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ABSTRACT

Intelligence agencies worldwide have access to databases containing daily business

records metadata, such as telephony metadata, with the aim of preventing and identifying

terrorist activity. In 2013, the US Foreign Intelligence Surveillance Court (FISC) released

a number of documents on the use of telephony metadata by the US National Security

Agency (NSA). NSA claimed that they did not possess technical expertise on how to cor-

rectly conduct searches on the BR metadata. These documents revealed that the NSA

was querying a larger set of identifiers than the one permitted in previous FISC orders.

This motivates the need for an automated tool with the capability of analyzing the legality

of queries on telephony metadata. This analysis would help to prevent the execution of

queries which retrieve more identifiers than allowed.

The aim of this thesis is to conceive a tool for such purpose, which, differently from the

previous work on the subject, will conduct an analysis based only on the query itself and

not on the output that the query produces on a specific database. The input queries will be

checked against the guidelines specified in a 2013 Obama administration white paper on

bulk collection of telephony metadata. To achieve this goal we propose two different no-

tions of depth of a query: the graph-depth approach is a straightforward verification of the

above guidelines while the cost-depth approach, although comparable to the previous one,

is inspired by the theory of databases with access limitations and solves a more complex,

although similar, problem. We will propose a number of algorithms for both approaches

and we will implement them as part of the QueryAnalyzer system. Finally, we will compare

the performances of the different algorithms.
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SOMMARIO

Le agenzie di sicurezza governativa fanno spesso accesso ai metadati delle chiamate

telefoniche, tra cui mittente e destinatario, allo scopo di identificare e prevenire attività

terroristiche. Nel 2013, la Corte di Vigilanza sull’Intelligence Estera americana (FISC)

ha rilasciato dei documenti riguardanti l’uso dei metadati telefonici da parte dell’ Agen-

zia di Sicurezza Nazionale americana (NSA). Questi documenti hanno rivelato che l’NSA

ha condotto ricerche accedendo ad un numero di identificatori di numeri telefonici mag-

giore rispetto a quanto in precedenza stabilito dalla FISC. Un documento governativo, re-

datto dall’amministrazione Obama nel 2013, stabilisce che l’NSA è abilitata a interrogare i

metadati telefonici partendo da una “lista nera” di id possedenti la qualifica di “reasonable

articulable suspicion” (RAS) e accedendo a id distanti non più di tre passi (hop) dagli id

RAS, col significato che due id sono distanti di un passo quando tra essi è intercorsa una

chiamata, due passi se sono connessi solo indirettamente attraverso una terza parte e così

via. L’NSA ha risposto alle accuse della FISC dichiarando che “dal punto di vista tecnico,

nessuno aveva una completa conoscenza del sistema di interrogazione dei metadati tele-

fonici”. Lavori precedenti sul problema di prevenire l’accesso illegale dell’NSA ai suddetti

metadati ha dimostrato che non solo è possibile filtrare il database nascondendo gli id dis-

tanti più di tre passi dagli id RAS, ma tale operazione è anche efficiente se si utilizza un

database a grafi.

Lo scopo della nostra ricerca è di quantificare il massimo numero di passi attraversati

dalla query andando ad analizzare la struttura della query e non l’output prodotto dalla

sua esecuzione. A questo scopo abbiamo definito uno schema di database relazionale e un

sottoinsieme di SQL atti a rappresentare le query di interesse. Abbiamo quindi definito

la graph-depth di una query come il massimo numero di passi espansi dalla query. Ad

esempio, consideriamo la seguente query (espressa in linguaggio naturale) “Trova Alice,

Bob e Carl tali che Alice ha chiamato qualche id RAS che ha chiamato Bob che, a sua volta,

ha chiamato Carl”: in generale Alice e Bob non sono id RAS ma sono in diretto contatto

con qualche RAS, per cui entrambi sono lontani un passo dagli id RAS. Carl invece, è in

contatto con qualche RAS tramite Bob per cui esso dista due passi dalla lista nera. Da

questo segue che il massimo numero di passi espansi dalla query è due. Siamo stati in

grado di sviluppare un algoritmo che, in tempo polinomiale, calcola la graph-depth di una

query, purchè quest’ultima sia minima.

Il passo successivo della nostra ricerca è stato modificare leggermente il problema per

considerare la direzione delle chiamate. Infatti la definizione di passo definita dai docu-

menti legislativi statunitensi è informale e non specifica se il verso delle chiamate influenzi

o meno la legalità della query. Per questo abbiamo sviluppato un concetto alternativo di

profondità chiamato cost-depth. L’idea è basata sulla nozione di accesso, ovvero l’azione

di fornire un elenco di id in input al database per estrarre o coloro che hanno ricevuto

ix
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chiamate da tale elenco o coloro che hanno effettuato chiamate verso tale elenco. Questo

concetto permette di distinguere la direzione delle chiamate. La cost-depth di una query

è quindi il minimo numero di accessi richiesti per eseguire la query. Consideriamo nuova-

mente la query sopra che per praticità riscriviamo come “trova A, B e C tali che A chiama

RAS che chiama B che chiama C”. Per eseguire un accesso occorre avere una lista nota di

id, che nel nostro caso sono proprio i RAS. Dai RAS possiamo risalire a chi li ha chiamati

ottenendo gli A (primo accesso). Usando gli stessi RAS risaliamo a chi hanno chiamato

ottenendo B (secondo accesso). Ora i B sono noti e possiamo risalire a chi hanno chiamato

ottenendo C (terzo accesso). Il primo e secondo accesso sono diversi perchè diversa è la

direzione in cui andiamo ad estrarre i dati e sono entrambi diversi dal terzo che usa una

lista di input diversa. La cost-depth della query è quindi tre. L’esempio potrebbe indurre

il lettore a pensare che la cost-depth sia semplicemente il numero di chiamate che inter-

corrono tra le varie parti, ma così non è: nella query “trova A tale che RAS chiama RAS

che chiama A” sono richieste due chiamate che connettono le varie parti ma la cost-depth

è in realtà uno. Infatti, estraendo coloro che sono stati chiamati da qualche RAS otteniamo

delle coppie 〈RAS,X〉 (primo accesso), e per trovare i valori per A possiamo riutilizzare le

coppie estratte dall’accesso precedente, essendo A stato chiamato da qualche RAS.

In generale ci sono vari piani di esecuzione possibili per una query. Abbiamo inoltre

dimostrato che il problema di trovare il piano minimo è NP-difficile il che ci ha spinto

a sviluppare un algoritmo esatto basato sul paradigma branch & bound e un algoritmo

approssimato basato sul paradigma greedy. Abbiamo quindi realizzato il sistema Query-

Analyzer che consente di calcolare la graph-depth e la cost-depth di una query e abbiamo

confrontato le prestazioni dei diversi algoritmi.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Intelligence agencies are benefiting from the rapid growth of computational power of

computing devices and the constant increase of the capacity of digital storage systems.

The storage of Business Records (BR) metadata in databases allows intelligence agencies

to analyze millions of records with the aim of discovering and preventing the insurgence of

threats to national security, such as terrorist activity. However, the use of this data by intel-

ligence agencies is usually constrained in order not to violate citizen privacy. Even though

governments do publish guidelines explaining which uses of BR metadata are compliant

with privacy laws, these guidelines are not always respected: in 2013 the US National

Security Agency’s (NSA’s) use of bulk telephony metadata 1 was detailed in a number of

declassified and released Foreign Intelligence Surveillance Court (FISC) documents. A

March 2, 2009 order from the FISC [1] addressed the problem of privacy violation: the

order revealed that the NSA was querying all the identifiers on an NSA alert list against

BR metadata that it received daily. This proved to violate previous FISC orders since the

NSA was allowed to query only identifiers for which there was a “reasonable articulable

suspicion” (RAS) that the identifier was significant and related to terrorist activity. In Jan-

uary 2009 the NSA’s alert list contained 17,835 foreign and domestic identifiers while only

about 2,000 identifiers had been given the status of RAS. The NSA justified its actions by

stating that “from a technical standpoint, there was no single person who had a complete

technical understanding of the BR FISA2 system architecture. [The court stated to be]

exceptionally concerned about what appears to be a flagrant violation of its order in this

matter” [1].

The previous example shows that intelligence agencies would greatly benefit from an

automated system with the aim of identifying (and possibly rejecting) queries not comply-

ing with previously stated orders and guidelines. This system would prevent the intelli-

gence agency analyst to perform illegal queries and therefore would ensure the agency’s

compliance with the above regulations. In the specific case of the NSA, a 2013 Obama

administration white paper [2] provided requirements of legal queries: the white paper

claimed that the NSA was allowed to search in the BR metadata up to a distance of three

hops from RAS identifiers. The concept of hop is informally defined in the white paper: an

1Records include information on sender, receiver, originating device, time of conversation, call

duration and trunk number.

2Foreign Intelligence Surveillance Act

1



2

identifier lies at one hop from the RAS list if it is in direct contact with some RAS identifier,

i.e. both identifiers take part in the same telephone call, it lies at two hops from the RAS

list if it is in direct contact with some one-hop-identifier, etc. So far it is not clear if this

requirement held back in the 2008 time frame, the period concerning the order in [1].

1.2 Aim of the thesis

The problem to ensure the legality of queries on telephony metadata according to the

guidelines in [2] has been previously faced in two ways: in 2013, Kanich et al. reason-

ably assumed that telephone data were being stored in a relational-like database and

proposed an input driven approach towards the problem. The approach involved filter-

ing the database to remove the non legally obtainable identifiers [3]; In 2014, Panebianco

reproduced the NSA’s query process using graph databases to compare the obtained per-

formance to those obtained with traditional SQL relational databases [4].

The purpose of this work is to devise an automated system capable of deciding an input

query’s compliance to some requirements. The considered data will still be telephony data,

similar in structure to those queried by the NSA, since it is reasonable to assume that most

intelligence agencies worldwide use it in their investigations1. As far as technology is

concerned, we will assume the data is stored in an SQL relational database system, since

it still is the most common type of database technology to date [6].

We will devise a first approach, named graph-depth, to ensure the compliance of queries

with respect to the guidelines in the white paper [2] by computing the maximum number

of hops expanded by the query. For instance, a query of the type “find all the Alice, Bob

and Carl s.t. Alice called some RAS id who called Bob who called Carl” has a graph-depth

of two, because in the worst case Alice, Bob and Carl are not RAS, and therefore Bob and

Alice lie one hop apart from the RAS id’s while Carl, being in contact with Bob, lies at

two hops from RAS and therefore determines the graph-depth of the query. Even though

such guidelines specifically refer to the NSA, it is reasonable to assume that governments

worldwide have defined similar guidelines on the matter.

We will then propose a second approach, named cost-depth, which ensures that queries

only perform a certain number of operations, called accesses, on the telephony metadata.

An access is the action to provide a set of known id’s to the database to extract those who

called them or those who were called by them. A query is then labeled as legal or illegal

based on how many accesses it requires. For instance, in order to access the query above,

we require one access to extract Alice by looking at the callers of RAS id’s, which are the

only known id’s at the beginning, one access to extract Bob by looking at the callees of

said RAS id’s and one access to extract the receivers of Bob’s calls (Carl). Because of this

the cost-depth of the query is three, which is greater than its graph-depth. This should not

1Even though the NSA’s bulk telephony metadata program is being discontinued, telephony data

will still be used by the NSA for intelligence purposes [5].
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convince the reader that the cost-depth of a query is simply the number of calls connecting

the various parties involved, for instance the query “find all the Alice s.t. some RAS called

some RAS who called Alice” has a cost-depth of one, because it suffices to extract the

id’s X that have been contacted by some RAS id and select only those X that are RAS

which have called somebody as well. Alice is the id called by the filtered X. This operation

requires only one access.

We will then develop a program named QueryAnalyzer which, given an input query,

implements the two approaches. The peculiarity of both approaches is that the metrics

they compute, named graph-depth and cost-depth respectively, are derived by analyzing

the syntactic structure of the query and not by looking at the results of its execution as

done in [3]. Should the computation reveal that the query is not legal, the security analyst

will then decide how to address the issue. Two possibilities are to simply discard the

query, and coming up wuth another one, or to execute it on a filtered database as proposed

in [3]. The supposed work flow of an intelligence analyst querying the telephony metadata

is shown in Figure 1, while the work flow modified by the addition of QueryAnalyzer is

shown in Figure 2.

Input

query

execute

query

Figure 1: Example of intelligence analyst work flow

1.3 Contributions

This thesis contributes to the research in [3, 4] by presenting two approaches toward

enforcing the legality of queries on telephony metadata. Here are the novel features of our

study:

• the proposed metrics of graph-depth and cost-depth depend only on the query and

not on the output produced from a specific database. Therefore they perform a con-

servative assessment of the depth of the query;

• the definition of cost-depth comes from the theory of databases with access limita-

tions [7]: we use the concepts of input and output attributes of a relation schema

to develop a novel definition of access used to quantify the amount of information
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Input

query

run

Query

Analyzer

does the

query

comply?

address

the issue

execute

query

no yes

Figure 2: Example of intelligence analyst work flow using QueryAnalyzer

extracted by the query. This is a novel take to the problem as it is restrictive than the

concept of hop;

• the presented approaches are not confined to telephony metadata but can be easily

adapted to all kinds of data representing communication between two parties such

as emails, instant messages or tweets.

1.4 Structure of the thesis

We now describe the structure of this thesis:

• Chapter 2 provides the necessary theoretical background;

• Chapter 3 defines the considered SQL database;

• Chapter 4 contains an overview of the previous work on the subject;

• Chapter 5 presents the graph-depth approach;

• Chapter 6 presents the cost-depth approach;
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• Chapter 7 describes the implementation of the system;

• Chapter 8 presents quantitative results on the system performance;

• Chapter 9 presents our conclusions.



CHAPTER 2

BACKGROUND

2.1 Relational databases

The focus of this work is relational databases. We provide the necessary terminology

and notation, along with the principles of databases with access limitations. Several parts

of this section are extracted from [8–10].

2.1.1 Preliminary definitions and notation

Intuitively, relations are sets of tuples of values belonging to given domains. The do-

mains we consider are abstract in the sense that they represent concepts, like name or

surname, rather than data types such as float or String. A relation schema is a signature

of the form r(A1, . . . , An), where r is a relation name, n is the arity of the relation schema,

and each Ai is an abstract domain 1. A database schema (or, simply, schema) is a set of

relation schemata from different relations. A relation over a relation schema r(A1, . . . , An)

is a set of tuples 〈c1, . . . , cn〉 where each ci is a value in the abstract domain Ai. A database

instance of schema C is a set of relations, one over each relation schema in C. A predi-

cate over a schema C is an expression of the form r(t1, . . . , tn), where r is the name of a

relation with signature r(A1, . . . , An) in C, and each ti is either a variable or a constant

belonging to the abstract domain Ai. A sequence of terms t1, . . . , tn is denoted by ~t and a

tuple 〈c1, . . . , cm〉 is denoted by 〈~c〉; Given a sequence ~t, its length is denoted by |~t|.

A conjunctive query with negation and inequality (NICQ) or simply query2 q of arity n

over a schema C is an expression of the form q( ~X) ← L1, . . . , Lm, where q( ~X) is the head

of the query, | ~X| = n and each atom Li is either a (positive) predicate of the form r(~t) over

C, a negated predicate of the form ¬r(~t) over C or an inequality of the form ti 6= tj . The

three types of predicates above are referred to as extensional database (edb) predicates. A

query can be compactly written as q( ~X)← conj( ~X, ~Y ) where ~Y is made of all the variables

appearing in L1, . . . , Lm that do not appear in ~X. Given a relation schema r(A1, . . . , An),

a database instance D and constants ~c, |~c| = n, the atom r(~c) holds in D if 〈~c〉 ∈ r and

the atom ¬r(~c) holds in D if 〈~c〉 /∈ r. Given constants ci and cj , the inequality ci 6= cj
holds if ci is different from cj . Given a database instance D over a schema C and a query

q( ~X) ← conj( ~X, ~Y ), the answer to q over D is the set qD of all the tuples 〈~c〉 of constants,

where |~c| = | ~X|, for which there is a sequence of constants ~d such that |~d| = |~Y | and each

atom in conj(~c, ~d) holds in D. Two atoms r1(~t1) and r2(~t2) in a query q are joined if they

1We use a positional notation for relations.

2In the following of this document, unless specified otherwise, when referring to a query we will

always mean a NICQ.

6
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have at least one common variable. A query q is safe if all the variables in its head appear

in some atom of q’s body. A query q is range-restricted if all the variables in negated

predicates or inequalities also appear in at least one positive atom. The last two properties

ensure that a query always returns a finite answer. In our study we will only consider

NICQs which are safe and range-restricted.

Example 2.1.1 (Conjunctive query with negation and inequality). Consider the following

schema and query

C = {r1(A,B), r2(B,C)}, q(x, y)← r1(a1, x), r2(x, y)

where q(x, y) is the head of q and conj(x, y) = r1(a1, x), r2(x, y) is the body of q. Assume the

following database instance

D = {r1 = {〈a1, b〉, 〈a2, b〉}, r2 = {〈b, c1〉, 〈b, c2〉}}

The answer to q over D is qD = {〈b, c1〉, 〈b, c2〉}.

