

Milos Colic - September 2015

USING N-GRAM STATISTICS FOR

“CRYPTIC” LANGUAGE WORD

SEGMENTATION, AUTO-COMPLETION AND

AUTO-CORRECTION

Author: Milos Colic, student ID: 814817

Dipartimento di Elettronica, Informazione e Bioingegneria

Facolta di Ingegneria MI – Ingegneria Informatica MI

Politecnico di Milano

Supervisor: Matteo Matteucci

Co-advisor: Simon Martin

This thesis is submitted for the Master of Science degree

September 2015

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

Milos Colic - September 2015

ABSTRACT

 This thesis aims to deal with the issues of auto-completing and auto-correcting

commands formed using the syntax of an artificial language called “Cryptic”. This

particular language is a proprietary language defined and put into production by the

multinational company Amadeus SAS France. Despite the fact that “Cryptic” is an

artificial language, the techniques used in natural language processing are used trough

out this thesis.

 Data available in Amadeus “Cryptic” logs is composed of unsegmented

commands; therefore no notion of words was present in the command logs. Taking this

as starting point reasonable approach is to build n-gram statistics at the symbol level,

which will provide estimators on relations between symbols. On the other hand, one

important attribute of this system is that each command is of a finite length. This fact

implies that every command starts with a special symbol Ш. Cyrillic symbols are used

to denote any special character that supplements “Cryptic” alphabet. Implicit starting

symbol simplifies the model into a tree structure, instead of a graph, and the root of this

structure is a node with label Ш. By combining B+ trees, FP trees, and hash-based

indexes we have obtained a hybrid tree structure that facilitates various kinds of fast

searches that are needed in the algorithms used in the process of building the system.

 Based on this tree structure a majority vote procedure is used to segment

commands into words and to extract a dictionary of “Cryptic” language in an automated

way. Majority voting bases its decision on various segmentation indicators such as

Shanon’s mutual information function, entropy value of an n-gram and probability

variance per symbol pair. Once a dictionary is formed statistics based on a notion of

language words can be produced and used to detect errors; after errors have been

detected corrected output is produced.

 Validation of a subsystem dedicated for command segmentation is computed

on the corpus of English language, because the corpus of “Cryptic” commands, which

are properly segmented and labeled, does not exist. Results obtained by performing

validation on English language corpus are taken as proof of concept. Any decrease of

precision in segmentation on “Cryptic” commands (which unfortunately at the moment

cannot be measured) is assigned to the larger amount of ‘randomness’ in the language

creation. “Cryptic” language was incrementally created by various teams over a period

of more than 20 years and lacks any formal standardization, a major part of the innate

language randomness comes from this fact. Validation on auto-complete and auto-

correct capabilities is done on the portion of the data logs that is not used in the training

phase.

Chapter 1: Introduction

Milos Colic - September 2015 5

ACKNOWLEDGEMENTS

I would like to give my thanks to Amadeus SAS, the department in Nice, for providing

the resources needed for performing this research. Especially I am thankful to Simon

Martin, Leonardo Freitas Gomes and Anthony Hock-Koon for their help during my

internship in Amadeus. On the side of Politecnico di Milano I owe a great gratitude to

my tutor on this thesis Matteo Matteucci, his guidance was of great value to my work.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

6 Milos Colic - September 2015

CONTENTS

1 INTRODUCTION .. 11

1.1 “CRYPTIC” LANGUAGE ... 11

1.2 AUTO-COMPLETION AND AUTO-CORRECTION AS ENGINEERING TECHNIQUES 14

1.3 WORD SEGMENTATION AS ENGINEERING TECHNIQUE ... 16

2 N-GRAM STATISTICS .. 21

2.1 MARKOV CHAIN MODELS ... 21

2.3 N-GRAM STATISTICS ... 28

3 WORD SEGMENTATION WITH NO LEXICON .. 33

3.1 WORD SEGMENTATION AND ZIPF’S LAW .. 33

3.2 BOUNDARY ORIENTED SEGMENTATION METHOD ... 34

3.3 ENTROPY-ORIENTED SEGMENTATION METHOD ... 41

3.4 MAJORITY VOTING BOUNDARY DECISION ... 44

4 N-GRAM TREE DATA STRUCTURE ... 47

5 “CRYPTIC” AUTO-COMPLETE ... 61

6 “CRYPTIC” AUTO-CORRECT.. 65

7 VALIDATION .. 71

7.1 WORD SEGMENTATION VALIDATION .. 71

7.2 AUTO-COMPLETE/CORRECT VALIDATION ... 79

8 CONCLUSIONS .. 83

9 FUTURE WORK ... 85

10 REFERENCES ... 87

Chapter 1: Introduction

Milos Colic - September 2015 7

LIST OF FIGURES

FIGURE 2.1: MARKOV CHAIN MODEL EXAMPLE OF TOSSING TWO DIFFERENT COINS 23

FIGURE 2.2: MARKOV CHAIN MODEL OF LIMITED VERSION OF THE “CRYPTIC” SYSTEM .. 23

FIGURE 2.3: TREE REPRESENTATION OF MCM PRESENTED IN FIGURE 2.2 25

FIGURE 2.4: HIDDEN MARKOV MODEL OF LIMITED VERSION OF THE “CRYPTIC” SYSTEM27

FIGURE 2.5: UNIGRAM MODEL OF A MAN READING SHAKESPEARE 29

FIGURE 2.6: BIGRAM MODEL OF A MAN READING SHAKESPEAR 30

FIGURE 3.1: PLOT OF THE FUNCTION 𝒇 = 𝐥𝐨𝐠𝒍𝒆𝒏𝒕𝒉𝑳 ∗ 𝐥𝐨𝐠(𝒍𝒆𝒈𝒉𝒕(𝑹)) 38

FIGURE 3.2: PROCESS OF INCREMENTALLY INCREASING LEFT AND RIGHT CONTEXT 40

FIGURE 3.3: PRINCIPLE OF ENTROPY MONOTONICITY INSIDE OF WORD BOUNDARIES 42

FIGURE 3.4: PROCESS OF INCREMENTALLY INCREASING CONTEXT USED FOR ENTROPY

COMPUTATION .. 44

FIGURE 4.1: EXAMPLE OF CHARACTER LEVEL N-GRAM TREE WITH FIXED ROOT SYMBOL

SET TO Ш ... 51

FIGURE 4.2: VISUALIZATION OF ADDITIONAL LINKAGE BETWEEN NODES WITH THE SAME

LABEL .. 53

FIGURE 4.3: VISUALIZATION OF GENERATING Δ(X_N) BASED ON Α VALUE OF EACH NODE

IN THE PATH OF INTEREST ... 55

FIGURE 4.4: COMPLETE VISUALIZATION OF N-GRAM TREE DATA STRUCTURE 57

FIGURE 5.1: PRINCIPLE OF SLIDING CONTEXT IN AUTO-COMPLETION PROCEDURE 64

FIGURE 6.1: LONGEST COMMON SUBSEQUENCE MATCHING BETWEEN SESSION HISTORY

AND N-GRAM TREE ... 66

FIGURE 6.2: VISUALIZATION OF THE WORD SPLIT INTO EP, ES, AND З AND MAPPING OF

EACH PART TO CORRESPONDING PATH IN THE N-GRAM TREE 69

FIGURE 7.1: ACCURACY MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹;𝒏,𝒎,𝒘𝒌 74

FIGURE 7.2: PRECISION MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 74

FIGURE 7.3: FALSE OMISSION RATIO MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 75

FIGURE 7.4: ACCURACY MEASUREMENT OF 𝑩𝑪𝒘𝒂𝑳𝑹;𝒏,𝒎,𝒘𝒌 76

file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261708
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261709
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261710
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261711
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261713
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261714
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261716
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261717
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261717
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261720
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261720
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261721
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261723
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261723
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261724
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261724
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261725
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261726
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261727
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261728

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

8 Milos Colic - September 2015

FIGURE 7.5: FALSE OMISSION RATIO MEASUREMENT OF 𝑩𝑪𝒘𝒂𝑳𝑹;𝒏,𝒎,𝒘𝒌 77

FIGURE 7.6: PRECISION MEASUREMENT OF 𝑩𝑪𝒘𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 77

FIGURE 7.7: FALSE OMISSION RATIO MEASUREMENT COMPARISON 78

FIGURE 7.8: FALSE OMISSION RATIO MEASUREMENT OF EQUAL VOTING PROCEDURE 79

FIGURE 7.9: FALSE OMISSION RATIO MEASUREMENT OF RANKED VOTING PROCEDURE 79

FIGURE 7.10: ACSR MEASUREMENT OF AUTO-COMPLETE/CORRECT RUN ON VALIDATION

DATA WITH TYPOGRAPHICAL ERRORS .. 82

FIGURE 10.1: ACCURACY MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹;𝒏,𝒎,𝒘𝒌 89

FIGURE 10.2: PRECISION MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 89

FIGURE 10.3: FALSE OMISSION RATIO MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 90

FIGURE 10.4: ACCURACY MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹;𝒏,𝒎,𝒘𝒌 WITH VARYING VALUE

OF DISCOUNT PARAMETER .. 91

FIGURE 10.5: PRECISION MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 WITH VARYING VALUE

OF DISCOUNT PARAMETER .. 91

FIGURE 10.6: FALSE OMISSION RATIO MEASUREMENT OF 𝑩𝑪𝒆𝒂𝑳𝑹; 𝒏,𝒎,𝒘𝒌 WITH

VARYING VALUE OF DISCOUNT PARAMETER ... 92

FIGURE 10.7: ACCURACY MEASUREMENT OF 𝐁𝐂𝐰𝐚𝐋𝐑; 𝐧,𝐦,𝐰𝐤 93

FIGURE 10.8: PRECISION MEASUREMENT OF 𝐁𝐂𝐰𝐚𝐋𝐑;𝐧,𝐦,𝐰𝐤 93

FIGURE 10.9: FALSE OMISSION RATIO MEASUREMENT OF 𝐁𝐂𝐰𝐚𝐋𝐑;𝐧,𝐦,𝐰𝐤 94

FIGURE 10.10: ACCURACY MEASUREMENT OF 𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌]) 95

FIGURE 10.11: PRECISION MEASUREMENT OF 𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌]) 95

FIGURE 10.12: FALSE OMISSION RATIO MEASUREMENT OF 𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌]) 96

FIGURE 10.13: ACCURACY MEASUREMENT OF 𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌]) 97

FIGURE 10.14: PRECISION MEASUREMENT OF 𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌]) 97

FIGURE 10.15: FALSE OMISSION MEASUREMENT OF 𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌]) 98

FIGURE 10.16: ACCURACY MEASUREMENT OF 𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌]) 99

FIGURE 10.17: PRECISION MEASUREMENT OF 𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌]) 99

file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261729
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261730
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261731
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261732
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261734
file:///C:/Users/Milos/Desktop/Thesis-final%20version.docx%23_Toc430261734

Chapter 1: Introduction

Milos Colic - September 2015 9

FIGURE 10.18: FALSE OMISSION RATIO MEASUREMENT OF 𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌]) 100

FIGURE 10.19: ACCURACY MEASUREMENT OF 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌]) 101

FIGURE 10.20: PRECISION MEASUREMENT OF 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌]) 101

FIGURE 10.21: FALSE OMISSION RATIO MEASUREMENT OF 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌]) 102

FIGURE 10.22: ACCURACY MEASUREMENT COMPARISON BETWEEN ALL INDIVIDUAL

CRITERIA .. 103

FIGURE 10.23: PRECISION MEASUREMENT COMPARISON BETWEEN ALL INDIVIDUAL

CRITERIA .. 103

FIGURE 10.24: FALSE OMISSION RATIO MEASUREMENT COMPARISON BETWEEN ALL

INDIVIDUAL CRITERIA .. 104

FIGURE 10.25: FALSE OMISSION RATIO MEASUREMENT OF EQUAL VOTING PROCEDURE . 105

FIGURE 10.26: FALSE OMISSION RATIO MEASUREMENT OF RANKED VOTING PROCEDURE

 ... 105

FIGURE 10.27: ACCURACY MEASUREMENT OF EQUAL VOTING PROCEDURE 106

FIGURE 10.28: ACCURACY MEASUREMENT OF EQUAL VOTING PROCEDURE 106

FIGURE 10.29: PRECISION MEASUREMENT OF EQUAL VOTING PROCEDURE 107

FIGURE 10.30: PRECISION RATIO MEASUREMENT OF EQUAL VOTING PROCEDURE 107

FIGURE 10.31: ACSR MEASUREMENT OF AUTO-COMPLETE/CORRECT PROCEDURE 108

FIGURE 10.32: RACSR MEASUREMENT OF AUTO-COMPLETE/CORRECT PROCEDURE 108

FIGURE 10.33: MCSR MEASUREMENT OF AUTO-COMPLETE/CORRECT PROCEDURE 109

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

10 Milos Colic - September 2015

LIST OF ABBREVIATIONS AND ACRONYMS

 Ш – Command start symbol/word

 Ф – Word delimiter symbol

 Ж – Command end symbol/word

 З – Error symbol

 MCM – Markov Chain Model

 HMM – Hidden Markov Model

 CHT – Character level n-gram tree

 WRDT – Word level n-gram tree

 CMDT – Command level n-gram tree

 EP – Error prefix

 ES – Error suffix

 DNA – Deoxyribonucleic acid

Chapter 1: Introduction

Milos Colic - September 2015 11

1 INTRODUCTION

1.1 “Cryptic” language

 “Cryptic” language is a language designed and implemented by Amadeus SAS

engineering division. Over more than 20 years, different teams have implemented

various commands that have been incrementally added to the syntax of the “Cryptic”

language. The language itself was conceptualized as a minimalistic language that is

mainly comprised out of abbreviations for words from the English language. One

example of such word is ‘an’ which stands for ‘availability numerical’, another example

would be ‘ce’ that stands for ‘car equipment’. From these two examples, one would

deduce that all words in “Cryptic” are comprised from starting letters of individual

words from English language description. However, even that notion is not homogenous

in these two simple cases, in the first example the order of words is inverted w.r.t. what

we would encounter in actual English language description. Due to high heterogeneity

of cultures that comprise teams, geographical and temporal displacement of different

teams, word definitions are as well extremely heterogeneous. If we observe word ‘dnn’

which stands for ‘decode hotel rate’ it becomes clear that some words are created as

meaningful abbreviations. Others, however, were selected just because this precise short

string was not taken at the moment of implementation of particular system functionality.

 To understand why such words were introduced and why English language (or

any other natural language) words were not used, one should focus on the throughput of

Amadeus system. Amadeus designs and implements large-scale distributed systems

used by travel agencies, airlines and end customers. This system provides functionalities

for searching and booking tickets and reservations in all segments of the travel industry,

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

12 Milos Colic - September 2015

such as airline and train tickets, car rental, hotel bookings and perform various other

travel-related activities. Amadeus system at the peak time has over 200.000 transactions

per seconds and over 15.000 agents spread over the world using its functionalities.

Through evolution, Amadeus system has kept as part of its architecture various legacy

subsystems. One of such legacy subsystems is communication system based on

“Cryptic” language and restructuring this part of Amadeus system would be extremely

costly and time-consuming. At the moment of creation, communication subsystem was

confronted with the issue of limited available network bandwidth since the most

common internet connection medium at that particular time was the dial-up modem.

This fact imposed a requirement to reduce the length of every command as much as

possible. Since every command has a strictly defined list of needed arguments to

execute correctly, the only possible approach in compressing the commands is to reduce

the length of the words. In practice, what can be done is that instead of ‘Belgrade’ a

code substitution ‘beg’ is used. This way variable power compression is performed. To

understand what is meant by variable power consider the following example. Word

‘Belgrade’ is replaced by ‘beg’ and we have compression of approximately166%. On

the other hand, word ‘Nice’ is replaced by ‘nce’ and we have only 25% compression.

There are as well cases that have 0% reduction like word ‘Nis’, but these are few in

numbers.

 This optimization even though improves compression of commands and uses

more optimally system’s bandwidth it includes some new variability and randomness

into the syntax of the words. These particular words are standardized since they were

firstly used in airport management, and they always provide unified length

representation (3 character long code) of any airport in the world. The only case in

which standardization falls apart is when the city has more airports, and then we have a

city code that maps all involved airports, and each airport has its additional code.

 All these issues arise from just one particular command denoted as ‘an’, and if

these issues were not enough, there are additional variability with each command. Since

every command can be used in more than one context, the number of arguments may

vary depending on the usage. This attribute of “Cryptic” language highly resembles how

humans form sentences in natural languages, although no formal grammar is presented.

How the system in practice deals with each particular command is defined statically,

every team has developed a parser for a specific command they have implemented.

What is worth mentioning is that it is almost impossible to collect all these parsers and

Chapter 1: Introduction

Milos Colic - September 2015 13

use them in this thesis. Collecting all the parsers would imply a high cost of

implementation and the increase of precision would not correspond proportionally to

invested time and money. That is why in this thesis focus is put on a generic solution

that, based on statistical and probabilistic qualities of the observed data, segments

commands into words.

 To illustrate everything previously said let’s observe the following command:

𝑎𝑛 ↑ 𝑝𝑎𝑟 ↑ 𝑛𝑐𝑒

 Symbol ↑ corresponds to the implied separator, this separator is not typed, but

it could be present as ‘ ‘ if the user chooses to do so. As it can be noticed this is another

source uncertainty in data, in some cases (very rarely) we have spaces between words

and even in these case spaces are not necessarily placed in all respected positions.

Examples of ‘correct’ input for the previous command are following:

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒

 The fact that we can both encounter implicit and explicit word separators lead

to the assumption that no word separators are ever present. In the case word separators

are present they are removed as a part of data pre-processing. Up until now we have not

given any syntactic meaning to the command above. Actual meaning behind string

‘an↑par↑nce’ is numerical availability (an) for a flight from Paris (par) to Nice (nce).

Now it becomes logical that a user might want to specify a date in this format leading to

‘an↑11↑aug↑par↑nce’, it is noticeable that in this case number of words have changed

from 3 to 5. In addition to this option, there are many others like specifying round trip,

querying for a specific seat class, seat number, luggage, and other options.

