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Abstract

Il comportamento non lineare dell’altoparlante dinamico è un fenomeno indesider-
ato che causa livelli di distorsione percepibili dall’orecchio umano ed impedisce
l’applicazione di tecniche di controllo lineare della dinamica.

Questo lavoro propone un approccio per risolvere questo problema, utilizzando
tecniche di elaborazione del segnale digitale per imporre una relazione di input-
output lineare e per controllare la dinamica così linearizzata.

L’altoparlante dinamico considerato è dotato di una bobina secondaria, utilizzata
come sensore integrato nell’altoparlante dal controllore progettato. Il controllore si
basa su modelli a spazio di stati dell’altoparlante considerato sia lineari che non
lineari, derivati rispettivamente dal modello di Beranek e dal modello di Klippel. I
modelli sono caratterizzati e validati utilizzando i parametri estratti con il Klippel
Distortion Analyzer.

La compensazione delle non linearità è implementata in retroazione, utilizzando
un osservatore non lineare, capace di stimare lo stato dell’altoparlante non lineare
attraverso la misura della bobina sensore, ed un modello interno dell’altoparlante
non lineare controllato.

Il controllo della dinamica linearizzata è implementato attraverso un posiziona-
mento dei poli mediante retroazione dello stato (pole placement), stimando lo stato
dell’altoparlante lineare equivalente attraverso un osservatore ad anello aperto.

L’osservatore non lineare, la compensazione delle non linearità ed il controllore
completo sono simulati in Simulink MATLAB e le rispettive performance sono
valutate nel dominio dei tempi, nel dominio delle frequenze ed anche in termini di
distorsione armonica totale (THD) residua. I risultati delle simulazioni dimostrano
che l’altoparlante è efficacemente linearizzato e la relativa dinamica è controllata in
modo soddisfacente.

Gli effetti introdotti dai ritardi nell’anello di retroazione sono discussi e sim-
ulati, mostrando i limiti implementativi del controllo proposto. I risultati for-
niscono informazioni utili per la selezione di un’architettura hardware adatta per
l’implementazione del controllo.
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Abstract

The nonlinear behavior of a dynamic loudspeaker is an undesired phenomenon
which produces audible distortion and prevents the successful application of linear
dynamic control.

This work proposes an approach to address this issue, that employs digital signal
processing to enforce a linear input-output relation and to control the linearized
dynamics.

The considered dynamic loudspeaker is customized with a secondary coil, used as
embedded sensor by the developed controller. The controller is based on linear and
nonlinear state-space models of the custom loudspeaker, derived from the Beranek
model and the Klippel model, respectively. The models are characterized and
validated extracting the required parameters with the Klippel Distortion Analyzer.

The compensation of the nonlinearities is implemented in feedback form, exploit-
ing a nonlinear observer that estimates the state of the nonlinear loudspeaker from
the sensor coil measurements, and an internal model of the controlled, nonlinear
loudspeaker.

The control of the linearized dynamics is implemented as a full-state feedback
pole placement, estimating the equivalent linear loudspeaker state by means of an
open-loop observer.

The nonlinear observer, the nonlinearity compensator and the full controller
are simulated in Simulink MATLAB, and their performance is evaluated both
in the time and frequency domain and also in terms of residual Total Harmonic
Distortion (THD). The simulation results show that the controlled loudspeaker is
well linearized and its dynamics are quite satisfactorily controlled.

The effects of time delays in the feedback loop is discussed and simulated,
showing the implementation limitations of the proposed control scheme. The results
provide useful information for the selection of a suitable hardware architecture for
the implementation of the controller.
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Introduzione

Questa tesi è stata sviluppata durante un tirocinio svoltosi presso l’azienda RCF
e in collaborazione con l’Università degli studi di Modena e Reggio Emilia.

RCF è una azienda italiana con sede a Reggio Emilia, leader mondiale nella
progettazione e produzione di prodotti audio ad alta tecnologia, sia in ambito pro-
fessionale che consumer. L’azienda è particolarmente rinomata per la progettazione
di altoparlanti all’avanguardia e sistemi audio professionali, richiesti in tutto il
mondo per la diffusione audio in cinema, teatri, auditorium, etc.

La configurazione standard di un sistema audio professionale è composto da tre
elementi fondamentali: il processore digitale (DSP, acronimo derivato dall’inglese:
Digital Signal Processor), l’amplificatore di potenza e l’altoparlante.

Il DSP è un componente di elettronica digitale in grado di elaborare un segnale
proveniente da una sorgente audio.

Per essere elaborato, il segnale audio deve essere convertito in un segnale digitale
mediante un convertitore analogico-digitale (ADC), e quindi essere riconvertito in
un segnale analogico dopo l’elaborazione, tramite un convertitore digitale-analogico
(DAC).

Oggigiorno, tutti i sistemi audio professionali attivi sono dotati di un DSP,
che viene utilizzato per diversi scopi: regolare il volume di uscita, applicare filtri
digitali, sia per la messa a punto del sistema audio, sia per filtrare il segnale audio
in ingresso, ed attuare la logica di protezione del sistema audio, che permette di
evitare danni agli altri componenti del sistema audio causati da un uso scorretto o
da guasti.

La capacità computazionale di questi componenti è costantemente aumentata
nel corso degli anni, permettendo l’implementazione di algoritmi di elaborazione del
segnale sempre più complessi. Conversamente, il loro costo è in costante declino.

La potenza di calcolo a disposizione di un DSP è raramente sfruttata appieno,
permettendo l’introduzione di tecniche di ottimizzazione del sistema più specifiche
e raffinate.

L’amplificatore di potenza è un componente di elettronica analogica di potenza,
il cui scopo è quello di convertire il segnale a bassa potenza prodotto da una sorgente
audio o dal DSP, in un segnale ad alta potenza, adatto a pilotare l’altoparlante e
produrre così livelli sonori significativi.

A seconda della specifica applicazione del sistema audio, l’architettura dell’amplificatore
utilizzato può essere molto diversa: sistemi audio ad alta potenza, utilizzati per la
diffusione audio in concerti o teatri, sono progettati principalmente con architetture
a commutazione (classe D), al fine di erogare la massima potenza acustica con
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la massima efficienza possibile, eventualmente sacrificando la qualità del suono
riprodotto fino a livelli tollerabili.

Al contrario, i sistemi a bassa potenza, utilizzati negli studi di registrazione,
sono principalmente progettati con architetture lineari (classe A, classe AB) al fine
di ottenere una migliore qualità del suono, sacrificando l’efficienza energetica.

Tutte le architetture sono soggette alle tipiche non linearità degli amplificatori,
come il clipping di tensione, introducendo distorsione. A causa dell’intrinseca
non linearità della tecnologia, le architetture a commutazione possono introdurre
ulteriori distorsioni. Tuttavia, le tipologie più recenti sono in grado di competere
con livelli di distorsione introdotti dagli amplificatori di classe AB.

Ai fini di questa tesi, l’amplificatore sarà considerato un componente ideale, carat-
terizzato da un guadagno di tensione costante ed in grado di fornire all’altoparlante
un qualsiasi valore di corrente, senza introdurre alcuna distorsione.

L’altoparlante è un trasduttore elettroacustico, cioè un dispositivo capace di
convertire un segnale elettrico in un segnale acustico con sufficiente energia per
essere percepito dall’orecchio umano.

A seconda della specifica applicazione del sistema audio, l’altoparlante è realiz-
zato con diverse tecnologie ed in diversi fattori di forma. I Subwoofer, raggiungendo
i 55cm di diametro, sono i dispositivi più grandi impiegati nei sistemi audio e
permettono di trasmettere il moto una grande quantità d’aria. Essi sono utilizzati
per la riproduzione della gamma di frequenze basse (20Hz - 200Hz). I Woofer sono
dispositivi più piccoli, utilizzati per riprodurre la gamma delle frequenze medie
(100Hz - 5000Hz). I Tweeter sono i dispositivi più piccoli impiegati nei sistemi
audio, utilizzati per riprodurre la gamma delle frequenze alte (5000Hz - 20000Hz).
Esistono e vengono utilizzati anche dispositivi di dimensioni intermedie (midbass,
midrange, etc.), e non è raro lo sviluppo di trasduttori special-purpose.

La tecnologia di altoparlante più comune nei sistemi audio professionali è
l’altoparlante dinamico, grazie alla sua versatilità ed alla qualità del suono riprodotto.

Un problema comune a tutte le tecnologie di trasduzione è l’introduzione di
distorsione, che determina una degradazione della qualità del suono riprodotto.
Ciò può essere attribuito al fatto che il segnale di ingresso influenza la struttura
stessa dell’altoparlante. A causa dei significativi cambiamenti a cui l’altoparlante
è sottoposto nel processo di trasduzione, esso non si comporta come un sistema
ideale e lineare, introducendo distorsione.

E’ importante puntualizzare che, nei sistemi audio professionali, l’altoparlante è
la principale fonte di distorsione del suono.

Oggigiorno, l’approccio tipico per alleviare l’effetto della distorsione è quello di
sovradimensionare le parti critiche dell’altoparlante. In questo modo è possibile
estendere l’intervallo di tensione del segnale di ingresso per cui l’altoparlante si
comporta come un sistema lineare ideale, con lo svantaggio di un maggior costo ed
un maggior peso del dispositivo.

Questo è attualmente il compromesso più importante nella progettazione di
altoparlanti professionali, poiché esso influenza profondamente le caratteristiche e
le prestazioni complessive del sistema audio.
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I componenti fin qui descritti sono sempre montati su una cassa, le cui carat-
teristiche sono molto importanti ai fini dell’efficienza e della qualità complessiva
del sistema audio. Nei sistemi audio professionali la cassa è progettata su misura
per una specifica combinazione di altoparlanti (e viceversa), al fine di migliorare le
prestazioni globali del sistema.

Due sono le tipologie di casse tipicamente utilizzate: la cassa chiusa, una
struttura molto semplice che impedisce ogni passaggio di aria tra l’interno e l’esterno
della cassa stessa, e la cassa accordata, una struttura più complessa che permette il
passaggio dell’aria attraverso un condotto accordato, consentendo di ottenere una
maggiore efficienza e un miglior comportamento dell’altoparlante. Il volume della
cassa, la sua forma e (se presente) le dimensioni del condotto accordato sono tutti
fattori cruciali per realizzare un buon accoppiamento tra l’altoparlante e la cassa
stessa.

Dato che l’altoparlante è l’elemento più critico per quanto riguarda la qualità
del suono riprodotto da un sistema audio professionale, molte tecniche di controllo
sono state sviluppate per consentire il superamento dei suoi limiti fisici.

Le prime tecniche sperimentate includono retroazioni nel dominio elettrico, l’uso
di regolatori PID sviluppati ad hoc per lo specifico dispositivo e l’introduzione di
più di un ingresso di pilotaggio. Tali approcci furono perlopiù empirici ed ottennero
scarsi risultati.

Un interessante passo in avanti è stato fatto con l’introduzione dei primi mod-
elli fisici dell’altoparlante (Beranek [Ber86], Thiele [Thi71a, Thi71b] and Small
[Sma72, Sma73a, Sma73b, Sma73c]).Questi sono dei semplici modelli lineari che
però fornirono una prima base teorica per studiare ed affrontare il problema.

I successivi tentativi di progettazione di sistemi di controllo furono orientati
al modello (model-based), sfruttando i nuovi modelli lineari per sviluppare un
controllo lineare dell’altoparlante tramite elaborazione del segnale in ingresso [Cat85].
Queste tecniche erano focalizzate sull’estensione della banda di lavoro dei trasduttori,
cercando di ottenere una riproduzione soddisfacente delle basse frequenze utilizzando
dispositivi più piccoli, più leggeri e meno costosi di quelli normalmente impiegati
per tale scopo.

Queste tecniche diedero risultati promettenti per piccoli segnali, condizione
in cui l’altoparlante si comporta come un sistema ideale e lineare, effettivamente
migliorando la larghezza di banda dell’altoparlante.

Sfortunatamente, gli stessi risultati non furono raggiunti per segnali relativa-
mente grandi, condizione in cui i fenomeni non lineari dell’altoparlante ne dominano
la dinamica: in quanto i modelli utilizzati a tale regime non sono più validi, il
controllore non è più in grado di sintetizzare un segnale di controllo corretto, spesso
causando instabilità.

Lo stesso comportamento non lineare dell’altoparlante venne anche riconosci-
uto come fattore cruciale per la qualità del suono riprodotto, provocandone il
degrado soprattutto alle basse frequenze. Questo ha portato ai primi tentativi di
compensazione delle non linearità tramite il pilotaggio in corrente [MH89].

Un approccio più recente, che è ancora oggetto di ricerca, è la compensazione at-
tiva della distorsione dell’altoparlante effettuata attraverso tecniche di elaborazione
del segnale digitale, che consentirebbe di migliorare la qualità del sistema audio
senza modificare i dispositivi fisici.
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Ciò avrebbe il vantaggio di essere applicabile a dispositivi già esistenti e di poter
migliorare la qualità del suono di dispositivi sub-ottimali senza un significativo
aumento del peso e dei costi. La compensazione della parte non lineare della
dinamica degli altoparlanti permetterebbe, inoltre, di utilizzare tecniche di controllo
lineare precedentemente sviluppate senza inconvenienti.

I primi tentativi di compensazione della distorsione tramite elaborazione del
segnale cercarono di utilizzare la teoria del controllo non lineare in combinazione
con tecniche di identificazione dei sistemi non lineari, principalmente attraverso
le Serie di Volterra [Kai87, BDNR05]. Sfortunatamente tale approccio, essendo
estremamente generale, non riesce catturare le caratteristiche comuni dei diversi
altoparlanti: il sistema fisico è modellato attraverso una complessa combinazione
di parametri privi di significato fisico, rendendo anche il controllore estremamente
complesso ed oneroso dal punto di vista computazionale. A causa di ciò, questo
approccio è stato messo da parte.

Gli approcci orientati ai modelli costituiscono una migliore alternativa per
affrontare il problema. La ricerca in questa direzione iniziò con l’introduzione di
un modello non lineare e sufficientemente completo dell’altoparlante [Kli05] che
sussume i precedenti lavori di diversi ricercatori.

Di lì a poco venne introdotto anche il Klippel Distortion Analyzer, uno strumento
di misura capace di identificare i parametri caratteristici degli altoparlanti attraverso
processi di misura non invasivi, che divenne in breve tempo uno standard de-facto
per industria degli altoparlanti [SK01, Kli00].

Da allora, molti tentativi sono stati effettuati includendo il nuovo modello non
lineare in un algoritmo di controllo model-based per ottenere la compensazione
della distorsione degli altoparlanti.

Lo stesso Klippel ha proposto un algoritmo di controllo, che consiste in un
controllo adattativo ad anello aperto basato sulle misure di tensione e corrente
dell’altoparlante, tutt’ora stato dell’arte [Kli03, Kli98].

Altri lavori hanno proposto implementazioni basate su diverse architetture
(anello aperto, retroazione), considerando misure di diverse grandezze caratteris-
tiche dell’altoparlante (corrente, spostamento, velocità, accelerazione, pressione) e
implementando l’algoritmo adattativo in modi diversi [BBNFS04, BSH94, PSR+13,
CCCP81].

L’obiettivo principale di questa tesi è quello di sviluppare un sistema di controllo
in grado di compensare le distorsioni introdotte dal comportamento non lineare di
un altoparlante dinamico, sfruttando le misure dei relativi parametri, ottenute con
il Klippel Distortion Analyzer, ed avendo accesso ad una misura dell’altoparlante.

L’altoparlante controllato dovrà produrre una distorsione armonica totale
(THD: Total Harmonic Distortion) nulla, esibendo un comportamento equivalente
ad un altoparlante lineare ideale in tutta la banda di lavoro considerata.

Il controllore, inoltre, dovrà essere in grado di sfruttare la linearizzazione
dell’altoparlante per applicare tecniche di controllo lineare, migliorandone così la
dinamica.

L’altoparlante considerato in questa tesi è un LF18x401 subwoofer da 18”
prodotto da RCF, con una bobina secondaria avvolta sopra la bobina principale,
utilizzata come sensore.
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L’introduzione di una bobina secondaria non è un processo inusuale nella
progettazione degli altoparlanti dinamici, ma di solito entrambe le bobine sono
connesse ad un ingresso di potenza. In questo caso, solo la bobina principale è
connessa ad un ingresso di potenza, mentre la bobina secondaria è utilizzata come
sensore.

Al fine di sviluppare l’algoritmo di controllo, l’altoparlante e il sensore saranno
modellati prima attraverso il modello di Klippel e successivamente attraverso una
rappresentazione a spazio di stati. I modelli ottenuti saranno implementati in
MATLAB Simulink e validati comparando il loro comportamento con equivalenti
misure dell’altoparlante reale.

Una volta sviluppato un modello soddisfacente, si procederà con il progetto
e l’implementazione del controllore, sempre in MATLAB Simulink. Simulazioni
verranno effettuate per valutare l’efficacia del controllo implementato.

Infine, sarà discussa la possibilità di implementazione dell’algoritmo di controllo
progettato su una delle architetture di DSP attualmente impiegate da RCF.

La tesi è organizzata come segue:

Nel primo capitolo è presentato l’altoparlante dinamico. La tipica struttura del
trasduttore è descritta in dettaglio, illustrando tutte le parti fondamentali, il
loro scopo nel processo di trasduzione e le relative caratteristiche peculiari.
Sono anche illustrati i principi fisici coinvolti nella trasduzione.

Nel secondo capitolo è introdotto il metodo a spazio di stati per la rappresen-
tazione di sistemi ed il relativo controllo. Le principali tecniche di controllo
non lineare e di controllo della dinamica note in letteratura sono illustrate,
fornendo esempi di architetture in anello aperto ed in retroazione, ed intro-
ducendo il concetto di "osservatore". Infine, sono presentati gli approcci
adottati per lo sviluppo del controllo non lineare ed il relativo osservatore.

Nel terzo capitolo sono derivati i modelli dell’altoparlante successivamente uti-
lizzati per il progetto del controllore, ricavando anche la relativa rappre-
sentazione a spazio di stati. Sono illustrate le analogie elettroacustiche ed
elettromeccaniche, utilizzate per definire il modello dell’altoparlante lineare.
Sono introdotti gli studi di Klippel sugli altoparlanti, estendendo il modello
lineare con parametri non lineari ed ottenendo così un modello non lineare
dell’altoparlante.

Nel quarto capitolo è modellata la bobina secondaria utilizzando lo stesso ap-
proccio descritto nel terzo capitolo.

Nel quinto capitolo è presentato il Klippel Distortion Analyzer, impiegato per
estrare da un altoparlante reale i parametri usati per caratterizzare i modelli
precedentemente definiti. I modelli sono validati confrontando i risultati delle
loro simulazioni con le misure effettuate sull’altoparlante.

Nel sesto capitolo è sviluppato il controllore, progettando la compensazione delle
non linearità ed il controllo della dinamica dell’altoparlante linearizzato. Le
prestazioni del controllo sono valutate, considerando anche una possibile
implementazione su un DSP utilizzato da RCF.





Introduction

This thesis has been developed during an internship in the company RCF and
in collaboration with the Università degli studi di Modena e Reggio Emilia.

RCF is an Italian company based in Reggio Emilia, world leader in design and
production of high-technology professional and consumer audio products. The
company is especially renowned for the design of cutting edge loudspeakers and
professional audio systems, worldwide employed in cinema, theaters, concert halls,
etc.

The standard configuration of a professional audio system is composed by three
fundamental elements: the Digital Signal Processor (DSP), the power amplifier and
the loudspeaker.

The DSP is a digital electronic component capable of modifying the input signal
coming from an audio source.

In order to be processed, the input audio signal must be converted into a digital
signal using an Analog to Digital converter (ADC), and then converted back into
an analog signal after the processing, using a Digital to Analog converter (DAC).

Nowadays, all active professional audio systems are equipped with a DSP, which
is exploited for many tasks: managing the output volume, applying digital filtering,
both to achieve fine tuning of the audio system and to properly condition the input
signal, implementing the audio system protection logic, that avoids damages to the
other components of the audio system due to user misuse or failures.

The computational power of these components has steadily increased during the
years, making them capable of even more complex signal processing. Conversely,
their cost is in constant decline.

The available computational power of a DSP is rarely fully exploited, leaving
room for more specific and refined system optimization techniques.

The power amplifier is an analog power electronic component that converts the
low power signal produced by an audio source or the DSP into a high power signal,
suitable for driving the loudspeaker to produce significant sound levels.

Depending on the specific audio system purpose, the amplifier architecture
can be very different: high power audio systems, used in concerts or theaters, are
mainly designed in switching architecture (class D), in order to deliver audio power
with the highest possible efficiency, possibly sacrificing the audio quality up to a
tolerable limit. Conversely, small power systems, used in recording studio systems,
are mainly designed in linear architectures (class A, class AB), in order to achieve
the best sound quality with lower power efficiency.
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Both the architectures exhibit, up to some extent, nonlinear behaviors that are
common in amplifiers and introduce distortion to the input signal, such as voltage
clipping and current supply limit. Switching amplifiers may add further distortion
due to the intrinsic nonlinearity of the technology. Nevertheless, the most recent
switching architectures are capable of competing with class AB distortion levels.

For the purpose of this work the amplifier will be considered an ideal component,
i.e. a fixed voltage gain capable of delivering to the loudspeaker any current value,
without any distorting behavior.

The loudspeaker is an electroacoustic transducer, i.e. a device that converts an
electric signal into an acoustic wave with enough energy to be heard by the human
ear.

Depending on the specific purpose of the audio system, many different tech-
nologies and loudspeaker shapes are available. Subwoofers are the largest devices,
reaching up to 55cm in diameter, and capable of conveying motion to a large
amount of air. They are used to reproduce low frequencies (20Hz - 200Hz).
Woofers are smaller devices used to reproduce a medium range of frequency (100Hz
- 5000Hz). Tweeters are the smallest devices, used to reproduce the high frequency
range (5000Hz - 20000Hz). Many intermediate sizes are also employed (midbass,
midrange, etc.) and the development of special purpose devices is not rare.

The most common technology employed in professional audio systems is the
dynamic loudspeaker, thanks to its versatility and overall sound quality.

A common problem with all transduction technologies is the introduction of
distortion, which causes a quality degradation of the conveyed sound. This can be
attributed to the fact that the energy injected into the transducer by the power
input signal to impress motion to the air also affects the loudspeaker itself. A
large input signal translates into stress and significant changes in many parts of
the transducer, causing it not to behave as an ideal, linear physical system and
introducing distortion.

It is important to notice that in professional audio systems the loudspeaker is
the main source of sound distortion.

Up to now, the typical approach used to alleviate the effect of distortion has
been to oversize the critical parts of the device. In this way it is possible to extend
the input signal range where the loudspeaker acts as an ideal, linear physical system,
paying the price of a higher cost and weight of the device.

This is currently the most crucial trade-off in the professional audio loudspeaker
design, deeply affecting the overall performance of the audio system.

The mentioned components are always mounted on a box, which also influences
the efficiency and the quality of the audio system. In professional audio systems
the box is tailored to match the mounted loudspeaker (and vice versa), in order to
enhance the overall performance.

There are two main typologies of boxes: the sealed enclosure, a simple design
that avoids any air passage between the inside volume and the outside, and the
vented enclosure, a more complex design that instead provides a passage for the air
(vent), which in turns allows to obtain higher efficiency and a better loudspeaker
behavior. The volume of the box, its shape and (if present) the vent design are all
crucial to achieve a good matching between the loudspeaker and the box itself.
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Since the loudspeaker performance is the most critical element regarding the
sound quality of a professional audio system, many control techniques have been
developed that allow to overcome its physical limitations.

Early techniques include analog electrical feedback, the use of ad hoc tuned
PID regulators and the employment of multi input loudspeakers. Those approaches
were mostly empirical, obtaining unsatisfying results.

An interesting leap forward has been achieved by the introduction of the first
physical models of the loudspeakers (Beranek [Ber86], Thiele [Thi71a, Thi71b] and
Small [Sma72, Sma73a, Sma73b, Sma73c]). These were simple, linear models, that
provided a first theoretical foundation that could be used to tackle the problem.

The next attempts to the design of loudspeaker control systems were model-based,
exploiting the new linear models in order to apply linear control on the loudspeaker
through signal processing [Cat85]. These techniques were mainly focused on the
bandwidth extension of the transducer, trying to obtain a satisfying reproduction
of low frequencies with smaller, lighter devices that are usually unsuitable for that
task, but have lower costs.

These techniques gave promising results with low level signals, where the
loudspeaker still behaves as an ideal, linear system, actually improving the device
bandwidth. Unfortunately, the same is not true for relatively large signals, when
the nonlinear behavior of the loudspeaker dominates the dynamics: in that case
the model fails and the controller is not capable of providing the correct control
signal, often causing instability.

The nonlinear behavior of the loudspeaker was also recognized as an important
factor for the audio quality, causing degradation especially at low frequencies. This
lead to the first attempts of compensation of the nonlinearities by current drive
[MH89].

A more recent approach, that is still matter of research, is the active compensa-
tion of the loudspeaker distortion performed through digital signal processing, which
would allow to improve the audio quality of the sound system without actually
modifying the physical device.

This would have both the benefit of being applicable to already existent devices
and of improving the sound quality of suboptimal devices without significant increase
of weight and costs. The compensation of the nonlinear part of the loudspeaker
dynamics, would also allow to use the previously developed linear control technique
without any drawbacks.

The first attempts of distortion compensation by signal processing tried to
exploit nonlinear system control theory combined with nonlinear system identi-
fication, mainly through Volterra Series [Kai87, BDNR05]. Unfortunately this
approach, being very general, cannot capture the common features exhibited by
different loudspeakers: the physical system is modeled as a complex combination
of parameters without any physical meaning, causing also the control to be very
complex and computationally expensive. Due to those characteristics, this family
of approaches has been cast aside.

The model-based approach offered a better alternative to tackle the control
problem. The research in this direction started with the introduction of a complete
nonlinear model of the loudspeaker [Kli05] that subsumes many antecedent works
from many researchers.



10 LIST OF TABLES

The Klippel Distortion Analyzer was also introduced, that is a measurement
system capable of identifying the characteristic parameters of any loudspeaker
through a non invasive measurement procedure, that quickly became a de-facto
industry standard [SK01, Kli00].

Since then, many attempts have been carried out to include the new, non
linear model in a model-based control algorithm to achieve compensation of the
loudspeaker distortion.

Klippel proposed a control algorithm for loudspeakers consisting in a feedforward,
adaptive control based on current and voltage sensing, which is still the state of
the art [Kli03, Kli98].

Other works proposed implementations of the distortion compensation exploit-
ing different control architectures (feedforward, feedback), the sensing of different
characteristic variables of the loudspeaker (current, displacement, velocity, ac-
celeration, pressure) and implementing the adaptive algorithm in different ways
[BBNFS04, BSH94, PSR+13, CCCP81].

The main objective of this thesis is to develop a control system capable of
compensating the distortions introduced by the nonlinear behavior of an dynamic
loudspeakers, exploiting the measurement of the loudspeaker parameters, performed
with a Klippel Distortion Analyzer, and having access to some measurement of the
loudspeaker.

The controlled loudspeaker should ideally produce zero Total Harmonic Distor-
tion (THD), thereby exhibiting a motional behavior equivalent to an ideal, linear
loudspeaker over the whole application bandwidth.

The controller should also being capable of exploiting the enforced loudspeaker
linearization to apply linear control to the device, improving its dynamics to satisfy
any reasonable working bandwidth requirement.

The target loudspeaker considered in this thesis is a 18” subwoofer LF18x401
manufactured by RCF, with a secondary coil wound over the main voice coil, used
as sensor.

The introduction of a secondary coil is not an unusual process in the design
and building of dynamic loudspeakers, but usually both coils are connected to a
powered input. In this case only the main voice coil is powered, while the secondary
coil is used as a sensor at almost zero cost.

In order to implement the control algorithm, the loudspeaker and the sensor will
be first modeled, according to the Klippel model, and expressed in a state space
representation. The obtained models will be implemented in MATLAB Simulink
and real measurements will be obtained for model validation.

Once a satisfying model for the device has been developed, the control design
will be carried out and implemented in MATLAB Simulink. Simulations will be
carried out to evaluate the effectiveness of the implemented control.

Finally, the possible implementation of the designed control system on one of
the DSP architectures currently employed by RCF will be discussed.
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The thesis is organized as follows:

In the first chapter the dynamic loudspeaker technology is presented. The typi-
cal structure of the transducer is described in detail, displaying all its fun-
damental parts, their purpose in the transduction process and their peculiar
characteristics. The operating principles involved in the transduction are also
displayed.

In the second chapter the state-space method for system representation and
control is introduced. The main techniques of nonlinear control and dynamic
control found in literature are displayed, providing examples in both feedback
and feedforward architecture, also introducing the concept of "observer".
Finally, the adopted approach for the design of the nonlinear control and the
relative observer is displayed.

In the third chapter the models of the loudspeaker, later employed for the
development of the controller, are derived and represented in state-space
form. The electromechanical and the electroacoustic analogies are displayed
and exploited to define a linear model of the loudspeaker. The Klippel studies
on the loudspeakers are then introduced, extending the linear model with
nonlinear parameters to obtain a nonlinear model of the loudspeaker.

In the fourth chapter the secondary coil, used as a sensor, is modeled following
the same approach described for the third chapter.

In the fifth chapter the Klippel Distortion Analyzer is presented and employed
to extract the parameters used to characterize the developed models from a
real loudspeaker specimen. The models are then validated comparing their
simulation results with the measures performed on the loudspeaker specimen.

