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Introduction

Nowadays, a lot of problems involve the act of an agent (like a human being, a
firm, a software, etc.) of making a choice among a set of distinct alternatives.
Examples are countless: choosing a smartphone model given its character-
istics in battery life and screen dimensions; following a college preparation
class depending on scores get in different exams; placing a heating system
considering installation and maintanance costs associated with each option.

One way to model this choice is to integrate it in a probabilistic frame-
work. For each agent are given some attributes that can be observed by a
researcher, whose task is to compute the probability for each alternative to
be chosen by the agent. A large employed family of methods that provides
those estimations is discrete choice models, theorized for the first time by
Daniel McFadden (1973).

Discrete choice models allow the formulation of a wide variety of prob-
lems, including the well-known multinomial logistic regression. Indeed, it is
a special case where only attributes of the chosen alternative are observed.

Due to this theory environment, in this work we use the term “choices”
even when no agent expressed any preference. A lot of databases for which a
logistic regression is requested are of this kind, since these problems are faced
also in cluster analysis. A flower’s species, the lake in which an alligator
was captured or an employees’ working class are not options that can be
arbitrary chosen by an undefined entity. They are more likely considered
as observations the researcher has to classify in known (or unknown) groups
of objects. Nonetheless, the equations that rule the choice of an alternative
over the others (or the belonging to a cluster) is neatly described by discrete
choice models, thus this is going to be the framework used to describe the
theory underneath.

The tools to represent the outcomes of a logistic regression (and, for ex-
tension, of a discrete choice analysis) are mostly limited to the binomial case
of two alternatives from which to choose. When it comes to multinomial
problems, in which the options an agent faces are more than two, the graph-
ical representations lack. Despite one can commit on the same instruments
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used for classical binary logistic regression, these are able to compare just a
pair of alternatives at a time. A large set of them entails the production of
a huge number of outputs, which are hardly to confront and interpret. On
top of that, using methods from binary logistic regression to estimate and
represent quantities of a multinomial regression leads an intrinsic error that,
although small, sometimes cannot be ignored.

In this work we present the Oddsflow app: an original interactive tool to
represent both estimated probabilities from a discrete choice analysis, and
the influences that each attribute (i.e. the covariates in the model) has on
the afore-mentioned probabilities.

For each explanatory variable in the model, one or more different Oddsflow
plots are produced. Each alternative is placed as node of a complete digraph.
Nodes are connected by edges depicting the regression coefficients that esti-
mated the log odds between the pair of alternatives represented by vertices.
The network then represents a sort of probability flux that, when the variable
increases, flows to the nodes where the arrows point to, and leaves the nodes
from which the arrows start. On each edge are also placed the estimation
of the corresponding coefficient’s expected value, its standard error and the
associated Wald test’s P -value.

Furthermore, the Oddsflow app allows the user to manage a basic dis-
crete choice analysis. The user chooses the variables that will be exploited
in the model confronting several discrete choice models on the basis of some
index of interest. The next step is a panel where can be displayed multiple
interactive Oddsflow plots, that instantly change depending on the covari-
ate’s values given by the user. All the graphs represented in this spot can be
then exported and saved.

The thesis is organized as follows: Chapter 1 contains all the theory
basis to comprehend the concept used. It starts with a section dedicated to
discrete choice models, than describes some statistical inference tools, then
some definitions from graph theory are recapped. Chapter 2 describes two
methods used to represent multinomial logistic databases and regressions
presented in the literature. Chapter 3 contains the explanation of how the
Oddsflow plot works, what is meant to describe and its possible variants. In
Chapter 4 the Oddsflow app is presented: from the variable selector, to the
interactive Oddsflow plots, to the data uploader. Finally, in Chapter 5 some
applications of the Oddsflow app in which its functional simplicity emerges
are discussed.



Chapter 1

Theory Basis

1.1 Discrete Choice Models

In this chapter we consider two statistical methods for the analysis of discrete
choice: multinomial logit and conditional logit models. Both models’ aim
is to analyze the choice of an individual among a set of alternatives and
provide a set of probabilities associated to the choice of each alternative.
Despise the fact that in the beginning the multinomial logit technique was
more often employed, the growing spread of big databases made possible the
adoption of the conditional logit model: in fact it requires a more complete
set of regressors, which has to vary across alternatives, and not just across
individuals. The applications for these techniques are countless: from the
simple choice to take the bus or the car to go to work every morning, to the
segmentation of a factory deadline work.

1.1.1 General Framework

The cornerstone of discrete choice models is a choice among a set of J op-
tions faced by an agent (i.e. person, firm, decision maker). The categorical
response variable is called Y. The outcome of the decision in any given situ-
ation is denoted as y.

Taking a causal perspective, we can suppose that there are several factors
(observed and unobserved), that determine the agent’s choice. The attributes
of the alternatives observed by the researchers are labeled x, and the unob-
served ε. The decision y depends on observed and unobserved factors through
a function y = h(x, ε), called behavioral process. Given both x and ε, the
agent’s choice y is fully determined.

Our model will not be deterministic, due to the fact that ε is not observed.
Agent’s choices cannot be predicted exactly, but are integrated in a proba-
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bilistic framework, which allows the derivation of the outcome probabilities.
This framework consists in the assumption that ε is a random variable, with
probability density f(ε). The likelihood that the agent chooses one of the
J possible outcomes is the probability that the behavioral process h(x, ε)
equals to the corresponding y:

P (Y = y|x) = P (ε : h(x, ε) = y).

This probability can be expressed with an indicator function to get an
integrable form. Define an indicator function:

1{h(x,ε)=y}

that takes value of 1 when the statement in the pedex is true, and 0 when
the statement is false. Then mathbbm1{h(x,ε)=y} = 1 when x and ε induces
the agent to choose alternative y, and the corresponding probability is the
expected value of this indicator function, over all the possible values of ε:

P (Y = y|x) = P (ε : h(x, ε) = y) =

∫
ε

1{h(x,ε)=y}f(ε)dε.

Differences among models lie in specifications of f(ε) and h(x, ε), and
depending on these functions, the integral can be expressed in closed form.
In these cases, the choice probability can be calculated exactly from the
closed-form formula.

1.1.2 Random Utility Model

Discrete choice models are usually derived under an assumption of utility-
maximizing behavior by the decision maker. Models derived that way are
called random utility models (RUMs).

A decision maker, labeled n, faces a choice among J alternatives. Each
choice j is paired with an utility level Unj, which is assumed known just by
decision maker. Instead, the researcher observes a value of utility Vnj (called
representative utility) on the basis of explanatory variables, i.e. some observ-
able attributes of the decision maker. This value is presumably different from
Unj, due to features that the researcher ignores. This difference is modelized
as a random value εnj, defined as εnj = Unj − Vnj.

The joint density of the random vector εn = (εn1, . . . , εnJ) is denoted
f(εn). This density allows probabilistic statements about the decision maker’s
choice. The probability that decision maker chooses alternative i is:
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Pni = P (Uni > Unj,∀j 6= i)

= P (Vni + εni > Vnj + εnj,∀j 6= i)

= P (εnj − εni < Vni − Vnj,∀j 6= i).

(1.1)

This probability is a cumulative distribution, namely the probability that
each random term εnj−εni is lower than the observed quantity Vnj−Vni. As-
suming that εn is distributed with density f(εn), this cumulative probability
equals to:

Pni = P (εnj − εni < Vni − Vnj,∀j 6= i)

=

∫
ε

1{εnj−εni<Vni−Vnj ,∀j 6=i}f(εn)dεn.
(1.2)

1.1.3 Logit Models

The most preferred model used for discrete choice selection is logistic. It
spread thanks to the closed form of the integral employed to compute esti-
mated probabilities for each alternative and it is easily interpretable. Origi-
nally, the logit formula was derived by Luce (1959) assuming that the odds
of choosing option i over j do not depend on the other alternatives (indepen-
dence of irrelevant alternatives, IIA). McFadden (1973) proved that in the
logit formula, unobserved utility ε has necessarily extreme value distribution.

The cumulative distribution function is:

F (x;µ, β) = e−e
−(x−µ)/β

.

This distribution is described by parameters µ (real number called loca-
tion) and β (real non-negative number called scale).

The logit model is obtained by equation 1.2 assuming that each εnj is
independent and identically distributed extreme value with µ = 0 and β = 1.
The probability density for each unobserved utility fraction is

f(εnj) = e−εnjee
−εnj

, (1.3)

and the cumulative distribution is

F (εnj) = e−e
−εnj

. (1.4)

The difference between two extreme value variables is distributed logistic.
That is, if εnj and ,εni are i.i.d. extreme value, then ε∗nij = εnj − εni follows
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the logistic distribution and

F (ε∗ni) =
eε

∗
nij

1 + ε∗nij
. (1.5)

The extreme value distribution for the errors (and hence the logistic distri-
bution for the error differences) is nearly the same as assuming that the errors
are independently normal. The extreme value distribution gives slightly fat-
ter tails than a normal, which means that it allows for slightly more aberrant
behaviour than the normal.