An important decision problem in database theory is the query containment problem

which decides whether, for two given queries q1 and q2 over schema C, qD1 ⊆ qD2 holds

for every database instance D. This problem is decidable for NICQs, a procedure to test

containment was outlined by Ullman [11]. Two queries q1 and q2 are equivalent, denoted

by q1 ≡ q2, iff, for every database instance D, qD1 ≡ qD2 . A query q is minimal if there

is no query q′ equivalent to q obtained by removing some atoms from the body of q. The

minimality of a query can be decided by checking that, for every q′ obtained by removing

some atoms from q, q ≡ q′ does not hold.

Let q1( ~X) ← conj1( ~X, ~Y ) and q2(~Z) ← conj2(~Z, ~U) be two queries such that | ~X| = |~Z|

and |~Y | = |~U |. A variable renaming θ is a function that maps every variable of q1 into a

variable of q2. Then, q2 is a variant of q1 iff there is a variable renaming θ such that the

query q2
′(θ(~Z))← conj2(θ(~Z), θ(~U)) is equal to q1. For instance, consider

q1(x, y)← r1(x), r2(x, y) and q2(z, u)← r1(z), r2(z, u), then q1 is a variant of q2 because using

variable renaming θ such that θ(x) = z and θ(y) = u we have

q1(θ(x), θ(y))← r1(θ(x)), r2(θ(x), θ(y)) ≡ q1(z, u)← r1(z), r2(z, u) ≡ q2

If q2 is a variant of q1 via θ, then q1 is a variant of q2 via θ−1 and q1 ≡ q2.

We adopt the following conventions for variable names: when dealing with models of

queries, we use placeholders denoted by terminal letters of the alphabet with subscripts,

e.g. xj , yk, in place of variables. Two placeholders may be equal, e.g. xj = yk, if not stated

otherwise. When dealing with concrete queries, variables are also denoted by the terminal

letters of the alphabet but without subscripts.
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A union of NICQs, (UNICQ) q of arity n over a schema R is a set {q1, . . . , qk} of NICQs,

all having arity n. Given a database instance D, the answer qD to a UNICQ q over D is the

union of the answers over D to each query in q.

A nr-datalog¬ program over a database schema C is a sequence q1, . . . , qn of rules of the

form qi( ~Xi) ← bodyi. For our purposes we will only consider programs where every qi is a

unary NICQ. Aside from edb predicates, the body of a NICQ qj in a nr-datalog¬ program

can feature intensional database (idb) predicates of the form qi(~t) and ¬qi(~t), where |~t| is

the arity of qi, but only if i < j. Let Q ≡ q1, . . . , qn be a nr-datalog¬ program over schema

C, then, for 1 ≤ i ≤ n, for each database instance D over C and constants ~c where |~c| is the

arity of qi, idb atom qi(~c) holds if 〈~c〉 ∈ qDi and atom ¬qi(~c) holds if 〈~c〉 /∈ qDi . Programs in

nr-datalog¬ are equivalent to the use of views in SQL, where complex relations are defined

by queries and then used in other queries. Let q( ~X) ← conj( ~X, ~Y ) be a query over C. If

the atom q(~t) is used in the body of a query q′, |~t| = | ~X|, we can replace q(~t) with conj(~t, ~s)

where ~s are variables which do not appear in q′. This transformation can be employed in

query minimization.

2.1.2 Expressive power of NICQs

UNICQs have the same expressive power as nonrecursive SQL where the only compar-

ison operators are = and <>. If we also remove the UNION and OR operators, we obtain the

power of NICQs. We now show a NICQ query and a possible SQL translation.

Example 2.1.2 (Translating from NICQ to SQL). Given the database schema

C = {r(A,B), s(B,C)}, the query q(x, y) ← r(a, x), s(x, y),¬r(a, y), x 6= y, where a denotes

the string John, is translated into the following SQL query:

1 SELECT r .B, s .C

2 FROM r , s

3 WHERE r .A = ’John ’ AND r .B = s .B AND r .B <> s .C

4 AND NOT EXISTS (SELECT r .A AS a , r .B AS b

5 FROM r

6 WHERE a = ’John ’ AND b = s .C)

Listing 2.1: SQL query for example 2.1.2

A thorough treatment of conjunctive queries, nr-datalog¬ and their properties can be

found in Abiteboul et al. [12].

2.1.3 Databases with access limitations

Given a relation schema r(A1, . . . , An) an access pattern α for q is a sequence of length

n over {i, o} such that α[k] = i denotes that the kth argument of r is an input argument,

an output argument otherwise. In this context a relation schema r(A1, . . . , An), together

with its access pattern α, is denoted by rα(A1, . . . , An). If, for k = 1, . . . , n, α[k] = o then r

is said to be free. The input arguments indicated in the access pattern are those that must

be bound to a value in order to query the relation. For example, in rioo(A1, A2, A3), the first
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argument, is an input argument and a constant value in A1 must be provided for r to be

queried, while the second and third arguments are output arguments and thus constant

values in A2 and A3 respectively do not need to be provided. The concepts of database

schema, relation, database instance and query are defined as in Section 2.1.1.

An access is the smallest operation that can be performed on relations with access

limitations, and consists of the evaluation of a query with one body atom over a relation,

where all the input attributes are selected with constants, and output attributes are not

selected. A relation can be accessed either if it has no input arguments or if some constants

that can bind its input arguments are known. For instance an access to relation rio(A1, A2)

given the constant a is the following query r̂:

r̂(a, x)← r(a, x)

As soon as new constants are extracted with an access, these can be used to make more ac-

cesses. Such sequence of accesses constitutes an access plan. For each database instance,

each query should then be associated with an access plan that extracts the answers to the

query. This is precisely what a query plan does.

Example 2.1.3 (Query answering under access limitations). Consider the following schema

and query:

C = {rio1 (A,C), rio2 (B,C), rio3 (C,B)}

q(x)← r1(a1, y), r2(x, y)

Assume that the relations are

r1 = {〈a1, c1〉, 〈a1, c3〉}, r2 = {〈b1, c1〉, 〈b2, c2〉, 〈b3, c3〉}, r3 = {〈c1, b2〉, 〈c2, b1〉}

We cannot directly answer the query because we do not know any constants to provide for

the input attribute of r2, B. The only available constant is a1 which can be used to access

r1. The access r1(a1, t)
1 extracts the tuples 〈a1, c1〉 and 〈a1, c3〉. We have now obtained two

constants, c1 and c3 belonging to the abstract domain C. They can be used to access r3:

from access r3(c1, t) we extract 〈c1, b2〉 while from r3(c3, t) we get nothing. Now that we

have b2 we can finally access r2 as r2(b2, t), obtaining the tuple 〈b2, c2〉. We notice that c2
had not been obtained before, so we access r3 once more as r3(c2, t) which extracts the

tuple 〈c2, b1〉. Last, access r2(b1, t) allows us to obtain the tuple 〈b1, c1〉. Nothing more can

be done at this point. We have then managed to extract the relations r̂1 = {〈a1, c1〉, 〈a1, c3〉}

and r̂2 = {〈b1, c1〉, 〈b2, c2〉} which can be used to execute the query. The obtained answer

1Formally the access made to r1 is the query r̂1(a1, t)← r1(a1, t).
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under access limitations is qDℓ = {〈b1〉} which is smaller than the regular answer obtained

without access limitations qD = {〈b1〉, 〈b3〉}.

We conclude this subsection by discussing negated predicates and inequalities under

access limitations. A negated predicate of the form ¬r(~t) cannot be dealt with in the same

way as positive predicates. That is because, for ¬r(~c) to hold, 〈~c〉 must not belong to r. In

order to verify this under access limitations, we first produce a query plan ignoring the

negated atom(s) and obtain an intermediate answer then, as a further step, an access to

r is made and the intermediate tuples are checked against ¬r(~t). Inequalities of the form

ti 6= tj are dealt with in the same way, that means a query plan ignoring them is first

executed and the obtained results are checked against the inequalities, but in this case no

extra accesses are required.

In general a query may have multiple query plans as some accesses may be redun-

dant. Different query plans can be compared in terms of cost, which is usually defined

as the number of accesses performed by the query plan. A more detailed presentation of

databases with access limitations can be found in [7, 13, 14].

2.2 Graph theory

In this section we review some notions of graph theory employed in the next chapters.

Definition 2.2.1 (Directed graph). A directed graph or, simply, digraph G is a pair (N,A)

where N = {n1, . . . , n|N |} is the set of nodes and A ⊆ N2 is the set of arcs. An arc a from

node n1 to node n2 is denoted by (n1, n2), n1 is referred to as the source of a and n2 is

referred to as the target of a.

Definition 2.2.2 (Adjacency). Let G = (N,A) be a digraph and let n ∈ N be a node in G.

The set of adjacent nodes of n, denoted by Adj(n), is the set

{m ∈ N | (n,m) ∈ A ∨ (m,n) ∈ A}

Definition 2.2.3 (Path). Let G = (N,A) be a digraph. A path of length k between nodes

n and m is a sequence of distinct nodes of G p1, . . . , pk+1 such that p1 = n, pk+1 = m and,

for each i = 1, . . . , k, (pi, pi+1) ∈ A. A shortest path between nodes n and m is a path of

minimum length between n and m.

An efficient algorithm to find the shortest path from node i to node j is Dijkstra’s algo-

rithm, with running time O(|N |2).

Definition 2.2.4 (Chain). Let G = (N,A) be a digraph. A chain of length k between nodes

n and m is a sequence of distinct nodes of G p1, . . . , pk+1 such that p1 = n, pk+1 = m and,

for each i = 1, . . . , k, (pi, pi+1) ∈ A or (pi+1, pi) ∈ A. A shortest chain between nodes n and

m is a chain of minimum length between n and m.
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Finding the shortest chain between nodes i and j in digraph G = (N,A) is equivalent

to finding the shortest path from i to j on digraph G′ = (N,A ∪ {(i, j) | (j, i) ∈ A}) which

can be efficiently solved by means of Dijkstra’s algorithm.

Definition 2.2.5 (Arc-labeled multidigraph). An arc-labeled multidigraph is a quintuplet

G = (N,A, s, t, ℓ) whereN = {n1, . . . , n|N |} is the set of nodes, A = {a1, . . . , a|A|} is the set of

arcs, s : A→ N maps each arc to a source node, t : A→ N maps each arc to a target node

and ℓ : A → L maps each arc a to a label ℓ(a). Differently from digraphs, multidigraphs

allow for multiple arcs to connect the same source and target. An arc a ∈ A is denoted by

(n,m, l) where n = s(a), m = t(a) and l = ℓ(a).

A sample arc-labeled multidigraph is shown in Figure 3

a b

c d

x

y

42z

θ

Figure 3: Sample arc-labeled multidigraph

Definition 2.2.6 (Incoming and outgoing arcs). Let G = (N,A, s, t, ℓ) be an arc-labeled

multidigraph. Let n ∈ N be a node of G. The set of incoming arcs of n, denoted by In(n),

is the set {a ∈ A | t(a) = n}. The set of outgoing arcs of n, denoted by Out(n) is the set

{a ∈ A | s(a) = n}.

Definition 2.2.7 (Path in an arc-labeled multidigraph). Let G = (N,A, s, t, ℓ) be an arc-

labeled multidigraph. A path of length k from node n to node m is a sequence of distinct

nodes of G p1, . . . , pk+1 such that p1 = n, pk+1 = m and, for each i = 1, . . . , k, for some arc

a ∈ A, s(a) = pi and t(a) = pi+1. A shortest path from n to m is a path of minimum length

from n to m.



12

A thorough presentation of graphs can be found in Balakrishnan [15].



CHAPTER 3

SQL DATABASE

In this chapter we present the database schema that we assume in our analysis. We will

first provide an SQL definition of the database, then we will discuss its usage with sample

queries.

3.1 The CALLS database

We now provide a reasonable definition of an SQL database, named CALLS where

phone numbers and phone calls between numbers are stored and identifiers can be labeled

as ‘RAS’1. Listing 3.1 shows the SQL code defining the database. At line 3 the id attribute

of Phone_Number is set as primary key, i.e. it univocally identifies each tuple. At line 11,

15 and 16, attributes id, sender and receiver are set as foreign key to attribute id of

Phone_Number, i.e. every value these attributes take must be taken by the id of some tuple

in Phone_Number. For our purposes we ignore the presence of other attributes in table

Phone_Call such as originating device, time of conversation and call duration, because

they are not mentioned in the guidelines of the US administration white paper [2].

1 CREATE TABLE Phone_Number

2 (

3 id varchar(255) NOT NULL PRIMARY KEY, −−identi f ier of the number

4 phone_no varchar(25) , −− actual phone number

5 surname varchar(50) , −− surname of owner

6 name varchar(50) , −− name of the owner

7 SSN varchar(9) −− SSN of the owner

8 ) ;

9 CREATE TABLE RAS

10 (

11 id varchar(255) FOREIGN KEY REFERENCES PhoneNumber( id )

12 ) ;

13 CREATE TABLE Phone_Call

14 (

15 sender varchar(255) FOREIGN KEY REFERENCES PhoneNumber( id ) ,

16 receiver varchar(255) FOREIGN KEY REFERENCES PhoneNumber( id )

17 −− additional non relevant attributes

18 ) ;

Listing 3.1: Database definition

3.2 Database usage

The two query depth approaches developed in this thesis assume input queries to be

NICQs. In SQL this translates into queries with no recursion and allowing only the = and <>

1Reasonable articulable suspicion.

13
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comparison operators. We now provide some examples of queries reflecting NSA’s usage

of telephony metadata. We start with some simple queries involving tables Phone_Call

and RAS.

1 SELECT R. receiver

2 FROM RAS AS S, Phone_Call AS R

3 WHERE S. id = R. sender

Listing 3.2: A simple query

The above query returns all the identifiers of the people who received a call from a RAS

identifier.

1 SELECT R1. receiver

2 FROM RAS AS S1, Phone_Call AS R1, Phone_Call AS R2, RAS AS S2

3 WHERE S1. id = R1. sender AND R1. receiver = R2. receiver AND R2. sender = S2. id

4 AND S1. id <> S2. id

Listing 3.3: Another simple query

The above query returns all the identifiers of the people who were called by two distinct

RAS identifiers. Let us now suppose that the analyst wants to retrieve the SSN, Name and

Surname of the identifiers returned by query Listing 3.2. To achieve this the following view

is defined:

1 CREATE VIEW Found AS

2 SELECT R. receiver AS id

3 FROM RAS AS S, Phone_Call AS R

4 WHERE S. id = R. sender

Listing 3.4: View for query in listing 3.2

The desired information is then retrieved with the following expanded query:

1 SELECT P. id , P.SSN, P.name, P.surname

2 FROM Found AS F, Phone_Number AS P

3 WHERE F. id = P. id

Listing 3.5: Expanded query

We now consider that the intelligence analyst may want to look into the phone calls of

a small seed of RAS identifiers. This can be achieved by defining the following VIEW on

table RAS, where id_1,id_2,...,id_n are some known identifiers in RAS:

1 CREATE VIEW Seed AS

2 SELECT id

3 FROM RAS

4 WHERE id = id_1

5 OR id = id_2

6 . . .

7 OR id = id_n

Listing 3.6: Definition of a seed
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Suppose the analyst wants to retrieve all the identifiers of people who were called by a

member of the above Seed. The following query achieves this goal:

1 SELECT R. receiver

2 FROM Seed AS S, RAS AS R

3 WHERE S. id = R. sender

Listing 3.7: Query with seed



CHAPTER 4

STATE OF THE ART

In this chapter we will provide an overview of the input driven approach proposed in

Kanich et al. [3] and the work in Panebianco [4].

4.1 Input driven approach

In 2013, Kanich et al. have proposed an input driven approach to ensure the legality of

queries on telephony metadata [3]. Identifiers are considered legally queryable according

to the guidelines in the white paper [2], where it is stated that the NSA is allowed to

query identifiers up to three hops from the RAS identifiers. The following graph-theoretic

definition is adopted: “let the nodes represent phone numbers, and edges represent phone

calls in the BR metadata. For two nodes to be three “hops” apart, all queries must be

performed on the subgraph represented by the union of all calls among nodes for which a

path of length three or less exists between a RAS identifier and a candidate node” [3, p. 3].

The approach generalizes this requirement considering the maximum number of allowed

hops to be a generic integer k̄ > 0. The approach is input driven because it involves the

computation of the maximal set of legally queryable identifiers (LQI). This set is comprised

by all and only those identifiers that lie at k ≤ k̄ hops from RAS identifiers. A query

is guaranteed to comply with the above order in the following way: before any query is

executed, the Phone_Call table is filtered by removing all the records where the sender

or the receiver identifier does not appear in LQI. This way, the query can only retrieve

identifiers which lie at a legal number of hops from the RAS identifiers.

We now formalize the above. Consider database schema C = {R(s, r), S(id)} where R

corresponds to table Phone_Call in Chapter 3, S represents table RAS, s and r represent

the sender and receiver attributes of Phone_Call respectively and id represents the id

attribute of RAS.

Definition 4.1.1 (Maximal set of legally queryable identifiers). Let D be a database in-

stance over database schema C and let k̄ be the maximum number of hops allowed by the

law. Themaximal set of legally queryable identifiers, denoted by ÎD
k̄
, is the set

k̄
⋃

k=0

IDk where

all Ik are query unions of arity 1 such that, for every database instance D,

• ID0 = {qD0 } where q0 is the query q0(x)← S(x);

• IDk = {qDk,s, q
D
k,r} where

– qk,s is the query qk,s(x)← R(x, y), Ik−1(y);

– qk,r is the query qk,r(x)← R(y, x), Ik−1(y).