 Another interesting attribute of “Cryptic” language is the fact that there is strict

split between functionality carrier words and argument words. This fact can be related

to natural languages where we observe words with different semantic roles, such as

nouns, verbs, articles, and other word types. Although one crucial difference needs to be

stated, in “Cryptic” significant number of arguments practically appearing in logs are

statistically unimportant. Put into simple terms, many arguments that we encounter in

actual system usage are one time words. One time word should be understood as words

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

14 Milos Colic - September 2015

similar to passenger name (to some extent), passenger age (more notable since it

changes over time), most notably flight numbers. These words are statistically irrelevant

since it is highly unlikely that we can predict such words. We can predict one time

words only in cases when an agent had sold a significant number of tickets to the same

person, but this rarely happens. On the other hand, functionality carrier words are

statistically important words. Functionality carrier words refer to command identifiers.

Through them, we can predict some arguments such as airports, in some cases dates,

commands that follow this particular command, and other words that have strong

relations. It is reasonable to observe that certain regions observe traffic flow peak in a

certain period of the year. This fact can induce possibility of predicting dates, even

though they are one time words. For example, Nice airport has considerably more traffic

during summer period due to the vicinity of touristic attractions. It is reasonable to

predict that weekend dates in the month of August of the current year are very probable

as command arguments if the end destination is Nice. Why functionality carrier words

allow sequences of commands to be predictable comes from the fact that the “Cryptic”

language is a preorder language. Functionality carrier word is always the first word of

the command, and all following words are the arguments. It can be noticed that if we

observe functionality carrier words in context free manner (without any arguments) we

can spot frequent patterns of commands and suggest to the user which could be the

following command.

 This section of the thesis was intended just as an illustration of complexity and

variability of “Cryptic” as a language. It also casts light on the reasons for including

unsupervised word segmentation into the study; this is because no dictionary is present.

In addition, no formal grammar available nor labeled and segmented train data corpus

from which words can be learned based on Zipf’s law. The only possible approach is to

use unsupervised word segmentation that relies on probabilistic measures on symbol

level. This particular topic will be covered with more care in Chapter 3.

1.2 Auto-completion and auto-correction as engineering

techniques

 Though its development Internet became a tool used to distribute information.

From this fact, we understand that average user of the Internet should be allowed to

query data available on the Internet as quickly and flexible as possible. All major web

search engines provide auto-completion and auto-correction functionalities which

Chapter 1: Introduction

Milos Colic - September 2015 15

facilitate more flexible and user-friendly environment. A necessity of simplifying this

querying process emerged from the ever-increasing amount of information available on

the Internet and the fact that typographical errors in the process of querying Internet

data increase the difficulty in obtaining desired data.

 Every time average user of any major web search engine (e.g. Google)

provides as query string something that is highly unlikely it encounter the following

message ‘Did you mean *’ (* denotes the corrected input string); this is nothing more

than auto-correction functionality. Another example of autocorrect functionality is the

one an average user of smart phone encounters every day. While using the messaging

service on any new generation smartphone, (of course unless the user disables such

functionality) experiences help from the application that corrects typographical errors.

These two techniques may seem different to some extent. Web browser strategy is more

lethargic than smartphone strategy; it waits for the user to press ‘Enter’ and only then it

provides the corrected input. On the other had smartphone strategy automatically

corrects the input while the user is typing, this strategy is more aggressive in the

implementation of auto-correction. Previously explained differences do not affect the

fact that both techniques follow the same background logic based on hidden Markov

models [4] and n-gram statistic concepts [17]. Both hidden Markov models and n-gram

statistics will be covered with more care in Chapter 2. In the context of this observation,

it is enough to conceptualize hidden Markov models and n-gram statistics as “happens

before” relations between words of one language. Take as an example the following

sentence:

“𝐻𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚 ∗ ”

In this particular sentence * denotes the rest of user’s input and it is of no significance to

the discussion, it is just placed here to complete the context. An n-gram “happens

before” relation is observed between words ‘high’, ’school’, ’education’, and ’system’.

This relation will describe how likely is that if we observe word ‘high’ the next word

will be ‘school’. Based on the first word ‘high’, the system should be able to predict that

one of the probable next words is ‘school’ and not ‘shoe’ and correct the user’s input.

 Auto-complete functionality relies on the same concepts as auto-correct

functionality does, implementation is slightly different since in this case system instead

of correcting the user it suggests to the user what to type next. Put into the frame of the

previous example, the system should be able to predict the word to follow ‘high school’

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

16 Milos Colic - September 2015

could be ‘education’. Of course suggestions and corrections highly depend on the data

used to learn these “happens before” relations, more on this topic will be presented in

Chapter 2.

 Due to observing compression of words which could often confuse end users,

Amadeus “Cryptic” language would greatly benefit from auto-complete and auto-

correct functionalities. These modules will supplement interaction between the user and

the command line terminal used to issue “Cryptic” commands. As previously discussed

the “Cryptic” language is in some of its attributes similar to natural languages, but in

some other attributes it differs from them. Due to the highly expressed randomness in

the “Cryptic” language dictionary it can be noticed that symbol/character level

predictions would provide low-quality output. Words such as ‘pd’ and ‘pf’ are words

with only one letter difference. The system might discriminate one word over the other

just because ‘pd’ has larger frequency than ‘pf’; regardless of possible high order

relation among other words. This kind of probabilistic ‘discrimination’ can be avoided

if the prediction is observed on the word level, and the fact that the “Cryptic” is pre-

order language will tune prediction toward more reliable estimates. Adding more

context in predicting input increases stability of the solution, but, on the other hand, it

increases complexity as well. More on the actual implementation of auto-complete and

auto-correct functionalities in the “Cryptic” language will be presented in Chapters 4

and 5 respectively.

1.3 Word segmentation as engineering technique

 Word segmentation refers to the method that automatically adds word separator

symbols (usually space in natural language) to unsegmented data. Currently in the state

of the art systems, there are various techniques, which differ on the fact if there is

segmented train data corpus available or not. Also, these methods differ on the criteria

on which the position of word separator is determined.

 In case a segmented train data corpus is available, extraction of language

dictionary (in some bibliography also referred as lexicon) becomes straightforward.

Words are groups of symbols between two separator symbols as well as the first and the

last words which are marked by sentence separator symbols on one of their sides.

Observe the following example:

Ш𝑀𝑎𝑟𝑦Ф𝑎𝑛𝑑Ф𝐽𝑎𝑛𝑒Ф𝑙𝑖𝑘𝑒Ф𝑡𝑜Ф𝑒𝑎𝑡Ф𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑠Ф𝑓𝑜𝑟Ф𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡Ж

Chapter 1: Introduction

Milos Colic - September 2015 17

In the previous example symbols Ш, Ф, and Ж denote beginning of the sentence, word

separator, and ending of the sentence respectively. As have been established earlier

these symbols can be freely chosen symbols that are outside of the language alphabet. In

the following sections, alphabet set will be denoted as 𝐴𝑙 and set of supplementing

symbols will be denoted as𝑆𝑙. From the provided sentence it is easy to extract set of

words, any group of symbols that falls between two symbols Ф, or between Ш and Ф,

or between Ф and Ж are considered a word of the language’s dictionary. After the

notion of dictionary has been established we can define notion of word frequencies in

the train data corpus. Number of occurrences of a particular word is said to be the

frequency value of this word. During the word extraction phase of word segmentation,

all words frequencies are computed; every time a word is detected to be a duplicate of

previously encountered word this word’s frequency value is incremented. As have been

described in [1], words in a natural train data tend to follow Zipf’s law or extended

Zipf’s law defined latter by Mandelbrot. Zipf’s law states that we can order words in

natural language data by their frequency values and based on this ordering we can

define following probability distribution mass function:

 𝑓(𝑟)~
1

𝑟𝛼
.[1.1]

 In the equation [1.1], variable 𝛼 is a parameter of the distribution, 𝑟 represents

the rank of the word in the data w.r.t its frequency and 𝑓(𝑟) represents probability

distribution of the word’s rank in the data. The parameter 𝛼 usually takes empirical

value close to 1 for natural languages [6]. Why this probability distribution mass

function is defined as proportional to the fractional value on the right is because the

actually value of probability mass function is normalized by factor 𝑁𝑛which represent

harmonic series sum of order n, which is computed in accordance with following

formula:

𝑁𝑛 = ∑
1

𝑘

𝑛

𝑘=1

.[1.2]

 On the other hand Mandelbrot’s extension of Zipf’s law is a simple

modification of the previously stated law by a distribution parameter 𝛽 which

empirically tends to the value of natural number 𝑒. Mandelbrot’s extension is described

by a following equation:

𝑓(𝑟)~
1

(𝑟 + 𝛽)𝛼
.[1.3]

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

18 Milos Colic - September 2015

It can be easily noticed that Zipf’s law is a restriction of Mandelbrot’s law by simply

fixing value of 𝛽 to 0. Word segmentation based on previously segmented train data can

use either two of these laws to define value function of a particular word (also referred

in bibliography as token) found to be a part of a sentence. Parameters 𝛼 and 𝛽 are

learned for train data, which should be properly segmented in order to compute

frequencies of each word. Once words are ranked w.r.t. their respective frequencies in

the train data either Zipf’s or Mandelbrot’s values of 𝑓(𝑟) are computed for each word.

Based on these notions segmentation algorithm tries to maximize total value of 𝑓(𝑟) for

an unsegmented sentence. Total value of the sentence is obtained as a summation of

𝑓(𝑟) values of words obtained by placing 𝑘 word separators in the sentence.

 Another class of problem is word segmentation when no lexicon or segmented

train data is presented. This type of segmentation problems occupies much attention in

Asia’s academic circles that are concentrating on natural language processing. This

information has its roots in the fact that many of the Asian languages avoid using word

separators, implying that sentences in these languages are just long strings of symbols.

In these languages, words are determined by context implicitly and not by space

positions like in the English language (any many other languages). It becomes clear that

most of the training data available in languages such as Japanese, Chinese, Korean, and

other Asian languages are all unsegmented. When automated language translations

between Asian languages and English language were designed and proposed many word

segmentation techniques based on unsegmented data, have arisen as side results. This

attribute of Asian languages has made them similar to “Cryptic” language and

techniques applicable to Asian languages could as well be applied in the case of

“Cryptic”.

 Most of the techniques, in this case, are based on the notion of mutual

information function. As described in [2], mutual information function is defined by the

following equation:

𝐼(𝑋, 𝑌) = ∑∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦𝜖𝑌𝑥𝜖𝑋

.[1.4]

What is of particular interest in the word segmentation techniques is the value of

information function (as presented in [3]) when x and y have particular values, here

denoted as A and B (in general represent a pair of concrete values whose mutual

information is of interest). This value is usually denoted as 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) and

Chapter 1: Introduction

Milos Colic - September 2015 19

represents the ratio between joint probability of observing symbols A and B together in

the data and probability of independence assumption between symbols A and B.

Practically speaking we are not interested in relation between two positions in the string

which correspond to variables x and y, instead we are interested in relation between two

particular symbols.

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴, 𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
).[1.5]

When 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) is a lot smaller than 0 we have indication of symbols A and B

tending not to appear together and in the case of 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) being a lot larger

than 0 we have indication of A and B usually appearing together, in the zone close to 0

decision is not established. These observations come from the fact that independence

assumption between probability of A and probability of B is only satisfied when

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) is equal to 0, in other two cases we values that indicate dependency

between A and B. In case of positive values of 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) we have indication

that joint probability of A and B is larger than product of marginal probabilities of A

and B which implies A and B tend to appear together in the data. On the other hand if

we obtain negative values of 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) we have opposite indications, meaning

that A and B tend to appear separately. When 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) is equal to 0 we can

only claim that independence assumption is satisfied but we cannot claim that A and B

tend to appear together nor that they tend to appear separately. It is clear that this value

can be useful in deciding where to place a word separator in a sentence to achieve word

segmentation. More on this topic will be presented in Chapter 3.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

20 Milos Colic - September 2015

Chapter 2: N-gram statistics

Milos Colic - September 2015 21

2 N-GRAM STATISTICS

2.1 Markov chain models

 To be able to achieve fully understanding of n-gram statistic, firstly some

attention should be given to Markov chain models (later denoted as MCMs) and Hidden

Markov models. Markov chain models are nothing more than probabilistic final state

automatons (as it has been explained in [5]). These models are characterized by a set of

states and set of probabilistic arcs that correspond to state transition function. Usually,

MCMs are illustrated by a graph representation or by a matrix representation. These two

representations are equivalent, although humans are more accustomed to graph

representation since it seems to be a more intuitive choice of visualization.

 A model of a probabilistic process can be considered as MCM only if it

satisfies certain attributes. As have been previously stated MCMs are defined by set of

states, this set can be denoted as 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, a MCM starts in a state 𝑠𝑖𝜖𝑆. States

in MCM are connected with arcs whose weights are probabilities of transition

corresponding to an arc being taken. For example if arc between states 𝑠𝑖 and 𝑠𝑗 has a

weight of 0.3 it means that process corresponding to this particular MCM will change

its state from 𝑠𝑖 to 𝑠𝑗 with probability of 0.3. Occurrence of a state transition is called a

step of MCM. Another important attribute of MCMs is that in addition to weights arcs

are described with a label as well. Arc labels correspond to the output of the model.

What is important to be stated is that if we denote as 𝐴𝑜;𝑠𝑖 the set of outgoing arcs

corresponding to a state 𝑠𝑖 then following conditions must hold:

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

22 Milos Colic - September 2015

∀𝑥, 𝑦𝜖𝐴𝑜;𝑠𝑖 , 𝑙𝑎𝑏𝑒𝑙(𝑥) ≠ 𝑙𝑎𝑏𝑒𝑙(𝑦),[2.1]

∑ 𝑝(𝑥)

𝑥𝜖𝐴𝑜;𝑠𝑖

= 1.[2.2]

The first condition is referring to the fact that labels of state’s outgoing arcs must be

unique, or said in a different manner, two arcs that share a source cannot have the same

label. This condition ensures the deterministic behavior of the MCMs. The second

condition is referring to the fact that all probability mass must be divided among arcs,

and no probability mass should be left unassociated with an arc. In some cases, we can

encounter visualizations in which a portion of probability mass is missing. These

examples are valid MCMs only if this part of probability mass is associated to implicit

self-arc, meaning that the missing probability is linked with the chance of process not

changing the state. These cases are quite rare.

 To put more light on the MCMs let’s consider the following example. A man

tosses a fair coin, fair meaning that the probability of getting head is equal to the

probability of getting tail, and thus both probabilities are equal to 0.5. Let’s denote this

coin as 𝐶1. Based on result of the toss he will write a particular letter on a sheet of

paper. When toss results in heads the output will be letter ‘a’ and in case of tails letter

‘b’. After fist toss, coin 𝐶1 is replaced with a biased coin 𝐶2, a toss of this coin will

result in head in 75% of tosses. The process is repeated with coin 𝐶2and after output is

produced, either ‘a’ or ‘b’ depending on the result of the toss, coins are switched again

after result of the toss is observed. A man will play this game indefinitely.

 Let’s denote as 𝑠1 a state of the world in which a man M is tossing coin 𝐶1and

as 𝑠2 a state of the world in which he is tossing coin 𝐶2. Transitions between these two

states are given by combining probability of an outcome, and the letter M is written on a

piece of paper. This is a simple toy example, but it can serve in illustrative purposes.

Visualization of this MCM is presented in Figure 2.1. This example can be extended

and modified to describe a user writing sentences in the “Cryptic” language. If instead

of a coin toss M is tossing a die with n sides, every side of this die corresponds to one

word for from the “Cryptic” language lexicon. At this particular point of discussion, let

assume all words in dictionary are equally probable, and that all valid commands are

composed of 3 words. Let’s restrict this system further so more compact example is

obtained. For each word position a designated die is used, thus in this experiment we

can observe 3 different dies. First die can assume values from set 𝑊1 = {𝑎𝑛, 𝑖𝑔,𝑚𝑑},

Chapter 2: N-gram statistics

Milos Colic - September 2015 23

second die can assume values from set 𝑊2 = {𝑝𝑎𝑟, 𝑛𝑐𝑒,𝑚𝑖𝑙} and last die can assume

values from set 𝑊3 = {𝑏𝑒𝑔, 𝑛𝑖𝑠, 𝑟𝑜𝑚}. In addition let’s assume dies are fair, or more

precisely every value is present on two different sides of six-side die and at every throw

each side is equiprobable. This particular model is very limited and can produce

insignificantly small subset of the “Cryptic” commands, even so this model can be used

as point of intuition behind decision to correlate the “Cryptic” system with MCMs in

this thesis. In Figure 2.2 a visualization of this model is presented.

Figure 2.2: Markov Chain Model of limited version of the “Cryptic” system

Figure 2.1: Markov Chain Model example of tossing two different coins

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

24 Milos Colic - September 2015

 Usually, MCMs are represented by directed graphs; it is worth mentioning that

cycles can be encountered in these graphs. Since valid commands in the “Cryptic”

syntax are all of finite length representations that include cycles are highly undesirable.

Outputs produced by cycles in MCM’s graph could be of infinite leght or of finite

length that is not valid in the context of observed language. Let’s assume that we are

observing a language that only allows words ‘abc’ and ‘abca’ (further denoted as 𝐿1).

Underlying MCM model (further denoted as 𝑀1) is represented by a graph composed of

three states, one corresponding to each of allowed symbols ‘a’, ‘b’, and ‘c’. In scope of

𝑀1 , states form a cycle 𝑠𝑎 → 𝑠𝑏 → 𝑠𝑐 → 𝑠𝑎 . This cycle implies that 𝑀1 produces

outputs such as ‘abc’,’abca’,’abcab’, up to ‘abcabc…’, where ‘…’ denote infinite length

string. Cosequently, strings produced by 𝑀1 need to be tested w.r.t. constraints of the

language 𝐿1. It is clear, following the starting assumption, that only ‘abc’ and ‘abca’

satisfy costraints imposed by 𝐿1. Following this fact it would much more desirable to

convert 𝑀1 into 𝑀2 which would assume shape of a tree structure. Model 𝑀2 will hold

information that only words ‘abc’ and ‘abca’ are satisfying 𝐿1 ’s constraints, this

information is held in two possible paths in the model 𝑀2 represented by 𝑠𝑠 → 𝑠𝑎1 →

𝑠𝑏 → 𝑠𝑐 → 𝑠𝑒 and 𝑠𝑠 → 𝑠𝑎1 → 𝑠𝑏 → 𝑠𝑐 → 𝑠𝑎2 → 𝑠𝑒 . We have included new states that

denote start and end of the word and we have split state 𝑠𝑎 into states 𝑠𝑎1 and 𝑠𝑎2 to

avoid cycles.

