
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingeneria

A NEXT-BEST-SMELL APPROACH

FOR REMOTE GAS DETECTION

WITH A MOBILE ROBOT

Relatore: Prof. Francesco Amigoni

Correlatore: Dr. Erik Schaffernicht

Tesi di Laurea Magistrale di:

Riccardo Polvara, matricola 817572

Marco Trabattoni, matricola 823346

Anno Accademico 2014-2015





To my Dad, who has always dreamt for me to become an engineer.





Contents

List of Figures VII

List of Tables XI

List of Listings XIII

Abstract XV

Sommario XVII

Aknowledgement XIX

1 Introduction 1

2 State of the art 5

2.1 Robot olfaction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Exploration strategies . . . . . . . . . . . . . . . . . . . . . . 6

3 Problem Definition and Solution Proposal 11

3.1 Environment Representation . . . . . . . . . . . . . . . . . . 11

3.2 Candidate Evaluation . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Using MCDM to find the Next-Best-Smell . . . . . . . . . . . 14

4 Architecture of the System 19

4.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Techniques used for Implementation . . . . . . . . . . . . . . 21

4.2.1 Ray Casting . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.3 Depth-First Search . . . . . . . . . . . . . . . . . . . . 27

4.3 ROS Implementation . . . . . . . . . . . . . . . . . . . . . . . 30

V



5 Experimental evaluation 35

5.1 Parameters and Evaluation Metrics . . . . . . . . . . . . . . . 35

5.1.1 Criteria Weights . . . . . . . . . . . . . . . . . . . . . 37

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Real World Experiments . . . . . . . . . . . . . . . . . . . . . 43

5.4 Reflection on Experimental Results . . . . . . . . . . . . . . . 46

5.5 Comparison with Offline Approach . . . . . . . . . . . . . . . 49

6 Conclusion and Future Works 53

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

A Ros Architecture 59

A.1 Navigation stack . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1.1 Transform Configuration . . . . . . . . . . . . . . . . . 61

A.1.2 Odometry Information . . . . . . . . . . . . . . . . . . 62

A.1.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.4 Localization . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 Other Ros Packages . . . . . . . . . . . . . . . . . . . . . . . 65

B Practical Issues 69

B.1 Map representation . . . . . . . . . . . . . . . . . . . . . . . . 69

B.2 Ray casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.3 Issues during experiments . . . . . . . . . . . . . . . . . . . . 70



List of Figures

1.1 The Next-Best-Smell algorithm identifies, on the frontier sep-

arating explored and unexplored area, the next pose the robot

has to reach combining in a single utility function different

criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Because the flexibility they can offer, mobile robots (left) rep-

resent an important innovation in a dangerous task like the

gas detection one. In the first years they were combined with

in-situ gas sensors (right), whose limitation is the fact they

have to be in direct contact with the gas to perceive it. . . . . 6

2.2 The Remote Methane Leak Detector is a TDLAS sensor which

can report the integral concentration of methan along its laser

beam (parts per million x meter) . . . . . . . . . . . . . . . . 6

2.3 Next-Best-View system: acquire a partial map of the sur-

rounding environment, integrate it with the global map, iden-

tify the new position to reach and then reach it. These steps

are usually reiterated until full coverage is achieved. . . . . . 7

2.4 Different approaches were suggested in the field of map cov-

erage but most of them were not theoretically-grounded. For

this reason Multi Criteria Decision Making was introduced

with promising results. . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Grids representing the environment. We can see how when

performing a sensing operation (figure on the right) a grid

with a higher resolution is used . . . . . . . . . . . . . . . . . 12

3.2 Candidate positions (marked with red dots) are the cells on

the boundary between the scanned and unscanned portion of

the environment. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Travel distance criterion is computed as the distance between

the current robot position and the candidate pose. . . . . . . 14

VII



3.4 Information gain criterion is computed as the number of free

unscanned cells that the robot will be able to perceive from

the candidate pose. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Sensing time criterion is computed as the scan angle required

to sense all the free unscanned cells visible from the candidate

pose in the sensing operation (φmax - φmin). . . . . . . . . . . 15

4.1 After checking the termination condition, the robot scans the

surrounding environment, identifies new candidate positions

and, after having evaluated them, selects the best one. These

steps are iterated untill the full coverage is reached. . . . . . . 20

4.2 The three criteria are calculated with different techniques: ray

casting is used to estimate the value of information gain and

sensing time, while A* is implemented for the travel distance. 21

4.3 Ray casting used to calculate the value of information gain

of a candidate pose. When a ray reaches the center of a free

cell, the information gain value is increased. . . . . . . . . . . 23

4.4 The information gain of a candidate pose is the number of

visible free unscanned cells. . . . . . . . . . . . . . . . . . . . 24

4.5 The sensing time of a candidate pose is the angle between

the first and last rays shot to scan all the free unscanned cells

visible from that pose. . . . . . . . . . . . . . . . . . . . . . . 24

4.6 The initial pose of the robot and the target cells. Different

weights are assigned to orthogonal and diagonal cells. . . . . 27

4.7 The cumulative costs are spread from the starting point to

the goal one, expainding always in the tree the node with the

smallest value. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 The shortest path is found proceeding backwards from the

goal and selecting each time the cell with the minimum f(n)

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 The backtracking operations is performed modeling a search

problem with a depth-first search algorithm. . . . . . . . . . . 29

4.10 Structure of the tree built during the navigation. Every time

the robot reach a new position, this is add in the free with a

list of all frontiers visible from there . . . . . . . . . . . . . . 30

4.11 Every time the robot can not find any further frontiers in

front of it, it comes back to the previous pose and try to

expand the corresponding node towards a new direction . . . 31



5.1 Sensing positions identified during the exploration of the Freiburg

University’s map using Configuration K, 15 meters for the gas

sensor range and 180 degrees for the scan angle φ. . . . . . . 40

5.2 Coverage ratio during the exploration of the Freiburg Uni-

versity’s map using Configuration K, 15 meters for the gas

sensor range and 180 degrees for the scan angle φ. . . . . . . 41

5.3 Sensing positions identified during the exploration of the Teknikhuset

corridor’s map using Configuration M, 15 meters for the gas

sensor range and 180 degrees for the scan angle φ. . . . . . . 42

5.4 Coverage ratio during the exploration of the Teknikhuset cor-

ridor’s map using Configuration M, 15 meters for the gas sen-

sor range and 180 degrees for the scan angle φ. . . . . . . . . 43

5.5 Husky A200 (Clearpath Robotics) equipped with a Lidar scan-

ner, a pan-tilt unit and a TDLAS sensor for remote gas detec-

tion. Methane leaks are simulated in the environment with

some bottles filled with the gas . . . . . . . . . . . . . . . . . 44

5.6 Sensing positions obtained during the experiment in the real

world using 10 meters for the gas sensor range and 180 degrees

for the scan angle φ. . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 The weights assigned to the three criteria are shown on the

simplex surface. Experimental activities demonstrated the

the upper part of the simplex represent the locus of point

offering a better overall performance. . . . . . . . . . . . . . 49

5.8 Sensing positions obtained with the offline algorithm using

only 4 directions, 90 degrees for the scan angle φ and a gas

sensor range of 10 meters. . . . . . . . . . . . . . . . . . . . . 50

5.9 Sensing positions obtained with the online algorithm using

only 4 directions, 90 degrees for the scan angle φ and a gas

sensor range of 10 meters. . . . . . . . . . . . . . . . . . . . . 50

5.10 Sensing positions obtained with the online algorithm using 8

directions, 180 degrees for the scan angle φ and a gas sensor

range of 10 meters. . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1 Navigation stack tf tree (wiki.ros.org) . . . . . . . . . . . . . 60

A.2 Example of a tf transform (wiki.ros.org) . . . . . . . . . . . . 61

A.3 Tf tree of the Husky robot used in our experiments . . . . . . 62

A.4 Nodegraph representing all the active nodes . . . . . . . . . . 67





List of Tables

3.1 Example of candidate evaluation with MCDM. . . . . . . . . 17

5.1 Criteria configuration - Weights assigned to each criterion and

coalitions among them. A coalition is defined as a subset of

the criteria involved in the evaluation. . . . . . . . . . . . . . 39

5.2 Results for Freiburg University map for each considered con-

figuration. In only two cases among thirteen the exploration

was not totally completed. . . . . . . . . . . . . . . . . . . . . 39

5.3 Results for Teknikhuset corridor map for each considered con-

figuration. The full coverage was completed in all the tests. . 42

5.4 Comparison between the results obtained with the experiment

in the real world and the ones in simulations, using the same

configuration and the same map. The different number of

total cells depend on the discretization process inside ROS. . 45

5.5 Having 8 directions instead of 4 among to choose can repre-

sent either an advantage (with tight spaces like in the Teknikhuset’s

corridor, on the right) either a disadvantage (with open spaces

like in the Freiburg example, on the left). . . . . . . . . . . . 47

5.6 The adoption of a pruning factor speeds up the convergence

of our algorithm but decrease the total amount of area we can

cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Assigned a coverage constraint to satisfy, an higher prun-

ing factor can speed up the convergence speed of Next-Best-

Smell, but in some cases (if a full coverage is required) it could

prevent to complete the task. . . . . . . . . . . . . . . . . . . 48

5.8 Comparison between offline and online approach. Two con-

figurations are reported for the online: 4 orientations with 90

degrees for the scan angle φ for the first and 8 orientations

with 180 degrees for φ for the second. . . . . . . . . . . . . . 51





List of Listings

4.1 Ray caster pseudocode . . . . . . . . . . . . . . . . . . . . . . 22

4.2 A* pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Subscription ot map server node to the the global costmap of

the environment . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Sensing a MoveBaseGoal message to move the robot to the

next pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Retrieving the exact pose of the pan-tilt unit before perform-

ing a scanning operation . . . . . . . . . . . . . . . . . . . . . 33

4.6 Sending the right parameter to ptu control node to perform

a scanning operation . . . . . . . . . . . . . . . . . . . . . . . 34

A.1 An example of nav msgs/Odometry . . . . . . . . . . . . . . 63

A.2 Code used to get from tf the exact pose of the robot . . . . . 63

A.3 An example of YAML file . . . . . . . . . . . . . . . . . . . . 64

A.4 Code used for sending messages to the pan-tilt unit . . . . . . 66





Abstract

The problem of gas detection is relevant to many real-world applications,

such as leak detection in industrial settings and landfill monitoring. In

this thesis we address the problem of gas detection in large areas with a

mobile robotic platform equipped with a remote gas sensor. We propose

an online algorithm based on the concept of Next-Best View for solving

the coverage problem to which the gas detection problem can be reduced.

To demonstrate the applicability of our method to real-world environments,

we performed a large number of experiments, both in simulation and in a

real environment. Our approach proves to be highly efficient in terms of

computational requirements and to achieve good performance.

XV





Sommario

Il problema legato al rilevamento del gas è di fondamentale importanza in

molte applicazioni, quali l’identificazione delle perdite in ambienti industri-

ali e il monitoraggio delle discariche. In questa tesi affrontiamo il problema

del rilevamento del gas in ampi spazi interni con una piattaforma robotica

mobile, equipaggiata con un sensore gas remoto. Proponiamo un algoritmo

online basato sul concetto di Next-Best-View per risolvere il problema di

copertura a cui il problema del rilevamento del gas può essere ridotto. Per

dimostrare l’applicabilità del nostro metodo abbiamo svolto un elevato nu-

mero di esperimenti, sia simulati che in un ambiente reale. Il nostro ap-

proccio ha dato prova di essere altamente efficiente in termini di risorse

computazionali, e di raggiungere buone prestazioni.

XVII





Aknowledgment

Firstly, I would like to express my sincere gratitude to my advisors Prof.

Francesco Amigoni and Dr. Erik Schaffernicht, for support while I was

working on my Master thesis and the associated article, for their patience,

motivation, and immense knowledge. Their guidance helped me during the

time of research and writing of this thesis.

My sincere thanks also goes to Prof. Achim Lilienthal, who provided me

an opportunity to join his team, and who gave access to the laboratory and

research facilities. Without his precious support it would not be possible to

complete this work.

I thank my fellow labmates Tomek, Malcolm, Ravi, Chit and Han for

the stimulating discussions, for the sleepless nights we were working together

before my departure, and for all the fun we have had in the five months spent

in Örebro.

Last but not the least, I would like to thank my family: my parents and

my sister, for supporting me spiritually throughout writing this thesis and

my life in general.