16
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for 1 ≤ k ≤ k̄.

Intuitively, ÎD
k̄

is the set made of all the identifiers which lie at k ≤ k̄ hops from RAS.

After ÎD
k̄
is computed, each database instance D over C is filtered in the following way:

Definition 4.1.2 (Filtered database instance). Let D = {S,R} be a database instance

over C and let k̄ denote the maximum number of hops allowed by the law. The filtered D,

denoted by Dk̄, is the database instance {Sk̄, Rk̄} such that

• Sk̄ = S;

• Rk̄ = {〈i, j〉 ∈ R | {〈i〉, 〈j〉} ⊆ ÎD
k̄
}.

The filtered relation Rk̄ contains all and only the phone calls that can be queried in

compliance with the law. The approach simply imposes that, for every query q and database

instance D, qD
k̄
is computed instead of qD.

4.1.1 Pros and cons of the approach

This approach guarantees that, whichever query is executed, the analyst will only be

able to see legally queryable identifiers. Consequently, the analyst can design input queries

without worrying about their compliance to the requirements. The drawback of this ap-

proach is that, for each database instance D, it requires the computation of ÎD
k̄

which

requires multiple joins involving table Phone_Call. Since billions of phone calls are made

every day in the US, we believe it is reasonable to assume the presence of millions of

records in Phone_Call [16]. This fact makes the computation of ÎD
k̄
a quite expensive oper-

ation which has to be performed for each database instance D considered by the analyst.

Moreover, after ÎD
k̄

is computed, the filtered database instance Dk̄ must be computed as

well. The cost of this computation clearly depends on the size of D. To sum up the above,

the whole approach becomes more and more expensive as the size of Phone_Call grows.

4.2 Experiments on graph databases

The work in Panebianco [4] aimed at finding technologies alternative to SQL relational

databases, to store and query telephony metadata. The author proposed graph databases

as a solution that proved to have faster execution of queries than SQL databases and also

provided a more natural way to represent phone calls. In graph databases, information is

stored in the form of a graph and in the proposed database nodes represented identifiers

and edges represented phone calls. Because of the ease in the representation of the do-

main and the good performance obtained when executing queries retrieving all identifiers

at k hops from RAS, this study contradicted the NSA’s claim that enforcing legal access was

technically impossible [1].



CHAPTER 5

GRAPH-DEPTH APPROACH

In this chapter we present the graph-depth approach to the problem of ensuring the le-

gality of queries on database CALLS. In Section 5.1 we define the formal database schema

and the admissible queries, which comply with the following order from [2]:

“Under the FISC orders authorizing the collection, authorized queries may only begin

with an “identifier”, such as a telephone number, that is associated with one of the foreign

terrorist organizations that was previously identified to and approved by the Court. An

identifier used to commence a query of the data is referred to as a “seed”.” [2, p. 3].

In Section 5.2 we define the notion of graph-depth of a query, which represents the

maximum number of hops at which any identifier returned by the query lies from the RAS

identifiers. The graph-depth approach employs this notion to verify the compliance of an

admissible query with respect to the following order from [2]:

“Information responsive to an authorized query could include, among other things,

telephone numbers that have been in contact with the terrorist-associated number used

to query the data, [...]. Under the FISC’s order, the NSA may also obtain information

concerning second and third-tier contacts of the identifier (also referred to as “hops”).

The first “hop” refers to the set of numbers directly in contact with the seed identifier.

The second “hop” refers to the set of numbers found to be in direct contact with the first

“hop” numbers, and the third “hop” refers to the set of numbers found to be in direct

contact with the second “hop” numbers. Following the trail in this fashion allows focused

inquiries on numbers of interest, thus potentially revealing a contact at the second or third

“hop” from the seed telephone number that connects to a different terrorist-associated

telephone number already known to the analyst. Thus, the order allows the NSA to retrieve

information as many as three “hops” from the initial identifier.” [2, p. 3-4].

Our approach allows to verify more general requirements than the above, specifically

that a query expands no more than k hops, for any k ≥ 0. In Section 5.4 we propose

an algorithm to compute the graph-depth of an admissible query and in Section 5.5 we

describe the overall approach to the problem. In Section 5.6 we compare this approach

with the state of the art. Finally, in Section 5.7 we discuss our approach in the context of

recursive queries.

5.1 Framework definition

We now define the database schema and the queries that we will base our study on.

The physical database proposed in Chapter 3 can be mapped into the following database

schema:

C = {S(id), R(s, r)}

18
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Here S represents table RAS, R represents table Phone_Call and id, s and r represent the

same abstract domain (identifiers)1. We also assume the use of a set E of seeds Sj:

E = {S1(id), . . . , Sn(id)}, Sj ⊂ S, j = 1, . . . , n.

These may be used in case the searches are started from a restricted list of suspects. We

also assume that the RAS table S and any seed Sj are never used in the same query. We

also let S0 be S. We use subscripts both to identify seeds and to identify the various uses

of R in queries e.g. S2(x) is a predicate over relation S2 while R3(y, z) is the third use of a

predicate over R.

The queries we will consider are NICQs over C which are safe and range-restricted. Nr-

datalog¬ programs will be made of unary NICQs over C with the addition of idb predicates

over such queries. We will denote the j-th query of a nr-datalog¬ program as qj .

To a query q over C we can associate a digraph, named the call graph of q, which

encodes the way in which identifiers from the same tuple of qD are related via phone calls.

Definition 5.1.1 (Call graph). Let q( ~X) ← conj( ~X, ~Y ) be a query over C. The call graph

of q is the digraph Gq = (Nq, Aq) where Nq consists of the set of variables appearing in q

and (xj , yj) ∈ Aq iff atom R(xj , yj) is in conj( ~X, ~Y ). The node set N can be partitioned into

the following sets:

• Bq = {xi | for some j atom Sj(xi) appears in q’s body}

• Kq = {xi |xi /∈ Bq and for some j atom qj(xi) appears in q’s body}

• Iq = Nq \ (Bq ∪Kq)

where Bq represents the Bad, Kq represent those Known through previous queries and Iq
represents the Innocent.

Intuitively an arc from node xi to node xj represents a call between [the person iden-

tified by] xi and [the person identified by] xj . Negated atoms and inequalities are not

encoded in the call graph as they do not relate variables via phone calls: the former relate

identifiers which did not interact and the latter relate distinct identifiers.

Example 5.1.1 (Call graph of a query). For the following query

q(x, y, z, u, v)←S0(x), S1(z), R1(x, y), R2(y, z),¬R3(x, z),

R4(y, u), S2(u), R5(v, u), R6(v, w), u 6= w

where E = {S1(id), S2(id)}, the call graph of q is shown in Figure 4. InGq,Nq = {x, y, z, u, v},

Aq = {(x, y), (y, z), (y, u), (v, u), (v, w)}, Bq = {x, z, u} and Iq = {y, v, w}.

1Table Phone_Number does not contain information relevant to the problem and is therefore

ignored.
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x y

z

u

v w

Figure 4: Call graph for example 5.1.1 (nodes in B are red).

We can now express the order [2, p. 3] in our framework by defining the notion of

admissible query.

Definition 5.1.2 (Admissible query). A query q( ~X) ← conj( ~X, ~Y ) over C is admissible if

and only if the following all hold

1. every connected component of the call graph Gq contains a node in Bq ∪Kq;

2. no constants appear in q.

The first condition ensures that every node in the call graph is reachable from a bad

node. This is trivial if the node is reachable from some bad node, but it also is the case if it

is reachable from a known node, provided that every query in the program is admissible.

The second condition comes from the observation that, based on [2, p. 3], constant values

must identify RAS identifiers. This allows a constant c to be removed from an admissible

query q in the following way:

1. we define a new seed Sc(id) such that Sc ≡ {〈c〉};

2. we add the atom Sc(xc) to the query, where xc is a new variable;

3. we replace all the occurrences of c in q with xc.

The above procedure is equivalent to deskolemization in first order logic and preserves

satisfiability. Removing constants simplifies our exposition.

We now show with an example that admissibility is necessary to respect the order.

Example 5.1.2 (Non admissible query). Consider the following CQ, where E = ∅:

q(x, y, z, u)← S(x), R1(x, y), R2(z, u)

If executed, this query will return tuples 〈c1, c2, c3, c4〉 of constants such that 〈c1〉 ∈ S,

〈c1, c2〉 ∈ R and 〈c3, c4〉 ∈ R. Identifier c1 refers to a suspect, c2 is related to c1 via a



21

phone call but neither c3 nor c4 are explicitly related to suspects via other phone calls.

This clearly violates the order in [2, p. 3] and is reflected in the call graph Gq, in Figure 5,

where B = {x}, I = {y, z, u} and there is no chain between x and z or between x and u.

x y z u

Figure 5: Call graph for example 5.1.2.

5.2 Definition of graph-depth

In this section we provide a definition of graph-depth of an admissible query. The graph-

depth of a query is the maximum number of hops, as defined in [2, p. 3], that the query

traverses in the CALLS database upon execution. In Chapter 4 we have seen that the set

of telephony metadata records can be interpreted as a graph where nodes are identifiers

and arcs are phone calls between identifiers. We have also seen earlier in this chapter that

we can represent the answer to a query q via its call graph Gq. Therefore, to say that an

identifier i lies at k hops from S is equivalent to say that i is at distance d(i) = k from S 1.

If an identifier i is not connected to S then d(i) =∞.

Definition 5.2.1 (Graph-depth). Let q( ~X) ← conj( ~X, ~Y ) be an admissible query over C

and D be the set of all database instances of C. The graph-depth of q, denoted by δ(q) is

defined as

δ(q) = max
D∈D, 〈~c〉∈qD

f
, i in ~c

d(i) (5.1)

where qf is the query qf ( ~X, ~Y ) ← conj( ~X, ~Y ) having the same body as q and all the vari-

ables of q in its head.

The above definition states that the graph-depth of q is the maximum distance of an

identifier returned by the qf over all database instances D and over all output tuples of the

1For distance between i and S we mean the length of the shortest chain between i and any

identifier b ∈ S.
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answer qDf , where query qf is the same as q but where all the variables are in the head.

Employing qf in the definition is needed to make the graph-depth independent from the

head of the query. As an example, queries q1(y)← S(x), R(x, y), R(y, z) and

q2(x) ← S(x), R(x, y), R(y, z) have the same graph-depth of 2 even if, e.g. in every tuple

〈c〉 ∈ qD1 , d(c) = 1 because, in both cases, to obtain such an answer, distance-2 identifiers

must be found (variable z). The graph-depth δ(q) represents a pessimistic estimate of

the number of hops traversed by the query. For instance every identifier i returned by

the query q1 above lies at most 1 hop from the seed because it is the receiver of a call

originated by a RAS identifier, but i could be a RAS identifier itself thus lying 0 hops from

RAS. It is also clear that δ(q) is always a finite number because, in admissible queries, all

the retrieved identifiers are connected to the seed.

In the case of union of queries the definition of graph-depth can be trivially extended:

Definition 5.2.2 (Graph-depth of union). Let q = {q1, . . . qn} be a union of admissible

queries. Then the graph-depth of q, denoted by δ(q), is defined as

δ(q) = max
i=1,...,n

δ(qi) (5.2)

The rationale behind this definition is simple: let q = {q1, . . . qn} be a union of admissible

queries and i an identifier contained in qD, where D is a database instance of C. The

number of hops required to retrieve i is inside the set {δ(q1), . . . , δ(qn)} so, in order to

provide a conservative assessment of the graph-depth of q, the maximum of those values

is taken.

We conclude this section by discussing how the graph-depth of an admissible query can

be computed when the query belongs to a nr-datalog¬ program. Let Q ≡ q1, . . . , qn be a

nr-datalog¬ program over C, where all the qj are admissible queries. Inside a nr-datalog¬

program, every qj , j = 2, . . . , n, allows for idb predicates of the form qi(~t) and ¬qi(~t), i < j

to appear in its body. Positive idb atoms could be replaced with a sequence of edb atoms:

given the query qi( ~X)← conji( ~X, ~Y ), atom qi(~t) can be replaced by conji(~t, ~s), where ~s are

new variables. If conji also contains positive idb atoms, this substitution can be recursively

applied until no positive idb atoms appear in the body of qj . Although this would bring us

to the base problem of evaluating the graph-depth of a single query, we will not employ the

above transformation but will instead treat every positive idb atom as a seed of id’s whose

distance from S has been already established. Negated idb atoms will be trated in the

same way. In both cases idb predicates influence the graph-depth of the current query qj:

in order to answer a query qj where predicate (¬)qi(~t) is used, query qi must be answered

to beforehand and thus its graph-depth δ(qi) does impact on δ(qj). This means that δ(qi)

must be computed by counting the number of hops expanded by qj considering the edb

atoms in its body and comparing this number with δ(qi) for every i s.t. (¬)qi(~t) appears in
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the body of qj . The graph-depth of qj is the maximum of these values. We now show an

example to clarify the above.

Example 5.2.1 (Graph-depth and nr-datalog¬ programs). Consider the following nr-datalog¬

program Q:

q1(y)← S(x), R(x, y)

q2(y)← q1(x), R(x, y),¬q1(y)

Clearly δ(q1) = 1. Query q2 features predicate q1 both in its positive and negated form. This

implies that δ(q2) ≥ δ(q1). Since q1 outputs 1-hop id’s, the path “x calls y” in q2 expands 2

hops. The graph-depth of q2 is therefore the maximum value between δ(q1) and the hops

expanded by q2 itself hence δ(q2) = max(1, 2) = 2.

5.3 Query minimization and graph-depth computation

In this section we will discuss how query minimality can affect the graph-depth of the

query. We will show an example of a query whose graph-depth is reduced after minimiza-

tion.

Example 5.3.1 (Query minimization and graph-depth). Consider the following query:

q(z)← S(x), R(x, y), R(y, z), S(z), R(y, t)

Its graph-depth δ(q) is 2 since t represents an identifier called by y which is in turn called

by a RAS identifier x. By applying the minimization algorithms described in [11, 12] it

turns out that R(y, t) is redundant and can be removed without altering the answer to the

query. The minimal query equivalent to q is therefore

qm(z)← S(x), R(x, y), R(y, z), S(z)

The graph-depth δ(qm) is 1 as x and z are RAS identifiers (distance 0) and y called and was

called by both (distance 1).

The example above shows that in order to obtain the real graph-depth of a given query,

the query must be minimized beforehand. In the case of nr-datalog¬ programs, further

minimization could be possible if idb predicates were transformed into sequences of edb

atoms as hinted earlier. We will not perform such transformation to keep the query pre-

processing phase relatively short and because a competent analyst can look into the prob-

lem directly by rewriting non minimal queries. This choice implies that idb atoms will be

trated as edb atoms during the minimization phase.

5.4 Proposed algorithm

We are now ready to provide an algorithm to compute the graph-depth of an admissible

query qj . The general idea has been already outlined informally in the previous sections:
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to compute the distance between innocent and bad nodes in the call graph Gq we find the

innocent node whose shortest chain to S is the longest. This computation can be carried

over efficiently by adapting Dijkstra’s famous algorithm. We also have to take care of

minimizing the query before this computation and of handling idb predicates, in case the

query is part of a larger program. We now present the ComputeGraphDepth algorithm

(algorithm 1) which computes the graph-depth of an admissible query. At line 1 we define

Algorithm 1: ComputeGraphDepth

Input: An admissible query qj over C
Output: a non negative integer ∆ representing δ(qj)

1 ∆← 0
2 qj ← the minimal query equivalent to qj
3 for every idb atom (¬)qi(xi) in qj ’s body do

4 ∆← max(∆, δ(qi))
5 end

6 Gqj (Nqj , Aqj ) : the call graph of qj

7 Dj : array [1, . . . , |Nqj |] of N init











0 v ∈ Bqj

Di[qi’s head variable] v /∈ Bqj and qi(v) in qj ’s body

∞ otherwise

8 visited : array [1, . . . , |Nqj |] of booleans init

{

true i ∈ Bqj

false otherwise

9 U : queue of nodes init all Bqj nodes

10 while ¬ empty(U) do

11 v ← dequeue(U)
12 for u in v’s adjacency list do
13 if ¬visited[u] then
14 visited[u]← true

15 Dj [u]← min(Dj [v] + 1, Dj [u])
16 ∆← max(∆, Dj [u])
17 enqueue (U, u)

18 end

19 end

20 return ∆
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the variable ∆, which holds the graph-depth computed so far. At line 2, qj is minimized is

performed to avoid graph-depth overestimation. Lines 3-5 update the value of ∆ by taking

into account all idb atoms. Here we suppose that, if the query is part of a nr-datalog¬

program, δ(qi) has been already computed for all the previous queries qi, i < j. At line

6 we build the call graph of the minimized query qj , while at lines 7-9 three useful data

structures are defined. D is an array keeping track of the distance between all the nodes

in Nqj . If a node v is in Bqj then its distance from S is of course 0 while, if v /∈ Bqj and v

appear in a positive idb atom qi, its current distance is actually the distance of the head

variable of qi, obtained while computing δ(qi) and stored in Di. In every other case, Dj [v]

is set to∞. The array visited stores, for each node, whether it has been already visited or

not1. Finally, U is a priority queue used to keep track the next nodes whose neighbors need

to be visited. Lines 18-27 contain the core of the algorithm: we dequeue the current node

and we update the distance of the not yet visited neighbors, then we enqueue them and

update the graph-depth so far (∆) if the new value is greater then previously encountered.

