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Abstract

Inertia is the intrinsic property of any system with energy storage that repre-
sents the system resistance to any change of its energy state. State variables
are quantities that represent the energetic state of the system and cannot vary
instantaneously. In a power system the rotating masses of generators are the
energy storage and angular speed is the state variable. Electrical frequency and
mechanical rotational frequency are strongly linked by the electromagnetic �eld
inside the generators and a change of rotating speed results in electrical frequency
variation and vice-versa.
In the steady state operation of power systems, there is a dynamical equilibrium,
power generation and consumption are equal and so the frequency is constant, but
if generation or load change, the �rst thing that begins to vary, instantaneously
but in a continuous way, is the energy stored in the rotating masses which absorb
the power imbalance. This results in a variation of the rotating speed of the
generator shafts and so a variation of the grid frequency. How fast the frequency
will vary depends on how much inertia the power system has at that moment.
Soon after the frequency deviation takes place, primary frequency control will
act in order to recover the perfect power balance. This is what happens in case
generators are rotating electrical machines directly connected to the grid. But
nowadays power plants with power electronic interfaces with the grid are becom-
ing more and more popular. This is typical for distributed energy sources. In
these cases the kinetic energy storage, even if it is present, is not linked directly
with grid frequency and so they don't take part in the overall system inertia.
This is not a problem if they are a negligible amount with respect to the total
power generation, but nowadays they are becoming a considerable amount and
there is concern about the overall inertia, essential for frequency stability.
To overcome this issue we need to implement a control system able to deliver or
absorb power in a fast way, taking or delivering it from the energy storage at
disposal. In this way an inertial response can be simulated, we can say we have
created some "synthetic inertia".
In chapter one there is a brief description of the power system new trends and
a panoramic view of some new technologies that are being developed to deal
with the decreasing inertia issue. In chapter two we will analyse various methods
to implement synthetic inertia dealing with HVDC connections and wind power
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plants. Then we will study a HVDC connection (chapters three and four), sta-
bility analysis and simulations with the control systems described in chapter two
will be done. Eventually in chapter �ve we will study a wind turbine equipped
with a doubly fed induction generator (DFIG) and the ways we can supply syn-
thetic inertia and primary reserve to the grid, we will do stability analysis and
simulations with the proposed control systems.



Sommario

L'inerzia è la proprietà intrinseca di qualsiasi sistema con accumulo di energia che
rappresenta la resistenza del sistema a un cambiamento del suo stato energetico.
Le variabili di stato sono le quantità che rappresentano lo stato energetico del
sistema e non possono variare istantaneamente. In un sistema elettrico di potenza
le masse rotanti dei generatori sono l'accumulo di energia e la velocità angolare
è la variabile di stato. Frequenza elettrica e frequenza di rotazione meccanica
sono strettamente legati dal campo elettromagnetico all'interno dei generatori
e un cambio di velocità in rotazione risultata in una variazione della frequenza
elettrica e viceversa.
Nel sistema, a regime, vi è un equilibrio dinamico, generazione e consumo en-
ergetico sono uguali e quindi la frequenza è costante, ma se la generazione o il
carico variassero, la prima cosa che comincerebbe a variare, istantaneamente ma
in modo continuo, è l'energia immagazzinata nelle masse rotanti che assorbono lo
squilibrio di potenza. Ciò si traduce in una variazione della velocità di rotazione
degli alberi generatori e quindi in una variazione della frequenza di rete. Quanto
è veloce la variazione di frequenza dipende da quanto vale l'inerzia del sistema
elettrico di potenza in quel momento. Subito dopo la deviazione di frequenza
ha luogo il controllo primario della frequenza che agisce al �ne di recuperare
l'equilibrio tra potenza generata e consumata. Questo è ciò che accade nel caso
in cui generatori sono macchine elettriche rotanti direttamente collegati alla rete.
Ma al giorno d'oggi le centrali elettriche interfacciate alla rete con convertitori
elettronici di potenza stanno diventando sempre più comuni. Questo è tipico per
le fonti di energia distribuite. In questi casi l'accumulo di energia cinetica, anche
se fosse presente, non è legato direttamente alla frequenza di rete e quindi non
prendono parte alla formazione dell'inerzia complessiva del sistema. Questo non
è un problema se sono una quantità trascurabile rispetto al totale della gener-
azione, ma oggi stanno diventando una notevole quantità e vi è preoccupazione
per l'inerzia complessiva del sistema elettrico, essenziale per la stabilità di fre-
quenza.
Per ovviare a questo problema abbiamo bisogno di implementare un sistema di
controllo in grado di fornire o assorbire energia in modo veloce, prendendola
dall'accumulo di energia a disposizione. In questo modo una risposta inerziale
può essere simulata, cioè possiamo dire di aver creato un'"inerzia sintetica".
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Nel primo capitolo vi è una breve descrizione delle nuove tendenze riguardanti il
sistema elettrico di potenza e una vista panoramica di alcune nuove tecnologie che
si stanno sviluppando per a�rontare il problema della diminuzione dell'inerzia.
Nel secondo capitolo analizzeremo vari metodi per implementare l'inerzia sintet-
ica con collegamenti HVDC e impianti eolici. Poi studieremo un collegamento
HVDC (capitoli tre e quattro), analisi di stabilità e simulazioni con i sistemi di
controllo descritti nel capitolo due saranno eseguiti. Alla �ne, nel quinto capitolo
studieremo una turbina eolica dotata di un generatore a doppia alimentazione
(DFIG) e il modo in cui possiamo fornire inerzia sintetica e riserva primaria alla
rete, faremo l'analisi di stabilità e simulazioni con i sistemi di controllo proposti.



Chapter 1

Changes in power system

1.1 Introduction

Nowadays power system is changing toward the integration of a steadily larger
number of renewable energy sources. This direction is encouraged by govern-
ments and European Union in order to reduce carbon emissions, ensure security
of power supply and improving European Union competitiveness, as said in the
o�cial document that sets the targets in energy �eld until the year 2050 [1]. The
ultimate goal is to achieve 80% to 95% reduction of all carbon emission, and for
electric sector is to generate 34% of total power from renewable resources by 2020
and 100% by 2050.
This involves modi�cations in power system due to the nature or renewable
sources. The model of a power system based on big power plants is to be re-
considered in favour of a model capable of incorporating an increasingly amount
of distributed energy generation.
In the next graphs (�gures 1.1 and 1.2), it is shown how energy production is
shared between sources in Italy from 2007 to 2013 (last available data from Terna,
the Italian TSO)[2]. Graphs are in percentage value (year by year), to retrieve
an approximated value in GWh we can take into account that for the year 2013
the value 100% corresponds to 300 043 GWh.
Apart from hydro power plants, a technology already well exploited, and whose
production variation is due, for the most part, to the variability of water at dis-
posal due to weather reasons, we can see a big increment of production of other
renewable sources. Photovoltaic production grew from 0.6% of 2010 to 6,5% in
2013. Wind energy has seen a more gradual increment, but in 2013 covered 4.5%
of consumption. Also energy production from biomasses is increased, but in this
case are thermal power plant, maybe small in size, but similar to the traditional
ones.
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Figure 1.1: Share out of the energy production in Italy for di�erent energy sources
(source: Terna)

Figure 1.2: Share out of the energy production in Italy between renewable energy
sources (source: Terna)

Also among non renewable energy sources the trend is to build smaller power
plants, especially after the liberalization of the electricity market, such as com-
bined heat power plants (CHP). So we are going towards a system with a power
production more distributed on the territory, smaller power plants and in some
cases with characteristic of control totally di�erent from the traditional power
plants. This brings new problems and new challenges, and especially the integra-
tion of renewable sources interfaced to the grid with power electronic brings the
new issues. Among them, as explained in the abstract, there is the decreasing
value of the overall inertia.
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1.2 Strategy to deal with the decreasing inertia

issue, a survey

Small level of inertia is a problem already present in small isolated grids such as
small islands or grids not connected to the main system. The problem can be
solved introducing more rotating masses, or introducing an energy storage inter-
faced to the power system with a power electronic converter controlled in order
to sustain frequency during transients. Energy storage available for this purpose
are of various types, each one with his limitation and advantages. Main limita-
tions are power deliverable and energy accumulated. In �gure 1.3 we can see
performances of various electrical energy storage technologies [3]. To sustain fre-
quency due to fast power variation (in generation or consumption) some systems
have been studied and built, as in La Palma island (Spain) [4] or in Guadalupe
island (France) [5], where a supercapacitor is used as an energy storage to absorb
frequency variations. In La Palma island where the installed power capacity is
103.1MW , a supercapacitor able to deliver 4MW for 5s is used. They control the
ultracapacitor power support according to grid frequency deviation and the grid
frequency time derivative. They made simulation and �eld tests of the system
stressed with a sudden load imbalance of 2.5MW . Instead in Guadalupe island
a system equipped with a supercapacitor of 500kW is used with the objective
to deal with noninertia types of generators, in that case wind and solar power
plants. In general we can say that supercapacitors are suitable for this purpose
because they have high power density. Instead if we want a system able to absorb
power excursion for a long time we need other devices more energy-oriented.

Other studies, especially in the direction of developing microgrid as a part of
the future power system, have been done to create a device able to simulate
a synchronous machine, named virtual synchronous generator (VSG) or virtual
synchronous machine (VSMA). These devices are made through an energy stor-
age, a power electronic converter and a control system. They mimic the dynamic
behaviour of a synchronous machine in order to deal with grid frequency distur-
bances. Various papers present the dynamical bene�ts that such device brings to
the grid, but, like supercapacitors, it is a new component to introduce into the
grid. In [6] we can �nd a survey of these devices.

Following the thread of small size distributed generators we encounter other
problems related to the low voltage systems (where small energy sources are
typically connected), such as the di�erent nature of the grid: if in high and
medium voltage the grid can be assumed inductive, for lower voltages the resistive
nature of the grid has to be taken into account. This causes problems in the
control system due to the fact that we cannot easily decouple the power control
in two separate controls, one for active and one reactive power as we can do
if the grid is inductive or resistive. To overcome this issue we can introduce a
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Figure 1.3: Comparison of discharge time and power rating for various electrical
energy storage technologies

virtual impedance or a rotational matrix. These points are studied in [7] and in
[8] respectively.
All these solutions to the decreasing inertia issue introduce news devices, and
in a large power system this can be costly. There are some other proposed
ideas that use energy storage already present in the grid, but not coupled with
frequency. That is the case of wind farms with their rotating wind turbines, or
HVDC connection where electrostatic energy is present. We will now analyse
these solutions.



Chapter 2

Wind power plants frequency

support

2.1 Introduction

Active power reserves are needed for the power system operation. These reserves,
essential to deal with load changing, are usually provided by traditional power
plants, such as hydro or thermal power plants. Nowadays with the progressive
penetration of non-synchronized energy source into power system such as wind
or photovoltaic power plants, the level of active power reserves is decreasing. In
this chapter nomenclature of power reserve and participation method for wind
power plants will be analysed.

2.2 Power reserves

We can distinguish four types of power reserves [9]:

• instantaneous power reserve

• primary power reserve

• secondary power reserve

• tertiary power reserve

The instantaneous power reserve is the inertia of synchronous generators that
gives a stabilizing e�ect. After a load change, the rate of change of frequency
(ROCOF) depends on this power reserve in a way that we will describe later in
section 2.4. Wind power plants have not this kind of power reserve, neither if
the turbines are interfaced with the grid by a full scale converter, or if they are
DFIGs.
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The primary power reserve is the additional power that can be delivered
locally and automatically by power plants to balance a power consumption change
and stop frequency deviation. This reserve is generally controlled by a droop
control where the frequency deviation implies a new power set point. It has to be
activated within few seconds after the disturbance took place and has to last until
the secondary reserve has restored the frequency near to the nominal value. The
amount of the primary reserve is de�ned through the so called reference incident,
such as the trip of the biggest power plant in the synchronous power system. In
continental Europe the overall amount of the primary reserves is 3000 MW.

The secondary power reserve is activated to restore the rated frequency of
the system, releasing primary reserves and to restore active power interchanges
between power system areas to their set point values. This reserve is activated
by TSOs changing generators power set points.

The tertiary power reserve is intended to replace the secondary power reserve,
restore the nominal frequency value if the secondary reserve were not enough and
for economical power dispatch.

2.2.1 New trends in requirements to renewable energy sources

In the past non conventional energy sources did not provide any power reserve.
But nowadays the situation is changing, especially in Ireland and Great Britain
where the reserve issue is more severe due to small size of power system syn-
chronous area (Ireland and Great Britain form two synchronous areas [10]) and
high presence of wind power plants [9]; the local TSOs are already requiring
primary frequency support to renewable energy sources. In continental Europe
the situation varies from country to country, but in general it is not required a
power reserve, but only to disconnect the plant above a certain frequency and
to introduce the power production in a soft manner such as ramping the power
delivered to the power system.
This for primary reserve, but ENTSO-e introduced also the concept of synthetic
inertia, de�ned as the facility �to replicate the e�ect of Inertia of a Synchronous
Power Generating Module � [10] for a non-synchronized generating unit. In the
next part of the thesis we will analyse this concept and the proposed application
solutions.

2.3 Wind power plant inertia support

Power electronics converters are a typical way to connect wind power plants to
the main grid. This has many advantages, but, as said before, it also decouples
the rotating masses from the grid frequency, avoiding that their inertia is added
to the overall one. Nowadays wind power plants are becoming a non negligible
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amount of the total power production and it can be useful if they can support
grid also with some inertia.
To do this we can rely on the kinetic energy storage of the turbines and on fast
power electronic converters.
In the �gure 2.1 we represent a wind farm equipped with doubly fed induction
generators (DFIG) because they have some advantages and are widely used, but
general concepts are applicable also to other wind power plant solutions.

Figure 2.1: Example of wind power plant equipped with DFIG

If the wind power plant is o�-shore, like the one in �gure 2.1, probably it is con-
nected to the grid through a high voltage DC connection (HVDC). Here we can
�nd an other energy storage. HVDC in fact acts as a capacitor and if we can
modify the voltage of the link this can act as an energy storage and can be used to
provide inertia. Moreover we can exploit the DC link to overcome the problem of
sending information about the grid frequency to the o�-shore turbines. In fact if
we use the DC link to provide inertia the DC voltage will vary during transients,
so we can simply measure the voltage at the o�-shore side to understand what is
happening in the main on-shore grid and act consequently.

2.4 Inertia response of a non controlled machine

Let's now analyse the inertia response of a non controlled machine, that is syn-
chronous generator if its control system is neglected (we can say that in the �rst
instants after a transient the control system do not react promptly). As said
before, in a power system during steady state operation there is a perfect match
between power generation and consumption. All generators are rotating with a
synchronous electrical speed. If the perfect balance is lost, due to a load change
or other causes, the power generated will be higher or lower than power consump-
tion. This di�erence will vary the kinetic energy stored in the rotating masses
connected directly to the system. In the case that the generation is higher than
consumption the synchronous generators will accelerate, in the other case they
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will slow down. We can describe this phenomenon mathematically, for simplicity
we consider only one synchronous generator.
A sudden load change is an imbalance between the mechanical moving torque
(Tm) and the electrical resisting torque (Te). The speed will vary according to
the following equation

Tm − Te = J
dΩ

dt
(2.1)

we name Tm − Te = ∆T accelerating torque

∆T = J
dΩ

dt
(2.2)

we divide by T0 to bring the equation in p.u. (small case letter or a dot over the
letter indicates a p.u. variable)

∆Ṫ =
JΩ0

T0

dω

dt
(2.3)

If during the transient the speed variation is small we can multiply by the nominal
speed in p.u. and put in evidence a power imbalance instead of a torque imbalance

∆Ṫ ω0 =
JΩ0ω0

T0

dω

dt
(2.4)

and recognising that ω0 = 1 p.u.