XIX





Chapter 1

Introduction

Recent advances in mobile robotics showed that the employment of au-

tonomous mobile robots can be an effective technique to deal with tasks that

are difficult or dangerous for humans. Examples include map exploration,

map coverage, search and rescue, and surveillance. Fundamental issues in-

volved in the development of autonomous robots span through locomotion,

sensing, localization, and navigation. One of the most challenging problems

is the definition of navigation strategies. A navigation strategy can be gen-

erally defined as the set of techniques that allow a robot to autonomously

decide where to move in the environment in order to accomplish a given

task.

In the last years robot olfaction, a branch of robotics that combines gas

sensors with the freedom of maneuver of mobile robots, has attracted more

and more interest [30]. This interested has further increased with the birth

of remote sensors which, unlike in-situ ones that must come directly into

contact with the gas to be able to perceive it, allow to perform scans of the

environment from considerable distances [7, 11], up to a couple of tens of

meters, as in the case of TDLAS sensor, based on the spectroscopy analysis

of the wavelengths of a laser [22, 14]. Because of their large size and cost it

is virtually impossible to adopt a distributed solution with multiple sensors

of this type in order to cover an environment, and therefore it has been tried

to integrate this technology with mobile robots.

In this thesis we focus on the problem of gas detection in large environ-

ments, like an office or a corridor with multiple rooms, calculating a path to

cover all the area and to gain a complete mapping of the detected gas. Our

approach is online, namely it incrementally perceives the environment and

makes decisions on the basis of the knowledge obtained so far rather than a

priori like happens with an offline strategy (Figure 1.1).



Figure 1.1: The Next-Best-Smell algorithm identifies, on the frontier separating explored

and unexplored area, the next pose the robot has to reach combining in a single utility

function different criteria.

In more details, we propose a Next-Best-Smell algorithm that exploits

Multi-Criteria-Decision-Making (MCDM) [3] to combine different criteria in

order to decide the next position the robot should reach to cover the envi-

ronment with its remote gas sensor. After having reached the last position

chosen, the robot acquires a new partial map, integrates it with the global

map saved in his memory, decides the next location and reaches it, and

repeat the steps above until it reachs an acceptable level of coverage. Can-

didate locations are identified among multiple points on the frontier dividing

scanned and unscanned space. In MCDM a robot evaluates the candidate

locations in a partially explored environment according to an utility function

that combines different criteria (for example, the distance of the candidate

location from the robot and the expected amount of new information ac-

quirable from there). Criteria are combined in a way that accounts for their

synergy and redundancy.

The proposed approach seems to be promising: results reported in the

following sections demonstrate that, because of the greedy nature of the

Next-Best-Smell algorithm it is possible to cover most part of the environ-

ment (a percentage around 80-90%) in relatevely few rounds, usually half of

the ones required for a full coverage, but sometimes also less. For this reason

it can represent an interesting solution in the field of gas detection where

gas doesn’t remain near the source but moves around in the environment.

These results are confirmed also by a simulated comparison made with an

2



offline approach, in which our algorithm obtained good performance, really

close to the other’s ones in some circumstances.

The structure of this thesis is as follows: first of all (Chapter 2) we il-

lustrate the current state of the art for what concerns gas detection and

online navigation, then we will define the problem we want to solve and our

solution proposal (Chapter 3). After having defined the architecture of our

system (Chapter 4), we will report the results of our experiments (Chap-

ter 5), performed both in simulation and with a physical platform, and the

comparison with an offline approach developed at MRO Lab at Örebro Uni-

versity. In the end (Chapter 6) we summarize our approach, highlighting

the main concepts, its advantages, and future works.

3



4



Chapter 2

State of the art

The idea of adopting online exploration strategies represents a novel ap-

proach in the field of mobile robotic olfaction. Due to the lack of literature

we split the current chapter in two parts, the first one aiming to illustrate

the main techniques used until now for gas detection and the second one

dedicated to online navigation.

2.1 Robot olfaction

Stationary networks of gas sensors represented until some years ago the

most spread technique for gas detection, especially in situation of pollution

monitoring [31]. The main particularity of this choice was the utilization of

sensors defined in situ [23] because they should be in direct contact with

the gas to perceive it. This represents a strong limitation because it poses

the problem of their initial positioning and how they should be moved after

some changes in the environment.

Recently, interest started growing towards mobile robot olfaction, a novel

approach for gas detection using a mobile platform, with all the advantages

that it can offer [21, 20].

The first step was combining mobile robots with in situ sensors (Figure

2.1), and this solution was used for mapping gas distribution [9, 8] and leak

detection [25, 11]. The problem about this approach is that the robot still

moved between predefined positions, along a path that should be recom-

puted after changes in the environment, as for the static networks.

One of the biggest contributions in this field was represented by the

adoption of Tunable Diode Laser Absorption Spectroscopy (TDLAS) sen-

sors, able to perform remote measurements up to a limited range ( ∼ 30, 50



Figure 2.1: Because the flexibility they can offer, mobile robots (left) represent an

important innovation in a dangerous task like the gas detection one. In the first years

they were combined with in-situ gas sensors (right), whose limitation is the fact they

have to be in direct contact with the gas to perceive it.

10ppm 10ppm 10ppm500ppm

1m

10m

2m 8m 9m
Re�ective

surfaceRMLD reading

590ppmxm
CH4

Figure 2.2: The Remote Methane Leak Detector is a TDLAS sensor which can report

the integral concentration of methan along its laser beam (parts per million x meter)

meters) [8], as shown in Figure 2.2. Because performing a scanning oper-

ation is an extremely time consuming operation and the robot’s battery is

limited, it became really important to find a path minimizing the number

of times in which the robot stopped to sense for gas.

2.2 Exploration strategies

In general, almost all navigation strategies take as input a state enclosing

information about the environment and provide as output the next location

reachable by the robot. The way in which this process is performed allows

to distinguish two class: offline and online strategies. In the first case, the

set of possible destinations is computed for every possible input state before

the beginning of the exploration task. With an online strategy, instead, the

decision is computed during the task execution for the different situations

the robot encounters.

Defining an exploration strategy can involve a large number of different

6



ACQUISITION INTEGRATION SELECTION MOTION

Figure 2.3: Next-Best-View system: acquire a partial map of the surrounding environ-

ment, integrate it with the global map, identify the new position to reach and then

reach it. These steps are usually reiterated until full coverage is achieved.

criteria, each one with its own importance that can vary according to our

scope. For example, one could search for the strategy minimizing the time

spent in exploration while another for the one minimizing the total distance

travelled by the robot. But sometimes a combination of these criteria can

also be desirable.

Following the idea proposed by the offline strategy, some approaches were

suggested in the mobile olfaction field but the most promising seems to be

the one proposed by Arain et al. in [6], as extension of the work of Tamioka

et al [28], based on the combination of the Art Gallery Problem and the

Travelling Salesman Problem: first of all they identify all the positions from

which the robot is able to see all the environment and then they calculate

the minimum path connecting all these positions. In this way Arain et al.

are able to find a closely optimal solution to cover all the environment and

therefore detect any possible gas leak.

Starting from the assumption that gases move in the environment, our

contribution in this thesis is a new approach that takes inspiration from the

online strategy for map building, where the environment is usually unknown

at the beginning and the robot has to incrementally discover it.

This kind of strategies usually follows the repetition of simple steps, reported

in Figure 2.3: sensing the surrounding environment to build a partial map,

integrating it with the current global map, selecting the next observation

location, and reaching it.

An important feature of these systems, called Next-Best-View (NBV)

systems, is how to choose the next observation location among a set of

candidate locations, evaluating them according to some criteria. Usually, in

NBV systems, candidate locations are chosen in such a way that they are on

the frontier between the already explored free space and the unknown one

[32], and they should be reachable from the current position of the robot.

During the evaluation phase of a candidate position, different criteria

can be used and combined in diffent ways. A simple one is the travelling

cost [33], according to which the best observaton location is the nearest one.

Other works combine the travelling cost with expected information gain,

7



MCDM

Entropy
Travel Distance

+

Information Gain

Multiplicative

Function

Travel Distance

Figure 2.4: Different approaches were suggested in the field of map coverage but most

of them were not theoretically-grounded. For this reason Multi Criteria Decision Making

was introduced with promising results.

that is the expected amount of new information about the environment the

robot can acquire performing a sensing action from the candidate location p.

Given a candidate location p and called c(p) and A(p) the travelling cost and

the expected information gain, respectively, Gonzáles-Baños and Latombe

[15] combine these two criteria with an ad hoc function in order to compute

an overall utility (λ weighs the travelling cost and the information gain):

u(p) = A(p)e−λc(p) (2.1)

Similar criteria were considered also by Stachniss and Burgard [27], where

the cost of reaching a candidate locations p, measured as the distance d(p)

from the actual position of the robot, is linearly combined with the infor-

mation gain A(p) acquirable from p:

u(p) = A(p)− βd(p) (2.2)

where β balances the relative weight of the two criteria.

Other examples include the work of Amigoni et al. [4], in which a technique

based on relative entropy is used, and of Tovar et al. [29], where several

criteria are employed in a multiplicative function to obtain a global utility

value.

The problem with the previous strategies is that they define an aggre-

gation method too much dependent on the criteria considered. For this

reason, Amigoni and Gallo [5] proposed a more theoretically-grounded ap-

proach based on multi-objective optimization, in which the best candidate

8



location is selected on the Pareto frontier (see Figure 2.4).

According to the goals of this thesis, in the following chapters we pro-

pose the adoption of a decision theoretical framework called Multi-Criteria

Decision Making (MCDM) for the addressing and solving the gas detection

problem. MCDM represents a flexible way to combine criteria that should

be contrasted with ad hoc compositions (like weighted mean of [27], the

multiplicative function of [29], and the other works listed above). This tech-

nique deals with problems in which a decision maker has to choose among

a set of alternatives and its preferences depend on different, and sometimes

conflicting, criteria. It is employed in several applicative domains such as

Economy, Ecology, and Computer Science [16, 26]. The Choquet fuzzy in-

tegral [18] is used in MCDM to combine different criteria in a global utility

function whose main advantage is the possibility to account for the relations

between criteria [16, 17].

9



10



Chapter 3

Problem Definition and

Solution Proposal

In this chapter we provide a short description of the problem of gas detec-

tion using a mobile robot equipped with a remote gas sensor in a known

environment. Therefore we explain the approach used: how the environ-

ment and the robot is represented, how the problem has been modeled as

one of optimizing a multiobjective function and how this is solved with the

concept of MCDM using the Choquet Fuzzy Integral. We call our approach

Next-Best-Smell.

3.1 Environment Representation

We assume the task of gas detection to be performed in an environment with

no major changes in the gas distribution due to the presence of wind or other

means and that gas sources do not occur on top of obstacles. These hypothe-

ses hold in many real world scenarios, but they need to be re-evaluated if

the task is one of localizing the gas source or mapping the gas distribution

of the environment.

Gas sensing is carried out using a TDLAS remote gas sensor mounted

on a mobile robot. TDLAS sensor reports the integral concentration mea-

surements along a beam; in order to scan a portion of the environment a

pan-tilt unit is used to aim the sensor at various orientation, performing a

sweep and thus scanning a circular sector of range r and scan angle φ. The

scan angle phi is defined as the difference φmin−φmax, where φmin and φmax

are the angles defining the sweep that the gas sensor has to perform. The



Figure 3.1: Grids representing the environment. We can see how when performing a

sensing operation (figure on the right) a grid with a higher resolution is used

values of r and φ are restricted by the limit value rmax and by the maximum

opening angle, respectively, due to sensor’s physical constraints.

The environment in which the mobile robot acts is assumed to be known

in advance. Given a map representing the environment to explore, we can

divide it into a grid A of n identical sized cells: A = {a1, a2, ..., an}. The

cells of A can be partitioned into two subsets: the subset O, composed of

the cells containing some kind of obstacle and thus are not traversable by

the robot and able to stop the beam of the gas sensor, and the subset F

of free cells, not containing any obstacle and thus traversable by the robot.

Two grids working in this way are used to represent the environment, one

for navigation and one for gas detection, of possibly different resolutions.

We can specify the state of the robot in the grid with two values: its

position and its orientation. The position is represented by the free cell a

in which the robot is currently located, and we assume the robot to always

be in the center of the cell. Given a set Θ of possible orientations, with

Θ equally spaced in [0, 2π), we can define the possible robot poses as the

couples (a, θ) with a ∈ F and θ ∈ Θ.

When not moving, the robot can perform a sensing operation to analyze

the presence of gas in a portion of the environment. A sensing operation

is thus defined by a robot pose p = (c, θ), the radius r, and the scan angle

φ, that together define the Field of Vision (FoV) of the robot, as the set of

cells that are perceived from p.

