applying the 1-D centered, point discrete derivative mask in the horizontal and vertical

directions. Specifically, it requires filtering the color or intensity data of the image with

the following filter kernels:

[
−1 0 1

]
and

[
−1 0 1

]T
(1.1)

Fox example, in Figure 1.5 is represented a subset of a grayscale image, showing the

pixel values neighbouring to a specific point. Using both filters defined in Eq. 1.1, it is

possible to compute the gradient of that specific point, as

∆f =

∂f∂x
∂f
∂y

 =

−1 ∗ 56 + 1 ∗ 94

−1 ∗ 93 + 1 ∗ 55

 =

 38

−38

 (1.2)

Chapter 1. State of the Art 19

from which is then possible to extract the magnitude and the orientation (in the range

[0, 180])

magnitude =
√

(−38)2 + (38)2) = 53.74 (1.3)

orientation = arctan

(
∂f

∂y
,
∂f

∂x

)
= arctan

(
38

38

)
= 45 (1.4)

Figure 1.5: Filtering example

The second step is creating the cell histogram. Each pixel within the cell casts a weighted

vote for an orientation based histogram channels based on the values found in the gra-

dient computation. The histogram channels are evenly spread over 0 to 180 degrees.

As previously said, to account for changes in illumination and contrast, the gradient

strength must be locally normalized, grouping cells into blocks. The HOG descriptor is

then the concatenated vector of the components of the normalized cell histograms from

all of the block regions.

For pedestrian detection, Dalal et al. [1] tested different configurations (see Figure 1.6)

in order to find the one that produces the best results, which is:

• 9 orientation bins in the [0-180] orientation range

• 16× 16 pixel blocks

• 8× 8 pixel cells

Chapter 1. State of the Art 20

• block spacing stride of 8 pixels: number of pixels the block is moved from one

normalization to the next one (size of one cell), as visible in Figure 1.3.

• 64× 128 detection window

• linear SVM classifier

Figure 1.6: HOG block and cell size [1]

The HOG features overlapped to the image they are taken from, is shown in Figure 1.7.

Figure 1.7: HOG features ovelapping the original image

Chapter 1. State of the Art 21

1.3 Aggregated Channel Features

Aggregated Channel Features is an object detector method, based on Fast Features

Pyramids [2]. It proves that the behaviour of image features can be predicted reliably

across scales, showing that is possible to estimate features at a given scale inexpensively,

by extrapolating computation carried out at a coarsely sampled set of scales.

1.3.1 Fast Features Pyramids

The idea behind Fast Features Pyramids is that intuitively, the information content of an

upsampled image is similar to that of the original, lower resolution image. In particular,

let M ′(i, j) ≈ 1
kM

(
d ike, d

j
ke
)

denote the gradient magnitude in an upsampled discrete

image. Then
kn∑
i=1

km∑
j=1

M ′(i, j) ≈ k
n∑
i=1

m∑
j=1

M(i, j) (1.5)

Thus, the sum of gradient magnitudes in the original and upsampled image should be

related by a factor of k. Therefore, according to the definition of gradient histograms,

what happens is that: h′q ≈ khq, allowing us to approximate gradient histograms in an

upsampled image using gradients computed at the original scale.

Considering down-sampled images, Piotr at al. [2] proved that Eq. 1.5 applies as well.

An example of the application can be found in Figure 1.8

Figure 1.8: Approximating gradient histograms in images resampled by a factor of
two [2]

Chapter 1. State of the Art 22

An important formula governing feature scaling, is the power law,

fΩ(Is1)

fΩ(Is2)
= (s1/s2)−λΩ + ε (1.6)

where

• Is represents image I at scale s

• fΩ(I) denotes an arbitrary scalar image statistic

• λΩ represents the coefficient for which the power law is satisfied for a statistic

• ε denotes the deviation from the power law for a given image

and each image statistic has its own corresponding λΩ, which is possible to determine

empirically.

Considering a general image, a “channel” is a conventional term used to refer to a certain

component of that image. The simplest example of channels are the three components

defining any coloured image: R, G and B (Red, Green and Blue). Staring from the

power law governing feature scaling (Eq. 1.6), an extension that applies directly to

channel images is proposed: the standard approach to compute features at different

scales, was to compute the channel at scale s, Cs = Ω(R(I, s)), where R(I, s) denotes

image I resampled by s, without considering the information contained in the original

scale image, C = Ω(I). Conversely, the new approach (see Figure 1.9) proposes the

following approximation, using the already available data

Cs ≈ R(C, s) · s−λΩ (1.7)

Feature pyramid is the multi-scale representation of an image I where channels are

computed at every scale s. What is done is basically compute Cs = Ω(R(I, s)) at just one

scale per octave
(
s ∈ {1, 1

2 ,
1
4 , . . .}

)
, while at intermediate scales, Cs is computed using

Eq. 1.7 (see Figure 1.10). This provides a good tradeoff between speed and accuracy.

Chapter 1. State of the Art 23

Figure 1.9: Feature channel scaling [2]

Figure 1.10: Fast feature pyramids. Color and grayscale icons represent images and
channels [2]

1.3.2 ACF

The ACF detection framework is conceptually straightforward (see Figure 1.11). Given

an image I, compute several intermediate channels C = Ω(I), sum every block of pixels

in C, and finally smooth the resulting lower resolution channel.

Figure 1.11: Overview of the ACF detector. Boosting is used to learn decision trees
over these features (pixels) to distinguish object from background.

Chapter 1. State of the Art 24

The channels used by ACF are

• normalized gradient magnitude

• histogram of oriented gradients (see Sec. 1.2)

• LUV color channels

These channels are show in Figure 1.12, computed on one frame taken from the Caltech

pedestrian dataset.

Original image Normalized gradient magnitude

Histogram of oriented gradients LUV color channels

Figure 1.12: ACF channels computed on an image

In the channels computation, Fast Features Pyramids (see Sec. 1.3.1) is used to compute

the approximations at octave-spaced scale intervals. After that, a sliding window ap-

proach is used. This is a very simple method where a window of size 128× 64 is moved

over the image, defining which portion of image has to be considered in our computation

for extracting the information we need.

Chapter 1. State of the Art 25

For pedestrian detection, AdaBoost [26] classifier is used to train and combine a lot of

depth-two trees over the candidate features in each 128× 64 window. For 640× 480

images, the complete system, including fast pyramid construction and sliding-window

detection, runs at over 30 fps.

1.4 Locally Decorrelated Channel Features

Decision trees with orthogonal splits – also known as axis-aligned decision trees – are

very popular in detection. They work by deciding at each decision node, the single

feature to be used, that best splits the data. A possible explanation for the persistence

of orthogonal splits is their efficiency: oblique (multiple feature) splits incur considerable

computational cost during both training and detection. Nevertheless, oblique trees can

hold considerable advantages.

To achieve similar advantages of oblique trees, LDCF [27] proposes to decorrelate fea-

tures prior to applying orthogonal trees. To do so, it introduces an efficient feature

transform that removes correlations in local image neighborhoods. The result is an

overcomplete but locally decorrelated representation that is ideally suited for use with

orthogonal trees.

In oblique trees, every split is based on a linear projection of the data z = wTx, followed

by thresholding. To obtain w in practice, linear discriminant analysis (LDA) is a natural

choice for obtaining discriminative splits efficiently [28]. LDA aims to minimize within-

class scatter while maximizing between-class scatter. In particular

w = Σ−1 (µ+ − µ−) (1.8)

where Σ is a class-independent covariance matrix. Let Σ = QΛQT be the eigendecom-

position of Σ, then by this, the following transformations are defined:

• decorrelation: QT

• PCA-whitening : Λ−
1
2QT

Chapter 1. State of the Art 26

• ZCA-whitening : QΛ−
1
2QT

Figure 1.13 shows the result of boosting orhtogonal decision trees on the various trans-

formed features. Therefore, it’s possible to create a decorrelated representation by com-

puting QTp.

Figure 1.13: A comparison of boosting with orthogonal decision trees on transformed
data. Orthogonal trees with both decorrelation and PCA-whitened features show im-

proved generalization, while ZCA-whitening is ineffective.

To reduce dimensionality and to speed up the orthogonalization process, LDCF proposes

to utilize the top-k eigenvectors in Q: the intuition is that the top eigenvectors capture

the salient neighborhood structure (experimentally confirmed [28]).

Given the new locally decorrelated channels, all other training and testing ACF’s steps

remain identical (see Sec. 1.3).

1.5 Convolutional Neural Networks

Deep learning is a branch of machine learning that is advancing the state of the art

for perceptual problems like vision and speech recognition. We can pose these tasks as

mapping concrete inputs such as image pixels or audio waveforms to abstract outputs

like the identity of a face or a spoken word. The “depth” of deep learning models

comes from composing functions into a series of transformations from input, through

intermediate representations, and onto output. The overall composition gives a deep,

layered model, in which each layer encodes progress from low-level details to high-level

concepts. This yields a rich, hierarchical representation of the perceptual problem.

Chapter 1. State of the Art 27

The strength of deep models is that they are not only powerful but learnable. The

capacity to represent a function is not enough if all the details of it cannot be described

and engineered. The visual world is too vast and varied to fully describe by hand, so

it has to be learned from data. A deep net is trained by feeding it input and letting it

compute layer-by-layer to generate output for comparison with the correct answer.

Convolutional Neural Networks (CNN) are a particular type of deep models responsible

for many exciting recent results in computer vision, e.g. AlexNet [4] in 2012, which

won the world-wide ImageNet Large-scale Visual Recognition Challenge (ILSVRC).

In a CNN, the key computation is the convolution of a feature detector with an input

signal (see Figure 1.14). At the first layer of a CNN the features go from individual

pixels to simple primitives like horizontal and vertical lines, circles, and patches of color.

In contrast to conventional single-channel image processing filters, these CNN filters

(translation-invariant) are computed across all of the input channels.

Figure 1.15 shows what the network has learned by computing its top-5 predictions on

eight test images.

Figure 1.14: First layer of the learned convolutional filters [3]

Chapter 1. State of the Art 28

Figure 1.15: Test images and the five labels considered most probable by this model

1.5.1 Architecture

As shown in Figure 1.16, the net contains eight layers with weights; the first five are

convolutional and the remaining three are fully-connected, which means that every input

of the layers, is taken into account to compute every output of the same layers.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

Figure 1.16: Illustration of the architecture of the CNN [4]

Convolutional layers consist of a rectangular grid of neurons. They require the pre-

vious layer also to be a rectangular grid of neurons. Each neuron takes inputs from a

rectangular section of the previous layer; there are many convolution kernels in each

layer, and each kernel is replicated over the entire image with the same parameters.

Chapter 1. State of the Art 29

Thus, the convolutional layer is just an image convolution of the previous layer, where

the weights specify the convolution filter and they are taken by a convolutional kernel.

Suppose there is some N × N square neuron layer which is followed by a convolu-

tional layer. If an m×m filter ω is used, the convolutional layer output will be of size

(N −m+ 1)×(N −m+ 1). In order to compute the pre-nonlinearity input to some unit

xlij in the layer, we need to sum up the contributions (weighted by the filter components)

from the previous layer cells:

xlij =
m−1∑
a=0

m−1∑
b=0

ωab · yl−1
(i+a)(j+b) (1.9)

In Figure 1.17 an example of convolution.

35 40 41 15 50

40 40 42 46 52 0 1 0

42 46 50 55 55 × 0 0 0 = 42

48 52 56 58 60 0 0 0

56 60 65 70 75

kernelinput output

Figure 1.17: Convolution layer: example

Then, the convolutional layer applies its nonlinearity:

ylij = h(xlij) (1.10)

Unlike a hand-coded convolution kernel (Sobel, Prewitt, Roberts), in a CNN, the pa-

rameters of each convolution kernel are trained by the backpropagation algorithm. The

function of the convolution operators is to extract different features of the input (see

Figure 1.18).