∆ṗ =
JΩ0

T0

dω

dt
(2.5)

We now recognise that

JΩ0

T0
= 2

1
2
JΩ2

0

T0Ω0

= Ta (2.6)

is the starting time, that is the time necessary to the machine to reach the rated
speed starting from standstill, without load and with a constant accelerating
torque equal to the nominal one. Ta is also the double of the inertia constant
(H) that is the time necessary to a machine to reach the nominal speed starting
from standstill, without load and with a constant accelerating power. So we can
write
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∆ṗ = Ta
dω

dt
(2.7)

∆ṗ = 2H
dω

dt
(2.8)

H, or Ta, is an important parameter for a generating group, because it synthe-
sizes how the angular speed will vary after a power disturbance. A typical value
for H for synchronous generator is in the range of 4 to 8 seconds, depending on
the type of the machine (salient poles or not), but varying very little with the
rated power of the machine.

2.5 Wind farm inertia emulation

As said before, to emulate inertia we can act on DC link voltage and turbine
speed. Firstly two control methods ([12], [11]) to use the electrical energy of the
DC link are shown, then a method to draw energy from the rotors ([12]).

2.5.1 DC capacitor inertia support, DC voltage droop

We can deliver more ore less energy to the grid modifying the DC link voltage as
a synchronous generator naturally modi�es his rotational speed losing or taking
energy with respect to the grid. We can do this through the power electronic
converter and to emulate inertia we have to act like a synchronous generator,
which means following a law like the one expressed in equation (2.8), law which
now we rewrite with reference to our new system

pwf − pg = 2Hdc
df

dt
(2.9)

With reference to the �gure 2.1, f is the on shore grid frequency (in p.u.), PWF is
the power from the wind farm and PG is the power delivered to the main grid. We
have now to �nd Hdc(inertia constant of our system) that is the key parameter
of our action and that can be compared to the one of a traditional synchronous
machine even if it has a di�erent origin. Hdc has his origin in a control technique,
H is a property of the electrical generator.

Modelling DC link as a capacitor we can write the following balance: the time
derivative of the electrostatic energy equals the di�erence between the input and
output power of the DC link



22 Wind power plants frequency support

CVDC
dVDC

dt
= PWF − PG (2.10)

dividing by Pb, base power, naming
CV 2

DCn

Pb
= Tc, we can now rewrite the expres-

sion using per unit values. Small case letter indicates p.u. values

Tcvdc
dvdc
dt

= pwf − pg (2.11)

We can now make a parallelism between the former equation and (2.8) which was
stated for a synchronous machine, pwf − pg can be seen as ∆p of (2.8), so pm
corresponds to pwf and here it is considered constant, pe corresponds to pg. But
there are some considerations to take into account

• pe varies according to the grid requirement, and so causes a ω variation,
here pg is controlled by the electronic converter and so vdc is under control.

• pg can be controlled very quickly through power electronic converter;

• a ω variation for a synchronous machine is to avoid, here a change in DC
link voltage is not to avoid, but the mean to support the grid.

Taking in mind these considerations we can combine equation (2.9) with (2.11)
writing

Tcvdc
dvdc
dt

= 2Hdc
df

dt
(2.12)

we now integrate two sides over time

∫ vdc

vdc0

Tcvdc
dvdc
dt

dt =

∫ f

f0

2Hdc
df

dt
dt (2.13)

Tc(v
2
dc − v2dc0)

2
= 2Hdc(f − f0) (2.14)

where vdc0 and f0 are the equilibrium point, typically the nominal value of the DC
link voltage and the grid frequency. Considering that DC link voltage can vary
only within a small range we can linearise the equation around the equilibrium
point

Tcvdc0∆vdc = 2Hdc∆f (2.15)



2.5 Wind farm inertia emulation 23

considering that ∆vdc = vdc − vdc0 we say

vdc =
2Hdc∆f

Tcvdc0
+ vdc0 (2.16)

If we vary vdc, whose variation will result in an output power variation, according
to this equation the DC link will have an inertia response with inertia constant
Hdc. Looking at the expression we can recognise that is a droop control of pa-
rameter Kdc =

2Hdc

Tcvdc0
and write the following law to control vdc

vdc = Kdc∆f + vdc0 (2.17)

We can control the value of Kdc in order to obtain various values of Hdc

Hdc =
KdcTcvdc0

2
(2.18)

In �gure 2.2 we can see the graph representation of (2.17).

Figure 2.2: Representation of (2.17)

We name this kind of equation, where a positive deviation of the frequency gen-
erates a positive variation of the control variable, "droop" since this is the term
used in literature. But for traditional power plant, where the control variable
is the output power, the name "droop" is referred to a negative slope, id est a
frequency negative deviation causes an increment of the power set point, as we
can see from �gure 2.3. The control variable is in the x-axis because traditionally
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is represented in that way. Instead a positive slope curve, as the one in �gure
2.2 would be traditionally named "compound". But here we use the term now
common in literature.

Figure 2.3: Traditional power plants droop control

2.5.2 DC capacitor inertia support, method two

Another control method to emulate inertia can be found [11]. We start from
(2.14) which we found before. Let's recall it

Tc(v
2
dc − v2dc0)

2
= 2Hdc(f − f0) (2.19)

Now we don't linearise the equation around the equilibrium point as previously
done, we just reorganise it

Tcv
2
dc

2
= 2Hdcf +

Tcv
2
dc0

2
− 2Hdcf0 (2.20)

from this equation we can �nd vdc

vdc =

√
4Hdcf

Tc
−K2 (2.21)

with K2 = 4Hdcf0
Tc

− v2dc0. So, we have found the rule to regulate the voltage of
the DC link in order to obtain an inertia response. Now we have to �nd the
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expression of Hdc. We start again from the (2.14) and we manipulate the �rst
term in order to put in evidence ∆vdc. Let's write all the passages. We start
multiplying and dividing the left side of (2.14) by v2dc0

v2dc0
Tc(v

2
dc − v2dc0)

2v2dc0
= 2Hdc(f − f0) (2.22)

than we add and subtract v2dc0 and 2vdcvdc0 in the expression between brackets

v2dc0Tc
2

(v2dc − 2vdcvdc0 + v2dc0 + 2vdcvdc0 − 2v2dc0)

v2dc0
= 2Hdc(f − f0) (2.23)

we recognise that

v2dc0Tc
2

[
(vdc − vdc0)

2

v2dc0
+

2(vdc − vdc0)

vdc0
] = 2Hdc(f − f0) (2.24)

and then

v2dc0Tc
2

[(
(vdc − vdc0)

vdc0
+ 1)2 − 1] = 2Hdc(f − f0) (2.25)

and so naming vdc − vdc0 = ∆vdc and f − f0 = ∆f

Tcv
2
dc0

2
[(
∆vdc
vdc0

+ 1)2 − 1] = 2Hdc(∆f) (2.26)

�nally we �nd Hdc

Hdc =

Tcv2dc0
2

[(
∆vdc
vdc0

+ 1)2 − 1]

2(∆f)
(2.27)

It results that Hdc depends on ∆vdc and not only on vdc0 as found with the pre-
vious method (2.18). This is due to the fact that we choose not to linearise the
(2.14). In such a way we take into account that the energy storable with some
increase of vdc does not depend linearly on the �nal value of vdc.
From (2.27) it turns out that we can also choose the value of the inertia constant
with this method. This is true, but we need also to remember the limits of the
control system. In fact as we can see from (2.27) the value of Hdc depends on the
grid voltage deviation. It is said that ∓5 % is an acceptable range of DC voltage
variation [11]. Moreover we had to take also into account that higher values of
the inertia constant imply high active power output, so we need also to take into
account that we need to respect the converter limits.
Let's now compute a reasonable value for Hdc. To do this we need the actual
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capacitance of the DC link. We choose C = 15 mF . This capacitance takes into
account the capacitance of the DC link cables which varies with the extension of
the plant and the added capacitance by added capacitor near the VSC stations.
This value is chosen considering that it permits [11] a small voltage variation
during the inertia supplying process. Considering a system with nominal DC
voltage Vdcn = 367 kV and nominal power Pb = 300MW (this values will be also
used in section 4), this capacitance supplies a "natural" inertia constant equal to

Tc
2

=
1

2

CV 2
DCn

Pb

= 3.375 s (2.28)

At this point we can consider a frequency variation of 2 % (a value acceptable
during transients), and a maximum DC voltage variation of 5 %. We can now
compute the value of Hdc with this assumptions by (2.27), which results

Hdc ≈ 12 s (2.29)

2.5.3 Inertia support from kinetic rotor energy

In a DFIG the power output is controlled by the electronic converter, we can draw
more electric power than the one that is coming from the wind slowing down the
rotating masses or we can deliver to the grid less power than the one coming
from the wind accelerating the rotors. Angular speed ωd will vary according to
the law derived in section 2.4 (the power imbalance equals the time derivative of
the kinetic energy, the equation is in p.u.)

2Htωd
dωd

dt
= pwind − pwf (2.30)

Ht is the inertia constant of the machine calculated in the usual way (rated ki-
netic energy divided by rated power). If we have more than one machine, like in
the system in �gure 2.1, Ht would be the equivalent inertia constant for all the
machines. It is reported that wind turbine inertia constants are in the range of 4-
6 seconds [9]. These values are comparable with the ones of classical synchronous
generators that present inertia constants in the range 3-8 seconds, depending on
the type of generator. Moreover, with wind turbine, since we can control power
output we can decide how much energy deliver to the grid. This is important
since with variable speed wind turbines we can vary the velocity in the range
between 0.7 and 1.3 p.u., instead synchronous generator are limited in the range
of 47.5 − 52.5Hz id est 0.95 − 1.05 p.u. This means that with wind turbines
we can deliver much more kinetic energy to the grid. Nevertheless we have to
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underline that doing this the machine will slow down to a velocity where is much
less e�cient (see chapter 5 ) so after the transient we need a procedure to recover
the correct angular speed.
Coming back to equations, if we approximate the rotor speed as a constant equal
to the nominal one (ωd = 1 p.u.) we found the equation (2.8).
The situation is similar to the one we dealt with before, described in section
2.5.1. In fact (2.30) is similar to (2.9), so as done before, since we can modify the
wind farm power output in a very fast way and considering pwind constant, we
can introduce another inertia constant Hw and we write the following equation
where f is the grid frequency.

2Htωd
dω

dt
= 2Hw

df

dt
(2.31)

we now integrate two sides over time and we linearise around the equilibrium
point obtaining

Htωd0∆ωd = Hw∆f (2.32)

From this equation we can see that the amount of inertia Hw given to the grid
depends on ωd0 and the value of the rotor speed variation. So ωd is the variable
that in�uences the inertia we are able to supply, as it was the DC link voltage for
the VSC. The di�erence here is that we do not directly control ωd, but the power
output of the wind farm as explained later in the chapter dedicated to DFIG.
This does not permit to elaborate (2.32) to arrive at a formula similar to (2.16).

2.6 Inertia support with time derivative of fre-

quency

Here we explain another method to supply inertia. Probably this is the most
"natural" to think and it is proposed by some articles (as [9]), but has the incon-
venience of the measurements of the time derivative of the grid frequency. This
can be troublesome because can cause noise ampli�cation.
As explained in sections 2.2 and 2.4 for traditional synchronous generators inertia
is an "embedded" property. They sense a power imbalance and they react with
a change in rotating speed. Instead if the system is interfaced with power elec-
tronics, the behaviour depends on the control system. We can imagine to vary
the output power according to the time derivative of the grid frequency; if we act
in this way we will emulate an inertia behaviour but it is not strictly the same as
classical inertia because we start from a frequency time derivative to produce a
change in the output power, instead of naturally mutating the rotational speed
after a power imbalance. Let's now look at �gure 2.4.
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Figure 2.4: Schematic representation of the power system under study

Psg is the traditional power plant power production, Pwf is the wind farm power
production and Pload is the power drawn by loads. Droop regulators and other
regulator systems of traditional power plants are not taken into account, so in the
following ∆Psg = 0. The quantities with subscript 0 are the equilibrium point
quantities, so we can say that

Psg0 + Pwf0 − Pload0 = 0 (2.33)

considering this we can draw the scheme in �gure 2.5

Figure 2.5: Schematic representation of the power system under study taking
into account only power variations

Now, if we vary the power output of our wind farm (Pwf )according to
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∆Pwf = −Kd
d∆f

dt
(2.34)

where Kd is a gain to be selected according to the plant properties, we can emu-
late inertia. To demonstrate this let's consider the scheme in �gure 2.6.

Figure 2.6: Inertia emulation scheme

The traditional power plants are represented by an inertia constant Ht and their
power output control is neglected. It is also represented (2.34). Now we com-
puted the transfer function between the load power variation and the frequency
variation and we obtain

∆f

∆Pload

=
−1

(Kd + 2Ht)s
(2.35)

We can note from the above equation that the term Kd is summed with the grid
inertia constant. So we can say that we made some synthetic inertia through
controlling power output according to the time derivative of the frequency.





Chapter 3

VSC-HVDC connection lcl

3.1 Introduction

Voltage source converter (VSC) HVDC is a solution to connect large wind farms,
especially o�-shore, to the main grid. We can see in �gure 3.1 a typical scheme of
these power plants. VSC-HVDC resolves some issues of long AC cables such as
high reactive power consumption and high losses. But this connection decouples
the frequency of the o�-shore wind farm from the grid frequency. Converters are
typically made with IGBTs modulated with PWM method. In the �gure 3.1 we
can see a scheme of the system. Reactors and shunt capacitors work as �lters for
high order harmonics produced by the PWM converter.

Figure 3.1: Single line diagram of the grid side VSC and DC link

We will now describe the system in detail, we will develop a model and we will try
to develop a control system. This attempt is not well concluded since the control
system we choose, adapting it from the one proposed by many articles (such
as [11] and [12]) is not suitable for a system considering also reactor and �lter
capacitor and not measuring grid voltages. The articles that deal with synthetic
inertia present a simpler model of the system, neglecting the �lter capacitor and
considering the VSC connected to the grid through an inductor (a transformer)
and moreover measuring grid voltages. In the next chapter (4) we will develop
in detail such a model. Here we report the attempt to consider the complete
system.
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3.2 System model

Since we want to investigate the inertia support given by the HVDC link by
means of electrostatic energy accumulated in the equivalent capacitance of the
HVDC link, we simplify the system modelling the o�-shore VSC as a constant
power source (Pwf = const). In the following the o�-shore grid and VSC are
modelled as a controlled current source with equation iwf = Pwf/vdc, that is a
constant DC power source. In �gure 3.2 we can see the single line diagram of the
system under study.

Figure 3.2: Single line diagram of the grid side VSC and DC link

3.2.1 AC side

The two sides of the HVDC link present the same AC circuit made up of a phase
reactor (Lf ), a shunt capacitor (Cf ) and a transformer (Lt). In �gure 3.3 we
can see the circuital representation of this system, where are also represented the
resistors which model the losses in the transformer (Rt) and in the phase reactor
(Rf ). The capacitor is assumed as ideal, the series resistance Rd is there to avoid
resonance phenomena as explained later. The grid is modelled as a constant volt-
age source vg.

