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ABSTRACT  

 This thesis aims to deal with the issues of auto-completing and auto-correcting 

commands formed using the syntax of an artificial language called “Cryptic”. This 

particular language is a proprietary language defined and put into production by the 

multinational company Amadeus SAS France. Despite the fact that “Cryptic” is an 

artificial language, the techniques used in natural language processing are used trough 

out this thesis.  

 Data available in Amadeus “Cryptic” logs is composed of unsegmented 

commands; therefore no notion of words was present in the command logs. Taking this 

as starting point reasonable approach is to build n-gram statistics at the symbol level, 

which will provide estimators on relations between symbols. On the other hand, one 

important attribute of this system is that each command is of a finite length. This fact 

implies that every command starts with a special symbol Ш. Cyrillic symbols are used 

to denote any special character that supplements “Cryptic” alphabet. Implicit starting 

symbol simplifies the model into a tree structure, instead of a graph, and the root of this 

structure is a node with label Ш. By combining B+ trees, FP trees, and hash-based 

indexes we have obtained a hybrid tree structure that facilitates various kinds of fast 

searches that are needed in the algorithms used in the process of building the system.  

 Based on this tree structure a majority vote procedure is used to segment 

commands into words and to extract a dictionary of “Cryptic” language in an automated 

way. Majority voting bases its decision on various segmentation indicators such as 

Shanon’s mutual information function, entropy value of an n-gram and probability 

variance per symbol pair. Once a dictionary is formed statistics based on a notion of 

language words can be produced and used to detect errors; after errors have been 

detected corrected output is produced. 

 Validation of a subsystem dedicated for command segmentation is computed 

on the corpus of English language, because the corpus of “Cryptic” commands, which 

are properly segmented and labeled, does not exist. Results obtained by performing 

validation on English language corpus are taken as proof of concept. Any decrease of 

precision in segmentation on “Cryptic” commands (which unfortunately at the moment 

cannot be measured) is assigned to the larger amount of ‘randomness’ in the language 

creation. “Cryptic” language was incrementally created by various teams over a period 

of more than 20 years and lacks any formal standardization, a major part of the innate 



 

 

language randomness comes from this fact. Validation on auto-complete and auto-

correct capabilities is done on the portion of the data logs that is not used in the training 

phase.   
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1 INTRODUCTION 

1.1 “Cryptic” language  

 “Cryptic” language is a language designed and implemented by Amadeus SAS 

engineering division. Over more than 20 years, different teams have implemented 

various commands that have been incrementally added to the syntax of the “Cryptic” 

language. The language itself was conceptualized as a minimalistic language that is 

mainly comprised out of abbreviations for words from the English language. One 

example of such word is ‘an’ which stands for ‘availability numerical’, another example 

would be ‘ce’ that stands for ‘car equipment’. From these two examples, one would 

deduce that all words in “Cryptic” are comprised from starting letters of individual 

words from English language description. However, even that notion is not homogenous 

in these two simple cases, in the first example the order of words is inverted w.r.t. what 

we would encounter in actual English language description. Due to high heterogeneity 

of cultures that comprise teams, geographical and temporal displacement of different 

teams, word definitions are as well extremely heterogeneous. If we observe word ‘dnn’ 

which stands for ‘decode hotel rate’ it becomes clear that some words are created as 

meaningful abbreviations. Others, however, were selected just because this precise short 

string was not taken at the moment of implementation of particular system functionality.  

 To understand why such words were introduced and why English language (or 

any other natural language) words were not used, one should focus on the throughput of 

Amadeus system. Amadeus designs and implements large-scale distributed systems 

used by travel agencies, airlines and end customers. This system provides functionalities 

for searching and booking tickets and reservations in all segments of the travel industry, 
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such as airline and train tickets, car rental, hotel bookings and perform various other 

travel-related activities. Amadeus system at the peak time has over 200.000 transactions 

per seconds and over 15.000 agents spread over the world using its functionalities. 

Through evolution, Amadeus system has kept as part of its architecture various legacy 

subsystems. One of such legacy subsystems is communication system based on 

“Cryptic” language and restructuring this part of Amadeus system would be extremely 

costly and time-consuming. At the moment of creation, communication subsystem was 

confronted with the issue of limited available network bandwidth since the most 

common internet connection medium at that particular time was the dial-up modem. 

This fact imposed a requirement to reduce the length of every command as much as 

possible. Since every command has a strictly defined list of needed arguments to 

execute correctly, the only possible approach in compressing the commands is to reduce 

the length of the words. In practice, what can be done is that instead of ‘Belgrade’ a 

code substitution ‘beg’ is used. This way variable power compression is performed. To 

understand what is meant by variable power consider the following example. Word 

‘Belgrade’ is replaced by ‘beg’ and we have compression of approximately166%. On 

the other hand, word ‘Nice’ is replaced by ‘nce’ and we have only 25% compression. 

There are as well cases that have 0% reduction like word ‘Nis’, but these are few in 

numbers.  

 This optimization even though improves compression of commands and uses 

more optimally system’s bandwidth it includes some new variability and randomness 

into the syntax of the words. These particular words are standardized since they were 

firstly used in airport management, and they always provide unified length 

representation (3 character long code) of any airport in the world. The only case in 

which standardization falls apart is when the city has more airports, and then we have a 

city code that maps all involved airports, and each airport has its additional code.  

 All these issues arise from just one particular command denoted as ‘an’, and if 

these issues were not enough, there are additional variability with each command. Since 

every command can be used in more than one context, the number of arguments may 

vary depending on the usage. This attribute of “Cryptic” language highly resembles how 

humans form sentences in natural languages, although no formal grammar is presented. 

How the system in practice deals with each particular command is defined statically, 

every team has developed a parser for a specific command they have implemented. 

What is worth mentioning is that it is almost impossible to collect all these parsers and 



Chapter 1: Introduction 

Milos Colic - September 2015   13 

use them in this thesis. Collecting all the parsers would imply a high cost of 

implementation and the increase of precision would not correspond proportionally to 

invested time and money. That is why in this thesis focus is put on a generic solution 

that, based on statistical and probabilistic qualities of the observed data, segments 

commands into words.  

 To illustrate everything previously said let’s observe the following command: 

𝑎𝑛 ↑ 𝑝𝑎𝑟 ↑ 𝑛𝑐𝑒 

 Symbol ↑ corresponds to the implied separator, this separator is not typed, but 

it could be present as ‘ ‘ if the user chooses to do so. As it can be noticed this is another 

source uncertainty in data, in some cases (very rarely) we have spaces between words 

and even in these case spaces are not necessarily placed in all respected positions. 

Examples of ‘correct’ input for the previous command are following: 

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒 

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒 

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒 

𝑎𝑛𝑝𝑎𝑟𝑛𝑐𝑒 

   The fact that we can both encounter implicit and explicit word separators lead 

to the assumption that no word separators are ever present. In the case word separators 

are present they are removed as a part of data pre-processing. Up until now we have not 

given any syntactic meaning to the command above. Actual meaning behind string 

‘an↑par↑nce’ is numerical availability (an) for a flight from Paris (par) to Nice (nce). 

Now it becomes logical that a user might want to specify a date in this format leading to 

‘an↑11↑aug↑par↑nce’, it is noticeable that in this case number of words have changed 

from 3 to 5. In addition to this option, there are many others like specifying round trip, 

querying for a specific seat class, seat number, luggage, and other options.  

 Another interesting attribute of “Cryptic” language is the fact that there is strict 

split between functionality carrier words and argument words. This fact can be related 

to natural languages where we observe words with different semantic roles, such as 

nouns, verbs, articles, and other word types. Although one crucial difference needs to be 

stated, in “Cryptic” significant number of arguments practically appearing in logs are 

statistically unimportant. Put into simple terms, many arguments that we encounter in 

actual system usage are one time words. One time word should be understood as words 
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similar to passenger name (to some extent), passenger age (more notable since it 

changes over time), most notably flight numbers. These words are statistically irrelevant 

since it is highly unlikely that we can predict such words. We can predict one time 

words only in cases when an agent had sold a significant number of tickets to the same 

person, but this rarely happens. On the other hand, functionality carrier words are 

statistically important words. Functionality carrier words refer to command identifiers. 

Through them, we can predict some arguments such as airports, in some cases dates, 

commands that follow this particular command, and other words that have strong 

relations. It is reasonable to observe that certain regions observe traffic flow peak in a 

certain period of the year. This fact can induce possibility of predicting dates, even 

though they are one time words. For example, Nice airport has considerably more traffic 

during summer period due to the vicinity of touristic attractions. It is reasonable to 

predict that weekend dates in the month of August of the current year are very probable 

as command arguments if the end destination is Nice. Why functionality carrier words 

allow sequences of commands to be predictable comes from the fact that the “Cryptic” 

language is a preorder language. Functionality carrier word is always the first word of 

the command, and all following words are the arguments. It can be noticed that if we 

observe functionality carrier words in context free manner (without any arguments) we 

can spot frequent patterns of commands and suggest to the user which could be the 

following command. 

 This section of the thesis was intended just as an illustration of complexity and 

variability of “Cryptic” as a language. It also casts light on the reasons for including 

unsupervised word segmentation into the study; this is because no dictionary is present. 

In addition, no formal grammar available nor labeled and segmented train data corpus 

from which words can be learned based on Zipf’s law. The only possible approach is to 

use unsupervised word segmentation that relies on probabilistic measures on symbol 

level. This particular topic will be covered with more care in Chapter 3. 

1.2 Auto-completion and auto-correction as engineering 

techniques  

 Though its development Internet became a tool used to distribute information.  

From this fact, we understand that average user of the Internet should be allowed to 

query data available on the Internet as quickly and flexible as possible. All major web 

search engines provide auto-completion and auto-correction functionalities which 
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facilitate more flexible and user-friendly environment. A necessity of simplifying this 

querying process emerged from the ever-increasing amount of information available on 

the Internet and the fact that typographical errors in the process of querying Internet 

data increase the difficulty in obtaining desired data. 

 Every time average user of any major web search engine (e.g. Google) 

provides as query string something that is highly unlikely it encounter the following 

message ‘Did you mean *’ (* denotes the corrected input string); this is nothing more 

than auto-correction functionality. Another example of autocorrect functionality is the 

one an average user of smart phone encounters every day. While using the messaging 

service on any new generation smartphone, (of course unless the user disables such 

functionality) experiences help from the application that corrects typographical errors. 

These two techniques may seem different to some extent. Web browser strategy is more 

lethargic than smartphone strategy; it waits for the user to press ‘Enter’ and only then it 

provides the corrected input. On the other had smartphone strategy automatically 

corrects the input while the user is typing, this strategy is more aggressive in the 

implementation of auto-correction. Previously explained differences do not affect the 

fact that both techniques follow the same background logic based on hidden Markov 

models [4] and n-gram statistic concepts [17]. Both hidden Markov models and n-gram 

statistics will be covered with more care in Chapter 2. In the context of this observation, 

it is enough to conceptualize hidden Markov models and n-gram statistics as “happens 

before” relations between words of one language. Take as an example the following 

sentence:  

“𝐻𝑖𝑔ℎ𝑠𝑐ℎ𝑜𝑜𝑙𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑠𝑡𝑒𝑚 ∗ ” 

In this particular sentence * denotes the rest of user’s input and it is of no significance to 

the discussion, it is just placed here to complete the context. An n-gram “happens 

before” relation is observed between words ‘high’, ’school’, ’education’, and ’system’. 

This relation will describe how likely is that if we observe word ‘high’ the next word 

will be ‘school’. Based on the first word ‘high’, the system should be able to predict that 

one of the probable next words is ‘school’ and not ‘shoe’ and correct the user’s input.  

 Auto-complete functionality relies on the same concepts as auto-correct 

functionality does, implementation is slightly different since in this case system instead 

of correcting the user it suggests to the user what to type next. Put into the frame of the 

previous example, the system should be able to predict the word to follow ‘high school’ 
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could be ‘education’. Of course suggestions and corrections highly depend on the data 

used to learn these “happens before” relations, more on this topic will be presented in 

Chapter 2. 

 Due to observing compression of words which could often confuse end users, 

Amadeus “Cryptic” language would greatly benefit from auto-complete and auto-

correct functionalities. These modules will supplement interaction between the user and 

the command line terminal used to issue “Cryptic” commands. As previously discussed 

the “Cryptic” language is in some of its attributes similar to natural languages, but in 

some other attributes it differs from them. Due to the highly expressed randomness in 

the “Cryptic” language dictionary it can be noticed that symbol/character level 

predictions would provide low-quality output. Words such as ‘pd’ and ‘pf’ are words 

with only one letter difference. The system might discriminate one word over the other 

just because ‘pd’ has larger frequency than ‘pf’; regardless of possible high order 

relation among other words. This kind of probabilistic ‘discrimination’ can be avoided 

if the prediction is observed on the word level, and the fact that the “Cryptic” is pre-

order language will tune prediction toward more reliable estimates. Adding more 

context in predicting input increases stability of the solution, but, on the other hand, it 

increases complexity as well. More on the actual implementation of auto-complete and 

auto-correct functionalities in the “Cryptic” language will be presented in Chapters 4 

and 5 respectively.  

1.3 Word segmentation as engineering technique 

 Word segmentation refers to the method that automatically adds word separator 

symbols (usually space in natural language) to unsegmented data. Currently in the state 

of the art systems, there are various techniques, which differ on the fact if there is 

segmented train data corpus available or not. Also, these methods differ on the criteria 

on which the position of word separator is determined.  

 In case a segmented train data corpus is available, extraction of language 

dictionary (in some bibliography also referred as lexicon) becomes straightforward. 

Words are groups of symbols between two separator symbols as well as the first and the 

last words which are marked by sentence separator symbols on one of their sides. 

Observe the following example:  

Ш𝑀𝑎𝑟𝑦Ф𝑎𝑛𝑑Ф𝐽𝑎𝑛𝑒Ф𝑙𝑖𝑘𝑒Ф𝑡𝑜Ф𝑒𝑎𝑡Ф𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑠Ф𝑓𝑜𝑟Ф𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡Ж 
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In the previous example symbols Ш, Ф, and Ж denote beginning of the sentence, word 

separator, and ending of the sentence respectively. As have been established earlier 

these symbols can be freely chosen symbols that are outside of the language alphabet. In 

the following sections, alphabet set will be denoted as 𝐴𝑙  and set of supplementing 

symbols will be denoted as𝑆𝑙. From the provided sentence it is easy to extract set of 

words, any group of symbols that falls between two symbols Ф, or between Ш and Ф, 

or between Ф and Ж are considered a word of the language’s dictionary. After the 

notion of dictionary has been established we can define notion of word frequencies in 

the train data corpus. Number of occurrences of a particular word is said to be the 

frequency value of this word. During the word extraction phase of word segmentation, 

all words frequencies are computed; every time a word is detected to be a duplicate of 

previously encountered word this word’s frequency value is incremented. As have been 

described in [1], words in a natural train data tend to follow Zipf’s law or extended 

Zipf’s law defined latter by Mandelbrot. Zipf’s law states that we can order words in 

natural language data by their frequency values and based on this ordering we can 

define following probability distribution mass function: 

     𝑓(𝑟)~
1

𝑟𝛼
.[1.1]   

 In the equation [1.1], variable 𝛼 is a parameter of the distribution, 𝑟 represents 

the rank of the word in the data w.r.t its frequency and 𝑓(𝑟) represents probability 

distribution of the word’s rank in the data. The parameter 𝛼 usually takes empirical 

value close to 1 for natural languages [6]. Why this probability distribution mass 

function is defined as proportional to the fractional value on the right is because the 

actually value of probability mass function is normalized by factor 𝑁𝑛which represent 

harmonic series sum of order n, which is computed in accordance with following 

formula: 

𝑁𝑛 = ∑
1

𝑘

𝑛

𝑘=1

.[1.2] 

 On the other hand Mandelbrot’s extension of Zipf’s law is a simple 

modification of the previously stated law by a distribution parameter 𝛽 which 

empirically tends to the value of natural number 𝑒. Mandelbrot’s extension is described 

by a following equation: 

𝑓(𝑟)~
1

(𝑟 + 𝛽)𝛼
.[1.3] 
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It can be easily noticed that Zipf’s law is a restriction of Mandelbrot’s law by simply 

fixing value of 𝛽 to 0. Word segmentation based on previously segmented train data can 

use either two of these laws to define value function of a particular word (also referred 

in bibliography as token) found to be a part of a sentence. Parameters 𝛼  and 𝛽  are 

learned for train data, which should be properly segmented in order to compute 

frequencies of each word. Once words are ranked w.r.t. their respective frequencies in 

the train data either Zipf’s or Mandelbrot’s values of 𝑓(𝑟) are computed for each word.  