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in

the same kernel map. Traditionally, the neighborhoods summarized by adjacent pooling

units do not overlap. To be more precise, a pooling layer can be thought of as consisting

of a grid of pooling units spaced s pixels apart, each summarizing a neighborhood of size

z×z, centred at the location of the pooling unit. By setting s = z, we obtain traditional

local pooling as commonly employed in CNNs. By setting s < z, we obtain overlapping

Chapter 1. State of the Art 30

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Figure 1.18: AlexNet: visualization of features in a fully trained model, showing the
top 9 activations, projected down to pixels using deconvolutional network [5] approach.

pooling. This is what it’s use throughout this network, with s = 2 and z = 3 and an

example is shown in Figure 1.19.

35 40 41 15 50
40 40 42 46 52 50 55
42 46 50 55 55
48 52 56 58 60
56 60 65 70 75

input output:	 max	 pooling

Figure 1.19: Max pooling layer: example

This scheme reduces the top-1 and top-5 error rates by 0.4% and 0.3%, respectively,

as compared with the non-overlapping scheme s = 2, z = 2, which produces output of

equivalent dimensions [4].

Finally, after several convolutional and max pooling layers, the high-level reasoning in

the neural network is done via fully connected layers. A fully connected layer takes

all neurons in the previous layer (be it fully connected, pooling, or convolutional) and

connects it to every single neuron it has. Fully connected layers are not spatially located

anymore, so there can be no convolutional layers after a fully connected layer.

The output of the last fully-connected layer is fed to a 1000-way softmax which produces

a distribution over the 1000 class labels.

Chapter 1. State of the Art 31

1.5.2 Back propagation

Back propagation is a common method for training artificial neural networks used in

conjunction with an optimization method such as gradient descent. The method calcu-

lates the gradient of a loss function with respect to all the weights in the network. The

gradient is fed to the optimization method which in turn uses it to update the weights,

in an attempt to minimize the loss function.

Suppose the training set {(x(1), y(1)), . . . , (x(m), y(m))} of m training examples is given.

For a single training example (x,y), a cost function with respect to that single example

is defined to be

J(W, b;x, y) =
1

2
‖hW,b(x)− y‖2 . (1.11)

where hW,b(x) is the resulting value after applying the activation function to W · x+ b.

The overall cost function is then

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(1.12)

=

[
1

m

m∑
i=1

(
1

2

∥∥∥hW,b(x(i))− y(i)
∥∥∥2
)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(1.13)

where nl is the number of layers and sl the number of neurons in the l-th layer.

The first part of the formula is an average of sum-of-square errors while the second part

is the weight decay term, used for decreasing the magnitude of the weights, and helps

prevent overfitting: the weight decay parameter λ controls the relative importance

of the two terms.

To train the neural network, each parameter W
(l)
ij and b

(l)
i is initialized to a small random

value near zero according to a Normal(0, ε) distribution for some small ε, and then apply

an optimization algorithm such as batch gradient descent.

Chapter 1. State of the Art 32

The Gradient descent update formula for both W,b parameters is as follows:

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (1.14)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b) (1.15)

where α is the learning rate. In this way, at each iteration, all the weights contained

in the model are updated layer-by-layer, considering the error that has been done with

the pervious weight values.

Backpropagation provides an efficient way for computing the derivatives, and the intu-

ition behind it is as follows. Given a training example (x,y), “forward pass” is run to

compute all the activations throughout the network, including the output value of the

hypothesis hW,b(x). Then, for each node i in layer l, an “error term” δli is computed. It

measures how much a node is “responsible” for any errors in the output. For an output

node, we can directly measure the difference between the network’s activation and the

true target value, and use that to define δnl
i (where layer nl is the output layer).

In details:

1. For each output i in layer nl (the output layer), set

δ
(nl)
i =

∂

∂W
(nl)
ij

1

2
‖y − hW,b(x)‖2 = −(yi − h(a

(nl)
i)) · h′(a(nl)

i) (1.16)

where a
(nl)
i is the weighted sum and h the activation function.

2. For l = nl − 1, · · · , 2 and for each node i in layer l, set

δ
(l)
i =

sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

h′(a
(l)
i) (1.17)

Chapter 1. State of the Art 33

3. Compute the desired partial derivatives, which are given as

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i (1.18)

∂

∂b
(l)
i

J(W, b;x, y) = δ
(l+1)
i . (1.19)

4. Compute the derivatives of the overall cost function

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i))

]
+ λW

(l)
ij (1.20)

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)) (1.21)

Here weight decay is applied only to W but not to b.

1.5.3 Dropout

The recently-introduced technique, called “dropout” [29], consists of setting to zero the

output of each hidden neuron with probability 0.5. The neurons which are “dropped

out” in this way do not contribute to the forward pass and do not participate in back-

propagation. So every time an input is presented, the neural network samples a different

architecture, but all these architectures share weights. This technique reduces complex

co-adaptations of neurons, since a neuron cannot rely on the presence of particular

other neurons. It is, therefore, forced to learn more robust features that are useful in

conjunction with many different random subsets of the other neurons.

1.6 R-CNN

Regions with CNN features (R-CNN) [30] object detection system consists of three

modules:

• The first generates category-independent region proposals. These proposals

define the set of candidate detections available to our detector.

Chapter 1. State of the Art 34

• The second is a large CNN (e.g. AlexNet, see Sec. 1.5) that extract a fixed length

feature vector from each region.

• The third module is a set of class-specific linear SVMs.

1.6.1 Region Proposal

A variety of recent papers offer methods for generating category-independent region

proposals. Among these, Selective Search [31] has been chosen. This uses a data-driven

grouping-based strategy, where it increases diversity by using a variety of complementary

grouping criteria and a variety of complementary colour spaces with different invariance

properties. The goal is to generate a class-independent, data-driven, selective search

strategy that generates a small set of high-quality object locations.

A selective search algorithm is subject to the following design considerations

• Capture All Scales. Object can occur at any scale within the image. Further-

more, some objects have less clear boundaries then other objects.

• Diversification. There is no single optimal strategy to group regions together.

• Fast to compute. The goal of selective search is to yield a set of possible object

locations for use in a particular object recognition framework.

Bottom-up grouping is a popular approach to segmentation, hence this is adapted for

selective search. Because the process of grouping itself is hierarchical, we can naturally

generate locations at all scales by continuing the grouping process until the whole image

becomes a single region.

To create initial regions a method defined by Felzenszwalb et al. [32] is used. It defines

some initial beans placed on the image, which are then left to grow using a greedy

algorithm that iteratively group regions together. First the similarities between all

neighbouring regions are calculated. The two most similar regions are grouped together,

and new similarities are calculated between the resulting region and its neighbours. The

Chapter 1. State of the Art 35

process of grouping the most similar regions is repeated until the whole image becomes

a single region.

For the similarity s(ri, rj) between region ri and rj a variety of complementary mea-

sures is used, under the constraint that they are fast to compute. In particular these

complementary similarity measures are

• colour similarity

scolour(ri, rj) =
n∑
k=1

min(cki , c
k
j) (1.22)

• texture similarity

stexture(ri, rj) =

n∑
k=1

min(tki , t
k
j) (1.23)

• size similarity

ssize(ri, rj) = 1− size(ri) + size(rj)

size(im)
(1.24)

• fill similarity

sfill(ri, rj) = 1− size(BBij)− size(ri)− size(rj)

size(im)
(1.25)

The final similarity measure is a combination of the above four

s(ri, rj) = a1scolour(ri, rj) + a2stexture(ri, rj) + a3ssize(ri, rj) + a4sfill(ri, rj) (1.26)

1.6.2 Feature extraction

A 4096-dimensional feature vector is extracted from each region proposal using the im-

plementation of the CNN described by Krizhevsky et al. [4]. Features are computed by

forward propagating a mean-subtracted 227×227 RGB image through five convolutional

layers and two fully connected layers (not three because the last two layers are substi-

tuted by a SVM classifier). Since this architecture requires inputs of a fixed 227 × 227

pixel size, regardless of the size or aspect ratio if the candidate region, all pixels are

warped in a tight bounding box around it to the required size.

Chapter 1. State of the Art 36

Detection average precision (%) on VOC 2010 test can be seen in Table 1.1.

VOC 2010 test aereo bike bird boat bottle bus car cat chair cow
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3

VOC 2010 test table dog horse mbike person plant sheep sofa train tv mAP
R-CNN 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2

Table 1.1: Detection average precision on VOC 2010 test.

Chapter 2

Datasets

2.1 Pascal Visual Object Classes

The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object

category recognition and detection, providing the vision and machine learning com-

munities with a standard dataset of images and annotation, and standard evaluation

procedures. Organised annually from 2005 to present, the challenge and its associated

dataset has become accepted as the benchmark for object detection.

For the 2007 challenge, all images were collected from the Flickr photo-sharing website.

The use of personal photos which were not taken by, or selected by, vision/machine

learning researchers results in a very ‘unbiased’ dataset, in the sense that the photos are

not taken with a particular purpose in mind i.e. object recognition research. Qualita-

tively the images contain a very wide range of viewing conditions (pose, lighting, etc.)

and they are not focused on a particular object, e.g. there are images of motorcycles in

a street scene, rather than solely images where a motorcycle is the focus of the picture.

In total, 500.000 images were retrieved from Flickr. For each of the 20 object classes to

be annotated (see Figure 2.1), images were retrieved by querying Flickr with a number

of related keywords.

37

Chapter 2. Datasets 38

aereoplane bicycle bird boat bottle

bus car cat chair cow

dinning table dog horse motorbike person

potted plant sheep sofa train TV/monitor

Figure 2.1: Example of images from the VOC2007 dataset. Bounding boxes indicate
all instances of the corresponding class in the image.

2.2 Caltech Dataset

The Caltech Pedestrian Dataset consists of approximately 10 hours of 640x480 30Hz

video taken from a vehicle driving through regular traffic in an urban environment.

About 250.000 frames (corresponding to∼ 137 minutes) with a total of 350.000 bounding

boxes and 2300 unique pedestrians were annotated. The annotation includes temporal

correspondence between bounding boxes and detailed occlusion labels (bounding boxes

that denote the visible and full pedestrian extent).

This dataset is two order of magnitude larger than any existing dataset. The pedestrians

vary widely in appearance, pose and scale; furthermore, occlusion information is anno-

tated (see Figure 2.2). These statistics are more representative of real world applications

and allow for in depth analysis of existing algorithms.

Chapter 2. Datasets 39

Figure 2.2: Example images (cropped) and annotations. The solid green boxes denote
the full pedestrian extent while the dashed yellow boxes denote the visible regions [6]

About 50% of the frames have no pedestrians, while 30% have two or more. Pedestrians

are visible for 5s on average. In Figure 2.3, there is a detailed analysis of the distribution

of pedestrian scale. This serves as a foundation for establishing the requirements for a

real world system.

DOLLÁR et al.: PEDESTRIAN DETECTION: AN EVALUATION OF THE STATE OF THE ART 3

Fig. 3. The annotation tool allows annotators to efficiently
navigate and annotate a video in a minimum amount of time.
Its most salient aspect is an interactive procedure where the
annotator labels only a sparse set of frames and the system au-
tomatically predicts pedestrian positions in intermediate frames.
The annotation tool is available on the project website.

bounding box (BB) around the same pedestrian in at least
two frames, BBs in intermediate frames are interpolated
using cubic interpolation (applied independently to each
coordinate of the BBs). Thereafter, every time an anno-
tator alters a BB, BBs in all the unlabeled frames are re-
interpolated. The annotator continues until satisfied with
the result. We experimented with more sophisticated
interpolation schemes, including relying on tracking;
however, cubic interpolation proved best. Labeling the
⇠2.3 hours of video, including verification, took ⇠400
hours total (spread across multiple annotators).

For every frame in which a given pedestrian is visible,
annotators mark a BB that indicates the full extent of
the entire pedestrian (BB-full); for occluded pedestrians
this involves estimating the location of hidden parts. In
addition a second BB is used to delineate the visible re-
gion (BB-vis), see Figure 5(a). During an occlusion event,
the estimated full BB stays relatively constant while the
visible BB may change rapidly. For comparison, in the
PASCAL labeling scheme [14] only the visible BB is
labeled and occluded objects are marked as ‘truncated’.