Rf
i

Lf

Cfvcf
ic

Rd

Rt i0
Lt

vgvinv v0

Figure 3.3: Circuital phase representation of the connection of the VSC with the
grid
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The di�erential equations for the circuit in �gure 3.3 are

di0
dt

= (vcf +Rd(i− i0)− vgrid −Rti0)/Lt (3.1a)

di

dt
= (vinv − vcf −Rd(i− i0)−Rf i)/Lf (3.1b)

dvcf
dt

= (i− i0)/Cf (3.1c)

where Lf and Lt are the service inductances, they already take into account
mutual coupling between phases.

3.2.2 DC link

The DC link is modelled as a capacitance (Cdc) which includes the cable capac-
itance and the capacitance added with DC capacitors in order to increase the
overall one and so to be able to supply synthetic inertia to the grid. With refer-
ence to �gure 3.2 we can write the following equation

dvdc
dt

=
(iwf − igs)

Cdc

(3.2)

3.2.3 Link between AC and DC side

We choose to measure the voltage v0, the current i0 and i. Grid voltage is not
measured. To compute delivered power (pac) we use v0 and i0, so pac = v0i0. It
could also be used i, but this doesn't change so much the things. i0 and i di�ers
only for the current that �ows through the capacitor �lter which is up to the 5%
of the nominal value. The power electronic converter is assumed lossless and the
losses on Rf , Rt and Rd are neglected. So the link between DC and AC side can
be made by a power balance. This achievement will be used in the control system.

pac = pdc (3.3)

Since pdc = vdcigs we can link AC power output with DC grid side current (igs) .

igs =
pac
vdc

(3.4)
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3.3 Values and per unit transformation

We decide to study a system of nominal power of 300MVA and AC line to line
voltage of

√
3 150 ≈ 260kV id est a phase voltage of 150 kV . Nominal DC voltage

is chosen equal to
√
2
√
3 150 kV and the DC total capacitance (the one given

by cables and the added one) is equal to 15mF (see the last part of section 2.5.2
for more details on this value). The value of Lt and Rt are typical value for a
transformer of 300MVA rated power, Cf , Rd, Lf and Rf are chosen as described
section 3.3.1.
The system will be studied in p.u. quantities. Chosen reference values are listed

Table 3.1: Reference values

Parameter Value

Ab 300 MVA

Vb
√
3 150 kV

wb 2π50 rad/s

Ib =
Ab

Vb
1.1547 kA

Zb =
Vb
Ib

225 Ω

Lb=
Zb

wb

716.2 mH

Cb=
1

Zbwb
14.15 µF

Table 3.2: Physical system parameters. Lf : �lter inductance, Rf : resistance of
the �lter inductance, Cf : �lter capacitance, Rd: resistance series connected to the
�lter capacitance to avoid resonant problems, Lt, Rt: inductance and resistance
of the transformer

Parameter Value (p.u.)

Lf 0.04
Rf 0.002
Lt 0.1198
Rt 0.005
Cf 0.07
Rd 0.119
Cd 1060

in table 3.1. In table 3.2 we list the values of all the elements of the system. The
choice of Rd and Cf are explained in the section 3.3.1.
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3.3.1 AC side resonance problem

This scheme of VSC is typical for power electronics devices of any power level.
Generally the inductances are chosen in order to give a total voltage drop of less
than 10% [13]. In our case, since the rated power of the plant is huge (300MVA),
the transformer itself will have a voltage drop of 12% at rated current. For this
reason the phase reactor inductance is chosen not much high. The �lter capacitor
is designed in order to absorb reactive power equal to 5% of the nominal power.
The value of the phase reactor losses is derived taking into account that such
devices have a quality factor (wL

R
) of a value around 20. Values are listed in table

3.2.
At this point we have to �nd the frequency response of the system in order to
understand if some resonant phenomena can take place. We compute the trans-
fer function (�rstly neglecting resistances) between the input voltage (vinv) and
the output current (i0). Once we've made the circuit passive we can write the
transfer function. The equation is written in p.u..

i0(s)
vinv(s)

=
wb

s(s2LfLtCd/w2
b + (Lt + Lf ))

(3.5)

We can see from the equation that without considering the resistances there

is a resonant pick at a frequency equal to
√

Lt+Lf

LtLfCd
which in our case means

1.19 kHz. The resonant pick, according to [13], has to be placed at least the half
of the switching frequency and at least ten times bigger than the fundamental
frequency. If �gure 3.4 we can see the plot of the transfer function in 3.5 and
below (�gure 3.5) the plot of the module of the transfer function between the
input voltage (vinv) and the output current (i0) considering also Rt and Rf (the
expression is written in (3.6)). We can note the two plot are similar. One dif-
ference is that the second doesn't go to in�nite at resonant frequency, but this
cannot be noted from the graphs for numerical reasons.

i0(s)
vinv(s)

=
1

(a3s3 + a2s2 + s+ a0)
(3.6)

with

a3 =
CfLfLt

w3
b

(3.7)

a2 =
CfLfRt + CfLtRf

w2
b

(3.8)

a1 =
CfRfRt + Lf + Lt

wb

(3.9)

a0 =Rf +Rt (3.10)
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Figure 3.4: Bode plot of the magnitude of the transfer function between the input
voltage (vinv) and the output current (i0) neglecting Rf and Rt (3.5)
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Figure 3.5: Bode plot of the magnitude of the transfer function between the input
voltage (vinv) and the output current (i0) considering Rf and Rt



3.3 Values and per unit transformation 37

The resonant frequency is at 1.19kHz and the constrains are almost reached,
but we cannot accept a circuit like this since the resonant peak is much to high.
To deal with this issue we have to add a resistance Rd in series to the �lter
capacitor. We choose Rd equal to one third of the capacitive impedance of the
capacitor �lter Cf at the switching frequency, that is

Rd =
1

3Cd2πfsw
(3.11)

where fsw = 2 kHz is the switching frequency. Adding this resistance the module
of the transfer function between the input voltage (vinv) and the output current
(i0) becomes the one in �gure 3.6. In this way we avoid to have a dangerous
resonance peak.
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Figure 3.6: Bode plot of the magnitude of the transfer function between the input
voltage (vinv) and the output current (i0) considering Rf , Rt and Rd
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Figure 3.7: Bode plots of the magnitude of the transfer function between the
input voltage (vinv) and the output current (i0) for the the three di�erent cases

In �gure 3.7 we sum up the Bode plots of �gures 3.4, 3.5 and 3.6. We can
note that with the introduction of Rd the resonant peak is very low.

3.4 Vector control attempt

In this chapter we try to investigate if the control system based on two nested
loops in dq reference frame with proportional integral regulators can be applied
to a complete lcl system without measuring the grid voltage. This will result in
a failure, to run the system without the grid voltage measurement is necessary to
change the control system. We found some suitable control systems such as the
one proposed in [14] but the analysis of such a system may be object of a future
work.
The angle for the dq transformation in the real system will be retrieved from the
measured voltage (in this case v̄0) by a phase locked loop (PLL) as explained in
section 4.5. Here this system is not taken into account and we assume to measure
this angle from the system in an ideal way. So, we can transform the equations
in 3.1 in dq axes reference frame. Moreover we transform the equations in 3.1 in
p.u. This leads to the following equations



3.4 Vector control attempt 39

did
dt

= (vinvd − v0d −Rf id + wLf iq)
wb

Lf

(3.12a)

diq
dt

= (vinvq − v0q −Rf iq − wLf id)
wb

Lf

(3.12b)

dvcfd
dt

= (id − i0d + wCfvcfq)
wb

Cf

(3.12c)

dvcfq
dt

= (iq − i0q − wCfvcfd)
wb

Cf

(3.12d)

di0d
dt

= (vcfd +Rd(id − i0d)− vgd −Rti0d + wLti0q)
wb

Lt

(3.12e)

di0q
dt

= (vcfq +Rd(iq − i0q)− vgq −Rti0q − wLti0d)
wb

Lt

(3.12f)

dvdc

dt
= (−igs + iwf )

wb

Cdc

(3.12g)

Power can be expressed in this way

p = v0di0d + v0q i0q (3.13a)

q = v0q i0d − v0di0q (3.13b)

since in our control system v0q is zero (we suppose to be always aligned with our
control system to the voltage v0), we can say that d current is devoted to the real
power control and q current to the reactive power control.
We can see in �gure 3.8 and 3.9 the block schemes of the system on d and q axes.
Let's now analyse the current loops: they are the same on both axes and they
are coupled each others. In the �gures (3.8 and 3.9) we can also see feedback
decoupling terms. We compute the value of the inner PI controller (listed in table
3.3), that are the same on d and q axes since the inner loop is equal. We use the
method explained in appendix A. We choose a passing band equal to 100 Hz
since the system has to be much slower than the sampling frequency.
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Figure 3.8: System block diagram on d axis

Figure 3.9: System block diagram on d axis

Figure 3.10: Linearised system block diagram of the outer loop on d axis

Now we have to compute the parameters for the controller for the outer loop
on d axis. The outer loop on q axis does not exist since we set irefq = 0. From
(3.13)b and remembering that v0q = 0, we can see that to avoid exchanging re-
active power i0q has to be zero. But in our control system we don't control the
current ī0, but we control the current i. So we set as a reference irefq = 0 even
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if we know that this will cause a reactive power �ow from the grid to the �lter
capacitor, but at this stage of the work this is not considered a problem since the
reactive power consumption is low and we are mainly interested in active power
�ow.
Now we have to �nd the value of the parameters of the outer controller on d axis.
Looking at �gure 3.8 we can note that the loop isn't linear. So we had to linearise
it. We assume as constant and equal to the nominal value the DC link voltage in
the division to compute igs and also constant and equal to the nominal value the
voltage v0. Also the current iwf is assumed equal to the nominal value. We can
see such assumptions in �gure 3.10. In this scheme we can also note the inner
loop assumed as a unit gain. This assumption is possible since the two loops has
to have very di�erent passing bands: the inner one has to be much faster than
the outer one. Looking at �gure 3.10 it is clear the outer loop. We apply again
the method in appendix A to �nd the controller parameters. In table 3.3 the
values of the parameter of the controllers. With reference to the method in A we
choose a passing band of 1 Hz for the outer loop on d axis.

Table 3.3: PI controller parameters

Parameter Value

Kpin 0.0784 p.u.
Kiin 9.96 p.u./s
Kpout 0.0143 p.u.
Kiout 2.7910−3 p.u./s

At this point we �nd the equilibrium point with the Newton-Raphson method and
than we made �nd the eigenvalues. The eigenvalues for this attempt are listed
in table 3.4. As we can see there are two eigenvalues positive, so the system is
not stable. We made some other attempts changing the controller parameters,
but we weren't able to �nd all eigenvalues negative, here we don't report all the
values.
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Table 3.4: Eigenvalues of the linearised system around the equilibrium point.
Two of them are positive, the system isn't stable

Parameter Value (rad/s)

λ1 −162.5189 + 3.7396i 103

λ2 −162.5189− 3.7396i 103

λ3 −162.5189 + 3.1112i 103

λ4 −162.5189 + 3.1112i 103

λ5 −462.5180
λ6 140.8500 10−3

λ7 4.2387 10−3

λ8 −462.5219
λ9 −169.2329
λ10 −169.2314



Chapter 4

VSC-HVDC connection

4.1 Introduction

In this chapter we want to investigate the inertia support given by the HVDC link
by means only of electrostatic energy accumulated in the equivalent capacitance
of the HVDC link. So we simplify the system modelling the o�-shore VSC as
a constant power source (Pwf = const). In the following the o�-shore grid and
VSC are modelled as a controlled current source with equation iwf = Pwf/vdc,
that is a constant DC power source. Moreover we neglect the reactor and the
shunt capacitor since they are not important for inertia emulation concept.

4.2 System modelling

In �gure 4.1 we can see the single line diagram of the system under study. Let's
now write the equations.

Figure 4.1: Single line diagram of the grid side VSC and DC link
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4.2.1 AC side

Lt and Rt are the transformer inductance and resistance, vg is the grid voltage
assumed sti� and vinv is the �rst harmonic of the voltage at the output of the con-
verter.We write the equations for the three phase system where L is the service
inductance that already takes into account the mutual coupling between phases.

vinva = vga + L
dia
dt

+Ria (4.1a)

vinvb = vgb + L
dib
dt

+Rib (4.1b)

vinvc = vgc + L
dic
dt

+Ric (4.1c)

We now transform these equations by Park Transformation on rotating d and q

axis (in appendix A the transformation matrix used). d axis is aligned with the
grid voltage through a phase locked loop (PLL). This device will be described in
section 4.5.

vinvd = vgd + L
did
dt

+Rid − ωLiq (4.2a)

vinvq = vgq + L
diq
dt

+Riq + ωLid (4.2b)

The system is assumed symmetrical and balanced and so no zero component
shows up.

4.2.2 DC link

The DC link is modelled as a capacitance (Cdc) which includes the cable capac-
itance and the capacitance added with DC capacitors in order to increase the
overall one and so to be able to supply synthetic inertia to the grid. With refer-
ence to �gure 4.1 we can write the following equation

dvdc
dt

=
(iwf − igs)

Cdc

(4.3)

4.2.3 Link between AC and DC side

The converter is assumed as lossless and the resistance Rt is neglected.The link
between DC and AC side is made by a power balance. This achievement will be
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used in the control system.

pac = pdc (4.4)

Since pdc = vdcigs we can link AC power output with DC grid side current.

igs =
pac
vdc

(4.5)

4.3 Values and per unit transformation

We decide to study a system of nominal power of 300MVA and AC phase voltage
of 150kV . Nominal DC voltage is chosen equal to

√
2
√
3 150kV and the DC total

capacitance (the one given by cables and the added one) equal to 15mF . The
capacitance is chosen high in order to be able to supply synthetic inertia as
explained later.
The system will be studied in p.u. quantities. Chosen reference values are listed
in table 3.1 here reposted (table 4.1).

Table 4.1: Reference values

Parameter Value

Ab 300 MVA

Vb
√
3 150 kV

wb 2π50 rad/s

Ib =
Ab

Vb
1.1547 kA

Zb =
Vb
Ib

225 Ω

Lb=
Zb

wb

716.2 mH

Cb=
1

Zbwb
14.15 µF

Instead in table 4.2 are reported the p.u. parameter of the system.

We now want to transform the systems equation written previously in per unit.
Dividing the equations (4.2) and (4.3) by the reference quantities we obtain
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Table 4.2: p.u. parameter of the system

Parameter Value (p.u.)

Nominal V SC power 1
Nominal AC voltage (line− to− line) 1
Nominal angular frequency 1
Transformerinductance Lt 0.12
Transformerresistance Rt 0.005

Nominal DC voltage vdcn
√
2

DClinkcapacitance Cdc 1060

˙vinvd = ˙vgd +
L̇t

wb

di̇d
dt

+ Ṙti̇d − ω̇L̇ti̇q (4.6a)

˙vinvq = ˙vgq +
L̇t

wb

di̇q
dt

+ Ṙti̇q + ω̇L̇ti̇d (4.6b)

d ˙vdc
dt

= ( ˙iwf
˙−igs)

wb

Ċdc

(4.6c)

From now on all quantities will be in per unit and the dot over the letter will be
omitted. We can rewrite these equations in the form of the state space model

did
dt

= (vinvd − vgd −Rtid + ωLtiq)
wb

Lt

(4.7a)

diq
dt

= (vinvq − vgq −Rtiq − ωLtid)
wb

Lt

(4.7b)

dvdc
dt

= (iwf − igs)
wb

Cdc

(4.7c)

These are the di�erential equation of the system. As we can see two of them are
coupled. iq appears in the equations related to d axis and id appears in the one
related to q axis. This will be taken into account in the control system.