In the sixth chapter the controller is developed, designing a suitable compen-
sation of the nonlinearities and a control of the dynamics of the linearized
loudspeaker. The performance the controller are evaluated, also considering a
possible implementation on a DSP employed by RCF.





Chapter 1

Dynamic loudspeakers

The development of loudspeakers started in the late 19th century, when Erns
Werner Siemens patented the first dynamic loudspeaker in 1874, and few years
later, in 1876, Graham Bell patented the first practical application of the device:
the telephone. The device created by Siemens exploited a linear electric motor to
put a small mass into motion, and transmitted that motion to the surrounding air
with the help of a horn.

Since then, a lot of effort has been spent to improve the quality of sound and
the efficiency of the transduction, leading to the development and the optimization
of different technologies.

One of the most noticeable results is owed to Chester W. Rice and Edward W.
Kellogg, that in 1925 published a famous paper about their studies on the direct
radiator loudspeaker [RK25]. Although they did not invented the device, they
defined its basic principle and formalized the underlying theory, allowing a further
development of the technology.

Figure 1.1: Collection of early loudspeakers designs. The bottom right device is the first
horn coupled dynamic loudspeaker, patented E. W. Siemens in 1874.
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Horn-coupled devices were unsuitable for a satisfactory reproduction of the whole
audio bandwidth: in particular, the reproduction of medium and low frequencies
was almost impossible. The direct radiator technology allowed to overcome this
limitation, substituting the horn with a large surface attached to the vibrating
element. This allowed to transmit motion to a larger amount of air and consequently
reproduce with much more fidelity the lower part of the audio spectrum.

Nowadays, especially in professional audio applications, where high power output
and transduction efficiency are critical, the most exploited loudspeaker technology is
the Dynamic Loudspeaker, coupled with both a direct radiator or a horn according
to the specific purpose of the device.

In consumer audio the trend is more various, with both medium power loud-
speakers for personal audio reproduction, such as Hi-Fis, and small, low power
loudspeakers for portable devices, such as the smartphones or notebooks.

Currently, this request is mainly satisfied by small, scaled versions of direct
radiator Dynamic loudspeakers. For portable devices the miniaturization is pushed
to the limit, with dimensions that can be less than 1 cm2: those devices are
usually referred as microspeakers. Other commonly employed technologies are the
piezoelectric loudspeakers and the MEMS loudspeakers.

Nevertheless, there is still constant research for the development of new kinds of
transduction principles and devices. The latest examples are the ionic conduction
speaker, developed at the Harvard’s University [KSF+13], and the carbon nanotube
termoacoustic speaker, developed at the Tsinghua University [XCF+08].

Since the dynamic loudspeaker, in all its variants, is currently the mainly
exploited loudspeaker technology, this work will focus on the development of a
control system suitable for those specific devices.

In order to better understand the underlying physics, which is a key aspect for
the definition of suitable models further used in the control development, and to
familiarize with the specific technical terminology, the next chapter will be devoted
to a high-level analysis of the direct radiator dynamic loudspeaker. All its functional
parts will be illustrated separately in order to further describe the global principle
of operation of this device.

Figure 1.2: One of the direct radiator loudspeaker designs presented by W. Rice and E.
W. Kellogg in 1925.
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1.1 The structure

Figure fig. 1.3 represents the cross section of a typical direct radiator dynamic
loudspeaker. For clarity, the same view is represented in fig. 1.4 highlighting all the
main elements that characterize this typology of transducer.

Figure 1.3: Cross section of a direct radiator dynamic loudspeaker.

Figure 1.4: Simplified representation of a direct radiator cross section.
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Even if this is the simplest configuration for this kind of devices, many parts
are involved in the electroacoustic transduction. The fundamental elements of the
dynamic loudspeaker will be now illustrated in detail.

The magnetic circuit is the first part of the loudspeaker’s electric linear motor,
composed by an annular permanent magnet placed between two metal parts,
the top plate and the bottom plate (or pole piece, or T-yoke). The particular
shaping of the two plates forms a small gap, called magnetic gap, where the
voice coil is inserted without touching the sides.

The permanent magnet is built either in ferrite, an iron based ceramic com-
pound, or in Neodymium based alloys. The first is the most used, due to
the relatively low costs, having the drawback of a higher weight and worse
performance, while the latter, despite its superior properties, is used only for
high performance devices due to the high costs.

The plates, instead, are built in soft iron, a highly ferromagnetic material
characterized by high level of saturation and low hysteresis. Those properties
are fundamental in order to efficiently convey the permanent magnetic field.
The only drawback of this material is represented by the generation of relatively
high eddy currents, causing lower efficiency and undesirable heat generation.

The whole structure is a magnetic circuit, where the permanent magnet acts
as a magnetic field generator, the two plates as magnetic short circuits and
the magnetic gap as a relatively high reluctance.

The high reluctance scatters the magnetic flux in the surrounding air, decreas-
ing the magnetic flux density in the magnetic gap, which is highly undesirable
since the magnetic flux density in the magnetic gap is directly related to the
force that the loudspeaker motor can exert.

In order to mitigate this effect the magnetic gap is kept as small as possible.
Also, particular geometries for the top plate can be employed.

Figure 1.5: Magnetic circuit cross section with simulated magnetic flux density.
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The voice coil is the second part of the loudspeaker electric linear motor, com-
posed by a conductive wire coil wound around a rigid support, called former.
The voice coil is rigidly attached to the diaphragm and inserted in the magnetic
gap so as to be immersed into the stationary magnetic field.

Figure 1.6: Copper wound voice coil.

The coil winding is made of insulated, metal wire (copper or aluminum), with
variable gauge according to the design requirements. The length of the wire,
the number of turns and the former size, are directly related to the force
that the loudspeaker can exert and also to its electric impedance, two critical
factors in the loudspeaker design. Moreover, there are three possible design
configurations for the voice coil, depending on its height:

Under-hung: when the height of the voice coil winding is smaller than the
magnetic gap height. This is the most compact design, with the serious
drawback of having the coil exit the magnetic gap, thus experiencing a
highly variable magnetic field.

Over-hung: when the height of the voice coil winding is larger than the
magnetic gap height. This design ensures that a significant part of the
coil is always inside the magnetic gap, which will experience a more
stable magnetic field, while requiring larger geometries.

Equal-hung: when the height of the voice coil winding is equivalent to the
magnetic gap height. This is an intermediate solution with respect two
previously described designs.

Figure 1.7: Voice coil configurations, from left to right: over-hung, under-hung and
equal-hung.
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The diaphgram (or cone, or piston) is the surface of the direct radiator, rigidly
connected to the voice coil former and attached to the basket through the
suspensions (spider and surround).

Its purpose is to convert the mechanical motion of the voice coil into acoustical
motion, moving the air and creating the actual sound wave.

Traditionally made of paper due to its low cost and good properties, nowadays
it is produced with different materials depending on the specific application.
Known alternatives are polymers (cellulose, Kevlar, polypropylene, etc) and
even metals (titanium and magnesium), the most common choice being
cellulose (which is also the main component of paper).

The required properties for the building material are low density, thus low
mass, and high rigidity, thus not exhibiting flexure, acting as a perfect rigid
body.

Unfortunately, no material exhibits perfect rigidity. At sufficiently high
frequency undesired standing waves rise over the diaphragm surface due
to its longitudinal and transversal resonance modes, both in radial and
circumferential directions.

The net effect of the standing waves over the diaphragm is a variation of
the effective radiation surface, and consequently of the overall transducer
efficiency.

Since the vibration modes are strictly related to the diaphragm geometry,
it turns out that the classical "cone" shape of the loudspeaker produces
beneficial effects, increasing their damping.

Figure 1.8: Cellulose diaphragm attached to a voice coil, a spider and a surround.
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The spider (or suspension) is an elastic annular disk, rigidly connected to the
basket on the outer side and to the voice coil former on the inner side.

Its main purpose is to provide a restoring force to the voice coil and the
diaphragm, in order to reposition the components at their rest position after
an inward or outward excursion. It also used to center and guide the voice coil
inside the magnetic gap, avoiding any contact between the two that would
cause noise and distortion.

It is mainly built with Polycotton, a fabric made from a blend of 90% cotton
and 10% plastic fibers (Polyester), impregnated with plastic resin and heated
in order to properly modify the mechanical properties of the resin, in particular
increasing its stiffness while keeping the cotton flexibility.

The spider structure is characterized by a corrugated radial pattern, whose
ripples act as the coil of a spring during the voice coil motion: when the
voice coil moves away from the rest position, the ripples are stretched apart
assuming a flatter configuration, causing the rise of an inner structural force
that tends to reestablish the original configuration. The corrugation can
assume different shapes, typically being triangular for small displacements
devices and sinusoidal for large displacements devices.

Unfortunately, being the most stressed component of the loudspeaker, it
exhibits very large variations of its behavior, both during its operation and
along all its lifetime. Three are the most influencing factors: the temperature
variation (a high power loudspeaker can reach 100°C) and humidity, that may
soften or harden the spider material, and the mechanical stress, that causes
the degradation of the spider mechanical properties, leading to an hysteretic
behavior (the spider restoring force is smaller than the moving force applied
to it). Also, during large excursions the spider displays the loss of the elastic
behavior, gradually acting as a rigid connection between voice coil and basket.

The spider is the most problematic component of the loudspeaker structure
due to its erratic behavior. Yet it is still used in any dynamic loudspeaker
design because there are no suitable alternatives.

Figure 1.9: Spiders of different sizes, used for different typologies of loudspeakers.
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The surround (or edge suspension) is similar to a smaller version of the spider,
consisting in an annular disk connected to the basket on the outer side and
to the upper part of the diaphragm in the inner side.

Its main purpose is to keep the diaphragm centered, guiding its positioning
during the excursions, while providing a minimal restoring force.

The material used to build the surround is mainly soft rubber, accurately
shaped in order to achieve effective control of the off-axis movements of the
diaphragm without damping the axial motion.

The dust cap is a cover placed over the hole left by the voice coil on the diaphragm
surface in order to avoid the introduction of dust or other particles inside the
loudspeaker structure.

Since the spacing left between the voice coil and the sides of the magnetic
gap is usually in the order of a tenth of a millimeter, the presence of external
particles would cause rubs and buzzes.

The basket is the rigid, fixed part of the loudspeaker structure, usually made in
aluminum or steel, that provides a pivot for the moving parts.

All the rigid connections of the various components are made using special
purpose glue, capable of withstanding the high stresses produced by the loudspeaker
motion. The dried glue structure is also a critical element for the loudspeaker sound
quality, as it may foster the rise of undesired vibration resonances: for this reason
only amorphous glues are employed, that do not exhibit any preferential direction
for vibrations in their dried structure.

From this short overview of the dynamic loudspeaker structure it is apparent
that many of its constituent elements are characterized by non ideal properties
and behaviors. The device will be fully characterized in chapter 3, with special
attention on those non ideal features.
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1.2 The operating principles

As said before, the dynamic loudspeaker exploits the linear motor principle to
put into motion its mechanical system, which, in turn, thanks to the direct radiator
implemented by the diaphragm, transmits that motion to the air producing audible
sound waves.

This means that the dynamic loudspeaker actually exploits two transduction
principles to convert an electric signal into an acoustic one: the electromechanical
transduction of the linear electric motor and the mechanoacoustic transduction of
the direct radiator.

Only the fundamental aspects of the two operating principles will be discussed.
More information and fine details can be found in [Dav06, Ber86].

1.2.1 The Linear Electric Motor

A linear electric motor is a device that exploits the electromagnetic interaction
between a fixed magnetic field and the current flowing in a conductor immersed in
that field to produce a linear force on the conductor itself.

In a dynamic loudspeaker the electric motor is formed by the magnetic field
present in the magnetic gap of the magnetic circuit, generated by the permanent
magnet, and the voice coil wire that, being traversed by a current flow, experience
a force.

According to the Lorenz Force Law, a conductive wire immersed in a magnetic
field experiences a force F proportional to the current flow i, the length of the wire
l and the magnetic flux density B, directed orthogonally to the current and the
flux density direction:

F = il×B (1.1)

The electromechanical transduction is maximized when the magnetic flux density
and the wire are perpendicular to each other, a condition in which the net force
obtained becomes:

F = Bli(̂l× B̂) (1.2)

In a dynamic loudspeaker this condition is met thanks to the specific radial
geometry: the magnetic gap is in fact filled by a radial magnetic field that is always
perpendicular to the wire of the voice coil, producing a force directed along its
longitudinal axis.

Therefore, one of the fundamental quantities that characterize the dynamic
loudspeakers is the product Bl, called force factor, that is the conversion factor
between the current flowing in the voice coil and the force produced on it due to
the transduction.

Having a high force factor is important for a dynamic loudspeaker, as it is
strictly related to the device efficiency.
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Figure 1.10: Electric linear motor principle.

For this reason, the transducers are designed by means of specific trade-offs:

• a longer wire increases the l contribution, but this will cause the voice coil
to increase in height and/or in thickness, requiring a larger and/or thicker
magnetic gap, thus reducing the B contribution;

• an alternative to increase l without requiring geometric changes of the magnetic
circuit is the use of longer but thinner wires;

• longer or thinner wires will increase the voice coil electric resistance, limiting
the current i and increasing heat generation;

• stronger magnets can be employed to increase B without any other change,
but increasing the cost of the device

Electric motors are also characterized by a collateral, undesired behavior: the
conductive wire displacement variation over time produces a motional electromotive
force across the wire itself opposed to the voltage that generated the motion, which
is the source voltage.

This phenomenon is caused by the electromagnetic interaction described by the
Lorentz Force for moving charged particles in fixed magnetic fields:

Vemf = qv ×B (1.3)

The electrons in the wire moving with velocity v experience a force that drives
them to one end of the wire, producing an electromotive force.

In dynamic loudspeakers this effect is due to the motion of the voice coil inside
the fixed magnetic field of the magnetic gap. Moreover, thanks to the radial
geometry of the device, this undesired effect is maximized, producing a counter
motional electromotive force Vemf :

Vemf = Blv(v̂ × B̂) (1.4)
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Figure 1.11: Generation of counter motional electromotive force.

However, this principle can be exploited for the development of a velocity sensor:
a second conductive coil wounded over the voice coil, thus subjected to the same
velocity, generates a voltage across its terminals proportional to their velocity.

Since in a linear electric motor the magnetic field B, the wire length l and the
wire velocity v are perpendicular one another to maximize the electromechanical
transduction, the direction of the force exerted on the voice coil (and consequently
its velocity) is always axial and the motional electromotive force is always opposite
to the source voltage. Thus, the respective directions can be disregarded, and
the linear electric motor can be more simply characterized by means of two scalar
equations:





F = Bl i

Vemf = Bl v
(1.5)

1.2.2 The Direct Radiator

A direct radiator is simply an ideally rigid surface used to improve the amount of
air that a mechanical system is capable of moving in order to produce sound waves,
acting as a mechanoacoustic transducer characterized by two basic equations:





p =
F

Sd

U = Sd v

(1.6)

where the force F applied to the mechanical system is converted into the acoustic
pressure p on the radiator surface, and the velocity of the mechanical system is
converted into the volume velocity U. The conversion factor between the mechanic
and the acoustic quantities is the radiator surface Sd, assumed flat and perpendicular
to the mechanical force.
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Usually, the diaphragm is built with a conical or exponential geometry to achieve
a better mechanoacoustic transduction, for which eq. (1.6) is not valid. However, it
is common practice to define an equivalent flat surface of the specific diaphragm
geometry for which eq. (1.6) applies.

In principle any mechanical system has an intrinsic direct radiator. For example,
a dynamic loudspeaker is capable of producing sounds even without the diaphgram,
exploiting the sole voice coil surface for the sound generation, obviously with
inadequate results. The reasons for this lies in the air behavior and in the interaction
between the mechanical and the acoustic domains.

The behavior of the air in contact with vibrating surfaces has been widely studied
by Beranek [Ber86]: he observed that the air load, depending on the vibrating
surface area and the stimulus frequency, exhibits different combinations of passive
and reactive behaviors, that can be associated to an acoustic damping and mass
respectively.

This equivalent acoustic system is fully described through the complex, frequency
dependent acoustic impedance ZAR(jω).

ZAR(jω) = RAR(jω) + jωMAR(jω) (1.7)

The real, passive part RAR(jω) determines the fraction of power supplied by the
mechanical system to the air being radiated as sound in the acoustic environment,
while the imaginary, reactive part MAR(jω) determines the fraction of power being
stored in the moving air mass.

The two parts of the acoustic impedance are also dependent on the specific
mounting of the loudspeaker.

In free air power is transmitted from both the front and the back surface of the
diaphragm, which acts as an acoustic dipole, propagating sound in any direction.
However, this setting is inefficient, especially at low frequencies (the air being
"pushed" by one side is "pulled" by the other side instead of moving forward). If
mounted on an infinite surface (infinite baffle mount) the two surfaces are completely
separated, each one acting as a monopole source, propagating sound in a specific
semi-space. The most practical configuration to achieve the sources separation is
to use boxes as loudspeaker enclosures, achieving approximately omni directional
sound propagation from the outer surface, while the inner one can be considered
non propagating.

For the ease of exposition, the infinite baffle mount configuration is considered,
but the same concepts are valid even for the other configurations.

It is often convenient to exploit eq. (1.6) to define an equivalent mechanical
impedance of the air load ZMR(jω).

ZMR(jω) = RMR(jω)+jωMMR(jω) =
F (jω)

v(jω)
=
SdP (jω)
U(jω)
Sd

= S2
d

P (jω)

U(jω)
= S2

dZAR(jω)

(1.8)
composed by an equivalent mechanical damping RMR(jω) and mass MMR(jω)

of the air load experienced by the mechanical system.
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Figure 1.12: Real part (Rs) and imaginary part (Xs) of the air load acoustic impedance
on one side of a plain, circular direct radiator of radius r.



26 Chapter 1. Dynamic loudspeakers

Figure 1.13: Frame of reference for a flat, circular direct radiator of radius radius r, in
infinite baffle mounting.

From the observations of Beranek, two main behaviors of the air load can be
broadly defined, depending on the size of the direct radiator radius r with respect
to the wavelength of the reproduced signal λ:

• for relatively low frequencies ( λ > 2πr ) the air load is dominated by a reactive
behavior, impeding the power transmission into the acoustic environment,
while the resistive part appears to be a fraction of it. In this case the air is put
into motion but in such a way that is not quite suitable to propagate power,
thus sound, in the acoustic environment. The air on the radiator surface
essentially acts as an excess mass attached to the mechanical system, storing
and returning kinetic energy, thus propagating only a small fraction of power.

• for relatively high frequencies ( λ < 2πr ) the air load is dominated by a
passive behavior, allowing power transmission to the acoustic environment,
while the reactive part tends to disappear at higher frequencies. In this case
the air is put into motion in a suitable way to propagate power, thus sound,
into the acoustic environment. The air on the radiator surface essentially acts
as an excess damping attached to the mechanical system, whose dissipated
power corresponds to the generated acoustic power.

The second important aspect of the direct radiator is its role as impedance
adapter between the mechanical system of the loudspeaker and the acoustic load of
the air, improving the power transmission from the first to the latter.

As mentioned before in eq. (1.8), the air in contact with the vibrating surface
acts as a mechanical impedance, related to the acoustic impedance by a proportional
term that is the square of the equivalent radiator surface Sd

2.
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The radiator surface can be tailored in order to achieve, up to some extent, an
impedance matching between the loudspeaker mechanical impedance and the air
load equivalent mechanical impedance, consequently improving the power transfer
between the two domains. The mechanical impedance mismatch can in fact lead to
two opposite, undesirable conditions:

• if the air load equivalent mechanical impedance is too low, due to a small
radiator surface, high volume velocity but low pressure are obtained. Concep-
tually, this is equivalent to moving a small amount of air very fast, but not
creating enough pressure.

• if the air load equivalent mechanical impedance is too high, due to a large
radiator surface, high pressure but low volume velocity are obtained. Con-
ceptually, this is equivalent to pushing against a large mass of air without
moving it properly.

These relationships can be exploited to determine with sufficient precision the size
of the surface of a direct radiator in order to work in the resistive region throughout
the required bandwidth and achieve mechanoacoustic impedance matching, thus
maximizing the power transmission efficiency.

Nevertheless, in order to keep practical form factors, the direct radiator loud-
speakers are equipped with under dimensioned radiators, that operate even in
the reactive region and without achieving a perfect impedance matching. These
configurations, while suboptimal, are capable of achieving better power propagation
with respect to the use of a single small vibrating element.

Another important aspect of the direct radiator is its role in the loudspeaker’s
spatial response. In fact, a direct radiator loudspeakers do not propagate sound
uniformly in space. Rather, they exhibit a directional behavior, especially at high
frequencies.

Considering an infinite baffle mount direct radiator, in its far field (the region
of the semi-space distant d� r from the direct radiator) the produced pressure is:

p(d, ϑ, t) = jω
ρ0Sd

2πd

[
2J1(krsinϑ)

krsinϑ

]
vme

j(ωt−kd) (1.9)

where d is the distance from the direct radiator center and ϑ is the off-axis
angle as in figure 1.13 , ρ0 is the air density, k is the wavenumber associated to the
pulsation ω and vm is the RMS velocity of the diaphragm.

This equation can be considered as the combination of two contributions: one
that accounts for the radiation at the points along the axis:

jω vme
j(ωt−kd) ρ0Sd

2πd
(1.10)

and a scaling factor due to the off axis position:

2J1(krsinϑ)

krsinϑ
(1.11)

This last scaling factor, called directivity function, exploits the Bessel’s function
of the first kind and first order J1(x).
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Figure 1.14: Directivity Function for a flat, circular direct radiator of radius r.

The directivity function shows that, regardless of the distance d, the pressure
has its maximum value along the axis of the direct radiator and decreases for larger
values of ϑ. Interestingly, the directivity function also exhibits local maxima and
minima, corresponding to angles with higher pressure values, called lobes.

The position, number and shape of the lobes can be better appreciated through
polar patterns, usually employed to evaluate the loudspeaker directivity and disper-
sion as function of the frequency.

Figure 1.15: Polar patterns for the directivity function of a flat, circular direct radiator
of radius r = 0.1m.

For relatively low frequencies ( λ > 2πr ) the directivity function can be
considered constant in any direction, regardless of the aperture angle ϑ. In this
condition the loudspeaker act as a spherical source, generating a pressure:

p(d, t) ≈ jω vme
j(ωt−kd) ρ0Sd

2πd
= ame

j(ωt−kd) ρ0Sd

2πd
(1.12)

where am is the RMS acceleration of the diaphragm.



Chapter 2

State-Space Control

Control theory has long been employed in order to modify and regularize the
behavior of physical systems, with application in many different fields, such as
mechanics, electronics, medicine, chemistry and even economics [Ast08].

Interestingly, it has already been employed in audio reproduction systems, as
the electronic architecture of the amplifiers typically exploits an internal control to
achieve high gains and low distortion figures.

The next step would be the application of control theory to the loudspeaker
physical system, in order to achieve better performance both in sound quality, by
reducing the nonlinearities that introduce distortions, and by controlling the device
dynamics to overcome its physical limits and enhance low frequency reproduction.

In its most abstract form, any control system can be considered as the combi-
nation of two separate parts: a Plant and a Controller. The plant represents the
controlled physical system, while the controller is the component designed to force
the plant to exhibit a desired behavior, feeding it with an appropriate input signal.

Nowadays, two main families of methods are available for the plant description
and the relative controller implementation:

The frequency response method , also called classical control, is based on the
representation of physical LTI (linear time invariant) systems by means of
their input-output transfer functions.

H(s) =
Y (s)

U(s)
(2.1)

This approach, being the simplest and the most studied, is very popular
for the characterization of LTI physical systems and the relative design of
controllers.

◦ H(s)
X(s) Y (s)

Figure 2.1: Transfer function representation of a linear time invariant system.
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Its main limitation is that only LTI systems admit a transfer function. Thus
it is unsuitable for the representation of non LTI systems and the design of
non linear controllers.

The state-space method , sometimes referred as modern control, is based on the
representation of physical systems by means of a set of first order differential
equations in a vector-valued internal state x of the system.

ẋ(t) = f(t,x, u)
y(t) = h(t,x, u)

(2.2)

For any LTI system a state-space (SS) representation can be defined and
conveniently expressed by a set of four matrices.

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(2.3)

The corresponding transfer function can easily be retrieved from the SS
representation:

H(s) =
Y (s)

U(s)
= C(sI−A)−1B + D (2.4)

The SS representation can be used to characterize wider class of physical
systems, including nonlinear time varying systems.

The definition of an internal state provides a richer representation of the
system, describing not only the input output dynamics, but also the internal
interactions that occur between the parts of the system, which is useful when
dealing with complex systems.

It also provides new degrees of freedom for the control implementation: the
controller may exploit, as well as the system output, even the system internal
state, thus achieving a deeper control of the whole system compared to a
plain output feedback.

◦ f(u,x, t)

∫
h(u,x, t)

u(t) ẋ(t) x(t) y(t)

Figure 2.2: State-Space representation of a nonlinear time varying system.
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◦ B +
∫

C

A

D

+
u(t) ẋ(t) x(t) y(t)

Figure 2.3: State-Space representation of a linear time invariant system.

The SS representation provides a powerful framework for the analysis of
LTI systems. In [Kal59], Kalman defined the concepts of observability and
controllability for LTI plants, which are key concepts for the design of SS
controllers.
A plant is said to be observable if, for any possible sequence of states vectors
and inputs, the current state can be determined using only the information
retrieved from the outputs. The observability of a plant can be tested by
checking the rank of the observability matrix:

O =




C
CA
CA2

...
CAn−1




(2.5)

where n is the plant relative degree or, equivalently, the state vector length.
The plant is observable if the observability matrix is fullrank.
A plant is said to be controllable if there exists an inputs sequence capable of
driving the state vector from a given initial value to a given final value in a
finite time interval. The controllability of a plant can be tested by checking
the rank of the controllability matrix:

C =
[
B AB A2B · · · An−1B

]
(2.6)

The plant is controllable if the Controllability Matrix is fullrank.
The plant is stable if:

Re[λi] < 0 ∀ λi ∈ eig(A) (2.7)

Finally, if the plant is observable and controllable, then the poles of the
transfer function correspond to the eigenvalues of the A matrix.

The rest of the chapter will illustrate the main SS approaches used to tackle the
problems of the compensation of nonlinearities and the control of the dynamics.
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2.1 Compensation of Nonlinearities

The aim of the compensation of the nonlinearities is to produce a control signal
capable of driving the plant in such a way not to exhibit its non linearities, acting
as much as possible like an ideal, linear system.

The fundamental idea behind all the compensation techniques is to implement
a controller capable of processing the input signal with an appropriate nonlinear
transformation, complementary to the plant nonlinearities, before being applied to
the plant itself. In this way the nonlinear effects of the controller and the plant
are mutually canceled out, so that the controlled plant exhibit only an ideal, linear
behavior.

The processing implemented by the controller can also be interpreted as a
predistortion of the input signal.

In order to produce the right predistortion, the controller needs updated in-
formations about the plant behavior. This is achieved by defining a nonlinear SS
model of the plant, that is exploited by the controller to track (or better, estimate)
the plant internal state.

The development of models for the description of physical system is another
huge branch of control theory, but it is not an important aspect at this point: for all
the described techniques it is assumed that a suitable model is available. Obviously,
the quality of the plant model is critical for the controller performances.

The compensation can be implemented by means of two different control archi-
tectures that will now be discussed: the feedback architecture and the feedforward
architecture.

2.1.1 Feedback Techniques

Feedback techniques exploit a closed loop architecture, where some variable of
the plant, often the actual plant output variable, is fed to the controller.

This architecture allows the controller to access information about the actual
behavior of the controlled plant and evaluate the committed control error. In order
to access even to variables that are not directly measured, the controller is combined
with a state observer, that provides an estimate of the full plant state exploiting
the plant model.

All those informations can be exploited by the controller to improve its perfor-
mance, minimizing the control error and keeping the plant model aligned with the
real plant.

◦ Controller Plant
v(t) u(t) y(t)

Feedback signal

Figure 2.4: Structure of a feedback control system.
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The feedback architecture has different drawbacks, mainly due to the require-
ments to measure the plant variable:

• the sensor used for the measurement may exhibit non ideal characteristics,
like nonlinear behaviors or noise;

• the sensor affects the plant, for example by adding some mass, thus changing
its theoretical behavior;

• the sensor may have a non negligible cost.

Moreover, if a digital controller is used, the required A/D and D/A operations
will introduce delays in the acquisition of both the input signal and the control
variable, and in the elaboration of the output control signal. This causes the loss of
coherence between the plant and the controller’s internal plant model, leading to
performance degradation or even to control instability.

Due to its limitations, the pure feedback architecture has not been much exploited
for the compensation of nonlinearities. The only noticeable application has been
the Exact Feedback Linearization.

In this technique, shown in fig. 2.5 the plant is considered as a global nonlinear
system to be compensated. The controller is designed in order to enforce a linear
relationship between the controller input and the output of the controlled system
such that:

y(n)(t) = v(t) (2.8)

where n is the relative degree of the plant and y(n)(t) is the nth derivative of
the plant output.

The underlying idea is to transform the nonlinear description of the plant
into a linear and controllable one, defining a new state vector by a coordinate
transformation of the original state vector. Further details can be found in [Isi95].

Plant

◦
Exact Feedback Linearization

Controller
f(u,x, t)

Observer

∫
h(u,x, t)

v(t) u(t) ẋ(t) x(t) y(t)

x̂(t)

Figure 2.5: Exact Feedback Linearization control system.
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Plant◦ Hd(s)

Exact Feedback Linearization

Controller
f(u,x, t)

Observer

∫
h(u,x, t)

w(t)

u(t)

v(t)

ẋ(t) x(t) y(t)

x̂(t)

Figure 2.6: Exact Feedback Linearization control system, with reintroduction of the
linear dynamics.

