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Abstract

Because of the reaching of the power wall and the conse-
quent end of the Moore’s law, over the past decade the trend in
microprocessor design has shifted towards parallel architectures,
such as multi/many-cores and Heterogeneous System Architec-
ture (HSA) solutions to boost performance and reduce power con-
sumption. Heterogeneity can drastically help in improving en-
ergy efficiency although it has the drawback of increasing system
management complexity. Different processing units, like Central
Processing Units (CPUs), Graphic Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs), combined together
may provide different solutions and trade-offs at both performance
and power/energy consumption ends. On the other hand, actual
applications workloads have become more flexible and dynamic.
As well, they present different requirements to be satisfied, like
throughput, power and energy consumption and so on. This sce-
nario requires the usage of an architecture that is capable of re-
specting all the application requirements simultaneously. HSAs
result to be the most suitable systems for this task, since they
are able to both provide high performance and, at the same time,
reducing power/energy consumption.
One of the most interesting kind of HSA are asymmetric multipro-
cessor systems. Such architecture has the advantage of providing
different throughput or power performance according the running
task. Indeed, they are composed of different computing clusters
that share the same Instruction Set Architecture (ISA) but have
different micro-architectures; hence different clusters target differ-
ent goals. Therefore a combination of such computing units may
be employed to accomplish various requirements.
In this thesis we proposed a workload-aware run-time resource
management policy, designed for asymmetric systems, that as
the double goal of ensuring the desired Quality of Service (QoS)
of running applications while optimizing the system power con-
sumption. Such policy combines Dynamic Voltage and Frequency
Scaling (DVFS) (one of the most explored approaches for energy
efficiency, both in embedded and large scale systems) and task al-
location techniques. The results proved that the proposed policy
is able to achieve higher performance, in terms of throughput and
power efficiency, than the state of the art heterogeneous scheduler
designed for such architecture.
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Sommario

Dato il raggiungimento del power wall e la conseguente fine
della legge di Moore, nell’ultima decade la tendenza nella pro-
gettazione dei microprocessori si è spostata verso le architetture
parallele, come soluzioni multi/many-cores e architetture di siste-
mi eterogenei (HSA) per incrementare le prestazioni e ridurre i
consumi di potenza. L’eterogeneità può drasticamente aiutare a
migliorare l’efficienza energetica nonostante abbia lo svantaggio
di una maggiore complessità nella gestione del sistema. Differen-
ti unità di processamento, come Central Processing Unit (CPU),
Graphic Processing Unit (GPU) e Field Programmable Gate Array
(FPGA), combinate insieme possono fornire differenti soluzioni e
compromessi ai fini sia delle prestazioni che del consumo di poten-
za/energia. D’altro canto, i carichi delle attuali applicazioni sono
diventati più flessibili e dinamici. Allo stesso modo, questi presen-
tano differenti requisiti da soddisfare, come throughput, consumo
di potenza ed energia e così via. Questo scenario richiede l’utiliz-
zo di una architettura che sia capace di rispettare tutti i requisiti
dell’applicazione contemporaneamente. HSA risultano essere i si-
stemi più adatti a questo compito, dato che sono in capaci sia di
fornire alte prestazioni e, allo stesso tempo, di ridurre il consumo
di potenza/energia.
Una delle più interessanti tipologie di HSA sono i sistemi di mul-
tiprocessori asincroni. Tale architettura ha il vantaggio di fornire
differenti prestazioni, in termini di throughput o potenza, in base
al task in esecuzione. Infatti, questi sono composti da differenti
cluster computazionali che condividono lo stesso Instruction Set
Architecture (ISA) ma hanno differenti micro-architetture; quindi
cluster differenti si concentrano su obiettivi differenti. Di conse-
guenza, una combinazione di tali unità di computazione può essere
impiegata per soddisfare vari requisiti.
In questa tesi proponiamo una politica di gestione delle risorse a
run-time conscia del carico delle applicazioni, progettata per si-
stemi asincroni, che ha il doppio scopo di garantire la desiderata
Quality of Service (QoS) delle applicazioni in esecuzione mentre
ottimizza il consumo di potenza del sistema. Tale politica com-
bina tecniche di Dynamic Voltage and Frequency Scaling (DVFS)
(uno degli approcci più esplorati per l’efficienza energetica, sia in
sistemi embedded che sistemi su larga scala) e di allocazione di
task. I risultati dimostrano che la politica proposta è in grado di

ii



ottenere prestazioni più alte, in termini di throughput e consumo
di potenza, dell’attuale scheduler eterogeneo progettato per que-
sta architettura.
Questo lavoro è organizzato come segue:

• il Capitolo 1 dà una visione di insieme del contesto di questo
lavoro e brevemente introduce la soluzione proposta;

• il Capitolo 2 fornisce le conoscenze necessarie, descrivendo le
caratteristiche della nostra architettura di riferimento e gli
strumenti principali che useremo in questo lavoro;

• il Capitolo 3 analizza le soluzioni dello stato dell’arte per
l’ottimizzazione di potenza/energia e il soddisfacimento del-
l’obiettivo di prestazioni nelle HSA; inoltre espone un’analisi
dello scheduler eterogeneo disponibile sulla nostra architet-
tura di riferimento;

• il Capitolo 4 descrive il problema che vogliamo affrontare e
presenta la nostra soluzione;

• il Capitolo 5 fornisce i dettagli dell’implementazione della
nostra politica;

• il Capitolo 6 riporta i risultati dei test effettuati sulla nostra
politica;

• il Capitolo 7 discute i risultati e le limitazioni del nostro
lavoro, e descrive i possibili lavori futuri.
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Introduction 1

This chapter provides an introduction to our thesis. In particular, we
describe the main component of the context of this work, and then we
briefly present our proposal.
In Section 1.1 we describe the context of this work, while Section 1.2
introduces the architecture we are going to target. Section 1.3 gives an
overview of our proposed solution, and, finally, Section 1.4 outlines the
structure of this thesis.

1.1 Context Definition

Thanks to the advancements in technology and methodologies, we are
now living in an age where computing performance plays a key role in
many fields, ranging from finance to cutting-edge research. For decades
performance improvements have been achieved by increasing the oper-
ating frequency of the used processing units, and users benefited from it
without impact on the complexity of their programs. Such enhancements
in computing systems were enabled by improvements in transistor tech-
nologies according to the Moore’s law [1] and the Dennard’s scaling law
[2]; indeed, every year reduction of MOS transistors size implied more
transistors to fit in the same area of the integrated circuit, whereas the
power density remained roughly constant. Figure 1.1 shows the tran-
sistor count trend in Intel microprocessors from 1971 to 2015 [3]; we
can notice that, in almost 45 years, the number of transistors moved
from 2300 (Intel 4004 processor [4], 1971) to 5.56 billion (18-core Xeon
Haswell-E5 [5], 2014). However, this trend is not true anymore; indeed,
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Figure 1.1: Transistor count in Intel microprocessors