4.4 Vector Control

As suggested in the literature [11] the control system is made in the dq frame.
The inner loops controls the d and q currents through the inductor. The outer
control loop on d axis controls the DC voltage, instead the outer one on q axis
controls the reactive power output.
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This is possible since the phase locked loop (PLL) keeps d axis aligned with grid
voltage (vgq = 0) and so we can simplify the expression of the power delivered to
the grid in the following manner

p = vgdigd + vgq igq = vgdigd (4.8a)

q = vgq igd − vgdigq = −vgdigq (4.8b)

Remembering that, through power electronic converter only real power is ex-
changed between the DC link and AC side, it becomes clear that the DC voltage
is in�uenced only by the power output and so by the d axis current. These are
not the only possibilities for the outer loop. As said in [11] instead of giving a DC
voltage reference we can directly control power output setting a power reference.
Instead with the loop on q axis we can control the voltage at PCC (if it is not
sti� as in this case) since the converter is coupled with the grid mainly by an
inductor (resistance very small compared with the inductance).
In the following studies the outer controller on q axis is not considered. This
because the reactive power and the current iq are linked by an algebraic equation
(see 4.8) and so the reference current for the inner loop can be directly calculated
through (4.8). Moreover it has no in�uence on synthetic inertia.
All the controllers are proportional integrators. In �gure 4.2 we can see the com-
plete scheme of the system under investigation.

The control system is made for d and q axis separately, but as we can see from
(4.7) and from the �gure above there is coupling between d and q axes. This issue
is resolved by a feedback decoupling. Measured quantities are introduced in the
control scheme in order to be able to operate the control system in a decoupled
manner. These signals (ωLtid and −ωLtiq) are visible also in �gure 4.2.
In the �gures 4.3 and 4.4 the system is divided into d and q axes. As we can see
the system is non linear and on d axis there are two loops. So in order to size the
controllers we have to linearise the system and separate the two loops on d axis.

To linearise the system we choose to consider the DC link voltage feedback (vis-
ible in the model in �gure 4.3) constant and equal to the nominal value, the
voltage of the grid is kept constant and also the current from the wind farm is
kept constant. So with these simpli�cations we can draw the system in �gure 4.5
and 4.6

Looking at the schemes of the system on d axis (4.3 and 4.5) we can note a block
−1 right after the PI outer controller. This is necessary because there is also a
−1 in the physical system.



48 VSC-HVDC connection

Figure 4.2: System and control scheme

4.4.1 Inner control loops

The dynamics of the inner control loop on d is the same of the one on q axis. In
�gure 4.5 we can recognise the inner loop of d axis.
Taking into account that the control system has to be much slower than the
sampling frequency we choose a passing band of 100Hz for the closed loop. The
values Kpin and Kiin are calculated using the method in appendix A.

Table 4.3: Inner PI controller parameters

Parameter Value

Kpin 0.235 p.u.
Kiin 29.25 p.u./s

4.4.2 Outer control loop

The outer control loop on d axis is designed to be much slower than the inner
one in order to ensure stability. In �gure 4.7 we can see the block diagram of this
loop considering the inner one as a unit gain.
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Figure 4.3: System block diagram on d axis

Figure 4.4: System block diagram on q axis

The passing band was chosen equal to 1Hz for the closed loop. It has to be
much slower than the inner loop to ensure stability. We made this choice also
looking at the transfer function between the DC voltage reference and the output
reference current. Looking at �gure 4.7 we write (4.9) and its Bode plot is in
�gure 4.8 (line green). In the same �gure we can also see the bode plot of the
sensitivity control function (Q(s)) that is the transfer function between the DC
voltage reference and the reference d axis current. The function Q(s) is written in
(4.10). We note from the Bode plot that its module is not far from the 0 db axis
in the frequency range on interest which is up to around 0.2 Hz

s
. This since the

DC voltage reference depends on grid frequency which we don't expect to vary
in a very fast way, 0.1 Hz

s
is already a big value (we will talk of this in section
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Figure 4.5: Decoupled and linearised block diagram of d axis

Figure 4.6: Decoupled and linearised block diagram of q axis

5.11.2). Taking this into account we calculatedKpout andKiout using the method
in appendix A.

G(s) =
ωb

sCdc

(4.9)

Q(s) =
R(s)

1 +R(s)G(s)

(4.10)

with
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Figure 4.7: Decoupled and linearised block diagram of d axis

Table 4.4: Out PI controller parameters

Parameter Value (p.u.)

Kpout 28.18
Kiout 64.44

R(s) =
Kiout
s

+Kpout (4.11)

4.4.3 PI controller di�erential equations

Here we will show the di�erential equations introduced by the controllers in or-
der to develop the complete system di�erential equation for stability studies. In
Laplace domain the PI controller is represented by

y(s) = (
Ki

s
+Kp)u(s) (4.12)

where s is the Laplace operator, y(s) is the output and u(s) is the input. We can
bring back the equation to time domain (integral initial condition is set to zero)

da

dt
= Kiu (4.13a)

y = a+Kpu (4.13b)
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Figure 4.8: Bode plots of the function in (4.9) and in (4.10)

where a is a state variable introduced by the controller. So for each controller a
new state variable is introduced: ad is the one for the PI inner controller on d axis,
aq is the one for the controller on q axis and �nally b is the variable introduced
by the outer controller on d axis. We can now write all the di�erential equations
of the controllers.

dad
dt

= Kiin(i
ref
d − id) (4.14a)

daq
dt

= Kiin(i
ref
q − iq) (4.14b)

db

dt
= Kiout(v

n
dc − vdc) (4.14c)

In order to write the complete system of di�erential equations we will need also
the following equations (the output of the controllers). The complete system of
equations will be written in section 4.6 taking into account also the PLL dynamics.

irefd = b+Kpout(v
n
dc − vdc) (4.15a)

vinvd = ad +Kpin(i
ref
d − id) + vgd − ωLtiq (4.15b)

vinvq = aq +Kpin(i
ref
q − iq) + vgq + ωLtid (4.15c)
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4.5 Phase locked loop (PLL)

As said before the phase locked loop (PLL) is used to align the control system to
the grid voltage and to retrieve the grid frequency. In �gure 4.9 we can see the
block diagram of the PLL. We had to note that even if the input voltages are in
p.u. the estimated ω̂ is in physical value.

Figure 4.9: PLL blocks diagram

vα and vβ are the transformation on �xed α and β axes of the voltage to which
we want to be aligned, here simply named v̄. Matrix used for the transformation
is reported in appendix A.The �rst block of the PLL computes the imaginary
part of the complex product of the voltage vector v̄ and the complex conjugated
of the estimated voltage vector ˆ̄v. This gives the sine of the angle between the
two vectors. The control system will minimise this quantity by moving the esti-
mated voltage vector, in such a way we follow the rotating vector v̄. In this way
we know the position (angle) of the voltage we want to be aligned to. In �gure
4.10 there is a representation of this concept, while in the following equations the
mathematical aspects will be analysed.

v̄ vector can be expressed as |v|ejθ and estimated ˆ̄v as |v̂|ejθ̂. In this way we
compute the sine of the angle between them:

Imm(|v|ejθ|v̂|e−jθ̂) = sin(θ − θ̂) (4.16)

This shows the relation between the sine of the angle di�erence and the expo-
nential complex product, but in the control system the operation is implemented
using Cartesian coordinates

Imm[(vα + jvβ)(v̂α − jv̂β)] = sin(θ − θ̂) (4.17)

In �gure 4.9 we can see that the output of the PI controller is marked as ω̂ that
is the estimated angular velocity (physical value). Looking at the scheme this
results clear because it is the time derivative of the estimated angle, but we need
to say that this is true only at steady state. This because θ− θ̂ = 0 only at steady
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Figure 4.10: Grid voltage vector and estimated voltage vector (ˆ̄vαβ)

state, while during transients the output of the PI is not the actual angular fre-
quency. We will show the mathematical aspect of this concept at the end of this
section.
The controller is a PI and the values of its parameters are chosen linearising the
loop in �gure 4.9. Considering the system around an equilibrium point we can
say that sin(θ− θ̂) = θ− θ̂ and so we can draw the linearised closed loop system
reported in �gure 4.11. Looking at this scheme and with the method in appendix
A we �nd the values for the PI controller (listed in table 4.5). The passing band
of the closed loop is chosen equal to 5000 Hz in order to stay always aligned with
the grid.

Figure 4.11: Linearised PLL scheme used to compute PI controller parameters

In �gure 4.12 we can see the bode plot of the open loop transfer function (writ-
ten (4.18)). We can see that the passing band of the close loop is 5000 Hz as
expected and that the phase margin is 60◦. Since the function L(s) has not right
half plane zeros and it crosses the 0 db axis only one time, we can apply the Bode
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Table 4.5: PLL PI controller parameters

Parameter Value

KpPLL 27.2 103 rad
s

KiPLL 493.4 106 rad
s2

stability criterion to verify if the system is stable. From (4.18) we can see that
the gain is greater than zero and from the graph in �gure 4.12 we can verify that
the phase margin is greater than zero and moreover the one expected, so we can
say that the system is stable.

L(s) = (KpPLL +
KiPLL

s
)
1

s
=
KiPLL

s2
(1 +

KpPLL

KiPLL

s) (4.18)
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Figure 4.12: Bode diagram of the PLL open loop transfer function 4.18

Let's now analyse why we choose a PI controller. Let's consider the scheme in
�gure 4.11, and let's name the error (θ − θ̂) at the input of the PI controller as
e . We can now compute the transfer function between the transfer function of
the input angle (θ) and the error (e).

e(s)
θ(s)

=
1

1 + L(s)

(4.19)

and so
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e(s)
θ(s)

=
1

1 + KiPLL

s2
(1 + KpPLL

KiPLL
)
=

s2

s2 +KiPLL(1 +
KpPLL

KiPLL
)

(4.20)

Now we apply the �nal value theorem to �nd the steady state value of e in the
time domain. To do this we need to note that θ = ωt (with ω angular frequency)
and so its Laplace transformation is

θ(s) =
ω

s2
(4.21)

and so, combining (4.20) and (4.21)

e(s)
θ(s)

=
s2

s2 +KiPLL(1 +
KpPLL

KiPLL
)

ω

s2
(4.22)

Now remembering the �nal value theorem we can �nd the steady state value of
the error e in the time domain.

lim
t−>∞

e(t) = lim
s−>0

se(s) = lim
s−>0

s
s2

s2 +KiPLL(1 +
KpPLL

KiPLL
)

ω

s2
= ωs = 0 (4.23)

So we demonstrate that the error at steady state is zero. This is due to the
PI controller that with the other integrator present in the system can guarantee
zero steady state error in presence of a ramp input. This is important since it
guarantees that we can stay aligned with the input voltage vector and, as said
before, we can say that the output of the PI controller is the angular frequency.
At this point a question can emerge, why the PLL? If we measure the voltage we
want to be aligned, we made the transformation on α and β axes, we can just
compute the inverse tangent of

vβ
vα

and retrieve the grid angle. This is possible,
but it is not accurate since it is very sensible to grid disturbances such as harmonic
components. Instead we can use the inverse tangent to initialize the integrator
of the PLL when the system is switched on. This will reduce the transient.

4.5.1 Model of PLL for stability analysis

Since we want to include the PLL in the system stability analysis, we have to
develop a model of the PLL in d and q axes. To do this we imagine to transform
the voltage that we want to follow, instead on �xed α and β axes, on d and q axis
that are rotating with a constant angular frequency, ωb in this case. In this way
we consider the reference frame as rotating with a constant angular frequency ωb.
In such a case we see the voltage vector, in absence of grid frequency disturbance,
as a static vector. In �gure 4.13 we can see a representation of this concept. We
can see �xed α and β axes and d and q axes rotating with a constant angular
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frequency ωb. We consider to be on such rotating axes and with the PLL we
estimate the angular position that the voltage vector v̄ has with respect to the
rotating dq frame. In this case we have also to consider that the output of the
PI controller is not the estimated angular frequency, but the di�erence between
the actual voltage frequency and the constant angular frequency we use for the
dq rotating frame.

Figure 4.13: Graphical representation of the grid voltage vector, angle θ and θ̂

In this way the input of the system is v̄ in dq frame which in the following will
be denoted as grid reference frame since we will consider as reference voltage the
grid voltage, so v̄ = v̄g. We had now to say that a variation in grid frequency is
detected here as a variation in the dq components of the grid voltage vector.

4.5.2 PLL di�erential equations

Now we show the di�erential equations for the PLL. Looking at �gure 4.9 we see
two dynamical blocks: the PI controller and an integrator. So two new variables
are introduced: θ̂ and ωi.

dωi

dt
= KiPLLsin(θ − θ̂) (4.24a)

dθ̂

dt
= ωi +KpPLLsin(θ − θ̂) (4.24b)
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Considering that the estimated vector has unit module we can say that ˆ̄v =
cos(θ̂) + jsin(θ̂) and we can compute the value of sin(θ − θ̂)

sin(θ − θ̂) = Imm(v̄dq(cos(θ̂)− jsin(θ̂))) = vqcos(θ̂)− vdsin(θ̂) (4.25)

4.5.3 Relation between control and grid reference frame

Now that we have derived the di�erential equations of the system (4.7), the ones
of the control system (4.14) and we have described PLL and its equations we
have to write the complete system of di�erential equations. To do this we have
to separate the d and q axes of the control and the ones of the grid in which
the physical system equations are written. This because we have to take into
account the PLL dynamics. So, as explained in 4.5.1 the grid reference frame
is de�ned with a constant frequency transformation (T (ωb) in this case) but we
don't know its angular position which we retrieve with the PLL (angle θ̂). The
relation between the vectors in the control frame (marked with subscript c) and
the ones in reference frame is the following

v̄c = v̄e−jθ̂ (4.26)

We can see the representation of this concepts in �gure 4.14. We can see the dq
grid reference frame that is rotating with a constant angular frequency ωb, and the
control reference frame which is rotating with the estimated angular frequency ω̂

Writing the equation 4.26 for quantities necessary in the control system brings
to 4.27

vcgd = vgdcos(θ̂) + vgqsin(θ̂) (4.27a)

vcgq = vgqcos(θ̂)− vgdsin(θ̂) (4.27b)

icgd = igdcos(θ̂) + igqsin(θ̂) (4.27c)

icgq = igqcos(θ̂)− igdsin(θ̂) (4.27d)

Then control systems reference values has to be referred to the grid reference
frame, again referring to (4.26) we can write in d and q axis
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Figure 4.14: Graphic representation of the grid and control d and q axes

vinvd = vcinvdcos(θ̂)− vcinvqsin(θ̂) (4.28a)

vinvq = vcinvqcos(θ̂) + vcinvdsin(θ̂) (4.28b)

