

POLITECNICO DI MILANO
Scuola di Ingegneria dell'Informazione

POLO TERRITORIALE DI COMO
Master of Science in Computer Engineering

DESIGN AND IMPLEMENTATION OF A

FRAMEWORK TO GENERATE SYNTHETIC 3D

URBAN RECONSTRUCTION DATASETS

Advisor: Prof. Sara COMAI

Co-Advisor: Prof. Matteo MATTEUCCI

 Master Thesis by:

Berke Cagkan TOPTAS, ID 814483

Academic Year 2014/2015

ii

iii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Sara Comai and Prof. Matteo Matteucci

for introducing me to the topic as well for the support on the way. I am really grateful for their

patience and tolerance throughout the year. I have to admit that, they provided almost

everything in theory and all I had to do was connecting the pieces.

My second thanks goes to OpenStreetMap community for making this thesis real. I cannot

even imagine how I would finish the work without these valuable contributors. Besides, I thank

to community of Stack Exchange, especially Stack Overflow group for helping me to solve

numerous coding issues during my sleepless nights.

Last but not least, I would like to thank my family for their endless support from first moment

to last during my master education in Italy.

iv

v

SOMMARIO

Questa tesi propone un framework per generare dataset sintetici per algoritmi di

ricostruzione di ambienti urbani 3D attraverso la raccolta di dati generati virtualmente in

ambienti urbani 3D.

La ricostruzione 3D è un argomento ampiamente studiato nell'ambito della computer vision

e i metodi impiegati stanno aumentando rapidamente. Nonostante la sua popolarità mancano

dataset di riferimento nel campo e questo rende difficile confrontare le prestazioni di metodi

diversi.

Attualmente, le prestazioni dei metodi di ricostruzione vengono confrontati utilizzando

dataset piuttosto piccoli. Questi però non sono adeguati per l'analisi delle prestazioni di metodi

di ricostruzione di aree più grandi, come gli ambienti urbani. Esiste quindi la necessità di avere

dataset per questi tipi di metodi.

La raccolta dei dati di test dal mondo reale è costoso e difficile. Per questo motivo, viene

proposto un framework per la generazione di ambienti urbani che consente agli utenti di

effettuare varie modifiche del modello e per la raccolta dei dataset attraverso una telecamera

virtuale e un laser scanner.

In questa tesi, inizialmente si discute la necessità di un nuovo generatore di ambienti urbani

al posto dei generatori esistenti. Successivamente si spiega come tale generatore è stato

implementato e come i dati di test vengono raccolti dalla scena. Infine, si discutono la qualità dei

risultati ed i possibili lavori futuri.

vi

vii

ABSTRACT

This thesis proposes a framework to generate synthetic datasets for 3D urban reconstruction

algorithms by harvesting data from virtually generated 3D urban environments.

3D reconstruction is a popular topic in computer vision and state-of-the-art methods are

growing rapidly. Despite its popularity, there is a lack of benchmark dataset in the field and this

makes it difficult to compare the performance of different methods. Currently, performance of

the reconstruction methods are compared by using small object datasets. However, there exist

methods concerning the reconstruction of larger areas, such as urban environments. Therefore,

small datasets are unable to provide a sufficient analysis of performance and there is a need for

convenient datasets. Collecting test data from the real-world has been expensive and

cumbersome. For this reason, a framework is implemented generating synthetic urban

environments allowing users to make various edits on the model and collecting data by virtual

camera set and a laser scanner.

In this thesis, first we discuss the necessity of a new urban generator instead of using existing

generators. Then, we explain how our urban generator is implemented and how the test data is

collected from the scene. Finally, we discuss the quality of the results and future work for

improvement.

viii

ix

Table of Contents

Chapter 1 : INTRODUCTION ... 1

1.1. MOTIVATION .. 1

1.2. GOALS... 1

1.3. OVERVIEW .. 2

1.4. OUTLINE OF THE THESIS ... 3

Chapter 2 : STATE OF THE ART ... 5

2.1. OpenStreetMap ... 5

2.1.1. Introduction .. 5

2.1.2. OSM Xml Data ... 5

2.2. EXISTING 3D URBAN GENERATORS .. 7

2.2.1. OSM 3D ... 7

2.2.2. OSM 2 World ... 8

2.2.3. Esri City Engine .. 11

2.3. RENDERING ENVIRONMENT .. 12

Chapter 3 : URBAN GENERATOR .. 15

3.1. TERRAIN ... 16

3.1.1. Geographical Overview ... 16

3.1.2. Mesh Generation .. 18

3.1.3. Texture Generation ... 22

3.1.4. Capabilities .. 27

3.2. BUILDING.. 28

3.2.1. OSM Representation ... 29

3.2.2. Preprocessing .. 29

3.2.3. Rendering .. 32

3.3. BARRIER .. 34

3.3.1. OSM Representation ... 35

3.3.2. Preprocessing .. 35

3.4. HIGHWAY ... 38

3.4.1. OSM Representation ... 38

3.4.2. Preprocessing .. 39

3.4.3. Rendering .. 51

x

3.5. 3D OBJECTS .. 52

3.5.1. OSM Representation ... 52

3.5.2. Preprocessing .. 53

Chapter 4 : DATA COLLECTOR .. 55

4.1. CONTROLLER .. 56

4.1.1. Camera Van ... 56

4.1.2. Trekker .. 57

4.1.3. LOG File Generation .. 58

4.2. VIRTUAL CAMERA .. 59

4.3. VIRTUAL LASER SCANNER (LiDAR) ... 59

4.3.1. Point Cloud Data (PCD) ... 60

4.3.2. PCD Generation ... 61

Chapter 5 : USER INTERFACE .. 63

5.1. LOAD/SAVE MENU ... 64

5.1.1. Create New Project ... 64

5.1.2. Load/Save Project ... 65

5.2. DEFAULT SETTINGS MENU ... 66

5.2.1. Default Building Settings ... 66

5.2.2. Default Barrier Settings ... 68

5.2.3. Default Highway Settings .. 69

5.2.4. Skybox Settings ... 70

5.3. EDIT MENU ... 71

5.3.1. Building Edit .. 71

5.3.2. Barrier Edit .. 73

5.3.3. Highway Edit ... 74

5.3.4. 3D Object Edit ... 75

5.4. ADD OBJECT MENU .. 76

5.5. DATA COLLECTOR MENU ... 78

5.5.1. Camera Settings .. 78

5.5.2. Laser Settings .. 80

Chapter 6 : RESULTS AND EVALUATION .. 83

6.1. SAMPLE OUTPUT GENERATION ... 83

6.2. QUALITY EVALUATION ... 88

xi

6.3 PERFORMANCE EVALUATION ... 90

6.3.1. Urban Generator Performance ... 90

6.3.2. Data Collector Performance.. 93

Chapter 7 : CONCLUSIONS AND FUTURE WORK ... 95

7.1. CONCLUSIONS .. 95

7.2. FUTURE WORK ... 95

BIBLIOGRAPHY .. 97

APPENDİX A: OSM XML FILE .. 99

APPENDIX B: CLASS DIAGRAMS ... 111

xii

xiii

List of Figures
Figure 1.1 - Framework Component Diagram .. 2

Figure 2.1 - OSM tagging illustration .. 6

Figure 2.2- Sample OpenStreetMap Xml File .. 6

Figure 2.3- Map View of Heidelberg (DE) and Munich (DE) in OSM-3D ... 7

Figure 2.4- OSM-3D Processing Stages [12] .. 8

Figure 2.5 - Osm2world different output formats (a) 3D .obj file (b) rendered with POVRay (c) rendered

and converted to .png file ... 9

Figure 2.6 - OSM2World Processing Stages [14]... 10

Figure 2.7- CityEngine Processing Stages [Source: Esri, 2015] ... 11

Figure 2.8- Esri City Engine Modelling Sample .. 11

Figure 2.9- Tools Market Distribution [18] ... 13

Figure 2.10 - Registered Unity Developers [17] .. 13

Figure 3.1 - Urban Generator Component Diagram ... 15

Figure 3.2- Terrain Object ... 16

Figure 3.3- (a) WGS 84 Datum (b) Web Mercator projection ... 17

Figure 3.4- Bounds Tag OSM xml .. 19

Figure 3.5- Terrain Bounds .. 20

Figure 3.6 – Terrain Mesh (Brunate, Como) ... 21

Figure 3.7 – Tile at Zoom Level 0 .. 22

Figure 3.8 - Tiles at Zoom Level 1 .. 23

Figure 3.9 - Sample 256x256 Tiles Zoom: 18, x: 137683, y: 93456 (a) Bing Aerial (b) OpenStreetMap (c)

Bing Street (d) MapQuest ... 25

Figure 3.10 - Uncropped Tiles and Terrain Mesh Pack ... 26

Figure 3.11 - Textured Terrain Surface (Brunate, Como) .. 27

Figure 3.12 - Building objects .. 28

Figure 3.13- Building represented with <way> tag ... 29

Figure 3.14- Building represented with <relation> tag ... 29

Figure 3.15- Building with (a) handled and (b) unhandled Building Height.. 30

Figure 3.16- OSM roof types [Source: OSM wiki] ... 31

Figure.3.17 - Triangulated Concave Roof Polygon .. 32

Figure 3.18 - Building Facade Mesh .. 32

Figure 3.19- Building way orientations. (a) Counter-clockwise (b) clockwise .. 33

Figure.3.20- Sample Building Material Textures (a) Color Texture (b) Normal map (c) Specular Map 34

Figure 3.21 - Barrier Object ... 34

Figure 3.22 - Barrier OSM Xml sample .. 35

Figure 3.23 - Fence type barrier, Chain-link .. 36

Figure 3.24 - Wall type Barriers: (a) retaining wall (b) wall (c) city wall ... 36

Figure 3.25 - Wall type barrier mesh generation .. 37

Figure 3.26 - Highway object .. 38

Figure 3.27 - Highway OSM xml sample ... 38

Figure 3.28 – (a) Initial Points (b) Way with a width (c) Problem when angle changes (d) Angle changing

Solution ... 40

xiv

Figure 3.29 - Highway drawn with handled and unhandled slope changes ... 41

Figure 3.30 - Intersection Processing Stages .. 42

Figure 3.31 - Road Half Vectors and Angles .. 43

Figure 3.32 - Sample steps of intersection processing ... 44

Figure 3.33 - Sample steps of truth table processing ... 44

Figure 3.34- (a) After intersection with holes (b) Intersection holes filled ... 45

Figure 3.35 - Side walk representation ... 45

Figure 3.36- Road with Sidewalk on both sides .. 46

Figure 3.37 - (a) & (c): Unhandled sidewalk intersections, (b) & (d): corrected versions 46

Figure 3.38 – (a) Road with Height Map visibility Problem (b) Draped Highway with pin Points 47

Figure 3.39 - Road Draping ... 48

Figure 3.40 - Adding vertices for 2 different cases ... 49

Figure 3.41 - (a) Dissymmetry Problem while draping, (b) Solution .. 50

Figure 3.42- Highways that remains under terrain ... 50

Figure 3.43- Highway Mesh .. 51

Figure 3.44 - Road Texture Samples ... 51

Figure 3.45 - 3D Objects .. 52

Figure 3.46 - Samples of 3D object tags .. 52

Figure 3.47 - Highway Mesh. Original Vertices (red) and generated vertices (green) 53

Figure 4.1 - (a) Google Trekker (b) Google Camera Car [28]... 55

Figure 4.2 - Data Collector Component Diagram .. 55

Figure 4.3 - Camera Van (a) mesh and colliders (b) texturized mesh ... 56

Figure 4.4 - Trekker (From Unity Standard Package) .. 57

Figure 4.5 - Sample Controller Log File ... 58

Figure 4.6 - LiDAR Ray casting ... 61

Figure 5.1- User Interface Component Diagram ... 63

Figure 5.2- Load/Save Menu ... 64

Figure 5.3 - File Browser Dialog (a) Select File Mode (b) Save File Mode ... 65

Figure 5.4 - Default Settings Menu ... 66

Figure 5.5 - Default Building Settings .. 67

Figure 5.6 - Default Barrier Settings .. 68

Figure 5.7 - Default Highway Settings ... 69

Figure 5.8 - Default Skybox Settings ... 70

Figure 5.9 - Different day times in the scene .. 70

Figure 5.10 - Edit Building Menu ... 71

Figure.5.11 - Edit Facade Texture Menu ... 72

Figure 5.12 - Barrier Edit Menu... 73

Figure 5.13 - Highway Edit Menu .. 74

Figure 5.14 - 3D Object Edit Menu .. 75

Figure 5.15 - Transform Gizmos .. 75

Figure 5.16 - Add Object Menu ... 76

Figure 5.17 - Environment Object List Menu .. 77

Figure.5.18 - Data Collector Menu .. 78

Figure 5.19 - Camera Settings Menu ... 79

xv

Figure 5.20 - Laser Scanner Settings Menu ... 80

Figure 6.1 – Sample Recording Path ... 83

Figure 6.2 - Sample Log File .. 84

Figure 6.3 - Sample Output Frames, Front Camera (Cam 1) ... 85

Figure 6.4 - Sample Output Frames, Left Camera (Cam 2) ... 86

Figure 6.5 - Sample Output Frames, Right Camera (Cam 3) ... 87

Figure 6.6 - Sample PCD File (Frame 1) ... 88

Figure 6.7- “Via Provinciale per Lecco”, (a) Generated Scene (b) Original, Google Street View 89

Figure 6.8 - Test Scenes (a) Pannilani (b) Brunate (c) Como City Center .. 90

xvi

xvii

List of Tables
Table 6.1 – Test Scene Parameters ... 90

Table 6.2 - Terrain Rendering Times ... 91

Table 6.3- OSM File Parsing Times .. 91

Table 6.4 - Building Rendering Times .. 92

Table 6.5 - Highway Rendering Times ... 92

Table 6.6 - Barrier + 3D Object Rendering Times .. 92

Table 6.7 - Total Render Time and FPS values .. 93

Table 6.8 – Test Cases for Data Controller .. 93

Table 6.9 - Video Frame Generation Times .. 94

Table 6.10 – PCD File Generation Times ... 94

xviii

1

Chapter 1 : INTRODUCTION

1.1. MOTIVATION

In computer vision, 3D reconstruction is the process of capturing the shape and appearance

of real objects using a set of 2D images or point cloud data. Over the past years, several 3D

reconstruction algorithms have been published and the popularity in the field is increasing

rapidly. Unfortunately, the lack of benchmark datasets makes it difficult to compare the

performance of these algorithms and to therefore focus research on the most needed areas of

development.

Currently, state of the art systems compare their performances by using a small object

dataset [1]. However, some of these systems concern the reconstruction of a large scene, such

as an urban environment [2] [3]. In those cases, the previous dataset cannot give a significant

analysis of the performances. Instead, a new dataset of urban scenes taken from different

perspectives would be very useful.

One way to create an urban test dataset is equipping a car with a camera set, laser scanner

and a GPS localization system, then capturing the data by driving around the city [4]. However,

collecting the test data using this method is expensive and cumbersome. For this reason, we

propose a framework which creates synthetic test datasets from custom 3D city models by

virtually navigating the environment.

1.2. GOALS

This thesis aims at developing a framework to generate flexible synthetic datasets for urban

reconstruction algorithms. In order to achieve that, the framework should be able to perform the

following operations:

 Create automatically a 3D urban model

 Texturize the urban model

 Support various material types with proper lightings

 Generate video stream data from virtual camera set

 Generate point cloud data from virtual laser scanner set

With the framework, we aim to generate urban datasets easily with no cost. Automated

urban generation saves users from equipment cost like cameras and laser scanners. Besides the

cost, we aim to reduce the amount of time spent during data generation. It can take hours or

1.3. OVERVIEW

2

even days to prepare equipment and collect data from the real world while it takes several

minutes with our framework.

Our second aim is to give users full control over the test scenes. Real-world test data comes

as it is and it is not possible to make any edit on the scene. However with a synthetic scene, any

desired object can be added/removed or lighting conditions can be changed. With this property,

we aim to allow users to generate their unique scenes to test specific cases for their

reconstruction methods.

1.3. OVERVIEW

Our framework consists of three main components, which are “Urban Generator”, “Data

Collector” and “User Interface” (Figure 1.1). The Urban Generator creates the 3D model using

Urban Data and Render Settings coming from user interface. The Urban generator parses and

processes the urban data and outputs the 3D scene, which consists of buildings, highways, trees

etc.

 Once the scene is generated, users can customize the generated world with the user

interface. Users have full control over the scene. From changing building heights and textures to

selecting day time and adding any desired objects (e.g., cars, sculptures, trees), any edits can be

made with the user interface.

When the scene is ready, users can activate the data collector component and produce video

streams and point cloud data (PCD). Our framework shows 2 options for users as a data collector,

which are a Camera Van or a Trekker. By controlling them over the city, scene data can be

collected with little effort.

Figure 1.1 - Framework Component Diagram

 Chapter 1: INTRODUCTION

3

1.4. OUTLINE OF THE THESIS

The thesis is organized as follows:

 In Chapter 2, we first describe the urban data set (OpenStreetMap) that is used both by

our framework and the state of the art 3D urban generators. Then we present each of the

existing 3D urban generators and briefly discuss why they are inadequate for our

framework. Finally, we present the rendering tool (Unity) we use in our framework.

 In Chapter 3, we present how the “Urban Generator” component of the framework

works. We explain how each component of the urban model is generated including pre-

processing and rendering steps.

 In Chapter 4, we present how the “Data Collector” component of the framework works.

We explain how camera images and the laser data are generated.

 In Chapter 5, we present our “User Interface” component of the framework. We explain

each menu available in the framework and discuss the capabilities of the users.

 In Chapter 6, we present the results of the framework by illustrating a sample output

generation.

 In Chapter 7, we summarize the whole work, discussing the obtained results. Then, we

indicate the possible improvements for each module of the framework.

 In Appendix A, we explain the process of generating an input file to our framework from

the OpenStreetMap webpage and we provide a sample input file.

 In Appendix B, we provide class diagrams of the framework for each of our three

component.

1.4. OUTLINE OF THE THESIS

4

5

Chapter 2 : STATE OF THE ART

2.1. OpenStreetMap

2.1.1. Introduction

 OpenStreetMap is a free, editable map of the whole world that is being built by volunteers

largely from scratch and released with an open-content license. With currently more than

2,000,000 members [5], the community bears an enormous potential of "humans acting as

remote sensors" [6].

By the very nature of the wiki-style process, there is no guarantee of accuracy of any kind of

data. The essence of a wiki-style process is that all users have a stake in having accurate data. If

one person puts in inaccurate data, maliciously or accidentally, the other 99.9% of people can

check it, fix it, or get rid of it. The vast majority of good-intentioned participants can automatically

correct for the few bad apples [7].

The OpenStreetMap License allows free access to map images and all of underlying map data.

The project aims to promote new and interesting uses of this data.

