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Abstract

Scientific applications may be characterized by a high degree of parallelism
which make them suitable to be implemented on programmable devices such
as Field Programmable Gate Arrays. To automatize the creation of these hard-
ware implementations, High Level Synthesis has been introduced. It consists
of a set of methodologies aimed at creating a hardware implementation start-
ing from a high level source code description. Among these methodologies the
techniques for the data dependency analysis have a particular relevance. One
of them is the polyhedral analysis which allows to identify some possibilities of
parallelization inside loops that are due to the presence of the same operations
applied to a large amount of data. To achieve this parallelism it is necessary
to replicate the operations and to allow parallel accesses to the data. The con-
tribution of this thesis is a methodology for the High Level Synthesis that is
able to replicate the parallelizable section of the code, identified by the poly-
hedral analysis. This goal is reached with a data reorganization that satisfies
data dependences, minimizes memory accesses and parallelizes the remaining
accesses.
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Sommario

Le applicazioni utilizzate nell’ambito del calcolo scientifico possono essere
caratterizzate da un elevato grado di parallelismo che ben si adatta alla strut-
tura di dispositivi programmabili come Field Programmable Gate Array. Per
poter automatizzare la generazione dell’implementazione hardware è stata
introdotta la Sintesi ad Alto Livello, una serie di metodologie che permettono
la generazione automatica di descrizioni hardware partendo da codice di
alto livello. All’interno di queste tecniche rivestono un ruolo fondamentale
le tecniche di analisi delle dipendenze dati. Tra queste l’analisi poliedrale
permette di individuare delle possibilità di parallelizzazione all’interno dei
cicli dovute all’applicazione delle stesse operazioni su una gran quantità di
dati. Per poter massimizzare questo parallelismo è necessario che le operazioni
vengano replicate e i dati possano essere acceduti in modo parallelo. Questa
tesi vuole contribuire allo stato dell’arte proponendo una metodologia per
replicare durante la sintesi ad alto livello la parte di codice parallelizzabile
riconosciuta mediante analisi poliedrale. Questo obiettivo è ottenuto mediante
una riorganizzazione dei dati in modo che siano rispettate le dipendenze di
dato, sia minimizzato il numero di accessi ai dati e siano ottimizzati gli accessi
paralleli.
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Riassunto in Italiano

Nel campo dell’Informatica la ricerca di maggior potenza computazionale è
sempre stata una spinta per la ricerca di nuove tecnologie e nuovi algoritmi.
Fino agli anni 2000 è stato possibile solo grazie al progresso tecnologico,
seguendo la legge di Moore, aumentare il numero di transistor presenti su un
chip. Si è però giunti al punto in cui la presenza di troppi transistor su un
chip ha reso problemi come il consumo energetico e il raffreddamento vera-
mente significativi, e questo ha portato a ricercare soluzioni diverse, come per
esempio i processori multi-core. Questo genere di processori infatti permette
di avere più potere computazionale, anche se suddiviso in appunto più core
che possono processare parallelamente le istruzioni. Ciò limita i problemi di
surriscaldamento dal momento che i transistor non sono più tutti insieme in
un singolo core, ma suddivisi, ma introduce nuove problematiche come la
sincronizzazione dei core e la consistenza dei dati. Questo tipo di approccio,
portato a un livello estremo , ha portato alla creazione di sistemi come gli
acceleratori hardware, che sono in grado di utilizzare la maggior parte della
logica che si trova sul chip per eseguire le computazioni invece che per control-
larle, eliminando l’overhead portato appunto dal controllo. In questo campo si
trovano le FPGA (Field Programmable Gate Array) che sono circuiti integrati
programmabili a livello hardware. Ma vi è una barriera all’utilizzo di questo
tipo di soluzione, essendo questo tipo di programmazione estremamente comp-
lesso. Uno strumento che si propone di abbassare questa barriera è la Sintesi ad
Alto Livello (HLS, da High Level Synthesis). Questa metodologia permette la
sintesi automatica di implementazioni per FPGA senza avere la conoscenza del
linguaggio di programmazione delle schede stesse. Questa metodologia infatti
si occupa, partendo da codice di alto livello come per esempio C, di generare
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Riassunto in Italiano

il codice contenente la descrizione del circuito da sintetizzare sulla scheda.
Questa descrizione proveniente dalla HLS è normalmente meno efficiente di
codice Verilog scritto da un progettista, ma comunque permette di abbassare
notevolmente il tempo di progetto di una soluzione per FPGA.

Le applicazioni utilizzate nell’ambito del calcolo scientifico possono essere
caratterizzate da un elevato grado di parallelismo che ben si adatta alla struttura
di dispositivi programmabili come le FPGA.

Per questo tipo di applicazioni rivestono un ruolo fondamentale le tecniche
di analisi delle dipendenze dati. Tra queste l’analisi poliedrale permette di
individuare delle possibilità di parallelizzazione all’interno dei cicli dovute
all’applicazione delle stesse operazioni su una gran quantità di dati.

Per poter massimizzare questo parallelismo è necessario che le operazioni
vengano replicate e i dati possano essere acceduti in modo parallelo. Questa
tesi vuole contribuire allo stato dell’arte proponendo una metodologia per repli-
care durante il processo di HLS la parte di codice parallelizzabile riconosciuta
mediante analisi poliedrale. Questo obiettivo è ottenuto mediante una riorga-
nizzazione dei dati in modo che siano rispettate le dipendenze di dato, sia min-
imizzato il numero di accessi ai dati e siano ottimizzati gli accessi paralleli.

Questa tesi è organizzata nel modo seguente:

• Nel secondo capitolo (State of the Art) si descrive il modello poliedrale,
per cosa è stato usato fino ad ora, focalizzandosi nel campo delle FPGA e
della mappatura delle memorie.

• Nel terzo capitolo (Problem Statement) la soluzione proposta è spiegata
nel dettaglio, partendo da come il modello poliedrale è usato, come i dati
sono divisi e come la parte centrale del ciclo viene riscritta.

• Nel quarto capitolo (Implementation) viene descritta brevemente
l’implementazione realizzata , sottolineando i vincoli introdotti dagli
strumenti usati che invece non sarebbero presenti nella metodologia
proposta.
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Riassunto in Italiano

• Nel quinto capitolo (Experimental Evaluation) il setup sperimentale e i
benchmark usati sono descritti. I risultati delle sintesi vengono riportati e
analizzati.

• Nel sesto capitolo (Conclusions and Future Work) i risultati sono breve-
mente esposti e alcuni modi per estendere la metodologia proposta ven-
gono illustrati.
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Chapter 1

Introduction

In the field of computer science the search for computational power is what
drives the development of new technologies. Until the 2000s thanks to tech-
nological progress it has been possible to increase the number of transistor
in a single chip following Moore’s law. This has been possible until the
presence of too many transistors has caused the power consumption and the
heat dissipation to become a really important issue. A solution to this issue
has been the switch to multi-core architectures. This kind of architectures,
thank to having more cores able to perform computation, can lead to more
computational power avoiding overheating issues. This sort of approach, on
an extreme level, lead to the creation of optimized logic able to perform less
operations but in a optimized way. They can do this with the elimination of
part of the control logic that is situated in the processor and using the logic
only to perform the computations. The problem of this kind of logic is that the
greater is the efficiency requested the greater is the difficulty in writing code.
The FPGA (Field Programmable Gate Array) are one of these programmable
logic. This integrated circuits are able to obtain a great efficiency, since they
are programmable at an hardware level. The issue with this approach is that
programming hardware is difficult, and requires an high level of expertise. In
this context an important enabling technology for the adoption of hardware
accelerator technologies is the High Level Synthesis (HLS). Its purpose is to
give the performance and energy efficiency of hardware designs with a lower

1



Chapter 1. Introduction

barrier to entry in design expertise, and shorter design time. HLS tools perform
automatic synthesis of the circuit to be implemented on the FPGA starting from
a high level language specification like c code. This allows the programmer to
create circuits for FPGAs without even knowing the synthesis language.
The great difference between normal computing and hardware accelerators is
that while in normal computer there is a limited amount of processors able
to do all the computation, in programmable logic there is the possibility to
create more computing units, that are able to do only the operations they were
created to do. This kind of logic is no more general purpose (like processors),
but specialized.

This work aims to seek and improve parallelization in a subset of possible
situations, that are scientific calculation. This kind of calculation (compute-
intensive) often spend most of time in nested loops doing the same operations
on many different data ([KAI11],[BHRS08]). This sort of computation can be
modeled with the Polyhedral Model. This instrument is important because it
can reveal some parallelism that may be hidden because of how the code is
written. The polyhedral techniques are used to analyze the source code and, if
some possible parallelism is revealed, to exploit it.

The contribution of this thesis is an algorithm to create more cores able to
perform the calculation of the section of the code that can be parallelized, mak-
ing them work on different data. This requires a reorganization of those data to
avoid violation of data dependences and allow the instructions to be executed
at the same time. This work is organized as follows:

• Chapter 2 (State of the art) will explain the polyhedral model and how has
been used until now in programming, with particular focus on FPGA and
memory mapping.

• Chapter 3 (Problem Statement) will explain in detail the proposed solu-
tion, starting from how the polyhedral model is used, explaining how the
data are divided into different arrays and how the core of the parallel sec-
tion is modified.

2



Chapter 1. Introduction

• Chapter 4 (Implementation) will describe how the suggested methodol-
ogy has been implemented, highlighting the constraints that have been
introduced.

• Chapter 5 (Experimental evaluation) will describe the setup and the
benchmarks used to test the algorithm, and analyzes the results obtained
by the proposed solution.

• Chapter 6 (Conclusion and Future Work) will quickly summarize the re-
sults and will suggest how the methodology can be extended.

3





Chapter 2

State of the Art

In this chapter the Polyhedral Model will be explained, and the reason behind
the use of this theory is explained. Since the focus of this work is not creating
a new tool, but use the information given by the polyhedral analysis to create
parallel computations some tools that use this mathematical theory to improve
code efficiency will be analyzed, focusing on what they are able to do. Since
in the context where this work is inserted the often the bottleneck are mem-
ory accesses (in FPGAs the logic is free to be programmed, but the number of
memory ports is fixed) in the final section some articles that suggest the use of
the Polyhedral Model in order to improve memory efficiency in FPGAs will be
analyzed.

2.1 Polyhedral Model

The polyhedral model is a mathematical model that can be used to represent
the information needed for the execution of a program’s loop nests. It is based
on the following definitions:

Definition 1. Affine Hyperplane:
The set X of all vectors ~x ∈ Zn such that given h ( h1, h2, ...hn scalar coefficients, at
least one of them different from 0), h ·~x = k ∈ Z

or in other words, a n-1 dimensional subspace in an n dimensional space.
An example of an Affine Hyperplane is a line in a planar space.

5



Chapter 2. State of the Art

Definition 2. Polyhedron:
The set of all vectors ~x ∈ Zn such that A ·~x +~b ≥ 0, where A ∈ Zm∗n and~b ∈ Zm.

A polytope is a bounded polyhedron. For example the following system is
a polytope. 

−1 0
1 0
0 1
0 −1

 ∗
(

i
j

)
≥


−99

0
0
−99


Given as example the following code:

1 for (i = 100 - 1; i >=0; i--)

2 for (j = 0; j < 100; j++)

3 B[i][j] = B[i][j] + A[i][j];

4 for (i = 0; i < 100; i++)

5 for( j = 0; j < 100; j++)

6 D[i] = D[i] + B[i][j] * C[j];

It consist in a couple of loops in which the second has a dependence from the
first, since the first writes the value in B, and the second uses it. Each dynamic
instance of a statement is defined by its iteration vector, that contains the values

of all the indexes of the surrounding loops. For example the vector

(
0
0

)
is

the iteration vector for the statement at line 3 at the iteration i=0, j=0. The set of
all the iteration vectors (Iteration Domain) of a statement is a polytope (and for
the statement at line 3 is the polytope used above as example). The following
figure (Figure 2.1) reports the domain of the two statement of the loop in the
above code, that are line 3 and line 6.


−1 0 99
1 0 0
0 1 0
0 −1 99

 ∗
 i

j
1

 ≤ (~0)


1 0 0
−1 0 99
0 1 0
0 −1 99

 ∗
 i

j
1

 ≤ (~0)

Figure 2.1: Domains
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2.1. Polyhedral Model

The domain of a statement can be described as all the constraints on the var-
ious iterators the statement depends on. Every line in the two matrices above is
one of those boundaries of the loop. As it can be seen the domain is the same,
but the two loops cannot be unified in a single loop, nor pipelined because the
scheduling is different.

Definition 3. Schedule Function:
Given a n-dimensional loop-nest, a d-dimensional schedule is the function F that maps
n dimensions to fewer (d) timestamps. F(~i) = A ·~i +~o, where A is a d ∗ n matrix and o
is the offset vector (d-dimensional). Mapping n to d means that some of the statements
can be executed in parallel.

The schedule functions of the two statements of the above code are the fol-
lowing:

F(s1) =

(
−1 0
0 1

)
∗
(

i
j

)
+

(
99
0

)
F(s2) =

(
1 0
0 1

)
∗
(

i
j

)
+

(
0
0

)

Figure 2.2: Schedule functions

Composing one or more schedule functions in the polyhedral model the
schedule of the program can be modified and improved adding more and more
parallelism.

Definition 4. Transformation Function:
A sequence of schedule functions applied to the same domain is called transformation
function.

A transformation function for this example is reported in Figure2.3. This
function is able to make the two schedules compatible, then the loops could be
unified (Figure2.4) and other optimizations, such as pipelining, are applicable.
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F(s1) =

(
−1 0
0 1

)
∗
(

i
j

)
+

(
−99

0

)

Figure 2.3: Transformation function

1 for (t1=0;t1<=99;t1++) {

2 for (t2=0;t2<=99;t2++) {

3 B[t1][t2] = B[t1][t2] + A[t1][t2];

4 D[t1] = D[t1] + B[t1][t2] * C[t2];

5 }

Figure 2.4: The code after polyhedral transformation

The code to be compatible with the polyhedral model have to satisfy some
requirements. Those requirements are:

• The piece of code to be analyzed must be closed in a SESE (Single Entry,
Single Exit) region.

• The control of the part of the code that can be improved has to be static,
and known at compile time. This feature gives the name to the pieces that
can be improved with the polyhedral model, that are called SCoP (Static
Control Part).

• To be static, the loops must have known boundaries, and they are affine
expressions of constants values, parameters known at compile time or it-
eration variables of extern loops involved in the same SCoP.

Once it has been decided if the code satisfy those constraints, the polyhedral
model is able to describe the iteration order of all loop nests that have all array
accesses as affine expression of the indexes. The array accesses are also used to
represent dependences between statements: if two statements access the same
array locations, and at least one of those access is a write, there is a dependence.

The polyhedral model can be used to perform some code optimizations, as
for example loop skewing (e.g., make the inner-loop bounds dependent on the
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outer-loop bounds), loop reverse (the example), loop permutation (e.g., inter-
change two loops) and combination of these operations. This can expose paral-
lelism otherwise hidden because of data dependences. The dependences must
be preserved, otherwise the meaning of the code would be altered (because the
accesses would not be consistent).

2.2 Polyhedral Tools

This work is not interested in creating a new tool for the polyhedral analysis,
but since a program able to do this kind of work is needed some existing tools
have been analyzed before proceeding with the following steps. In the follow-
ing sections tools that are able to perform some operations on polyhedral code
are listed, divided by the kind of operation performed and the level at which
they work. Section 2.2.1 will describe tools able to create code from a polyhedral
representation. Section 2.2.2 will describe compilers able to perform polyhedral
optimizations while compiling programs from source code to executables, or
from source code to source code. Section 2.2.3 will describe tools able to per-
form only dependency analysis. This step is mandatory before applying poly-
hedral transformations, but can be separated from the others if it is the only
thing needed. Section 2.2.4 will describe a protocol used by several tools to
exchange information. Section 2.2.5 will describe some tools that perform front-
end work (from source code to polyhedral model). Finally section 2.2.6 will
describe some library useful while working with this model.

2.2.1 From polyhedral source to code

The tools described in this section are able to create code starting from a de-
scription of the SCoP made in a polyhedral representation, using different algo-
rithms.

• CADGen
This tool, described in [Grö08], uses Cylindric algebraic decomposition to
generate loop code (allowing to generate code for semi-algebraic sets and
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not only affine expressions). It has as input ClooG code or its own format,
and come out with C code. It is part of HsLooPo (the Haskell modules
for LooPo), but it exists only as a prototype version and it has never been
updated since its release in 2009.

• ClooG
This tool is part of the Chunky project, a research tool for data locality
improvement. The official version uses ISL library and GMP to scan Z-
polyhedra, finding a code that reaches each integral point of one or more
parameterized polyhedra, but also has PolyLib and PPL support. It uses
its own format as input, but also accept OpenScop. It is still being devel-
oped (last update July 2015) [Bas04].

• omega/ codegen and omega+/codegen+
codegen is the tool built on top of Omega, so it uses omega format as input
and generates C code. The transformations done are the ones made by the
Omega Library.

2.2.2 Compilers

The tools listed and described in this section are part of compilers (often op-
tional) or full fledged compilers, that work with source code as input and are
able to create executables or new code.

• Polly
This tool is an optional step of the LLVM compiler. It uses ISL to per-
form classical loop transformations, especially tiling and loop fusion to
improve data-locality. It can also exploit OpenMP level parallelism, ex-
posing SIMDization opportunities. Work has also be done in the area of
automatic GPU code generation. Polly input is LLVM-IR (intermediate
representation of code during LLVM work, like Gimple for gcc) and out-
put to Code or JScop (polyhedral representation stored in a JSON file). It
is a very active project (started in the end of 2009) [GGL12].
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• Graphite
It is a optional step in GCC compiler, so it goes from C to executable. It
performs high level memory optimization, hosts loop-interchange, lock-
ing and flattening. It is actually on stand-by, since part of its developers
moved to Polly [TCE+10].

• IBMXL
This is a step for the IBM-XL optimizing compiler. It is focused on op-
timization for hardware prefetch stream buffer utilization, locality, and
parallelism [BGDR10].

• ChiLL
This tool works in three steps: It automatically derives a sequence of code
transformations, that may have unbounded parameters. A transformation
expresses to the code generator, at a high level, the sequence of transfor-
mations to be performed. Then the search engine takes as input those
sequences of transformations, modifying the parameters with bounded
ones that are the input for the third step, the loop transformation and code
generation framework. The last step takes as input the original code and a
transformation script with bound parameters, and generates an optimized
code version [CCH08].

• LooPo
This tool transforms source code in a parallel way, using polytope meth-
ods. Space and time are represented as dimensions of polytopes, then the
tool works on the polytopes and translate back to loop code. It is an old
project and it is no more supported nor developed [GL96].

• Pluto
Pluto is both a scheduling algorithm based on polyhedral model and a
tool implementing it. It is oriented towards coarse grained paralleliza-
tion and data locality simultaneously. Options are provided to tune tile
sizes, unroll factors and outer loop fusion. The tool works with C source
(marked with pragmas) because it uses Clan as front-end, while the algo-
rithm needs a polyhedral representation (OpenScop is used). The tool can
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also work with OpenScop as input. As output the tool uses ClooG to re-
generate C code. It is still in active development, and its algorithm is used
in some production compilers [BHRS08].

• PoCC
It is a collection of several state of the art tools in polyhedral analysis
(Clan, Candl, Cloog, ...). The part to be optimized must be noted with
pragmas (see Clan). It goes from C code to executables.

• PolyOpt
This tool make an automatic extraction of SCoPs, then applies PoCC anal-
ysis and modifications. It works with a subset of the C and FORTRAN
languages.

• PPCG
Another part of LLVM, PPCG is a source-to-source compiler generating
OpenCL or CUDA GPGPU code from sequential programs. It uses Pet
for the extraction of the the polyhedral model and it has an own code
generator implemented in ISL, similar to CLooG. The tool has a modular
structure: it starts from the model extraction (from the source C code),
then it does dependency analysis, scheduling and memory management.
Its output is written with the idea of using GPUs computational power,
and to achieve that objective it uses language such as CUDA or OpenCL.
The tool automatically decide which part is to be executed on CPU and
which on GPU and it also manages the data transfer. [VJC+13].

• R-Stream
This tool (propriety of Reservoir Labs) is a source-to-source compiler that
optimizes code for parallel processors and accelerators. It can output code
in a variety of formats for downstream processors, including highly opti-
mized OpenMP and CUDA. It has C code as input and output [SLLM06].

• Alpha-Z
This tool is able to transform, analyze and generate code. It also does
memory re-mapping and complexity reduction. It goes from mathemat-
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ical equations (that are represented in his own language, which is ex-
plained in the documentation) to code [YGK+12].

2.2.3 Dependency analysis

The tools in this section are the ones able to create the dependency relationships
between statements. They will not optimize the code, but this is a necessary
step before running the optimization algorithm because if inconsistencies are to
be avoided, all the reads and writes conflicts are to be known.

• Candl
This tool is the dependency analysis basic block of the PoCC toolchain.
It computes the set of statement instances in dependence relation, it per-
forms data dependence removal and array privatization/expansion. It
uses OpenScop language for input and output.

• FADA
The software is a C++ implementation of the Fuzzy Array Dataflow Anal-
ysis (FADA) method. This method can be applied on codes with irregular
control such as while-loops, if-then-else or non-regular array accesses, and
it computes exact instance-wise dataflow analysis on regular codes. The
tool works with source code as input and as output it produces read/write
references written in its own language [BBET10].

• Petit
This tool performs analysis of array data dependence, working with the
Omega library. It uses Omega format as input and output. It is a very old
and no more developed project [KMP+95].

2.2.4 Exchange Format

The library described in this section is just an exchange format, a convention
decided to support communication between polyhedral tools:

• OpenScop
This library is used by some tools (the whole PoCC toolchain, for which
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has been developed, and some others) as input and output. The library is
a support for who wants to use the OpenScop format as temporary and
exchange support. It saves information for each SCoP (domain, sched-
ule functions and accesses) and more optional data. It is a relatively new
project [Bas11].

2.2.5 Frontend

The front-end tools are the ones that are able to read source code and trasform
it in a polyhedral model:

• Clan
It goes from source code (C, C++, Java) to OpenScop representation. The
code need to be marked with pragmas to let the program know which
parts are to be analyzed. The tool is unable to detect semantical issues, so
it trusts the user when a SCoP is declared.

• Pet
This tool goes from C source to LLVM Abstract Syntax Tree. It uses prag-
mas to determine where are SCoPs, clang as parser and it represents sets
and relations with ISL [VG12].

2.2.6 Libraries

In this section the libraries created to perform calculation on polyhedra are be-
ing listed:

• Barvinok
The library counts the number of integer points in parametric and non-
parametric polytopes, using polylib as input and output format.

• IEGenLib
This library represents and manipulates integer sets (representing data
and iteration spaces) and relations (memory access functions) that have
affine and uninterpreted function constraints. It is written in python, and
accept both omega and isl integer tuple set as input and output.
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• ISL
This library manipulates sets and relations of integer points bounded by
affine constraints. The descriptions of the sets and relations may involve
both parameters and existentially quantified variables. It works in three
steps: Dependence analysis, Scheduling and Abstract Syntax Tree gener-
ation. It has a lot of options, which the user can tune to guide the whole
process. It has an own format, but also accept polylib, both as input and
output [Ver10].

• Omega and Omega+
Omega permits to manipulate integer linear constraints over integer vari-
ables in first order logic, and operations on integer sets and their map-
pings. After the manipulation it generates code by scanning the points in
a union of polytopes. It uses an own format as input and output.

• PolyLib
It works on sets and can do the following operations: intersection, differ-
ence, union, convex hull, parameterized vertexes computation, polynomi-
als computation. It has his own format (documented with examples), and
it is an old and mature library, but still maintained [Loe99].

• PipLib
PipLib finds min/max in the set of integer point belonging to convex poly-
hedron, with or without a parameter context. The input and output have
to be specified in its own syntax (there are examples in the documenta-
tion). It is a very old project (started in 1988) but has been update until
2009 [Fea88].

• PPL
This library does manipulation of numerical information that can be rep-
resented by points in some n-dimensional vector space. One of its func-
tionalities is working with polyhedra (but is not the only one, can work
with grids too). It has its own format for input and output [BHZ08].
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• ZPolyTrans
This library has two executables: the first computes the elimination of
some integer variables from a union of parametric polyhedra, and the
second computes the Ehrhart polynomial of a union of parametric Z-
polytopes. It is based on Barvinok and PolyLib, but has an own format
for input and output [SL06].