We can now introduce the concept of visibility: a free cell a ∈ F is visible

from a robot pose p = (c, θ) if the line segment spanning from the center of

c to the center of a does not intersect any occupied cell and if the center of

a is inside the circular sector centered in p and defined by r and φ. This

corresponds to the assumption that all obstacles fully occupy grid cells and

that they are high enough to obstruct the line of sight of the remote gas

sensor. During a sensing operation, all the cells which are visible from p are

12



Figure 3.2: Candidate positions (marked with red dots) are the cells on the boundary

between the scanned and unscanned portion of the environment.

scanned.

The problem of planning a path for gas detection in a given environment

is that of finding the optimal sequence of sensing operations 〈((c1, θ1), r1, φ1),

((c2, θ2), r2, φ2), . . ., ((cn, θn), rn, φn)〉 to be performed in order to scan

(cover) all the free cells of the environment, with pose (c1, p1) as the start-

ing pose of the robot in the environment.

The solution we propose is the Next-Best-Smell approach, an on-line

greedy algorithm following the concept of Next-Best-View (NBV). At each

step of the algorithm the robot performs a sensing operation from its current

pose and then selects the next pose from a set of candidate ones, evaluating

each of them and choosing the one with the best evaluation.

3.2 Candidate Evaluation

We define candidate positions as the cells on the boundary between the

portion of environment that has already been scanned and the one which

has yet to be perceived.

For each of these candidate position we can obtain multiple candidate

robot poses, one for each orientation θ belonging to the set Θ defined above.

13



Figure 3.3: Travel distance criterion is computed as the distance between the current

robot position and the candidate pose.

In order to choose the best pose among the candidate ones, we identified

three criteria useful for the evaluation:

• Travel distance, computed as the distance between the current robot

position and the candidate pose.

• Information gain, computed as the number of free unscanned cells that

the robot will be able to perceive from the candidate pose.

• Sensing time, computed as the scan angle required to sense all the

free unscanned cells visible from the candidate pose in the sensing

operation (φmax - φmin).

For each of these criteria, a utility value indicating how much a candi-

date pose satisfies the criteria is obtained; the value is normalized in order

to obtain a number between 0 and 1, the higher the value the better the

pose is with respect to the criterion considered.

3.3 Using MCDM to find the Next-Best-Smell

In order to select the best candidate pose, a global utility function combin-

ing these utility values is necessary. We can define this function using the

Multi-Criteria Decision Making (MCDM) method. An important aspect

when evaluating on multiple criteria is the dependency among them, and a

simple weighted average is unable to model this. For example, two criteria

14



Figure 3.4: Information gain criterion is computed as the number of free unscanned

cells that the robot will be able to perceive from the candidate pose.

Figure 3.5: Sensing time criterion is computed as the scan angle required to sense all

the free unscanned cells visible from the candidate pose in the sensing operation (φmax

- φmin).

15



might estimate similar features using two different methods. In this case a

relation of redundancy holds among them, and their overall contribution to

the global utility should be less than the sum of their individual ones.

On the other hand, two criteria might estimate two very different fea-

tures, meaning that in general a candidate optimizing both of them is hard

to find. In this case a relation of synergy holds among the criteria, and their

overall contribution to the global utility should be larger than the sum of

the individual ones.

In order to account for the relations of redundancy and synergy when

combining the utilities of criteria, MCDM provides an aggregation method

that can deal with this aspect: the Choquet Fuzzy Integral. In order to

present it, we first need to introduce a function µ : P(N) → [0, 1], where

P(N) is the power set of N, with the following properties:

• µ({∅}) = 0,

• µ(N) = 1,

• if A ⊆ B ⊆ N , then µ(A) ≤ µ(B).

This means that µ is a fuzzy measure on the set N of criteria and it will

be used to specify weights for each subset of criteria. The weights specified

by µ describe the above mentioned relations among criteria: if two criteria

are redundant, then µ(c1, c2) < µ(c1) + µ(c2), while if they are synergic

µ(c1, c2) > µ(c1) + µ(c2); in case µ(c1, c2) = µ(c1) + µ(c2) we say that the

criteria are independent.

The global utility function of a candidate pose p can then be computed

as the discrete Choquet integral with respect to the fuzzy measure µ using

the utilities of p on the criteria:

f(up) =
n∑

j=1

(u(j)(p)− u(j−1)(p))µ(A(j),

where j indicates the j− th criterion after criteria have been permutated in

order to have, for a candidate pose p: u(1)(p) ≤ ... ≤ u(n)(p) ≤ 1. We assume

u(0)(p) = 0. The set A is defined as A(j) = i ∈ N |u(j)(p) ≤ u(i)(p) ≤ u(n)(p).

It is easy to see how the weighted average is a specific case of the Choquet

Integral, in which all the criteria are considered as independent.

Let’s consider a simple example, using the following utilities for criteria and

coalitions:

16



candidate Travel Distance Information Gain Sensing Time Weighted Average Choquet Integral

p1 0.95 0.1 0.9 0.76 0.47

p2 0.7 0.6 0.7 0.68 0.64

p3 0.05 0.8 0.1 0.22 0.47

Table 3.1: Example of candidate evaluation with MCDM.

µ(TravelDistance) = 0.2

µ(InformationGain) = 0.6

µ(SensingT ime) = 0.2

µ(TravelDistance, InformationGain) = 0.9

µ(TravelDistance, SensingT ime) = 0.4

µ(InformationGain, SensingT ime) = 0.9

Results on three candidate positions are shown in Table 3.1. If we use

the weighted average as aggregation function, the next position we should

reach is p1 but it does not seem the best solution because it is largely

unsatisfactory from the travel distance cost’s point of view. For this reason,

using the Choquet Fuzzy Integral we can select as solution p2 because is has

criteria in a balanced way.

17



18



Chapter 4

Architecture of the System

In this chapter we illustrate how the Next-Best-Smell algorithm is struc-

tured. First of all we introduce, with the help of a flowchart, the main

blocks that compose our work; then we describe more in depth the tech-

niques adopted and implemented to calculate the three criteria considered

and to model the online coverage problem.

4.1 Algorithm Overview

As shown in Chapter 2, the Next-Best-View approach consists in the repe-

tition of different steps until a chosen condition is satisfied, usually the full

coverage of an environment’s map. Often these steps are the following: ac-

quire and integrate a scan from the current position, identify the next best

position to reach, reach it, acquire and integrate the new scan in the global

map representing the phenomenon that the robot is perceiving. Following

an approach like this, it could happen that the robot goes into a corridor

and then it is not able to move anymore since it does not see any further

interesting position in front of it. For this reason, in the online exploration

field the adoption of backtracking techniques allowing the robot to go back

to previous pose until it can find a new unexplored path to follow is largely

diffused. These basic concepts are collected and modeled in Figure 4.1, that

summarizes how the Next-Best-Smell algorithm works.

Looking at the flowchart and starting from the top, the first operation

we do at every iteration of the algorithm is to check if we have reached the

coverage target we chose before. There are no limits in it; in our tests we

were able to cover the full map but it is also possible to adopt a coverage

value less than 100%. If this condition is satisfied, the algorithm ends with

success otherwise a control loop starts.



Back

Tracking

Scanning

End

End

Start

Best one

chosen

Frontiers
Identi!cation

Are there
frontiers?

Coverage
satis!ed

Are there
positions? MCDM

NO

NO NO

YES

YES

YES

Figure 4.1: After checking the termination condition, the robot scans the surround-

ing environment, identifies new candidate positions and, after having evaluated them,

selects the best one. These steps are iterated untill the full coverage is reached.

This loop represents the core of our online approach and it is repeated until

the coverage constraint is fullfilled or the robot comes back to the initial

position without other candidate poses.

The first operation performed by the robot is a scanning of the sur-

rounding environment, with the limitation introduced by the Field of Vision

parameter adopted. The scanning phase consist in marking as seen, assign-

ing a value of 2, those cells visible from the robot’s current position. If it

can find, with the method that will be shown in the following section, po-

sitions candidate to be reached on the edges separating the known and the

unknown area, it can start the evaluation phase.

Evaluating a position consists in applying the Choquet Fuzzy Integral

described in Chapter 3, to get a score belonging to [ 0, 1] . All those positions

from which the robot can’t acquire a new portion of the map are discarded;

the others are collected in a record with their evaluation. If there is at least

one frontier in this record, the best one (the one with the highest score) is

chosen as the next goal position. Therefore the robot will reach it and it

will redo all the previous steps, starting from the evaluation of the coverage

condition, until the algorithm’s end.

If there are no interesting frontiers, it means that the robot is stuck at

the end of a corridor or it has already explored all the cells around it. At

this point it performs a backtracking operation: the robot returns to its

20



Back

Tracking

Information

Gain

Sensing Time

Travel Distance A*

Ray Casting

MCDM

Figure 4.2: The three criteria are calculated with different techniques: ray casting is

used to estimate the value of information gain and sensing time, while A* is implemented

for the travel distance.

previous pose or, if it can’t find any further candidate position from there,

to the last pose that allows it to find a new path to follow. While perform-

ing backtracking, if the robot comes back to the initial position it means

that there are no more candidate positions in the map and therefore the

exploration ends, in most of the case successfully (as it will be shown in

Chapter 5, in some circumstances the robot could not complete the full map

coverage, even if the number of ignored cells is almost irrelevant compared

to the total one).

4.2 Techniques used for Implementation

In this section we describe the techniques adopted to calculate the three

criteria used in the evaluation phase: information gain, sensing time and

travel distance. In the end it will be also explained how the exploration

phase is implemented in the algorithm.

Figure 5.1 represents the flowchart of our algorithm with the evaluation

block expanded. As it is possible to see, the evaluation phase is computed

using the Multi Decision Criteria Making approach that merges the three

criteria’s contribution in a single utility function, as described in Chapter 2.

21



Listing 4.1: Ray caster pseudocode

1 robotX , robotY := coordinates of the robot in the map

2 x, y := coordinates of cell to scan

3 curX , curY := robotX , robotY // current cell of the ray

4 m := 0 // variable to move along the ray

5 hit := 0 //set to 1 if an obstacle is hit by the ray

6 slope := atan2(y - robotY , x - robotX) //slope between the cell to

7 //scan and the robot

8 if(distance from robot to cell to scan <= range) //ray is cast only

9 //if the cell is in

range

10 while(hit == 0) //move along the ray until obstacle is found

11 curX = robotX - m*sin(slope) //get coordinates of current

12 //cell of the ray

13 curY = robotY + m*cos(slope)

14 if (obstacle in curX , curY) hit = 1 //if cell contains an

15 //obstacle , stop the ray

16 if (curX == x && curY == y) //if the ray reaches the cell

17 cell is visible //to scan , then it is visible

18 stop ray //stop the ray when cell is found

19 else m = m + 0.2 //move along the ray until obstacle

20 //is found or cell to scan is reached

4.2.1 Ray Casting

In order to implement the criteria of information gain and sensing time, we

implemented a ray caster.

Ray casting is a rendering technique first introduced by Arthur Appel

in 1968, and has been used for a variety of tasks in the computer graphics

field.

The basic idea behind ray casting is to find what is to trace various rays

from the eye, one for each pixel, and then find the closes object that blocks

the path of that ray.

Our ray caster works in the following way: given a cell of interest, which

in the case of calculating the value of information gain for a candidate po-

sition would be a free cell which has not yet been scanned, the slope of the

line connecting the centers of the cell of interest with the one of the current

position is calculated.

If the line lies inside of the FoV of the robot, and the distance between

the center of the considered cell and the current robot position is not greater

than the range of the TDLAS sensor, a ray is shot along the line.

By moving along the ray in small increments, each cell traversed by the

ray is analyzed: if an obstacle is found, the ray is stopped, otherwise if the

ray reaches the cell of interest it means that it is visible from the current

22



Figure 4.3: Ray casting used to calculate the value of information gain of a candidate

pose. When a ray reaches the center of a free cell, the information gain value is

increased.

position. An example of a ray being casted in pseudocode is shown in 4.1.

In Figure 4.3 we can see rays being casted to calculate the information

gain of a candidate pose. The centers of visible cells are reached by rays,

while rays pointed at non visible cells are blocked by obstacles.

The value of information gain is calculated as the number of free cells

which have not yet been scanned and are visible from the candidate pose

(Figure 4.4).

The value of sensing time is calculated as the angle between the first

and the last rays to be shot in order to scan all the free unscanned cells

visible from the candidate pose, and the values of the two slopes are stored

to define the angle used in the following sensing operation (Figure 4.5).