(logarithmic scale)

the density of the transistors, in conjunction with higher frequencies,
makes it unfeasible to dissipate the high thermal power generated from
such small surfaces [6, 7]. Hence, academy and companies started to
look for new approaches to deal with power wall limit. As a result, to
cope with the performance demand, companies adopted multi-cores and
parallel solutions [8, 9, 10, 11]. This choice shifted the burden of perfor-
mance improvement to programmers, who have to dive into complexity
to achieve the performance they need.
Nowadays, Multi-cores systems are available in different forms according
to costumers’ needs. Indeed, it is easy to find quad-core processors on
consumer electronics (like Intel i5 [12] and i7 [13] series or AMD A-Series
[14]) and 16-cores on enterprise class server nodes (for instance, Intel
Xeon family [15], IBM Power Systems [16], and Oracle SPARC Systems
[17]), and, given the number of devices spread around the world, it is
straightforward to estimate the impact on the global energy consumption
scale. To mitigate this problem, various techniques have been developed,
such as clock gating, Dynamic Voltage and Frequency Scaling (DVFS)
and power state switching. More recently, a promising approach to pur-
sue performance while keeping energy consumption under control is the
exploitation of a Heterogeneous System Architecture (HSA) [18]. An
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1.1. Context Definition

HSA combines different kinds of processing units offering different per-
formance/power consumption trade-offs, like Central Processing Units
(CPUs), Graphic Processing Units (GPUs) and Field Programmable
Gate Arrays (FPGAs), in a single system, to enable the execution of
the applications on the most appropriate/convenient kind of resource.
CPUs can efficiently run generic tasks, GPUs are optimal for massively
parallel repetitive tasks, and FPGAs can be (dynamically) configured
to provide a hardware implementation of a software description for an
efficient execution. Hence, a system aware of its underlying architecture
and the tasks characteristics and needs can exploit the predominant fea-
ture of its specific resources. Nowadays available techniques can also be
leveraged to improve the efficiency of every single used computational
resource and by doing so the overall system benefits of an even better
energy efficiency.
In the context of High Performance Computing (HPC) systems, the ap-
plication workloads have been changing through the years [19, 20, 21];
indeed, while workload used to be static and high-performance oriented,
the actual scenario is typically composed of various and flexible on-
demand computing workloads. In addiction, such new workloads have
different requirements as well, in terms of throughput, power and energy
consumption and so on. This situation requires a different approach to
face actual workloads. Again, HSAs are to the most convenient solution
to tackle such problem; indeed, thanks to their nature, HSAs may be
used to satisfy different workload goals, in terms of both performance
and power/energy consumption. For these reasons, HSAs currently in
use also in HPC systems; indeed, the top supercomputer in July 2015,
according TOP500 list [22], is Tianhe-2, a system that features both
Intel Xeon E5-2692 and Intel Xeon Phi 31S1P coprocessor [23], while
other supercomputers, like Titan and Piz Daint, are accelerated by
NVIDIA GPUs. On the other hand, HSAs appear also in July 2015
Green500 list [24], the ranking of the most energy-efficient supercom-
puters in the world. HSAs dominate the top places of the Green 500
list; indeed, the most energy-efficient supercomputer is Shoubu, a het-
erogeneous system composed of Intel Haswell CPUs [25] and PEZY-SC
[26] many-core accelerators, which also feature second and third ranked
supercomputers in this list.
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1. Introduction

1.2 Asymmetric Multiprocessing

An interesting kind of HSA are the asymmetric multiprocessor systems,
i.e. systems composed of processors with different features. The ARM
big.LITTLE technology [27] is an example of asymmetric multiproces-
sor. This solution is mainly employed in embedded systems and mobile
devices, thanks to its power and energy efficient nature. Indeed, many
mobile devices are powered by ARM big.LITTLE technology; for in-
stance, Samsung implemented such solution inside their Exynos System
on Chip (SoC) for Samsung Galaxy S4 [28], S5 [29], and S6 [30] device,
as well as Qualcomm for Snapdragon SoC (LG G4 [31], HTC One M9
[32]).
ARM big.LITTLE technology is composed of two clusters of processors:
a big cluster and a LITTLE cluster. Although both clusters share the
same Instruction Set Architecture (ISA), their pipelines are different in
terms of length and complexity, which means different power and perfor-
mance levels. As result, big cluster is able of providing high performance,
in exchange for higher power consumption, whereas LITTLE cluster is
designed to be power efficient, delivering lower performance. Therefore,
ARM big.LITTLE design allows it to satisfy two fundamental require-
ments: high compute capability and very low power consumption. In
our vision, we want to tackle the problem of managing and optimizing
the power consumption of the ARM big.LITTLE architecture.

1.3 Thesis goal

In a system where one or more applications are running, like in the
HPC context, it is crucial to guarantee the Quality of Service (QoS)
of each application, in particular when their workloads are various and
dynamic rather than static. On the ARM big.LITTLE, as well as on
other HSAs, there are no procedures that control and ensure such re-
quirements. For this reason, our thesis aims at introducing a software
policy for ARM big.LITTLE architecture, in order to both monitor and
satisfy QoS requirements, and, at the same time, optimize the system
power consumption, exploiting ARM big.LITTLE features.
To this end, we propose a workload-aware run-time resource manage-
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ment policy that exploits DVFS (combined with dynamic core assign-
ment) and task allocation (at thread level) that:

• manages power consumption;

• guarantees performance constraints of the running applications;

• is able to adapt itself to varying system load by exploiting online
performance measurements;

• balances the workload among the available heterogeneous cores.

At first, the proposed policy has been developed in high-level simulator
for fast resource management policy prototyping. Such simulator, de-
veloped in the context of EU Self-Adaptive Virtualisation-Aware High-
Performance/Low-Energy Heterogeneous System Architectures (SAVE)
Project [33], is available online at [34]. Once the policy development
and testing on SAVE Virtual Platform was completed, it has been im-
plemented and evaluated on a real development board, the Odroid XU3
[35], which is powered by the ARM big.LITTLE architecture. Finally,
the policy results were compared with the ones provided by Hetero-
geneous Multi-Processing (HMP), the state of the art heterogeneous
scheduler available on the Odroid XU3 development board.

1.4 Thesis Organization

The work presented in our thesis is organized as follows:

• Chapter 2 explains the necessary background knowledge to un-
derstand this work; in particular it introduces the HSAs, focusing
on the ARM big.LITTLE, our target architecture, and EU SAVE
Project;

• Chapter 3 presents an overview of the state of the art, showing
different solutions oriented to both reduce power/energy consump-
tion and guarantee QoS in HSAs; then, it provides an analysis of
HMP, the heterogeneous scheduler the ARM big.LITTLE platform
features;

5
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• Chapter 4 defines the problem this work wants to tackle and ex-
plains the solution we propose, i.e. a workload-aware run-time
resource management policy for the ARM big.LITTLE architec-
ture;

• Chapter 5 explains the details of the proposed policy by exposing,
step by step, its features and structure;

• Chapter 6 evaluates the results of our policy on both SAVE Virtual
Platform and on the Odroid XU3 development board, and compare
such results with HMP;

• Chapter 7 presents a general overview of the results of this thesis,
analyzes the limitations of our work, and describes possible future
works.