At the end of the computation, ∆ = δ(q) is returned.

Time complexity of ComputeGraphDepth

We now assess the time complexity of the algorithm. At line 2, the input query is mini-

mized resulting in the minimal query qj . The minimization problem for NICQs is complete

for the class Πp
2 [11] which is coNP with NP oracle2. The for loop at lines 3-5 performs one

scan of the body of qj and therefore takes at most p iterations, where p is the number of

atoms in qj ’s body. At line 6, the call graph of qj is built. This operation requires one scan of

the query’s body which has, again, p atoms. Initializing D and visited takes a time Θ(|Nqj |)

and initializing U takes a time Θ(|Bqj |). Overall, lines 7-9 have a complexity of Θ(|Nqj |).

We now analyze lines 10-19, where the core of the algorithm resides: since a node cannot

be inserted into the queue more than once and all the nodes in Gqj are chained, the while

loop will run for |Nqj | iterations. The for loop scans all the adjacent nodes to v. Whenever a

new node is found, it is marked as visited and enqueued. Based on the above observations,

the while loop has a complexity of Θ(|Aqj |). Overall, the time complexity of Compute-

GraphDepth is the sum of the miminimization time complexity (Πp
2-complete), query body

scan and data structure initialization (Θ(p + |Nqj |)) and the “Dijkstra” part (Θ(|Aqj |)). The

sum Θ(p+ |Nqj |+ |Aqj |) = Θ(p+ |Nqj |)
3 is negligible with respect to the much more expen-

sive minimization, which determines the overall complexity of ComputeGraphDepth. We

point out that the skilled analyst may not require query minimization, which would make

1All Bqj nodes are recorded as being already visited because their distance from Bqj is trivially 0

2Problems in Πp
2
can be expressed as {w | ∀x ∃y φ(w, x, y)}, where x and y are strings of length

bounded by a polynomial of the length of w and φ is a function that can be computed in polynomial

time.

3The number of arcs in Gqj is equal to the number of R-atoms in qj .
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the overall procedure linear in the size of the query (Θ(p + |Nqj |). We will show some

quantitative results on the algorithm performance in Chapter 8.

5.5 Description of the approach

The graph-depth approach to ensure the legality of queries on telephony metadata is

fairly simple: suppose that the current laws allow queries to expand no more than k̄ hops

from the RAS identifiers. The graph-depth approach works as follows:

1. Given an admissible query q( ~X)← conj( ~X, ~Y ) over C, ComputeGraphDepth is run on

q, returning δ(q);

2. If δ(q) ≤ k̄, the query complies with the above requirement and can be executed;

3. If δ(q) > k̄, the query may violate the above requirement and, in order to execute

it, some corrective action must be performed, such as applying the input driven ap-

proach described in Kanich et al. [3].

5.6 Comparison with the input driven approach

In this last section we compare the graph-depth approach with the approach proposed

in Kanich et al. [3]. We first show that the two approaches are correlated, then we discuss

the reasons why each approach may be preferred over the other.

5.6.1 Relation between the two approaches

We present a theorem stating the link between the input driven approach and the

graph-depth approach.

Theorem 5.6.1 (Input driven approach and graph-depth approach). Let q be an admissible

query over C. LetD be a database instance over C. LetDk̄ be the filtered database instance

with maximum number of hops k as described in Section 4.1. If, for some k ≥ 0, qD 6≡ qD
k̄−1

and qD ≡ qD
k̄
, then δ(q) ≥ k.

Proof. If qD 6≡ qD
k̄−1

and qD ≡ qD
k̄
we have that, for every ci in 〈~c〉 ∈ qD, d(ci) ≤ k and for

some ci in 〈~c〉 ∈ qD, d(ci) = k. This means that

max
〈~c〉∈qD,ci in ~c

d(ci) = k (5.3)

therefore when taking the maximum of (Equation 5.3) over all possible database instances

we have

max
D∈D, 〈~c〉∈qD, ci in ~c

d(ci) = max{. . . , k, . . .} ≥ k (5.4)

but the LHS of (Equation 5.4) is exactly the definition of δ(q) in (Equation 5.1) hence

δ(q) ≥ k.
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In general, if qD ≡ qD
k̄
, nothing can be said about δ(q). We show this with an example.

Example 5.6.1 (Input driven approach and graph-depth approach). Consider the following

query

q(x, y, z)← S0(x), R1(x, y), R2(y, z)

and suppose the law allows k̄ ≤ 1. Let D be the database instance where S = {〈b〉} and

R = {〈b, i1〉, 〈b, i2〉, 〈i1, i2〉}. It turns out that D1 = {S1, R1} where S1 ≡ S and R1 ≡ R,

therefore qD ≡ qD
1

≡ {〈b, i1, i2〉}. We may think that, because of this result, δ(q) ≤ 1.

However, if we consider a different database instance D′ such that S = {〈b〉} and

R = {〈b, i1〉, 〈i1, i2〉}, we have that R
1 ≡ {〈b, i1〉}, therefore qD

′1

= ∅. This shows that, basing

solely on the fact that, for some D and k, qD ≡ qD
k
, we cannot say anything about δ(q).

5.6.2 Advantages and disadvantages of the two approaches

To conclude, we compare the strengths and weaknesses of the two approaches. The

graph-depth approach allows a precise measurement of the compliance of a query w.r.t.

the order in [2], which is independent from the specific database instance the query is

executed on. Instead, the input driven approach can only provide a lower bound to the

graph depth of a query and, while it filters each database instance to ensure compliance,

it actually allows the execution of queries which are not always compliant to the above

guidelines: example 5.6.1 shows that different databases can lead to different evaluations

of the compliance of a query. On the practical side, if the analyst is interested in obtaining

all the results he/she can get no matter the query, the graph-depth approach does not pro-

vide this feature while the input driven approach is specifically devoted to it. Conversely,

if the intelligence agency is interested in automatizing the analysis on daily telephony data

by defining a list of standard queries to execute on every database of interest, the graph-

depth approach provides knowledge on the worst-case-scenario behavior of every query.

This gives the agency the ability to craft a set of safe queries and also frees them from the

burden of filtering any database instance.

5.7 Adding recursion

As a last remark, we discuss the consequences of considering recursive queries in the

graph-depth approach. Namely a query q( ~X) ← conj( ~X, ~Y ) is recursive if predicate q(~t)

appears in conj( ~X, ~Y ). Recursive queries are defined via 2 or more NICQs with the same

head and arity. We now provide an example of recursive query and discuss its graph-depth.

Example 5.7.1 (Recursive query over C). Consider the following recursive query:

q(x)← S(x)

q(x)← q(y), R(x, y)

The answer to q is the set of all the id’s in S and all the id’s who called some id already

in q. It is clear that the graph-depth of q is infinite, because for every database instance
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D we can always find some D′ s.t. max
i in 〈c〉∈qD

d(i) < max
i in 〈c〉∈qD′

d(i), namely by adding a call

from a new id to the most distant id in D. It follows that the graph-depth approach cannot

be effectively applied to recursive queries (or programs), which is why we will never deal

with them in this work.



CHAPTER 6

COST-DEPTH APPROACH

In this chapter we present the notion of cost-depth as an alternative way to assess the

depth of admissible queries over the target database CALLS. Although similar to the con-

cept of graph-depth presented in the previous chapter, cost-depth captures different traits

of queries as, instead of hops, we will deal in terms of joins. In Section 6.1 we will provide

motivation and an informal overview of the subject. In Section 6.2 the formalism required

to define the problem is introduced, in Section 6.3 a solution to the problem is analyzed

and in Section 6.4 two algorithms to compute the cost-depth of a query are presented.

Finally, in Section 6.5 the two notions of graph-depth and cost-depth are compared.

6.1 Motivation and informal exposition

The graph-depth approach, described in Chapter 5, performs a conservative assess-

ment of the number of hops expanded by an admissible query. This is perfectly in line with

the guidelines published in [2]. However, the notion of hop does not allow to distinguish

between different joins which depend on the direction of a call: namely, to look at those

who called a certain seed of RAS id’s accounts for one hop just as the action of looking at

those who were called by a certain seed of RAS id’s. This implies that, if the two actions

are combined in a query, the resulting graph-depth will still be one (example 6.1.1), while

clearly we are using two different call patterns: those who received a call from S (y) and

those who called someone in S (z).

Example 6.1.1 (1-hop query).

q(y, u)← S(x), R1(x, y), R2(z, x), y 6= z

In this chapter however, we will adopt a cost based notion of query depth, by analyzing

the different joins that are used in a query. We restrict the way in which the query engine

executes a query by enforcing access limitation on the relation schema R(s, r): in order to

extract tuples from R the engine must either provide a set of values for the sender or for

the receiver attribute. This means that R is not accessible as a whole (all phone calls) but

only fragments can be extracted (those who called/where called by a certain known list of

id’s)1. Given a query, the goal of the cost-depth approach is to find the minimum number

of accesses to R needed to answer the query, given the access limitations to R above. An

access is essentially the action of joining a set of known identifiers to either side of the

1This is analogous to how data is presented on the web via input fields and forms: instead of

showing all the <book, author> pairs, web sites usually require the user to provide a value for one

field to extract the other information.

29
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R relation (sender or receiver) obtaining a new set of identifiers as a result. In order to

answer a query, the engine must find a way to extract the required tuples of R respecting

the access limitations: a search plan is the assignment of an access to every occurrence of

the R predicate in the query and its cost is evaluated according to the following:

• every access has a unitary cost;

• if an access occurs multiple times in a query, its cost is accounted for only once1;

• the cost-depth of a query is the sum of the cost of all the (distinct) accesses needed

to answer the query.

The minimum cost over all the possible search plans is the cost-depth of the query. The

search for the cost-depth can be then formulated as “if the query engine had to respect

the access limitations to R, what would be the minimum number of accesses necessary to

answer the query?”. For instance, in example 6.1.1, the known set of id’s is S, which is

joined to both R1 and R2, on the s and r attributes respectively, which translates into two

distinct accesses: “obtain y as the callee of x” and “obtain z as the caller of x”. Since the

two patterns represent two different joins, the cost-depth of the query is 2. To compute

the cost-depth of a query one must find the minimum number of accesses that answer the

query, given that the initially known identifiers are all and only the id’s in S.

Example 6.1.2 (Cost-depth computation).

q(x, y, z)← S(x), R1(x, y), R2(z, y), S(z)

The known set of identifiers is S, we observe that the joins are S and R1 on x, R1 and R2

on y and R2 and S on z. There are three possible search plans for q:

1. We extract the 〈x, y〉 tuples by joining the known set S to R1 and then joining R1 and

R2, using the new set of 〈y〉 id’s, to extract the 〈z, y〉 tuples. By joining the obtained

〈x, y, z〉 tuples with S on z we obtain the answer;

2. we extract the 〈x, y〉 tuples by joining the known set S to R1 and then extract the

〈z, y〉 tuples by joining the known set S to R2. By joining the two obtained fragments

〈x, y〉 and 〈z, y〉 on y we obtain the answer;

3. we extract the 〈z, y〉 tuples by joining the known set S to R2 and then joining R2 and

R1, using the new set of 〈y〉 id’s, to extract the 〈x, y〉 tuples. By joining the obtained

〈x, y, z〉 tuples with S on x we obtain the answer.

1The reason for this is that, once an access is performed, the resulting tuples can be cached for

later use.
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Search plans 1 and 3 involve two distinct access patterns, while search plan 2 involves two

equivalent accesses: S(x) → R(x, y) and S(z) → R(z, y)1 represent the same join between

the S and R relations. The cost-depth of q is therefore 1.

The key characteristic of the cost-depth approach is that it distinguishes between the

different types of joins/accesses in a query whereas the graph-depth approach only counts

the number of hops, thus providing a generally smaller depth as a result.

6.2 Problem definition

The considered database schema is C = {S(id), R(s, r)}, once again we allow the use

of a variable number n of seeds Sj(id), Sj ⊂ S, j = 1, . . . , n and let S0 be S just like in

Chapter 5. We only consider admissible queries as defined in the same chapter. We now

define the notions of access, search plan and plan cost.

Definition 6.2.1 (Access). An access is a NICQ over C of the form

R̂(xi, yi)← I(zi), R(xi, yi)

where I is a set of known identifiers, also called source, and either zi = xi or zi = yi. An

access induces a new set of known id’s: a pattern of the form R̂(xi, yi) ← I(xi), R(xi, yi)

induces the new set ρ(xi)← R̂(xi, yi) while a pattern of the form R̂(xi, yi)← I(yi), R(xi, yi)

induces the new set ρ(yi) ← R̂(xi, yi). Set ρ is called the extraction of R̂. An access R̂

inducing an extraction ρ can also be written as

I(zi)→ R(xi, yi) : ρ(ui)

Definition 6.2.2 (Known identifier). An identifier is known iff it belongs to S or if it be-

longs to the extraction ρ of an access R̂.

Definition 6.2.3 (Search plan). A search plan for an admissible query q over C is a nr-

datalog¬ program P of length n s.t. the first n−1 queries are either accesses or extractions

and the n-th query, called the main query of P , is equivalent to q. The only edb predicates

allowed in the n-th query’s body are predicates over the seeds Sj , j ≥ 02.

Definition 6.2.4 (Plan cost). Let P be a search plan for an admissible query q. The cost

of P , denoted by c(P ), is the number of distinct accesses of P . In the case of a union of

admissible queries {q1, . . . , qn}, let Pi be a search plan for qi, i = 1, . . . , n. The cost of the

n-uplet of search plans ~P = P1, . . . , Pn, denoted by c(~P ), is the number of distinct accesses

used in all of ~P .

1We use the A→ B notation to represent the tuples in A as being supplied to extract B

2This is to ensure that the R relation is not accessed freely but only via accesses defined earlier

in the program.
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We are now ready to define the cost-depth of an admissible query.

Definition 6.2.5 (Cost-depth). Let q be an admissible query over C. Let Π be the set of all

the search plans for q. The cost-depth of q, denoted by γ(q) is the following number:

γ(q) = min
P∈Π

c(P )

Let q = {q1, . . . , qn} be a union of admissible queries over C. Let ~Π be the set of all the

n-uplets of search plans for q, then the cost-depth of q is

γ(q) = min
~P∈~Π

c(~P )

6.3 Problem analysis

In this section we present a solution to the problem of finding the cost-depth of an

admissible query. We will show how to build a search plan for an admissible query and will

discuss minimization issues.

6.3.1 Preliminary examples

We will develop a way to build search plans starting with simple examples and gradually

increasing the complexity of the queries.

Example 6.3.1 (Simple query). The first query we examine is the following:

q(z)← S(x), R1(x, y), R2(y, z)

We must find a way to answer q by using accesses. We observe that S is used in the query

and that it represents a set of known id’s. Following the join on x, we supply the x id’s in

the sender attribute of R1 to extract all the 〈x, y〉 ∈ R1 s.t. 〈x〉 ∈ S. This gives us access to

a new set of identifiers, specifically those represented by y. We can use these id’s to access

R2 following the join on y to retrieve all the 〈y, z〉 ∈ R s.t. 〈x, y〉 ∈ R and 〈x〉 ∈ S. This

strategy has left us with two different fragments of the R relation, one made of the 〈x, y〉

tuples and the other made of the 〈y, z〉 tuples. We obtained the two fragments by following

the join prescripted by the query itself, so, by projecting onto z, we are able to answer the

query. Formally the search plan for q is the following nr-datalog¬ program:

1. R̂1(x, y)← S(x), R1(x, y)

2. ρ1(y)← R̂1(x, y)

3. R̂2(y, z)← ρ1(y), R2(y, z)

4. q̂(z)← S(x), R̂1(x, y), R̂2(y, z)

which can be more concisely written as
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1. S(x)→ R1(x, y) : ρ1(y)

2. ρ1(y)→ R2(y, z)

Intuitively, we have replaced every occurrence of the R predicate in q with an appropri-

ate fragment, obtained by accessing R from two distinct sources. The search plan requires

two distinct accesses (R̂1 and R̂2) and therefore has a cost of 2. Is there a search plan with

smaller cost (1)? The answer is no as we cannot retrieve two different fragments of R with

one access.

We now examine an example involving negated predicates, inequalities and where mul-

tiple search plans are possible.

Example 6.3.2 (A more complex query). Consider the following query:

q(x, y, z)← S(x), R1(x, y), R2(y, z), S(z),¬R(x, z), x 6= z

Let us first focus on the positive R atoms: we have a total of three different search plans:

P1: 1. S(x)→ R1(x, y)

2. S(z)→ R2(y, z)

P2: 1. S(x)→ R1(x, y) : ρ1(y)

2. ρ1(y)→ R2(y, z) : ρ2(z)

P3: 1. S(z)→ R2(y, z) : ρ2(y)

2. ρ2(y)→ R1(x, y) : ρ1(x)

In all of the above two distinct accesses are involved. For what concerns ¬R(x, z) we must

obtain the 〈x, z〉 tuples and then filter the fragments R̂1 and R̂2 by discarding the tuples s.t.