The original state vector information, required by the controller, is usually
retrieved using of an observer.

From eq. (2.8) it is clear the controller compensates both the linear and the
nonlinear behaviors of the plant. Any required linear dynamic, such as a low
pass or high frequency roll-off, must be artificially introduced with an appropriate
prefiltering of the input signal, as shown in fig. 2.6. The transfer function of the
filter Hd(s) should mimic the desired dynamic of the controlled plant.

2.1.2 Feedforward Techniques

Feedforward systems exploit an open loop architecture relying exclusively on
the controller’s internal plant model for the computation of the control signal.

This approach, that does not require any information about the real plant,
solves all the problems relative to the plant measurements affecting the feedback
architecture. Nevertheless, all the benefits that come from the observation of the
plant are also lost: the controller is not aware of the real plant behavior and cannot
exploit any information to adjust its control strategy.

This means that a purely feedforward controller is very sensitive to the mis-
alignment between the plant model and the real plant, causing loss of robustness,
performance degradation and even instability. The controller must be equipped
with a perfect plant model and be perfectly initialized in order to work properly.

◦ Controller Plant
v(t) u(t) y(t)

Figure 2.7: Structure of a feedforward control system.
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Techniques that implement a pure feedforward nonlinear compensation can be
derived from the Exact Feedback Linearization, retrieving the plant state without
accessing to any plant measurement.

The main techniques are the Simulated State Observer, shown in fig. 2.8, and
the Direct Integration, shown in fig. 2.9, that avoids the use of any observer.

Plant

◦
Exact Feedback Linearization

Controller
f(u,x, t)

Observer

∫
h(u,x, t)

v(t) u(t) ẋ(t) x(t) y(t)

x̂(t)

Figure 2.8: Feedforward implementation of the Exact Feedback Linearization control
system, with Simulated State Observer.

Plant

◦
Exact Feedback Linearization

Controller
f(u,x, t)

Direct Integrator
(Open Loop Observer)

∫
h(u,x, t)

v(t) u(t) ẋ(t) x(t) y(t)

x̂(t)

Figure 2.9: Feedforward implementation of the Exact Feedback Linearization control
system, with Direct Integration of the state.
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These techniques perform well when the plant is time invariant, and can be thus
fully described by a fixed, nonlinear model, exploited by the controller. Conversely,
they are not suitable for the control of time-varying nonlinear plants.

In order to deal with time varying plants, the controller must have some degree
of adaptation, in order to follow the evolution of the characteristics of the plant.
The only way to achieve this is, again, to access some measurement of the plant
and modify the controller’s plant model according to the sensed plant behavior.
These techniques belong to the Adaptive Control category.

2.1.3 The adopted approach

All the presented approaches aim at the input-output linearization of the system.
Most physical systems exhibit an underlying linear behavior that, at large

excitations, is modified by the intrinsic non idealities of the system itself. In that
case, the system can be described as the combination of both a linear time invariant
and a nonlinear time-varying contribution.

ẋ(t) = Ax(t) + Bu(t) + a(t,x)x(t) + b(t,x)u(t)
y(t) = Cx(t) + Du(t) + c(t,x)x(t) + d(t,x)u(t)

(2.9)

The linearization of the physical system can then be achieved by compensating
the nonlinear contributions without affecting the underlying linear dynamics.

The chosen approach follows this idea, and implements a controller capable of
producing a control signal that compensates the nonlinear terms only. In order to do
so, the controller requires information about the system internal state, that can be
estimated by means of an observer, and also a complete and perfect characterization
of the involved nonlinearities, possibly considering adaptation in case of time-varying
systems.

This kind of controller could theoretically be implemented both with a feedback
and a feedforward architecture, following the ideas of the already exposed approaches.
However, since the adaptation will always require a measurement of the physical
system, the same measurement can also be exploited for a more accurate state
estimation, leading to a feedback implementation.

In this thesis it is assumed that the plant is nonlinear and time invariant,
characterized by nonlinearities strictly dependent on its internal status, and that a
perfect characterization of the nonlinearities dependencies is available.

ẋ(t) = Â(x)x(t) + B̂(x)u(t) = Ax(t) + Bu(t) + a(x)x(t) + b(x)u(t)

y(t) = Ĉ(x)x(t) + D̂(x)u(t) = Cx(t) + Du(t) + c(x)x(t) + d(x)u(t)
(2.10)
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The designed controller generates a control signal u(t) capable of driving the
plant so as to exhibit its linear behavior only. The controlled system, driven by the
desired input v(t), act a linear time invariant system.

ẋlin(t) = Axlin(t) + Bv(t)
y(t) = Cxlin(t) + Dv(t)

(2.11)

It’s important to remark that the state vector of the controlled plant x(t) and
the state vector of the equivalent linear system xlin(t) assume completely different
behaviors.

The proposed control system is depicted in fig. 2.10

Plant

◦
Nonlinear Dynamics

Compensation

Controller

Observer

+
∫

B + b(x) C + c(x)

A+ a(x)

D + d(x)

+
v(t) u(t) ẋ(t) x(t) y(t)

x̂(t)

Figure 2.10: The implemented Nonlinear Dynamics Compensation, with nonlinear time
invariant plant.

The proposed controller does not preclude the possible introduction of the plant
time-variance, in which case an adaptive algorithm is required to ensure the constant
alignment between the plant and its model used by the controller. For the purpose
of this thesis, this enhancement is not considered and is left for future works.
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2.2 Dynamic Control

The aim of the dynamic control is to produce a control signal capable of changing
the behavior of a linear, time invariant plant. The controlled system is driven in
such a way to exhibit a different behavior, acting as a physical system with different
properties.

The dynamics of a linear, time invariant system is usually characterized by a
transfer function, thus by its set of poles and zeros, and a gain. The fundamental
idea behind dynamic control techniques is to tune the plant exhibited poles, and
sometimes even the zeros, by means of an appropriate control signal.

If the plant is controllable and observable the poles of the transfer function
correspond to the eigenvalues of the A matrix. The dynamic control problem is
then recast as the tuning of the A matrix eigenvalues.

It is also possible to describe a relation between the four matrices of the SS
representation and the zeros of the physical system. However, assuming that the
plant is controllable and observable, it is usually much more convenient to design a
dynamic control acting just on the poles, implementing the so called pole placement
control.

The design of the controller just requires the SS representation of the plant
model, which supplies all the needed information about the plant dynamics. The
quality of the plant model is critical for the controller performance.

The very same techniques developed for the dynamic control of linear time
invariant systems can easily be applied even to nonlinear systems that have been
previously linearized. Thus, a single controller can be implemented to deal with
both the plant linearization and the shaping of the dynamics.

As for the compensation of the nonlinearities, the dynamic control can be
implemented either in a feedback or in a feedforward architecture.

2.2.1 Feedback Techniques

The feedback architecture exploited for dynamic control is conceptually identical
to the one presented for the compensation of the nonlinearities in section 2.1.1.

The controller is designed to assign the closed-loop poles of the plant to arbi-
trary values (pole placement), in order to achieve satisfactory closed-loop system
dynamics.

The typical approach, known as full-state feedback, implements the control
action exploiting all the internal state variables of the plant. In particular, the
control signal is produced by the controller as a linear combination of the plant state
variables, and thus obtained multiplying the state vector with a proper feedback
gain vector K.

uctrl(t) = −Kx(t) (2.12)

Since it is difficult to measure all the required internal variables, the controller
is usually combined with a state observer, i.e. a system capable of computing an
estimate of the full state vector from a meaningful measurement of the output of
the plant. The observer design is also based on the SS model of the plant, causing
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the state estimate to be affected by any misalignment between the plant and its
model.

The design of the feedback gain vector is also crucial, as it actually defines the
values of the closed-loop poles and consequently the closed-loop system dynamics.

ẋ(t) = Ax(t) + B(u(t) + uctrl(t)) (2.13)

ẋ(t) = (A−KB)x(t) + Bu(t) (2.14)

The closed-loop poles are determined by the eigenvalues of the matrix (A-KB).
The gain vector K is the only tuning factor involved in the control.

If the plant is controllable, then for each arbitrary combination of desired, stable
poles there exists a value of the feedback gain vector that forces the plant closed-loop
poles to those values, and such feedback gain vector can be easily found through
the Ackermann’s formula

K = [ 0 · · · 0 1 ]C−1αc(A) (2.15)

where C is the controllability matrix of the plant and αc(A) is the characteristic
polynomial of the desired closed loop matrix (A-KB) (which defines the desired
closed loop dynamic of the system), solved for A.

PlantController

◦ + B +
∫

C

A

D

+

−K

u(t)uin(t) ẋ(t) x(t)

uctrl(t)

y(t)

Figure 2.11: Full-State Feedback dynamic control system.
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PlantController

◦ + B +
∫

C

A

D

+

−K

Observer

u(t)uin(t)

x̂(t)

ẋ(t) x(t)

uctrl(t)

y(t)

Figure 2.12: Full-State Feedback dynamic control system, with observer for the state
estimation.

2.2.2 Feedforward Techniques

The feedforward architecture used for dynamic control is conceptually identical
to the one discussed for the compensation of the nonlinearities in section 2.1.2.
However, SS feedforward techniques are not typically employed for dynamic control.

The feedforward controller is obtained from the feedback controller, removing
any measurement of the plant variables and exploiting other techniques to obtain
an estimate of its internal state, as explained in section 2.1.2.

A common practice is the use of an open loop observer to estimate the controlled
plant status, as shown in fig. 2.13.

PlantController

◦ + B +
∫

C

A

D

+

−K

Open Loop
Observer

u(t)uin(t)

x̂(t)

ẋ(t) x(t)

uctrl(t)

y(t)

Figure 2.13: Full-State Feedback dynamic control system, with observer for the state
estimation.



2.3. State Observers 41

2.3 State Observers

All the described techniques require the access to the full state vector values to
implement the control.

The direct measurement of all the states by means of sensors is usually imprac-
tical, if not impossible.

State observers are used to estimate the full state vector of the plant from output
measurements of the plant itself, in some cases requiring just a single measurement.
The obtained state estimate, denoted as x̂, is effectively used in place of the real
plant state in the many control techniques.

Observers can be implemented in different ways (linear or nonlinear, time variant
or time-varying) to match the nature of the controlled plant.

The simplest state observer architecture is the linear time invariant open loop
observer, which is just a plain model of the dynamics of a linear time invariant
plant:

˙̂x(t) = Ax̂(t) + Bu(t) (2.16)

This architecture can obtain satisfactory state estimation only if the plant model
is perfectly characterized and the state is perfectly initialized. This last requirement
is the most difficult to be satisfied and a poor initialization may greatly affect the
state estimate quality.

The estimation error dynamics can be analyzed to determine the behavior of
the open loop observer.

e(t) = x(t)− x̂(t) (2.17)

ė(t) = ẋ(t)− ˙̂x(t) = Ae(t) (2.18)

The matrix A determines the rate at which the error tends to zero, that
corresponds to the rate at which the state estimate tends to the real state. The
convergence rate of the estimation error is limited by the speed of the A matrix
eigenvalues, which correspond to the poles of the controlled plant.

◦ B +
∫

A

u(t) ˙̂x(t) x̂(t)

Figure 2.14: Open Loop observer.
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◦

◦

B +
∫

C

A

D

−L

+

+
-

u(t) ˙̂x(t)

x̂(t)

ŷ(t)

y(t)

e(t)

Figure 2.15: Luenberger observer (Closed Loop observer).

The linear time invariant closed loop observer, also called Luenberger observer,
overcome this limitation allowing the tuning of the error dynamic eigenvalues to
faster values. This is achieved by exploiting the measurement of the plant output
and a feedback internal architecture.

The implementation is an extension of the open loop observer, where the internal
model is continuously corrected with a feedback of the output estimation error (the
difference between the measured and the estimated output) multiplied by a proper
feedback gain vector L .

The estimated state dynamic is described by:

˙̂x(t) =Ax̂(t) + Bu(t) + L[y(t)− (Cx̂(t) + Du(t))]

=Ax̂(t) + Bu(t) + L[Cx(t) + Du(t)− (Cx̂(t) + Du(t))]

=Ax̂(t) + Bu(t) + LCe(t) (2.19)

Consequently, the state estimation error dynamic is described by the equation:

ė(t) =Ax(t) + Bu(t)− [Ax̂(t) + Bu(t) + LCe(t)]

=(A− LC)e(t) (2.20)
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If the plant is observable and the internal model of the observer has been
perfectly characterized, the feedback gain vector L can be chosen to tune the closed
loop eigenvalues of the observer to arbitrary stable values.

The proper value of L can easily be found through the Ackermann’s formula:

L = αe(A)O−1




0
...
0
1


 (2.21)

where O is the observability matrix of the plant and αe(A) is the characteristic
polynomial of the desired closed loop matrix (A-LC) (which defines the desired
closed loop dynamics of the state estimation error), solved for A.

The eigenvalues of the matrix (A-LC) should be tuned faster than the eigen-
values of the closed loop matrix (A-KB), as a rule of thumb by a factor of 2 to 6,
to ensure faster decay of the state estimation error compared to the desired closed
loop dynamics.

Tuning the observer eigenvalues to faster values increases the speed of response
of the estimator but also increases its bandwidth, causing more sensor noise to
be acquired. Conversely, tuning the eigenvalues to slower values decreases the
observer bandwidth, achieving better noise smoothing but also interfering with
the implemented control law dynamics. The right choice of the observer closed
loop eigenvalues is a critical design step, affecting the overall performance of the
implemented control system.

When the noise and the model uncertainties become critical, the Kalman Filter is
often employed. It is an extension of the Luenberger observer capable of estimating
the plant statue exploiting both the plant model and a noise model accounting for
the uncertainties of the plant model itself. The peculiar feature of the Kalman
Filter is that its feedback gain is time variant, adapted according to the internal
noise model to achieve the best trade-off between the observation responsiveness
and the noise smoothing. More details about the Kalman Filter can be found in
[WB95].

Dealing with nonlinear time varying systems requires an observer which in turn
is nonlinear time varying, capable of coping with the continuous evolution of the
system and its nonlinear behavior.

Many approaches have been proposed for the design of nonlinear time varying
observers [Pri96].
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In this thesis, a nonlinear version of the Luenberger observer is employed.
The underlying idea is to use a linear version of the Luenberger observer, ap-

proximating the nonlinear plant behavior with a sequence of locally linear behaviors.
This can be achieved periodically updating the linear observer plant model with a
linear approximation of the nonlinear plant model at the current working point. If
the update speed Tup is such to effectively track the plant nonlinear behavior, then
the theory of the linear Luenberger observer can still be effectively applied locally.

Considering a generic SS representation of a nonlinear time-varying system of
eq. (2.2), if f(t,x, u) and h(t,x, u) are differentiable, it can be linearized by means
of Taylor’s series:

δẋ(t) ≈ ∂f(t,x, u)

∂x

∣∣∣∣x=x0

u=u0

δx +
∂f(t,x, u)

∂u

∣∣∣∣x=x0

u=u0

δu

δy(t) ≈ ∂h(t,x, u)

∂x

∣∣∣∣x=x0

u=u0

δx +
∂h(t,x, u)

∂u

∣∣∣∣x=x0

u=u0

δu
(2.22)

where x0 = x(t0) and u0 = u(t0) are the state vector and the input value at the
linearization time instant t0, respectively.

Considering a perfectly characterized nonlinear time-invariant plant, as described
in eq. (2.10), the linearized plant is expressed as follows:

ẋ(t) = f(t,x, u) = Â(x)x(t) + B̂(x)u(t) = Ax(t) + Bu(t) + a(x)x(t) + b(x)u(t)

y(t) = h(t,x, u) = Ĉ(x)x(t) + D̂(x)u(t) = Cx(t) + Du(t) + c(x)x(t) + d(x)u(t)
(2.23)

Therefore, the Taylor series of eq. (2.22) can be expressed as:

δẋ(t) ≈ Ā(x0, u0)δx + B̄(x0, u0)δu
δy(t) ≈ C̄(x0, u0)δx + D̄(x0, u0)δu

(2.24)

where:

Ā(x,u) =
∂f(t,x, u)

∂x

∣∣∣∣x=x0

u=u0

= A + a(x0) + x0
∂a(x)

∂x

∣∣∣∣x=x0

u=u0

+ u0
∂b(x)

∂x

∣∣∣∣x=x0

u=u0

B̄(x, u) =
∂f(t,x, u)

∂u

∣∣∣∣x=x0

u=u0

= B + b(x0)

C̄(x,u) =
∂h(t,x, u)

∂x

∣∣∣∣x=x0

u=u0

= C + c(x0) + x0
∂c(x)

∂x

∣∣∣∣x=x0

u=u0

+ u0
∂d(x)

∂x

∣∣∣∣x=x0

u=u0

D̄(x, u) =
∂f(t,x, u)

∂u

∣∣∣∣x=x0

u=u0

= D + d(x0)

(2.25)
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Neglecting the higher order terms, the considered nonlinear system can be
described by the LTI SS representation, valid near the working point x0, u0, t0:

ẋ(t) = Â(x0)x(t) + B̂(x0)u(t) = Ax(t) + Bu(t) + a(x0)x(t) + b(x0)u(t)

y(t) = Ĉ(x0)x(t) + D̂(x0)u(t) = Cx(t) + Du(t) + c(x0)x(t) + d(x0)u(t)

(2.26)

The linearized Luenberger observer assumes the form:

˙̂x(t) = Â(x0)x̂(t) + B̂(x0)u(t) + L[y(t)− (Ĉ(x0)x̂(t) + D̂(x0)u(t))] (2.27)

Since the linearized matrices must be periodically updated, the plant model of
the observer can be considered linear time varying, with matrices:

Â(t) = A + a(xn) B̂(t) = B + b(xn)

Ĉ(t) = C + c(xn) D̂(t) = D + d(xn)

(2.28)

Where xn = x(tn) is the nonlinear plant status vector associated to the nth

linearization time instant tn = b t

Tup
c

Therefore, it is not possible to define a fixed feedback gain vector L that ensure
the convergence of the estimation error at any instant, similarly to the linear time
invariant Luenberger observer. A fixed gain, depending on the evolution in time of
the linearized matrices, may suffice or lead to instability.

Assuming that the nonlinear plant locally preserves the observability property
for any value of the state vector, it is possible to compute an observer time varying
gain L(t) through the Ackermann’s Formula:

L(t) = αe(Â(t), t)O−1(t)




0
...
0
1


 (2.29)

where O(t) is the instantaneous observability matrix of the linearized plant:

O(t) =




Ĉ(t)

Ĉ(t)Â(t)

Ĉ(t)Â(t)2

...
Ĉ(t)Â(t)n−1




(2.30)

and αe(Â(t), t) is the instantaneous characteristic polynomial of the desired
closed loop matrix (Â(t)−L(t)Ĉ(t)) (which defines the instantaneous desired closed
loop dynamic of the state estimate error), solved for Â(t).
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The proposed time varying linearized Luenberger observer, shown in fig. 2.16
assumes the form:

˙̂x(t) = Â(t)x̂(t) + B̂(t)u(t) + L(t)[y(t)− (Ĉ(t)x̂(t) + D̂(t)u(t))] (2.31)

The use of a time varying feedback gain allows to tune the closed loop poles
of the observer to fixed values, preserving a fixed noise smoothing and allowing
variations in the estimation responsiveness.

Conversely, it is also possible to update at runtime the closed loop poles in order
to adapt the observer to the instantaneous poles of the plant, preserving a fixed
estimation responsiveness and allowing noise smoothing variations.

◦

◦

B(t) +
∫

C(t)

A(t)

D(t)

−L(t)

+

+
-

u(t) ˙̂x(t)

x̂(t)

ŷ(t)

y(t)

e(t)

Figure 2.16: Proposed time varying linearized Luenberger observer for state estimation
of nonlinear time variant system.



Chapter 3

Models for the Loudspeaker

In chapter 2 a recurrent requirement for the effectiveness of all the mentioned
control techniques is to have a perfect characterization of the controlled physical
system, in some cases requiring some kind of adaptive strategy in order to keep up
with possible variations in time of the system properties.

For the ease of exposition, the working principles described in chapter 1 assumed
an ideal, LTI dynamic loudspeaker. Unfortunately, as anticipated in section 1.1
each element of a real loudspeakers is affected by physical non idealities, causing
the loudspeaker to exhibit a global nonlinear and time varying behavior.

The presence of the loudspeaker non idealities is fundamentally due to its
working conditions.

In the small signals condition, the input signal is sufficiently low (< 1VRMS) not
to excite the physical system very much, producing a small current through the
voice coil and consequently a relatively small diaphragm displacement (< 1mm for
woofers, even less for tweeters). In this case the assumption of linearity and time
invariance are fulfilled, and the loudspeaker acts as an ideal device. Nevertheless,
due to the small motion transmitted to the diaphragm, it cannot produce significant
sound levels. For this reason no device is actually employed to work in the Small
Signal condition.

In the large signals condition, the input signal (> 1VRMS) produces a large
current through the voice coil and consequently a relatively large diaphragm dis-
placement (up to 20mm for woofers). In this way the physical system is sufficiently
excited to exhibit a large number of non idealities, invalidating the assumption of
linearity and time invariance. This is the typical working condition of a loudspeaker.

Since the first formal studies and researches on the dynamic loudspeaker different
models have been proposed for its characterization, tailored on the specific purpose
and conditions.

Contributions towards an effective modelization came from different researches,
proposing linear, lumped element models capable of capturing the fundamental
behavior of the dynamic loudspeaker (also considering the coupling with a box) in
the small signals, low frequency condition [Sma72, Thi71a]. Many improvements
to this first model have been proposed, extending the validity of the model even to
higher frequencies [Ber86] and also introducing correction factors that account for
the observed non idealities.

47
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The fundamental breakthrough for the modeling of dynamic loudspeakers has
been brought by Klippel that, summarizing the contributions of many different
researches, proposed a simple and effective model for the characterization of the
large signals behavior of loudspeakers [Kli05], and defined a convenient, non invasive
procedure to measure all the model parameters [Kli00, SK01]. Nowadays, the model
and the measurement procedure introduced by Klippel are the "de facto" standard
employed by professional audio companies to characterize their products and analyze
their quality.

In parallel, other techniques are employed for a more accurate study and design
of loudspeakers, such as the FEM (finite element methods) and other kind of
physical simulations. These approaches allow to perfectly simulate the whole
physical behavior of the modeled device, requiring a very complex, ad hoc model of
the device and large computational power.

For the target of this thesis, the Klippel model is the most attractive one, due
to its rich but simple characterization of the dynamic loudspeaker nonlinearities. In
order to achieve a better comprehension of the loudspeaker behavior, the simpler
linear model will be presented first. Then, all the generalizations introduced by
Klippel will be described, presenting the loudspeaker model that will be exploited
for the design of the controller.
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3.1 Small signals condition: the linear model

During the first half of the 20th century many publications suggested that the
mechanical and the acoustic systems could be easily modeled and analyzed as if
they were lumped elements electric circuits.

This is indeed possible when considering linear, time invariant systems: in
that case the three physical domains (electric, mechanical and acoustic) share the
same mathematical framework (linear differential equations) to model very different
phenomena.

Particularly interesting is the work of Olson [Ols58], later extended by Beranek
[Ber86], where all the analogies between the elements of the different physical
domains are described in detail. Their results are summarized in fig. 3.1.

In his book, Beranek also proposes a methodology to model a linear dynamic
loudspeaker exploiting the electromechanical and the electroacoustic analogies, con-
sidering each domain separately and defining the required inter-domain connections.

The dynamic loudspeaker is considered as the combination of an electric domain,
composed by the voice coil; a mechanical domain, composed by the diaphragm
and the spider; and an acoustic domain, defined by the surrounding acoustic
environment, usually a box.

The electric domain interacts with the mechanical domain by means of the
electroacoustic transduction of the electric linear motor, and in turn the mechanical
domain interacts with the acoustic domain by means of the mechanoacoustic
transduction of the direct radiator.

The model proposed by Beranek, being intrinsically linear and time invariant,
is useful only to model the behavior of a dynamic loudspeakers in the small signal
condition.

3.1.1 The electric domain

The electric domain includes all the dynamic loudspeaker parts whose behavior
can be described in terms of voltage V and current i.

In a typical loudspeaker it is composed by the sole voice coil that, being a long
solenoid of conducting wire, exhibits both a resistive and an inductive behavior.

The model proposed by Beranek is composed by the series of an electric resistance
Re and an electric inductance Le, characterized by the equation:

Vin(t) = Rei(t) + Le
∂i

∂t
(3.1)

Measurements of the electric impedance of the voice coil immersed in the
loudspeaker magnetic field suggest that the electric inductance does not follow the
expected jω frequency dependence:

Ze(jω) = Re + jωLe (3.2)
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Figure 3.1: Electromechanical and electroacoustic analogies.
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Re Le

iVin

Figure 3.2: Simple equivalent circuit of the loudspeaker electric domain.

Vanderkooy in [Van89] verified that the electric inductance follows a "semi-
inductive" behavior, characterized by a

√
jω frequency dependence.

Ze(jω) = Re +
√
jωLe (3.3)

This is attributed to the electromagnetic interaction between the voice coil and
the iron of the magnetic circuit, which can be considered equivalent to a large,
single coil made of iron, wound around the voice coil.

Since the two coils are concentric, the voice coil and the equivalent coil of the
magnetic circuit are almost perfectly coupled. This implies that the magnetic flux
produced by the current flow in the voice coil strongly affects the magnetic flux of
the magnetic circuit equivalent coil.

Therefore, due to Faraday’s law of induction 3.4, the current flow variation in
the voice coil causes the induction of an electromotive force in the iron and the
generation of eddy currents in the iron with "semi-frequency" dependent (

√
jω )

magnitude, due to the skin effect in the iron.

E(t) = −∂ΦB(t)

∂t
(3.4)

In turn, the eddy currents flow in the iron produces a "semi-frequency" dependent
magnetic field opposing the magnetic flux variation induced by the voice coil current.
Thus, the magnetic flux generated by the eddy currents induces a "semi-frequency"
dependent electromotive force on the voice coil Eeddyvoice.

Vin(t) = Rei(t) + Le
∂i

∂t
+ Eeddyvoice(

√
jω, i, t) (3.5)

The net effect of the complex electromagnetic interaction between the voice
coil and the iron of the magnetic circuit is the exhibition of the "semi-frequency"
dependency of the electric inductance, as described in eq. (3.3).

Since this relation cannot be expressed in linear terms, many models have been
proposed to describe this feature or to approximate it [Lea02, Wri89, DKOB04].
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i
Re Le

R2

iR

L2

iL

Vin �i �i2
Figure 3.3: Equivalent circuit of the loudspeaker electric domain, with LR-2 model for

eddy currents contribution.

The more interesting approach is the so called "LR-2 model", which adds to
the model proposed by Beranek a second inductance L2, shunted with a second
resistance R2.

Choosing the right values for L2 and R2 it is possible to obtain a satisfying
linear model, capable of fitting the real behavior of the voice coil for a sufficiently
large bandwidth.

The electric domain can then be characterized by the two equations:




Vin(t) = Rei(t) + Le
∂i(t)

∂t
+R2i(t)−R2i2(t)

0 = R2i2(t) + L2
∂i2(t)

∂t
−R2i(t)

(3.6)

where the "semi-frequency" dependent electromotive force generated by the
eddy current is approximated by linear terms

Eeddyvoice(
√
jω, i, t) = R2i(t)−R2i2(t) (3.7)

3.1.2 The mechanical domain

The mechanical domain includes all the parts of the dynamic loudspeaker whose
behavior can be described in terms of force F and velocity v.

In a typical loudspeaker it is composed by the "voice coil + diaphragm" body
and the spider, essentially acting as a rigid body of mass Mmd and a spring of
stiffness Kmd, respectively. Also a damping Rmd effect is introduced due to the
intrinsic mechanical losses.

The mechanical domain can be characterized by the equation:

Fin(t) = Mmd
∂2x(t)

∂t2
+Rmd

∂x(t)

∂t
+Kmdx(t) (3.8)

The system globally act as a damped mechanical resonator, thus can be modeled
by a spring-mass-damper system, characterized by a resonance frequency f0 and a
damping factor ζ0.

f0 =
1

2π

√
Kmd

Mmd

ζ =
Rmd

2

1√
KmdMmd

(3.9)
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Mmd Rmd

Cmd

v

Fin

Figure 3.4: Equivalent circuit of the loudspeaker mechanical domain.

The described system clearly behaves like a series electric RLC resonator,
justifying the conversion of the mechanical representation into an electric one.

Beranek defines both the impedance and the mobility conversions for the
mechanical domain, but for the purpose of this thesis only the impedance form will
be considered. In in the impedance form, the mechanical domain is converted into
a electric circuit composed by the series of an inductance Mmd, representing the
mechanical mass, a resistance Rmd, representing the mechanical damper, and a

capacitor Cmd =
1

Kmd

, representing the mechanical compliance, i.e. the reciprocal

of the mechanical stiffness.

3.1.3 The acoustic domain

The acoustic domain is not actually a proper part of the loudspeaker, being
the acoustic environment surrounding the loudspeaker itself, described in terms of
pressure p and volume velocity U.

Three common acoustic configuration are considered for the loudspeaker mount-
ing: the free air mount, the infinite baffle mount, the sealed enclosure and the
vented enclosure.

In the free air mount the loudspeaker is simply immersed in air. In that case
the acoustic domain is characterized by the sole air load, acting as as a combination
of an acoustic mass and an acoustic damper.