Based on these notions segmentation algorithm tries to maximize total value of 𝑓(𝑟) for 

an unsegmented sentence. Total value of the sentence is obtained as a summation of 

𝑓(𝑟) values of words obtained by placing 𝑘 word separators in the sentence. 

 Another class of problem is word segmentation when no lexicon or segmented 

train data is presented. This type of segmentation problems occupies much attention in 

Asia’s academic circles that are concentrating on natural language processing. This 

information has its roots in the fact that many of the Asian languages avoid using word 

separators, implying that sentences in these languages are just long strings of symbols. 

In these languages, words are determined by context implicitly and not by space 

positions like in the English language (any many other languages). It becomes clear that 

most of the training data available in languages such as Japanese, Chinese, Korean, and 

other Asian languages are all unsegmented. When automated language translations 

between Asian languages and English language were designed and proposed many word 

segmentation techniques based on unsegmented data, have arisen as side results. This 

attribute of Asian languages has made them similar to “Cryptic” language and 

techniques applicable to Asian languages could as well be applied in the case of 

“Cryptic”. 

 Most of the techniques, in this case, are based on the notion of mutual 

information function. As described in [2], mutual information function is defined by the 

following equation: 

𝐼(𝑋, 𝑌) = ∑∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦𝜖𝑌𝑥𝜖𝑋

.[1.4] 

What is of particular interest in the word segmentation techniques is the value of 

information function (as presented in [3]) when x and y have particular values, here 

denoted as A and B (in general represent a pair of concrete values whose mutual 

information is of interest). This value is usually denoted as 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵)  and 
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represents the ratio between joint probability of observing symbols A and B together in 

the data and probability of independence assumption between symbols A and B. 

Practically speaking we are not interested in relation between two positions in the string 

which correspond to variables x and y, instead we are interested in relation between two 

particular symbols. 

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴, 𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
).[1.5] 

When 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) is a lot smaller than 0 we have indication of symbols A and B 

tending not to appear together and in the case of 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) being a lot larger 

than 0 we have indication of A and B usually appearing together, in the zone close to 0 

decision is not established. These observations come from the fact that independence 

assumption between probability of A and probability of B is only satisfied when 

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) is equal to 0, in other two cases we values that indicate dependency 

between A and B. In case of positive values of 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) we have indication 

that joint probability of A and B is larger than product of marginal probabilities of A 

and B which implies A and B tend to appear together in the data. On the other hand if 

we obtain negative values of 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) we have opposite indications, meaning 

that A and B tend to appear separately. When 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) is equal to 0 we can 

only claim that independence assumption is satisfied but we cannot claim that A and B 

tend to appear together nor that they tend to appear separately. It is clear that this value 

can be useful in deciding where to place a word separator in a sentence to achieve word 

segmentation. More on this topic will be presented in Chapter 3. 
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2 N-GRAM STATISTICS  

2.1 Markov chain models 

 To be able to achieve fully understanding of n-gram statistic, firstly some 

attention should be given to Markov chain models (later denoted as MCMs) and Hidden 

Markov models. Markov chain models are nothing more than probabilistic final state 

automatons (as it has been explained in [5]). These models are characterized by a set of 

states and set of probabilistic arcs that correspond to state transition function. Usually, 

MCMs are illustrated by a graph representation or by a matrix representation. These two 

representations are equivalent, although humans are more accustomed to graph 

representation since it seems to be a more intuitive choice of visualization.  

 A model of a probabilistic process can be considered as MCM only if it 

satisfies certain attributes. As have been previously stated MCMs are defined by set of 

states, this set can be denoted as 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, a MCM starts in a state 𝑠𝑖𝜖𝑆. States 

in MCM are connected with arcs whose weights are probabilities of transition 

corresponding to an arc being taken. For example if arc between states 𝑠𝑖 and 𝑠𝑗 has a 

weight of 0.3 it means that process corresponding to this particular MCM will change 

its state from 𝑠𝑖 to 𝑠𝑗 with probability of 0.3. Occurrence of a state transition is called a 

step of MCM. Another important attribute of MCMs is that in addition to weights arcs 

are described with a label as well. Arc labels correspond to the output of the model. 

What is important to be stated is that if we denote as 𝐴𝑜;𝑠𝑖 the set of outgoing arcs 

corresponding to a state 𝑠𝑖 then following conditions must hold: 
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∀𝑥, 𝑦𝜖𝐴𝑜;𝑠𝑖 , 𝑙𝑎𝑏𝑒𝑙(𝑥) ≠ 𝑙𝑎𝑏𝑒𝑙(𝑦),[2.1] 

∑ 𝑝(𝑥)

𝑥𝜖𝐴𝑜;𝑠𝑖

= 1.[2.2] 

The first condition is referring to the fact that labels of state’s outgoing arcs must be 

unique, or said in a different manner, two arcs that share a source cannot have the same 

label. This condition ensures the deterministic behavior of the MCMs. The second 

condition is referring to the fact that all probability mass must be divided among arcs, 

and no probability mass should be left unassociated with an arc. In some cases, we can 

encounter visualizations in which a portion of probability mass is missing. These 

examples are valid MCMs only if this part of probability mass is associated to implicit 

self-arc, meaning that the missing probability is linked with the chance of process not 

changing the state. These cases are quite rare.  

 To put more light on the MCMs let’s consider the following example. A man 

tosses a fair coin, fair meaning that the probability of getting head is equal to the 

probability of getting tail, and thus both probabilities are equal to 0.5. Let’s denote this 

coin as 𝐶1. Based on result of the toss he will write a particular letter on a sheet of 

paper. When toss results in heads the output will be letter ‘a’ and in case of tails letter 

‘b’. After fist toss, coin 𝐶1 is replaced with a biased coin 𝐶2, a toss of this coin will 

result in head in 75% of tosses. The process is repeated with coin 𝐶2and after output is 

produced, either ‘a’ or ‘b’ depending on the result of the toss, coins are switched again 

after result of the toss is observed. A man will play this game indefinitely.  

 Let’s denote as 𝑠1 a state of the world in which a man M is tossing coin 𝐶1and 

as 𝑠2 a state of the world in which he is tossing coin 𝐶2. Transitions between these two 

states are given by combining probability of an outcome, and the letter M is written on a 

piece of paper. This is a simple toy example, but it can serve in illustrative purposes. 

Visualization of this MCM is presented in Figure 2.1. This example can be extended 

and modified to describe a user writing sentences in the “Cryptic” language. If instead 

of a coin toss M is tossing a die with n sides, every side of this die corresponds to one 

word for from the “Cryptic” language lexicon. At this particular point of discussion, let 

assume all words in dictionary are equally probable, and that all valid commands are 

composed of 3 words. Let’s restrict this system further so more compact example is 

obtained. For each word position a designated die is used, thus in this experiment we 

can observe 3 different dies. First die can assume values from set 𝑊1 = {𝑎𝑛, 𝑖𝑔,𝑚𝑑}, 
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second die can assume values from set 𝑊2 = {𝑝𝑎𝑟, 𝑛𝑐𝑒,𝑚𝑖𝑙} and last die can assume 

values from set 𝑊3 = {𝑏𝑒𝑔, 𝑛𝑖𝑠, 𝑟𝑜𝑚}. In addition let’s assume dies are fair, or more 

precisely every value is present on two different sides of six-side die and at every throw 

each side is equiprobable. This particular model is very limited and can produce

insignificantly small subset of the “Cryptic” commands, even so this model can be used 

as point of intuition behind decision to correlate the “Cryptic” system with MCMs in 

this thesis. In Figure 2.2 a visualization of this model is presented.   

Figure 2.2: Markov Chain Model of limited version of the “Cryptic” system 

Figure 2.1: Markov Chain Model example of tossing two different coins 
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 Usually, MCMs are represented by directed graphs; it is worth mentioning that 

cycles can be encountered in these graphs. Since valid commands in the “Cryptic” 

syntax are all of finite length representations that include cycles are highly undesirable. 

Outputs produced by cycles in MCM’s graph could be of infinite leght or of finite 

length that is not valid in the context of observed language. Let’s assume that we are 

observing a language that only allows words ‘abc’ and ‘abca’ (further denoted as 𝐿1). 

Underlying MCM model (further denoted as 𝑀1) is represented by a graph composed of 

three states, one corresponding to each of allowed symbols ‘a’, ‘b’, and ‘c’. In scope of 

𝑀1 , states form a cycle 𝑠𝑎 → 𝑠𝑏 → 𝑠𝑐 → 𝑠𝑎 . This cycle implies that  𝑀1  produces 

outputs such as ‘abc’,’abca’,’abcab’, up to ‘abcabc…’, where ‘…’ denote infinite length 

string. Cosequently, strings produced by 𝑀1 need to be tested w.r.t. constraints of the 

language 𝐿1. It is clear, following the starting assumption, that only ‘abc’ and ‘abca’ 

satisfy costraints imposed by 𝐿1. Following this fact it would much more desirable to 

convert 𝑀1 into 𝑀2 which would assume shape of a tree structure. Model 𝑀2 will hold 

information that only words ‘abc’ and ‘abca’ are satisfying 𝐿1 ’s constraints, this 

information is held in two possible paths in the model 𝑀2 represented by 𝑠𝑠 → 𝑠𝑎1 →

𝑠𝑏 → 𝑠𝑐 → 𝑠𝑒  and 𝑠𝑠 → 𝑠𝑎1 → 𝑠𝑏 → 𝑠𝑐 → 𝑠𝑎2 → 𝑠𝑒 . We have included new states that 

denote start and end of the word and we have split state 𝑠𝑎 into states  𝑠𝑎1 and 𝑠𝑎2 to 

avoid cycles.  

 Graph representation of MCM that corresponds to the “Cryptic” user can be 

broken into a tree representation following the logic in the example of the language 𝐿1. 

Tree representation avoids the issue of cyclic behavior, and it is a subclass of directed 

acyclic graphs. In addition directed acyclic graphs are a subclass of directed graphs, 

ergo decision to use trees might be considered as imposing new additional constraints 

on MCM definition. Translation of previously described reduced the “Cryptic” model to 

tree representation is presented in Figure 2.3. It is worth stating that this procedure 

could be understood as decompression of directed graph into a tree. Tree representation, 

in general, has more states than corresponding directed graph, but on the other hand 

cycles are avoided. Repeating sequences are always of a finite length ergo cycles can be 

replaced by finite length sequence of state sequences. For example if we have observed 

that graph contains cycle 𝑠1 → 𝑠2 → 𝑠1 and we know that this sequence can appear only 

3 times in a row due to the “Cryptic” syntax constraints, this cycle will be translated 

into a following sequence  𝑠11 → 𝑠21 → 𝑠12 → 𝑠22 → 𝑠13 → 𝑠23 . Another reason for 

moving from graph to tree representation is the fact that all commands start with 
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implicit symbol Ш and end with symbol Ж. In order to better illustrate transformation 

of MCM graph into a tree representation, let’s consider the self loop with label ‘ig’ in 

Figure 2.2. In process of translating MCM graph presented in Figure 2.2 into tree 

representation presented in Figure 2.3 state denoted as 𝑠1 has been split into three new 

states denoted as 𝑠𝑎𝑛,𝑠𝑚𝑑 , and 𝑠𝑖𝑔. In addition two new states 𝑠Ш and 𝑠Ж have been 

added to represent existance of command start and end symbols. In the frame of model 

Figure 2.3: Tree representation of MCM presented in Figure 2.2 
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presented in Figure 2.2 self-loop with label ‘ig’ had a meaning of user executing a one 

word command ‘ig’. In the tree model sequence 𝑠1 → 𝑠1 has been replaced by 𝑠Ш →

𝑠𝑖𝑔 → 𝑠Ж . Once a state 𝑠Ж  is reached user’s input is accepted and the process of 

accepting user’s commands is restarted. These symbols will be made explicit during the 

preprocess phase of the algorithm used to create tree data structure. This tree data 

structure is latter used to make predictions. In addition k-ary tree data structures have 

search complexity of 𝑂(log 𝑛), like it has been presented in [16], where 𝑛 represents 

number of nodes in the tree and not the fan-out factor. This is highly pessimistic 

estimate and due to the fact that we use this structure in slightly modified way, 

complexity is reduced. Complexity can be further improved by adding hash maps and 

by sorting children of every node. More detailed analysis on the creation of  tree 

representation will be presented in Chapter 4.  

2.2 Hidden Markov models  

 Hidden Markov models, later referred as HMM, are models of MCM stochastic 

processes for which only the output of the process is observable, and the underlying 

structure of the process is hidden. HMM process can be understood as a black box that 

provides outputs at a given sample rate. As stated in [4] these processes can be observed 

trough sequences of outputs and from these sequences estimators can be extracted.  

 To cast more light on the topic of HMMs, let’s again consider example of a 

man M tossing two coins 𝐶1  and 𝐶2 , full description of this example is provided in 

Section 2.1. This example can be extended by adding an observer O and placing a 

curtain between M and O. O cannot see what M is doing, only information available to 

O is what he hears M is saying. In this version of the experiment M is saying out loud 

letters ‘a’ and ‘b’ depending on the result of the toss. From O’s perspective process 

behind the curtain could equally likely involve M taking a ball from an urn and saying 

the label on the ball. This uncertainty of actual physical implementation of the process 

is of no significance, what is important is the underlying MCM and probabilistic 

transitions between MCM’s states. After spending statistically significant period of time 

observing the output of HMM presented in the previous example, O can built estimate 

of the HMM. In the frame of this discussion O will probably end up with the model of a 

biased coin toss with probabilities 𝑝(𝑎) = 0.625 and 𝑝(𝑏) = 0.375. What is considered 

to be statistically significant period of time is any time period in which enough 

observations are performed. Depending on the required precision of the estimate it 
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could be 100, 1000, 1000000 or any other number of tosses. What is also worth 

mentioning is that O should reserve a small portion of observations as test data to be 

able to compute how precise the estimate of HMM he produced is actually. 