Other than for these two criteria, we also used ray casting to identify

candidate positions at each step of the algorithm, by finding visible free cells

which are on the boundary between scanned and unscanned area.

4.2.2 A*

The last criteria we have to address is the travel distance, computed as the

distance between the robot’s current position and the target one. To have

an estimate as precise as possible of such distance, we implemeted the A*

23



Figure 4.4: The information gain of a candidate pose is the number of visible free

unscanned cells.

Figure 4.5: The sensing time of a candidate pose is the angle between the first and last

rays shot to scan all the free unscanned cells visible from that pose.

24



algorithm, developed by Peter Hart et al. [19] as extension of Dijkstra work

[13].

A* uses a best-first search to find the minimum cost path from an ini-

tial node to one goal node. Best-first search is a search algorithm which

explores a graph by expanding the most promising node chosen according

to a specified rule. Traversing the graph, A* builds up a tree of partial

paths; the leaves of this tree (called the open set or fringe) are stored in a

queue ordered by a cost function combining a heuristic estimate of the cost

to reach a goal and the distance traveled from the initial node. Specifically,

the cost function is

f(n) = g(n) + h(n). (4.1)

where g(n) is the cost of getting from the initial node to n and h(n) is a

heuristic estimate of the cost to get from n to any goal node.

To find the shortest path, the heuristic function must be admissible,

meaning that it never overestimates the cost to get to the closest goal node

from the actual one. In our experiments we use both the Euclidean distance

and the Manhattan one.

If the heuristic h satisfies the additional condition h(x) ≤ d(x, y) + h(y)

for every edge (x, y) of the graph (where d denotes the length of that edge),

then h is called consistent. In this case, A∗ can be implemented more ef-

ficiently, no node needs to be processed more than once. A pseudocode

example of how A∗ works is provided in the following Listing 4.2.

We provide a little example to clarify the operation perfomed by this

algorithm largely used for plath planning purpose. In Figure 4.6 a robot

and the target cell to reach are represented in a grid map. As first step, A*

assigns a different value to each possible cell the robot can reach from its

current one: in the example, a value of 10 is assigned to orthogonal cells,

while a value of 14 to those diagonals. These value are reported in black in

the image, and they represent the cost g(n) to move from the actual position

to that cell.

The red number represents instead the estimated distance between the con-

sidered cell and the goal, according to the heuristic chosen h(n), in this case

the Manhattan distance. This is calculated as the length of the path between

two points in a grid based on a only horizontal and/or vertical movements

(that is, along the grid lines).

The second step computed by A* is to sum g(n) and h(n) for all the cells

and select the one with the smallest value. Starting from this point, the first

step is repeated, expanding in the search tree the node corresponding to the

25



Listing 4.2: A* pseudocode

1 function A*(start ,goal)

2 closedset := the empty set // The set of nodes already

evaluated.

3 openset := {start} // The set of tentative nodes to be

evaluated ,

4 initially containing the start node

5 came_from := the empty map // The map of navigated nodes.

6

7 g_score := map with default value of Infinity

8 g_score[start] := 0 // Cost from start along best known path.

9 // Estimated total cost from start to goal through y.

10 f_score = map with default value of Infinity

11 f_score[start] := g_score[start] + heuristic_cost_estimate (start ,

goal)

12

13 while openset is not empty

14 current := the node in openset having the lowest f_score []

value

15 if current = goal

16 return reconstruct_path(came_from , goal)

17

18 remove current from openset

19 add current to closedset

20 for each neighbor in neighbor_nodes(current)

21 if neighbor in closedset

22 continue

23

24 tentative_g_score := g_score[current] + dist_between(

current ,neighbor)

25

26 if neighbor not in openset or tentative_g_score < g_score[

neighbor]

27 came_from[neighbor] := current

28 g_score[neighbor] := tentative_g_score

29 f_score[neighbor] := g_score[neighbor] +

heuristic_cost_estimate (neighbor , goal)

30 if neighbor not in openset

31 add neighbor to openset

32

33 return failure

34

35 function reconstruct_path(came_from ,current)

36 total_path := [current]

37 while current in came_from:

38 current := came_from[current]

39 total_path.append(current)

40 return total_path

26



Figure 4.6: The initial pose of the robot and the target cells. Different weights are

assigned to orthogonal and diagonal cells.

cell having the smallest f(n), as defined in Equation 4.1, until reaching the

goal. The final situation is represented in Figure 4.7.

At this point, proceeding backward from the goal to the initial pose of

the robot, the path connecting these two points is built as the one passing

each time in the cell minimizing Equation 4.1.

In this way, as shown in Figure 4.8, it is always possible to find the short-

est path between the robot and the candidate position considered, obtaining

a really good estimation of the real distance between these two points.

4.2.3 Depth-First Search

After having illustrated how we calculate information gain, sensing time and

travel distance, it is also important to explain how we model and realize the

online navigation. As explained in the previous section, the main problem

that can arise when the robot does not follow precomputed paths is that

it can be stuck at the end of a corridor or in a portion of map in which it

cannot identify any further interesting position to reach. For this reason,

implementing a backtracking technique that allows the robot to come back

to previous positions is a good idea.

As it can be seen in Figure 4.9, we address this problem modeling the

exploration as a search problem solved using the Depth-First Search (DFS)

algorithm with backtracking, investigated for the first time by Charles Pierre

Trémaux in the 19th century.

27



Figure 4.7: The cumulative costs are spread from the starting point to the goal one,

expainding always in the tree the node with the smallest value.

Figure 4.8: The shortest path is found proceeding backwards from the goal and selecting

each time the cell with the minimum f(n) value.

28



Depth �rst 

search with 

BT

Back

Tracking

Information

Gain

Sensing Time

Travel Distance A*

Ray Casting

MCDM

Figure 4.9: The backtracking operations is performed modeling a search problem with

a depth-first search algorithm.

Differently from most cases that use DFS to explore a graph, we have

not a preassigned graph containing the poses of the robot; every time the

robot reaches a new one, we add it in the tree structure adopted as a leaf

of the parent node representing the previous pose of the robot. Moreover,

the new position is added to a closed list to prevent the robot to reach it

another time in the future. In correspondence of each pose we also save all

the other frontiers identified by the robot with it. The structure we obtain

is represented in Figure 4.10.

The exploration phase takes place in this way: as said, we build a tree

in depth adding each time the new pose as a child of the previous one; to

each node is associated a list called nearCandidate of frontiers visible from

that pose. This list, initially empty, is filled every time the robot reaches

a new position with those frontiers that provide new information about the

map. When the robot can not find further position in front of it, it evaluates

all those frontiers inside the nearCandidate record. After having possibly

reached all of them and followed new paths, it performs a backtracking

operation to the upper level of the tree. These steps, reported in Figure

4.11, are repeated until the coverage is obtained or the robot reaches the

initial pose without completing the task.

If we image the environment map as a graph in which each free cell is a

node, the only possibility to not explore entirely this graph is that it’s not

connected. In graph theory, an undirected graph is called connected when

there is a path between every pair of vertices. In a connected graph, there

are no unreachable vertices.

Given this definition it is obvious that it is impossible to fully explore a map

29



Figure 4.10: Structure of the tree built during the navigation. Every time the robot

reach a new position, this is add in the free with a list of all frontiers visible from there

only if there are some free and unreachable cells, maybe because the access

to them is prevented by the ostacles. This is true both in simulation and in

the real scenario.

4.3 ROS Implementation

We implemented the Next-Best-Smell algorithm on the Robot Operating Sys-

tem (ROS) platform [2] to run it on the robot platform used during our tests.

In this section we provide only a brief overview of the system, please refer

to Appendix A for full details.

The peculiarity of ROS is that every communication between two nodes

is realized with an asynchronous system based on the publish − subscribe

paradigm. However, if needed it, there is also the possibility to use syn-

chronous calls (through the service oriented system).

Our algorithm, implemented in the mcdm framework node, subscribes to

move base/global costmap/costmap topic as shown in Listing 4.3, provided

by the map base node, to get the costmap 2d of the environment in which

the robot is located. A costmap is a map in which the obstacles are inflated

by a user defined radius. For our navigation purposes, this fact prevents to

choose as goal a pose too close to walls or obstacles, in a way the robot can’t

reach it due to its kinematics or physical constraints.

After the Next-Best-Smell algorithm identifies a new pose, a Move-

BaseGoal message is created and sent to move base node (Listing 4.4). This

node provides an implementation of an action (actionlib) that, given a goal

30



1°

3°

4°

5°

2°

Figure 4.11: Every time the robot can not find any further frontiers in front of it, it

comes back to the previous pose and try to expand the corresponding node towards a

new direction

Listing 4.3: Subscription ot map server node to the the global costmap of the environ-

ment

1 if (map_service_client_ .call(srv_map)){

2

3 costmap_sub = nh.subscribe <nav_msgs :: OccupancyGrid >("move_base

/global_costmap/costmap", 100, grid_callback );

4 costmap_update_sub = nh.subscribe <map_msgs ::

OccupancyGridUpdate >("move_base/global_costmap/

costmap_updates ", 10, update_callback );

5

6 if(costmapReceived == 0) {

7 ROS_INFO_STREAM ( "waiting for costmap" << std::endl);

8 }

9

10 if(costmapReceived == 1){

11 // all the code is inside this block

12 }

13

14 sleep (1);

15 ros:: spinOnce ();

16 r.sleep ();

17

18 }

31



Listing 4.4: Sensing a MoveBaseGoal message to move the robot to the next pose

1 move_base_msgs :: MoveBaseGoal goal;

2 double orientZ = (double)(target.getOrientation ()* PI /(2*180));

3 double orientW = (double)(target.getOrientation ()* PI/(2 * 180));

4 move(p.point.x ,p.point.y, sin(orientZ), cos(orientW));

5

6 // -------------------------------------------

7

8 void move(int x, int y, double orZ , double orW){

9 move_base_msgs :: MoveBaseGoal goal;

10

11 MoveBaseClient ac ("move_base", true);

12 goal.target_pose.header.frame_id = "map";

13 goal.target_pose.header.stamp = ros::Time::now();

14

15 goal.target_pose.pose.position.x = x;

16 goal.target_pose.pose.position.y = y;

17 goal.target_pose.pose.orientation.z = orZ;

18 goal.target_pose.pose.orientation.w = orW;

19

20 ROS_INFO("Sending goal");

21 ac.sendGoal(goal);

22

23 ac.waitForResult (); //the execution flow is stopped until when

the robot reaches the new pose

24

25 if(ac.getState () == actionlib :: SimpleClientGoalState :: SUCCEEDED)

26 ROS_INFO("I’m moving ...");

27 else

28 ROS_INFO("The base failed to move");

29 }

in the world, will attempt to reach it with a mobile base. The move base

node links together a global and local planner to accomplish its global nav-

igation task.

When the robot reaches a new pose in the map, the next step is per-

forming a scanning operation. Listings 4.5 and 4.6 show a parallel blocking

thread that subscribes to the /ptu control/state topic to get the actual po-

sition of the TDLAS gas sensor and then invokes the /ptu control/sweep

service to perform the sweep.

32



Listing 4.5: Retrieving the exact pose of the pan-tilt unit before performing a scanning

operation

1 void scanning (){

2 ros:: NodeHandle nh("~");

3 ros:: Subscriber ptu_sub;

4 ptu_sub = nh.subscribe <std_msgs ::Int16 >("/ptu_control/state" ,100,

stateCallback );

5 ros:: AsyncSpinner spinner (0);

6 spinner.start ();

7 auto start = chrono :: high_resolution_clock ::now();

8 gasDetection (); // call the proper method to perform a

scanning operation

9 while(ros::ok()){

10

11 while(statusPTU !=3){ // check if the scanning operation has

started

12 sleep (1);

13 // ROS_INFO ("PTU status is...%d",statusPTU);

14 }

15 ROS_INFO("Scanning started!");

16 ros:: WallDuration (5).sleep ();

17 while(statusPTU !=0){ // check if the scanning operation is

still running

18 sleep (1);

19 // ROS_INFO ("PTU status is...%d",statusPTU);

20 }

21

22 ROS_INFO("Gas detection COMPLETED!");

23 auto end = chrono :: high_resolution_clock ::now();

24 double tmpScanning = chrono ::duration <double ,milli >(end -start

).count ();

25 timeOfScanning = timeOfScanning + tmpScanning;

26 spinner.stop();

27 break;

28 }

29

30 }

33



Listing 4.6: Sending the right parameter to ptu control node to perform a scanning

operation

1 void gasDetection (){

2

3 ros:: NodeHandle n;

4 ros:: ServiceClient client1 = n.serviceClient <ptu_control ::

commandSweep >("/ptu_control/sweep");

5 ptu_control :: commandSweep srvSweep;

6

7 if(min_pan_angle > max_pan_angle ){

8 double tmp = min_pan_angle ;

9 min_pan_angle = max_pan_angle ;

10 max_pan_angle = tmp;

11 }

12

13 srvSweep.request.min_pan = min_pan_angle ;

14 srvSweep.request.max_pan = max_pan_angle ;

15 srvSweep.request.min_tilt = tilt_angle;

16 srvSweep.request.max_tilt = tilt_angle;

17 srvSweep.request.n_pan = num_pan_sweeps;

18 srvSweep.request.n_tilt = num_tilt_sweeps ;

19 srvSweep.request.samp_delay = sample_delay;

20

21 if (client1.call(srvSweep)){

22 ROS_INFO("Gas detection in progress ... <%.2f~%.2f,%.2f>",

min_pan_angle ,max_pan_angle ,tilt_angle);

23 }else{

24 ROS_ERROR("Failed to initialize gas scanning.");

25 }

26

27 }

34



Chapter 5

Experimental evaluation

In this chapter we describe the results we obtained in simulation and in the

real world, testing the Nexy-Best-Smell approach on the Husky A200 plat-

form. In the end we will make a comparison with the work developed by

Asif Arain et al. [6]. To do so, we will introduce first of all the parameters

required by our algorithm and the evaluation metrics that measure the total

execution time. Moreover we will investigate and explain how the final out-

come may vary according to different values of the parameters introduced.