Each sequence of BBs belonging to a single object
was assigned one of three labels. Individual pedestrians
were labeled ‘Person’ (⇠1900 instances). Large groups
for which it would have been tedious or impossible to
label individuals were delineated using a single BB and
labeled as ‘People’ (⇠300). In addition, the label ‘Person?’
was assigned when clear identification of a pedestrian
was ambiguous or easily mistaken (⇠110).

2.2 Dataset Statistics
A summary of the dataset is given in Figure 2(b).
About 50% of the frames have no pedestrians, while
30% have two or more, and pedestrians are visible for
5s on average. Below, we analyze the distribution of
pedestrian scale, occlusion and location. This serves to
establish the requirements of a real world system and
to help identify constraints that can be used to improve
automatic pedestrian detection systems.

16 32 64 128
0

0.05

0.1
803015%

far
69%

medium
16%
near

height (pixels)

p
ro

b

(a) height distribution

0.25 0.5 1
0

0.02

0.04

0.06

0.08
µ = 0.41

aspect ratio (w/h)
p

ro
b

(b) aspect ratio

(c) scene geometry

0 20 40 60 80 100 120
0

30

80

160
n

e
a

r
m

e
d

fa
r

4s

1.5s

distance from camera (m)

h
e

ig
h

t
(p

ix
e

ls
)

(d) distance vs. height

Fig. 4. (a) Distribution of pedestrian pixel heights. We define
the near scale to include pedestrians over 80 pixels, the medium
scale as 30-80 pixels, and the far scale as under 30 pixels.
Most observed pedestrians (⇠69%) are at the medium scale.
(b) Distribution of BB aspect ratio; on average w ⇡ .41h. (c)
Using the pinhole camera model, a pedestrian’s pixel height h is
inversely proportional to distance to the camera d: h/f ⇡ H/d.
(d) Pixel height h as a function of distance d. Assuming an urban
speed of 55 km/h, an 80 pixel person is just 1.5s away, while a 30
pixel person is 4s away. Thus, for automotive settings, detection
is most important at medium scales (see §2.2.1 for details).

2.2.1 Scale Statistics

We group pedestrians by their image size (height in pix-
els) into three scales: near (80 or more pixels), medium
(between 30-80 pixels) and far (30 pixels or less). This di-
vision into three scales is motivated by the distribution of
sizes in the dataset, human performance and automotive
system requirements.

In Figure 4(a), we histogram the heights of the
350,000 BBs using logarithmic sized bins. The heights
are roughly lognormally distributed with a median of
48 pixels and a log-average of 50 pixels (the log-average
is equivalent to the geometric mean and is more rep-
resentative of typical values for lognormally distributed
data than the arithmetic mean, which is 60 pixels in this
case). Cutoffs for the near/far scales are marked. Note
that ⇠69% of the pedestrians lie in the medium scale,
and that the cutoffs for the near/far scales correspond to
about ±1 standard deviation (in log space) from the log-
average height of 50 pixels. Below 30 pixels, annotators
have difficulty identifying pedestrians reliably.

Pedestrian width is likewise lognormally distributed,
and moreover so is the joint distribution of width and
height (not shown). As any linear combination of the
components of a multivariate normal distribution is

Figure 2.3: Pedestrian height distribution. Most pedestrians are observed at the
medium scale (30-80 pixels)

2.2.1 Training and Testing Data

The Caltech Pedestrian Dataset was captured over 11 sessions. These sessions are di-

vided as follows:

• Train-set: from set00 to set05

• Test-set: from set06 to set10

Chapter 2. Datasets 40

In particular, statistics on train/test sets can be found in table 2.1.

Training Testing

#
p

ed
es

tr
ia

n
s

#
n

eg
.

im
ag

es

#
p

os
.

im
ag

es

#
p

ed
es

tr
ia

n
s

#
n

eg
.

im
ag

es

#
p

os
.

im
ag

es

Caltech 192k 61k 67k 155k 56k 65k

Table 2.1: Caltech statistics

Furthermore, what has been proven to achieve better result [33] is to extract from train

and test datasets images with a different sampling rate:

• train set: extract 1 image every 3 frames, e.g. 2, 5, . . .

• test set: extract 1 image every 30 frames, e.g frame 29, 59, . . .

This leads to a filtered dataset, whose main features are shown in Table 2.2.

set num images num positive regions

tr
a
in

0 8559 7232
1 3619 2903
2 7410 588
3 7976 3023
4 7328 1235
5 7890 1394

te
st

6 1155 903
7 746 1297
8 657 352
9 738 557
10 728 776

Table 2.2: Caltech dataset: number of images per set

Chapter 2. Datasets 41

These data can be arranged in different scenarios for training the model:

• Scenario-A: Train using sessions 0–5, test on sessions 6–10

• Scenario-B : Perform 6-fold cross validation using train session, test on test sessions

This dataset has been tested with a variety of state of the art methods in pedestrian

detection (see Figure 2.4), therefore using this dataset gives us a very clear idea about

how our method performs in a real world scenario with respect to the other methods.

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

95% VJ

68% HOG

43% MultiResC+2Ped

42% WordChannels

41% MT−DPM

39% JointDeep

38% SDN

38% MT−DPM+Context

37% ACF+SDt

35% InformedHaar

30% ACF−Caltech+

29% SpatialPooling

25% LDCF

22% Katamari

22% SpatialPooling+

Figure 2.4: Performance on Caltech Pedestrian dataset on unoccluded pedestrians
over 50 pixels tall

Chapter 3

R-CNN analysis

R-CNN method is a good starting point to achieve the desired goal. In order to under-

stand how this method performs on the reference dataset, if and how it can be improved,

an analysis has to be performed.

3.1 Analysis on region proposal selector

R-CNN, as described in sec. 1.6, is composed of three modules:

• Selective Search: region proposal selector

• CNN: computes features

• SVM: defines score for each region

The first one is essential in order to achieve good results (garbage-in-garbage-out): for

instance, if many good regions are discarded, CNN can only score the remaining regions

with low values; all the already filtered-out regions are lost and this results in a lot of

possible misses.

By considering the Caltech Pedestrian Dataset (see sec. 2.2) we choose to test R-CNN

in what is called by Piotr at al. [7] a reasonable evaluation dataset: evaluate

42

Chapter 3. R-CNN analysis 43

performance on pedestrian at least 50 pixels tall under no occlusion. This because

medium scale detection is essential for automotive applications. In fact, the distance of

a pedestrian can be computed using

h ≈ Hf

d
(3.1)

where H is the true object height, f the focal length and d the distance from the

camera. Assuming H ≈ 1.8m tall pedestrians and having f ≈ 1000 in pixels, we obtain

d ≈ 1800
h m. With the vehicle travelling at an urban speed of 55 km/h a 30 pixels person

is 4 seconds away. We can exclude those pedestrian that are less relevant.

Given a set of detected and ground truth bounding boxes, using R-CNN or other meth-

ods, there is also the important task of understanding which and if a detected bounding

box corresponds to a ground truth one. This is performed using the Intersection over

Union metric, used by a greedy algorithm:

IoU =
area(BBdt ∩BBgt)
area(BBdt ∪BBgt)

(3.2)

where

• BBdt is the bounding box detected by the selector

• BBgt is the bounding box ground truth, defined by the dataset

If IoU > 0.5 then two BBs i and j are considered representing the same person. The

greedy algorithms takes then the list of BBdt, sort them according to the score given

by the detector and then tries to find a match with the BBgt’s. Every time a match is

found, the corresponding BBgt is removed from the list.

Finally, the Receiver Operating Characteristic (ROC) curve is a graphical plot that

illustrates the performance of a classifier as its discrimination threshold is varied. The

ROC of R-CNN is shown in Figure 3.1, computed using the Matlab toolbox provided by

Piotr Dollar on the reasonable evaluation dataset. Furthermore, it is computed using

a portion of the test-set which is representative enough of the whole test-set. On the

Chapter 3. R-CNN analysis 44

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100
log-average miss rate = 81.28%

Figure 3.1: R-CNN ROC computed on set 06 of the test-set

horizontal axis is represented the false positive per image value:

fppi =
number false positives

number of images
(3.3)

while on the vertical axis the miss rate, defined as

miss rate =
np− tp
np

=
fn

np
(3.4)

where np is the number of ground truth regions, tp the number of correctly detected

regions and fn the number of missed regions. This plot allows, in addition to perfor-

mance comparison, also to identify which is threshold to be used on the scores, in order

to have results in the working point.

Analyzing the figure, it’s possible to see that if we want to have 0.1 false positive per

image (fppi), then the relative miss rate generated by the model is around 0.8, meaning

that every 10 images we consider, on average 1 object is wrongly classified as a person,

missing 80% of the people.

Chapter 3. R-CNN analysis 45

The ROC curve also shows the log-average miss rate value, which is a geometric mean

(
n∏
i=1

ai

)1/n

= exp

[
1

n

n∑
i=1

ln (ai)

]
(3.5)

computed using as data the miss rates sampled in[
0.0100 0.0178 0.0316 0.0562 0.1000 0.1778 0.3162 0.5623 1.0000

]
fppi. It’s

just a method used to roughly represent the goodness of a model using a scalar value

(useful for model performance comparison). The range
[
0.01 1

]
has been choosen

according to [30].

As already mentioned, one important consideration about R-CNN is that the regions

are proposed by Selective Search and scored by CNN, therefore if the first module is not

able to propose the correct regions, the following one would just give low scores.

The first plot seems to confirm that Selective Search is not a good selector for our

dataset, however to further inspect this observation, a test can be easily performed by

plotting at the ROC plot extended to 103 fppi (see Figure 3.2).

Looking at 103 fppi, it’s almost the same of looking at everything that Selective Search

proposes: the threshold defined to be in that working point is so small that the score

given by CNN is always bigger than that threshold. Furthermore, the best achievable

result is 50% miss rate: even if the CNN model is trained to achieve its best result

identifying correctly all the non-pedestrian proposals (working point close to 10−2 fppi),

it still misses 50% of the people that were there.

The results with this particular method cannot be improved, because what is lost is lost,

and all the “good” regions filtered out by Selective Search cannot be retrieved, therefore

it’s not possible to have better performance.

3.2 Result comparison

Figure 3.4 shows the ROC curve where R-CNN is compared with two important methods

in the field of object detection

Chapter 3. R-CNN analysis 46

fppi
10-2 10-1 100 101 102 103

m
is

s
ra

te

0.05

10-1

0.2

0.5

100
log-average miss rate = 81.28%

Figure 3.2: R-CNN ROC extended to 103 fppi computed on set 06 of the test-set

• HOG: Histogram of Oriented Gradients (see Sec. 1.2)

• LDCF: Locally Decorrelated Channel Features (see Sec. 1.4)

Both methods use the sliding window approach, and features of each region are scored

using a classifier. They perform much better than R-CNN and the difference starts to

be relevant from 100 fppi. It’s important to mention that while R-CNN and HOG are

trained on dataset different from the Caltech Pedestrian one (see sec. 2.2), LDCF is

trained exactly on that one. This justifies the difference in performance among them.

Always considering the selector, to inspect more in depth the importance of the region

proposals, an analysis of HOG and LDCF selectors is performed. Considering Figure 3.3

it’s possible to see that HOG produces much more misses than LDCF, resulting in a

ROC curve (see Figure 3.4) where acceptable results (0.2 miss rate) occurs with a too

large fppi.