The equivalent electric circuit in Impedance form is the series of an inductance
MAR(jω), representing the air load mass, and a resistance RAR(jω), representing
the acoustic radiation.

Pin = MAR(jω)
∂U

∂t
+RAR(jω)U (3.10)

In the infinite baffle mount the loudspeaker is mounted on an infinite surface
that acoustically insulates the two sides of the diaphragm. In that case, the acoustic
domain is again characterized by the sole air load described in eq. (3.10), albeit
with different behaviors of the air load parameters MAR(jω) and RAR(jω).

In the sealed enclosure mount, the loudspeaker is mounted on a closed box. The
air cavity created by the box acts as an additional acoustic compliance Cab that
loads the loudspeaker. The equivalent counterpart of the box compliance in the
acoustic circuit is a capacitor Cab.
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In the vented enclosure mount, the loudspeaker is mounted on a box with a tuned
port that connects the inner side of the box with the rest of the acoustic environment.
This configuration introduces, in addition to the air cavity contribution as a
compliance, also an acoustic mass Map, due to the air inside the port, and an
acoustic damping Ral, due to the air losses, mainly friction and turbulence. The
acoustic system formed by the vented box alone acts as a parallel resonator.

MAR(jω) RAR(jω)

UPin

Figure 3.5: Equivalent circuit of the loudspeaker’s acoustic domain, in either the free
air or the infinite baffle mounting configuration.

MAR(jω) RAR(jω)

Cab

U

Pin

Figure 3.6: Equivalent circuit of the loudspeaker’s acoustic domain, in the sealed enclo-
sure mounting configuration.

U
MAR(jω) RAR(jω)

Cab RalMapPin

Figure 3.7: Equivalent circuit of the loudspeaker’s acoustic domain, in the vented enclo-
sure mounting configuration.
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3.1.4 The electro-mechanic transduction

The electro-mechanic transduction allows the connection between the electric
domain and the mechanical domain implementing an energy preserving conversion
between the different physical variables of the two domains.

In a loudspeaker, the electro-mechanic transduction is performed by means of
the linear electric motor, whose working principle has already been discussed in
section 1.2.1.

The typical behavior of the linear electric motor in a loudspeaker can be described
by the two equations:





F (t) = Bl i(t)

Vemf (t) = Bl v(t)
(3.11)

The linear motor converts the electric current i flowing in the voice coil into
a mechanical force F with a conversion factor equal to the motor force factor Bl.
Conversely, the mechanical body’s velocity v is converted into an electric voltage
vemf, again with a conversion factor equal to Bl.

Beranek associates this behavior to a gyrator-like element with conductance
equal to the motor force factor Bl.

3.1.5 The mechano-acoustic transduction

The mechano-acoustic transduction allows the connection between the mechani-
cal domain and the acoustic domain implementing an energy preserving conversion
between the different physical variables of the two domains.

In a loudspeaker, the mechano-acoustic transduction is performed by means
of the direct radiator, whose working principle has already been discussed in
section 1.2.2.

The typical behavior of the direct radiator in a loudspeaker can be described by
the two equations:





p(t) =
F (t)

Sd

U(t) = Sd v(t)

(3.12)

The direct radiator converts the mechanical Force F exerted on the radiator into
acoustic pressure p with a conversion factor equal to the reciprocal of the surface

of the radiator
1

Sd
. Similarly, the mechanical velocity v is converted into volume

velocity U with a conversion factor equal to Sd.
Beranek associates this behavior to a transformer-like element with turns ratio

equal to the surface Sd.
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i(t)

v(t)
Bl

Vemf (t) F (t)

(a)

v(t)

U(t)
Sd

F (t) p(t)

(b)

Figure 3.8: a) Equivalent circuit of the electro-mechanic transduction, performed by
the electric linear motor; b) Equivalent circuit of the mechano-acoustic
transduction, performed by the direct radiator

3.1.6 The complete linear model

Connecting the equivalent electrical, electromechanical and electroacoustic
circuits derived in sections 3.1.1 to 3.1.3 with the transduction element described in
sections 3.1.4 and 3.1.5, the complete linear model of the loudspeaker is obtained.

Considering a loudspeaker in the free air mounting configuration, the equivalent
electro-mechano-acoustic model is shown in fig. 3.9.

A common simplification of the complete model consists in the translation of
the air acoustic impedance ZAR(jω) from the acoustic domain to the mechanical
domain, exploiting the definition of the air equivalent mechanical impedance of
eq. (1.8).

Thus, the acoustic mass MAR(jω) and the acoustic damping RAR(jω) of the
acoustic domain are converted into an equivalent mechanical mass MMR(jω) and
mechanical damping RMR(jω) respectively, directly connected to the mechanical
domain.

Both the air mechanical mass and the air mechanical damping are usually much
smaller than the loudspeaker mass and damping, allowing to consider them small
constant values for the whole loudspeaker working bandwidth.

Bl Sd

Re Le

R2

L2

�i2 i

Vin Vemf

Mmd Rmd
Cmd

v

F Fradiator ZAR

U

p

Figure 3.9: Equivalent circuit of the full loudspeaker system, in the free air mounting
configuration.
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R2

L2

�i2 i

Vin Vemf

Mms Rms

Cms

v

F

Figure 3.10: Equivalent circuit of the full loudspeaker system, in the free air mounting
configuration and considering the mechanical equivalent contribution of
the air acoustic impedance.

The mechanical contributions can then be reduced to a single, constant parameter
for the mechanical mass, the mechanical damping and the mechanical compliance,
respectively:

Mms = Mmd +MMR

Rms = Rmd +RMR

Cms = Cmd

(3.13)

The equivalent model is shown in figure fig. 3.10.
The equivalent mechanical system exhibit a slightly different resonance frequency

fs and a damping factor ζs with respect to those exhibited in the free air mounting
configuration.

fs =
1

2π

√
Kms

Mms

ζs =
Rms

2

1√
KmsMms

(3.14)

More complex acoustic environments, such a sealed enclosure or a vented
enclosure, can also be simplified converting the acoustic elements into mechanical
equivalents.

For a sealed enclosure, the acoustic compliance of the box cavity Cab is converted
to an equivalent mechanical compliance Cmb that can be combined with the Spider
compliance contribution into a single parameter.

Cmb = CabSd
2 (3.15)

Cms =
CmdCmb
Cmd + Cmb

(3.16)

The equivalent model is still the one shown in figure fig. 3.10, using the mechan-
ical compliance in eq. (3.16). The equivalent mechanical system exhibit an even
different resonant frequency and damping factor with respect to those exhibited in
the free air mounting configuration, that can still be calculated using eq. (3.14).
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Figure 3.11: Equivalent circuit of the full loudspeaker system, in the vented enclo-
sure mounting configuration and considering the mechanical equivalent
contribution of the acoustic environment.

For a vented enclosure the conversion to the mechanical domain does not allow
any further simplification of the model. The acoustic elements are converted into
the respective mechanical counterparts:

Mmp = MapSd
2

Rml = RalSd
2

Cmb =
1

Kmb

= CabSd
2

(3.17)

The equivalent model is shown in figure fig. 3.11, using the parameters in
eqs. (3.13) and (3.17). The equivalent mechanical system exhibit two resonant
frequencies: one due to the mechanical resonance, still calculated using eqs. (3.13)
and (3.14), and one due to the air port acoustic resonance, using eq. (3.17):

fs2 =
1

2π

√
Kmb

Mmp

ζs2 =
Rml

2

1√
KmbMmp

(3.18)

3.1.7 SS representation of the linear model

This thesis focuses on the behavior of loudspeakers in the free air mount
configuration. This choice is not arbitrary: the free air mount is indeed the simplest
mounting configuration and allows a precise analysis of the transducer behavior
without any influence from the acoustic environment.

Moreover, the analysis carried out for the free air mount can be later generalized
for both the sealed enclosure mount, and the vented enclosure mount exploiting
the models developed in section 3.1.6.

The model of the free air mounted loudspeaker previously developed fig. 3.9 is
LTI and characterized by lumped elements that can be expressed in SS form.



3.1. Small signals condition: the linear model 59

First of all, it is necessary to define the input(s) and the output(s) of the system
to be modeled. The loudspeaker is a SISO (single input - single output) system,
whose usually considered input is the voltage applied to the voice coil by an audio
source, say a power amplifier. The quantity to be considered as the loudspeaker
output is not clearly defined instead.

Usually, the pressure produced by the direct radiator, or some related metric
(Sound Pressure Level (SPL), the Sound Power (P) or the Sound Intensity (I)) is
taken as the output. However, all the acoustic domain measurements are strongly
affected by the sensor (microphone) noise, its positioning and disturbances (acoustic
reflections), making it difficult to effectively evaluate the loudspeaker behavior.
Moreover, the frequency dependent behavior of the direct radiator, described in
section 1.2.2, makes it even harder.

The solution is to define a loudspeaker output a quantity that is not affected by
the acoustic domain, but is related to the produced pressure. A good candidate
comes from eq. (1.12), which relates the pressure generated by the loudspeaker to
its acceleration.

Acceleration is indeed a more suitable quantity to be evaluated, since it belongs to
the mechanical domain, and is directly related to the maximum pressure achievable
by the loudspeaker.

The equations that characterize the free air mounted linear loudspeaker have
been defined in sections 3.1.1, 3.1.2 and 3.1.4 and are here reported:





Vin(t)− Vemf (t) = Rei(t) + Le
∂i(t)

∂t
+R2i(t)−R2i2(t)

0 = R2i2(t) + L2
∂i2(t)

∂t
−R2i(t)

F (t) = Mms
∂2x(t)

∂t2
+Rms

∂x(t)

∂t
+Kmsx(t)

F (t) = Bl i(t)

Vemf (t) = Bl
∂x(t)

∂t

(3.19)

Rearranging the equations as follows





Vin(t) = (Re +R2)i(t)−R2i2(t) + Le
∂i(t)

∂t
+Bl

∂x(t)

∂t

0 = R2i2(t) + L2
∂i2(t)

∂t
−R2i(t)

Bl i(t) = Mms
∂2x(t)

∂t2
+Rms

∂x(t)

∂t
+Kmsx(t)

(3.20)

the coupling between the electric and the mechanic domain becomes evident.
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The equations can be further rearranged to form a system of first order differential
equations, required for the definition of a SS model.





∂i(t)

∂t
=
−(Re +R2)i(t) +R2i2(t)−Bl v(t)

Le
+
Vin(t)

Le

∂i2(t)

∂t
=
R2i(t)−R2i2(t)

L2

∂x(t)

∂t
= v(t)

∂v(t)

∂t
=
Bl i(t)−Kmsx(t)−Rmsv(t)

Mms

(3.21)

The state vector x(t), the input u(t) and the output y(t) are defined as follows:

x =
[
i(t) i2(t) x(t) v(t)

]T (3.22)

u(t) = Vin(t) y(t) = a(t) =
∂v(t)

∂t
=
∂2x(t)

∂t2
(3.23)

Then the SS representation of the loudspeaker in free air is given by the matrices:

A =




−Re +R2

Le

R2

Le
0 −Bl

Le

R2

L2

−R2

L2

0 0

0 0 0 1

Bl

Mms

0 −Kms

Mms

−Rms

Mms




B =




1

Le

0

0

0




C =

[
Bl

Mms

0 −Kms

Mms

−Rms

Mms

]
D =

[
0
]

(3.24)
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3.2 Large signals condition: the nonlinear model

The LTI model for the loudspeaker developed so far is not sufficient to charac-
terize the device in typical working conditions.

For example, at its limit conditions, a subwoofer loudspeaker can be driven
by voltage values up to 100V and currents up to 15A, producing a mechanical
displacement of its moving parts up to 30mm (peak values).

Under such conditions, the large variations over time of the electrical and
mechanical quantities undergone by the speaker will strongly affect its structure
and its properties. The resulting behavior exhibited by the loudspeaker is nonlinear
and time varying.

The analysis of loudspeakers in the large signals condition requires the defi-
nition of a different model, capable of capturing the nonlinear and time varying
characteristics.

Among the various model proposals for the large signal loudspeaker characteri-
zation, the most suitable for the purpose of this thesis is the model proposed by
Klippel.

3.2.1 Extension of the linear model: the Klippel model

The model proposed by Klippel is a lumped element, nonlinear time-invariant
loudspeaker model, directly derived by the linear model described in section 3.1.

It has been developed for the analysis of the large signals behavior of loudspeakers
and for the development of loudspeaker control systems. Lately, thanks to its proven
effectiveness, it has substituted the Thiele-Small model and the Beranek model,
becoming the new standard "de facto" for loudspeakers characterization.

The Klippel model extends the linear model described in section 3.1.6 charac-
terizing some of the lumped elements with parameters which vary with the model’s
internal state, thus making the model itself nonlinear. These nonlinear parameters
are described by means of nonlinear curves of the parameter value versus a state
variable.

Bl(x)

Re(Tv) Le(x,i)

R2(x,iR)

Le(x,iL)

�i2 i

Vin Vemf (x)

Fm(x,i,i2) Mms Rms

Cms(x)

v

F (x)

Figure 3.12: Klippel model for loudspeakers in the free air mounting configuration.
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Even if not formally introduced in the model definition, time variance can be
taken into account allowing the model parameters to change over time. Up to
now it is not possible to fully characterize the evolution in time of the loudspeaker
parameters, so the time variance is introduced only for control purposes, if it is
possible to update the model parameters at runtime by means of an adaptive
algorithm.

For the purpose of this thesis the loudspeaker is considered as a nonlinear time
invariant system. Therefore the Klippel model provides a suitable framework for
the its characterization. Also, it fosters the introduction of the loudspeaker time
variance, which can be developed in future works.

3.2.2 The loudspeaker nonlinearities

In the Klippel model, as well as in the linear model to which is inspired, each
parameter has a well defined physical meaning and is associated to a specific
element of the loudspeaker structure. For this reason, the characterization of the
nonlinearities can be carried out analyzing in detail the behavior of each element
when working in the large signals condition.

It is important to point out that each kind of loudspeaker (woofer, tweeter,
microspeaker, etc) exhibits different dominant nonlinearities. For the purpose of
this thesis, only the main nonlinear effects affecting the woofers and subwoofers
loudspeaker will be considered.

Electric inductance

The voice coil electric inductance exhibits both a displacement and a current de-
pendency. This means that the correct characterization would require the definition
of a nonlinear surface of the electric inductance value versus the displacement-current
pair, instead of a simple curve.

Le(x, i) = Le
0 f(x, i) (3.25)

where Le0 is the value of Le(0, 0), the electric inductance value at rest.
This behavior is approximated assuming that the displacement and the current

contributions are independent of each other, allowing the characterization of the
nonlinear inductance parameter by means of two curves, each one with a single
variable dependency.

Le(x, i) ≈ Le
0 [1 + ξ(x) + ι(i)] (3.26)
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Figure 3.13: Voice coil inductance displacement dependency Le(x, i = 0).

The displacement dependency is due to the modulation of the magnetic per-
meability experienced by the voice coil during its motion back and forth in the
magnetic gap.

At negative displacements, the voice coil is almost completely immersed in
the magnetic circuit iron, characterized by a high magnetic permeability, while
at positive displacements it is mostly immersed in air, characterized by a lower
magnetic permeability.

Figure 3.14: Variations of the electric impedance of a loudspeaker caused by the voice
coil displacement.
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Figure 3.15: Voice coil inductance current dependency Le(x = 0, i).

The current dependency is due to the modulation of the magnetic permeability
of the iron of the magnetic circuit, caused by the nonlinear relation between the
magnetic field strength H of the permanent magnet and the magnetic flux density
B in the iron.

Without any current flowing in the voice coil, the permanent magnet is the only
magnetic field strength source. It enforces the working point on the H-B curve of
fig. 3.16, i.e. with the iron magnetic permeability and magnetic flux density B at
rest.

A large current flow in the voice coil acts as another magnetic field strength
source, changing the total magnetic field strength. This causes a shift of the working
point on the H-B curve, affecting the iron magnetic permeability.

Figure 3.16: Magnetic flux density B versus magnetic field strength H in iron
and the modulation effects due to the voice coil current.
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The modulation of the magnetic permeability experienced by the voice coil
due to current and displacement causes the modulation of its exhibited electrical
inductance value, approximately following the long solenoid relation:

Le(x, i) ∝ µ(x, i)
N2A

l
(3.27)

Unfortunately, this relation is not strictly valid for a typical voice coil due to its
geometry (short and wide), but it clearly highlights the dependency between the
effective magnetic permeability µ(x, i) and the electric inductance Le(x, i).

When using an LR-2 model to cope with the "semi-inductive" behavior of
the electric inductance, parameters L2 and R2 are also affected by the magnetic
permeability modulation. Rather than defining other two nonlinear curves for each
parameter, Dodd in [DKOB04] and Klippel in [Kli05] suggested that, for most
applications, the behaviors of L2(x, iL) and R2(x, iR) can be approximated to scaled
version of the behavior of Le(x, i).

In that case, the following relations hold:

L2(x, i) = L2
0 [1 + ξ(x) + ι(i)] L2(x, i) = L2

0 [1 + ξ(x) + ι(i)] (3.28)

with

ξ(x) =
Le(x, 0)

Le
0 ≈ L2(x, 0)

L2
0 ≈ R2(x, 0)

R2
0 (3.29)

ι(i) =
Le(0, i)

Le
0 ≈ L2(0, i)

L2
0 ≈ R2(0, i)

R2
0 (3.30)

where L2
0 and R2

0 are the values of L2(0, 0) and R2(0, 0) respectively.
Finally, the variation of the electric inductance value over the displacement also

generates an additional reluctance force Fm(i, iL, x) that sums up to the linear
motor driving force, causing a spurious drive of the mechanical system.

Fm(i, i2, x) ≈ −i(t)
2

2

∂Le(x, i)

∂x
− iL(t)2

2

∂L2(x, i)

∂x
(3.31)

However, the reluctance force is generally negligible.
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Force factor

The electric linear motor force factor mainly exhibits a dependency on the
displacement.

Bl(x) = Bl0 β(x) (3.32)

where Bl0 is the value of Bl(0).
The force factor is given by the product of the voice coil wire length and the

magnetic flux density experienced by each infinitesimal part of the wire.
Clearly, the wire length is fixed and the magnetic flux density produced by the

permanent magnet in the magnetic gap and its surroundings can be considered
with good approximation stationary. However, the magnetic flux density is not
homogeneous in space, being almost constant inside the magnetic gap, where it
assumes its maximum value, and exhibiting a rapid decay in its surroundings, often
asymmetrically due to the magnetic circuit shape.

When the coil is at rest (x = 0), it is immersed in the strongest magnetic flux
density, exhibiting a large force factor. Conversely, when the coil is at an arbitrary
displacement, the magnetic flux density experienced by the coil is less the farther it
is from its rest position.

The geometry of the voice coil can mitigate the force factor dependency on the
displacement: an over-hung coil exhibits an approximately constant force factor for
larger displacements, the so called "plateau", but also a more rapid decay once it
passes a certain displacement threshold, as can be seen in section 3.2.2

Figure 3.17: Force factor displacement dependency for over-hung (red) and equal-hung
coils (blue).
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The force factor decay due to the displacement strongly afflicts all the loud-
speakers and is a major cause of sound distortion, as it directly influences the
generation of the driving force.

The force factor also exhibit a weak current dependency. As explained in
section 3.2.2, the presence of a large current in the voice coil causes the modulation
of the iron magnetic permeability. This in turns affects also the magnetic flux
density B, as depicted in fig. 3.16. However, the effect of the current on the force
factor is usually negligible, especially when using strong magnets capable to saturate
the iron of the magnetic circuit.

Mechanical Stiffness

The mechanical stiffness exhibits a dependency on the displacement.

Kms(x) = Kms
0 κ(x) (3.33)

where Kms
0 is the value of Kms(0).

The main source of the mechanical stiffness is the spider, while the surround is
influential only at very large displacements.

The spider structure is characterized by a corrugation pattern that, acting
as a spring, allows it to exhibit an almost linear behavior, at least for small
displacements. Conversely, during large displacements, the waves of the corrugation
tend to be overstretched, causing the spider to exhibit a stiffer behavior the farther
the loudspeaker is from its rest condition (x = 0).

The geometry of the wave pattern can mitigate the stiffness dependency on the
displacement: increasing the number of waves of the corrugation and/or increasing
their size can help stabilizing the stiffness value for larger displacement values. The
same applies for the surround but, since it is usually a very flexible rubber ring, its
effects are negligible unless it is severely overstretched.

The stiffness nonlinearity is a major cause of sound distortion, as its value is
subject to very large variations.

Another common non ideal behavior of the suspensions (spider and surround)
is the occurrence of viscoelastic effects, referred as "creep", at frequencies much
smaller that the loudspeaker resonant frequency. The net effect is a reduction of
the stiffness at those frequencies.

Fortunately, the creep effect usually occurs at frequencies below the specific
loudspeaker bandwidth, and can thus be neglected.

Other effects

The Klippel model introduces also other nonlinearities and non idealities that
are not included in the older models, making it even more flexible and suitable for
other typologies of loudspeakers or mounting configurations.

The most important of these contributions is the temperature dependency of
the electric resistance Re(Tv).

In normal working conditions the loudspeaker is subject to temperatures up to
100°, due to the Joule heating of the voice coil. The rise in temperature of the voice
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Figure 3.18: Mechanical stiffness displacement dependency.

coil causes the increase of the wire electrical resistance (which can even double its
value) and consequently the reduction of the current flow.

The net effect of the higher temperature of the voice coil is a reduction of the
loudspeaker output pressure, known as "thermal compression".

Unfortunately, the temperature is not included in the system state vector and
it is difficult to accurately estimate it without a dedicated sensor. However, a
thermal model of the loudspeaker has been proposed by Klippel [Kli04] that can be
exploited for future extensions.

For the purpose of this thesis, the electric resistance Re in the nonlinear
characterization will be considered constant with value equal to the maximum
recorded in the measurements (worst case scenario).

Other known effects that can be modeled are the dependence of the mechanical
resistance Rms(v) on the velocity, and that of the radiator surface Sd(f) on the
frequency [Kli05].

For the purpose of this thesis, these effects are not considered.
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3.2.3 SS representation of the nonlinear model

The development of a nonlinear SS model that includes the described nonlinear-
ities is straightforward, since the Klippel model is based on the linear model that
has already been discussed and represented in SS form.

The fundamental difference lies in the nonlinearity of some of the model param-
eters.

The proposed SS model includes the main nonlinear contributions previously
presented: the electric inductance nonlinearity, the force factor nonlinearity and
the mechanical stiffness nonlinearity.

The equations that describe the Klippel model are the following:





Vin(t)− Vemf (x, t) = Rei(t) +
∂Le(x, i)i(t)

∂t
+R2(x, i)i(t)−R2(x, i)i2(t)

0 = R2(x, i)i2(t) +
∂L2(x, i)i2(t)

∂t
−R2(x, i)i(t)

F (x, t) = Mms
∂2x(t)

∂t2
+Rms

∂x(t)

∂t
+Kms(x)x(t)

F (x, t) = Bl(x) i(t)

Vemf (x, t) = Bl(x)
∂x(t)

∂t
(3.34)

The derivative over time of the inductances can be developed as follows:

∂Le(x, i)i(t)

∂t
= Le(x, i)

∂i(t)

∂t
+ i(t)

∂Le(x, i)

∂t
(3.35)

Following the steps shown for the development of the linear model in section 3.1.7,
the following set of equations is obtained:





∂i(t)

∂t
=

−
[
Re +R2(x, i) +

∂Le(x, i)

∂t

]
i(t) +R2(x, i)i2(t)−Bl(x) v(t)

Le(x, i)
+

Vin(t)

Le(x, i)

∂i2(t)

∂t
=

R2(x, i)i(t)−
[
R2(x, i) +

∂L2(x, i)

∂t

]
i2(t)

L2(x, i)

∂x(t)

∂t
= v(t)

∂v(t)

∂t
=
Bl(x) i(t)−Kms(x)x(t)−Rmsv(t)

Mms

(3.36)
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Let the state vector x(t), the input u(t) and the output y(t) be respectively
defined as:

x =
[
i(t) i2(t) x(t) v(t)

]T (3.37)

u(t) = Vin(t) y(t) = a(t) =
∂v(t)

∂t
=
∂2x(t)

∂t2
(3.38)

Then 3.36 can be represented in pseudo SS form:

Â(x) =




−
Re +R2(x, i) +

∂Le(x, i)

∂t
Le(x, i)

R2(x, i)

Le(x, i)
0 − Bl(x)

Le(x, i)

R2(x, i)

L2(x, i)
−
R2(x, i) +

∂L2(x, i)

∂t
L2(x, i)

0 0

0 0 0 1

Bl(x)

Mms

0 −Kms(x)

Mms

−Rms

Mms




B̂(x) =




1

Le(x, i)

0

0

0




Ĉ(x) =

[
Bl(x)

Mms

0 −Kms(x)

Mms

−Rms

Mms

]

D̂(x) =
[
0
]

(3.39)
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The loudspeaker is indeed a physical system that exhibits an underlying linear
behavior, as described in 3.1, that, in the large signals condition, is corrupted by
the described nonlinearities. Thus, it can be expressed in the SS form described in
2.10 by the following matrices:

A =




−Re +R2
0

Le
0

R2
0

Le
0 0 −Bl

0

Le
0

R2
0

L2
0 −R2

0

L2
0 0 0

0 0 0 1

Bl0

Mms

0 −Kms
0

Mms

−Rms

Mms




B =




1

Le
0

0

0

0




C =

[
Bl0

Mms

0 −Kms
0

Mms

−Rms

Mms

]
D =

[
0
]

a(x) =




Re[ξ(x) + ι(i)]− ∂Le(x, i)

∂t
Le

0[1 + ξ(x) + ι(i)]
0 0

Bl0[1 + ξ(x) + ι(i)− β(x)]

Le
0[1 + ξ(x) + ι(i)]

0 −
∂L2(x, i)

∂t
L2

0[1 + ξ(x) + ι(i)]
0 0

0 0 0 0

Bl0[β(x)− 1]

Mms
0 −Kms

0(κ(x)− 1)

Mms
0




b(x) =




− ξ(t) + ι(i)

Le
0[1 + ξ(x) + ι(i)]

0

0

0




c(x) =

[
Bl0[β(x)− 1]

Mms
0 −Kms

0(κ(x)− 1)

Mms
0

]
d(x) =

[
0
]

(3.40)
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where:

∂Le(x, i)

∂t
=

∂

∂t

[
Le

0(1 + ξ(x) + ι(i)
]

= Le
0

[
∂ξ(x)

∂t
+
∂ι(i)

∂t

]
=

= Le
0

[
∂x(t)

∂t

∂ξ(x)

∂x
+
∂i(t)

∂t

∂ι(i)

∂i

]
=

= Le
0

[
v(x)∇ξ(x) +

∂i(t)

∂t
∇ι(i)

]
(3.41)

and similarly:

∂L2(x, i)

∂t
= L2

0

[
v(x)∇ξ(x) +

∂i(t)

∂t
∇ι(i)

]
(3.42)



Chapter 4

Velocity sensor model

The implementation of a feedback SS control system, as shown in chapter 2,
requires the acquisition of at least one of the plant physical variables from which
the entire system is observable to estimate the full state vector and generate the
control output.

Therefore, a sensor must be introduced in the plant to convert one of the plant
physical variables into an electrical signal, suitable to be processed by the controller.

Different kinds of sensors can be employed to measure the many physical
variables that characterize the loudspeaker.

Common sensors used for loudspeaker measurement are microphones (to measure
the generated pressure), the laser Doppler velocimeter and the laser displacement
sensor (to measure the diaphragm velocity or displacement). The use of those
sensors in a control system is definitely impractical in real working conditions due
to space and cost constraints.

(a)
(b)

Figure 4.1: a) Laser Doppler velocimeter; b) Collection of miniature accelerometers.

73
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Cheaper, smaller sensors, suitable for control purposes, are accelerometers,
magnetic velocimeters and current sensors. The main drawback of these sensors
is that they change, up to some extent, the behavior of the loudspeaker, adding
mass to the diaphragm (accelerometer,velocimeter) or increasing the input electric
impedance of the loudspeaker (current sensor).

In this thesis a magnetic velocimeter is exploited to measure the loudspeaker
velocity, mitigating the negative effects of the sensor embedding it in the loudspeaker
structure.

The magnetic velocimeter is composed by two main parts, a conductive coil
and a permanent magnet, and measures their relative velocity generating a counter
motional electromotive force as explained in section 1.2.1. In order to measure
the absolute velocity of a body, one of the two components, either the coil or the
magnet, must be rigidly attached to the moving body, while the other must be kept
at a fixed point in space.

A typical magnetic velocimeter is not particularly suitable to be used on a
loudspeaker, since a non negligible mass is added to the moving body and the
required magnet would interfere with the permanent magnet.

A solution is to embed the sensor components in the loudspeaker structure
during its design: the sensor magnet can be completely replaced by the loudspeaker
permanent magnet, while the sensor coil can be wound over the voice coil to
maximize its sensitivity (equivalent to the linear motor force factor) and be designed
arbitrarily small to minimize the added mass. This ideally provides a cheap and non
intrusive access to the velocity information of the loudspeaker mechanical system.

This approach has already been proposed [CCCP81] and proved effective. How-
ever, the cited article does not define a correct electrical model for the sensor,
characterizing it by means of a fitted transfer function instead of using the mea-
sured electrical parameters.

For the purpose of this thesis, a SS model of the described velocity sensor is
required. In the rest of the chapter the SS sensor model is developed for both the
small signals and the large signals condition.