 To place HMMs in the context of the “Cryptic” language consider the second 

example from the previous section, the example of a limited version of the “Cryptic” 

user. For a detailed description refer to Section 2.1. This example can be modified in the 

same way the coin toss example was, by placing an observer O and adding a curtain 

between M and O. For visualization of this modification consult Figure 2.4. The 

ongoing logic is identical as in previous case, M will speak words based on the result of 

a die toss, and O will be able to hear him. As stated in the coin toss example, after a 

statistically significant period of time, O will be able to construct estimates of ongoing 

HMM. Assumptions made about the actual physical embodiment of the process might 

not be correct but if the probabilistic attributes of such estimator tend to actual 

probabilistic characteristics of the process this misconception is of no significance. 

From HMM perspective, it is of no difference if M is tossing a die or he is taking balls 

from urns as long as decision states and transition probabilities are the same.  

Figure 2.4: Hidden Markov Model of limited version of the “Cryptic” System 
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2.3 N-gram statistics 

 As described in [17] n-gram statistics is a model of natural languages that 

captures “happens before” relation among words of a language. This model can be 

considered as a special class of HMMs. To create a proper idea of n-gram best starting 

point would be the unigram statistics model. Unigram model is represented by a state 

set 𝑆 = {𝑠} comprising of only one state. The state transitions are all self-arcs and their 

weights correspond to probability of particular outcome with no change in this 

probability regardless of history of previous observations. If we reflect back on the coin 

toss example and the approximation made by O that M is tossing a single biased coin 

with outcome probabilities 𝑝(𝑎) = 0.625  and 𝑝(𝑏) = 0.375 , this approximation is 

actually unigram model of ongoing HMM. In this case we only have one state and two 

self-transitions. In this particular case it might be hard to notice difference between 

results obtained by actual process and by unigram estimate. 

 Let’s observe another example, this time we will consider an example from 

natural language process world. Assume man M, again behind the closed curtain who is 

reading Shakespeare one letter at the time, and an observer O, who is able to listen what 

M is saying. Let’s assume O is not understanding the language in which M is reading. 

The previous assumption restricts O from remembering that he/she might have read this 

particular book at one point of his/her life. Now assume the only action O can take is to 

count how many times each specific letter M has spoken, and to count the total of all 

letters spoken by M during the observations. Using these values O can extract unigram 

estimate of ongoing HMM process.  

 The first step taken by O after completing the observation phase is to produce 

maximum likelihood unigram estimates. These estimates are produced by simply 

applying following formula: 

    𝑞𝑚𝑙(𝑥) =
𝑐𝑜𝑢𝑛𝑡(𝑥)

𝑐𝑜𝑢𝑛𝑡(∗)
.[2.3]    

In Formula 2.3 𝑞𝑚𝑙  is the maximum likelihood n-gram estimators, n-gram estimators 

estimate probability of an event x occurring, count(x) is the number of observations in 

which event x occurred and count(*) is total number of all observations. If O applies 

previous formula to all the letters encountered in the observation phase, he will obtain 

enough information to create the unigram model of the ongoing HMM. This model is 

provided in Figure 2.5.  
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Figure 2.5: Unigram model of a man reading Shakespeare 

 Let’s consider now how O could improve his estimator. One intuitive approach 

would be to assume that two successive letters are somehow correlated. Instead of just 

counting how many times each character occurred O should as well count how many 

times each pair of letters occurred. This strategy leads to the definition of bigram 

statistics. Bigrams are computed by applying the following formula: 

    𝑞𝑚𝑙(𝑥|𝑦) =
𝑐𝑜𝑢𝑛𝑡(𝑦𝑥)

𝑐𝑜𝑢𝑛𝑡(𝑦)
.[2.4]    

Formula [2.4] can be understood as a fraction of cases in which given event y event x is 

observed. The logic behind this extension is quite straightforward. If we take for 

example that observation at step k is letter ‘a’ it is almost impossible to encounter 

another ‘a’ at step k+1, since this is the case in most of the natural languages. There are 

some cases (such as ‘Aaron’, ‘bazaar’, and ‘laager’) where we can encounter sequence 

‘aa’, but these words appear rarely which, in fact, makes it easier to predict them. This 

fact implies that what we expect next letter to be is governed by what we observe at the 

current moment. A visualization of bigram model is presented in Figure 2.6. We can go 

one step further and define the 3-gram, the 4-gram, and generic case of the n-gram 

statistics. In case of the bigram statiscs we are interested in predicting joined appearance 
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of a pair of symbols, while in the case of the 3-gram statistics we are interested in 

predicting joined appearance of a group of three symbols. In general the n-gram 

statistics is computing the maximum likelihood probability estimate of a group of n 

symbols appearing together.  

 One could notice that this extension will lead to state space explosion since 

moving away from unigram to bigram model will result in increasing the number of 

states from one to the size of the language alphabet. The number of states increases 

further in case of 3-gram, 4-gram, and in general n-gram statistics. The worst case 

expected number of states for language alphabet of size m and length of n-gram statiscs 

equal to n is 𝑂(𝑚𝑛), which implies that we can expect large number of states for even 

realatively small lengths of n-gram. It comes as no surprise that most of the state of the 

art natural language processing systems restrict the length of n-gram to a value close to 

five, as it has been noted in [14-20]. Even so in the frame of this thesis discussion will 

not be restricted on 4-grams and 5-grams, but kept focusing on generic n-gram models. 

 As can be noticed in the definition of bigram, the recursive relation can be 

observed between bigram and unigram models. This recursive relation is maintained for 

any two n-gram and (n-1)-gram models. We define n-gram estimator with the following 

formula: 

Figure 2.6: Bigram model of a man reading Shakespear 
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        𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥)

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))
.[2.5] 

Where Y is a set of n-1 predecessors of x, and seq(Y) denotes temporally ordered 

sequence of such predecessors. To notice the recursive relation let’s consider (n-1)-gram 

estimator based on Y: 

    𝑞𝑚𝑙(𝑦𝑛−1|(𝑌\𝑦𝑛−1)) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌\𝑦𝑛−1))
.[2.6]  

Together with Formula 2.4 we obtain recursive relation: 

𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥)

𝑞𝑚𝑙(𝑦𝑛−1|(𝑌\𝑦𝑛−1)) ∗ 𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌\𝑦𝑛−1))
.[2.7] 

Alternatively, more concisely written: 

𝑞𝑚𝑙
𝑛 =

𝑐𝑜𝑢𝑛𝑡𝑛

𝑞𝑚𝑙
𝑛−1 ∗ 𝑐𝑜𝑢𝑛𝑡𝑛−2

.[2.8] 

This recursive behavior of n-gram estimators fortifies the choice of tree data structure 

since trees are recursive structures by their nature.  

 Another important observation to be stated about n-gram statistics is that of 

preventing over-fitting of train data. Term train data refers to the set of all observations 

of output obtained from the ongoing HMM process. An additional parameter is added to 

the definition of n-gram estimator, and it is used to prevent over-fitting. The discount 

factor beta is a value between 0 and 1, and it is used to reserve some of the probability 

mass for not observed cases. Not observed cases will not be assigned with probability 

equal to 0. Newly obtained formula for n-gram estimator is presented below: 

𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥) − 𝛽

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))
, 𝛽𝜖(0.0,1.0),[2.9] 

𝛼(𝑌) =  ∑ 𝛽

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

,[2.10] 

𝛼(𝑌) + ∑ 𝑞𝑚𝑙(𝑥|𝑌)

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

= 1.0.[2.11] 

All probability mass discarded by discounting n-gram estimators is added to 𝛼 value 

and this way summation of all 𝑞𝑚𝑙(𝑥|𝑌) estimators together with 𝛼 is equal to 1.0. This 

fact will be important latter when notion of entropy is defined and used to determine 

word separator positions inside of a command. More on this in Chapter 3. 
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3 WORD SEGMENTATION WITH 

NO LEXICON  

3.1 Word segmentation and Zipf’s law 

 Zipf’s law, as already stated in the introduction section, even though it is an 

empirical law it describes human behavior with a surprising level of generality. This 

law was defined by Zipf in 1949 in his publication “Human Behaviour and the Principle 

of Least Effort” and represents mathematical representation of the Principle of Least 

Effort. This principle states that humans tend to minimize their effort in every action 

they take. Linguistic communication is as well an action performed by humans, and, 

therefore, it is expected that this action follows the Principle of Least Effort.  

 Mathematical formulation of Zipf’s law was later extended by Mandelbrot. 

Mandelbrot’s formulation is more general and thus it is used more often: 

𝑓(𝑟)~
1

(𝑟 + 𝛽)𝛼
[3.1] 

In formula [3.1] r represents rank of the word w.r.t frequency of the word in the train 

data while α and β are parameters of the probability distribution. The use of 

proportionality instead of equality is explained by the fact the usually this law assumes 

some normalization factor. Most often normalization factor is chosen to be equal to the 

value of the sum of the harmonic series, presented in Formula 1.2.  

 As explained in [7] Zipf’s law is extensively tested and used in the English 
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language, in which case it behaves in a highly desirable way. It captures perfectly the 

fact that humans have a relatively small dictionary of words they use often. In languages 

that have explicit word separation, one of such is English, Zipf’s law scales well. 

However in languages that do not observe strict word separation, one of such is 

Chinese, Zipf’s law observes a decrease in precision. 

 We have chosen the Chinese language as a reference point as it observes some 

common characteristics with the “Cryptic” language. The fact that most of the words are 

comprised of just two or three characters and the fact that words are not separated in 

both “Cryptic” and Chinese made this correlation as an obvious choice. In [7] authors 

have conducted an extensive analysis on the applicability of the Zipf’s law in Chinese, 

and the results were discouraging. Many 3-gram words (three character words) were 

classified with errors due to the missing word separation. The most frequent 3-grams 

were not even words in Chinese; this fact pushes the choice in word segmentation away 

from the use of Zipf’s law.  

 The previous result could be mitigated using a train corpus that has been 

previously segmented and from this training data Zipf’s parameters can be extracted, 

and then Zipf’s distribution can be used to segment the runtime data. This fact does not 

bring any new quality in the case of “Cryptic” due to lack of any segmented corpus. No 

“Cryptic” logs that contain segmented data are available, and thus we cannot extract 

underlying Zipf’s distribution. Facilitating this solution requires major architectural 

changes in the “Cryptic” system which would be a costly solution, forcing us to search 

for other possible approaches to the segmentation problem. 

3.2 Boundary oriented Segmentation Method  

 After discarding Zipf’s law as a possible tool for word segmentation, we are 

moving toward techniques based on mutual information. As already mentioned in the 

introduction, mutual information is based on the following formula: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑦𝜖𝑌𝑥𝜖𝑋 .[3.2]  

Once values of X and Y are fixed this formula simplifies into: 

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴, 𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
).[3.3] 

This particular formula needs to be slightly modified since we assume spatial ordering 

of symbols is of great significance; therefore 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) will be substituted by 
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𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) which is defined by the following formula: 

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴|𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
)[3.4] 

In our case probabilities are estimated trough use of n-gram estimators denoted as 

𝑞𝑚𝑙(𝑥|𝑌) where x is a symbol whose probability is of interest and Y is a sequence of its 

predecessors. Put more formally rang(x) = 1 and rang(Y) = n, thus order of significance 

of 𝑞𝑚𝑙(𝑥𝑘|𝑌𝑘) is defined as 𝑜(𝑞𝑚𝑙(𝑥𝑘|𝑌𝑘)) = 𝑟𝑎𝑛𝑔(𝑥𝑘) + 𝑟𝑎𝑛𝑔(𝑌𝑘). We value more 

information provided by a 𝑞𝑚𝑙(𝑥𝑖|𝑌𝑖) than the information provided by 𝑞𝑚𝑙(𝑥𝑗|𝑌𝑗)  if 

we observe that 𝑜(𝑞𝑚𝑙(𝑥𝑖|𝑌𝑖)) > 𝑜(𝑞𝑚𝑙(𝑥𝑗|𝑌𝑗)) is satisfied. In addition Y is a spatially 

ordered sequence for which it is true that 𝑌𝑖 ≺ 𝑌𝑖+1, and where ≺ represents relation 

between two characters in the sequence meaning that the left operand happens 

immediately before the right operand in the sequence Y.  

 If we combine the definition of 𝑞𝑚𝑙(𝑥|𝑌)  with the definition of mutual 

information we can obtain an extended definition of mutual information adjusted for 

usage in word segmentation based on n-gram statistics. 

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑞𝑚𝑙(𝐵[𝑚]|𝐴,𝐵[𝑚]\𝐵[𝑚−1])

𝑞𝑚𝑙(𝐴[𝑛]|𝐴\𝐴[𝑛−1])𝑞𝑚𝑙(𝐵[𝑚]\𝐵[𝑚−1])
).[3.5]  

In formula [3.5] A and B are character sequences; we can understand them as potential 

prefix and suffix of the word which combined give a correct word of the language. 

Values of particular interest are the negative values of 𝑚𝑖(𝑥, 𝑦) these values indicate 

that x and y tend to be separated by a word separator symbol more often than to appear 

grouped together inside of a word. The reason to extend character based mutual 

information to string based mutual information comes from the fact that “Cryptic” 

words do not follow rules of natural language words. One of such rules is the common 

word root. Some words from the English language (e.g. ‘informal’ and ‘formal’) share 

common root. In scope of the “Cryptic” language we can encounter words of only 

limited length, on average close to three characters. If we observe words ‘jun’ and ‘jul’, 

which are valid words in the “Cryptic” language, we could conclude that the common 

root is ‘ju’. This conclusion would be incorrect since words in the “Cryptic” language 

do not share roots because they are generated as compressed strings. Based on this fact 

we can conclude that character based mutual information cannot be applied in its 

original form in the case of the “Cryptic” language. On average all character pairs are 

almost equiprobable therefore character based mutual information mean value would be 
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close to 0, meaning we would not be able to decide on word barriers. 

 An interesting idea is presented in [8], and it is denoted as a boundary 

condition function. Boundary condition function is based on multiple mutual 

information values, and it presents an extension of the previous discussion. In this case, 

we observe a concrete position in the string, and the decision to place a word separator 

is made based on n-gram mutual information. Let’s define a string as a sequence of 

characters: 

𝑠 = 𝑐1𝑐2…𝑐𝑖𝑐𝑖+1…𝑐𝑛−1𝑐𝑛.[3.6] 

Now the boundary confidence function is defined as following: 

𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) = 𝑚𝑖𝑛{𝑚𝑖(𝑐𝑖−1, 𝑐𝑖), 

𝑚𝑖(𝑐𝑖−2𝑐𝑖−1, 𝑐𝑖), 

𝑚𝑖(𝑐𝑖−1, 𝑐𝑖𝑐𝑖+1), 

𝑚𝑖(𝑐𝑖−2𝑐𝑖−1, 𝑐𝑖𝑐𝑖+1)}.[3.7] 

In formula [3.7] | represents a word separator position, and L and R represent left and 

right substrings of the initial string that are results of placing word separator in specified 

position.  

 In our solution, we propose a modification of this approach. Our proposal is 

parameterized, instead of using a fixed number of comprising factors 𝑘 = 4, we allow 

that value k is a variable. Another modification applied in our solution is the change of 

the min{} operator with the 𝑎𝑣𝑔{} operator, which is more resilient to local contextual 

minima. Indeed, if the  min{} operator is chosen it may happen that the decision is 

based on the mutual information between two individual characters which bares the 

least contextual information while all other mutual information values might be 

indicating not to place the separator in this position. Using the 𝑎𝑣𝑔{} operator this issue 

is avoided; in addition, this approach can be further generalized by applying a weighted 

average, in this thesis denoted as 𝑤𝑎𝑣𝑔{𝑤[𝑛], 𝑣[𝑛]} operator, where 𝑤[𝑛] represents 

the list of weights corresponding to a list of values denoted as 𝑣[𝑛]. 