Chapter 3. R-CNN analysis 47

number of regions per image
0 10 20 30 40 50 60

to
ta

l n
um

be
r

of
 m

is
se

s
ov

er
 th

e
da

ta
se

t

10

20

30

40

50

60

70
HOG+SVM Number of misses (60 min height px)

number of regions per image
1 2 3 4 5 6 7 8 9 10 11

to
ta

l n
um

be
r

of
 m

is
se

s
ov

er
 th

e
da

ta
se

t

13

14

15

16

17

18

19

20

21
LDCF Number of misses (50 min height px)

Figure 3.3: Total number of misses for both HOG and LDCF selector with average
numbers of regions per image

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

R-CNN - 81.28%
LDCF - 26.56%
HOG+SVM - 85.22%

Figure 3.4: R-CNN ROC comparison with HOG and LDCF.
Value after the method’s name represents the LAMR. Computed on set 06 of the test-set

3.3 Analysis of performance

Looking at the result and having analyzed how R-CNN is defined, it is possible to state

that the selective search module is not the most suited method for the used dataset

(Caltech Pedestrian Dataset Sec. 2.2). This because it returns class-independent region

Chapter 3. R-CNN analysis 48

proposals and performs well on images where there are few objects of interest placed in

foreground.

With all the observations that we have done, the substitute of Selective Search for

selecting region proposals should be a method that is able to produce a small number

of proposals and that is able to suggest regions of interest reducing as much as possible

the number of misses.

Chapter 4

Sliding Window CNN

According to the considerations done in Sec. 3.2, the first step is trying to see how CNN

model trained by Ross at al. [30] behaves giving regions proposed by a sliding window

approach: improvement in the results is expected.

4.1 Sliding Window

Sliding Window is the technique of moving a window along an image. This is done in

order to be able to analyze subparts of the image, to extract some information.

Figure 4.1 shows the way this is done, starting from an initial window size, moving to a

larger one.

Figure 4.1: Sliding Window approach. Two different scales are shown.

49

Chapter 4. Sliding Window CNN 50

The sliding window approach used as selector in this test has as parameters those defined

in Table 4.1. In particular:

• min size: smallest window size used to generate proposals

• max size: largest window size used to generate proposals

• scale step: how much the window size is increased once the whole image has been

analyzed at one scale

• stride: distance along the two dimensions by which the window is moved (Fig-

ure 4.1 shows in blue the red window shifted by a stride value on one dimension).

Region

max size min size scale step stride

200× 100 50× 25 1.1 10

Table 4.1: Sliding window parameters

When talking about sliding window, one very important parameter is the window aspect

ratio. It is defined as AR = w
h , where w stands for width and h for height. After an

analysis on the train-set (see Figure 4.2), this value has been set to AR = 0.41.

DOLLÁR et al.: PEDESTRIAN DETECTION: AN EVALUATION OF THE STATE OF THE ART 3

Fig. 3. The annotation tool allows annotators to efficiently
navigate and annotate a video in a minimum amount of time.
Its most salient aspect is an interactive procedure where the
annotator labels only a sparse set of frames and the system au-
tomatically predicts pedestrian positions in intermediate frames.
The annotation tool is available on the project website.

bounding box (BB) around the same pedestrian in at least
two frames, BBs in intermediate frames are interpolated
using cubic interpolation (applied independently to each
coordinate of the BBs). Thereafter, every time an anno-
tator alters a BB, BBs in all the unlabeled frames are re-
interpolated. The annotator continues until satisfied with
the result. We experimented with more sophisticated
interpolation schemes, including relying on tracking;
however, cubic interpolation proved best. Labeling the
⇠2.3 hours of video, including verification, took ⇠400
hours total (spread across multiple annotators).

For every frame in which a given pedestrian is visible,
annotators mark a BB that indicates the full extent of
the entire pedestrian (BB-full); for occluded pedestrians
this involves estimating the location of hidden parts. In
addition a second BB is used to delineate the visible re-
gion (BB-vis), see Figure 5(a). During an occlusion event,
the estimated full BB stays relatively constant while the
visible BB may change rapidly. For comparison, in the
PASCAL labeling scheme [14] only the visible BB is
labeled and occluded objects are marked as ‘truncated’.

Each sequence of BBs belonging to a single object
was assigned one of three labels. Individual pedestrians
were labeled ‘Person’ (⇠1900 instances). Large groups
for which it would have been tedious or impossible to
label individuals were delineated using a single BB and
labeled as ‘People’ (⇠300). In addition, the label ‘Person?’
was assigned when clear identification of a pedestrian
was ambiguous or easily mistaken (⇠110).

2.2 Dataset Statistics
A summary of the dataset is given in Figure 2(b).
About 50% of the frames have no pedestrians, while
30% have two or more, and pedestrians are visible for
5s on average. Below, we analyze the distribution of
pedestrian scale, occlusion and location. This serves to
establish the requirements of a real world system and
to help identify constraints that can be used to improve
automatic pedestrian detection systems.

16 32 64 128
0

0.05

0.1
803015%

far
69%

medium
16%
near

height (pixels)

p
ro

b

(a) height distribution

0.25 0.5 1
0

0.02

0.04

0.06

0.08
µ = 0.41

aspect ratio (w/h)

p
ro

b

(b) aspect ratio

(c) scene geometry

0 20 40 60 80 100 120
0

30

80

160

n
e

a
r

m
e

d
fa

r

4s

1.5s

distance from camera (m)

h
e

ig
h

t
(p

ix
e

ls
)

(d) distance vs. height

Fig. 4. (a) Distribution of pedestrian pixel heights. We define
the near scale to include pedestrians over 80 pixels, the medium
scale as 30-80 pixels, and the far scale as under 30 pixels.
Most observed pedestrians (⇠69%) are at the medium scale.
(b) Distribution of BB aspect ratio; on average w ⇡ .41h. (c)
Using the pinhole camera model, a pedestrian’s pixel height h is
inversely proportional to distance to the camera d: h/f ⇡ H/d.
(d) Pixel height h as a function of distance d. Assuming an urban
speed of 55 km/h, an 80 pixel person is just 1.5s away, while a 30
pixel person is 4s away. Thus, for automotive settings, detection
is most important at medium scales (see §2.2.1 for details).

2.2.1 Scale Statistics

We group pedestrians by their image size (height in pix-
els) into three scales: near (80 or more pixels), medium
(between 30-80 pixels) and far (30 pixels or less). This di-
vision into three scales is motivated by the distribution of
sizes in the dataset, human performance and automotive
system requirements.

In Figure 4(a), we histogram the heights of the
350,000 BBs using logarithmic sized bins. The heights
are roughly lognormally distributed with a median of
48 pixels and a log-average of 50 pixels (the log-average
is equivalent to the geometric mean and is more rep-
resentative of typical values for lognormally distributed
data than the arithmetic mean, which is 60 pixels in this
case). Cutoffs for the near/far scales are marked. Note
that ⇠69% of the pedestrians lie in the medium scale,
and that the cutoffs for the near/far scales correspond to
about ±1 standard deviation (in log space) from the log-
average height of 50 pixels. Below 30 pixels, annotators
have difficulty identifying pedestrians reliably.

Pedestrian width is likewise lognormally distributed,
and moreover so is the joint distribution of width and
height (not shown). As any linear combination of the
components of a multivariate normal distribution is

Figure 4.2: Distribution of bounding boxes aspect ratio [7]

Chapter 4. Sliding Window CNN 51

4.2 Results

The analysis that has been done in Sec. 3 is confirmed by the results obtained using the

sliding window approach (see Figure 4.3): using a selector that proposes almost all the

regions containing pedestrians, there is a performance improvement. This improvement

is extremely relevant, because by simply changing the selector, without any further

training or finetuning, we have been able to move the log average miss rate from 81.28%

to 61.99%. This is still far from the desired result, but shows how important the selector

is.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF - 26.56%
Sliding Window CNN - 61.99%
R-CNN - 81.28%
HOG - 85.22%

Figure 4.3: Sliding Window ROC. Overall comparison on set 06 of the test-set

4.3 Training SVM

A further improvement has then been obtained by training the SVM classifier, which

takes as input the features proposed by the CNN model and returns as output the score

associated to that regions. The higher such score, the more likely that region contains

a pedestrian.

Chapter 4. Sliding Window CNN 52

For training the SVM we have used the parameters defined in [33], using the Matlab

toolbox for machine learning. These parameters are

• Kernel funciton: linear

• Box constraint: 10−3

Results are shown in Figure 4.4.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF - 26.56%
Sliding Window CNN trained SVM - 51.87%
Sliding Window CNN - 61.99%
R-CNN - 81.28%
HOG - 85.22%

Figure 4.4: Sliding Window with trained SVM ROC. Overall comparison on set 06
of the test-set

Chapter 5

Ldcf-CNN

5.1 LDCF selector

In Sec. 3 we made an observation: Selective Search is not suitable as selector. This

has then been confirmed by Sec. 4, showing how changing the selector led to a result

improvement.

The draw-back of using a Sliding Window approach is that it generates too many window

proposals and many of these are not regions of interest. Consequently, the next test

involves the usage of a state-of-the-art method as a selector, which filters out the non-

relevant data, producing fewer regions. The method that has been chosen is LDCF

(see Sec. 1.4) since it is one of the best performing methods in pedestrian detection.

Being LDCF our new selector, it satisfies all the conditions a search algorithm should be

subject to, described in Sec. 1.6.1. Overview of Ldcf-CNN method is show in Figure 5.1.

Compute LDCF region proposals

.

.

.

crop images

Convolutional Neural Network

SVM
Classifier

and
Thresholding

Figure 5.1: Overview LDCF-CNN

53

Chapter 5. Ldcf-CNN 54

LDCF, given an input image, returns as output the bounding boxes and the associated

scores. The scores are not considered, and all the LDCF region proposals are fed to

the CNN. Its output features are finally given as input to the SVM, which computes for

each bounding box the corresponding score.

5.2 Initial Results

By taking the R-CNN model trained on Pascal VOC dataset (see Sec. 2.1), training

the SVM classifier on the features returned by the CNN (computed using the pipeline

defined in Figure 5.1), the results are shown in Figure 5.2. As expected, there is an

improvement with respect to the Sliding Window CNN approach (see Sec. 4.3).

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF - 26.56%
LDCF-CNN - 40.62%
R-CNN - 81.28%
HOG - 85.22%

Figure 5.2: LDCF-CNN ROC. Overall comparison on set 06 of the test-set

The reason about this result is the number of region proposals: using the sliding window

approach, all the possible regions of an image are input to the CNN, which computes

the features, finally used by the SVM classifier to set the score. Without performing

any kind of filtering, background regions with features similar to the pedestrian ones are

given as input to the CNN, whose resulting features are hardly distinguishable by the

Chapter 5. Ldcf-CNN 55

SVM, giving wrong scores: e.g. part of a Bus, under particular light conditions, could

have features similar to a small pedestrian. The same could happen in the opposite case.

Conversely, having a filter like LDCF before CNN, it filters out a relevant number of

these particular regions, making the whole model more robust.

The region proposals with associated scores given by LDCF and LDCF-CNN are com-

pared in Figure 5.3. As one would expect, matched region proposals (regions whose IoU

with a ground truth pedestrian is larger than 0.5) should have large scores, while un-

matched ones should have small scores. This is exactly what happen in both detectors,

proving the correctness of our algorithm.

As already said, all the region proposals given by LDCF are input to the CNN, there-

fore one would expect to have the same number of regions in both detectors. This is

not the case, and the mismatch is generated by a post-filtering algorithm called Non-

Maximum-Suppression, applied only to the LDCF-CNN method. This algorithm

allows to remove bounding boxes representing the same object. The idea is very simple:

if two bounding boxes have an Intersection-over-Union value that is greater than a cer-

tain threshold, we consider them representing the same object, and only the one with

the highest score is kept. This lead to more robust and accurate results.

5.3 Finetuning

Fine-tuning refers to circumstances when the parameters of a CNN model must be

adjusted very precisely in order to agree with the observations. We start from a model,

and from there we change the value of the model to best fit the data in our dataset.

5.3.1 Caffe

Caffe is a deep learning framework developed by Berkeley Vision and Learning Center

and by community contributors. It provides a clean and modifiable framework for state-

of-the-art deep learning algorithms and a collection of reference models.