5.1 Parameters and Evaluation Metrics

In this section we will explain which parameters we consider during the

modeling of exploration’s problem.

As introduced in Chapter 3, we represent the environment as an occu-

pancy grid after having discretized the map with different resolutions. Each

cell in this representation can assume three values according to its status: 0

if the cell is free and unscanned, 1 if it is occupied by an obstacle or 2 if it

is free and already scanned by the robot. During the exploration, the robot

uses two different grids: one, more coarse, is used for navigation purposes, to

avoid situations in which the robot could crash against a wall or an obstacle;

another one, finer, is used for keeping track of gas (mark cells as scanned).

For this reason the first parameter is the resolution of the navigation map:

in our tests we decided to use square cells with side of one meter, but it’s

possible to use also the same resolution of the scanning map, that usually

is higher (20 or 50 centimeters per side).

The second parameter we consider in our work is the range r of the gas

sensor, used for scanning purpose. The sensor is able to scan visible cells

whose center’s distance from the robot is not larger than this value. In our



experiments, depending on the map used, r assumed a value of 10 or 15

meters.

Another important parameter related to the platform used is the maxi-

mum scan angle phi, already introduced in Chapter 3. As expressed before,

the scan angle phi defines the sweep that the gas sensor has to perform. Due

to the physical limitations introduced by the pan-tilt unit mounted on, the

maximum value of this parameter is 180 degrees on the platform used for

tests in the real world.

On the environment represented as a grid, the robot can assume a finite

number of orientations, either 4 or 8 in our tests, depending if we con-

sider only the main ones (North, East, South and West) or also the derived

one (North-East, North-West, South-West and South-East). Usually having

more orientations in which a scanning operation can be performed is an ad-

vantage for the robot but experiments in simulation demonstrated that this

is not always true in the case of greedy algorithms. As it will be explained in

subsection 5.4, introducing more orentations means allowing the presence of

two or more candidate positions with the same evaluation score. Therefore,

from the robot’s point of view they can lead to similar path even if they

can evolve in complete different ways due to the presence of obstacles in the

map. Because our algorithm is based on the Next-Best-View concept, we

cannot establish which is the best position (among the ones with the same

rank) minimizing the exploration time, and therefore it is impossible to solve

this conflict without negating the hypothesis of the greedy approach.

The last parameter the user can set is the threshold value used during

the pruning operation. As mentioned in Chapter 4, we model the entire

exploration as a search problem, building a tree in which each node is a

pose of the robot and whose children are the possible poses reachable from

the parent node. In this scenario, a threshold helps the robot to speed up

the navigation towards the more interesting poses, whose evaluation score

is greater than the pruning value, and discarding the others.

The main feature we analyzed is the total exploration time, that is esti-

mated as the sum of the travel time and the sensing time. While in simula-

tion it is only an estimate of the real one, for experiments in the real world

the total exploration time is computed starting from the instant in which the

ROS node of the algorithm is launched and ending when the exploration is

completed, either successfully or not. Since the exploration time is affected

by many factors it was our interest to discover which ones they are and track

how they influence it.

The first and most important evaluation metric is represented by the

total number of sensing positions, or how many times the robot stops to

36



perform a sensing operation in order to detect the presence of gas. Directly

connected to this, the travel distance, computed with A*, is an estimation

of the real path followed by the robot and connecting all the sensing posi-

tions starting from its initial pose to the last one. Given that and assuming

the robot is moving with costant speed of 0.5 m/s it is easy to compute an

approximation of the time spent traveling.

As said before, every time time the robot stops it performs a sensing

operation and thanks to ray casting, as described previously in Chapter 4,

we are able to compute the exact angle required to observe the unscanned

area. The sum of all these angles represents another evaluation metric, used

to estimate the total scanning time with a polynomial function.

5.1.1 Criteria Weights

As described in Chapter 3, we modeled the decision related to the next

position to reach as a multi-objective optimization problem, in which we

considered three criteria: information gain, travel distance and sensing time.

The advantage of using the Choquet Fuzzy Integral instead of a different

aggregation function is the possibility to model relationships among coalition

of the criteria considered. Taking inspiration from Game Theory, we can

define a coalition as any subset of criteria. Therefore it is clear that, trying

to optimize three criteria and three coalitions among them means solving a

6-dimensional problem.

The goal of our simulated experiments was to identify a set of weights

that could guarantee good results in terms of total exploration time. To

make it easier we reduced our problem to three dimensions, focusing our

attention only to the three single criteria and modeling a slighty synergic

relationship among them. In this way we were able to represent this problem

in a graphical way: due to the following constrains

x1 + x2 + x3 = 1 (5.1)

and considering x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 we can draw a simplex as space of

the solutions.

Trying to solve this problem didn’t represent a good idea since it is only

a rough approximation, without considering the coalitions of more than

one criterion, of the real 6-dimensional problem. Therefore we ran a large

number of tests, under different conditions and using different maps, and we

analized the results obtained.

First of all we identified some points of interest on the simplex surface

and we tested their performance. These points are the following ones: the

37



three vertices, the ortocenter, the middlepoint of each side and six simmetric

points beloning to the three bisectors, and all of them are reported in Table

5.1, where the coalitions are built in the following way:

Coalition1 = {informationgain, traveldistance}

Coalition2 = {informationgain, sensingtime}

Coalition3 = {traveldistance, sensingtime}

Coalition4 = {informationgain, traveldistance, sensingtime}

The meaning behind the use of the simplex is the following: if we want

to maximize one of the three criteria considered we have to choose an higher

value for its weight, and then share what is left between the other two, pay-

ing attention to satisfy eq. 5.1.

According to this, if we are strongly interested in scanning as much as

possible the available free area despite the distance between the actual po-

sition of the robot and the target one, we could assign a weight greater

than 0.5 to information gain, and then split the rest between travel distance

and sensing time; in the same way we can reason about the other criteria.

Of course it is also possible to find a balance among multiple criteria: for

example, Configuration F tries to optimize at the same time either the in-

formation gain and the travel distance, while Configuration D assigns equal

important to all the criteria.

The tests we completed, as it will be shown in the following sections,

identified the upper part of the simplex as the one providing the weights

able to guarantee a better performance: giving an high importance to in-

formation gain seems to be the best choice to speed up the exploration,

while assigning also a small weight to the other criteria could improve the

convergence speed according to the nature of the environment.

5.2 Simulation

Different and multiple tests were run in simulation to find the best combi-

nation of criteria for solving the coverage problem.

The first used the map of Freiburg University [1], discretized in cell of

one square meter of resolution, obtaing 6113 free cells.

The results, contained in the Table 5.2, were computed starting always

from the same initial pose. As explained in the previous subsection, a better

exploration time was obtained in those situations in which information gain

was the only considered criterion (configuration A) or most part of the power

38



Configuration informationGain travelDistance sensingTime Coal.1 Coal.2 Coal.3 Coal.4

A 1 0 0 1 1 0 1

B 0 1 0 1 0 1 1

C 0 0 1 0 1 1 1

D 0.333 0.333 0.333 0.766 0.766 0.766 1

E 0.6 0.2 0.2 0.9 0.9 0.5 1

F 0.428 0.428 0.144 0.956 0.672 0.672 1

G 0.2 0.6 0.2 0.9 0.5 0.9 1

H 0.144 0.428 0.428 0.672 0.672 0.956 1

I 0.2 0.2 0.6 0.5 0.9 0.9 1

L 0.428 0.144 0.428 0.672 0.956 0.672 1

M 0.5 0.5 0 1 0.6 0.6 1

N 0 0.5 0.5 0.6 0.6 1 1

L 0.5 0 0.5 0.6 1 0.6 1

Table 5.1: Criteria configuration - Weights assigned to each criterion and coalitions

among them. A coalition is defined as a subset of the criteria involved in the evaluation.

Configuration Coverage satisfied Cells visisted Distance travelled Travel Time(s) Number of turning Sum of scanned angles Scanning time(s) Total time(m)

A yes 107 1417.57 2835.14 121 213.52 6018.28 147.55

B no 279 2724.81 5449.62 213 202.59 8200 227.49

C yes 223 2948.04 5896.08 256 157.27 6740.67 210.61

D yes 162 1701.89 3403.79 148 175.16 6045.3 157.48

E yes 153 1690.18 3380.36 172 166.20 5853.26 153.89

F yes 155 1445.13 2890.27 154 166.29 5899.98 146.50

G yes 169 1612.56 3225.13 162 184.14 6071.27 154.94

H yes 192 2247.89 4495.79 169 171.53 6505.33 183.35

I yes 186 1913.23 3826.46 163 169.14 6419.14 170.76

J yes 169 1832.24 3664.48 162 158.31 6005.91 161.17

K yes 139 1116.57 2233.14 122 215.32 6566.87 146.66

L no 207 2398.65 4797.31 190 184.24 7175.16 199.54

M yes 166 1623.5 3247 173 147.47 5809.77 150.94

Table 5.2: Results for Freiburg University map for each considered configuration. In

only two cases among thirteen the exploration was not totally completed.

was splitted between information gain e travel distance (configurations F

and M).

Configuration K represented one of our best results: it estimanted 146,66

minutes as total exploration time, of which 37,21 minutes were used by

the robot to move and the others for scanning purpose. Comparing this

configuration with Configuration A it’s easy to see that the robot stopped

more times but the travel time is shorter. This is perfectly fine according to

the Next-Best-Smell approach, since in Configuration K we are considering

(and therefore we are trying to optimize) also the travel distance: in this

way the robot, between two candidate positions with the same value as

information gain it selected the closer one, minimizing the distance between

its current position and the goal.

Figure 5.1 shows all the sensing position reached by the robot in Con-

figuration K, which are all the positions in which the robot stopped and

performed scanning operations. Differently, in Figure 5.2 we can observe

that the robot, in the same configuaration, explored 5000 cells, correspond-

ing to 81,6 % of the total number (6113), in 74 round (a round is one

iteration of the algorithm), a bit more than half of the final number (139).

This behaviour is expected since the greedy approach tends to maximize

39



Figure 5.1: Sensing positions identified during the exploration of the Freiburg Univer-

sity’s map using Configuration K, 15 meters for the gas sensor range and 180 degrees

for the scan angle φ.

40



Figure 5.2: Coverage ratio during the exploration of the Freiburg University’s map using

Configuration K, 15 meters for the gas sensor range and 180 degrees for the scan angle

φ.

always towards the local optimum, discarding those positions with a small

information gain that in most of the cases correspond to corners. For this

reason the robot scanned most of the environment from relatively few po-

sitions but in the end it took the same time to discover those unkown cells

that it had been skipped before.

Other tests were run on the Teknikhuset’s corridor’s map, the corridor

immediately outside the Mobile Olfaction Lab. The results are reported in

Table 5.3. After having built it with the physical robot, the map was purged

from unreachable cells behind glass surfaces and it was discretized in a grid

whose cells were half square meter. The result, shown in Figure 5.3, counted

916 free cells.