 Usage of 𝑤𝑎𝑣𝑔{𝑤[𝑛], 𝑣[𝑛]}  allows the application of various weighting 

strategies, the most obvious one being the strategy which defines weights based on the 

size of the contexts, defined as: 
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𝑤𝑖 =
𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅))

𝑁𝑓
,[3.8] 

𝑁𝑓 = ∑ 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅))

∀(𝐿,𝑅)

.[3.9] 

Where log() represents logarithmic function with base equal to 𝑒 ≈ 2.78. We can notice 

one possible undesirable behaviour when summation is used to combine strengths of 

left and right contexts. Consider following equations: 

 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑘) < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑘)⋀ 𝑙𝑒𝑛𝑔ℎ𝑡(𝐿𝑘) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑘) = 𝑛,[3.10] 

 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑔) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑔)⋀ 𝑙𝑒𝑛𝑔ℎ𝑡(𝐿𝑔) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝑔) = 𝑛.[3.11]   

In this case, these two factors are weighted with the same value, while it is noticeable 

that the second factor is more stable than the first one. Stability of the  contexts in 

Fromula 3.11 comes from the contextual information being equally balanced between L 

and R. To avoid this issue the weight formula can be modified in the following manner: 

 𝑤𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑡ℎ(𝐿)) ∗
𝑙𝑜𝑔(𝑙𝑒𝑔ℎ𝑡(𝑅))

𝑁𝑓
,[3.12] 

𝑁𝑓 = ∑ 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅))

∀(𝐿,𝑅)

.[3.13] 

In this way we firstly average the lengths of both contexts and then we weight the 

comprising factors, obtaining almost a linear progression if 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅) 

and a logarithmic progression if 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) ≠ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅), while maximal values are 

observed in the portion of the space where 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) ≈ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅). A complete plot of 

this weight function is provided in Figure 3.1. 

 Another possible weighting function is the so-called exponential weighting, 

usually used in the Exponential Moving Average processes in the control theory as 

explained in [8]. We can observe comprising factors in the boundary condition as values 

of a signal at different sample times and then use Exponential Average, later referred as 

EA, to extract final indicator.  EA is defined as follows: 

𝐸𝐴{𝑥1𝑥2…𝑥𝑛} = (1 − 𝛼)𝑛−1𝑥1 + 𝛼∑(1 − 𝛼)𝑠𝑥𝑛−𝑠

𝑛−2

𝑠=0

.[3.14] 

In our case, x sequence is ordered in increasing order of values obtained based on 

formula [3.12], or more precisely: 
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𝑥𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑡ℎ(𝐿)) ∗ 𝑙𝑜𝑔(𝑙𝑒𝑔ℎ𝑡(𝑅)).[3.15] 

As already have been explained, values obtained from this formula prioritize balanced 

contexts w.r.t. to imbalanced ones. Exponential moving average processes behave 

extremely desirable in highly volatile environments, meaning that it gives higher 

weights to more related terms and it discriminates to less related terms. Consider an 

example of the stock market, which is indeed highly volatile environment. In the case of 

the stock market Exponential moving average processes consider temporarly close 

events to be more related one to another and they are given higher weights. The 

“Cryptic” user can also be considered as an exceedingly unpredictable system. The 

commands produced by the user are governed by many factors, such as the current 

economic situation in the region he operates in, desires of his clients, changes in the set 

of his clients, promotions, and many other.  In this case, Exponential moving average 

processes would cosider contextualy close events to be more related. Additionally, in 

[9] it has been shown that this strategy in producing the mean estimators, which average 

value is by its intended usage, gives highly stable results w.r.t. simple arithmetic or 

geometric average. 

 Just for the sake of completeness we provide here the definition of geometric 

average, since in [9] it has been shown that geometric and arithmetic average behave 

Figure 3.1: Plot of the function 𝒇 = 𝐥𝐨𝐠(𝒍𝒆𝒏𝒕𝒉(𝑳)) ∗ 𝐥𝐨𝐠(𝒍𝒆𝒈𝒉𝒕(𝑹)) 
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comparably in highly fluctuating environments: 

𝐺𝐴{𝑥1𝑥2…𝑥𝑛} = √∏𝑥𝑖

𝑛

𝑖=1

𝑛

.[3.16] 

 After this exhaustive analysis of the possible modifications to 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) we 

propose a new criterion denoted as 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) , where subscript ‘wa’ 

denotes weighted average and 𝑤[𝑘] represents a list of weights pre-computed in one of 

the possible ways (here we have explained just few possibilities, other strategies may be 

possible). The complete procedure for producing this segmentation criteria is presented 

below: 

(𝐿, 𝑅) = 𝑐𝑜𝑚𝑏(𝑠; 𝑘, 𝑔),[3.17] 

𝑥𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝐿[𝑖]) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅[𝑖])),[3.18] 

𝑥[𝑘] = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑥[𝑘]),[3.19] 

𝐿[𝑘] = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝐿[𝑘]; 𝑥[𝑘]),[3.20] 

𝑅[𝑘] = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑅[𝑘]; 𝑥[𝑘]),[3.21] 

𝐸𝐴{𝐿|𝑅; 𝑥1𝑥2…𝑥𝑛} = (1 − 𝛼)1 ∗ 𝑚𝑖(𝐿[𝑛 − 1], 𝑅[𝑛 − 1]),[3.22] 

+𝛼∑(1 − 𝛼)𝑛−𝑠 ∗ 𝑚𝑖(𝐿[𝑛 − 𝑠], 𝑅[𝑛 − 𝑠])

𝑛−2

𝑠=0

,[3.23] 

𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) = 𝐸𝐴{𝐿|𝑅; 𝑥1𝑥2…𝑥𝑛},[3.24] 

𝐿[𝑘], 𝑅[𝑘], 𝑥[𝑘] should be regarded as fixed triplets, while 𝐿 and 𝑅 represent arrays of 

all possible combinations of context whose combined length are equal to k, and 𝑥 

represent corresponding sorting criterion, since EA is sensitive to sorting order. In 

addition 𝑐𝑜𝑚𝑏() produces all possible context combinations up to a combined length 

equal to k, extracted form the string s. Position g represents a hypothesis that the word 

separator will be placed at this position in the string s. Detailed visualization of this 

procedure is provided in Figure 3.2. In Formula 3.18 we apply previously defined 

contextually balance logarithmic function. We proced on by sorting triplets 

(𝐿[𝑘], 𝑅[𝑘], 𝑥[𝑘]) in Formulas 3.19-3.21. This sorting can be understood as sorting with 

respect to the joined contextual information of terms 𝐿[𝑘] and 𝑅[𝑘]. Finally in Formula 

3.23 we compute the Exponential average of each triplet while prioritizing longer and 

balanced contexts.  
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Figure 3.2: Process of incrementally increasing left and right context 

We use 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) as follows: 

𝑖𝑓𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘])𝜖[−1,1]𝑡ℎ𝑒𝑛𝑤𝑒𝑐𝑎𝑛𝑡𝑑𝑒𝑐𝑖𝑑𝑒, 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖𝑠𝑖𝑔𝑛𝑜𝑟𝑒𝑑 

𝑖𝑓𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) > 1𝑡ℎ𝑒𝑛𝑛𝑜𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 

𝑖𝑓𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) < −1𝑡ℎ𝑒𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 

The logic behind using this criterion is identical to the usage of 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) described 

in [3]. Actually 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅) is a restriction of 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]), if we set weight 

in such way that: 

𝑘 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑖𝑛{𝑚𝑖(𝐿[𝑗], 𝑅[𝑗])}),[3.25]  

𝑥[𝑖] = {
0, 𝑖 ≠ 𝑘
1, 𝑖 = 𝑘

,[3.26] 
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𝛼 = 0,[3.27] 

𝑘 = 2.[3.28] 

𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) will produce identical results as 𝐵𝐶𝑚𝑖𝑛(𝐿|𝑅); in our system we 

use more general criterion provided by 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]). 

3.3 Entropy-oriented segmentation method  

 Another possible approach to word segmentation without an available 

dictionary is based on the entropy values of individual characters in a sequence. It has 

been shown in [10] that characters belonging to a word observe a decrease in the 

entropy value as more context is present. Here entropy value corresponds to the 

probability distributions of possible successors of a particular character. Therefore, 

entropy should be considered as a monotonically decreasing function inside of the word 

boundaries. An illustration of an example taken from the English language is presented 

in Figure 3.3.  

 The starting point to present this idea in more formal way is the definition of 

conditional entropy: 

𝐻(𝑋|𝑋𝑛) = − ∑ 𝑝(𝑋𝑛 = 𝑥𝑛)

𝑥𝑛𝜖𝜒𝑛

 

∗∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛)𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[3.29] 

Where 𝜒  represents the set of elements, in our case the set of characters and 𝜒𝑛 

represents n-gram sequences produced from 𝜒. If the value of interest is conditional 

entropy for a given fixed n-gram sequence, or in other words, for a given fixed context, 

the previous formula simplifies into: 

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) = −∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[3.30] 

Based on the previous observation which states that entropy function is monotonically 

decreasing while inside of the word boundaries, can be applied to conditional entropy as 

well. Stated in more formal way, if we have a n-gram sequence 𝑥𝑛  of length 𝑛 and 

another n-gram sequence of length 𝑛 + 1 denoted as 𝑥𝑛+1 while 𝑥𝑛 is a prefix of 𝑥𝑛+1, 

the following condition holds in most common cases: 
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𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) > 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛+1).[3.31] 

 The cases in which this condition does not hold are usually words with same 

roots where we can observe an increase in entropy if a large number of words share the 

same root in the training corpus. Many words sharing the same root is not an alarming 

issue since, from the “Cryptic” language perspective, the majority of words are made 

from two to three characters and thus speaking of word’s root holds no significance. 

Cases in which this does occur in the “Cryptic” language may be the first or second 

names of a passenger, however, as previously have been stated, these are one time 

words and usually have no statistical significance. Moreover, the intention of using n-

gram statistics in the scope of this system is for prediction and correction. From auto-

completion and auto-correction perspective, it is obvious that if the decision is reached 

in two steps instead of one it does not produce any complications. These considerations 

fortify the fact that perfect word segmentation is not needed, but it is desirable. It is 

worth noticing that, too liberal word segmentation, meaning too many missing 

separators, may lead to issues. On the other hand, too aggressive segmentation, meaning 

there are false positive separators, even though not optimal, is not creating any major 

issue. 

   In the original version of the criterion (proposed in [10]) word boundaries are 

decided based on complete n-gram for every sentence; in our case sentence is equal to a 

command. This criterion, as previously have been stated, is based on the monotonicity 

Figure 3.3: Principle of entropy monotonicity inside of word boundaries 
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of conditional entropy; indeed, conditional entropy is monotonically decreasing while 

inside of word boundaries. This fact implies that if we observe an entropy increase 

between two consecutive characters, or more precisely between two n-gram sequences 

𝑥𝑛 and 𝑥𝑛+1 where 𝑥𝑛 is a prefix of 𝑥𝑛+1, this observation indicates the position of a 

word separator. Visualization of this principle is presented in Figure 3.3. 

 In our solution, we use both this initial version and our modification of this 

approach. The proposed modification is based on the notion of sliding context; we 

average conditional entropy value based on all possible n-gram sequence of length up to 

𝑘 which is a parameter of the criterion. Averaging approach follows the same logic as 

already explained in Section 3.2. It is extremely similar to the  𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) 

with a difference in the fact that in this case the decision is based on monotonicity of 

entropy while in case of 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])  the decision was based on mutual 

information. We formally define this criteria as follows: 

𝑦𝑖 = 𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖)),[3.31] 

𝑦 = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑦),[3.32] 

𝑥 = 𝑠𝑜𝑟𝑡𝑖𝑛𝑐(𝑦; 𝑥),[3.33] 

𝐸𝐴{𝑥1𝑥2…𝑥𝑛} = (1 − 𝛼)𝑛 ∗ 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) 

+𝛼∑(1 − 𝛼)𝑠 ∗ 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛−𝑠),

𝑛−1

𝑠=1

 [3.34] 

𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) = 𝐸𝐴{𝑥1𝑥2…𝑥𝑛},[3.35] 

where 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) denotes Entropy Condition with weighted average for maximum 

length of context equal to 𝑘 . A visualization of the application of this criteria is 

presented in Figure 3.4. This approach takes into account all possible context up to 

length of 𝑘 then averages among these context to get an indicator of existence or non-

existence of separator in the position at hand. For example, let’s assume we are 

interested in finding out whether there is a boundary or not after sequence ‘anpar’ in 

“Cryptic” command. In this case we compute conditional entropy for contexts ‘anpar’, 

‘npar’,’par’, ‘ar’, and ‘r’ while giving them weights which prioritize longer contexts. 

Strategies for weighting contexts are dealt with in more details in Section 3.2. This way 

we allow dispersion of decision criteria throughout complete corpus. We are using 

weighted average as operator to avoid one particular context’s dominance. The only 

case in which one context can dominate the weighted average is if it is the longest 
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context and its value is by far greater than the other values. In that case enough 

information is presented in the longest context, so it is desirable that this factor affects 

decision.    

3.4 Majority voting boundary decision  

 Now that both 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) and 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) have been defined 

we can propose the final definition of the word boundary decision criterion. In our 

solution the decision criterion is based on majority voting among many individual 

criteria. All individual criteria are based either on 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])  or 

𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) or in the simplest case just on the value of 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛). At current 

state of the solution the decision is based on the following individual criteria: 

 𝐸𝐶𝑚𝑎𝑥(𝑘) 

 𝐸𝐶𝑚𝑖𝑛(𝑘) 

 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) 

 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘])  

Figure 3.4: Process of incrementally increasing context used for entropy 

computation 
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 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]) 

 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘])  

 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) 

 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛)  

 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) 

 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])  

Each individual indicator participates in the voting procedure by giving one vote point, 

once all points are collected for a particular position a decision is made by the following 

rule:  

𝑖𝑓𝑣[𝑖] ≥
𝑛

2
𝑡ℎ𝑒𝑛𝑝𝑙𝑎𝑐𝑒𝑎𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑜𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 

𝑒𝑙𝑠𝑒𝑛𝑜𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑜𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 

𝑖𝜖[0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑚𝑚𝑎𝑛𝑑)] 

 Another possible approach is that instead of equal voting procedure we use 

priority based voting procedure. In Chapter 7, which deals with validation and 

performance, we have conducted performance measurements of each segmentation 

criteria and ranked them in order of decreasing performance. Once ranking of individual 

criteria is obtained ranked voting gives increasing vote power with increasing rank. This 

way we prioritize decisions made by more precise criterion while two or more 

combined criteria can overpower decision of higher rank criterion. All other features of 

voting are the same; we still need more than half total votes to make a decision of 

placing word separator. 

 To finalize the discussion on word segmentation, we will explain the notation 

used for listing all individual indicators and explain the meaning of each one of them. 

𝐸𝐶𝑚𝑖𝑛(𝑘)  and 𝐸𝐶𝑚𝑎𝑥(𝑘)  represent simplifications of weighted average approach to 

max and min operators, as previously stated in Section 3.2., this simplification can be 

understood as setting all weights to 0 and for min/max setting the weigh to 1. 

  𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘])  and 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘])  represent weighted average based on 

logarithmic length of n-gram sequence and exponential average based on logarithmic 

length of n-gram sequence respectively, as explained in Section 3.3. While 

𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]) and 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]) represent same indicators just applied on reversed 
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data (letter b comes from the word backward).  Reversed context may as well bring 

interesting new information in some cases where words appear only toward the end of 

the commands in these cases forward context bring less information than backward 

indicators since more probability mass is contained in backward indicator therefor 

entropy indicator is more stable. 

 On the other hand 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])and 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) represent 

indicators based on mutual information function as explained in Section 3.2. These two 

indicators do not have backward versions since initially they take into account both pre-

context and post-context, reversing the data will lead to the more or less identical results 

and therefore bias the voting procedure, since almost the same information will be 

counted twice.  

 Lastly, we have two indicators based on full n-gram of every command and the 

entropy monotonicity extracted from this n-gram. These two indicators are denoted as 

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) ans 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛) corresponding to forward and backward train data 

respectively. Procedures for extracting forward and backward indicators do not differ in 

any aspect, only difference is observed in data pre-processing when train data is 

reversed and given to the same algorithm twice, which will produce two different 

indicators from two different data samples.  
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4 N-GRAM TREE DATA 

STRUCTURE 

 After the notions of n-gram statistics and word segmentation have been 

established, we can place these concepts in the frame of the “Cryptic” language. 

Starting point should be the command start symbol denoted as Ш. Train data provided is 

in the form of user logs of the “Cryptic” command line system. Every line in the log 

represents one correct command issued at a particular time by a user U. It is important 

to stress out that incorrect commands are discarded in the acquisition of data logs since 

incorrect commands can bias predictors toward suggesting the user to input errors 

which is the undesired behavior. Symbol Ш is an implicit symbol that represents the 

start of every command. This particular symbol is important since it can be considered 

as a root of a tree data structure that will capture n-gram relations between symbols in 

the U’s data logs.  

 Commands in the logs can be considered as symbol sequences whose 

probability is defined as: 

𝑃(𝑠𝑖𝜖𝑆) = 𝑝(𝑠𝑖|Ш, 𝑠1, 𝑠2, … , 𝑠𝑖−1),[4.1]  

where S denotes a symbol sequence that represents a valid command in the “Cryptic” 

syntax, 𝑠𝑖  denotes any symbol in this sequence and  Ш  is the beginning of any 

command. If we compare previously stated probability measure with n-gram probability 

measure: 
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𝑃𝑛(𝑠𝑖𝜖𝑆) = 𝑝(𝑠𝑖|𝑠𝑖−𝑛, 𝑠𝑖−𝑛+1, … , 𝑠𝑖−1).[4.2] 

It is obvious that n-gram probability measure is just fixed history length restriction of 

the probability measure presented in Formula 4.1.  

 In this thesis we propose various types of n-gram statistics based tree structures 

that are used for different purposes: 

1) Character level n-gram tree with fixed root symbol, root symbol is Ш 

2) Character level n-gram tree with context-free root, root symbol is Џ 

3) Word level n-gram tree 

4) Command level n-gram tree  

Case 1 is constructed based on Formula 4.1, while cases 2, 3 and 4 are constructed 

based on Formula 4.2. Firstly let’s concentrate on shared attributes of these four types 

of trees and then the discussion will move on describing particularities of each 

individual type.  

 The construct of a node is the same in all cases. Every node in a tree has as the 

attribute value of n-gram probability estimator. Based on the depth of the node position 

in the tree we can deduce the length of the context, for the node at depth k we have k-2 

meaningful predecessors since the root bares no contextual information. In addition to 

n-gram probability estimator, every node contains as well a total probability estimator. 

This estimator takes into account the probability of a complete path that leads to this 

concrete node. Another two paramount values are entropy value and alpha value. 

Entropy value is computed w.r.t. to Shanon’s entropy definition and it is explained in 

details in Chapter 3. Alpha value contains ‘missing’ probability mass for every node in 

the tree, missing mass refers to the portion of probability mass discarded with 

discounting n-gram estimators defined in details in Section 2.3.  

 What is important from the perspective of the tree structure is the organization 

of node’s children. To facilitate fast maximum likelihood search, children of every node 

are ordered with respect to the probability estimate value, or more precisely to the value 

of n-gram estimators. In addition to this ordering, every node contains a hash map of its 

children, this extension provides constant time search in the tree for any random path.    

 As we have previously established, every command has implicit start symbol 

denoted as Ш. In this case the root of the n-gram tree data structure will be labeled with 

Ш symbol, and this will be the starting point in the construction of the data structure. 
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The estimator of the root probability will be set to 1.0 since there is no uncertainty of Ш 

appearing in the command. Once root node is formed, the first level of n-gram tree is 

computed. The first level of n-gram tree represents probability estimates of the first 

characters in the command. Nodes from the first level of the tree can be considered as 

bigram estimators: 

𝑝2(𝑠) ≅ 𝑞𝑚𝑙2(𝑠) = 
𝑐𝑜𝑢𝑛𝑡(Ш𝑠)

𝑐𝑜𝑢𝑛𝑡(Ш)
.[4.3]      

Every further level of the tree represents estimation of probability of the 𝑖𝑡ℎ symbol in 

the command symbol sequence: 

𝑝2(𝑠𝑖|𝑆) ≅ 𝑞𝑚𝑙2(𝑠𝑖|𝑆) = 
𝑐𝑜𝑢𝑛𝑡(Ш𝑆𝑠𝑖)

𝑐𝑜𝑢𝑛𝑡(Ш𝑆)
.[4.4] 

Where S denotes prefix string of length i and 𝑠𝑖 denotes symbol at the position i. This 

concept can be considered as a spatial restriction of n-gram statistics, where n-gram of 

history length i is taken into account only for 𝑖𝑡ℎ character. 

 One important part of the tree creation algorithm is that every node contains an 

array with occurrence positions in the train data. Using the occurrence array enables 

traversing the train data in more economic way; train data is not traversed completely 

for every node, just the parts of train data that satisfy provided context are visited. 

 Another approach with same complexity is that of FP trees construction 

algorithm. As stated in [21], every sequence encountered in train data is added as a path 

in FP tree. If nodes corresponding to n leftmost symbols in the symbol sequence are 

already present in the tree, their counters are incremented. After prefix part of the 

sequence is processed; at (n+1)th node new branch will be created and the rest of the 

sequence will result in newly created nodes with counters set to 1. The approach applied 

in this thesis is not significantly different since it will result in the same tree, the 

difference is that FP tree approach is depth-first creation, while approach applied in our 

solution is breadth-first approach.  

 Why the decision made was in favor of breadth first creation strategy is 

reflected in the fact that entropy values computed at each node requires all children’s 

parameters to be available, as well as the alpha values. With depth-first creation 

strategy, we would firstly need to create the complete tree, then run the algorithm for 

computing the parameters of the fully expanded tree. Asymptotically, number of 

operations is the same in both cases; in our implementation we have a smaller constant 
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multiplying the complexity. Our approach results in faster runtime, but also in more 

memory consumption, i.e., memory allocated to occurrence positions of each n-gram in 

the training corpus. In this particular implementation we are more concerned with 

running time than with memory consumption, due to the fact that the “Cryptic” system 

is run on state of the art servers, and therefore memory restriction is of less significance.     

 As previously stated in Section 2.3 n-grams are usually used for values of n 

close to 4 or 5, here we are not restraining the value of n, and the context is explored till 

maximal depth. In this case value of n goes until the value of command’s length, or 

more precisely until symbol Ж, is encountered. This particular tree is not used at 

runtime nor for actual predictions in auto-complete nor auto-correct capabilities. This 

tree is used in word segmentation procedures, one of segmentation criteria is based on 

fully expanded n-gram tree and entropy values, this particular word boundary criteria is 

explained in more details in Section 3.3. Visualization of such tree structure is provided 

in Figure 4.1. 

 One important thing to be added is that discounting factor 𝛽 and the 𝛼 value 

affect entropy value of each node. As previously stated in Section 2.3 n-gram estimators 

are computed with discount factor 𝛽 and in accordance with the following formula: 

𝑞𝑚𝑙(𝑥|𝑌) =
𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌)𝑥) − 𝛽

𝑐𝑜𝑢𝑛𝑡(𝑠𝑒𝑞(𝑌))
, 𝛽𝜖(0.0,1.0),[4.5] 

𝛼(𝑌) =  ∑ 𝛽

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

,[4.6] 

𝛼(𝑌) + ∑ 𝑞𝑚𝑙(𝑥|𝑌)

∀𝑞𝑚𝑙(𝑥|𝑌)≠0

= 1.0.[4.7] 

From equations [4.5-4.7] it becomes obvious that small portion of probability mass is 

not assigned to any of the children, but it is reserved for generalization purpose, or more 

precisely it is assumed to be assigned to cases not encountered in the training corpus. 

This probability mass is accumulated in the 𝛼 value. 𝛼 value can be understood as an 

additional implicit child of every node which affects value of the entropy for each node. 

This fact implies that formulae provided for  𝐻(𝑋|𝑋𝑛 = 𝑥𝑛)  and 𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) 

need to be modified to take into account this missing probability mass. 

 Firstly, let’s consider 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) since it is a more simple case, this value 

is computed in accordance with the following formula: 
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Figure 4.1: Example of character level n-gram tree with fixed root symbol set to Ш 
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𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) = −∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[4.8] 

This particular formula, when applied onto n-gram tree structure, assumes that 𝜒 

represents the set of the children of the concrete node for which the entropy value is 

computed. In addition it assumes that the context denoted as 𝑥𝑛 represents full path till 

the root of the tree. To facilitate easy search of ancestral paths backward pointers 

toward the node’s parent is added in the node construction. What is clear in this 

situation is that computed entropy value is not complete since the 𝛼 value is missing 

from the entropy; proposed modification is simple, and it is presented in the following 

formula: 

𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) = −𝛼(𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝛼(𝑋𝑛 = 𝑥𝑛)) 

−∑𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑝(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

 

= −𝛼(𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝛼(𝑋𝑛 = 𝑥𝑛)) 

−∑𝑞𝑚𝑙(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛) 𝑙𝑜𝑔(𝑞𝑚𝑙(𝑋 = 𝑥|𝑋𝑛 = 𝑥𝑛))

𝑥𝜖𝜒

.[4.9] 

Where 𝛼(𝑋𝑛 = 𝑥𝑛) univocally denotes each individual node by its full path in the tree.  

This is a small modification, but extremely important due to possibility of applying tree 

pruning w.r.t. the count value or w.r.t. the confidence level (n-gram probability 

estimate). In that case 𝛼(𝑋𝑛 = 𝑥𝑛)  will hold probability mass of the pruned tree 

branches.  

 The mutual information function, denoted as 𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵), also needs a 

revision due to the presence of 𝛼(𝑋𝑛 = 𝑥𝑛) . The initial formulation of the mutual 

information function is stated as follows: 

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑥 = 𝐴|𝑦 = 𝐵)

𝑝(𝑥 = 𝐴)𝑝(𝑦 = 𝐵)
).[4.10] 
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Figure 4.2: Visualization of additional linkage between nodes with the same label 

One can notice that this particular definition is based on total probabilities 𝑝(𝑥 = 𝐴,

𝑦 = 𝐵) , 𝑝(𝑥 = 𝐴)  and 𝑝(𝑦 = 𝐵) , which are not available in our particular data 

structure. To avoid this issue our data structure is enhanced by horizontal pointers that 

connect all nodes with the same label, visualization of this enhancement is presented in 

Figure 4.2. What is extremely important to be stated is that total probability of any 

particular symbol is affected by the missing probability mass in the tree, or more 

precisely by every 𝛼(𝑥𝜖𝑥𝑛) . The total probability of any particular symbol is then 

defined by following formalism: 
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𝜑(𝑥) = {𝑥𝑛|𝑥 = 𝑥𝑛[𝑛]},[4.11] 

𝛿(𝑥𝑛) = ∑ (
𝑝(𝑥𝑖)𝛼(𝑥𝑖)

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

,[4.12] 

𝑘 = 𝑠𝑖𝑧𝑒𝑂𝑓(𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡),[4.13] 

ℎ(𝑥𝑛) = 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶(𝑥𝑛[𝑛])),[4.14] 

𝑔(𝑥 = 𝐴) = 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴)

(𝑝(𝑋 = 𝑥𝑛) + 𝛿(𝑥𝑛)), 

= 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴)

[∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑖)

𝑥𝑖𝜖𝑥𝑛

+ ∑ (
𝛼(𝑥𝑖)∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑗)𝑥𝑗𝜖𝑥𝑖

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

].[4.15] 

Where 𝐶(𝑥𝑛[𝑛]) denotes function that returns the set of children whose parent is the last 

node in the sequence 𝑥𝑛, and  𝑥𝑛[𝑛] denotes a last element of the sequence. By applying 

this formalism 𝛼(𝑥𝑛) value is equally divided among all not encountered symbols. If a 

particular symbol of interest is not found in node’s children then that node’s 𝛼(𝑥𝑛) 

value portion corresponding to the symbol of interest is added to total probability of this 

particular symbol. Missing probability mas of a sequence 𝑥𝑛 is denoted as δ(𝑥𝑛); this 

value is computed as sum of n possible missing paths, where n is the length of the 

sequence. Let’s assume that the prefix of the sequence 𝑥𝑛, with the length equal to k, 

has been matched. A portion of the 𝛼 value of the last node in the prefix path should be 

considered as a missing probability mass of the sequence 𝑥𝑛. We can observe that there 

are n such prefixes and each of them should be taken into account. In addition observed 

propability mass of the sequence 𝑥𝑛 is computed as a product ∏ 𝑞𝑚𝑙(𝑥𝑖)𝑥𝑖ϵ𝑥𝑛
; this is 

clear choice since 𝑞𝑚𝑙(𝑥𝑖) represents an estimate of the probability of each symbol in 

the sequence. It is worth mentioning that more complex division techniques could be 

applied for partitioning the  𝛼(𝑥𝑛)  value. Since this is expected to be just a small 

portion of probability, a uniform division strategy is reasonable choice, but if one would 

decide to assume Gaussian distribution this would as well be a reasonable choice. We 

have restrained ourselves to the choice of uniform division of 𝛼(𝑋𝑛)  value. 