Chapter 5. Ldcf-CNN 56

i-th region
0 2000 4000 6000 8000 10000 12000 14000

sc
or

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not matched
matched

LDCF normalized scores

i-th region
0 2000 4000 6000 8000 10000 12000

sc
or

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not matched
matched

LDCF-CNN normalized scores

Figure 5.3: LDCF and LDCF-CNN normalized score analysis to prove code correct-
ness

By separating model representation from actual implementation, Caffe allows experimen-

tation and seamless switching among platforms for ease of development and deployment

from prototyping machines to cloud environments.

The model representation is defined using a particular format, called prototxt. In this

file is possible to define a variety of properties

• size and output of each layer

Chapter 5. Ldcf-CNN 57

• type of layer: Convolution, Relu, Pooling, Dropout, Inner product

• kernel size

• weight decay parameter

• learning rate parameter

• how to initialize the weights of each layer

• which are the data to use for training

• many others more

These parameters allow not only to define the network structure, but also give a deep

control over all the training aspects.

Caffe requires also preprocessed data in the LMDB format. LMDB (Lightning Memory-

Mapped Database) is an ultra-fast, ultra-compact key-value embedded data store that

uses memory-mapped files, so it has the read performance of a pure in-memory database

while still offering the persistence of a standard disk-based database.

5.3.2 Parameters

For the finetuning process, the R-CNN model (see Sec. 1.6) has been used as a start-

ing model, from which the weights are taken. In Figure 5.4 the AlexNet structure is

represented, showing all the layers’ size and type.

Image size
227×227×3

Input image

Filter size
11×11×3

Stride
4

Layer 1
(Convolution)

5×5×96

1

27×27×96

3×3
max pool
stride 2

contrast
norm.

3×3
max pool
stride 2

contrast
norm.

Layer 2
(Convolution)

3×3×256

1
13×13×256

Layer 3
(Convolution)

Layer 4
(Convolution)

Layer 5
(Convolution)

Layer 6
(Fully connected)

Output
(Softmax)

13×13×384

3×3×384

1

13×13×384

3×3×384

1

6×6×256

55×55×96
27×27×256

13×13×256

3×3
max pool
stride 2

4096
units

Layer 7
(Fully connected)

4096
units

C
class

softmax

Figure 4: Illustration of the AlexNet architecture, ⇠6 · 107 parameters.

R-CNN recipe for detection (train AlexNet on ImageNet,
fine-tune for the task of interest).
In table 7 we investigate the influence of the pre-training
task by considering AlexNets that have been trained for
scene recognition [48] (“Places”, see section 2) and on both
Places and ImageNet (“Hybrid”). “Places” provides results
close to ImageNet, suggesting that the exact pre-training
task is not critical and that there is nothing special about
ImageNet.

Caltech10x Due to the large number of parameters of
AlexNet, we consider providing additional training data us-
ing Caltech10x for fine-tuning the network (see section 2).
Despite the strong correlation across training samples, we
do observe further improvement (see table 7). Interestingly,
the bulk of the improvement is due to more pedestrians
(Positives10x, uses positives from Caltech10x and negat-
ives from Caltech1x). Our top result, 23.3% MR, makes
our AlexNet setup the best reported single-frame detector
on Caltech (i.e. no optical flow).

5.2. Caltech-only training

To compare with CifarNet, and to verify whether pre-
training is necessary at all, we train AlexNet “from scratch”
using solely the Caltech training data. We collect results in
table 7.

Training AlexNet solely on Caltech, yields 32.4% MR,
which improves over the proposals (SquaresChnFtrs
34.8% MR) and the previous best known convnet on Cal-
tech (SDN 39.8% MR). Using Caltech10x further improves
the performance, down to 27.5% MR.

Although these numbers are inferior than the ones ob-
tained with ImageNet pre-training (23.3% MR, see table 7),
we can get surprisingly competitive results using only ped-
estrian data despite the 107 free parameters of the AlexNet
model. AlexNet with Caltech10x is second best known
single-frame pedestrian detector on Caltech (best known is
LDCF 24.8% MR, which also uses Caltech10x).

AlexNet Fine- SVM Test MRtraining tuning training
Random none Caltech1x 86.7%

ImageNet none Caltech1x 39.8%
P+Imagenet

Caltech1x Caltech1x
30.1%

P: Places 27.0%
ImageNet 25.9%

ImageNet Positives10x Positives10x 23.8%
Caltech10x Caltech10x 23 .3%

Caltech1x - Caltech1x 32.4%
- Caltech10x 32.2%

Caltech10x - Caltech1x 27 .4%
- Caltech10x 27 .5%

SquaresChnFtrs [5] 34.8%

Table 7: Detection quality when using different training
data in different training stages of the AlexNet: initial train-
ing of the convnet, optional fine-tuning of the convnet,
and the SVM training. Positives10x: positives from Cal-
tech10x and negatives from Caltech1x. Detection proposals
provided by SquaresChnFtrs, result included for compar-
ison. See section 5.1 and 5.2 for details.

5.3. Additional experiments

How many layers? So far all experiments use the default
parameters of R-CNN. Previous works have reported that,
depending on the task, using features from lower AlexNet
layers can provide better results [2, 35, 3]. Table 8 reports
Caltech validation results when training the SVM output
layer on top of layers four to seven (see figure 4). We re-
port results when using the default parameters and paramet-
ers that have been optimised by grid search (detailed grid
search included in supplementary material).
We observe a negligible difference between default and op-
timized parameter (at most 1 percent points). Results for
default parameters exhibit a slight trend of better perform-
ance for higher levels. These validation set results indicate
that, for pedestrian detection, the R-CNN default parameters
are a good choice overall.

Figure 5.4: AlexNet architecture representation

Chapter 5. Ldcf-CNN 58

The activation function used by this model is the Rectified Linear Unit (ReLU)

one. This is an approximation of the analytic function f(x) = ln(1+ex) called softplus

function (see Figure 5.5) and it’s defined as

f(x) =

x if x > 0

0.001x otherwise

(5.1)

The use of the ReLU [34] activation function, has been shown to enable training deep

supervised neural networks without requiring unsupervised pre-training. Rectified linear

units, compared to sigmoid function or similar activation functions, allow for faster and

effective training of deep neural architectures on large and complex datasets, and this

the reason why they are used.

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5.5: Plot of the ReLU (blue) and Softplus (green) functions near x = 0

About the other parameters, like learning rate and weight decay, these are described

in Table 5.1. As it’s possible to see, a learning rate multiplier and a weight decay

multiplier are defined for each layer. To obtain the final coefficient values, the product

between the layer value and the global value must be performed: multiplier∗global value,

e.g. (learning rate multiplier layer 1) ∗ (base learning rate). This configuration allows

to change the global values after a fixed number of iterations, affecting the learning

mechanism over all the layers.

One important aspect to be aware of, is that in order to perform finetuning, some

structure changes must be applied to the R-CNN model. In particular, knowing how

Chapter 5. Ldcf-CNN 59

conv1 conv2 conv3 conv4 conv5 inner1 inner2

learning rate mult
weights 1 1 1 1 1 1 1

bias 2 2 2 2 2 2 2

weight decay mult
weights 1 1 1 1 1 1 1

bias 0 0 0 0 0 0 0

weight decay 0.0005

base learning rate 0.001

Table 5.1: R-CNN layers’ parameters

the weights are updated (see Back-propagation described in Sec. 1.5), three additional

layers are required. These are used just during the finetuning phase and will be discarded

for the testing part, which are

• InnerProduct layer with a number of outputs equivalent to the number of classes:

in this case just two, pedestrian - not pedestrian

• Accuracy layer used for computing the classification accuracy for a one-of-many

classification task. This is used to show how the model performs over the finetuning

iterations.

• SoftmaxWithLoss layer drives learning by comparing an output to a target and

assigning cost to minimize. It computes the multinomial logistic loss for a one-of-

many classification task, passing real-value predictions through a softmax to get a

probability distribution over classes.

The new InnerProduct layer has to be initialized: the weights are initialized using a

Gaussian distribution with standard deviation 0.01, while bias is initialized with 0.

Hereinafter is shown the prototxt code for adding the last layers to the R-CNN structure.

1 l a y e r {
2 name : ” f c 8 Ca l t e ch ”

3 type : ” InnerProduct ”

4 bottom : ” f c7 ”

5 top : ” f c 8 Ca l t e ch ”

6 param {
7 l r mu l t : 1

8 decay mult : 1

Chapter 5. Ldcf-CNN 60

9 }
10 param {
11 l r mu l t : 2

12 decay mult : 0

13 }
14 inner product param {
15 num output : 2

16 w e i g h t f i l l e r {
17 type : ” gauss ian ”

18 std : 0 .01

19 }
20 b i a s f i l l e r {
21 type : ” constant ”

22 value : 0

23 }
24 }
25 }
26 l a y e r {
27 name : ” accuracy ”

28 type : ”Accuracy”

29 bottom : ” f c 8 Ca l t e ch ”

30 bottom : ” l a b e l ”

31 top : ” accuracy ”

32 i n c lude {
33 phase : TEST

34 }
35 }
36 l a y e r {
37 name : ” l o s s ”

38 type : ”SoftmaxWithLoss”

39 bottom : ” f c 8 Ca l t e ch ”

40 bottom : ” l a b e l ”

41 top : ” l o s s ”

42 }

Chapter 5. Ldcf-CNN 61

5.3.3 Model identification

To be able to perform finetuning, data must be preprocessed as described in Sec. 5.3.1,

defining what are training and validation sets. According to [33], the training set is split

as in scenario A (see Sec. 2.2.1) for the so called hold-out cross validation:

• set00 – set04 train

• set05 validation

During the finetuning process, a log.txt file is created containing information such as

accuracy and loss values, computed using the model trained at the i-th iteration over

the validation set. Here a distinction has to be pointed out

• iterations: Number of batches that have been analyzed. E.g. if we have three

batches and 6 iterations have been performed, then each batch has been analyzed

twice. If the number of iterations is not a multiple of the number of batches, not

all the images will be analyzed.

• epochs: it’s defined as number of iterations/number of batches. E.g. if we have

2 epochs, this means that independently of the number of batches, each of them

will be analyzied twice.

About the loss value: consider a model f mapping inputs x to predictions y = f(x) ∈ Y .

Let t be the true label of input pattern x. Then a loss function L : Y × Y → R mea-

sures the quality of prediction.

Now call a collection of observations S = {(x1, t1), . . . , (xN , tN)} ∈ (X × Y)N and cor-

responding predictions y1, . . . , yN , then the loss function is the overall error, defined

as

L =
∑
n

l(yn, tn) where l(xn, tn) = −log(P (Y = tn|xn,W, b)) (5.2)

Therefore, the loss value can be used to understand where to stop with the finetuning

iterations. An example loss function, is shown in Figure 5.6. In this case the good

iteration would be the 1000th one.

Chapter 5. Ldcf-CNN 62

Iterations
102 103 104 105

Lo
ss

 o
n

ev
al

 s
et

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 5.6: Example of loss function. Model at iteration 1000 is the one that produces
the lowest loss value over the validation set.

5.4 Data manipulation

The finetuning process is extremely sensible to the data, therefore is essential to find

which are the transformations to be applied and which types of data to select, in order

to find better results.

5.4.1 Negative-Positive ratio

The number of negative region proposals is selected such that there are

• 5 negative LDCF region proposals, each

• ground truth pedestrian

This has been proved by Hosang et al. [33] to be a ratio that produces good results.

By doing this, the CNN has enough information to learn pedestrian’s features, and is

also able to better learn LDCF region proposals that represent something different from

pedestrians.

Chapter 5. Ldcf-CNN 63

Using the same approach of analysing the loss function through all the iterations to

identify the best model, the results are shown in Figure 5.7.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF - 26.56%
LDCF-CNN finetuned - 30.90%
R-CNN - 81.28%
HOG - 85.22%

Figure 5.7: LDCF-CNN ROC. Overall comparison after finetuning the model with
Ldcf negative region proposals and ground truth regions. Computed on set 06 of the

test-set

5.4.2 Padding

An important observation can be directly derived by looking at Figure 5.8. Here it is

possible to see one correctly identified bounding box, and another slightly shifted one.