Figure 4.2: Voice coil with secondary coil used as sensor wound over.
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4.1 Physical principles

The embedded magnetic velocimeter is as a secondary moving coil, wound over
the voice coil and rigidly attached to it, immersed in the magnetic field generated
by the permanent magnet and surrounded by the iron of the magnetic circuit.

Due to the peculiar configuration, there are three main contributions to the
sensor output voltage: the counter motional electromotive force of the sensor coil,
the inductive coupling between the sensor coil and the voice coil, and the inductive
coupling between the sensor coil and the magnetic circuit equivalent coil.

Motional electromotive force

The underlying physical principle of this contribution has already been described
in section 1.2.1. In short, the motion of the sensor coil in a stationary magnetic
field generated by the permanent magnet induces a counter motional electromotive
force across the coil itself.

Emotions (t) = Blsv(t) (4.1)

This is the working principle of the common magnetic velocimeter, where the
induced output voltage is directly proportional to the moving body velocity. The
sensor coil force factor Bls is equivalent to the velocimeter sensitivity.

Voice coil coupling

Since the sensor coil is wound directly over the voice coil, the two are perfectly
coupled. This implies that the two coils share the same magnetic flux and flux
variation.

Φvoice(t) = Φsensor(t)
∂Φvoice(t)

∂t
=
∂Φsensor(t)

∂t
(4.2)

Therefore, due to Faraday’s law of induction 3.4, the current flow variation in
one coil causes the induction of an electromotive force in the other coil, opposing
to the variation of the shared magnetic flux.

The current variation on one coil and the induced electromotive force on the
other are related by means of the coils mutual inductance M. For perfectly coupled
coils, the mutual inductance is directly related to the self inductances of the single
coils:

M =
√
LvoiceLsensor (4.3)
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The electromotive force generated by the voice coil on the sensor coil due to the
coils mutual inductance is:

Emutualsensor (t) = M
∂ivoice(t)

∂t
= M

∂i(t)

∂t
(4.4)

Similarly, if traversed by a time varying current, the sensor coil produces an
electromotive force across the voice coil.

This is an unwanted effect and must be avoided. Thus, to be effectively used as
a velocity sensor, the sensor coil must be connected to a high impedance load, such
as a preamplifier, to ensure no current flow.

Magnetic circuit equivalent coil coupling

As explained in section 3.1.1, the magnetic circuit can be considered equivalent
to a large, single coil made of iron, wound around the voice coil. Since the voice coil
and the magnetic circuit equivalent coil are almost perfectly coupled, the current
variation on the voice coil induces eddy currents in the iron of the magnetic circuit,
that, in turn, influence the voice coil inductance value. This has been approximated
through the LR-2 model, introducing a corrective term for the voice coil inductance
value (see eqs. (3.5) to (3.7)).

The corrective term, usually considered as a frequency dependent inductive
contribution, can also be considered as an induced electromotive force on the voice
coil due to the eddy currents.

Eeddyvoice(t) = [R2i(t)−R2i2(t)] (4.5)

Since the sensor coil is wound directly over the voice coil, it is almost perfectly
coupled with the magnetic circuit equivalent coil as well as the voice coil. This
implies that the sensor coil is affected by (and may affect) the eddy currents.

More specifically, if traversed by a time varying current, the sensor coil produces
an electromotive force in the iron, generating new eddy currents. This is an
unwanted effect and must be avoided. Again, the sensor coil must be connected to
a high impedance load, such as a preamplifier, to ensure no current flow.

The effects of the eddy currents on the sensor coil can be approximated, exploiting
the perfect coupling between the sensor coil and the voice coil and approximating
the effects of the eddy currents on the sensor coil with the same LR-2 model used
for the voice coil correction.
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Recalling that two perfectly coupled coils share the same magnetic flux:

Φvoice(t) = Φsensor(t) (4.6)

Faraday’s law of induction for solenoids:

E(t) = −N ∂ΦB(t)

∂t
(4.7)

and considering the sole contribution of the eddy currents to the shared magnetic
flux, the electromotive force generated by the eddy currents on the sensor coil can
be related to the electromotive force generated by the same eddy currents on the
voice coil

∂Φeddy(t)

∂t
= −E

eddy
voice(t)

Nvoice

= −E
eddy
sensor(t)

Nsensor

(4.8)

Eeddysensor(t) =
Nsensor

Nvoice

Eeddyvoice(t)

= Tr [R2i(t)−R2i2(t)] (4.9)

where Tr is the turns ratio of the two coils.
For perfectly coupled coils the turns ratio is directly related to the self induc-

tances of the single coils and consequently to their mutual inductance

Tr =
Nsensor

Nvoice

=

√
Lsensor
Lvoice

=
M

Lvoice
=
M

Le
(4.10)
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4.2 Small signals condition: the linear model

Considering the small signal condition described in chapter 3, all the parameters
of both the loudspeaker and the sensor can be considered linear and time invariant.

The sensor coil, similarly to the voice coil, is a solenoid of conducting wire
characterized by the series of an electrical resistance Rs, an electrical inductance
Ls and three electromotive force generators that account for the electromotive
contributions previously presented.

If the sensor coil is connected to a high impedance load, as previously described,
then the three electromotive contributions are exactly those described in eqs. (4.1),
(4.4) and (4.9).

The high impedance load ensures zero current flow in the sensor coil and zero
voltage drop across Rs and Ls. Thus, the output voltage of the proposed sensor is
determined by the sum of the three electromotive contributions:

Vsensor(t) = Emotionsensor (t) + Emutualsensor (t) + Eeddysensor(t)

= Blsv(t) +M
∂i(t)

∂t
+ Tr [R2i(t)−R2i2(t)] (4.11)

The voice coil current derivative can be expanded exploiting eq. (3.21):

Vsensor(t) = Blsv(t) +
M

Le
[−Rei(t)−R2i(t) +R2i2(t)−Blv(t) + Vin(t)]

+ Tr [R2i(t)−R2i2(t)] (4.12)

The mutual inductance M is related to the turns ratio Tr as expressed in
eq. (4.10), so the voltage across the sensor coil is simplified as follows:

Vsensor(t) = −TrRei(t) + [Bls − TrBl]v(t) + TrVin(t) (4.13)

It is interesting to notice that even if the sensor has initially been designed to
be a velocity sensor, the generated output voltage exhibits stronger dependencies
on the voice coil current and input voltage. In particular, in a perfectly built, ideal
sensor the velocity contribution becomes zero. In fact:

Bls = B lsensor = B N turns
sensor 2πr = TrB N turns

voice 2πr = B lvoice = TrBl (4.14)

However, thanks to the slight differences between the two coils due to the
intrinsic approximations of the manufacturing process, the sensor output voltage
detect also a small velocity contribution.
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Rs Ls is , 0

Emotion
sensor (v)

Emutual
sensor (i)

Eeddy
sensor(i,i2)

Vs

Figure 4.3: Electric circuit of the proposed sensor in the small signals condition, assuming
high impedance load.

4.2.1 SS representation of the linear sensor

The output voltage of the sensor coil expressed in eq. (4.13) can be considered
a second output of the linear SS model described in eq. (3.24), characterized by the
following matrices:

Csensor =
[
−TrRe 0 0 (Bls − TrBl)

]
Dsensor =

[
Tr
]

(4.15)
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4.3 Large signals condition: the nonlinear model

Considering the large signals condition described in chapter 3, all the parameters
of both the loudspeaker and the sensor can be considered nonlinear and time
invariant.

The nonlinear behavior of the sensor coil in the large signals condition is
modeled extending the linear model proposed in section 4.2, introducing nonlinear
contributions similar to those introduced by the Klippel model. The sensor coil
is indeed a conductive coil moving inside the loudspeaker magnetic gap and is in
principle identical to the voice coil. Thus, the sensor coil is subjected to all the
nonlinearities that afflict the voice coil, described in section 3.2.2.

The displacement dependency of the sensor coil force factor is modeled by means
of a nonlinear curve, similarly to the voice coil force factor:

Bls(x) = Bls
0 βs(x) (4.16)

where Bls
0 is the value of Bls(0).

The turns ratio and the mutual inductance of the two coils exhibit dependencies
on both the displacement and the current, related to the nonlinear dependencies of
their electrical inductances:

Tr(x, i) =

√
Ls(x, i)

Le(x)
=

√
Ls

0[1 + ξ(x) + ι(i)]

Le
0[1 + ξs(x) + ιs(is)]

= Tr
0

√
1 + ξs(x) + ιs(is)

1 + ξ(x) + ι(i)
(4.17)

M(x, i) =
√
Le(x, i)Ls(x) = M0

√
[1 + ξ(x) + ι(i)][1 + ξs(x) + ιs(is)] (4.18)

where Ls
0 is the value of Ls(0), Tr

0 is the value of Tr(0, 0) and M0 is the value
of M(0, 0).

The three electromotive contributions are also affected by the nonlinear behavior
of the system, and are derived from eqs. (4.1), (4.4) and (4.9) introducing the
appropriate nonlinear behavior in the parameters.

It is important to remark that eqs. (4.1), (4.4) and (4.9) are valid only if the
sensor coil is connected to a high impedance load, and the same applies to their
nonlinear extension. In this condition the sensor coil current flow and the current
dependency of the nonlinearities are negligible.
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The nonlinear equations that describe the three electromotive forces generated
by the sensor coil in the large signals condition are the following:





Emotionsensor (x, t) = Bls(x)v(t)

Emutualsensor (x, i, t) =
∂M(x, i)i(t)

∂t
= M(x, i)

∂i(t)

∂t
+ i(t)

∂M(x, i)

∂t

Eeddysensor(x, i, t) = Tr(i, x) [R2(i, x)i(t)−R2(i, x)i2(t)]

M(x, i) =
√
Le(x, i)Ls(x) = M0

√
[1 + ξ(x) + ι(i)][1 + ξs(x)] = M0µ(x, i)

Tr(x, i) =

√
Ls(x, i)

Le(x)
= Tr

0

√
1 + ξs(x)

1 + ξ(x) + ι(i)
= Tr

0τ(x, i)

(4.19)

Rs Ls(x) is , 0

Emotion
sensor (x,v)

Emutual
sensor (x,i)

Eeddy
sensor(x,i,i2)

Vs

Figure 4.4: Electric circuit of the proposed sensor in the large signals condition, assuming
high impedance load.
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The high impedance load ensures zero current flow in the sensor coil and zero
voltage drop across Rs and Ls(x). Thus, the output voltage of the nonlinear
proposed sensor is determined by the sum of the three electromotive contributions
of eq. (4.19):

Vsensor(t) = Emotionsensor (x, t) + Emutualsensor (x, i, t) + Eeddysensor(x, i, t)

= Bls(x)v(t) +M(x, i)
∂i(t)

∂t
+ i(t)

∂M(x, i)

∂t
+ Tr(x, i) [R2(x, i)i(t)−R2(x, i)i2(t)]

(4.20)

The voice coil current derivative can be expanded exploiting eq. (3.36)

Vsensor(t) = Bls(x)v(t) + i(t)
∂M(x, i)

∂t
+ Tr(x, i) [R2(x, i)i(t)−R2(x, i)i2(t)]+

+
M(x, i)

Le(x, i)

[
−Rei(t)−R2(x, i)i(t)− i(t)

∂Le(x, i)

∂t
+R2(x, i)i2(t)−Bl(x)v(t) + Vin(t)

]

(4.21)

The mutual inductance M(x, i) is related to the turns ratio Tr(x, i) as expressed
in eq. (4.19), so that the voltage across the sensor coil is simplified as follows:

Vsensor(t) =

[
−Tr(x, i)Re +

∂M(x, i)

∂t
− Tr(x, i)

∂Le(x, i)

∂t

]
i(t)+

+ [Bls(x)− Tr(x, i)Bl(x)] v(t)+

+ Tr(x, i) Vin(t) (4.22)
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4.3.1 SS representation of the nonlinear sensor

The output voltage of the sensor coil expressed in eq. (4.22) can be considered
a second output of the nonlinear SS model described in eq. (3.39), characterized by
the following matrices:

Ĉsensor(x) =

[[
−Tr(x, i)Re +

∂M(x, i)

∂t
− Tr(x, i)

∂Le(x, i)

∂t

]
0 0 [Bls(x)− Tr(x, i)Bl(x)]

]

D̂sensor(x) =
[
Tr(x, i)

]

(4.23)
or, equivalently, as a second output of the nonlinear SS model described in 3.40

by the following matrices:

Csensor =
[
−Tr0Re 0 0 (Bls

0 − Tr0Bl0)
]

Dsensor =
[
Tr

0
]

csensor(x) =




−Tr0Re[τ(x, i)− 1] +
∂M(x, i)

∂t
− Tr0τ(x, i)

∂Le(x, i)

∂t

0

0

Bls
0[βs(x)− 1]− Tr0Bl0[τ(x, i)β(x)− 1]




T

dsensor(x) =
[
Tr

0(τ(x, i)− 1)
]

(4.24)

The time derivative of Le(x, i) can be expressed as 3.41. Conversely, the time
derivative of M(x, i) cannot be easily related to other known quantities.

A blunt approximation is to neglect the current dependency from the voice coil
(ι(i) = 0) and consider the displacement dependencies of the two coils identical
(ξ(x) = ξs(x)). With those assumptions one has that:

M(x, i) ≈M0[1 + ξ(x)]
∂M(x, i)

∂t
≈M0v(t)∇ξ(x) (4.25)





Chapter 5

Measurement of the loudspeaker
parameters

The measurement of the loudspeaker physical parameters for analysis purposes
is an historical problem. For the first half of the 20th century it was considered
impossible to characterize a loudspeaker without dismantling it and measuring the
characteristics of all its parts separately.

In the ’70s Thiele and Small proposed a simple model for the analysis of
the loudspeaker behavior in different acoustic configurations, providing also a
noninvasive methodology for the extraction of the model parameters, the so called
"Thiele-Small parameters", mainly through the measurement of the loudspeaker
impedance frequency response.

This was possible because the proposed model was an extreme simplification
of the loudspeaker system, being valid only at low frequency, in the small signals
condition. However, the Thiele-Small model and the Thiele-Small parameters
remained for years the standard tool for the loudspeakers and audio systems
characterization, enabling huge advancements in the audio field.

Lately, the introduction of the Klippel nonlinear model allowed to characterize
also the behavior of the loudspeakers in the large signals condition and at relatively
high frequencies. Klippel also proposed a noninvasive methodology for the extraction
of the parameters required for its model, based on model identification and parameter
fitting.

The measurement (or better, the estimation) of the Klippel parameters is
indeed much more complex with respect to the procedure proposed by Thiele and
Small. Nowadays, the Klippel parameters can be easily measured using the Klippel
Distortion Analyzer, a complex measurement instrument that implements and
automates the Klippel methodology.

For the purpose of this thesis, the loudspeaker parameters have been measured
using a Klippel Distortion Analyzer, property of RCF.

85



86 Chapter 5. Measurement of the loudspeaker parameters

5.1 The Klippel Distortion Analyzer

The Distortion Analyzed is an hardware platform that performs the generation,
acquisition and digital signal processing required for the analysis of the loudspeaker
behavior and the estimation of its characteristic parameters in both small signals
(linear) and large signals (nonlinear) conditions.

In the typical configuration, the loudspeaker is fixed on a rigid structure in free
air and connected with special cables to the amplified output of the Distortion
Analyzer. Other configurations are used to analyze loudspeakers in closed or vented
enclosures.

The Distortion Analyzer is capable of measuring three physical variables of the
loudspeaker: the voice coil current, the diaphragm displacement and the generated
pressure.

The voice coil current is measured without any further connection: the special
cables used to connect the Distortion Analyzer to the loudspeaker enable the simul-
taneous voltage driving of the voice coil and its current sensing. The displacement
is measured using a laser triangulation sensor, tailored to measure displacements of
±50mm with resolution of 0.2mm at 1000Hz. The pressure is measured using a
special purpose measurement microphone with flat frequency response in the audio
band.

The Distortion Analyzer is connected to a PC running the software dB-Lab,
which serves as a user interface to the instrument.

Through dB-Lab the user can extract information and perform different charac-
terizations of the analyzed loudspeaker, access the extracted data and manage the
data extracted from different loudspeaker samples for comparison.

Figure 5.1: Full setup of the Distortion Analyzer in the free air mount configuration.
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The user is only required to provide a small set of parameters about the analyzed
loudspeaker, that are crucial for a correct and safe measurement but inaccessible
to the Distortion Analyzer, such as the analyzed loudspeaker typology, its surface
area, its nominal impedance, is design maximum electrical power and the voice coil
material.

On the basis of this information, the dB-Lab exploits the measurements retrieved
from the Distortion Analyzer to extract the required data.

The loudspeaker analysis performed by the dB-Lab is based on a grey-box system
identification procedure: instead of directly measuring the required information,
dB-Lab employs a suitable loudspeaker model, linear or nonlinear depending on the
specific analysis, and fits its parameters upon the sensed behavior of the analyzed
loudspeaker.

To do so, the Distortion Analyzer applies an input voltage signal to the loud-
speaker, optimized for the specific analysis, and measures the produced displacement,
pressure and current. The parameters of the dB-Lab model are periodically up-
dated to minimize the RMS error between the model behavior and the analyzed
loudspeaker sensed behavior, fitting the acquired measurements.

For the purpose of this thesis the Distortion Analyzer has been used to perform
two specific loudspeaker analysis: the Linear Parameter Measurement (LPM) and
the Large Signal Identification (LSI).

5.1.1 Linear Parameter Measurement (LPM)

The Linear Parameter Measurement is the specific measurement procedure
through which is possible to determine the electrical and the mechanical parameters
of a loudspeaker in the small signal condition.

The fundamental parameters that are extracted are the ones that characterize
the linear model described in section 3.1.

Re Electrical resistance of the voice coil at DC
Le Frequency independent part of the electrical induc-

tance of the voice coil
R2 Electrical resistance of the LR-2 model
L2 Electrical inductance of the LR-2 model
Bl Loudspeaker force factor
Mms Mechanical mass of the equivalent mechanical sys-

tem including the air load
Rms Mechanical damping of the equivalent mechanical

system including the air load
Kms Mechanical stiffness of the equivalent mechanical

system including the air load
fs Resonance frequency of the equivalent mechanical

system including the air load

These data are used to derive other important factors for the loudspeaker
evaluation and design, such as the efficiency, the sensitivity and the electrical,
mechanical and total Q-factors.
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In the typical (and suggested) measurement configuration, the parameters are
estimated fitting the loudspeaker electrical impedance frequency response, obtained
measuring the voice coil current, and the loudspeaker displacement frequency
response, obtained measuring the diaphragm displacement with the laser sensor.

Figure 5.2: LPM typical configuration: current and displacement sensing.

Other measurement configurations can be employed, choosing to use the sole
current measurement and/or to add the microphone measurement.

The dB-Lab software also allows the customization of the measurement pro-
cedure, acting on the stimulus amplitude, the fitting resolution, the considered
bandwidth and other factors.

5.1.2 Large Signal Identification (LSI)

The Large Signal Identification is the specific measurement procedure through
which is possible to characterize the loudspeaker behavior in the large signal
condition, estimating the parameter of the Klippel model that match the analyzed
device.

The extracted information include the displacement and current dependency
curves of the nonlinear parameters, the values of the nonlinear parameters at rest
(x = 0, i = 0), the evolution in time of the physical quantities (voltage, current,
displacement,etc) and the behaviors of the device time-varying parameters (electric
resistance, stiffness rest value, resonant frequency, etc). All the data is available in
real time during the measurement process for monitoring purposes and stored as
time series for later analysis.

This information is used to evaluate the global behavior of the analyzed device
and possibly determine its weakest part to enable further design improvements.
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In the typical measurement configuration, the loudspeaker model parameters
and the nonlinear dependency curves are estimated in real time accessing to the
measurements of the voice coil current and voltage, exploiting the counter motional
electromotive force to extract information about the mechanical domain.

In practice, the voice coil act both as an electric and a mechanical transducer.
However, the laser displacement measurement can be added to the setup to enhance
the accuracy of the results. This last configuration has been used in the performed
measurements.

Figure 5.3: LSI full configuration: current and displacement sensing.

The measurement procedure includes a nonlinear system identification process
based on adaptive inverse control. The analyzed loudspeaker is excited with a large
amplitude, noise-like signal, especially designed to enable a complete and effective
identification of the device dynamics. The characterization of the loudspeaker
behavior is obtained through the fitting of the Klippel model nonlinear parameters,
driven by the minimization of the RMS model error.

For the purpose of this thesis, the LSI is employed to extract the Klippel model
parameters of the examined loudspeaker, along with the related dependency curves.
Those informations are used to characterize the proposed nonlinear models of the
loudspeaker and the sensor.
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The extracted dependency curves of interest are:

Force Factor Bl(x)
The curve shows the decay of the force factor of the analyzed loudspeaker
versus the displacement of the diaphragm with respect to the rest position
(x = 0).
From this curve it is possible to characterize the values Bl0 and β(x) of the
proposed nonlinear model.

Bl0 = Bl(x = 0) β(x) =
Bl(x)

Bl0
(5.1)

Mechanical Stiffness Kms(x)
The curve shows the increase of the suspension stiffness of the analyzed
loudspeaker versus the displacement of the diaphragm with respect to the
rest position (x = 0).
From this curve it is possible to characterize the values K0

ms and κ(x) of the
proposed nonlinear model.

Kms
0 = Kms(x = 0) κ(x) =

Kms(x)

Kms
0

(5.2)

Electric Inductance Le(x)
The curve shows the variation of the electrical inductance of the analyzed
loudspeaker versus the displacement of the diaphragm with respect to the
rest position (x = 0).
From this curve it is possible to characterize the values L0

e and ξ(x) of the
proposed nonlinear model.

L0
e = Le(x = 0) ξ(x) =

Le(x)

L0
e

(5.3)

Electric Inductance Le(i)
The curve shows the variation of the electrical inductance of the analyzed
loudspeaker versus the current in the voice coil with respect to the rest current
value (i = 0).
From this curve it is possible to characterize the values L0

e and ι(x) of the
proposed nonlinear model.

L0
e = Le(i = 0) ι(x) =

Le(x)

L0
e

(5.4)

Clearly, the value of Le(i = 0) coincides with the value of Le(x = 0).

Other extracted parameters of interest are:

Re(Tv) Electrical resistance of the voice coil at DC at the
working temperature Tv

R2(0) Electrical resistance of the LR-2 model at rest (x =
0, i = 0)

L2(0) Electrical inductance of the LR-2 model at rest
(x = 0, i = 0)
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5.1.3 Parameter drift

The main limitation of the LPM and LSI measurements is that the extracted
parameters and dependency curves are assumed time invariant.

This is evident in LPM, where a single set of parameters is extracted, but is
also true for LSI, where the parameters of the analyzed loudspeaker are monitored
throughout the measurement process but the proposed parameters and dependency
curves are relative to the final instant of the measurement process.

This limitation is due to the time invariance of the loudspeaker models exploited
by both the measurement processes, that are the small signals linear model for the
LPM and the large signals Klippel model for the LSI.

A real loudspeaker is indeed a time-varying system, constantly subject to
temperature, pressure and humidity variations, as well as aging. All these factors
affect the structure and behavior of the loudspeaker and, since they are not modeled,
they determine a constant and unpredictable parameter drift.

This can be appreciated from the curves of fig. 5.4, result of a LSI measure-
ment performed on a loudspeaker while simulating environmental climatic changes,
switching from cold winter to hot summer temperatures.

The result of the sole temperature variation is a shift of the loudspeaker pa-
rameters that lead to a severe variation of its behavior, for example shifting the
resonance frequency an octave up.

(a) (b)

Figure 5.4: a) Temperature evolution versus time during the climate change simulation;
b) Resonance frequency versus time during the climate change simulation.
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The most significant example of parameter drifting in a loudspeaker is given by
the time variance of the mechanical stiffness.

Considering the small signals condition, the value of parameterKms is affected by
environmental factors (temperature, humidity) and aging. Two LPM measurements
performed in different environmental conditions clearly show a variation of the
mechanical stiffness, which becomes softer (Kms reduction) at high temperatures
and vice versa. This is the main reason of the resonance frequency shift in the
test of fig. 5.4. Similarly, two measurements performed at two different and distant
times show the aging effects.

Considering the large signals condition instead, the values of the curve Kms(x)
are also influenced by the structural fatigue of the suspensions. Monitoring the
evolution of the curve estimate during the LSI process, one observes the constant
reduction of the mechanical stiffness around the rest position (near x = 0). This is
shown in fig. 5.5.

Up to some extent, all the loudspeaker parameters are subject to drifts, intro-
ducing a potential degradation of the model’s quality.

For the purpose of this thesis, it is assumed that the loudspeaker parameters are
time invariant and that the parameters extracted by the LPM and LSI measurements
perfectly characterize the loudspeaker.

Figure 5.5: Evolution of the estimate curve of the mechanical stiffness versus displace-
ment.
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5.2 The studied loudspeaker:
LF18x401 with double voice coil

The studied loudspeaker is the LF18X401 subwoofer, manufactured by RCF. It
is a 18” (45, 72cm) subwoofer with cellulose-based conical diaphragm and ferrite
permanent magnet and copper, dual layer voice coil.

The nominal frequency range of the transducer is 25 − 1000Hz. However,
devices of this kind are usually employed in audio systems, combined with other
loudspeakers, for the reproduction of the 25− 200Hz range only.

For this reason, the considered working bandwidth is 25− 200Hz.
The nominal maximum displacement range of the transducer is 50mm peak-

to-peak, or equivalently ±25mm. This means that if the diaphragm displacement
exceeds the specified threshold, the transducer will suffer of structural damages
and, if the overstimulation is prolonged in time, may be destroyed.

For this reason, the considered working displacement range is ±20mm.
The considered LF18X401 has been customized to be equipped with a secondary

voice coil, used as sensor as described in chapter 4. The introduction of the sensor
coil requires the enlargement of the magnetic gap, to fit the additional thickness.

The major effects of this structural change are a slight reduction of the maximum
force factor Bl, caused by the reduction of the magnetic flux density B in the
magnetic gap and a small increase in the mechanical moving mass, due to the sensor
coil copper. To minimize the effects of the sensor voice coil on the loudspeaker
behavior, it should be made as short as possible, to minimize the excess mass, and
as thin as possible, to minimize also the enlargement of the magnetic gap.

For the ease of construction and analysis, the sensor coil has been designed to
be identical in material, thickness and height to the voice coil, but with half the
number of turns.

The voice coil is designed to be made of 130 turns of 0.45mm thick insulated
copper wire, wound on a 100mm diameter former and distributed on two overlapped
layers 292.5mm high, for a total length of 40.84m. The sensor coil has the same
form factor of the voice coil with but with a single layer, for a total length of
20.42m.

Figure 5.6: The studied loudspeaker: the LF18X401.
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5.2.1 Extracted parameters

The Distortion Analyzer and the dB-Lab software have been exploited for the
estimation of the fundamental parameters of the loudspeaker, both in small and
large signals conditions.

To fully characterize the device the measurement processes have been performed
on both the loudspeaker coils.

The results of interest of the LPMmeasurement processes are shown in tables 5.1a
to 5.1c.

From the extracted parameter values one can notice that quantities that should
be identical among the two measurements, like the mechanical mass, appear to be
different.

This is one of the limits of the identification-based algorithm exploited by the
Distortion Analyzer. The parameters are not actually measured but estimated,
introducing small variations of the extracted parameter values between different
measurements of the same devices. However, the estimation error is always less
than 5%.

It is also important to notice that, as explained in section 4.2, the small
differences from the theoretical design introduced by the manufacturing process
lead to a slightly smaller effective turns ratio. The theoretically null velocity
contribution to the sensor output voltage, in the real device actually appears.

Bls − TrBl = −0.2017 (5.5)

Figure 5.7: Window of the dB-Lab software with the LSI measurement results shown.
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Re 5.86 Ω

Le 2.923 mH

R2 6.12 Ω

L2 3.665 mH

Bl 23.408 N/A

Mms 251.669 g

Rms 5.121 kg/s

Kms 7936 N/m

fs 28.3 Hz

(a) Voice coil linear parameters.

Rs 3.19 Ω

Ls 0.705 mH

R2s 1.45 Ω

L2s 0.841 mH

Bls 11.294 N/A

M̂ms 247.715 g

R̂ms 5.297 kg/s

K̂ms 7633 N/m

f̂s 27.9 Hz

(b) Sensor coil linear parameters.

M 1.436 mH

Tr 0.4911

(c) Derived linear parameters.

Table 5.1: Extracted linear parameters from the LPM procedure.

at t(start) at t(end)

Tv 0 126 °C
Re(Tv) 5.84 8.64 Ω

Le
0 2.22 2.56 mH

R2
0 9.48 10.75 Ω

L2
0 4.17 5.10 mH

Bl0 23.84 23.84 N/A

Mms 249.920 249.920 g

Rms 2.274 8.216 kg/s

Kms
0 7380 3210 N/m

fs 27.4 18 Hz

(a) Voice coil parameters at rest.

at t(start) at t(end)

Tv 0 128 °C
Rs(Tv) 3.03 4.50 Ω

Ls
0 0.58 0.59 mH

R2s
0 2.47 2.41 Ω

L2s
0 1.09 1.28 mH

Bls
0 11.46 11.46 N/A

M̂ms 241.100 241.100 g

R̂ms 7.395 8.936 kg/s

K̂0
ms 5170 2940 N/m

f̂s 23.3 17.6 Hz

(b) Sensor coil parameters at rest.

at t(start) at t(end)

M0 1.229 1.135 mH

Tr
0 0.480 0.511

(c) Derived parameters at rest.

Table 5.2: Estimated parameters at rest from the LSI procedure.
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The LSI measurement process extracts the same fundamental parameters also
extracted with the LPM procedure, with the addition of the tracking of the pa-
rameters evolution in time during the large signals stimulation and the set of the
nonlinear parameters curves.