Visualization of technique performed for estimating value of δ(x𝑛)  is presented in 

Figure 4.3. (Note that in visualizations of the tree structures some nodes are colored in 

light gray, these nodes represent nodes of the matched path.) 
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Figure 4.3: Visualization of generating δ(x_n ) based on α value of each node in the 

path of interest 
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 This is not enough to unbias total unconditional probability, we also need to 

perform similar modification for the 𝑝(𝑥 = 𝐴|𝑦 = 𝐵) term. The underlying formalism 

is stated bellow: 

𝜑(𝑥|𝑦) = {𝑥𝑛|𝑦 = 𝑥𝑛[𝑛 − 1]⋀𝑥 = 𝑥𝑛[𝑛]},[4.16] 

𝛿(𝑥𝑛) = ∑ (
𝑝(𝑥𝑖)𝛼(𝑥𝑖)

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

,[4.17] 

𝑘 = 𝑠𝑖𝑧𝑒𝑂𝑓(𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡),[4.18] 

ℎ(𝑥𝑛) = 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶(𝑥𝑛[𝑛])),[4.19] 

𝑔(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴|𝐵)

(𝑝(𝑋 = 𝑥𝑛) + 𝛿(𝑥𝑛)), 

= 𝑚𝑎𝑥
𝑥𝑛𝜖𝜑(𝐴|𝐵)

[∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑖)

𝑥𝑖𝜖𝑥𝑛

+ ∑ (
𝛼(𝑥𝑖)∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑗)𝑥𝑗𝜖𝑥𝑖

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

].[4.20] 

Now that this formalism have been established, a modified 𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵)  is 

defined as follows: 

𝑚𝑖(𝑥 = 𝐴|𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑔(𝑥 = 𝐴|𝑦 = 𝐵)

𝑔(𝑥 = 𝐴)𝑔(𝑦 = 𝐵)
).[4.21] 

Following the same logic, extensions can be provided in the cases of A and B being 

sequences of symbols, the only differences are in the definitions of the set 𝜑. The set 𝜑 

has been redefined in order to capture the fact that x is conditioned by y. In addition, the 

mutual information function is defined in slightly different manner: 

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑞𝑚𝑙(𝐵[𝑚]|𝐴, 𝐵[𝑚]\𝐵[𝑚 − 1])

𝑞𝑚𝑙(𝐴[𝑛]|𝐴\𝐴[𝑛 − 1])𝑞𝑚𝑙(𝐵[𝑚]|\𝐵[𝑚 − 1])
).[4.22] 

This case represents an extension of the previously defined mutual information 

function. The extension is observed in the fact that conditional part of probability 

estimator is a sequence of symbols while up until now we considered only the case 

where conditional part was a single symbol. To facilitate this extension we need to 

redefine  𝑔(𝑥 = 𝐴|  𝑦 = 𝐵) in the following manner: 

𝜑(𝑥|𝑌𝑛) = {𝑥𝑚|(⋀ 𝑌𝑛[𝑛 − 𝑖] = 𝑥𝑚[𝑛 − 𝑖 − 1]𝑛
𝑖=1 )⋀𝑥 = 𝑥𝑛[𝑛]},[4.23] 

𝛿(𝑥𝑛) = ∑ (
𝑝(𝑥𝑖)𝛼(𝑥𝑖)

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

,[4.24] 
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𝑘 = 𝑠𝑖𝑧𝑒𝑂𝑓(𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡),[4.25] 

ℎ(𝑥𝑛) = 𝑠𝑖𝑧𝑒𝑂𝑓(𝐶(𝑥𝑛[𝑛])),[4.26] 

𝑔(𝑥 = 𝐴|𝑦 = 𝐵𝑛) = 𝑚𝑎𝑥
𝑥𝜖𝜑(𝐴|𝐵𝑛)

(𝑝(𝑋 = 𝑥𝑛) + 𝛿(𝑥𝑛)) 

Figure 4.4: Complete visualization of n-gram tree data structure 
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= 𝑚𝑎𝑥
𝑥𝜖𝜑(𝐴|𝐵𝑛)

[∏ 𝑞𝑚𝑙(𝑋 = 𝑥)

𝑥𝜖𝑥𝑛

+ ∑ (
𝛼(𝑥𝑖)∏ 𝑞𝑚𝑙(𝑋 = 𝑥𝑗)𝑥𝑗𝜖𝑥𝑖

𝑘 − ℎ(𝑥𝑖)
)

𝑛−𝑖

𝑥𝑖𝜖𝑥𝑛

],[4.27] 

where we assume that the conditional part can be a sequence while conditioned event 

can only assume the value of a single symbol. This particular restriction is in 

accordance with the use of 𝑔(𝑥 = 𝐴|𝑦 = 𝐵𝑛) and therefore we do not lose generality. 

After redefinition of 𝑔(𝑥 = 𝐴|𝑦 = 𝐵𝑛) we have obtained all needed comprising parts of 

mutual information function and we are able to redefine it as: 

𝑚𝑖(𝑥 = 𝐴, 𝑦 = 𝐵) = 𝑙𝑜𝑔 (
𝑔(𝐵[𝑚]|𝐴, 𝐵[𝑚]|/𝐵[𝑚 − 1])

𝑔(𝐴[𝑛]|𝐴/𝐴[𝑛 − 1])𝑔(𝐵[𝑚]|𝐵/𝐵[𝑚 − 1])
).[4.28] 

 To facilitate all redefined concepts, our tree structure has been modified by 

adding horizontal linkage between nodes labeled with the same symbol. In addition 

backward linkage is added to facilitate fast search of set 𝜑 and 𝛿value, whose search 

complexity are in the worst case O(|𝜑| ∗ |𝑌𝑛|) and O(|𝛿| ∗ |𝑌𝑛| ∗ max
∀𝑥𝜖𝜒𝑛+1

{𝐶(𝑥[𝑛])}) 

respectively. Here 𝜒𝑛+1 represents all possible paths in the tree data structure of length 

equal to 𝑛 + 1 . Complete visualization of tree data structure used in this thesis is 

provided in the Figure 4.3. It is obvious that there are many additional pointers present 

in the data structure. Motivation behind usage of each individual additional pointer is 

provided throughout this section. Moreover, it is obvious that additional backward and 

horizontal linkage are dominated by links toward children. Inclusion of additional hash 

map has approximately same data consumption as list of children; therefore this is only 

a constant increase in memory consumption.  

 Character level n-gram tree with context-free root is created in an almost 

identical manner as it has been the case with character level n-gram tree with fixed root 

symbol set to Ш. In this particular instance root symbol is set to Џ. Symbol Џ in the 

scope of this thesis represents a universal symbol, meaning that this symbol is equal to 

any other symbol from the alphabet. Once we have imposed this condition, it becomes 

clear that this particular tree should observe depth limit. We denote depth limit as 𝑛, 

meaning that node at level 3 represents 3-gram estimator, node at level 4 represents 4-

gram estimator and maximal is k-gram estimator where 𝑘 = 𝑛. This tree represents a 

more conventional approach to n-gram estimators, as already stated in introduction, 

where, on average, and in state of the art natural language processing we encounter up 

to 5-gram estimators not more.  
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 Character level n-gram tree with context-free root is used both in word 

segmentation procedures and, at runtime, as an underlying data structure in auto-

complete and auto-correct capabilities, more on them in Chapters 5 and 6. All additional 

conditions that are valid for character level n-gram tree with fixed root symbol are valid 

for character level n-gram tree with context-free root. More precisely, modification 

imposed on mutual information function and entropy function are as well applied in the 

case of character level n-gram tree with context-free root. Also, the horizontal and 

backward linkage are likewise present, as well as a hash map of children for each node. 

This particular data structure is used in 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) and 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) and 

also in the cases where we apply exponential weighting or backward train data. 

 Once we have performed word segmentation based on the majority voting 

procedure, which uses both character level n-gram tree with context-free root symbol 

and with fixed root symbol, we can construct word level n-gram tree. The word level n-

gram tree is based on the notion of words as labels instead of individual characters. 

Construction assumes context-free root symbol, which, in this case, represents the 

universal word. The depth of this particular tree is parameterized with maximal depth as 

it was the case with character level n-gram tree with context-free root, so the maximal 

n-gram estimator is k-gram where 𝑘 = 𝑛. 

 Lastly, after word segmentation is performed, we can extract command ids 

from the train data. Ability to extract command ids easily comes from the fact that the 

“Cryptic” language is a pre-order language, and thus all the first words are identifiers of 

individual operations performed at each sample time. Every command starts with a 

special start symbol denoted as Ш, and in word segmentation it has been explicitly 

stated that Ш  is treated as a word of the “Cryptic” language. Following this fact, 

command ids are always encountered as second words in each command. If we discard 

all other words except start word containing only symbol Ш, ending word containing 

only Ж , and command id word, we obtain the command sequence train corpus. 

Visualization of this procedure is provided in Figure 4.5. 
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Figure 4.5: Modifying train corpus by removing all words except command 

identifiers 

 Based on this modified train data we can construct command level n-gram tree, 

which differs from word level n-gram tree only in the performed modification of the 

train data. Command level n-gram tree is used to predict which particular command user 

will type at each moment. This prediction is used to navigate in word level n-gram tree, 

more on this in Chapters 5 and 6.  
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5 “CRYPTIC” AUTO-COMPLETE  

 “Cryptic” auto-complete capabilities are based on the character level n-gram 

tree with context-free root (further referred as CHT) and the word level n-gram tree 

(further referred as WRDT), with addition that the command level n-gram tree (further 

referred as CMDT) can be used to predict future commands. Each of these particular 

data structures is used at a specific moment to provide more flexible predictions. As we 

have explained in Chapter 4, the children of each tree node are sorted in decreasing 

order of 𝑞𝑚𝑙, from this fact emerges that depth first search of the n-gram tree provides 

maximum likelihood prediction, since all left most children observe highest values of 

probability estimations. 

 Due to different treatment of train data CHT and WRDT provide somewhat 

different estimates, and we combine their outputs to provide the final prediction 

presented to the user. Since all children of a particular node are ordered w.r.t the 

decrease of 𝑞𝑚𝑙 value, maximum likelihood prediction is actually just the leftmost path 

that matches the current user’s input. It could happen that a path that matches current 

user’s input does not exist; in this case we firstly apply auto-correct on partial user’s 

input and on corrected input we apply auto-complete. Auto-correct capability is 

explained in details in Chapter 6.       

 CHT is used in a similar manner as it was the case with word segmentation. 

We can understand this as a window of length 𝑛, where 𝑛 represents depth of n-gram 
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tree, that slides over the user’s input and provides prediction of how to complete the 

current word. It is required to be stated that after word segmentation is performed, CHT 

is restructured to be used at runtime. Reconstruction assumes that CHT is responsible 

for character level predictions inside of word boundaries, so the stopping condition is 

not the end of the command but a word delimiter, and the starting symbol is set to word 

delimiter as well. This way CHT is able to complete current word. 

 Once we obtain current word completion, we can finalize prediction of current 

command by consulting WRDT data structure. Prediction procedure is conceptualized 

as search for the word sequence that contains command end word while the total 

probability accumulated in this sequence is maximized. Once such sequence is 

encountered the final prediction is provided to the user. It is worth mentioning that we 

observe prefix matching while we are computing prediction. Current input is firstly 

segmented into words. Then this list of words is considered as a prefix list that must be 

matched and, based on that path, a prediction is provided as the leftmost path till the 

command end word. Since WRDT is a tree with fixed depth, it could happen that the 

number of words inside of the command is larger than the actual depth of the tree. 

Depth misalignment is not likely for WRDT with the depth approximately equal to 5. 

However, depth misalignment could happen due to the imperfection of word 

segmentation technique and the fact that the number of actual words is on average 

smaller than the number of words in data produced by segmentation algorithm.  

 As it has been shown in Figure 5.1, if we were to find prefix matched path 

from which we cannot extract a path that ends with the command end word, we could 

apply once again sliding technique. Prefix will slide for one position to the right; the 

search will be performed again based on newly obtained maximum likelihood prefix 

path. The search will be continued until the command end word is encountered. It is 

obvious that in the “Cryptic” language settings there are many sources of noise in the 

prediction; this implies that prediction precision might be hindered by some factors such 

as sliding technique. On the other hand, n-gram trees exponentially explode with the 

increase of depth, especially in case of context-free root symbol, so in this particular 

instance we need to keep depth bounded to a reasonable value. Another source of 

imperfections comes from the tree pruning procedure. Tree pruning is necessary 

because many commands are encountered only one or two times, and these words are 

statistically insignificant. However, these words can increase the size of data structure 

significantly on average.  
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 Finally, CMDT can be used in the case when user have not started typing the 

current command. At this particular moment user’s current input is comprised of only 

the implicit start symbol. The best word prediction we can extract from CHT or WRDT 

might lead into a situation where the prediction provided to the user is a command that 

is not following the logical flow of commands. From CMDT, we can extract maximum 

likelihood estimate of command id w.r.t. to the observed flow of previous commands 

issued by the user. By using CMDT at this step, we provide to the user a word that is 

actual maximum likelihood estimator of the current command, even if there is another 

word in WRDT which has higher value of  𝑞𝑚𝑙. Once user actually starts to type we use 

CHT to predict the word that is being typed, and when we obtain prediction we consult 

CMDT dictionary to test if the word is actually a command identifier, if this is not the 

case then we perform auto-correct and on corrected input we predict the current 

command.  
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Figure 5.1: Principle of sliding context in auto-completion procedure 
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6 “CRYPTIC” AUTO-CORRECT  

 Auto-correct feature of the “Cryptic” language is based on the character level 

n-gram tree with a context-free root (further referred as CHT), the word level n-gram 

tree (further referred as WRDT) and the command level n-gram tree (further referred as 

CMDT). As it has been presented in Chapter 5, the auto-correct functionality is used in 

the auto-complete functionality as a smoothing technique, when there is an indication 

that the input is malformed. In addition, we always test user’s input for errors and 

provide additional predictor with corrected input that observes an increase in probability 

value, even when there is no indication of typographical mistakes. Both auto-complete 

and auto-correct outputs are presented to the user, and he can decide which one, if any, 

is the correct prediction.  

 When the user has not started typing, input is comprised only by the start 

symbol. At this moment, the auto-correction output is extracted from CMDT, and this 

output is identical to the one provided by the auto-completion procedure. Once the user 

starts typing, his input becomes a string that we desire to correct. Firstly, this input is 

segmented using the same functionality used in word segmentation phase. If the input 

consists of only two words, the first word is always the command start word, and we 

use CMDT to facilitate the correction procedure.  

 As presented in Figure 6.1, the first important step is to match the command 

pattern in CMDT. Command pattern is based on from user session command history. 

For pattern matching purpose, we use the longest common subsequence relation. 

Maximization of the longest common subsequence is equivalent to minimization of edit 
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distance between two command sequences. This way we do not enforce perfect match 

as long as sequences observed in CMDT are encountered in user session history in same 

order. N-gram relations, in the case of command identifiers, can be understood as 

“happens before” relations that allow other commands to occur in between observed 

commands. More precisely, if we are observing commands x and y in the user session 

command history, and we want to match them in CMDT, what is important is the order 

of command executions. In this case x was executed before y. What is of less 

significance is that in between x and y we have observed command z which if matched 

Figure 6.1: Longest common subsequence matching between session 

history and n-gram tree 
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in CMDT would significantly decrease the probability of the matched pattern. It is 

worth mentioning that large gaps of not matched commands between commands x and y 

should be penalized. We allow the longest common subsequence procedure to partially 

match user’s command sequence as long as probability estimate is increased, and there 

are not many (nor large) gaps between matched commands.  Another possible approach 

to the session history pattern matching is the sliding technique used in the auto-

completion functionality. It should be noted that CMDT depth is usually chosen as a 

small value close to 5 while user history could be a lot larger, it is not uncommon that 

user performs hundreds of commands in one session. Every time we slide a window on 

CMDT tree we perform 𝑂(𝑘) operations where 𝑘 is the depth of the CMDT tree, since 

we try to match as much context as possible. This approach would be expensive, 

moreover at every slide, due to context free root, we add some uncertainty which 

implies that benefits from this more complex approach would be minor and this fact 

pushed choice of session history pattern matching toward longest common subsequence 

in our implementation. 