A summary of all the polyhedral tool analyzed is offered in Table 2.1, where
for every tool the languages used as input and output are provided and it is
highlighted if the tool is part of some bigger project.
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Table 2.1: Tools recap

Name Input Output Part of
CADGen ClooG or own C HsLooPo
CLooG OpenScop or own C Chunky project
CodeGen/
Codegen+

Omega Omega –

Polly LLVM-IR Executable or
JScop

LLVM

Graphite C Executable GCC
IBMXL C Exectutable IBMXL optimizing

compiler
ChiLL C C –
LooPo C C –
Pluto C (with pragma) or

OpenScop
C Chunky project

PoCC C (with pragma) C Chunky project
PolyOpt C(with pragma) C Chunky project
PPCG C C –
R-Stream C C –
Alpha-Z own own –
Candl OpenScop OpenScop Chunky project
FADA C own –
Petit Omega Omega –
OpenScop – – Chunky project
Clan C (with pragma) OpenScop Chunky project
Pet C (with pragma) LLVM AST LLVM
Barvinok PolyLib PolyLib –
IEGenLib Omega and ISL Omega and ISL –
ISL own own –
PolyLib own own –
PipLib own own –
PPL own own –
ZPolyTrans own own –
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2.3 Usage of Polyhedral Model

There are different way to use the information derived from the polyhedral
model to improve the High Level Synthesis approaches:

1. To optimize the inter-block communication and enable intra-block paral-
lelization and inter-block pipelining through loop transformation for FP-
GAs using HLS ([ZLL+13].

2. Minimize resource usage without any performance (e.g., latency) penalty
[ZLC+13].

3. Identification and optimization of parts of code which could benefit from
the GPU architectural characteristics, then reintegration of those parts into
the user’s code. It is done as step of a automatic compiler for FPGAs or
GPUs (terapyps or p4a respectively) [KAI11].

4. Optimizing the performance (i.e., throughput) of the computation part of
an affine program to be executed on the FPGA. [LPC14].

5. Improve memory accesses for a better performance or a lesser area con-
sumption or a trade-off between the two. It works for (multidimensional)
array accesses [WLZ+13] [CG15] [VC14] [MYO+15].

This work will focus on the last aspect.
For this reason the last section of this chapter will be focused in explaining a
bit more in detail the work in this field, particularly the articles cited in the last
point.

2.3.1 Generalized Memory Partitioning in High-Level Synthe-

sis

In this article ([WLZ+13]) the authors concentrate their effort in finding a
working partitioning algorithm. Since with programmable logic it is possible to
duplicate the logic that is doing the computation, the number of ports for every
block-ram (BRAM) is limited and this becomes the bottleneck. It is not realistic
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to increase the number of ports in each BRAM because that would cause a
quadratic growth of complexity and area. Duplication of data in different
blocks can help performance, but it creates area and consistency problems.

Figure 2.5: original sequential data

The authors start with an excursus on the actual partitioning algorithms.
The original data is reported in Figure2.5, where N is the number of banks, B
and the factor 2 are arbitrary numbers (to ease comprehension of the figures, B
has been chosen as the size of a block for the block-cycle partitioning, and 2 has
been chosen as number of blocks contained in a single array in the block cycle
partitioning). The algorithms are:

cyclic partition:
The original data is split among a num-
ber N of banks, changing bank for ev-
ery data. This mean that position 0 of
the array will be in bank 0, position 1
in bank 1 and so on until the last bank
is reached (position N-1). Then it will
restart from bank 0 with position N,
bank 1 with position N+1 and so on cy-
cling until the end of the source data is
reached.
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block partition
It is similar to the cycling parti-
tion but here the data are sequen-
tially split: every bank contains a
sequential piece of the array (called
block). A block has length (ar-
ray_dimension/number_bank). In this
algorithm the first bank contains data
from 0 to (block_size-1), the second
bank will contain the following up to
2*block_size-1, and so on. Note that
block_size in the figure is equal to 2*B
block-cycling partition

This last partitioning algorithm is a
combination of the previous two: the
data are divided into blocks, that are
shorter than in the block partitions (in
the figure, B is the dimension of a
block), and are split among banks in a
cyclic way: the first bank will contain
block 0, block N, the second will have
block 1, N+1 and so on. This algorithm
permits to have some sequential data
in the bank, but it removes the limita-
tion of having all data grouped with the
same pattern (or all cyclical or all se-
quential, this algorithm allows a com-
bination of the two).

The objection they move to the older partitioning algorithms is that they of-
fer a optimal solution for mono-dimensional arrays but a suboptimal solution
for multi-dimensional arrays (that are the ones involved in loop nests) because
of lesser space exploration.
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The suggested solution uses the polyhedral model to formulate the memory
partitioning, transforming the conflict detection problem in a polytope empti-
ness check, and the intra-bank offset generation as a problem of counting inte-
ger points in a polytope. The suggested method has two targets: to minimize
the number of banks needed to map all the array data and access them in the
same cycle, and in the meantime to avoid memory dimension explosion, due
to the needed padding. The objective is to have all the data that are needed
in the same cycle mapped on different banks. This would allow to retrieve all
of them in a parallel way using only one cycle to instantiate the reads. How-
ever building the complex mapping function would cost too much in hardware
resources. A trade-off between practicality and optimality is considered by us-
ing a memory-padding based heuristic approach. The heuristic method makes
each polytope P have a constant number of data elements. The main partition-
ing algorithm is composed of two parts: one part constructs the bank-mapping
function and the other constructs the intra-bank offset function. The strategies
are derived by bounded enumeration and conflict detection. The authors tested
the new algorithm on a benchmark suite, and had great improvements from
previous work.

2.3.2 Interplay of loop unrolling and multidimensional mem-

ory partitioning in HLS

The starting point of this article ([CG15]) is the same as the previous one, that is
trying to partition multi-dimensional arrays in different memory banks to use
FPGA ability to parallelize logic. The authors start their work where the pre-
vious work finished, adding the consideration of the overhead introduced by
splitting the array in multiple Block-RAM, that is called bank-switching.
Bank switching symbolize all the the multiplexers and address calculation logic
that have to be added to handle the parallel accesses.
They suggest that mixing unrolling with partitioning is possible to obtain a bet-
ter area efficiency. This imply that the kernel of the algorithm has to be repli-
cated, but this should not be an issue since working on FPGAs the copy only
does real calculation and not just overhead.
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The objective of the proposed algorithm is mapping the array along memory
banks in a way that only half of the initial banks are involved. This brings to
multiplexer with half the number of input wires.

1 for (i=1; i<= N; i++)

2 for (j=1; j<N-1; j++)

3 imageOutput[i][j] = w0*imageInput[i-1][j-1] + w1*imageInput[i-1][j] +

4 w2*imageInput[i-1][j+1]+ w3*imageInput[i][j-1] +

5 w4*imageInput[i][j] + w5*imageInput[i-1][j+1] +

6 w6*imageInput[i+1][j-1] + w7*imageInput[i+1][j] +

7 w8*imageInput[i+1][j+1];

8 }

Figure 2.6: Before the partitioning algorithm: original loop

1 for (i=1; i<= N; i++)

2 for (j=1; j<N-2; j=j+2)

3 imageOutput[i][j] = w0*imageInput[i-1][j-1] + w1*imageInput[i-1][j] +

4 w2*imageInput[i-1][j+1]+ w3*imageInput[i][j-1] + w4*imageInput[i][j] +

5 w5*imageInput[i-1][j+1] + w6*imageInput[i+1][j-1] + w7*imageInput[i+1][j] +

6 w8*imageInput[i+1][j+1];

7 imageOutput[i][j+1] = w0*imageInput[i-1][j] + w1*imageInput[i-1][j+1] +

8 w2*imageInput[i-1][j+2]+ w3*imageInput[i][j] +

9 w4*imageInput[i][j+1] + w5*imageInput[i-1][j+2] +

10 w6*imageInput[i+1][j] + w7*imageInput[i+1][j+1] +

11 w8*imageInput[i+1][j+2];

12 }

Figure 2.7: After the partitioning algorithm: unrolled loop

An example to clarify this is provided: as can be see comparing the two
code snippets (Figure 2.6, Figure 2.7), they are the same code, but in the second
figure the loop is unrolled (it does two iteration at time) . This unroll modifies
(as visible in the accesses graphs, Figure 2.8) the position that have to be read
every loop. The number of reads is increased (in the example, there are 12 reads
in the unrolled loop where only 9 are present in the original one). The array
is split in four banks. This unroll permits to start always from position 0 (or 2,
depending from the i value) as the left lower corner of the square representing
the reads. This means that it reads from bank 0 or bank 2 the value for that
position. This was not happening in the not unrolled loop, that with the next
iteration would have to change the input bank between 0, 1, 2 and 3. As this
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simple example shows the number of banks involved with the read in the left
lower corner in the unrolled loop are only half of the total number of banks in
which the array has been split.

Figure 2.8: Memory accesses, before and after the algorithm

In this way the computing logic for the position corresponding to the low
left corner will only have 2 wires as input (see Figure 2.10, the wires entering
in the multiplexers before the processing logic (the rightmost ones) come from
only two banks), instead of 4 ( see Figure 2.9, where the multiplexers before
the processing logic all have four wires). The same thing happens to the multi-
plexers that control the read from the bank, since only half of the values can be
found on that bank, they will be wired in order to avoid to have all the possible
values of i and j an input values but only the needed ones. This also can be see
in Figure 2.9 and Figure 2.10, looking the leftmost multiplexers. This will bring
to smaller and easier to control multiplexers.

Obviously this can scale, but the unrolling factor and the number of banks
must be related.
In order to obtain this result they suggest a partitioning algorithm based on
lattices, that is a generalization of the previous paper (hyperplanes are a par-
ticular case of lattices). They use the lattice scheduling to divide the array into
banks. There are n lattices that are partitions of the array spaces, and every lat-
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Figure 2.9: Before the partitioning algorithm: data access path

Figure 2.10: After the partitioning algorithm: datapath
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tice represent the elements saved in bank n. Then they use the lattice to count
the amount of bank-switching. Once the amount of bank-switching has been
established they suggest to unroll the loop of a suitable amount. This is func-
tion of bank number and the previously calculated amount of bank switching.
The unroll permits to avoid the overhead created by bank-switching. It is not
considered the presence of data dependences (they conjecture HLS tool itself is
able to find out where there is data dependence and somehow block the un-
rolling). They state that even if there is not real parallelism the efficiency should
be better because of the avoided bank switching.
They tested this on a couple of benchmarks, and found that the efficiency of the
area is effectively increased.

2.3.3 MPack: Global Memory Optimization for Stream Appli-

cations in High-Level Synthesis

This article ([VC14]) suggests a tool that can help FPGA designers in exploration
of the trade-off between memory usage and throughput. The problem they tar-
get is the complexity of fine-tuning the use of limited on-chip memory storage
among many buffers in an application of stream computing.
They consider the programming model for FPGA in which the programmer fo-
cuses on designing computation kernels and relies on an automated optimiza-
tion of memory, thus splitting the effort of writing the program in two parts:
first the creation of the core logic, and then the organization of the memories
and the datapath. The suggested tool, Mpack, performs pushbutton on-chip
memory optimization for streaming applications by adding some High-level
pragmas and automatically generating the optimal buffer packing approach
with the highest data throughput (1st available target) and minimum mem-
ory budget (2nd available target, given the target throughput it minimizes the
BRAMs used). MPack automatically generates a memory solution, with the
goal to maximize throughput at the given BRAM budget. The use of Mpack
allows the user to focus on optimizing computation, without concern for low-
level memory optimization. This article does not use polyhedral analysis, and
the suggested tool does not improve max throughput, it just help finding a fast
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way to explore trade-offs between on chip memory utilization and throughput
(if the max throughput is higher than the necessary, some of it can be sacrificed
to lessen the area consumption).

2.3.4 Efficient Memory Partitioning for Parallel Data Access in

Multidimensional Arrays

This article ([MYO+15])suggests a different way to partition memory and par-
allelize accesses based on pattern. An access pattern is a map of the read that
a statement has to do for every instance. For example if there is the statement
x[i][j] = y[i][j-1]+y[i-1][j]+y[i+1][j]+y[i][j+1] it means the program has to access
to the left, up, down and right cell of the matrix to determine the value of the
considered position. This approach can be used only with problems that have
to access more than one place in the multidimensional array.
In this work, they propose a memory partitioning algorithm with limited bank
number constraint in multidimensional arrays to realize low storage overhead.
They formulate the memory partitioning as a multi-objective optimization
problem, which is flexible to different design considerations such as minimal
memory overhead, fast accessing speed or limited memory bank number.
The proposed solution is a general framework to resolve the memory partition-
ing problem, which has fast speed and low complexity. They suggest the use
of a linear transformation guided by the pattern instead of the use of a global
iteration on all linear transformations searching the best one. The complexity in
this way drops from exponential to constant (instead of iterating on all possible
solution, it just create the one the pattern suggests). This algorithm can reach
the optimal solution if the number of points accessed in one iteration is less or
equal than the number of available memory banks, otherwise it will find the
best one (i.e. with the less clock cycle possible).
They provide an example with the Laplacian of Gaussian operation. This
operation has 13 memory accesses, with the pattern in fig 2.11(a).

Since it is mandatory to have all the data stored in those cells in the same
instruction, an optimal solution can be found with 13 or more banks, splitting
the original array as shown in Figure 2.11(b).
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(a) LoG pattern (b) LoG optimal solution with
13 banks

(c) LoG suboptimal pattern
with 7 banks

Figure 2.11: Laplacian of Gaussian pattern example

If for any reason the required number of banks is not available, the algorithm
can be bounded to use an inferior number of banks, and if for example is given
a bound of 10 max banks, will return the suboptimal solution in Figure 2.11(c),
which only uses 7 banks.

They tested their algorithm on seven benchmarks, and they state that their
algorithm is a lot faster and it wastes less space (arithmetic operation amount -
93.7% and execution time -96.9% and the storage overhead -31.1%) than the one
proposed by Wang in [WLZ+13] It is important to notice that the values are to be
compared to the execution time and the number of operation of the synthesis
algorithm, and not the execution time and operations of the synthesized one.
The obtained result is the same (1 operation per cycle) from the throughput
point of view, there is an improvement from the area point of view since less
space is wasted.

2.3.5 Summary

Before starting with the methodology proposed by this work, a short summary
of the state of the art will be provided, trying to highlight the differences from
the proposed solution. The first article, [WLZ+13], is the starting point of other
two works between the ones that have been analyzed. It uses polyhedral anal-
ysis trying to optimize the mapping of the data. The reason for this is that if
they are all mapped on different banks, they can be retrieved fast using only
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one cycle. This is also the objective of [CG15] and [MYO+15]. The first of those
two articles expands the problem, considering some overheads created from the
splitting of the data and trying to minimize them, always using the polyhedral
analysis. The second article avoids the use of the polyhedral analysis and con-
sider a faster methodology that is the use of patterns instead of doing many
calculations to reach the same target. The fourth article, [VC14], suggests the
use of a tool that can automatically map memories after the calculation kernel
has been created in a way that can optimize area utilization in burst applica-
tions, but without consider data splitting. This tool is unable to increase the
throughput. A quick summary of all the pros and cons of the analyzed articles
is provided in Table 2.3.

Article Pros Cons
[WLZ+13] It is the starting point of

most of the other work.
It is computationally heavy,
so an heuristic mode has to
be adopted.

It can find optimal solu-
tion for multi-dimensional
arrays.

Its heuristic method cannot
guarantee the optimal solu-
tion.

It is a method to provide
all the reads necessary for a
write.

No data reuse.

[CG15] It highlights the problem of
bank switching that is not
considered in other works.

Leave all data dependency
check to the HLS tool.

It uses unroll to do more
computation in the same
time.

If there is data dependency,
it cannot unroll.

It increments area efficiency
since the datapath is easier
to control.
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Article Pros Cons
It may have data reuse, if
there are no data depen-
dences and the unroll is
possible.

[VC14] It separates the problem of
memory allocation from the
kernel creation.

It cannot improve the
throughput.

It can improve area effi-
ciency.

It does not use polyhedral
analysis at all.

[MYO+15] It introduces the use of pat-
terns.

No data reuse.

It can find optimal solution. No throughput improve-
ments with regard to Wang
work.

It is a method to provide
all the reads necessary for a
write.
It is computationally light
with regard to Wang work.

Table 2.3: State of art: summary

The suggested solution deals with the problem with a slightly different point
of view: where some of the analyzed articles use the polyhedral analysis just to
improve the mapping of the data on the different BRAMs, this thesis tries to
use polyhedral analysis to split the problem (and sequentially the data) and
create some kernels that are able to to the computation in a parallel way. The
previous approach has a limit: it cannot instantiate more than one computation
per iteration, even if is able to retrieve all the data at the same time, and this
creates a limit on the throughput. The proposed solution permits an increase of
the throughput, even if it is obviously a trade-off: more area is used to create
the kernels, but the FPGA can do more than one computation at a time.
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Another difference from the state of the art is the data reuse. In the state of the
art this issue is not being considered, because there are no parallel computations
so there is no need to share data. In this work doing a read and sharing among
kernels can bring some improvement in performances.
The general idea is to try to improve the throughput, even if this means that
the area will increase. This growth of the area is anyway being reduced to the
minimum with expedients like resource sharing among the cores that are state
of the art in the field of High Level Synthesis.
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Problem Statement

The subject of this work will be explained in the following sections. The first
section (3.1) will present the objective of the work, and select the fields of ap-
plicability of the described solution. The second (section 3.2)will explain the
assumptions made to justify some methodology decisions. The third section
(3.3) will explore in depth the methodology adopted to obtain the stated objec-
tive. Then a complete example is provided in section 3.4. The last section (3.5)
will be a summary of what explained before.

3.1 Objective

The objective of this work is to improve the performance of some kind of code
generated by HLS. To achieve this result the Polyhedral Analysis will be used
to analyze the source code and find the SCoPs. Then from the analysis of the
SCoPs certain patterns will be identified. Once this is done, the array involved
in this computation will be partitioned and more cores will be created, able to
perform the same computation on different data in a complete parallel way,
sharing the common data. Note that pattern recognition and data partitioning
are necessary for the successive step. The proposed solution is not a general
algorithm for every source code, but it will work under the assumption that the
piece of code to be optimized is recognized as a SCoP, and the polyhedral model
of the code can be extracted. Any source code can be submitted, but if no SCoP

31



Chapter 3. Problem Statement

is found the code will not be modified. If the SCoP is found, the pattern analysis
can be performed. In particular the target are operations that involve the use of
matrices, like matrix multiplication, or iterative stencil codes (see 3.2).

The throughput will be incremented (and execution time diminished) at the
price of area consumption. This should however bring an increased overall
performance because is possible that the speedup increases linearly with regard
to the number of kernels, while the area will have a sub-linear increase. This
result is achievable because the computation are equally split in the parallel
kernels, while it is possible that not all the components have to be created for
every kernel thanks to resource sharing and other optimization that are state of
the art in HLS.

3.2 Assumptions

As previously stated, this work is targeting a specific architecture (FPGA) and
only a specific kind of code (compute intensive loops where the same opera-
tions are performed on many different data). In order to apply the algorithm
proposed in the following sections, the source code must satisfy the require-
ments of the polyhedral model, that are listed in 2.1. Another constraint, added
on top of the polyhedral model, is that for each statement analyzed there is only
one write. This constraint is needed for the pattern recognition step, but does
not limit anything since a statement in the polyhedral model is an instruction.
A SCoP can have more than one statement.

A particular group of SCoP identified are the so called stencils. Stencil are
iterative finite-difference techniques that sweep over a spatial grid, perform-
ing nearest neighbor computations. In these kind of operations each point in
a multidimensional grid is updated with weighted contributions from a subset
of its neighbors in both time and space. This sort of pattern is very common in
scientific applications in such diverse areas as heat diffusion, electromagnetics,
and fluid dynamics [DMV+08]. A subclass of this operations are the iterative
stencils, that are stencil computation executed repeatedly on the same values.
The proposed solution can be applied to normal stencil code, but the partition-
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ing of the data will create a bottleneck that would probably nullify the gain
since there are optimized algorithm that can read from the memory only once
per data computation, that is a limit not improvable. The proposed solution
lose time reading from memory during the split process, and it would perform
worse than those algorithm (such for example the ones analyzed in the chap-
ter 2. The improvement of the proposed solution is due to the fact that with
iterative stencils the split is done only once and the overhead will become neg-
ligible. For this reason this work will consider the stencil as iterative and their
core executed more than one time.

Another constraint adopted is the number of port on a BRAM. Actually the
number of ports for every block is two [xil15]. This number has been taken as
constraint in developing the algorithm. This means that if the Block RAM has
less port, the algorithm will not perform optimally (some reads will overlap and
not all the reads will be instantiated in one iteration).

3.3 Methodology

The proposed solution is divided into four steps:

1. polyhedral analysis:
polyhedral analysis is performed and the accesses and the domain are
retrieved from the code.

2. pattern recognition:
The polyhedral model is analyzed. Using the information from the reads
and the writes retrieved from the polyhedral model, a pattern analysis is
done. The objective of this step is to find if the code can be recognized as
one of the accepted patterns.

3. data partitioning:
The data from the matrices are split in sub-matrices. This allows to work
with more data in a single iteration, bypassing the limit of memory oper-
ation imposed by the number of port of the BRAM. It is done using the
result of the pattern recognition.
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4. code rewriting:
The code is modified to exploit the parallelism that has been found by the
polyhedral analysis. This is done by creating more computational cores
that will run simultaneously and that are able to share some reads.

The following sections will explain in details every step.

3.3.1 Polyhedral Analysis

The code is analyzed with a polyhedral tool to retrieve some information that
are the basis for the following steps. The important information retrieved dur-
ing this step are:

• The presence of one or more SCoPs in the analyzed code.

• For each statement of every SCoP the following information:

– The domain of the statement.

– The schedule function of the statement.

– All the accesses functions of the statement.

In order to search the SCoPs the source code is analyzed as follows. The Control
Flow Graph of the code is analyzed, and the biggest Single Entry Single Exit
(SESE) region is selected. Then all the instructions in that region are analyzed,
trying to prove that they respect the constraints of the polyhedral model. Those
constraint have already been explained in the polyhedral model section, and
are:

1. Control statements are do loops with affine bounds and if conditionals
with affine conditions.

2. Affine bounds and conditions depend only on outer loop counters and
constant parameters.

If an instruction is not manageable by the model, that instruction is marked
as difficult and more SCoPs are created of smaller dimensions, with the remain-
ing SESE regions of the original SESE. This procedure continues reducing the
considered SESE until one of the two following circumstances happens:
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1. The region contains only instructions that can be handled by the polyhe-
dral model. It can be marked as SCoP.

2. The region is composed of one instruction only. That region is not man-
ageable by the polyhedral model.

This methodology guarantees that the biggest SCoP is found for every analyzed
code.

After the SCoP recognition all the other information are extracted. The do-
main is easily recovered from the loop bounds, the schedule function is recov-
ered from the Loop Syntax Tree and the accesses from the memory addressing
expressions.

Domain The domain of a statement can be described as all the constraints on
the various iterators the statement depends on. When the SCoP is discovered
the loop that defines the boundaries are defined. All the iteration variables of
all the loops that are surrounding the statement are analyzed. Starting from the
extern loop, the upper and lower bound of every loop are inserted in a matrix.
This matrix has a number of rows that is greater or equal to the double of the
number of loops involved in the statement if there are not parameters used to
calculate the boundaries of the loop. If a parameter is used, one or two rows are
added to add the constraints on the parameter itself. For every boundary it is
mandatory to store its dependences from the iteration variables. For the loop

1 for (x=0; x<10; x++)

2 for (y=0; y<100; y++)

3 for (z=0; z<50;z++)

4 A[x][y]= A[x][y]+B[x][z]*C[z][y];

the following matrix is produced:
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1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
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0
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−99
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−49


every row of the matrix represents one of the boundaries of the statement.

Putting all the rows together gives all the boundaries of the statement. All the
points contained in the boundaries are legal combination of values for the iter-
ation variables.

Schedule functions The schedule function is needed to position a statement
in the SCoP. It is used to represent any kind of ordering in the polyhedral model.
A schedule for each instance of a given statement is provided using a function
that depends on the iteration vector. Schedule functions are affine functions of
the outer loop counter and the global parameters. The Loop Syntax Tree (LST)
is analyzed and the position of the statement is obtained with regard to the
iteration variables.

It is easier to understand with an example. Given the code:

1 for (x=0; x<10; x++)

2 for (y=0; y<100; y++)

3 {for (z=0; z<50;z++)

4 {

5 A[x][y]+= B[x][z]*C[z][y];

6 D[x][y]+= E[x][z]*F[z][y];

7 }

8 G[x][y]+= H[x][y]+I[x][y];

9 }

there is a SCoP containing three statements. Every statement has an own Do-
main, a schedule and his accesses function. The LST of this SCoP is given in the
image that follows (the number in the parenthesis is the line of the statement in
the code):
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X

Y

Z

s0 (5)

0

s1 (6)

1

0

s2 (8)

1

0

The schedule of the three statements can be easily read from the LST. To create
the schedule of the statement it is enough to read the variable name in the node
and associate the value on the edge that is linking the variable to the following
variable or to the statement node. The statements are on the leaves of the tree.
The tree can have any fan out. In the example the statement s0 (line 5 of the
code) has the schedule Fs0(~x) = (0, x, 0, y, 0, z, 0)T. That means that is the first
instruction scheduled for all the variables in the loop. The statement s1 is the
statement immediately after (line 6), and has the same variables. Its schedule
is Fs0(~x) = (0, x, 0, y, 0, z, 1)T. The following statement s2 (line 8) is out from
the z loop, so has one less variable. Its schedule is Fs0(~x) = (0, x, 0, y, 1)T.
It is important to notice that the order is given by the numbers that follows
the variables, that are always growing. If for example the last statement was
situated out from the inner loop, but inside another loop with different variable
as follows:

1 for (x=0; x<10; x++)

2 for (y=0; y<100; y++)

3 {for (z=0; z<50;z++)

4 {

5 A[x][y]+= B[x][z]*C[z][y];

6 D[x][y]+= E[x][z]*F[z][y];

7 }

8 for (z=0; z<50;z++)

9 G[x][y]+= H[x][y]+I[x][y];

10 }

Its schedule would have been Fs0(~x) = (0, x, 0, y, 1, z, 0)T.
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Accesses A structure is needed to represent the accesses. The variable that
are accessed in the polyhedral model are all considered as array. If a scalar
variable is present in the loop, it will be considered as an array with a single
cell and its index will always be 0. For every access function two information
are needed: the kind of access and the place where the access is being done.
The first is needed to explain if the access that is being described is (a write or a
read). The second contains the information about the real memory access. This
comprehend:

• The memory reference to the array

• For every dimension, the expression that is used to calculate the position
being accessed, as a function of the iteration variables.