 Graph representation of MCM that corresponds to the “Cryptic” user can be

broken into a tree representation following the logic in the example of the language 𝐿1.

Tree representation avoids the issue of cyclic behavior, and it is a subclass of directed

acyclic graphs. In addition directed acyclic graphs are a subclass of directed graphs,

ergo decision to use trees might be considered as imposing new additional constraints

on MCM definition. Translation of previously described reduced the “Cryptic” model to

tree representation is presented in Figure 2.3. It is worth stating that this procedure

could be understood as decompression of directed graph into a tree. Tree representation,

in general, has more states than corresponding directed graph, but on the other hand

cycles are avoided. Repeating sequences are always of a finite length ergo cycles can be

replaced by finite length sequence of state sequences. For example if we have observed

that graph contains cycle 𝑠1 → 𝑠2 → 𝑠1 and we know that this sequence can appear only

3 times in a row due to the “Cryptic” syntax constraints, this cycle will be translated

into a following sequence 𝑠11 → 𝑠21 → 𝑠12 → 𝑠22 → 𝑠13 → 𝑠23 . Another reason for

moving from graph to tree representation is the fact that all commands start with

Chapter 2: N-gram statistics

Milos Colic - September 2015 25

implicit symbol Ш and end with symbol Ж. In order to better illustrate transformation

of MCM graph into a tree representation, let’s consider the self loop with label ‘ig’ in

Figure 2.2. In process of translating MCM graph presented in Figure 2.2 into tree

representation presented in Figure 2.3 state denoted as 𝑠1 has been split into three new

states denoted as 𝑠𝑎𝑛,𝑠𝑚𝑑 , and 𝑠𝑖𝑔. In addition two new states 𝑠Ш and 𝑠Ж have been

added to represent existance of command start and end symbols. In the frame of model

Figure 2.3: Tree representation of MCM presented in Figure 2.2

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

26 Milos Colic - September 2015

presented in Figure 2.2 self-loop with label ‘ig’ had a meaning of user executing a one

word command ‘ig’. In the tree model sequence 𝑠1 → 𝑠1 has been replaced by 𝑠Ш →

𝑠𝑖𝑔 → 𝑠Ж . Once a state 𝑠Ж is reached user’s input is accepted and the process of

accepting user’s commands is restarted. These symbols will be made explicit during the

preprocess phase of the algorithm used to create tree data structure. This tree data

structure is latter used to make predictions. In addition k-ary tree data structures have

search complexity of 𝑂(log 𝑛), like it has been presented in [16], where 𝑛 represents

number of nodes in the tree and not the fan-out factor. This is highly pessimistic

estimate and due to the fact that we use this structure in slightly modified way,

complexity is reduced. Complexity can be further improved by adding hash maps and

by sorting children of every node. More detailed analysis on the creation of tree

representation will be presented in Chapter 4.

2.2 Hidden Markov models

 Hidden Markov models, later referred as HMM, are models of MCM stochastic

processes for which only the output of the process is observable, and the underlying

structure of the process is hidden. HMM process can be understood as a black box that

provides outputs at a given sample rate. As stated in [4] these processes can be observed

trough sequences of outputs and from these sequences estimators can be extracted.

 To cast more light on the topic of HMMs, let’s again consider example of a

man M tossing two coins 𝐶1 and 𝐶2 , full description of this example is provided in

Section 2.1. This example can be extended by adding an observer O and placing a

curtain between M and O. O cannot see what M is doing, only information available to

O is what he hears M is saying. In this version of the experiment M is saying out loud

letters ‘a’ and ‘b’ depending on the result of the toss. From O’s perspective process

behind the curtain could equally likely involve M taking a ball from an urn and saying

the label on the ball. This uncertainty of actual physical implementation of the process

is of no significance, what is important is the underlying MCM and probabilistic

transitions between MCM’s states. After spending statistically significant period of time

observing the output of HMM presented in the previous example, O can built estimate

of the HMM. In the frame of this discussion O will probably end up with the model of a

biased coin toss with probabilities 𝑝(𝑎) = 0.625 and 𝑝(𝑏) = 0.375. What is considered

to be statistically significant period of time is any time period in which enough

observations are performed. Depending on the required precision of the estimate it

Chapter 2: N-gram statistics

Milos Colic - September 2015 27

could be 100, 1000, 1000000 or any other number of tosses. What is also worth

mentioning is that O should reserve a small portion of observations as test data to be

able to compute how precise the estimate of HMM he produced is actually.

 To place HMMs in the context of the “Cryptic” language consider the second

example from the previous section, the example of a limited version of the “Cryptic”

user. For a detailed description refer to Section 2.1. This example can be modified in the

same way the coin toss example was, by placing an observer O and adding a curtain

between M and O. For visualization of this modification consult Figure 2.4. The

ongoing logic is identical as in previous case, M will speak words based on the result of

a die toss, and O will be able to hear him. As stated in the coin toss example, after a

statistically significant period of time, O will be able to construct estimates of ongoing

HMM. Assumptions made about the actual physical embodiment of the process might

not be correct but if the probabilistic attributes of such estimator tend to actual

probabilistic characteristics of the process this misconception is of no significance.

From HMM perspective, it is of no difference if M is tossing a die or he is taking balls

from urns as long as decision states and transition probabilities are the same.

Figure 2.4: Hidden Markov Model of limited version of the “Cryptic” System

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

28 Milos Colic - September 2015

2.3 N-gram statistics

 As described in [17] n-gram statistics is a model of natural languages that

captures “happens before” relation among words of a language. This model can be

considered as a special class of HMMs. To create a proper idea of n-gram best starting

point would be the unigram statistics model. Unigram model is represented by a state

set 𝑆 = {𝑠} comprising of only one state. The state transitions are all self-arcs and their

weights correspond to probability of particular outcome with no change in this

probability regardless of history of previous observations. If we reflect back on the coin

toss example and the approximation made by O that M is tossing a single biased coin

with outcome probabilities 𝑝(𝑎) = 0.625 and 𝑝(𝑏) = 0.375 , this approximation is

actually unigram model of ongoing HMM. In this case we only have one state and two

self-transitions. In this particular case it might be hard to notice difference between

results obtained by actual process and by unigram estimate.

 Let’s observe another example, this time we will consider an example from

natural language process world. Assume man M, again behind the closed curtain who is

reading Shakespeare one letter at the time, and an observer O, who is able to listen what

M is saying. Let’s assume O is not understanding the language in which M is reading.

The previous assumption restricts O from remembering that he/she might have read this

particular book at one point of his/her life. Now assume the only action O can take is to

count how many times each specific letter M has spoken, and to count the total of all

letters spoken by M during the observations. Using these values O can extract unigram

estimate of ongoing HMM process.

 The first step taken by O after completing the observation phase is to produce

maximum likelihood unigram estimates. These estimates are produced by simply

applying following formula:

 𝑞𝑚𝑙(𝑥) =
𝑐𝑜𝑢𝑛𝑡(𝑥)

𝑐𝑜𝑢𝑛𝑡(∗)
.[2.3]

In Formula 2.3 𝑞𝑚𝑙 is the maximum likelihood n-gram estimators, n-gram estimators

estimate probability of an event x occurring, count(x) is the number of observations in

which event x occurred and count(*) is total number of all observations. If O applies

previous formula to all the letters encountered in the observation phase, he will obtain

enough information to create the unigram model of the ongoing HMM. This model is

provided in Figure 2.5.

Chapter 2: N-gram statistics

Milos Colic - September 2015 29

Figure 2.5: Unigram model of a man reading Shakespeare

 Let’s consider now how O could improve his estimator. One intuitive approach

would be to assume that two successive letters are somehow correlated. Instead of just

counting how many times each character occurred O should as well count how many

times each pair of letters occurred. This strategy leads to the definition of bigram

statistics. Bigrams are computed by applying the following formula:

 𝑞𝑚𝑙(𝑥|𝑦) =
𝑐𝑜𝑢𝑛𝑡(𝑦𝑥)

𝑐𝑜𝑢𝑛𝑡(𝑦)
.[2.4]

Formula [2.4] can be understood as a fraction of cases in which given event y event x is

observed. The logic behind this extension is quite straightforward. If we take for

example that observation at step k is letter ‘a’ it is almost impossible to encounter

another ‘a’ at step k+1, since this is the case in most of the natural languages. There are

some cases (such as ‘Aaron’, ‘bazaar’, and ‘laager’) where we can encounter sequence

‘aa’, but these words appear rarely which, in fact, makes it easier to predict them. This

fact implies that what we expect next letter to be is governed by what we observe at the

current moment. A visualization of bigram model is presented in Figure 2.6. We can go

one step further and define the 3-gram, the 4-gram, and generic case of the n-gram

statistics. In case of the bigram statiscs we are interested in predicting joined appearance

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

30 Milos Colic - September 2015

of a pair of symbols, while in the case of the 3-gram statistics we are interested in

predicting joined appearance of a group of three symbols. In general the n-gram

statistics is computing the maximum likelihood probability estimate of a group of n

symbols appearing together.

 One could notice that this extension will lead to state space explosion since

moving away from unigram to bigram model will result in increasing the number of

states from one to the size of the language alphabet. The number of states increases

further in case of 3-gram, 4-gram, and in general n-gram statistics. The worst case

expected number of states for language alphabet of size m and length of n-gram statiscs

equal to n is 𝑂(𝑚𝑛), which implies that we can expect large number of states for even

realatively small lengths of n-gram. It comes as no surprise that most of the state of the

art natural language processing systems restrict the length of n-gram to a value close to

five, as it has been noted in [14-20]. Even so in the frame of this thesis discussion will

not be restricted on 4-grams and 5-grams, but kept focusing on generic n-gram models.

 As can be noticed in the definition of bigram, the recursive relation can be

observed between bigram and unigram models. This recursive relation is maintained for

any two n-gram and (n-1)-gram models. We define n-gram estimator with the following

formula:

Figure 2.6: Bigram model of a man reading Shakespear

Chapter 2: N-gram statistics

Milos Colic - September 2015 31

 𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥)

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))
.[2.5]

Where Y is a set of n-1 predecessors of x, and seq(Y) denotes temporally ordered

sequence of such predecessors. To notice the recursive relation let’s consider (n-1)-gram

estimator based on Y:

 𝑞𝑚𝑙(𝑦𝑛−1|(𝑌\𝑦𝑛−1)) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌\𝑦𝑛−1))
.[2.6]

Together with Formula 2.4 we obtain recursive relation:

𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥)

𝑞𝑚𝑙(𝑦𝑛−1|(𝑌\𝑦𝑛−1)) ∗ 𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌\𝑦𝑛−1))
.[2.7]

Alternatively, more concisely written:

𝑞𝑚𝑙
𝑛 =

𝑐𝑜𝑢𝑛𝑡𝑛

𝑞𝑚𝑙
𝑛−1 ∗ 𝑐𝑜𝑢𝑛𝑡𝑛−2

.[2.8]

This recursive behavior of n-gram estimators fortifies the choice of tree data structure

since trees are recursive structures by their nature.

 Another important observation to be stated about n-gram statistics is that of

preventing over-fitting of train data. Term train data refers to the set of all observations

of output obtained from the ongoing HMM process. An additional parameter is added to

the definition of n-gram estimator, and it is used to prevent over-fitting. The discount

factor beta is a value between 0 and 1, and it is used to reserve some of the probability

mass for not observed cases. Not observed cases will not be assigned with probability

equal to 0. Newly obtained formula for n-gram estimator is presented below:

𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥) − 𝛽

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))
, 𝛽𝜖(0.0,1.0),[2.9]

𝛼(𝑌) = ∑ 𝛽

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

,[2.10]

𝛼(𝑌) + ∑ 𝑞𝑚𝑙(𝑥|𝑌)

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

= 1.0.[2.11]

All probability mass discarded by discounting n-gram estimators is added to 𝛼 value

and this way summation of all 𝑞𝑚𝑙(𝑥|𝑌) estimators together with 𝛼 is equal to 1.0. This

fact will be important latter when notion of entropy is defined and used to determine

word separator positions inside of a command. More on this in Chapter 3.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

32 Milos Colic - September 2015

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 33

3 WORD SEGMENTATION WITH

NO LEXICON

3.1 Word segmentation and Zipf’s law

 Zipf’s law, as already stated in the introduction section, even though it is an

empirical law it describes human behavior with a surprising level of generality. This

law was defined by Zipf in 1949 in his publication “Human Behaviour and the Principle

of Least Effort” and represents mathematical representation of the Principle of Least

Effort. This principle states that humans tend to minimize their effort in every action

they take. Linguistic communication is as well an action performed by humans, and,

therefore, it is expected that this action follows the Principle of Least Effort.

 Mathematical formulation of Zipf’s law was later extended by Mandelbrot.

Mandelbrot’s formulation is more general and thus it is used more often:

𝑓(𝑟)~
1

(𝑟 + 𝛽)𝛼
[3.1]

In formula [3.1] r represents rank of the word w.r.t frequency of the word in the train

data while α and β are parameters of the probability distribution. The use of

proportionality instead of equality is explained by the fact the usually this law assumes

some normalization factor. Most often normalization factor is chosen to be equal to the

value of the sum of the harmonic series, presented in Formula 1.2.

 As explained in [7] Zipf’s law is extensively tested and used in the English

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

34 Milos Colic - September 2015

language, in which case it behaves in a highly desirable way. It captures perfectly the

fact that humans have a relatively small dictionary of words they use often. In languages

that have explicit word separation, one of such is English, Zipf’s law scales well.

However in languages that do not observe strict word separation, one of such is

Chinese, Zipf’s law observes a decrease in precision.

 We have chosen the Chinese language as a reference point as it observes some

common characteristics with the “Cryptic” language. The fact that most of the words are

comprised of just two or three characters and the fact that words are not separated in

both “Cryptic” and Chinese made this correlation as an obvious choice. In [7] authors

have conducted an extensive analysis on the applicability of the Zipf’s law in Chinese,

and the results were discouraging. Many 3-gram words (three character words) were

classified with errors due to the missing word separation. The most frequent 3-grams

were not even words in Chinese; this fact pushes the choice in word segmentation away

from the use of Zipf’s law.

 The previous result could be mitigated using a train corpus that has been

previously segmented and from this training data Zipf’s parameters can be extracted,

and then Zipf’s distribution can be used to segment the runtime data. This fact does not

bring any new quality in the case of “Cryptic” due to lack of any segmented corpus. No

“Cryptic” logs that contain segmented data are available, and thus we cannot extract

underlying Zipf’s distribution. Facilitating this solution requires major architectural

changes in the “Cryptic” system which would be a costly solution, forcing us to search

for other possible approaches to the segmentation problem.

3.2 Boundary oriented Segmentation Method

 After discarding Zipf’s law as a possible tool for word segmentation, we are

moving toward techniques based on mutual information. As already mentioned in the

introduction, mutual information is based on the following formula:

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑦𝜖𝑌𝑥𝜖𝑋 .[3.2]

Once values of X and Y are fixed this formula simplifies into:

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴, 𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
).[3.3]

This particular formula needs to be slightly modified since we assume spatial ordering

of symbols is of great significance; therefore 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) will be substituted by

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 35

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) which is defined by the following formula:

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴|𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
)[3.4]

In our case probabilities are estimated trough use of n-gram estimators denoted as

𝑞𝑚𝑙(𝑥|𝑌) where x is a symbol whose probability is of interest and Y is a sequence of its

predecessors. Put more formally rang(x) = 1 and rang(Y) = n, thus order of significance

of 𝑞𝑚𝑙(𝑥𝑘|𝑌𝑘) is defined as 𝑜(𝑞𝑚𝑙(𝑥𝑘|𝑌𝑘)) = 𝑟𝑎𝑛𝑔(𝑥𝑘) + 𝑟𝑎𝑛𝑔(𝑌𝑘). We value more

information provided by a 𝑞𝑚𝑙(𝑥𝑖|𝑌𝑖) than the information provided by 𝑞𝑚𝑙(𝑥𝑗|𝑌𝑗) if

we observe that 𝑜(𝑞𝑚𝑙(𝑥𝑖|𝑌𝑖)) > 𝑜(𝑞𝑚𝑙(𝑥𝑗|𝑌𝑗)) is satisfied. In addition Y is a spatially

ordered sequence for which it is true that 𝑌𝑖 ≺ 𝑌𝑖+1, and where ≺ represents relation

between two characters in the sequence meaning that the left operand happens

immediately before the right operand in the sequence Y.

 If we combine the definition of 𝑞𝑚𝑙(𝑥|𝑌) with the definition of mutual

information we can obtain an extended definition of mutual information adjusted for

usage in word segmentation based on n-gram statistics.

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑞𝑚𝑙(𝐵[𝑚]|𝐴,𝐵[𝑚]\𝐵[𝑚−1])

𝑞𝑚𝑙(𝐴[𝑛]|𝐴\𝐴[𝑛−1])𝑞𝑚𝑙(𝐵[𝑚]\𝐵[𝑚−1])
).[3.5]

In formula [3.5] A and B are character sequences; we can understand them as potential

prefix and suffix of the word which combined give a correct word of the language.