2.1.2. OSM Xml Data

Contribution to OpenStreetMap is kept simple: Users provide nodes that are geo-referenced

points with longitude and latitude information in UTM projection. For defining line geometries,

several nodes can be combined to ways. A closed way represents a polygon (e.g., a building or

an area), while a non-closed way represents a line array (e.g., a street or a wall). For defining

complex relationships or complex polygons with holes (e.g., building with holes), users can create

relations.

Beside geometry indicators, it is possible to tag OSM features, using key-value pair structures.

Thereby, the key describes some kind of information or information domain and the value refines

this information. What information is added, is up to the contributors. They can add any kind of

information as well as an arbitrary amount of information. However, there are standardized tags

which should be used for common map features such as streets or buildings. A list of all tags that

are standardized are listed in [8]. Figure 2.1 depicts a map with common OSM features, as well

as the corresponding OSM key-value pairs [9].

2.1. OpenStreetMap

6

Figure 2.1 - OSM tagging illustration

Collected information from users can be accessed from a single xml file named “Planet.osm”

that contains all the nodes, ways and relation data. A new version is released every week. It's a

big file (XML variant over 576.6GB uncompressed, 42GB bz2 compressed and 28.8GB PBF at

2015/05/19) [10].

Users can also request smaller data by querying the bounding box of the desired area. As a

result, OpenStreetMap server generates an xml file similar to Figure 2.2. This file is one of the

inputs for our Framework.

Figure 2.2- Sample OpenStreetMap Xml File

 Chapter 2: STATE OF THE ART

7

2.2. EXISTING 3D URBAN GENERATORS

Before a decision was made to implement a new urban generator, existing projects were

examined. Although there are several projects, evaluation was made in 3 main projects:

 OSM 3D

 OSM2World

 Esri City Engine

2.2.1. OSM 3D

OSM-3D is a research project carried out at the GIScience Research Group, University of

Heidelberg [11]. It investigates how Volunteered Geographic Information and freely available

data sets can be incorporated in a 3D Spatial Data Infrastructure on a global scale.

OSM-3D use OpenStreetMap xml file for generating 3D urban model. OpenStreetMap has a

very active and dynamic community which can adapt to new circumstances and requirements

very quickly. As more details such as absolute height and color of building and facade materials

are provided by users, they are aiming to model complete 3D city models from OSM. Figure 2.3

shows some examples of screenshots from OSM-3D.

Figure 2.3- Map View of Heidelberg (DE) and Munich (DE) in OSM-3D

Figure 2.4 shows the general structure of the OSM-3D working principle. OSM data is retrieved

as change sets via the API using Osmosis. It is then passed through a chain of update processes.

DEMTile Generator combines SRTM and OSM data and creates triangulated terrain tiles in

various sizes. Building Generator render buildings as polyhedron, extruding from footprints with

flat roofs. After processing Labels, building and Terrain Tiles are gathered in 3D database and

items are put in a container called W3DS. W3DS is a portrayal service for three-dimensional

geodata such as landscape models, city models, textured building models, vegetation objects,

and street furniture. XNavigator client is used as 3D viewer which uses Java3D scenegraph

technology and JOGL [12].

2.2. EXISTING 3D URBAN GENERATORS

8

Figure 2.4- OSM-3D Processing Stages [12]

OSM-3D was one of the best 3D urban generators using OpenStreetMap data and Our

Framework’s working principle has similarities with OSM-3D. However, OSM-3D had missing

properties when it comes to rendering a “photo-realistic” model. As seen from Figure 2.3, OSM-

3D renders building without textures and the project has limited material support.

In addition to material properties, OSM-3D does not contain a physics engine. A physics engine

is necessary to add external 3D objects into scene and to transform them. Besides this, vehicle

physics is required to implement Camera Van component.

In order to deal with advanced material and physics properties easily, a game engine had

become a must for our framework. Therefore, OSM-3D source code, which is implemented with

JOGL (Java Opengl API), was not preferred.

2.2.2. OSM 2 World

OSM2World is a converter that creates three-dimensional models of the world from

OpenStreetMap data. It can be used as a stand-alone tool, on a server or as a library in Java

programs [13]. OSM2World supports 3 output types:

1. OBJ files that contain a full urban model (Figure 5 –a)

2. POV files for the POVRay1 ray tracer (Figure 5- b)

3. PNG images generated with JOGL (Figure 5 – c)

1 POVRay : Persistence of Vision Ray tracer, A free software tool that create 3D images using ray

tracing

 Chapter 2: STATE OF THE ART

9

Figure 2.5 - Osm2world different output formats (a) 3D .obj file (b) rendered with POVRay (c) rendered and converted to .png file

OSM2World library generates good results when it outputs a POV file for ray tracing. However,

since we are required to record video stream with multiple camera, it is not possible to render

all camera frames using ray tracing which could take hours to complete depending on record

time.

An OBJ file would be a better output for our case but because OSM2World is an incomplete

project, the “Terrain Elevation” component has not been implemented yet (Figure 2.6). Since

OSM2World library does not accept height map it damages the “photo realistic” property.

In addition to this, although OSM2World has slightly better material support than OSM3D, it

is still not enough since it does not accept advanced shader properties (e.g., Normal map,

specular map). Besides, the physics properties are again missing in this library.

2.2. EXISTING 3D URBAN GENERATORS

10

Figure 2.6 - OSM2World Processing Stages [14]

 Chapter 2: STATE OF THE ART

11

2.2.3. Esri City Engine

Esri CityEngine is a stand-alone software product that provides professional users in

architecture, urban planning, entertainment, simulation, GIS, and general 3D content production

with a unique conceptual design and modeling solution for the efficient creation of 3D cities and

buildings [15]. CityEngine accepts OpenStreetMap data as input and generates 3D models in 5

stages process (Figure 2.7).

Figure 2.7- CityEngine Processing Stages [Source: Esri, 2015]

Since CityEngine is a professional application, it is possible to generate advanced and photo-

realistic scenes (Figure 2.8). Even though the results are impressive, it was not used for our

framework since it is a commercial product and closed source. Instead, CityEngine gave us ideas

about the feature set for our framework’s user interface (e.g., Facade Texturing Feature) and

became a useful source during the development phase.

Figure 2.8- Esri City Engine Modelling Sample

2.3. RENDERING ENVIRONMENT

12

2.3. RENDERING ENVIRONMENT

Unity 5

Unity is a cross-platform game engine developed by Unity Technologies and used to develop

video games for PC, consoles, mobile devices and websites. On March 3, 2015 with the release

of Unity 5.0, Unity Technologies made the complete engine available for free including all

features, less source code and support [16].

Here are some of the features that are supported by Unity 5:

- Multi-Platform Build

- Object Transform Hierarchy

- Advance Material Properties (Various Shaders, Bump Mapping, Reflection Mapping,

Occlusion Mapping, ...)

- Real Time Dynamic Shadows

- Physic engine (NVidia PhysX)

- UI and Event system

- C# .Net scripting

Considering the features listed above, a game engine like Unity is a good choice for

implementing our framework rather than using low level graphic libraries (Opengl, DirectX).

Among other game engines Unity is preferred for the following reasons:

 Multi-Platform Build

 Community Support

Our framework initially was planned as a desktop application for current needs. However,

with the later versions, the framework can be served from a web browser. At this point, the multi-

platform support of Unity creates a big difference. Besides support for stand-alone build for

Windows, OS X and Linux, Unity supports WebGL and a web player called “Unity Web player”.

The current framework can be built in one of the supported web platforms with slight updates in

the user interface, if there is a need.

Another reason why Unity is preferred is their great Community Support. Unity game engine

is far more popular among developers (Figure 2.9) than any other game development software.

The proportion of developers relying on Unity as their primary development tool and using Unity

is growing all the time [17].

 Chapter 2: STATE OF THE ART

13

Figure 2.9- Tools Market Distribution [18]

 With over 4 million developers (Figure 2.10) and several community platforms

(answers.unity3d.com, forum.unity3d.com, stackoverflow.com/tags/unity3d) any type of

problem encountered can be easily solved. The second appropriate platform “Unreal Engine”,

has three times less users. Any problems arising with Unreal Engine are harder to solve since

there is limited community support.

Figure 2.10 - Registered Unity Developers [17]

2.3. RENDERING ENVIRONMENT

14

15

Chapter 3 : URBAN GENERATOR

The Urban generator is the biggest component in the framework and responsible for

generating 3D urban model procedurally without user interaction. It takes an OpenStreetMap

(OSM) xml file as input and produces a 3D scene. Inner components and processing orders are

shown in Figure 3.1.

Figure 3.1 - Urban Generator Component Diagram

 OSM parser first reads the scene boundaries and passes it to the terrain component. Then

the terrain component downloads the necessary elevation data and textures from their sources

and generates the 3D terrain.

OSM parser then parses the remaining raw data and stores all elements inside structure lists.

It reads the tags assigned to each element and divides them into 4 main categories:

 Building

 Barrier

 Highway

 3D Object

Once the elements are categorized, 2D data is sent to related generators. At each generator,

further categorizations are made and a 3D scene is generated.

3.1. TERRAIN

16

3.1. TERRAIN

Terrain is the fundamental component of the city generator and it is generated primarily in

the scene. Height maps from NASA are used to create 3D mesh and tile images from different

map servers are used as texture in order to generate realistic terrains (Figure 3.2).

Figure 3.2- Terrain Object

At the beginning, height map data and tile images are incompatible with each other

therefore, they require a set of geographical calculations in order to use them together. After

necessary geographical conversions are made, 3D terrain mesh is generated using the bounding

box from OSM xml file and the NASA height map. Finally, a set of map image is downloaded and

applied as texture to the generated surface after few cropping operations.

3.1.1. Geographical Overview

3.1.1.1. WGS 84 Datum

The Earth is shaped like a flattened sphere. This shape is called an ellipsoid. A Datum is a

model of the earth that is used in mapping. The datum consists of a series of numbers that define

the shape and size of the ellipsoid and it's orientation in space. A datum is chosen to give the best

possible fit to the true shape of the Earth [19].

There are plenty of different datum in use. Many of them are optimized for use in one

particular part of the world. WGS-84 (EPSG:4326) is a datum that is used globally (Figure 3.3-A).

It comprises a standard coordinate system for use in cartography, geodesy, and navigation

including by GPS.

 Chapter 3: URBAN GENERATOR

17

3.1.1.2. Web Mercator Projection

The Earth is curved and maps are flat. The process of flattening out the Earth onto a flat piece

of paper or computer screen is a mathematical process called a Projection. No matter how you

try, the resulting maps always have distortions [19].

Web Mercator (EPSG:3857) is a variation of the Mercator projection and is the de facto

standard for Web mapping applications. It rose to prominence when used in the first Google

Maps in 2005. It is used by virtually all major online map providers, including Google Maps, Bing

Maps, OpenStreetMap and many others [20]. In Web Mercator: north is up everywhere,

meridians are equally spaced vertical lines, but areas near the poles are greatly exaggerated

(Figure 3.3-B).

Figure 3.3- (a) WGS 84 Datum (b) Web Mercator projection

3.1.1.3. WGS 84 – Web Mercator Conversions

Not all the sources are using the same coordinate system. That’s why it is necessary to make

conversions for the compatibility of different sources. WGS2 84 lat/lon coordinate and Web

Mercator meter coordinate conversions are done with the equations below [21]:

WGS 84 to Web Mercator Conversion:

𝑜𝑟𝑖𝑔𝑖𝑛𝑆ℎ𝑖𝑓𝑡 = 2 ∗ 𝜋 ∗
6378137.0

2.0

𝑚𝑒𝑡𝑒𝑟𝑋 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 ∗
𝑜𝑟𝑖𝑔𝑖𝑛𝑆ℎ𝑖𝑓𝑡

180.0

𝑚𝑒𝑡𝑒𝑟𝑌 =
log (𝑡𝑎𝑛 ((90 + 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) ∗

𝜋
360)

𝜋
180.0

∗
𝑜𝑟𝑖𝑔𝑖𝑛𝑆ℎ𝑖𝑓𝑡

180.0

2 WGS: World Geodetic System

3.1. TERRAIN

18

Web Mercator to WGS 84 Conversion:

𝑜𝑟𝑖𝑔𝑖𝑛𝑆ℎ𝑖𝑓𝑡 = 2 ∗ 𝜋 ∗
6378137.0

2.0

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 =
𝑚𝑒𝑡𝑒𝑟𝑋

𝑜𝑟𝑖𝑔𝑖𝑛𝑆ℎ𝑖𝑓𝑡
∗ 180.0

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =
180.0

𝜋
∗ (2 ∗ atan (𝑒

𝑚𝑒𝑡𝑒𝑟𝑌
𝑜𝑟𝑖𝑔𝑖𝑛𝑆ℎ𝑖𝑓𝑡

∗𝜋
) −

𝜋

2.0
)

3.1.2. Mesh Generation

3.1.2.1. NASA SRTM Data

For the elevation data of terrain in the framework, NASA SRTM3 data was used. SRTM data

sets result from a collaborative effort by the National Aeronautics and Space Administration

(NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National

Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian

space agencies, to generate a near-global digital elevation model (DEM) of the Earth using radar

interferometry [22].

SRTM data is organized into individual rasterized cells, or tiles, each covering one degree by

one degree in latitude and longitude. Sample spacing for individual data points is either 1 arc-

second, 3 arc-seconds, or 30 arc-seconds, referred to as SRTM1, SRTM3 and SRTM30,

respectively. SRTM3 and SRTM30 dataset is globally available while SRTM1 dataset is available

for the US only.

SRTM data is processed and delivered continent-by-continent and data for each continent is

located in a separate directory on the server. The names of individual data tiles in the directory

refer to the WGS 84 longitude and latitude of the lower-left (southwest) corner of the tile. For

example, the tile N30W105.hgt is at 30 degrees north latitude and 105 degrees west longitude.

 SRTM3 data is sampled at three arc-seconds and contain 1201 lines and 1201 samples with

similar overlapping rows and columns. Each sample is a 16-bit signed integer where the byte

order is Big Endian4 and ranges from -32767 to 32767 meters [22].

3 SRTM: Shuttle Radar Topography Mission
4 Big Endian: A standard for ordering bytes of a word where the most significant byte is first.

 Chapter 3: URBAN GENERATOR

19

3.1.2.2. Getting SRTM Data

In the OSM xml file, bounds of the area to be rendered is given under the <bounds> tag

(Figure 3.4).

Figure 3.4- Bounds Tag OSM xml

Knowing the bounds of the area, appropriate DEM data can be downloaded automatically

without asking the user. After reading the bounds, URL request is generated with the following

equations:

Filename = (minlat > 0 ? “N“ : “S“) + String(floor(minlat)) + (minlon > 0 ? “E” : “W”)

 + String(floor(minlon)) + “.hgt.zip”

URL = “http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/” + @Continent + “/” + @Filename

Generated URL is requested via a Web Client and a zip file is extracted with UnityZip Library

[23]. Then the raw file containing 1201x1201 16-bit signed integers are read into a 2D Array,

considering endianness.

3.1.2.3. Mesh Generation Using SRTM Data

Downloaded SRTM data covers a huge area (~100km x ~100km) and it is necessary to crop

the elevation data for the rendered area. The elevation data is a 1201x1201 array forming a

1200x1200 grid which has height values at the intersections. The size of each grid rectangle is

1/1200 degree latitude and 1/1200 degree longitude. Knowing the array indexes of Terrain, they

are calculated using following equations:

𝐼𝑛𝑑𝑒𝑥𝐿𝐸𝐹𝑇 = 𝑓𝑙𝑜𝑜𝑟(𝑙𝑒𝑓𝑡 − 𝑓𝑙𝑜𝑜𝑟(𝑙𝑒𝑓𝑡)) ∗ 1200

𝐼𝑛𝑑𝑒𝑥𝑅𝐼𝐺𝐻𝑇 = 𝑐𝑒𝑖𝑙(𝑟𝑖𝑔ℎ𝑡 − 𝑓𝑙𝑜𝑜𝑟(𝑟𝑖𝑔ℎ𝑡)) ∗ 1200

𝐼𝑛𝑑𝑒𝑥𝑇𝑂𝑃 = 𝑓𝑙𝑜𝑜𝑟(𝑐𝑒𝑖𝑙(𝑡𝑜𝑝) − 𝑡𝑜𝑝) ∗ 1200

𝐼𝑛𝑑𝑒𝑥𝐵𝑂𝑇𝑇𝑂𝑀 = 𝑐𝑒𝑖𝑙 (𝑐𝑒𝑖𝑙(𝑏𝑜𝑡𝑡𝑜𝑚) − 𝑏𝑜𝑡𝑡𝑜𝑚) ∗ 1200

Indexes calculated above represent the smallest area that covers OSM Bounds (Figure 3.5).

3.1. TERRAIN

20

Figure 3.5- Terrain Bounds

As mentioned in Section 3.1.1.1 and 3.1.1.2, WGS 84 datum is designed for a spherical

surface. In order to generate Terrain Mesh, flattening of coordinates is necessary by using a

proper projection. Web Mercator projection was chosen for the following reasons:

 Popularity among map providers (Bing, Google, OpenSreetMap)

 Conversion from WGS 84 datum is simple

 Uses meter as unit (Meter coordinates are used as world positions inside Unity).

Terrain mesh consists of 2 parts which are terrain surface and the side walls. Surface Mesh is

a set of triangle shown in Figure 3.6. XZ-coordinates are Web Mercator coordinates converted

from lat/lon and Y-coordinates are the height values taken from SRTM data. Similarly, side walls

of terrain are a set of triangles where the upper vertices are taken from outside the boundary of

terrain and the lower vertices are the same vertices with height = 0.

 Chapter 3: URBAN GENERATOR

21

Figure 3.6 – Terrain Mesh (Brunate, Como)

In order to calculate the Normal of the vertices, Finite Difference Method is used. For each

vertex, samples from 4 sides are taken and the normal vector is calculated with the following

formula:

 # P.xy store the position for which we want to calculate the normals
 # height() is a function that return the height at a point in the terrain
 # delta is a vector for unit of difference (delta = (1,1,0))

 float hL = height(P.xy - delta.xz);
 float hR = height(P.xy + delta.xz);
 float hD = height(P.xy - delta.zy);
 float hU = height(P.xy + delta.zy);

 Normal.x = hL - hR;
 Normal.y = 2.0;
 Normal.z = hD - hU;
 Normal = normalize(Normal);

3.1. TERRAIN

22

3.1.3. Texture Generation

3.1.3.1. Map Tile Servers

Web maps are now so ubiquitous that it can be easy to forget the qualities that distinguish

them from a typical paper city map or world atlas. When you browse a web map, the experience

is like panning across a very large, continuous image. By zooming in and out, the amount of detail

increases from continents and oceans to streets and buildings. [24].

A continuous image of the world at street level detail would be millions of pixels wide – much

too large to download or hold in memory at once. In reality, web maps are made up of many

small, square images called tiles. These tiles are typically 256×256 pixels and are placed side-by-

side in order to create the illusion of a very large seamless image.