 Once a session history pattern is matched and we have obtained a context of 

length 𝑘 − 1, where 𝑘 is the depth of CMDT tree, we can search in the children of the 

last node in the context for prediction of current command. At this step once again we 

perform pattern matching with the difference that in this particular case we match labels 

of children nodes with user’s current input. To facilitate this functionality we need to 

define a possible typographical error. We can observe three different cases of 

typographical errors: 

 Missing character 

 Redundant character 

 Swapped characters 

We have introduced additional symbol to help us represent errors in the string. Symbol 

reserved for this use in this thesis is З. Symbol З is a Cyrillic letter and not number 3, 

with the flexibility of being able to set this symbol to any other value outside of 

“Cryptic” language alphabet.  

 The strategy we decided to follow was to firstly generate all possible errors in 

the string up to value 𝑘, where 𝑘 is a parameter of a procedure and it can be changed. 

Somewhat empirical choice has fallen to value close to 3, any value larger than this 

would be too liberal in correcting the input, while just one error allowed per word is 
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valid choice as well. Once we have generated all possible strings containing an error, 

symbol З denotes position of the imputed error, we perform error correction of each 

individual string containing errors and we treat every З symbol in all three possible 

ways.  

 In the first case, we add one more symbol to the word and to produce highly 

likely word we use the CHT tree. As it has been depicted in Figure 6.2, the word is split 

into three parts, error-prefix (further referred as EP), symbol З and error-suffix (further 

denoted as ES). Firstly we need to match EP if we manage to match EP we proceed 

with matching ES. ES is matched using backward linkage, and we are interested in 

finding a set of nodes which connect these two paths if any exists. If we obtain non-

empty set of such nodes, we choose as additional symbol label of the node that produces 

complete path that has the largest value of 𝑞𝑚𝑙.  

 In the second case, we treat symbol З as the demarcation of the redundant 

symbol which should be removed. The approach is, in general, similar to the previous 

case. The only observed difference is in the treatment of symbol З. Same as before, we 

split the word into three parts, EP, З, and ES. Here we remove the first symbol from ES, 

and the rest of the strategy is the same. Firstly we need to match EP path in CHT tree 

and then we need to match ES using backward linkage. Once we connect these two sets 

of paths we propose to the user path that has the highest value of  𝑞𝑚𝑙. 

 Lastly, we treat swapped character errors in the following manner. Word is 

split into three parts EP, З, and ES. In this instance, the last symbol of EP and the first 

symbol of ES are exchanged and then matching is performed by using CHT tree. EP 

with changed last symbol is matched in the forward direction, and ES with changed first 

symbol is matched in the backward direction. Once the sets produced by EP and ES 

matching are connected, the path with the highest value of 𝑞𝑚𝑙 is chosen as corrected 

word.  

 These three procedures are executed in the same way regardless of the word 

position in the command. The only difference arising from the different position of the 

word inside of the command is the usage of CMDT if the word we are trying to correct 

is placed in the second position. We remind the reader that first word is always 

command start word. Thus the second word is the command identifier, for all other 

words WRDT tree is used. Once the set of corrected words is produced we replace the 

corresponding word in the current input word list. The word that is being corrected is 
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assumed always to be the last word in the input word list because we incrementally 

provide to the user corrected and completed output. At this point we assume user had 

already observed corrected output for all previous words and acted upon the provided 

output. This assumption implies that strategy for choosing corrected output word is 

consisting of matching a path in WRDT tree with sliding approach up until the last word 

has been matched. Once maximum likelihood path is obtained, we can extract the 

Figure 6.2: Visualization of the word split into EP, ES, and З and mapping of 

each part to corresponding path in the n-gram tree 
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children of the last node in this path. The set of the children obtained this way is then 

compared with the set of possibly correct words and the intersection of these two sets 

provides a set of probable words. Word with the highest value of 𝑞𝑚𝑙  is chosen as 

corrected word.  

 There are other possible approaches to deal with the issue of correcting 

typographical errors. Our solution tries to tackle as many as possible restrictions 

imposed by the “Cryptic” language structure. Results obtained by using this strategy are 

provided in Chapter 7 in more detailed fashion.  
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7 VALIDATION 

7.1 Word segmentation validation 

 As it has been explained in Section 3.4, our solution bases segmentation 

decision on the following individual criteria: 

 𝐸𝐶𝑚𝑎𝑥(𝑘) 

 𝐸𝐶𝑚𝑖𝑛(𝑘) 

 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) 

 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘])  

 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]) 

 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘])  

 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) 

 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛)  

 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) 

 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])  

These criteria are then used for one of two possible voting procedures. Either all criteria 

involved are voting with equal voting rights or based on performance rank each 

criterion has unique voting value. 

 Firstly we need to define measurements used for validation procedure. In this 
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thesis we use three measurement values, denoted as: 

 Precision 

 Accuracy 

 False omission ratio 

 A precision measurement is defined as the ratio between true positive decisions 

and all positive decisions. In this case, positive decisions are a decision to place word 

separator in a particular position in the text, implying that true positive decisions are 

correctly placed word separators. On the other hand, false positive decisions are word 

separators placed in the position where they should not appear. With respect to our 

system, false positive decisions are not considered as strict errors, the only nuisance 

induced by these errors is a slightly longer path in the WRDT data structure. From a 

language perspective, these errors could appear if some words share a common prefix, 

especially if segmentation techniques are based on mutual information or entropy value, 

as in our case. The following formula defines precision measurement: 

𝑝 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
.[7.1] 

In Formula 7.1 𝑡𝑝 represents the count of true positive decisions and 𝑓𝑝 represents the 

count of false positive decisions. Precision as a measurement w.r.t. our solution might 

be misleading since, as we stated, false positive errors are not considered as strict errors, 

therefore precision of 0.5 might imply bad results but in the frame of the “Cryptic” 

system this can be understood as simply observing two times more segmented data 

which will still result with more compressed predictor than in case of unsegmented 

commands.  

 Accuracy measurement is a more stable measurement in the scope of the 

“Cryptic” system since it treats both positive and negative decisions. Segmentation 

procedure is making decisions for each pair of characters in a sense of placing them 

together or separately. It is not reasonable to neglect decisions to group two characters 

together when speaking of the performance of a segmentation technique. The negative 

decision, w.r.t. our system is a decision not to place word separator between two 

characters. Once negative decisions are defined, we can proceed and state that true 

negative decisions are decisions made to group two character together when they should 

be grouped together while a false negative is the omission of word separator. In the 

scope of the “Cryptic” system, false negative errors are considered to be strict errors 
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since they are forcing two separate words to be grouped together. Accuracy 

measurement takes into account both positive and negative decisions, and it is formally 

defined by the following formula: 

𝑎 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
.[7.3] 

In Formula 7.3 𝑡𝑝  represents the count of true positive decisions, 𝑡𝑛  represents the 

count of true negative decisions, 𝑓𝑝 represents the count of false positive decisions and 

finally 𝑓𝑛 represents the count of false negative decisions. 

 Like we have already stated, we are more concerned with false negative 

decisions than with false positive decisions. We can go one step further and formalize 

the false omission ratio measurement. This measurement is based only on negative 

decisions like a counterpart of precision measurement. False omission ratio is formally 

defined as follows: 

𝑓𝑜𝑟 =
𝑓𝑛

𝑡𝑛 + 𝑓𝑛
.[7.2] 

In Formula 7.2 𝑡𝑛 represents count of true negative decisions and 𝑓𝑛 represents count of 

false negative decisions. 

  Now that measurements are defined we can focus the discussion toward the 

segmentation decision criteria.  Firstly, let’s observe 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) , this 

particular criteria, like explained in Section 3.2, is dependent on the maximum size of 

the left and right contexts. We have run this criteria on values of k varying from 1 to 5 

on the train corpus based on Shakespeare’s “Romeo and Juliette”. This book has 

approximately 26000 words which roughly corresponds to the average data available 

per user in the “Cryptic” system. The reason for conducting segmentation validation on 

English language corpus instead of the “Cryptic” corpus is reflected in the fact that there 

does not exist any “Cryptic” data that is properly segmented, neither by hand nor by 

automatic procedure, thus forcing the choice of validation data to be chosen from some 

other language. Results of validation of 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) criteria are presented in 

Figures 7.1-7.3.  

 As it can be observed from the data, accuracy and precision measurements are 

decreasing with the increase of contextual data. This discovery might be a surprise, but 

it comes from the fact that including more contextual data leads to extracting more 

segmentation information on phoneme level ergo segmenting words into root, prefixes, 
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 and suffixes. This particular issue, as previously have been stated is not considered as 

an actual error in the “Cryptic” system, while this is a mistake in the scope of the

English language. What is more interesting is that false omission ratio is as well 

monotonically decreasing with the increase of contextual data, which is of more 

importance. On this particular segmentation criterion, we can observe a peak value of
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Figure 7.2: Precision measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌]) 
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1.0 for precision measurement while accuracy is 0.78 approximately, and false omission 

ratio is around 0.22, for a value of maximum context set to 2. In this concrete case, we 

observe a misleading quality of precision measurement since precision measurement 

equal to 1.0 implies no false positive decisions are made. However, we observe 22% of 

false negative decisions; these decisions are considered as strict errors. In the “Cryptic” 

system, we give priority to false omission ratio and only in the cases when we do not 

observe a significant improvement in this measurement that we consult accuracy and 

precision measurements.  

 Following the same logic what emerges as best segmentation criteria is 

𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]), data observed from this criterion is presented in Figures 7.4-

7.6. 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) observes a peak value at context length equal to 2, after 

which it monotonically decreases. If the context length is further increased all 

measurements improve up till a maximum values for precision and accuracy at context 

length equal to 5. For this context length, we also observe minimum value for false 

omission ratio which makes context length equal to 5 as best choice.  

 For an extensive comparison of each segmentation criterion and the underlying 

results on which particular choices of parameters were made refer to Appendix R. Using 

these findings we have created a comparison between all proposed criteria and we have 

extracted the ordering among criteria that was later used for voting procedure with 

priority votes. Following ordering of criteria in descending order was obtained: 
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Figure 7.3: False omission ratio measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌]) 



Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction                                                                

76  Milos Colic - September 2015 

1. 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]); 𝑘 = 5 

2. 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]); k = 3 

3. 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘]); k = 3 

4. 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]); 𝑘 = 4 

5. 𝐸𝐶𝑚𝑖𝑛(𝑘); k = ∞ 

6. 𝐻(𝑋|𝑋𝑛 = 𝑥𝑛) 

7. 𝐻𝑏(𝑋|𝑋𝑛 = 𝑥𝑛) 

8. 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]); k = 3 

9. 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]); k = 4 

10. 𝐸𝐶𝑚𝑎𝑥(𝑘); 𝑘 = ∞ 

 This ordering is based on the previously explained notion of prioritizing 

minimization of false omission ratio measurement while, if possible, maximizing 

accuracy and precision measurements respectivelly. Comparison between all 

segmentation criteria based on the value of false omission ratio is presented in Figure 

7.7 while other two measurement comparisons are presented in Appendix R.  
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 Once ordering among criteria was established, we have run a comparison 

between majority voting procedure with equal right votes and voting procedure with 

ranked vote values. Results obtained from voting procedures are considered as complex

segmentation criteria and are interpreted in the same manner as it was the case with 

individual criteria. Comparison between these two complex criteria is presented in 
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Figure 7.6: False omission ratio measurement of  𝑩𝑪𝒘𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌]) 
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Figures 7.8 and 7.9. From these Figures we can observe that equal voting procedure 

monotonically decreases the value of false omission ratio, which implies an 

improvement of performance with an increase of corpus size. We have limited corpus 

size to obtain more reliable estimate since the running data is of limited size. It would 

be unreasonable to run validation procedures on corpus size of 300K or 3M words while 

actual user log contains roughly 30K words on average. This limited size of the user 

logs comes from the storage utilization in the “Cryptic” system. Once a file age reaches 

100 days this file is permanently deleted. Thus limiting user’s data to 100 days long 

history. On the other hand, we could combine more users and create combined corpus 

used just for segmentation. Unfortunately, this option was unfeasible to be tested 

practically due to the company’s security policy, only one user’s history logs were made 

available for this research. Ranked voting procedure w.r.t. false omission ratio 

outperforms equal voting, which is observed in Figure 7.9. We can notice that false 

omission ratio stabilizes after corpus size becomes larger than 10K words reaching 

value of only 1.7% with variance of only 0.1%. On the other hand, equal voting 

procedure was performing at 12.9% with variance of 0.3%. Comparison based on 

accuracy and precision is given in Appendix R, but as it has been already stated these 

two measurements are used in cases where no improvement is made on false omission 

ratio. It is obvious that significant improvement was achieved by applying ranked 

voting procedure.  
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Figure 7.9: False omission ratio measurement of ranked voting procedure 

7.2 Auto-complete/correct validation 

 Performing validation of procedures used for auto-complete and auto-correct 

was somewhat more challenging. These operations are to some degree more dynamic 

than word segmentation because they involve online user interaction. As we have 
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previously established, while discussing auto-complete and auto-correct features in 

Chapters 5 and 6, user’s input is firstly segmented into words and only the last word is 

treated with auto-complete and auto-correct. This choice came from the fact that user’s 

input can be understood as a pipeline through which words are coming at some specific 

rate. From the system’s perspective word arriving at time 𝑡1 implies that words that 

arrived at any time 𝑡2 such that 𝑡2 < 𝑡1have been already completed and corrected.  

 Based on this fact and dynamic behavior, we have performed a simulation of 

auto-complete and auto-correct features. Train data and validation data are divided in 

ratio 9:1 meaning 10% of the user’s logs are left for validation purposes. Division 

among train data and validation data is done using sampling without replacement, 

meaning that data can appear either in train data or validation data but not in both data 

sets. Validation procedure is conceptualized on three following measurements: 

 Average in common string ratio 

 Maximum in common string ratio  

 Average in common right-hand side string ratio 

Average common string ratio, further denoted as ACSR, is conceptualized as a mean 

value, or sample mean value, of common string ratios for every partial input of a 

particular command. Stated in more simple words, we simulate every command as the 

user would type it in real time environment, one character at the time. At every 

character arrival, the new partial input is created by appending the newly arrived 

character to previous character sequence and this string is treated with auto-complete 

and auto-correct features. Corrected and completed string is then compared with the full 

command input from validation set and ratio between common prefix string length and 

actual command length is computed. Common prefix string is computed as prefix part 

of two compared strings until first character not matching. From this point, ACSR is 

defined as the average value of the ratio between common prefix string length and 

complete command length over all partial inputs for the concrete command.  

 The reason for defining this type of measurement are the one time words in the 

language. Examples of these words are passenger names, ticket serial number, and 

others. Concrete examples of one time words appear only statistically insignificant 

number of times in data corpus, but on average this class of words occurs often. 

Consequently, we can expect flight numbers to appear often in data, but we cannot 

expect the same number to appear more than the small limited number of times. These 
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words cannot be predicted by auto-complete and, therefore, they skew the performance 

estimates. To deal with this issue, ACSR was devised. 

 Another possible measurement is the maximum common string ratio, further 

denoted as MCSR, defined on the same notion of left common prefix string ratio. For 

this measurement, the only difference is that maximum length of the partial input, in 

order to be accounted in the measurement, is 2/3 of the length of command from 

validation set. This way we restrain MCSR from always obtaining value equal to 1.0 

when auto-complete matches current validation command completely, once the partial 

input is close to the end of actual validation command.  