〈x, z〉 ∈ R. To achieve this we can either use the accesses S(x)→ R(x, z) or S(z)→ R(x, z)

in all search plans, ρ2(z)→ R(x, z) in P2 or ρ1(x)→ R(x, z) in P3. For every search plan we

now discuss which is the best way to obtain the 〈x, z〉 tuples. In plan P1, it is equivalent to

use access pattern S(x) → R(x, z) or S(z) → R(x, z) since the former is equivalent to R̂1

and the latter is equivalent to R̂2, both already in P1, and therefore the cost of the whole

search plan is still 2 in both cases. In P2, the access S(x) → R(x, z) is also equivalent to

R̂1 and thus the plan cost does not change while, if we chose ρ2(z) → R(x, z), we would

be using a new access and raise the cost of the plan to 3. Finally, in P3, for the same

reason, the best way to obtain the 〈x, z〉 tuples is to use the access S(z)→ R(x, z), which is

equivalent to R̂2. At this point we can conclude that the three search plans have the same

cost, even considering the negated atom. Last, we address the x 6= z atom. In general, to

evaluate inequalities, access to R is not necessary since it only suffices to filter the answer

of the query without inequalities by comparing pairs of already obtained constants. This

implies that inequality predicates have no impact on cost-depth evaluation. We now show,

to conclude the example, the full nr-datalog¬ program of P1:
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1. R̂1(x, y)← S(x), R1(x, y)

2. R̂2(y, z)← S(z), R2(y, z)

3. q̂(x, y, z)← S(x), R̂1(x, y), R̂2(y, z), S(z),¬R̂1(x, z), x 6= z

In the last query we have written ¬R̂1(x, z) in place of ¬R(x, z) because access

S(x)→ R(x, z), which retrieves the 〈x, z〉 tuples, is equivalent to R̂1.

6.3.2 Building a search plan

Given the definitions in Section 6.2 and the observations in Section 6.3.1, we now pro-

vide a strategy toward search plan definition. Given an admissible query q over C

1. to each Rj(xj , yj) atom we associate an access where the source is a seed Sk joined

with Rj or the extraction ρi(zi) of an access R̂i s.t. Ri is joined with Rj on zi;

2. to each ¬Rj(xj , yj) atom we associate an access I(zi) → R(xi, yi) s.t. the source I

contains either all the 〈xj〉 tuples or all the 〈yj〉 tuples (as done in example 6.3.2).

This ensures that all the 〈xj , yj〉 tuples are extracted and can be used to filter the

answer as if there were no access limitations;

3. The main query of the search plan has the same head as q and every Rj(xj , yj) atom

is replaced by the associated access;

4. the cost of the search plan is computed as the number of distinct accesses used,

where distinct means not equivalent queries.

This strategy ensures that the main query of a search plan P for q returns the same answer

as q because by undoing the replacing of R atoms with R̂ accesses we obtain the original

query: for instance, in example 6.3.2, if we “expand” all the accesses in the main query

q̂(x, y, z)← S(x), R̂1(x, y), R̂2(y, z), S(z),¬R̂1(x, z), x 6= z

we obtain

q̂(x, y, z)← S(x), R1(x, y), R2(y, z),¬R̂1(x, z), x 6= z

Query q̂ is equivalent to q because they contain the same positive atoms and R̂1 contains

all the 〈x, z〉 tuples.

6.3.3 Importance of minimization

We now show the effects of minimization on the cost-depth evaluation.

Example 6.3.3 (Cost-depth and query minimization). Consider query q:

q(x, z, u)← S(x), S(u), R1(x, y), R2(z, x), R3(x, u)

For this query a possible search plan is
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P : 1. R̂1(x, y)← R1(x, y), S(x)

2. R̂2(z, x)← R2(z, x), S(x)

3. R̂3(x, u)← R3(x, u), S(u)

4. q̂(x, z, u)← S(x), S(u), R̂1(x, y), R̂2(z, x), R̂3(x, u)

We have that c(P ) = 2 (R̂2 ≡ R̂3) and there are no search plans for q with smaller cost than

P . If atom R1(x, y) is removed we obtain the minimal query qm ≡ q1:

qm(x, z, u)← S(x), S(u), R1(z, x), R2(x, u)

qm admits the following search plan:

Pm: 1. R̂1(z, x)← R1(z, x), S(x)

2. R̂2(x, u)← R2(x, u), S(u)

3. q̂m(x, z, u)← S(x), S(u), R̂1(z, x), R̂2(x, u)

Clearly c(Pm) = 1 (R̂1 ≡ R̂2) and thus we can conclude that γ(q) = 1, since a query with at

least one R-atom cannot admit a search plan with no accesses.

The above example shows that minimization can reduce the number of accesses re-

quired to answer the query.

6.3.4 Cost-depth and nr-datalog¬ programs

We conclude this section by addressing how to evaluate the cost-depth of a query q

when q is part of a nr-datalog¬ program. In this case the only difference is the presence

of idb predicates. We assume all the queries in the program to be unary and that the cost-

depth of the previous queries qi has been already evaluated. This means that they already

have an associated search plan. We can then consider the identifiers returned by every qi
to be known. These considerations have the following consequences:

• idb atoms of the form qi(xi) can be used as access sources;

• when evaluating the cost of a search plan for qj , one must take into account all the

accesses used directly in qj and all the accesses used in the queries qi, i < j, s.t.

qi(xi) or ¬qi(xi) appear in the body of qj .

Example 6.3.4 (Cost-depth and nr-datalog¬ programs). Consider the following nr-datalog¬

program Q:

1. q1(y)← S(x), R(x, y)

1Intuitively R1(x, y) states the same concept as R3(x, u). The latter is also joined with S(u) mak-

ing it more specific so if a tuple matches R3(x, u), S(u) it also matches R1(x, y) which is redundant.
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2. q2(y)← q1(x), R(x, y),¬q1(y)

The only search plan for q1 solely relies on the access S(x) → R(x, y). Likewise, the

only search plan for q2 consists of the access q1(x) → R(x, y)1. Summing up, two distinct

accesses are required to answer q2 hence γ(q2) = 2.

6.3.5 Problem complexity

Before developing algorithms for cost-depth computation, it is critical to understand

the complexity of the problem. At first glance cost-depth computation is an optimization

problem, where we must find the minimum of the cost function c over all P ∈ Π, where

Π contains all the possible search plans for the target query q. We now provide some

background on a very well known and studied optimization problem known as theminimum

set cover problem.

Definition 6.3.1 (Minimum set cover problem (MSC)). Let I = {1, . . . , n} be a set of

elements and let C ⊆ 2I be a set of subsets of I. The goal of the minimum set cover

problem, given I and C, is to find the smallest P ⊆ C such that
⋃

Pi∈P

Pi ≡ I. More formally,

the goal is to find

min
P :

⋃

Pi∈P

Pi≡I
|P |

The minimum set cover problem has been proven to be NP-hard [17]. We now make the

following claim:

Theorem 6.3.1 (NP-hardness of cost-depth computation (CDC)). The problem to compute

the cost-depth of an admissible query over C is NP-hard.

Proof. To prove that CDC is NP-hard we now present an polynomial reduction procedure to

transform an instance of the minimum set cover problem into an instance of the cost-depth

computation problem. Let (I, C) be an instance of the MSC, where C ⊆ 2I . The procedure

is the following:

1. for each Cj ∈ C define the seed Sj;

2. let q be a NICQ over C with empty head and body;

3. for each i ∈ I add atom R(xi, yi) to q’s body;

4. for each Cj and i ∈ Cj add atom Sj(xi) to q’s body;

5. add every variable in q’s body to q’s head.

1Atom ¬q1(y) does not require any additional access since q1’s output is known
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The procedure has a complexity of Θ(|C| + |I| +
|C|
∑

j=1

|Cj |) = O(|C| + |I| + |C| × |I|) hence

it is polynomial. We now show that the procedure actually reduces MSC to CDC. We first

point out that to each i ∈ I we associate atom R(xi, yi) and to each Cj we associate a

seed Sj . Moreover an Sj-atom and R(xi, yi) atom are joined iff i ∈ Cj . Let us consider the

solution of the CDC instance: it consists of the search plan requiring the minimum number

of accesses. In the considered query all accesses are of the form Sj(xi)→ R(xi, yi) because

there are no joins between different R-atoms. The found search plan can be therefore seen

as the best subset of seeds Sj accessing all R-atoms. Since all Sj are only joined with the

sender attribute of some R-atoms, to each Sj is associated only one access. It is clear that

the solution to the CDC problem corresponds to the solution of the starting minimum set

cover problem: the best Sj seeds/accesses to cover all the R-atoms correspond to the best

set of subsets Cj covering all i ∈ I.

Example 6.3.5 (Reduction from MSC to CDC). Let I = {1, 2, 3, 4, 5} and

C = {{1}, {2, 3}, {4, 5}, {2, 3, 4, 5}}. The best subset of C covering I is obviously

{{1}, {2, 3, 4, 5}}. By applying the reduction procedure we obtain the following query:

q(x1, y1, x2, y2, x3, y3, x4, y4, x5, y5)←R(x1, y1), R(x2, y2), R(x3, y3), R(x4, y4), R(x5, y5),

S1(x1), S2(x2), S2(x3), S3(x4), S3(x5),

S4(x2), S4(x3), S4(x4), S4(x5)

The best search plan for q is

P : 1. S1(x1)→ R(x1, y1)

2. S4(x2)→ R(x2, y2)

3. S4(x3)→ R(x3, y3)

4. S4(x4)→ R(x4, y4)

5. S4(x5)→ R(x5, y5)

and its cost is c(P ) = γ(q) = 2.

Having proven that cost-depth computation is NP-hard, we expect it to be intractable

for complex queries. We also find it hard, although we have not been able to prove it, that

CDC is in NP, mainly because the existence of a polynomial procedure to verify a solution

to the problem seems unlikely. In light of this discovery on the problem complexity, in the

next section we will both provide an exact algorithm and a heuristic algorithm to compute

the cost-depth of an admissible query.
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6.4 Proposed algorithms

In this section we propose two algorithms to find the cost-depth of an admissible query.

Since we have proven the problem to be NP-hard, we will present an exact branch and

bound algorithm and an approximated greedy algorithm. Before presenting the two algo-

rithms, we will describe the data structure used to represent candidate search plans.

6.4.1 Search graph

Given an admissible query q over C, we want to find the search plan P minimizing c(P ).

In order to do so we introduce the search graph as a way to represent all the possible

accesses that can be used to answer the query.

Definition 6.4.1 (Search graph). Let q be an admissible query over C. The search graph

of q is the arc-labeled multidigraph AGq such that

1. for every atom Sj(zj) (qj(zj)) in q there is a unique node Sj (qj) in AGq;

2. for every atom Rj(xj , yj) in q there is a node Rj in AGq;

3. for every atom Sj(zj) (qj(zj)) and Ri(xi, yi) in q joined via variable tk, there is an arc

(Sj , Ri, tk) ((qj , Ri, tk));

4. for every Rj(xj , yj) and Ri(xi, yi) in q, joined via variable tk, then arcs (Ri, Rj , tk) and

(Rj , Ri, tk) are in AGq;

5. nothing else belongs to AGq.

The search graph has a very intuitive meaning: an arc (i, j, ℓ) in AGq represents the

fact that the extraction of the access identified by i can be used to define an access for the

atom identified by j via the variable ℓ. Specifically an arc (Ri, Rj , tk) encodes the fact that

the extraction ρi obtained by accessing Ri(xi, yi) can be used to access Rj(xj , yj) via the

common variable tk. Therefore to find a search plan P for q is equivalent to find exactly

one incoming arc to every Ri node such that every Ri can be reached from some Sj or qj
node.
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Figure 6: Search graph for query q(x, y, z)← S0(x), S0(z), R1(x, y), R2(y, z).

Whenever an arc is chosen, some other arcs must be removed from the graph, e.g.

in Figure 6, if we choose arc (S0, R1, x), arc (R2, R1, y) is removed because R1 is already

accessed via S0. An algorithm with the aim to find the cost-depth of q will repeatedly

choose certain arcs in AGq until no more arcs can be added to the solution. We now

present procedure PruneGraph which, given a search graph AGq and a newly chosen arc

(i, j, ℓ), removes all the arcs that must be excluded following the choice of (i, j, ℓ).

Algorithm 2: PruneGraph

Input: a search graph AGq and an arc (i, j, ℓ) ∈ AGq

Output: the pruned search graph AGq
′

1 AGq
′ ← AGq

2 for (i′, j′, ℓ′) ∈ AGq
′.In(j) \ {(i, j, ℓ)} do

3 AGq
′ ← AGq

′ \ {(i′, j′, ℓ′)}

4 end

5 for (i′, j′, ℓ′) ∈ AGq
′.Out(j) do

6 if ℓ = ℓ′ ∨ j′ = i then

7 AGq
′ ← AGq

′ \ {(i′, j′, ℓ′)}

8 end

9 return AGq
′

The first for loop removes all the incoming arcs of j because we have chosen (i, j, ℓ) to

access it. The second for loop removes all the outgoing arcs of j having the same variable
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ℓ that was used to access j in the first place1 and any arc from j to i if they exist. The time

complexity of PruneGraph is linear in the number of arcs in AGq.

6.4.2 Branch and bound search plan finder

The first algorithm we discuss is a branch and bound (B&B) algorithm. B&B algorithms

are employed in combinatorial optimization when the growth of the size of the problem

makes brute force enumeration of the possible solutions not computationally feasible. A

B&B algorithm finds the optimal solution to a problem by building the solution step by

step. At each step, several alternatives called branches are considered. For each branch

the following decision is made: a branch is not taken if the solution resulting in taking the

branch is estimated not to be better than the best solution found so far, called bound. If

otherwise the branch is estimated to lead to a possibly better solution than the bound, the

branch is taken. The search performed by a B&B algorithm can be then represented by

a tree. B&B algorithms are guaranteed to find the optimal solution to any combinatorial

optimization problem, provided that the bounds are chosen correctly.

Algorithm BranchAndBoundPlanFinder receives an admissible query qj over C and re-

turns the value of γ(qj). To accomplish this goal, first qj is minimized then the search

graph AG for qj is built according to def. 6.4.1. Then variable c∗, representing the cost

of the best plan so far, is set to ∞. We then scan the body of qj for idb atoms. For every

idb atom (¬)qi(xi), i < j, for which cost-depth has been already computed, we add all the

accesses made in qi (Accesses[qi]) to the accesses made in qj (Accesses[qj ]). The integer c is

updated to |Accesses[qj ]|. Procedure BranchAndBoundRecursive, which updates c∗ to the

actual γ(q) is then called 2. Finally, BranchAndBoundPlanFinder returns c∗.

Algorithm BranchAndBoundRecursive receives in input a search graph AG represent-

ing the available search space so far, a list of arcs called Available representing the arcs

that can be chosen currently (accesses s.t. the required extraction has been already cho-

sen), a set of nodes called Chosen which keeps track of the accessed atoms so far, the set

Accesses[qj ] containing the accesses made so far, and an integer c representing the current

cost of the search plan. The algorithm updates variable c∗ several time during execution.

Once there are no more arcs to choose from, procedure BranchAndBoundNegated is called

to evaluate the additional cost of accessing the negated R atoms in qj .

Procedure RemoveFirst(list) removes and returns the first element of the list passed as

argument. Procedure AddAll(list, set) adds all the elements of set at the end of list while

procedure RemoveAll(list, set) removes all the elements of set from list.

1There is no point to perform the access S(x) → R1(x, y) : ρ1(x) and then ρ1(x) → R2(z, x) since
S(x) → R2(z, x) will do it as well. This is why we have only allowed extractions of non accessed

variables (e.g. y).

2We assume that function parameters are always passed by value.
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Algorithm 3: BranchAndBoundPlanFinder

Input: An admissible query qj over C
Output: An integer c∗ with value γ(qj)

1 qj ← the minimal query equivalent to qj
2 AG : the search graph of qj
3 Available : a list containing all the arcs (Sj , Rk, zi), (qj , Rk, zi) ∈ AG
4 Chosen : an empty set of nodes

5 Accesses[qj ] : an empty set of accesses

6 Accesses∗[qj ] : an empty set of accesses

7 c∗ ←∞
8 for every idb atom (¬)qi(xi) in qj ’s body do

9 Accesses[qj ]← Accesses[qj ] ∪Accesses[qi]
10 end

11 c← |Accesses[qj ]|
12 BranchAndBoundRecursive (AG,Available, Chosen,Accesses[qj ], c)
13 Accesses[qj ]← Accesses∗[qj ]
14 return c∗

As the name suggests, BranchAndBoundRecursive is a recursive algorithm: it removes

the first arc fromAvailable and explores two possibilities, to skip to the next arc inAvailable

by simply calling BranchAndBoundRecursive or to add the arc to Chosen, prune the graph,

update Available and the cost of the solution and calling BranchAndBoundRecursive. The

first branch is taken only if by removing the current arc there is at least another available

arc to access node j (line 6). This check forbids the exploration of unfeasible branches.

The second branch is taken only is the updated cost c′ is smaller than c∗ (line 11). This

last check prevents the algorithm from exploring solutions which are not better than the

currently best solution 1. The base case of the algorithm (line 1) is reached when there are

no more arcs in Available and all nodes Ri of AG are in Complete. If the above hold, the

algorithm calls BranchANdBoundNegated and returns to the caller.