The comparison between the extracted parameters corresponding to the rest
position (x = 0) at the start and at the end of the measurement process is shown
in tables 5.2a to 5.2c.

Again, variations of the theoretically fixed parameters between the two LSI
measurements, and also between the LSI starting measurements and the LPM
results, can be noticed. However, the final result of the two measurements is
consistent, since both the mechanical stiffness Kms and the resonant frequency fs
at t(end) converge to similar values as can be seen in fig. 5.8.

Those curves appear very different in the first part of the measurement process,
suggesting a different response of the loudspeaker to the LSI stimuli. Indeed, the
voice coil measure has been done first, after a very long period of rest of the device,
while the sensor coil measure has been carried out after just few hours.

This means that spider the loudspeaker has had the time to recover its elastic
behavior, but not its entire strength, exhibiting a more compliant behavior with
respect to the first measure.

(a) Variations detected from the
voice coil.

(b) Variations detected from the
sensor coil.

Figure 5.8: Variations of Kms and fs during the LSI measurement process.
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The extracted nonlinear parameter curves are shown in fig. 5.9.
From the those curves it is possible to derive the four basic nonlinear dependency

curves ξ(x), ι(i), β(x), κ(x) and βs(x) described in sections 3.2.2 and 4.3 along with
their relative gradients, used in sections 3.2.3 and 4.3.1 to simplify the defined
nonlinear state space models, avoiding the use of the derivative operation in the
matrices coefficients. Those curves are shown in figs. 5.10 to 5.15

The displacement dependency curves are characterized by 100 data points over
a displacement excursion of ±21mm, for a resolution ∆x = 0.42mm. The current
dependency curve is characterized by 1000 data points over a current excursion of
±13.6A, for a resolution ∆i = 27.2mA.

Figure 5.9: Nonlinear parameters curves.
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Figure 5.10: Voice coil force factor nonlinear dependency curve β(x) and gradient∇β(x).

Figure 5.11: Mechanical stiffness nonlinear dependency curve κ(x) and gradient ∇κ(x).

Figure 5.12: Sensor coil force factor nonlinear dependency curve βs(x).
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Figure 5.13: Voice coil inductance nonlinear dependency curve ι(i) and gradient ∇ι(i).

Figure 5.14: Voice coil inductance nonlinear dependency curve ξ(x) and gradient ∇ξ(x).

Figure 5.15: Sensor coil inductance nonlinear dependency curve ξs(x).
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5.2.2 The Loudspeaker Models in Simulink

The loudspeaker and sensor models presented so far have been implemented in
Mathworks Simulink for validation purposes.

The loudspeaker models developed in chapter 3 and the sensor models developed
in chapter 4 have been condensed in just two models, one for each of the described
loudspeaker working conditions. The models, in fact, use the same internal state
vector, allowing to consider the sensor coil output voltage as a second output of a
loudspeaker system.

x(t) =
[
i(t) i2(t) x(t) v(t)

]T (5.6)

u(t) = Vin(t) y(t) =
[
a(t) Vsensor(t)

]T (5.7)

For the small signal conditions, the complete model for the loudspeaker with
sensor coil can be expressed as the SIMO (Single Input - Multiple Output) SS
model of eq. (5.8)

A =




−Re +R2

Le

R2

Le
0 −Bl

Le

R2

L2

−R2

L2

0 0

0 0 0 1

Bl

Mms

0 −Kms

Mms

−Rms

Mms




B =




1

Le

0

0

0




C =




Bl

Mms

0 −Kms

Mms

−Rms

Mms

−TrRe 0 0 (Bls − TrBl)


 D =




0

Tr




(5.8)
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The Simulink implementation of the small signal linear model is obtained using
a State Space block, properly initialized with the four matrices of eq. (5.8). The
matrices are created in the MATLAB environment with the parameters extracted
through the LPM procedure and stored in the workspace to be freely used by the
Simulink simulation engine.

For the large signal conditions, the complete model for the loudspeaker with
sensor coil can be expressed as the SIMO nonlinear time invariant SS model of
eq. (5.9).

A(x) =




−
Re +R2(x, i) +

∂Le(x, i)

∂t
Le(x, i)

R2(x, i)

Le(x, i)
0 − Bl(x)

Le(x, i)

R2(x, i)

L2(x, i)
−
R2(x, i) +

∂L2(x, i)

∂t
L2(x, i)

0 0

0 0 0 1

Bl(x)

Mms

0 −Kms(x)

Mms

−Rms

Mms




B(x) =




1

Le(x, i)

0

0

0




C(x) =




Bl(x)

Mms

0 −Kms(x)

Mms

−Rms

Mms

[
−Tr(x, i)Re +

∂M(x, i)

∂t
− Tr(x, i)

∂Le(x, i)

∂t

]
0 0 [Bls(x)− Tr(x, i)Bl(x)]




D(x) =




0

Tr(x, i)




(5.9)
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A new block has been defined to implement the nonlinear model, exploiting the
characteristic differential equations of the nonlinear loudspeaker and sensor, shown
in eqs. (3.34) and (4.19).

For ease of construction, the model has been split in six subparts, later connected
and encapsulated in a single functional block to form the full nonlinear model: two
for the electric domain in figs. 5.18 and 5.19, one for the mechanical domain in
fig. 5.20, one for the electromechanic transduction in fig. 5.21, one for the sensor
output fig. 5.22 and one for the constant update of the nonlinear parameter values
in fig. 5.23.

The model is characterized using the parameters and nonlinear dependency
curves extracted through the LSI measurement process. The measured parameters,
due to the intrinsic time variance of the loudspeaker physical system, also exhibit
time variance during the whole measurement process.

For the purpose of this thesis, the loudspeaker is considered a nonlinear time
invariant system, characterized by the last extracted parameter at time t(end), thus
under mechanical stress.

Figure 5.16: State Space Simulink block, initialized with the matrix to implement the
loudspeaker small signal model.
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Figure 5.17: The custom Simulink block, implementing the nonlinear loudspeaker large
signal model.

Figure 5.18: Modeling of the voice coil current.
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Figure 5.19: Modeling of the eddy currents contribution with LR-2 model.

Figure 5.20: Modeling of the mechanical domain.
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Figure 5.21: Modeling of the electromechanical transduction.

Figure 5.22: Modeling of the output voltage of the sensor coil.
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Figure 5.23: State-based update of the nonlinear parameters, using of LUT of the
extracted dependency curves.
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5.2.3 Small signals model validation

The developed linear model of the loudspeaker has been evaluated considering
different frequency domain features, comparing the model and the real device
behaviors.

The main tools for the characterization of LTI systems, as the loudspeaker in
the small signals condition, are its transfer functions.

With the measuring instrument available in the RCF laboratories, it was possible
to measure three loudspeaker transfer functions: the electric impedance

Ze(s) =
I(s)

Vin(s)
(5.10)

the voltage input to sensor output transfer function

Hcoils(s) =
Vs(s)

Vin(s)
(5.11)

and the voltage input to displacement transfer function

Hx(s) =
X(s)

Vin(s)
(5.12)

These three transfer functions have been measured using CLIO, a professional
instrument typically used for acoustic measurements of audio systems. The measure-
ment process consists in driving of the analyzed loudspeaker with an exponential
sine sweep while recording one of its output physical variables with a suitable
sensor. To ensure the small signals condition, the sine sweep has been set to
−6dBV = 0.5VRMS

At the end of the sine sweep, CLIO automatically calculates the magnitude and
phase of the considered transfer function using the recorded signal. The measured
data are then imported and processed in MATLAB to extract the full transfer
functions.

The model transfer function has been computed directly in MATLAB using
eq. (2.4).

The comparisons between the measured and simulated transfer functions are
shown in figs. 5.24 to 5.26. The transfer functions of the proposed models, which
includes the effects of the eddy currents with the LR-2 model, show a very good fit
on the measured transfer functions.

The semi-inductive behavior of the electric inductance in fig. 5.24 is evident. The
measured phase tends to 50°instead of 90°and the magnitude rises of +3dB/decade
instead of +6dB/decade.

Employing the LR-2 model, the semi-inductive behavior is effectively emulated
up to 1000Hz, while the plain model appears to be already ineffective at 200Hz.

The same can be said regarding the sensor coil transfer function, where the
beneficial effect of the introduction of the eddy current contribution is even more
evident.
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Figure 5.25 shows in yellow the model proposed in [CCCP81], and in red the
model proposed in this thesis, which exploits the LR-2 model. The improvement is
considerable, but the sensor coil model is still not perfect, showing a 3dB error at
the dip around 95Hz.

Parameter L2, and especially R2, can be slightly modified to achieve a better
modeling of the sensor coil, losing accuracy at high frequency but matching the
real behavior in the working bandwidth. However, for the rest of this thesis the
extracted parameters L2 and R2 are considered good enough.

Figure 5.24: Loudspeaker electric impedance: blue) measured; red) model with LR-2;
yellow) model without LR-2.

Figure 5.25: Loudspeaker voice coil input to sensor coil output transfer function: blue)
measured; red) model with LR-2; yellow) model without LR-2.
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Figure 5.26: Loudspeaker voice coil input to displacement transfer function: blue)
measured; red) model

Finally, in fig. 5.26 a very high noise can be noticed above 100Hz. This is due to
the limits of the displacement laser sensor, that is not sensitive enough to effectively
measure the very small displacement of the diaphragm at high frequencies. However,
given the good fit at low frequency, the model can be trusted.

Another significant series of measurements carried out to evaluate the quality
of the model are the power spectra of its outputs.

The analyzed loudspeaker and the model have been driven with the same input,
recording their relative output responses in the time domain. The recorded time
series have been used to estimate the output power spectra.

Two loudspeaker output quantities have been considered: the displacement
and the sensor coil output voltage. Moreover, two inputs have been considered:
a sinusoid at 25Hz and a sinusoid at 50Hz, both with amplitude of −6dBV to
ensure the small signals condition.

The two frequencies have been chosen because are one above and one below the
resonant frequency of the loudspeaker, allowing to characterize both the conditions
and detect possible differences. Also, considering the measured displacement
transfer function of fig. 5.26, the input frequencies must be sufficiently low not to
be corrupted by the sensor noise.

The input and output signals have been measured with CLIO, producing a
driving signal while recording the measured quantity. The data have been imported
into MATLAB to compute the power spectra that characterize the loudspeaker and
to simulate the power spectra that characterize the model.

In this case, the recorded input signal drives the Simulink model, producing a
simulated output used to estimate the model power spectra.
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Figures 5.27 and 5.28 display the spectra of the input signals. A significant
difference Can be noticed between the declared −6dB and the measured −10dB.
This is caused by the windowing process used during the spectra calculation, that
caused the loss of 4dB in all the presented spectra.

Figure 5.27: First input signal for the measurement of the output spectrum, -6dB
@25Hz.

Figure 5.28: Second input signal for the measurement of the output spectrum, -6dB
@50Hz
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Figures 5.29 and 5.30 and figs. 5.31 and 5.32 show the spectra of the sensor coil
output voltages and displacements, respectively.

In the measured spectra of the sensor coil output, it is interesting to notice
the presence of very weak harmonic components, not predicted by the model.
However, these contributions are absolutely neglectable, being 50dB smaller than
the fundamental.

Figure 5.29: Output spectra of the sensor coil voltage @25Hz: blue) measured; red)
model.

Figure 5.30: Output spectra of the sensor coil voltage @50Hz: blue) measured; red)
model.
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In conclusion, the developed linear model of the loudspeaker in the small signals
condition appears to be coherent with the measurements performed on the real
device, within the defined working bandwidth 25− 200Hz.

Significant errors are found with the model of the sensor coil output where, how-
ever, it is possible to tune the parameters L2 and R2 to achieve better performance
and match the measured behavior.

Figure 5.31: Output spectra of the displacement @25Hz: blue) measured; red) model.

Figure 5.32: Output spectra of the displacement @50Hz: blue) measured; red) model.
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5.2.4 Large signal model validation

Since in the large signals condition the loudspeaker cannot be considered a
linear system, it is not possible to evaluate te quality of the model by means of
transfer functions.

The developed nonlinear model of the loudspeaker has been evaluated considering
the power spectra of its output.

Similarly to the process described for the small signal validation, the analyzed
loudspeaker and the model have been driven with the same known input, recording
their relative output responses in the time domain. The recorded time series have
been used to estimate the outputs power spectra.

Again, the loudspeaker measured quantities are the sensor coil output voltage
and the displacement. The chosen inputs are two sinusoids at 25Hz and 50Hz,
both with an amplitude of +30dBV to ensure the large signals condition.

The two frequencies have been chosen to be equal to those used in the small
signals validation process, that can be used as a reference for the model quality.
Also, at low frequencies the nonlinearities are more pronounced, allowing to better
appreciate their effects.

Figures 5.33 and 5.34 show the spectra of the input signals. In addition to the
4dB loss due to the windowing process, previously described, the presence of many
harmonic components can be noticed.

These components are due to the harmonic distortion of the amplifier employed
for the input sound generation. However, their effectcan be safely neglected, being
50dB smaller than the fundamental.

Figures 5.35 and 5.36 and figs. 5.37 and 5.38 show the spectra of the sensor coil
output voltages and displacements respectively.

In this case, one can notice a huge discrepancy between the measurements
and the Simulink model simulation both in the sensor coil output voltage and the
displacement. In particular, the model is always underestimating the harmonic
components, with errors that reach 20dB in the sensor coil output simulation
and 10dB in the displacement simulation, while the fundamental is much better
modeled.

This is mainly attributed to the fact that, due to the extreme time variability
of the loudspeaker, the used model parameters are not aligned with the exhibited
loudspeaker behavior.

For any practical use of the proposed model, the exhibited differences are not
neglectable, underlining the need of an adaptive algorithm to keep the model always
aligned with the real device.

In the rest of this thesis, the described discrepancies are neglected assuming that
the extracted parameters perfectly characterize the analyzed loudspeaker, keeping
in mind that an adaptation algorithm will be required.
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Figure 5.33: First input signal for the measurement of the output spectrum, 30dB
@25Hz.

Figure 5.34: Second input signal for the measurement of the output spectrum, 30dB
@50Hz
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Figure 5.35: Output spectra of the sensor coil voltage @25Hz: blue) measured; red)
model.

Figure 5.36: Output spectra of the sensor coil voltage @50Hz: blue) measured; red)
model.
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Figure 5.37: Output spectra of the displacement @25Hz: blue) measured; red) model.

Figure 5.38: Output spectra of the displacement @50Hz: blue) measured; red) model.



Chapter 6

Control of the loudspeaker

The main purpose of this thesis is the design of a control system to compensate
the nonlinearities exhibited by a loudspeaker in the large signals condition, which
are the main cause of sound distortions in audio systems, and to control the dynamic
of the linearized transducer, extending the desired working frequency range and
shaping the frequency response function.

The controller here presented is specifically designed for the control of the device
characterized in chapter 5, an RCF LF18X401 subwoofer loudspeaker, equipped
with a secondary sensor coil. However, the same approach can also be employed
for the control of similar, low frequency devices, such as woofers and mid-bass,
provided they are equipped with a sensor coil.

The proposed controller is divided into two functional parts, the first dedicated
to the compensation of the nonlinearities, implemented following the approach
presented in section 2.1.3, while the second implements the dynamics control using
a pole placement technique as described in section 2.2.

Full loudspeaker controller

Equivalent linear loudspeaker

◦
Dynamics

Controller

Nonlinearities

Compensator

Nonlinear

Loudspeaker

Vsource Vin Vctrl

Vsensor

Figure 6.1: Block diagram of the proposed controller.
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The two functionalities are interdependent, as the nonlinearities compensation
is fundamental for the implementation of the dynamic control. In fact, the pole
placement technique can only be applied to controllable LTI systems, while the
loudspeaker, here considered in the large signals condition, is strongly nonlinear.
The nonlinearities compensation, forcing the loudspeaker to act as linear system,
enables the use of linear control techniques on the linearized transducer.

For the design of the controller, the target loudspeaker is considered as a
nonlinear time-invariant system, described by the SIMO SS model of eq. (5.9),
characterized by the parameters extracted in chapter 5 with the Distortion Analyzer.

In chapter 5 it has been shown that, due to the time varying behavior commonly
exhibited by the loudspeakers, the adopted model is not accurate enough in the
medium-long term, displaying significant differences between the simulations and the
real device measurements. A possible solution is the introduction of an adaptation
technique, allowing the model to cope with the real device time varying behavior
by updating its parameters. This is not the purpose of this thesis and it is left for
future works.

For the rest of the chapter it is assumed that the considered loudspeaker model
and the extracted parameters perfectly characterize the real device. This condition
corresponds to the use of a set of recently updated parameters.

Considering a possible implementation on a DSP, the controller has been designed
and implemented in discrete-time form in MATLAB Simulink, considering a base
sampling frequency fs = 48000Hz, a typical value employed for high quality audio
signal processing, corresponding to a sampling time Ts = 20.83µsec. The same
environment has been used to evaluate the controller performances in the working
bandwidth 25− 200Hz.
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6.1 Compensation of the nonlinearities

The first part of the controller is the Nonlinearities Compensator, whose purpose
is to produce a control signal Vctrl(k) capable of driving the controlled loudspeaker
so as not to exhibit its nonlinear behaviors, forcing it to act as an equivalent
linear loudspeaker driven by the input signal Vin(k). This is achieved introducing a
compensation signal Vcomp(k), such that:

Vctrl(k) = Vin(k) + Vcomp(k) (6.1)

The nonlinearities compensator can be divided into three functional parts, as
depicted in fig. 6.2: the compensation generator, the extended observer and the
internal model.

The compensation generator implements the proposed compensation algorithm
and produces the required compensation signal Vcomp(k). To fulfill this task, it
exploits the estimate of the controlled loudspeaker state and other required variables,
provided by the extended observer as an extended state xext(k), and the updated
values of the nonlinear parameters of the controlled loudspeaker, provided by the
internal model.

Nonlinearities Compensator

◦

◦

◦

+

Internal Model

ι(i) xi(x) β(x) κ(x)

∇iι(i) ∇xxi(x)

∇xβ(x) ∇xκ(x)

Extended Observer

Âd(k) B̂d(k)

Ĉd(k) D̂d(k) L̂d(k)

Ad(k) Bd(k)

Compensation

Generator
z−1

Vin(k)

Vctrl(k)

Vsensor(k)

Vctrl(k)

Vcomp(k)

xext(k + 1) xext(k)

params(k)

params(k)

Figure 6.2: Block diagram of the proposed nonlinearities compensator.
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The extended observer is used to estimate all the variables required by the
compensation generator to implement the control algorithm. The estimated variables
include the state of the controlled loudspeaker, the time derivative of the voice coil
current of the controlled loudspeaker and the simulated state of the equivalent linear
loudspeaker. The collection of those variables can be considered an extended state
vector xext(k). It is estimated exploiting the information of the input signal Vin(k),
the control signal applied to loudspeaker Vctrl(k), the measurement of the sensor
coil output signal Vsensor(k), and the updated values of the nonlinear parameters of
the controlled loudspeaker, provided by the internal model.

The internal model provides updated values of the nonlinear parameters of the
controlled loudspeaker to the compensation generator and the extended observer.
This is achieved by exploiting the controlled loudspeaker state estimate, provided
by the extended observer, and the nonlinear dependency curves extracted with the
Distortion Analyzer.

The compensation of the nonlinearities is designed considering the model of the
loudspeaker sensor output, expressed through the nonlinear time invariant model:

ẋ(t) = Â(x)x(t) + B̂(x)u(t) = Ax(t) + Bu(t) + a(x)x(t) + b(x)u(t)

y(t) = Ĉ(x)x(t) + D̂(x)u(t) = Cx(t) + Du(t) + c(x)x(t) + d(x)u(t)
(6.2)

with:

x(t) =
[
i(t) i2(t) x(t) v(t)

]T (6.3)

u(t) = Vin(t) y(t) = Vsensor(t) (6.4)

and characterized by the following matrices:

Â(x) = A + a(x) B̂(x) = B + b(x) Ĉ(x) = C + c(x) D̂(x) = D + d(x)
(6.5)

A =




−Re +R2
0

Le
0

R2
0

Le
0 0 −Bl

0

Le
0

R2
0

L2
0 −R2

0

L2
0 0 0

0 0 0 1

Bl0

Mms

0 −Kms
0

Mms

−Rms

Mms




B =




1

Le
0

0

0

0




C =
[
−Tr0Re 0 0 (Bls

0 − Tr0Bl0)
]

D =
[
Tr

0
]

(6.6)
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a(x) =




Re[ξ(x) + ι(i)]− ∂Le(x, i)

∂t
Le

0[1 + ξ(x) + ι(i)]
0 0

Bl0[1 + ξ(x) + ι(i)− β(x)]

Le
0[1 + ξ(x) + ι(i)]

0 −
∂L2(x, i)

∂t
L2

0[1 + ξ(x) + ι(i)]
0 0

0 0 0 0

Bl0[β(x)− 1]

Mms
0 −Kms

0(κ(x)− 1)

Mms
0




b(x) =




− ξ(t) + ι(i)

Le
0[1 + ξ(x) + ι(i)]

0

0

0




c(x) =




−Tr0Re[τ(x, i)− 1] +
∂M(x, i)

∂t
− Tr0τ(x, i)

∂Le(x, i)

∂t

0

0

Bls
0[βs(x)− 1]− Tr0Bl0[τ(x, i)β(x)− 1]




T

d(x) =
[
Tr

0(τ(x, i)− 1)
]

(6.7)

where:

∂Le(x, i)

∂t
= Le

0

[
v(x)∇ξ(x) +

∂i(t)

∂t
∇ι(i)

]
(6.8)

∂L2(x, i)

∂t
= L2

0

[
v(x)∇ξ(x) +

∂i(t)

∂t
∇ι(i)

]
(6.9)

∂M(x, i)

∂t
= M0v(x)∇ξ(x) =

√
Le

0Ls
0v(x)∇ξ(x) (6.10)

In the considered model, the time derivative of the mutual inductanceM(x, i) has
been approximated as described in section 4.3.1, neglecting the current contribution.

The parameters of the model have been extracted with the Distortion Analyzer
and are summarized in section 5.2.1.
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6.1.1 The compensation generator

The nonlinearities compensation has been developed analytically, exploiting the
continuous-time characteristic equations of the nonlinear time invariant loudspeaker
of eq. (3.34). The discrete-time control signal has been derived through the
discretization of the defined continuous-time control signal.

The compensation algorithm has been designed to cancel the effects of the three
main nonlinear behaviors exhibited by the loudspeakers, described in chapter 3: the
mechanical stiffness dependency on the displacement, the force factor dependency
on the displacement and the electric inductance dependency on the displacement
and on current.

The algorithm has been developed defining the linearization constraints for
each part of the loudspeaker, one at a time. First, the sole mechanical domain is
considered. Then the electromechanical transduction is added and finally also the
electric domain.

At each step, the specific driving quantity (force, current and voltage) of the
considered loudspeaker parts has been designed to force the ideal, linear behavior
of the device.

Compensation of the mechanical domain: Kms(x)

The first step aims at the compensation of the nonlinearities of the sole mechan-
ical system, thus at the linearization of the nonlinear behavior of the mechanical
stiffness Kms(x).

The mechanical domain characteristic equations of the real, nonlinear loud-
speaker and the ideal, linear loudspeaker are shown in eq. (6.11).





FNL(xNL, t) = Mms
∂2xNL(t)

∂t2
+Rms

∂xNL(t)

∂t
+Kms(xNL)xNL(t)

FLIN(t) = Mms
∂2xLIN(t)

∂t2
+Rms

∂xLIN(t)

∂t
+Kms

0xLIN(t)

(6.11)

The driving quantity of the mechanical domain is the force FNL(xNL, t), exerted
on the real, nonlinear loudspeaker mechanical system.

The target of the compensation is to force the real, nonlinear loudspeaker to
exhibit the same motion of the ideal, linear loudspeaker. This leads to the following
constraints:

∂2xNL(t)

∂t2
=
∂2xLIN(t)

∂t2
=
∂2x(t)

∂t2

∂xNL(t)

∂t
=
∂xLIN(t)

∂t
=
∂x(t)

∂t

xNL(t) = xLIN(t) = x(t)

(6.12)
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The required driving force FNL(xNL, t) that satisfies the constraints of eq. (6.12)
is found subtracting the two equations in eq. (6.11).

FNL(x, t) = FLIN(t) +Kms(x)x(t)−Kms
0x(t)

= FLIN(t) +Kms
0(κ(x)− 1)x(t)

= FLIN(t) + Fcomp(x, t) (6.13)

The compensation of the mechanical system nonlinearities requires the exertion
of an additional compensation force Fcomp(x, t):

Fcomp(x, t) = Kms
0[κ(x)− 1]x(t) (6.14)

The compensation force Fcomp(x, t) exhibit a displacement dependent behavior
that follows the nonlinear stiffness dependency curve κ(x), compensating for the
variation of the mechanical stiffness.

At large displacements, the loudspeaker suspensions become stiffer and hamper
the diaphragm motion introducing distortion. The additional compensation force
overdrives the diaphragm, allowing it to move as if the mechanical stiffness of the
loudspeaker were linear.

Compensation of the electromechanical transduction: Bl(x) and Kms(x)

The second step aims at the compensation of the nonlinearities of the system
composed by the electric motor and the mechanical domain, thus at the simultaneous
linearization of the nonlinear behaviors of the force factor Bl(x) and the mechanical
stiffness Kms(x).

The electromechanical transduction characteristic equations of the real, nonlinear
loudspeaker and the ideal, linear loudspeaker are shown in eq. (6.15).




FNL(x, t) = Bl(x) iNL(x, t)

FLIN(t) = Bl0 iLIN(t)
(6.15)

The electromechanical transduction driving quantity is the current iNL(x, t),
applied to the real, nonlinear loudspeaker electric motor.
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The compensation of the mechanical stiffness nonlinearity is fulfilled considering
eq. (6.13) as a constraint. The required driving current iNL(x, t) that achieves the
linearization of both the mechanical stiffness and the force factor is then found
subtracting the two equations in eq. (6.15).

iNL(x, t) =
Bl0 iLIN(t) + FNL(x, t)− FLIN(t)

Bl(x)

=
Bl0 iLIN(t) +Kms

0[κ(x)− 1]x(t)

Bl(x)

=
1

β(x)
iLIN(t) +

Kms
0

Bl0
[κ(x)− 1]

β(x)
x(t) (6.16)

The driving current iNL(x, t) is composed by two contributions, one proportional
to the ideal, desired current iLIN(t) and one proportional to the displacement x(t).

The first contribution exhibit a displacement dependent behavior that follows
the nonlinear force factor dependency curve β(x), compensating for the variation
of the force factor.

At large displacements, the magnetic field in which the voice coil is immersed
quickly decays, reducing the generated driving force and introducing distortion.
The factor 1

β(x)
increases the driving current to compensate for the force factor

decay.
The second contribution corresponds to the additional control force Fcomp intro-

duced in section 6.1.1 for the compensation of the mechanical stiffness nonlinearity,
compensated in turn to account for the force factor decay.

The electromechanical transduction is also characterized by a second equation
that affects the electric domain, here reported for the real, nonlinear loudspeaker
and for the ideal, linear loudspeaker:





VemfNL
(x, t) = Bl(x)

∂x(t)

∂t

VemfLIN
(t) = Bl0

∂x(t)

∂t

(6.17)

Those equations will be exploited in the next subsection.

The full compensation algorithm: Le(x,i), Bl(x) and Kms(x)

The third step aims at the full compensation of the nonlinearities of the loud-
speaker system, composed by the electric domain, the electric motor and the
mechanical domain, thus at the simultaneous linearization of the nonlinear behav-
iors of the electric inductance Le(x, i), the force factor Bl(x) and the mechanical
stiffness Kms(x).
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The electric domain characteristic equations of the real, nonlinear loudspeaker
and the ideal, linear loudspeaker are shown in eq. (6.18).





VinNL
(t)− VemfNL

(x, t) = ReiNL(t) +
∂Le(x, iNL)iNL(t)

∂t
+R2(x, iNL)iNL(t)−R2(x, iNL)i2NL

(t)

VinLIN
(t)− VemfLIN

(t) = ReiLIN(t) + L0
e

∂iLIN(t)

∂t
+R0

2iLIN(t)−R0
2i2LIN

(t)

(6.18)

The electric domain driving quantity is the voltage VinNL
(t) applied to the real

loudspeaker voice coil, while the voltage VinLIN
(t) is the driving voltage of the

equivalent ideal, linear loudspeaker. This means that:



VinNL

(t) = Vctrl(t)

VinLIN
(t) = Vin(t)

(6.19)

The compensation of the mechanical stiffness nonlinearity and the force factor
nonlinearity is fulfilled considering eqs. (6.16) and (6.17) as a constraint. The
required driving voltage VinNL

(t) that achieves the linearization of the loudspeaker
is then found subtracting the two equations in eq. (6.18).