What is needed is a mechanism that could be used to simulate during the finetuning

phase the selector “uncertainty”. The solution is found in padding the regions, followed

by random cropping mechanism.

To be able to correctly pad the regions, an analysis over the dataset is required. Mea-

suring the amount of shift over the matched LDCF region proposals, comes out that the

average padding is about 17 pixels (see Figure 5.9).

Chapter 5. Ldcf-CNN 64

Correct BB Shifted BB

Figure 5.8: Uncertainty in BB proposals by the selector

padding
-10 0 10 20 30 40 50 60

pr
ob

ab
ilt

y

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Mean padding: 16.913894

Figure 5.9: Caltech Dataset padding distribution using LDCF generated region pro-
posals over the train set.

At this point, what it’s done for padding the region is to

• take every region proposal

• add x pixels of padding such that when the region is warped to a 256 × 256 size

image, the final padding is 16 pixels

• crop from the 256× 256 size region a 227× 227 size region used for finetuning (see

Figure 5.10)

Chapter 5. Ldcf-CNN 65

227

256

16

Figure 5.10: Random cropping of 227× 227 size from the given image

In this way, padding is added to the region in a suitable way. E.g. suppose to have

a region of size 20 × 50 pixels, the added padding is proportional the the region size

without disrupting the region content.

Padding followed by random cropping (see Figure 5.11) has the effect of reducing over-

fitting: fitting the training data, reducing ability of predicting unseen data. the region

proposals are now less “precise” in selecting the pedestrian, simulating what is the se-

lector behaviour with unobserved images.

Regions used
during fine-tuning

process

Original frame from train set

Extract regions
with padding

Warp regions into a 256x256 size region crop random 227x227 region from
 the warped one

Figure 5.11: Generate images for finetuning process

5.4.3 Data decorrelation

To create the final dataset used during the fine-tuning process, positive and negative

regions have to be selected. According to the criteria define in Sec 5.4.1, every positive

regions, 5 negative regions are selected among all the proposed ones. There are a variety

of methods that one could use. Here is proposed one based on histogram, that tries

decorrelate data at most.

Chapter 5. Ldcf-CNN 66

For each image in the dataset, the histogram is computed using 8 bins for each of

the RGB channels, resulting in a final H ∈ R8×8×8 matrix. After that, the matrix is

vectorized and finally normalized (see Figure 5.12). This is done to make the feature

vector more robust: e.g. more robust to light intensity variations.

In the H matrix, the value v of the element in position i, j, k represents v pixels in the

image, having

• R value in the range
[
(i− 1) ∗ 32 , i ∗ 32

]
for i ∈ [1, 8]

• G value in the range
[
(j − 1) ∗ 32 , j ∗ 32

]
for j ∈ [1, 8]

• B value in the range
[
(k − 1) ∗ 32 , k ∗ 32

]
for k ∈ [1, 8]

1 2 3 4 5 6 7 8

#104

0

0.5

1

1.5

2

2.5

(a) RGB histogram

0 100 200 300 400 500 600

#104

0

1

2

3

4

5

6

7

(b) Vectorized matrix

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Normalized vector

Figure 5.12: (A) RGB histogram of a region proposals which is used to compute
the H matrix; (B) H matrix is vectorized; (C) The normalized vector represents the

features for that region proposal;

Once the vectorized and normalized version of the H matrix is computed, this vector is

considered as the set of features representing the region proposals.

Call F ∈ RN×512 the matrix for the dataset, where

• N : the number of region proposals extracted from the images in the dataset

• 256: size of the features vector for each region (given by 8× 8× 8 = 512)

a greedy algorithm based on the Feedforward Subject Selection is used to identify

which among the regions has to be used.

Chapter 5. Ldcf-CNN 67

Given the F matrix, compute the D matrix, where the i, j element represents the Eu-

clidean distance between the features of region i and j. This matrix will be later used

by the algorithm. The properties of this matrix are

• Square

• Symmetric

• Zeros on the diagonal

The main steps of the greedy algorithm are as follows

1. Take i-th row/column of input matrix whose sum of elements is the largest one

2. Remove from the input matrix the i-th row and i-th column

3. Repeat until the desired number of regions has been selected from the dataset.

Hereinafter the code of the algorithm

1 f unc t i on i d x s e l e c t e d r e g i o n s = g r e e d y s e l e c t i o n (corr mat , num regions)

2

3 t o t a l c o r r = sum(corr mat , 2) ;

4 [˜ , idx] = min (t o t a l c o r r) ;

5 i d x s e l e c t e d r e g i o n s = [idx] ;

6

7 f o r i = 2 : num regions

8 sub corr mat = corr mat (: , i d x s e l e c t e d r e g i o n s) ;

9 % se t to +i n f in order to keep the c o r r e c t

10 % ind i c e s f o r the f o l l ow i ng s e l e c t i o n s

11 sub corr mat (i d x s e l e c t e d r e g i o n s , :) = i n f ;

12 s u b t o t a l c o r r = max(sub corr mat , [] , 2) ;

13 [˜ , idx] = min (s u b t o t a l c o r r) ;

14 i d x s e l e c t e d r e g i o n s = [i d x s e l e c t e d r e g i o n s ; idx] ;

15 end

16

17 end

Chapter 5. Ldcf-CNN 68

Calling the greedy selection function with corr mat = −D, the result is a set of indices

of the mostly decorrelated regions. By considering a small subset of images belonging to

the dataset (for a computational reason), the resulting decorrelation after applying the

greedy algorithm is visible in Figure 5.13. This is the plot of the distance matrix where

• dark means correlated (large value)

• bright mean decorrelated (small value)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(a) Distance matrix for all regions in the
subset

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(b) Distance matrix of selected regions in
the subset

Figure 5.13: (A) Distance matrix computed over all the regions of the first subset of
the train set: average L2 distance between feature vectors 3.67; (B) Distance matrix
computed by taking from A only the selected regions: average L2 distance between

feature vectors 4.71.

As expected, all the elements on the diagonal are zero and the plot shows the effect of

the defined algorithm.

Due to the computational effort required by this method, a different and simpler ap-

proach is used: random selection of the desired number of regions. Even if this algorithm

has not been used, it still remains a very good alternative, that could lead to better re-

sults.

5.5 Results

By using all the previously defined methods (padding, cropping and and random selec-

tion) the finetuning process has produced the results shown in Figure 5.14.

Chapter 5. Ldcf-CNN 69

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF - 24.82%
HOG+SVM - 84.13%
LDCF-CNN finetuned - 26.51%

Figure 5.14: Ldcf-CNN best result: ROC overal comparison

The obtained results prove that Ldcf-CNN performs similar to state-of-the-art methods

like Ldcf.

5.5.1 Softmax vs. SVM classifier

All the results have always been computed using a SVM linear classifier, taking the

features returned by CNN as input, producing the scores

scores = W ∗ features+ b (5.3)

This is not really necessary, because the network already provides a Softmax layer for

classification.

The SVM classifier is more local objective than Softmax, because it considers only the

support vectors, which are used to compute the final model. Conversely, Softmax classi-

fier considers always all the data. In other words, SVM would be indifferent to the score

of samples that satisfy the margin, while Softmax would like the correct classes to have

Chapter 5. Ldcf-CNN 70

always a higher probability and the incorrect classes always a lower probability. The

results of using both SVM and Softmax as a classifier is shown in Figure 5.15, proving

that SVM performs slightly better.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

CNN with SVM - 26.51%
CNN with Softwmax - 28.67%

Figure 5.15: ROC CNN model with Softmax and SVM classifiers

5.6 K-Folds cross validation

The obtained result starts getting really close to LDCF, but still it doesn’t perform well

enough.

During all the tests, the set 05 has always been used as the validation set in the hold-out

cross validation, being the one used to identify which among all the models computed

during finetuning process (one per each iteration) had to be selected. However, having

additional information usable during the training phase, would lead to a more accurate

model, estimated on more data. The solution of this problem is found is the K-folds

cross-validation.

In k-fold cross-validation, the original dataset is randomly partitioned into k equal sized

subsamples. Of the k subsamples, a single subsample is retained as the validation set

Chapter 5. Ldcf-CNN 71

for testing the model, and the remaining k − 1 subsamples are used as training data.

The cross-validation process is then repeated k times (the folds), with each of the k

subsamples used exactly once as validation set.

In this case, having the train set composed by 6 sets, a 6-folds cross validation is per-

formed. The 6 loss-functions computed over the train-set are shown in Figure 5.16.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

val set00
val set01
val set02
val set03
val set04
val set05

Figure 5.16: K-folds loss function for each fold

As it is possible to see, the behaviour consistently changes using one validation set rather

than the others. The k results from the folds are then averaged to produce a single

estimation used to find the best model, which can be seen by looking at Figure 5.17.

Using this function, the finetuned process is then repeated for the last time, using instead

the whole train set.

The average loss function is just an estimation, rather than the exact behaviour, of how

our model should perform with unseen data, therefore it may not happen that a minimum

in the loss function corresponds to the best result over the test set. Furthermore, the

function has been derived by computing the performance over a subset of all the identified

models (for practical reasons).

Having said that, by looking from iteration 2500 to 3000 it is possible to see how the

model performance is almost stationary, and by smoothing the function (removing picks

Chapter 5. Ldcf-CNN 72

iterations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

lo
g

av
ea

ge
 m

is
s

ra
te

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 5.17: K-folds average loss function. In red the smoothed version.

due to noise), this stationarity would proceed till iteration 5000, where the loss value

then starts increasing again. This situation means that while we are getting almost

the same results, we are loosing in generality over unseen data, because proceeding

with the iterations we get more and more specialized in classifying the training data

(overfitting). This results in getting worse results on the test set.

Among the models, especially those in the [2500-5000] iterations range, the one at it-

eration 3000 is chosen (with loss = 0.2522). The result of using this model with our

method, is visible in Figure 5.18.

Chapter 5. Ldcf-CNN 73

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF - 24.82%
LDCF-CNN finetuned - 25.43%
HOG - 84.13%

Figure 5.18: LDCF-CNN with model identified using k-folds

5.7 Thresholding

Throughout all the test that have been performed, one fact clearly emerged: CNN is not

good enough in classifying pedestrians under particular conditions, like those that are

far from the camera, in the shadow, etc. because the features extracted from the regions

containing them are very similar to the ones extracted from some background regions.

Even if there are few pedestrian satisfying the latter conditions, the opposite situation is

different: there is a relevant number of background regions with misleading features that

are interpreted in the wrong way by the classifier. To solve this problem, the information

generated by selector could be used, without needing additional computations.

The selector (LDCF), computes all the bounding boxes proposals giving at each of them

the related score (as described in previous sections 5.1). These scores are then discarded

and all the identified proposals, whether they are good or bad, are given as input to

the CNN. Given this situation, one very simple solution is the following one: use the

selector’s score to filter out all the proposals that the selector itself identifies as “very

unlikely to be a pedestrian”, sending only the remaining proposals to the CNN model.

Chapter 5. Ldcf-CNN 74

At this point, the only parameter that has to be identified is the thresholding value to

be used to filter out those regions.

In Figure 5.19 is represented the log average miss rate value on the set-05, achieved

using the threshold value defined on the horizontal axis on LDCF before sending the

regions to the CNN. The steps are:

• Select regions using the selector

• Filter-out all those regions whose score is less than the identified threshold

• Pass all the remaining regions to the CNN for scoring them.

Threshold 85 is the one that produces the lowest log average miss rate.

20 40 60 80 100 120 140 160
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 5.19: Thresholding: log average miss rate on set-05, achieved using a certain
threshold value on the selector of LDCF-CNN method.

Filtering out the selector’s proposals according to the threshold and sending the remain-

ing proposals to the CNN model, lead at the result shown in Figure 5.20. This pro-

posed LDCF-CNN method performs better than the state-of-the-art LDCF

method alone, gaining more than 2.3% in terms of log average miss rate.