Algorithm BranchAndBoundNegated (algorithm 5) receives the access set built so far

(Accesses[qj ]), a list containing all the negated R atoms left to address (Available) and the

cost of the plan so far (c). Being this a branch & bound algorithm as before, we end when

we have no more negated R atoms to deal with and we explore the possible solutions by

branching. The main difference is that this time we are branching on the possible accesses

1From the B&B paradigm, c∗ is the upper bound to the solution cost.
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Algorithm 4: BranchAndBoundRecursive

Input: A search graph AG, a list of arcs Available, a set of nodes Chosen, a set of

accesses Accesses[qj ] and an integer c
Output: none

1 if Available = ∅ then
2 if Chosen contains all the Ri nodes of AG then

3 BranchAndBoundNegated (Accesses[qj ], all negated R atoms in qj ’s body, c)
4 return

5 (i, j, ℓ)← removeFirst(Available)
6 if |AG.In(j)| > 1 then
7 BranchAndBoundRecursive (AG,Available, Chosen,Accesses, c)
8 AG′ ← PruneGraph(AG, (i, j, ℓ))
9 Chosen′ ← Chosen ∪ {j}

10 Available′ : an empty list of arcs

11 if (i, j, ℓ) is not in Accesses[qj ] then
12 c′ ← c+ 1
13 Accesses′[qj ]← Accesses[qj ] ∪ {the access encoded by (i, j, ℓ)}
14 if c′ < c∗ then
15 addAll(Available′, {(i′, j′, ℓ′) | (i′, j′, ℓ′) ∈ AG.Out(j) ∧ j′ /∈ Chosen})
16 removeAll(Available′, {(i′, j′, ℓ′) | (i′, j′, ℓ′) /∈ AG})
17 BranchAndBoundRecursive (AG′, Available′, Chosen′, Accesses′, c′)

18 return

available for each atom ¬Ri(xi, yi) in the query. As we have seen in Section 6.3.2, if we

found an access containing all the tuples involved in ¬Ri(xi, yi), we could use such an

access to filter the answer, discarding those tuples s.t. 〈xi, yi〉 ∈ R. Such an access R̂′ has

been accessed from a source I and a sufficient condition for this access to contain all the

〈xi, yi〉 tuples is that qxi
⊆ I if I(xk) → R′(xk, yk) and that qyi ⊆ I if I(yk) → R′(xk, yk),

where qz is the query having all the positive atoms of q in its body and only the variable

z in the head. Let us examine the former condition (the latter is symmetric): qxi
outputs

all and only the constants that appear in the xi field of the answer to the full query q and

therefore exactly those involved in the ¬R(xi, yi) filtering. If qxi
⊆ I holds then all such

constants are in I and therefore access I(xk)→ R′(xk, yk) contains all the 〈xi, yi〉 tuples. If

this holds for some access R̂′ then there is no additional cost associated to atom ¬R(xi, yi).

We point out that to establish this fact, it is required to perform containment checking of
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qxi
and qyi with potentially every source used in P 1. The above checks are performed at

lines 6-13.

If we cannot find “compatible” accesses we can simply create a new access from a

source with some variables in common with ¬Ri(xi, yi). For instance, in query

q(y)← S(x), R(x, y),¬R(y, z), S(z), where the only possibility to access the positive R-atom

is S(x) → R(x, y) : ρ(y), we can access the negated atom either with ρ(y) → R(x, z) or

with S(z) → R(x, z). In any case, the cost-depth of q is 2. This operation requires to po-

tentially check every access made so far, looking for common variables. This computation

is performed at lines 14-19. As in BranchAndBoundRecursive we cut branches that are

guaranteed not to improve on the current solution (line 17).

Time complexity of BranchAndBoundPlanFinder

Up to line 7 of BranchAndBoundPlanFinder the complexity of the algorithm is domi-

nated by the minimization at line 1 which, as pointed out in previous chapters, is

Πp
2
-complete. The for loop at lines 8-10 scans the body of qj and adds two sets at every

iteration, therefore it has a time complexity of O(pj + (j − 1)× A) where pj is the number

of atoms in qj ’s body and A is the maximum number of accesses required for q1, . . . , qj−1.

It is reasonable to assume this cost negligible w.r.t. the minimization procedure. Now,

for the core of the algorithm, BranchAndBoundRecursive is a branch and bound algorithm

and therefore its time complexity coincides, in the worst case scenario, with the one of the

exhaustive search. The algorithm explores the search space by considering each arc and

creating a first subproblem where the arc is discarded and a second subproblem where the

arc is part of the solution. Since a search plan involves exactly r arcs of AG, where r is the

number of R-atoms in qj , the algorithm will explore a number of solutions not greater than
(

|A|
r

)

where A is the arc set of AG. Let n be the number of seeds in the schema (included

S0) and let v be the number of variables in qj . Atom Sj(xk) can appear v times in qj and

each Sj(xj) atom can be joined with v − 1 atoms of the form R(xj , yj) and v − 1 atoms of

the form R(yj , xj). In total there can be n× v × 2(v − 1) arcs from seeds to R nodes. Via a

similar reasoning we can conclude that there are at most (j − 1) × v × 2(v − 1) arcs from

idb nodes to R nodes and at most v × (v − 1) × (2v − 3) arcs from R nodes to R nodes. It

follows that |A| ≤ (2n+ 2j + 2v − 5)v(v − 1). Now we have that

(

|A|

r

)

=
|A|!

r!(|A| − r)!
=

r+1
∏

k=0

(|A| − k)

r!
≤
|A|r+2

r!
= O(

(nv2 + jv2 + v3)r+2

r!
)

We can observe that the above number grows polinomially as n, v and j increase but

its behavior as a function of r depends on the size of the numerator 2. All the helper

1Containment for NICQs is Πp
2
complete.

2r! is both ω(2r) and o(rr)
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procedures used in BranchAndBoundRecursive have linear complexity. Let us not for-

get that, when reaching its base case, BranchAndBoundNegated is called: each call to

BranchAndBoundNegated can generate up to r + e recursive calls because of the compat-

ible accesses already in the plan (lines 6-13) and up to r recursive calls because of the

joined atoms (lines 14-19). Since Available is always reduced of one element,

BranchAndBoundNegated can expand up to (e × (2r + e))e leaves. We also point out with

each call to

BranchAndBoundNegated, up to e × (r + e) containment tests for conjunctive queries need

to be performed (lines 7, 11), which require solving an NP-complete problem [12, p. 120-

121]. In Chapter 8 we will see that the execution time of the algorithm grows drastically

even with small increases of the number of variables v.
6.4.3 Greedy plan finder

We now present a greedy algorithm to find the cost-depth of a query. Greedy algorithms

are employed in combinatorial optimization problems to find a solution which is good but

not necessarily the optimal one. To achieve this, a greedy algorithm builds the solution

step by step but, at each step, the next element to add to the solution is chosen following

some criteria of local optimality. Choices cannot be undone ad once the choice is made,

the algorithm goes to the next step. Since no backtracking is involved, greedy algorithms

have usually faster running times than B&B algorithms. Algorithm GreedyPlanFinder

(algorithm 6) receives in input an admissible query q over C and finds a search plan P for

q, which is not necessarily the one with minimum cost, and returns c(P ). Because of this

approximation, GreedyPlanFinder generally returns an upper bound to γ(q).

As in BranchAndBoundRecursive, Available is a list containing all the arcs of AG that

can be added to the solution. We point out that GreedyPlanFinder does not minimize

the input query because the goal is to obtain the results quickly. The algorithm adds the

accesses made by previous queries to Accesses[qj ], as done in BranchAndBoundPlanFinder,

then it iteratively compares all the arcs in Available and chooses the one bringing the

smallest increment to the cost of the search plan so far. The while loop is exited when

Available is empty. At line 11, procedure shuffle randomly rearranges the elements of

Available. This is done because the cost-depth estimate obtained can be affected by the

order of the arcs in Available. The reason for this behavior is inherent in the mechanism

of every Greedy algorithm: the algorithm finds a solution by searching for local optima

which are not guaranteed to provide the global optimum. Shuffling Available leads to a

non deterministic behavior of the algorithm therefore a clever use of the algorithm would

be to run GreedyPlanFinder a certain number of times and then take the smallest obtained

value of Γ. After choosing an access for every positive R-atom the algorithm provides an

access for every negated R-atom (lines 25-30). In order to do so we check for the following

special case of containment: if in access I(xk) → R′(xk, yk) (I(yk) → R′(xk, yk)), xk = xi
(yk = yi), we automatically have that qxi

⊆ I (qyi ⊆ I) because I has the same head variable

xi (yi) as qxi
(qyi) and, from how sources are defined, all the atoms in I are in qxi

(qyi). If
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this holds then the current negated R-atom does not require an extra access, otherwise we

add a new access raising Γ by 1, just as done at lines 14-19 of BranchAndBoundNegated.

We provide an example to show that, in general, GreedyPlanFinder does not find the

real cost-depth γ(q).

Example 6.4.1 (Greedy algorithm and cost-depth). Consider query q:

q(x, y, z, t, u)← S1(x), S1(z), S2(u), S2(u
′), R1(x, y), R2(z, u), R3(y, v), R4(u,w), R5(t, u

′)

search graph AGq is shown in Figure 7. Suppose GreedyPlanFinder(q) is executed. At the

beginningAvailable contains arcs (S1, R1, x), (S1, R2, z), (S2, R5, u), (S2, R2, u) and (S2, R4, u).

Suppose (S2, R5, u) is picked first with cost 1. The for loop will keep this choice as all first

accesses cost 1. Of all accesses considered in the second iteration of the while loop, the

best one is (S2, R2, u) since it is a variant of (S2, R5, u
′) and therefore costs 0. This way, the

best plan we can obtain features arcs (S1, R1, x), (R1, R3, y), which are mandatory, and one

among (R2, R4, u) and (S2, R4, u) since they both cost 1. Either way, the overall cost of the

search plan is 4. This is not the best search plan that can be obtained since the search plan

consisting of arcs (S1, R1, x), (R1, R3, y), (S1, R2, z), (R2, R4, u) and (S2, R5, u
′) has a cost of

31.

Time complexity of GreedyPlanFinder

Building the search graph has a complexity of O(p2j ) where pj is the number of atoms

in qj ’s body. The call to addAll takes a time O(|A|) where A is the arc set of AG. The

for loop at lines 4-6 takes O(pj + (j − 1)×C) iterations as in BranchAndBoundPlanFinder,

where C is the maximum number of accesses for q1, . . . , qj−1. The while loop (lines 9-24)

runs for r iterations, where r is the number of positive R-atoms in qj because we must

pick exactly r arcs and an arc is chosen at every iteration. The for loop (lines 12-17)

scans Available for the best arc and therefore requires O(|A|) iterations. Every operation

in its body has constant execution time. The operations at lines 18-23 have an overall

complexity of O(|A|). In total, the while loop has a complexity of O(r × |A|). The last for

loop (lines 25-30) runs for e iterations, where e is the number of negated R-atoms in qj ’s

body. The if condition at line 26 can be checked by scanning A and therefore takes a time

of O(|A|). The same can be said for line 27. Based on the above, the last for loop takes

O(e × |A|) iterations. It is evident that the running time of the overall algorithm, which

is O(p2j + (j − 1)C + (r + e)|A|), grows as a polynomial of the input size. In Chapter 8

we will evaluate the running time of GreedyPlanFider by performing experimental trials

on randomly generated queries. This will serve both to evaluate the time performance of

GreedyPlanFinder and to see how close the estimated value Γ is to the real γ(q).

1The accesses encoded by (S1, R1, x) and (S1, R2, z) are equivalent and so are (R1, R3, y) and

(R2, R4, u).
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Figure 7: Search graph for example 6.4.1.

6.5 Comparison with the graph-depth approach

We now compare the graph-depth and the cost-depth of a query. We first show that the

two notions are related, then we discuss the pros and cons of each approach.

6.5.1 Relation between the two approaches

Here we shall prove that, given an admissible query q over C, the relation δ(q) ≤ γ(q)

holds. The proof is complex so we have broken it in the following steps:

1. prove that δ(q) ≤ γ(q) holds for conjunctive queries (CQ)1;

2. prove that the above claim still holds when adding negation and inequalities;

3. prove that the above claim holds for UNICQs;

4. prove that the above claim holds for a generic qj in a nr-datalog¬ program.

Proof of step 1. To prove that for an admissible CQ q over C δ(q) ≤ γ(q) we will

1.a show a CQ q1 for which δ(q1) < γ(q1);

1.b show a CQ q2 for which δ(q2) = γ(q2);

1CQs are NICQs without negated atoms and inequalities.
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1.c prove that δ(q) > γ(q) is impossible.

Step 1.a: consider CQ q1(x) ← S(x), R1(x, y), R2(z, x). From the call graph in Figure 8 it

follows that δ(q1) = 1. The query is minimal and the best search plan for q1 is:

P1: 1. R̂1(x, y)← S(x), R1(x, y)

2. R̂2(z, x)← S(x), R2(z, x)

3. q̂1(x)← S(x), R̂1(x, y), R̂2(z, x)

Since c(P1) = 2 then γ(q1) = 2.

xy z

Figure 8: Call graph for step 1 of the proof.

Step 1.b: consider query q2(z)← S(x), R1(x, y), R2(y, z). From the call graph in Figure 9

it follows that δ(q2) = 2. The query is minimal and the best search plan for q2 is:

P2: 1. R̂1(x, y)← S(x), R1(x, y)

2. ρ1(y)← R̂1(x, y)

3. R̂2(y, z)← ρ1(y), R2(y, z)

4. q̂2(z)← S(x), R̂1(x, y), R̂2(y, z)

Since c(P2) = 2 then γ(q2) = 2.

x y z

Figure 9: Call graph for step 2 of the proof.
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Step 1.c: suppose that, for an admissible CQ q over C of the form q( ~X) ← conj( ~X, ~Y ),

δ(q) = k > 0 and γ(q) = k′ < k. Since δ(q) = k there must be atoms

Sk(z), Rj1(xj1 , yj1), . . . , Rjk(xjk , yjk) in q such that Sk(z) and Rj1(xj1 , yj1) are joined,

Rji(xji , yji) and Rji+1
(xji+1

, yji+1
) are joined for i = 1, . . . , k − 1 and Sk(zk,h) is the closest

seed atom, in terms of the number of joins involved, to any of the Rji(xji , yji). Figure 10

shows the portion of the call graph Gq representing these atoms. Some arcs in the figure

are labeled with the atoms of q they represent and we ignore the orientation of the arcs. A

dashed arc between nodes i and j represents a chain between the two nodes.

z v w

t u

Rj1 Rv Rw Rjk

Rt Ru

Figure 10: Call graph for step 3 of the proof.

For γ(q) = k′ < k to hold, the cost of the best search plan P for q is c(P ) = k′. Since c(P )

is the number of accesses to R that P performs, it must be that some of the R̂j1 , . . . , R̂jk

are equivalent. Consider arcs labeled with Rv and Rw in Figure and suppose that R̂v is

equivalent to R̂w. This means that every access in the sequence R̂t, . . . , R̂v is equivalent

to the respective access in R̂u, . . . , R̂w. Let l(i, j) denote the length of a shortest chain

between nodes i and j. Since δ(q) = k, we have that l(t, v) ≥ l(z, v) and l(u,w) ≥ l(z, w).

Then, since R̂v is a variant of R̂w, l(t, v) = l(u,w). But this is impossible because

l(z, v) < l(z, w) and therefore l(t, v) < l(u,w). If follows that there are no equivalent

accesses among R̂j1 , . . . , R̂jk . This proves that δ(q) > γ(q) is impossible.
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Proof of step 2. At this point is is obvious that δ(q) ≤ γ(q) holds for full NICQs because

• inequalities do not affect neither δ(q) nor γ(q);

• negatedR-atoms do not add hops to a query but they may require additional accesses.

Proof of step 3. Let q = {q1, . . . , qm} be an admissible query union over C. Since

δ(qi) ≤ γ(qi) for every i, we have that δ(q) = max
i=1,...,m

δ(qi) ≤ max
i=1,...,m

γ(qi). Obviously

max
i=1,...,m

γ(qi) = γ(q̄) where q̄ is the query in q with the maximum cost-depth. But then

γ(q) is obviously not smaller than γ(q̄) because it will require all the accesses required for

q̄ plus possibly some extra accesses required by some other qi. It follows that

δ(q) = max
i=1,...,m

δ(qi) ≤ max
i=1,...,m

γ(qi) = γ(q̄) ≤ γ(q)

Proof of step 4. Let the admissible query qj be part of a nr-datalog¬ program over C. If

qj ’s body does not contain idb atoms we already know that δ(qj) ≤ γ(qj). Let us then

consider idb atoms of the form ¬qi(xi), i < j such that qi’s body does not contain any idb

atom. In the graph-depth computation such an atom is accounted for by including δ(qi) in

a max operation, therefore δ(qi) ≤ δ(qj) (5.2.1). In the cost-depth computation we have

that γ(qi) ≤ γ(qj) since all the accesses used in qi are accounted for in qj . Since negated

idb atoms do not affect hops or accesses in any other way, this situation is analogous to

the one for UNICQs at step 3, therefore δ(qj) ≤ γ(qj) if qj does not contain positive idb

atoms. By iterating the same reasoning we can prove that δ(qj) ≤ γ(qj) holds even if, for

each atom ¬qi(xi) in qj ’s body, qi contains negated idb atoms.