VinNL
(t) =VinLIN

(t) + VemfNL
(x, t)− VemfLIN

(t) +ReiNL(t)−ReiLIN(t)

+ Le(x, iNL)
∂iNL(t)

∂t
+
∂Le(x, iNL)

∂t
iNL(t)− L0

e

∂iLIN(t)

∂t

+R2(x, iNL)iNL(t)−R0
2iLIN(t)−R2(x, iNL)i2NL

(t) +R0
2i2LIN

(t)
(6.20)

VinNL
(t) = VinLIN

(t)

+

[
Re +R2(x, iNL) +

∂Le(x, iNL)

∂t

]
iNL(t)

−R2(x, iNL)i2NL
(t)

+ Le(x, iNL)
∂iNL(t)

∂t
− [Re +R0

2]iLIN(t)

+R0
2i2LIN

(t)

− L0
e

∂iLIN(t)

∂t

+ [Bl(x)−Bl0]∂x(t)

∂t
(6.21)
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Recalling the constraint of eq. (6.16), all the instances of iLIN(t) and can be
expressed in terms of iNL(x, t) and x(t).

iLIN(t) = β(x)iNL(x, t)− Kms
0

Bl0
[κ(x)− 1] x(t) (6.22)

∂iLIN(t)

∂t
= β(x)

∂iNL(x, t)

∂t
+
∂β(x)

∂t
iNL(x, t)−Kms

0

Bl0

[
∂κ(x)

∂t
x(t) + [κ(x)− 1]

∂x(t)

∂t

]

(6.23)
Therefore, the equation for the voltage compensation is the following:

VinNL
(t) =VinLIN

(t) + Vcomp(t)

=VinLIN
(t)

+

[
Re −Reβ(x) +R2(x, iNL)−R0

2β(x) +
∂Le(x, iNL)

∂t
− Le0

∂β(x)

∂t

]
iNL(t)

−R2(x, iNL)i2NL
(t)

+ [Le(x, iNL)− Le0β(x)]
∂iNL(t)

∂t
+R0

2i2LIN
(t)

+

[
Bl(x)−Bl0 + Le

0Kms
0

Bl0
[κ(x)− 1]

]
∂x(t)

∂t

+

[
Le

0Kms
0

Bl0
∂κ(x)

∂t
+
Kms

0

Bl0
[κ(x)− 1](Re +R2

0)

]
x(t) (6.24)

Recalling eq. (6.19) and expressing all the nonlinear parameters as a func-
tion of the extracted nonlinear dependency curves, the expression of the voltage
compensation is the following:

Vctrl(t) =Vin(t) + Vcomp(t)

=Vin(t)

+

[
Re[1− β(x)] +R2[1 + ι(i) + ξ(x)− β(x)] + Le

0

[
∂ι(i)

∂t
+
∂ξ(x)

∂t
− ∂β(x)

∂t

]]
iNL(t)

−R2
0[1 + ι(i) + ξ(x)]i2NL

(t)

+ Le
0[ι(i) + ξ(x)− β(x)]

∂iNL(t)

∂t
+R0

2i2LIN
(t)

+

[
Bl0[β(x)− 1] + Le

0Kms
0

Bl0
[κ(x)− 1]

]
∂x(t)

∂t

+

[
Le

0Kms
0

Bl0
∂κ(x)

∂t
+
Kms

0

Bl0
[κ(x)− 1](Re +R2

0)

]
x(t) (6.25)
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Finally, applying the time discretization:

Vctrl(k) = Vin(k) + Vcomp(k)

= Vin(k)

+

[
Re[1− β(x)] +R2[1 + ι(i) + ξ(x)− β(x)] + Le

0

[
∂ι(i)

∂k
+
∂ξ(x)

∂k
− ∂β(x)

∂k

]]
iNL(k)

−R2
0[1 + ι(i) + ξ(x)]i2NL

(k)

+ Le
0[ι(i) + ξ(x)− β(x)]

∂iNL(k)

∂k
+R0

2i2LIN
(k)

+

[
Bl0[β(x)− 1] + Le

0Kms
0

Bl0
[κ(x)− 1]

]
v(k)

+

[
Le

0Kms
0

Bl0
∂κ(x)

∂t
+
Kms

0

Bl0
[κ(x)− 1](Re +R2

0)

]
x(k) (6.26)

The compensation generator has been implemented to produce the compensa-
tion signal Vcomp(k) according to eq. (6.26), exploiting the extended state xext(k)
provided by the extended observer.

In fact, Vcomp(k) depends not only on the controlled loudspeaker state, but
also on the current related to the LR-2 model of the equivalent linear loudspeaker
i2LIN

(k) and the time derivative of the voice coil current of the real, nonlinear
loudspeaker ∂iNL(k)

∂k
. All the other parameters and the relative derivatives are

provided by the internal model component.

The designed controller output Vctrl(k) drives the real, nonlinear loudspeaker
compensating all the considered nonlinearities and forcing it to exhibit a motional
behavior identical to that of an ideal, linear transducer driven by the voltage Vin(k).
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6.1.2 The extended observer

The extended observer provides the compensation generator and the internal
model with updated estimates of the extended state xext(k).

xext(k) =




iNL(k)

i2NL
(k)

xNL(k)

vNL(k)

iNL(k)

∂k

iLIN(k)

i2LIN
(k)

xLIN(k)

vLIN(k)




=




x(k)

iNL(k)

∂k

xLIN(k)




(6.27)

The defined extended state includes the controlled loudspeaker state x(k), the
derivative of the current of the controlled loudspeaker voice coil iNL(k)

∂k
and the state

of the equivalent linear loudspeaker xLIN(k).

As already explained in section 6.1.1, the compensation algorithm requires more
information than the controlled loudspeaker state alone, and the extended observer
is used to estimate all the required variables.

The extended observer is mainly composed by two parallel observers: a nonlinear
observer for the estimation of the nonlinear loudspeaker state x(k), and a linear
open-loop observer for the estimation of the state xLIN(k) of the target linear
loudspeaker.

It is important to remark that the open-loop linear observer is not a proper
observer, since it does not exploit any measurement of the plant to estimate the
state vector. However, it will be denoted as "linear observer" since this is its role
in the controller.

The derivative of the nonlinear loudspeaker voice coil current is estimated from
the controlled loudspeaker state x(k).
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The nonlinear observer

The employed nonlinear observer is based on a nonlinear version of the Luen-
berger observer, presented in its continuous-time form in section 2.3.

The proposed nonlinear observer estimates the state of a nonlinear time in-
variant plant locally applying the linear Luenberger observer theory. This can be
achieved by periodically updating the observer internal model with an updated
linear approximation of the plant behavior.

If the update speed of the observer internal model is sufficient to effectively
track the nonlinear plant behavior and if the locally linear models approximating
the plant behavior preserve the observability property, then the linear Luenberger
observer theory can still be applied locally.

The described nonlinear observer can be considered as a linear time varying
Luenberger observer characterized by the state equation:

˙̂x(t) = Â(t)x̂(t) + B̂(t)u(t) + L(t)[y(t)− (Ĉ(t)x̂(t) + D̂(t)u(t))] (6.28)

where the matrices Â(t), B̂(t), Ĉ(t) and D̂(t) are the SS representation matrices
of the locally linearized model of the plant at time t, defined in eq. (2.28), and the
vector L̂(t) is the time varying observer feedback gain vector defined in eq. (2.29).

The nonlinear observer of the considered nonlinear loudspeaker is:

˙̂x(t) = Â(t)x̂(t) + B̂(t)Vin(t) + L(t)[Vsensor(t)− (Ĉ(t)x̂(t) + D̂(t)Vin(t))] (6.29)

characterized by the matrices of eqs. (6.5) to (6.7).
The observer requires the time interval Tup between the internal model updates

to be sufficiently small to guarantee the validity of the locally linearized models
used for the state estimation. This is largely ensured using an updating period
equal to the considered signal sampling time Tup = Ts.

It is also required that all the linear models used to locally approximate the
loudspeaker nonlinear behavior preserve the observability property. This can be
considered true during normal working conditions of the loudspeaker.

In fact, the nonlinear loudspeaker model at rest (x = 0) is observable from the
sensor output:

rank(O) = rank







Ĉ(0)

Ĉ(0)Â(0)

Ĉ(0)Â(0)
2

Ĉ(0)Â(0)
3





 = rank







C
CA
CA2

CA3





 = 4 (6.30)

During normal working conditions the parameters of the matrices Ĉ(x) and
Â(x) are subjected to variations due to the nonlinearities, possibly leading to the
loss of the observability. However, preliminary simulations of the nonlinear model
demonstrated that the instantaneous observability and controllability properties
are preserved in the large signals condition. This allows the local application of the
linear Luenberger observer theory.
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The observer is implemented in discrete-time form, by way of the discretization
of eq. (6.29):

x̂(k+1) = Âd(k)x̂(k)+B̂d(k)Vctrl(k)+Ld(k)[Vsensor(k)−(Ĉd(k)x̂(k)+D̂d(k)Vctrl(k))]
(6.31)

where:

Âd(k) = eÂ(t)Ts B̂d(k) =

∫ Ts

0

B̂(t)eÂ(t)tdt = Â(t)−1(Âd(k)− I)B̂(t)

Ĉd(k) = Ĉ(t) D̂d(k) = D̂(t)
(6.32)

The discrete time observer feedback gain Ld(k) is again defined through Acker-
mann’s formula:

Ld(k) = αe(Âd(k), k)O−1(k)




0
0
0
1


 (6.33)

where O(k) is the instantaneous observability matrix of the linearized model of
the loudspeaker:

O(k) =




Ĉd(k)

Ĉd(k)Âd(k)

Ĉd(k)Âd(k)2

Ĉd(k)Âd(k)3


 (6.34)

and αe(Âd(k), k) is the instantaneous characteristic polynomial of the desired
closed loop matrix (Âd(k)− Ld(k)Ĉd(t)), solved for Âd(k).

The matrices Âd(k),B̂d(k),Ĉd(k) and D̂d(k), and the feedback gain vector Ld(k)
are periodically computed by the extended observer using the updated information
provided by the internal model.

The feedback gain vector can be designed to assign the local closed loop poles
of the observer to fixed values, despite the time variance of the loudspeaker, or to
adapt their placement to follow the evolution of the nonlinear loudspeaker poles
and zeros.

Preliminary simulations of the nonlinear loudspeaker in the large signals condi-
tion have been performed to evaluate the evolution in time of its instantaneous poles
and zeros. Figures 6.3 and 6.4 show the result for a 25Hz sinusoid at +30dBV ,
which is the simulated scenario that caused the most significant variations. While
the zeros can be considered pretty much fixed, the poles are subject to large
variations, some being shifted to more than twice the respective value at rest.



6.1. Compensation of the nonlinearities 131

Figure 6.3: Evolution of the instantaneous poles and zeroes of the nonlinear loudspeaker.

Figure 6.4: Detail of the evolution of the instantaneous poles and zeroes of the nonlinear
loudspeaker.
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When the plant model is subject to uncertainty, as in this case due to the plant
time variance, it is common practice to place the observer closed loop poles near
the plant zeros. This practice limits the contribution of the estimation error to the
observer state estimate and consequently the responsiveness of the observer.

A faster observer response can be obtained designing its closed loop poles
faster than the instantaneous poles of the loudspeaker. However, this may lead
to instability if the poles are too fast, due to the overaggressive correction of the
estimation error.

The extended observer must be provided with the desired closed loop poles
values pn or, equivalently, with the relative coefficients of the closed loop matrix
characteristic polynomial cn.

αe(λ) = λ4 + λ3c1 + λ2c2 + λc3 + Ic4 = (λ− p1)(λ− p2)(λ− p3)(λ− p4)

c1 = −p1 − p2 − p3 − p4

c2 = p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4

c3 = −p1p2p3 − p1p2p4 − p1p3p4 − p2p3p4

c4 = p1p2p3p4

(6.35)

The extended observer periodically computes the feedback gain vector Ld(k)
through Ackermann’s formula of eq. (6.33), using the updated information pro-
vided by the internal model, adapting its dynamics to the nonlinear loudspeaker
instantaneous poles.

Alternatively, the extended observer can be designed to automatically calculate
the optimal closed loop poles from the information provided by the internal model,
adapting them to the nonlinear loudspeaker behavior. A simple strategy is to adapt
the discrete-time closed loop poles of the observer enforcing a constant proportion
between the equivalent continuous-time closed loop poles of the observer and the
instantaneous poles of the loudspeaker.

Since the nonlinear loudspeaker has been proved to be controllable and observable
in the considered large signals conditions, its instantaneous poles coincide with
the eigenvalues of the matrix Â(t), that can be estimated with the information
provided by the internal model.

The relative discrete-time closed loop poles of the observer are computed as
follows:

pdiscrete1:4 = ep
continuous
1:4 Ts = em eig[Â(t)]Ts (6.36)

where m is the chosen proportion factor between the poles.
Once the updated values of the closed loop poles have been computed, the

computation of the feedback gain vector is identical to the fixed poles case.
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The time derivative of the current of the controlled loudspeaker voice coil
is estimated exploiting the continuous time definition of the current derivative
of eq. (3.36), applying it to the discrete time state estimate of the controlled
loudspeaker x(k) and the control signal Vcontrol(k).

∂iNL(k)

∂k
=

Vctrl(k)−
[
Re +R2(x, iNL) +

∂Le(x, iNL)

∂k

]
iNL(k) +R2(x, iNL)i2NL

(k)−Bl(x) v(k)

Le(x, iNL)

(6.37)

The internal model provides the extended observer with all the required infor-
mation to compute vector J(k):

J(k) =




−
Re +R2(x, iNL) +

∂Le(x, iNL)

∂k
Le(x, iNL)

R2(x, iNL)

Le(x, iNL)

0

− Bl(x)

Le(x, iNL)

1

Le(x, iNL)




T

(6.38)

such that:

∂iNL(k)

∂k
= J(k)




x(k)

Vctrl(k)


 (6.39)

It is important to notice that there exists an algebraic loop between the controller
output voltage Vctrl(k) and the estimated current derivative ∂iNL(k)

∂k
.

However, the chosen sampling time is sufficiently small to consider the current
derivative almost constant between two subsequent samples, so that the algebraic
loop can be solved introducing a one-sample delay, thus approximating the estimate
of the current derivative at time k with the estimate at time k − 1.
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The linear observer

The linear observer is used to estimate the state of the equivalent linear loud-
speaker driven by the input signal Vin(k). Such loudspeaker is modeled in SS form
by the matrices A, B, C, D of eq. (6.6).

The state of the ideal, linear loudspeaker is estimated with a discrete-time open
loop observer:

xLIN(k + 1) = AdxLIN(k) + BdVin(k) (6.40)

where:

Ad = eATs Bd =

∫ Ts

0

eAt B dt = A−1(Ad − I)B (6.41)

6.1.3 The internal model

The internal model provides the updated values of the controlled loudspeaker
nonlinear parameters and their relative time derivatives to the compensation gener-
ator and the extended observer, exploiting the estimated extended state vector.

The loudspeaker parameters are estimated by means of look-up tables of the
nonlinearities dependency curves, extracted with the Distortion Analyzer.

The relative derivatives are indirectly calculated, using the identity:

∂β(x)

∂t
=
∂β(x)

∂x

∂x

∂t
= ∇xβ(x)v(t) (6.42)

that in discrete-time becomes:

∂β(x)

∂k
= ∇xβ(x)v(k) (6.43)

and similarly for the other required time derivatives of the nonlinear parameters:

∂κ(x)

∂k
= ∇xκ(x)v(k)

∂ξ(x)

∂k
= ∇xξ(x)v(k)

∂ι(i)

∂k
= ∇iι(i)

∂i

∂k
(6.44)
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6.2 Simulation of the nonlinear observer

The proposed nonlinear observers has been implemented in MATLAB Simulink
and connected to the nonlinear loudspeaker model, already presented in section 5.2.2.

Two versions of the nonlinear observer have been proposed. The first follows a
fixed closed loop poles design, computing at runtime the feedback gain vector Ld(t)
that enforces the position of the observer closed loop poles to predefined values.
The second follows a floating closed loop pole design, computing at runtime both
the feedback gain vector and the optimal closed loop poles to follow the controlled
loudspeaker evolution.

Both the fixed pole and the floating pole versions have been implemented to
evaluate and compare their performance. In particular, the implemented floating
pole version computes the optimal instantaneous values of the observer closed loop
poles exploiting the information about the instantaneous loudspeaker poles, as
explained in section 6.1.2.

To overcome the implementation complexity, the two nonlinear observers are
implemented as MATLAB functions, called at runtime by the Simulink environment.

Here the simulation results of a fixed pole nonlinear observer are presented, with
poles designed 5 times faster than the nonlinear loudspeaker poles at rest, together
with those of a floating pole nonlinear observer, with poles designed to be 5 times
faster than the nonlinear loudspeaker instantaneous poles.

Each implemented version has been simulated with two different sinusoidal
inputs at +30dBV , oscillating at 25Hz and 200Hz respectively, considering a badly
estimated initial state:

x0 =




i0

i20

x0

v0




=




1.5

−1.5

−0.01

1




(6.45)

corresponding to large values relatively to the exhibited loudspeaker dynamics.

Figures 6.5 and 6.6 show the comparisons of the global estimation errors for the
25Hz and 200Hz input signal respectively.

First of all, one can be notice a relatively large initial estimation error, due to
the setting of the initial state x0.

The two observers exhibit a similar behavior, converging to zero estimation
error in approximately the same amount of time. However, the fixed pole design
exhibits a stronger overshoot of the global estimation error.



136 Chapter 6. Control of the loudspeaker

Figure 6.5: Global estimation errors of the two observers at 25Hz: red) fixed poles
design; yellow) floating poles design.

Figure 6.6: Global estimation errors of the two observers at 200 Hz: red) fixed poles
design; yellow) floating poles design.
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Moreover, the two observers show a better performance at 25Hz, reaching a
small estimation error under 5msec. Conversely, at 200Hz the estimation error
exhibit a more erratic behavior, showing a peak around 4msec and then converging
to a small value in about 10msec.

The cause of this difference can be better understood from the behaviors of
the estimated state variables of the two implementations at 25Hz and 200Hz,
respectively shown in sections 6.2 and 6.2.

At 25Hz, in both the implementation versions all the estimated state variables
quickly converge to their respective real values. The slowest convergence is shown
by the estimated displacements, which also exhibit an overshoot.

At 200Hz, the convergence of the estimated velocities is clearly slower and with
overshoots. More interestingly, the displacement estimates exhibit larger overshoots
and do not converge to the relative real value.

This can be attributed to the approximations introduced in the loudspeaker
model. The considered model approximates the nonlinear dependency on the
displacement of the sensor coil electric inductance with the relative dependency of
the voice coil electric inductance, assuming ξs(x) = ξ(x). Moreover, the mutual in-
ductance and its time derivative are calculated neglecting the nonlinear dependency
on the current of the voice coil.

However, the displacement estimation error after the first two peaks is approxi-
mately of ±0.2mm, being sufficiently smaller with respect to the spatial resolution
of the employed look-up tables ∆x = 0.42mm not to affect the performance of the
compensation algorithm.

In conclusion, both the versions of the proposed nonlinear observer have demon-
strated a good estimation capability, limited only by the quality of the employed
plant model, and a remarkable robustness to errors in the initial state estimation.
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Figure 6.8: Estimated state variables at 25 Hz: red) fixed poles design; yellow) floating
poles design; blue) real state
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Figure 6.10: Estimated state variables at 200 Hz: red) fixed poles design; yellow) floating
poles design; blue) real state
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6.3 Simulation of the full compensation scheme

The proposed full nonlinearities compensator has been implemented in MATLAB
Simulink and connected to the nonlinear loudspeaker model, already presented in
section 5.2.2.

To overcome the complexity of the compensation generator and the extended
observer, the two components are implemented as MATLAB functions, called at
runtime by the Simulink environment.

In the presented simulations, the extended observer is implemented with fixed
closed loop poles, designed 5 times faster than the nonlinear loudspeaker poles at
rest.

Five simulations have been performed to evaluate the performance of the
compensation algorithm throughout the working bandwidth 25− 200Hz, each one
with a different input signal Vin(k). The first four simulations employed a sinusoidal
input at +30dBV , oscillating at 25Hz, 50Hz,100Hz and 200Hz respectively. The
last simulation employed a step input signal with +15V amplitude.

The performance of the compensation algorithm is evaluated comparing the
simulated acceleration of the controlled nonlinear loudspeaker with the simulated
accelerations of other two devices: an uncontrolled loudspeaker, identical to the
controlled one, and a linear loudspeaker with the same dynamics of the controlled
loudspeaker. This last device is the reference for the target behavior of the controlled
loudspeaker.

The acceleration of the loudspeaker diaphragm is considered a significant quantity
for the evaluation of the reproduced sound quality as it is directly related to the
generated sound pressure, as described in eq. (1.12). An undistorted diaphragm
acceleration is theoretically related to the generation of an undistorted sound
pressure.

For the step response simulation, the displacement is evaluated instead. The
displacement step response emphasize the effects of the nonlinearities, that usually
cause a bounce of the diaphragm.

The result of each simulation is a set of waveforms: the input signal Vin(k), the
compensation signal Vcomp(k), the control signal Vctrl(k), the acceleration (or dis-
placement) of the controlled loudspeaker aCTRL(k) (xCTRL(k)), the acceleration (or
displacement) of the uncontrolled loudspeaker aNL(k) (xNL(k)) and the acceleration
(or displacement) of the target linear loudspeaker aLIN(k) (xLIN(k)).

6.3.1 Time domain measurements

Figures 6.12 to 6.15 show the output acceleration waveforms of the the simulated
devices driven with sinusoidal signals at different frequencies.

In the time domain it is difficult to properly evaluate the beneficial effects
of the controller but, at least at 25Hz and 200Hz it is clear that the controlled
loudspeaker assumes a behavior similar to the linear loudspeaker. At 50Hz and
100Hz the effects of the control are much less evident.
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This happens because in a loudspeaker the most significant nonlinearities, such
as the force factor and the mechanical stiffness variation, are related to the large
displacement undergone by the diaphragm during the reproduction of frequencies
lower or comparable to the mechanical system resonance frequency, while the
inductance modulation becomes noticeable at high frequencies. At 50Hz and
100Hz the effects of the nonlinearities are much more subtle.

Figure 6.11 show the step response of the displacement. The control effectively
force the controlled nonlinear loudspeaker to follow the step response exhibited by
the linear loudspeaker. The uncontrolled nonlinear loudspeaker, instead, exhibits
the typical bounce effect due to the simultaneous increase of the mechanical stiffness
and the reduction of the force factor.

Figure 6.11: Displacement step response of the simulated loudspeakers: blue) nonlinear;
green) linear; red) nonlinear compensated.
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Figure 6.12: Acceleration of the simulated loudspeakers at 25Hz: blue) nonlinear; green)
linear; dotted red) nonlinear compensated.

Figure 6.13: Acceleration of the simulated loudspeakers at 50Hz: blue) nonlinear; green)
linear; dotted red) nonlinear compensated.
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Figure 6.14: Acceleration of the simulated loudspeakers at 100Hz: blue) nonlinear;
green) linear; dotted red) nonlinear compensated.

Figure 6.15: Acceleration of the simulated loudspeakers at 200Hz: blue) nonlinear;
green) linear; dotted red) nonlinear compensated.
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The measured input signal Vin, the compensation signal Vcomp and the generated
control signal Vctrl are shown in figs. 6.11 to 6.15.

In the sinusoidal driven simulations, the compensation signal is generally much
lower than the input signal, requiring just a small additional compensation to
enhance the loudspeaker performances. The only exception is at 25Hz, where the
compensation signal shows a peak during the first period of control. This is due to
the large effort required to drive the diaphragm against the increasing mechanical
stiffness leveraging on a decaying force factor.

After the first period this large compensation effort is no more required, since
the overdriven mechanical stiffness acts as a slingshot, providing the required kinetic
energy. The compensation is just used to slightly correct the diaphragm motion.

In the step driven simulation, instead, the compensation signal is even larger
than the input signal. Again, this is due to the large effort required to drive the
diaphragm and keep it at the ideal displacement, counteracting the force applied
by the mechanical stiffness.

In the considered situations, the control effort is not an issue, since the control
voltage is not excessive to be handled for both the loudspeaker or a typical power
amplifier. However, there are conditions in which the control effort becomes
unsustainable for the amplifier, but are extreme situations in which the loudspeaker
is subject to excessive displacement not belonging to the normal working condition.

A large control voltage also generate an large current on the voice coil. This
can be a problem during the simulations, as the current dependency look-up table
is limited at ±13.6A, preventing the controller from following the real loudspeaker
state and consequently leading to instability.

Also, considering a real world application, the amplifier used to drive the
controlled loudspeaker must be capable of providing the required control current.

Figure 6.16: Signals of the simulated displacement step response: blue) input signal Vin;
red) compensation signal Vcomp; yellow) control signal Vctrl.
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Figure 6.17: Signals of the simulated loudspeakers at 25Hz: blue) input signal Vin; red)
compensation signal Vcomp; yellow) control signal Vctrl.

Figure 6.18: Signals of the simulated loudspeakers at 50Hz: blue) input signal Vin; red)
compensation signal Vcomp; yellow) control signal Vctrl.
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Figure 6.19: Signals of the simulated loudspeakers at 100Hz: blue) input signal Vin; red)
compensation signal Vcomp; yellow) control signal Vctrl.

Figure 6.20: Signals of the simulated loudspeakers at 200Hz: blue) input signal Vin; red)
compensation signal Vcomp; yellow) control signal Vctrl.
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6.3.2 Frequency domain measurements

To properly evaluate the effect of the control the acceleration power spectra
are computed from the simulation outputs. The resulting spectra are shown in
figs. 6.21 to 6.24.

From the spectral analysis the beneficial effects of the proposed control are clear.

Especially at low frequencies, all the harmonics generated by the loudspeaker
nonlinearities are largely attenuated, reaching a mean attenuation of about 40dB
for a fundamental of 25Hz and 30dB for a fundamental of 50Hz, and making the
highest harmonic at least 70dB smaller that the fundamental in both cases.

At higher frequencies the linearization capabilities of the control are reduced,
and at 200Hz the controller can only partially compensate the second harmonic.

Clearly, at high frequency the harmonics caused by the nonlinear effects are much
less significant with respect to the fundamental: at 25Hz the first, second and third
harmonics are respectively 39.95dBmeter

sec2
, 11.62dBmeter

sec2
and 17.39dBmeter

sec2
, while at

200Hz they are respectively 41.96dBmeter
sec2

, −0.81dBmeter
sec2

and −13.81dBmeter
sec2

. This
means that the loudspeaker already exhibits an almost linear behavior, making the
control less necessary.

However, the approximations used to model the displacement dependency of
the sensor coil inductance and the time derivative of the mutual inductance may
have affected the performances of the control. Simulations performed without
considering the effects of the electric domain nonlinearities, both in the model
and in the compensator, show a perfect compensation even at high frequencies,
confirming this hypothesis.
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Figure 6.21: Spectra acceleration of the simulated loudspeakers at 25Hz: blue) nonlinear;
green) linear; red) nonlinear compensated.

Figure 6.22: Spectra acceleration of the simulated loudspeakers at 50Hz: blue) nonlinear;
green) linear; red) nonlinear compensated.
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Figure 6.23: Spectra acceleration of the simulated loudspeakers at 100Hz: blue) nonlin-
ear; green) linear; red) nonlinear compensated.

Figure 6.24: Spectra acceleration of the simulated loudspeakers at 200Hz: blue) nonlin-
ear; green) linear; red) nonlinear compensated.
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6.3.3 Total Harmonic Distortion

The Total Harmonic Distortion (THD) is a characteristic of a periodic signal,
defined as the ratio of the RMS amplitude of the signal’s higher harmonics to the
RMS amplitude of the signal’s first harmonic, often expressed in dB scale or in
percentage:

THD =

√ ∞∑

i=2

A2
i

A1

THDdB = 20log(THD) THD% = 100 THD

(6.46)

with the series of considered harmonics usually limited to 50.
The THD gives a measure of the harmonic purity of the analyzed signal: the

less the harmonic content of the signal, the less the THD.
It is also a common figure of merit for the evaluation of audio systems, amplifiers

and transducers quality: an audio device is typically characterized by the THD
value exhibited by the device’s output when driven by a pure sinusoidal tone input.

A THD% ≤ 1% is considered sufficient for audio purposes. However, modern
power amplifiers and Hi-Fi systems typically exhibit a THD% ≤ 0.1− 0.3%.

The THD values relative to the simulated acceleration outputs of the compen-
sated nonlinear loudspeaker and the uncompensated nonlinear loudspeaker are
summarized in table 6.1.

From those data, the benefits of the compensation are evident. At low frequencies,
the nonlinear loudspeaker reaches THD% ≥ 8% at 25Hz and ≥ 4% at 50Hz, being
clearly above the minimum recommendations for audio devices. A better behavior
is experienced at the higher frequencies.

The implemented control effectively compensates the loudspeaker nonlinearities
extremely well, reducing the exhibited THD% of 400 times at 25Hz. As already
stated, at higher frequencies the compensation has a much lesser impact on the
loudspeaker performances. However, it brings the exhibited THD% well below the
0.3% threshold of high quality audio.

THD nonlinear THD compensated

f0 = 25 Hz 8.032% 0.027%
f0 = 50 Hz 4.150% 0.032%
f0 = 100 Hz 0.7748% 0.121%
f0 = 200 Hz 0.7418% 0.157%

Table 6.1: Total Harmonic Distortion of the simulated loudspeakers
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6.4 Control of the linearized dynamics
The second part of the controller is the Dynamics Controller, whose purpose is

to produce the signal Vin(k) capable of driving the linearized loudspeaker so as to
exhibit a satisfactory frequency response from the source input signal Vsource(k) to
the output diaphragm acceleration a(k), and thus to the generated sound pressure
as eq. (1.12) implies.

This is achieved introducing a full-state feedback control signal VFSF (k),
such that:

Vin(k) = Vsource(k) + VFSF (k) (6.47)

allowing to assign the poles of the controlled linearized loudspeaker to arbitrary
values.

The control signal VFSF (k) is computed by a discrete-time full-state feedback
controller, described in section 2.2 in its continuous-time form.