The way that we can see more detail in maps, the difference between country-level maps and

street maps, is zoom levels. Higher zoom levels increase the physical size of the displayed map

but also increase the amount of detail shown.

To organize these millions of images, web maps use a simple coordinate system. Each tile has

a z coordinate describing its zoom level and x and y coordinates describing its position within a

square grid for that zoom level: z/x/y.

The very first tile in the web map system is at 0/0/0. Zoom level 0 covers the entire globe

(Figure 3.7).

Figure 3.7 – Tile at Zoom Level 0

The next zoom level divides z0 into four equal squares such that 1/0/0 and 1/1/0 cover the

northern hemisphere while 1/0/1 and 1/1/1 cover the southern hemisphere (Figure 3.8).

Continuously each zoom level divides the previous zoom level by four. At the zoom level N

number of tile is 2N * 2N = 4N.

 Chapter 3: URBAN GENERATOR

23

Figure 3.8 - Tiles at Zoom Level 1

There are several map servers that provide tile images between Zoom Level 0 and 20

including Google, Bing and OpenStreetMap. While Google does not allow users to directly access

their tiles, it is possible to get tile images from Bing and OpenStreetMap with their XYZ [25] tile

servers.

3.1.3.2. Getting Tiles and Caching

In order to download a tile image, 3 parameters are needed which are the x and y index of

the tile and the zoom level. The Zoom level is set at 18 as a default. The X and y index of the tile

is unknown and should be calculated using meter coordinates.

The first step in finding the tile index is to transform meter coordinates to pixel coordinates.

Pixel coordinates can be calculated with the following equations:

3.1. TERRAIN

24

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2.0 ∗ 𝜋 ∗
6378137.0

256

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

218

𝑃𝑖𝑥𝑒𝑙𝑋 =
(𝑚𝑒𝑡𝑒𝑟𝑋 + 𝜋 ∗ 6378137.0)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18

𝑃𝑖𝑥𝑒𝑙𝑌 =
(𝑚𝑒𝑡𝑒𝑟𝑌 + 𝜋 ∗ 6378137.0)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18

The second step is to find at which tile the point resides. Knowing that a tile size is 256 pixel,

the tile index is calculated as follows:

𝑇𝑖𝑙𝑒𝑋 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑃𝑖𝑥𝑒𝑙𝑋/256) − 1

𝑇𝑖𝑙𝑒𝑌 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑃𝑖𝑥𝑒𝑙𝑌/256) − 1

In our framework, 4 different tile servers are supported:

 Bing Aerial Images (Figure 3.9-a)

 Bing Street Map (Figure 3.9-c)

 OpenStreetMap (Figure 3.9-b)

 MapQuest (Figure 3.9-d)

With the calculated parameters (zoom, tileX, tileY), tile URL’s are generated and tiles are

downloaded using web requests. Example URL format for MapQuest and OpenStreetMap are:

 MapQuest: http://otile[1234].mqcdn.com/tiles/1.0.0/osm/zoom/x/y.jpg

 OpenStreetMap: http://[abc].tile.openstreetmap.org/zoom/x/y.png

Downloading tiles is a time consuming process and depends on the area rendered. Therefore

downloaded tiles need to be cached locally. A cache directory is chosen as the Application’s

persistence data path. The following naming strategy is used to store tile images:

Path: Application.PersistenceDataPath + “/Textures/Tiles/” + MapType + x_y_zoom.png

 Chapter 3: URBAN GENERATOR

25

Figure 3.9 - Sample 256x256 Tiles Zoom: 18, x: 137683, y: 93456 (a) Bing Aerial (b) OpenStreetMap (c) Bing Street (d) MapQuest

3.1.3.3. Texture Generation Using Map Tiles

The terrain surface mesh consists of triangles as stated in Section 3.1.2.3. For each triangle, a

corresponding tile should be downloaded from the server. Since it would be very slow to search

for a tile for each triangle, 8 triangles (4 rectangles) are packed together each time and tile images

are downloaded for that pack (Figure 3.10).

Tile indexes are created using the corner vertexes of each mesh pack. After detecting the tile

indexes and downloading from the server, the following operations should be done:

 Merging tiles and generating a single image

 Cropping image to fit in mesh pack (Figure 3.10)

3.1. TERRAIN

26

Figure 3.10 - Uncropped Tiles and Terrain Mesh Pack

In order to crop the merged tile image, local pixel coordinates of red points in Figure 3.10

should be calculated. Global pixel coordinates for red points were already calculated while

getting tile indexes. To get local pixel coordinate, global pixel coordinate of the top left is

calculated for the merged tile which has the (0,0) local pixel coordinate. The difference between

global pixels is then accepted as local pixel coordinates.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2.0 ∗ 𝜋 ∗
6378137.0

256

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

218

𝑃𝑖𝑥𝑒𝑙𝐿𝑂𝐶𝐴𝐿𝐿𝐸𝐹𝑇 =
𝑅𝑜𝑢𝑛𝑑(𝑚𝑒𝑡𝑒𝑟𝐿𝑒𝑓𝑡+ 𝜋∗ 6378137.0)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18
− (𝑃𝑖𝑥𝑒𝑙𝐺𝐿𝑂𝐵𝐴𝐿𝐿𝐸𝐹𝑇 ∗ 256)

 Chapter 3: URBAN GENERATOR

27

𝑃𝑖𝑥𝑒𝑙𝐿𝑂𝐶𝐴𝐿𝑅𝐼𝐺𝐻𝑇 =
𝑅𝑜𝑢𝑛𝑑(𝑚𝑒𝑡𝑒𝑟𝑅𝑖𝑔ℎ𝑡+ 𝜋∗ 6378137.0)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18
− (𝑃𝑖𝑥𝑒𝑙𝐺𝐿𝑂𝐵𝐴𝐿𝐿𝐸𝐹𝑇 ∗ 256)

𝑃𝑖𝑥𝑒𝑙𝐿𝑂𝐶𝐴𝐿𝐵𝑂𝑇𝑇𝑂𝑀 =
𝑅𝑜𝑢𝑛𝑑(−𝑚𝑒𝑡𝑒𝑟𝐵𝑜𝑡𝑡𝑜𝑚+ 𝜋∗ 6378137.0)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18
− (𝑃𝑖𝑥𝑒𝑙𝐺𝐿𝑂𝐵𝐴𝐿𝐵𝑂𝑇𝑇𝑂𝑀 ∗ 256)

𝑃𝑖𝑥𝑒𝑙𝐿𝑂𝐶𝐴𝐿𝑇𝑂𝑃 =
𝑅𝑜𝑢𝑛𝑑(−𝑚𝑒𝑡𝑒𝑟𝑇𝑜𝑝+ 𝜋∗ 6378137.0)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑍𝑂𝑂𝑀18
− (𝑃𝑖𝑥𝑒𝑙𝐺𝐿𝑂𝐵𝐴𝐿𝐵𝑂𝑇𝑇𝑂𝑀 ∗ 256)

After getting texture coordinates, terrain mesh is updated to its textured version (Figure 3.11).

Figure 3.11 - Textured Terrain Surface (Brunate, Como)

3.1.4. Capabilities

Coordinate system is the responsibility of the terrain in the scene. It provides two methods

for all other elements in the scene, which are “getHeight()” and “getMeter()”. These methods

are used to render elements at the correct world position.

3.1.4.1. Get Height

In OSM xml data, all elements have coordinate values in the XZ-plane and height values are

not declared. Y-coordinate of the nodes should be calculated using the elevation data that for

terrain object. Terrain object provides a function “getHeight()” to provide a height value for the

given coordinates:

3.2. BUILDING

28

float GetHeight(float latitude, float longitude);

 float GetHeight2(float meterX, float meterY);

Resolution of elevation data is not high (~90m), therefore heights of objects cannot be

assigned to the nearest height value and there is a need for interpolation. Terrain mesh is

rendered using triangles and using triangles results in the interpolation of elevation data linearly

on the Terrain. For that reason, linear interpolation technique was used to calculate height values

using the triangle vertices.

3.1.4.2. Get Meter Coordinates

Unlike the tile server of OSM, xml raw data uses WGS 84 datum for vertex coordinates. As

mentioned in Section 3.1.2.3, instead of WGS 84, Web Mercator projection has chosen. Elements

getting coordinate values from OSM xml need a coordinate conversion. Terrain component in

the framework is responsible for coordinate conversions and it provides 2 functions, using

formulas explained in Section 3.1.1.3:

Vector2 LatLontoMeters(double latitude, double longitude);
 Vector2 MeterstoLatLon(double meterX, double meterZ);

3.2. BUILDING

OSM xml file contains small amount of information for the building objects, therefore some

assumptions are made while converting 2D OSM building into 3D. Although generated buildings

have lower mesh quality compared to the real world, realistic buildings can be created with

textures applied on the each building facade (Figure 3.12).

Figure 3.12 - Building objects

 Chapter 3: URBAN GENERATOR

29

3.2.1. OSM Representation

In osm.xml file, buildings are represented either under <way> or <relation> tag given “key =

building”. <way> tag is used when a building can be represented as a single polygon (Figure 3.13).

Starting vertex and ending vertex are the same in the data to represent a closed shape which is

the footprint of a building. Each way has an id, a set of Nodes that are WGS 84 point coordinates

and tags for additional data (e.g. Name, Height).

Figure 3.13- Building represented with <way> tag

Another representation for a building can be done with <relation> tag. If there is a building

that needs to be represented as a multi polygon (e.g. buildings with holes), <relation> tag is useful

since it consists of a set of different ways. Each relation has one “outer” way which is the outer

wall of building and a set of “inner” ways which represent inner holes in the building. (Figure 3.14)

Figure 3.14- Building represented with <relation> tag

3.2.2. Preprocessing

3.2.2.1. Building Facade

The OSM file only consists of footprints of buildings which are defined by a set of vertices in

2D. In order to construct a building in 3D, building facades must be generated using 2D vertex

3.2. BUILDING

30

data. A building facade is simply a rectangle for which the lower two vertices are the corners of

the footprint and the upper two vertices are the same points shifted by the height of the building

on the y-axis.

For building height, OSM has defined 2 tags which are “key= building:height” and

“key=building:levels”. The key building:height accepts meters or inches as parameters and the

key building:levels accepts the number of a floors in the building. Despite the existence of these

tags, they are not commonly used by contributors and are left empty. Therefore, most of the

time, the height of building in OSM xml file is undefined. To solve this problem, a default height

interval is defined and buildings in the scene are generated randomly with a height in the interval.

While generating vertices for a building facade, the shape of the terrain should be considered.

Even if a building is placed on uneven terrain, building’s up vector should be Vup(0,1,0). That

means the roof of the building should be parallel to the xz-plane (Figure 3.15).

Figure 3.15- Building with (a) handled and (b) unhandled Building Height

In order to make buildings parallel to the xz-plane, an additional variable “equalized building

height” value is defined. This value is the y-component of the roof plane. In order to calculate

equalized building height, the lowest point of the building is detected. After that, building height

is added to the lowest y-value.

𝐸𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑃𝑙𝑜𝑤𝑒𝑠𝑡. 𝑦 + 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡

 Chapter 3: URBAN GENERATOR

31

3.2.2.2. Roof

For roof data, OSM xml has “key=roof:shape” tag to define the roof type of the building

(Figure 3.16). In addition to roof shape, “roof:height”, “roof:orientation”, “roof:color” and several

others tags are available depending on the roof type.

Figure 3.16- OSM roof types [Source: OSM wiki]

Although these tags exists in the OSM xml scheme, generally most roof data is empty for

buildings (e.g., no roof data for the whole Como city). Therefore “roof:shape” tag has not been

considered in our framework. Another reason for ignoring roof shapes is the aim of the

framework. Main goal for our framework is to collect data from streets and most of the time

roofs are invisible in the image records. That’s why custom roof features have low priority in our

framework feature list and may be implemented for the next versions.

For the roof of buildings in the framework, a flat roof shape is selected as default. There are

3 cases for drawing a flat roof plane:

 Building has convex shape

 Building has concave shape

 Building have holes inside

3.2. BUILDING

32

Buildings which have convex shapes can be simply defined as a triangle fan. However for

concave-shape buildings and buildings with holes, triangulation operation is necessary.

Triangulation is the decomposition of a polygonal area P into a set of triangles [26]. For the

triangulation of roof polygon, source code at [27] was used (Figure 3.17).

Figure.3.17 - Triangulated Concave Roof Polygon

3.2.3. Rendering

Buildings consist of a list of building facades and a default flat roofs. Building facades are

rectangles and can be represented with two triangles (Figure 3.18).

Figure 3.18 - Building Facade Mesh

Unity game engine supports back-face culling method which improves performance of the

program. Back-face culling determines whether a polygon of a graphical object is visible. It is a

step in the graphical pipeline that tests whether the points in the polygon appear in clockwise or

 Chapter 3: URBAN GENERATOR

33

counter-clockwise order when projected onto the screen. If the polygon is clockwise, it is

rendered in the scene. Conversely, if the polygon is counter-clockwise, it is marked as invisible

and ignored in the rendering process.

In OSM data, there is no standard for orientation of the building vertices. It can be either

clockwise or counter-clockwise (Figure 3.19). In order to benefit from back-face culling, building

way orientation should be determined. Shoelace algorithm was used to determine way

orientation.

Figure 3.19- Building way orientations. (a) Counter-clockwise (b) clockwise

Shoelace algorithm is normally used to calculate the area of 2D convex & concave polygons

where the x and y coordinates of the vertices are known. Another important property of the

algorithm is ability to detect the vertex order. Instead of taking the absolute value of the final

sum, sign of the result is checked and if the value is positive that means the vertices are ordered

clockwise otherwise the vertices are ordered counter-clockwise.

For building facades, 3 different texture types were used to create the material in order to

get “photo-realistic” results (Figure 3.20):

 Color Texture

 Normal Map

 Specular Map (Shininess Map)

3.3. BARRIER

34

Figure.3.20- Sample Building Material Textures (a) Color Texture (b) Normal map (c) Specular Map

For default, 25 texture sets were added to the framework which are distributed randomly

among buildings in the scene. Each texture set has different defined texture sizes and depending

on the wall size to which it is applied, the textures are repeated on the wall.

3.3. BARRIER

A barrier is a physical structure which blocks or impedes movement. Walls (Figure 3.21),

hedges and fences are examples of barriers. Similar to the buildings, OSM xml file contains less

amount of information and some assumptions has to be made such as height and thickness in

order to construct the 3D mesh.

Figure 3.21 - Barrier Object

 Chapter 3: URBAN GENERATOR

35

3.3.1. OSM Representation

In the OSM xml file, barriers are represented under the <way> tag given “key=barrier”. Each

way has an id, a set of Nodes that are WGS 84 point coordinates and tags for declaring the barrier

type and the area inside (Figure 3.22).

Figure 3.22 - Barrier OSM Xml sample

Barrier types that are supported in the framework are listed below:

 Fence

 Wall

 Retaining Wall

 City Wall (Historic)

3.3.2. Preprocessing

The OSM file only provides a 2D vertex coordinate array of barriers similar to highways and

this vertex array needs to be transformed into 3D. There are four different barrier types

supported in our framework. However, when they are categorized by their features, there are

two different types, fences and walls.

3.3.2.1. Fence

Fences in the scene have two components which are poles and a 2D mesh which supports

transparent textures (Figure 3.23).

3.3. BARRIER

36

Figure 3.23 - Fence type barrier, Chain-link

Poles are rectangular prisms, with default size 15x15x200 cm. Poles are placed every 4 meters

along the fence and are guaranteed to be placed at the corners. 2D mesh generation of the fence

is identical to the building facades. 2D mesh of the fence is a rectangle which the lower 2 vertices

are taken from the barrier segment and the upper 2 vertices are the same points shifted of the

height of barrier. As a default, a chain-link type fence is selected as texture which can be modified

via settings.

3.3.2.2. Wall

Wall, retaining wall and historic city wall are categorized as wall types since they have the

same mesh types with changing size and texture. Unlike fence, wall mesh is designed as a 3D

rectangular prism (Figure 3.24).

Figure 3.24 - Wall type Barriers: (a) retaining wall (b) wall (c) city wall

In order to convert 2D vertex arrays (Figure 4 red dots) to 3D rectangle prisms (Figure 3.25

green dots) the following calculations are made for each Osm Barrier Way segment:

 Chapter 3: URBAN GENERATOR

37

Figure 3.25 - Wall type barrier mesh generation

𝑉⃗ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑃𝑁+1 − 𝑃𝑁

𝑉⃗ 𝑈𝑝 = (0,1,0)

𝑉⃗ 𝑅𝑖𝑔ℎ𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒 (𝑉⃗ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑥 𝑉⃗ 𝑈𝑝)

𝑉⃗ 𝐿𝑒𝑓𝑡 = −𝑉⃗ 𝑅𝑖𝑔ℎ𝑡

𝑃𝐿𝑜𝑤𝑒𝑟𝐿𝑒𝑓𝑡1 = 𝑃𝑁 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝐿𝑒𝑓𝑡

𝑃𝐿𝑜𝑤𝑒𝑟𝐿𝑒𝑓𝑡2 = 𝑃𝑁+1 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝐿𝑒𝑓𝑡

𝑃𝐿𝑜𝑤𝑒𝑟𝑅𝑖𝑔ℎ𝑡1 = 𝑃𝑁 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡

𝑃𝐿𝑜𝑤𝑒𝑟𝑅𝑖𝑔ℎ𝑡2 = 𝑃𝑁+1 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡

𝑃𝑈𝑝𝑝𝑒𝑟𝐿𝑒𝑓𝑡1 = 𝑃𝑁 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝐿𝑒𝑓𝑡 + (0,𝐻𝑒𝑖𝑔ℎ𝑡, 0)

𝑃𝑈𝑝𝑝𝑒𝑟𝐿𝑒𝑓𝑡2 = 𝑃𝑁+1 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝐿𝑒𝑓𝑡 + (0,𝐻𝑒𝑖𝑔ℎ𝑡, 0)

𝑃𝑈𝑝𝑝𝑒𝑟𝑅𝑖𝑔ℎ𝑡1 = 𝑃𝑁 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡 + (0,𝐻𝑒𝑖𝑔ℎ𝑡, 0)

𝑃𝑈𝑝𝑝𝑒𝑟𝑅𝑖𝑔ℎ𝑡2 = 𝑃𝑁+1 + (
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

2
) ∗ 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡 + (0, 𝐻𝑒𝑖𝑔ℎ𝑡, 0)

3.4. HIGHWAY

38

3.4. HIGHWAY

Highways (Figure 3.26) are the most complex components in the urban scene since several

steps are required to draw them on the terrain surface.

In order to generate a highway, 3D highway mesh should be generated at first using 2D OSM

xml data. After each highway is generated in the scene, intersections (junctions) between

highways should be corrected. Then, if they exist, sidewalks should be added to the sides.

Figure 3.26 - Highway object

3.4.1. OSM Representation

In OSM xml file, highways are represented under <way> tag given “key = highway”. Each way

has an id, a set of Nodes that are WGS 84 point coordinates and tags for declaring the highway

type (Figure 3.27).