Values of particular interest are the negative values of 𝑚𝑖(𝑥, 𝑦) these values indicate

that x and y tend to be separated by a word separator symbol more often than to appear

grouped together inside of a word. The reason to extend character based mutual

information to string based mutual information comes from the fact that “Cryptic”

words do not follow rules of natural language words. One of such rules is the common

word root. Some words from the English language (e.g. ‘informal’ and ‘formal’) share

common root. In scope of the “Cryptic” language we can encounter words of only

limited length, on average close to three characters. If we observe words ‘jun’ and ‘jul’,

which are valid words in the “Cryptic” language, we could conclude that the common

root is ‘ju’. This conclusion would be incorrect since words in the “Cryptic” language

do not share roots because they are generated as compressed strings. Based on this fact

we can conclude that character based mutual information cannot be applied in its

original form in the case of the “Cryptic” language. On average all character pairs are

almost equiprobable therefore character based mutual information mean value would be

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

36 Milos Colic - September 2015

close to 0, meaning we would not be able to decide on word barriers.

 An interesting idea is presented in [8], and it is denoted as a boundary

condition function. Boundary condition function is based on multiple mutual

information values, and it presents an extension of the previous discussion. In this case,

we observe a concrete position in the string, and the decision to place a word separator

is made based on n-gram mutual information. Let’s define a string as a sequence of

characters:

𝑠 = 𝑐1𝑐2…𝑐𝑖𝑐𝑖+1…𝑐𝑛−1𝑐𝑛.[3.6]

Now the boundary confidence function is defined as following:

𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) = 𝑚𝑖𝑛{𝑚𝑖(𝑐𝑖−1, 𝑐𝑖),

𝑚𝑖(𝑐𝑖−2𝑐𝑖−1, 𝑐𝑖),

𝑚𝑖(𝑐𝑖−1, 𝑐𝑖𝑐𝑖+1),

𝑚𝑖(𝑐𝑖−2𝑐𝑖−1, 𝑐𝑖𝑐𝑖+1)}.[3.7]

In formula [3.7] | represents a word separator position, and L and R represent left and

right substrings of the initial string that are results of placing word separator in specified

position.

 In our solution, we propose a modification of this approach. Our proposal is

parameterized, instead of using a fixed number of comprising factors 𝑘 = 4, we allow

that value k is a variable. Another modification applied in our solution is the change of

the min{} operator with the 𝑎𝑣𝑔{} operator, which is more resilient to local contextual

minima. Indeed, if the min{} operator is chosen it may happen that the decision is

based on the mutual information between two individual characters which bares the

least contextual information while all other mutual information values might be

indicating not to place the separator in this position. Using the 𝑎𝑣𝑔{} operator this issue

is avoided; in addition, this approach can be further generalized by applying a weighted

average, in this thesis denoted as 𝑤𝑎𝑣𝑔{𝑤[𝑛], 𝑣[𝑛]} operator, where 𝑤[𝑛] represents

the list of weights corresponding to a list of values denoted as 𝑣[𝑛].

 Usage of 𝑤𝑎𝑣𝑔{𝑤[𝑛], 𝑣[𝑛]} allows the application of various weighting

strategies, the most obvious one being the strategy which defines weights based on the

size of the contexts, defined as:

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 37

𝑤𝑖 =
𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅))

𝑁𝑓
,[3.8]

𝑁𝑓 = ∑ 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅))

∀(𝐿,𝑅)

.[3.9]

Where log() represents logarithmic function with base equal to 𝑒 ≈ 2.78. We can notice

one possible undesirable behaviour when summation is used to combine strengths of

left and right contexts. Consider following equations:

 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑘) < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑘)⋀ 𝑙𝑒𝑛𝑔ℎ𝑡(𝐿𝑘) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑘) = 𝑛,[3.10]

 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑔) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑔)⋀ 𝑙𝑒𝑛𝑔ℎ𝑡(𝐿𝑔) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑔) = 𝑛.[3.11]

In this case, these two factors are weighted with the same value, while it is noticeable

that the second factor is more stable than the first one. Stability of the contexts in

Fromula 3.11 comes from the contextual information being equally balanced between L

and R. To avoid this issue the weight formula can be modified in the following manner:

 𝑤𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑡ℎ(𝐿)) ∗
𝑙𝑜𝑔(𝑙𝑒𝑔ℎ𝑡(𝑅))

𝑁𝑓
,[3.12]

𝑁𝑓 = ∑ 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅))

∀(𝐿,𝑅)

.[3.13]

In this way we firstly average the lengths of both contexts and then we weight the

comprising factors, obtaining almost a linear progression if 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅)

and a logarithmic progression if 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) ≠ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅), while maximal values are

observed in the portion of the space where 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) ≈ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅). A complete plot of

this weight function is provided in Figure 3.1.

 Another possible weighting function is the so-called exponential weighting,

usually used in the Exponential Moving Average processes in the control theory as

explained in [8]. We can observe comprising factors in the boundary condition as values

of a signal at different sample times and then use Exponential Average, later referred as

EA, to extract final indicator. EA is defined as follows:

𝐸𝐴{𝑥1𝑥2…𝑥𝑛} = (1 − 𝛼)𝑛−1𝑥1 + 𝛼∑(1 − 𝛼)𝑠𝑥𝑛−𝑠

𝑛−2

𝑠=0

.[3.14]

In our case, x sequence is ordered in increasing order of values obtained based on

formula [3.12], or more precisely:

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

38 Milos Colic - September 2015

𝑥𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑡ℎ(𝐿)) ∗ 𝑙𝑜𝑔(𝑙𝑒𝑔ℎ𝑡(𝑅)).[3.15]

As already have been explained, values obtained from this formula prioritize balanced

contexts w.r.t. to imbalanced ones. Exponential moving average processes behave

extremely desirable in highly volatile environments, meaning that it gives higher

weights to more related terms and it discriminates to less related terms. Consider an

example of the stock market, which is indeed highly volatile environment. In the case of

the stock market Exponential moving average processes consider temporarly close

events to be more related one to another and they are given higher weights. The

“Cryptic” user can also be considered as an exceedingly unpredictable system. The

commands produced by the user are governed by many factors, such as the current

economic situation in the region he operates in, desires of his clients, changes in the set

of his clients, promotions, and many other. In this case, Exponential moving average

processes would cosider contextualy close events to be more related. Additionally, in

[9] it has been shown that this strategy in producing the mean estimators, which average

value is by its intended usage, gives highly stable results w.r.t. simple arithmetic or

geometric average.

 Just for the sake of completeness we provide here the definition of geometric

average, since in [9] it has been shown that geometric and arithmetic average behave

Figure 3.1: Plot of the function 𝒇 = 𝐥𝐨𝐠(𝒍𝒆𝒏𝒕𝒉(𝑳)) ∗ 𝐥𝐨𝐠(𝒍𝒆𝒈𝒉𝒕(𝑹))

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 39

comparably in highly fluctuating environments:

𝐺𝐴{𝑥1𝑥2…𝑥𝑛} = √∏𝑥𝑖

𝑛

𝑖=1

𝑛

.[3.16]

 After this exhaustive analysis of the possible modifications to 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) we

propose a new criterion denoted as 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) , where subscript ‘wa’

denotes weighted average and 𝑤[𝑘] represents a list of weights pre-computed in one of

the possible ways (here we have explained just few possibilities, other strategies may be

possible). The complete procedure for producing this segmentation criteria is presented

below:

(𝐿, 𝑅) = 𝑐𝑜𝑚𝑏(𝑠; 𝑘, 𝑔),[3.17]

𝑥𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿[𝑖]) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅[𝑖])),[3.18]

𝑥[𝑘] = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑥[𝑘]),[3.19]

𝐿[𝑘] = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝐿[𝑘]; 𝑥[𝑘]),[3.20]

𝑅[𝑘] = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑅[𝑘]; 𝑥[𝑘]),[3.21]

𝐸𝐴{𝐿|𝑅; 𝑥1𝑥2…𝑥𝑛} = (1 − 𝛼)1 ∗ 𝑚𝑖(𝐿[𝑛 − 1], 𝑅[𝑛 − 1]),[3.22]

+𝛼∑(1 − 𝛼)𝑛−𝑠 ∗ 𝑚𝑖(𝐿[𝑛 − 𝑠], 𝑅[𝑛 − 𝑠])

𝑛−2

𝑠=0

,[3.23]

𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) = 𝐸𝐴{𝐿|𝑅; 𝑥1𝑥2…𝑥𝑛},[3.24]

𝐿[𝑘], 𝑅[𝑘], 𝑥[𝑘] should be regarded as fixed triplets, while 𝐿 and 𝑅 represent arrays of

all possible combinations of context whose combined length are equal to k, and 𝑥

represent corresponding sorting criterion, since EA is sensitive to sorting order. In

addition 𝑐𝑜𝑚𝑏() produces all possible context combinations up to a combined length

equal to k, extracted form the string s. Position g represents a hypothesis that the word

separator will be placed at this position in the string s. Detailed visualization of this

procedure is provided in Figure 3.2. In Formula 3.18 we apply previously defined

contextually balance logarithmic function. We proced on by sorting triplets

(𝐿[𝑘], 𝑅[𝑘], 𝑥[𝑘]) in Formulas 3.19-3.21. This sorting can be understood as sorting with

respect to the joined contextual information of terms 𝐿[𝑘] and 𝑅[𝑘]. Finally in Formula

3.23 we compute the Exponential average of each triplet while prioritizing longer and

balanced contexts.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

40 Milos Colic - September 2015

Figure 3.2: Process of incrementally increasing left and right context

We use 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) as follows:

𝑖𝑓𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘])𝜖[−1,1]𝑡ℎ𝑒𝑛𝑤𝑒𝑐𝑎𝑛𝑡𝑑𝑒𝑐𝑖𝑑𝑒, 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖𝑠𝑖𝑔𝑛𝑜𝑟𝑒𝑑

𝑖𝑓𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) > 1𝑡ℎ𝑒𝑛𝑛𝑜𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑

𝑖𝑓𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) < −1𝑡ℎ𝑒𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑

The logic behind using this criterion is identical to the usage of 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) described

in [3]. Actually 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) is a restriction of 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]), if we set weight

in such way that:

𝑘 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑖𝑛{𝑚𝑖(𝐿[𝑗], 𝑅[𝑗])}),[3.25]

𝑥[𝑖] = {
0, 𝑖 ≠ 𝑘
1, 𝑖 = 𝑘

,[3.26]

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 41

𝛼 = 0,[3.27]

𝑘 = 2.[3.28]

𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) will produce identical results as 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅); in our system we

use more general criterion provided by 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]).

3.3 Entropy-oriented segmentation method

 Another possible approach to word segmentation without an available

dictionary is based on the entropy values of individual characters in a sequence. It has

been shown in [10] that characters belonging to a word observe a decrease in the

entropy value as more context is present. Here entropy value corresponds to the

probability distributions of possible successors of a particular character. Therefore,

entropy should be considered as a monotonically decreasing function inside of the word

boundaries. An illustration of an example taken from the English language is presented

in Figure 3.3.

 The starting point to present this idea in more formal way is the definition of

conditional entropy:

𝐻(𝑋|𝑋𝑛) = − ∑ 𝑝(𝑋𝑛 = 𝑥𝑛)

𝑥𝑛𝜖𝜒𝑛

∗∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛)𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[3.29]

Where 𝜒 represents the set of elements, in our case the set of characters and 𝜒𝑛

represents n-gram sequences produced from 𝜒. If the value of interest is conditional

entropy for a given fixed n-gram sequence, or in other words, for a given fixed context,

the previous formula simplifies into:

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) = −∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[3.30]

Based on the previous observation which states that entropy function is monotonically

decreasing while inside of the word boundaries, can be applied to conditional entropy as

well. Stated in more formal way, if we have a n-gram sequence 𝑥𝑛 of length 𝑛 and

another n-gram sequence of length 𝑛 + 1 denoted as 𝑥𝑛+1 while 𝑥𝑛 is a prefix of 𝑥𝑛+1,

the following condition holds in most common cases:

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

42 Milos Colic - September 2015

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) > 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛+1).[3.31]

 The cases in which this condition does not hold are usually words with same

roots where we can observe an increase in entropy if a large number of words share the

same root in the training corpus. Many words sharing the same root is not an alarming

issue since, from the “Cryptic” language perspective, the majority of words are made

from two to three characters and thus speaking of word’s root holds no significance.

Cases in which this does occur in the “Cryptic” language may be the first or second

names of a passenger, however, as previously have been stated, these are one time

words and usually have no statistical significance. Moreover, the intention of using n-

gram statistics in the scope of this system is for prediction and correction. From auto-

completion and auto-correction perspective, it is obvious that if the decision is reached

in two steps instead of one it does not produce any complications. These considerations

fortify the fact that perfect word segmentation is not needed, but it is desirable. It is

worth noticing that, too liberal word segmentation, meaning too many missing

separators, may lead to issues. On the other hand, too aggressive segmentation, meaning

there are false positive separators, even though not optimal, is not creating any major

issue.

 In the original version of the criterion (proposed in [10]) word boundaries are

decided based on complete n-gram for every sentence; in our case sentence is equal to a

command. This criterion, as previously have been stated, is based on the monotonicity

Figure 3.3: Principle of entropy monotonicity inside of word boundaries

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 43

of conditional entropy; indeed, conditional entropy is monotonically decreasing while

inside of word boundaries. This fact implies that if we observe an entropy increase

between two consecutive characters, or more precisely between two n-gram sequences

𝑥𝑛 and 𝑥𝑛+1 where 𝑥𝑛 is a prefix of 𝑥𝑛+1, this observation indicates the position of a

word separator. Visualization of this principle is presented in Figure 3.3.

 In our solution, we use both this initial version and our modification of this

approach. The proposed modification is based on the notion of sliding context; we

average conditional entropy value based on all possible n-gram sequence of length up to

𝑘 which is a parameter of the criterion. Averaging approach follows the same logic as

already explained in Section 3.2. It is extremely similar to the 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘])

with a difference in the fact that in this case the decision is based on monotonicity of

entropy while in case of 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) the decision was based on mutual

information. We formally define this criteria as follows:

𝑦𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖)),[3.31]

𝑦 = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑦),[3.32]

𝑥 = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑦; 𝑥),[3.33]

𝐸𝐴{𝑥1𝑥2…𝑥𝑛} = (1 − 𝛼)𝑛 ∗ 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛)

+𝛼∑(1 − 𝛼)𝑠 ∗ 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛−𝑠),

𝑛−1

𝑠=1

 [3.34]

𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) = 𝐸𝐴{𝑥1𝑥2…𝑥𝑛},[3.35]

where 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) denotes Entropy Condition with weighted average for maximum

length of context equal to 𝑘 . A visualization of the application of this criteria is

presented in Figure 3.4. This approach takes into account all possible context up to

length of 𝑘 then averages among these context to get an indicator of existence or non-

existence of separator in the position at hand. For example, let’s assume we are

interested in finding out whether there is a boundary or not after sequence ‘anpar’ in

“Cryptic” command. In this case we compute conditional entropy for contexts ‘anpar’,

‘npar’,’par’, ‘ar’, and ‘r’ while giving them weights which prioritize longer contexts.

Strategies for weighting contexts are dealt with in more details in Section 3.2. This way

we allow dispersion of decision criteria throughout complete corpus. We are using

weighted average as operator to avoid one particular context’s dominance. The only

case in which one context can dominate the weighted average is if it is the longest

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

44 Milos Colic - September 2015

context and its value is by far greater than the other values. In that case enough

information is presented in the longest context, so it is desirable that this factor affects

decision.

3.4 Majority voting boundary decision

 Now that both 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) and 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) have been defined

we can propose the final definition of the word boundary decision criterion. In our

solution the decision criterion is based on majority voting among many individual

criteria. All individual criteria are based either on 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) or

𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) or in the simplest case just on the value of 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛). At current

state of the solution the decision is based on the following individual criteria:

 𝐸𝐶𝑚𝑎𝑥(𝑘)

 𝐸𝐶𝑚𝑖𝑛(𝑘)

 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘])

 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘])

Figure 3.4: Process of incrementally increasing context used for entropy

computation

Chapter 3: Word segmentation with no lexicon

Milos Colic - September 2015 45

 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘])

 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘])

 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛)

 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛)

 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘])

 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])

Each individual indicator participates in the voting procedure by giving one vote point,

once all points are collected for a particular position a decision is made by the following

rule:

𝑖𝑓𝑣[𝑖] ≥
𝑛

2
𝑡ℎ𝑒𝑛𝑝𝑙𝑎𝑐𝑒𝑎𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑜𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

𝑒𝑙𝑠𝑒𝑛𝑜𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑜𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠

𝑖𝜖[0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑚𝑚𝑎𝑛𝑑)]

 Another possible approach is that instead of equal voting procedure we use

priority based voting procedure. In Chapter 7, which deals with validation and

performance, we have conducted performance measurements of each segmentation

criteria and ranked them in order of decreasing performance. Once ranking of individual

criteria is obtained ranked voting gives increasing vote power with increasing rank. This

way we prioritize decisions made by more precise criterion while two or more

combined criteria can overpower decision of higher rank criterion. All other features of

voting are the same; we still need more than half total votes to make a decision of

placing word separator.

 To finalize the discussion on word segmentation, we will explain the notation

used for listing all individual indicators and explain the meaning of each one of them.

𝐸𝐶𝑚𝑖𝑛(𝑘) and 𝐸𝐶𝑚𝑎𝑥(𝑘) represent simplifications of weighted average approach to

max and min operators, as previously stated in Section 3.2., this simplification can be

understood as setting all weights to 0 and for min/max setting the weigh to 1.

 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) and 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘]) represent weighted average based on

logarithmic length of n-gram sequence and exponential average based on logarithmic

length of n-gram sequence respectively, as explained in Section 3.3. While

𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]) and 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]) represent same indicators just applied on reversed

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

46 Milos Colic - September 2015

data (letter b comes from the word backward). Reversed context may as well bring

interesting new information in some cases where words appear only toward the end of

the commands in these cases forward context bring less information than backward

indicators since more probability mass is contained in backward indicator therefor

entropy indicator is more stable.

 On the other hand 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])and 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) represent

indicators based on mutual information function as explained in Section 3.2. These two

indicators do not have backward versions since initially they take into account both pre-

context and post-context, reversing the data will lead to the more or less identical results

and therefore bias the voting procedure, since almost the same information will be

counted twice.