Given the following loop nest:

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 A[x][y]= A[x][y]+ B[x][z]*C[z][y];

for every access to an array (A, B and C) the polyhedral tool will build a struc-
ture with two fields:

• a value that will record if the access is a write or a read.

• a structure with the following fields:

– The memory address of the involved variable

– For every dimension, the equation describing the position.

For example for the code of the previous loop nest, under the hypothesis that
A is in position 1, B is in position 2 and C is in position 3 in the memory, these
four structures will be created:

1. • WRITE

• mem_pos = 1

• dim_0 = x
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• dim_1 = y

2. • READ

• mem_pos = 1

• dim_0 = x

• dim_1 = y

3. • READ

• mem_pos = 2

• dim_0 = x

• dim_1 = z

4. • READ

• mem_pos = 3

• dim_0 = z

• dim_1 = y

3.3.2 Pattern Recognition

The algorithm for the pattern recognition works with some comparison be-
tween the write and the reads of a statement.
The algorithm is divided into four steps, as shown in pseudo-code 1. The first
step (line 2-6) is needed to find the statement write and check it is unique (as per
working hypothesis, see the assumptions). The second step compares the single
read accesses with the write ones, searching for some properties of the code. The
third step uses the properties found in the second to update some counters that
will be used in the last step The last does the real pattern recognition using the
counters and the order of the reads.
The recognized final patterns are the following:

1. rows only

2. row and column
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3. stencils with reads on different array

4. stencils with reads and the write on the same array

and will be better described in the last step of the pattern recognition algorithm.

Algorithm 1 Pattern Recognition

1: procedure PATTERN RECOGNITION
2: for pos = 0 to accesses.length do
3: if write is not initialized && accesses[pos] is a write then
4: write← accesses[pos];
5: else if write is already initialized && accesses[pos] is a write then
6: return error
7: for pos = 0 to accesses.length do
8: read← accesses[pos];
9: map[pos]← Access_Reduction (Dimension_Reduction(write, read));

10: for pos = 0 to accesses.lenght do
11: increment_counters(map.[pos]);
12: if ! f irst_recognition then
13: Check_order_conditions(map);
14: if recognition then
15: return PATTERN;
16: else
17: return PATTERN_NOT_FOUND;

All the steps of the algorithm 1 will now be explained more in detail in the
following paragraphs.

Step1: Write research In this step all the accesses are analyzed, but only the
field where the access type is stored. The loop check all the accesses found in the
polyhedral analysis, until a write is found. When the write is identified, all the
information related to the write access (see 3.3.1) are saved in a structure that
will be used in the following step of the algorithm to do all the comparisons.
The loop continues doing the same check and if another write is found throws
error. This is done to check if working assumption that the SCoP only has one
write is respected.
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Step2: Access Analysis This step consists in two functions that are nested and
are called for each read. The first of those function is the Dimension_Reduction
function. It is called for every dimension of every read. In this function a di-
mension of the read is compared to a dimension of the write. The objective is to
determine if those dimension accesses are equal or not. There are three possible
code properties found by this step:

1. EQUAL_DIMENSION:
This property is returned if the equation describing the dimension in the
read is equal to the one of the write.

2. EQUAL_DIMENSION_BUT_CONST:
This property is returned if the equation describing the dimension in the
read is equal to the one of the write, except for a constant value.

3. DIFFERENT_DIMENSION:
This property is returned when the difference between the two equation
depends from one or more iteration variables

Using the following code as example this function is called six times, two for
each read.

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 A[x][y]+= B[x][z]*C[z][y];

The results for the two calls on array A are EQUAL_DIMENSION and
EQUAL_DIMENSION.
The results for the calls on array B are EQUAL_DIMENSION and DIFFER-
ENT_DIMENSION.
The results for the calls on array C are DIFFERENT_DIMENSION and
EQUAL_DIMENSION.

The second function is the Access_Reduction. In this function the Dimen-
sion_Reduction function described above is called on all the dimensions and its
results are used to compare the dimensions and find the property of the access
The properties that have been found until now are:
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• EQUAL
All the dimensions have the same iteration variables and the same
constants. It implies the read and the write have the same number of
dimensions. It is recognized when every dimension check returns an
EQUAL_DIMENSION (eg. A[x][y] = B[x][y]).

• W1_R2_EQUAL_FIRST
The write is mono-dimensional, the read has two dimensions. The first
dimension of the read is equal to the only dimension of the write. It is
recognized if the dimension check between the first dimension of the read
and the only dimension of the write returns an EQUAL_DIMENSION (eg.
A[x] = B[x][y]).

• W1_R2_EQUAL_SECOND
The write is mono-dimensional, the read has two dimensions. The second
dimension of the read is equal to the only dimension of the write. It is
recognized if the dimension check between the second dimension of the
read and the only dimension of the write returns an EQUAL_DIMENSION
(eg. A[x] = B[y][x]).

• W2_R1_EQUAL_FIRST
The write is bi-dimensional, the read has only one dimension. The first
dimension of the write is equal to the only dimension of the read. It is
recognized if the dimension check between the first dimension of the write
and the only dimension of the read returns an EQUAL_DIMENSION (eg.
A[x][y] = B[x]).

• W2_R1_EQUAL_SECOND
The write is bi-dimensional, the read has only one dimension. The second
dimension of the write is equal to the only dimension of the read. It is
recognized if the dimension check between the second dimension of the
write and the only dimension of the read returns an EQUAL_DIMENSION
(eg. A[x][y] = B[y]).

42



3.3. Methodology

• W2_R1_EQUAL_DOUBLE
The write is bi-dimensional, the read has only one dimension. Both the
dimensions of the write are equal to the only dimension of the read. It is
recognized if the dimension check between both the dimensions of the
write and the only dimension of the read returns an EQUAL_DIMENSION
(eg. A[x][x] = y[x]).

• EQUAL_BUT_CONST
the write and the read have the same number of dimensions, and the
same iteration variables. The only difference is a constant value added
to one or more dimensions. It is recognized if all the dimension check
between the dimensions of the write and the ones of the read returns
an EQUAL_DIMENSION or EQUAL_DIMENSION_BUT_CONST (eg.
A[x][y]=B[x+1][y-1]).

• DIFFERENT_ALL
for matrices with more than one dimension, if all the check on the dimen-
sions returns a DIFFERENT_DIMENSION. Notice that is not important if
one of the dimension is equal to another one that is in a different posi-
tion. From the example A[x][y] = B[y][z], the result is DIFFERENT_ALL
even if the second dimension of the write is equal to the first of the read.
Since this step is doing comparison dimension per dimension, the check
are done between x and y (1st dimension of both arrays) and between y
and z (2nd dimension of the two).

• DIFFERENT_INDEX
For matrices of one dimension, if the index is DIFFERENT_DIMENSION
(eg. A[x] = B[y]).

• W2_R2_EQUAL_BUT_SECOND
Both write and read are bi-dimensional. It is recognized when the check
on the first dimension returns EQUAL_DIMENSION while the one on
the second dimension return DIFFERENT_DIMENSION (eg. A[x][y] =
B[x][z]).
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• W2_R2_EQUAL_BUT_FIRST
Both write and read are bi-dimensional. It is recognized when the check
on the first dimension returns DIFFERENT_DIMENSION while the one
on the second dimension return EQUAL_DIMENSION (eg. A[x][y] =
B[z][y]).

• W3_R3_EQUAL_BUT_THIRD
Both write and read have three dimensions. It is recognized when the
check on the first and second dimensions returns EQUAL_DIMENSION
while the one on the third dimension return DIFFERENT_DIMENSION
(eg. A[x][y][z] = B[x][y][w]).

• W3_R2_EQUAL_BUT_FIRST
The write has three dimensions, the read two. It is recognized when the
check on the first and second dimensions returns DIFFERENT_DIMENSION
while the one between the third dimension of the write and the second of
the read returns EQUAL_DIMENSION (eg. A[x][y][z] = B[w][z]).

• W3_R2_EQUAL_BUT_SECOND
The write has three dimensions, the read two. It is recognized when the
check on the first dimension returns EQUAL_DIMENSION while the one
on the second and the one between the third dimension of the write and
the second of the read return DIFFERENT_DIMENSION (eg. A[x][y][z] =
B[x][w]).

• SCALAR_VARIABLE
the read has no dimensions. it is just a coefficient, but need to be noted and
recognized because is used in the following steps.

The whole step works as follows: For each read the Access_Reduction func-
tion is called. In this function a couple of switch on the dimensions of the write
and read governs the access to different pieces of code that have substantially
the same structure but different values depending by the dimensions of the
memory accesses. The structure of those is the following: first some checks
are issued. Those checks call the Array_Reduction function for the dimensions
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that have to be compared. Some crossed checks may be needed (eg. the third
dimension of a write with the second of a read) and this may cause the number of
checks to be greater than the dimensions of the arrays. Then the result of those
checks, combined in sequences of AND operations, are used as expression for
a group of ifs. In case there is a match, that determines the final pattern of the
access.

The upper bound for the number of checks is the product of the two dimen-
sions (and up to now it has been reached only in case of a mono-dimensional
array, where its dimension has to be checked against all the dimensions of the
other array).

With the code below, the analysis of the A[x][y] read access will work as
follows:

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 A[x][y]+= B[x][z]*C[z][y];

The switches will bring to the branch where the write and read with
two dimensions are analyzed. Then a check is issued on the first dimen-
sion, and the result is EQUAL_DIMENSION. Then a check is issued on
the second dimension, and the result is EQUAL_DIMENSION. Then the
ifs are evaluated. There are three ifs in this case: the one evaluating the
W2_R2_EQUAL_BUT_SECOND pattern: its result is false, since it requires
EQUAL_DIMENSION and DIFFERENT_DIMENSION. Then the second evalu-
ates the W2_R2_EQUAL_BUT_FIRST pattern: its result is false, since it requires
DIFFERENT_DIMENSION and EQUAL_DIMENSION. Then the third evalu-
ates the EQUAL pattern: this is true, since it requires that all the dimensions
have EQUAL_DIMENSION. For every access this work is done. The result of
this step is a map with the following structure: As key it uses the identifier of
the access, and as value it has the result of the Access_Reduction function.

array value
read_1_key EQUAL
read_2_key W2_R2_EQUAL_BUT_SECOND
read_3_key W2_R2_EQUAL_BUT_FIRST
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Step3: Counting For every possible property of the access (the list is reported
in 3.3.2, the ones returned by the Access_Reduction function), a counter is cre-
ated. The map that is the output of the previous step is cycled, and every
counter is incremented when an access is found with that pattern. This step
is not enough for the recognition of all patterns because for some of them the
order is important.
For the map produced by the example above:

array value
read_1_key EQUAL
read_2_key W2_R2_EQUAL_BUT_SECOND
read_3_key W2_R2_EQUAL_BUT_FIRST

The result of this step is counter_equal = 1, counter_equal_but_second = 1
and counter_equal_but_first= 1, and all the other counters are 0.

Step4: Pattern recognition A group of if based on the counters of the previ-
ous step detects which other checks are to do before the recognition of a pat-
tern. Some patterns can be recognized just by counting, since the order is not
important (eg. the row only: if the number of read - the number of SCALAR
is equal to the number of EQUAL can be recognized immediately). Once those
other checks are done, if something is recognized, it is returned. If no pattern is
found then it returns PATTERN_NOT_FOUND.
This step uses the map produced by the second step and the counter produced
in the third step as input and has the final pattern as output. As previously
stated the recognized pattern are:

• rows only:
This pattern is returned when all the involved matrices have the same
equation describing the first dimension. It also accepts if scalar values are
present. The grammar is:
E(E|S)∗

where E is EQUAL and S is SCALAR

• row and column:
This pattern is recognized every time that there is a loop where a matrix is
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being read rows first, and the one immediately after is read columns first.
For example it is the pattern of the matrix multiplication. Its grammar is:
S∗E+S∗(AS∗B)+S∗

where E is EQUAL, S are scalar values A and B are matrices. The couple
of matrices A and B are paired. This means that if the first is found, to
recognize the pattern it is important that the second is the one of the pair,
and not a random matrix chosen between the set of all the possible second
matrices. The recognized couples up until now are:

– W2_R2_EQUAL_BUT_SECOND and W2_R2_EQUAL_BUT_FIRST

– W1_R2_EQUAL_FIRST and DIFFERENT_INDEX

– W2_R1_EQUAL_FIRST and W2_R1_EQUAL_SECOND

– W3_R3_EQUAL_BUT_THIRD and W3_R2_EQUAL_BUT_FIRST

– W2_R2_EQUAL_BUT_SECOND and DIFFERENT_ALL

– W1_R2_EQUAL_SECOND and DIFFERENT_INDEX

where the first is the matrix A, and the second the matrix B. Scalar val-
ues can be anywhere. Some of these couples will need a little different
handling during the split phase, but they are treated in the same way dur-
ing the phase of code rewriting. This happens because the code rewriting
where the matrices are split vertically is handled in the same way of the
horizontal case, but it is important to notice that the arrays have to be di-
vided differently in the tiling phase. Those couples will be recognized as
row and column transposed (the last item of the previous itemize is the
only example of this kind of pattern, up to now).

• stencils This pattern is recognized when the accesses are happening
“near” the position of the write, with the same iteration variables. It is
important to recognize how many dimensions are involved in the stencil
calculation, because they are handled in different way. The grammar is:
[E](B)+

where E is EQUAL and B is EQUAL_BUT_CONST
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While recognizing the pattern the dimensions are counted and this infor-
mation will be used both in tiling and in the core loop handling. There
are two kind of stencil patterns, but the grammar is the same. They are
recognized differently by checking the field of the access structure where
the memory position of the array is stored: if there is at least one read that
have the same memory position the stencil computation is done on the
same array, so the STENCIL_SAME_ARRAY is returned. Otherwise the
returned pattern is STENCIL_DIFFERENT_ARRAY.

For the following code:

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 A[x][y]+= B[x][z]*C[z][y];

The first if is done on the counters, and this check is that the number of
EQUAL_BUT_FIRST is equal to the number of EQUAL_BUT_SECOND. Once
that this check is passed is mandatory to check the order, that is that the ma-
trix following the EQUAL_BUT_SECOND is an EQUAL_BUT_FIRST. Since
both the check are true, it recognize the rows and column pattern, without
transposed.

3.3.3 Data Partitioning

To make all the kernels work in a fully parallel way it is necessary to split the
data from the original array into smaller arrays, that will be located in different
Block-RAM. The split functions selected are a block-cyclic partitions (see 2.2).
The number of banks is the number of kernels and the block size is the product
of the inner dimensions with regard to the dimension selected as guide. The
dimension of the block has been chosen to have immediately successive rows
or columns divided in different BRAM. This is not a requirement for all the
patterns, but is necessary for the algorithm proposed for the handling of the
stencils, where reading from the neighbor row is necessary and having more
rows on the same BRAM can create bottlenecks. Two cases have been consid-
ered: horizontal split (where the guide dimension is the first) and vertical split
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(guided by the second dimension).
It has been decided to use an easy kind of splitting because is enough to pro-
vide (as will be highlighted in the following step 3.3.4.3) all the needed data for
a single iteration.

The decision of which one between the two split function is to be used is
guided by the pattern recognition. Once the decision is done, all the array in-
volved in the statement are labeled with a value that declare if that array has to
be divided or not. This label is calculated working with the pattern of the whole
statement and the pattern of that single access.

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 A[x][y]+= B[x][z]*C[z][y];

For example, using the code above, the result was row and column without
transposed. This means that the write and all the matrices labeled with a second
level pattern EQUAL or EQUAL_BUT_SECOND have to be split horizontally
while the matrices identified with the pattern EQUAL_BUT_FIRST have not to
be split.
The dimensions of the split arrays are calculated in this step. It is done by taking
the dimensions of the original array and dividing only the one dimension that is
guiding the split by the number of kernels, the other dimensions are kept equal.
A row of padding is added only to the divided dimension to avoid errors while
handling arrays whose dimension is not a multiple of the number of kernels
(since the integer division truncates the rest).

A detailed description and an example will be provided for all the possible
split used.

Horizontal Split The original matrix is divided in blocks that have the di-
mension of one row. It is a simple block-cycle pattern (2.2) where the num-
ber of banks is equal to the number of parallel kernels. Every bank contains
a sub-matrix. This split becomes a cyclic pattern whenever working on one-
dimensional arrays. The objective of this split is to have immediately successive
rows mapped onto different BRAMs.
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The example is the following: given the matrix (4, 6)

Arr =


a b c d e f
g h i j k l
m n o p q r
s t u v w x


and a parallel degree of 2, the result are two arrays of dimensions (2, 6)

organized as follows:

Arr0 =

(
a b c d e f
m n o p q r

)

Arr1 =

(
g h i j k l
s t u v w x

)
Given this split function the code that follows

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 A[x][y]+= B[x][z]*C[z][y];

can be modified and the one below is produced.

1 for (x=0; x<5; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10;z++)

4 {

5 A_0[x][y]+= B_0[x][z]*C[z][y];

6 A_1[x][y]+= B_1[x][z]*C[z][y];

7 }

This code performs the same operations than the first but is able to parallelize
the computation (it can perform two multiplications, if there are enough re-
sources). This happens because the A_0 and B_0 arrays contain the even rows
of the original matrix, while the A_1 and B_1 ones have the odd rows.

Vertical Split This splitting function changes the target dimension in such a
way that even operation with matrices are possible where the variable to split
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is the second and not the first (eg. w[i] = w[i] + A[j][i] * z[j]). The variable to
split is the second because the write has always to be split or there would not be
a parallel computation. It is still a block-cycle pattern, but with less than three
dimensions it is reduced to a cyclic partitioning. The objective is to have two
immediately successive columns mapped onto different BRAMs. In this way
data from the neighbor columns are available in the same cycle.
The example is the following with the same (4,6) matrix:

Arr =


a b c d e f
g h i j k l
m n o p q r
s t u v w x


and a parallel degree of 2, the result are two arrays of dimensions (4, 3)

organized as follows:

Arr0 =


a c e
g i k
m o q
s u w

 Arr1 =


b d f
h j l
n p r
t v x


Given the following code, where the iterator of the result is equal to the

second of the matrix and the horizontal split cannot be performed

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 A[x]= B[y][x]*C[y];

It can be modified with a vertical split and the one below is produced.

1 for (x=0; x<5; x++)

2 for (y=0; y<10; y++)

3 {

4 A_0[x]= B_0[y][x]*C[y];

5 A_1[x]= B_1[y][x]*C[y];

6 }

The result is the same (two parallel computation available).
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3.3.4 Core Loop Handling

Once the loop has been identified, and the data have been split, then the core
instructions of the loop need to be parallelized.

This step is guided by the pattern. The general idea is that all the instruc-
tions have to be replicated and each core will have to work with different data.
Another issue is linked to the buffering: especially in stencils some data are
reused in the following computation. This reuse can increase if more than one
computation per cycle is being done. Reusing data can speed up computation
because if the data are stored in a register recovering them is much more faster
than re-reading from memory.

In order to obtain this result the pattern must be unequivocally recognized,
and using this information some of the reads to the BRAM can be substituted
with register accesses.
As explained in the patter recognition section (3.3.2) there are four possible pat-
tern to handle. The following sections will explain in detail how each identified
pattern is handled.

3.3.4.1 Rows only

This pattern is the easiest one. The core can be replicated just by splitting all the
involved matrices horizontally and duplicating every instruction. Every new
core of the loop is working on different data, as can be seen in Figure3.1, where
the lines are linking the data needed for one operation: it is evident that the
lines have no common points. Looking at the example code is clear that every
matrix involved in this operation is split, and every accessed cell is used only
in one of the operations. There is no data sharing, just pure replication of the
cores. The code is transformed as follows: from the source

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; k++)

4 E[i][j] += A[i][k] ;

to the transformed one
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1 for (i = 0; i < _PB_NI; i+=4)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; k++)

4 {

5 E[i][j] += A[i][k] ;

6 E[i+1][j] += A[i+1][k] ;

7 E[i+2][j] += A[i+2][k] ;

8 E[i+3][j] += A[i+3][k] ;

9 }

Arr_0

Arr_1

Arr_2

Arr_3
= +

E E A

Figure 3.1: Row Only, example of accesses grids.

3.3.4.2 Rows and Columns

In this pattern, splitting all the involved matrices is not enough, because every
row of the first has to interact with every column of the second.

The approach that has been used is the following, the write matrix and all the
matrices that share the first iteration variable with the write are split, while all
other matrices are not split at all and their reads are shared among the cores. In
Figure 3.2 an example with four kernels: four operations are being performed
during the same iteration, and every colored line link the reads needed to per-
form one of those operations. As can be seen, from the last matrix (B) only one
value per iteration is read. This data can easily be shared, as the picture suggests
(all the lines come from one single point in matrix B). The code is transformed
as follows. From the source:

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; k++)

4 E[i][j] += A[i][k] * B[k][j];
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to the transformed one:
1 for (i = 0; i < _PB_NI; i+=4)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; k++)

4 {

5 E[i][j] += A[i][k] * B[k][j];

6 E[i+1][j] += A[i+1][k] * B[k][j];

7 E[i+2][j] += A[i+2][k] * B[k][j];

8 E[i+3][j] += A[i+3][k] * B[k][j];

9 }

It is evident the fact that only the matrices with the first dimension iterating on
the first dimension of the write (in the example the variable i) are being split,
while the others are just shared.

Arr_0

Arr_1

Arr_2

Arr_3
= + *

E E A B

Figure 3.2: Row - Column, example of accesses grids.

The algorithm is:

• split horizontally the matrices that have the first index equal to the write
index

• duplicate every instruction related to the split matrices (this means not
only the instruction of the multiplication but also for example an assign-
ment done on that variable).

In this way the operation itself will use the same second operand among all
cores (doing only one read instead that x, where x is the parallel degree).

All the patterns involving a variant of the rows and column access to a ma-
trix have been handled in the same way (changing the matrix to be split if
there is a transposed matrix, but keeping the idea of splitting the result and
the operands that have the same first iteration variable and share the other).
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3.3.4.3 Stencils with reads on different arrays

The objectives for these patterns are the following:

• Reuse as much as possible the data. This happens because for a write in
a stencil are needed more than one read, and those reads often come from
near cells in the matrix, not always on the same row but often in the upper
or lower rows.

• Limit the read from the same memory bank.

• Compute more than one write per cycle.

Before explaining the algorithm, a couple of definitions are needed:

Definition 5. Height of the stencil
The height of the stencil is the number of rows of the matrix that are involved in a single
iteration of the stencil.

(0, 0) j

i

Figure 3.3: example of the reads of a stencil (a 2D-Jacobi). The five points are the reads that have
to be done for the write in position 1,1. The height of this stencil is 3

An example of height of the stencil is reported in Figure 3.3, with a Jacobi 2D
pattern. In order to do more than one computation per cycle, the computations
on different rows are done in the same time. This will create a pattern with an
altered shape (since some of the reads are overlapped). This “superpattern” is
shown in Figure 3.4, with a parallel grade of four.
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(0, 0) j

i

Arr_0

Arr_1

Arr_2

Arr_3

Arr_0

Arr_1

Figure 3.4: shape of the data needed to compute four parallel writes for the Jacobi 2D pattern.
it can be seen that the shape of the pattern is quite different with regard to the original Jacobi
pattern.

Definition 6. Front of advancement
The front of advancement is defined as the line joining the cells of the matrix that have
to be read in every cycle. In every row, only the rightmost cell is part of the front of
the advancement. The height of the front is equal to the desired parallel degree plus the
height of the stencil -1.

An example of a front of advancement is provided in Figure 3.5. The matrix
is then decomposed horizontally, so that every row is mapped on a different
sub-matrix (obviously as previously described the number of sub-matrices is
equal to the parallel degree). Every sub-matrix is mapped on different memory
bank. A copy of the instruction is created for every kernel. This will create
a number of replicated kernels that are doing the computation on consecutive
rows.

The algorithm that permits to obtain the three objectives listed above works
in the following way: in the initialization phase reads from the memory the
accesses that are not in the front of advancement that are needed in the first
computation, and saves them in registers. After that, for every cycle, reads
from the memory all the accesses in the front. The other accesses needed for
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(0, 0) j

i

Arr_0

Arr_1

Arr_2

Arr_3

Arr_0

Arr_1

Figure 3.5: shape of the front of a four writes Jacobi 2D pattern.

the writes are saved in the registers. After the read, saves in the registers the
accesses that will be needed in the next cycle. The shape of the front depends
from the shape of the original stencil. To minimize the number of the accesses
to the same memory bank is important the following constraint:

Definition 7. Constraint on the parallel degree:
The parallel degree must be more or equal to the height of the stencil -1.