1.1.4 Derivation of Choice Probabilities

What follows is the derivation of choice probabilities (McFadden, 1973) under
the assumptions given in the previous sections. The probability that decision
maker n chooses alternative i is

Pni = P (Vni + εni > Vnj + εnj,∀j 6= i)

= P (εnj < εni + Vni − Vnj,∀j 6= i).
(1.6)

If εni is considered given, (1.6) is the cumulative distribution for each εnj
evaluated at εni + Vni − Vnj, which, according to (1.4) is

e−e
−(εni+Vni−Vnj)

.

Since each ε is independent, this cumulative distribution over all j 6= i is
the product of the individual cumulative distributions:

(Pni|εni) =
∏
j 6=i

e−e
−(εni+Vni−Vnj)

. (1.7)

Since εni is not given, the unconditionally probability is the expected
value of the previous expression with respect to εni:

Pni =

∫ +∞

−∞
(Pni|εni) f(εni)dεni

=

∫ +∞

−∞

(∏
j 6=i

e−e
−(εni+Vni−Vnj)

)
e−εniee

−εnidεni.

(1.8)

In the integral we find the expression for all alternatives, including the i
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alternative.

Pni =

∫ +∞

−∞

(∏
j

e−e
−(εni+Vni−Vnj)

)
e−εnidεni

=

∫ +∞

−∞
e−

∑
j e

−(εni+Vni−Vnj)
e−εnidεni

=

∫ +∞

−∞
e−e

εni
∑
j e

−(Vni−Vnj)

e−εnidεni.

(1.9)

With the following change of variable:

t = eεni ⇒ dt = −eεnidεni
The unconditional probability is the following integral:

Pni =

∫ +∞

0

e−t
∑
j e

−(Vni−Vnj)
dt,

which has a closed form:

Pni =

[
−e
−t

∑
j e

−(Vni−Vnj)∑
j e
−(Vni−Vnj)

]+∞
0

=
1∑

j e
−(Vni−Vnj)

and can be rewritten as the logit probability:

Pni =
eVni∑
j e

Vnj
. (1.10)

1.1.5 Representative Utility Shape for Logit Models

Representative utility is usually linear in parameters. While working with
discrete-choice logit models, two possible variables should be considered with
respect to the categorical variable chosen as the response in the model: in-
dividual specific and alternative specific variables.

Suppose that a decision maker n chooses alternative j. Individual specific
variables are variables independent from the alternative chosen. For each
individual they share a common value among the J options. Alternative
specific variables, instead, express values for all the J alternatives among the
decision maker n can choose. For each individual there are J distinct values,
each corresponding to a different alternative.

Then, depending on the coefficients that multiply them, variables can be
of three types:
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� alternative specific variables xni with a generic coefficient β,

� individual specific variables zn with an alternative specific coefficient γi,

� alternative specific variables wni with an alternative specific coeffi-
cient δi.

The representative utility of decision maker n for alternative i is then:

Vni = αi + βxni + γizn + δiwni.

Only differences are relevant in the model described in the previous sec-
tions. This means that we are interested in the difference between the ob-
served utilities of decision maker n among alternatives i and j :

Vni − Vnj = (αi − αj) + β(xni − xnj) + (γi − γj)zn + (δiwni − δjwnj). (1.11)

Coefficients for individual specific values have to be alternative specific
(and the intercept too), otherwise they would disappear in the differentiation.
Besides, only differences between these coefficients are relevant and can be
identified. For example, For example, with three alternatives 1, 2 and 3,
the three coefficients γ1, γ2, γ3 associated to an individual specific variable
cannot be identified, but only two linear combinations of them. Therefore,
a possible choice of normalization is to set the γ1 = 0 and 1 is then called
baseline category.

Coefficients for alternative specific variables may (or may not) be alter-
native specific. For example, transport time is alternative specific, but 10
minutes in public transport may not have the same impact on utility than
10 minutes in a car. In this case, alternative specific coefficients are relevant.
Monetary time is also alternative specific, but in this case, one can consider
than 1 euro is 1 euro whatever it is spent in car or in public transports 3. In
this case, a generic coefficient is relevant (Croissant, 2013).

A model with all individual specific variables is called multinomial logistic
model. If all variables are alternative specific, it will be called conditional
logistic. When there are variables of both types, the model is called mixed
logistic.

For multinomial logit models, the difference between two representative
utilities among alternative i and j can be written as logarithmic odds ratio
using (1.10)

log
Pni

Pnj

= log
eVni

eVnj
= Vni − Vnj = (αi − αj) + (γi − γj)zn. (1.12)

Setting the J category as baseline (often the last one or the most com-
mon), multinomial logit models pair each response category with the baseline
to describe simultaneously J − 1 log odds.
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1.1.6 Coefficients Computation

Maximum likelihood fitting of logit models maximizes the likelihood subject
to Pi simultaneously satisfying the J − 1 equations that specify the model.
Despite the differences between multinomial, conditional and mixed logistic,
the models share a common likelihood (Hoffman and Duncan, 1988). For
n = 1, . . . , N , let yn = (yn1, . . . , ynJ) represent the multinomial trial for
decision maker n, where yni = 1 when the response is in category i and
yni = 0 otherwise.

log ` =
∑
n

∑
i

yniPni. (1.13)

Via numerical methods that will not be mentioned in this work, the max-
imization of (1.13) subject to Pni leads to estimate coefficients in 1.11.

1.2 Statistical Inference for Categorical Data

The distribution for the response variable has unknown parameter values.
About them it is possible to make inference with some of the methods re-
viewed in this section.

1.2.1 Likelihood Functions and Maximum Likelihood
Estimation

Under weak regularity conditions, such as the parameter space having fixed
dimension with the true value falling in its interior, maximum likelihood
estimators have desiderable properties. They have large-sample normal dis-
tributions, are asymptotically consistent, converging to the parameter as the
number of observations increases, and are asymptotically efficient, produc-
ing large-sample standard errors no greater than those from other estimation
methods (Agresti, 2002).

Given the data, for a chosen probability distribution the likelihood func-
tion is the probability of those data, treated as a function of the unknown
parameter. The maximum likelihood (ML) estimate is the parameter value
that maximizes this function. This is the parameter value under which the
data observed have the highest probability of occurrence.

In this section, the parameter for a generic problem is denoted θ and
its ML estimate θ̂. The likelihood function is `(θ) and its logarithm, the
log-likelihood (easier to work with since it is a sum rather than a product
of terms) is L(θ) = log `(θ). For many models, L(θ) has a concave shape
and θ̂ is the point at which the derivative equals 0. The ML estimate is
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then the solution of the likelihood equation, ∂L(θ)/∂θ = 0. Often, θ is
multidimensional, denoted by θ, and θ̂ is the solution of a set of likelihood
equations. The standard error of θ̂, which is denoted SE, is asymptotically
defined as the square root of the inverse of the information matrix .

1.2.2 Wald Test

The Wald test is a significance test of a null hypothesis H0 : θ = θ0 which ex-
ploits the large-sample normality of ML estimators. With non null standard
error SE of θ̂, the test statistic

t =
θ̂ − θ0
SE

has an approximate standard normal distribution when θ = θ0. One refers z
to the standard normal table to obtain one- or two-sided P -values. Equiv-
alently, for the two-sided alternative, t2 has a chi-squared null distribution
with 1 degree of freedom. The P -value is then the right-tailed chi-squared
probability above the observed value. This type of test, using the standard
error, is called a Wald test (Wald, 1943).

1.2.3 Likelihood Ratio Test

Let `0 be the maximum likelihood over the possible parameter values under
H0, and `1 the maximum likelihood over the larger set of parameter value
without any additional assumption, validating a hypothesis H1. The ratio
Λ = `0/`1 cannot exceed 1. Wilks (1935) proved that the quantity called
likelihood-ratio test statistic:

− 2 log Λ = −2 log(`0/`1) (1.14)

is distributed chi-squared as the number of observations goes to infinity. The
degrees of freedom equal the number of parameters loss in the passage from
H1 to H0 (the difference among their parameter space’s dimensions).

1.2.4 McFadden’s R2

As in ordinary regression, R2 describes the power of explanatory variables
to predict the response, with R2 = 1 for perfect prediction. A measure that
directly uses the likelihood function is the one proposed by McFadden (1973).
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Denote the maximized log likelihood LM for a given model and L0 for the
null model containing only an intercept term, then

R2
McFadden = 1− log `M

log `0
= 1− LM

L0

. (1.15)

Since probabilities are no greater than 1, so log likelihood are nonpositive.
Furthermore, an increasing in model’s complexity expands the parameter’s
space, so the relation 0 ≥ LM ≥ L0 always states.