 Lastly, we have two indicators based on full n-gram of every command and the

entropy monotonicity extracted from this n-gram. These two indicators are denoted as

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) ans 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛) corresponding to forward and backward train data

respectively. Procedures for extracting forward and backward indicators do not differ in

any aspect, only difference is observed in data pre-processing when train data is

reversed and given to the same algorithm twice, which will produce two different

indicators from two different data samples.

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 47

4 N-GRAM TREE DATA

STRUCTURE

 After the notions of n-gram statistics and word segmentation have been

established, we can place these concepts in the frame of the “Cryptic” language.

Starting point should be the command start symbol denoted as Ш. Train data provided is

in the form of user logs of the “Cryptic” command line system. Every line in the log

represents one correct command issued at a particular time by a user U. It is important

to stress out that incorrect commands are discarded in the acquisition of data logs since

incorrect commands can bias predictors toward suggesting the user to input errors

which is the undesired behavior. Symbol Ш is an implicit symbol that represents the

start of every command. This particular symbol is important since it can be considered

as a root of a tree data structure that will capture n-gram relations between symbols in

the U’s data logs.

 Commands in the logs can be considered as symbol sequences whose

probability is defined as:

𝑃(𝑠𝑖𝜖𝑆) = 𝑝(𝑠𝑖|Ш, 𝑠1, 𝑠2, … , 𝑠𝑖−1),[4.1]

where S denotes a symbol sequence that represents a valid command in the “Cryptic”

syntax, 𝑠𝑖 denotes any symbol in this sequence and Ш is the beginning of any

command. If we compare previously stated probability measure with n-gram probability

measure:

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

48 Milos Colic - September 2015

𝑃𝑛(𝑠𝑖𝜖𝑆) = 𝑝(𝑠𝑖|𝑠𝑖−𝑛, 𝑠𝑖−𝑛+1, … , 𝑠𝑖−1).[4.2]

It is obvious that n-gram probability measure is just fixed history length restriction of

the probability measure presented in Formula 4.1.

 In this thesis we propose various types of n-gram statistics based tree structures

that are used for different purposes:

1) Character level n-gram tree with fixed root symbol, root symbol is Ш

2) Character level n-gram tree with context-free root, root symbol is Џ

3) Word level n-gram tree

4) Command level n-gram tree

Case 1 is constructed based on Formula 4.1, while cases 2, 3 and 4 are constructed

based on Formula 4.2. Firstly let’s concentrate on shared attributes of these four types

of trees and then the discussion will move on describing particularities of each

individual type.

 The construct of a node is the same in all cases. Every node in a tree has as the

attribute value of n-gram probability estimator. Based on the depth of the node position

in the tree we can deduce the length of the context, for the node at depth k we have k-2

meaningful predecessors since the root bares no contextual information. In addition to

n-gram probability estimator, every node contains as well a total probability estimator.

This estimator takes into account the probability of a complete path that leads to this

concrete node. Another two paramount values are entropy value and alpha value.

Entropy value is computed w.r.t. to Shanon’s entropy definition and it is explained in

details in Chapter 3. Alpha value contains ‘missing’ probability mass for every node in

the tree, missing mass refers to the portion of probability mass discarded with

discounting n-gram estimators defined in details in Section 2.3.

 What is important from the perspective of the tree structure is the organization

of node’s children. To facilitate fast maximum likelihood search, children of every node

are ordered with respect to the probability estimate value, or more precisely to the value

of n-gram estimators. In addition to this ordering, every node contains a hash map of its

children, this extension provides constant time search in the tree for any random path.

 As we have previously established, every command has implicit start symbol

denoted as Ш. In this case the root of the n-gram tree data structure will be labeled with

Ш symbol, and this will be the starting point in the construction of the data structure.

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 49

The estimator of the root probability will be set to 1.0 since there is no uncertainty of Ш

appearing in the command. Once root node is formed, the first level of n-gram tree is

computed. The first level of n-gram tree represents probability estimates of the first

characters in the command. Nodes from the first level of the tree can be considered as

bigram estimators:

𝑝2(𝑠) ≅ 𝑞𝑚𝑙2(𝑠) =
𝑐𝑜𝑢𝑛𝑡(Ш𝑠)

𝑐𝑜𝑢𝑛𝑡(Ш)
.[4.3]

Every further level of the tree represents estimation of probability of the 𝑖𝑡ℎ symbol in

the command symbol sequence:

𝑝2(𝑠𝑖|𝑆) ≅ 𝑞𝑚𝑙2(𝑠𝑖|𝑆) =
𝑐𝑜𝑢𝑛𝑡(Ш𝑆𝑠𝑖)

𝑐𝑜𝑢𝑛𝑡(Ш𝑆)
.[4.4]

Where S denotes prefix string of length i and 𝑠𝑖 denotes symbol at the position i. This

concept can be considered as a spatial restriction of n-gram statistics, where n-gram of

history length i is taken into account only for 𝑖𝑡ℎ character.

 One important part of the tree creation algorithm is that every node contains an

array with occurrence positions in the train data. Using the occurrence array enables

traversing the train data in more economic way; train data is not traversed completely

for every node, just the parts of train data that satisfy provided context are visited.

 Another approach with same complexity is that of FP trees construction

algorithm. As stated in [21], every sequence encountered in train data is added as a path

in FP tree. If nodes corresponding to n leftmost symbols in the symbol sequence are

already present in the tree, their counters are incremented. After prefix part of the

sequence is processed; at (n+1)th node new branch will be created and the rest of the

sequence will result in newly created nodes with counters set to 1. The approach applied

in this thesis is not significantly different since it will result in the same tree, the

difference is that FP tree approach is depth-first creation, while approach applied in our

solution is breadth-first approach.

 Why the decision made was in favor of breadth first creation strategy is

reflected in the fact that entropy values computed at each node requires all children’s

parameters to be available, as well as the alpha values. With depth-first creation

strategy, we would firstly need to create the complete tree, then run the algorithm for

computing the parameters of the fully expanded tree. Asymptotically, number of

operations is the same in both cases; in our implementation we have a smaller constant

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

50 Milos Colic - September 2015

multiplying the complexity. Our approach results in faster runtime, but also in more

memory consumption, i.e., memory allocated to occurrence positions of each n-gram in

the training corpus. In this particular implementation we are more concerned with

running time than with memory consumption, due to the fact that the “Cryptic” system

is run on state of the art servers, and therefore memory restriction is of less significance.

 As previously stated in Section 2.3 n-grams are usually used for values of n

close to 4 or 5, here we are not restraining the value of n, and the context is explored till

maximal depth. In this case value of n goes until the value of command’s length, or

more precisely until symbol Ж, is encountered. This particular tree is not used at

runtime nor for actual predictions in auto-complete nor auto-correct capabilities. This

tree is used in word segmentation procedures, one of segmentation criteria is based on

fully expanded n-gram tree and entropy values, this particular word boundary criteria is

explained in more details in Section 3.3. Visualization of such tree structure is provided

in Figure 4.1.

 One important thing to be added is that discounting factor 𝛽 and the 𝛼 value

affect entropy value of each node. As previously stated in Section 2.3 n-gram estimators

are computed with discount factor 𝛽 and in accordance with the following formula:

𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥) − 𝛽

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))
, 𝛽𝜖(0.0,1.0),[4.5]

𝛼(𝑌) = ∑ 𝛽

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

,[4.6]

𝛼(𝑌) + ∑ 𝑞𝑚𝑙(𝑥|𝑌)

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

= 1.0.[4.7]

From equations [4.5-4.7] it becomes obvious that small portion of probability mass is

not assigned to any of the children, but it is reserved for generalization purpose, or more

precisely it is assumed to be assigned to cases not encountered in the training corpus.

This probability mass is accumulated in the 𝛼 value. 𝛼 value can be understood as an

additional implicit child of every node which affects value of the entropy for each node.

This fact implies that formulae provided for 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) and 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵)

need to be modified to take into account this missing probability mass.

 Firstly, let’s consider 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) since it is a more simple case, this value

is computed in accordance with the following formula:

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 51

Figure 4.1: Example of character level n-gram tree with fixed root symbol set to Ш

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

52 Milos Colic - September 2015

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) = −∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[4.8]

This particular formula, when applied onto n-gram tree structure, assumes that 𝜒

represents the set of the children of the concrete node for which the entropy value is

computed. In addition it assumes that the context denoted as 𝑥𝑛 represents full path till

the root of the tree. To facilitate easy search of ancestral paths backward pointers

toward the node’s parent is added in the node construction. What is clear in this

situation is that computed entropy value is not complete since the 𝛼 value is missing

from the entropy; proposed modification is simple, and it is presented in the following

formula:

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) = −𝛼(𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝛼(𝑋𝑛 = 𝑥𝑛))

−∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

= −𝛼(𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝛼(𝑋𝑛 = 𝑥𝑛))

−∑𝑞𝑚𝑙(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑞𝑚𝑙(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[4.9]

Where 𝛼(𝑋𝑛 = 𝑥𝑛) univocally denotes each individual node by its full path in the tree.

This is a small modification, but extremely important due to possibility of applying tree

pruning w.r.t. the count value or w.r.t. the confidence level (n-gram probability

estimate). In that case 𝛼(𝑋𝑛 = 𝑥𝑛) will hold probability mass of the pruned tree

branches.

 The mutual information function, denoted as 𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵), also needs a

revision due to the presence of 𝛼(𝑋𝑛 = 𝑥𝑛) . The initial formulation of the mutual

information function is stated as follows:

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴|𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
).[4.10]

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 53

Figure 4.2: Visualization of additional linkage between nodes with the same label

One can notice that this particular definition is based on total probabilities 𝑝(𝑥 = 𝐴,

𝑦 = 𝐵) , 𝑝(𝑥 = 𝐴) and 𝑝(𝑦 = 𝐵) , which are not available in our particular data

structure. To avoid this issue our data structure is enhanced by horizontal pointers that

connect all nodes with the same label, visualization of this enhancement is presented in

Figure 4.2. What is extremely important to be stated is that total probability of any

particular symbol is affected by the missing probability mass in the tree, or more

precisely by every 𝛼(𝑥𝜖𝑥𝑛) . The total probability of any particular symbol is then

defined by following formalism:

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

54 Milos Colic - September 2015

𝜑(𝑥) = {𝑥𝑛|𝑥 = 𝑥𝑛[𝑛]},[4.11]

𝛿(𝑥𝑛) = ∑ (
𝑝(𝑥𝑖)𝛼(𝑥𝑖)

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

,[4.12]

𝑘 = 𝑠𝑖𝑧𝑒𝑂𝑓(𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡),[4.13]

ℎ(𝑥𝑛) = 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶(𝑥𝑛[𝑛])),[4.14]

𝑔(𝑥 = 𝐴) = 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴)

(𝑝(𝑋 = 𝑥𝑛) + 𝛿(𝑥𝑛)),

= 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴)

[∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑖)

𝑥𝑖𝜖𝑥𝑛

+ ∑ (
𝛼(𝑥𝑖)∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑗)𝑥𝑗𝜖𝑥𝑖

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

].[4.15]

Where 𝐶(𝑥𝑛[𝑛]) denotes function that returns the set of children whose parent is the last

node in the sequence 𝑥𝑛, and 𝑥𝑛[𝑛] denotes a last element of the sequence. By applying

this formalism 𝛼(𝑥𝑛) value is equally divided among all not encountered symbols. If a

particular symbol of interest is not found in node’s children then that node’s 𝛼(𝑥𝑛)

value portion corresponding to the symbol of interest is added to total probability of this

particular symbol. Missing probability mas of a sequence 𝑥𝑛 is denoted as δ(𝑥𝑛); this

value is computed as sum of n possible missing paths, where n is the length of the

sequence. Let’s assume that the prefix of the sequence 𝑥𝑛, with the length equal to k,

has been matched. A portion of the 𝛼 value of the last node in the prefix path should be

considered as a missing probability mass of the sequence 𝑥𝑛. We can observe that there

are n such prefixes and each of them should be taken into account. In addition observed

propability mass of the sequence 𝑥𝑛 is computed as a product ∏ 𝑞𝑚𝑙(𝑥𝑖)𝑥𝑖ϵ𝑥𝑛
; this is

clear choice since 𝑞𝑚𝑙(𝑥𝑖) represents an estimate of the probability of each symbol in

the sequence. It is worth mentioning that more complex division techniques could be

applied for partitioning the 𝛼(𝑥𝑛) value. Since this is expected to be just a small

portion of probability, a uniform division strategy is reasonable choice, but if one would

decide to assume Gaussian distribution this would as well be a reasonable choice. We

have restrained ourselves to the choice of uniform division of 𝛼(𝑋𝑛) value.

Visualization of technique performed for estimating value of δ(x𝑛) is presented in

Figure 4.3. (Note that in visualizations of the tree structures some nodes are colored in

light gray, these nodes represent nodes of the matched path.)

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 55

Figure 4.3: Visualization of generating δ(x_n) based on α value of each node in the

path of interest

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

56 Milos Colic - September 2015

 This is not enough to unbias total unconditional probability, we also need to

perform similar modification for the 𝑝(𝑥 = 𝐴|𝑦 = 𝐵) term. The underlying formalism

is stated bellow:

𝜑(𝑥|𝑦) = {𝑥𝑛|𝑦 = 𝑥𝑛[𝑛 − 1]⋀𝑥 = 𝑥𝑛[𝑛]},[4.16]

𝛿(𝑥𝑛) = ∑ (
𝑝(𝑥𝑖)𝛼(𝑥𝑖)

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

,[4.17]

𝑘 = 𝑠𝑖𝑧𝑒𝑂𝑓(𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡),[4.18]

ℎ(𝑥𝑛) = 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶(𝑥𝑛[𝑛])),[4.19]

𝑔(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴|𝐵)

(𝑝(𝑋 = 𝑥𝑛) + 𝛿(𝑥𝑛)),

= 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴|𝐵)

[∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑖)

𝑥𝑖𝜖𝑥𝑛

+ ∑ (
𝛼(𝑥𝑖)∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑗)𝑥𝑗𝜖𝑥𝑖

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

].[4.20]

Now that this formalism have been established, a modified 𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) is

defined as follows:

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑔(𝑥 = 𝐴|𝑦 = 𝐵)

𝑔(𝑥 = 𝐴)𝑔(𝑦 = 𝐵)
).[4.21]

Following the same logic, extensions can be provided in the cases of A and B being

sequences of symbols, the only differences are in the definitions of the set 𝜑. The set 𝜑

has been redefined in order to capture the fact that x is conditioned by y. In addition, the

mutual information function is defined in slightly different manner:

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑞𝑚𝑙(𝐵[𝑚]|𝐴, 𝐵[𝑚]\𝐵[𝑚 − 1])

𝑞𝑚𝑙(𝐴[𝑛]|𝐴\𝐴[𝑛 − 1])𝑞𝑚𝑙(𝐵[𝑚]|\𝐵[𝑚 − 1])
).[4.22]

This case represents an extension of the previously defined mutual information

function. The extension is observed in the fact that conditional part of probability

estimator is a sequence of symbols while up until now we considered only the case

where conditional part was a single symbol. To facilitate this extension we need to

redefine 𝑔(𝑥 = 𝐴| 𝑦 = 𝐵) in the following manner:

𝜑(𝑥|𝑌𝑛) = {𝑥𝑚|(⋀ 𝑌𝑛[𝑛 − 𝑖] = 𝑥𝑚[𝑛 − 𝑖 − 1]𝑛
𝑖=1)⋀𝑥 = 𝑥𝑛[𝑛]},[4.23]

𝛿(𝑥𝑛) = ∑ (
𝑝(𝑥𝑖)𝛼(𝑥𝑖)

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

,[4.24]

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 57

𝑘 = 𝑠𝑖𝑧𝑒𝑂𝑓(𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡),[4.25]

ℎ(𝑥𝑛) = 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶(𝑥𝑛[𝑛])),[4.26]

𝑔(𝑥 = 𝐴|𝑦 = 𝐵𝑛) = 𝑚𝑎𝑥
𝑥𝜖𝜑(𝐴|𝐵𝑛)

(𝑝(𝑋 = 𝑥𝑛) + 𝛿(𝑥𝑛))

Figure 4.4: Complete visualization of n-gram tree data structure

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

58 Milos Colic - September 2015

= 𝑚𝑎𝑥
𝑥𝜖𝜑(𝐴|𝐵𝑛)

[∏ 𝑞𝑚𝑙(𝑋 = 𝑥)

𝑥𝜖𝑥𝑛

+ ∑ (
𝛼(𝑥𝑖)∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑗)𝑥𝑗𝜖𝑥𝑖

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

],[4.27]

where we assume that the conditional part can be a sequence while conditioned event

can only assume the value of a single symbol. This particular restriction is in

accordance with the use of 𝑔(𝑥 = 𝐴|𝑦 = 𝐵𝑛) and therefore we do not lose generality.

After redefinition of 𝑔(𝑥 = 𝐴|𝑦 = 𝐵𝑛) we have obtained all needed comprising parts of

mutual information function and we are able to redefine it as:

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑔(𝐵[𝑚]|𝐴, 𝐵[𝑚]|/𝐵[𝑚 − 1])

𝑔(𝐴[𝑛]|𝐴/𝐴[𝑛 − 1])𝑔(𝐵[𝑚]|𝐵/𝐵[𝑚 − 1])
).[4.28]

 To facilitate all redefined concepts, our tree structure has been modified by

adding horizontal linkage between nodes labeled with the same symbol. In addition

backward linkage is added to facilitate fast search of set 𝜑 and 𝛿value, whose search

complexity are in the worst case O(|𝜑| ∗ |𝑌𝑛|) and O(|𝛿| ∗ |𝑌𝑛| ∗ max
∀𝑥𝜖𝜒𝑛+1

{𝐶(𝑥[𝑛])})

respectively. Here 𝜒𝑛+1 represents all possible paths in the tree data structure of length

equal to 𝑛 + 1 . Complete visualization of tree data structure used in this thesis is

provided in the Figure 4.3. It is obvious that there are many additional pointers present

in the data structure. Motivation behind usage of each individual additional pointer is

provided throughout this section. Moreover, it is obvious that additional backward and

horizontal linkage are dominated by links toward children. Inclusion of additional hash

map has approximately same data consumption as list of children; therefore this is only

a constant increase in memory consumption.