If this constraint is not satisfied there will be an overload of operations on
some bank that will invalid the gain of this algorithm. In order to better explain
this an example is provided. In Figure 3.6 a bigger Jacobi pattern (with height of
the stencil 5) is represented. If this stencil is parallelized with a parallel degree
of two, that is a violation to the constraint just explained, the result is the one in
Figure 3.7(a). Three reads are issued for every array, and they will not be parallel
if the number of port is two. If the constraint is satisfied the result is shown in
Figure 3.7(b).

The last point of the algorithm is the substitution of the reads not on the front
with registers. Since for a write all the data have to be ready in the same iteration
of the loop, part of them will be stored in registers. The number of register
needed can be calculated starting from the dimension of the original stencil.
The formula is: num_register = parallel_degree ∗ (central_row.length() − 1) +
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(0, 0) j

i

Figure 3.6: example of the reads of a stencil with height five. For every write needs to read data
from five rows of the matrix.

(0, 0) j

i

Arr_0

Arr_1

Arr_0

Arr_1

Arr_0

Arr_1

(a) constraint not respected

(0, 0) j

i

Arr_0

Arr_1

Arr_2

Arr_3

Arr_0

Arr_1

Arr_2

Arr_3

(b) constraint respected

Figure 3.7: as can be seen from the pictures, the left image does not respect the constraint and
has three read on every array, that cannot be instantiated in one cycle. the right image instead
respects the constraint and even if it does instantiate more reads, those operations are on different
arrays, with a maximum of two operations per array, that can be instantiated in only one cycle.
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sum(other_row)(other_row.lenght()− 1) where the -1 is needed because the last
cell of every row is being read from the front, the central_row is the row where
the stencil is centered, the other rows are the upper and the lower ones. It is
important to note that the other rows must be considered only once because
of the overlapping. When analyzing a read during the substitution step, two
information are needed:

1. position of the read with regard to the write (this information is available
from the pattern recognition).

2. number of the kernel on which the substitution is taking place.

From this information it can be understood if the read has to be left in that
place (because is on the front) or has to be substituted because is already on a
register. It is mandatory to remember the overlapping: a read in position (0,1)
in the kernel 0, it is the same cell from the position (0,0) of the kernel 1, and so
on. This must be noted because to maintain data consistency with the split of
the array the needed data are never in the following row of the same array, but
are mapped on another array (see 3.3.3, is explained why the for every change
of row the sub-matrix is changed) and from there has to be retrieved (modular
arithmetic on the number of kernel is used to perform this calculations). Often
a read is shared, if that happen obviously it have to be instantiated only one
time and then shared among kernels. The sharing operation can be handled
with those two informations, the kernel that is being done and the position of
the read in the pattern. In Figure 3.8 an example of how the reads are organized
is provided. The upper and lower line do not need to be saved, because the
length is 1 and this means that those lines reads are included in the front. The
central row length is three, and this means that for every kernel two registers
are needed. Since the kernels in the example are four, eight registers are needed.
Those register needs to keep trace of the last two reads for each of the central row.
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(0, 0) j

i

Arr_0

Arr_1

Arr_2

Arr_3

Arr_0

Arr_1

read of the front, to be saved in registers
read of the front, not to be saved in registers

read of the next front
read from register, not to be saved for next iteration
read from register, to be saved for next iteration

Figure 3.8: example of the sequence of reads, with a parallel degree of four: red and purple are the
position that need to be loaded before the first cycle, blue and cyan are the position read during
the first run, blue and purple are the register saved after the first run, and the one needed for the
second run. yellow are the position read in the second run, and so on. The gray cross highlights
the five reads that have to be done for the original pattern, for the write in position 1,1.
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Finally, an example on an iterative Jacobi pattern is provided. The source
code follows:

1 for (t = 0; t < _PB_TSTEPS; t++)

2 {

3 for (i = 1; i < _PB_NI -1; i++)

4 for (j = 1; j < _PB_NI -1; j++)

5 B[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][1+j] + A[1+i][j] + A[i-1][j]);

6 for (i = 1; i < _PB_NI -1; i++)

7 for (j = 1; j < _PB_NI -1; j++)

8 A[i][j] = B[i][j];

9 }

And the output of the algorithm is the one that follows

1 int registers[2][4];

2 int temp_1, temp_2, temp_3, temp_4;

3 for (t = 0; t < _PB_TSTEPS; t++)

4 {

5 for (i = 1; i < _PB_NI -1; i+=4)

6 {

7 registers[0][0] =A[i][0];

8 registers[0][1] =A[i+1][0];

9 registers[0][2] =A[i+2][0];

10 registers[0][3] =A[i+3][0];

11 registers[1][0] =A[i][1];

12 registers[1][1] =A[i+1][1];

13 registers[1][2] =A[i+2][1];

14 registers[1][3] =A[i+3][1];

15 for (j = 1; j < _PB_NI -1; j++)

16 {

17 temp_1 = A[i][1+j];

18 temp_2 = A[i+1][1+j];

19 temp_3 = A[i+2][1+j];

20 temp_4 = A[i+3][1+j]

21 B[i][j] = 0.2 * (registers[1][0] + registers[0][0] + temp_1 + registers[1][1] + A[i-1][j

]);

22 B[i+1][j] = 0.2 * (registers[1][1] + registers[0][1] + temp_2 + regiters[1][2] +

regiters[1][0]);

23 B[i+2][j] = 0.2 * (registers[1][2] + registers[0][2] + temp_3 + regiters[1][3] +

regiters[1][1]);

24 B[i+3][j] = 0.2 * (registers[1][3] + registers[0][3] + temp_4 + A[4+i][j] + regiters

[1][2]);

25 registers[0][0] =registers[1][0];

26 registers[0][1] =registers[1][1];

27 registers[0][2] =registers[1][2];

28 registers[0][3] =registers[1][3];

29 registers[1][0] =temp_1;

30 registers[1][1] =temp_2;

31 registers[1][2] =temp_3;
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32 registers[1][3] =temp_4;

33 }

34 }

35 for (i = 1; i < _PB_NI -1; i+=4)

36 for (j = 1; j < _PB_NI -1; j++)

37 {

38 A[i][j] = B[i][j];

39 A[i+1][j] = B[i+1][j];

40 A[i+2][j] = B[i+2][j];

41 A[i+3][j] = B[i+3][j];

42 }

43 }

It is important to note that the four involved rows are mapped on different
BRAMs. As described in 3.3.3 the sequential rows are mapped into different ar-
rays. For this figure the array has been kept the same to highlight the generated
parallelism. The actual memory reads and writes are the operations with the A
and B arrays, all the other variables are temporaries.
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(0, 0) j

i

Figure 3.9: Seidel access pattern

3.3.4.4 Stencils with reads from the same array of the write

Some additional attention has to be done when dealing with a stencil that reads
and writes on the same array. This because the data dependences have to be
maintained and simply applying the algorithm as has been described can lead
to wrong solutions because some data have to be read after the iteration and
some before. For example the Seidel pattern whose code is:

1 for (t = 0; t <= _PB_TSTEPS - 1; t++)

2 for (i = 1; i<= _PB_N - 2; i++)

3 for (j = 1; j <= _PB_N - 2; j++)

4 A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]

5 + A[i][j-1] + A[i][j] + A[i][j+1]

6 + A[i+1][j-1] + A[i+1][j] + A[i+1][j+1])/9.0;

and its access pattern is shown in Figure 3.9. Since it is working with the same
matrix, a problem with the data dependence arises. In Figure 3.9 the data de-
pendences are drawn with black arrows. It can be seen that the points with
the yellow background need to be updated before the calculation of the mid-
dle point, the ones with the green shade need not to be updated. This will not
happen when proceeding with the front in a parallel way with the algorithm
previously described, because the front is a vertical line. The values on the
left have been updated in the previous iteration (even if some writes need to
work with not updated data) and on the right they will not be updated until
the next iteration (but some of the writes need to have them already calculated).
Moreover the same point that is being calculated in the first kernel needs to be
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used by the second kernel. In Figure 3.10 can be better understood what has
just been explained: the yellow and the gray shades cover the reads of the it-
eration calculating point (2,1), while the gray and the green area are the reads
needed for the point (2,2). The blue line highlights the sequential loop updates.
The points in (3,1) and (1,2) create iteration conflicts: the point in 1,2 has been
updated in the previous iteration, but the calculation of (2,1) requires a not up-
dated value, while (2,2) requires the updated value. The opposite happens for
the point (3,1), which is not updated (and the calculation of (2,1) requires that
point not updated) but the point (2,2) requires that that point has already been
updated. Moreover the point (2,1) is needed in the calculation of (2,2) as the
updated version. In order to avoid this problem a modification of the algorithm

(0, 0) j

Figure 3.10: Same matrix overlap issues

has to be introduced when working with a stencil pattern that reads and writes
on the same matrix. This algorithm works only with matrices (more than 1 di-
mensional arrays). The reason for this is that in a vector the data dependence
is between a cell and the adjacent ones, and there is no way to split the single
array and do parallel computations because every cell need the updated ver-
sion of the previous one and the not updated version of the following one. For
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matrices on the other hand the idea of working with a front composed of more
than one row, limiting the number of reads from the banks and maximizing data
reuse will be kept. This will be done moving the involved operations in order
to diagonalize the front and avoiding the overlapping of iterations for the same
cell. This will obviously introduce some overhead at the beginning and in the
end of the loop (some operations cannot be done in a parallel way) but it is pos-
sible to apply the algorithm for the core of the loop.
The number of registers is increased, and the initialization has to be modified.
Depending from the width of the upper and lower row of the stencil, some op-
erations has to be scheduled in the initialization phase. Moreover to generalize
the algorithm, an approximation on the stencil figure will be introduced. The
approximation is the following: all the stencil figures are reduced to squares
where the original figure is inscribed, centered in the same point. To calculate
the side of the square an intermediate value (called horizontal max) is intro-
duced. The horizontal max can be calculated, and it is the max absolute value
among all the distances between the centered column of the stencil and the col-
umn value of the point. The side of the square is the max between the height
of the stencil and 2*horizontal max+1. This allows to handle any strange sten-
cil figure in the same way, but may create a number of register bigger than the
needed one.

To schedule the number of registers and to handle the position of the cells it
is mandatory to define a value that will be used to keep trace of the space left
between two different computations:

Definition 8. gap of the stencil:
The gap of the stencil is the distance between two columns where the stencils are centered
in two successive rows that have to be left to avoid conflicts. It can be seen as the slope
of the front. This value can be calculated as the leftmost value of a row of the square
minus the central value +1 (ie. half the length of the side, rounded up).

Once calculated the gap, the number of operation that have to be computed
“manually” before starting with the loop is equal to (gap)*(parallel_degree-i)
where i is the number of the kernel that is being considered (1 if the first, 2 if
the second, x if the last). Note that the last kernel does not have to compute any

65



Chapter 3. Problem Statement

operation before starting. Note also that there is no dependence at all between
the computation done in the different kernels.

For example in Figure 3.9 the gap is two: the pattern is already a square so it
does not need an approximation, and its width is 3. This means that one write
can be instantiated every two columns (as can be seen in Figure 3.11). The same
figure shows the modified front, the increased number of registers and the divi-
sion between already updated in the stencil iteration and the still not updated
ones. The green line, that is the line linking the writes that are being calculated
in the iteration, highlights the separation between the registers containing the
updated registers (the brown ones) and the one that still have to be updated
(the purple ones). The blue line is the front of advancement of this pattern. It is
evident that with this solution the data dependences are respected: every green
point requires that the lower points and the one of the left are already updated
while the right one and the upper ones have to be the one computed in the pre-
vious iteration of the stencil. It can also be seen that the four computations are
completely independent, and can be executed in the same instant.

The data that are shared are less, and there are more registers, but the num-
ber of accesses to the memory (which are the bottleneck) is the same with re-
spect to the algorithm working with reads and writes on different matrices. The
number of registers needed is symmetrical taking the center as reference, and
can be calculated as two times the sum of the number of registers of the rows
needed to reach the central rows plus the number of registers of the central
rows. The central rows can be in odd or even number, depending by the par-
allel degree. If the number of kernels is lesser than the height of the stencil the
central rows will not exist. This may happen when half of the number of total
rows is equal to the number of rows needed to reach the central rows (that is the
height of the stencil -1). It cannot be less because the constraint on the height is
still valid. For the upper rows the number of registers needed is width-1+x*gap,
where x is the number of that row -1 (ie. 0 if it is the first line, 1 if is the second
and so on until the height of the stencil is reached.) Those rows can be seen as an
initialization of the structure The central rows are all the other row from when
the max size is reached to the half of the total number of lines. The number of
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registers for each of those rows is width-1+(height-1)*gap. Then from the half
it decrease with the same pattern of how it is increased (may have some max
rows, then start decreasing with lines that are symmetrical with regard to the
top ones).

For the code used as example, reported below, the height is three.

1 for (t = 0; t <= _PB_TSTEPS - 1; t++)

2 for (i = 1; i<= _PB_N - 2; i++)

3 for (j = 1; j <= _PB_N - 2; j++)

4 A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]

5 + A[i][j-1] + A[i][j] + A[i][j+1]

6 + A[i+1][j-1] + A[i+1][j] + A[i+1][j+1])/9.0;

There are two rows needed to reach the central part, that have 2 and 4 registers:
the width is 3, gap is 2. Applying the formula respectively are obtained from 3-
1+0*2 and 3-1+1*2). The central lines are two (6 total rows, derived from height
-1 + parallel degree. the number of upper lines (height-1) has to be subtracted
twice) The number of registers needed in this row is width-1+(height-1)*gap
(3-1+(3-1)*2) that is 6 in this example. The rows below are symmetrical so in
this example their size is 4,2. The final structure is composed of 6 arrays with
dimension 2,4,6,6,4,2. The core of the loop after the transformation is the fol-
lowing one:

1 for (t = 0; t <= _PB_TSTEPS - 1; t++)

2 for (i = 1; i<= (_PB_N - 2)/4; i=i+4)

3 {

4 loop_initialization();

5 for (j = 3*gap+1; j <= _PB_N - 2; j++)

6 { A[i][j] = (reg[0][0] + reg[0][1] + A[i-1][j+1]

7 + reg[1][2] + reg[1][3] + A[i][j+1]

8 + reg[2][4] + reg[2][5] + A[i+1][j+1])/9.0;

9 A[i+1][j-gap] = (reg[1][0] + reg[1][1] + reg[1][2]

10 + reg[2][2] + reg[2][3] + reg[2][4]

11 + reg[3][4] + reg[3][5] + A[i+2][j+1-gap])/9.0;

12 A[i+2][j-2*gap] = (reg[2][0] + reg[2][1] + reg[2][2]

13 + reg[3][2] + reg[3][3] + reg[3][4]

14 + reg[4][2] + reg[4][3] + A[i+3][j+1-2*gap])/9.0;

15 A[i+3][j-3*gap] = (reg[3][0] + reg[3][1] + reg[3][2]

16 + reg[4][0] + reg[4][1] + reg[4][2]

17 + reg[5][0] + reg[5][1] + A[i+4][j+1-3*gap])/9.0

18 }

19 loop_finalization();

20 }
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The first write will use the final part of all rows, and will have more mem-
ory accesses (see Figure 3.11, the write in 1,8). The other writes will only read
the position in the bottom-right corner. For all the other reads, that have to be
substituted with register reads, the position of the register that have to be used
for the substitution is correlated to the gap and the number of the actual ker-
nel. The position of the value that have to be read is known with respect to
the center of the pattern (the write), in both directions (x and y). To obtain the
position of the register containing that value, the minimum between (x_read-
x_write)*gap and (parallel_degree-i-1)*gap has to be added, where x_write and
x_read are the value of the line from where the read and the write are situated
in the original matrix, and i is the number of the actual kernel. Looking at the
previous example (Figure 3.11 when rewriting the third write (position 3,4) the
reads needed are: the last registers of the fifth line (up in the figure, has length
4, the last two positions are needed) plus the memory read in (4,5), the central
of the fourth line (positions [2],[3],[4]) and the first of the third line (positions
[0],[1],[2]).
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(0, 0) j

read of the front, to be saved in registers

read of the next front
read from register, not to be saved for next iteration
not updated read from register, to be saved for next iteration
read from register, write to matrix and to register. has to be saved
already updated read from register, it has to be saved for next iteration

Figure 3.11: Diagonalized front
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3.3.5 Code Rewriting

To apply the suggested solution the source code has to be modified. This work
is done in three steps.

Data Splitting The function that performs the partitioning is inserted in the
loop, just before the beginning of the SCoP. It performs the modification de-
scribed in the Data Splitting section (3.3.3). It is needed to divide the data from
the source array to smaller arrays that will be mapped on different BRAMs.

Core Loop Modification The work described in Core Loop Handling section
(3.3.4) is performed. In this step the source code is heavily modified as can be
seen from the examples reported in that section.

Data Rebuilding This last step is needed to recreate the original array with
the computed data in the correct positions. It is just a reverse operation of the
split. It takes the x arrays (created in the split, and used during the computation
in the different cores) and recreates the original one.

3.4 Complete Example

A complete example (from the pattern identification to the rewriting of the core)
will now be presented to clarify the whole process. The chosen source code is
the kernel of the Gemm test case, that is:

1 for (i = 0; i < 100; i++)

2 for (j = 0; j <100; j++)

3 for (k = 0; k < 50; ++k)

4 C[i][j] += alpha * A[i][k] * B[k][j];

When polyhedral analysis is performed on this code, one SCoP with one state-
ment is found. The domain of the SCoP is:
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It has only one statement, and its schedule function is: Fs0(~x) =

(0, x, 0, y, 0, z, 0)T. The memory accessed produced are five, and they are:

1. • WRITE

• mem_pos = 1

• dim_0 = i

• dim_1 = j

2. • READ

• mem_pos = 1

• dim_0 = i

• dim_1 = j

3. • READ

• mem_pos = 2

• dim_0 = 0

4. • READ

• mem_pos = 3

• dim_0 = i

• dim_1 = k

5. • READ

• mem_pos = 4

• dim_0 = k
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• dim_1 = j

Then the following step, that is the pattern recognition, can start. The first
pass in the pattern recognition is check that the write is unique, and is passed.
During the following pass the reads are analyzed: The first read has the
same equations of the write, and will be recognized as EQUAL The second
read is recognized as SCALAR, since has only one dimension and it does not
depends from any iteration variable but only a constant The third read has
the first equation equal and the second different, and will be recognized as
EQUAL_BUT_SECOND The fourth read has the first equation different and
the second equal, and will be recognized as EQUAL_BUT_FIRST The output of
this pass is the following:

array value
read_1_key EQUAL
read_2_key SCALAR
read_3_key W2_R2_EQUAL_BUT_SECOND
read_4_key W2_R2_EQUAL_BUT_FIRST

Then the counters have to be updated (3rd pass) before the final recog-
nition (4th pass). During the final recognition the branch where the
counter W2_R2_EQUAL_BUT_SECOND has the same value of the counter
W2_R2_EQUAL_BUT_FIRST will be taken.
Here the final check (that the W2_R2_EQUAL_BUT_FIRST is immediately
after the W2_R2_EQUAL_BUT_SECOND) is performed. Since it is passed,
the pattern is recognized as ROW_AND_COLUMN, without the transposed.
Now the data partitioning has to be performed. The pattern recognized works
with the horizontal split, in particular the arrays marked with EQUAL and
W2_R2_EQUAL_BUT_SECOND have to be partitioned, while the SCALAR
and the W2_R2_EQUAL_BUT_FIRST have to be untouched.

The core loop modification step can be done now. The algorithm described
in 3.3.4.2 is performed. The data rebuild operation are inserted and the proce-
dure is finished. Given a parallel degree of four, the output code is the follow-
ing:

1 Array_hori_split(C, C_0,0,4);

2 Array_hori_split(C, C_1,1,4);

72



3.5. Conclusion

3 Array_hori_split(C, C_2,2,4);

4 Array_hori_split(C, C_3,3,4);

5 Array_hori_split(A, A_0,0,4);

6 Array_hori_split(A, A_1,1,4);

7 Array_hori_split(A, A_2,2,4);

8 Array_hori_split(A, A_3,3,4);

9
10 for (i = 0; i < 25; i++)

11 for (j = 0; j <100; j++)

12 for (k = 0; k < 50; ++k)

13 {

14 C_0[i][j] += alpha * A_0[i][k] * B[k][j];

15 C_1[i][j] += alpha * A_1[i][k] * B[k][j];

16 C_2[i][j] += alpha * A_2[i][k] * B[k][j];

17 C_3[i][j] += alpha * A_3[i][k] * B[k][j];

18 }

19
20 Array_hori_rebuild(C, C_0,0,4);

21 Array_hori_rebuild(C, C_1,1,4);

22 Array_hori_rebuild(C, C_2,2,4);

23 Array_hori_rebuild(C, C_3,3,4);

24 Array_hori_rebuild(A, A_0,0,4);

25 Array_hori_rebuild(A, A_1,1,4);

26 Array_hori_rebuild(A, A_2,2,4);

27 Array_hori_rebuild(A, A_3,3,4);

Where in the split and rebuild function calls the last two integers are the number
of the array that has to be split or rebuilt, and the total number of kernels.

3.5 Conclusion

In this chapter the problem has been described and a solution to it has been
proposed. It has been described how should work for the pattern identified,
focusing on the iterative stencils that should be the cases where the suggested
solution should perform better. A solution has also been proposed for complex
cases where the write and read matrices are the same. In the following chapter
how this solution has been implemented will be described.
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Implementation

In this chapter will be described how the methodology proposed by this thesis
has been implemented. The first section (4.1) will highlight further constraints
emerged during the implementation phase. This constraints are not imposed
by the algorithm itself, but have to be added to use the tools that will be listed
below. The second section (4.2)will explain the complete design flow. The third
section (4.3) will briefly list the implemented classes and will describe the work
done by them.

4.1 Constraints

The whole work is inserted in the context of the Panda Project, a framework
designed to enable the research of new ideas in the HW-SW Co-Design field.
More in detail, is created as a pass in the HLS framework that is Bambu [PF13].

Since this tool performs optimizations at a Gimple level, it has been neces-
sary to work with the Gimple to introduce the optimizations. As has already
been said, Gimple is the intermediate representation created by GCC while per-
forming the compilation. It is necessary to extract the polyhedral representation
of the source C code, and have something that is able to link the Gimple repre-
sentation and the polyhedral model of the code. From all the tools previously
analyzed, Graphite is the one selected to perform the polyhedral analysis on the
code. The reason behind this choice is that Graphite is part of the GCC project,

75



Chapter 4. Implementation

so it is easier to create links between the polyhedral model and the Gimple
code. On the other side this choice introduce a constraint on the meaning of
statement. In the previous chapter a statement has been intended as a single
instruction. For Graphite a statement is a single basic block. For this reason it
is possible to find a statement with more than one write. These statement have
not been handled, since the algorithm is based on the comparison between the
write and the reads. It is important to highlight that this limitation is only due to
the implementation of Graphite and not a problem of the proposed algorithm.

As polyhedral model of a SCoP it has been chosen to use the OpenScop rep-
resentation . This choice has been made because is one of the more supported
formats and a C library to write and read file of this protocol is provided.

An xml file is created as link between the Gimple and the OpenScop. This
file contains all the needed references between the Gimple information and its
SCoP.

4.1.1 Plugins

Panda already uses GCC to extract the Gimple representation of a source C code
and then performs its optimizations on that. The extraction of the Gimple is
done with a plugin, that works at the end of the middle-end level of the com-
piler. It is the last operation in the target independent optimization flow. An-
other plugin for GCC that works with the already existing one has been writ-
ten. This plugin implements the Graphite algorithm ([TCE+10], [SPJ+09]) for
the SCoPs extraction, and produces an OpenScop file (.osl) for each SCoP iden-
tified. The plugin also produces a global xml file, containing the reference be-
tween every single osl file and the basic blocks involved in that SCoP in the
Gimple. This second plugin has been written for GCC 4.9, and works at the
same level of the other one.

4.1.2 Other Constraints

Another constraint introduced is an approximation on the handling of the sten-
cil on different array (explained in section 3.3.4.3). In that chapter the figure
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of the stencil has been mantained and only composed in order to create a “su-
perpattern” that can have a strange form. No approximations are needed in
the algorithm. During the implementation of this part, to simplify the work,
the stencil has been approximated to the smallest square containing the original
stencil figure, before the composition to form the bigger figure. This is the same
approximation made for the stencils that work on the same array (explained in
section 3.3.4.4).

4.2 Design Flow

Two runs of Bambu are needed to obtain the Verilog description of the FPGA.
For the first run the target file must be passed as source to Bambu (Panda HLS
tool) with –enable-poly=x and –pretty-print=name_of_the_output.c, where x is
the desired parallel degree. The output of this run is still C code, and is used as
input for a new run of Bambu, in which the implemented part is not active, that
will perform the HLS and produce the Verilog code.

This particular flow has been used because the output of the first step, being
C code, can theoretically be used with other HLS tools.