6



Background 2

This chapter exposes the background of this thesis work, and reviews
the main tools we are going to employ for such purpose. The chapter, at
first, introduces the HSA (Section 2.1), then analyzes the heterogeneous
architecture we are targeting (Section 2.2). The two main tools we are
going to use in this work are presented in Section 2.3 and Section 2.4.
Finally, Section 2.5 sums up the chapter and gives some hints about how
this thesis work will be developed.

2.1 Heterogeneous System Architectures

HSAs are becoming increasingly adopted in several scenarios [18, 36, 37];
in particular, they may be remarkably useful in reaching performance ef-
ficiency and controlling energy consumption, although it means a greater
system management complexity as well. For instance, it is crucial to find
the best way to allocate tasks on system resources, based on task fea-
tures.
An HSA is a single system combining different processing units (CPUs,
GPUs and FPGAs), which provide different solutions and trade-offs in
terms of performance and power consumption. For instance, FPGAs
may dynamically supply a hardware implementation of a software de-
scription, while CPUs may execute generic tasks, and, finally, GPUs are
more convenient for parallel repetitive tasks. Since the system is con-
scious of underlying architecture, it can allocate a task, according to its
characteristics, to the most suitable resource, and so exploit the resource

7



2. Background

nature and features. This results in a more efficient execution at both
performance and energy consumption ends.

2.2 ARM big.LITTLE

The HSA we focus on is proposed by ARM [38] and it is known as
big.LITTLE technology [27, 39, 40, 41]. Such solution was introduced
in 2011, and is being used in embedded systems and mobile devices,
thanks to the possibility to grant power and energy benefits to the final
device. ARM big.LITTLE was designed to address two fundamental
requirements:

• high compute capability within thermal bounds (high performance
end),

• very low power consumption (low performance end).

Following this vision, ARM big.LITTLE technology is powered by two
types of processors, resulting in a heterogeneous processing architecture.
In this section, we will describe ARM big.LITTLE architecture and main
features.

2.2.1 Architecture

ARM big.LITTLE architecture (illustrated in Figure 2.1) may have dif-
ferent processors configurations. The one we present here is the config-
uration available on Samsung [42] Exynos 5422 SoC [43], composed by
the following subsystems:

• a cluster of ARM Cortex-A15 cores [44], with a shared Level 2
cache,

• a cluster of ARM Cortex-A7 cores [45], with a shared Level 2 cache,

• a Cache Coherent Interconnect (CCI), the ARM CoreLink CCI-
400 interconnect Intellectual Property (IP) [46],

• a I/O coherent master,

8



2.2. ARM big.LITTLE

CCI-400 (Cache Coherent Interconnect)

I/O Coherent 
MasterL2 CacheL2 Cache

Cortex-A15
Core

Cortex-A15
Core

Cortex-A7
Core

Cortex-A7
Core

GIC-400

Memory Controller
Ports System Port

Interrupts Interrupts

Figure 2.1: big.LITTLE system

• a Generic Interrupt Controller (GIC), the CoreLink GIC-400 [47],
which dynamically distributes interrupts to all the cores.

In Section 2.2.1.1 and Section 2.2.1.2 we will describe more in detail the
processing clusters architecture and CCI.

2.2.1.1 Cortex-A15 and Cortex-A7 architecture

As stated previously, the ARM big.LITTLE architecture we are consid-
ering is composed by two processing clusters:

• a big cluster consisting of high performance cores (the ARMCortex-
A15),

• a LITTLE cluster consisting of low powered cores (the ARMCortex-
A7).

Since both processors support the same ISA, i.e. the ARMv7-A, they
are therefore able to handle the same instructions and the same higher-
level software applications. On the other hand, their internal micro-
architectures are different. In this way, the big.LITTLE design is able
to provide different levels of power and performance, and so satisfy the
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Figure 2.2: big.LITTLE Cortex cores pipelines

requirements previously listed.
Figure 2.2 shows the pipelines of both Cortex-A15 and Cortex-A7 pro-
cessors. In particular, Cortex-A15 leverages an out-of-order, triple issue
processor, with a 15 to 24 stages pipeline, as displayed in Figure 2.2(a).
Cortex-A7 is an in-order, non-symmetric dual-issue processor, with a 8
to 10 stages pipeline, as represented in Figure 2.2(b). Different pipeline
length and complexity result in different power and performance lev-
els. Indeed, on one hand, the Cortex-A15 delivers high performance,
but requires a high power consumption, on the other, the Cortex-A7 is
designed to be power efficient, hence its performance are lower.

2.2.1.2 Cache Coherency Interface

The idea behind the ARM big.LITTLE solution is to dynamically in-
stantiate the right task to the right processor. Since different tasks mean
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different performance and power requirements, it is crucial to allocate
them to the most suitable core family. Usually, most of the tasks can be
properly executed by one or more Cortex-A7 cores. For instance, in a
smartphone context, most of the normal telephony-related functions can
be handled by the Cortex-A7 cluster. However, in case of performance
hungry tasks, if Cortex-A7 cores cannot satisfy the requirement, then
Cortex-A15 cores are turned on. In this way, the task is migrated from
the Cortex-A7 to the Cortex-A15 cores, and so it may leverage the big
cluster and respect the requirement. Tasks may be re-allocated back to
the Cortex-A7 cores, when high performance are no longer needed. This
implies that one or more Cortex-A15 cores may be switched off, and, as
consequence, that the power consumption is reduced.
It is clear that one of the critical points of the ARM big.LITTLE archi-
tecture is the migration time, i.e. the time needed to migrate a task from
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one processing cluster to another. If the time required to switch context
was too long, the system performance would be noticeable affected. For
this reason, an ad-hoc interconnection bus, the CCI, was introduced to
transfer data among clusters. This ensures that the task execution is
not affected. Indeed, on a device at 1 GHz, the context switching is
completed in less than 20,000 clock cycles [39].
CCI relies on the AMBA AXI Coherency Extensions (ACE) protocol
[48], which extends AMBA Advanced eXtensible Interface (AXI) proto-
col and supplies a coherent data transfer at bus level [49]. AMBA ACE
protocol requires three more coherency channel, in addiction to AMBI
AXI five channels. Figure 2.3 illustrates how CCI system works in a
coherent data read from Cortex-A7 cluster to Cortex-A15 cluster. In
particular:

1. Cortex-A7 cluster issues a Coherent Read Request through its own
RADDR channel. CCI is in charge of taking such request to
Cortex-A15 cluster ACADDR to snoop into its cache.

2. When Cortex-A15 cluster receives the request, it checks the data
availability and returns such information through CRRESP chan-
nel. If the data is really available, it is placed on the Cortex-A15
cluster CDATA channel.

3. Then, CCI transfers the data from Cortex-A15 cluster CDATA
channel to Cortex-A7 cluster RDATA channel. This means a cache
linefill in Cortex-A7 cluster.