To understand whether this definition makes sense, suppose first that
the covariates in the current model give no predictive information about the
outcome. This means that the likelihood value `M will not be much greater
than the likelihood of the null model. Their ratio will be close to 1, and
R2

McFadden will be close to 0. Next, if our model predicts perfectly all the
variations in the response, it recreates with probability ≈ 1 all the choices
made by decision makers. So the model’s likelihood will be close to 1 and its
logarithm close to 0, which leads to R2

McFadden = 1.

1.3 Graphs

We now introduce some essential definitions from graph theory, in order to
easily understand how the data representation will be structured. These
objects were chosen for their shape, which shines when it comes to make
connections between objects intuitive and clear. For this reason, no algorithm
or theorem will be considered.

Definition 1. A graph is an ordered pair G = (V,E) comprising a set V of
vertices or nodes together with a set E of edges or lines. (Biggs et al., 1986)

Definition 2. A directed graph is a graph where the edges have a direction
associated with them.

Definition 3. A complete digraph is a directed graph in which every pair of
distinct vertices is connected by an edge.



12 CHAPTER 1. THEORY BASIS



Chapter 2

Graphical Representations

The graphical representation of a multinomial logistic regression has always
been a little painful. Imagine the common case of a dataset with many ex-
planatory variables and a response variable with a lot of alternatives: the
classic tools to represent any kind of information are too dispersive or ineffi-
cient, due to their derivation from the binary logistic regression.

In this section we take a tour to some common logistic data (and re-
gression) representation to highlight their limits and find a way to exceed
them.

2.1 Graphical Contingency Tables

The contingency tables, term introduced by Pearson (1904), are tables which
cells contains the frequency counts of the outcomes for a sample. Table 2.1
is an example from an article that studied effects on racial characteristics on
whether persons convicted of homicide received the death penalty (Agresti,
2002).

As we can see from it, the table summarizes the entire data set (provided
that all variables are categorical) in a combination of rows and columns
depending om the number of alternatives in the variables. This instrument is
fundamental to approach the statistical analysis on a categorical set of data,
but since it gathers a superficial information, its utility quickly ceases.

For example, if we were searching for a form of biased or discriminant
behavior based on the race in the death penalty verdict, the sole amount of
people belonging to the two races for which a court chose the death penalty
would be obviously not enough, even for a preliminary investigation.

We can also draw a graphical contingency table, like in Figure 2.1, in which
the area of each square represents the portion of outcomes, split by their

13
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Table 2.1: Death Penalty Verdict by Defen-
dant’s Race and Victims’ Race

Victims’
Race

Defendant’s
Race

Death Penalty

Yes No

White
White 53 414
Black 11 37

Black
White 0 16
Black 4 139

Source: M. L. Radelet and G. L. Pierce, Florida Law Rev.
43: 1-34 (1991).

belonging to one of the alternatives of the variables. Neither the graphical
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Black White BlackWhite

Figure 2.1: Graphical contingency table of data set in Table 2.1

approach helps to collect anything relevant about our purpose, since it is just
a different way to look at the same object.

Authors often fill contingency tables with also a column in which the
frequency of one of the alternative of the response variable can be read. It is
possible to redesign the squares in the graphical contingency table to let their
areas be somehow dependent from the frequencies of the adjoined column,
but the new figure will not be likely requested without its counterpart, since
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it is good use that relative frequencies are presented with the absolute ones.
In Table 2.2 appears a list (called ”Percent Yes”) with probabilities that

the defendant is sentenced to death based on his race and on his victims’
race.

Table 2.2: Death Penalty Verdict by Defendant’s Race and
Victims’ Race with Probabilities based on Races

1 Victims’
Race

Defendant’s
Race

Death Penalty Percent
YesYes No

White
White 53 414 11.3
Black 11 37 22.9

Black
White 0 16 0.0
Black 4 139 2.8

Source: M. L. Radelet and G. L. Pierce, Florida Law Rev. 43: 1-34 (1991).

Our quick study may then end with a logistic regression which we discover
with that there was a sort of racial discrimination in death sentences in the
time the data were been collected.

The next example shows how the previous graphical tool becomes an inef-
ficient way to start an analysis when the number of variables and alternatives
in categorical variables increases. Figure 2.2 is the graphical contingency ta-
ble from a study of factors influencing the primary food choice of alligators
(Agresti, 2002). It used 219 alligators captured in four Florida lakes, and the
response variable is the primary food found in the animals’ stomach. This
has five categories: fish, invertebrate, reptile, bird, other; the data are also
classified according to the lake of capture, the gender and the length (≤ 2.3
meters long, > 2.3 meters long).

In the graph it is clear how the various dimensions of the squares make the
interpretation pretty hard, being the classes of animals impossible to compare
in just a glance. Furthermore, the explanatory variables in this model are
still few; considering databases or problems with a lot more, committing to
this graph would probably bring nothing than confusion.
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2.2 Estimated Probabilities

The aim of our work is to provide an immediate graphic tool to read and
understand the results from the prevision part of a logistic regression. In
this case the response is categorical, so the model used for the analysis will
return J probabilities that a decision maker n (with his set of values for
the explanatory variables in the data set) will choose each one of the J
alternatives.

If one (or more) of these explanatory variables are quantitative, it is infor-
mative to plot the estimated probabilities associated with each alternative.
The other predictors are left constant while the one that will be represented
varies among his range. For each quantitative regressor, the graph consists
so in an overlapping of curves, one for each option.

In the next example (UCLA: Statistical Consulting Group), the options
of students entering high schools can be modeled using career and social
indicators. The individual may choose among general program, academic
program and vocational program. We consider the writing score as the only
explanatory variable.
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Figure 2.3: Estimated Probabilities for the student database

As shown in Figure 2.3 an increase in the writing score raises the proba-
bility that a student selects an academic program over a vocational or general
one. In the picture there is no information about the regression coefficients
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and their statistical relevance in the explaining of the phenomenon (for ex-
ample in the form of a P -value).

We may try to guess that, taking the general program as baseline cate-
gory, the log odd between the academic and the baseline program increases
when the writing score increases. This would suggest a positive regression
coefficient γacademic corresponding to the writing score variable, but does not
help to quantify it, nor gives any clue on its relevance in the model’s estima-
tion.

The plot becomes gradually harder to read and interpret when the num-
ber of alternatives in the response variable increases. However, this repre-
sentation has its limit in the choice of fixed values for all other explanatory
variables. Leading univariate regression models and plotting estimated prob-
ability plots for them might be useful to locate the intervals of interest in
which study the probability behavior. But a high number of explanatory vari-
ables makes this estimation progressively harder, and forces the researcher
to visually compare a lot of these plots.



Chapter 3

The Oddsflow plot

In this chapter we present an original graphical representation for the esti-
mated probabilities of a mixed logistic regression. It exploits the shape of a
complete digraph and allows to relate in the same figure the estimated prob-
abilities and the regression coefficients, given with their statistical relevance
according to the Wald test (Chapter 1).

The software used for the regression is the R package mlogit (Croissant,
2013), the one used to produce plot graphs is the igraph package (Csardi
and Nepusz, 2006).

3.1 The Oddsflow plot’s structure

The idea behind the Oddsflow plot is an interactive and updatable graph
G = (V,E) with a vertex for each alternative in the response categorical
variable and a directed edge for each pair of vertices. We first consider the
multinomial logistic model, in which all variables are individual specific.

Suppose that the user wants to display the Oddsflow plots for a hypo-
thetical multinomial regression model. They are asked to indicate all the
values for the explanatory variables of the decision maker n for which the
probabilities of falling in one of the J categories are requested. Then they
select the variables whose regression coefficients will be displayed. For each
variable one or more Oddsflow plots are produced, depending on its continu-
ous or discrete nature. Vertices and edges have a peculiar representation for
the sake of plots’ interpretation:

� every node is represented by a circle which area depends on the alter-
native’s estimated probability. This probability is written close to each
node;

19
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� every edge is represented by an arrow which shaft’s width increases
with the absolute value of the chosen variable’s regression coefficient
γij = γi − γj. The coefficient is printed in the middle of the arrow
and is followed by its standard deviation and a combination of symbols
(taken from the classic summary output in R) synthesizing its Wald
test’s P -value1.

In case of only continuous explanatory variables the arrows are designed
as follows (the case with discrete variables is treated in the next section). For
each couple of nodes, the log odd model between the alternatives represented
by the nodes is extracted from the regression model. The alternative chosen
as the baseline in the model will be indicated as j, while the other as i.
Then the coefficient γij relative to the variable for which the Oddsflow plot
is drawn is considered: if it is positive, the arrow that joins the two nodes will
start from the one representing the baseline alternative j and will point to
the node representing i. Otherwise, the arrow will be plotted starting from
the node representing i and pointing to j. Each edge then always represents
the positive contribute of the variable to the log odd of the alternative which
the arrow points to, over the alternative which the arrow starts from. For
this reason, the estimated coefficients printed on edges are taken without
their signs, since they are summarized yet by edges’ orientations.