Figure 3.27 - Highway OSM xml sample

 Chapter 3: URBAN GENERATOR

39

Highway types that are supported in the framework are listed below:

 Residential

 Primary

 Secondary

 Tertiary

 Unclassified

 Tertiary-Link

 Service

 Path

 Railway

For each highway type, a different texture and way width is defined as default. All other

features of these types are identical. Railways and rivers in the scene are defined as a highway

too because of mesh similarity. However, sidewalk feature and intersection handling features are

disabled.

3.4.2. Preprocessing

3.4.2.1. From 2D to 3D processing

The OSM file only provides a 2D vertex coordinate array for highway (Red dots in Figure 3.28-

A) and this vertex array is needed to be transformed into 3D.

To generate a 3D Highway from a line segment, Left and Right vectors are calculated and new

vertex points are generated by moving size/2 times the left and right vector (Blue dots in Figure

3.28-B). Knowing the up vector and forward vector, calculating left and right vectors is easy. After

calculating, the initial point is summed with these vectors and multiplied by the size/2 to obtain

left/right side vertex point.

𝑉⃗ 𝑈𝑝 = (0,1,0)

𝑉⃗ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑁𝑜𝑑𝑒𝑁+1 − 𝑁𝑜𝑑𝑒𝑁

𝑉⃗ 𝑅𝑖𝑔ℎ𝑡 = 𝑉⃗ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑥 𝑉⃗ 𝑈𝑝

𝑉⃗ 𝐿𝑒𝑓𝑡 = − 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡

𝑃𝐿𝑒𝑓𝑡1 = 𝑁𝑜𝑑𝑒𝑁 + 𝑉⃗ 𝐿𝑒𝑓𝑡 ∗
𝑆𝑖𝑧𝑒

2

𝑃𝐿𝑒𝑓𝑡2 = 𝑁𝑜𝑑𝑒𝑁+1 + 𝑉⃗ 𝐿𝑒𝑓𝑡 ∗
𝑆𝑖𝑧𝑒

2

𝑃𝑅𝑖𝑔ℎ𝑡1 = 𝑁𝑜𝑑𝑒𝑁 + 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡 ∗
𝑆𝑖𝑧𝑒

2

𝑃𝑅𝑖𝑔ℎ𝑡2 = 𝑁𝑜𝑑𝑒𝑁+1 + 𝑉⃗ 𝑅𝑖𝑔ℎ𝑡 ∗
𝑆𝑖𝑧𝑒

2

3.4. HIGHWAY

40

Figure 3.28 – (a) Initial Points (b) Way with a width (c) Problem when angle changes (d) Angle changing Solution

The process introduced so far works only if all the line segments have the same slope.

However what happens when a highway consists of line segments with different slopes? (Figure

3.29)

As seen from Figure 3.28 – C for vertices where the slope changes, 2 different left and right

vertices are generated while there is only one needed. To prevent this, the algorithm below is

followed:

1. For starting node, Left/Right side vertex is generated classically

2. For mid nodes, 2 Left/Right Line Segments Generated (Figure 3.28 –C). Generated Line

Segments are intersected with each other and Intersection point is calculated. Calculation

point is accepted as Left/Right side vertex (Figure 3.28-D green vertices)

3. For ending node, Left/Right side vertex is generated classically

 Chapter 3: URBAN GENERATOR

41

Figure 3.29 - Highway drawn with handled and unhandled slope changes

3.4.2.2. Highway Intersections

If no process is applied for the start and end points of highways, they overlap with each other

at the intersection points and a flickering problem of two highway arises. Since the two roads will

have the same height value at the intersection point, z-buffer cannot determine which polygon

is at the front and that cause inaccuracies. In addition to the flickering problem, for intersection

detection it is important not to block highway with a sidewalk at crossroads in case there is a

sidewalk defined.

Using OpenStreetMap XML data, intersection detection is easy. 2 highways are intersected if

they have a common node. Intersection can be at the beginning node, in the mid nodes or in the

end node. Intersection in the mid points requires different techniques compared to the begin-

end node intersection. Instead of handling mid-point intersections differently, roads having mid-

point intersections are divided from the intersection point. As a result, a defined road only has

an intersection at the beginning or at the end. That unification allows one performing single types

of intersect correction operation.

For intersection handling, the following process is applied:

1. Identify all intersection points in the scene and make a list that holds intersection data

(Figure 3.30-A)

2. Perform intersection algorithm for each intersection (Figure 3.30-B)

3. Fill the empty spaces in the middle (Figure 3.30-C)

3.4. HIGHWAY

42

Figure 3.30 - Intersection Processing Stages

To detect an intersection, all of the nodes are held in a buffer with a counter. If a highway

contains that node, the counter is increased and the nodes having more than one point are

accepted as an intersection.

For each intersection, the following information is stored:

 Way ID for each highway

 Intersection Type for each highway (Front or End)

 Adjacent node coordinate for each highway (To calculate road direction vector)

After all intersections are identified and intersection objects are generated, the following

algorithm is applied for each intersection object:

1. Forward vector and Left/Right line segments are generated for each highway

2. Angles between vectors are calculated

3. Intersection truth table is generated

4. Angles are sorted into a buffer in ascending order

5. Until Intersection truth table is completely filled:

5.1. Pop an intersection angle from the top of buffer

5.2. Check truth table if highways belonging to that angle have already been corrected

5.3. If the truth table allows an intersection, intersect the 2 highways Left/Right line segment

by checking start or end point intersection and update the highway vertex list. Update

the truth table.

5.4. If the truth table does not allow the intersection, change angle to 360 – α and push the

angle to the end of intersection angles buffer.

 Chapter 3: URBAN GENERATOR

43

Angles for highways are calculated using

Cosine theorem. For N highway in the

intersection, C(N, 2) angles are generated

(e.g., for 4 highways, 6 different angles are

generated in Figure 3.31)

Angles are sorted in ascending order to

process the smallest angle each time. The

reason for that is to try to handle angles like f

and e in Figure-5 as late as possible, since these

roads are not directly intersected and those

angles should be handled correctly.

After sorting, the first angle is guaranteed

to be an acute angle and always has an

intersection. For angles >180, instead of line

segment intersection vector intersection should be used to catch the intersection.

Sample Highway Intersection Process:

Let’s take the Figure 3.31 as an example process. The figure represents an intersection of 4

different roads. The first step the algorithm takes is to generate forward vectors and calculate

the angle between each vector.

Assuming that a < b < d < f < c < e, steps of intersection handling are given in Figure 3.32 and

the corresponding steps of the truth table are given in Figure 3.33. As seen from the truth table

for the first three steps, intersections are allowed and corresponding highway sides are updated.

For step 4 (angle f), the two vectors already have intersections at given sides. So, f angle is

reversed and is pushed back to the buffer.

After step 5 is completed, the truth table is completely filled up which is the termination

condition for the algorithm.

Figure 3.31 - Road Half Vectors and Angles

3.4. HIGHWAY

44

Figure 3.32 - Sample steps of intersection processing

Figure 3.33 - Sample steps of truth table processing

 Chapter 3: URBAN GENERATOR

45

Depending on the road count, the intersection hole can be a triangle, a rectangle or a polygon.

For filling up the holes remaining at the intersection, a polygon is rendered accepting intersection

points as vertices (Figure 3.34).

Figure 3.34- (a) After intersection with holes (b) Intersection holes filled

3.4.2.3. Sidewalks

In OpenStreetMap XML data, sidewalks are defined with the “sidewalk” tag for highways:

Figure 3.35 - Side walk representation

Highways and sidewalks have very similar structures. Both highways and sidewalks have left

and right side vertex array, a width, and a texture. Sidewalks have additional meshes for left and

right side stones and stone height data.

To generate the sidewalk mesh, the highway vertex list is used. For example, the right side of

the left sidewalk is identical to left side vertices of highway. To generate the left side, left vector

is calculated the same as in Section 3.4.2.1 and vertices are shifted to the left side. With a defined

stone height, sidewalk surface mesh is escalated by that height and side stone mesh is rendered

again using highway vertices (Figure 3.36).

3.4. HIGHWAY

46

Figure 3.36- Road with Sidewalk on both sides

Sidewalks have similar problems as with highways at intersection points. If intersection is not

handled, overlapping and flickering problems appear (Figure 3.37-a) or, depending on the angle,

sidewalks may not connect with each other (Figure 3.37 –c).

Detecting intersection for two sidewalks is easy since the necessary values were already

calculated and stored while processing highway intersections. The following algorithm is used for

processing intersections:

For each sidewalk:

1. Intersected sidewalk id is detected from highway intersection object

2. Line segments are calculated similar to highway intersections

3. Intersection point is found and vertex list is updated

Figure 3.37 - (a) & (c): Unhandled sidewalk intersections, (b) & (d): corrected versions

 Chapter 3: URBAN GENERATOR

47

3.4.2.4. Draping

After roads are converted to 3D and drawn into the scene above the terrain, it can be easily

noticed that some parts of the road will remain in the air or some parts will remain invisible under

the terrain (Figure 3.38).

One of the main causes of this is that in OpenStreetMap data highways are represented with

the minimum number of points. That means, unless there is an angle change in the highway, it is

represented as a single long line segment. So far, height samples were only taken for each line

segment vertex. Therefore, highways which have long line segments have visibility problems

since the height of inter-values were not considered. Terrain’s slope change between the two

points of the long way segment causes misinterpretation of the height of intermediate points.

Figure 3.38 – (a) Road with Height Map visibility Problem (b) Draped Highway with pin Points

The solution for the problem is “Draping” the highway to the terrain, which is the term for

the process of projecting a 2D feature on a 3D surface. For draping roads, left and right side

vertices are draped independently to the terrain instead of full polygon draping.

Considering the terrain consists of triangles, roads have to be draped for each edge of the

triangle (Figure 3.39).

 Horizontally (Blue dots)

 Vertically (Yellow dots)

 Diagonally (Green dots)

3.4. HIGHWAY

48

Figure 3.39 - Road Draping

To find intersections, the algorithm below is followed:

For each line segment in highway:

1. From left to right, intersect longitudes. If there is an intersection, add it to point List

2. From top to bottom, intersect latitudes. If there is an intersection, add it to point List

3. From top-left, calculate the diagonal line segment then intersect with it. If there is an

intersection, add it to point List

There are three main problems while draping the road to terrain:

 Adding new vertices to the correct place

 Dissymmetrical points for left and right side of the highway

 Line Draping causes some peak points of terrain to remain above the highway

According to the draping algorithm, Intersection control is made for each line segment,

starting from left to right. In Figure 3.40 case 1, everything is normal since road direction is left

to right and intersection points are added to the point array in order, too.

However in case 2, since the order of the way is right to left, adding point 1 first will cause an

error on the highway geometry. To prevent this problem, instead of adding intersections one by

one, points are saved in a buffer until all checks for line segment are done. After there are no

more intersection points for that line segment, points are added in the detected order.

 Chapter 3: URBAN GENERATOR

49

Figure 3.40 - Adding vertices for 2 different cases

Another problem is Dissymmetry in the vertex count. Since left and right side of vertices are

considered as a 2D line and draping is done independently, different number of points for each

side can occur for the highway which breaks the symmetry. That means, for some intersection

points in the left side, there is no corresponding point on the right side (or vice versa). In Figure

3.41a, left side of the road has 5 vertices while right side of the road has 3 vertices.

Dissymmetry in the vertices count makes the highway triangulation and texture coordinate

calculation difficult. To solve this problem, where there is no intersection for the other side, a

new vertex is created and placed proportionally by looking at intersection placement (Yellow

points, Figure-3.41b).

3.4. HIGHWAY

50

Figure 3.41 - (a) Dissymmetry Problem while draping, (b) Solution

The final problem when draping for some part of the road, if a local peak point remains inside

the highway polygon, that part could not be corrected with 2D-line draping and remains above

the highway (Figure-3.42). A possible solution for this is generating a third line in the middle.

However, doing this will double the triangle count for the highway in the scene and make the

highway intersection calculations much more complex. Because of that reason, instead of

draping a third line, highways are drawn 20 cm above the terrain. That threshold eliminates most

of the peak points, although there still exist some cases where this threshold is insufficient.

Figure 3.42- Highways that remains under terrain

 Chapter 3: URBAN GENERATOR

51

3.4.3. Rendering

Highway mesh is generated by triangulating left and right side vertices. Depending on the

OSM xml data and the terrain draping, triangle sizes vary (Figure 3.43).

Figure 3.43- Highway Mesh

Texture coordinates are dynamically calculated to make sure that road texture (Figure 3.44)

is continuous. Left side vertexes always have 0 value and right side vertexes always have 1 value

for their U component of texture coordinates. For V coordinates, length of way segment is

calculated for each segment starting from 0. Choosing texture option as “repeat” allow us to

assign a coordinate greater than 1. Therefore adding segment length each time to the V

coordinate smoothly generates the texture coordinates.

Figure 3.44 - Road Texture Samples

3.5. 3D OBJECTS

52

3.5. 3D OBJECTS

In addition to highways, buildings and barriers, OSM xml contains dozens of different object

data. These objects are gathered in the 3D Object component (Figure 3.45).

Figure 3.45 - 3D Objects

3.5.1. OSM Representation

In OSM xml file, each object is defined under <node> tag which provides WGS 84 coordinates

that the object stands and set of key-value pairs for further information (Figure 3.46).

Figure 3.46 - Samples of 3D object tags

Supported objects in the framework are listed below:

 Traffic Signal

 Tree

 Drinking Fountain

 Telephone Box

 Post Box

 Street Lamp

 Chapter 3: URBAN GENERATOR

53

3.5.2. Preprocessing

Objects such as Trees, Drinking Fountains, Telephone Boxes and Post Boxes do not need

preprocessing. Loaded Objects are rendered at the same coordinate given in the xml file. On the

other hand, Traffic Signals and Street Lamps coordinates require a correction. These two objects

share nodes with highways in the scene. Since highway nodes have been processed and 3D road

mesh generated, if the original coordinate is used the objects will appear in the middle of the

road (Red dots, Figure 3.47). Instead, they should be translated to the left/right side of the

highway (Green dots, Figure 3.47).

Traffic Signals can be placed only at the road intersections. Therefore traffic signal objects are

attached to the intersection, specifically the “Intersection Hole” objects. In OSM xml file only one

traffic signal is assigned to the intersection point. Instead of drawing a single traffic light, they are

given to each highway at the intersection placing highways’ right sides.

Figure 3.47 - Highway Mesh. Original Vertices (red) and generated vertices (green)

Street Lamps can be any vertex of highway except the begin/end points. OSM xml does not

support combining tags with street lamps. Since at the intersections traffic signals will exist,

street lamps cannot be at the begin/end Node (The case where there is no Traffic Sign and a

Street Lamp exists was omitted). Street Lamps are attached directly to the highway on which they

reside. Similar to Traffic Light, Street Lamps are represented by only 1 for each node. There is no

tag available for which side of the highway they are, therefore 2 street lamps are generated for

each side.

3.5. 3D OBJECTS

54

55

Chapter 4 : DATA COLLECTOR

Our main goal with this thesis is generating 3D urban reconstruction datasets. For this

purpose, Data Collector component was implemented by allowing users to collect data from the

generated 3D urban environment. Similar to the real-world data collectors (Figure 4.1), we

simulated two type of collector which are Camera Van and Trekker which supports both camera

and laser scanner (LiDAR5). By navigating around the city using them, users are able to generate

a collection of video frames and point cloud data (PCD).

Figure 4.1 - (a) Google Trekker (b) Google Camera Car [28]

Before recording starts, users are able to add a set of camera and laser scanner which they

can edit their parameters. After recording is finished, the component first generates a log file

which contains the positional data during navigation. Then, using the log file and the specified

cameras/LiDAR settings, data collector generates the video streams and PCD (Figure 4.2.).

Figure 4.2 - Data Collector Component Diagram

5 LiDAR : Laser Imaging Detection and Ranging

4.1. CONTROLLER

56

4.1. CONTROLLER

4.1.1. Camera Van

Camera van is a 3D van model which consists of 4 wheels and a van body. Using the vehicle

physics features of Unity Engine, the van model has been designed similar to its real-world

examples. Thus, any distortions in the data caused by the camera van are imitated in the

framework.

The Camera Van has a mass of 1000kg and it is affected by the gravity. Center of mass is

translated to the bottom of the van (Figure 4.3-A, yellow mark). Because of the angular force if

the van makes a sharp turn, it can tilt over. By translating the center of mass, we reduced the

effect of angular force and stabilize the van.

Beside the mass, “drag” and “angular drag” parameters were defined for the body of van.

Dragging is used to slow down objects. With these parameters, air friction effect was given to

body of the van so when there is no applied force the van slows down automatically.

Figure 4.3 - Camera Van (a) mesh and colliders (b) texturized mesh

For each wheel of the van, a “Wheel Collider” is defined (Figure 4.3A, green circles). Wheel

colliders allows defining several parameters which are:

 Forward and sideways frictions

 Suspension Distance and Damping Rate

 Motor Torque

 Steer

 Chapter 4: DATA COLLECTOR

57

Friction is necessary to make wheels rotate when a force is applied otherwise they would slip

instead of rotating on the highway. For the framework, a default friction value was defined to

make the wheel rotate when the van is moving. Different highway surface types (e.g., slippery

surfaces where the wheels do not rotate) were ignored.

Suspension is a system that allows relative motion between vehicle and the wheels. It is used

to absorb road noises and bumps. For the tires of the camera van, suspension effect was defined

and the tires can move up to 10cm on the vertical axis. In addition, a damping value was defined

to stop continuous motion of the suspension springs.

In order to move the camera van, a torque power was defined to rear wheels. When the user

presses the up arrow key, torque of the wheels are increased up to 100 torque. To turn left/right,

again arrow keys are used. A steer angle is defined to front tires which changes from -45 to +45

degree.

4.1.2. Trekker

Trekker enables to feature more places around the generated model – places no car can

access. This wearable backpack is outfitted with a camera system on top, and its portability

enables us to gather images while maneuvering through tight, narrow spaces or locations only

accessible by foot. To simulate the Trekker in our framework, a collection of non-textured 3D

human model is used which is taken from Unity’s standard assets package (Figure 4.4).

Figure 4.4 - Trekker (From Unity Standard Package)

4.1. CONTROLLER

58

The Unity package supports different states of the character which are walking, running and

jumping. The Trekker can be controlled using arrow keys and space key can be used to jump.

4.1.3. LOG File Generation

Taking screenshots from multiple camera sets and at the same time getting laser data are

slow processes and they cannot be done between frames. Therefore, a log file is necessary to

hold the positional data of the controller for later processing after the recording is finished.

During record, the following parameters are kept for each frame:

 GPS position vector

 Controller rotation vector

 Steer angle

 Velocity

Cameras and lasers scanners may have different frame rates. Therefore, they need different

logging entries. For this reason, in addition to parameters above, the type of the log entry is

added as parameter. Note that cameras are assumed to have the same frame rates so, only one

sample is taken for the camera set. Similarly, only one sample is taken for the laser set assuming

they have the same frame rate (Figure 4.5).