 Lastly we define average in common right-hand side string ratio as more 

aggressive measurement, further denoted as RACSR. Here we compute the ratio 

between in common string length and actual validation string length, just in this case we 

used trimmed partial input and trimmed validation string. Strings are trimmed in such 

way that words that have been already completed are removed from the string and after 

removal of such words the common string is computed. This measurement might be 

biased toward producing a more pessimistic estimate. If the partial input was correctly 

completed up until the end of the current word and the rest was miss predicted this 

measurement will produce small percentage value. Previously stated fact implies that if 

the partial input is correctly predicted in an incremental manner, meaning that it needs 

at least first few characters of each word, RACSR will estimate performance at really 

low level.  

 The Ranked voting segmentation procedure on train data is used to build a 

model, and once predictors have been obtained, validation is run to produce these three 

measurements. We have incrementally increased the corpus size and computed ACSR, 

MCSR, and RACSR. In addition, random intentional typographical errors were included 

in validation data. For actual values of ACSR measurements consult Figure 7.10. Due to 

the correlated nature of auto-complete and auto-correct, meaning that these features are 

inter-dependent, results of one are used for computing the other, validation is not run 

separately but jointly. It can be noticed that MCSR produces a measurement that is 

biased toward implication that completion is extremely successful while RACSR is 

biased toward implication that completion is somewhat unsuccessful. We can state that 

for the purpose of validating auto-complete and auto-correct features, ACSR should be 

regarded as the most stable measurement. Other two measurements have been proposed 

just as alternatives to ACSR.  
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 Another important thing to be noticed is that ACSR measure is more or less 

stable on a value close to 81%, this can imply that user corresponding to train data is 

biased toward using short command. After manual inspection user’s bias toward short 

commands was verified to be true. Unfortunately, this was the only data provided by 

Amadeus, and statistics obtained from some other user might be more pessimistic.   
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8 CONCLUSIONS  

 As it has been presented throughout this thesis, there are many limitations 

imposed by the lack of strict structural approach in the design of the “Cryptic” language 

during its genesis. Most notable limitations are observed in the absence of word 

segmentation in the language propositions. Word segmentation is observed to liberally 

allowing the user to choose whether he/she will put word separation or not; most users 

choose not to place word separators to increases the speed of typing. In addition, there is 

no data that is already segmented, forcing validation of word segmentation technique to 

be performed on a corpus of English language. Otherwise, we would not be able to 

provide any notion of precision. 

 Word segmentation strategy was directed by current work performed on natural 

language processing of languages from Asia region due to the fact these languages 

observe the lack of word separators, same like the “Cryptic” language. These techniques 

are explained in many research papers [14-20], and we have decided to apply techniques 

provided in [3] and [10] while slightly modifying these two approaches. Modifications 

and application of these techniques are explained in detailed fashion in Chapters 3 and 

4. Word segmentation is a major part of this thesis because all predictors produced for 

the “Cryptic” language are relying on the precision and quality of word segmentation. 

From results obtained by word segmentation of user logs three types of trees are 

obtained. The fourth type of tree data structure, denoted as character level n-gram tree 

with context fixed root, is a specific shape of the character level n-gram tree with 
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context-free root. This specific shape is obtained by fixing the root symbol while at the 

sam time we have relaxed the condition of the tree depth. These data structures capture 

n-gram relations on the level of characters inside of word boundaries, n-gram relations 

between words inside of the commands, and n-gram relations between commands in the 

log. It is noticeable how the provided solution tries to capture as much as possible 

correlations between words and commands. However, this approach can be extended 

even further but for this considerable architectural design changes need to be performed 

in the whole “Cryptic” system, and these are left for further research.  

 Results obtained from small train corpus provided from Amadeus might be too 

optimistic due to the bias of the user toward shorter commands, which could indicate 

that this user was a novice user. This reason might indicate that statistics obtained on 

the other corpus could be not so high, as ACSR of 81% can be considered as high value. 

If the results obtained from this research could be regarded as somewhat not maximally 

precise, the reason of this could be found it the lack of organized design of the 

“Cryptic” language from the very beginning. As previously stated in the introduction, 

this language was created over a long period, and many commands are created by 

different groups of people and following different naming conventions increasing 

language overall complexity and randomness. On the other hand, only some parts of the 

language have formal grammar definitions provided, and these definitions can be added 

to the proposed solution. Static dictionaries and parsers are not included in the solution 

because the goal was to provide a generalized solution with no static subparts; these can 

be easily added to improve performance. One can observe that natural languages have 

been created over a lot larger period by a lot larger number of people. An advantage of 

natural languages is the presence of better quality train corpora and significant 

involvement of research energy. The same cannot be said for the case of the “Cryptic” 

language and research provided in this thesis is the first one performed on this particular 

language, and there is a lot of space for improvement. 
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9 FUTURE WORK  

 In this thesis, the focus was on the similarities between “Cryptic” language and 

Asia region languages such as Japanese, Chinese, and others. Another possible 

approach to the problem at hand would be to observe words of the “Cryptic” language 

as a compressed representation of words from the English language. This is a logical 

assumption since the majority, if not all, words in the “Cryptic” language are created as 

abbreviations of words or groups of words from the English language. If the process 

could be automatically reversed, this idea is motivated by [12], we could extract English 

words. After reversing compression, we could perform n-gram relation extraction by 

combining “Cryptic” logs and English language corpora already labeled and segmented 

that contains information of higher quality. At this point, even some notion of grammar 

could be extracted, and more inter-command relations could be formed. Commands that 

are not too far away could, in principle, share arguments.  

 At this stage, we have not been dealing with these relations because the flow of 

commands for a particular user is hard to grasp. The external execution context is 

needed to connect commands of individual flow since the user can switch this context at 

any time. The context we are referring to is execution context at the server machines; 

this information contains all details about a reservation that commands are manipulating 

with. Although this context is not present in the logs, it could be extracted from other 

components of the system’s logic. However, this would imply some architectural 

redesign which would require work that exceeds the time available for this research. 

This research was limited to the length of the internship in the company Amadeus, or 

more precisely four months.   

 Another direction of future work is exploring other possible segmentation 

techniques that are not based on mutual information or entropy. There are various other 

approaches one of such is proposed in [15] and it is based on the notion of the T-score 

of pairs or groups of characters. This particular solution does not seem exceptionally 

different from the approach followed in our proposition, even so it might be fruitful to 

invest time into this or similar approaches and investigate them more thoroughly. The 

extremely interesting idea would be to correlate work provided in [14], which uses n-
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gram model for correlating musical compositions. We could observe each word as a 

tone in some imaginary notation of sounds and borrow concepts from research 

performed in this field.  

 The alternative approach could be borrowing concepts of pattern matching 

carried out in fields dealing with DNA analysis, such as [22] and [23]. In our case, even 

techniques that might be computationally infeasible for DNA analysis might scale well 

due to the fact that DNA chains are considerably longer than the average commands of 

“Cryptic” language. 

 It is worth mentioning again that the main direction of future work will be 

decompression techniques. Once decompression, if proven possible, is performed we 

could continue down the line of extracting and formalizing grammar of the “Cryptic” 

language based on the decompressed language. Language grammar could be extracted 

by using the English language labeled corpora and defining words in the same manner 

as it has been done in natural language (e.g. nouns, verbs, adverbs). In addition to this 

we could form classes of words based on n-gram relations in a similar manner as it has 

been done in [11]. Additionally, future requirement is to introduce update techniques 

that will adapt data structures proposed in this solution at runtime. These techniques 

must be concerned with the fact that adding counts to one node at level 𝑛 will affect n-

gram estimators at any level larger or equal to 𝑛. This implies that runtime update might 

be too expensive since it would update large portion of the trees used for auto-complete 

and auto-correct. Future work on this particular part of the system will be concerned 

with providing fast and flexible algorithms that can handle runtime updates.  

 It is noticeable that there are many possible ways to improve the current 

solution, and this comes from the fact that this is the first research performed on this 

particular problem. Thus, research focused on the “Cryptic” language inside Amadeus 

Corporation is still at early stages and there is much space for improvement. Additional 

work on the topic of the “Cryptic” language is planned, and it will be conducted in 

cooperation with Amadeus in the following years.     
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R: RESULTS 

 𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘]) 

 

Figure 10.1: Accuracy measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌]) 

 

Figure 10.2: Precision measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌]) 
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Figure 10.3: False omission ratio measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌]) 

 We select parameter 𝑛 mainly on value of false omission ratio, and only if 

there is no improvement in this value that we consult accuracy and precision 

respectfully.  Here minimal value for false omission ratio is observed for 𝑛 = 5 and in 

accordance with this observation value is set to 5. 
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 Discount parameter for exponential average  

 

Figure 10.4: Accuracy measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌]) with varying value 

of discount parameter 

 

Figure 10.5: Precision measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹;𝒏,𝒎,𝒘[𝒌]) with varying value 

of discount parameter 
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Figure 10.6: False omission ratio measurement of  𝑩𝑪𝒆𝒂(𝑳|𝑹; 𝒏,𝒎,𝒘[𝒌])  with 

varying value of discount parameter 

 We have run statics for choosing discount parameter only on 

𝐵𝐶𝑒𝑎(𝐿|𝑅; 𝑛,𝑚,𝑤[𝑘])  and applied obtained value for all exponential average 

procedures. Chosen value is 𝛼 = 0.4, and even though for this discount value we do not 

observe minimum for false omission ratio we are in vicinity of minimum while 

accuracy and precision values have both observed their respectful maximums in this 

statistical point. 
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 𝐵𝐶𝑤𝑎(𝐿|𝑅; 𝑛,𝑚, 𝑤[𝑘]) 

 

Figure 10.7: Accuracy measurement of  𝐁𝐂𝐰𝐚(𝐋|𝐑; 𝐧,𝐦,𝐰[𝐤]) 

 

Figure 10.8: Precision measurement of  𝐁𝐂𝐰𝐚(𝐋|𝐑; 𝐧,𝐦,𝐰[𝐤]) 
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Figure 10.9: False omission ratio measurement of  𝐁𝐂𝐰𝐚(𝐋|𝐑; 𝐧,𝐦,𝐰[𝐤]) 

 Selected value for parameter 𝑛 is 5 due to the fact that false omission ratio 

observes its minimum in this point, while precision observes its maximum in same 

point. Accuracy in this case is not maximized but it is in close vicinity of maximum 

value ergo 𝑛 = 5 is a reasonable choice. 
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 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]) 

 

Figure 10.10: Accuracy measurement of  𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌]) 

 

Figure 10.11: Precision measurement of  𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌]) 
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Figure 10.12: False omission ratio measurement of  𝑬𝑪𝒃𝒆𝒂(𝒌;𝒘[𝒌]) 

 In case of this particular criteria only logical choices for parameter is 𝑛 = 3, all 

three measurements observe their local extremes and ergo this is clearly the best 

possible choice in observed data. 
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 𝐸𝐶𝑏𝑤𝑎(𝑘;𝑤[𝑘]) 

 

Figure 10.13: Accuracy measurement of  𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌]) 

 

Figure 10.14: Precision measurement of  𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌]) 

0.57569073

0.568091326

0.577504928 0.57771203

0.576094175

0.57771203

0.566

0.568

0.57

0.572

0.574

0.576

0.578

0.58

0 1 2 3 4 5 6

EC_BKW_WA(n)

Accuracy MAX Poly. (Accuracy)

0.240203977 0.240209968

0.243552417

0.24434711
0.244017094

0.24434711

0.239

0.24

0.241

0.242

0.243

0.244

0.245

0 1 2 3 4 5 6

EC_BKW_WA(n)

Precision MAX Poly. (Precision)



Using n-gram statistics for “Cryptic” language word segmentation, auto-completion and auto-correction                                                                

98  Milos Colic - September 2015 

 

Figure 10.15: False omission measurement of  𝑬𝑪𝒃𝒘𝒂(𝒌;𝒘[𝒌]) 

 In case of this particular criteria we observe local extremes for both accuracy 

and precision for value 𝑛 = 4 while for false omission ratio minimum is obtained for 

value 𝑛 = 5. False omission ratio observes stable value for 𝑛𝜖[2,4] and thus we choose 

parameter 𝑛 = 4. This way we balance maximization of accuracy and precision with 

minimization of false omission ratio. 
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 𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘]) 

 

Figure 10.16: Accuracy measurement of  𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌]) 

 

Figure 10.17: Precision measurement of  𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌]) 
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Figure 10.18: False omission ratio measurement of  𝑬𝑪𝒆𝒂(𝒌;𝒘[𝒌]) 

 In case of this particular criteria, same as it was the case with 𝐸𝐶𝑏𝑒𝑎(𝑘;𝑤[𝑘]), 

only logical choices for parameter is 𝑛 = 3, all three measurements observe their local 

extremes and ergo this is clearly the best possible choice in observed data. 
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 𝐸𝐶𝑤𝑎(𝑘;𝑤[𝑘]) 

 

Figure 10.19: Accuracy measurement of 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌]) 

 

Figure 10.20: Precision measurement of 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌]) 
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Figure 10.21: False omission ratio measurement of 𝑬𝑪𝒘𝒂(𝒌;𝒘[𝒌]) 

 Here we observe more or less same situation as it was the case with 

𝐸𝐶𝑒𝑎(𝑘;𝑤[𝑘]), only difference is that the accuracy is not precisely at its local extreme 

but it is in its close vicinity while other two measurements are at their local extremes at 

𝑛 = 3, thus making this a valid choice of parameter value. 
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 Comparison individual criteria 

 

Figure 10.22: Accuracy measurement comparison between all individual criteria 

 

Figure 10.23: Precision measurement comparison between all individual criteria 
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Figure 10.24: False omission ratio measurement comparison between all individual 

criteria 

 These three graphs represent comparisons of all three measurements between 

each criterion with parameters selected in accordance with data presented in this 

appendix. These graphs were used as intuition to form ranking criteria in ranked voting 

procedure. 
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 Voting procedures comparison 

 

Figure 10.25: False omission ratio measurement of equal voting procedure 

 

Figure 10.26: False omission ratio measurement of ranked voting procedure 
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Figure 10.27: Accuracy measurement of equal voting procedure 

 

Figure 10.28: Accuracy measurement of equal voting procedure 
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Figure 10.29: Precision measurement of equal voting procedure 

 

Figure 10.30: Precision ratio measurement of equal voting procedure 

 Here we have presented an extensive comparison between equal voting and 

ranked voting procedures in decreasing order of measurement importance. Even though 

equal voting outperforms ranked voting in accuracy and precision, ranked voting is 

performing significantly better on account of false omission ratio.  
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 Auto-complete/correct with typographical errors in validation set 

 

Figure 10.31: ACSR measurement of auto-complete/correct procedure 

 

Figure 10.32: RACSR measurement of auto-complete/correct procedure 
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Figure 10.33: MCSR measurement of auto-complete/correct procedure 

 From data obtained from logs produced by this particular available user, it 

could be noticed that MCSR should be discarded as an indicator. MCSR produces too 

optimistic values, and this comes from the fact that the user is biased toward short 

commands. For the same reason, RACSR appears to be too pessimistic measurement. 

RACSR is not counted for commands shorter than three characters, due to the fact that 

in this case we only predict one character which does not bring any value to the 

measurement. The most stable estimate is in this case ACSR since it takes into account 

equally short and long commands with no bias toward any of them. Still even ACSR 

observes the influence of increased frequency of short commands in the logs and the 

reason for the value of 81% should be found there. We expect smaller values for more 

balanced train data.   

0.999938042

0.999959837

0.999978205

0.999983608
0.999986572

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

0 10 20 30 40 50 60 70 80 90 100

Corpus size (words)

MCSR Poly. (MCSR)