4. Finally, Cortex-A7 cluster returns a Data Ack to CCI to state the
correct data transfer.

Thanks to AMBA ACE protocol, full coherency between Cortex-A15 and
Cortex-A7 cluster is ensured, without external memory transactions.

2.2.2 Schedulers

The three main schedulers used on ARM big.LITTLE architecture are:
Cluster Migration (Section 2.2.2.1), CPU Migration (Section 2.2.2.2) and
Global Task Scheduling (GTS) (Section 2.2.2.3), as shown in Figure 2.4.
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Figure 2.4: big.LITTLE schedulers

2.2.2.1 Cluster Migration

Cluster Migration scheduler groups the cores according to their type;
therefore, there are two clusters of cores: the big cluster and the LITTLE
cluster. This implies that the Operating System (OS) can see one of
two processor cluster, instead of all the cores actually available on the
big.LITTLE architecture.
Cluster Migration scheduler allows that only one cluster can be active
at the time, while the other is powered off. Hence, tasks are allocated
on either big cores cluster or LITTLE cores cluster. It is clear that this
approach does not scale properly, since, if a CPU intensive task and a
light one are running, both must be allocated on the same cluster, while
each task should be allocated to the most suitable core, according to the
task characteristics.

2.2.2.2 CPU Migration

CPU Migration scheduler requires that the number of big cores is equal
to the number of LITTLE cores. The idea is similar to Cluster Mi-
gration, but, instead of clustering cores by type (a big and a LITTLE
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cluster), here each big core is paired to a LITTLE core, as illustrated in
Figure 2.4(b). In this way, the OS does not see the single cores, but the
pairs as logical processing units.
In each pair, there is only one active core at the time, whereas the other
is switched off. This means that each pair may be either a big or a
LITTLE core, and, according to the workload, the most suitable core is
dynamically activated by DVFS.

2.2.2.3 Heterogeneous Multi-Processing

ARM GTS implementation, also known as ARM big.LITTLE HMP,
does not require an equal number of big and LITTLE cores. Indeed, as
displayed in Figure 2.4(c), the cores are no longer grouped in pairs, hence
the OS task scheduler sees all the available cores and understands their
different computing and power features (big or LITTLE). The scheduler
analyzes the performance required by each thread, the current workload
on each processor, and, thanks to statistical data and heuristics, is able
to allocate the thread to the most suitable core and balance threads be-
tween big and LITTLE cores. Like CPU Migration, the unused cores, or
a whole cluster, are turned off. However, differently from CPU Migra-
tion, the system can deploy all cores, instead of half of them. Moreover,
ARM big.LITTLE HMP can isolate intensive threads on big cores and
light threads on LITTLE cores. Finally, ARM big.LITTLE HMP tar-
gets interrupts to individual cores, while CPU Migration migrates all
the context, including interrupts, between big and LITTLE cores.
In order to properly migrate threads from one core to another, ARM
big.LITTLE HMP uses a tracked load metric system based on two con-
figurable thresholds: the up migration threshold and the down migration
threshold. For instance, if the average tracked load of a thread running
on a LITTLE core surpasses the up migration threshold, then ARM
big.LITTLE HMP may decide to move such thread to a big core. On
the other hand, when the average tracked load of a thread allocated
on a big core falls under the down migration threshold, the thread is
may be migrated to a LITTLE core. Therefore, at cluster level, ARM
big.LITTLE HMP is responsible for properly allocating and, in case, mi-
grating thread between big and LITTLE clusters. Within clusters, stan-
dard Linux scheduler Symmetric Multi-Processing (SMP) balances the
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load across the cluster cores. Besides, SMP has been recently updated
in Linux 4.3, to make its metric more precise and more representative
[50].
The tracked load metric system collects information according to the
processor frequency. This means that ARM big.LITTLE HMP and
DVFS mechanisms can easily cooperate without problems. Moreover,
ARM big.LITTLE HMP task migration is supported by a set of soft-
ware thread affinity management techniques. In particular:

fork migration: when a new thread is created, there is no tracked
load history, hence it is allocated on a big core, so that it can be easily
migrated to a LITTLE cores in case of a light workload thread;

wake migration: when a task moves from idle to run state, its
tracked load history is analyzed and, usually, the task is assigned to
the cluster it used to run on;

forced migration: In case of threads that do not sleep, or not so
often, their tracked load history is periodically checked and they are
migrated according to the configurable thresholds system;

idle-pull migration: when no task is allocated to a big core, load
metrics of tasks running on LITTLE cluster are analyzed and, if a
task exceeds the up migration threshold, it is migrated to the idle
big core, otherwise it is switched off;

offload migration: when LITTLE cores are idle or under-utilized,
threads on big cores are periodically migrated downwards to exploit
unused compute capacity, while they still remain eligible for up mi-
gration.

2.3 Odroid XU3

The development board used in this thesis work is the Odroid XU3
[35]. Such board, powered by the ARM big.LITTLE technology, is a new
generation of computing device, which includes powerful and energy-
efficient hardware and smaller form factor.
The main specifications of Odroid XU3 board are listed in Table 2.1.
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Figure 2.5: Odroid XU3 development board

architecture Samsung Exynos 5422 SoC

CPUs
ARM Cortex-A15 1.9GHz quad core
and ARM Cortex-A7 1.3GHz quad core

GPU ARM Mali-T628 MP6 [60]

RAM
2Gbyte LPDDR3 at 933MHz (14.9GB/s memory
bandwidth), PoP stacked

storage eMMC5.0 HS400 Flash Storage

interfaces
1 x USB 3.0 Host, 1 x USB 3.0 OTG,
4 x USB 2.0 Host, HDMI 1.4a and DisplayPort 1.1

other integrated power consumption monitoring tool

Table 2.1: Odroid XU3 specifications

The Odroid XU3 board can run various distributions of Linux, includ-
ing the Ubuntu OS [51] and the Android OS [52]. In particular, the
Linux distribution we used is Lubuntu 14.04 [53].
The Odroid XU3 feature we are interested in the most is HMP sched-
uler. Indeed, in September 2013, Samsung announced that HMP so-
lution [54, 55, 56] would be implemented for their architectures [57],
starting from Exynos 5420 [58]. In previous architectures, like Exynos
5410 [59], Samsung used Cluster Migration scheduler, but it was not the
right choice to fully maximize the benefits of ARM big.LITTLE solution.
In ??, we will analyzed HMP behavior when it deals with multi-threaded
CPU intensive tasks.
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2.4 EU SAVE Project

SAVE is a European collaborative research project [33, 61, 62]. Such
project is funded by the Seventh Framework Programme [63], and it aims
at developing software/hardware technologies able to efficiently leverage
HSAs.
The goal of SAVE project is to develop a system able to autonomously
choose the most convenient computing resource (e.g. CPU, GPU or
FPGA) where a task has to be executed. This is done by exploiting
self-adaptivity and hardware-assisted virtualization. Such system aims
at ensuring requirements of actual HPC scenario characterized by vari-
ous and flexible on-demand computing workloads, rather than static and
high-performance oriented as they used to be. SAVE project developers
decided to focus on HSAs since they are the most suitable architecture
capable of satisfying user-defined optimization goals (like performance,
energy, reliability and so on). The developers’ vision results in an archi-
tecture that is more dynamic and adaptable to workload features, while
heads for energy consumption minimization.