4.3 Implemented classes

4.3.1 osl_wrapper

This class is just a wrapper around the OpenScop library. It has been created
to wrap the C library in the cpp program, and to provide a class containing the
SCoP and the methods needed to work on it.
The methods of this class are the ones needed to write and read the SCoP.

4.3.2 polyhedral_parallelizer

This is the class that performs all the work explained in the methodology chap-
ter. It is a subclass of function_frontend_flow_step, the class used by Panda as
basic class for every transformation of the intermediate representation. All the
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work performed by the class will modify the gimple tree of the function passed
as attribute, creating a different tree that will be passed to the following step of
the normal Bambu flow.
The work of the class start with the call of the exec function, and is divided in
two main steps:

• Data Retrieval

• Code Modification

The first step consist in reading all the necessary data produced by the
plugin. The second step consists in performing all the work described in the
methodology section. This consists in:

• New basic blocks creation.

• Identification of the old basic blocks that are part of the SCoP.

• Modification of the iteration variables and creation of the new arrays.

• Replication of the core instructions and partially dead code elimination.

• Introduction of the split-rebuild functions.

4.3.2.1 Data Retrieving

The first step of the work is the reading of the data produced by the plugin
(all the SCoPs and the xml file). For every SCoP an instance of osl_wrapper is
created. This item contains the SCoP, and is inserted in an ordered map where
an unsigned int is the key. The number of the SCoP is decided by its name (they
are called scop_x , where x is a number). This number is important because is
used in the xml file as identifier for the SCoP.

After all the SCoPs are parsed the xml file is read. From the xml file the
remaining information are extracted. From the root of the xml there is a list
of children nodes called “function” Every function has as attribute the name
and the tree node index where the function is declared in the Gimple. Inside
every function there is a list of SCoP nodes that have as attribute the name of
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the osl file where it is described, the loop index and the involved basic blocks.
these SCoP nodes have as children a list of memory identifiers, that are the
correspondence between the id used in the SCoP file for an array and the tree
node where that array is declared in the Gimple.

4.3.2.2 Code modification

The transform_loop function performs all the modification at a Gimple level of
the code of the function. First given the function id, it is issued the retrieval of
the information of the data related to that function. The whole work is based on
two loops that are nested and repeated the extern one once per SCoP, and the
inner one once per basic blocks of the SCoP. This means that the work described
is done once per statement (statement and basic blocks are the same thing for
Graphite). The first run of the inner loop starts with the modification of the
basic block structure of the function. New basic blocks are created, and new
iteration variables and their conditions are instantiated in this step. This new
basic blocks have an onion structure: a middle block contains the “core” of the
loop to be parallelized, and is surrounded by other blocks that are the needed
for the start and the end of the surrounding loops, plus one more layer that will
be used for the split and rebuild function calls. For example for the following
code:

1 for (x=0; x<10; x++)

2 for (y=0; y<10; y++)

3 for (z=0; z<10; z++)

4 f(x,y,z);
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a tree is created with the following structure:

split-function reserved

x-PHI

y-PHI

z-PHI;
f(x,y,z);
z-increment;
z-cond;

y-increment;
y-cond;

x-increment;
x-cond;

rebuild-function reserved

true

false

true

false

true

false

Figure 4.1: Original flow graph for one statement

The structure in Figure 4.1 is created for the first statement, then it can be
modified if there are more statements since it is possible that two statements
share some variable. When is created during the first iteration a structure that
keeps trace of every iteration variable and its loop entry is built. If there are
more statements a check is done to find which variables are shared and which
ones are different, then for the different ones others basic blocks are created,
and then inserted after the end of the first not-shared variable.
The list of basic blocks that have to be modified is one of the information re-
trieved with the xml, and it has to be crossed with the data from the SCoP:
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every statement in the SCoP corresponds to a basic block in the list of the xml.
In this way the instructions that have to be copied in the middle block of the
newly created structure are retrieved. An example of a modified structure is
provided with the following code, that has two polyhedral statements:

1 for (x=0; x<10; x++)

2 {

3 for (y=0; y<10; y++)

4 for (z=0; z<10; z++)

5 f(x,y,z)

6 for (y=0; y>10; y++)

7 for (z=0; z>10;z++)

8 f(x,y,z);

9 }

the flow graph created at the first iteration is modified as in Figure4.2

Another operation that has to be done is the identification and elimination
of the old basic blocks that compose the polyhedral code. Since the polyhedral
code is a single entry-single exit region, and the entry-exit basic blocks are an
information saved in the xml, this can be done just by finding all the basic block
reached by the function before the exit. They are identified in the first iteration
of the loop, and are eliminated after the loop itself: some of them are needed as
source if there are more statements.

The original instructions are then modified and this is the first step of the
modification: the iteration variables are substituted, some dead code elimi-
nation is performed such as the elimination of instructions related to the old
iteration variables. The new arrays are created, and a map to keep the reference
between the original array and the new arrays is created.
Then the pattern analysis (described in section 3.3.2) is executed, using as
source the data of the statement. With the result of the pattern analysis the
create_parallel_stmts function is called. This function is driven by the pattern
identified, and with a switch selects the transformations that have to be per-
formed. Those transformations are the one described in the section 3.3.4 . This
is the second part of the modification: the parallelization is performed now.
As last step the split and rebuild functions have to be instantiated in the first
and last basic block created, because the loop contained in the code is working
with the new arrays and the structure described above.
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split-function reserved

x-PHI

y-PHI

z-PHI;
f(x,y,z);
z-increment;
z-cond;

y-increment;
y-cond;

y_2-PHI

z_2-PHI;
f(x,y_2,z_2);
z_2-increment;
z_2-cond;

y_2-increment;
y_2-cond;

x-increment;
x-cond;

rebuild-function reserved

true

true

false

true

falsetrue

false

false

true

Figure 4.2: Modified flow graph for more than one statement

82



4.4. Conclusion

4.4 Conclusion

Bambu is now able to create an output file where the original loop is now par-
allel, since every one of the new arrays is performing an operation in the same
loop. This file is still C code, and has to be re-analyzed with Bambu to perform
HLS and obtain the target code to be run on the FPGA.
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Experimental Evaluation

In this chapter the benchmarks chosen will be listed. The modifications required
from the original benchmark will be highlighted and the result obtained from
the execution of the benchmark will be explained.

5.1 Experimental Setup

5.1.1 Experimental Tools

As it was described in section 4.2, two different runs of Bambu are needed to
obtain the Verilog code. The first run is a C to C run where the proposed solution
has been applied. For the first run Bambu v 0.9.3 has been configured to call GCC
4.9 with -O2. This choiche has been made to mantain the structure of the code,
easing the analysis of the code and the transformations performed. The output
of this is the C code where the parallel instructions have been created and that
could be used as source code by any HLS tool.

For the second run Bambu, version 0.9.3, has been used as HLS tool. It calls
GCC 4.9 with -O3. The HLS has been configured to disconnect primary ports
from the IOB and use BRAM for all the data. The output of this run is the Verilog
code. The Synthesis is performed by Vivado v2015.1 (64-bit) [viv15]. The target
platform is the Virtex-7 690T. This platform has been chosen for the number of
available BRAMs, to memorize the splitted arrays. Target applications are data

85



Chapter 5. Experimental Evaluation

intensive, and the objective is to improve the performance in terms of execution
time, so area utilization is not an issue and a large FPGA has been chosen as test
device. The results have been collected after the place and route step.

5.1.2 Benchmarks

All the chosen benchmarks are taken from the Polybench test suite ([Pou]), and
have been adapted to create auto-regressive test. Some modifications have also
been done to work with the implemented program (and those will be explained
case per case). The structure for all the tests is the following:

• Function with the kernel of the test, taken from Polybench, to be opti-
mized.

• Functions for splitting and rebuilding the arrays.

• Main, which contains:

– Initialization of all the arrays.

– Another kernel of the test, that works with different array that have
been initialized with the same values.

– Call to the function to be optimized.

– Final check where the two results arrays are compared.

A set of values has been chosen to test the impact of the array dimension
on the proposed solution. Three different sizes have been tested for every non-
stencil test: small, default and large. For stencils, only default and large test
have been considered. Some tests where the kernel of the stencil is performed
more times have been introduced. This has been done to observe the impact of
the split-rebuild functions. All the size that have been modified were passed to
the benchmark with defines, and the values are reported in every benchmark
subsection. If no defines are passed, the default test is run. Another variation
that has been done was the level of parallelism. Eight different levels of paral-
lelism have been considered. Those levels are: 2,3,4,5,6,7,8,16.
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5.1.2.1 Gemm

This test case perform the following matrix multiplication: C=alpha*A*B+beta*C.
The multiplication C*beta has been moved to the initialization phase, so the
kernel function is only performing C+=alpha*A*B. This modification has been
made because the use of the schedule function is not yet implemented, and if
a SCoP has more than one statement the extern loop only may be shared (and
in this benchmark it is necessary to share more than one extern loop). It is only
an implementation issue, and the heavy operation in this loop is the matrix
multiplication, that is the one that is being made parallel. The test has been
made with three different set of ranges:

• small: _PB_NI= 20, _PB_NJ= 30, _PB_NK=40

• default: _PB_NI= 100, _PB_NJ= 200, _PB_NK= 300

• large: _PB_NI= 500, _PB_NJ= 550, _PB_NK= 600

The kernel of this test is the following.

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; ++k)

4 C[i][j] += alpha * A[i][k] * B[k][j];

5.1.2.2 Gemver

This test case perform vector multiplication and matrix addition. The kernel is
the same of Polybench. The sizes of the arrays for the different cases are:

• small: _PB_N= 20

• default: _PB_N= 100

• large: _PB_N= 400

The kernel of this test is the following:
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1
2 for (i = 0; i < _PB_N; i++)

3 for (j = 0; j < _PB_N; j++)

4 A[i][j] = A[i][j] + u1_1_[i] * v1_1_[j] + u2_1_[i] * v2_1_[j];

5
6 for (i = 0; i < _PB_N; i++)

7 for (j = 0; j < _PB_N; j++)

8 x_1_[i] = x_1_[i] + beta * A[j][i] * y_1_[j];

9
10 for (i = 0; i < _PB_N; i++)

11 x_1_[i] = x_1_[i] + z_1_[i];

12
13 for (i = 0; i < _PB_N; i++)

14 for (j = 0; j < _PB_N; j++)

15 w_1_[i] = w_1_[i] + alpha * A[i][j] * x_1_[j];

5.1.2.3 Jacobi 1D

This test case is the single dimension version of the Jacobi pattern. There are
two versions of this test case, the first has the same kernel of the Polybench,
with the division at the end of the sum. In HLS the division is a costly opera-
tion, and Bambu is not able to instantiate more than one division. This generates
a bottleneck and the created parallelism is wasted. In some tests the division
has been substituted with a multiplication for the inverse that is calculated pre-
viously. Those tests have the string “_mul” in their name. Six test groups have
been created for this benchmark, two with the original version and four with
the multiplication version. The values for the parameters are the following:

• default: _PB_N= 100, _PB_TSTEPS= 10. This test is done for both the
original kernel and the multiplication kernel.

• _more_steps: _PB_N= 100, _PB_TSTEPS= 25. It is performed only for the
modified kernel.

• large: _PB_N= 400, _PB_TSTEPS= 10. This test is done for both the origi-
nal kernel and the multiplication kernel.

• large_more_steps: _PB_N= 400, _PB_TSTEPS= 25. It is performed only for
the modified kernel.
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The kernel of the test is the following:
1 for (t = 0; t < _PB_TSTEPS; t++)

2 {

3 for (i = 1; i < _PB_N - 1; i++)

4 B[i] = (A[i-1] + A[i] + A[i + 1])/3;

5 for (j = 1; j < _PB_N - 1; j++)

6 A[j] = B[j];

7 }

5.1.2.4 Jacobi 2D

This test case is the two dimensional version of the Jacobi pattern. Since the
Polybench version is already implemented with a multiplication, there is no
need of multiple versions. Three test groups have been created for this bench-
mark, with the following values for the parameters:

• default: _PB_N= 100, _PB_TSTEPS= 10.

• _more_steps: _PB_N= 100, _PB_TSTEPS= 25.

• large: _PB_N= 500, _PB_TSTEPS= 10.

The kernel of the Jacobi 2d benchmark is the following:
1 for (t = 0; t < _PB_TSTEPS; t++)

2 {

3 for (i = 1; i < _PB_NI -1; i++)

4 for (j = 1; j < _PB_NI -1; j++)

5 B[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][1+j] + A[1+i][j] + A[i-1][j]);

6 for (i = 1; i < _PB_NI -1; i++)

7 for (j = 1; j < _PB_NI -1; j++)

8 A[i][j] = B[i][j];

9 }

5.1.2.5 2MM

This test case performs two matrix multiplications: D = alpha*A*B*C + beta*D.
It is similar to the Gemm test case, it just perform one more multiplication. The
beta*D has been moved out from the kernel, for the same reason as above, and
has been placed in the initialization. The value of the parameters for this test
case are:
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• default: _PB_NI= 100, _PB_NJ= 200, _PB_NK= 100, _PB_NL= 100

• small: _PB_NI= 20, _PB_NJ= 30, _PB_NK= 40, _PB_NL= 100

• large: _PB_NI= 500, _PB_NJ= 550, _PB_NK= 600, _PB_NL= 100

The kernel of the 2mm benchmark is the following:

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; ++k)

4 tmp[i][j] += alpha * A[i][k] * B[k][j];

5 for (i = 0; i < _PB_NI; i++)

6 for (j = 0; j < _PB_NL; j++)

7 for (k = 0; k < _PB_NJ; ++k)

8 D[i][j] += tmp[i][k] * C[k][j];

5.1.2.6 3MM

This test case performs the follow matrix multiplications: E=A*B, F=C*D and
G=E*F. The kernel is the same of the Polybench, the only difference is that the
initialization of the result matrices is done outside from the function. In the
Polybench kernel every loop is done as follows:

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NJ; j++)

3 E[i][j]=0;

4 for (k = 0; k < _PB_NK; k++)

5 E[i][j] += A[i][k] * B[k][j];

with the initialization done inside the loop. For the same reason as above that
double statement loop is not supported (it shares more than one iteration vari-
able). The kernel of the 3mm benchmark is the following:

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NJ; j++)

3 for (k = 0; k < _PB_NK; k++)

4 E[i][j] += A[i][k] * B[k][j];

5
6 for (i = 0; i < _PB_NJ; i++)

7 for (j = 0; j < _PB_NL; j++)

8 for (k = 0; k < _PB_NM; k++)

9 F[i][j] += C[i][k] * D[k][j];

10
11 for (i = 0; i < _PB_NI; i++)
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12 for (j = 0; j < _PB_NL; j++)

13 for (k = 0; k < _PB_NJ; k++)

14 G[i][j] += E[i][k] * F[k][j];

With the following values for the kernel parameters:

• default: _PB_NI= 100, _PB_NJ= 300, _PB_NK= 200, _PB_NL= 100,
_PB_NM= 200

• small: _PB_NI= 20, _PB_NJ= 30, _PB_NK= 40, _PB_NL= 100, _PB_NM=
200

• large: _PB_NI= 500, _PB_NJ= 550, _PB_NK= 600, _PB_NL= 100,
_PB_NM= 200

5.1.2.7 MVT

This benchmark performs matrix vector product and transpose. The kernel is
the same of the Polybench, and it is reported below:

1 for (i = 0; i < _PB_N; i++)

2 for (j = 0; j < _PB_N; j++)

3 x[i] = x[i] + A[i][j] * y[j];

4 for (i = 0; i < _PB_N; i++)

5 for (j = 0; j < _PB_N; j++)

6 w[i] = w[i] + A[j][i] * z[j];

With the following values for the parameters:

• default: _PB_N= 100

• small: _PB_N= 20

• large: _PB_N= 400

5.1.2.8 Seidel 2D

This benchmark performs the Seidel 2D algorithm. There are two versions of
this test case, with the division and with the multiplication, as for the Jacobi 1D
benchmark. The first has the same kernel of the Polybench, with the division at
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the end of the sum. In the second, the division has been substituted with a mul-
tiplication for the inverse (i.e the division for the factor 9 has been substituted
with a multiplication for 1/9, that is calculated previously only once). Six test
groups have been created for this benchmark, two with the original version and
four with the multiplication version. The original kernel of this benchmark is:

1 for (t = 0; t <= _PB_TSTEPS - 1; t++)

2 for (i = 1; i<= _PB_N - 2; i++)

3 for (j = 1; j <= _PB_N - 2; j++)

4 A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]+ A[i][j-1] + A[i][j]

5 + A[i][j+1] + A[i+1][j-1] + A[i+1][j] + A[i+1][j+1])/9.0;

and it has been tested with the following parameters:

• default: _PB_N= 100, _PB_TSTEPS= 10. This test too is done for both the
versions.

• _more_steps: _PB_N= 100, _PB_TSTEPS= 25. It is performed only for the
modified kernel.

• large: _PB_N= 400, _PB_TSTEPS= 10. This test too is done for both the
versions.

• large_more_steps: _PB_N= 400, _PB_TSTEPS= 25. It is performed only for
the modified kernel.

5.1.2.9 Syrk

This benchmark performs symmetric rank-k operations. The kernel is equal to
the Polybench case, which is:

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NI; j++)

3 C[i][j] *= beta;

4
5 for (i = 0; i < _PB_NI; i++)

6 for (j = 0; j < _PB_NI; j++)

7 for (k = 0; k < _PB_NJ; k++)

8 C[i][j] += alpha * A[i][k] * A[j][k];

and it has been tested with the following parameters:

• small: _PB_NI= 20, _PB_NJ= 30
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• default: _PB_NI= 100, _PB_NJ= 200

• large: _PB_NI= 500, _PB_NJ= 550

5.1.2.10 Syr2k

This benchmark performs symmetric rank-2k operations.

1 for (i = 0; i < _PB_NI; i++)

2 for (j = 0; j < _PB_NI; j++)

3 C[i][j] *= beta;

4
5 for (i = 0; i < _PB_NI; i++)

6 for (j = 0; j < _PB_NI; j++)

7 for (k = 0; k < _PB_NJ; k++)

8 {

9 C[i][j] += alpha * A[i][k] * B[j][k];

10 C[i][j] += alpha * B[i][k] * A[j][k];

11 }

and it has been tested with the following parameters:

• small: _PB_NI= 20, _PB_NJ= 30

• default: _PB_NI= 100, _PB_NJ= 200

• large: _PB_NI= 500, _PB_NJ= 550

5.2 Experimental Results

The results of the runs of the test will be now reported and discussed.
For every benchmark the results are included in two tables, performance

and area, the first with the information on the wall time in terms of clock cycles
and clock period and the second with information on the area used. More in
detail, the first table (performance) has six columns:

• The leftmost column contains the name of the test (small, default, ex-
tended,...) that recalls the dimension of the parameter.

• The parallel degree column contains the number of kernel created.
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• The number of cycles split included reports the wall time elapsed by the ker-
nel when the external split and rebuild functions are considered part of
the computation.

• The number of cycles split excluded reports the wall time elapsed by the ker-
nel minus the external split and rebuild functions.

• The clock frequency reports the obtained frequency from the synthesis
(MHz).

• The clock slack is the difference respect to the target clock period that is
10ns.

• The Speedup split included reports the speedup obtained compared to the
sequential test case, when for the parallel test the time elapsed in the ex-
ternal split and rebuild is considered.

• The Speedup split excluded reports the speedup obtained compared to the
sequential test case, when for the parallel test the time elapsed in the ex-
ternal split and rebuild is not considered.

If intermediate split-rebuild are issued between two SCoPs, they are considered
as part of the calculation. The external split-rebuild instead can be avoided if
the data are already divided while the copy from the external memory to the
BRAMs is being executed. If the divison is done while copying the data, the
split time can be neglected since the calculations that have to be made for the
address of the data are masked by the cost of the copy operation.

The second table (area) has eight columns:

• The first column is the same of the previous table, with the name of the
test.

• The parallel degree column contains the number of kernel created.

• The LUT-FF pairs column contains the number of LUT-FF pairs used in the
synthesis. A LUT-FF pair is Look-Up Table with a dedicated Flip Flop. Of
this couple both can be used, but it is not mandatory. It can happen that
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only one of them is used. This column reports the total number of pairs
where at least one of the two components has been used. For the target
device the number of available LUT-FF pairs is 433200.

• The LUT column contains the number of Look-Up Table used in the syn-
thesis. LUTs are the basic building block of an FPGA and are used for the
building of the logic of the circuit. For the target device the number of
available LUT as logic is 433200.

• The Slices columns reports the number of slices used in the synthesis. A
slice is a group of LUTs and Flip Flops, as said in [xil15] there are four LUTs
and 8 FFs for each series 7 Slice (the target device is one of them). This
column reports the number of slices that have at least one of the internal
LUT-FF pair used by the synthesis. For the target device the number of
available slices is 108,300.

• The register contains the number of temporary storages for data. It is the
sum of the FFs used as data storage. For the target device the number of
available FF is 866400.

• The DSPs reports the number of Digital Signal Processors slices that were
allocated. DSPs are used for complex math operations. Every series 7 DSP
slice contains a pre-adder, a 25 x 18 multiplier, an adder, and an accumula-
tor ([xil15]). As above the number reported here means that at least one of
the elements contained in the slice has been used. For the targeted device
the nuber of DSP slices is 3,600.

• The BRAMs column reports the number of memories used in the synthe-
sis. For the targeted device the number of BRAMs available is 2,940.

For every column is reported between parentheses the ratio between the num-
ber of components used by the parallel test and the number of components
needed in the synthesis of the sequential case.

Whenever a simulation or synthesis did not finish, the result is reported as
n.a. The cause of this are two:
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• The simulation takes too many cycles and is not able to end in 200,000,000
(which has been taken as upper limit) cycles.

• The synthesis is not finished in 150 minutes (timeout threshold).