This process is repeated for each couple of alternatives/nodes. The final
outcome is a set of complete digraphs (one for each explanatory variable)
with heterogeneous vertices and edges resembling a flow network.

Assume now that we would like to know how the estimated probabilities of
a multinomial logistic regression vary when an arbitrary model’s explanatory
variable increases or decreases its value: the Oddsflow plot retains the needed
information. Augmenting that value would increase the areas of the nodes
pointed by the arrows, and decrease the areas from which the arrows start.

This representation allows the interpretation according to every arrow is
associated with a sort of transferred probability flow, which shifts from an
alternative to another depending on the variation in the explanatory vari-
able. But what discussed in this work is not a flow in any mathematical or
engineered meaning: the application of algorithms from operations research
or optimization is useless, since the graph structure is here employed just for
its properties in visualizing links between objects.

Nonetheless, varying the explanatory variables’ values induces a changing
in the nodes areas that follows the indications given by the arrows. The user
can experience this interactivity with the Oddsflow app (Chapter 4) and

1The R notation is: “∗ ∗ ∗” for values < 0.001, “∗∗” for values < 0.01, “∗” for values <
0.05, “.” for values < 0.1, “ ” for values < 1.
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imagine that a metaphorical flow of probability passes from an alternative to
another after an external variation.

Inside this network, the probability does not get wasted, since all values
depicted close to the nodes always sum to 1. Finally, the node which only
edges start from can be seen as a source node, and the one which only edges
arrives as a sink node. In fact, if the value tends to positive (negative)
infinity, all the estimated probability will be concentrated in the alternative
represented by the sink (source) node.

3.2 An Individual Specific Example:

The student Database

An example with individual specific regressors is the students’ program choice
(UCLA: Statistical Consulting Group). The model’s goal is to estimate the
probability of choosing a program given the writing score of an undefined
exam and the socioeconomic index (ses).

The continuous Oddsflow plot

Figure 3.1 shows that increasing the writing score, the probability of choosing
an academic program instead of a general or vocational one increases, since
both the arrows from the two other alternatives are pointed to the academic
vertex. The opposite situation affects the vocational program’s probability
decreasing, while the general program’s case is different.

Comparing the coefficients corresponding to edges that leave and arrive
from a vertex, it is possible to get an idea of the estimated probability for
the values at the endpoints of the range interval of the explanatory variable.
If the sum of the leaving edges’ coefficients exceed the sum of the arriving
edges’ coefficients, at the right interval’s endpoint we can expect a negative
difference of probability flow, that makes the estimated probability value
lesser than the one computed at the left endpoint. The same states in the
opposite way, generating a positive difference. In the student example, since
general has a leaving edge of value 0.066 and an arriving edge of value 0.0518,
there will be a probability negative gap between the lowest writing score in
the database and the highest. This is confirmed by the curve in Figure 2.3.

Each Oddsflow plot recaps some values estimated by the regression model
that was employed to produce it. Concerning the student example, Fig-
ure 3.1 gives some information about the three log odds that the model is
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(a) writing score = 34

(b) writing score = 66

Figure 3.1: Oddsflow plots for the students database with writing score = 34
and writing score = 66.
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designed to describe:

log
Pacademic

Pvocation

= αacademic + 0.118 zwrite

log
Pacademic

Pgeneral

= αacademic + 0.066 zwrite

log
Pvocation

Pgeneral

= αvocation − 0.0518 zwrite.

(3.1)

Where αvocation in the first equation and αgeneral in the second and third
equations are set to 0, since they are constant contributes for the baseline
category.

As described in the previous section, regression coefficients’ signs are inte-
gral with arrows’ directions. Log odds with positive zwrite coefficients increase
when zwrite increases, so arrows are directed from the alternative on the de-
nominator to the one on the numerator. On the other side, an increase in
zwrite leads to a decrease in those log odds (like log Pvocation

Pgeneral
) in which zwrite

has a negative coefficient. Probability of choosing a vocation program over a
general one would decrease, and the arrow from vocational node to general
node is drawn in the exact opposite on respect of the other two.

Some of these contributes may be omitted on the basis of the regression
coefficients’ Wald test P -values. For example, considering significant a term
with P -value equal to 0.001 or less, only the log odds between academic and
general program are statistically influenced by the writing score. The other
two log ratios may be considered constant.

All these equations are fully expressible with the Oddsflow plot and app
(Chapter 4). The former gives the multiplicative coefficients, the latter all
the constants α.

The Discrete Oddsflow plot

Among explanatory variables there may be some categorical, for which the
same continuous representation cannot be used. Their variation (in the non-
ordinal case) is not monotonous, but just a switch between alternatives with-
out any hierarchy. This means that it is impossible to estabilish if a change in
these covariates is an increasing or a decreasing. To keep the same structure,
discrete variables’ Oddsflow plots depict effects of indicator variables, which
shift from 0 to 1 depending on two of the explanatory variables’ alternatives.

Thus, for each qualitative regressor with K alternatives, every possible
switch among each alternative has to be represented. For K > 1, the amount
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of these non-repeating pairs is equal to

N =
K−1∑
k=1

k. (3.2)

For this reason, N Oddsflow plots are generated to map all possible
switches from any pair of options leading to variations in the estimated prob-
abilities.

An example of non repeating pair is the switch“on→ off”, which is treated
as “off → on” because the two log odds are equal except for the coefficients’
signs:

log
Pon

Poff

= − log
Poff

Pon

.

To present the graphical outcome, we focus on another formulation of
the student’s problem. Among all disposable covariates, it is possible to
select the social economic status (called ses, a discrete variable) and use it
to estimate the probability of choosing one of the three programs. Since ses
has three alternatives (low, middle and high), K = 3. N is then equal to 3
and Oddsflow produces 3 graph plots.

The arrows in Figure 3.2 represent the regression coefficients for a dummy
variable indicating the social economic status in the regression formula. Ac-
cording to the plot’s title, the dummy takes value 1 when the individual has
a low social economic status, and zero when has high;

Modifying this variable causes log odds’ increasings and decreasings as
already explained: for example, switching from high to low ses raises the
log odds of general and vocational program against academic program, and
increase the relative estimated probability.

From this model’s Oddsflow plots (Figures 3.2 and 3.3) can be derived
the following log odds:

log
Pacademic

Pvocation

= αacademic − 0.983 1{high→low} − 1.27 1{high→middle}

log
Pacademic

Pgeneral

= αacademic − 1.16 1{high→low} − 0.63 1{high→middle}

log
Pvocation

Pgeneral

= αvocation − 1.16 1{high→low} + 0.645 1{high→middle}

(3.3)

The alternative high is automatically chosen by R as baseline category
for the explanatory variable ses. Figure 3.4 is then redundant to collect
all the regression coefficients, since their plots are generated setting low as
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(a) ses = high

(b) ses = low

Figure 3.2: Oddsflow plots for the dummy variable 1{high→low}: 1{high→low} =
1 when ses = low; 1{high→low} = 0 when ses = high in the student data set.
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(a) ses = high

(b) ses = middle

Figure 3.3: Oddsflow plots for the dummy variable 1{high→middle}:
1{high→middle} = 1 when ses = middle; 1{high→middle} = 0 when ses = high
in the student data set.
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(a) ses = low

(b) ses = middle

Figure 3.4: Oddsflow plots for the dummy variable 1{low→middle}:
1{low→middle} = 1 when ses = middle; 1{low→middle} = 0 when ses = low
in the student data set.
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baseline category for the switches. They are still included among disposable
Oddsflow plots for the model, since the user may be interested in studying
switches that are not just the ones given by default.
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3.3 An Alternative Specific Example:

the Fishing Database

As seen in Chapter 1, alternative specific explanatory variables may have
coefficients independent from the baseline alternative chosen for the regres-
sion. The probability flow through the alternatives is then trivial, since the
estimated probabilities are directly (or indirectly, depending on coefficients’
signs) proportional to variations in the corresponding alternative’s regressor
value.

For these variables whose coefficients are alternative specific, the Oddsflow
plot drops the arrows representation and depicts just the nodes and their re-
gression coefficients with standard deviation and P -value indications on their
right side. The color of each node reflects the respective coefficient’s value in
the model, emphasizing with graduating shades the alternative’s influence.
On the left side of each plot is a color palette to suggest the distances be-
tween coefficients’ values. For positive values, the color shades from yellow
(the zero) to red, for negative values from light blue (the zero) to purple.