At this point we need to underline htat the grid reference frame is the one in
which the equations for the physical system are written . This reference frame
is not the one of the control system since we want to take into account the PLL
dynamics. The relation between the two frames is in (4.26)

4.6 Complete system of equations

We can now link together all di�erential equations and write the complete dy-
namical system considering the equations in (4.7) (4.14), (4.15), (4.24), (4.27)
and (4.28). Here for simplicity we report all the equations.
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did
dt

= (vinvd − vgd −Rtid + ωLtiq)
wb

Lt

(4.29a)

diq
dt

= (vinvq − vgq −Rtiq − ωLtid)
wb

Lt

(4.29b)

dvdc
dt

= (iwf −
vgdigd
vdc

)
wb

Cdc

(4.29c)

dad
dt

= Kiin(i
ref
d − icgd) (4.29d)

daq
dt

= Kiin(i
ref
q − icgq) (4.29e)

db

dt
= Kiout(v

n
dc − vdc) (4.29f)

dωi

dt
= KiPLLsin(θ − θ̂) (4.29g)

dθ̂

dt
= ωi +KpPLLsin(θ − θ̂) (4.29h)

sin(θ − θ̂) = vgqcos(θ̂) + vgdsin(θ̂) (4.30a)

irefd = b+Kpout(v
ref
dc − vdc) (4.30b)

vinvd = ad +Kpin(i
ref
d − id) + vcgd − ωLtiq (4.30c)

vinvq = aq +Kpin(i
ref
q − iq) + vcgq + ωLti

c
gd

(4.30d)

vcgd = vgdcos(θ̂) + vgqsin(θ̂) (4.30e)

vcgq = vgqcos(θ̂)− vgdsin(θ̂) (4.30f)

icgd = igdcos(θ̂) + igqsin(θ̂) (4.30g)

icgq = igqcos(θ̂)− igdsin(θ̂) (4.30h)

vinvd = vcinvdcos(θ̂)− vcinvqsin(θ̂) (4.30i)

vinvq = vcinvqcos(θ̂) + vcinvdsin(θ̂) (4.30j)

The input of the system are vgd , vgq and iwf that we set with the values listed in
table 4.6

At this point we evaluate the eigenvalues of this system. To �nd the equilibrium
point we use Newton-Raphson method and then we evaluate the eigenvalues of
the system linearised around that point. In table 4.7 the values of the state vari-
ables at the equilibrium point and in table 4.8 the eigenvalues and the damping
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Table 4.6: Input values

Parameter Value (p.u.)

vgd 1
vgq 0

iwf 1/vndc = 1/
√
2

factors. As we can see that the system is stable and well dumped. In �gure 4.15
we can se a graphical representation of the eigenvalue of table 4.8. An enlarge-
ment of the region near the origin is given in �gure 4.16 and a further enlargement
in �gure 4.17. As we can see, the real part of all the eigenvalue is negative, so
the system is stable. It is also well dumped since the eigenvalue are very far from
the imaginary axis.

Table 4.7: State variables at the equilibrium point

Parameter Value (p.u.)

id0 1
iq0 −1 10−8

vdc0 1.414
ad0 0.005
aq0 0
b0 1
wi0 0
θ0 0

Table 4.8: Eigenvalues at the equilibrium point listed in 4.7

Parameter Value (rad/s) Damping factor

λ1 −455.5344 1
λ2 −2.8796 + 2.2849i 783.3544 10−3

λ3 −2.8796− 2.2849i 783.3544 10−3

λ4 −168.1575 1
λ5 −464.5945 1
λ6 −165.0048 1
λ7 −13.6035 103 + 17.562i 103 612.3724 10−3

λ8 −13.6035 103 − 17.5620i 103 612.3724 10−3
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Figure 4.15: Plot of the eigenvalues listed in table 4.8
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Figure 4.16: An enlargement of the region near the origin of the plot of the
eigenvalues listed in table 4.8
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Figure 4.17: A further enlargement of the region near the origin of the plot of
the eigenvalues listed in table 4.8

4.7 Inertia emulation with DC voltage droop con-

trol

In this section we will introduce in the control system the inertia emulation tech-
niques described in section 2.5.1. DC voltage reference is no more constant, but
changes with frequency according to the following law

vrefdc = V n
dc +Kdc∆f (4.31)

Detailed derivation of this method is shown in section 2.5.1, here we will perform
the stability analysis of the system, we will derive the transfer function between
variation of the power (∆Pac) delivered to the grid and a grid frequency variation
(∆f) and we will simulate the system using Matlab Simulink.
The value of Kdc is chosen in order to have an inertia constant equal to 6 s, so
according to the (2.18): Kdc = 1.26 p.u.

4.7.1 Stability analysis

Modifying the �rst equation in (4.30) taking into account (4.31) and setting as
input the quantities listed in the table 4.6, we can evaluate the equilibrium point
of the system using Newton-Raphson method. The equilibrium point and the
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eigenvalues are the same of the one reported in table 4.7 and 4.8. This is due
to the fact that we modify the DC voltage reference (vrefdc ) according to an input
(f), this a�ects A matrix of the system only because the system is non linear.
But in this case not in an appreciable manner.

4.7.2 Simulation

We simulate the system using Matlab Simulink implementing in this software
tool the mathematical model described by the equations in (4.30) and (4.29). 5
seconds after the simulation has started, when all the state variables have reached
the equilibrium and the model is in steady state, we give a grid frequency dis-
turbance. The frequency starts decreasing linearly reaching in 6 seconds a value
equal to the 98% of the nominal value (we can see it in �gure 4.21 ). The variation
is sensed by the PLL which is very fast acting and the DC voltage reference varies
according to (4.31). In the �gures below the plots of Vdc and power delivered to
the main grid following the described frequency disturbance. In �gures 4.18 to
4.20 the system modelled in simulink.

Figure 4.18: Grid interface of the VSC
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Figure 4.19: Control loops of the system and Park anti-transformation

Figure 4.20: The overall system, the blocks in the previous �gures are in the
subsystems of this �gure

In �gure 4.21 we can see the frequency disturbance applied to the grid. We
recall that the grid is modelled as a voltage source. The slope of the frequency is
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0.167 Hz
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, this is a value that can take place in the grid, as we will say in section
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Figure 4.21: Frequency disturbance applied to the grid. The slope of the fre-
quency is 0.167 Hz

s
, this is a value that can take place in the grid, as we will say

in section 5.11.2

In �gure 4.22 we can see DC voltage variation (about 0.0242 p.u.), when the
frequency stops falling (at t = 11 s) the voltage sets to an other equilibrium
point.
In �gure 4.23 we can see the output power variation. Since the grid frequency is
falling, the output power is incremented. The overshoots are due to the PI outer
controller. We can also note that after the frequency stops falling (at t = 11 s),
the output power starts a transient and then it sets again on the value it has before
the frequency disturbance. This is due to the fact that through this control we
support grid frequency only during its variations.
From �gure 4.24 (an enlargement of the area in the rectangle of �gure 4.23) we
can see that the power output is falling linearly. This thing is not very well
appreciable from �gure 4.23 since the slope is modest. This behaviour is correct,
from �gure 4.22 we can see that the DC voltage is falling linearly, so since the
delivered power depends on the product between the time derivative of the voltage
(that after the �rst time instants of the transient is constant) and the voltage
itself (that is falling linearly), we can conclude that the power has to fall linearly.
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Figure 4.22: DC voltage. When the frequency, after t = 11 s, becomes again
constant it stops falling
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Figure 4.23: Power delivered to the grid. We can note overshoots due to mainly
due to the outer loop. In �gure 4.24 an enlargement of the part in the rectangle
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Figure 4.24: Enlargement of a part �gure 4.23, we can note that the power
delivered decreases linearly

4.7.3 Inertia emulation transfer function

Now we can derive the expression of the transfer function between the grid fre-
quency variation (∆f) and the power (∆Pac) delivered to the grid.

Figure 4.25: Block scheme for the inertia transfer function evaluation

Looking at the �gure 4.25 we can see the outer loop on d axis with the voltage
reference droop. In this scheme the inner loop is assumed an unit gain. Naming
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G(s) =
wb

sCdc

√
2

(4.32)

R(s) = Kpout +
Kiout
s

(4.33)

and considering that the voltage grid is constant (vg = 1 p.u.); an output current
variation results in an equal output power variation, we can write

∆pac
∆f

=
∆id
∆f

=
−KdcR(s)

1 +G(s)R(s)

. (4.34)

In �gure 4.26 we can see the response of the the power output (pac) after a grid
frequency step disturbance. We can see that the gain is high, but we have to
consider that the excitation is a unit step, in practice the frequency will have a
signi�cant lower deviation: having a frequency deviation of 1% is already a big
value. We can see also that the step response after the transient goes to zero.
This is because the new reference value for the DC link voltage is reached and
no more power is delivered. This is a consequence of the fact that the primary
energy source (in this case Pwf ) is not modi�ed in consequence of a frequency
disturbance.
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Figure 4.26: Response of the the power output (pac) after a grid frequency step
disturbance
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Figure 4.27: Response of the the power output (pac) after a grid frequency step
disturbance considering also the inner current loop

If we consider also the inner current loop the response is pretty much the
same, we can see it in �gure 4.27. The only di�erence we can note is a non
instantaneous reaction after the step input: this is due to the inner loop time
constant, but it is very thin.

4.8 DC voltage square root control method

We now implement the method explained in section 2.5.2. We modify the �rst
equation in (4.30) taking into account (2.21) here reported

vrefdc =

√
4Hdcf

Tc
−K2 (4.35)

The value of Hdc is chosen equal to 6s in order to compare the obtained results
with the ones obtained in section 4.7. We set as input the quantities listed in the
table 4.6.
We can evaluate the equilibrium point of the system using Newton-Raphson
method. In tab. 4.9 the values of the state variables at the equilibrium point
that is the same we found in section 4.6. Instead in table 4.10 the eigenvalues for
this system. We can see that they are the same of the base system (section 4.6),



4.8 DC voltage square root control method 71

this as the previous case because we modify only an input equation. We ca see
that the system is stable and well dumped.

Table 4.9: State variables at the equilibrium point

Parameter Value

id0 1
iq0 −1 10−8

vdc0 1.414
ad0 0.005
aq0 0
b0 1
wi0 0
θ0 0

Table 4.10: Eigenvalues at the equilibrium point listed in table 4.9

Parameter Value (rad/s) Damping factor

λ1 −455.5344 1
λ2 −2.8796 + 2.2849i 783.3544 10−3

λ3 −2.8796− 2.2849i 783.3544 10−3

λ4 −168.1575 1
λ5 −464.5945 1
λ6 −165.0048 1
λ7 −13.6035 103 + 17.562i 103 612.3724 10−3

λ8 −13.6035 103 − 17.562i 103 612.3724 10−3

As we can see from �gures 4.28, 4.29 and 4.30; the results are close to the
one obtained before, in section 4.7.2. This since we choose to control DC voltage
with respect to frequency deviation in order to obtain an inertia constant Hdc of
6 s in both cases. Moreover the frequency deviation is small and so the method
previously used (section 4.7) which relies on a linearisation (see section 2.5.1), is a
good approximation of the one here adopted that does not rely on a linearisation.
The comments to the �gure are the same of the ones done in the previous section
(see section 4.7).
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Figure 4.28: Frequency disturbance applied to the grid. The slope of the fre-
quency is 0.167 Hz
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Figure 4.29: DC voltage. When the frequency, after t = 11 s, becomes again
constant it stops falling
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Figure 4.30: Power delivered to the grid. We can note overshoots mainly due to
the outer loop.





Chapter 5

DFIG

5.1 Introduction

Figure 5.1 shows a typical con�guration for a doubly fed induction generator
(DFIG). The induction machine wound rotor is supplied by a power electronic
converter that acts as a variable frequency voltage source. In this way we can
control the frequency of the rotor currents, and so the rotating speed of the rotor
magnetic �eld. This permits a large variation of the mechanical speed, up to
33 % of the nominal value, the precise range depends on the size of the rotor
converters since the power that passes through the rotor circuit depends on the
slip as explained in section 5.4. In this way we can extract the maximum wind
power available at di�erent wind speed as we will explain later.

m

r

s DFIG

Figure 5.1: Typical con�guration for a doubly fed induction generator (DFIG)

5.2 Turbine characteristics

The mathematical expression of the power available from the wind is the following

Pwind =
ρ

2
πR2v3wCp(λ,β) (5.1)
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where ρ is the air density, R is the turbine radius, vw is the actual velocity of
the wind and Cp is the aerodynamic e�ciency of the turbine. This last term is a
function of λ and β. λ is known as tip speed ratio, that is the ratio between the
velocity of the tip of the blade and the wind velocity (ΩwtR

vw
), while β is the pitch

angle. We name Ωwt the physical angular speed of the wind turbine, Ωm the p.u.
speed. In �gure 5.2a we can see how Cp varies with respect to λ, various curves
are drown for speci�ed value of β. Instead in �gure 5.2b there is a plot of the
available power at the turbine shaft as function of Ωm (rotational speed of the
turbine in p.u.) for di�erent wind velocity (in p.u. of the base power). We refer
to horizontal axis turbines.

Figure 5.2: Cp as function of λ and β; available power at the turbine shaft as
function of Ωm

Even in turbines where it is expected to modify the pitch angle, generally it is kept
constant until the maximum power of the electrical generator is reached. Only
then it is used to decrement e�ciency in order to operate even when power from
the wind is too high (in �gure 5.2a we can see that incrementing the pitch angle
the e�ciency decreases). This because the regulation of blade angle is delicate
and slow. So, to operate at the maximum Cp, considering that wind speed is not
constant, we need to accept to work with di�erent rotor speeds. From now on we
consider to operate with �xed pitch angle.

5.3 Turbine tracking curve

Generally the system operates to extract the maximum power available until
rated limits are reached. DFIGs are able to control electrical power output, so
we need to �nd an optimum power characteristic to track. Usually wind velocity
is not measured since the measure is not accurate and reliable because the wind
turbine itself disturbs the measurement and also wind velocity can vary along the
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surface that the wind turbine covers; so a precise estimation of the power coming
from the wind is di�cult. Instead the rotor speed Ωm is measured, so the power
tracking characteristic is a function of Ωm. We can see an example of power
tracking characteristic in �gure 5.3 (red curve). Before point A (correspondent
to the cut in velocity) wind is too low, no power is extracted, between A and B
(low wind velocity region) the power is varied linearly with Ωm, than there is the
MPPT region where we follow the maximum power until we reach point C. After
point C there is the high speed region where, in the �rst part (between C and
D), the power is varied linearly with Ωm, then, when it is reached the maximum
power deliverable by the electrical generator, the output power is kept constant
by means of the pitch angle.

Figure 5.3: DFIG tracking characteristic

In this way we control the power output as a function of the rotor speed, which
varies according to the power imbalance between the power from the wind and
the electrical power we deliver, following the law in (5.2); it is just a power bal-
ance, like the one we described in (2.30) (Ht is the overall inertia constant of the
turbine).