Which one of the two is the reason will be explained every time.
The measurements are done after the place and route phase.
All the benchmark listed above have been clustered in five groups. This has

been done because some test cases presented a pattern that was similar to other
and consequently the results are similar. Those patterns are:

• Matrix Multiplication

• Matrix and Vector Multiplication

• 1D Stencil

• 2D Stencil on different arrays

• 2D Stencil on the same array

5.2.1 Benchmark Pattern: Matrix Multiplication

This pattern has been found in the following tests: Gemm, 2MM, 3MM, Syrk
and Syr2k. For every one of these benchmarks the results obtained are reported
in the following tables:

• Gemm: performances results are reported in Table 5.1, area results are
reported in Table 5.2

• 2MM: performances results are reported in Table 5.3, area results are re-
ported in Table 5.4

• 3MM: performances results are reported in Table 5.5, area results are re-
ported in Table 5.6

• Syrk: performances results are reported in Table 5.7, area results are re-
ported in Table 5.8
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• Syr2k: performances results are reported in Table 5.9, area results are re-
ported in Table 5.10

Gemm Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 30, 060, 103 101.79 0.18 n.a. n.a.
2 15, 135, 568 15, 030, 053 96.72 −0.34 1.98 1.99
3 10, 325, 956 10, 220, 437 100.82 0.08 2.91 2.94
4 7, 620, 568 7, 515, 028 98.82 −0.12 3.94 3.99

default 5 6, 117, 578 6, 012, 023 96.48 −0.37 4.91 4.99
6 5, 215, 775 5, 110, 220 101.03 0.10 5.76 5.88
7 4, 614, 583 4, 509, 018 94.34 −0.60 6.51 6.66
8 4, 013, 396 3, 907, 816 100.33 0.03 7.48 7.69

16 2, 209, 882 2, 104, 210 97.43 −0.26 13.60 14.28
1 n.a. 121, 823 103.85 0.37 n.a. n.a.
2 64, 028 60, 913 103.76 0.36 1.90 1.99
3 45, 759 42, 640 104.49 0.43 2.66 2.85
4 33, 598 30, 458 105.75 0.54 3.62 3.99

small 5 27, 517 24, 367 106.92 0.65 4.42 4.99
6 27, 522 24, 367 104.74 0.45 4.42 4.99
7 21, 419 18, 276 105.79 0.55 5.68 6.66
8 21, 480 18, 276 106.18 0.58 5.67 6.66

16 15, 613 12, 185 105.71 0.54 7.80 9.99
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.1: Gemm performance results (continued)
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Gemm Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 5, 020 4, 530 1, 876 1, 752 6 512
2 8, 456(1.68) 7, 511(1.66) 3, 117(1.66) 3, 129(1.79) 12(2.00) 646(1.26)
3 10, 713(2.13) 9, 421(2.08) 3, 874(2.07) 4, 269(2.44) 15(2.50) 662(1.29)
4 10, 171(2.03) 9, 203(2.03) 3, 711(1.98) 3, 347(1.91) 18(3.00) 646(1.26)

default 5 11, 183(2.23) 10, 191(2.25) 4, 107(2.19) 3, 489(1.99) 21(3.50) 678(1.32)
6 12, 880(2.57) 11, 522(2.54) 4, 514(2.41) 4, 628(2.64) 27(4.50) 662(1.29)
7 13, 893(2.77) 12, 544(2.77) 4, 979(2.65) 4, 717(2.69) 30(5.00) 686(1.34)
8 14, 808(2.95) 13, 447(2.97) 5, 177(2.76) 4, 777(2.73) 33(5.50) 710(1.39)

16 22, 061(4.39) 20, 546(4.54) 7, 158(3.82) 5, 805(3.31) 60(10.00) 710(1.39)
1 4, 445 4, 052 1, 334 1, 587 6 24
2 7, 577(1.70) 6, 840(1.69) 2, 284(1.71) 2, 745(1.73) 12(2.00) 46(1.92)
3 9, 362(2.11) 8, 428(2.08) 2, 876(2.16) 3, 693(2.33) 15(2.50) 54(2.25)
4 8, 956(2.01) 8, 236(2.03) 2, 670(2.00) 2, 932(1.85) 18(3.00) 62(2.58)

small 5 9, 718(2.19) 9, 056(2.23) 2, 911(2.18) 3, 017(1.90) 21(3.50) 70(2.92)
6 11, 425(2.57) 10, 382(2.56) 3, 410(2.56) 4, 090(2.58) 27(4.50) 78(3.25)
7 14, 531(3.27) 12, 888(3.18) 4, 411(3.31) 5, 871(3.70) 27(4.50) 86(3.58)
8 12, 448(2.80) 11, 406(2.81) 3, 748(2.81) 4, 051(2.55) 33(5.50) 94(3.92)

16 16, 957(3.81) 16, 150(3.99) 5, 106(3.83) 4, 072(2.57) 60(10.00) 158(6.58)
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.2: Gemm area results (continued)
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2MM Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 18, 090, 203 100.30 0.03 n.a. n.a.
2 9, 181, 347 9, 120, 725 102.10 0.21 1.97 1.98
3 6, 286, 926 6, 226, 299 97.49 −0.26 2.87 2.90
4 4, 658, 849 4, 598, 201 100.83 0.08 3.88 3.93

default 5 3, 754, 363 3, 693, 703 101.32 0.13 4.81 4.89
6 3, 211, 677 3, 151, 007 95.34 −0.49 5.63 5.74
7 2, 849, 897 2, 789, 215 100.38 0.04 6.34 6.48
8 2, 488, 121 2, 427, 425 102.09 0.21 7.27 7.45

16 1, 402, 901 1, 342, 109 101.80 0.18 12.89 13.47
1 n.a. 367, 843 104.82 0.46 n.a. n.a.
2 194, 107 188, 865 104.67 0.45 1.89 1.94
3 138, 942 133, 695 103.76 0.36 2.64 2.75
4 102, 199 96, 931 104.03 0.39 3.59 3.79

small 5 83, 831 78, 551 104.09 0.39 4.38 4.68
6 83, 851 78, 561 105.78 0.55 4.38 4.68
7 65, 510 60, 195 106.32 0.59 5.61 6.11
8 65, 583 60, 231 105.36 0.51 5.60 6.10

16 47, 311 41, 899 104.82 0.46 7.77 8.77
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.3: 2MM performance results (continued)
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2MM Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 8, 324 7, 290 2, 944 3, 046 13 512
2 13, 562(1.63) 12, 045(1.65) 4, 856(1.65) 4, 870(1.60) 22(1.69) 710(1.39)
3 17, 317(2.08) 15, 238(2.09) 5, 906(2.01) 6, 717(2.21) 25(1.92) 662(1.29)
4 17, 739(2.13) 16, 198(2.22) 6, 154(2.09) 5, 371(1.76) 28(2.15) 710(1.39)

default 5 19, 518(2.34) 17, 885(2.45) 6, 757(2.30) 5, 637(1.85) 46(3.54) 758(1.48)
6 22, 505(2.70) 20, 366(2.79) 7, 324(2.49) 7, 335(2.41) 58(4.46) 662(1.29)
7 24, 353(2.93) 22, 212(3.05) 7, 960(2.70) 7, 710(2.53) 67(5.15) 686(1.34)
8 25, 993(3.12) 23, 823(3.27) 8, 426(2.86) 7, 729(2.54) 73(5.62) 710(1.39)

16 38, 993(4.68) 36, 561(5.02) 11, 868(4.03) 10, 041(3.30) 73(5.62) 774(1.51)
1 7, 669 6, 816 2, 222 2, 855 13 48
2 12, 221(1.59) 11, 019(1.62) 3, 679(1.66) 4, 431(1.55) 22(1.69) 86(1.79)
3 15, 884(2.07) 14, 168(2.08) 4, 848(2.18) 6, 109(2.14) 25(1.92) 102(2.13)
4 15, 900(2.07) 14, 620(2.14) 4, 730(2.13) 5, 038(1.76) 28(2.15) 118(2.46)

small 5 17, 548(2.29) 16, 232(2.38) 5, 212(2.35) 5, 192(1.82) 46(3.54) 134(2.79)
6 21, 193(2.76) 19, 379(2.84) 6, 236(2.81) 6, 875(2.41) 58(4.46) 150(3.13)
7 21, 621(2.82) 19, 886(2.92) 6, 512(2.93) 6, 779(2.37) 61(4.69) 166(3.46)
8 23, 446(3.06) 21, 685(3.18) 7, 076(3.18) 6, 854(2.40) 73(5.62) 182(3.79)

16 31, 574(4.12) 29, 933(4.39) 9, 501(4.28) 7, 797(2.73) 73(5.62) 310(6.46)
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.4: 2MM area results (continued)
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3MM Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 60, 210, 502 93.25 −0.72 n.a. n.a.
2 30, 483, 401 30, 392, 650 95.07 −0.52 1.97 1.98
3 20, 689, 340 20, 598, 518 95.14 −0.51 2.91 2.92
4 15, 431, 242 15, 340, 335 95.88 −0.43 3.90 3.92

default 5 12, 420, 951 12, 329, 967 95.19 −0.51 4.84 4.88
6 10, 534, 561 10, 443, 502 90.01 −1.11 5.71 5.76
7 9, 250, 267 9, 159, 131 95.06 −0.52 6.50 6.57
8 8, 126, 597 8, 035, 382 98.18 −0.19 7.40 7.49

16 4, 435, 510 4, 343, 679 n.a. n.a. 13.57 13.86
1 n.a. 2, 752, 872 105.30 0.50 n.a. n.a.
2 1, 405, 176 1, 399, 805 103.47 0.34 1.95 1.96
3 952, 316 946, 874 103.01 0.29 2.89 2.90
4 757, 567 752, 040 102.62 0.26 3.63 3.66

small 5 580, 010 574, 406 101.99 0.20 4.74 4.79
6 499, 934 494, 255 101.46 0.14 5.50 5.56
7 482, 995 477, 225 103.83 0.37 5.69 5.76
8 402, 985 397, 114 104.77 0.46 6.83 6.93

16 227, 123 220, 672 104.98 0.47 12.12 12.47
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.5: 3MM performance results (continued)
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3MM Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 10, 772 9, 398 4, 056 3, 658 10 1088
2 18, 951(1.76) 16, 660(1.77) 7, 127(1.76) 6, 621(1.81) 28(2.80) 1512(1.39)
3 24, 263(2.25) 21, 140(2.25) 8, 865(2.19) 9, 108(2.49) 34(3.40) 1648(1.51)
4 24, 877(2.31) 22, 484(2.39) 9, 032(2.23) 7, 532(2.06) 52(5.20) 1512(1.39)

default 5 27, 466(2.55) 24, 880(2.65) 9, 856(2.43) 7, 947(2.17) 61(6.10) 1616(1.49)
6 32, 242(2.99) 28, 927(3.08) 11, 360(2.80) 10, 074(2.75) 76(7.60) 1648(1.51)
7 36, 462(3.38) 32, 819(3.49) 12, 750(3.14) 11, 765(3.22) 85(8.50) 1740(1.60)
8 39, 135(3.63) 35, 243(3.75) 13, 241(3.26) 12, 132(3.32) 49(4.90) 1640(1.51)

16 n.a.
1 9, 488 8, 318 3, 026 3, 412 10 208
2 17, 385(1.83) 15, 354(1.85) 5, 395(1.78) 6, 243(1.83) 28(2.80) 272(1.31)
3 22, 308(2.35) 19, 691(2.37) 6, 856(2.27) 8, 297(2.43) 34(3.40) 300(1.44)
4 23, 804(2.51) 21, 388(2.57) 7, 295(2.41) 8, 153(2.39) 55(5.50) 312(1.50)

small 5 25, 523(2.69) 23, 488(2.82) 7, 613(2.52) 7, 391(2.17) 61(6.10) 336(1.62)
6 29, 648(3.12) 27, 090(3.26) 8, 864(2.93) 9, 446(2.77) 76(7.60) 360(1.73)
7 32, 720(3.45) 29, 716(3.57) 9, 968(3.29) 10, 448(3.06) 82(8.20) 384(1.85)
8 32, 956(3.47) 30, 271(3.64) 9, 978(3.30) 9, 983(2.93) 46(4.60) 408(1.96)

16 44, 906(4.73) 42, 871(5.15) 14, 028(4.64) 10, 272(3.01) 67(6.70) 600(2.88)
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.6: 3MM area results (continued)
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Syrk Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 10, 070, 205 103.83 0.37 n.a. n.a.
2 5, 185, 630 5, 125, 420 100.15 0.02 1.94 1.96
3 3, 574, 401 3, 514, 190 101.08 0.11 2.81 2.86
4 2, 668, 115 2, 607, 891 104.79 0.46 3.77 3.86

default 5 2, 164, 620 2, 104, 390 105.80 0.55 4.65 4.78
6 1, 862, 517 1, 802, 286 105.26 0.50 5.40 5.58
7 1, 661, 128 1, 600, 891 104.60 0.44 6.06 6.29
8 1, 459, 734 1, 399, 494 105.44 0.52 6.89 7.19

16 855, 650 795, 358 104.25 0.41 11.76 12.66
1 n.a. 62, 845 107.49 0.70 n.a. n.a.
2 36, 043 34, 196 105.15 0.49 1.74 1.83
3 26, 627 24, 776 105.93 0.56 2.36 2.53
4 20, 353 18, 498 106.09 0.57 3.08 3.39

small 5 17, 221 15, 362 107.19 0.67 3.64 4.09
6 17, 231 15, 368 109.05 0.83 3.64 4.08
7 13, 934 12, 133 106.99 0.65 4.51 5.17
8 14, 121 12, 246 107.20 0.67 4.45 5.13

16 11, 359 9, 296 105.78 0.55 5.53 6.76
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.7: Syrk performance results (continued)
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Syrk Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 4, 110 3, 703 1, 433 1, 425 6 256
2 7, 815(1.90) 7, 046(1.90) 2, 855(1.99) 2, 352(1.65) 9(1.50) 454(1.77)
3 9, 845(2.40) 8, 743(2.36) 3, 463(2.42) 3, 019(2.12) 12(2.00) 406(1.59)
4 10, 300(2.51) 9, 402(2.54) 3, 574(2.49) 2, 689(1.89) 39(6.50) 454(1.77)

default 5 11, 592(2.82) 10, 672(2.88) 4, 068(2.84) 2, 831(1.99) 48(8.00) 502(1.96)
6 13, 398(3.26) 12, 308(3.32) 4, 473(3.12) 3, 511(2.46) 57(9.50) 406(1.59)
7 14, 753(3.59) 13, 557(3.66) 4, 922(3.43) 3, 691(2.59) 66(11.00) 430(1.68)
8 16, 444(4.00) 15, 428(4.17) 5, 414(3.78) 4, 000(2.81) 51(8.50) 454(1.77)

16 25, 575(6.22) 24, 394(6.59) 7, 854(5.48) 5, 417(3.80) 99(16.50) 454(1.77)
1 3, 823 3, 503 1, 106 1, 339 6 16
2 6, 981(1.83) 6, 408(1.83) 2, 089(1.89) 2, 140(1.60) 9(1.50) 46(2.88)
3 8, 846(2.31) 8, 025(2.29) 2, 599(2.35) 2, 755(2.06) 12(2.00) 58(3.63)
4 9, 153(2.39) 8, 499(2.43) 2, 690(2.43) 2, 464(1.84) 39(6.50) 70(4.38)

small 5 10, 312(2.70) 9, 638(2.75) 3, 076(2.78) 2, 631(1.96) 48(8.00) 82(5.13)
6 12, 153(3.18) 11, 205(3.20) 3, 668(3.32) 3, 331(2.49) 57(9.50) 94(5.88)
7 18, 382(4.81) 15, 427(4.40) 5, 818(5.26) 8, 037(6.00) 66(11.00) 106(6.63)
8 14, 034(3.67) 13, 156(3.76) 4, 169(3.77) 3, 608(2.69) 51(8.50) 118(7.38)

16 22, 018(5.76) 21, 338(6.09) 6, 481(5.86) 4, 547(3.40) 99(16.50) 214(13.38)
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.8: Syrk area results (continued)
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Syr2k Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 12, 070, 205 100.08 0.01 n.a. n.a.
2 6, 215, 736 6, 155, 526 100.42 0.04 1.94 1.96
3 4, 284, 507 4, 224, 296 103.51 0.34 2.81 2.85
4 3, 198, 227 3, 138, 003 104.40 0.42 3.77 3.84

default 5 2, 594, 735 2, 534, 505 104.46 0.43 4.65 4.76
6 2, 232, 633 2, 172, 402 100.47 0.05 5.40 5.55
7 1, 991, 247 1, 931, 010 103.18 0.31 6.06 6.25
8 1, 749, 858 1, 689, 618 101.18 0.12 6.89 7.14

16 1, 025, 798 965, 506 103.08 0.30 11.76 12.50
1 n.a. 74, 845 104.10 0.39 n.a. n.a.
2 42, 967 41, 120 106.10 0.57 1.74 1.82
3 31, 753 29, 902 107.26 0.68 2.35 2.50
4 24, 281 22, 426 106.07 0.57 3.08 3.33

small 5 20, 551 18, 692 106.34 0.60 3.64 4.00
6 20, 563 18, 700 108.12 0.75 3.63 4.00
7 16, 635 14, 834 105.35 0.51 4.49 5.04
8 16, 861 14, 986 110.00 0.91 4.43 4.99

16 13, 503 11, 440 106.58 0.62 5.54 6.54
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.9: Syr2k performance results (continued)
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Syr2k Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 5, 326 4, 906 1, 970 1, 454 12 384
2 9, 778(1.84) 9, 029(1.84) 3, 728(1.89) 2, 430(1.67) 18(1.50) 646(1.68)
3 11, 994(2.25) 10, 928(2.23) 4, 318(2.19) 3, 150(2.17) 42(3.50) 582(1.52)
4 12, 870(2.42) 12, 053(2.46) 4, 709(2.39) 2, 838(1.95) 54(4.50) 646(1.68)

default 5 14, 683(2.76) 13, 812(2.82) 5, 307(2.69) 3, 081(2.12) 66(5.50) 710(1.85)
6 17, 132(3.22) 16, 112(3.28) 5, 923(3.01) 3, 961(2.72) 60(5.00) 582(1.52)
7 19, 065(3.58) 18, 008(3.67) 6, 442(3.27) 4, 083(2.81) 69(5.75) 614(1.60)
8 20, 940(3.93) 19, 954(4.07) 6, 941(3.52) 4, 204(2.89) 78(6.50) 646(1.68)

16 32, 535(6.11) 31, 372(6.39) 10, 164(5.16) 5, 971(4.11) 150(12.50) 646(1.68)
1 4, 714 4, 431 1, 446 1, 321 12 24
2 8, 697(1.84) 8, 132(1.84) 2, 599(1.80) 2, 189(1.66) 18(1.50) 62(2.58)
3 10, 681(2.27) 9, 803(2.21) 3, 178(2.20) 2, 928(2.22) 42(3.50) 78(3.25)
4 11, 529(2.45) 10, 814(2.44) 3, 426(2.37) 2, 590(1.96) 54(4.50) 94(3.92)

small 5 12, 974(2.75) 12, 337(2.78) 3, 871(2.68) 2, 823(2.14) 66(5.50) 110(4.58)
6 15, 835(3.36) 14, 886(3.36) 4, 790(3.31) 3, 697(2.80) 60(5.00) 126(5.25)
7 21, 440(4.55) 18, 775(4.24) 6, 913(4.78) 8, 481(6.42) 69(5.75) 142(5.92)
8 17, 104(3.63) 16, 268(3.67) 5, 099(3.53) 3, 800(2.88) 78(6.50) 158(6.58)

16 29, 263(6.21) 28, 662(6.47) 8, 581(5.93) 5, 058(3.83) 150(12.50) 286(11.92)
1 n.a.
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.10: Syr2k area results (continued)

For all these benchmarks the large test fails because the simulation is too
long. However analyzing the small and the default case it can be noticed that,
if only one SCoP is recognized in the code, the speedup is almost equal to the
number of cores, when considering the measurement without the overhead of
splitting and rebuilding the matrices. It is obviously smaller if the split and
rebuild operation is considered, but it is still relevant. Among all these tests,
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only the Gemm has a single SCoP. All the others have two or more SCoPs and
this is the cause of the reduction of the speedup. Moreover even with a single
SCoP with a parallelism larger than six the speedup is less than linear. From the
small cases it can be seen that the size of the arrays is one of the possible reason
for the reduction of the speedup. For example the Gemm tests with 5 and 6
parallel cores have the same time, since the number of executed instructions is
the same. 20/5 and 20/6 rounded up both gives 4, so the whole structure has
the same number of iterations and is useless to instantiate one more kernel.

The theoretical speedup can be reached, on single SCoP programs, only
when the index of the extern loop is a multiple of the parallelism degree. (see
the default test with parallel degree 2,4,5). A relevant result can also be ob-
tained if the ratio between the number of iteration and parallel degree is very
large (more than 10). For example, the default test with parallel degree 3 has a
speedup of 2.94 even if 100 (the number of iteration of the split loop) is not a
multiple of 3 (the parallel degree).

The area growth is sub-linear, as expected since only part of the kernel is
replicated. It happens for some cases that increasing the parallel degree the
area consumed is lower (ex. Gemm default 3-4 for LUTs, 2MM default 3-4 and
3-5 for registers) and it is probably due to the size of the array. If the number
of iterations to do is a multiple of the parallelization factor there is a waste of
space lesser than the cases where the number of iterations is a multiple of the
parallel degree .

5.2.2 Benchmark Pattern: Matrix and vector multiplication

This pattern can be found in the remaining two algebraic test cases, the
Gemver (performance is in Table 5.11, area reported in Table 5.12) and the
MVT(performances are reported in Table 5.13, while area results are in Table
5.14).
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Gemver Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 141, 106 101.16 0.12 n.a. n.a.
2 151, 858 134, 827 102.17 0.21 0.92 1.04
3 129, 407 112, 368 101.16 0.12 1.09 1.25
4 117, 487 100, 424 106.33 0.60 1.20 1.40

default 5 110, 884 93, 805 103.55 0.34 1.27 1.50
6 85, 725 68, 630 103.23 0.31 1.64 2.05
7 82, 750 65, 639 102.36 0.23 1.70 2.14
8 80, 779 63, 652 104.11 0.39 1.74 2.21

16 73, 489 56, 234 102.50 0.24 1.92 2.50
1 n.a. 5, 826 106.11 0.58 n.a. n.a.
2 6, 281 5, 250 103.85 0.37 0.92 1.10
3 5, 439 4, 400 102.86 0.28 1.07 1.32
4 5, 092 4, 029 102.97 0.29 1.14 1.44

small 5 4, 719 3, 640 105.40 0.51 1.23 1.60
6 4, 723 3, 628 104.61 0.44 1.23 1.60
7 4, 581 3, 463 104.54 0.43 1.27 1.68
8 4, 703 3, 576 103.66 0.35 1.23 1.62

16 4, 898 3, 739 100.76 0.07 1.18 1.55
1 n.a. 2, 244, 406 79.72 −2.54 n.a. n.a.
2 2, 347, 108 2, 099, 077 80.57 −2.41 0.95 1.06
3 1, 977, 207 1, 729, 168 84.94 −1.77 1.13 1.29
4 1, 789, 312 1, 541, 249 84.32 −1.86 1.25 1.45

large 5 1, 678, 744 1, 430, 665 85.58 −1.69 1.33 1.56
6 1, 602, 629 1, 354, 534 n.a. n.a. 1.40 1.65
7 1, 557, 379 1, 309, 276 n.a. n.a. 1.44 1.71
8 1, 515, 370 1, 267, 243 n.a. n.a. 1.48 1.77

16 1, 388, 311 1, 140, 056 n.a. n.a. 1.61 1.96
Table 5.11: Gemver performance results (continued)
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Gemver Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 8, 816 8, 553 2, 557 1, 747 12 128
2 18, 336(2.08) 17, 267(2.02) 5, 719(2.24) 4, 640(2.66) 24(2.00) 282(2.20)
3 23, 541(2.67) 21, 871(2.56) 7, 082(2.77) 6, 921(3.96) 30(2.50) 282(2.20)
4 24, 244(2.75) 23, 186(2.71) 7, 334(2.87) 5, 412(3.10) 48(4.00) 330(2.58)

default 5 28, 124(3.19) 26, 768(3.13) 8, 655(3.38) 6, 263(3.59) 57(4.75) 378(2.95)
6 34, 050(3.86) 31, 720(3.71) 9, 987(3.91) 9, 294(5.32) 72(6.00) 354(2.77)
7 37, 745(4.28) 35, 350(4.13) 11, 154(4.36) 9, 785(5.60) 81(6.75) 390(3.05)
8 39, 657(4.50) 37, 305(4.36) 12, 079(4.72) 9, 516(5.45) 90(7.50) 426(3.33)

16 64, 640(7.33) 62, 355(7.29) 19, 044(7.45) 12, 821(7.34) 162(13.50) 714(5.58)
1 8, 107 7, 967 2, 302 1, 565 12 72
2 18, 996(2.34) 17, 547(2.20) 5, 730(2.49) 5, 480(3.50) 24(2.00) 154(2.14)
3 23, 565(2.91) 22, 008(2.76) 7, 017(3.05) 6, 821(4.36) 30(2.50) 190(2.64)
4 25, 109(3.10) 24, 126(3.03) 7, 387(3.21) 5, 803(3.71) 36(3.00) 226(3.14)

small 5 27, 106(3.34) 26, 002(3.26) 7, 980(3.47) 6, 142(3.92) 57(4.75) 262(3.64)
6 31, 180(3.85) 29, 677(3.72) 9, 340(4.06) 7, 653(4.89) 54(4.50) 298(4.14)
7 34, 303(4.23) 32, 988(4.14) 10, 021(4.35) 8, 031(5.13) 75(6.25) 334(4.64)
8 37, 365(4.61) 35, 922(4.51) 10, 937(4.75) 8, 179(5.23) 90(7.50) 370(5.14)

16 62, 161(7.67) 60, 954(7.65) 18, 173(7.89) 10, 378(6.63) 114(9.50) 658(9.14)
1 10, 492 10, 073 3, 925 2, 012 12 1, 088
2 22, 662(2.16) 21, 158(2.10) 8, 528(2.17) 5, 144(2.56) 24(2.00) 2, 682(2.47)
3 28, 029(2.67) 25, 697(2.55) 9, 829(2.50) 7, 689(3.82) 30(2.50) 2, 322(2.13)
4 29, 417(2.80) 27, 889(2.77) 10, 536(2.68) 5, 991(2.98) 48(4.00) 2, 730(2.51)

large 5 32, 795(3.13) 30, 933(3.07) 11, 490(2.93) 6, 897(3.43) 57(4.75) 2, 178(2.00)
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.12: Gemver area results (continued)
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MVT Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 180, 602 108.26 0.76 n.a. n.a.
2 137, 841 121, 720 108.17 0.76 1.31 1.48
3 109, 055 92, 928 105.97 0.56 1.65 1.94
4 93, 539 77, 388 106.37 0.60 1.93 2.33

default 5 84, 931 68, 767 101.76 0.17 2.12 2.62
6 58, 399 42, 394 104.37 0.42 3.09 4.26
7 54, 602 38, 583 105.46 0.52 3.30 4.68
8 51, 815 35, 784 101.80 0.18 3.48 5.04

16 41, 907 25, 788 104.92 0.47 4.30 7.00
1 n.a. 2, 882, 402 104.34 0.42 n.a. n.a.
2 2, 171, 241 1, 926, 820 103.89 0.37 1.32 1.49
3 1, 696, 055 1, 451, 628 103.92 0.38 1.69 1.98
4 1, 453, 889 1, 209, 438 103.52 0.34 1.98 2.38

large 5 1, 311, 391 1, 066, 927 105.69 0.54 2.19 2.70
6 1, 214, 507 970, 046 103.78 0.36 2.37 2.97
7 1, 154, 891 910, 408 102.86 0.28 2.49 3.16
8 1, 100, 077 855, 574 103.75 0.36 2.62 3.36

16 932, 903 688, 296 103.00 0.29 3.08 4.18
1 n.a. 7, 322 109.54 0.87 n.a. n.a.
2 5, 013 4, 206 107.75 0.72 1.46 1.74
3 3, 918 3, 107 106.12 0.58 1.86 2.35
4 3, 383 2, 552 103.71 0.36 2.16 2.86

small 5 2, 900 2, 056 105.01 0.48 2.52 3.56
6 2, 871 2, 026 105.04 0.48 2.55 3.61
7 2, 608 1, 747 104.43 0.42 2.80 4.19
8 2, 719 1, 840 102.50 0.24 2.69 3.97