Log entries does not contain timestamps which can be calculated with existing values:

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝐸𝑛𝑡𝑟𝑦𝑋 =
𝐼𝐷𝐸𝑛𝑡𝑟𝑦𝑋

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒

Figure 4.5 - Sample Controller Log File

 Chapter 4: DATA COLLECTOR

59

4.2. VIRTUAL CAMERA

Virtual cameras are used to capture video frames from the generated 3D scene. Cameras are

implemented using the Unity’s camera class and have the following parameters:

 Camera ID

 Pitch, Yaw and Roll

 Position

 Field of View

There can be multi cameras defined for the controller, therefore a unique ID is defined for

each camera. Cameras are attached to the controller and orientation of cameras are defined by

pitch, yaw and roll which are the rotation values for x, y, and z axis. In addition to orientation,

position with respect to controller is defined for each camera by taking center of the controller

as the reference point. The field of view (FOV) describes the angular extent of scene by the

camera.

When the record was finished and the log file was generated, cameras are activated. Each

camera parses the log file and detects the log entries that are belong to their ID’s. Then, for each

log entry belonging to the camera, position and rotation values are updated using the following

equations:

𝑆𝑐𝑟𝑒𝑒𝑛𝑆ℎ𝑜𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶𝐴𝑀𝐸𝑅𝐴 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝐿𝐸𝑅 + 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶𝐴𝑀𝐸𝑅𝐴

𝑆𝑐𝑟𝑒𝑒𝑛𝑆ℎ𝑜𝑡𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝐴𝑀𝐸𝑅𝐴 = 𝑉𝑒𝑐𝑡𝑜𝑟3(𝑅𝑜𝑙𝑙, 𝑃𝑖𝑡𝑐ℎ, 𝑌𝑎𝑤) + 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝐿𝐸𝑅

After the camera is positioned correctly, the screen is captured with the JPG image format.

Saved file is named using the following style:

Name: CameraID + “//” + #Frame Number + “.jpg”

4.3. VIRTUAL LASER SCANNER (LiDAR)

Laser scanners (LiDAR) are used to capture 3D point cloud from the environment. By

combining them with the video frames, detailed 3D map of the urban environment can be

generated. In our framework, a virtual laser scanner was implemented to generate such data.

4.3. VIRTUAL LASER SCANNER (LiDAR)

60

4.3.1. Point Cloud Data (PCD)

A point cloud is a set of data points in some coordinate system. In a three-dimensional

coordinate system, these points are usually defined by X, Y, and Z coordinates, and often are

intended to represent the external surface of an object. 3D scanners measure a large number of

points on an object's surface, and output a point cloud as a data file. The point cloud represents

the set of points that the device has measured.

There are several file formats to store point cloud data and among them, PCD format was

chosen for its flexibility and speed. Each PCD file contains a header that identifies and declares

certain properties of the point cloud data stored in the file. PCD header contains the following

entries [29]:

 VERSION – specifies the PCD version

 FIELDS – specifies the name of each dimension/field that a point can have. For example:

FIELDS x, y, z # XYZ coordinates

FIELDS x, y, z, rgb # XYZ coordinates + Colors

FIELDS x, y, z, normal1, normal2, normal3 # XYZ coordinates + Surface normal

 SIZE – specifies the size of each dimension in bytes

 TYPE – specifies the type of each dimension as a char. The current accepted types are:

 I - represents signed types int8, int16, and int32

 U - represents unsigned types uint8, uint16 and uint32

 F - represents float types

 COUNT – specifies how many elements each dimension has. For example, XYZ data usually

has 1 element, but a feature descriptor like the VFH has 308. By default, if COUNT is not

present, all dimensions’ count is set to 1.

 WIDTH – specifies the width of the point cloud dataset in the number of points.

 HEIGHT – specifies the height of the point cloud dataset in the number of points.

 VIEWPOINT – specifies an acquisition viewpoint for the points in the dataset. The

viewpoint information is specified as a translation (tx, ty, tz) + quaternion (qw, qx, qy, qz).

 POINTS – specifies the total number of points in the cloud.

 DATA – specifies the data type that the point cloud data is stored in. Latest version

supports ascii and binary types.

After the Header is finished in the given order, rest of the data points are listed one entry per

line in the PCD file.

 Chapter 4: DATA COLLECTOR

61

4.3.2. PCD Generation

LiDAR is a remote sensing technology that measures distance by illuminating a target with a

laser and analyzing the reflected light. A LiDAR is represented with the following parameters:

 Range

 Horizontal FOV

 Vertical FOV

 Horizontal Resolution

 Vertical Resolution

 Frame Rate

Range determines the minimum and the maximum distances that the laser can process.

Horizontal and vertical FOV angles defines the viewing plane of the laser and resolutions

determines how dense the point cloud is. Finally, frame rate states the capture count per second.

In our Framework, we simulate the lasers with Ray Casting method. Ray Casting is the process

of shooting an invisible ray from a point in a specified direction, to detect whether any objects

lay in the path of the ray.

To generate a PCD file, a set of Rays are sent from the center of laser scanner to the directions

using the FOV and Resolutions parameters of the LiDAR (Figure 4.6). Rays are generated using

Unity’s Physics engine:

bool Raycast(Vector3 origin, Vector3 direction, out RaycastHit hitInfo, float maxDistance);

If the ray hits with an object, Raycast function returns true and it fills the hitInfo object with

the intersection data. If there is no intersection, the function returns false and the hitInfo object

remains empty. HitInfo object stores the world position and color of the intersection.

Figure 4.6 - LiDAR Ray casting

4.3. VIRTUAL LASER SCANNER (LiDAR)

62

In order to get the liDAR origin, the log file is parsed similar to the camera component and

the virtual liDAR is translated to the corresponding coordinate at each frame. After it is positioned

correctly, rays are created using FOV and resolution values which is used to represent the

direction vector in spherical coordinate system. Spherical coordinates are converted to the

Cartesian coordinates then using the “Raycast” function the distance values are generated. For

each laser log entry, different PCD files are created using the following naming style:

Name: “LiDAR” + “//” + #FrameNumber + “.pcd”

 Our PCD file is arranged such that, it shows the world position of the intersection points and

the distance from the laser. We preferred float as the data type and used ascii format for

representing point cloud. A sample PCD header is given below with 360 degree Horizontal FOV

and 30 degree Vertical FOV and 1 degree resolutions:

#Polimi OSM City Engine PCD

VERSION .7

FIELDS x y z distance

SIZE 4 4 4 4

TYPE F F F F

COUNT 1 1 1 1

WIDTH 360

HEIGHT 30

VIEWPOINT 0 0 0 1 0 0 0

POINTS 10800

DATA ascii

63

Chapter 5 : USER INTERFACE

 OSM xml data itself is inadequate to build an urban environment since it is an incomplete

dataset. In order to resolve missing information issues, users are required to enter various

parameters. As one of our main goals, the generated urban model should be close to its original

and users should be able to make edits on the scene to achieve better quality. For these reasons,

a user interface is implemented using Unity’s UI system. Figure 5.1 shows components of the

user interface which are:

 Load/Save Menu

 Default Settings Menu

 Edit Menu

 Add Object Menu

 Data Collector Menu

Before creating the project, users can edit various parameters on the Urban Model such as

textures and sizes of the objects by using the “Default Settings Menu”. Then with the “Load/Save

Menu”, users can provide the desired area to be rendered or provide a save file to load an existing

project. After the urban model is generated, users can make several edits on specific objects

using “Edit Menu” such as editing sizes of highways or editing size of buildings. They can also add

new 3D objects (e.g., trees, cars, buildings) using “Add Object Menu”. Finally, users can collect

urban data with the “Data Collector Menu” by specifying camera and LiDAR parameters.

Figure 5.1- User Interface Component Diagram

5.1. LOAD/SAVE MENU

64

5.1. LOAD/SAVE MENU

Load/Save Menu is responsible for loading the Urban Model into the scene. The menu button

is in the upper left corner of the screen. When clicked, the menu panel is opened as shown in

figure 5.2. Using this menu, users can open a new project, load existing projects or save current

projects.

Figure 5.2- Load/Save Menu

5.1.1. Create New Project

In order to create a new project, the user should provide an OSM file. There is a “Browse”

button on the menu panel and when clicked a File Browser Dialog appears (Figure 5.3a). Users

are allowed to select .osm extension files from their local drives.

After selecting an .osm file path, the user should choose one of the listed Map Providers

(Figure 5.2). As explained in Section 3.2, map providers are used to download tile images for

texturing the Terrain surface.

When the “Render” button is clicked, the OSM file path and the Map Provider selections are

sent to the Urban Generator component and the scene is created.

 Chapter 5: USER INTERFACE

65

5.1.2. Load/Save Project

5.1.2.1. Saving Current Project

Users are able to do various edits via the user interface therefore a save point is a must to

keep changes and continue working on the same project. The save point for our framework is

simply designed as an xml file and contains the following data:

 Original OSM file

 Edits made for Buildings

 Edits made for Highways & Sidewalks

 Edits made for Barriers

 Added/Deleted 3D models and positions

Load/Save menu panel contains a “Save” button in order to save the current project. When

it is clicked, a File Browser Dialog appears. Users can select the saving path and type a name for

their save file (Figure 5.3b).

5.1.2.2. Loading Existing Project

From the Load/Save menu, users can load existing projects. When the “Browse” button is

clicked under the load project section, a File Browser Dialog appears similar to the create project

operation and when the “Render” button is clicked, the saved project is created by the Urban

Generator component.

Note that, files are saved locally, which means that saved file can only be loaded if it is on the

same machine. The reason for this is that, added external texture images, and 3D models are not

placed in the save file. Instead, the save file only contains the path of external files.

Figure 5.3 - File Browser Dialog (a) Select File Mode (b) Save File Mode

5.2. DEFAULT SETTINGS MENU

66

5.2. DEFAULT SETTINGS MENU

The OSM xml file contains plenty of specifications inside and normally, does not need

additional parameters. However, OpenStreetMap contributors do not usually completely fill all

the specification fields of the elements. For example, there are existing tags for highways defining

way width, sidewalk information, and even tags for texture types exist but in our test scene

(Como City) there is no data available for sidewalk among +1000 defined streets and only a few

of them have a texture defined.

It is necessary to make assumptions for the missing values of items. For this reason, a set of

parameters are accepted as default settings and stored in an xml file. Users can access the

settings and change them via the settings menu. The “Default Settings” menu button is in the

upper left corner of the screen. When clicked, a drop down list appears containing building,

highway, barrier and skybox settings (Figure 5.4).

Figure 5.4 - Default Settings Menu

5.2.1. Default Building Settings

Building settings are available from “Building Settings” inside Default settings and are

responsible for 2 features:

 Assigning a building height

 Assigning a facade skin

At the top of the menu panel, users can enter an interval of height values (Figure 5.5). When

a new scene is created, building heights are randomly assigned between these intervals. Buildings

which have a defined height value are not affected by this setting.

 Chapter 5: USER INTERFACE

67

At the middle of menu panel, default building skins are shown in a scrollrect (Figure 5.5).

Each building skin contains:

 Skin Name

 Color Texture

 Normal Texture

 Specular Texture (Shininess)

Figure 5.5 - Default Building Settings

As a default, 25 skins are loaded into the building settings. Users can activate or deactivate

the skins by clicking the “Is On” box to the left of each item. When a new scene is created, the

framework assigns those active skins randomly to buildings.

Users can also create new building skins from the bottom of menu panel. When the boxes

are clicked, a file browser dialog appears to ask users for an image file allowing “.png”, “.jpg”,

“.bmp” and “.tif” extensions. Texture width determines the size in meters. If the wall is wide,

textures are repeated over the wall instead of stretching. When the “Add Skin” button is clicked,

a new skin is added at the end of the skin list.

Changes will not be applied until the user clicks on the “Save” button at the bottom of the

menu panel. If the “Reset” button is clicked, all changes made are reverted and the framework’s

initial settings will be loaded again. The “Cancel” button can be used to exit the menu without

saving changes.

5.2. DEFAULT SETTINGS MENU

68

5.2.2. Default Barrier Settings

Barrier settings are available from “Barrier Settings” inside the Default settings and they are

responsible for 2 features:

 Assigning Barrier Size

 Assigning Barrier Skin

Supported barrier types are listed on the menu panel inside a scrollrect (Figure 5.6). Each

barrier item has:

 Texture

 Name

 Height

 Thickness

Figure 5.6 - Default Barrier Settings

Users can change the height and thickness of barriers using input fields for each element. In

addition, barrier textures can be changed by clicking the texture image. When users hover the

mouse into texture image, a text appears saying “Click to Change Texture” on the image. After

clicking, a file browser dialog opens and asks for a path of image file accepting “.png”, “.jpg”,

“.bmp” and “.tif” extensions.

 Chapter 5: USER INTERFACE

69

5.2.3. Default Highway Settings

Highway settings are available from “Highway Settings” inside the Default settings. Supported

highway types are listed in the menu panel inside a scrollrect (Figure 5.7). Each highway item has:

 Texture

 Way size

 Left/Right sidewalk activations

 Left/Right sidewalk sizes

Users can change the default texture of highways by clicking the texture image. After clicking,

a file browser dialog opens and asks for a path of image file accepting “.png”, “.jpg”, “.bmp” and

“.tif” extensions.

The way size can be changed from the input field under size and uses meters as unit. In

addition, users can add sidewalks to the sides of highways by default. Left and Right sides are

determined by the order of vertices in the OSM xml data. With the last column, sidewalk widths

can be determined.

Figure 5.7 - Default Highway Settings

5.2. DEFAULT SETTINGS MENU

70

5.2.4. Skybox Settings

Skybox settings are available from “Skybox Settings” inside the Default settings. As part of the

specifications, users can decide the time of the day by using the scrollbar on the menu panel

(Figure 5.8).

Figure 5.8 - Default Skybox Settings

Scrollbar intervals are from 8:00 am to 8:00 pm. Skybox has an active sun and in accordance

with the original, the sun rises in the east and sets in the west. Different times of day are shown

in Figure 5.9.

Figure 5.9 - Different day times in the scene

 Chapter 5: USER INTERFACE

71

5.3. EDIT MENU

The default settings menu allows users to change many item features in the scene. Changes

made with default settings are global and affect all items in that category. Where a specific

change is needed, edit menus can be used. Edit menus have similar capabilities to default

settings, except the changes can be made after creating a scene and they are item specific.

Edit menus are accessible when an item in the scene is selected using the left mouse button.

When selected, the item’s color changes into blue and the menu appears at the right-hand side

of the screen. Items can be deselected by an empty click, reclicking or clicking another item.

5.3.1. Building Edit

When a building facade in the scene is selected, the

building edit menu appears containing the selected building’s

information (Figure 5.10). From the edit menu following

operations can be done:

 Edit height of building

 Edit texture of selected facade

 Replace generated building with a 3D model

When the building height is changed, the mesh of each

building facade is updated with the new height and a new

roof is rendered with the new height value.

Auto-generated building meshes are sometimes

inadequate compared to the original building (e.g., churches,

modern designed buildings). In this case users can replace the

generated building with its 3D model. When “Load 3D

Building Model” is clicked, a file browser dialog will appear

and ask the user to select an object file. If a building is

replaced with its 3D model, it gets 3D object category

features and the existing building edit features are disabled.

 Figure 5.10 - Edit Building Menu

5.3. EDIT MENU

72

There are plenty of initial default building skins and users are able to add more via default

settings. However the aim of our framework is to generate models closest to the real world,

therefore editing facade textures and loading the original texture is necessary.

The edit menu contains a button named “Edit Facade Texture” and when clicked, a facade

texture edit menu appears mid screen (Figure 5.11).

Figure.5.11 - Edit Facade Texture Menu

From the edit facade menu panel, users can upload color, normal and specular textures

similar to default settings. In addition, users can crop the image using 4 black pins on the larger

texture image. There are texture coordinates on all 4 corners on the right side of large image.

When updating the black pins, numbers are changing automatically between 0 and 1. In case

repeating texture is needed, users can update coordinate values manually by entering values >1.

 Chapter 5: USER INTERFACE

73

5.3.2. Barrier Edit

When a barrier in the scene is selected, the barrier edit

menu appears containing the selected barrier’s information

(Figure 5.12). From the edit menu, the following operations

can be done:

 Edit Barrier Size
 Edit Barrier Texture

Users can edit the thickness of the barrier by editing the

“Thickness” input field. If the barrier type is fence, only the

fence poles are affected by the edit.

Similarly, users can edit the height of the barrier by

editing the “Height” input field. If the barrier type is fence,

both the fence plane and the poles are affected from the edit.

 By clicking the image in the middle of the menu panel, users can edit the barrier texture.

When users hover the mouse into the image, a text appears saying “Click to Change Texture”.

After clicking, a file browser dialog opens and asks for a path of image file accepting “.png”, “.jpg”,

“.bmp” and “.tif” extensions.

Figure 5.12 - Barrier Edit Menu

5.3. EDIT MENU

74

5.3.3. Highway Edit

When a highway in the scene is selected, the highway edit

menu appears containing the selected highway’s information

(Figure 5.13). From the edit menu, the following operations

can be done:

 Editing highway width

 Enable/Disable sidewalk

Highways are not independent items and when there is a
change in one highway, multiple highways and 3D objects are
affected.

In order to edit highway width, the following changes are
made in the scene:

 Way intersections are regenerated

 Left/Right sidewalks are regenerated

 Sidewalk intersections are updated

 Street Lamps and Traffic Light positions are updated

 Figure 5.13 - Highway Edit Menu

Under the pavement section in the highway edit menu, sidewalks can be enabled/disabled

and the sidewalk width can be updated. In order to edit sidewalks, the following changes are

made:

 Related sidewalk is regenerated

 Related sidewalk intersections are recalculated

 Chapter 5: USER INTERFACE

75

5.3.4. 3D Object Edit

When an object in the scene is selected, the object edit

menu appears containing the selected object’s information

(Figure 5.14).

 From the object edit menu, users are able to change the

position, rotation and scale of objects. Besides this, the same

operations can be done via mouse using Gizmos (Figure 5.15).

Gizmo is a tool for transforming an object. It consists of

arrows or circles representing the x, y and z axis. By dragging

arrows or circles objects can be translated, rotated and

scaled.

When an object is selected, gizmo is activated and

appears at the center of the selected object. By default,

Translate gizmo is activated and using the number keys gizmo

mode can be changed:

 1: Translate Gizmo

 2: Rotate Gizmo

 3: Scale Gizmo

 Figure 5.14 - 3D Object Edit Menu

Figure 5.15 - Transform Gizmos

5.4. ADD OBJECT MENU

76

5.4. ADD OBJECT MENU

OSM xml defines dozens of different object types and several of them are supported in our

framework. Object variety in the scene increase the complexity and therefore improves quality.

For this reason, “Add Object Menu” is implemented to support objects not defined in the xml

file.