If instead we consider positive idb atoms of the form qi(xi) over the query

qi(x) ← conji(x, ~y), i < j, appearing in qj ’s body, we can reduce qj to a query not contain-

ing any positive idb predicate by iteratively replacing every atom of the form qi(xi) with

conji(xi, ~y′), where ~y′ is a new set of variables, until no positive idb predicate appears in

qj ’s body. We have thus obtained an alternative formulation of qj which only uses edb, non

positive idb and inequality predicates. For this type of query we have already proven that

δ(qj) ≤ γ(qj).

6.5.2 Advantages and disadvantages of the two approaches

Having established a relation between graph-depth and cost-depth, we now discuss the

practical differences of the two approaches. We start by pointing out that, because of the

previous theorem, there are admissible queries where the graph-depth is lower than the

cost-depth. This implies that the queries with graph depth not greater than a certain k̄
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are a subset of the queries that satisfy the same constraint on the cost-depth. We can

therefore say that the cost-depth approach is more limiting, since it labels a larger set of

queries as “not compliant”. The core reason for this difference is, as pointed out earlier

in this chapter, that in the graph-depth approach the identifiers who called some RAS and

the ones who were called by some RAS both are at distance 1 from the RAS identifiers, and

since the graph-depth is computed as a maximum over all distances, its value will be 1, if

no other types of identifiers are involved. On the contrary, in the cost-depth approach the

operations of extracting the receivers given the senders and extracting the senders given

the receivers are two distinct accesses which, if both are present in a search plan, imply a

cost-depth not smaller than 2.

We also point out that the graph-depth approach allows to verify that the guidelines in

[2] hold for a query, while the cost-depth approach can lead to rejecting compliant queries.

Anyway we point out that the cost-depth approach is more natural for relational databases

since it distinguishes different joins between tables. As a final remark, while to compute

the graph-depth of a query can be traced back to the shortest path problem, solvable in

polynomial time, to compute the cost-depth of a query is NP-hard.

6.6 Conclusive example

We close the chapter by showing a sample SQL query on database CALLS for which

our approach returns a cost-depth smaller than what the analyst could expect.

Suppose we want to find all the triplets of identifiers, say Alice, Bob and Carl, such that

Alice and Bob have been both called by some RAS identifiers, and Carl has been called

by both Alice and Bob. The occurrence of such a pattern may raise suspicions about both

Alice, Bob and Carl. Here is a simple query achieving this goal:

1 SELECT R1. receiver AS A, R2. receiver AS B, R4. receiver AS C

2 FROM RAS AS S1, Phone_Call AS R1, Phone_Call AS R2, Phone_Call AS R3,

3 Phone_Call AS R4, RAS AS S2

4 WHERE S1. id = R1. sender AND R1. receiver = R2. sender AND R2. receiver = R3. receiver AND

5 R3. sender = R4. receiver AND R4. sender = S2. id AND R1. receiver <> R4. receiver

Listing 6.1: Sample query

The corresponding NICQ is

q(y, z, u)← S(x), R1(x, y), R2(y, z), R3(u, z), R4(v, u), S(v), y 6= u

The query is already minimal. The best search plan for q is

P : 1. R̂1(x, y)← R1(x, y), S(x)

2. ρ1(y)← R̂1(x, y)

3. R̂2(y, z)← R2(y, z), ρ1(y)

4. R̂4(v, u)← R4(v, u), S(v)

5. ρ4(u)← R̂4(v, u)
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6. R̂3(u, z)← R3(u, z), ρ4(u)

7. q̂(y, z, u)← S(x), R̂1(x, y), R̂2(y, z), R̂3(u, z), R̂4(v, u), S(v), y 6= u

The accesses R̂1 and R̂4 are equivalent and so are the extractions ρ1 and ρ4. From this

it follows that the accesses R̂2 and R̂3 are also equivalent. Since there are two distinct

accesses in P , γ(q) = c(P ) = 2.
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Algorithm 5: BranchAndBoundNegated

Input: A list of accesses Accesses[qj ], a set of negated R atoms Available and an

integer c
Output: none

1 if Available = ∅ then
2 c∗ ← c
3 Accesses∗[qj ]← Accesses[qj ]
4 return

5 for ¬Ri(xi, yi) in Available do
6 for accesses of the form I(xj)→ R(xj , yj) in Accesses[qj ] do
7 if qxi

⊆ I then

8 BranchAndBoundNegated (Accesses[qj ], Available \ {¬Ri(xi, yi)}, c)

9 end

10 for accesses of the form I(yj)→ R(xj , yj) in Accesses[qj ] do
11 if qyi ⊆ I then

12 BranchAndBoundNegated (Accesses[qj ], Available \ {¬Ri(xi, yi)}, c)

13 end

14 for each positive atom A joined with ¬Ri(xi, yi) in qj ’s body do

15 if the joined variable z is not used to access A then

16 I init

{

A A is not an R atom

the source coming from the access to A otherwise

c′ ← |Accesses[qj ] ∪ {I(z)→ R(xi, yi)}|
17 if c′ < c∗ then
18 BranchAndBoundNegated

(Accesses[qj ] ∪ {I(z)→ R(xi, yi)}, Available \ {¬Ri(xi, yi)}, c
′)

19 end

20 end

21 return
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Algorithm 6: GreedyPlanFinder

Input: An admissible query qj over C
Output: An integer Γ representing an upper bound for γ(qj)

1 AG : the search graph of qj
2 Accesses[qj ] : an empty set of accesses

3 Available : an empty list of arcs

4 addAll (Available, {(Sj , Rk, zi) | (Sj , Rk, zi) ∈ AG} ∪ {(qj , Rk, zi) | (qj , Rk, zi) ∈ AG})
5 for every idb atom (¬)qi(xi) in qj ’s body do

6 Accesses[qj ]← Accesses[qj ] ∪Accesses[qi]
7 end

8 Γ← |Accesses[qj ]|
9 while Available 6= ∅ do

10 c∗ ←∞
11 shuffle (Available)
12 for arc ∈ Available do
13 c← |Accesses[qj ] ∪ {the access encoded by arc}| − |Accesses[qj ]|
14 if c < c∗ then
15 c∗ ← c
16 arc∗ ← arc

17 end

18 arc← arc∗ = (i, j, ℓ)
19 AG← PruneGraph(AG, arc)
20 Accesses[qj ]← Accesses[qj ] ∪ {the access encoded by arc}
21 Γ← Γ + c∗

22 addAll (Available, {(i′, j′, ℓ′) | (i′, j′, ℓ′) ∈ Out(j) ∧ j′ /∈ Chosen})
23 removeAll (Available, {(i′, j′, ℓ′) | (i′, j′, ℓ′) /∈ AG})

24 end

25 for atom ¬R(xi, yi) in q’s body do

26 if there is no access I(xi)→ R(xi, yk) or I(yi)→ R(xk, yi) encoded in AG then

27 define a source I(zi) from an appropriate atom, zi ∈ {xi, yi}
28 Accesses[qj ]← Accesses[qj ] ∪ {I(zi)→ R(xi, yi)}
29 Γ← Γ + 1

30 end

31 return Γ



CHAPTER 7

IMPLEMENTATION

In this chapter we present a Java implementation of the QueryAnalyzer system, which,

given an input query, is able to compute both its graph-depth and cost-depth. The imple-

mented algorithms perform computations on digraphs and arc-labeled multidigraphs. For

this purpose we have used the JGraphT library [18] which provides data structures and

algorithms which suited our purposes well. We first present the user interface, we then

detail the various modules of the program.

Implemented features

The current iteration of QueryAnalyzer supports full NICQ queries. The program allows

for both graph-depth and cost-depth computation, including query minimization.

7.1 User interface

QueryAnalyzer provides a simple command line interface to the user. An analyst will-

ing to utilize this program just needs to type the query the must be analyzed and which

approach to use between graph-depth and cost-depth. If the analyst chooses to compute

the graph-depth of the query, algorithm ComputeGraphDepth is used. In the case of cost-

depth, the user must also specify whether he/she wants to retrieve the exact cost-depth

of the query or if it suffices to get a (faster to obtain) upper bound. In the first case,

algorithm BranchAndBoundPlanFinder is adopted while, in the latter, the computation is

carried over by GreedyPlanFinder. Once the query is typed, QueryAnalyzer performs the

required computation and prints the results. The program is able to understand queries

written in Datalog notation, e.g. the NICQ

q(x, y, z)← S0(x), R1(x, y), R2(z, x), S2(z)

is written as q(x,y,z):-S0(x),R(x,y),R(z,x),S2(z).

We now provide some examples of the use of QueryAnalyzer: when first running the

program the following message is displayed

Welcome to QueryAnalyzer, please follow the instructions below.

To compute the graph-depth of a query, type the query followed by ’;g’,

to compute the exact cost-depth of a query, type the query followed by’;p’,

to compute an upper bound to the cost-depth of a query, type the query

followed by ’;f’,

the above commands can be combined as ’;gp’ or ’;gf’.

54
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If command “q(x,y,z) :- S0(x), R(x,y), R(y,z) ;g” is typed, the following is dis-

played:

The graph-depth is 2

The distance of every variable is:

{z=2, y=1}

Along with the graph-depth of the query, the distance of all the considered variables

to RAS is displayed. If instead we type command “q(x,y,z) :- S0(x), R(x,y), R(y,z)

;p” the following is displayed

The cost-depth is 2

The best query plan is [S0 x R1(x,y), R1(x,y) y R2(y,z)]

The best query plan, represented by the edges of corresponding access graph, is dis-

played along with the cost-depth of the query.

Finally, if we type command “q(x,y,z) :- S0(x), R(x,y), R(y,z) ;f” we obtain the

following:

The cost-depth is AT MOST 2

The best query plan is [S0 x R1(x,y), R1(x,y) y R2(y,z)]
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7.2 Graph-depth module

The graph-module of QueryAnalyzer is represented by the Java class GraphDepthFinder.

Below is a skeleton of the class1

1 public class GraphDepthFinder {

2 private int graphDepth = 0;

3 private Map<Variable , Integer> distances = new HashMap<Variable , Integer>() ;

4 / / ! getter methods . . .

5 private void reset ( ) { . . .}

6 private static SimpleDirectedGraph<Variable , DefaultEdge> buildCallGraph(Query query)

{. . .}

7 public void computeGraphDepth(Query query) {. . .}

8 public void printResults ( ) { . . .}

9 }

Listing 7.1: Class GraphDepthFinder

Attribute graphDepth represents the graph-depth of the last analyzed query and distances

contains the distance between any considered variable and the RAS identifiers. Method

reset simply resets the above variables. Method buildCallGraph returns a

SimpleDirectedGraph<Variable, DefaultEdge> representing the call graph for query.

Method printResults displays the value of the variables above. The most important

method of GraphDepthFinder is computeGraphDepth, whose code is shown in Listing 7.2.

1When showing code listings, we will often write comments starting with ’!’ in place of portions

of code which are not relevant to the current discussion.
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1 public void computeGraphDepth(Query query) {

2 reset ( ) ;

3 query = NICQOptimizer .minimize(query) ;

4 SimpleDirectedGraph<Variable , DefaultEdge> callGraph = buildCallGraph(query) ;

5 Queue<Variable> u = new LinkedList<Variable>() ;

6 for (Variable v : callGraph . vertexSet ( ) ) {

7 i f (v . isBad ( ) ) {

8 distances . put (v , 0) ;

9 u.add(v) ;

10 } else {

11 distances . put (v , Integer .MAX_VALUE) ;

12 } }

13 while ( !u. isEmpty ( ) ) {

14 Variable n = u. poll ( ) ;

15 for (DefaultEdge e : callGraph .edgesOf(n) ) {

16 Variable m = (n. equals ( callGraph .getEdgeSource(e) ) ? callGraph .getEdgeTarget(e) :

callGraph .getEdgeSource(e) ) ;

17 i f ( distances . get (m) > distances . get (n) + 1) {

18 distances . put (m, distances . get (n) + 1) ;

19 u.add(m) ;

20 }

21 callGraph .removeEdge(e) ;

22 graphDepth = Math.max(graphDepth, distances . get (m) ) ;

23 } } }

Listing 7.2: Method ComputeGraphDepth

The method is a straightforward implementation of the algorithm presented in Chap-

ter 5.

7.3 Cost-depth module

The core of the cost-depth module is made of classes BranchAndBoundPlanFinder and

GreedyPlanFinder. Both classes implement the abstract class QueryPlanFinder below:

1 public abstract class QueryPlanFinder {

2 private AccessGraph<AccessNode, AccessEdge> bestGraph = null ;

3 private Map<AccessNode, String> bestPlan = null ;

4 private int bestPlanCost = Integer .MAX_VALUE;

5 public void reset ( ) { . . .}

6 / / ! getters and setters . . .

7 public abstract void findBestQueryPlan(String query) ;

8 public abstract void printResults ( ) ;

9 }

Listing 7.3: Class QueryPlanFinder

Field bestGraph stores the access graph of the current query, bestPlanmaps each R atom

(positive or negated) to a String representation of the best access for it and bestPlanCost

stores the cost of such plan. Method reset resets the above fields and is called at the

start of the analysis of each query. Method findBestQueryPlan literally finds the best
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canonical query plan for query. Method printResults is used to display bestPlan and

bestPlanCost after the computation ends. The AccessGraph type used in this module is

a subclass of the DirectedMultigraph type provided by JGraphT. Types AccessNode and

AccessEdge represent the nodes and the arcs of an access graph respectively.

We now take a look at the two different implementations of method findBestQueryPlan.

7.3.1 BranchAndBoundPlanFinder

Class BranchAndBoundPlanFinder implements the algorithm of the same name pre-

sented in Chapter 6. Note that arcs are referred to as edges in this context. This class

implements method findBestQueryPlan in the following way:

1 public void findBestQueryPlan(String query) {

2 reset ( ) ;

3 query = new Query( input ) ;

4 query = NICQOptimizer .minimize(query) ;

5 AccessGraph<AccessNode, AccessEdge> graph = buildAccessGraph(query . toString ( ) ) ;

6 List<AccessEdge> available = new LinkedList<AccessEdge>() ;

7 Map<AccessNode, String> plan = new HashMap<AccessNode, String>() ;

8 for (AccessEdge edge : graph .edgeSet ( ) ) {

9 i f (edge.getSourceDesc ( ) . startsWith ( "S" ) ) {

10 available .add(edge) ;

11 }

12 }

13 planSize = 0;

14 for (AccessNode n : graph . vertexSet ( ) ) {

15 i f (n.getType ( )==RelationType .R) {

16 planSize++;

17 }

18 }

19 recursiveQueryPlanFinder (graph , available , plan , 0) ;

20 }

Listing 7.4: Method findBestQueryPlan as implemented in BranchAndBoundPlanFinder

This method corresponds to algorithm BranchAndBoundPlanFinder in Chapter 6: it mini-

mizes the input query, build its access graph, initializes the data structures available and

plan and calls method

recursiveQueryPlanFinder which corresponds to algorithm BranchAndBoundRecursive

in Chapter 6. The code for recursiveQueryPlanFinder is now shown. We first show the

base case of the algorithm and then provide the code for the key blocks dubbed “choosing

edge” and “discarding edge”.
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1 private void recursiveQueryPlanFinder (AccessGraph<AccessNode, AccessEdge> graph,

2 List<AccessEdge> available , Set<AccessNode> chosen , int cost ) {

3 i f ( available . isEmpty ( ) ) {

4 i f (chosen . size ( ) == planSize ) {

5 setBestGraph(graph) ;

6 Set<Atom> negatedAtoms = new HashSet<Atom>() ;

7 for (Atom a : query .getBody( ) ) {

8 i f (a . isR ( ) && a. isNegated ( ) ) {

9 negatedAtoms.add(a) ;

10 }

11 }

12 branchAndBoundNegated(negatedAtoms, plan , cost ) ;

13 }

14 return ;

15 }

16 AccessEdge edge = available .remove(0) ;

17 AccessNode accessed = getNode(edge.getTargetDesc ( ) ) ;

18

19 / / ! choosing edge

20

21 / / ! discarding edge

22 }

Listing 7.5: Method recursiveQueryPlanFinder

We point out that, once no more edges are available, branchAndBoundNegated is called to

handle the negated R predicates.
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1 AccessEdge edge = available .remove(0) ;

2 AccessNode accessed = getNode(edge.getTargetDesc ( ) ) ;

3 / / choosing edge

4 Map<AccessNode, String> plan2 = new HashMap<AccessNode, String>(plan) ;

5 List<AccessEdge> available2 = new LinkedList<AccessEdge>(available ) ;

6 int cost2 = 0;

7 String sourceDesc = edge.getSourceDesc ( ) ;

8 AccessNode source = getNode(sourceDesc) ;

9 String accessVar = edge. getLabel ( ) ;

10 i f ( source .getType ( ) == RelationType .S) {

11 i f (accessVar . equals (accessed .getSender ( ) ) ) {

12 plan2 . put (accessed , sourceDesc + "$s" ) ;

13 } else {

14 plan2 . put (accessed , sourceDesc + "$r" ) ;

15 }

16 } else i f (source .getType ( ) == RelationType .R) {

17 i f (accessVar . equals (accessed .getSender ( ) ) ) {

18 plan2 . put (accessed , plan2 . get (source) + "s" ) ;

19 } else {

20 plan2 . put (accessed , plan2 . get (source) + "r" ) ;

21 }

22 }

23 AccessGraph<AccessNode, AccessEdge> graph2 = pruneGraph(graph , edge) ;

24 cost2 = cost + (plan . values ( ) . contains (plan2 . get (accessed) ) ? 0 : 1) ;

25 i f ( cost2 < getBestPlanCost ( ) ) {

26 for (AccessEdge outgoing : graph2.outgoingEdgesOf(accessed) ) {

27 i f ( ! plan2 . keySet ( ) . contains (getNode(outgoing .getTargetDesc ( ) ) ) ) {

28 / / a l l edges starting from accessed and ending into non−accessed nodes are taken

29 available2 .add(outgoing) ;

30 }

31 }

32 Iterator<AccessEdge> i t = available2 . iterator ( ) ;

33 while ( i t .hasNext ( ) ) {

34 AccessEdge e = i t . next ( ) ;

35 i f ( !graph2.edgeSet ( ) . contains (e) ) {

36 / / a l l pruned edges in the graph are removed from available2

37 i t .remove( ) ;

38 }

39 }

40 recursiveQueryPlanFinder (graph2, available2 , plan2 , cost2 ) ;

41 }

Listing 7.6: The “choosing edge” part of method recursiveQueryPlanFinder
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1 i f (graph . incomingEdgesOf(accessed) . size ( ) > 1) { / / s t i l l other options to access ’accessed ’

2 / / discarding edge

3 Map<AccessNode, String> plan1 = new HashMap<AccessNode, String>(plan) ;

4 List<AccessEdge> available1 = new LinkedList<AccessEdge>(available ) ;

5 recursiveQueryPlanFinder (pruneGraph(graph , null ) , available1 , plan1 , cost ) ;

6 }

Listing 7.7: The “discarding edge” part of method recursiveQueryPlanFinder

Exactly as in the BranchAndBoundPlanFinder algorithm, in Listing 7.7, the new arc edge

is discarded. In Listing 7.6 the new arc is instead added to the solution and its cost is

computed, by checking if the access, represented by a String is contained in the accesses

made so far (plan). If the new cost is lower than the cost of the best solution so far, then

available is updated by adding all the arcs that can be now chosen because of the addition

of edge and the method is recursively called.