 Character level n-gram tree with context-free root is created in an almost

identical manner as it has been the case with character level n-gram tree with fixed root

symbol set to Ш. In this particular instance root symbol is set to Џ. Symbol Џ in the

scope of this thesis represents a universal symbol, meaning that this symbol is equal to

any other symbol from the alphabet. Once we have imposed this condition, it becomes

clear that this particular tree should observe depth limit. We denote depth limit as 𝑛,

meaning that node at level 3 represents 3-gram estimator, node at level 4 represents 4-

gram estimator and maximal is k-gram estimator where 𝑘 = 𝑛. This tree represents a

more conventional approach to n-gram estimators, as already stated in introduction,

where, on average, and in state of the art natural language processing we encounter up

to 5-gram estimators not more.

Chapter 4: N-gram tree data structure

Milos Colic - September 2015 59

 Character level n-gram tree with context-free root is used both in word

segmentation procedures and, at runtime, as an underlying data structure in auto-

complete and auto-correct capabilities, more on them in Chapters 5 and 6. All additional

conditions that are valid for character level n-gram tree with fixed root symbol are valid

for character level n-gram tree with context-free root. More precisely, modification

imposed on mutual information function and entropy function are as well applied in the

case of character level n-gram tree with context-free root. Also, the horizontal and

backward linkage are likewise present, as well as a hash map of children for each node.

This particular data structure is used in 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) and 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) and

also in the cases where we apply exponential weighting or backward train data.

 Once we have performed word segmentation based on the majority voting

procedure, which uses both character level n-gram tree with context-free root symbol

and with fixed root symbol, we can construct word level n-gram tree. The word level n-

gram tree is based on the notion of words as labels instead of individual characters.

Construction assumes context-free root symbol, which, in this case, represents the

universal word. The depth of this particular tree is parameterized with maximal depth as

it was the case with character level n-gram tree with context-free root, so the maximal

n-gram estimator is k-gram where 𝑘 = 𝑛.

 Lastly, after word segmentation is performed, we can extract command ids

from the train data. Ability to extract command ids easily comes from the fact that the

“Cryptic” language is a pre-order language, and thus all the first words are identifiers of

individual operations performed at each sample time. Every command starts with a

special start symbol denoted as Ш, and in word segmentation it has been explicitly

stated that Ш is treated as a word of the “Cryptic” language. Following this fact,

command ids are always encountered as second words in each command. If we discard

all other words except start word containing only symbol Ш, ending word containing

only Ж , and command id word, we obtain the command sequence train corpus.

Visualization of this procedure is provided in Figure 4.5.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

60 Milos Colic - September 2015

Figure 4.5: Modifying train corpus by removing all words except command

identifiers

 Based on this modified train data we can construct command level n-gram tree,

which differs from word level n-gram tree only in the performed modification of the

train data. Command level n-gram tree is used to predict which particular command user

will type at each moment. This prediction is used to navigate in word level n-gram tree,

more on this in Chapters 5 and 6.

Chapter 5: “Cryptic” auto-complete

Milos Colic - September 2015 61

5 “CRYPTIC” AUTO-COMPLETE

 “Cryptic” auto-complete capabilities are based on the character level n-gram

tree with context-free root (further referred as CHT) and the word level n-gram tree

(further referred as WRDT), with addition that the command level n-gram tree (further

referred as CMDT) can be used to predict future commands. Each of these particular

data structures is used at a specific moment to provide more flexible predictions. As we

have explained in Chapter 4, the children of each tree node are sorted in decreasing

order of 𝑞𝑚𝑙, from this fact emerges that depth first search of the n-gram tree provides

maximum likelihood prediction, since all left most children observe highest values of

probability estimations.

 Due to different treatment of train data CHT and WRDT provide somewhat

different estimates, and we combine their outputs to provide the final prediction

presented to the user. Since all children of a particular node are ordered w.r.t the

decrease of 𝑞𝑚𝑙 value, maximum likelihood prediction is actually just the leftmost path

that matches the current user’s input. It could happen that a path that matches current

user’s input does not exist; in this case we firstly apply auto-correct on partial user’s

input and on corrected input we apply auto-complete. Auto-correct capability is

explained in details in Chapter 6.

 CHT is used in a similar manner as it was the case with word segmentation.

We can understand this as a window of length 𝑛, where 𝑛 represents depth of n-gram

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

62 Milos Colic - September 2015

tree, that slides over the user’s input and provides prediction of how to complete the

current word. It is required to be stated that after word segmentation is performed, CHT

is restructured to be used at runtime. Reconstruction assumes that CHT is responsible

for character level predictions inside of word boundaries, so the stopping condition is

not the end of the command but a word delimiter, and the starting symbol is set to word

delimiter as well. This way CHT is able to complete current word.

 Once we obtain current word completion, we can finalize prediction of current

command by consulting WRDT data structure. Prediction procedure is conceptualized

as search for the word sequence that contains command end word while the total

probability accumulated in this sequence is maximized. Once such sequence is

encountered the final prediction is provided to the user. It is worth mentioning that we

observe prefix matching while we are computing prediction. Current input is firstly

segmented into words. Then this list of words is considered as a prefix list that must be

matched and, based on that path, a prediction is provided as the leftmost path till the

command end word. Since WRDT is a tree with fixed depth, it could happen that the

number of words inside of the command is larger than the actual depth of the tree.

Depth misalignment is not likely for WRDT with the depth approximately equal to 5.

However, depth misalignment could happen due to the imperfection of word

segmentation technique and the fact that the number of actual words is on average

smaller than the number of words in data produced by segmentation algorithm.

 As it has been shown in Figure 5.1, if we were to find prefix matched path

from which we cannot extract a path that ends with the command end word, we could

apply once again sliding technique. Prefix will slide for one position to the right; the

search will be performed again based on newly obtained maximum likelihood prefix

path. The search will be continued until the command end word is encountered. It is

obvious that in the “Cryptic” language settings there are many sources of noise in the

prediction; this implies that prediction precision might be hindered by some factors such

as sliding technique. On the other hand, n-gram trees exponentially explode with the

increase of depth, especially in case of context-free root symbol, so in this particular

instance we need to keep depth bounded to a reasonable value. Another source of

imperfections comes from the tree pruning procedure. Tree pruning is necessary

because many commands are encountered only one or two times, and these words are

statistically insignificant. However, these words can increase the size of data structure

significantly on average.

Chapter 5: “Cryptic” auto-complete

Milos Colic - September 2015 63

 Finally, CMDT can be used in the case when user have not started typing the

current command. At this particular moment user’s current input is comprised of only

the implicit start symbol. The best word prediction we can extract from CHT or WRDT

might lead into a situation where the prediction provided to the user is a command that

is not following the logical flow of commands. From CMDT, we can extract maximum

likelihood estimate of command id w.r.t. to the observed flow of previous commands

issued by the user. By using CMDT at this step, we provide to the user a word that is

actual maximum likelihood estimator of the current command, even if there is another

word in WRDT which has higher value of 𝑞𝑚𝑙. Once user actually starts to type we use

CHT to predict the word that is being typed, and when we obtain prediction we consult

CMDT dictionary to test if the word is actually a command identifier, if this is not the

case then we perform auto-correct and on corrected input we predict the current

command.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

64 Milos Colic - September 2015

Figure 5.1: Principle of sliding context in auto-completion procedure

Chapter 6: “Cryptic” auto-correct

Milos Colic - September 2015 65

6 “CRYPTIC” AUTO-CORRECT

 Auto-correct feature of the “Cryptic” language is based on the character level

n-gram tree with a context-free root (further referred as CHT), the word level n-gram

tree (further referred as WRDT) and the command level n-gram tree (further referred as

CMDT). As it has been presented in Chapter 5, the auto-correct functionality is used in

the auto-complete functionality as a smoothing technique, when there is an indication

that the input is malformed. In addition, we always test user’s input for errors and

provide additional predictor with corrected input that observes an increase in probability

value, even when there is no indication of typographical mistakes. Both auto-complete

and auto-correct outputs are presented to the user, and he can decide which one, if any,

is the correct prediction.

 When the user has not started typing, input is comprised only by the start

symbol. At this moment, the auto-correction output is extracted from CMDT, and this

output is identical to the one provided by the auto-completion procedure. Once the user

starts typing, his input becomes a string that we desire to correct. Firstly, this input is

segmented using the same functionality used in word segmentation phase. If the input

consists of only two words, the first word is always the command start word, and we

use CMDT to facilitate the correction procedure.

 As presented in Figure 6.1, the first important step is to match the command

pattern in CMDT. Command pattern is based on from user session command history.

For pattern matching purpose, we use the longest common subsequence relation.

Maximization of the longest common subsequence is equivalent to minimization of edit

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

66 Milos Colic - September 2015

distance between two command sequences. This way we do not enforce perfect match

as long as sequences observed in CMDT are encountered in user session history in same

order. N-gram relations, in the case of command identifiers, can be understood as

“happens before” relations that allow other commands to occur in between observed

commands. More precisely, if we are observing commands x and y in the user session

command history, and we want to match them in CMDT, what is important is the order

of command executions. In this case x was executed before y. What is of less

significance is that in between x and y we have observed command z which if matched

Figure 6.1: Longest common subsequence matching between session

history and n-gram tree

Chapter 6: “Cryptic” auto-correct

Milos Colic - September 2015 67

in CMDT would significantly decrease the probability of the matched pattern. It is

worth mentioning that large gaps of not matched commands between commands x and y

should be penalized. We allow the longest common subsequence procedure to partially

match user’s command sequence as long as probability estimate is increased, and there

are not many (nor large) gaps between matched commands. Another possible approach

to the session history pattern matching is the sliding technique used in the auto-

completion functionality. It should be noted that CMDT depth is usually chosen as a

small value close to 5 while user history could be a lot larger, it is not uncommon that

user performs hundreds of commands in one session. Every time we slide a window on

CMDT tree we perform 𝑂(𝑘) operations where 𝑘 is the depth of the CMDT tree, since

we try to match as much context as possible. This approach would be expensive,

moreover at every slide, due to context free root, we add some uncertainty which

implies that benefits from this more complex approach would be minor and this fact

pushed choice of session history pattern matching toward longest common subsequence

in our implementation.

 Once a session history pattern is matched and we have obtained a context of

length 𝑘 − 1, where 𝑘 is the depth of CMDT tree, we can search in the children of the

last node in the context for prediction of current command. At this step once again we

perform pattern matching with the difference that in this particular case we match labels

of children nodes with user’s current input. To facilitate this functionality we need to

define a possible typographical error. We can observe three different cases of

typographical errors:

 Missing character

 Redundant character

 Swapped characters

We have introduced additional symbol to help us represent errors in the string. Symbol

reserved for this use in this thesis is З. Symbol З is a Cyrillic letter and not number 3,

with the flexibility of being able to set this symbol to any other value outside of

“Cryptic” language alphabet.

 The strategy we decided to follow was to firstly generate all possible errors in

the string up to value 𝑘, where 𝑘 is a parameter of a procedure and it can be changed.

Somewhat empirical choice has fallen to value close to 3, any value larger than this

would be too liberal in correcting the input, while just one error allowed per word is

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

68 Milos Colic - September 2015

valid choice as well. Once we have generated all possible strings containing an error,

symbol З denotes position of the imputed error, we perform error correction of each

individual string containing errors and we treat every З symbol in all three possible

ways.

 In the first case, we add one more symbol to the word and to produce highly

likely word we use the CHT tree. As it has been depicted in Figure 6.2, the word is split

into three parts, error-prefix (further referred as EP), symbol З and error-suffix (further

denoted as ES). Firstly we need to match EP if we manage to match EP we proceed

with matching ES. ES is matched using backward linkage, and we are interested in

finding a set of nodes which connect these two paths if any exists. If we obtain non-

empty set of such nodes, we choose as additional symbol label of the node that produces

complete path that has the largest value of 𝑞𝑚𝑙.

 In the second case, we treat symbol З as the demarcation of the redundant

symbol which should be removed. The approach is, in general, similar to the previous

case. The only observed difference is in the treatment of symbol З. Same as before, we

split the word into three parts, EP, З, and ES. Here we remove the first symbol from ES,

and the rest of the strategy is the same. Firstly we need to match EP path in CHT tree

and then we need to match ES using backward linkage. Once we connect these two sets

of paths we propose to the user path that has the highest value of 𝑞𝑚𝑙.

 Lastly, we treat swapped character errors in the following manner. Word is

split into three parts EP, З, and ES. In this instance, the last symbol of EP and the first

symbol of ES are exchanged and then matching is performed by using CHT tree. EP

with changed last symbol is matched in the forward direction, and ES with changed first

symbol is matched in the backward direction. Once the sets produced by EP and ES

matching are connected, the path with the highest value of 𝑞𝑚𝑙 is chosen as corrected

word.

 These three procedures are executed in the same way regardless of the word

position in the command. The only difference arising from the different position of the

word inside of the command is the usage of CMDT if the word we are trying to correct

is placed in the second position. We remind the reader that first word is always

command start word. Thus the second word is the command identifier, for all other

words WRDT tree is used. Once the set of corrected words is produced we replace the

corresponding word in the current input word list. The word that is being corrected is

Chapter 6: “Cryptic” auto-correct

Milos Colic - September 2015 69

assumed always to be the last word in the input word list because we incrementally

provide to the user corrected and completed output. At this point we assume user had

already observed corrected output for all previous words and acted upon the provided

output. This assumption implies that strategy for choosing corrected output word is

consisting of matching a path in WRDT tree with sliding approach up until the last word

has been matched. Once maximum likelihood path is obtained, we can extract the

Figure 6.2: Visualization of the word split into EP, ES, and З and mapping of

each part to corresponding path in the n-gram tree

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

70 Milos Colic - September 2015

children of the last node in this path. The set of the children obtained this way is then

compared with the set of possibly correct words and the intersection of these two sets

provides a set of probable words. Word with the highest value of 𝑞𝑚𝑙 is chosen as

corrected word.

 There are other possible approaches to deal with the issue of correcting

typographical errors. Our solution tries to tackle as many as possible restrictions

imposed by the “Cryptic” language structure. Results obtained by using this strategy are

provided in Chapter 7 in more detailed fashion.

Chapter 7: Validation

Milos Colic - September 2015 71

7 VALIDATION

7.1 Word segmentation validation

 As it has been explained in Section 3.4, our solution bases segmentation

decision on the following individual criteria:

 𝐸𝐶𝑚𝑎𝑥(𝑘)

 𝐸𝐶𝑚𝑖𝑛(𝑘)

 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘])

 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘])

 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘])

 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘])

 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛)

 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛)

 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘])

 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])

These criteria are then used for one of two possible voting procedures. Either all criteria

involved are voting with equal voting rights or based on performance rank each

criterion has unique voting value.

 Firstly we need to define measurements used for validation procedure. In this

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

72 Milos Colic - September 2015

thesis we use three measurement values, denoted as:

 Precision

 Accuracy

 False omission ratio

 A precision measurement is defined as the ratio between true positive decisions

and all positive decisions. In this case, positive decisions are a decision to place word

separator in a particular position in the text, implying that true positive decisions are

correctly placed word separators. On the other hand, false positive decisions are word

separators placed in the position where they should not appear. With respect to our

system, false positive decisions are not considered as strict errors, the only nuisance

induced by these errors is a slightly longer path in the WRDT data structure. From a

language perspective, these errors could appear if some words share a common prefix,

especially if segmentation techniques are based on mutual information or entropy value,

as in our case. The following formula defines precision measurement:

𝑝 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
.[7.1]

In Formula 7.1 𝑡𝑝 represents the count of true positive decisions and 𝑓𝑝 represents the

count of false positive decisions. Precision as a measurement w.r.t. our solution might

be misleading since, as we stated, false positive errors are not considered as strict errors,

therefore precision of 0.5 might imply bad results but in the frame of the “Cryptic”

system this can be understood as simply observing two times more segmented data

which will still result with more compressed predictor than in case of unsegmented

commands.

 Accuracy measurement is a more stable measurement in the scope of the

“Cryptic” system since it treats both positive and negative decisions. Segmentation

procedure is making decisions for each pair of characters in a sense of placing them

together or separately. It is not reasonable to neglect decisions to group two characters

together when speaking of the performance of a segmentation technique. The negative

decision, w.r.t. our system is a decision not to place word separator between two

characters. Once negative decisions are defined, we can proceed and state that true

negative decisions are decisions made to group two character together when they should

be grouped together while a false negative is the omission of word separator. In the

scope of the “Cryptic” system, false negative errors are considered to be strict errors

Chapter 7: Validation

Milos Colic - September 2015 73

since they are forcing two separate words to be grouped together. Accuracy

measurement takes into account both positive and negative decisions, and it is formally

defined by the following formula:

𝑎 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
.[7.3]

In Formula 7.3 𝑡𝑝 represents the count of true positive decisions, 𝑡𝑛 represents the

count of true negative decisions, 𝑓𝑝 represents the count of false positive decisions and

finally 𝑓𝑛 represents the count of false negative decisions.

 Like we have already stated, we are more concerned with false negative

decisions than with false positive decisions. We can go one step further and formalize

the false omission ratio measurement. This measurement is based only on negative

decisions like a counterpart of precision measurement. False omission ratio is formally

defined as follows:

𝑓𝑜𝑟 =
𝑓𝑛

𝑡𝑛 + 𝑓𝑛
.[7.2]

In Formula 7.2 𝑡𝑛 represents count of true negative decisions and 𝑓𝑛 represents count of

false negative decisions.

 Now that measurements are defined we can focus the discussion toward the

segmentation decision criteria. Firstly, let’s observe 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) , this

particular criteria, like explained in Section 3.2, is dependent on the maximum size of

the left and right contexts. We have run this criteria on values of k varying from 1 to 5

on the train corpus based on Shakespeare’s “Romeo and Juliette”. This book has

approximately 26000 words which roughly corresponds to the average data available

per user in the “Cryptic” system. The reason for conducting segmentation validation on

English language corpus instead of the “Cryptic” corpus is reflected in the fact that there

does not exist any “Cryptic” data that is properly segmented, neither by hand nor by

automatic procedure, thus forcing the choice of validation data to be chosen from some

other language. Results of validation of 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) criteria are presented in

Figures 7.1-7.3.