2HtΩm
dΩm

dt
= pwind − pwf (5.2)

So the operational rotor speed, the one for which the power tracking curve and
the curve of the power coming from the wind meet each other, will be automat-
ically reached (the system is stable; if the power set point is higher than wind
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power, the speed decreases, which causes a decrement of power set point until
the power delivered matches the one coming from the wind).
In the MPPT region the power tracking characteristics has the following expres-
sion (P ref

DFIG stands for electric power reference)

P ref
DFIG =

0.5ρπR5Ω3
wtC

∗
p

λ∗3Pb

(5.3)

the expression is derived by substituting vw in (5.1). The value of C∗
p and λ∗

3

are the optimal ones or other values if other strategies than MPPT are adopted.
Since the control system will be in p.u. we divide by Pb, the base power.
Generally in the control system we don't use a power reference signal, but a
torque reference T ref

e . Its expression is obtained dividing the P ref
DFIG by Ωm, so

T ref
e =

0.5ρπR5Ω2
wtC

∗
p

λ∗3Tbm
(5.4)

where Tbm is the base mechanical torque.

5.4 Active power relation in steady state

Looking at the arrows in �gure 5.1 we can write the power balance for a DFIG
in steady state (in this section (5.4) all variables are in physical values)

Ps = Pm − Pr (5.5)

Where Pm is the mechanical power delivered by the turbine, Pr is the electrical
power exiting the rotor windings, Ps is the power delivered by the stator.
Taking into account also losses (Pls and Plr are respectively stator and rotor
losses.), we can de�ne P ′

s = Ps + Pls and P ′
r = Pr + Plr and rewrite the above

equation

P ′
s = Pm − P ′

r (5.6)

We can now transform the equation using torque and rotational speeds. Tm and
Te are the mechanical and electrical torque respectively, Ωm and Ωs are mechan-
ical and electrical rotational speed

TeΩs = TmΩm + P ′
r (5.7)

rearranging the equation
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P ′
r = TmΩm − TeΩs (5.8)

introducing now the slip s, de�ned as s = Ωs−nΩm

Ωs
where n is the number of pole

pair of the machine, and remembering that also mechanical and electrical torque
are related by the number of pole pairs

P ′
r = Te(sΩs) (5.9)

combing (5.6) and (5.9) we can write

Pm = (1− s)P ′
s (5.10)

so

P ′
s =

Pm

1− s
(5.11)

and taking into account (5.6)

P ′
r = − sPm

1− s
(5.12)

then bringing in evidence losses

Ps + Pls =
Pm

1− s
(5.13)

Pr + Plr = − sPm

1− s
(5.14)

Looking at the equation we can say that if mechanical power is positive, surely
P ′
s is positive. This because s can change sign, but it is always |s| < 1 (for a

DFIG we can reach s up to ± 0.33). Instead P ′
r depends on s sign.

5.5 Four parameter induction machine equivalent

model

We will now brie�y recall the four parameter, Park model of an induction machine
referred to rotating axes, with transient inductance on rotor side. We will use this
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model since we want to control the machine with a �eld oriented vector control.
The equations will be written in p.u., except for ws (rotating speed of stator �ux
ψs) and wb is the base electrical speed

v̄s = rsīs +
pΨ̄s

wb

+ j
ωs

wb

Ψ̄s (5.15a)

v̄r = rr īr +
pΨ̄r

wb

+ j
ωr

wb

Ψ̄s (5.15b)

pΩm =
1

2Ht

(Te − Tm) (5.15c)

ωr = ωs − Ωmω (5.15d)

Where variables with subscript "s" are referred to the stator instead the sub-
script "r" indicates rotor quantities. Moreover Ht is the inertia constant of the
machine and the wind turbine, Tm is the prime mover torque (in this case the
one from the wind) and Te is the electrical torque. The sign convention for the
variables in the equations is the one illustrated in �gure 5.4 (the arrows indicate
positive values)

Figure 5.4: Sign convention for the DFIG

Now we have to consider also the link between �uxes and currents and the ex-
pression for the electromagnetic torque (* indicates the complex conjugate)

Ψ̄s = Ls(̄is + īr) (5.16a)

Ψ̄r = Ψ̄s + Lkr īr (5.16b)

Te = Re
(v̄sī∗s + v̄r ī∗r)

Ω
= −Ψsdisq +Ψsq isd (5.16c)
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where

Lkr = Ls(
LsLr

L2
m

) (5.17)

Now we choose as state variables Ψ̄s and īr and we rewrite the equations in (5.15)
as function of these quantities also taking into account the relations in (5.16)

dΨsd

dt
= (vsd −

Rs

Ls

Ψsd +Rsird)wb (5.18a)

dΨsq

dt
= (vsq −

ws

wb

Ψsd +Rsird)wb (5.18b)

dird
dt

= (vrd − vsd − (Rr +Rs)ird +
Rs

Ls

Ψsd + ωr
wb

Lkr

irq)
wb

Lkr

(5.18c)

dirq
dt

= (vrq − vsq − (Rr +Rs)irq + (ωs − ωr)
Ψsd

wb

− ωr
Lkr

wb

ird)
wb

Lkr

(5.18d)

dΩm

dt
=

1

2Ht

(Tm − Te) (5.18e)

5.6 Control system

The control of the machine is made through the rotor converter which gives the
voltage v̄r. The inverter is assumed as ideal, so reference quantities given by the
control system are supposed instantaneously applied. We will use a �eld oriented
control (FOC). We choose a synchronous reference frame aligned with the stator
�ux which will always lie on d axis. Considering this we can say that Ψsq = 0
and we can retrieve the value of ωs from (5.18b) which results

ωs =
vsq+Rsird

Ψsd

wb (5.19)

Sine d axis is not tied with the grid angular frequency w, but it depends on the
orientation of the stator �ux, and so on the machine dynamics, we need another
state variable (which we name µ) to link the �ux angle to the grid voltage angle.
Let's consider the grid phase voltages that are (physical values)
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va =
√
2V cos(ωt) (5.20a)

va =
√
2V cos(ωt− 2

3
π) (5.20b)

va =
√
2V cos(ωt+

2

3
π) (5.20c)

with dq transformation on rotating axes with angular velocity equal to θ̇s = ωs

the equations become

vd =
√
3V cos(θ̇s − ωt) (5.21a)

vq =
√
3V sin(θ̇s − ωt) (5.21b)

and considering line to line voltage as base voltage, we can transform the equa-
tions in p.u.

vdp.u. = Vp.u. cos(θs − ωt) (5.22a)

vqp.u. = Vp.u. sin(θs − ωt) (5.22b)

In the following the subscript p.u. will be omitted. Let's now de�ne the new
variable µ

µ =

∫ t

0

(θ̇s − ω)dt+ µ0 (5.23)

that becomes

µ = θs − θs0 − ωt+ µ0 (5.24)

and so

θs − ωt = µ+ θs0 − µ0 (5.25)

Now we can substitute this expression in 5.22

vd = V cos(µ+ θs0 − µ0) (5.26a)

vq = V sin(µ+ θs0 − µ0) (5.26b)
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Figure 5.5: Representation of the vectors and angle described in this section

We can see in �gure 5.5 a vectorial representation of these equation and concepts.

We choose µ0 to satisfy the following equation

θs0 − µ0 = −90◦ (5.27)

in this way

µ0 = θs0 + 90◦ (5.28)

and so we can say that at the instant t = 0 the d axis is pointed by θs0 and q
axis by µ0.
Now substituting (5.27) into (5.26) gives

vd = V cos(µ− 90◦) = V sin(µ) (5.29a)

vq = V sin(µ− 90◦) = V cos(µ) (5.29b)

In the following vd and vq of (5.29) will be named vsd and vsq since they are the
stator voltages of the machine. And so
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vsd = V sin(µ) (5.30a)

vsq = V cos(µ) (5.30b)

So in this way we found how to describe the grid voltage vector in the reference
frame given by the stator �ux. The operation is made through the angle µ which
is de�ned in (5.23) through an integral, so we need to introduce another di�er-
ential equation. This is done deriving with respect to time (5.23), which gives

dµ

dt
= θ̇s − ω (5.31)

5.6.1 PI controllers

We choose a closed loop control equipped with a PI controller for each axis rotor
current, the reference d axis current is set to zero (irefrd

= 0) since we do not want
to supply reactive power. The reference q axis current is obtained from (5.35)
The controller are the same on d and q axis since the physical system is the same
on d and q axes. In �gure 5.6 and 5.7 we can see a block diagram of the current
loops. To �nd the value of the proportional and integral coe�cient we use the
method explained in appendix A. The transfer function of the physical system
(G(s)) is the Laplace transform of (5.18c) neglecting coupling and compensated
terms

G(s) =
1

((Rr +Rs) + s
Lkr

wb

)
(5.32)

Considering that such function crosses the 0 db axis at approximately 200 Hz we
choose a passband for the closed loop equal to 100 Hz and a phase margin of 80
degrees. This to avoid to reach high values of the control variable which implies
an high power for the actuator. With this condition we found the value listed in
table 5.1

As explained in section 4.4.3 for the VSC, we introduce a di�erential equation
for each PI controller, the introduced state variable are hd and hq
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Table 5.1: Parameters of DFIG current loop PI controller

Parameter Value

Kp 67.54 p.u.
Ki 0.523 p.u./s

Figure 5.6: Current loop on d axis of the DFIG

dhd
dt

= Ki(i
ref
rd

− ird) (5.33a)

dhq
dt

= Ki(i
ref
rq − ird) (5.33b)

Instead the reference rotor voltages are

vrd = hd +Kp(irefrd
− ird) + vsd (5.34a)

vrq = hq +Kp(irefrq − irq) + vsq (5.34b)

The DC link between the two rotor converters is assumed as ideal, like the inverter
that feeds the rotor. So the reference rotor voltages are assumed instantaneously
applied. irefq current reference that shows up in the equations is obtained from
the torque reference taking into account the electrical torque expression in (5.16)c
and that ψsq = 0

irefq =
−T ref

e

ψsd

(5.35)
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Figure 5.7: Current loop on q axis of the DFIG

5.7 System data

We decide to study a power plant of 1MW , which is assumed as base power for
the system. The data for the induction generator and the wind turbine are listed
in table 5.2 and 5.3 respectively. Data are given already in p.u.

Table 5.2: Induction generator p.u. data. Rs: stator resistance, Ls: stator
inductance, Rr: rotor resistance, Lkr: short circuit rotor side inductance

Parameter Value (p.u.)

Rs 0.01
Ls 4
Rr 0.005
Lkr 0.267

Table 5.3: Wind turbine data. R: turbine radius, Ωn: nominal rotating speed,
Ht: inertia constant, vw. rated wind velocity

Parameter Value

R 35.6 m
Ωn 2.4 rad

s

Ht 6 s
vwn 10 m

s

For the analysis we will need the value of the rotating speed of the blades in
physical value. So the base mechanical speed: Ωb = Ωn = 2.4 rad

s
. We can now

derive the expression of the mechanical base torque which will be also useful in
future: Tbm = Pb

Ωb
with Pb = 1MW .



5.8 Complete system of di�erential equations and eigenvalues 87

5.7.1 Power coe�cient Cp

In order to develop our studies we need an expression for the curve Cp − λ. We
will use a polynomial approximation of a real turbine power curve. The polyno-
mial is a �fth order polynomial given here

Cp = −10.4E−6λ5 + 491E−6λ4 − 8.34E−3λ3 + 53.23E−3∗λ2 − 31E−3λ− 147.3E−3

(5.36)

In �gure 5.8 the plot of Cp − λ curve. Blue circulars represents the points of
the real curve that we have used to estimate the polynomial curve. For a good
approximation we will consider that λ will never decrease below 2 because at that
value the polynomial curve is not a good approximation of the real one. This is
not a problem since during normal operation λ is very far from 2.
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Figure 5.8: Power coe�cient Cp as a function of the tip-speed ratio λ for the
analysed wind turbine

5.8 Complete system of di�erential equations and

eigenvalues

Here we write the complete system equations (gathering the various equations
written in the previous sections). In (5.37) the di�erential equations and in (5.38)
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the others. We point out that the expressions for Pwind gives physical value.

dΨsd

dt
= (vsd −

Rs

Ls

Ψsd +Rsird)wb (5.37a)

dird
dt

= (vrd − vsd − (Rr +Rs)ird +
Rs

Ls

Ψsd + ωr
Lkr

wb

irq)
wb

Lkr

(5.37b)

dirq
dt

= (vrq − vsq − (Rr +Rs)irq + (ωs − ωr)
Ψsd

wb

− ωr
Lkr

wb

ird)
wb

Lkr

(5.37c)

dΩm

dt
=

1

2Ht

(Te − Tm) (5.37d)

dµ

dt
= ωs − ω (5.37e)

dhd
dt

= Ki(i
ref
rd

− ird) (5.37f)

dhq
dt

= Ki(i
ref
rq − ird) (5.37g)

vsd = V sin(µ) (5.38a)

vsq = V cos(µ) (5.38b)

ωs = (vsq +Rsird)
wb

ψsd

(5.38c)

ωr = ωs − Ωmω (5.38d)

T ref
e = −(

ρ

2
πR5(ΩmΩb)

2
C∗

p

λ∗3
)/Tb (5.38e)

irefrq = −T
ref
e

ψsd
(5.38f)

vrd = hd +Kp(i
ref
rd

− ird) + vsd (5.38g)

vrq = hq +Kp(i
ref
rq − irq) + vsq (5.38h)

λ =
ΩmΩbR

vw
(5.38i)

Cp = −10.4E−6λ5 + 491E−6λ4 − 8.34E−3λ3 + 53.23E−3∗λ2 − 31E−3λ− 147.3E−3

(5.38j)

Tm = −Pwind

ΩmPb

= −
ρ
2
πR3v2wCp

λPb

(5.38k)

irefrq = −T
ref
e

ψsd
(5.38l)

The inputs (table 5.4) for the system are the grid voltage magnitude V which is set



5.9 DFIG primary reserve 89

equal to 1 p.u., the grid frequency 2πf = ω (under normal operation f = 50Hz),
and the wind velocity vw. The only coe�cient not set in the equation are now
C∗

p and λ∗ which are used to �nd the reference torque as explained in section 5.3

Table 5.4: Input data for the DFIG, grid voltage magnitude V which is set equal
to 1 p.u. and grid frequency 2πf = ω (under normal operation f = 50Hz)

Parameter Value

V 1 p.u.
Ω 2π50 rad

s

5.9 DFIG primary reserve

As explained in section 2.2 the primary reserve stops the frequency deviation and
balance load and generation. Traditionally wind power plants do not take part in
this regulation, but as said in section 2.2.1 Ireland and Great Britain renewable
energy power plants are already requested to take part in primary regulation and
this, in the future, may also happen in other countries. Traditionally primary
reserve control is made by the so called droop control. This means that the prime
mover power is adjusted according to the frequency deviation following a law like

P ref
g = P n

g −Kdroop∆f (5.39)

where P n
g is the power reference under normal operating conditions. In �gure

5.9 we can see a block diagram of the primary control. Hg is the overall time
constant of the grid, Pl is the power drawn by the loads and Pg is the generated
power (we assume by traditional power plants). This scheme is representative
of one machine system or of a multi-machine system but only considering that
synchronism is never lost, not even during transient. In the �gure 5.9 we can
also see the block representing the turbine delay here represented as a �rst order
transfer function. This takes into account the time to change the primary mover
power output. Taking into account this delay means that the power output is
not instantaneously modi�ed after a frequency variation.