Add Object Menu was placed at the bottom center of the screen and consist of 7 sections

(Figure 5.16):

 Add Trekker

 Add Camera Van

 Add Vehicle

 Add Environment Object

 Add City Related Object

 Add Wall

 Load External Object

Figure 5.16 - Add Object Menu

Add Trekker button puts a human character into the scene and Camera Van puts a van into

the scene which is controllable by arrow keys. They are both used to collect data from the scene

as covered in Chapter 4.

In the scene, Trekker and Camera Van cannot be found at the same time. Similarly, the Add

Object Menu does not allow users to add more than one Trekker or Camera Van. These two data

collectors can be removed and added again using the camera menu.

Supported objects in the framework are categorized into 4 sections which are Vehicle,

Environment, City Related and Wall. Each category has a button in the Add Object Menu and

when clicked, they activate a menu that contains a list of objects (Figure 5.17).

In the object list, each object is represented by its icon and name. By selecting an item from

the list, the corresponding object appears in front of the camera and it can be transformed to the

desired place using the object edit gizmos covered in Section 5.3.4.

 Chapter 5: USER INTERFACE

77

Figure 5.17 - Environment Object List Menu

Vehicle section contains:

 Bus

 Station Wagon Car

 Police Car

 Taxi

 Van

Environment section contains:

 Broad Leaf Tree 1

 Broad Leaf Tree 2

 Conifer Tree

 Palm Tree

 Broad Leaf Tree 3

 Fountain 1

 Fountain 2

 Sculpture 1

 Sculpture 2

 Sculpture 3

City Related section contains:

 Traffic Light

 Double Sided Traffic Light

 Traffic Light with Longer Pole

 Street Lamp

 Phone Box

 Garden Chair

 Hydrant

Wall Section contains:

 Metal Fence

 Concrete Wall Block

5.5. DATA COLLECTOR MENU

78

In addition to predefined objects, users can add their own desired objects using the “New”

button on the right of Add Object Menu bar. For this component, an external object loader library

[30] was used to load .OBJ6 file at runtime. When the “New” button is clicked, a file browser

dialog appears requesting the object path. After the path is selected, the framework search for

material file (.MTL7) in the specified path and generates the 3D object.

5.5. DATA COLLECTOR MENU

Data collector menu is responsible for the data-collecting

component of the framework. This menu appears on the right-

hand side of the screen when there is a data collector (camera

van or Trekker) in the scene. With the menu, users can:

 Start/Stop data recording

 Access Camera Settings

 Access Laser Settings

Using the play button at the top of menu panel (Figure

5.18), recording process can be initiated and pressing the same

button starts generating output data as covered in Chapter 4.

Frame rate of the recording cameras can be set directly

from the data collector menu. By default, the camera frame

rate is 24 and all cameras defined in the camera settings should

have the same value.

Steering of the front wheels and the velocity of the camera

van are shown in the menu during recording if camera van is selected as a data collector,

otherwise these fields remain empty.

5.5.1. Camera Settings

The Camera Settings Menu is available under the “Camera Settings” button in the “Data

Collector Menu” (Figure 5.18). Camera settings contain information of all camera instances

belongs to data collector.

6 Wavefront OBJ File, is a geometry definition file format developed by Wavefront Technologies
7 MTL : Material File (Wavefront), Describes the material properties (e.g., Textures, Colors) of the objects

Figure.5.18 - Data Collector Menu

 Chapter 5: USER INTERFACE

79

From camera settings, users can create multiple camera instances using the “Add Camera”

button on the bottom of the menu panel (Figure 5.19). When new camera instances are created,

they are added to the scrollrect in the middle of the menu.

Figure 5.19 - Camera Settings Menu

Each camera instance has the following parameters:

 Camera ID

 Status (Active or Inactive)

 Field of View

 Pitch, Yaw and Roll

 Position with respect to Data Collector’s center

Each camera has an ID to distinguish their outputs. ID’s are given in increasing order starting

from 1. Camera instances can be enabled or disabled using the tick box near the camera id in the

menu. Pitch, Yaw and Roll values specifies the rotation of the camera and their range from -180

to 180 degree. Field of View (FOV) value is the view angle of the camera and range from 0 to 180

degree.

5.5. DATA COLLECTOR MENU

80

5.5.2. Laser Settings

The Laser Settings Menu is available under the “Laser Settings” button in the “Data Collector

Menu” (Figure 5.18). Laser settings contain information of the laser scanner which belongs to the

data collector.

From this setting, users can edit the following parameters of the Laser Scanner (Figure 5.20):

 Position with respect to the center of the controller

 Rotation (pitch, yaw and roll)

 Min Distance, Max Distance

 Field of View (Vertical)

 Field of View (Horizontal)

 Vertical Resolution

 Horizontal Resolution

 Frame Rate

Real-world laser scanners have effective distance ranges from ~0-5 meter to ~100-150

meters. Although our virtual laser can work for infinitive distances, it was restricted to 200

meters.

Figure 5.20 - Laser Scanner Settings Menu

 Chapter 5: USER INTERFACE

81

Field of View (FOV) is defined both vertically and horizontally. These are angle values and

horizontal FOV ranges from 0 to 360 degrees while vertical FOV ranges from 0 to 180 degrees. In

order to determine the density of the laser rays, vertical and horizontal resolutions are defined.

These two resolution takes angle as parameter and they can be very small variables to increase

point count.

By default, laser scanner is assumed to be placed in parallel with the roof of the camera van

and front vector of the scanner is same as the van. The position of the laser scanner with respect

to center of camera van can be edited from the menu.

Users can enable or disable the laser scanner component by ticking the “Is Active” toggle. If

the scanner is not active, all of the input fields are disabled and the recording process does not

generate point cloud data.

5.5. DATA COLLECTOR MENU

82

83

Chapter 6 : RESULTS AND EVALUATION

In this chapter, we present the results of our framework by generating a tiny output sample

using our three component, which are presented in the previous chapters. Later, we compared

the generated 3D scene with the real world then discussed about the overall quality. Finally, we

evaluate the performance of the framework.

6.1. SAMPLE OUTPUT GENERATION

To generate the sample scene, junction of “via Pannilani” and “via Provinciale per Lecco” in

Como city was selected. After downloading the OSM file described in Appendix A, a new project

was created.

Initially, the scene was not containing any 3D objects except the traffic signals. After a couple

minute of editing process, we added 4 vehicles, 10 trees and 9 metal fence barriers then applied

necessary transformations to each of them.

When editing process was finished, a camera van was placed into the scene with 3 cameras

and a LiDAR on top of it. To generate a small dataset, a record was taken around 10 seconds using

the path shown in Figure 6.1.

Figure 6.1 – Sample Recording Path

6.1. SAMPLE OUTPUT GENERATION

84

We oriented the 3 cameras and LiDAR as follows:

 Camera 1: FOV = 90, Pitch = 0, Yaw = 0, Roll = 0, PosX = 0, PosY = 2, PosZ = 0

 Camera 2: FOV = 90, Pitch = 0, Yaw = 90, Roll = 0, PosX = 0, PosY = 2, PosZ = 0

 Camera 3: FOV = 90, Pitch = 0, Yaw = -90, Roll = 0, PosX = 0, PosY = 2, PosZ = 0

 LiDAR : Range: 1-120, FOVVERTICAL= 30, FOVHORIZONTAL=360, ResolutionVERTICAL = 7.5,

 ResolutionHORIZONTAL = 45, Pitch = 0, Yaw = 0, Roll = 0, PosX = 0, PosY = 2, PosZ = 0

After the framework finished processing, it generated the following files:

 Log File (Figure 6.2)

 Set of İmages for each camera (Figure 6.3, 6.4 and 6.5)

 Set of PCD files (Figure 6.6)

Figure 6.2 - Sample Log File

 Chapter 6: RESULTS AND EVALUATION

85

Figure 6.3 - Sample Output Frames, Front Camera (Cam 1)

6.1. SAMPLE OUTPUT GENERATION

86

Figure 6.4 - Sample Output Frames, Left Camera (Cam 2)

 Chapter 6: RESULTS AND EVALUATION

87

Figure 6.5 - Sample Output Frames, Right Camera (Cam 3)

6.2. QUALITY EVALUATION

88

Figure 6.6 - Sample PCD File (Frame 1)

6.2. QUALITY EVALUATION

The final quality of the output data set is strictly dependent to the quality of the urban
environment. Auto-generated 3D scene has lack of detail for the generated scene so, it drops the
overall quality. However, edit options are used for enhancement so that, if a significant time is
spent on editing the urban environment, a good result can be obtained. Therefore, it is important
for users to have external object support for their need.

In Figure 6.7, two images are shown which are taken from our test location in Section 6.1

where the first one is our generated scene and the second one is the real-world sample. At first
glance, a couple of difference can be noticed.

The main difference of the two scene is the lack of background in our generated scene. While
there is a hill on the left side of the original image, our scene does not have any. The reason for
that is, using a small-size scene which causes framework to crop the terrain with the provided
bounding box. That's why, the hill which is far from the scene is not rendered.

 Chapter 6: RESULTS AND EVALUATION

89

Second difference is the location and shape of the buildings. OSM xml data is created by
thousands of contributors mostly using the aerial images by Google or Bing. Users define
a building by marking surrounds of building roofs in the aerial image. That leads buildings to have
lower quality (e.g. lack of balconies) and wrong positioning. Although the difference is tolerable
with texture edits on the facades, mispositioning can be significant especially on tall buildings
and 3D model replacement supported by our framework is suggested for better result.

Third difference is the terrain elevation. As stated in Section 3.1, NASA SRTM data is used as

height map which has low resolution. Therefore, small height changes can not be represented on
our terrain.

The remaining differences are related to objects rather than buildings and highways in the
scene and they can be altered with importing high-quality external object models using our
Object menu.

Figure 6.7- “Via Provinciale per Lecco”, (a) Generated Scene (b) Original, Google Street View

6.3 PERFORMANCE EVALUATION

90

6.3 PERFORMANCE EVALUATION

In this section, we tested the performance of our two components using the following

computing system:

 Processor: Intel i5, 2.27 GHz

 Graphic Card: ATI Radeon HD 5000 Series, 2GB

 Memory: 4GB

 Storage: HDD 5400rpm

 Internet Connection : Polimi Wi-Fi (1 Mbps)

6.3.1. Urban Generator Performance

3D urban generation is a time-taking process and there are many factors that affects the

generation time. For evaluation, we generated three project with different sizes around Como

City, Italy which are Pannilani Street, Brunate and Como City Center (Figure 6.8).

Figure 6.8 - Test Scenes (a) Pannilani (b) Brunate (c) Como City Center

For performance comparison, we defined a set of parameters that has the most effect on

rendering:

 Terrain Size

 Building Count

 Highway Count

 Barrier + 3D Object Count

According to the parameters, the values of the test scenes are given in Table 6.1:

Scene Name Terrain Size Building Count Highway Count Barrier + 3D OBJ Count

Pannilani 0.32 km2 96 10 2

Brunate 4.75 km2 878 294 20

Como Center 3.57 km2 1136 430 75
Table 6.1 – Test Scene Parameters

 Chapter 6: RESULTS AND EVALUATION

91

TERRAIN GENERATION

Rendering Terrain is taking significant amount of time and without the cache file, it is the

bottleneck of the generation process. In order to render the terrain, framework needs to

download a height map file from the NASA servers and the tile textures from the chosen map

provider.

Height map file is a ZIP file which the extracted version has 2,818 KB constant size and the

compressed size ranges from 1 to 1.4 MB. Downloading and unzipping the file is taking 5 seconds

on average with 1Mbps internet connection. Once the height map is downloaded, it is cached

and framework don’t download the same file again.

Depends on the terrain size, a set of map tiles should be downloaded from the provider. The

tile images are 256x256 jpeg or png images and their sizes range from 1 to 30 KB. Downloading

speed of these tiles varies depends on the provider and their current request load. On Average,

framework downloads 3 tiles per second (ignoring request time-outs) with 1Mbps internet

connection. Once the tiles are downloaded, they are cached and framework don’t download the

same tile again.

 After the height map and tiles are obtained, cropping operations made on the tile images

and terrain is generated. For our test scenes with cache, rendering times are as follows:

Scene Name Terrain Size Render Time

Pannilani 4x8 Grid 1.1 Second

Brunate 25x19 Grid 7.2 Second

Como Center 21x17 Grid 6.3 Second
Table 6.2 - Terrain Rendering Times

OSM XML PARSE

OSM XML parsing comes after the terrain component. When the OSM file is provided, the

framework requires to parse the xml data, enumerate the items and fill the structure lists. For

our test scenes, OSM file sizes and their parsing time are as follows:

Scene Name OSM File Size Parsing Time

Pannilani 312 KB 0.45 Second

Brunate 2123 KB 10.9 Second

Como Center 2865 KB 26.1 Second
Table 6.3- OSM File Parsing Times

As seen, Parsing time and OSM file size is not linear because of the structure of the xml file.

Node ID’s are not sorted in the xml file and for each item, necessary nodes should be searched

in the Node List starting from the beginning. For this reason, parsing time increase with the node

count.

6.3 PERFORMANCE EVALUATION

92

BUILDING GENERATION

Building generation is a 2-step process which are the initializing building settings and

rendering the buildings. In initialization step, building skins are generated by using the textures

provided in the Default Building Settings. To generate a building skin, framework needs to read

3 image file which are color, normal and specular textures. By default we have 20 defined skins

and generating those takes around 5 seconds.

Rendering building step is a fast process since the buildings are low-polygon structures. For

our test scenes, rendering times are as follows:

Scene Name Building Count Render Time

Pannilani 96 5.2 Second

Brunate 878 5.9 Second

Como Center 1136 8.0 Second
Table 6.4 - Building Rendering Times

HIGHWAY GENERATION

Highway generation is a multi-step process which includes initialization, intersection

processing, terrain draping, sidewalk generation etc. Although highways require the most

amount of process in the framework, they are rendered fastest since they do not need any IO

operation or Web Request. For our test scenes, rendering times are as follows:

Scene Name Highway Count Render Time

Pannilani 10 0.1 Second

Brunate 294 1.6 Second

Como Center 430 1.9 Second
Table 6.5 - Highway Rendering Times

BARRIER + 3D OBJECT GENERATION

Barriers and 3D Objects are combined since an average scene contains less amount of those.

Similar to the highways, barriers and 3D objects do not need any IO operation or Web Request.

3D objects are loaded to memory at the beginning of the program by Unity Engine that’s why,

instantiating them takes no time. For our test scenes, rendering times are as follows:

Scene Name Barrier + Object Count Render Time

Pannilani 2 0.01 Second

Brunate 20 0.1 Second

Como Center 75 0.3 Second
Table 6.6 - Barrier + 3D Object Rendering Times

 Chapter 6: RESULTS AND EVALUATION

93

TOTAL RENDERING TIMES & FRAME RATES

After sub-components finish their process, the scene appears on the screen. Depends on the

scene size and the number of vertices in the view plane, Frame Rate varies. If the camera look

towards an object set, FPS value decreases dramatically depends on the object complexity. For

this reason, we chose our default objects which have less than 2K vertices and for the trees, we

applied LOD8 property.

We measured the FPS values of our test scenes by navigating around the scene for 1 minute

each and then, we took the lowest, highest and the average FPS values shown in Table 6.7:

Scene Name Total Render Time Worst-Case FPS Best-Case FPS Average FPS

Pannilani 7.2 Second 49 62 58.7

Brunate 26.3 Second 23 48 39.4

Como Center 43.6 Second 19 43 33.1
Table 6.7 - Total Render Time and FPS values

6.3.2. Data Collector Performance

Generating outputs require IO operations on the storage therefore, it is a slow process and

cannot be done during scene recording. For this reason, a log file is generated during record

which is later used to generate the outputs.

To test the performance, we used the edited Pannilani Street as a test scene from section 6.1

with different controller configurations:

Scene Name Camera

Count

Camera FPS LiDAR Beam

Count

LiDAR FPS Record Time

Pannilani – 1 1 2 - - 10 Second

Pannilani – 2 1 5 - - 10 Second

Pannilani – 3 3 5 - - 10 Second

Pannilani – 4 3 5 - - 30 Second

Pannilani – 5 - - 160 (20x8) 2 10 Second

Pannilani – 6 - - 160 (20x8) 5 10 Second

Pannilani – 7 - - 14400 (360x40) 2 10 Second

Pannilani – 8 - - 14400 (360x40) 2 30 Second
Table 6.8 – Test Cases for Data Controller

8 LOD: Level of Detail, Process of decreasing complexity of 3D object as camera moves away from the object.

6.3 PERFORMANCE EVALUATION

94

VIDEO FRAME GENERATION

Video Frames are generated by capturing screen at that frame therefore size of the image is

the same as size of framework window. We tested our scene with 1366x597 window size so that

our generated images are 1366x597 JPEG images.

In Table 6.8, upper 4 test scenes are chosen to test performance of the Camera Module. We

changed one parameter at each time to check whether Camera Component works linear with the

increasing data size. For the given parameters, video generation times are as follows:

Scene Name Re Capture Count Generation Time

Pannilani – 1 18 2.95 Second

Pannilani – 2 51 7.92 Second

Pannilani – 3 147 (49 x 3) 23.24 Second

Pannilani – 4 450 (150 x 3) 100.79 Second
 Table 6.9 - Video Frame Generation Times

POINT CLOUD GENERATION

PCD Files are generated by sending laser beams from the LiDAR position which we imitated

by Ray Casting. LiDAR position and rotation are not important to measure performance. That’s

why, we used the default positions and changed the resolutions to obtain different number of

laser beams.

In Table 6.8, lower 4 test scenes are chosen to test performance of the LiDAR Module. Similar

to Camera Module, we changed one parameter at each time to check whether LiDAR Component

works linear with the increasing data size. For the given parameters, PCD generation times are as

follows:

Scene Name Re PCD Count Generation Time

Pannilani – 5 19 0.46 Second

Pannilani – 6 51 0.75 Second

Pannilani – 7 19 231.45 Second

Pannilani – 8 50 478.37 Second
 Table 6.10 – PCD File Generation Times

95

Chapter 7 : CONCLUSIONS AND FUTURE WORK

7.1. CONCLUSIONS

In this thesis, we have introduced a new framework to generate flexible synthetic datasets

for urban reconstruction algorithms.

Considering our needs, we implemented a new 3D urban generator using 2D OpenStreetMap

data. Although map data contains plenty of items with their specifications, we took only the

important features which are adequate for urban models. Moreover, lack of 3D data led us

making assumptions on parameters and it affected the final quality of city model.

Our framework was concerned with generating urban models all around the world. Therefore

NASA SRTM data was chosen as the elevation data for our terrain, which is a global dataset.

However, resolution of this data is not high enough (~90m) to reflect details, therefore structures

like bridges or rivers in the scene could not be represented properly.

 In order to harvest data from the generated model, virtual camera and laser scanner (LiDAR)

is implemented. Generated data is flawless and does not contain any noise while in real-world

examples different type of noises (e.g., motion blur, lens flare) are introduced. Urban

reconstruction algorithms are designed to deal with the noise, however the current version of

our data collector module does not allow this test.