The Fishing data set (Cameron and Trivedi, 2005) contains choice of
recreational fishing mode, in which data may depend on both the individual
and the alternative. The response variable is the place where the decision
maker chooses to fish (boat, beach, charter and pier). The database has two
alternative specific variables (the catching rate and the price asked to fish in
the place selected), and one individual specific variable (the income).

In Figure 3.5 the alternative specific coefficients for the catch variable
are displayed. They allow the user to confront the different values for each
choice, select those with P -value lower than a desired threshold and check
which alternative contributes most in the representative utility shape.
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Figure 3.5: Oddsflow plot for the catching rate in the Fishing dataset.



Chapter 4

The Oddsflow app

The primary issue of our work is the development of an interactive tool to
compute estimated probabilities from a discrete choice regression model. The
Oddsflow plot introduced in Chapter 3 is the static version of the namesake
application, which gives the user some tool to make variable selection and the
possibility to manipulate the new subject’s attributes to compute and com-
pare the estimated probabilities, varying an arbitrary number of explanatory
regressors.

The software used to develop the interactive part is Shiny (RStudio Team,
2014), an extension to Rstudio (RStudio Team, 2015), one of the most pow-
erful R language IDE.

4.1 The Variable Selector

Once the user submitted the data set to the Oddsflow app, the first in-
teractive interface displayed is the variable selector. It allows to choose the
categorical variable going to be the response and the explanatory ones among
all the others. If needed, a regression summary can be visualized to evaluate
both the regressors’ statistical relevance and how the model fits the data via
some indicators supplied by the mlogit package.

According to the database’s shape, a different variable selector is em-
ployed. As described in Chapter 1, a variable is called alternative specific
provided that the attributes of all the alternatives are expressed (not just the
attributes for the chosen option). Regarding databases with both alternative
and individual specific variables, our software is limited to those with just
one categorical variable, that is the response. Furthermore, is possible to set
a generic coefficient (a constant) for each alternative specific variable, or an
alternative specific one.

31
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Variable Selector with only Individual Specific Variables

For this section, the student dataset (UCLA: Statistical Consulting Group)
will be used as sample. Figure 4.1 shows the variable selector’s start.

Figure 4.1: The first step of a variable selection procedure with the Oddsflow
app.

The first widget (the web element that the user can interact with) from
the top allows to select the response variable among all the categorical ones
in the dataset. Below the user can choose which baseline category is going to
be set for the logistic regression, launched by filling all the selector’s fields.
The functioning of these two widgets is depicted in Figure 4.2.

The choice of a baseline category is only relevant for the summary outputs
reported in the variable selector. It is irrelevant in the next steps of the
Oddsflow app.

The following widgets let the user choose the explanatory variables. Once
selected, they appear in the white box and are simply added to the right side
of the final formula, which the regression will be triggered for.

Depending on the analyzed data, a categorical variable may appear as a
numeric array or as an array of strings. It is possible to detail which variable
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(a) Categorical Response Selector (b) Baseline Category Selector

Figure 4.2: Steps to select the response variable.

is categorical and which is continuous with the widget in Figure 4.3b. The
software chooses by default the variables that R recognizes as categorical.

For completeness of the presentation, in Figure 4.3 the writing score (a
continuous variable) and the social economic status (a categorical variable)
has been selected.

(a) Explanatory Variables Selector (b) Detailing on the variables’ na-
ture

Figure 4.3: Steps to select the explanatory variables.

If the“Display the summary”widget is switched on“Yes”, the result will be
the screen in Figure 4.4. The user may eventually base his variable selection
on some values of interest expressed in the mlogit package summary, without
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displaying the whole of it. These indicators appear in the first line of the
”Summary output” panel.

Figure 4.4: The result of a variable selection procedure with the Oddsflow
app.

The R summary (with its P -values and indexes of interest) is automati-
cally updated every time the user changes something in the model formula-
tion, like removing an unnecessary explanatory variable or setting a different
baseline alternative.

The interactivity inherent in the variable selector has been designed to
be friendly to the non-expert user, who’s taking count of how the model
fits the data just via some indicators or is interested in the Oddsflow plot
only. Nonetheless a skilled operator may delve a little bit deeper in the
analysis confronting more than an indicator at time, or basing his selection
on statistical evidences explained by P -values. As anticipated in Chapter 3,
by changing the baseline alternatives the user can also draw the constant
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coefficients useful to complete equations (3.1) and (3.3).
When it has come to an acceptable model, clicking on the ”To the Odds-

flow plots” button brings to the interactive Oddsflow plots.

Variable Selector with Alternative Specific Variables

The structure of a dataset with at least one alternative specific variable is
fairly different from an usual set of data. In fact, for some variables there
are information on all the possible response’s alternatives, also on those that
have not been chosen. In our work, we focus on datasets with one categorical
variable (the response) and an arbitrary number of continuous explanatory
variables, which can be alternative or individual specific.

For this section, the sample employed is the Fishing dataset (Cameron
and Trivedi, 2005). Figure 4.5 shows the variable selector’s start for the case
with alternative specific variables.

Figure 4.5: The first step of a variable selection procedure with the Oddsflow
app (case with alternative specific variables).

The differences with Figure 4.1 are the inability to choose the model’s re-
sponse variable and the detailing on the alternative specific variables. These
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can be introduced in the formula with a generic coefficient, or with a co-
efficient dependent on the categories. The “Choose the alternative specific
variables with non-constant coefficient” widget automatically fetch for the al-
ternative specific among the explanatory variables, and can establish which
regressor is needed a constant coefficient for.

(a) Explanatory Variables Selector (b) Detailing on the alternative spe-
cific variables’ nature

Figure 4.6: Steps to select the explanatory variables (case with alternative
specific variables).

On the top of the right panel is the model formula, updated like the
summary after each alteration in the widgets. Its structure is introduced in
the R package Formula (Zeileis and Croissant, 2010) and in the right side the
regressors are put in the following order: on the left of the first separator are
the alternative variables with generic coefficient, between the separators are
the individual specific variables with alternative specific coefficients and on
the right of the second separator are the alternative specific variables with
alternative specific coefficients. The “Summary output” of the example’s
model returns the same information carried by the previous example. The
final step is displayed in Figure 4.7.
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Figure 4.7: The result of a variable selection procedure with the Oddsflow
app (case with alternative specific variables).
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4.2 The Interactive Oddsflow Plots

The second step of the Oddsflow app is the panel of interactive plots. The
Oddsflow graph plots seen in Chapter 3 are here loaded and changes depend-
ing on the explanatory variables’ values that the user sets via the widgets in
the left panel of the application. It is also possible to display multiple plots in
the same room, and fix a P -value threshold to hide the arrows corresponding
to those coefficients with P -value under that limit.

Interactive Oddsflow Plots with Individual Specific Vari-
ables

Figure 4.8 depicts the right away step of the software after Figure 4.4.

Figure 4.8: The panel with interactive Oddsflow plots at its start.

The first widget from the top in Figure 4.8 allows the user to decide which
regressor’s Oddsflow plot to display in the right panel of the application.
Since it is a multi-selection tool, more than one graph at a time can be
visualized.

Following the first widget are values selectors, one for each individual
specific explanatory variable in the model, and J for each alternative specific
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explanatory variable, where J is the number of alternatives in the response
variable. The continuous sliders span the variable’s range (the maximum
and minimum values in the data set), and are set by default on their average
values in the data set. The discrete selectors, on the other hand, have a
button for each option in the categorical variables, and are set by default
on the first of each of them in alphanumerical order. Each combination of
these settings represents the choices of a decision maker which the estimated
probabilities are calculated for.

Finally, the user can set a P -value threshold. Only contributions of re-
gressors (represented by the arrows) with P -value lower than the level set are
going to be represented. The possible thresholds are reported in Section 3.1.

Every click of the “Export the graphs” button summons the R plot device,
from which is possible to save or import all the right panel contents in the
formats permitted by the above-mentioned environment.

Figure 4.9 is an example with one only graph plotted. Figures 4.11 and
4.10 display how the estimated probabilities change varying both the contin-
uous and the categorical regressors.

Figure 4.9: Interactive writing score’s Oddsflow plot.

The differences between each Oddsflow plot are the direction of the ar-
rows and the values written on them, because each graph refers to a specific
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variable, with proper regression coefficients. On the other hand, the esti-
mated probabilities are in common for each plot because are generated from
the same set of variables.

Confronting Figures 4.11 and 4.10 the user may also notice that the es-
timated probabilities are now changed, while the arrows’ aspect is not. It is
due to the fact that the former are calculated for a different individual, with
writing score = 34 and ses = high, and the latter depends only on the model,
and not on the data submitted to make statistical prediction.

To make possible a comparison between coefficients from different con-
tinuous regressors, it’s possible to plot more than one Oddsflow plot at a
time in the right panel of the app. But variables can have different unities
of measures; in this case the comparison of coefficients can be troublesome,
since every one is scaled on its referring variable.