The description above is valid for traditional power plants, but with DFIG the
things are pretty much di�erent. First o� all the primary energy source is not
controllable, and second, we can modify power output in a fast way. In fact
the power is given by the product between the rotational speed and the electric
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Figure 5.9: Block diagram of the primary control taking into account prime mover
delay. The overall system inertia is represented by Hg. Pl is the power drawn by
the loads and Pg is the generated power (we assume by traditional power plants).

torque. The rotational speed varies slowly, but not the electrical torque that is
controlled through q axis current which has a high passing band (100 Hz as said
in section 5.6.1). So we can modify power output with a prompt response by the
only mean of a torque modi�cation.
In a wind power plant, to overcome the �rst mentioned issue and be able to
increase permanently power output after a frequency variation the only way is to
run the power plant not following the maximum power point tracking (MPPT)
strategy, but extract less power from the wind than the available one. To do this
we have two ways

• acting on pitch angle, running the turbine at normal operation with a pitch
angle di�erent form the optimal one. In this way we extract less power than
the one that is coming from the wind and if it is needed we can modify the
pitch angle to extract some more power. Regarding this regulation it is
worth to say that modifying pitch angle is not an easy and fast action, and
generally we try to maintain pitch angle as constant as possible also because
the mechanism is delicate.

• acting on angular velocity, that is running the turbine at a speed higher than
the optimal one. In this way if more power is needed we can increase power
output in a very fast way incrementing electrical torque. This will cause a
droop in the angular speed of the turbine which will cause an increase in
generated power due to the reaching of a higher e�ciency region. In �gure
5.10 we can see in green the MPPT power tracking curve and in red the
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de-loaded power tracking curve. In this case it correspond to the 95% of
the available power.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Ω
m

P
D
F
IG

P
m

P
el
MPPT

P
el
95%

(1.16, 0.9694)

Figure 5.10: Mechanical power (in blue), MPPT curve (green) and de-loaded
power tracking curve (red)

In this work we will consider the pitch angle always constant and we will exploit
the second method. We will use as reference power tracking curve the red one in
�gure 5.10 it has the equation reported in (5.3) with

C∗
p = 0.3889 (5.40a)

λ∗ = 9.85 (5.40b)

Instead the MPPT curve has

CMPPT
p = 0.4095 (5.41a)

λMPPT = 8.47 (5.41b)
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5.9.1 stability analysis of the de-loaded system

We now compute the operating point and the eigenvalues for the system adopting
a de-loaded reference curve described in the section above. The equations of the
system are the ones listed in (5.37) and (5.38) taking into account (5.40). At
this point, applying the Newton-Raphson method we �nd the equilibrium point
of the system. Then for the linearised system around that point we evaluate the
eigenvalues. The results are in the tables and �gures below.

Table 5.5: State variables at the equilibrium point (case vw = 10 m/s)

Parameter Value (p.u.)

ψsd0 0.9999
ird0 0
irq0 0.824
Ωm0 1.152
µ0 0.0025
hd0 −0.0309
hq0 −1.139

We can see that Ωm is greater than one even if wind velocity is vw = 10 m/s
which is the nominal wind speed. This because we are using a de-loaded reference
power curve, the red one in �gure 5.10 and the intersection with the mechanical
power available from the wind is at a velocity higher than the nominal one.

Table 5.6: Eigenvalues of the linearised system around the equilibrium point (case
vw = 10 m/s)

Parameter Value (rad/s) Damping factor

λ1 −79.4908 103 + 49.0075i ≈ 1
λ2 −79.4908e 103 − 49.0075i ≈ 1
λ3 −789.6947 10−3 + 314.1636i 0.0025136
λ4 −789.6947 10−3 − 314.1636i 0.0025136
λ5 −220.9105 10−3 1
λ6 −7.7466e 10−3 1
λ7 −7.7006e 10−3 1
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Figure 5.11: Eigenvalues in the complex plane (case vw = 10 m
s
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Figure 5.12: An enlargement of the plot of the complex plane in �gure 5.11 near
the origin (case vw = 10 m

s
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As we can see from the �gures the system is stable, but has two eigenvalues
not well dumped (λ3 and λ4). The damping ratio (σ) of such eigenvalue is

σ =
−Re(λ)√

Re(λ)2 + Imm(λ)2
= 0.00248 (5.42)

These are two critical eigenvalues since a low damping ratio can lead to insta-
bility. We now try to �nd to which variables these eigenvalues are related. We

compute the participation factors [15]. We compute this for the case vw = 10
m

s
.

Table 5.7: Participation factors (absolute value) of the state variables to the
eigenvalues

State variable Participation factor for λ3 Participation factor for λ4

ψsd 0.5 0.5
ird 76.45710−9 76.45710−9

irq 13.55610−9 13.55610−9

Ωm 135.69510−12 135.69510−12

µ 0.5 0.5
hd 476.95810−12 476.95810−12

hq 1.83610−12 1.83610−12

As we can see from table 5.7 the state variables that most in�uence the position
of λ3 and λ4 are ψsd and µ.

5.9.2 Analysis varying vw and V

We now compute the eigenvalues for di�erent wind velocities vw and grid voltages
V . Wind velocity is varied between 5 m/s and 13 m/s with steps of 0.5 m/s
(keeping V = 1 p.u.), grid voltage between 0.9 p.u. and 1.1 p.u with steps of
0.01 p.u (keeping vw = 10 m/s). In addition to eigenvalues we plot here also the
values of the state variable µ and ψsd and the electrical power output for each
case, in the �gures where these are plotted, on x axis there is the related value
of grid voltage or wind velocity. The results are reported in the following �gures.
As we can see the angle µ does not vary in both cases. Instead as expected the
electrical power output varies if wind velocity varies (we can recognise from �gure
5.15 that it varies with the cubic power of vw), instead it does not vary if grid
voltage is varied. Instead the �ux ψsd varies only with the grid voltages. Looking
at the eigenvalues we can see that they do not vary so much their position. So we
can conclude that the operating point does not in�uence very much the stability.
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Figure 5.13: Values of the state variable µ for di�erent wind velocity values
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Figure 5.14: Values of the state variable ψsd for di�erent wind velocity values
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Figure 5.15: Values of the power output for di�erent wind velocity values
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Figure 5.16: Eigenvalues for di�erent wind velocity values (the two most distant
eigenvalues from the real axis are not plotted)
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Figure 5.17: Values of the state variable µ for di�erent grid voltage values
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Figure 5.18: Values of the state variable ψsd for di�erent grid voltage values
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Figure 5.19: Values of the power output for di�erent grid voltage values
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Figure 5.20: Eigenvalues for di�erent grid voltage values (the two most distant
eigenvalues from the real axis are not plotted)
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5.10 DFIG primary reserve - Moving reference

power curve

We will now implement the primary droop control. As said before, we consider
to run the wind farm not through MPPT strategy, but at 95% of the available
power, so in every moment we are able to increase power output of 5% as a re-
sponse to frequency grid disturbances. We have to highlight that in this way the
power reserve is not constant, but it depends on the power output of the wind
farm. The power we are able to extract from the wind depends on the coe�cient
Cp as explained in section 5.2. Here we recall the formula for the wind power

Pwind =
ρ

2
πR2v3wCp(λ,β) (5.43)

Our goal is to extract at whatever wind condition the 95% of the available wind
power in absence of grid frequency deviation and to modify linearly the power
output with the grid frequency deviation. Looking at the above equation it seems
easy, the power depends linearly on Cp so we can modify the Cp coe�cient ac-
cording to grid frequency deviation and obtain a droop control, so the value of
C∗

p is settled. But in our control system we have the equation

T ref
e = (

ρ

2
πR5(ΩmΩb)

2
C∗

p

λ∗3
)/Tb (5.44)

where shows up also λ∗. We have to retrieve it from the value of C∗
p . In (5.36)

we approximate the Cp − λ function by means of a �fth order polynomial, so
to retrieve the value of λ∗ starting from C∗

p we need to �nd the roots of a �fth
order polynomial equation and choose the one of interest. Doing this numerically
is not a problem, but for eigenvalues computation we need a closed formula of
the solution which doesn't exist for such polynomial equation. So we change the
approximation, instead of using a �fth order polynomial we will use a second
order one. In this case we know the exact solution of the polynomial equation
and we can introduce it in the stability study. In �gure 5.10 we can see a plot of
the Cp − λ curve approximated with a second and a �fth order polynomial. The
small blue circles are the points retrieved from the actual curve. We can say that
the point are a bit farther from the curve, but in the region of interest it can be
considered a good approximation.

The second order polynomial is

Cp = −9.3154E−3λ2 + 162.6299E−3λ− 303.2498E−3 (5.45)

Looking at (5.43) we can say that to extract the 95% of the wind power we need
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Figure 5.21: Cp − λ curve, in red the approximation with a second order polyno-
mial, the small blue circulars are the point retrieved from the actual curve.

to work with a Cp equal to the 95% of the maximum one achievable. Looking at
�gure 5.21 we can �nd that the maximum available Cp is equal to 0.406. Con-
sidering now that we want to modify power reference according to grid frequency
deviation we can write that reference Cp is

C∗
p = (0.95−K∆f)Cmax

p (5.46)

where f is the frequency in p.u. and Cmax
p = 0.406. Once we have computed this

value we have to �nd the value of lambda which permits to have such value, we
need to solve

C∗
p = −9.3154E−3λ∗

2

+ 162.6299E−3λ∗ − 303.2498E−3 (5.47)

The equation has two solution, the ones pointed out in �gure 5.22 with red crosses.
We always choose the right solution, since the left one would not be a stable. In
fact in case of the left solution, if we deliver more power that the one that is
coming from the wind and so Ωm decreases, this will cause a reduction in the
power we are able to extract from the wind since we go to a less e�ciency region.
This will cause another speed reduction and so on.
So with the solution formula for the second order equation we �nd the value of
λ∗.
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Figure 5.22: The red crosses indicates the solution of the equation (unknown λ∗)

At this point we only have to choose the value of K in (5.46). We made the
choice considering to deliver all the power reserve in presence of a grid frequency
deviation of 1%. So K = 5. Now that we have all the elements we can com-
pute again with Newton-Raphson method the equilibrium point and than the
eigenvalues. The equations for the system are the one in 5.37 and 5.38 taking
into account that C∗

p and λ∗ are no more constant values, but are calculated as
previously described. In table 5.9 there are the state variables at the equilibrium
point and in table 5.10 the eigenvalues. As input we use again the one in table 5.4

Table 5.8: State variables at the equilibrium point (case vw = 10 m/s and C∗
p

found according to 5.46)

Parameter Value (p.u.)

ψsd0 0.9999
ird0 0
irq0 0.7875
Ωm0 1.1960
µ0 0.0025
hd0 −0.0437
hq0 −1.207

Table 5.9: State variables at the equilibrium point (case vw = 10 m/s and C∗
p

found according to (5.46))
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Table 5.10: Eigenvalues of the linearised system around the equilibrium point
(case vw = 10 m/s and C∗

p found according to (5.46))

Parameter Value (rad/s) Damping factor

λ1 −79.4909 103 + 62.7491i ≈ 1
λ2 −79.4909e 103 − 62.7491i ≈ 1
λ3 −789.2935e 10−3 + 314.1632i 0.0025124
λ4 −789.2935 10−3 − 314.1632i 0.0025124
λ5 −206.4342 10−3 1
λ6 −7.7467 10−3 1
λ7 −7.6973 10−3 1

5.10.1 Grid model and simulation with DFIG constant power

output

We will now simulate using Matlab-simulink the previously described DFIG wind
turbine connected to an electrical grid. in �gure 5.23 the scheme of the system.
We model the electrical network as described in section 5.9. In �gure 5.24 the
block scheme used for the simulation, with respect to the one in �gure 5.9 we can
see we have added the power produced by the DFIG (PDFIG).

Figure 5.23: Grid model for the simulation

The DFIG, which nominal power is equal to 1 p.u. is inserted in a grid that supply
a load of 5 p.u.. The overall inertia constant of the grid is Hg = 5s. The time
constant of the prime mover of the traditional power plant (τ) is chosen equal to
500ms. We think to deal with a hydroelectric power plant, much more faster that
a thermal power plant whose turbine time constant can reach values of around
10 s [16]. Kdroop is chosen equal to 40 p.u.. We made this choice considering that
the primary reserve of the plant is equal to 10 % of the nominal power (which in
this case is approximately equal to Pgn ≈ 4 p.u) is totally delivered in presence
of a grid frequency deviation of 1 %. Let's now consider the DFIG power output
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as a constant to see how the grid reacts if the load is instantaneously increased of
1% after 1 s the simulation is started. The DFIG power output is constant and
equal to 0.95 p.u.. In �gure 5.25 we can see the power drawn by the load, instead
in �gure 5.26 the power produced by the traditional power plant. Eventually in
�gure 5.27 we can see how the frequency evolves in time. We can note in the
frequency an oscillation due to the delay introduced by the prime mover delay.
This simulation will be compared with the one with the DFIG power output reg-
ulated in the next sections. We will refer to this case as "base case"

Figure 5.24: Grid model for the simulation
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Figure 5.25: Power drawn by the load, at t = 1 s the imposed step increase of
0.05 p.u..
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Figure 5.26: Power delivered by the traditional power plant. The transient is due
to the load variation reported in �gure 5.25
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Figure 5.27: Grid frequency behaviour due to the load variation reported in �gure
5.25
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5.10.2 Simulation with DFIG equipped with primary re-

serve

In the following simulation the DFIG power output is not kept constant, but
adjusted according to grid frequency as explained in the �rst part of section 5.10.
Here we see how the system behaves in presence of the DFIG primary reserve
and that this primary reserve behaves in a similar way of an inertia except for
the �rst part time interval after the load disturbance.
The load variation is the same of the previous case (�gure 5.25). In the following
�gures we can see some important variable of the system and for some of them we
can do a comparison between this case and the previous one described in section
5.10.1. In �gure 5.28 we can see the grid frequency and in �gure 5.29 we can see
in the same plot the frequency behaviour for this case and the base case (section
5.10.1). We can note that it has a smaller oscillation than the one we can observe
in the base case, moreover its steady state value is higher than the one of the case
before. But we can note that the transient in the base case is much faster.The
di�erence in the setting time is due to the DFIG behaviour, let's analyse this.
After the load imbalance the frequency starts to fall. So the droop control of the
traditional power plant and the power control of the DFIG begin to act. The
frequency deviation is stopped in a shorter way with respect to the previous case,
in fact we can see that in the previous case it reaches a lower peak value . This is
due to the DFIG action. Then the frequency starts to increase and then after an
oscillation starts to decrease monotonically setting to a steady state value with a
transient time very large if compared with the one it has in the base case. This
is due to the DFIG. To explain this let's look at �gure 5.30 and at �gure 5.31 (an
enlargement of the interesting area). The blue curve is the power coming from
the wind, the red curve the power tracking characteristic that we were following
before the disturbance and the green one is the actual power delivered during the
simulation (the arrow indicates the direction with respect to time). Let's look at
point A, it is reached at time t = 1.5 s. We retrieve the time value from the graph
of the power delivered by the DFIG (�gure 5.32), we note also that at this time
the frequency stops to fall. But this is not a stable operating point since it is not
the intersection between the power coming from the wind and the one delivered.
So the mechanical speed starts to fall. This causes a reduction in power set point
since we are using a power reference proportional with the third power of the
angular speed. This causes a continuous unbalance between generation and load
which causes the frequency ongoing falling. This happens in a slowly manner due
to the fact that the angular velocity of the DFIG changes slowly since the power
imbalance that he sees is not high (it is the di�erence between the blue and the
green curve in �gure 5.31 for a speci�c value of Ωm). Than the transient will end
when the delivered electrical power reachs the one coming from the wind in point
B.
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Figure 5.28: Grid frequency behaviour due to the load variation in �gure 5.25
considering the DFIG equipped with primary power reserve
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Figure 5.29: Grid frequency comparison between the base case and the one de-
scribed in this section
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Figure 5.30: In blue the power coming from the wind (considering vw = s), in
red the power tracking curve and in green power output trajectory with respect
to Ωm
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Figure 5.31: An enlargement of �gure 5.31
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Figure 5.32: Power delivered by the DFIG after the load variation in �gure 5.25
considering the DFIG equipped with primary power reserve
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Figure 5.33: Mechanical angular speed after the load variation in �gure 5.25
considering the DFIG equipped with primary power reserve

In section 2.5.3 we related the variation in mechanical angular speed to the
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ability to supply inertia. Here we can �nd an example of this. Through this
control we are able to supply inertia and also have a primary power reserve.
From (2.32) (replacing ωd with Ωm since in section 2.5.3 we used ωd to indicate
the p.u. mechanical speed) we can say that the inertia we are able to supply to
the grid Hw is

Hw =
HtΩm0∆Ωm

∆f

(5.48)
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Figure 5.34: Grid frequency comparison

where Ht is the physical inertia constant of the turbine we already use in the
equations. We can compute its value for this simulation. We retrieve form the
graphs the values of Ωm0 = 1.196, ∆Ωm = 0.01 and ∆f = 0.055/50 and we re-
member that Ht = 6.