Combining automated 3D urban generation and users edits, we tested that acceptable scenes

can be created. We obtained promising datasets by using our data collector module and saw that

with some additional features, our framework can be a popular test bench in the field.

7.2. FUTURE WORK

The work done so far introduces the concept of synthetic urban reconstruction dataset

generation. Although current results are promising, there is still a long way to reach “photo

realistic” datasets. In order to achieve our goal and take our place in the computer-vision field,

all three modules in the framework need some improvements:

Urban Generator

The current urban generator concerns the creation of acceptable 3D models with a

fundamental feature set. For the near future, unhandled specifications from OpenStreetMap

data can be implemented. Even though current item specifications are mostly left empty by OSM

7.2. FUTURE WORK

96

contributors, there will be a complete set in the future and a full implementation will lead urban

generators to create identical urban environments.

Our urban generator is currently using NASA SRTM dataset as elevation data where the

resolution is not high. To improve quality, high resolution local height maps can be accepted as

input which may exist in raw data format (the same as SRTM data) or in WFS9 format.

Data Collector

Output dataset from data collector component is flawless and noise free which contradicts

real-world examples. In the future, options can be created to introduce motion blur and lens flare

distortions to create more realistic test data.

User Interface

The current user interface meets all the requirements, although with the improvements

which will be made in the “urban generator” and “data collector” in the near feature, updates

will be necessary in the menus. Our future goal for the framework is to create 3D models with

minimal settings or edits made by the user.

9 WFS : Web Feature Service, provides an interface allowing requests for geographical features across the web

97

BIBLIOGRAPHY

[1] S. M. Seitz and e. al., "A Comparison and Evaluation of Multi-view Stereo Reconstruction
Algorithms," in 2006 IEEE Computer Society Conference (CVPR’06), 2006.

[2] M. Pollefeys and e. al., "Detailed Real-time Urban 3d Reconstruction from Video," International
Journal of Computer Vision, vol. 78, no. 2-3, pp. 143-167, 2008.

[3] A. Akbarzadeh and e. al., "Towards urban 3D reconstruction from video," in 3D Data Processing,
Visualization, and Transmission, Third International Symposium on IEEE, 2006.

[4] A. Geiger, L. Philip and U. Raquel, "Are we ready for autonomous driving? The KITTI vision
benchmark suite," in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference,
2012.

[5] wiki, "OSM Stats," OpenStreetMap, [Online]. Available:
http://wiki.openstreetmap.org/wiki/Statistics. [Accessed 27 July 2015].

[6] M. F. Goodchild, "Citizens as voluntary sensors: spatial data infrastructure in the world of Web
2.0," International Journal of Spatial Data Infrastructures Research, pp. 24-32, 2007.

[7] wiki, "OSM About," OpenStreetMap, [Online]. Available:
http://wiki.openstreetmap.org/wiki/About. [Accessed 27 July 2015].

[8] [Online]. Available: http://taginfo.openstreetmap.org/tags.

[9] M. Goetz and A. Zipf, "OpenStreetMap in 3D – Detailed Insights on the Current Situation in
Germany," in AGILE 2012, Avignon, 2012.

[10] Wiki, "Planet OSM," OpenStreetMap, [Online]. Available:
http://wiki.openstreetmap.org/wiki/Planet.osm. [Accessed July 2015].

[11] A. Zipf, "OpenStreetMap-3D," University of Heidelberg, Deparment of GIScience, 2012. [Online].
Available: http://osm-3d.org/home.en.htm. [Accessed July 2015].

[12] "Osm-3D Information," University of Heidelberg, Department of GIScience, 2012. [Online].
Available: http://osm-3d.org/informationen.en.htm. [Accessed July 2015].

[13] T. Knerr, "OSM2World," [Online]. Available: http://osm2world.org/. [Accessed July 2015].

[14] "OSM2World," [Online]. Available: http://osm2world.org/docs/OSM2World%20Overview.pdf.
[Accessed July 2015].

[15] "What is CityEngine?," ArcGIS, [Online]. Available:
http://resources.arcgis.com/en/communities/city-engine/01w90000000m000000.htm. [Accessed
July 2015].

[16] "Unity 5," Unity Technologies, [Online]. Available: https://unity3d.com/5. [Accessed July 2015].

98

[17] "The Leading Global Game Industry Software," Unity Technologies, [Online]. Available:
https://unity3d.com/public-relations. [Accessed July 2015].

[18] "Developer Economics Q3 2014: State of the Developer Nation," Vision Mobile, July 2014. [Online].
Available: http://www.visionmobile.com/product/developer-economics-q3-2014/. [Accessed July
2015].

[19] "mapToasterTopo," Integrated Mapping Ltd., 2009. [Online]. Available:
https://www.maptoaster.com/maptoaster-topo-nz/articles/projection/datum-projection.html.
[Accessed July 2015].

[20] E. S. Battersby, P. M. Finn, E. L. Usery and K. H. Yamamoto, "Implications of Web Mercator and Its
Use in Online Mapping," Cartographica, vol. 49, no. 2, pp. 85-101, 2014.

[21] K. Pridal, "Tiles à la Google Maps: Coordinates, Tile Bounds and Projection," MapTiler, 2008.
[Online]. Available: http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/.
[Accessed July 2015].

[22] N. I. a. M. Agency, "SRTM Topography," [Online]. Available:
http://dds.cr.usgs.gov/srtm/version2_1/Documentation/SRTM_Topo.pdf. [Accessed July 2015].

[23] Tsubaki, UnityZip, GitHub, 2013.

[24] "How do web maps work?," MapBox, [Online]. Available: https://www.mapbox.com/guides/how-
web-maps-work/. [Accessed July 2015].

[25] Wiki, "Slippy map tilenames," [Online]. Available:
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames. [Accessed July 2015].

[26] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, "Polygon Triangulation," in
Computational Geometry (2nd revised ed.), Springer, 2000, pp. 45-61.

[27] wiki, "Triangulator," Unity, [Online]. Available:
http://wiki.unity3d.com/index.php?title=Triangulator. [Accessed July 2015].

[28] "Behind the Scene, Street View," Google, 2007. [Online]. Available:
http://www.google.com/maps/about/behind-the-scenes/streetview/. [Accessed August 2015].

[29] "The PCD (Point Cloud Data) file format," [Online]. Available:
http://pointclouds.org/documentation/tutorials/pcd_file_format.php. [Accessed August 2015].

[30] Eric, "ObjReader," Star Scene Software, [Online]. Available:
http://www.starscenesoftware.com/objreader.html. [Accessed September 2015].

99

APPENDİX A: OSM XML FILE

It is possible to download map data from the OpenStreetMap dataset in a number of ways.

The full dataset is available from the OpenStreetMap website download area. When the “Export”

button on the top is clicked, a side menu appears at the left-hand side containing exporting

parameters. From the side menu, it is possible to select an area to download (Figure 1). After the

“Export” button is clicked on the side menu, .osm file is downloaded which comes in the form of

XML format.

Figure 1: OpenStreetMap exporting xml file

A Complete OSM File Sample:

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.4.0 (23324 thorn-02.openstreetmap.org)"
copyright="OpenStreetMap and contributors"
attribution="http://www.openstreetmap.org/copyright"
license="http://opendatacommons.org/licenses/odbl/1-0/">
 <bounds minlat="45.8046100" minlon="9.0929100" maxlat="45.8056300" maxlon="9.0948700"/>
 <node id="273463279" visible="true" version="4" changeset="4960923" timestamp="2010-06-
11T09:19:51Z" user="albertux" uid="118185" lat="45.8046780" lon="9.0969174"/>
 <node id="273858042" visible="true" version="5" changeset="1073713" timestamp="2009-05-
04T12:45:36Z" user="Bengatzer" uid="89943" lat="45.8061261" lon="9.0957124"/>
 <node id="273466950" visible="true" version="4" changeset="4969225" timestamp="2010-06-
12T11:14:33Z" user="jacopogg83" uid="54561" lat="45.8044650" lon="9.0923772"/>
 <node id="762136715" visible="true" version="1" changeset="4883483" timestamp="2010-06-
02T12:28:17Z" user="DarkFlash" uid="131835" lat="45.8057056" lon="9.0936698"/>
 <node id="762136723" visible="true" version="1" changeset="4883483" timestamp="2010-06-
02T12:28:17Z" user="DarkFlash" uid="131835" lat="45.8056963" lon="9.0933534"/>
 <node id="762136768" visible="true" version="1" changeset="4883483" timestamp="2010-06-
02T12:28:18Z" user="DarkFlash" uid="131835" lat="45.8055944" lon="9.0934704"/>

100

 <node id="762136792" visible="true" version="1" changeset="4883483" timestamp="2010-06-
02T12:28:18Z" user="DarkFlash" uid="131835" lat="45.8058076" lon="9.0935528"/>
 <node id="762167812" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:26Z" user="DarkFlash" uid="131835" lat="45.8048843" lon="9.0949805"/>
 <node id="762167840" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:27Z" user="DarkFlash" uid="131835" lat="45.8049936" lon="9.0941720"/>
 <node id="762167895" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:27Z" user="DarkFlash" uid="131835" lat="45.8050021" lon="9.0950261"/>
 <node id="762167902" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:29Z" user="DarkFlash" uid="131835" lat="45.8050432" lon="9.0948076"/>
 <node id="762167908" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:29Z" user="DarkFlash" uid="131835" lat="45.8048192" lon="9.0940317"/>
 <node id="762167932" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:29Z" user="DarkFlash" uid="131835" lat="45.8049254" lon="9.0947621"/>
 <node id="762167942" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:29Z" user="DarkFlash" uid="131835" lat="45.8049063" lon="9.0939585"/>
 <node id="762167960" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:30Z" user="DarkFlash" uid="131835" lat="45.8049065" lon="9.0942452"/>
 <node id="1046730882" visible="true" version="1" changeset="6701922" timestamp="2010-12-
19T00:05:05Z" user="DarkFlash" uid="131835" lat="45.8050567" lon="9.0934299"/>
 <node id="1046730907" visible="true" version="1" changeset="6701922" timestamp="2010-12-
19T00:05:05Z" user="DarkFlash" uid="131835" lat="45.8050097" lon="9.0933441"/>
 <node id="1046730950" visible="true" version="1" changeset="6701922" timestamp="2010-12-
19T00:05:06Z" user="DarkFlash" uid="131835" lat="45.8051360" lon="9.0933404"/>
 <node id="1046730991" visible="true" version="1" changeset="6701922" timestamp="2010-12-
19T00:05:07Z" user="DarkFlash" uid="131835" lat="45.8050890" lon="9.0932546"/>
 <node id="1148908649" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:15Z" user="albertux" uid="118185" lat="45.8057343" lon="9.0943515"/>
 <node id="1148908707" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:20Z" user="albertux" uid="118185" lat="45.8044647" lon="9.0927489"/>
 <node id="1148908731" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:22Z" user="albertux" uid="118185" lat="45.8054657" lon="9.0931773"/>
 <node id="1148908772" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:26Z" user="albertux" uid="118185" lat="45.8053744" lon="9.0938223"/>
 <node id="1148908824" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:31Z" user="albertux" uid="118185" lat="45.8058828" lon="9.0945869"/>
 <node id="1148908646" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:13Z" user="DarkFlash" uid="131835" lat="45.8048432" lon="9.0945056"/>
 <node id="1148910128" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:22Z" user="albertux" uid="118185" lat="45.8055550" lon="9.0948406"/>
 <node id="1148908915" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:38Z" user="albertux" uid="118185" lat="45.8054720" lon="9.0942731"/>
 <node id="1148908976" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:43Z" user="albertux" uid="118185" lat="45.8053821" lon="9.0936879"/>
 <node id="1148909107" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:48Z" user="albertux" uid="118185" lat="45.8054820" lon="9.0946632"/>
 <node id="1148909326" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:55Z" user="albertux" uid="118185" lat="45.8056539" lon="9.0941950"/>
 <node id="1148909378" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:57Z" user="albertux" uid="118185" lat="45.8054315" lon="9.0946605"/>
 <node id="1148909392" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:58Z" user="albertux" uid="118185" lat="45.8053267" lon="9.0938635"/>
 <node id="1148909399" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:58Z" user="albertux" uid="118185" lat="45.8052860" lon="9.0930823"/>
 <node id="1148909481" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:00Z" user="albertux" uid="118185" lat="45.8048134" lon="9.0938980"/>
 <node id="1148910288" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:29Z" user="albertux" uid="118185" lat="45.8054337" lon="9.0945718"/>

 APPENDİX A: OSM XML FILE

101

 <node id="1148910298" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:29Z" user="albertux" uid="118185" lat="45.8053887" lon="9.0939419"/>
 <node id="1148910469" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:36Z" user="albertux" uid="118185" lat="45.8055764" lon="9.0942753"/>
 <node id="1148908930" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:39Z" user="albertux" uid="118185" lat="45.8057159" lon="9.0947671"/>
 <node id="1148908940" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:40Z" user="albertux" uid="118185" lat="45.8054874" lon="9.0952077"/>
 <node id="1148908982" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:43Z" user="albertux" uid="118185" lat="45.8053662" lon="9.0937958"/>
 <node id="1148909158" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:50Z" user="albertux" uid="118185" lat="45.8055043" lon="9.0939554"/>
 <node id="1148909175" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:50Z" user="albertux" uid="118185" lat="45.8053574" lon="9.0940907"/>
 <node id="1148909253" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:53Z" user="albertux" uid="118185" lat="45.8045720" lon="9.0926425"/>
 <node id="1148909438" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:59Z" user="albertux" uid="118185" lat="45.8054167" lon="9.0939158"/>
 <node id="1148909443" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:59Z" user="albertux" uid="118185" lat="45.8054539" lon="9.0942910"/>
 <node id="1148909788" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:12Z" user="albertux" uid="118185" lat="45.8056132" lon="9.0945713"/>
 <node id="1148909833" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:13Z" user="albertux" uid="118185" lat="45.8053891" lon="9.0950127"/>
 <node id="1148909876" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:14Z" user="albertux" uid="118185" lat="45.8055504" lon="9.0933255"/>
 <node id="1148909895" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:15Z" user="albertux" uid="118185" lat="45.8052536" lon="9.0944413"/>
 <node id="1148908992" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:44Z" user="albertux" uid="118185" lat="45.8053170" lon="9.0930444"/>
 <node id="1148909563" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:04Z" user="albertux" uid="118185" lat="45.8054409" lon="9.0934542"/>
 <node id="1148909590" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:05Z" user="albertux" uid="118185" lat="45.8053384" lon="9.0946140"/>
 <node id="1148910177" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:23Z" user="albertux" uid="118185" lat="45.8054668" lon="9.0939906"/>
 <node id="1148910181" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:24Z" user="albertux" uid="118185" lat="45.8052564" lon="9.0938219"/>
 <node id="1148910219" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:26Z" user="albertux" uid="118185" lat="45.8048048" lon="9.0931259"/>
 <node id="1148910358" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:32Z" user="albertux" uid="118185" lat="45.8046752" lon="9.0940394"/>
 <node id="1148910521" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:38Z" user="albertux" uid="118185" lat="45.8052286" lon="9.0929835"/>
 <node id="1148909598" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:05Z" user="albertux" uid="118185" lat="45.8054048" lon="9.0940282"/>
 <node id="1148909906" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:15Z" user="albertux" uid="118185" lat="45.8052881" lon="9.0938815"/>
 <node id="1148910330" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:31Z" user="albertux" uid="118185" lat="45.8053446" lon="9.0937231"/>
 <node id="1148910342" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:31Z" user="albertux" uid="118185" lat="45.8055017" lon="9.0942436"/>
 <node id="1148910555" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:40Z" user="albertux" uid="118185" lat="45.8054052" lon="9.0940433"/>
 <node id="1148910607" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:44Z" user="albertux" uid="118185" lat="45.8055419" lon="9.0942074"/>
 <node id="1148908576" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:08Z" user="albertux" uid="118185" lat="45.8053345" lon="9.0937363"/>

102

 <node id="1148908847" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:33Z" user="albertux" uid="118185" lat="45.8053562" lon="9.0933060"/>
 <node id="1148908892" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8046427" lon="9.0934727"/>
 <node id="1148908670" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:17Z" user="albertux" uid="118185" lat="45.8053464" lon="9.0938483"/>
 <node id="1148908786" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:27Z" user="albertux" uid="118185" lat="45.8047374" lon="9.0937450"/>
 <node id="1148910623" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:46Z" user="albertux" uid="118185" lat="45.8053437" lon="9.0943504"/>
 <node id="1148910625" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:46Z" user="albertux" uid="118185" lat="45.8052950" lon="9.0938944"/>
 <node id="1148910579" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:41Z" user="albertux" uid="118185" lat="45.8045992" lon="9.0938864"/>
 <node id="1148910636" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:13Z" user="DarkFlash" uid="131835" lat="45.8045095" lon="9.0948776"/>
 <node id="1148910616" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8047841" lon="9.0928830"/>
 <node id="1148910672" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8050750" lon="9.0924371"/>
 <node id="1148910630" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:16Z" user="DarkFlash" uid="131835" lat="45.8047326" lon="9.0932157"/>
 <node id="1148908864" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:34Z" user="albertux" uid="118185" lat="45.8054284" lon="9.0945230"/>
 <node id="1148908873" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:25:35Z" user="albertux" uid="118185" lat="45.8052596" lon="9.0929406"/>
 <node id="1148910706" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:54Z" user="albertux" uid="118185" lat="45.8056533" lon="9.0950357"/>
 <node id="1148910713" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:13Z" user="DarkFlash" uid="131835" lat="45.8053091" lon="9.0928448"/>
 <node id="1148910709" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:17Z" user="DarkFlash" uid="131835" lat="45.8046219" lon="9.0936509"/>
 <node id="1148910572" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8046535" lon="9.0934954"/>
 <node id="1148910068" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:20Z" user="albertux" uid="118185" lat="45.8055793" lon="9.0945101"/>
 <node id="1148910109" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:21Z" user="albertux" uid="118185" lat="45.8057801" lon="9.0943911"/>
 <node id="1148910396" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:33Z" user="albertux" uid="118185" lat="45.8046974" lon="9.0932323"/>
 <node id="1148910499" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:37Z" user="albertux" uid="118185" lat="45.8054842" lon="9.0945744"/>
 <node id="1148910512" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:38Z" user="albertux" uid="118185" lat="45.8053731" lon="9.0940591"/>
 <node id="1271392804" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:12:05Z" user="albertux" uid="118185" lat="45.8058452" lon="9.0931712"/>
 <node id="1271393000" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:12:34Z" user="albertux" uid="118185" lat="45.8056102" lon="9.0930339"/>
 <node id="1271388022" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:07:17Z" user="albertux" uid="118185" lat="45.8057495" lon="9.0932871"/>
 <node id="1271387605" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:06:42Z" user="albertux" uid="118185" lat="45.8057144" lon="9.0929577"/>
 <node id="1271388451" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:07:42Z" user="albertux" uid="118185" lat="45.8056070" lon="9.0929851"/>
 <node id="1271391089" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:09:47Z" user="albertux" uid="118185" lat="45.8058494" lon="9.0926908"/>
 <node id="1271391221" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:09:54Z" user="albertux" uid="118185" lat="45.8058154" lon="9.0931132"/>