 As it can be observed from the data, accuracy and precision measurements are

decreasing with the increase of contextual data. This discovery might be a surprise, but

it comes from the fact that including more contextual data leads to extracting more

segmentation information on phoneme level ergo segmenting words into root, prefixes,

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

74 Milos Colic - September 2015

 and suffixes. This particular issue, as previously have been stated is not considered as

an actual error in the “Cryptic” system, while this is a mistake in the scope of the

English language. What is more interesting is that false omission ratio is as well

monotonically decreasing with the increase of contextual data, which is of more

importance. On this particular segmentation criterion, we can observe a peak value of

0.721595392

0.780227472

0.721595392

0.688058363

0.656130341

0.780227472

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 1 2 3 4 5 6

BC_FWD_EA(n)

Accuracy MAX Poly. (Accuracy)

Figure 7.2: Precision measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌])

0.350606072

1

0.350606072 0.345852828 0.329909758

1

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

BC_FWD_EA(n)

Precision MAX Poly. (Precision)

Figure 7.1: Accuracy measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌])

Chapter 7: Validation

Milos Colic - September 2015 75

1.0 for precision measurement while accuracy is 0.78 approximately, and false omission

ratio is around 0.22, for a value of maximum context set to 2. In this concrete case, we

observe a misleading quality of precision measurement since precision measurement

equal to 1.0 implies no false positive decisions are made. However, we observe 22% of

false negative decisions; these decisions are considered as strict errors. In the “Cryptic”

system, we give priority to false omission ratio and only in the cases when we do not

observe a significant improvement in this measurement that we consult accuracy and

precision measurements.

 Following the same logic what emerges as best segmentation criteria is

𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]), data observed from this criterion is presented in Figures 7.4-

7.6. 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) observes a peak value at context length equal to 2, after

which it monotonically decreases. If the context length is further increased all

measurements improve up till a maximum values for precision and accuracy at context

length equal to 5. For this context length, we also observe minimum value for false

omission ratio which makes context length equal to 5 as best choice.

 For an extensive comparison of each segmentation criterion and the underlying

results on which particular choices of parameters were made refer to Appendix R. Using

these findings we have created a comparison between all proposed criteria and we have

extracted the ordering among criteria that was later used for voting procedure with

priority votes. Following ordering of criteria in descending order was obtained:

0.172460312

0.221604693

0.172460312

0.120749262

0.0967441610.096744161

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0 1 2 3 4 5 6

BC_FWD_EA(n)

False omission MIN Poly. (False omission)

Figure 7.3: False omission ratio measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌])

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

76 Milos Colic - September 2015

1. 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]); 𝑘 = 5

2. 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]); k = 3

3. 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘]); k = 3

4. 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]); 𝑘 = 4

5. 𝐸𝐶𝑚𝑖𝑛(𝑘); k = ∞

6. 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛)

7. 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛)

8. 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]); k = 3

9. 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]); k = 4

10. 𝐸𝐶𝑚𝑎𝑥(𝑘); 𝑘 = ∞

 This ordering is based on the previously explained notion of prioritizing

minimization of false omission ratio measurement while, if possible, maximizing

accuracy and precision measurements respectivelly. Comparison between all

segmentation criteria based on the value of false omission ratio is presented in Figure

7.7 while other two measurement comparisons are presented in Appendix R.

0.751033525

0.778536237

0.751033525

0.76023037

0.779759190.77975919

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0 1 2 3 4 5 6

BC_FWD_WA(n)

Accuracy MAX Poly. (Accuracy)

Figure 7.4: Accuracy measurement of 𝑩𝑪𝒘𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌])

Chapter 7: Validation

Milos Colic - September 2015 77

 Once ordering among criteria was established, we have run a comparison

between majority voting procedure with equal right votes and voting procedure with

ranked vote values. Results obtained from voting procedures are considered as complex

segmentation criteria and are interpreted in the same manner as it was the case with

individual criteria. Comparison between these two complex criteria is presented in

0.39867683

0.478881658

0.39867683

0.43068867

0.463000178

0.478881658

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0 1 2 3 4 5 6

BC_FWD_WA(n)

Precision MAX Poly. (Precision)

Figure 7.6: False omission ratio measurement of 𝑩𝑪𝒘𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌])

0.17606039 0.17869735 0.17606039

0.1309424

0.0852512330.085251233

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0 1 2 3 4 5 6

BC_FWD_WA(n)

False omission MIN Poly. (False omission)

Figure 7.5: Precision measurement of 𝑩𝑪𝒘𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌])

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

78 Milos Colic - September 2015

Figures 7.8 and 7.9. From these Figures we can observe that equal voting procedure

monotonically decreases the value of false omission ratio, which implies an

improvement of performance with an increase of corpus size. We have limited corpus

size to obtain more reliable estimate since the running data is of limited size. It would

be unreasonable to run validation procedures on corpus size of 300K or 3M words while

actual user log contains roughly 30K words on average. This limited size of the user

logs comes from the storage utilization in the “Cryptic” system. Once a file age reaches

100 days this file is permanently deleted. Thus limiting user’s data to 100 days long

history. On the other hand, we could combine more users and create combined corpus

used just for segmentation. Unfortunately, this option was unfeasible to be tested

practically due to the company’s security policy, only one user’s history logs were made

available for this research. Ranked voting procedure w.r.t. false omission ratio

outperforms equal voting, which is observed in Figure 7.9. We can notice that false

omission ratio stabilizes after corpus size becomes larger than 10K words reaching

value of only 1.7% with variance of only 0.1%. On the other hand, equal voting

procedure was performing at 12.9% with variance of 0.3%. Comparison based on

accuracy and precision is given in Appendix R, but as it has been already stated these

two measurements are used in cases where no improvement is made on false omission

ratio. It is obvious that significant improvement was achieved by applying ranked

voting procedure.

0.120749262

0.085251233

0.085672847

0.083518903

0.14808727

0.178269507

0.221604693

0.223271699

0.222723255

0.105079303
0.120749262

0.085251233

0.085672847

0.083518903

0.14808727

0.178269507

0.221604693

0.223271699

0.222723255

0.105079303

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0 2 4 6 8 10 12

Criteria

False omission BC_FWD_EA(4) BC_FWD_WA(5) EC_FWD_EA(3)

EC_FWD_WA(3) EC_BKW_EA(3) EC_BKW_WA(4) EC_FWD_MIN

EC_FWD_FULL EC_BKW_FUll EC_FWD_MAX

Figure 7.7: False omission ratio measurement comparison

Chapter 7: Validation

Milos Colic - September 2015 79

Figure 7.9: False omission ratio measurement of ranked voting procedure

7.2 Auto-complete/correct validation

 Performing validation of procedures used for auto-complete and auto-correct

was somewhat more challenging. These operations are to some degree more dynamic

than word segmentation because they involve online user interaction. As we have

0.012126866

0.014185413

0.017270288

0.015492509

0.016578119
0.016806389

0.01733608

0.018258386

0.017035462
0.017347407

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Ranked voting false omission Poly. (Ranked voting false omission)

0.136498135

0.134617752

0.129831733

0.127170682

0.129549205

0.131913535

0.129782826
0.129175888

0.130610891

0.129849093

0.126

0.128

0.13

0.132

0.134

0.136

0.138

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Equal voting false omision Poly. (Equal voting false omision)

Figure 7.8: False omission ratio measurement of equal voting procedure

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

80 Milos Colic - September 2015

previously established, while discussing auto-complete and auto-correct features in

Chapters 5 and 6, user’s input is firstly segmented into words and only the last word is

treated with auto-complete and auto-correct. This choice came from the fact that user’s

input can be understood as a pipeline through which words are coming at some specific

rate. From the system’s perspective word arriving at time 𝑡1 implies that words that

arrived at any time 𝑡2 such that 𝑡2 < 𝑡1have been already completed and corrected.

 Based on this fact and dynamic behavior, we have performed a simulation of

auto-complete and auto-correct features. Train data and validation data are divided in

ratio 9:1 meaning 10% of the user’s logs are left for validation purposes. Division

among train data and validation data is done using sampling without replacement,

meaning that data can appear either in train data or validation data but not in both data

sets. Validation procedure is conceptualized on three following measurements:

 Average in common string ratio

 Maximum in common string ratio

 Average in common right-hand side string ratio

Average common string ratio, further denoted as ACSR, is conceptualized as a mean

value, or sample mean value, of common string ratios for every partial input of a

particular command. Stated in more simple words, we simulate every command as the

user would type it in real time environment, one character at the time. At every

character arrival, the new partial input is created by appending the newly arrived

character to previous character sequence and this string is treated with auto-complete

and auto-correct features. Corrected and completed string is then compared with the full

command input from validation set and ratio between common prefix string length and

actual command length is computed. Common prefix string is computed as prefix part

of two compared strings until first character not matching. From this point, ACSR is

defined as the average value of the ratio between common prefix string length and

complete command length over all partial inputs for the concrete command.

 The reason for defining this type of measurement are the one time words in the

language. Examples of these words are passenger names, ticket serial number, and

others. Concrete examples of one time words appear only statistically insignificant

number of times in data corpus, but on average this class of words occurs often.

Consequently, we can expect flight numbers to appear often in data, but we cannot

expect the same number to appear more than the small limited number of times. These

Chapter 7: Validation

Milos Colic - September 2015 81

words cannot be predicted by auto-complete and, therefore, they skew the performance

estimates. To deal with this issue, ACSR was devised.

 Another possible measurement is the maximum common string ratio, further

denoted as MCSR, defined on the same notion of left common prefix string ratio. For

this measurement, the only difference is that maximum length of the partial input, in

order to be accounted in the measurement, is 2/3 of the length of command from

validation set. This way we restrain MCSR from always obtaining value equal to 1.0

when auto-complete matches current validation command completely, once the partial

input is close to the end of actual validation command.

 Lastly we define average in common right-hand side string ratio as more

aggressive measurement, further denoted as RACSR. Here we compute the ratio

between in common string length and actual validation string length, just in this case we

used trimmed partial input and trimmed validation string. Strings are trimmed in such

way that words that have been already completed are removed from the string and after

removal of such words the common string is computed. This measurement might be

biased toward producing a more pessimistic estimate. If the partial input was correctly

completed up until the end of the current word and the rest was miss predicted this

measurement will produce small percentage value. Previously stated fact implies that if

the partial input is correctly predicted in an incremental manner, meaning that it needs

at least first few characters of each word, RACSR will estimate performance at really

low level.

 The Ranked voting segmentation procedure on train data is used to build a

model, and once predictors have been obtained, validation is run to produce these three

measurements. We have incrementally increased the corpus size and computed ACSR,

MCSR, and RACSR. In addition, random intentional typographical errors were included

in validation data. For actual values of ACSR measurements consult Figure 7.10. Due to

the correlated nature of auto-complete and auto-correct, meaning that these features are

inter-dependent, results of one are used for computing the other, validation is not run

separately but jointly. It can be noticed that MCSR produces a measurement that is

biased toward implication that completion is extremely successful while RACSR is

biased toward implication that completion is somewhat unsuccessful. We can state that

for the purpose of validating auto-complete and auto-correct features, ACSR should be

regarded as the most stable measurement. Other two measurements have been proposed

just as alternatives to ACSR.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

82 Milos Colic - September 2015

 Another important thing to be noticed is that ACSR measure is more or less

stable on a value close to 81%, this can imply that user corresponding to train data is

biased toward using short command. After manual inspection user’s bias toward short

commands was verified to be true. Unfortunately, this was the only data provided by

Amadeus, and statistics obtained from some other user might be more pessimistic.

0.811319325

0.813073933

0.818108578

0.816842353

0.817920978

0.81

0.811

0.812

0.813

0.814

0.815

0.816

0.817

0.818

0.819

0 10 20 30 40 50 60 70 80 90 100

Corpus size (words)

ACSR Poly. (ACSR)

Figure 7.10: ACSR measurement of auto-complete/correct run on validation data

with typographical errors

Chapter 8: Conclusions

Milos Colic - September 2015 83

8 CONCLUSIONS

 As it has been presented throughout this thesis, there are many limitations

imposed by the lack of strict structural approach in the design of the “Cryptic” language

during its genesis. Most notable limitations are observed in the absence of word

segmentation in the language propositions. Word segmentation is observed to liberally

allowing the user to choose whether he/she will put word separation or not; most users

choose not to place word separators to increases the speed of typing. In addition, there is

no data that is already segmented, forcing validation of word segmentation technique to

be performed on a corpus of English language. Otherwise, we would not be able to

provide any notion of precision.

 Word segmentation strategy was directed by current work performed on natural

language processing of languages from Asia region due to the fact these languages

observe the lack of word separators, same like the “Cryptic” language. These techniques

are explained in many research papers [14-20], and we have decided to apply techniques

provided in [3] and [10] while slightly modifying these two approaches. Modifications

and application of these techniques are explained in detailed fashion in Chapters 3 and

4. Word segmentation is a major part of this thesis because all predictors produced for

the “Cryptic” language are relying on the precision and quality of word segmentation.

From results obtained by word segmentation of user logs three types of trees are

obtained. The fourth type of tree data structure, denoted as character level n-gram tree

with context fixed root, is a specific shape of the character level n-gram tree with

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

84 Milos Colic - September 2015

context-free root. This specific shape is obtained by fixing the root symbol while at the

sam time we have relaxed the condition of the tree depth. These data structures capture

n-gram relations on the level of characters inside of word boundaries, n-gram relations

between words inside of the commands, and n-gram relations between commands in the

log. It is noticeable how the provided solution tries to capture as much as possible

correlations between words and commands. However, this approach can be extended

even further but for this considerable architectural design changes need to be performed

in the whole “Cryptic” system, and these are left for further research.

 Results obtained from small train corpus provided from Amadeus might be too

optimistic due to the bias of the user toward shorter commands, which could indicate

that this user was a novice user. This reason might indicate that statistics obtained on

the other corpus could be not so high, as ACSR of 81% can be considered as high value.

If the results obtained from this research could be regarded as somewhat not maximally

precise, the reason of this could be found it the lack of organized design of the

“Cryptic” language from the very beginning. As previously stated in the introduction,

this language was created over a long period, and many commands are created by

different groups of people and following different naming conventions increasing

language overall complexity and randomness. On the other hand, only some parts of the

language have formal grammar definitions provided, and these definitions can be added

to the proposed solution. Static dictionaries and parsers are not included in the solution

because the goal was to provide a generalized solution with no static subparts; these can

be easily added to improve performance. One can observe that natural languages have

been created over a lot larger period by a lot larger number of people. An advantage of

natural languages is the presence of better quality train corpora and significant

involvement of research energy. The same cannot be said for the case of the “Cryptic”

language and research provided in this thesis is the first one performed on this particular

language, and there is a lot of space for improvement.

Chapter 9: Future work

Milos Colic - September 2015 85

9 FUTURE WORK

 In this thesis, the focus was on the similarities between “Cryptic” language and

Asia region languages such as Japanese, Chinese, and others. Another possible

approach to the problem at hand would be to observe words of the “Cryptic” language

as a compressed representation of words from the English language. This is a logical

assumption since the majority, if not all, words in the “Cryptic” language are created as

abbreviations of words or groups of words from the English language. If the process

could be automatically reversed, this idea is motivated by [12], we could extract English

words. After reversing compression, we could perform n-gram relation extraction by

combining “Cryptic” logs and English language corpora already labeled and segmented

that contains information of higher quality. At this point, even some notion of grammar

could be extracted, and more inter-command relations could be formed. Commands that

are not too far away could, in principle, share arguments.

 At this stage, we have not been dealing with these relations because the flow of

commands for a particular user is hard to grasp. The external execution context is

needed to connect commands of individual flow since the user can switch this context at

any time. The context we are referring to is execution context at the server machines;

this information contains all details about a reservation that commands are manipulating

with. Although this context is not present in the logs, it could be extracted from other

components of the system’s logic. However, this would imply some architectural

redesign which would require work that exceeds the time available for this research.

This research was limited to the length of the internship in the company Amadeus, or

more precisely four months.

 Another direction of future work is exploring other possible segmentation

techniques that are not based on mutual information or entropy. There are various other

approaches one of such is proposed in [15] and it is based on the notion of the T-score

of pairs or groups of characters. This particular solution does not seem exceptionally

different from the approach followed in our proposition, even so it might be fruitful to

invest time into this or similar approaches and investigate them more thoroughly. The

extremely interesting idea would be to correlate work provided in [14], which uses n-

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

86 Milos Colic - September 2015

gram model for correlating musical compositions. We could observe each word as a

tone in some imaginary notation of sounds and borrow concepts from research

performed in this field.

 The alternative approach could be borrowing concepts of pattern matching

carried out in fields dealing with DNA analysis, such as [22] and [23]. In our case, even

techniques that might be computationally infeasible for DNA analysis might scale well

due to the fact that DNA chains are considerably longer than the average commands of

“Cryptic” language.

 It is worth mentioning again that the main direction of future work will be

decompression techniques. Once decompression, if proven possible, is performed we

could continue down the line of extracting and formalizing grammar of the “Cryptic”

language based on the decompressed language. Language grammar could be extracted

by using the English language labeled corpora and defining words in the same manner

as it has been done in natural language (e.g. nouns, verbs, adverbs). In addition to this

we could form classes of words based on n-gram relations in a similar manner as it has

been done in [11]. Additionally, future requirement is to introduce update techniques

that will adapt data structures proposed in this solution at runtime. These techniques

must be concerned with the fact that adding counts to one node at level 𝑛 will affect n-

gram estimators at any level larger or equal to 𝑛. This implies that runtime update might

be too expensive since it would update large portion of the trees used for auto-complete

and auto-correct. Future work on this particular part of the system will be concerned

with providing fast and flexible algorithms that can handle runtime updates.

 It is noticeable that there are many possible ways to improve the current

solution, and this comes from the fact that this is the first research performed on this

particular problem. Thus, research focused on the “Cryptic” language inside Amadeus

Corporation is still at early stages and there is much space for improvement. Additional

work on the topic of the “Cryptic” language is planned, and it will be conducted in

cooperation with Amadeus in the following years.