Hw ≈ 65 s (5.49)

It seems a very high value, but as we can see from �gure the frequency transient
time is very high. To verify that the value make sense we simulate again the
system with a constant DFIG power output described in section 5.10.1, but with
a grid inertia constant Hg = 65 s. The frequency behaviour in this case with the
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one with the DFIG power support are reported in �gure 5.34. We can see that
except for the steady state value and the �rst part of the transient the slope is
similar. So we can say that it is like we have a grid with an inertia equal to 65s.
It si worth to underline that the situation is not the same since in the �rst part
of the transient with the DFIG power support the frequency drops quickly in any
case, but this is due to the fact that the power support is made through a control
that relies on the grid frequency deviation and not on the grid frequency time
derivative. We will see in section 5.11.2 a support that relies on the derivative of
the grid frequency and we will analyse the di�erence in the frequency behaviour.

5.11 Adding power signal

We now implement two other solutions to supply inertia. In the �rst we rely on
the grid frequency deviation, instead the second one on the time derivative of the
grid frequency. We will now describe these two methods, for each one we will do
the stability analysis, a simulation and we will propose some comments.
We will consider a DFIG equipped with a power control described in section 5.9.

5.11.1 Inertia emulation - droop control

Here we explain a method similar to the one described for the DC link (section
2.5.1), the main di�erence is that here we do not directly control the variable
responsible of the inertia, in this case Ωm. The method is proposed by some
articles as [12].
With this method we vary power output according to the grid frequency devia-
tion. In �gure 5.35 we can see a block scheme which gives the reference quadrature
axis current (f is the p.u. frequency).

We consider for this analysis the DFIG system described in section 5.9. So we
again follow the de-loaded power characteristics and we deliver to the grid the
95 % of the available power from the wind, the moving reference curve described
in sect. 5.10 is not implemented since we want to see the e�ect of this added
droop control on the base system.
We choose droop controller coe�cient (kdr)considering that in presence of a grid
frequency variation of 1% we deliver all the primary power reserve which is 5%. So

kdr =
∆p

∆f

=
0.05

0.01
= 5 p.u. (5.50)

We made the stability analysis for this system, the equation are the one listed in
5.38 except for the 5.38e that becomes (f is the p.u. frequency)
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Figure 5.35: Droop control block scheme, irefq is used to as reference fo the current
loop (see �gure 5.7)

T ref
e = (

ρ

2
πR5(ΩmΩb)

2
C∗

p

λ∗3
)/Tb −

Kdr∆f

Ωm

(5.51)

Input variable are the same used for the stability analysis made before (vw = 10 m
s

and V = 1 p.u..). Here we do not report the value of the state variables at the
equilibrium point and the eigenvalues since they are the same of the one in table
5.5 and table 5.6. This happens because in our system grid frequency is an input
and it in�uences the eigenvalues only because of non linearity of the system, and
in this case not in an appreciable manner. If the system were linear the input
coe�cients (such in this case Kdr) wouldn't enter the A matrix. But even if droop
control does not in�uence small signal stability it greatly in�uences outputs as
we can see from the simulation.
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Figure 5.36: Grid frequency comparison

Simulation is carried out considering the DFIG interacting with a grid as done
in section 5.10.2.
In �gure 5.36 we can see the grid frequency in the base case with DFIG constant
power output and in case of a DFIG equipped with droop control. We can see
that in the second case the grid frequency oscillation is less high and the steady
state value is a bit higher. But also in this case we can make the comment we
made before in the last part of section, id est in the �rst instants of the transient
the shape of the frequency behaviour is the same with respect to the base case,
and as said before this is due to the fact that we rely on grid frequency deviation
to give power support.
We ca also say that this method is similar the one we described before. In fact
in both cases we modify power output in presence of a grid frequency deviation,
the main di�erence is that in this case the modi�cation is not durable, instead
in the case of the primary reserve the output power (after its transient) sets to
another value.

5.11.2 Inertia emulation - time derivative of the frequency

measurement

We now implement the method described in 2.6. With this method we vary power
output according to the grid frequency time derivative. In �gure 5.37 we can see
a block scheme which gives the reference quadrature axis current (f is the p.u.
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frequency).

Figure 5.37: Control block scheme, irefq is used to as reference fo the current loop
(see �gure 5.7)

The measurement of the time derivative of the grid frequency is needed. This
is not exactly achievable in practice, since to compute time derivative at time
t we have to know the value of the signal at time t + ∆t. The time derivative
operation has the function s as Laplace transform. To make the transfer function
achievable we have to add a pole, so the function becomes

G(s) =
s

pds+ 1
(5.52)

In terms of state space model frequency measurement system has the following
equations

dx

dt
= − x

pd
+ u (5.53)

y = − x

p2d
+
u

pd
(5.54)

in our case the input u is the frequency, the output y is the frequency time deriva-
tive approximation and x is the new state variable introduced. pd is a parameter,
we choose pd = 0.01 s thinking that this choice will not degrade very much the
time derivative of the grid frequency measurement. In fact the pole is at approx-
imately 16 Hz/s and such derivative is never reached in real grid measurement.
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This value is 100 times the admitted derivatives for the grid frequency. It is
reported [17] that in Italy there are three thresholds for load shedding due to
excessive derivative in grid frequency: the �rst one is at 0.1 Hz/s the second
one is at 0.17 Hz/s and the third one is at 0.50 Hz/s. At each step more load
is shed. It is also to say that this kind of load shedding take place only if the
frequency falls under 49.6 Hz.
The equation according to which we modify the wind farm power output in 2.34
is here reported (f is the p.u. frequency)

∆PDFIG = −Kd
d∆f

dt
(5.55)

We have now to choose the value of Kd. As pointed out in section 2.5.3 the inertia
we are able to supply depends on the actual rotational speed and speed variation
we can accept. We consider to have the turbine rotating at nominal speed, so
Ωm = 1. Then we consider that we can slow down the turbine of 10%. This is
a reasonable value, we can see from �gure 5.10 that at wind velocity near the
nominal one the MPPT curve and the de-loaded one are distant approximately
10 to 15 % with respect to Ωm. We now compute the energy (E) we have at
disposal from the slowing down of the turbine of 10% starting from Ωm = 1

1

2
JΩ2

wt −
1

2
J(0.9Ωwt)

2 = E (5.56)

where Ωwt is the physical rotating speed and J is the turbine inertia moment.
Now we bring the equation in p.u.

1
2
JΩ2

wt − 1
2
J(0.9Ωwt)

2

Pb

=
E

Pb

(5.57)

which some manipulation gives

Ht −Ht0.9
2 =

E

Pb

(5.58)

and so

E = 0.19HtPb (5.59)

We now consider that our synthetic inertia has to last a least 10 seconds with a
frequency time derivative equal to 0.1 Hz/s (which corresponds to 0.1/50 p.u).
We choose such value for the time derivative of the frequency since it a threshold
under which in Italy [17] begins load shedding. So if the frequency time derivative
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is constant also the ∆P given by the controller is constant, so we can write

10∆PPb = E (5.60)

−Kd
0.1

50
Pb = E (5.61)

−Kd
0.1

50
Pb = 0.19HtPb (5.62)

and so

Kd = −(1.9Ht)50 (5.63)

But this is a big value. In fact if we consider to be in presence of a grid frequency
time derivative of 0.1 Hz/s according to (5.64) and considering Ωm = 1 p.u. we
need to deliver an additional torque approximately 1.2 times the nominal one.
This is too high since it implies a rotor current 2.2 times the nominal one. So the
value of Kd in (5.63) can be seen as a limit. We will use instead Kd = 50 p.u.. We
made the choice considering that in presence of a grid frequency time derivative
of 0.1 Hz/s we increase power output (and so reference torque) by 10 %.
We now made the stability analysis for this system, the equation are the one
listed in 5.38 except for the 5.38e that becomes

T ref
e = (

ρ

2
πR5(ΩmΩb)

2
C∗

p

λ∗3
)/Tb −

Kd

Ωm

d∆f

dt
(5.64)

The equilibrium point (for a wind velocity equal to 10 m
s
) is the one listed in

table 5.11, instead the eigenvalues are listed in 5.12

As we can see there is one more eigenvalue with respect to the system without
the derivative measurement but the other haven't vary their position.
We made also a simulation the system. In In �gure 5.38 we can see how the grid
frequency varies in time. In the same plot there is also the frequency behaviour
in the base case.
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Table 5.11: State variables at the equilibrium point (case vw = 10 and C∗
p found

according to 5.46)

Parameter Value

ψsd 0.9999
ird 0
irq 0.7875
Ωm 1.1960
µ 0.0025
hd −0.0437
hq −1.207
x 3.14

Table 5.12: Eigenvalues of the linearised system around the equilibrium point

Parameter Value (rad/s) Damping

λ1 −79.493412 103 + 60.2810 i ≈ 1
λ2 −79.4934 103 − 60.2810 i ≈ 1
λ3 −781.4301 10−3 + 314.1553 i 2.4874 10−3

λ4 −781.4301e 10−3 − 314.1553 i 2.4874 10−3

λ5 −203.8704e 10−3 1
λ6 −7.7444 10−3 1
λ7 −7.7963 10−3 1
λ8 −100 1
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Figure 5.38: Grid frequency comparison
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We can see that in this case the transient is di�erent from the one without
DFIG control also in the �rst instant after the load change. The frequency varies
smoothly, this is due to the power support as function of the grid frequency time
derivative. In this case we can say that we have added synthetic inertia from the
very beginning of the transient.





Conclusions

In this thesis we have seen the synthetic inertia in HVDC connections and wind
power plants equipped with DFIGs. Both these systems, due to the presence
of power electronic converters, cannot naturally use the mechanical inertia of
generators to sustain grid frequency.

We have analysed and sized the control system for the HVDC connection
dealing with the synthetic inertia realization, represented by the inertia constant
H we want to obtain. The synthetic inertia is obtained by changing the dc voltage
as a function of the change of the grid frequency. We have made the stability
analysis and simulations implementing the model in Matlab-Simulink to see how
it behaves in presence of grid frequency disturbances.

Then we have studied a wind turbine equipped with a DFIG connected to the
grid, through a seventh order mathematical model made by di�erential equations.
The control system has been developed and the stability check has been analyt-
ically performed. Then by implementing the mathematical model in Matlab-
Simulink, some simulations have been done for the various cases here brie�y
summarized. We have �rstly implemented the primary reserve considering to run
the wind turbine not following the MPPT strategy. Then we have studied the
interaction of this DFIG with a traditional generator, represented by an iner-
tia constant and a load; the inertial behaviour of the DFIG is obtained through
various strategies. In order to change the frequency of the grid, the load was
suddenly increased to see the system behaviour and compare it between various
cases.

Firstly we have compared the situation, in which the power output of the wind
plant is kept constant, with the case in which the wind power plant is equipped
with primary reserve. We have seen how the frequency evolves in the two cases:
in the �rst part of the transient it has di�erent peak values but the same shape,
but after a while the system acts di�erently in presence of wind turbine primary
reserve. In fact the frequency sets to the steady state value more slowly: this
can be interpreted as a inertia behaviour, so we can say that only introducing
a primary reserve the wind power plant can introduce synthetic inertia in the
system.

Then we have implemented the synthetic inertia relying on the grid frequency
deviation and on the grid frequency time derivative: this signal works on the
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reference torque of the electrical machine. We again did the stability analysis
and simulations. In both cases there is a frequency support: the frequency steady
state value is higher and the transient oscillations are lower with respect to the
case in which the DFIG power output is constant, but the main di�erence between
these two methods is that the one that relies on the grid frequency time derivative
actually modi�es the frequency transient from the very beginning making it softer.
This is due to the derivative action not present in the other method. We can say
that even if the grid support is present in di�erent methods, the real inertial
behaviour is obtained only with a derivative action.



Appendix A

PI controller synthesis

In this appendix we will show the method used to �nd the values of the propor-
tional and integral gains (Kp and Ki) of the controllers. We suppose to have a
system with transfer function G(s) and a negative feedback as in �gure A.1.

Figure A.1: PI controller and process typical close control loop

The open loop transfer function is

L(s) =
Kps+Ki

s
G(s) (A.1)

We have two parameters to �nd, so we need two constraints. These are:

1. the passing band of the closed loop system (wp), witch is the frequency at

which the closed loop transfer function (F(s) =
L(s)

1+L(s)
) module is equal to

−3 db;

2. the phase margin φm;

Considering these two constraints we can write

|L(s)|(s=jwp) = 1 (A.2a)

∠(L(s))(s=jwp) = −π + φm (A.2b)
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witch leads to

|Kps+Ki

jwp

| = 1

G(jwp)

(A.3a)

∠(Kps+Ki

jwp

) = −π + φm − ∠(G(jwp)) (A.3b)

Now considering that a complex number can be written as

a+ jb = |a+ jb| cos(∠(a+ jb)) + j|a+ jb| sin(∠(a+ jb)) (A.4)

we can �nd from equation A.3 the expression for Kp and Ki as a function of the
system transfer function G(s) and the desired phase margin and passing band

Kp =
1

|G(jwp)|
cos(−pi+ φm − ∠(G(jwp))) (A.5a)

Ki =
−jwp

|G(jwp)|
sin(−pi+ φm − ∠(G(jwp))) (A.5b)

(A.5c)
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Transformation matrices

A.1 dq0 transformation

It is a rotational matrix that can be applied to a set of three variables and gives
three other variables. The angle θ is a function of the time.

Tθ =

√
2

3

 cos(θ) cos(θ − 2
3
π) cos(θ + 2

3
π)

− sin(θ) − sin(θ − 2
3
π) − sin(θ + 2

3
π)

1√
2

1√
2

1√
2


A.2 αβ0 transformation

It is a particular case as the previous described transformation, with θ = 0.

T =

√
2

3


1 −1

2
−1

2

0

√
3

2
−
√
3

2
1√
2

1√
2

1√
2


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