16 2, 797 1, 858 102.75 0.27 2.61 3.94
Table 5.13: Mvt performance results (continued)
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MVT Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 7, 081 6, 693 2, 142 1, 787 12 96
2 12, 616(1.78) 11, 809(1.76) 3, 943(1.84) 3, 746(2.10) 17(1.42) 184(1.92)
3 16, 701(2.36) 15, 313(2.29) 5, 103(2.38) 5, 515(3.09) 19(1.58) 176(1.83)
4 17, 602(2.49) 16, 745(2.50) 5, 347(2.50) 4, 625(2.59) 21(1.75) 200(2.08)

default 5 20, 325(2.87) 19, 135(2.86) 6, 114(2.85) 5, 511(3.08) 23(1.92) 224(2.33)
6 26, 100(3.69) 23, 751(3.55) 7, 679(3.58) 9, 088(5.09) 28(2.33) 200(2.08)
7 27, 775(3.92) 25, 712(3.84) 8, 089(3.78) 9, 332(5.22) 30(2.50) 216(2.25)
8 29, 423(4.16) 27, 387(4.09) 8, 825(4.12) 9, 222(5.16) 32(2.67) 232(2.42)

16 46, 233(6.53) 44, 096(6.59) 13, 685(6.39) 11, 975(6.70) 48(4.00) 360(3.75)
1 8, 393 8, 065 3, 158 1, 918 12 1, 056
2 15, 755(1.88) 14, 653(1.82) 5, 959(1.89) 4, 045(2.11) 17(1.42) 2, 104(1.99)
3 19, 782(2.36) 18, 046(2.24) 7, 150(2.26) 5, 970(3.11) 19(1.58) 1, 856(1.76)
4 20, 954(2.50) 19, 738(2.45) 7, 763(2.46) 4, 968(2.59) 21(1.75) 2, 120(2.01)

large 5 22, 947(2.73) 21, 496(2.67) 8, 109(2.57) 5, 850(3.05) 23(1.92) 1, 744(1.65)
6 27, 217(3.24) 25, 410(3.15) 9, 436(2.99) 7, 297(3.80) 28(2.33) 1, 880(1.78)
7 29, 193(3.48) 27, 337(3.39) 10, 048(3.18) 7, 820(4.08) 27(2.25) 2, 016(1.91)
8 30, 285(3.61) 28, 871(3.58) 10, 494(3.32) 6, 805(3.55) 29(2.42) 2, 152(2.04)

16 49, 949(5.95) 48, 129(5.97) 16, 557(5.24) 10, 970(5.72) 45(3.75) 2, 216(2.10)
1 6, 566 6, 222 1, 965 1, 787 12 96
2 13, 459(2.05) 12, 287(1.97) 4, 003(2.04) 4, 526(2.53) 13(1.08) 80(0.83)
3 16, 742(2.55) 15, 500(2.49) 5, 049(2.57) 5, 474(3.06) 15(1.25) 96(1.00)
4 17, 382(2.65) 16, 402(2.64) 5, 203(2.65) 4, 909(2.75) 17(1.42) 112(1.17)

small 5 19, 293(2.94) 18, 296(2.94) 5, 734(2.92) 5, 273(2.95) 19(1.58) 128(1.33)
6 22, 145(3.37) 20, 923(3.36) 6, 742(3.43) 6, 177(3.46) 24(2.00) 144(1.50)
7 23, 790(3.62) 22, 594(3.63) 7, 069(3.60) 6, 436(3.60) 23(1.92) 160(1.67)
8 25, 483(3.88) 24, 383(3.92) 7, 541(3.84) 6, 817(3.81) 28(2.33) 176(1.83)

16 41, 206(6.28) 39, 658(6.37) 12, 183(6.20) 10, 037(5.62) 45(3.75) 304(3.17)
Table 5.14: Mvt area results (continued)

The speedup obtained on these two benchmarks is smaller than the speedup
obtained with the previous benchmarks. On the Gemver benchmark it was
expected, since four SCoPs are recognized in this code and this implies that
three inter-SCoP split-rebuild functions have been added to the code. To further
investigate these results a test on the MVT benchmark with parallel degree two
have been performed. In particular, the execution times of the different parts
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(computation and split-rebuild functions) composing the generated code have
been profiled. The results are the following: both the loops take 45152 cycles,
and the sum of their execution time is 90304 cycles, that is the expected result.
The motivation behind the result is due to the fact that the split and rebuild
operations in this test are not negligible: The vertical split of a matrix costs
15403 cycles, an horizontal split costs 7604 cycles, and they are executed several
times. These data also motivate the results on the Gemver. Since it has more
SCoPs, the results are worse than the MVT.

The growth of the area is still sub-linear, but greater than the matrix multiply
pattern. This too is explained by the number of SCoPs, since every SCoPs has
some split, and every split creates different arrays and no sharing is supported
as now.

5.2.3 Benchmark Pattern: 1D stencil

The Jacobi 1D is the only test for this pattern. As already said six tests are
performed on this benchmark. Performance results are in Table 5.15, and area
results are in Table 5.16.

Jacobi 1D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 25, 492 103.15 0.30 n.a. n.a.
2 20, 347 19, 132 105.73 0.54 1.25 1.33
3 18, 405 17, 182 104.37 0.42 1.38 1.48
4 17, 503 16, 272 101.57 0.15 1.45 1.56

default 5 16, 861 15, 622 105.52 0.52 1.51 1.63
6 16, 899 15, 452 102.08 0.20 1.50 1.64
7 15, 837 14, 582 101.05 0.10 1.60 1.74
8 16, 415 15, 152 102.17 0.21 1.55 1.68

16 16, 579 15, 252 101.00 0.10 1.53 1.67
Table 5.15: Jacobi 1D performance results
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Jacobi 1D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 103, 492 102.17 0.21 n.a. n.a.
2 82, 447 77, 632 108.05 0.74 1.25 1.33
3 74, 005 69, 182 102.24 0.22 1.39 1.49
4 69, 853 65, 022 103.03 0.29 1.48 1.59

large 5 67, 261 62, 422 102.67 0.26 1.53 1.65
6 66, 599 60, 952 101.94 0.19 1.55 1.69
7 64, 157 59, 302 101.13 0.11 1.61 1.74
8 63, 385 58, 522 105.55 0.53 1.63 1.76

16 60, 919 55, 992 103.41 0.33 1.69 1.84
1 n.a. 63, 693 103.93 0.38 n.a. n.a.
2 36, 678 31, 863 102.66 0.26 1.73 1.99
3 26, 126 21, 303 104.96 0.47 2.43 2.98
4 20, 854 16, 023 106.11 0.58 3.05 3.97

large_mul 5 17, 662 12, 823 103.84 0.37 3.60 4.96
6 16, 390 10, 743 105.64 0.53 3.88 5.92
7 13, 998 9, 143 105.10 0.48 4.55 6.96
8 12, 886 8, 023 105.86 0.55 4.94 7.93

16 9, 670 4, 743 106.02 0.57 6.58 13.42
1 n.a. 159, 228 107.05 0.66 n.a. n.a.
2 84, 468 79, 653 106.46 0.61 1.88 1.99
3 58, 076 53, 253 107.12 0.66 2.74 2.99
4 44, 884 40, 053 107.16 0.67 3.54 3.97

large_mul_steps 5 36, 892 32, 053 104.36 0.42 4.31 4.96
6 32, 500 26, 853 106.69 0.63 4.89 5.92
7 27, 708 22, 853 105.06 0.48 5.74 6.96
8 24, 916 20, 053 104.85 0.46 6.39 7.94

16 n.a. n.a. 101.88 0.19 n.a. n.a.
Table 5.15: Jacobi 1D performance results (continued)
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Jacobi 1D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 39, 228 106.66 0.62 n.a. n.a.
2 20, 868 19, 653 104.03 0.39 1.87 1.99
3 14, 476 13, 253 101.83 0.18 2.70 2.95
4 11, 284 10, 053 105.34 0.51 3.47 3.90

mul_steps 5 9, 292 8, 053 104.72 0.45 4.22 4.87
6 8, 300 6, 853 105.69 0.54 4.72 5.72
7 6, 908 5, 653 104.05 0.39 5.67 6.93
8 6, 516 5, 253 105.06 0.48 6.02 7.46

16 4, 180 2, 853 103.73 0.36 9.38 13.74
1 n.a. 15, 693 103.67 0.35 n.a. n.a.
2 9, 078 7, 863 105.46 0.52 1.72 1.99
3 6, 526 5, 303 103.18 0.31 2.40 2.95
4 5, 254 4, 023 105.34 0.51 2.98 3.90

mul 5 4, 462 3, 223 106.20 0.58 3.51 4.86
6 4, 190 2, 743 104.12 0.40 3.74 5.72
7 3, 518 2, 263 103.17 0.31 4.46 6.93
8 3, 366 2, 103 104.66 0.45 4.66 7.46

16 2, 470 1, 143 103.59 0.35 6.35 13.72
Table 5.15: Jacobi 1D performance results (continued)

Jacobi 1D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 6, 376 5, 945 1, 870 2, 347 22 16
2 8, 731(1.37) 8, 150(1.37) 2, 588(1.38) 3, 021(1.29) 22(1.00) 36(2.25)
3 10, 972(1.72) 10, 322(1.74) 3, 260(1.74) 3, 536(1.51) 22(1.00) 44(2.75)
4 11, 881(1.86) 11, 223(1.89) 3, 531(1.89) 3, 730(1.59) 22(1.00) 52(3.25)

default 5 13, 250(2.08) 12, 515(2.11) 3, 965(2.12) 4, 091(1.74) 22(1.00) 60(3.75)
6 15, 339(2.41) 14, 493(2.44) 4, 511(2.41) 4, 606(1.96) 22(1.00) 68(4.25)
7 16, 399(2.57) 15, 598(2.62) 4, 816(2.58) 4, 943(2.11) 22(1.00) 76(4.75)
8 17, 924(2.81) 17, 035(2.87) 5, 292(2.83) 5, 295(2.26) 22(1.00) 84(5.25)

16 29, 537(4.63) 28, 246(4.75) 8, 637(4.62) 8, 099(3.45) 22(1.00) 148(9.25)
Table 5.16: Jacobi 1D area results
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Jacobi 1D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 6, 454 6, 003 1, 926 2, 347 22 16
2 9, 215(1.43) 8, 671(1.44) 2, 795(1.45) 3, 030(1.29) 22(1.00) 36(2.25)
3 11, 064(1.71) 10, 367(1.73) 3, 300(1.71) 3, 547(1.51) 22(1.00) 44(2.75)
4 11, 939(1.85) 11, 367(1.89) 3, 567(1.85) 3, 740(1.59) 22(1.00) 52(3.25)

large 5 13, 395(2.08) 12, 699(2.12) 3, 987(2.07) 4, 104(1.75) 22(1.00) 60(3.75)
6 15, 373(2.38) 14, 578(2.43) 4, 552(2.36) 4, 617(1.97) 22(1.00) 68(4.25)
7 16, 852(2.61) 15, 917(2.65) 4, 993(2.59) 4, 958(2.11) 22(1.00) 76(4.75)
8 17, 992(2.79) 17, 128(2.85) 5, 316(2.76) 5, 150(2.19) 22(1.00) 84(5.25)

16 30, 574(4.74) 29, 302(4.88) 8, 838(4.59) 7, 951(3.39) 22(1.00) 148(9.25)
1 6, 196 5, 771 1, 823 2, 226 15 16
2 8, 797(1.42) 8, 205(1.42) 2, 672(1.47) 2, 875(1.29) 15(1.00) 36(2.25)
3 10, 963(1.77) 10, 181(1.76) 3, 258(1.79) 3, 392(1.52) 17(1.13) 44(2.75)
4 12, 033(1.94) 11, 454(1.98) 3, 553(1.95) 3, 589(1.61) 19(1.27) 52(3.25)

large_mul 5 13, 891(2.24) 13, 304(2.31) 4, 081(2.24) 3, 937(1.77) 21(1.40) 60(3.75)
6 15, 663(2.53) 14, 897(2.58) 4, 651(2.55) 4, 481(2.01) 23(1.53) 68(4.25)
7 17, 163(2.77) 16, 327(2.83) 5, 081(2.79) 4, 785(2.15) 25(1.67) 76(4.75)
8 18, 373(2.97) 17, 573(3.05) 5, 436(2.98) 4, 985(2.24) 27(1.80) 84(5.25)

16 31, 050(5.01) 29, 923(5.19) 8, 799(4.83) 7, 772(3.49) 43(2.87) 148(9.25)
1 6, 199 5, 788 1, 847 2, 226 15 16
2 8, 941(1.44) 8, 391(1.45) 2, 639(1.43) 2, 877(1.29) 15(1.00) 36(2.25)
3 10, 812(1.74) 10, 082(1.74) 3, 249(1.76) 3, 392(1.52) 17(1.13) 44(2.75)
4 12, 095(1.95) 11, 445(1.98) 3, 607(1.95) 3, 589(1.61) 19(1.27) 52(3.25)

large_mul_steps 5 13, 906(2.24) 13, 294(2.30) 4, 120(2.23) 3, 936(1.77) 21(1.40) 60(3.75)
6 15, 587(2.51) 14, 783(2.55) 4, 555(2.47) 4, 453(2.00) 23(1.53) 68(4.25)
7 17, 340(2.80) 16, 507(2.85) 5, 091(2.76) 4, 800(2.16) 25(1.67) 76(4.75)
8 18, 403(2.97) 17, 583(3.04) 5, 419(2.93) 4, 975(2.23) 27(1.80) 84(5.25)

16 30, 962(4.99) 29, 878(5.16) 8, 955(4.85) 7, 753(3.48) 43(2.87) 148(9.25)
1 6, 172 5, 712 1, 822 2, 226 15 16
2 9, 029(1.46) 8, 442(1.48) 2, 789(1.53) 2, 867(1.29) 15(1.00) 36(2.25)
3 10, 792(1.75) 10, 187(1.78) 3, 142(1.72) 3, 380(1.52) 17(1.13) 44(2.75)
4 11, 983(1.94) 11, 347(1.99) 3, 537(1.94) 3, 579(1.61) 19(1.27) 52(3.25)

mul_steps 5 13, 794(2.23) 13, 124(2.30) 4, 103(2.25) 3, 929(1.77) 21(1.40) 60(3.75)
6 15, 479(2.51) 14, 671(2.57) 4, 495(2.47) 4, 439(1.99) 23(1.53) 68(4.25)
7 17, 112(2.77) 16, 236(2.84) 5, 035(2.76) 4, 815(2.16) 25(1.67) 76(4.75)
8 18, 343(2.97) 17, 501(3.06) 5, 408(2.97) 5, 132(2.31) 27(1.80) 84(5.25)

16 30, 598(4.96) 29, 324(5.13) 9, 042(4.96) 7, 905(3.55) 43(2.87) 148(9.25)
Table 5.16: Jacobi 1D area results (continued)
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Jacobi 1D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 6, 115 5, 712 1, 764 2, 226 15 16
2 8, 753(1.43) 8, 239(1.44) 2, 576(1.46) 2, 870(1.29) 15(1.00) 36(2.25)
3 10, 569(1.73) 9, 978(1.75) 3, 109(1.76) 3, 379(1.52) 17(1.13) 44(2.75)
4 12, 042(1.97) 11, 398(2.00) 3, 620(2.05) 3, 585(1.61) 19(1.27) 52(3.25)

mul 5 13, 835(2.26) 13, 180(2.31) 4, 098(2.32) 3, 927(1.76) 21(1.40) 60(3.75)
6 15, 495(2.53) 14, 729(2.58) 4, 565(2.59) 4, 443(2.00) 23(1.53) 68(4.25)
7 16, 920(2.77) 16, 127(2.82) 5, 002(2.84) 4, 801(2.16) 25(1.67) 76(4.75)
8 18, 222(2.98) 17, 341(3.04) 5, 419(3.07) 5, 130(2.30) 27(1.80) 84(5.25)

16 30, 648(5.01) 29, 396(5.15) 8, 982(5.09) 7, 906(3.55) 43(2.87) 148(9.25)
Table 5.16: Jacobi 1D area results (continued)

From the results is clear that the division operation is a real bottleneck. The
division almost nullify the effect of the parallelism, since Bambu does not par-
allelize that type of operation and all the divisions have to be executed sequen-
tially. This leads to a little speedup for all the test done with the original kernel,
that does not increase with the growth of the parallel degree. Looking to the
other tests, where the division is substituted with a multiplication for the in-
verse, the speedup is similar to the matrix multiplication pattern test cases. It
is almost equal to the parallel degree when the external split-rebuild time is
not considered part of the computation. The speedup is a little worse if this
overhead is taken into account, but it remains important. The tests with more
steps show how a large number of iterations of the stencil kernel can reduce
the impact of the split-rebuild operations on the computation. This is important
because, provided that the number of iterations is significant, it means that the
proposed solution can be adopted even if the split is costly.

5.2.4 Benchmark Pattern: 2D stencil on different arrays

The test adopted for this pattern is the Jacobi 2D. Its performance results are
reported in Table 5.17 and its area results are in Table 5.18.
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Jacobi 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 2, 306, 932 104.76 0.45 n.a. n.a.
2 1, 186, 847 1, 106, 432 107.45 0.69 1.94 2.08
3 951, 015 870, 592 106.60 0.62 2.42 2.64
4 739, 023 658, 592 104.42 0.42 3.12 3.50

default 5 606, 551 526, 092 105.17 0.49 3.80 4.38
6 527, 039 446, 592 104.61 0.44 4.37 5.16
7 396, 607 316, 132 102.81 0.27 5.81 7.29
8 421, 055 340, 592 104.87 0.46 5.47 6.77

16 262, 119 181, 592 105.31 0.50 8.80 12.70
1 n.a. 5, 767, 327 109.29 0.85 n.a. n.a.
2 2, 846, 492 2, 766, 077 106.92 0.65 2.02 2.08
3 2, 256, 900 2, 176, 477 105.65 0.54 2.55 2.64
4 1, 726, 908 1, 646, 477 105.90 0.56 3.33 3.50

steps 5 1, 395, 686 1, 315, 227 103.39 0.33 4.13 4.38
6 1, 196, 924 1, 116, 477 102.71 0.26 4.81 5.16
7 870, 802 790, 327 108.20 0.76 6.62 7.29
8 931, 940 851, 477 105.74 0.54 6.18 6.77

16 534, 504 453, 977 104.83 0.46 10.79 12.70
1 n.a. 59, 530, 932 99.05 −0.10 n.a. n.a.
2 30, 532, 447 28, 530, 432 n.a. n.a. 1.94 2.08
3 21, 022, 315 19, 020, 292 n.a. n.a. 2.83 3.12
4 18, 794, 623 16, 792, 592 n.a. n.a. 3.16 3.54

large 5 15, 432, 151 13, 430, 092 n.a. n.a. 3.85 4.43
6 11, 512, 199 9, 510, 152 n.a. n.a. 5.17 6.25
7 11, 666, 147 9, 664, 092 n.a. n.a. 5.10 6.16
8 10, 455, 655 8, 453, 592 n.a. n.a. 5.69 7.04

16 6, 286, 219 4, 284, 092 n.a. n.a. 9.47 13.89
Table 5.17: Jacobi 2D performance results (continued)
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Jacobi 2D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 5578 5204 1806 1841 20 128
2 10, 289(1.84) 9, 691(1.86) 3, 256(1.80) 3, 935(2.14) 30(1.50) 194(1.52)
3 13, 420(2.41) 12, 559(2.41) 4, 190(2.32) 4, 936(2.68) 31(1.55) 178(1.39)
4 14, 094(2.53) 13, 271(2.55) 4, 386(2.43) 5, 019(2.73) 33(1.65) 194(1.52)

default 5 16, 277(2.92) 15, 430(2.97) 4, 828(2.67) 5, 558(3.02) 35(1.75) 210(1.64)
6 18, 545(3.32) 17, 464(3.36) 5, 661(3.13) 6, 567(3.57) 37(1.85) 178(1.39)
7 19, 837(3.56) 18, 665(3.59) 6, 124(3.39) 7, 102(3.86) 40(2.00) 186(1.45)
8 22, 272(3.99) 20, 956(4.03) 6, 848(3.79) 7, 642(4.15) 41(2.05) 194(1.52)

16 35, 150(6.30) 33, 573(6.45) 10, 321(5.71) 11, 971(6.50) 57(2.85) 258(2.02)
1 5, 603 5, 228 1, 784 1, 845 20 128
2 10, 373(1.85) 9, 683(1.85) 3, 295(1.85) 3, 931(2.13) 30(1.50) 194(1.52)
3 13, 286(2.37) 12, 428(2.38) 4, 172(2.34) 4, 940(2.68) 31(1.55) 178(1.39)
4 13, 888(2.48) 13, 236(2.53) 4, 167(2.34) 5, 018(2.72) 33(1.65) 194(1.52)

steps 5 16, 265(2.90) 15, 391(2.94) 4, 997(2.80) 5, 565(3.02) 35(1.75) 210(1.64)
6 18, 709(3.34) 17, 636(3.37) 5, 770(3.23) 6, 575(3.56) 37(1.85) 178(1.39)
7 19, 929(3.56) 18, 796(3.60) 6, 061(3.40) 7, 101(3.85) 40(2.00) 186(1.45)
8 21, 605(3.86) 20, 466(3.91) 6, 496(3.64) 7, 639(4.14) 41(2.05) 194(1.52)

16 35, 238(6.29) 33, 689(6.44) 10, 313(5.78) 11, 987(6.50) 57(2.85) 258(2.02)
1 8776 8239 4190 1916 20 2048
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.18: Jacobi 2D area results (continued)

The optimal result is reached when _PB_NI-2 is multiple of the degree of
parallelism. In this case indeed the code reconstruction phase can avoid to add
a check on the boundaries since all the calculated values have to be written. For
example, the 7 kernels test with the default dimensions: 100-2 is the number
of iterations that the original loop has to do. With a parallel degree of 7, only
14 iterations will be instantiated, and all those will be doing calculation on 7
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rows of the original matrix. With this the proposed solution obtains a speedup
a bit better than the degree of parallelism if the split-rebuild overhead is not
calculated (the test with 7 kernels, time excluded, has a speedup of 7.2). As
above, the test with a greater _PB_TSTEPS test is showing that the impact of the
split and rebuild operations is smaller the more are the iterations of the stencil
loop. The large test did not finish the synthesis, since the timeout was reached.

5.2.5 Benchmark Pattern: 2D stencil on the same array

For this pattern the selected benchmark is the Seidel 2D. This test has been run
for six different cases, as the Jacobi 1D. The results are reported in Table 5.19
and Table 5.20.

Seidel 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 4, 607, 472 106.44 0.61 n.a. n.a.
2 3, 090, 230 3, 049, 022 105.81 0.55 1.49 1.51
3 2, 432, 939 2, 391, 522 103.86 0.37 1.89 1.92
4 2, 235, 242 2, 194, 022 104.85 0.46 2.06 2.10

default 5 2, 063, 806 2, 022, 422 102.91 0.28 2.23 2.27
6 1, 987, 291 1, 945, 862 n.a. n.a. 2.31 2.36
7 1, 958, 209 n.a. n.a. n.a. 2.35 n.a.
8 n.a.

16 n.a.
1 n.a. 74, 453, 872 103.08 0.30 n.a. n.a.
2 47, 495, 369 46, 854, 562 103.75 0.36 1.56 1.58
3 39, 987, 750 39, 320, 142 100.90 0.09 1.86 1.89
4 35, 429, 847 34, 789, 032 102.02 0.20 2.10 2.14

large 5 32, 650, 451 32, 009, 632 n.a. n.a. 2.28 2.32
6 30, 946, 985 30, 306, 162 n.a. n.a. 2.40 2.45
7 n.a.
8 n.a.

16 n.a.
Table 5.19: Seidel 2D performance results
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Seidel 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 58, 613, 473 102.72 0.27 n.a. n.a.
2 29, 294, 830 28, 654, 023 98.47 −0.15 2.00 2.04
3 20, 958, 111 20, 290, 503 103.36 0.32 2.79 2.88
4 15, 961, 848 15, 321, 033 103.33 0.32 3.67 3.82

mul_large 5 12, 949, 652 12, 308, 833 n.a. n.a. 4.52 4.76
6 10, 993, 046 10, 352, 223 n.a. n.a. 5.33 5.66
7 n.a.
8 n.a.

16 n.a.
1 n.a. 146, 533, 678 106.42 0.60 n.a. n.a.
2 72, 275, 860 71, 635, 053 104.88 0.46 2.02 2.04
3 51, 393, 861 50, 726, 253 104.70 0.45 2.85 2.88
4 38, 943, 393 38, 302, 578 103.76 0.36 3.76 3.82

mul_large_steps 5 31, 412, 897 30, 772, 078 101.27 0.12 4.66 4.76
6 n.a.
7 n.a.
8 n.a.

16 n.a.
1 n.a. 10, 200, 778 106.42 0.60 n.a. n.a.
2 5, 421, 803 5, 375, 578 104.88 0.46 1.88 1.89
3 3, 475, 385 3, 429, 153 104.70 0.45 2.93 2.97
4 2, 872, 590 2, 826, 328 103.76 0.36 3.55 3.60

mul_steps 5 2, 175, 146 2, 128, 903 101.27 0.12 4.68 4.79
6 1, 989, 024 1, 942, 753 n.a. n.a. 5.12 5.25
7 n.a.
8 n.a.