Chapter 5. Ldcf-CNN 75

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

LDCF-CNN thresholding - 22.49%
LDCF - 24.82%
HOG - 84.13%

Figure 5.20: LDCF-CNN model identified using k-folds with thresholding on selector

5.8 Profiling

In Sec 1.4 the LDCF detector is briefly reviewed, but what is missing is to understand

where the resources are allocated for potential features improvements. Table 5.2 1 shows

the two main functions that compose the LDCF method.

Function Exec time
Data

IN OUT

Sliding window object detection 357 ms 900 KB 20 MB

Sliding window classifier 6 ms 20 MB 0.21 KB

Table 5.2: LDCF profiling

As it’s possible to see, the most demanding part is the one addressing the feature ex-

traction. If one would speed-up the selector, that part needs to be carefully changed.

1These measurements have been taken on an intel core i-7 3 GHz processor with Matlab code, for a
single image

Chapter 5. Ldcf-CNN 76

With the same goal of LDCF profiling, the CNN architecture is analyzed (see Table 5.3 2)

to understand which are the most demanding layers. The last column shows the storage

demand for each layer.

Operations Time Total time Weights Bytes

la
y
e
rs

conv1

convolution 4.62 ms

6.337 ms 6.337 ms 136.5 KB
relu 0.452 ms
pool 0.457 ms
norm 0.848 ms

conv2

convolution 5.832 ms

7.97 ms 14.344 ms 1.173 MB
relu 0.271 ms
pool 0.373 ms
norm 1.489 ms

conv3
convolution 8.331 ms

8.619 ms 22.964 ms 3.377 MB
relu 0.288 ms

conv4
convolution 6.926 ms

7.186 ms 30.150 ms 2.53 MB
relu 0.26 ms

conv5
convolution 4.02 ms

4.52 ms 34.670 ms 1.689 MBrelu 0.241 ms
pool 0.258 ms

fc6
inner prod. 45.923 ms

46.540 ms 81.210 ms 144.01 MB
relu 0.617 ms

fc7
inner prod. 13.778 ms

14.274 ms 95.484 ms 64.02 MB
relu 0.497 ms

Table 5.3: CNN profiling

The graphical representation of the computation time for each layer, are shown in Fig-

ure 5.21 and 5.22. The two fully connected layers together define the final model size,

therefore by testing them, trying to reduce their size or the weights format, it’s possible

to have a lighter model.

The overall model runs in GPU mode on a NVIDIA JETSON TK1 board, processing

one image in 405.011 ms, therefore 2.47 fps.

2These measurements have been taken in GPU mode, on a NVIDIA JETSON TK1 board, for a single
region of size 227× 227

Chapter 5. Ldcf-CNN 77

6,377	

7,967	

8,619	

7,186	
4,520	

46,540	

14,274	

0,000	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

Execu&on	 &me	 (ms)	

layer	 7	

layer	 6	

layer	 5	

layer	 4	

layer	 3	

layer	 2	

layer	 1	

Figure 5.21: Execution time of each layer in ms in GPU mode on a NVIDIA
JETSON TK1 board.

64,020	

144,010	

0,000	

50,000	

100,000	

150,000	

200,000	

250,000	

Size	 (MB)	
	

layer	 7	

layer	 6	

layer	 5	

layer	 4	

layer	 3	

layer	 2	

layer	 1	

Figure 5.22: Size of each layer expressed in MB

Chapter 6

Model size reduction

ST Microelectronics has defined the goals of the second part of the thesis. In particular,

they use ACF as their own detector, therefore all the tests will be done by taking

the identified model, and use it to prove that despite the selector, CNN improves the

performance in terms of accuracy (reducing the log average miss rate).

In Figure 6.1 the results of applying directly the model with ACF selector. Without

applying any kind of thresholding (as described in Sec 5), CNN improves the results by

reducing the log average miss rate value of 3.58%.

In order to be able to apply the Analyze-Then-Compress paradigm (ATC) where

the node is responsible for analyzing the data, the model is required to be small, to fit

the hardware constraints. For this reason, other architectures are also analyzed.

6.1 Network In Network

Network In Network [35] is a novel deep network structure, where micro neural networks

are built between the convolutional layers, to abstract the data within the receptive field.

Convolutional neural networks consist of alternating convolutional layers and pooling

layers. Convolution layers take inner product of the linear filter and the underlying

78

Chapter 6. Model Size reduction 79

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

ACF - 30.93%
ACF-CNN - 27.35%

Figure 6.1: ROC: ACF vs. ACF-CNN

receptive field followed by a nonlinear activation function at every local portion of the

input.

The convolution filter in CNN is a generalized linear model (GLM) for the underlying

data patch, and by replacing the GLM with a more powerful nonlinear function ap-

proximator, can enhance the abstraction ability of the local model. In NIN, the GLM

is replaced with a “micro network” structure called mlpconv layer, which is a general

nonlinear function approximator (see Figure 6.2).

 .
. .

 .
. .

 .
. .

 .
. .

 .
. .

 .
. . .
. .

....

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
of three mlpconv layers and one global average pooling layer.

Comparison to maxout layers: the maxout layers in the maxout network performs max pooling
across multiple affine feature maps [8]. The feature maps of maxout layers are calculated as follows:

fi,j,k = max
m

(wT
km

xi,j). (3)

Maxout over linear functions forms a piecewise linear function which is capable of modeling any
convex function. For a convex function, samples with function values below a specific threshold
form a convex set. Therefore, by approximating convex functions of the local patch, maxout has
the capability of forming separation hyperplanes for concepts whose samples are within a convex
set (i.e. l2 balls, convex cones). Mlpconv layer differs from maxout layer in that the convex func-
tion approximator is replaced by a universal function approximator, which has greater capability in
modeling various distributions of latent concepts.

3.2 Global Average Pooling

Conventional convolutional neural networks perform convolution in the lower layers of the network.
For classification, the feature maps of the last convolutional layer are vectorized and fed into fully
connected layers followed by a softmax logistic regression layer [4] [8] [11]. This structure bridges
the convolutional structure with traditional neural network classifiers. It treats the convolutional
layers as feature extractors, and the resulting feature is classified in a traditional way.

However, the fully connected layers are prone to overfitting, thus hampering the generalization abil-
ity of the overall network. Dropout is proposed by Hinton et al. [5] as a regularizer which randomly
sets half of the activations to the fully connected layers to zero during training. It has improved the
generalization ability and largely prevents overfitting [4].

In this paper, we propose another strategy called global average pooling to replace the traditional
fully connected layers in CNN. The idea is to generate one feature map for each corresponding
category of the classification task in the last mlpconv layer. Instead of adding fully connected layers
on top of the feature maps, we take the average of each feature map, and the resulting vector is fed
directly into the softmax layer. One advantage of global average pooling over the fully connected
layers is that it is more native to the convolution structure by enforcing correspondences between
feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence
maps. Another advantage is that there is no parameter to optimize in the global average pooling
thus overfitting is avoided at this layer. Futhermore, global average pooling sums out the spatial
information, thus it is more robust to spatial translations of the input.

We can see global average pooling as a structural regularizer that explicitly enforces feature maps to
be confidence maps of concepts (categories). This is made possible by the mlpconv layers, as they
makes better approximation to the confidence maps than GLMs.

3.3 Network In Network Structure

The overall structure of NIN is a stack of mlpconv layers, on top of which lie the global average
pooling and the objective cost layer. Sub-sampling layers can be added in between the mlpconv

4

Figure 6.2: Network In Network architecture structure

Chapter 6. Model Size reduction 80

Both the linear convolutional layer and the mlpconv layer map the local receptive field to

an output feature vector. The mlpconv maps the input local patch to the output feature

vector with a multilayer perceptron (MLP) consisting of multiple fully connected layers

with nonlinear activation functions. The feature maps are obtained by sliding the MLP

over the input in a similar manner as CNN and are then fed into the next layer.

Using these mlpconv layer, the NIN architecture advantages are:

• smaller in size: around 28 MB vs. 217 MB of AlexNet

• faster

On the other hand, NIN works well on the INRIA dataset, but taking the same model

and using it to detect pedestrian on the Caltech Pedestrian Dataset, leads to poor results

(see Figure 6.3).

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

NIN - 94.31%
ACF-CNN - 27.35%

Figure 6.3: Network in Network ROC: comparison with the Acf-CNN model

6.2 Binarization

Since the NIN model does not perform well in terms of accuracy, the idea is to modify

the AlexNet model, trying to reduce it from the ∼ 217 MB for storing weights, to a

more affordable size. The first test in this direction is the so called “binarization” [36].

Chapter 6. Model Size reduction 81

Given the weight matrix W, the sign of the element in the matrix is used in place of the

weights

Ŵij =

1 if Wij ≥ 0

−1 if Wij < 0

(6.1)

The used threshold is identified by [36] and applied in the same way to our method.

Binarization is inspired by Dropconnect (see Sec 1.5.3), which randomly sets part of

the parameters to 0 during training. By doing this kind of operation, the weights are

compressed by a factor of 32: each weights, represented in single value precision, is now

represented only by one bit.

The results of applying binarization to the AlexNet model are visible in Figure 6.4. As

it’s possible to see, it looses ∼ 15% of log average miss rate with respect to the original

model, which is not a bad result considering the compression factor.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

ACF-CNN - 27.35%
ACF-CNN binarized - 42.71%

Figure 6.4: Binarization: ROC comparing results after training the SVM classifier

Training the SVM classifier on the features computed using the binarized model, makes

the results worse. Having worse result after training the SVM classifier is an unexpected

results. The reason is found in the features computation: having {−1, 1} weights com-

puted with threshold = 0, leads to highly dense features in the features space, making

hard to find the line that best split the data according to the right class. Investigating

more on the SVM parameters would lead to better results.

Chapter 6. Model Size reduction 82

6.3 Quantization

Binarization has shown good results, with a relatively small loss compared to the com-

pression factor. This model is however less accurate than needed, therefore a further

investigation is done in order to find a model with a smaller compression factor but with

acceptable accuracy.

6.3.1 K-means

K-means is an unsupervised learning algorithm of vector quantization used for cluster

analysis in data mining. It aims to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean, serving as a prototype of the

cluster. This results is a partitioning of the data space into regions. An example can be

found in Figure 6.5.

0 2 4 6 8 10 12 14 16 18
-2

-1

0

1

2

3

4

5

6

Figure 6.5: Quantization: k-means clustering example with two features.

The pro of k-means algorithms is that it’s very eay but in the other hand, it depends a lot

by the initial centroids’ position, producing different results for different initializations.

For a weight matrix W ∈ Rm×n, all its scalar values are collected as w ∈ R1×mn, and

k-means clustering is performed to the values such that:

min
mn∑
i

k∑
j

||wi − cj ||2 (6.2)

Chapter 6. Model Size reduction 83

where w and c are both scalars.

Since this is a scalar quantization, this can be seen like a line where points are grouped

by n elements with n the number of centroids (see Figure 6.6).

0 2 4 6 8 10 12 14 16 18
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.6: Quantization: k-means scalar clustering of elements

After clustering, each value in w is assigned a cluster index, and a codebook c1×k is

created with the cluster centers.

During prediction, by looking-up the values for each centroid in the codebook, the

reconstructed matrix becomes

Ŵij = cz where min
z
||Wij − cz||2 (6.3)

For this approach, we need only to store indices and the codebook as parameters. Given

k centers, only log2(k) bits to encode the centers are needed.