In short, considering a continuous-time, controllable and observable LTI plant:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(6.48)

it is possible to tune the poles exhibited by the plant adding a state feedback
contribution uFSF (t) to the plant input, obtained as a linear combination of the
plant state x(t).

uFSF (t) = −Kx(t) (6.49)

ẋ(t) =Ax(t) + B[u(t) + uFSF (t)]

=(A−BK)x(t) + Bu(t)

The poles exhibited by the controlled plant are determined by the eigenvalues
of the matrix (A−KB), tuned by the feedback gain vector K defined in eq. (2.15)

Dynamics Controller

◦ +

Observer of the

equivalent linear loudspeaker

−Kd

Vsource(k) Vin(k)

VFSF (k)

xLIN(k)

Figure 6.25: Block diagram of the proposed dynamics controller.
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The same state feedback control can be implemented in discrete-time form
considering a discretized version of the plant:

Ad = eATs Bd =

∫ Ts

0

eAt B dt = A−1(Ad − I)B

Cd = C Dd = D

(6.50)

x(k + 1) =Adx(k) + Bd[u(k) + uFSF (k)]

=(Ad −BdKd)x(k) + Bdu(k)

The poles exhibited by the discretized, controlled plant are determined by the
eigenvalues of the matrix (Ad −KdBd), tuned by the gain vector Kd defined
through Ackermann’s formula:

Kd = [ 0 · · · 0 1 ]C−1αc(Ad) (6.51)

where C is the controllability matrix of the discretized plant and αc(Ad) is the
characteristic polynomial of the desired closed loop matrix (Ad −KdBd), solved
for Ad.

The considered plant is the linearized loudspeaker system, composed by the non-
linearities compensator and the compensated nonlinear loudspeaker, characterized
by the input Vin(k) and the output a(k).

The control action enforced by the nonlinearities compensator ensures that the
considered system acts like an equivalent linear loudspeaker characterized by the
sole linear behavior of the nonlinear controlled loudspeaker.

The dynamic control is designed considering the discrete-time model of the
equivalent linear loudspeaker expressed through the LTI model:

xLIN(k + 1) = AdxLIN(k) + Bdu(k)
y(k) = CdxLIN(k) + Ddu(k)

(6.52)

with:

xLIN(k) =
[
iLIN(k) i2LIN(k) xLIN(k) vLIN(k)

]T

=
[
iLIN(k) i2LIN(k) x(k) v(k)

]T (6.53)

u(k) = Vin(k) y(k) = aLIN(k) = a(k) (6.54)
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and characterized by the discrete matrices Ad, Bd, Cd and Dd, obtained
through the discretization method described in eq. (6.50) from the continuous-time
matrices:

A =




−Re +R2
0

Le
0

R2
0

Le
0 0 −Bl

0

Le
0

R2
0

L2
0 −R2

0

L2
0 0 0

0 0 0 1

Bl0

Mms

0 −Kms
0

Mms

−Rms

Mms




B =




1

Le
0

0

0

0




C =

[
Bl0

Mms

0 −Kms
0

Mms

−Rms

Mms

]
D =

[
0
]

(6.55)

The parameters of the model have been extracted with the Distortion Analyzer
and are summarized in table 5.2.

The controller design has been carried out in the continuous-time framework
and has afterwards been implemented in discrete-time.

Typically, loudspeakers are designed to exhibit a flat frequency response in their
working frequency range, with a tolerance of ±3dB.

The target for the design of the controller pole placement is to enhance the
frequency response behavior, restricting the admitted tolerance to less than ±1dB,
preserving the maximum value.

The considered linear loudspeaker is characterized by following the transfer
function, shown in fig. 6.26:

Ha(s) =
A(s)

Vin(s)
= C(sI−A)−1B + D = C(sI−A)−1B (6.56)

defined by the following poles and zeros, shown in fig. 6.27:

p1 = −8789, 17
p2 = −434, 44 + j143, 09
p3 = −434, 44− j143, 09
p4 = −49, 64

z1 = −2107, 84
z2 = 0
z3 = 0

(6.57)
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Figure 6.26: Transfer function of the uncontrolled linearized loudspeaker.

Figure 6.27: Pole-zero map of the uncontrolled linearized loudspeaker.
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The transfer function of the linearized loudspeaker Ha(s) actually fits the
typical magnitude tolerance, exhibiting in the working bandwidth of 25− 200Hz a
maximum value of 20.4dB at 77Hz and a minimum value of 17.4dB at 25Hz. This
corresponds to a variation of ±2.5dB around the halfway value of 18.9dB.

However, a variation of 5dB between the maximum and the minimum values of
the transfer function is not a particularly good feature for a loudspeaker.

A much better behavior can be obtained by properly designing the linearized
loudspeaker poles, enforcing the designed values by means of the presented pole
placement technique.

The two complex poles are redesigned to form a second order high-pass filter
with cut-off frequency fc = 12.5Hz and damping ζ = 0.707, i.e. a second order
Butterworth filter.

The other two poles are designed to compensate for the effect of the zero z1.
The best result in terms of flatness of the frequency response and preservation
of the maximum value of the original transfer function is obtained placing those
poles to form a second order low-pass filter with cut-off frequency fc = 435Hz and
damping ζ = 1.

The values of the designed the poles are the following:

p1 = −2733, 19
p2 = −2733, 19
p3 = −55, 54 + j55, 54
p4 = −55, 54− j55, 54

(6.58)

The relative continuous-time and discrete-time feedback gain vectors of the
full-state feedback controller are defined through Ackermann’s formula:

K = Kd = [ −10.58 11.21 − 659.90 − 16.62 ] (6.59)

The designed transfer function of the controlled, linearized loudspeaker Hctrl
a (s),

shown in fig. 6.28, is defined as follows:

Hctrl
a (s) =

A(s)

Vsource(s)
= C(sI− (A−BK))−1B (6.60)

and is characterized by the pole-zero map shown in fig. 6.29.

The designed transfer function Hctrl
a (s) exhibits an extremely flat response in

the working bandwidth of 25− 200Hz, with a maximum value of 20.4dB at 77Hz
and minimum values of 20.2dB at 25Hz and 200Hz.
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Figure 6.28: Designed transfer function of the controlled linearized loudspeaker (blue).
The uncontrolled transfer function Ha(s) (dashed red) is shown for com-
parison.

Figure 6.29: Designed pole-zero map of the controlled linearized loudspeaker.
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The implementation of the designed full-state feedback controller requires the
knowledge of the internal state of the equivalent linearized loudspeaker xLIN(k).

Unfortunately, it is not possible to estimate the state of that linear system by
means of a linear Luenberger observer exploiting the sensor coil signal Vsensor(k). In
fact, the nonlinearities compensation enforces the linearization of the loudspeaker
motional behavior, while the sensor output is still nonlinear.

If a feedback observer is required, then a second nonlinear observer must be
introduced.

However, since the compensator has proven its effectiveness, it can be assumed
that, at any instant k, the linearized loudspeaker exhibits exactly the same behavior
as the linear loudspeaker described by eq. (6.52), thus not requiring a closed-loop
observer to correct the estimation error.

The state of the equivalent linearized loudspeaker xLIN(k) can be effectively
estimated by means of a discrete-time open loop observer:

xLIN(k + 1) = AdxLIN(k) + BdVin(k) (6.61)

where:

Ad = eATs Bd =

∫ Ts

0

eAt B dt = A−1(Ad − I)B (6.62)

The same open-loop observer is already implemented as a part of the extended
observer used by the nonlinearities compensator, and there is no need to implement
a new one. The information about the state xLIN(k) computed in the nonlinearities
compensator is fed back to the dynamic controller, as shown in fig. 6.30.

Full loudspeaker controller

Equivalent linear loudspeaker

◦
Dynamics

Controller

Nonlinearities

Compensator

Nonlinear

Loudspeaker

Vsource(k)

xLIN(k)

Vin(k) Vctrl(k)

Vsensor(k)

Figure 6.30: Block diagram of the proposed controller with feedback of the equivalent
linear loudspeaker state estimate.
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6.5 Simulation of the full controller

The proposed loudspeaker controller has been implemented in MATLAB Simulink,
combining the dynamics controller displayed in section 6.4 and the nonlinearities
compensator displayed in section 6.1.

In the presented simulations, the extended observer of the nonlinearities com-
pensator is implemented with fixed closed loop poles, designed 5 times faster than
the nonlinear loudspeaker poles at rest, similarly to the simulations of section 6.3.

To evaluate the performance of the controller, it has been employed to control
the nonlinear loudspeaker model, already presented in section 5.2.2.

Four simulations have been performed to evaluate the performance of the
controller throughout the working bandwidth 25− 200Hz, each one with a different
source signal Vsource(k).

Since it is expected that the dynamics controller amplifies the source signal
Vsource(k) up to 4.83dB at 25Hz, the simulation input signals have been scaled
accordingly to avoid exceeding the limits of the current dependency look-up tables.

Preliminary simulations proved that a Vsource(k) = +30dBV at 25Hz would
generate currents much larger than the maximum value indexed in the look-up
table (13.6A). Accordingly, the simulation input signals have all been scaled down
by 5dB.

The first four simulations employed a sinusoidal input at +25dBV , oscillating
at 25Hz, 50Hz,100Hz and 200Hz, respectively.

The performance of the controller is evaluated comparing the simulated acceler-
ation of the controlled nonlinear loudspeaker with the simulated accelerations of
other two devices: an uncontrolled nonlinear loudspeaker, identical to the controlled
one, and an equivalent linear loudspeaker with controlled dynamics. This last device
is the reference for the target behavior of the controlled loudspeaker.

The result of each simulation is a set of waveforms: the source signal Vsource(k),
the dynamic control signal VFSF (k), the equivalent linear loudspeaker input signal
Vin(k), the compensation signal Vcomp(k), the control signal Vctrl(k), the acceleration
of the controlled loudspeaker aCTRL(k), the acceleration of the uncontrolled loud-
speaker aNL(k) and the acceleration of the target linear loudspeaker with controlled
dynamics aLIN+C(k).

Finally, during a simulation with sinusoidal source signal at +25dBV oscillat-
ing at 25Hz, the controlled and uncontrolled loudspeaker have been periodically
linearized, extracting the instantaneous acceleration transfer functions of the two
systems. This allows to broadly visualize and evaluate the variations in time to
which the two systems are subject due to the nonlinearities.



6.5. Simulation of the full controller 159

6.5.1 Time domain measurements

Figures 6.31 to 6.34 show the output acceleration waveforms of the the simulated
devices driven with sinusoidal signals at different frequencies.

In contrast to the compensation simulations, the beneficial effects of the designed
full control are evident even from the measurements in the time domain.

Again, the effects of the compensation of the nonlinearities can be better
appreciated at 25Hz and 200Hz. As already stated, this is due to the specific
nature of the considered nonlinearities: the dependencies on the displacement, such
as the force factor modulation or the mechanical stiffness variation are more relevant
at low frequencies, while the dependency on the current, such as the inductance
modulation, becomes relevant at very high frequencies.

The most visible effect is the equalization introduced by the full-state feedback
control: the acceleration of the controlled loudspeaker reaches 250 m

sec2
regardless

of the considered frequency. In a real device, this translates to a uniform sound
reproduction in the working bandwidth.

Also, the nonlinear controlled loudspeaker perfectly follows the behavior of the
ideal, linear loudspeaker with controlled dynamics, proving the effectiveness of the
full-state feedback control on the linearized loudspeaker.

The measured source signal Vsource, the full-state feedback signal VFSF , the
compensation signal Vcomp and the generated control signal Vctrl are shown in figure
figs. 6.35 to 6.38. The displayed evolutions of the control signals VFSF and Vcomp give
an idea of the effort required for the control of the dynamics and the compensation
of the nonlinearities, respectively.

The most noticeable feature is the large effort required to enforce the designed
linear control. This is expected, as the controller must provide the missing dynamics,
especially at low frequencies as shown in fig. 6.28. An extreme example of this occur
at 25Hz, where the control signal VFSF exhibits an amplitude equal to the source
signal. At 50Hz and 200Hz, the contribution of VFSF is less but still significant,
while at 100Hz it has very small impact on the control signal.

The compensation signal Vcomp, as already seen, is generally much lower than
the input signal, introducing a small compensation. Again, the only exception is
at 25Hz, where the compensation signal shows a very large peak during the first
period of control, and smaller but significant peaks during the rest of the operation.

The first peak is even larger than the one exhibited during the compensation
simulation in fig. 6.17. This is due to the fact that the driving signal of the
compensation Vin is increased by the linear control, forcing the motion of the
diaphragm even farther and thus requiring an even larger effort to act against the
increasing mechanical stiffness and the decaying force factor.

For the rest of the time, the compensation just slightly corrects the diaphragm
motion.

In the considered situations, the control signal Vctrl reaches the 54V peak voltage
maximum at 25Hz, that is easily bearable by the considered loudspeaker specimen
and by a typical power amplifier. However, the magnitude of the control effort must
be taken into account during the design of the controller, avoiding to overdrive
both the amplifier and the loudspeaker with an excessive control signal, possibly
relaxing the constraints over the frequency response flatness.
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Figure 6.31: Acceleration of the simulated loudspeakers at 25Hz: blue) nonlinear un-
controlled; green) linear with controlled dynamics; dotted red) nonlinear
controlled.

Figure 6.32: Acceleration of the simulated loudspeakers at 50Hz: blue) nonlinear un-
controlled; green) linear with controlled dynamics; dotted red) nonlinear
controlled.
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Figure 6.33: Acceleration of the simulated loudspeakers at 100Hz: blue) nonlinear
uncontrolled; green) linear with controlled dynamics; dotted red) nonlinear
controlled.

Figure 6.34: Acceleration of the simulated loudspeakers at 200Hz: blue) nonlinear
uncontrolled; green) linear with controlled dynamics; dotted red) nonlinear
controlled.
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Figure 6.35: Signals of the simulated loudspeakers at 25Hz: blue) source signal Vsource;
yellow) control signal Vctrl; purple dash-dotted) full-state feedback signal
VFSF ; red dash-dotted) compensation signal Vcomp.

Figure 6.36: Signals of the simulated loudspeakers at 50Hz: blue) source signal Vsource;
yellow) control signal Vctrl; purple dash-dotted) full-state feedback signal
VFSF ; red dash-dotted) compensation signal Vcomp.
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Figure 6.37: Signals of the simulated loudspeakers at 100Hz: blue) source signal Vsource;
yellow) control signal Vctrl; purple dash-dotted) full-state feedback signal
VFSF ; red dash-dotted) compensation signal Vcomp.

Figure 6.38: Signals of the simulated loudspeakers at 200Hz: blue) source signal Vsource;
yellow) control signal Vctrl; purple dash-dotted) full-state feedback signal
VFSF ; red dash-dotted) compensation signal Vcomp.
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6.5.2 Frequency domain measurements

The acceleration power spectra, computed from the simulation outputs, are
shown in figs. 6.39 to 6.42.

Obviously, the nonlinear uncontrolled loudspeaker exhibits lower harmonics
with respect to the measurements performed for the compensator validation, since,
being driven with a smaller signal, its nonlinear behaviors are less excited.

However, the full controller achieves, in terms of residual nonlinearities, a
performance consistent with those obtained by the sole compensator, displayed in
section 6.3.2.

6.5.3 Total Harmonic Distortion

The computed values of the THD relative to the simulated acceleration outputs
of the controlled nonlinear loudspeaker and the uncontrolled nonlinear loudspeaker
are summarized in table 6.2.

Again, the benefits of the controller are evident: the values of the THD%

exhibited by the controlled loudspeaker are well below any considered threshold for
high quality audio.

It is interesting to notice that, even if the controlled loudspeaker reaches higher
acceleration values, and thus larger diaphragm displacements, the distortion intro-
duced by the nonlinearities is almost negligible.

The THD% results are consistent with those obtained by the sole compensator,
displayed in section 6.3.3.

THD nonlinear THD controlled

f0 = 25 Hz 5.022% 0.027%
f0 = 50 Hz 2.441% 0.018%
f0 = 100 Hz 0.463% 0.064%
f0 = 200 Hz 0.394% 0.102%

Table 6.2: Total Harmonic Distortion of the simulated loudspeakers
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Figure 6.39: Spectra acceleration of the simulated loudspeakers at 25Hz: blue) nonlin-
ear uncontrolled; green) linear with controlled dynamics; red) nonlinear
controlled.

Figure 6.40: Spectra acceleration of the simulated loudspeakers at 50Hz: blue) nonlin-
ear uncontrolled; green) linear with controlled dynamics; red) nonlinear
controlled.
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Figure 6.41: Spectra acceleration of the simulated loudspeakers at 100Hz: blue) nonlin-
ear uncontrolled; green) linear with controlled dynamics; red) nonlinear
controlled.

Figure 6.42: Spectra acceleration of the simulated loudspeakers at 200Hz: blue) nonlin-
ear uncontrolled; green) linear with controlled dynamics; red) nonlinear
controlled.
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6.5.4 Instantaneous transfer functions

Figures 6.43 to 6.47 show the instantaneous transfer functions of the controlled
and uncontrolled loudspeaker, obtained through linearization of their respective
instantaneous models during the simulations.

The linearizations have been performed with a sampling time of 12.5msec.
This set of measurements shows the stability of the loudspeaker dynamics

enforced by the proposed control with respect to the uncontrolled behavior of the
same device.

The uncontrolled loudspeaker, being a strongly nonlinear system, clearly exhibits
a time varying instantaneous transfer function. Its peak value oscillate between
the 48Hz shown at t = 0.0875sec (fig. 6.46) and the 85Hz shown at t = 0.1sec
(fig. 6.47).

Moreover, variations in the shape of the transfer function and in the maximum
exhibited value can be noticed.

Conversely, the controlled loudspeaker exhibits a transfer function that is
extremely stable in time, especially in the working bandwidth 25 − 200Hz, and
consistent with the design target shown in fig. 6.28.

Figure 6.43: Instantaneous transfer function of the loudspeakers at t = 0.05 seconds:
blue) nonlinear controlled; red) nonlinear uncontrolled.
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Figure 6.44: Instantaneous transfer function of the loudspeakers at t = 0.0625 seconds:
blue) nonlinear controlled; red) nonlinear uncontrolled.

Figure 6.45: Instantaneous transfer function of the loudspeakers at t = 0.075 seconds:
blue) nonlinear controlled; red) nonlinear uncontrolled.
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Figure 6.46: Instantaneous transfer function of the loudspeakers at t = 0.0875 seconds:
blue) nonlinear controlled; red) nonlinear uncontrolled.

Figure 6.47: Instantaneous transfer function of the loudspeakers at t = 0.1 seconds:
blue) nonlinear controlled; red) nonlinear uncontrolled.
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6.6 Implementation considerations

In perspective, the presented controller has been developed for an implementation
on a typical DSP employed by RCF, to enhance the audio quality of the controlled
audio systems.

It is a fact that DSPs necessarily introduce delays due to the analog-to-digital
conversion (ADC), required to convert the analog audio signal into the digital
domain where it can be processed, and the following digital-to-analog conversion
(DAC) required to reconstruct an analog signal from the digital, processed one.
Further delay is introduced by the actual digital processing, which implements the
developed control technique.

Figure 6.48 shows how these delays are distributed in the developed controller
and fig. 6.49 shows the equivalent block diagram of the developed controller, with
the delays condensed as input delays.

Feedback control techniques, like the one developed in this thesis, are typically
affected by the delay introduced in the feedback loop by the hardware. In fact,
a feedback loop delay will provide the observer of the controller with outdated
information about the plant. This translates into a degradation of the control
performance.

The control of linear systems may easily exploit state prediction techniques to
compute a sufficiently good estimate of the plant state from delayed measurements
of the plant. For nonlinear systems this is much more complex. For the developed
controller it may be possible to introduce a state prediction technique, but the
computational load required would make it unfeasible for practical use.

Full loudspeaker controller

◦
Vsource(k + δin + δCPU )

z−δin z−δout

z−δin

z−δin

DSP delay

z−δCPU

Nonlinear

Loudspeaker

Vsource(k + δCPU ) Vctrl(k) Vctrl(k − δout)

Vctrl(k − δout − δin)

Vsensor(k − δout − δin) Vsensor(k − δout)

Figure 6.48: Block diagram of the delays present in the controller:
δin) delay of the ADC;
δCPU ) delay of the digital processing;
δout) delay of the DAC.
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The effects of the introduced delays have been investigated by means of a series
of simulations, considering sinusoidal inputs at +25dBV , oscillating at 25Hz, 50Hz,
100Hz and 200Hz, respectively. For each frequency, the control system has been
simulated introducing different values of feedback loop delay, from 0msec to 3msec,
and measuring the THD% of the output acceleration signal as figure of merit of
the control performance. For these simulations, the delay introduced on the source
signal Vsource(k) is disregarded, as it only introduces a time shift and thus it does
not affect the THD% results.

Figure 6.51 shows the measured THD% trends for increasing values of the
closed-loop delay achieved by the controller, compared with the THD% exhibited
by the uncontrolled loudspeaker and the 1% THD% threshold. The performance of
the controller shows a quick degradation in the presence of a delay, especially at
high frequencies, where the period of the source signal approaches the length of the
delay.

At low frequencies it is possible to achieve satisfactory results even with relatively
large delays. At 25Hz and 50Hz, the 1% THD% threshold is reached for delays
under 1msec, while a 1.5msec delay allows a 40% reduction of the controlled
loudspeaker distortion with respect to an uncontrolled one.

At higher frequencies this is not true anymore. At 100Hz the controller effectively
achieves a reduction of the THD% only for delays smaller than 0.7msec. For greater
delays, the controller causes an increase of the THD%, distorting the input signal
more than the loudspeaker alone, and exceeding the 1% threshold for delays greater
than 1.2msec.

At 200Hz the result are even worse, requiring delays less than 0.2msec to
achieve the distortion compensation. Also, it has not been possible to complete
the simulation batch, since the controller became unstable for delays greater than
1msec.

Full loudspeaker controller

Equivalent linear loudspeaker

◦

Vctrl(k − ∆2)

z−∆1

z−∆2

z−∆2

Dynamics

Controller

Nonlinearities

Compensator

Nonlinear

Loudspeaker

Vsource(k + ∆1) Vsource(k)

xLIN(k)

Vin(k) Vctrl(k)

Vsensor(k)
Vsensor(k − ∆2)

Figure 6.49: Block diagram of the proposed controller with delays introduced by the
DSP condensed as input delays: ∆1 = δin + δCPU ; ∆2 = δin + δCPU + δout
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Figure 6.51: Simulated THD% versus the delay present in the controller closed loop
at 25Hz, 50Hz, 100Hz, 200Hz: blue) controlled loudspeaker; red) uncon-
trolled loudspeaker; dashed red) 1% THD threshold.
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These results indicates that severe constraints on the maximum delay may be
introduced by the hardware used for the implementation of a full-range controller.
However, the controller can effectively be employed with more relaxed constraints
in the lower part of the working bandwidth, even just to partially improve the
distortion level.

The DSP employed by RCF for the audio systems on-board processing is a Cirrus
Logic CS47024, a 32-bit floating point processor with 147MHz base frequency,
supporting audio processing at different sample rates, from 192kHz to 48kHz and
equipped with two integrated 32-bit sigma-delta ADC and four audio quality DAC.

The DSP is programmed with a block oriented graphical IDE, named DSP
Composer, which allows to implement the required audio process connecting together
blocks implementing primitive functions. It is also possible to program customized
blocks using a modified version of the C language using a second, textual IDE,
named CLIDE. The DSP Composer is also used to automatically convert block
diagrams into code, and to program the DSP with the generated code.

Tests performed on the DSP show that the CS47024 introduces, at all the
possible sampling frequencies, a fixed time delay 2.8msec between the acquisition
of the input signals and the output of the computed control signal.

Part of the measured delay is introduced by the ADC and DAC conversions,
but most of it is probably introduced during the automatic code generation by the
DSP Composer. This information is not found in the documentation, but is very
likely that the code is generated to preserve a fixed input-output delay regardless
of the computational load.

As can be inferred from fig. 6.51, a delay of 2.8msec makes the hardware
unsuitable for any possible implementation of the developed controller, since it
would increase the distortion level and even lead to instability.

The implementation of the controller is thus left for future work, when a suitable
hardware, either a DSP or an FPGA, is available.





Conclusions

This thesis proposes a feedback, model-based technique for the improvement
of the audio quality of dynamic loudspeakers provided with a second coil, used
as sensor. The control algorithm is developed in discrete-time to enable further
implementation on DSP and to be employed for the enhancement of modern audio
systems.

The internal structure and the operating principles of a typical dynamic loud-
speaker are presented in detail and are exploited for the development of different
SS continuous-time models of the transducer. The electromechanical and electroa-
coustic analogies are used to develop an LTI SS model of the dynamic loudspeaker,
valid in the small signals condition, which is later extended by means of state-
dependent parameters to develop a nonlinear time-invariant SS model, employed
for the characterization of the device in the large signals condition.

The same theoretical framework is used to describe the behavior of the embedded
sensor coil and to develop an LTI SS model, valid in the small signals condition,
and a nonlinear time-invariant SS model, valid in the large signals condition. The
proposed models for the sensor coil establish an improvement with respect to the
models already presented in literature.

The parameters and dependency curves required for the characterization of the
developed models are estimated from a real loudspeaker specimen. The required
parameters are estimated with a grey-box identification process, performed using
the Klippel Distortion Analyzer and the dB-Lab software.

The developed models are validated comparing their behavior, simulated in
MATLAB Simulink, with the behavior of the loudspeaker specimen. Positive results
are obtained from the simulations of the linear models, showing a good match
between the simulated an the measured characteristics of the loudspeaker, at least
in the considered working bandwidth of the loudspeaker.

Worse results are obtained from the simulations of the nonlinear models, showing
an underestimation of the actual nonlinear behavior. This is not to be attributed
to errors in the developed nonlinear model, but rather to the drift undergone by
the specimen parameters during the time elapsed between the estimation process
and the validation measurements. The severe variation of the specimen parameters,
mainly the mechanical stiffness, prevents the definition of a sufficiently accurate
time-invariant model, suitable for control purposes.
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To overcome this limitation, an adaptive technique is required, enabling the
periodic and automatic tuning of the model parameters, so that the model can follow
the time-varying behavior of the real controlled loudspeaker. The implementation
of a model adaptation mechanism is not addressed in this thesis and is left for
future work.

For the sake of simplicity, the controller is designed assuming a perfect charac-
terization of the loudspeaker model. The control system is developed employing a
feedback architecture, that is preferred over the feedforward one due to its lower
sensitivity to model misalignment, and using the sensor coil output voltage as
measurement of the system behavior.

The proposed controller addresses both the compensation of the nonlinearities
of the controlled loudspeaker, forcing it to exhibit only the underlying LTI part of
its nonlinear motional behavior, and the dynamic control of the obtained equiv-
alent linear loudspeaker, enhancing the transducer frequency response. The two
functionalities of the controller are separately developed and progressively validated.

The nonlinearities compensation algorithm is designed in continuous-time, ex-
ploiting the developed nonlinear models, and implemented in discrete-time using
common discretization techniques. The information required for the synthesis of
the compensation signal is retrieved by means of an internal model of the controlled
loudspeaker and a nonlinear state observer.

The nonlinear state observer is designed as a nonlinear extension of the Luen-
berger observer, capable of estimating the state of the controlled loudspeaker by
approximating its nonlinear behavior with a sequence of locally LTI models, and
adapting the feedback gain vector accordingly. Due to its crucial importance, the
observer is validated on its own, showing good estimation capabilities and high
rejection to initial state errors.The nonlinear observer can be further improved
employing more refined nonlinear state estimation techniques, such as the Extended
Kalman Filter.

Positive results are also obtained from the simulation of the full nonlinearities
compensation algorithm, theoretically achieving THD% levels below any threshold
usually considered for high quality audio reproduction in all the loudspeaker working
bandwidth.

The linear dynamic control algorithm is also designed in continuous-time, exploit-
ing the developed linear model of the loudspeaker, and implemented in discrete-time
using common discretization techniques. The controller implements a full-state
feedback control.

The presented simulations show that the full control action can theoretically
achieve the simultaneous compensation of the loudspeaker nonlinearities, obtaining
the same THD% levels exhibited by the sole compensation algorithm, and a perfect
control of the exhibited linear dynamics, enforcing a flat frequency response in the
considered working bandwidth with a tolerance of 0.2dB.
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However, the designed dynamic control should be considered just as a theoretical
example of the proposed controller capabilities. In fact, the design aims at the
maximum flatness of the frequency response in the working bandwidth, disregarding
the magnitude of the required control effort, which may exceed the working limits
of the amplifier or the loudspeaker. For practical purposes, the dynamic control
must be designed to match the characteristics of the amplifier and the loudspeaker,
possibly relaxing the constraints over the frequency response flatness.

Considering a possible implementation of the proposed controller, the effects of
the closed-loop delays introduced by the DSP are simulated. The simulations show
that the introduction of a time delay affects the control performance in different
ways, depending on the delay length.

For delays smaller than 0.5msec, the THD% is kept below the 1% threshold
in all the loudspeaker working bandwidth, still achieving a sufficiently good audio
quality. For greater time delays, the performance degradation leads to a THD%

exceeding the 1% threshold. However, especially at lower frequencies, the THD%

exhibited by the controlled device is lower compared to an uncontrolled one. Finally,
for delays greater than 1msec, the controller starts to exhibit instability. These
results can be used to choose a suitable DSP for the implementation.

The DSPs employed by RCF are characterized by a fixed delay of 2.8msec,
making them unsuitable for an implementation of the proposed controller. Thus,
the implementation is left for future work, possibly employing a DSP with delay
smaller than 0.5msec, or even an FPGA with similar or better characteristics.
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