16 n.a.
Table 5.19: Seidel 2D performance results (continued)
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Seidel 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 4, 080, 313 106.59 0.62 n.a. n.a.
2 2, 196, 458 2, 150, 233 107.28 0.68 1.85 1.89
3 1, 417, 895 1, 371, 663 104.77 0.46 2.87 2.97
4 1, 176, 795 1, 130, 533 104.00 0.38 3.46 3.60

mul 5 897, 806 851, 563 102.69 0.26 4.54 4.79
6 823, 374 777, 103 n.a. n.a. 4.95 5.25
7 n.a.
8 n.a.

16 n.a.
Table 5.19: Seidel 2D performance results (continued)

Seidel 2D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 7, 116 6, 469 2, 092 3, 571 43 64
2 14, 122(1.98) 12, 722(1.97) 4, 378(2.09) 7, 417(2.08) 51(1.19) 102(1.59)
3 19, 870(2.79) 17, 669(2.73) 6, 265(2.99) 11, 237(3.15) 57(1.33) 94(1.47)
4 29, 210(4.10) 24, 788(3.83) 9, 182(4.39) 16, 804(4.71) 66(1.53) 102(1.59)

default 5 38, 961(5.48) 32, 772(5.07) 12, 434(5.94) 23, 270(6.52) 87(2.02) 110(1.72)
6 n.a.
7 n.a.
8 n.a.

16 n.a.
1 8, 493 7, 569 3, 216 3, 588 43 1, 024
2 15, 044(1.77) 13, 518(1.79) 5, 486(1.71) 7, 076(1.97) 51(1.19) 1, 542(1.51)
3 21, 140(2.49) 19, 163(2.53) 7, 007(2.18) 11, 371(3.17) 57(1.33) 1, 414(1.38)
4 29, 571(3.48) 25, 262(3.34) 9, 680(3.01) 16, 334(4.55) 66(1.53) 1, 542(1.51)

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.20: Seidel 2D area results
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Seidel 2D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 8, 995 8, 101 3, 375 3, 213 35 1, 024
2 14, 535(1.62) 12, 893(1.59) 5, 298(1.57) 6, 516(2.03) 45(1.29) 1, 540(1.50)
3 20, 707(2.30) 18, 478(2.28) 6, 700(1.99) 10, 606(3.30) 53(1.51) 1, 412(1.38)
4 28, 715(3.19) 24, 869(3.07) 9, 594(2.84) 15, 185(4.73) 64(1.83) 1, 540(1.50)

mul_large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
1 8, 907 8, 086 3, 440 3, 213 35 1, 024
2 14, 459(1.62) 13, 091(1.62) 5, 129(1.49) 6, 497(2.02) 45(1.29) 1, 540(1.50)
3 20, 844(2.34) 18, 323(2.27) 6, 944(2.02) 10, 597(3.30) 53(1.51) 1, 412(1.38)
4 28, 545(3.20) 24, 806(3.07) 9, 257(2.69) 15, 191(4.73) 64(1.83) 1, 540(1.50)

mul_large_steps 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
1 7, 021 6, 314 2, 193 3, 188 35 64
2 13, 426(1.91) 11, 725(1.86) 4, 220(1.92) 6, 874(2.16) 45(1.29) 100(1.56)
3 19, 646(2.80) 17, 114(2.71) 5, 993(2.73) 10, 651(3.34) 53(1.51) 92(1.44)
4 26, 801(3.82) 23, 190(3.67) 8, 205(3.74) 15, 436(4.84) 64(1.83) 100(1.56)

mul_steps 5 37, 465(5.34) 32, 357(5.12) 11, 572(5.28) 21, 970(6.89) 52(1.49) 108(1.69)
6 n.a.
7 n.a.
8 n.a.

16 n.a.
1 7, 009 6, 308 2, 152 3, 189 35 64
2 13, 284(1.90) 11, 633(1.84) 4, 152(1.93) 6, 859(2.15) 45(1.29) 100(1.56)
3 19, 391(2.77) 17, 238(2.73) 5, 899(2.74) 10, 672(3.35) 53(1.51) 92(1.44)
4 26, 883(3.84) 23, 070(3.66) 8, 166(3.79) 15, 435(4.84) 64(1.83) 100(1.56)

mul 5 37, 139(5.30) 32, 624(5.17) 11, 586(5.38) 21, 923(6.87) 74(2.11) 108(1.69)
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.20: Seidel 2D area results (continued)
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The greatest issue with this pattern is due to HLS time. All the results that
are not available are caused by reaching the HLS timeout. This timeout is due to
a large number of operations that are created in the phase of the loop initializa-
tion and finalization (see 3.3.4.4). They caused the module binding step in the
HLS and the synthesis to be too long. All the available results are similar to the
ones obtained on the other benchmarks. Their speedup is close to the parallel
degree, and they are closer to it if the number of iterations of the extern loop of
the stencil is a multiple of the parallel factor.

For the area the growth is greater than the other tests, for all but the DSPs
and BRAMs. This happens because in the initialization and finalization phase
a lot of sums working on registers are instantiated, and the resources used to
implement these operations are LUT-FF pairs (LUTs for the sums, FFs for the
registers). In this phase also some multiplications are created but this does not
modify the number of DSPs used (the synthesis tool performs resource sharing).

The growth of the LUT-FF pairs in this benchmark is more than linear: the
initialization and finalization process is implemented in a way that is too costly
with no resource sharing done.

5.2.6 Considerations on Stencils

In the benchmarks analyzed in the previous two sections the reuse technique
does not provide any benefit because of the considered experimental setup. This
happens because the structure of the computation is the one in Figure 5.2, where
the memory accesses (the squares) are in parallel with the calculation of the
sums (the ellipses). The sums are floating point operations so they take more
cycles than loads from the memory, and the loads have already ended when the
next sums have to start.

Instead with the sums organized as tree (see Figure 5.1) more sums can be
executed in parallel (if all the data are retrieved). This bring a speedup if all the
data are ready to be used, as it is visible even with the easy example shown in
Figure 5.2 and Figure 5.1. The three sums, organized as a tree (Figure 5.1), need
two steps to be completed while organized as a chain (5.2) they would need
three. The data are all ready because of the data reuse. The GCC optimization

123



Chapter 5. Experimental Evaluation

mem_0 mem_1 mem_2 mem_3

sum_0 sum_1

sum_2

Figure 5.1: Tree schedule with four data and three additions, when all the data can be recovered
in a parallel way

mem_0 mem_1

sum_0 mem_2

sum_1 mem_3

sum_2

Figure 5.2: Chain schedule with four data and three additions

-funsafe-math-optimizations has been activated to try this different configura-
tion. This optimization allow optimizations for floating-point arithmetic that
assume that arguments and results are valid but it may violate IEEE or ANSI
standards. In particular, in this way GCC assumes that associative property
holds for floating point sums. The obtained results are reported in the follow-
ing tables.
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Jacobi 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Unsafe Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 2, 018, 812 106.28 0.59 n.a. n.a.
2 1, 042, 787 962, 372 106.89 0.64 1.93 2.09
3 853, 995 773, 572 105.78 0.55 2.36 2.60
4 665, 523 585, 092 104.31 0.41 3.03 3.45

default 5 547, 731 467, 292 105.21 0.49 3.68 4.32
6 477, 059 396, 612 102.25 0.22 4.23 5.09
7 355, 427 274, 972 103.91 0.38 5.67 7.34
8 382, 835 302, 372 104.56 0.44 5.27 6.67

16 241, 539 161, 012 102.50 0.24 8.35 12.53
1 n.a. 5, 047, 027 106.24 0.59 n.a. n.a.
2 2, 486, 342 2, 405, 927 106.72 0.63 2.02 2.09
3 2, 014, 350 1, 933, 927 106.45 0.61 2.50 2.60
4 1, 543, 158 1, 462, 727 105.34 0.51 3.27 3.45

steps 5 1, 248, 666 1, 168, 227 106.09 0.57 4.04 4.32
6 1, 071, 974 991, 527 103.76 0.36 4.70 5.09
7 767, 882 687, 427 104.31 0.41 6.57 7.34
8 836, 390 755, 927 102.65 0.26 6.03 6.67

16 483, 054 402, 527 103.34 0.32 10.44 12.53
1 n.a. 52, 090, 812 101.38 0.14 n.a. n.a.
2 26, 812, 387 24, 810, 372 n.a. n.a. 1.94 2.09
3 18, 542, 275 16, 540, 252 n.a. n.a. 2.80 3.14
4 16, 927, 123 14, 925, 092 n.a. n.a. 3.07 3.49

large 5 13, 938, 131 11, 936, 092 n.a. n.a. 3.73 4.36
6 10, 272, 179 8, 270, 132 n.a. n.a. 5.07 6.29
7 10, 590, 467 8, 588, 412 n.a. n.a. 4.91 6.06
8 9, 514, 435 7, 512, 372 n.a. n.a. 5.47 6.93

16 5, 808, 139 3, 806, 012 n.a. n.a. 8.96 13.68
Table 5.21: Jacobi 2D performance results with unsafe math(continued)
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Jacobi 2D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 7, 016 6, 579 2, 245 2, 255 20 128
2 11, 032(1.57) 10, 234(1.56) 3, 614(1.61) 3, 558(1.58) 28(1.40) 194(1.52)
3 13, 894(1.98) 12, 954(1.97) 4, 418(1.97) 4, 559(2.02) 29(1.45) 178(1.39)
4 16, 089(2.29) 15, 083(2.29) 5, 027(2.24) 5, 044(2.24) 31(1.55) 194(1.52)

original 5 18, 707(2.67) 17, 722(2.69) 5, 673(2.53) 5, 793(2.57) 33(1.65) 210(1.64)
6 20, 803(2.97) 19, 593(2.98) 6, 308(2.81) 6, 796(3.01) 35(1.75) 178(1.39)
7 23, 604(3.36) 22, 177(3.37) 7, 173(3.20) 7, 514(3.33) 38(1.90) 186(1.45)
8 25, 718(3.67) 24, 306(3.69) 7, 742(3.45) 8, 261(3.66) 39(1.95) 194(1.52)

16 44, 378(6.33) 42, 341(6.44) 12, 833(5.72) 14, 232(6.31) 55(2.75) 258(2.02)
1 7, 036 6, 573 2, 276 2, 259 20 128
2 10, 948(1.56) 10, 196(1.55) 3, 477(1.53) 3, 562(1.58) 28(1.40) 194(1.52)
3 13, 811(1.96) 12, 908(1.96) 4, 380(1.92) 4, 563(2.02) 29(1.45) 178(1.39)
4 15, 811(2.25) 15, 018(2.28) 4, 891(2.15) 5, 047(2.23) 31(1.55) 194(1.52)

steps 5 18, 685(2.66) 17, 593(2.68) 5, 686(2.50) 5, 795(2.57) 33(1.65) 210(1.64)
6 21, 013(2.99) 19, 885(3.03) 6, 394(2.81) 6, 786(3.00) 35(1.75) 178(1.39)
7 23, 304(3.31) 21, 887(3.33) 6, 993(3.07) 7, 514(3.33) 38(1.90) 186(1.45)
8 25, 688(3.65) 24, 209(3.68) 7, 776(3.42) 8, 264(3.66) 39(1.95) 194(1.52)

16 45, 055(6.40) 42, 681(6.49) 13, 166(5.78) 14, 251(6.31) 55(2.75) 258(2.02)
1 10, 423 9, 942 4, 753 2, 342 20 2, 048
2 n.a.
3 n.a.
4 n.a.

large 5 n.a.
6 n.a.
7 n.a.
8 n.a.

16 n.a.
Table 5.22: Jacobi 2D area results with unsafe math(continued)
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Seidel 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Unsafe Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 2, 255, 232 107.48 0.70 n.a. n.a.
2 1, 148, 230 1, 107, 022 102.84 0.28 1.96 2.03
3 719, 579 678, 162 103.75 0.36 3.13 3.32
4 610, 992 569, 772 101.38 0.14 3.69 3.95

original 5 503, 806 462, 422 102.12 0.21 4.47 4.87
6 439, 759 398, 522 101.05 0.10 5.12 5.65
7 n.a. n.a. 100.83 0.08 n.a. n.a.
8 n.a.

16 n.a.
1 n.a. 36, 436, 912 103.58 0.35 n.a. n.a.
2 16, 560, 819 15, 920, 012 102.61 0.25 2.20 2.28
3 12, 403, 550 11, 735, 942 100.30 0.03 2.93 3.10
4 9, 497, 847 8, 857, 032 100.27 0.03 3.83 4.11

large 5 7, 752, 851 7, 112, 032 100.62 0.06 4.69 5.12
6 6, 618, 615 5, 977, 792 96.50 −0.36 5.50 6.09
7 n.a.
8 n.a.

16 n.a.
1 n.a. 36, 436, 913 106.35 0.60 n.a. n.a.
2 16, 560, 820 15, 920, 013 100.21 0.02 2.20 2.28
3 12, 403, 551 11, 735, 943 100.93 0.09 2.93 3.10
4 9, 497, 848 8, 857, 033 101.20 0.12 3.83 4.11

large_mul 5 7, 752, 852 7, 112, 033 99.11 −0.09 4.69 5.12
6 6, 618, 616 5, 977, 793 101.72 0.17 5.50 6.09
7 n.a.
8 n.a.

16 n.a.
Table 5.23: Seidel 2D performance results with unsafe math
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Seidel 2D Parallel Num Cycles Num Cycles Clock Clock Speedup Speedup
Unsafe Degree Split

Included
Split

Excluded
Frequency

(MHz)
Slack

(ns)
Split

Included
Split

Excluded
1 n.a. 91, 092, 278 102.89 0.28 n.a. n.a.
2 40, 440, 835 39, 800, 028 103.20 0.31 2.25 2.28
3 30, 007, 461 29, 339, 853 100.69 0.07 3.03 3.10
4 22, 783, 393 22, 142, 578 101.01 0.10 3.99 4.11

mul_large_steps 5 18, 420, 897 17, 780, 078 102.71 0.26 4.94 5.12
6 n.a. n.a. 99.27 −0.07 n.a. n.a.
7 n.a.
8 n.a.

16 n.a.
1 n.a. 6, 342, 028 104.00 0.38 n.a. n.a.
2 3, 154, 728 3, 108, 503 105.40 0.51 2.01 2.04
3 1, 949, 385 1, 903, 153 102.63 0.26 3.25 3.33
4 1, 673, 790 1, 627, 528 101.79 0.18 3.78 3.89

mul_steps 5 1, 225, 946 1, 179, 703 103.69 0.36 5.17 5.37
6 1, 160, 547 1, 114, 303 101.30 0.13 5.46 5.69
7 n.a. n.a. 101.84 0.18 n.a. n.a.
8 n.a.

16 n.a.
1 n.a. 2, 536, 813 103.94 0.38 n.a. n.a.
2 1, 289, 628 1, 243, 403 106.12 0.58 1.96 2.04
3 807, 495 761, 263 103.16 0.31 3.14 3.33
4 697, 275 651, 013 102.69 0.26 3.63 3.89

mul 5 518, 126 471, 883 102.03 0.20 4.89 5.37
6 491, 967 445, 723 103.32 0.32 5.15 5.69
7 393, 964 347, 713 100.44 0.04 6.43 7.29
8 n.a.

16 n.a.
Table 5.23: Seidel 2D performance results with unsafe math (continued)
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Seidel 2D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 8, 305 7, 584 2, 533 3, 258 27 64
2 17, 046(2.05) 15, 658(2.06) 5, 163(2.04) 7, 138(2.19) 38(1.41) 102(1.59)
3 23, 009(2.77) 21, 073(2.78) 6, 699(2.64) 10, 623(3.26) 45(1.67) 94(1.47)
4 31, 947(3.85) 29, 241(3.86) 9, 635(3.80) 14, 954(4.59) 56(2.07) 102(1.59)

original 5 40, 351(4.86) 36, 863(4.86) 11, 869(4.69) 20, 267(6.22) 36(1.33) 110(1.72)
6 50, 485(6.08) 46, 276(6.10) 15, 150(5.98) 26, 426(8.11) 51(1.89) 94(1.47)
7 60, 725(7.31) 54, 034(7.12) 18, 417(7.27) 33, 542(10.30) 128(4.74) 98(1.53)
8 n.a.

16 n.a.
1 9, 611 8, 817 3, 537 3, 321 27 1, 024
2 18, 241(1.90) 16, 794(1.90) 6, 380(1.80) 7, 004(2.11) 38(1.41) 1, 542(1.51)
3 24, 414(2.54) 22, 454(2.55) 7, 911(2.24) 10, 698(3.22) 45(1.67) 1, 414(1.38)
4 33, 228(3.46) 30, 582(3.47) 10, 392(2.94) 14, 801(4.46) 56(2.07) 1, 542(1.51)

large 5 41, 374(4.30) 37, 433(4.25) 13, 047(3.69) 20, 056(6.04) 46(1.70) 1, 350(1.32)
6 52, 725(5.49) 47, 045(5.34) 18, 466(5.22) 26, 575(8.00) 104(3.85) 1, 414(1.38)
7 n.a.
8 n.a.

16 n.a.
1 10, 294 9, 512 3, 748 3, 261 26 1, 024
2 17, 697(1.72) 16, 314(1.72) 6, 245(1.67) 6, 676(2.05) 37(1.42) 1, 540(1.50)
3 23, 759(2.31) 21, 652(2.28) 7, 664(2.04) 10, 353(3.17) 44(1.69) 1, 412(1.38)
4 32, 976(3.20) 30, 283(3.18) 10, 347(2.76) 14, 462(4.43) 55(2.12) 1, 540(1.50)

mul_large 5 41, 458(4.03) 37, 426(3.93) 13, 270(3.54) 19, 748(6.06) 43(1.65) 1, 348(1.32)
6 51, 408(4.99) 46, 222(4.86) 17, 002(4.54) 26, 128(8.01) 71(2.73) 1, 412(1.38)
7 n.a.
8 n.a.

16 n.a.
1 10, 256 9, 473 3, 878 3, 265 26 1, 024
2 17, 607(1.72) 16, 171(1.71) 6, 242(1.61) 6, 669(2.04) 37(1.42) 1, 540(1.50)
3 23, 648(2.31) 21, 744(2.30) 7, 685(1.98) 10, 361(3.17) 44(1.69) 1, 412(1.38)
4 32, 239(3.14) 29, 762(3.14) 9, 921(2.56) 14, 456(4.43) 55(2.12) 1, 540(1.50)

mul_large_steps 5 40, 894(3.99) 37, 564(3.97) 12, 840(3.31) 19, 736(6.04) 82(3.15) 1, 348(1.32)
6 52, 511(5.12) 47, 136(4.98) 17, 968(4.63) 26, 168(8.01) 59(2.27) 1, 412(1.38)
7 n.a.
8 n.a.

16 n.a.
Table 5.24: Seidel 2D area results with unsafe math
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Seidel 2D Parallel
Degree

LUT-FF
pairs

LUTs Slices Registers DSPs BRAMs

1 8, 350 7, 651 2, 559 3, 206 26 64
2 16, 285(1.95) 15, 030(1.96) 4, 842(1.89) 6, 816(2.13) 37(1.42) 100(1.56)
3 22, 417(2.68) 20, 320(2.66) 6, 714(2.62) 10, 399(3.24) 44(1.69) 92(1.44)
4 31, 336(3.75) 28, 621(3.74) 9, 112(3.56) 14, 701(4.59) 55(2.12) 100(1.56)

mul_steps 5 39, 177(4.69) 35, 767(4.67) 11, 718(4.58) 19, 979(6.23) 65(2.50) 108(1.69)
6 49, 869(5.97) 45, 189(5.91) 15, 250(5.96) 26, 113(8.15) 97(3.73) 92(1.44)
7 60, 355(7.23) 53, 260(6.96) 19, 338(7.56) 33, 303(10.39) 130(5.00) 96(1.50)
8 n.a.

16 n.a.
1 9, 315 8, 413 2, 783 3, 786 28 64
2 16, 134(1.73) 14, 657(1.74) 4, 917(1.77) 6, 807(1.80) 37(1.32) 100(1.56)
3 22, 289(2.39) 20, 319(2.42) 6, 613(2.38) 10, 393(2.75) 44(1.57) 92(1.44)
4 31, 557(3.39) 28, 808(3.42) 9, 246(3.32) 14, 705(3.88) 55(1.96) 100(1.56)

mul 5 39, 706(4.26) 36, 285(4.31) 11, 716(4.21) 19, 978(5.28) 65(2.32) 108(1.69)
6 49, 325(5.30) 44, 979(5.35) 14, 534(5.22) 26, 236(6.93) 93(3.32) 92(1.44)
7 60, 672(6.51) 54, 434(6.47) 19, 973(7.18) 33, 250(8.78) 59(2.11) 96(1.50)
8 n.a.

16 n.a.
Table 5.24: Seidel 2D area results with unsafe math (continued)

The activation of the -funsafe-math-operations has the effect of improving
the execution time of a single kernel, and this can be seen by the improvement
of the sequential test case. The better speedup is caused by the data reuse: some
data are already in registers, and the other data needed can be read in the same
time from the memories. This cannot happen with the sequential case, because
it can read only two data per iteration and the tree is modified as shown in
Figure 5.3.

Analyzing the results of the Seidel 2D it can be noticed that the standard
test (the one with the division) with this GCC optimization is improved. GCC
is able to recognize the division for a constant and it substitutes that operation
with a multiplication. This allows to exploit the parallelism. The results are
similar to the “mul” test case, in which the division has been substituted by
hand. The original test has a better result with a low degree of parallelism,
while the modified one behave better with high degree of parallelism. This is
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mem_0 mem_1

mem_2 mem_3
sum_0

sum_1

sum_2

Figure 5.3: Tree schedule with four data and three additions, when all the data can not be
recovered in a parallel way

probably due to some optimizations performed while substituting the division
in the -funsafe-math-optimization pass, that does not scale well with the parallel
structure.

However the gain from the data reuse is limited, and this is explained with
the presence of all of the data on the BRAMs: working with floating point oper-
ations the reads from these memories are faster than the calculations, so they are
hidden. With this setup it seems that having most of the data in registers does
not provide large benefits. With a different experimental setup, where mem-
ories are slower than floating point functional units, the advantage of having
data in the registers can emerge. Looking to Figure 5.2, if a memory read takes
2 cycles, and a sum takes 4 cycles, all the reads after the first two are ended
when the next operation is scheduled, so that sums will never have to wait for
data. If instead a read to the external memory takes 10 cycles, the chain would
be greatly slowed, and every sum after the first would be stalled for 6 cycles
before all the data are ready, if the read and the previous sum are issued in the
same time. The same thing happens with the tree.

Having the tree structure however is more costly in area, since the single
kernel is bigger than the one created with the operation issued as chain, and
this is visible comparing the area tables (eg. Table 5.18 and Table 5.22).
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Chapter 6

Conclusion and Future Work

From the obtained results it can be seen that for the algebraic test cases the
theoretical optimal result is reached only when there is one single SCoP and the
overhead for the split and rebuild operation is not considered. It is however
also evident that the overhead introduced is not always significant, especially
when the data have to be split only once. It can also be seen that in certain
circumstances the proposed algorithm is not useful, and this happens where the
number of iteration of the loop itself are comparable to the number of iteration
of the split-rebuild operations. Another issue is the behavior of the algorithm
for the stencil on the same array: the solution works, and the results (on timing)
are good but it takes just too much time to perform HLS. This happens because
many instructions are inserted and the number of instructions created depends
on the level of desired parallelism. This makes the HLS long since it has to
schedule a always bigger number of instructions for the header and tail of the
loop to be parallelized. This happens (and also causes the area super-linear
growth) because as it is now the algorithm schedules all the instructions for the
head and the tail of the loop as single instructions. This can be improved and
this waste of area can be reduced or eliminated.

However as it can be seen comparing the results in the tables with the re-
sources of the targeted device, the occupied space percentage is low. The only
components that are heavily used are the BRAMs, and that happens when some
of the large test are considered. All the other components are lightly used and
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this is important because when the fraction of used device is low the timing is
less constrained.

It is important to notice that the proposed methodology does not have an
impact on the timing of the design. From the tables it can be noticed that the
slack of the parallel tests is always in line with the one obtained by the sequen-
tial test.

The results are mostly in line with what was expected. The only unexpected
result is the fact that the data sharing is mostly masked. Only with the instruc-
tion issued as a tree the results show the usefulness of the reuse created by the
algorithm. This is caused, as has already been said, by the setup used for the
experimental evaluations. The BRAMs are too fast compared to floating point
calculations, and having the data on a BRAM or in a register creates no dif-
ference. In a real world application this would probably not happen, so the
speedup can be even greater than the one shown in the previous chapter.

This work still have room for improvement. A better handling for the sched-
ule functions and SCoPs with more than one statement has still to be done. This
can reduce the overhead created by the inter-SCoP split and rebuilds, with se-
lective split-rebuilds (avoid inter SCoP rebuild and split process if no operation
are issued on that variable between the two scops) and reuse of space (avoid to
reserve new BRAMs if the same array is being split and rebuilt in two different
scops). Another option that can be implemented is the extension of the support
for the stencils with more than two dimensions.
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