Chapter 10: References

Milos Colic - September 2015 87

10 REFERENCES

1. “Zipf's word frequency law in natural language: a critical review and future

directions”, Steven T. Piantadosi, June 2, 2015.

2. “Elements of information theory”, Thomas M. Cover and Joy A. Thomas, 1991.

3. “A Boundary-Oriented Chinese Segmentation Method Using N-Gram Mutual

Information”, Ling-Xiang Tang, Shlomo Geva, Andrew Trotman and Yue Xu,

2010.

4. “An Introduction to Hidden Markov Models”, L. R. Rabiner and B. H. Juang,

1989.

5. “Introduction to Probability”, Charles M. Grinstead and J. Laurie Snell, 1998.

6. “Human Behaviour and the Principle of Least Effort”, G. K. Zipf, 1949.

7. “On the Applicability of Zipf’s Law in Chinese Word Frequency Distribution”,

H. Xiao, 2008.

8. “Exponential Moving Average versus Moving Exponential Average”, F.

Klinker, 2011.

9. “Arithmetic versus Geometric Mean Estimators: Setting Discount Rates for

Capital Budgeting”, I. Cooper, 1996.

10. “Entropy as an Indicator of Context Boundaries – An Experiment Using a Web

Search Engine”, K. Tanaka-Ishii, 2005.

11. “Class-Based n-gram Models of Natural Languages”, P. F. Brown, P. V. de

Souza, R. L. Mercer, V. J. Della Pietra and J. C. Lai, 1992.

12. “A Ngram-based Statistical Machine Translation Approach for Text

Normalization on Chat-speak Style Communication”, C. A. Henriquez Q., A.

Hernandez H., 2009.

13. “A New Method of N-gram Statistics for Large Number of n and Automatic

Extraction of Words and Phrases for Large Text Data of Japanese”, M. Nagao

and S. Mori, 1994.

14. “N-gram Based Statistical Makam Detection on Makam Music in Turkey Using

Symbolic Data”, E.Unal, B. Bozkurt, and M. K. Karaosmanoglu, 2012.

15. “Chinese Word Segmentation without Using Lexicon and Hand-crafted Training

Data”, S. Maosong, S. Dayang and B. K. Tsou, 1998.

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

88 Milos Colic - September 2015

16. “An Improved Succinct Representation for Dynamic k-arty Trees”, D.

Arroyuelo, 2008.

17. “Computing N-gram Statistics in MapReduce”, K. Berberich and S. Bedathur,

2013.

18. “An Empirical Comparison of Goodness Measures for Unsupervised Chinese

Word Segmentation with a Unified Framework”, H. Zhao and C. Kit, 2008.

19. “Data-driven Language Independent Word Segmentation Using Character-Level

Information”, D. H. Lim and S. S. Kang, 2006.

20. “Incremental Chinese Lexicon Extraction with Minimal Resources on a

Domain-Specific Corpus”, G. Patin, 2010.

21. “Research of the FP-Growth Algorithm Based on Cloud Environments”, L.

Zhou and X. Wang, 2014.

22. “An Efficient Matching Algorithm for Encoded DNA Sequences and Binary

Strings”, S. Faro and T. Lecroq, 2009.

23. “Exact Multiple Pattern Matching Algorithm using DNA Sequences and Pattern

Pair”, R. Bhukya and D.V.L.N. Somayajulu, 2011.

Chapter 10: References

Milos Colic - September 2015 89

R: RESULTS

 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])

Figure 10.1: Accuracy measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌])

Figure 10.2: Precision measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌])

0.721595392

0.780227472

0.721595392

0.688058363

0.656130341

0.780227472

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 1 2 3 4 5 6

BC_FWD_EA(n)

Accuracy MAX Poly. (Accuracy)

0.350606072

1

0.350606072 0.345852828 0.329909758

1

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

BC_FWD_EA(n)

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

90 Milos Colic - September 2015

Figure 10.3: False omission ratio measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌])

 We select parameter 𝑛 mainly on value of false omission ratio, and only if

there is no improvement in this value that we consult accuracy and precision

respectfully. Here minimal value for false omission ratio is observed for 𝑛 = 5 and in

accordance with this observation value is set to 5.

0.172460312

0.221604693

0.172460312

0.120749262

0.0967441610.096744161

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0 1 2 3 4 5 6

BC_FWD_EA(n)

False omission MIN Poly. (False omission)

Chapter 10: References

Milos Colic - September 2015 91

 Discount parameter for exponential average

Figure 10.4: Accuracy measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌]) with varying value

of discount parameter

Figure 10.5: Precision measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌]) with varying value

of discount parameter

0.690844349

0.692475143
0.691933015

0.692830012

0.691168267

0.687716942

0.685701976

0.681721846

0.677433534

0.692830012

0.675

0.677

0.679

0.681

0.683

0.685

0.687

0.689

0.691

0.693

0.695

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

Accuracy MAX Poly. (Accuracy)

0.360999926
0.362222803

0.361325159
0.362333233

0.360736311

0.357244027

0.354724542

0.350622407

0.346348006

0.362333233

0.345

0.347

0.349

0.351

0.353

0.355

0.357

0.359

0.361

0.363

0.365

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

92 Milos Colic - September 2015

Figure 10.6: False omission ratio measurement of 𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌]) with

varying value of discount parameter

 We have run statics for choosing discount parameter only on

𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) and applied obtained value for all exponential average

procedures. Chosen value is 𝛼 = 0.4, and even though for this discount value we do not

observe minimum for false omission ratio we are in vicinity of minimum while

accuracy and precision values have both observed their respectful maximums in this

statistical point.

0.083477026
0.084103652

0.085672847
0.084816701

0.085434881

0.087439454

0.090270736

0.092937465

0.095470517

0.083477026

0.082

0.084

0.086

0.088

0.09

0.092

0.094

0.096

0.098

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

Fault omission MIN Poly. (Fault omission)

Chapter 10: References

Milos Colic - September 2015 93

 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘])

Figure 10.7: Accuracy measurement of 𝐁𝐂𝐰𝐚(𝐋|𝐑; 𝐧,𝐦,𝐰[𝐤])

Figure 10.8: Precision measurement of 𝐁𝐂𝐰𝐚(𝐋|𝐑; 𝐧,𝐦,𝐰[𝐤])

0.751033525

0.778536237

0.751033525

0.76023037

0.779759190.77975919

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0 1 2 3 4 5 6

BC_FWD_WA(n)

Accuracy MAX Poly. (Accuracy)

0.39867683

0.478881658

0.39867683

0.43068867

0.463000178

0.478881658

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0 1 2 3 4 5 6

BC_FWD_WA(n)

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

94 Milos Colic - September 2015

Figure 10.9: False omission ratio measurement of 𝐁𝐂𝐰𝐚(𝐋|𝐑; 𝐧,𝐦,𝐰[𝐤])

 Selected value for parameter 𝑛 is 5 due to the fact that false omission ratio

observes its minimum in this point, while precision observes its maximum in same

point. Accuracy in this case is not maximized but it is in close vicinity of maximum

value ergo 𝑛 = 5 is a reasonable choice.

0.17606039 0.17869735 0.17606039

0.1309424

0.0852512330.085251233

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0 1 2 3 4 5 6

BC_FWD_WA(n)

False omission MIN Poly. (False omission)

Chapter 10: References

Milos Colic - September 2015 95

 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘])

Figure 10.10: Accuracy measurement of 𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌])

Figure 10.11: Precision measurement of 𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌])

0.563242714

0.57856549

0.590972928

0.587754465

0.574372916

0.590972928

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0 1 2 3 4 5 6

EC_BKW_EA(n)

Accuracy MAX Poly. (Accuracy)

0.238067093

0.252682212

0.26905612

0.262925008

0.243412914

0.26905612

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0 1 2 3 4 5 6

EC_BKW_EA(n)

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

96 Milos Colic - September 2015

Figure 10.12: False omission ratio measurement of 𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌])

 In case of this particular criteria only logical choices for parameter is 𝑛 = 3, all

three measurements observe their local extremes and ergo this is clearly the best

possible choice in observed data.

0.180373937

0.166764484

0.14808727

0.156321903

0.177979801

0.14808727

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0 1 2 3 4 5 6

EC_BKW_EA(n)

False omission MIN Poly. (False omission)

Chapter 10: References

Milos Colic - September 2015 97

 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘])

Figure 10.13: Accuracy measurement of 𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌])

Figure 10.14: Precision measurement of 𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌])

0.57569073

0.568091326

0.577504928 0.57771203

0.576094175

0.57771203

0.566

0.568

0.57

0.572

0.574

0.576

0.578

0.58

0 1 2 3 4 5 6

EC_BKW_WA(n)

Accuracy MAX Poly. (Accuracy)

0.240203977 0.240209968

0.243552417

0.24434711
0.244017094

0.24434711

0.239

0.24

0.241

0.242

0.243

0.244

0.245

0 1 2 3 4 5 6

EC_BKW_WA(n)

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

98 Milos Colic - September 2015

Figure 10.15: False omission measurement of 𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌])

 In case of this particular criteria we observe local extremes for both accuracy

and precision for value 𝑛 = 4 while for false omission ratio minimum is obtained for

value 𝑛 = 5. False omission ratio observes stable value for 𝑛𝜖[2,4] and thus we choose

parameter 𝑛 = 4. This way we balance maximization of accuracy and precision with

minimization of false omission ratio.

0.182790856

0.179520161
0.179232116

0.178269507
0.1779600370.177960037

0.177

0.178

0.179

0.18

0.181

0.182

0.183

0.184

0 1 2 3 4 5 6

EC_BKW_WA(n)

False omission MIN Poly. (False omission)

Chapter 10: References

Milos Colic - September 2015 99

 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘])

Figure 10.16: Accuracy measurement of 𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌])

Figure 10.17: Precision measurement of 𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌])

0.624685691

0.656378694

0.691933015

0.686627836

0.665085599

0.691933015

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 1 2 3 4 5 6

EC_FWD_EA(n)

Accuracy MAX Poly. (Accuracy)

0.283511692

0.329900718

0.361325159

0.354038693

0.332871532

0.361325159

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0 1 2 3 4 5 6

EC_FWD_EA(n)

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

100 Milos Colic - September 2015

Figure 10.18: False omission ratio measurement of 𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌])

 In case of this particular criteria, same as it was the case with 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]),

only logical choices for parameter is 𝑛 = 3, all three measurements observe their local

extremes and ergo this is clearly the best possible choice in observed data.

0.15231668

0.097279779

0.085672847

0.095026319

0.106599246

0.085672847

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 1 2 3 4 5 6

EC_FWD_EA(n)

False omission MIN Poly. (False omission)

Chapter 10: References

Milos Colic - September 2015 101

 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘])

Figure 10.19: Accuracy measurement of 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌])

Figure 10.20: Precision measurement of 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌])

0.624685691

0.656304103

0.691911549 0.692027779

0.679212204

0.692027779

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 1 2 3 4 5 6

EC_FWD_WA(n)

Accuracy MAX Poly. (Accuracy)

0.283511692

0.330537499

0.361898741 0.360005354

0.347185543

0.361898741

0.27

0.29

0.31

0.33

0.35

0.37

0 1 2 3 4 5 6

EC_FWD_WA(n)

Precision MAX Poly. (Precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

102 Milos Colic - September 2015

Figure 10.21: False omission ratio measurement of 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌])

 Here we observe more or less same situation as it was the case with

𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘]), only difference is that the accuracy is not precisely at its local extreme

but it is in its close vicinity while other two measurements are at their local extremes at

𝑛 = 3, thus making this a valid choice of parameter value.

0.15231668

0.095265381

0.083518903

0.090583611

0.097272312

0.083518903

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 1 2 3 4 5 6

EC_FWD_WA(n)

False omission MIN Poly. (False omission)

Chapter 10: References

Milos Colic - September 2015 103

 Comparison individual criteria

Figure 10.22: Accuracy measurement comparison between all individual criteria

Figure 10.23: Precision measurement comparison between all individual criteria

0.688058363

0.77975919

0.6919330150.691911549

0.590972928
0.57771203

0.780227472
0.772367823

0.77019838

0.53073488

0.688058363

0.77975919

0.6919330150.691911549

0.590972928
0.57771203

0.780227472
0.772367823

0.77019838

0.53073488

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 2 4 6 8 10 12

Criteria

Accuracy BC_FWD_EA(4) BC_FWD_WA(5) EC_FWD_EA(3)

EC_FWD_WA(3) EC_BKW_EA(3) EC_BKW_WA(4) EC_FWD_MIN

EC_FWD_FULL EC_BKW_FUll EC_FWD_MAX

0.345852828

0.463000178

0.361325159

0.361898741

0.26905612 0.24434711

1

0.511442257
0.451327434

0.261893909

0.345852828

0.463000178

0.361325159

0.361898741

0.26905612 0.24434711

1

0.511442257
0.451327434

0.261893909

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12

Criteria

Precision BC_FWD_EA(4) BC_FWD_WA(5) EC_FWD_EA(3)

EC_FWD_WA(3) EC_BKW_EA(3) EC_BKW_WA(4) EC_FWD_MIN

EC_FWD_FULL EC_BKW_FUll EC_FWD_MAX

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

104 Milos Colic - September 2015

Figure 10.24: False omission ratio measurement comparison between all individual

criteria

 These three graphs represent comparisons of all three measurements between

each criterion with parameters selected in accordance with data presented in this

appendix. These graphs were used as intuition to form ranking criteria in ranked voting

procedure.

0.120749262

0.085251233

0.085672847

0.083518903

0.14808727

0.178269507

0.221604693

0.223271699

0.222723255

0.105079303

0.120749262

0.085251233

0.085672847

0.083518903

0.14808727

0.178269507

0.221604693

0.223271699

0.222723255

0.105079303

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0 2 4 6 8 10 12

Criteria

False omission BC_FWD_EA(4) BC_FWD_WA(5)

EC_FWD_EA(3) EC_FWD_WA(3) EC_BKW_EA(3)

EC_BKW_WA(4) EC_FWD_MIN EC_FWD_FULL

EC_BKW_FUll EC_FWD_MAX

Chapter 10: References

Milos Colic - September 2015 105

 Voting procedures comparison

Figure 10.25: False omission ratio measurement of equal voting procedure

Figure 10.26: False omission ratio measurement of ranked voting procedure

0.136498135

0.134617752

0.129831733

0.127170682

0.129549205

0.131913535

0.129782826
0.129175888

0.130610891

0.129849093

0.126

0.128

0.13

0.132

0.134

0.136

0.138

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Equal voting false omision Poly. (Equal voting false omision)

0.012126866

0.014185413

0.017270288

0.015492509

0.016578119
0.016806389

0.01733608

0.018258386

0.017035462
0.017347407

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Ranked voting false omission Poly. (Ranked voting false omission)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

106 Milos Colic - September 2015

Figure 10.27: Accuracy measurement of equal voting procedure

Figure 10.28: Accuracy measurement of equal voting procedure

0.72034979

0.738037417

0.751834268
0.7534784740.7535297330.752623392

0.755637037

0.760646649

0.755898559

0.763045789

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Equal voting accuracy Poly. (Equal voting accuracy)

0.449583333

0.465383983

0.472626970.473367665

0.477667183

0.4814533260.48200467

0.4855880480.485533096

0.491353199

0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Ranked voting accuracy Poly. (Ranked voting accuracy)

Chapter 10: References

Milos Colic - September 2015 107

Figure 10.29: Precision measurement of equal voting procedure

Figure 10.30: Precision ratio measurement of equal voting procedure

 Here we have presented an extensive comparison between equal voting and

ranked voting procedures in decreasing order of measurement importance. Even though

equal voting outperforms ranked voting in accuracy and precision, ranked voting is

performing significantly better on account of false omission ratio.

0.373166927

0.392654424

0.416744186
0.4199984470.4197967030.418075322

0.422223215

0.430438063

0.423335878

0.43568531

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Equal voting precision Poly. (Equal voting precision)

0.252504554

0.255981551

0.259098087
0.259694571

0.261166214

0.2626033310.262253831
0.263358527

0.26396586

0.266175171

0.25

0.252

0.254

0.256

0.258

0.26

0.262

0.264

0.266

0.268

0 5000 10000 15000 20000 25000 30000

Corpus size (words)

Ranked voting precision Poly. (Ranked voting precision)

Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction

108 Milos Colic - September 2015

 Auto-complete/correct with typographical errors in validation set

Figure 10.31: ACSR measurement of auto-complete/correct procedure

Figure 10.32: RACSR measurement of auto-complete/correct procedure

0.811319325

0.813073933

0.818108578

0.816842353

0.817920978

0.81

0.811

0.812

0.813

0.814

0.815

0.816

0.817

0.818

0.819

0 10 20 30 40 50 60 70 80 90 100

Corpus size (words)

ACSR Poly. (ACSR)

0.222812535 0.222858822

0.229833973

0.228230173

0.22940804

0.222

0.223

0.224

0.225

0.226

0.227

0.228

0.229

0.23

0.231

0 10 20 30 40 50 60 70 80 90 100

Corpus size (words)

RACSR Poly. (RACSR)

Chapter 10: References

Milos Colic - September 2015 109

Figure 10.33: MCSR measurement of auto-complete/correct procedure

 From data obtained from logs produced by this particular available user, it

could be noticed that MCSR should be discarded as an indicator. MCSR produces too

optimistic values, and this comes from the fact that the user is biased toward short

commands. For the same reason, RACSR appears to be too pessimistic measurement.

RACSR is not counted for commands shorter than three characters, due to the fact that

in this case we only predict one character which does not bring any value to the

measurement. The most stable estimate is in this case ACSR since it takes into account

equally short and long commands with no bias toward any of them. Still even ACSR

observes the influence of increased frequency of short commands in the logs and the

reason for the value of 81% should be found there. We expect smaller values for more

balanced train data.

0.999938042

0.999959837

0.999978205

0.999983608
0.999986572

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

0 10 20 30 40 50 60 70 80 90 100

Corpus size (words)

MCSR Poly. (MCSR)