For this reason, when more than one Oddsflow plot is depicted, the ar-
rows’ shafts depend on coefficients extracted from the same model, but with
the variables’ standard score instead of the raw variables. This procedure
leaves intact the signs, rescaling the values to allow a comparison between
the coefficients and to avoid gigantic arrows that would compromise the plots’
fruition.

Interactive Oddsflow Plots with Alternative Specific Vari-
ables

As assumed in Chapter 3, we consider only databases with continuous alter-
native specific variables, and one categorical variable as response. When it
comes to compute estimated probabilities, the user has to submit data on the
attributes of all the alternatives, and not just the attributes for the chosen
alternatives.

In the Fishing database example (Cameron and Trivedi, 2005), we stated
that the variable price’s coefficient will be generic, and the coefficient asso-
ciated with the catch variable will vary on the basis of the response’s al-
ternatives. The Oddsflow plot for the catch variable is the same described
in Section 3.2, while there is not any graphical representation for the price
coefficient’s variable, since it is just a number, independent from individual
and from the response’s categories. It’s still possible to set the values for
the price variable because it is a regressor in the model, so is necessary to
compute the estimated probabilities.

All the features for individual specific variables are identical to the case
with only individual specific variables. An instance of the Oddsflow interac-
tive plot is in Figure 4.12.
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Figure 4.12: The interactive Oddsflow plots for the Fishing database.
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4.3 Data Uploader

In the software is also included a data uploader to make the web application
the only interface. In this way the passage of loading the database via the R
console is completely hidden, and the user is not requested to give any lines
of code to start the Oddsflow app.

Figure 4.13 shows how it works, testing the tool on a cars database. The
first widget, “Function to read data”, details which function should be used
to read the submitted database. Then, for each argument of the chosen
function, the user can choose to leave the default setting, or to change the
value in the “Enter value” box. In the right panel the database appears as if
it was read by R, so every flaw in the data reading can be corrected on the
fly.

It is even possible to select which variables exclude from the database,
just by deleting the unwanted ones in the “Variables to use” box.

Figure 4.13: The Oddsflow data uploader interface.



Chapter 5

Examples

In this section some examples to test the Oddsflow app’s features are pro-
posed. The first two examples do not actually describe the choice of a decision
maker, but the discrete choice models framework includes also the model of
multinomial logistic regression, which is a perfect tool to solve some problems
that may emerge from these collection of data. Furthermore, these examples
show two different approaches to a problem that a user can engage with the
Oddsflow app.

On the other hand, the third example displays how the software works
when a data set with alternative specific variables is submitted, but does not
enhance its analysis.

5.1 The iris Database

The iris database is a benchmark database, often proposed as example
to learn the difference between supervised and unsupervised techniques in
data mining. Since we expect it is well-known by the reader, it seems the
appropriate subject of our demonstration.

The database has been introduced by Fisher (1936) and collected to quan-
tify the morphologic variation of Iris flowers of three related species. The
data consists of 50 samples from each of three species of Iris (Iris setosa,
Iris versicolor and Iris virginica). Four features were measured from each
sample: the length and the width of the sepals and petals.

Instead of a multivariate regression model with all the continuous ex-
planatory variables, four univariate models were chosen to first describe the
trend of estimated probabilities. In fact, for each regressor of a multivari-
ate model, there would be an infinite number of possible plots, given by all
the possible values that the other regressors may take. Focusing only on

45
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one of them is often pointless, and the loss of efficiency estimating the logis-
tic regression coefficients with separate binary models is, for low number of
explanatory variables, acceptable (Begg and Gray, 1984).

Figure 5.1 depicts the estimated probability plots for all explanatory vari-
ables in the dataset.
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Figure 5.1: Estimated Probabilities for the iris database.

According to the petals’ variables, the plots show that for some range
of values a new flower has probability close to 1 to fall in one of the three
classes. Furthermore, there are not values for which more than one estimated
probability is non negative, so it is rather uncommon that a decision maker
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(or a software) would ever choose among all the three alternatives. Two
separate binary models (e.g. Iris setosa vs. not-setosa and Iris versicolor
vs. not-versicolor) would be probably enough to estimate parameters. On
the other side, the probabilities related to the sepals’ features have usual
shaped curves, for which a multinomial regression model seems adequate.

We proceed with model selection summoning the Oddsflow app on iris
database (Figure 5.2).

Figure 5.2: The first step of a variable selection procedure with Oddsflow
app on the iris database.

The statistically relevant terms of regression appear to be the ones re-
lated to the alternatives versicolor and virginica, while the log odd between
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versicolor and setosa seems to be equal to 1 (both probabilities Psetosa and
Pversicolor equal to 0.5, neglecting the virginica contribute due to IIA). This
model is not able to discern among the first alternative and the other two,
so it has to be changed to consider all the categories.

Being aware of the unusual behavior of the petals’ features, a candidate
model is the one including just sepals’ features. The R summary, that can
be also obtained with Oddsflow Variable Selector just by deleting the petals’
variables in the “Choose the explanatory variables” widget, is the following:

R> fm <- mFormula(Species ~ 0 | Sepal.Length + Sepal.Width | 0)
R> fit <- mlogit(fm, iris, reflevel = "versicolor")
R> summary(fit)

Call:
mlogit(formula = fm, data = iris, reflevel = "versicolor",

method = "nr", print.level = 0)

Frequencies of alternatives:
versicolor setosa virginica

0.33333 0.33333 0.33333

nr method
22 iterations, 0h:0m:0s
g'(-H)^-1g = 8.27E-07
gradient close to zero

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

setosa:(intercept) 364.98917 44976.86104 0.0081 0.993525
virginica:(intercept) -13.04603 3.09739 -4.2119 2.532e-05 ***
setosa:Sepal.Length -136.76778 15708.53100 -0.0087 0.993053
virginica:Sepal.Length 1.90238 0.51692 3.6802 0.000233 ***
setosa:Sepal.Width 115.87073 15103.50484 0.0077 0.993879
virginica:Sepal.Width 0.40466 0.86283 0.4690 0.639078
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -55.163
McFadden R^2: 0.66526
Likelihood ratio test : chisq = 219.26 (p.value = < 2.22e-16)



5.1. THE IRIS DATABASE 49

The Likelihood ratio test’s P -value is close to 0, which means that the
model fits properly the data, even if the McFadden R2 is lower than the one
corresponding to the complete model. But the model already reports a high
predictive power1, so a smaller R2 will not compromise the above mentioned
predictive power. On the basis of its P -values, the contribute of Sepal.Width
is indubitably redundant. Excluding the variable gives the following model:

R> fm <- mFormula(Species ~ 0 | Sepal.Length | 0)
R> fit <- mlogit(fm, iris, reflevel = "versicolor")
R> summary(fit)

Call:
mlogit(formula = fm, data = iris, reflevel = "versicolor",

method = "nr", print.level = 0)

Frequencies of alternatives:
versicolor setosa virginica

0.33333 0.33333 0.33333

nr method
7 iterations, 0h:0m:0s
g'(-H)^-1g = 0.000179
successive function values within tolerance limits

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

setosa:(intercept) 26.08176 4.88927 5.3345 9.582e-08 ***
virginica:(intercept) -12.67706 2.90634 -4.3619 1.290e-05 ***
setosa:Sepal.Length -4.81566 0.90684 -5.3104 1.094e-07 ***
virginica:Sepal.Length 2.03071 0.46567 4.3608 1.296e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -91.034
McFadden R^2: 0.44758
Likelihood ratio test : chisq = 147.52 (p.value = < 2.22e-16)

The model is now fitting the data quite well (p.value close to 0), and has

1“values of 0.2 to 0.4 for rho-squared represent EXCELLENT fit”, McFadden (1973,
p.306).
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a satisfying predictive power (R2 = 0.44758). The analysis ends with the
Oddsflow interactive plot in Figure 5.3.

Figure 5.3: The Oddsflow interactive plot on the iris database.

As expected, the probability of a flower to belong the setosa species de-
creases when the flower’s sepal length increases, while the probability of be-
longing the virginica species increases. Notice that in the graph the regression
coefficient which multiplies Sepal.Length in the log odds between species vir-
ginica and versicolor is also represented, hidden in the previous summaries
due to the choice of versicolor as baseline category.

We now consider the model with also Petal.Length features and the rel-
ative Oddsflow interactive plot. Despite one of the two variables would be
sufficient for fitting the model and make prevision, the McFadden R2 rises
meaningfully to 0.92763. The most interesting aspect to notice is how the
petal variable’s value influences the estimated the response probabilities when
it falls in the ranges of certainty belonging to a class.