2.4.1 SAVE Virtual Platform

The other tool we are going to employ in this thesis work is SAVE Vir-
tual Platform [34, 64], a HSA simulator.
Since heterogeneity implies a high cost in both design and system man-
agement complexity, it is critical to define novel and innovative run-time
resource management policies capable of, autonomously, distribute work-
loads onto convenient resources, in order to satisfy tasks Service Level
Agreement (SLA), like throughput, power/energy consumption. How-
ever, implementation and, especially, validation of such policies is not
an easy task. For instance, it requires the availability of the real tar-
get platform for the implementation, although this may lead to a policy
limited to that particular target platform. Moreover, once the run-time
management policy has been implemented, it is necessary to port and
test it on other different architectures. Summing up, it is clear that a
fast design and prototyping tool for run-time resource management poli-
cies on HSAs may be useful. In this way, the designers can concentrate
on the policy implementation, without considering secondary issues, and
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so easily achieve a general and consistent validation of the policy.
SAVE Virtual Platform is a system-level simulation framework imple-
mented in SystemC and Transaction Level Modeling (TLM) [65] (Fig-
ure 2.6). Such framework is composed by a set of functional models for
the HSA. More in detail, applications are represented as task graphs,
where the computational kernel nodes may have different implementa-
tions based on the available resources. On the other hand, SystemC
modules model the pool of generic resources (e.g. Cortex-A15 CPU,
Cortex-A7 CPU, Mali GPU), and, based on cycle-accurate simulators
and application execution profiling, their performance and power con-
sumption. Thus, SAVE Virtual Platform allows to configure and simu-
late a complex homogeneous or heterogeneous system architecture and
execute different workloads on the available processing units. Finally,
the designer can implement and test run-time resource management poli-
cies thanks to the governor module, which is in charge of allocating the
proper computational units to the applications.
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2.5 Summary

In this chapter we introduced the main tools we are going to exploits for
this thesis work. In particular, we presented the Odroid XU3 develop-
ment board and the SAVE Virtual Platform. In the vision of this work,
we are going to implement a workload-aware run-time resource manage-
ment policy for ARM big.LITTLE architecture. Such policy is designed
for multi-threaded high CPU intensive tasks, and will take advantage of
DVFS techniques in order to both guarantee QoS and, since we are us-
ing a heterogeneous architecture, the most power-efficient configuration,
where a configuration is a combination of cores (big and LITTLE) num-
ber and frequency. Moreover, we will leverage HMP weak points in deal-
ing with multi-threaded applications (as we will discuss in Chapter 3),
so to improve our run-time resource management policy performance,
like throughput, power and energy consumption. Therefore, our policy
is a combination of DVFS techniques and workload analysis in order
to properly schedule one or more tasks on the available resources. The
policy will be implemented and tested on the SAVE Virtual Platform
and then validated on the Odroid XU3 development board.
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Related works 3

This chapter both presents the works that contributes to the state of the
art in the field, with an emphasis on works about DVFS management
on HSA. and provides an analysis of HMP scheduler. The proposal of
this thesis is a workload-aware run-time resource management policy
designed for HSA, like the ARM big.LITTLE architecture. In particu-
lar, our policy aims at satisfying QoS requirements of multi-threaded
computational-intensive applications, while reducing power consump-
tion. In order to achieve such result, DVFS technique is employed to
set the system in a power efficient configuration suitable for respecting
the applications goals. The knowledge of the behavior and scalability
of multi-threaded applications may be used to enhance performance,
in terms of throughput, power and energy consumption of such appli-
cations. For this reason, we ran several tests on the Odroid XU3 in
order to profile the behavior of HMP scheduler in case of multi-threaded
applications, i.e. the applications we want to target. In this way, we
improved our policy and designed it to properly allocate and distribute
workload among the available resources. In this way, we avoid to use
HMP, the state of the art scheduler for ARM big.LITTLE architecture,
since we can achieve better performance at both throughput and power
consumption ends.
In Section 3.1 we present the main technique we are going to exploit
for this work (DVFS), and we report some works that prove its bene-
fits. In Section 3.2 we analyze works that use DVFS techniques on HSA,
in particular on the ARM big.LITTLE, out target architecture. Sec-
tion 3.3 reports an interesting work that may be similar and related to
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the one we propose, but it is still under development. Section 3.4 sum-
marizes the content of this chapter and compare the most interesting
works with our policy. Section 3.5 presents the throughput analysis of
a multi-threaded application. Section 3.6 is about the first prototype of
our solution we found to both balance the workload among the cores and
improve performance. Section 3.7 shows two attempts of enhancement
for our solution. Finally, Section 3.8 reviews the analysis we performed
on HMP scheduler.

3.1 Dynamic Voltage and Frequency Scaling

One of the main techniques for improving energy efficiency in embedded
systems is DVFS [66]. DVFS is a technique used to switch the voltage
and/or frequency of a system based on performance requirements, like
throughput, power or energy consumption, and so on. In CMOS cir-
cuits, power scales proportionally to V 2f (being V the voltage and f