Despite the simplicity of this approach, the experiments show that this approach gives

surprisingly good performance. In Figure 6.7 the quantization using 16 centroids shows

how good this method performs. This allows to compress the model by a factor

32bits

log2(16)bits
= 8 (6.4)

By doing this compression, we gain in term of log average miss rate, rather then loosing

precision. Reason of this unexpected result is the overfitting: the original finetuned

Chapter 6. Model Size reduction 84

model suffers overfitting, which is not visible on the validation set. When the weights

are changed, the model becomes more general, resulting in better performance on the

test set.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

ACF-CNN - 27.35%
ACF-CNN quant. 16 c - 27.29%

Figure 6.7: CNN quantization using 16 centroids

Moving to 8 centroids, hence 32
3 = 10.667 compression factor, the model starts loosing

in performance, but still in a contained way. Its behaviour is shown together with the

model compressed using 4 centroids in Figure 6.8.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

ACF-CNN - 27.35%
ACF-CNN quant. 8 c - 27.86%

CNN quantization using 8 centroids

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

ACF-CNN - 27.35%
ACF-CNN quant. 4 c - 28.56%

CNN quantization using 4 centroids

Figure 6.8: CNN quantization using 8 and 4 centroids

Chapter 6. Model Size reduction 85

Model compressed using 4 centroids (16 compression factor) is a really good tradeoff be-

tween compression and loss (1.2% of log average miss rate) and will be further inspected

after this analysis.

Finally, the 2 centroids (32 compression factor) is shown in Figure 6.9. Observe that

this produces results are better than binarization (where split is performed according to

threshold 0). Computing the mean values of the weights in each fully connected layer:

• layer 6: mean value −3.331 ∗ 10−4, standard deviation value 0.0047

• layer 7: mean value −8.39 ∗ 10−4, standard deviation value 0.0066

therefore 0 could be too coarse as threshold. Furthermore, clustering with 2 centroids

does not necessary pick the mean value (also for a problem of convergency of the algo-

rithm), and this could probably be the reason of the better result.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

ACF-CNN - 27.35%
Quantized model 4 c - 40.14%
Binarized model - 42.71%

Figure 6.9: CNN quantization using 2 centroids

All this can be summarized by looking at figure 6.10.

6.3.2 Finetuning 4 centroids model

Taking the model compressed using 4 centroids (16 compression factor), finetuning is

performed in order to find a better model that reduces the loss due to the compression.

Chapter 6. Model Size reduction 86

Compression rate
0 5 10 15 20 25 30 35

lo
ss

-0.1

0

0.1

0.2

0.3

0.4

0.5

% of log average miss rate that is lost by using a compres-
sion factor c

Compression rate
0 5 10 15 20 25 30 35

lo
g

av
er

ag
e

m
is

s
ra

te

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log average miss rate value computed using the model with
a certain compression factor c

Figure 6.10: Compression factor vs. loss

Since the starting model is already a good one, trained on the same data, a convergence

in few iterations is expected. Therefore, the parameters are chosen as follows

• base learning rate = 0.0001

• max iterations = 10000

• learning rate layers 6 and 7 = 0

Chapter 6. Model Size reduction 87

Setting 0 the learning rate, the weights do not change when backpropagation is ap-

plied. The results of applying this are extremely positive: taking the iteration 3000, the

resulting model produces better results than the original model (see Figure 6.11).

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

Finetuned quant. model with 4 c - 26.52%
ACF-CNN - 27.35%

Figure 6.11: Finetuned quantized model with 4 centroids

Finally, applying the same approach defined in LDCF about thresholding, the result is

shown in Figure 6.12.

fppi
10-2 10-1 100 101

m
is

s
ra

te

0.05

10-1

0.2

0.5

100

Thr Fin. Quant. model with 4 c - 24.18%
ACF-CNN with thr - 23.89%

Figure 6.12: Finetuned quantized model with 4 centroids and thresholding

Chapter 6. Model Size reduction 88

Computing the performance according the ST Microelectronics’ standards, it possible to

see how CNN improves the results using ST’s ACF detector as selector (see Figure 6.13).

In the working point 0.1 FPPI of interest, the different is

• ACF-CNN: 0.823

• ACF: 0.7451

with a 0.078 (7.8%) accuracy improvement.

Figure 6.13: ACF vs. ACF-CNN according to STMicroelectronics standards

Chapter 7

Conclusions and future work

The method proposed in this work shows how Convolutional Neural Networks can be

used to improve the accuracy, getting better results than the state-of-the-art methods,

by dealing also with their side effect: the size. An interesting continuation on this line-

up would be the application of other algorithms, like other clustering methods, hashing,

etc. to study if it is possible to achieve better results with an higher compression factor.

With the current CNN model size, the Analyze Then Compressed (ATC) paradigm

really becomes feasible, and an analysis comparing it with the other Compress Then

Analyze (CTA) paradigm should be done. This in order to check if, even with large

neural network as AlexNet, there is an advantage in terms of power consumption and

network bandwidth in using ATC rather than CTA, as shown in [37].

Furthermore, it would be nice to test the system performance with some hybrid versions

between CTA and ATC at different levels, e.g. when

• the LDCF selector is executed on the node, the data are sent through the network

to the sink, where the CNN model lies and which processes them to get the results.

• the LDCF selector, plus the first five layers of the CNN model are on the node,

the intermediate features are sent to the sink, where the last two more demanding

layers left of the CNN compute the final results.

89

Bibliography 90

• ecc

Finally, based on these results, one could extend the test by checking which is the loss

in terms of accuracy, if the intermediate compressed features, sent from the node to the

sink, are fed to the left layers of the CNN in place of their uncompressed version, hence

saving time to uncompress them.

Bibliography

[1] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-

tection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[2] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. Fast feature pyramids

for object detection. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 36(8):1532–1545, 2014.

[3] Evan Shelhamer. Deep learning for computer vision with caffe and

cudnn. http://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-

caffe-cudnn/, 2014.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[5] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In Computer Vision–ECCV 2014, pages 818–833. Springer, 2014.

[6] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian de-

tection: A benchmark. In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 304–311. IEEE, 2009.

[7] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian de-

tection: An evaluation of the state of the art. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 34(4):743–1761, 2012.

91

Bibliography 92

[8] Dariu M Gavrila and Stefan Munder. Multi-cue pedestrian detection and tracking

from a moving vehicle. International journal of computer vision, 73(1):41–59, 2007.

[9] David Gerónimo, A Sappa, Antonio López, and Daniel Ponsa. Adaptive image sam-

pling and windows classification for on-board pedestrian detection. In Proceedings

of the International Conference on Computer Vision Systems, Bielefeld, Germany,

volume 39, 2007.

[10] Amnon Shashua, Yoram Gdalyahu, and Gaby Hayun. Pedestrian detection for driv-

ing assistance systems: Single-frame classification and system level performance. In

Intelligent Vehicles Symposium, 2004 IEEE, pages 1–6. IEEE, 2004.

[11] Constantine Papageorgiou and Tomaso Poggio. Trainable pedestrian detection. In

Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on,

volume 4, pages 35–39. IEEE, 1999.

[12] Bo Wu and Ram Nevatia. Detection of multiple, partially occluded humans in a

single image by bayesian combination of edgelet part detectors. In Computer Vision,

2005. ICCV 2005. Tenth IEEE International Conference on, volume 1, pages 90–97.

IEEE, 2005.

[13] Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based ob-

ject detection in images by components. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 23(4):349–361, 2001.

[14] Krystian Mikolajczyk, Cordelia Schmid, and Andrew Zisserman. Human detection

based on a probabilistic assembly of robust part detectors. In Computer Vision-

ECCV 2004, pages 69–82. Springer, 2004.

[15] Pedro F Felzenszwalb. Learning models for object recognition. In Computer Vi-

sion and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conference on, volume 1, pages I–1056. IEEE, 2001.

[16] Dariu M Gavrila. Multi-feature hierarchical template matching using distance trans-

forms. In Pattern Recognition, 1998. Proceedings. Fourteenth International Confer-

ence on, volume 1, pages 439–444. IEEE, 1998.

Bibliography 93

[17] Dariu M Gavrila. Pedestrian detection from a moving vehicle. In Computer

Vision—ECCV 2000, pages 37–49. Springer, 2000.

[18] Paul Viola, Michael J Jones, and Daniel Snow. Detecting pedestrians using patterns

of motion and appearance. International Journal of Computer Vision, 63(2):153–

161, 2005.

[19] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral channel

features. In BMVC, volume 2, page 5, 2009.

[20] Pierre Sermanet, Koray Kavukcuoglu, Sandhya Chintala, and Yann LeCun. Pedes-

trian detection with unsupervised multi-stage feature learning. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3626–3633.

IEEE, 2013.

[21] Wanli Ouyang and Xiaogang Wang. Joint deep learning for pedestrian detection.

In Computer Vision (ICCV), 2013 IEEE International Conference on, pages 2056–

2063. IEEE, 2013.

[22] Andrian Marcus and Oge Marques. An eye on visual sensor networks. Potentials,

IEEE, 31(2):38–43, 2012.

[23] Alessandro Redondi, Luca Baroffio, Matteo Cesana, and Marco Tagliasacchi.

Compress-then-analyze vs. analyze-then-compress: Two paradigms for image anal-

ysis in visual sensor networks. In Multimedia Signal Processing (MMSP), 2013

IEEE 15th International Workshop on, pages 278–282. IEEE, 2013.

[24] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann LeCun, and

Eugenio Culurciello. Hardware accelerated convolutional neural networks for syn-

thetic vision systems. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE

International Symposium on, pages 257–260. IEEE, 2010.

[25] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages

I–511. IEEE, 2001.

Bibliography 94

[26] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regres-

sion: a statistical view of boosting (with discussion and a rejoinder by the authors).

The annals of statistics, 28(2):337–407, 2000.

[27] Woonhyun Nam, Piotr Dollár, and Joon Hee Han. Local decorrelation for improved

pedestrian detection. In Advances in Neural Information Processing Systems, pages

424–432, 2014.

[28] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learnin, 2009.

[29] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580, 2012.

[30] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580–

587. IEEE, 2014.

[31] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeul-

ders. Selective search for object recognition. International journal of Computer

Vision, 104(2):154–171, 2013.

[32] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image

segmentation. International journal of Computer Vision, 59(2):167–181, 2014.

[33] Jan Hosang, Mohamed Omran, Rodrigo Benenson, and Bernt Schiele. Taking a

deeper look at pedestrians. arXiv preprint arXiv:1501.05790, 2015.

[34] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In International Conference on Artificial Intelligence and Statistics, pages

315–323, 2011.

[35] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In International

Conference on Learning Representations, 2014.

Bibliography 95

[36] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep

convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115,

2014.

[37] Luca Bondi. Face recognition with convolutional neural networks on low power

architectures. Master’s thesis, Politecnico di Milano, 2014.

	List of Figures
	List of Tables
	Abbreviations
	Sommario
	Abstract
	Acknowledgements
	1 Review of the State of the Art
	1.1 Viola – Jones detector
	1.2 Histogram of Oriented Gradients
	1.3 Aggregated Channel Features
	1.3.1 Fast Features Pyramids
	1.3.2 ACF

	1.4 Locally Decorrelated Channel Features
	1.5 Convolutional Neural Networks
	1.5.1 Architecture
	1.5.2 Back propagation
	1.5.3 Dropout

	1.6 R-CNN
	1.6.1 Region Proposal
	1.6.2 Feature extraction

	2 Datasets
	2.1 Pascal Visual Object Classes
	2.2 Caltech Dataset
	2.2.1 Training and Testing Data

	3 R-CNN analysis
	3.1 Analysis on region proposal selector
	3.2 Result comparison
	3.3 Analysis of performance

	4 Sliding Window CNN
	4.1 Sliding Window
	4.2 Results
	4.3 Training SVM

	5 Ldcf-CNN
	5.1 LDCF selector
	5.2 Initial Results
	5.3 Finetuning
	5.3.1 Caffe
	5.3.2 Parameters
	5.3.3 Model identification

	5.4 Data manipulation
	5.4.1 Negative-Positive ratio
	5.4.2 Padding
	5.4.3 Data decorrelation

	5.5 Results
	5.5.1 Softmax vs. SVM classifier

	5.6 K-Folds cross validation
	5.7 Thresholding
	5.8 Profiling

	6 Model size reduction
	6.1 Network In Network
	6.2 Binarization
	6.3 Quantization
	6.3.1 K-means
	6.3.2 Finetuning 4 centroids model

	7 Conclusions and future work