The first thing that we discovered analizing these results is the fact that

now the best configurations are not only the ones that maximize the infor-

mation gain but also those that take care about the sensing time. This is

because this map has tigher spaces therefore using a smaller angle to perform

a sensing operation is more important than in an open environment as in the

Freiburg example. Considering the best result obtained with configuration

M, Figure 5.4 shows, as before with the Freiburg map, that our algorithm

allowed the robot to scan 746 cells out of 916, corresponding to 81,44 %, in

just nine positions, actually 37,5 % of sensing positions final number.

41



Configuration Coverage satisfied Cells visisted Distance travelled Travel Time(s) Number of turning Sum of scanned angles Scanning time(s) Total time(m)

A yes 20 276.96 553.93 23 44.42 1192.44 29.10

B yes 68 251.88 503.76 22 42.73 1596.41 35.00

C yes 42 331.24 662.49 28 26.63 1211.39 31.23

D yes 42 356.93 713.87 27 32.31 1324.77 33.97

E yes 27 215.22 430.44 23 34.35 1119.92 25.83

F yes 38 267.29 534.59 29 32.96 1288.89 30.39

G yes 39 633.24 1266.49 39 31.68 1258.5 42.08

H yes 40 472.31 944.63 34 30.04 1227.58 36.20

I yes 36 275.01 550.02 24 26.51 1067.79 26.96

J yes 37 242.75 485.51 29 25.66 1135.95 27.02

K yes 28 240.21 480.42 20 43.43 1309.37 29.82

L yes 40 447.99 895.99 34 29.50 1220.71 35.27

M yes 24 223.08 446.16 21 34.47 1073.27 25.32

Table 5.3: Results for Teknikhuset corridor map for each considered configuration. The

full coverage was completed in all the tests.

Figure 5.3: Sensing positions identified during the exploration of the Teknikhuset cor-

ridor’s map using Configuration M, 15 meters for the gas sensor range and 180 degrees

for the scan angle φ.

42



Figure 5.4: Coverage ratio during the exploration of the Teknikhuset corridor’s map

using Configuration M, 15 meters for the gas sensor range and 180 degrees for the scan

angle φ.

5.3 Real World Experiments

The Next-Best-Smell algorithm was tested also on a physical platform: the

Husky A200 reported in Figure 5.5, produced by Clearpath Robotics.

About the Husky, on the base platform we mounted a Light Detection

and Ranging (LIDAR) sensor to determine the object’s distance from the

robot using a laser pulse. Then we mounted also a pan-tilt unit that provided

accurate real-time positioning of the gas sensor and, above it, a Remote

Methane Leak Detector (RMLD) using a tunable infrared diode for open

path optical absorption specific to methane. To simulate methane leaks in

the environment we filled some bottles with the gas and we put them in the

corridor or behind some corners.

Differently from the simulated experiments, we had to use another map

of the Teknikhuset’s corridor, obtained from the one used before but cleaned

from those spaces impossible to reach due to the kinematics limits of the

Husky robot, as those under the stairs or behind the tables presented in

the environment. Therefore the grid resulted after the discretization in cells

of fifty centimeters per side has less free cells than the previous one, 896

instead of 916. The robot completed the full exploration in 27.72 minutes;

the sensing positions reached are reported in Figure 5.6 as blue dot, while

the yellow ones are the bottles filled with methane.

Despite our choice of using NDT-MCL localization [24] that should be

more robust than other techniques, during this experiment we had some

43



Figure 5.5: Husky A200 (Clearpath Robotics) equipped with a Lidar scanner, a pan-tilt

unit and a TDLAS sensor for remote gas detection. Methane leaks are simulated in the

environment with some bottles filled with the gas

Figure 5.6: Sensing positions obtained during the experiment in the real world using 10

meters for the gas sensor range and 180 degrees for the scan angle φ.

44



Real Simulation

Result 894/894 896/896

Total cells visited 15 15

Total (est.) travelled distance (cells) 184.04 218.44

Total (est.) travel time 368.08 436.89

Total number of turning 12 13

Sum of scan angles (radiants) 30.64 33.11

Total (est.) scanning time 860.74 880.70

Total estimated time (min) 20.48 21.96

Total real time (min) 27.72 —

Table 5.4: Comparison between the results obtained with the experiment in the real

world and the ones in simulations, using the same configuration and the same map.

The different number of total cells depend on the discretization process inside ROS.

issues due to the human presence in the environment that affected the total

exploration time; however the robot was able to complete the task in a rea-

sonable time. We run a test with the same configuration also in simulation

and we compared the result, which are collected in Table 5.4.

The first thing that it is important to notice is that the total number

of cells in the two experiments is different regardless the map is the same:

this is due to the discretization process inside ROS, that use two threshold

values to establish if a cells is free or unknown. For this reason, it could

happen that a pixel is considered in different way in simulation and in ROS

if not completely white or black.

The second and most important thing is the total time required for the

exploration of the map: as expected the real time was greater than the es-

timated one but the gap between the two was affected, as anticipated, by

some localization problem that can often happen working with a physical

platform . Moreover the driver of the pan-tilt unit we used was affected by

a bug that made it perform randomly two sweeps instead of one and this

represented, of course, the biggest contribution in making the real experi-

ments slower than the simulated one.

Apart from these problems, the robot was still able to scan the four

simulated gas leaks, even if the methane filled bottles were placed in quite

hidden places like corners or behind obstacles.

45



5.4 Reflection on Experimental Results

After having run many test, we collected some interesting results that allow

us to understand in a better way the convergence of the Next-Best-Smell

algorithm.

The first comment is related to the number of possible orientations the

robot can assume. Due to the greedy nature of this approach, it could hap-

pen that the more directions we use, the higher the probability that two or

more frontiers have the same evaluation score: the robot will choose the one

pushed as first in the data structure containing all the candidate positions.

This fact can lead to worse performances considering the total exploration

time, because two paths that seem similar at the beginning (from an eval-

uation score’s point of view) can evolve in complete different ways due to

the presence of obstacles in the map. Because we cannot look forward to

establish which is the best orientation to choose to minimize the exploration

time, it is impossible to solve this conflict without negating the hypothesis

of the greedy approach.

In Table 5.5, the results obtained with the Freiburg University’s map

(discretized in cells of one meter per size, whose 6113 are free) using four

and eight orientations are reported: differently from what could be expected,

in nine tests out of thirteen, using four orientations resulted in a better so-

lution, despite in two occasions the map was not completely explored. How-

ever this is not always true, as an experiment with another map, the one of

Teknikhuset’s corridor, shows. In this case using eight directions instead of

four speeds up the convergence of our approach in nine case out of thirteen.

Therefore we could say that this behaviour exists but it is strongly related to

the nature of the map, for example the corridor’s disposition and the amount

of obstacles present in it. In situations like in the Freiburg example, where

there are large and empty spaces, four orientations are sufficient to obtain

good results because more directions could have similar evaluation score.

Differently, in environments with stricht spaces as in the Teknikhuset’s cor-

ridor, more orientations allows the robot to follow straight paths in a way

parallel to the walls, minimizing the travel time and therefore the total ex-

ploration time.

A second interesting aspect is related to the pruning threshold used dur-

ing the frontiers evaluation. Our tests, reported in Table 5.6 and Table

5.7 demonstrated that using a threshold can increase the convergence speed

only in the case of a non-complete coverage ( <100%). However, for every

value of coverage we want to satisfy, a threshold value that is too high can

46



Freiburg University Teknikhuset Corridor

Configuration Total time(m) 4 dir Total time(m) 8 dir Total time(m) 4 dir Total time(m) 8 dir

A 147.55 134.53 29.10 25.25

B 227.49 227.01 35.00 44.62

C 210.61 155.02 31.23 28.07

D 157.48 169.79 33.97 29.78

E 153.89 199.40 25.83 22.27

F 146.50 146.65 30.39 31.62

G 154.94 201.38 42.08 33.19

H 183.35 207.13 36.20 27.98

I 170.76 229.26 26.96 22.15

J 161.17 178.45 27.02 25.92

K 146.66 208.48 29.82 31.99

L 199.54 157.04 35.27 24.45

M 150.94 154.42 25.32 26.11

Table 5.5: Having 8 directions instead of 4 among to choose can represent either an

advantage (with tight spaces like in the Teknikhuset’s corridor, on the right) either a

disadvantage (with open spaces like in the Freiburg example, on the left).

Value Coverage reached Cells visited Exploration time(m)

0 100 101 172.29

0.01 99.32 78 129.70

0.02 98.9 69 113.87

0.03 98.02 61 103.32

0.04 97.52 56 95.68

0.05 97.51 55 94.35

0.06 96.89 51 87.11

0.07 96.56 49 82.44

0.08 95,12 46 79.05

0.09 94.24 43 73.16

0.1 93.06 39 67.25

0.12 93.09 38 64.05

0.13 91.18 35 59.81

0.15 90.44 34 57.98

0.2 86.84 30 51.34

Table 5.6: The adoption of a pruning factor speeds up the convergence of our algorithm

but decrease the total amount of area we can cover.

47



Thresholds

0 0.01 0.025 0.04

Coverage Satisfied Cells visited Satisfied Cells visited Satisfied Cells visited Satisfied Cells visited Total cells

100 V 101 X 78 X 64 X 56 6113

99 V 94 V 76 X 64 X 56 6051

98 V 92 V 74 V 64 X 56 5991

97 V 85 V 72 V 61 V 56 5930

96 V 79 V 65 V 59 V 54 5869

95 V 73 V 63 V 57 V 51 5808

94 V 72 V 59 V 53 V 49 5747

93 V 71 V 58 V 49 V 46 5686

92 V 71 V 58 V 48 V 44 5624

91 V 70 V 57 V 48 V 43 5563

90 V 59 V 53 V 47 V 42 5502

Table 5.7: Assigned a coverage constraint to satisfy, an higher pruning factor can speed

up the convergence speed of Next-Best-Smell, but in some cases (if a full coverage is

required) it could prevent to complete the task.

prevent to reach our goal, and this is particularly true if we want to cover

the entire map.

The experience related to the simulated experiments helped us to un-

derstand the behaviour of the weights configurations and to suggest which

to use according to the nature of the map. From the results obtained we

can conclude that the choice of the configuration is strongly related to the

structure of the environment. In situations like in the Freiburg example,

with large and empty spaces, configurations that privilege travel distance

over sensing time (F, G, K) are preferred because it is highly probable that

scanning will be carried out with maximum opening angle and rendering the

sensing time criterion less meaningful. On the other hand, in environments

with tight spaces as in the Teknikhuset’s corridor, it is more convenient that

configurations take care about the sensing time (I, J, K, M) because using

only the sufficient angle required for perceiving a new portion of the map

can improve significantly the performance.

In conclusion, we found information gain to be the most importan cri-

terion, since maximizing it means focusing mainly on exploring new cells.

For this reason, Configurations A, E and L that assign large weight to infor-

mation gain are often a good choice. These experiments identify the upper

part of the simplex reported in Figure 5.7 as the one representing the weights

able to obtain a better performance. Giving an high importance to infor-

mation gain is most important to speed up the exploration, and assigning

also a non-zero but smaller weight to the other criteria could improve the

convergence speed depending on the particular map of the environment.

48



Figure 5.7: The weights assigned to the three criteria are shown on the simplex surface.

Experimental activities demonstrated the the upper part of the simplex represent the

locus of point offering a better overall performance.

5.5 Comparison with Offline Approach

In the end we made a comparison between the Next-Best-Smell algorithm

and the one developed by Asif Arain et al., explained in [6]. Briefly, they

solved the exploration problem in two stages: first of all the so called Art

Gallery Problem in a given map, to identify those positions from which the

robot can see all the environment; after this, the Travelling Salesman Prob-

lem among these position to find the shortest path connecting all of them

is solved. Since this approach consists in an optimization problem with an

high computational effort, the solution was computed offline using Matlab

and then the list of positions to reach was provided to the robot.

The comparison has been carried out in simulation using the Teknikhuset’s

corridor’s map, and results are reported in Table 5.8.

In his experiments, Arain et al. used a configuration with 90 degrees

for the scan angle φ and a range of 10 meters for the laser sensor, with 4

possible orientations for sensing operations, obtaining a total of 17 sensing

positions and an estimated total exploration time of 18.35 minutes. The

sensing position are reported in Figure 5.8.

Using Configuration E and the same parameters, our algorithm com-

pletes in 40 sensing positions, with an estimated total exploration time of

27.78 minutes. The sensing position are reported in Figure 5.9

If we change our configuration by using a scan angle φ of 180 degrees

49



Figure 5.8: Sensing positions obtained with the offline algorithm using only 4 directions,

90 degrees for the scan angle φ and a gas sensor range of 10 meters.

Figure 5.9: Sensing positions obtained with the online algorithm using only 4 directions,

90 degrees for the scan angle φ and a gas sensor range of 10 meters.