the frequency), hence, if we lower frequency, the voltage required to by
the circuit can be lowered too, leading to energy saving. For this reason,
such technique is used along with power-aware scheduling techniques.
In literature, there exist many works that exploit DVFS techniques, ei-
ther by simply analyzing system behavior as the frequency and voltage
change, or by implementing algorithms that take advantage of such tun-
ing. Moreover, DVFS may be applied to different resources, like CPUs
and GPUs. Abe et al. [67] provided a power and performance analysis
of systems accelerated with GPUs. The authors demonstrated that the
knowledge of the workload characteristics mat be used to proper tune
both GPU core and memory clock frequencies in order to improve energy
efficiency. The authors reported a 28% reduction of the system energy
on a matrix multiplication benchmark by scaling down the memory fre-
quency with a NVIDIA GeForce GTX 480 [68].
In the context of HPC systems, Ge et al. [69] analyzed and compared
how DVFS can impact, in terms of performance and energy consump-
tion, on CPU and GPU applications. The authors relied on a power
aware heterogeneous system including dual Intel Sandy Bridge CPUs
[70] and NVIDIA K20c Kepler GPU [71]. Their work showed that DVFS
in CPU and GPU computing behaves similarly in terms of performance
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(higher states imply higher performance) and differently in terms of en-
ergy efficiency. Moreover, for computational intensive applications with
large data sizes, GPUs turned out to require the same amount of energy
in almost every DVFS state, hence the highest DVFS state is optimal in
terms of performance and energy consumption.
Mei et al. [72] explored the effects of DVFS on GPUs energy consump-
tion with 37 benchmark applications. The authors achieved an average
of 19.28% energy reduction, with respect to the default setting, while
losing less than 4% in performance. Moreover, the authors proved that
core and memory frequency scaling strictly depends on GPU application
characteristics.
Let us now focus on works that directly implemented DVFS techniques in
their proposed solutions. Spiliopoulos et al. [73] extended gem5 simula-
tor [74] in order to turn it into a complete hardware-software framework
suitable for full-system DVFS. In particular, the authors added the no-
tion of clock and voltage domains, along with their managers, to gem5
simulator, on both hardware and software sides. Moreover, gem5 was
extended with a power-estimation framework to evaluate the efficiency
of various DVFS policies. Finally, the authors showed that Linux and
Android cpufreq governors may be easily integrated in their framework.
Deng et al. [75] presented MultiScale, a system that, relying on soft-
ware policies and hardware mechanisms, coordinates DVFS among mul-
tiple memory controllers in multi-core server processors. At first, Multi-
Scale monitors application bandwidth requirements across memory con-
trollers, then, it applies heuristics to find a frequency combination able
to reduce to minimum the overall system energy consumed by memory
system. The authors demonstrated that MultiScale is particularly effi-
cient in systems with traffic skewing scheduling and allocation policies.
Choi et al. [76] propose a intra-process DVFS policy for non real-time
applications executing on embedded systems. Such DVFS policy ex-
ploits data about external memory access statistics in order to build a
regression model that helps the CPU to choose the proper energy effi-
cient combination of voltage and frequency able to respect soft timing
constraints of upcoming workloads. The authors implemented this pol-
icy on an XScale-based embedded system and evaluated it with actual
hardware measurements on a set of applications. The policy resulted to
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save more than 70% of CPU energy (with 12% of performance degrada-
tion) in case of memory-bound applications, while 15-60% CPU energy
was saved for CPU-bound applications (5-20% of performance penalty).
Saewong and Rajkumar [77] proposed four different DVFS schemes aimed
at energy saving for embedded systems. Such schemes are designed for
different hardware configurations according. For instance, one scheme
chooses one single frequency able to complete the task within its dead-
line and to minimize power consumption. Another scheme works like
the previous by it is priority based, hence it may create extra slack by
running the other tasks at a frequency higher than the minimum they
need.

3.2 DVFS on HSA

In this section, we present works on DVFS that have been developed for
HSA.
Kianzad et al. [78] proposed a framework called CASPER based on ge-
netic algorithms. Such framework is designed for both homogeneous and
heterogeneous architectures and integrates task scheduling and DVFS in
order to generate a schedule capable of respecting deadline and minimiz-
ing power consumption. Experimental results showed that the proposed
framework is able to save averagely about 8% more energy with respect
to non-integrated solutions that exploit the same power management
techniques. Yang et al. [79] proposed an energy-efficient scheduler to
map real-time applications on HSA. Such approach is composed by two
phases: the former one is a design time exploration based on Pareto
curves that produces a set of schedules, the latter exploits a low com-
plexity scheduler that selects the optimal combination of working points
in terms of performance and energy consumption.
Other works focused on our target architecture, the ARM big.LITTLE,
and either characterized its performance and power consumption, or de-
veloped DVFS and scheduling solutions for such architecture.
Pricopi et al. [80] developed models to estimate both performance and
power consumption of workloads on a ARM big.LITTLE architecture.
In particular, their models predict the behavior of an application on a
target core, given its execution profile on the current core. Moreover,
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the proposed model evaluates cache miss and branch misprediction rates
on the target core.
Yoo [81] characterized a model for power-performance scaling in ARM
big.LITTLE architecture, and empirically validated such model using
Dhrystone benchmark.
Imes and Hoffmann [82] investigated energy oriented resource alloca-
tion strategies for different embedded platforms where performance con-
straints have to be met and energy consumption minimized. The authors
focused on both homogeneous (Intel Haswell [25]) and single-ISA het-
erogeneous multi-core systems (ARM big.LITTLE), and found out that
different platforms require different resource allocation strategies. In
particular, the former requires Race-to-Idle heuristics to achieve energy
efficiency, while the latter requires Never-Idle heuristics. Moreover, a
wrong strategy could double to energy consumption with respect to the
optimal solution. This work demonstrates that, in case of an available
QoS, it is a good procedure to provide the minimum throughput re-
quired, instead of a full speed solution; hence, a system able to adapt
itself to the application goal, as the one we propose, is needed.
Lukefahr et al. [83] proposed Composite Cores, an architecture to reduce
switching overheads between different cores, and so reducing energy con-
sumption due to core migration. Such architecture pairs LITTLE and
big compute µEngines in order to increase both energy efficiency and
performance, while a controller handles the µEngine switching in order
to both reduce energy consumption, and constrain performance loss to
a configurable bound. Differently from our proposed solution, this work
does not exploit DVFS techniques and, most important, employs only
one µEngine at the time, instead of leveraging all the available resources
simultaneously.
Gaspar et al. [84] presented a framework for HSA that performs a real-
time control of multi-threaded applications execution to reach their per-
formance goals. Such framework models the underlying architecture, as
well as the running applications, in order to achieve better results in
terms of both performance and power consumption by scaling the sys-
tem resource allocation and frequency. This was developed on Odroid
XU+E [85] development board featuring ARM big.LITTLE processor,
hence the system resource allocation is done relying on Odroid XU+E

25



3. Related works

cluster migration scheduler. Finally, the authors reported a 49% en-
ergy saving, while the relative performance error decreased from 2.801
to 0.168. Like our proposed solution, this work guarantees the QoS,
takes advantage of DVFS techniques and distributes the workload in a
more convenient and efficient way. However, this work exploits the com-
puting resource at cluster level only, since it relies on cluster migration
scheduler.
Muthukaruppan et al. [86] developed a hierarchical power management
framework for asymmetric multi-core systems. The work was developed
on a Versatile Express development platform [87], powered by ARM
big.LITTLE architecture. Such framework, based on control theory, is
built as an extension of Linux completely-fair scheduler, and is designed
to handle multiple controllers in order to satisfy QoS constraints and
minimize power consumption. Also this work is similar to the one we
proposed. Nonetheless, this work, like the previous one, is based on
cluster migration scheduler, and so it exploits either A15 cluster or A7
cluster, but not both of them.
Kim et al. [88] presented a work on ARM big.LITTLE architecture, and,
in order to take advantage of its features, improved Linux kernel load
balancing algorithm by including information about processor utiliza-
tion. In this way, the new scheduler results more energy efficient than
the standard one (up to 11.35% more efficient), while the performance
are almost not affected. Differently from our work, this one does not
implement DVFS techniques or aims at satisfying a performance goal,
but focuses on reducing energy consumption. Although it is not based
on cluster migration scheduler, it relies on CPU migration scheduler,
hence the system couples each big core with a LITTLE core, composing
a set of virtual CPUs where only one core of the couple can be used at
the time.
Holmback et al. [89] presented a performance monitor based power man-
ager, designed for cluster switched ARM big.LITTLE architectures. In
particular, such manager allocation policy is based on application per-
formance instead of workload levels, since workload is not a sufficient
metric for big.LITTLE systems. In this way, the system is not forced
to Race-to-Idle anymore and can run on the lowest possible clock fre-
quency, without performance reduction. The authors showed that their
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power manager is capable of obtaining an impressive energy reduction
with a small performance degradation. This work is similar to [84, 86],
in terms of content, but does not propose a goal oriented policy, and still
exploits cluster migration scheduler.