7.3.2 GreedyPlanFinder

Class GreedyPlanFinder implements the algorithm of the same name presented in

Chapter 6. Method findBestQueryPlan is implemented as follows:

1 public void findBestQueryPlan(String query) {

2 AccessGraph<AccessNode, AccessEdge> graph = buildAccessGraph(query) ;

3 reset ( ) ;

4 Query query = new Query( input ) ;

5 AccessGraph<AccessNode, AccessEdge> graph = buildAccessGraph( input ) ;

6 List<AccessEdge> available = new LinkedList<AccessEdge>() ;

7 Map<AccessNode, String> plan = new HashMap<AccessNode, String>() ;

8 for (AccessEdge edge : graph .edgeSet ( ) ) {

9 i f (edge.getSourceDesc ( ) . startsWith ( "S" ) ) {

10 available .add(edge) ;

11 }

12 }

13 for (AccessNode n : graph . vertexSet ( ) ) {

14 i f (n.getType ( )==RelationType .R) {

15 }

16 }

17 fastPlanFinder (query , graph , available , plan) ;

18 }

Listing 7.8: Method findBestQueryPlan as implemented in GreedyPlanFinder

This method sets up graph, available and plan very similarly to what done by

BranchAndBoundPlanFinder. It then calls method fastPlanFinder, shown below.
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1 private void fastPlanFinder (AccessGraph<AccessNode, AccessEdge> graph,

2 List<AccessEdge> available , Set<AccessNode> chosen) {

3 setBestPlanCost (0) ;

4 while ( ! available . isEmpty ( ) ) {

5 int bestCost = Integer .MAX_VALUE;

6 / / ! bestEdge , bestGraph and bestChosen are defined

7 Collections . shuffle ( available ) ;

8 for ( int i = 0; i < available . size ( ) ; i++) {

9 / / ! the edge which seems the best is found

10 }

11 graph = bestGraph;

12 chosen = bestChosen;

13 setBestPlanCost (getBestPlanCost ( ) + bestCost ) ;

14 available .remove(bestEdge) ;

15 / / ! available is updated as in BranchAndBoundPlanFinder

16 }

17 / / ! here we handle the negate R atoms

18 i f (getBestPlanCost ( ) > 0) {

19 setBestPlan (graph) ;

20 } else {

21 reset ( ) ;

22 }

23 }

Listing 7.9: Method fastPlanFinder

The method basically keeps selecting the edge with smaller cost in available until

available is empty. After the best edge is found, available is updated exactly as in

method recursiveQueryPlanFinder of class BranchAndBoundPlanFinder. As pointed out

in Chapter 6, we call Collections.shuffle on available since the outcome of the com-

putation depends on the order of the edges in available. To find out the best edge, we

evaluate its cost as done in BranchAndBoundPlanFinder. The newEdge with smallest cost

becomes bestEdge. We now show a snippet from the “negated” section of the algorithm,

specifically where we check for reusable accesses in the plan.
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1 for (Atom nR : query .getBody( ) ) {

2 i f (nR. isR ( ) && nR. isNegated ( ) ) {

3 String sender = nR.getVars ( ) . get (0) . getVar ( ) ;

4 String receiver = nR. getVars ( ) . get (1) . getVar ( ) ;

5 boolean found = false ;

6 for (AccessEdge e : graph .edgeSet ( ) ) {

7 AccessNode R = graph.getEdgeTarget(e) ;

8 i f (sender . equals (R.getSender ( ) ) && R.getSender ( ) . equals (e . getLabel ( ) )

9 | | receiver . equals (R. getReceiver ( ) ) && R. getReceiver ( ) . equals (e . getLabel ( ) ) )

{

10 plan . put(new AccessNode( i−−, sender , receiver ) , plan . get (R) ) ;

11 found = true ;

12 break ;

13 }

14 }

15 / / ! we add an extra access for nR

16 }

17 }

Listing 7.10: Dealing with negated R atoms in method fastPlanFinder
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7.4 Main module

The main module is made of the Java class QueryAnalyzer. This class provides the

user interface, and calls the graph-depth and cost-depth modules according to the user’s

requests. We now show the code for the class.

1 public class QueryAnalyzer {

2 / / ! auxiliary variables

3 private GraphDepthFinder graph = null ;

4 private BranchAndBoundPlanFinder bnb = null ;

5 private GreedyPlanFinder gree = null ;

6 public void computeGraphDepth(String query) {. . .}

7 public void computeCostDepth(String query , Mode mode) {. . .}

8 private void initializeGDFinder ( ) {

9 graph = (graph == null ? new GraphDepthFinder ( ) : graph) ;

10 }

11 private void initializeBnBFinder ( ) {

12 bnb = (bnb == null ? new BranchAndBoundPlanFinder( ) : bnb) ;

13 }

14 private void initializeGrFinder ( ) {

15 gree = (gree == null ? new GreedyPlanFinder ( ) : gree) ;

16 }

17 public static void main(String [ ] args) {

18 / / ! provides the user interface

19 / / ! cal ls computeGraphDepth and computeCostDepth depending on the user ’s requests

20 }

21 }

Listing 7.11: Class QueryAnalyzer

The class has a private attribute for each algorithmic class

(GraphDepthFinder, BranchAndBoundPlanFinder, GreedyPlanFinder). These attributes

are used in methods computeGraphDepth (Listing 7.13) and computeCostDepth (Listing 7.12).

The main method displays the text interface, reads the user commands and calls

computeGraphDepth and computeCostDepth accordingly.
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1 public void computeCostDepth(String query , Mode mode) {

2 switch (mode) {

3 case PRECISE:

4 initializeBnBFinder ( ) ;

5 bnb. findBestQueryPlan(query) ;

6 bnb. printResults ( ) ;

7 break ;

8 case FAST:

9 initializeGrFinder ( ) ;

10 gree . findBestQueryPlan(query) ;

11 gree . printResults ( ) ;

12 break ;

13 default :

14 break ;

15 }

16 }

Listing 7.12: Method computeCostDepth of class QueryAnalyzer

1 public void computeGraphDepth(String query) {

2 initializeGDFinder ( ) ;

3 graph .computeGraphDepth(query) ;

4 graph . printResults ( ) ;

5 }

Listing 7.13: Method computeGraphDepth of class QueryAnalyzer
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EXPERIMENTAL RESULTS

In this chapter we will compare the performance of the three algorithms, as imple-

mented in QueryAnalyzer, on a number of randomly generated queries. The aim of these

experiments is both to quantify the running time of each algorithm and to measure the

quality of the upper bound provided by GreedyPlanFinder with respect to the cost-depth

computed by BranchAndBoundPlanFinder.

8.1 Conducted experiments

We have run the two algorithms on three sets of randomly generated admissible queries

over C. Each set of queries was generated by specifying values for the following four pa-

rameters: the number of variables in the query (v), the number of atoms over R in the

query (r), the number of negated R atoms in the query (nr), the number of inequalities

in the query (neq), the number of used seeds in the query (s) and the probability for any

variable to represent a seed identifier (p). For v we have chosen all values from 2 to 10,

because we have assumed that rarely the analyst will input queries with more than 10

variables, especially considering that, in [2], the maximum number of hops is stated to be

3 and to reach such distance it is sufficient to have 4 variables. For what concerns r we

have experimented with three values: v − 1, ⌈3
2
(v − 1)⌉ and 2(v − 1). The first value is the

minimum required to reach the maximum number of hops using v variables while the third

value is the double of the first one which we assume will often suffice for the analyst’s

needs (r = 18 when v = 10). Finally the second value is the (rounded) mid-point between

the first and the third. We have assumed the number of negated R atoms and inequalities

to be equal to ⌈ r
3
⌉ and ⌈ r

4
⌉ respectively. We have conducted the experiments with a number

s = 1 and s = 3 of seeds because we think that the most common queries retrieve identi-

fiers related to just a few specific seeds. Finally, we have parameter p which represents,

for every variable xj , the probability of some atom Sk(sj) to appear in the query. We have

set p = 0.25 for every query. This is similar to generate queries in which one fourth of

the variables represent suspects, but we have chosen to specify a probability rather than

an absolute number to obtain a richer set of queries. Needless to say, all the generated

queries were admissible according to definition 5.1.2. The three sets of generated queries

are the following:

Trial 1. 100 queries for each v = 2, . . . , 10, with r = v − 1, nr = ⌈ r
3
⌉, neq = ⌈ r

4
⌉, s = 1 and

p = 0.25.

Trial 2. 100 queries for each v = 2, . . . , 10, with r = ⌈3
2
(v − 1)⌉, nr = ⌈ r

3
⌉, neq = ⌈ r

4
⌉, s = 3

and p = 0.25.

Trial 3. 30 queries for each v = 2, . . . , 10, with r = 2(v − 1), nr = ⌈ r
3
⌉, neq = ⌈ r

4
⌉, s = 3 and

p = 0.25.

66
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For each query in each set, we have analyzed the query using both

GraphDepthFinder, BranchAndBoundPlanFinder and GreedyPlanFinder. All the experi-

ments have been conducted on a 2.40GHz quad-core Intel-based machine with 8GB of

RAM.

8.2 The cost of minimization

As we have pointed out many times, NICQ minimization is Πp
2-complete. We have im-

plemented it as described in [11] and run it inside both GraphDepthFinder and

BranchAndBoundPlanFinder. The results obtained on Trial 1 are shown in Image 8.2

The red error plot represents the average and standard deviation of GraphDepthFinder’s

running time. The blue and green points achieve the same for BranchAndBoundPlanFinder

and GreedyPlanFinder respectively. We do not show results for v > 4 because the mini-

mization algorithm has made it impossible for the whole procedure to complete. The be-

havior depicted by the graph is coherent with out prior knowledge: the greedy algorithm

(GR), free from the burden of minimization, runs much faster than the other two. Of course

the graph depth algorithm (GD) is much faster than the branch & bound (BB) after mini-

mization, but their overall performance is comparable because of the shared complexity of

minimization. Let us now take a look at the difference between the cost-depth computed

by BB and the upper bound computed by GR.
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The blue error plot shows average and standard deviation of the difference between GR’s

approximation and the real cost-depth provided by BB. The red error plot shows the dif-

ference between the cost-depth and the graph-depth. We can see that, even with the

minimization at work, GR manages to follow BB almost precisely, and with no notable

difficulties as the number of variables increases

The above results show that performing minimization is impractical as query get more

complex, therefore the query analyst will have to rely on his/her ability to write minimal

queries. For this reason, all the following trials have been conducted excluding minimiza-

tion on both GD and BB.

8.3 Time performances

For each of the three trials above, we have measured the running time of each algorithm

and computed average (in seconds) and standard deviation (in nanoseconds) for each value

of v. We now present and discuss the obtained results.

8.3.1 Trial 1

For the first set of queries we have obtained the results in Image 8.3.1.
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In Image ?? we can find the depth approximations as in the previous paragraph.

8.3.2 Trial 2

For the second set of queries we have obtained the results in Image 8.3.2.
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In Image ?? we can find the depth approximations.

8.3.3 Trial 3

Last, for the third set of queries we have obtained the results in Image 8.3.3.
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In Image ?? we can find the depth approximations.

8.4 Final observations

Summing up the results of the above trials, we can say that BranchAndBoundPlanFinder

cannot be effectively used for queries with large values of v and r, forcing the analyst to

employ approximate algorithms, such as GreedyPlanFinder. Thankfully, it turns out that

this second algorithm presents acceptable running times even for the largest queries we

have generated and does provide an upper bound to the cost-depth of the query that is

generally much closer to the value computed by B&B than the trivial upper bound r.

The obtained results suggest an efficient strategy for the analyst: suppose that the

guidelines imposed on the executable queries state that the cost-depth of a query cannot

be greater than k. To check the compliance of a query q to such requirement, the analyst
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first runs GreedyPlanFinder which returns value kg. If kg ≤ k, the analyst can execute

q without any problems, otherwise, he/she will run BranchAndBoundPlanFinder to obtain

some kb ≤ kg. The results obtained by the graph depth algorithm are instead acceptable.



CHAPTER 9

CONCLUSIONS

9.1 Obtained results

In this thesis we have proposed two approaches to ensure the legality of queries on

telephony metadata. The advantages of both approaches with respect to the state of the

art are that the metrics they provide do not depend on the content of the database but

solely on the query and in order to compute such metrics, the query does not need to

be executed. Based on the guidelines described in [1, 2], we have proposed a graph-

depth approach that computes the maximum number of hops from the RAS (Reasonable

Articulable Suspicion) identifiers at which any identifier returned by a query lies. The

approach is based on an algorithm whose running time grows as a polynomial of the size

of the input query.

We have also proposed a cost-depth approach, based on the concept of access limi-

tations to databases, that computes the minimum number of accesses that must be per-

formed to answer the query. Since to compute the cost-depth of a query is NP-hard, we

have proposed two algorithms, a Branch & Bound (B&B) algorithm which returns exactly

the above number and a Greedy algorithm, which returns an upper bound to the above

number. We have proved that the cost-depth approach is more restrictive than the graph-

depth approach, therefore the choice of which one to use depends on the guidelines that

the intelligence agency has to comply with.

We have implemented all the above algorithms as part of the QueryAnalyzer system,

written in Java, which allows an intelligence analyst to input a query and display the met-

rics computed by the above algorithms. This tool can be used by the analyst before exe-

cuting a query, to make sure that all the returned identifiers are legally obtainable.

Finally, we have run the algorithms on a number of randomly generated queries and

we have found that, while the B&B algorithm provides a more precise result, its running

time grows very quickly with the complexity of the query. Luckily, our experiments showed

that the Greedy algorithm is generally much faster and, while it does not compute the

exact cost-depth value, the obtained results are usually very close to the ones provided

by the B&B algorithm. Therefore, the analyst can initially employ the Greedy algorithm

and, if the obtained results are not precise enough to decide if the query complies with the

guidelines, the B&B algorithm can be used to determine the compliance of the query.

The system we have developed could be used by intelligence agencies worldwide whose

searches on telephony metadata are subject to restrictions similar to the ones in [2]. By

inserting QueryAnalyzer into the analyst work flow, the agency would guarantee that, if

the results of a query considered to be illegal were ever to be used, then the analyst knew

it or at least had the tools to check the query for compliance before executing it. Of course
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employing QueryAnalyzer would require minor modifications depending on the specific

requirements of every agency and the format of the queried data. However, we point

out that the simplicity of the database schema that we have assumed makes it very easy to

apply the approach to analyze any kind of metadata describing the communication between

two parties, such as e-mails, instant messaging systems, activity on social networks, etc.

9.2 Further work

The research conducted in this thesis can be expanded. For instance, the cost-depth

approach may be expanded so that, if a query q is found to be requiring more accesses

than allowed, we can derive an approximated query q′ such that q′D ⊂ qD and q′ does not

require more accesses than what is allowed.

Finally, from a more practical point of view, QueryAnalyzer may be improved in various

ways: the implementation could be improved to handle full NICQ queries and nr-datalog¬

programs and the textual interface could be replaced by a graphical interface which allows

the analyst to design a query by drawing its call graph. This way, the analyst would be able

to focus solely on what the query must achieve, avoiding to be distracted by a possibly

cumbersome syntax.
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