Figure 5.5 depicts how Petal.Lenght conditions estimated response prob-
abilities in ranges identified in Figure 5.1c. Each Petal.Length’s value taken
in these ranges corresponds to an estimated response probability close to 1
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for a single alternative, and to 0 for the others. The Sepal.Length’s values
considered will be the ones maximizing the expected probabilities of choos-
ing one of the latter alternatives. As one can see from the plot, estimated
probabilities in aforementioned ranges depend only by Petal.Length’s value.

Focusing on ranges where Petal.Length’s estimated probabilities are not
fixed to 1, some differences with separate binary models’ estimated probabil-
ities emerge.

In Figure 5.4, Petal.Width takes value 2.5. According to Figures 5.1a
and 5.1c, a Sepal.Length’s increment should favour species versicolor over
setosa. Instead, as represented by the arrow directed from versicolor to
setosa in Figure 5.4a, the probability flow switches in the opposite direction,
and remains in species setosa for higher values of Sepal.Length.

(a) Sepal.Length = 4.75, Petal.Length =
2.5

(b) Sepal.Length = 5.2, Petal.Length =
2.5

Figure 5.4: Oddsflow plots for interesting values of Sepal.Length and
Petal.Length (2).

The case with Petal.Length taking values in interval [4.2, 5.5] will not
be depicted. As expected from both Figure 5.1 and Oddsflow plots, the
probability flow courses from species versicolor and setosa to virginica, but
slower than the previous example.

It is worth to mention that all these evaluations have been made without
computing a single line of code, or plotting any static graph. All considera-
tions and values comparisons have been done just switching the selectors of
the Oddsflow app’s widgets. Despite our analysis just scratched the prob-
lem’s surface, at least was conducted with the least possible effort and in an
intuitive and efficient way.
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(a) Sepal.Length = 4.75, Petal.Length = 1.5

(b) Sepal.Length = 4.75, Petal.Length = 3.8

(c) Sepal.Length = 7.65, Petal.Length = 6.4

Figure 5.5: Oddsflow plots for interesting values of Sepal.Length and
Petal.Length (1).
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5.2 The Alligators’ Food Choice Problem

The alligators’ food choice problem, presented in Agresti (2002), consists in
a study of factors influencing the primary food choice of alligators. It used
219 alligators captured in four Florida lakes. The response variable is the
primary food type found in an alligator’s stomach. Five types of food are
considered to have been possible:

� fish

� invertebrate

� reptile

� bird

� other.

The choice is described by three explanatory variables:

1. gender : the gender of the captured alligator (categorical, takes value
“male” and “female”)

2. size: the size of the captured alligator (categorical, takes values “≤ 2.3”
and “> 2.3”)

3. lake: the lake where the alligator was captured: (categorical, takes
values “Hancock”, “Oklawaha”, “Trafford” and “George”).

Since all explanatory variables are categorical, the data set can be sum-
marized by a contingency table, such as the one in Table 5.1.

The next step is the start of the Oddsflow app, which first interactive
tool is the variable selector. The user is asked to choose among categorical
variable the response, and among all other variables the covariates of the
model that will be fitted. We will select the Food variable as categorical
response due to the problem’s request.

Our first model will be the one including all the disposable explanatory
variables (Lake, Gender and Size). The model’s summary output, same as
the one displayed in the Oddsflow variable selector, is reported in Figure 5.6.

The P -value threshold above that we will consider a regressor’s contribute
statistically irrelevant is set at 0.05. The only non necessary covariate appears
to be the gender. Comparing the previous model with the one featuring just
lake and size (Figure 5.7), we notice a minor decrease in the R2

McFadden and
still a very low likelihood ratio test’s P -value. The new model fits quite
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satisfying the data, and has the same predictive power as the previous (it is
also less complex since a variable was dropped). It can be also noticed that
all regressors seem to add meaningful information to the model. At least one
estimated coefficient for each variable has Wald test’s P -value lower than
0.05, confirming its statistical relevance in the log odds formulas.

The model exploited for the rest of the analysis is then the one describ-
ing the food content of alligator’s stomach according to lake of capture and
animal’s size.

Table 5.1: Contingency table for the alligator data set.

Lake Gender
Size
(m)

Primary Food Choice

Bird Fish Invertebrate Other Reptile

George Female ≤ 2.3 0 8 1 1 0
> 2.3 0 3 9 1 1

Male ≤ 2.3 1 9 0 2 0
> 2.3 2 13 10 2 0

Hancock Female ≤ 2.3 2 3 0 3 1
> 2.3 2 16 3 3 2

Male ≤ 2.3 1 4 0 2 0
> 2.3 0 7 1 5 0

Oklawaha Female ≤ 2.3 1 0 1 0 0
> 2.3 0 3 9 2 1

Male ≤ 2.3 0 13 7 0 6
> 2.3 0 2 2 1 0

Trafford Female ≤ 2.3 0 0 1 0 0
> 2.3 1 2 4 4 1

Male ≤ 2.3 3 8 6 5 6
> 2.3 0 3 7 1 1
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Coefficients :
Estimate Std. Error t-value Pr(>|t|)

invert:(intercept) 0.169024 0.378755 0.4463 0.655408
rep:(intercept) -3.416038 1.085132 -3.1480 0.001644 **
bird:(intercept) -2.432112 0.770664 -3.1559 0.001600 **
other:(intercept) -1.430732 0.538094 -2.6589 0.007840 **
invert:size>2.3 -1.336261 0.411193 -3.2497 0.001155 **
rep:size>2.3 0.557036 0.646608 0.8615 0.388977
bird:size>2.3 0.730239 0.652280 1.1195 0.262919
other:size>2.3 -0.290583 0.459926 -0.6318 0.527515
invert:lakehancock -1.780512 0.623211 -2.8570 0.004277 **
rep:lakehancock 1.129459 1.192800 0.9469 0.343691
bird:lakehancock 0.575266 0.795217 0.7234 0.469429
other:lakehancock 0.766575 0.568551 1.3483 0.177563
invert:lakeoklawaha 0.913182 0.476117 1.9180 0.055114 .
rep:lakeoklawaha 2.530256 1.122117 2.2549 0.024140 *
bird:lakeoklawaha -0.550350 1.209867 -0.4549 0.649192
other:lakeoklawaha 0.026058 0.777771 0.0335 0.973273
invert:laketrafford 1.155822 0.492786 2.3455 0.019002 *
rep:laketrafford 3.061046 1.129729 2.7095 0.006738 **
bird:laketrafford 1.236990 0.866099 1.4282 0.153225
other:laketrafford 1.557763 0.625674 2.4897 0.012784 *
invert:genderm -0.462963 0.395523 -1.1705 0.241796
rep:genderm -0.627559 0.685276 -0.9158 0.359785
bird:genderm -0.606429 0.688848 -0.8804 0.378668
other:genderm -0.252569 0.466347 -0.5416 0.588100
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -268.93
McFadden R^2: 0.11003
Likelihood ratio test : chisq = 66.497 (p.value = 6.7234e-07)

Figure 5.6: Summary output for the complete regression model.
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Coefficients :
Estimate Std. Error t-value Pr(>|t|)

invert:(intercept) -0.0908140 0.3080387 -0.2948 0.7681363
rep:(intercept) -3.6657931 1.0589728 -3.4616 0.0005369 ***
bird:(intercept) -2.7237365 0.7103953 -3.8341 0.0001260 ***
other:(intercept) -1.5727214 0.4748222 -3.3122 0.0009255 ***
invert:size>2.3 -1.4582046 0.3959441 -3.6829 0.0002306 ***
rep:size>2.3 0.3512628 0.5800316 0.6056 0.5447853
bird:size>2.3 0.6306597 0.6424797 0.9816 0.3262957
other:size>2.3 -0.3315503 0.4482520 -0.7397 0.4595115
invert:lakehancock -1.6583586 0.6128772 -2.7059 0.0068128 **
rep:lakehancock 1.2427742 1.1854319 1.0484 0.2944670
bird:lakehancock 0.6951176 0.7812635 0.8897 0.3736081
other:lakehancock 0.8261962 0.5575405 1.4819 0.1383779
invert:lakeoklawaha 0.9372193 0.4719043 1.9860 0.0470292 *
rep:lakeoklawaha 2.4588695 1.1181263 2.1991 0.0278709 *
bird:lakeoklawaha -0.6532062 1.2020891 -0.5434 0.5868596
other:lakeoklawaha 0.0056531 0.7765743 0.0073 0.9941919
invert:laketrafford 1.1219848 0.4905126 2.2874 0.0221741 *
rep:laketrafford 2.9352509 1.1164090 2.6292 0.0085589 **
bird:laketrafford 1.0877668 0.8416688 1.2924 0.1962211
other:laketrafford 1.5163687 0.6214347 2.4401 0.0146828 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -270.04
McFadden R^2: 0.10636
Likelihood ratio test : chisq = 64.283 (p.value = 9.7842e-08)

Figure 5.7: Summary output for the model with Lake and Size.
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Once chosen the model to fit, the Oddsflow app can be started to compare
interactive graph plots among all variables selected. In this model they are
all categorical, so the interface will allow the user to display simultaneously
six graphs for Lake regressor and one graph for Size. The Lake covariate
has four alternatives, and all the possible switches from an option to another
have to be compared. According to the Equation 3.2, there will be six plots
describing all possible switches among them. Figure 5.8 depicts the Oddsflow
app with all variables’ graphs displayed and a 0.05 P -value threshold.