3.3 Energy-Aware Scheduling

The idea of an Energy-Aware Scheduling (EAS), i.e. a scheduler that
takes into account energy information, to be the future way to go [90, 91,
92, 93]. In this way, energy-aware Linux kernel scheduler may be aware
of the energy cost and make more intelligent decisions, also thanks to
the knowledge of the underlying hardware platform.
Following this vision, the main idea proposed by ARM is a new de-
sign including CPUfreq [94] decisions, CPUidle [95] awareness and ARM
big.LITTLE task placement in a completely generic way. The task sched-
uler goal is to optimize the energy cost corresponding to the different
task allocation decisions by taking all possible processor clock frequen-
cies and sleep states into account. In this way, the scheduler may analyze
if it should migrate a task from a CPU to another, or leave the task on
that CPU and scale frequency instead. In order to achieve such result,
it is necessary to build a table containing relative processor computing
capability and energy consumption for every possible configuration of
different systems.
The proposed solution of course requires important changes in Linux
kernel parts, hence its implementation may not be so straight-forward.
For this reason, Linaro proposed two different tools. The first tool is
a workload simulator that allows the users the reproduce application
behaviors interacting with the task scheduler. The synthetic workloads
generated on such simulator may be tested, measured and shared with
other users to guarantee testing uniformity. On the other hand, the
second tool is designed to collect statistical information about various
processor sleep states. Moreover, the tool logs the changes in proces-
sor clock frequency. In this way, if a power model is paired with the
scheduler, the tool can provide valuations of the energy consumed by
the system in that particular configuration. The idea proposed for the
EAS is very similar to the solution proposed in this thesis, therefore, it
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work goal oriented DVFS task allocation resource usage

[83] X X virtual CPU

[84] X X X cluster

[86] X X X cluster

[88] X virtual CPU

[89] X X cluster

our proposal X X X all

Table 3.1: Relevant works summary

may state (in a theoretical way, at least) the goodness of our approach.

3.4 State Of The Art Summary

In this chapter we have presented some of the most interesting works
related to the DVFS in both homogeneous and heterogeneous systems.
In particular, after an introduction to DVFS and the benefits of such
technique ([67, 69, 72, 73, 75, 76, 77]), we focused on works that are more
related to the purpose of this thesis. We analyzed works about DVFS
on HSA ([78, 79]), and, specifically, on ARM big.LITTLE architecture.
In Chapter 4, we will characterize ARM big.LITTLE system in terms of
both performance and power consumption, like [80, 81] already did, and
we will use such analysis to build our policy.
It is clear that the novelty of our work with respect to the one we pre-
sented is the fact that our policy is able to employ all the available
resource on the ARM big.LITTLE architecture. This is a consequence
of the HMP scheduler included in our system, which is, as we stated in
Chapter 2, the most suitable scheduler for this architecture. Therefore,
we will compare the results of our workload-aware run-time resource
management policy with HMP scheduler, since it is the only state of the
art work that takes advantage of all the available resources on the ARM
big.LITTLE platform.

In this chapter, we provide an analysis of HMP scheduler. The knowl-
edge of the behavior and scalability of multi-threaded applications may
be used to enhance performance, in terms of throughput, power and
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energy consumption of such applications. For this reason, we ran sev-
eral tests on the Odroid XU3 in order to profile the behavior of HMP
scheduler in case of multi-threaded applications, i.e. the applications
we want to target. Section 3.5 presents the throughput analysis of a
multi-threaded application. Section 3.6 is about the first prototype of
our solution we found to both balance the workload among the cores and
improve performance. Section 3.7 shows two attempts of enhancement
for our solution. Finally, Section 3.8 reviews the analysis we performed
on HMP scheduler.

3.5 Throughput Analysis

For these tests, we will focus on Black Scholes (BS) [96] benchmark,
i.e. an implementation of Black and Scholes model, a mathematical
model of financial market, widely used in global financial markets to
calculate the theoretical price of European options (a type of financial
security). We profiled BS benchmark in different configurations. We
define a configuration as a tuple < NB, fB, NL, fL >, where:

1) NB is the number of used big cores,

2) fB is the frequency of big cores,

3) NL is the number of used LITTLE cores,

4) fL is the frequency of LITTLE cores.

We tested how BS scales as the number of cores and frequency change.
In particular, we focused only on configurations that use only either big
cores or LITTLE cores. In this way, we wanted to find a ratio between
big and LITTLE throughput performance. For each subset of big/LIT-
TLE cores, we tested all possible frequencies, starting from 800MHz, to
big/LITTLE maximum frequency (1900MHz/1300MHz), with a step of
100MHz. Hence, the dimension of the configuration space we analyzed is:

|NB| × |fB|+ |NL| × |fL| = 4× 12 + 4× 6 = 72
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The command cpufreq-set [97] allows to change the frequency of either
big or LITTLE cores. On the other hand, the command taskset [98]
allows to set or retrieve the CPU affinity of a new command or a running
one. Hence, we can decide on which core we want to run an application.
BS kernel is performed 300 times, while each kernel instance executes
4000000 options. BS benchmark is parallelized by OpenMP Application
Programming Interfaces (APIs); in particular, OpenMP uses 8 threads
by default for each kernel execution. As we stated in Chapter 4, the
results of our tests showed that BS is a well-balanced benchmark, which
scales almost ideally with the number of used cores (when we employ
only one cluster at the time). In Figure 3.1 we reported again BS per-
formance chart.
We can notice that 1 big core at 1900MHz, ideally, performs as 2 LIT-
TLE cores at 1200MHz. As well, 2 big cores at 1900MHz ideally perform
as 4 LITTLE at 1100MHz. Therefore we can use this information in or-
der to have a better mapping of threads on big and LITTLE cores. In
particular, for each thread we map on a LITTLE core, we should map 2
threads on a big core.
Finally, when we tested BS on all the other configurations, we no-
ticed weird behavior of HMP in all the configurations of this form:
< 1, fB, NL, fL >, with NL ≥ 1. In particular, although a number
from 1 to 4 of LITTLE cores was available, HMP scheduled the task
on the big core only. On the other hand, in all the other configurations
different from < 1, fB, NL, fL >, HMP performs properly. Such final
analysis was carried out using process and resource viewers, like htop
[99]. This unexpected behavior suggested us that HMP has difficulties
in dealing with multi-threaded applications, in particular when they are
parallelized on big and LITTLE cores at different frequencies. Our idea
is to enhance our run-time resource management policy in order to bal-
ance workload by properly spread the instantiated threads among the
cores according to a mapping ratio.
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Figure 3.1: Black Scholes throughput as frequency and cores change

3.6 Thread Mapping

We have seen so far that it is possible to find a ratio between big and LIT-
TLE cores throughput performance. In BS case, this ratio is close to 2.
Hence, we want to use such value and manually map threads to big/LIT-
TLE cores. Specifically, when we map 1 thread on a LITTLE core, we
map 2 threads on a big core. The default number of threads available for
our architecture is 8. When a perfect mapping is not available, we tried
different mappings in order to find the most suitable for that configura-
tion. Linux provides APIs able to set the affinity of a thread to a certain
core. The command is sched_setaffinity(tid, sizeof(set), &set)
[100], where:

• tid is the thread ID,

• set is a variable of type cpu_set_t and represents the core the
thread has to be mapped to.