Figure 5.10: Sensing positions obtained with the online algorithm using 8 directions,

180 degrees for the scan angle φ and a gas sensor range of 10 meters.

50



Offline Online 1 Online 2

Sensing positions 17 40 20

Travel time (s) 472 519 424

Scanning time (s) 629 1146 816

Exploration time (m) 18.35 27.78 20.68

Table 5.8: Comparison between offline and online approach. Two configurations are

reported for the online: 4 orientations with 90 degrees for the scan angle φ for the first

and 8 orientations with 180 degrees for φ for the second.

and 8 possible orientations, the Next-Best-Smell algorithm performs much

closer to the offline one: a total of 20 sensing positions with an estimated

exploration time of 20.68 minutes, as shown in Figure 5.10.

Differently from the offline algorithm, in which adopting 8 orientations

instead of 4 could cause the explosion of the state space, using a machine

equipped with an Intel Core i5-3570K with a clock speed of 3.40Ghz and

8 GB of memory, running a test on the corridor’s map with 4 orientations

takes 0.132 seconds, while a test with 8 orientations takes 0.136 seconds.

We can obtain results really close to the offline algorithm because in [6]

the angle φ used for sensing operations assumes the value φmax for all the

exploration, while in our solution φmax is simply a boundary on the scanning

angle, which is chosen dynamically at each operation.

For this reason, and also considering how sensing operations are the most

time-consuming operation in the task of interest, while a broader scan an-

gle φ might end up slowing the exploration in [6], it speeds up greatly the

exploration with our approach.

51



52



Chapter 6

Conclusion and Future

Works

6.1 Conclusion

Mobile robotics is becoming an effective tool to solve tasks which are dan-

gerous for humans, such as the one of gas detection.

Robotic olfaction has been attracting more and more interest in the last

years, especially since the adoption of TDLAS sensors, which can let us

move from stationary sensor networks to gas detection with mobile robots.

In this thesis we presented a Multi Criteria Decision Making (MCDM)

approach to define a Next-Best-View (NBV) exploration strategy in order

to detect the presence of gas in large environments by means of a TDLAS

sensor.

Our solution adapts exploration techniques already used for tasks such

as mapping and search and rescue to the gas detection problem, and works

by choosing at each step the next best sensing pose by combining the values

of three different criteria into a global utility function, and then maximizing

its value.

The global utility function, generated using the Choquet fuzzy integral,

takes into account the interactions among criteria through the relationships

of synergy and redundancy, and by tuning the weights given to the sets of

criteria it is possible to adapt the exploration to the interests of the user. In

our experiments we tried to tune the parameters in order to minimize the

total time required for the exploration.

Experimental activity both in simulation and in the real world has shown

the potential of the proposed approach in defining an effective exploration

strategy for the task of interest, especially when the complete map coverage



is not necessary.

Our Next-Best-Smell algorithm has been tested mainly in known envi-

ronment, but several tests have also been run in simulation without giving

the robot any a priori information about the environment, with promising

results. All of our assumptions still hold in the unknown evironment case,

and the exploration is succesfully completed with results being 0 to 10%

worse than the one obtained in the known environment, depending on the

starting position of the robots and the values of the parameters set.

6.2 Future Works

We identified several possible ways to expand our work.

First of all, some more or different criteria could be used, such as taking

into account the presence of gas found in a sensing operation in order to ex-

plore the areas which have a higher probability of presenting a gas leakage

first. Moreover, a dynamic set of weights for the criteria might be added,

in order to change the behavior of the robot depending for example on the

level of charge of the battery, or the presence of gas in the environment.

More interestingly, we have identified two main area of interests for fu-

ture works: unknown environments and multi-robot systems.

As already mentioned, tests have been run in simulation without a pri-

ori knowledge about the environment with promising results. The first and

most interesting task to perform would be to test the algorithm in unknown

environments in the real world.

We also believe that multi-robot systems might be an interesting direc-

tion for the future, either by working with omogeneus robots with TDLAS

sensors, or even with an etherogenous group of robots, mounting either TD-

LAS sensors or in-situ sensors, and coordinating their actions in order to

obtain a faster coverage of the environment.

54



Bibliography

[1] https://www.openslam.org/gmapping.html.

[2] www.ros.org.

[3] F. Amigoni and N. Basilico. Exploration strategies based on multi- cri-

teria decision making for searching environments in rescue operations.

Autonomous Robots, 31(4):401–417, November 2011.

[4] F. Amigoni, V. Caglioti, and U. Galtarossa. A mobile robot mapping

system with an information-based exploration strategy. In Proceedings

of International Conference on Informatics in Control, Automation and

Robotics (ICINCO), pages 71–78, 2004.

[5] F. Amigoni and A. Gallo. A multi-objective exploration strategy for

mobile robots. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), pages 3861–3866, 2005.

[6] A. Arain, M. Trincavelli, M. Cirillo, E. Schaffernicht, and A.J. Lilien-

thal. Global coverage measurement planning strategies for mobile

robots equipped with a remote gas sensor. Sensors, 15(3):6845–6871,

2015.

[7] W. Baetz, A. Kroll, and G. Bonow. Mobile robots with active ir-optical

sensing for remote gas detection and source localization. In IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 2773–

2778, 2009.

[8] V. Hernandex Bennetts, E. Schaffernicht ans T. Stoyanov, A. Lilien-

thal, and M. Trincavelli. M. robot assisted gas tomography - localiz-

ing methane leaks in outdoor environments. In Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), pages

6362–6367, 2014.

55



[9] V. Hernandez Bennetts, A.J. Lilienthal, A.A. Khaliq, V.P. SesÃ¨, and

M. Trincavelli. Towards real-world gas distribution mapping and leak

localization using a mobile robot with 3d and remote gas sensing capa-

bilities. In Proceedings of IEEE International Conference on Robotics

and Automation (ICRA), pages 2335–2340, 2013.

[10] P. Biber and W. Strasser. The normal distributions transform: a new

approach to laser scan matching, 2003.

[11] G. Bonow and A. Kroll. Gas leak localization in industrial environ-

ments using a tdlas-based remote gas sensor and autonomous mobile

robot with the tri-max method. In IEEE International Conference on

Robotics and Automation (ICRA), pages 987–992, 2013.

[12] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization

for mobile robots. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 1322 – 1328, 1999.

[13] E. W. Dijkstra. A note on two problems in connection with graphs.

Numer. Math., 1:269–271, 1959.

[14] M.B. Frish, R.T. Wainner, B.D. Green, M.C. Laderer, and M-G. Allen.

Standoff gas leak detectors based on tunable diode laser absorption

spectroscopy. In SPIE Optics East, 2005.

[15] H. Gonzáles-Bños and J.-C. Latombe. Navigation strategies for explor-

ing indoor environments. International Journal of Robotics Research,

21(10-11):829–848, 2002.

[16] M. Grabish. The application of fuzzy integrals in multicriteria deci-

sion making. European Journal of Operational Research, 89(3):445–456,

1996.

[17] M. Grabish and C. Labreuche. A decade of application of the choquet

and sugeno integrals in multi-criteria decision aid. 4OR A Quarterly

Journal of Operations Research, 6(1):1–44, 2008.

[18] M. Grabish, T. Murofushi, M. Sugeno, and J. Kacprzyk. Fuzzy Mea-

sures and Integrals. Theory and Applications. Physica Verlag, 2000.

[19] P. E. Hart and N.J. Nilssonand B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. In IEEE Transactions

on Systems Science and Cybernetics SSC4, volume 4, pages 100–107,

1968.

56



[20] H. Ishida, Y. Wada, and H. Matsukura. Chemical sensing in robotic

applications: A review. EEE Sens. J., 12:3163–3173, 2012.

[21] G. Kowadlo and R.A. Russell. Robot odor localization: A taxonomy

and survey. Int. J. Robot. Res., pages 869–894, 2008.

[22] M. Lackner. Tunable diode laser absorption spectroscopy (tdlas) in

the process industries- a review. In Rev. Chem. Eng, volume 3, pages

65–147, 2007.

[23] Z. Liu, S. Cheng, S. Hu, D. Zhang, and H. Ning. A survey on gas

sensing technology. Sensors, 12:9635–9665, 2012.

[24] J. Saarinen, H. Andreasson, T. Stoyanov, and A. Lilienthal. Normal dis-

tributions transform monte-carlo localization (ndr-mcl). In EEE/RSJ

International Conference on Intelligent Robots and Systems, pages 382–

389, 2013.

[25] S. Soldan, J. Welle, T. Barz, A. Kroll, and D. Schultz. Towards au-

tonomous robotic systems for remote gas leak detection and localiza-

tion in industrial environments. Springer Tracts in Advanced Robotics,

92:233–247, 2014.

[26] P. Sridhar, A. Madni, and M. Jamshidi. Multi-criteria decision making

in sensor networks. IEEE Instrumentation & Measurement Magazine,

11(1):24–29, 2008.

[27] C. Stachniss and W. Burgard. Exploring unknown environments with

mobile robots using coverage maps. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), pages 1127–1134,

2003.

[28] Y. Tomioka, A. Takara, and H. Kitazawa. Generation of an optimum

patrol course for mobile surveillance camera. IEEE Trans. Circuits

Syst. Video Technol., 22:216–224, 2012.

[29] B. Tovar, L. Munoz-Gomez, R. Murrieta-Cid, M. Alencastre-Miranda,

R. Monroy, and S. Hytchinson. Planning exploration strategies for si-

multaneous localization and mapping. Robotics and Autonomous Sys-

tems, 54(4):314–331, 2006.

[30] M. Trincavelli, M. Reggente, S. Coradeschi, A. Loutfi, H. Ishida, and

A. Lilenthal. Towards environmental monitoring with mobile robots. In

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 2210–2215, 2008.

57



58 Chapter 6. Conclusion and Future Works

[31] W. Tsujita, A. Yoshino, H. Ishida, and T. Moriizumi. Gas sensor net-

work for air-pollution monitoring. Sens. Actuators B: Chem, 110:304–

311, 2005.

[32] B. Yamauchi. A frontier-based approach for autonomous exploration.

In Proceedings of IEEE International symposium on Computational In-

telligence in Robotics and Automation (CIRA), pages 146–151, 1997.

[33] B. Yamauchi, A. Schultz, W. Adams, and K. Graves. Integrating map

learning, localization and planning in a mobile robot. In Proceedings of

Intelligent Control (ISIC), pages 331–336, 1998.



Appendix A

Ros Architecture

As described in Chapter 5, we tested our algorithm on the Husky A200 robot,

developed by Clearpath Robotics. To do so, we had to implement to code

in the Robot Operating System (ROS) framework. ROS provides standard

operating system services such as hardware abstraction, low-level device

control, implementation of commonly used functionality, message-passing

between processes, and package management. Running sets of ROS-based

processes are represented in a graph architecture where processing takes

place in nodes that may receive, post and multiplex sensor, control, state,

planning, actuator and other messages.

At the lowest level, ROS offers a message passing interface that provides

inter-process communication and is commonly referred to as a middleware.

The ROS middleware provides these facilities:

• publish/subscribe anonymous message passing

• recording and playback of messages

• request/response remote procedure calls

• distributed parameter system

A communication system is often one of the first needs to arise when imple-

menting a new robot application. ROS’s built-in and well-tested messaging

system saves you time by managing the details of communication between

distributed nodes via the anonymous publish/subscribe mechanism. An-

other benefit of using a message passing system is that it forces you to

implement clear interfaces between the nodes in your system, thereby im-

proving encapsulation and promoting code reuse.

The asynchronous nature of publish/subscribe messaging works for many

59



60 Appendix A. Ros Architecture

Figure A.1: Navigation stack tf tree (wiki.ros.org)

communication needs in robotics, but sometimes you want synchronous re-

quest/response interactions between processes. The ROS middleware pro-

vides this capability using services.

A.1 Navigation stack

The first operation to realize with a mobile robot is implement a navigation

stack that allows the robot to move and to localize itself in the surrounding

environment. The diagram in Figure A.1 shows an overview of how the

robot should be configured to run. The white components are required

components that are already implemented, the gray components are optional

components that are already implemented, and the blue components must

be created for each robot platform. The pre-requisites of the navigation

stack are the following:

• Transform configuration: the navigation stack requires that the robot

be publishing information about the relationships between coordinate

frames using tf ;

• Sensor information: the navigation stack uses information from sensors

to avoid obstacles in the world, it assumes that these sensors are pub-

lishing either sensor msgs/LaserScan or sensor msgs/PointCloud

messages over ROS;

• Odometry information: the navigation stack requires that odometry

information be published using tf and the nav msgs/Odometry mes-

sage;



A.1. Navigation stack 61

Figure A.2: Example of a tf transform (wiki.ros.org)

• Base controller: The navigation stack assumes that it can send velocity

commands using a geometry msgs/Twistmessage assumed to be in

the base coordinate frame of the robot on the ‘cmd vel ’topic. This

means there must be a node subscribing to the ‘cmd vel’topic that is

capable of taking (vx, vy, vtheta) <==> (cmd vel.linear.x,

cmd vel.linear.y, cmd vel.angular.z) velocities and converting them

into motor commands to send to a mobile base.