The first two graph plots show an interesting behavior. Switching from
a small size to a bigger one, the probability for an alligator to feed with
invertebrates decreases, independently from the lake in which it has been
captured. The same states when we look for the probability flow of log
odds between lake Hancock and George: the fact that all the edges leave the
invertebrate vertex means that switching from the former lake to the latter,
the probability that the primary food found in the alligator’s stomach is
mainly invertebrate decreases. Figures 5.9 and 5.10 shows the passage from
the two options.

We may also focus our attention on those contributes with Wald test
P -value < 0.001. Figure 5.11 displays only Oddsflow plots with at least
a significative coefficient’s regressor, and only coefficients that satisfy the
above-mentioned bound. Comes to light that all the statistically relevant
terms involve invertebrate, fish and other options. Furthermore, the only
plots regarding the Lake variable with a necessary coefficient describe the
switch between lake Hancock and another lake. There are not any other
relevant probability flow among pair of lakes in which one of those is not lake
Hancock.

All these considerations could lead an user focused on the simplification
of the model to collapse the set of food choice to just invertebrates, fish
and other kind of food, and even collapse the range of lakes in a binary
set containing lake Hancock and a representative variable “Other lakes” that
gather all other lakes in the database.

As in the iris example, this quick study was conducted just evaluat-
ing the output of Oddsflow plots and changing the P -value’s threshold of
coefficient visualized.
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(a) Size ≤ 2.3 (b) Size > 2.3

Figure 5.9: Oddsflow plots for Lake George and varying Size.

(a) Lake George (b) Lake Hancock

Figure 5.10: Oddsflow plots for varying Lake and Size ≤ 2.3.
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5.3 The TravelMode database

The TravelMode database (Greene, 2003) is a data collection for choices of
individuals for a transport mode for inter-urban trips in Australia. The data
set contains 7 variables for 840 observations. Four types of travel modes are
considered to have been possible:

� car

� air

� train

� bus

For this example 6 variables will be considered:

1. mode: the 4 possible travel modes

2. vcost : vehicle cost measure

3. travel : travel time in the vehicle

4. gcost : generalized cost measure

5. income: household income

6. size: party size

The variables vcost, travel and gcost are alternative specific variables, so
there are five values of them for each entry of the data set (one for each of
the four travel modes). The remaining variables (income and size) depend
only on the individual and have one valued shared among each alternative
for each individual, then are individual specific. Figure 5.12 depicts the
Oddsflow variable selector for the database and the summary output for the
model:

mode ∼ vcost+ gcost | income+ size | travel. (5.1)

Equation (5.1) describes a model in which the travel mode is estimated
with vcost and gcost as alternative specific variables with generic coefficients;
income and size as individual specific variables with alternative specific co-
efficients; travel as alternative specific variable with alternative specific coef-
ficients.

Variables vcost and gcost are both costs, then a constant regression coef-
ficient is the most appropriate choice for them. Money spent on one alterna-
tive are in fact not qualitatively different from money spent on all the others.
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Furthermore, the influence of these variables on the estimated probabilities
is not depicted in the Oddsflow app, because they share a common constant
coefficients with all the response’s alternatives and their variations affects
equally all the alternatives.

Conversely, travel time can be spent differently if the decision maker
chooses a trip on board of car (that they will probably drive), or on a train
or on a bus (that they will not drive). The specification ensured by the
alternative specific coefficients is then necessary for this variable.

Figure 5.13 and 5.14 depicts the Oddsflow interactive plots for the vari-
ables income, size and travel. Some information can be extracted from these
plots for the individual specific variables income and size. Passengers with a
high income are more prone to choose the airplane to join their destinations,
and a decrease in the income value raises the probability of taking the bus
or the train. On the other side, numerous parties will choose with a higher
probability the car or the train, leaving the airplane and the bus for smaller
companies.

As expected, the alternative specific coefficients of the travel variable are
negative. An increase in the travel time choosing any possible mode will
decrease the probability that the relative transport mode is chosen by the
decision maker.
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Figure 5.12: The Oddsflow variable selector for the TravelMode database.
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(a) income

(b) size

Figure 5.13: The inteactive Oddsflow plot for the individual specific variables
in the TravelMode database.
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Figure 5.14: The inteactive Oddsflow plot for the train variable with alter-
native specific coefficients in the TravelMode database.
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Chapter 6

Discussion

What makes the Oddsflow app unique are the various ideas which is born
and designed for. The first impulse came from the growing interest in deci-
sion choice methods developed in the last decades. These days, information
is massively collected with cutting edge technologies and devices, and these
big sets of data need proper techniques to be studied. Among the vastness
of available methods, discrete choice models are always more frequently ap-
preciated for their inherent ability to both handle the so-called big data, and
to efficiently describe a decision maker’s process of choosing.

In addition to that, we encounter a shortage in graphical representation
regarding multinomial logistic regression, a well-known method expressible
with the discrete choice’s equations. The available tools to represent the
results of an aforementioned regression are few and based on binary logistic
regression. It can be exploited for multinomial problems with small error,
but sometimes these discrepancies cannot just be acceptable. Furthermore,
an high number of alternatives constrains the generation of an exponential
number of plots, making all the comparisons and evaluations burdensome.

The idea that we decided to represent is a probability flow that courses
between the choice’s alternatives. An excellent way to describe a network of
this kind, which bounds all the options together, is the graph plot. For this
reason, Oddsflow plots are designed as graph plots depicting the influence of
each variable on the computation of estimated probability.

Finally, the Oddsflow app’s interactivity allows to avoid a lot of lines
of code and plots: variables in models can be selected and deselected just
by clicking on them in the dedicated widget, and the same variables change
with a cursor’s scrolling. Estimated probability are computed and displayed
instantaneously on top of nodes which areas increase and decrease.

All these features are meant to be appreciated by a wider group of persons
than the usual target of a specific statistical software. This means that

67
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everyone who is interested in or commissioned to approach a choice problem,
with the Oddsflow app can perform his or her task with a single tool and
without all the knowledge necessary to read and understand a programming
language. The user’s prerequisites are just the theory basis needed to face
the problem, and not necessarily how to explain a computer to solve it, nor
to interpret its output.

But if Oddsflow were just useful to compute estimated probability, the
graph shape would not be needed. A pie chart would be probably enough.
Its inner strength resides in the utility of the various log odds represented by
edges in the Oddsflow plots and the possibility of plotting and varying the
covariates in the same figure.

Few examples in Chapter 5 illustrate how information can be gathered
with the Oddsflow app. Consider the iris database’s problem of which
species belongs a flower on the basis of its petal and sepal’s features. For this
problem emerged that for some models the binomial logistic representation’s
procedure leads to some errors in the estimated probability; we found that
by confronting pairs of Oddsflow plots and the relative estimated probability
plots derived by binary logistic regressions.

In the case of the alligators’ food choice problem, instead, we represented
all he model variables’ Oddsflow plots in one figure. It helped us to discover
that the model could be simplified grouping some response’s alternatives in
one option, and collapse the range of lakes in which the alligators were cap-
tured in a binary set containing just one lake (Hancock) and a representative
element for all the others.

The directions towards point to carry forward our work are boundless.
An useful improvement might regard the Oddsflow Variable Selector. It
can be automatized giving the user an option to choose a stepwise variable
selection, in addiction to the comparison of different models by generating
and inspecting their summary output.

Another feature that can be improved is the Oddsflow plot for alternative
specific variables. We decided to keep a sort of graph structure to avoid a
sudden and confusing change when the user moves from an Oddsflow plot of
an individual specific variable to one of an alternative specific. Conserving
the nodes’ positions in the plot might also help the comparison between
different Oddsflow plots. Nonetheless, the network organization does not
seem proper to display estimated probability proportional to the variable’s
option value. There are probably better shapes to accomplish the task, and
should be evaluated even if they involve a continuity breaking.

Eventually, the graphical render of the graph plots should be enhanced.
Unfortunately that does not depend on our software, but it is imputable to
the igraph package. This is the most versatile tool to represent networks
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in R, but still has some alignment and label arrangement problems. One
solution might be using other programming languages (like C++ or Phyton)
to write the plotting and interactive part of the software, and summoning
R to estimate parameters of the models. That would mean dropping the
Shiny package, a tool that during our work demonstrated its flexibility and
reliability, for a greater design freedom at the price of increasing difficulty in
the software programming.
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