 APPENDİX A: OSM XML FILE

103

 <node id="1271392651" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:11:55Z" user="albertux" uid="118185" lat="45.8059376" lon="9.0928281"/>
 <node id="1271388625" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:07:48Z" user="albertux" uid="118185" lat="45.8057665" lon="9.0931727"/>
 <node id="1271391177" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:09:51Z" user="albertux" uid="118185" lat="45.8057527" lon="9.0930309"/>
 <node id="1271390089" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:08:46Z" user="albertux" uid="118185" lat="45.8056772" lon="9.0930080"/>
 <node id="1148909551" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:12Z" user="DarkFlash" uid="131835" lat="45.8049351" lon="9.0931794"/>
 <node id="1148909922" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:13Z" user="DarkFlash" uid="131835" lat="45.8048696" lon="9.0945568"/>
 <node id="1148910002" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:13Z" user="DarkFlash" uid="131835" lat="45.8050545" lon="9.0936794"/>
 <node id="1148908747" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8048309" lon="9.0932085"/>
 <node id="1148910702" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8046235" lon="9.0942801"/>
 <node id="1148909614" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8051107" lon="9.0924853"/>
 <node id="1148908958" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8048933" lon="9.0927685"/>
 <node id="1148910301" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8049430" lon="9.0934444"/>
 <node id="1148908835" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8046836" lon="9.0944471"/>
 <node id="1148910189" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8045172" lon="9.0935077"/>
 <node id="1148909512" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8050916" lon="9.0930929"/>
 <node id="1148909682" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8049640" lon="9.0934794"/>
 <node id="1148908683" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:14Z" user="DarkFlash" uid="131835" lat="45.8047210" lon="9.0933084"/>
 <node id="1148909003" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8044908" lon="9.0934521"/>
 <node id="1148908615" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8048612" lon="9.0935751"/>
 <node id="1148908750" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8051862" lon="9.0926163"/>
 <node id="1148909982" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8045374" lon="9.0935757"/>
 <node id="1148909872" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8053773" lon="9.0929632"/>
 <node id="1148908583" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8055264" lon="9.0927863"/>
 <node id="1148910535" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8045379" lon="9.0946930"/>
 <node id="1148909504" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8045962" lon="9.0938398"/>
 <node id="1148908939" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:15Z" user="DarkFlash" uid="131835" lat="45.8047809" lon="9.0941085"/>
 <node id="1148910191" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:16Z" user="DarkFlash" uid="131835" lat="45.8047033" lon="9.0947348"/>
 <node id="1148909052" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:16Z" user="DarkFlash" uid="131835" lat="45.8048888" lon="9.0926569"/>
 <node id="1148909775" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:17Z" user="DarkFlash" uid="131835" lat="45.8052897" lon="9.0928591"/>

104

 <node id="1148908607" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:17Z" user="DarkFlash" uid="131835" lat="45.8045681" lon="9.0936402"/>
 <node id="1148908586" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:17Z" user="DarkFlash" uid="131835" lat="45.8046530" lon="9.0946381"/>
 <node id="1148909821" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8047015" lon="9.0944276"/>
 <node id="1148910308" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8052463" lon="9.0925451"/>
 <node id="1148909117" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8050443" lon="9.0930649"/>
 <node id="1148910656" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8049518" lon="9.0937751"/>
 <node id="1148910633" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8052546" lon="9.0923146"/>
 <node id="1148909853" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:18Z" user="DarkFlash" uid="131835" lat="45.8045843" lon="9.0936877"/>
 <node id="1148908690" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8048189" lon="9.0944598"/>
 <node id="1148909724" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8049371" lon="9.0944033"/>
 <node id="1148909129" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8053743" lon="9.0927674"/>
 <node id="1148909232" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8045225" lon="9.0936848"/>
 <node id="1148909462" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8047603" lon="9.0933910"/>
 <node id="1148910459" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8047373" lon="9.0945486"/>
 <node id="1148909188" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8053060" lon="9.0928398"/>
 <node id="1148908713" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8048894" lon="9.0927403"/>
 <node id="1148909120" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8046567" lon="9.0937243"/>
 <node id="1148908875" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:19Z" user="DarkFlash" uid="131835" lat="45.8047535" lon="9.0949548"/>
 <node id="1148910350" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:20Z" user="DarkFlash" uid="131835" lat="45.8050970" lon="9.0924755"/>
 <node id="1148908844" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:20Z" user="DarkFlash" uid="131835" lat="45.8046374" lon="9.0937995"/>
 <node id="1148909611" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:20Z" user="DarkFlash" uid="131835" lat="45.8047615" lon="9.0932764"/>
 <node id="1148910243" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:20Z" user="DarkFlash" uid="131835" lat="45.8049175" lon="9.0927070"/>
 <node id="1148909623" visible="true" version="2" changeset="8167387" timestamp="2011-05-
16T22:50:20Z" user="DarkFlash" uid="131835" lat="45.8047819" lon="9.0947702"/>
 <node id="1827726842" visible="true" version="1" changeset="12248225" timestamp="2012-
07-16T17:03:29Z" user="DarkFlash" uid="131835" lat="45.8046897" lon="9.0968225"/>
 <node id="1827726844" visible="true" version="1" changeset="12248225" timestamp="2012-
07-16T17:03:29Z" user="DarkFlash" uid="131835" lat="45.8047382" lon="9.0966696"/>
 <node id="1827726850" visible="true" version="1" changeset="12248225" timestamp="2012-
07-16T17:03:29Z" user="DarkFlash" uid="131835" lat="45.8051454" lon="9.0934880"/>
 <node id="1827726853" visible="true" version="1" changeset="12248225" timestamp="2012-
07-16T17:03:29Z" user="DarkFlash" uid="131835" lat="45.8052133" lon="9.0933454"/>
 <node id="1827726857" visible="true" version="1" changeset="12248225" timestamp="2012-
07-16T17:03:29Z" user="DarkFlash" uid="131835" lat="45.8055203" lon="9.0929908"/>
 <node id="1827726859" visible="true" version="1" changeset="12248225" timestamp="2012-
07-16T17:03:29Z" user="DarkFlash" uid="131835" lat="45.8062016" lon="9.0922038"/>

 APPENDİX A: OSM XML FILE

105

 <node id="1827773691" visible="true" version="3" changeset="23041234" timestamp="2014-
06-20T10:32:25Z" user="Taurus77" uid="2044340" lat="45.8067270" lon="9.0969748"/>
 <node id="2386516448" visible="true" version="1" changeset="16975875" timestamp="2013-
07-16T14:45:47Z" user="albertux" uid="118185" lat="45.8051596" lon="9.0936307"/>
 <node id="2386516449" visible="true" version="1" changeset="16975875" timestamp="2013-
07-16T14:45:47Z" user="albertux" uid="118185" lat="45.8052698" lon="9.0939954"/>
 <node id="1827726854" visible="true" version="2" changeset="16975875" timestamp="2013-
07-16T14:46:04Z" user="albertux" uid="118185" lat="45.8052769" lon="9.0939717"/>
 <node id="1827726892" visible="true" version="2" changeset="16975875" timestamp="2013-
07-16T14:46:04Z" user="albertux" uid="118185" lat="45.8069588" lon="9.0913023"/>
 <node id="1827726878" visible="true" version="2" changeset="24353872" timestamp="2014-
07-25T16:26:05Z" user="Taurus77" uid="2044340" lat="45.8067124" lon="9.0949638"/>
 <node id="3025191133" visible="true" version="1" changeset="24840002" timestamp="2014-
08-18T18:13:12Z" user="Taurus77" uid="2044340" lat="45.8050457" lon="9.0935981">
 <tag k="amenity" v="pharmacy"/>
 <tag k="dispensing" v="no"/>
 </node>
 <way id="60892806" visible="true" version="1" changeset="4883483" timestamp="2010-06-
02T12:28:19Z" user="DarkFlash" uid="131835">
 <nd ref="762136768"/>
 <nd ref="762136723"/>
 <nd ref="762136792"/>
 <nd ref="762136715"/>
 <nd ref="762136768"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="60893507" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:47Z" user="DarkFlash" uid="131835">
 <nd ref="762167902"/>
 <nd ref="762167932"/>
 <nd ref="762167812"/>
 <nd ref="762167895"/>
 <nd ref="762167902"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="60893513" visible="true" version="1" changeset="4883649" timestamp="2010-06-
02T12:48:48Z" user="DarkFlash" uid="131835">
 <nd ref="762167942"/>
 <nd ref="762167908"/>
 <nd ref="762167960"/>
 <nd ref="762167840"/>
 <nd ref="762167942"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="90274026" visible="true" version="1" changeset="6701922" timestamp="2010-12-
19T00:05:07Z" user="DarkFlash" uid="131835">
 <nd ref="1046730991"/>
 <nd ref="1046730950"/>
 <nd ref="1046730882"/>
 <nd ref="1046730907"/>
 <nd ref="1046730991"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314877" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:56Z" user="albertux" uid="118185">
 <nd ref="1148908690"/>
 <nd ref="1148908646"/>
 <nd ref="1148909922"/>

106

 <nd ref="1148910191"/>
 <nd ref="1148908586"/>
 <nd ref="1148910459"/>
 <nd ref="1148908690"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314879" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:57Z" user="albertux" uid="118185">
 <nd ref="1148908992"/>
 <nd ref="1148908873"/>
 <nd ref="1148910521"/>
 <nd ref="1148909399"/>
 <nd ref="1148908992"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314880" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:57Z" user="albertux" uid="118185">
 <nd ref="1148908576"/>
 <nd ref="1148908982"/>
 <nd ref="1148909906"/>
 <nd ref="1148910181"/>
 <nd ref="1148908576"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314881" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:58Z" user="albertux" uid="118185">
 <nd ref="1148910706"/>
 <nd ref="1148908940"/>
 <nd ref="1148909833"/>
 <nd ref="1148910128"/>
 <nd ref="1148910706"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314885" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:26:59Z" user="albertux" uid="118185">
 <nd ref="1148910625"/>
 <nd ref="1148909392"/>
 <nd ref="1148909598"/>
 <nd ref="1148910512"/>
 <nd ref="1148910625"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314892" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:02Z" user="albertux" uid="118185">
 <nd ref="1148910499"/>
 <nd ref="1148909107"/>
 <nd ref="1148909378"/>
 <nd ref="1148910288"/>
 <nd ref="1148910499"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314903" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:07Z" user="albertux" uid="118185">
 <nd ref="1148910623"/>
 <nd ref="1148908864"/>
 <nd ref="1148909590"/>
 <nd ref="1148909895"/>
 <nd ref="1148910623"/>

 APPENDİX A: OSM XML FILE

107

 <tag k="building" v="yes"/>
 </way>
 <way id="99314886" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:00Z" user="albertux" uid="118185">
 <nd ref="1148908583"/>
 <nd ref="1148910633"/>
 <nd ref="1148909614"/>
 <nd ref="1148908750"/>
 <nd ref="1148910308"/>
 <nd ref="1148909129"/>
 <nd ref="1148910713"/>
 <nd ref="1148909872"/>
 <nd ref="1148908583"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314887" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:00Z" user="albertux" uid="118185">
 <nd ref="1148908707"/>
 <nd ref="1148909253"/>
 <nd ref="1148910219"/>
 <nd ref="1148910396"/>
 <nd ref="1148908707"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314888" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:01Z" user="albertux" uid="118185">
 <nd ref="1148909504"/>
 <nd ref="1148909232"/>
 <nd ref="1148908607"/>
 <nd ref="1148909982"/>
 <nd ref="1148908892"/>
 <nd ref="1148910572"/>
 <nd ref="1148909462"/>
 <nd ref="1148908683"/>
 <nd ref="1148910189"/>
 <nd ref="1148909003"/>
 <nd ref="1148910630"/>
 <nd ref="1148909611"/>
 <nd ref="1148908747"/>
 <nd ref="1148910301"/>
 <nd ref="1148909120"/>
 <nd ref="1148910709"/>
 <nd ref="1148909853"/>
 <nd ref="1148908844"/>
 <nd ref="1148909504"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314890" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:01Z" user="albertux" uid="118185">
 <nd ref="1148910555"/>
 <nd ref="1148910342"/>
 <nd ref="1148908915"/>
 <nd ref="1148909443"/>
 <nd ref="1148909175"/>
 <nd ref="1148910555"/>
 <tag k="building" v="yes"/>
 </way>

108

 <way id="99314894" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:03Z" user="albertux" uid="118185">
 <nd ref="1148908615"/>
 <nd ref="1148909682"/>
 <nd ref="1148910002"/>
 <nd ref="1148910656"/>
 <nd ref="1148908615"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314909" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:10Z" user="albertux" uid="118185">
 <nd ref="1148910109"/>
 <nd ref="1148908824"/>
 <nd ref="1148908930"/>
 <nd ref="1148909788"/>
 <nd ref="1148910109"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314910" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:10Z" user="albertux" uid="118185">
 <nd ref="1148908670"/>
 <nd ref="1148908772"/>
 <nd ref="1148909438"/>
 <nd ref="1148910298"/>
 <nd ref="1148908670"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314912" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:11Z" user="albertux" uid="118185">
 <nd ref="1148910330"/>
 <nd ref="1148908976"/>
 <nd ref="1148909158"/>
 <nd ref="1148910177"/>
 <nd ref="1148910330"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314915" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:13Z" user="albertux" uid="118185">
 <nd ref="1148909775"/>
 <nd ref="1148909512"/>
 <nd ref="1148908713"/>
 <nd ref="1148910243"/>
 <nd ref="1148909052"/>
 <nd ref="1148910672"/>
 <nd ref="1148910350"/>
 <nd ref="1148909188"/>
 <nd ref="1148909775"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314918" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:14Z" user="albertux" uid="118185">
 <nd ref="1148908939"/>
 <nd ref="1148910702"/>
 <nd ref="1148909821"/>
 <nd ref="1148908835"/>
 <nd ref="1148910459"/>
 <nd ref="1148908690"/>
 <nd ref="1148908646"/>

 APPENDİX A: OSM XML FILE

109

 <nd ref="1148909724"/>
 <nd ref="1148908939"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314919" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:14Z" user="albertux" uid="118185">
 <nd ref="1148909876"/>
 <nd ref="1148909563"/>
 <nd ref="1148908847"/>
 <nd ref="1148908731"/>
 <nd ref="1148909876"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314924" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:16Z" user="albertux" uid="118185">
 <nd ref="1148909117"/>
 <nd ref="1148908958"/>
 <nd ref="1148910616"/>
 <nd ref="1148909551"/>
 <nd ref="1148909117"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314925" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:17Z" user="albertux" uid="118185">
 <nd ref="1148910607"/>
 <nd ref="1148910469"/>
 <nd ref="1148909326"/>
 <nd ref="1148908649"/>
 <nd ref="1148910068"/>
 <nd ref="1148908915"/>
 <nd ref="1148910342"/>
 <nd ref="1148910607"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314928" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:18Z" user="albertux" uid="118185">
 <nd ref="1148908875"/>
 <nd ref="1148910636"/>
 <nd ref="1148910535"/>
 <nd ref="1148909623"/>
 <nd ref="1148908875"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="99314930" visible="true" version="1" changeset="7263630" timestamp="2011-02-
12T11:27:19Z" user="albertux" uid="118185">
 <nd ref="1148908786"/>
 <nd ref="1148909481"/>
 <nd ref="1148910358"/>
 <nd ref="1148910579"/>
 <nd ref="1148908786"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="111641019" visible="true" version="1" changeset="8042616" timestamp="2011-05-
03T19:14:47Z" user="albertux" uid="118185">
 <nd ref="1271391177"/>
 <nd ref="1271392651"/>
 <nd ref="1271391089"/>
 <nd ref="1271388451"/>

110

 <nd ref="1271393000"/>
 <nd ref="1271388022"/>
 <nd ref="1271392804"/>
 <nd ref="1271391221"/>
 <nd ref="1271388625"/>
 <nd ref="1271390089"/>
 <nd ref="1271387605"/>
 <nd ref="1271391177"/>
 <tag k="building" v="yes"/>
 </way>
 <way id="171794553" visible="true" version="6" changeset="13899950" timestamp="2012-11-
16T22:14:53Z" user="Gattomagico" uid="1058946">
 <nd ref="1827726857"/>
 <nd ref="1827726878"/>
 <tag k="highway" v="unclassified"/>
 <tag k="name" v="Via San Martino della Battaglia"/>
 <tag k="oneway" v="yes"/>
 </way>
 <way id="230123130" visible="true" version="1" changeset="16975875" timestamp="2013-07-
16T14:45:49Z" user="albertux" uid="118185">
 <nd ref="2386516449"/>
 <nd ref="1827726844"/>
 <nd ref="1827726842"/>
 <nd ref="273463279"/>
 <tag k="highway" v="unclassified"/>
 <tag k="name" v="Via Don Giovanni Minzoni"/>
 <tag k="oneway" v="no"/>
 </way>
 <way id="171794542" visible="true" version="3" changeset="16975875" timestamp="2013-07-
16T14:45:55Z" user="albertux" uid="118185">
 <nd ref="1827726892"/>
 <nd ref="1827726859"/>
 <nd ref="1827726857"/>
 <nd ref="1827726853"/>
 <nd ref="1827726850"/>
 <nd ref="2386516448"/>
 <nd ref="1827726854"/>
 <nd ref="2386516449"/>
 <tag k="highway" v="unclassified"/>
 <tag k="name" v="Via Dante Alighieri"/>
 <tag k="oneway" v="no"/>
 </way>
 <way id="171794543" visible="true" version="6" changeset="16975875" timestamp="2013-07-
16T14:45:59Z" user="albertux" uid="118185">
 <nd ref="273466950"/>
 <nd ref="1827726854"/>
 <nd ref="273858042"/>
 <nd ref="1827773691"/>
 <tag k="highway" v="unclassified"/>
 <tag k="name" v="Via Teresa Ciceri"/>
 <tag k="oneway" v="yes"/>
 </way>
</osm>

111

APPENDIX B: CLASS DIAGRAMS

URBAN GENERATOR

1. OSM Parser

112

2. Terrain

 APPENDIX B: CLASS DIAGRAMS

113

3. Building

114

4. Barrier

5. Object 3D

 APPENDIX B: CLASS DIAGRAMS

115

6. Highway

116

DATA COLLECTOR

 APPENDIX B: CLASS DIAGRAMS

117

USER INTERFACE

1. Load/Save Menu

118

2. Default Settings Menus

 APPENDIX B: CLASS DIAGRAMS

119

3. Edit Menus

120

4. Add Object Menu

 APPENDIX B: CLASS DIAGRAMS

121

5. Data Collector Menu