• Mapping;

• Localization;

Now some of previous topic are described more in details.

A.1.1 Transform Configuration

Many ROS packages require the transform tree of a robot to be published

using the tf software library. At an abstract level, a transform tree defines

offsets in terms of both translation and rotation between different coordi-

nate frames.

Let’s assume that we have some data from the laser in the form of dis-

tances from the laser’s center point. In other words, we have some data in

the ‘base laser ’coordinate frame. Now suppose we want to take this data

and use it to help the mobile base avoid obstacles in the world. To do this

successfully, we need a way of transforming the laser scan we’ve received

from the ‘base laser ’frame to the ‘base link ‘frame. In essence, we need

to define a relationship between the ‘base laser ’and ‘base link ’coordinate

frames, as shown in Figure A.2.

To define and store this relationship using tf , we need to add them to a

transform tree. Conceptually, each node in the transform tree corresponds

to a coordinate frame and each edge corresponds to the transform that needs

to be applied to move from the current node to its child. Tf uses a tree

structure to guarantee that there is only a single traversal that links any

two coordinate frames together, and assumes that all edges in the tree are



62 Appendix A. Ros Architecture

Figure A.3: Tf tree of the Husky robot used in our experiments

directed from parent to child nodes.

With this transform tree set up, converting the laser scan received in the

‘base laser’frame to the ‘base link’frame is as simple as making a call to the

tf library. Our robot can use this information to reason about laser scans

in the ‘base link’frame and safely plan around obstacles in its environment.

In Figure A.3 is reported, for the interest of the reader, the full tf tree of

the platform used.

A.1.2 Odometry Information

The navigation stack uses tf to determine the robot’s location in the world

and relate sensor data to a static map. However, tf does not provide any

information about the velocity of the robot. Because of this, the navigation

stack requires that any odometry source publish both a transform and a

nav msgs/Odometry message over ROS that contains velocity information.

The nav msgs/Odometry message stores an estimate of the position and

velocity of a robot in free space: The pose in this message corresponds to

the estimated position of the robot in the odometric frame along with an

optional covariance for the certainty of that pose estimate. The twist in this

message corresponds to the robot’s velocity in the child frame, normally the

coordinate frame of the mobile base, along with an optional covariance for

the certainty of that velocity estimate.

In A.2 is shown the code used to get the exact position of the robot,

with its orientation, in the map frame.



A.1. Navigation stack 63

Listing A.1: An example of nav msgs/Odometry

1 # This represents an estimate of a position and velocity in free space

.

2 # The pose in this message should be specified in the coordinate frame

given by header.frame_id.

3 # The twist in this message should be specified in the coordinate

frame given by the child_frame_id

4 Header header

5 string child_frame_id

6 geometry_msgs /PoseWithCovariance pose

7 geometry_msgs /TwistWithCovariance twist

Listing A.2: Code used to get from tf the exact pose of the robot

1 geometry_msgs :: PoseStamped getCurrentPose ()

2 {

3 ros::Time _now_stamp_ = ros::Time (0);

4

5 tf:: StampedTransform start_pose_in_tf;

6 tf:: TransformListener _tf_listener;

7

8 _tf_listener.waitForTransform("map", "base\_link", _now_stamp_ ,

ros:: Duration (2.0));

9 try

10 {

11 _tf_listener.lookupTransform ("map", "base\_link", _now_stamp_ ,

start_pose_in_tf);

12 }

13 catch(tf:: TransformException & ex)

14 {

15 ROS_INFO("TRANSFORMS ARE COCKED -UP PAL! Why is that :=> %s",

ex.what());

16 }

17

18 tf:: Vector3 start_position = start_pose_in_tf.getOrigin ();

19 tf:: Quaternion start_orientation = start_pose_in_tf.getRotation ();

20

21 geometry_msgs :: PoseStamped start_pose;

22 start_pose.header.stamp = start_pose_in_tf.stamp_;

23 start_pose.header.frame_id = start_pose_in_tf.frame_id_;

24

25 tf:: pointTFToMsg(start_position , start_pose.pose.position);

26 tf:: quaternionTFToMsg(start_orientation , start_pose.pose.

orientation);

27

28 return start_pose;

29 }



Listing A.3: An example of YAML file

1 image: testmap.png

2 resolution: 0.1

3 origin: [0.0, 0.0, 0.0]

4 occupied_thresh : 0.65

5 free_thresh : 0.196

6 negate: 0

A.1.3 Mapping

The map on the environment in which the robot is located is provided by a

package named ‘map server ’. Usually maps are stored as a couple of file:

the YAML file describes the map meta-data, and names the image file. The

image file encodes the occupancy data.

The image describes the occupancy state of each cell of the world in the

color of the corresponding pixel. Whiter pixels are free, blacker pixels are

occupied, and pixels in between are unknown. Thresholds in the YAML

file are used to divide the three categories; thresholding is done inside the

‘map server ’. When communicated via ROS messages, occupancy is repre-

sented as an integer in the range [0,100], with 0 meaning completely free and

100 meaning completely occupied, and the special value -1 for completely

unknown. The listing A.3 presents an example of a YAML file. The fields

required are the following: Required fields:

• image : Path to the image file containing the occupancy data; can be

absolute, or relative to the location of the YAML file

• resolution : Resolution of the map, meters / pixel

• origin : The 2-D pose of the lower-left pixel in the map, as (x, y, yaw),

with yaw as counterclockwise rotation (yaw=0 means no rotation).

Many parts of the system currently ignore yaw.

• occupied thresh : Pixels with occupancy probability greater than this

threshold are considered completely occupied.

• free thresh : Pixels with occupancy probability less than this threshold

are considered completely free.

• negate : Whether the white/black free/occupied semantics should be

reversed (interpretation of thresholds is unaffected)



A.2. Other Ros Packages 65

A.1.4 Localization

Robust robot localization is critical in mobile robotics to associate measure-

ments with spatial locations. Bieber and Straßer in [10] proposed a dif-

ferent environmente representation, called Normal Distribution Transform

(NDT), based on a sparse Gaussian mixture model where robot localiza-

tion can be achieved using e.g. Monte Carlo Localization (MCL) [12]. In

NDT-MCL [24], the standard MCL probabilistic framework uses NDT as

a representation for both, the map and the observations to relax hard dis-

cretization assumptions imposed by e.g. grid-map models. This, combined

with a piece-wise continuous NDT environment representation, allows to

achieve the accuracy and repeatability needed for industrial applications in

large environments.

A.2 Other Ros Packages

In Figure A.4 is reported to nodegraph of out system. The active nodes are

represented in the circular shapes, while the topics to which they publish or

subscribe are in small rectangles. Nodes are contained in packages.

In the previous section we have already discussed, directly or not, about

the following nodes: NDT-MCL (for localization), move base (for sending

motor commands to the robot), lidar (for providing sensor information) and

odo static (for odometry). Despite of the husky package, containing all the

description files related to the platform and dipendent on it, we have to

present the nodes fundamentals for achieving the gas detection task.

The first one is the rmld node that jas the goal of record in a log all the

values read by the TDLAS, but the most important one for our experience

is, for sure, the one named ptu control. As described in Chapter 4, with

the ray casting we are able to estimate the minimum and maximum angle

required to scan an unknown area. Passing these values to this node, we can

move the pan-tilt unit which the TDLAS sensor is mounted on only for the

desided angular sector, saving precious time. In A.4 is reported the code

written to call the service and to send the message containing the required

parameters.



66 Appendix A. Ros Architecture

Listing A.4: Code used for sending messages to the pan-tilt unit

1

2 void gasDetection (){

3

4 ros:: NodeHandle n;

5 ros:: ServiceClient client1 = n.serviceClient <ptu_control ::

commandSweep >("/ptu_control/sweep");

6 ros:: ServiceClient client2 = n.serviceClient <amtec ::GetStatus

>("/amtec/get_status");

7

8 ptu_control :: commandSweep srvSweep;

9

10 if(min_pan_angle > max_pan_angle ){

11 double tmp = min_pan_angle ;

12 min_pan_angle = max_pan_angle ;

13 max_pan_angle = tmp;

14 }

15

16 srvSweep.request.min_pan = min_pan_angle ;

17 srvSweep.request.max_pan = max_pan_angle ;

18 srvSweep.request.min_tilt = tilt_angle;

19 srvSweep.request.max_tilt = tilt_angle;

20 srvSweep.request.n_pan = num_pan_sweeps;

21 srvSweep.request.n_tilt = num_tilt_sweeps ;

22 srvSweep.request.samp_delay = sample_delay;

23

24 if (client1.call(srvSweep)){

25 ROS_INFO("Gas detection in progress ... <%.2f~%.2f,%.2f>",

min_pan_angle ,max_pan_angle ,tilt_angle);

26 }else{

27 ROS_ERROR("Failed to initialize gas scanning.");

28 }

29

30

31 }



A.2. Other Ros Packages 67

Figure A.4: Nodegraph representing all the active nodes



68 Appendix A. Ros Architecture



Appendix B

Practical Issues

We had to face many issues while implementing our algorithm, both during

the design and coding part and during experiments in the real world.

B.1 Map representation

In order to represent the environment, we generate a matrix composed by

0 (free cells) and 1 (obstacle cells) from a map image file. To obtain cells

of a chosen size, for example 1m2, the cells obtained while reading the map

might have to be clustered together, depending on the resolution of the im-

age file.

This often generated unreachable cells, cells which could be seen but

become unreachable for the robot because of obstacle expansion while clus-

tering.

Because of the required precision when using maps, we decided to let

the robot move in cells of 1m2 in the real life experiments and in most of

simulation experiments, in order to take into account the space required by

the robot to move without hitting walls and obstacles, also due to possible

non-perfect localization.

Since we did not want to lose precision in the gas detection, we decided

to introduce a second grid representing the map, used for sensing operation,

with the possibility to choose the resolution of both grids independently.

This however might introduce more clustering, depending on the resolution

of the grids and of the original map file.

Maps in some cases had to be manually fixed, by removing free cells

which where unreachable because it would be physically impossible for the

robot to reach them, or by manually expanding some obstacles, such as

69



70 Appendix B. Practical Issues

stairs, which were not generated in the correct size in the Teknikhuset’s cor-

ridor map because the lidar used to generate the 2d map is set close to the

ground, or walls in case of windows, which are not sensed by the lidar scan.

Moreover, maps used in our algorithm and maps used in ROS were read

in a different way, resulting mirrored and shifted, requiring some static trans-

forms in order to run the algorithm successfully.

B.2 Ray casting

We used ray casting for a significative number of tasks in our implementa-

tion: finding candidate positions, performing sensing operations, calculating

the criteria of information gain and sensing time.

Two main implementation were used. In both of them, the angles and

the FoV used are considered in a cartesian system fixed to the environment,

and not to the robot.

In our first implementation, given the robot pose, a huge number of rays

were cast depending on the range and FoV of the robot, for example with a

range of 20 meters and a FoV of 180 degrees 1024 rays had to be casted in

order to sense all the visible cells in a sensing operation. In this implemen-

tation, given the initial and final angle φstart and φend defining the FoV of

the robot, a fixed number n of ray was shot, with slopes going from φstart

to φend with an increase of φend−φstart

n
.

In order to obtain a more precise solution, which didn’t require to choose

a different number of rays depending on robot’s parameters, we made a sec-

ond implementation, in which a single ray is shot for each cell to check if it

is visible from the current robot pose. Details on this implementation are

reported in Chapter 4.

B.3 Issues during experiments

We faced many issues while doing experiments in the real world. Apart from

problems due to stairs not recognized in the map and unreachable cells that

compromised some of our runs, some issues prevented us from being able

to run tests on the same map as Arain [6], due to the NDT map used for

localization not overlapping with the occupancy grid used to send the next

pose to the robot, generating an imprecise localization.

Moreover, an issue in the ptu unit of the robot made the sensing opera-

tion randomly perform two sweeps instead of one, slowing down the explo-



B.3. Issues during experiments 71

ration by a significative amount of time.