For our tests, we set core frequency to 1900MHz for big cores and
1300MHz for LITTLE cores. This because the frequencies of LITTLE
cores we observed having similar behavior, in terms of throughput, to
big cores vary. Hence, in first approximation, we decided to set LITTLE
cores frequency to their maximum, as well as big cores frequency.
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The configurations we are going to consider in these tests are the ones
of this kind: < NB, 1900, NL, 1300 >. In particular, we split them in
two subsets:

• Critical Configurations, defined by the tuple:
< 1, 1900, NL, 1300 >, with NL ≥ 1,

• Generic Configurations, defined by the tuple:
< NB, 1900, NL, 1300 >, with NB > 1 and NL ≥ 1.

The former are the configurations where we noticed that HMP does not
spread the workload over the cores available, the latter are the ones
where HMP works properly. For each subset of configuration, we test
HMP versus our solution, which means manually mapping threads to
big/LITTLE cores, with respect to the ratio we previously found. Fi-
nally, we compare the results of our tests in terms of throughput, mea-
sured as stocks per second (sps), execution time (second), power con-
sumption (watt), energy consumption (joule), and, finally, throughput
over energy consumption (sps / joule) as a cumulative measure of all the
previous metrics. Power and energy consumption measures represent
the consumption of the whole system.

3.6.1 Critical Configurations Tests

Here we present the tests run on Critical Configurations, i.e. configu-
rations whose form is < 1, 1900, NL, 1300 >, where NL ≥ 1. In such
configurations, HMP does not perform in a proper way. In other words,
HMP does not parallelize the workload over the cores available, but it
runs the task on the big core only. As consequence, the application
throughput is lower than what it could actually be. For this reason, we
want to see if, manually allocating threads on cores, we can improve the
application throughput.

3.6.1.1 1 big core - 3 LITTLE cores

In configuration < 1, 1900, 3, 1300 >, since a perfect mapping was not
possible, we tried two mappings:

1) 2 threads on 1 big core, 2 threads on each LITTLE core,
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2) 4 threads on 1 big core, 2 threads on 1 LITTLE core, and 1 thread
on each of the remaining 2 LITTLE cores.

The results of the tests are the following:

throughput: both our solutions surpass HMP scheduler in terms
of throughput (Figure 3.2(a)). Specifically, HMP throughput, on
average, is 8.28 × 105, while our mappings throughput are, respec-
tively, 20.17× 105 and 16.46× 105. This means that, in this Critical
Configuration, one of our mappings can achieve a 2.44X speedup.

power consumption: HMP scheduler is not the most power effi-
cient solution (Figure 3.2(b)); indeed, our first mapping consumes,
on average, 2.07W, our second mapping 2.29W, and, finally, HMP
2.19W. If we consider the execution time, HMP is the slowest solu-
tion (374s), whereas our mappings take 154s and 189s.

energy consumption: thanks to their execution times and, for the
first mapping, also its power consumption, the energy required by
our mappings is quite smaller than HMP (Figure 3.2(c)). In partic-
ular, HMP energy consumption is 1638.30J, instead our mappings
consume, respectively, 642.47J and 869.38J.

throughput-energy ratio: again, the ratio shows that our solu-
tions are overall more efficient than HMP (Figure 3.2(d)). The ratio
values are, for our mappings, 3139.87 and 1893.39, while, for HMP,
505.04.
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3.6.1.2 Critical Configurations Summary

We have seen that HMP scheduler has a strange behavior in the Crit-
ical Configuration we tested. The same behavior can be observed in
Critical Configurations < 1, 1900, 1, 1300 >, < 1, 1900, 2, 1300 > and
< 1, 1900, 4, 1300 >. Figure 3.3 shows the same tests performed on
Critical Configurations < 1, 1900, 1, 1300 >, < 1, 1900, 2, 1300 >, while
the results of tests on Critical Configuration < 1, 1900, 4, 1300 > are
reported at the end of the chapter in Table 3.2, as well as all the other
tests results.
In all the cases, our thread mappings result in better throughput (around
2X speedup in most of the cases). Although some mappings consume
few hundred mWatts more than HMP, this does not impact the overall
energy consumption since execution time of our mappings is impressively
shorter than HMP. As consequence, our solutions energy consumption is
remarkably smaller than HMP. As well, throughput-energy ratio, which
indicates the goodness of one solution with respect to another, always
promotes our thread mapping against HMP.
It is interesting to highlight that HMP throughput, execution time,
power consumption, energy consumption, and throughput-energy ratio
almost do not change in all the 4 configurations we tested. Just config-
uration < 1, 1900, 4, 1300 > has slightly better throughput. This means
that having 1 to 4 LITTLE cores available, in addiction to 1 big core,
makes quite no difference to HMP scheduler.
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3.7 Enhancing Thread Mapping

We performed tests on Generic Configurations < 2, 1900, 2, 1300 > and
< 4, 1900, 4, 1300 > (the results are reported in Table 3.2). From these
tests, it is evident that, when we are dealing with Generic Configura-
tions, HMP performs better than our thread mapping solution, in terms
of both throughput and execution time, although our mappings power
consumption is smaller than HMP, as well as energy consumption (for
some mappings). Hence, we need to improve our mapping solution if we
want to deal with Generic Configurations.
In this section, we present the enhancements we introduced in our thread
mapping solution in order to improve our performance, particularly in
terms of throughput. In Section 3.7.1, we tested two Generic Configu-
rations: < 2, 1900, 2, 1300 > and < 3, 1900, 2, 1300 >. The goal was to
have a perfect mapping according to our ratio. Therefore, when it was
necessary, we changed the number of usable threads.
Finally, we also tried to exploit OpenMP dynamic scheduler in order
to check if we could improve the throughput of our perfect mappings.
While OpenMP static scheduler divides the loop into equal-sized chunks,
or, at least, as equal as possible, OpenMP dynamic scheduler exploits
internal work queue to assign each thread a chunk-sized block of the loop
iterations. Besides, at the end of a thread execution, the thread pops
the next block from the top of the work queue. Since this solution did
not provide an improvement in terms of the metrics we are considering,
the results of such tests are directly reported in Table 3.2.

3.7.1 Perfect Mapping

Here, we present the perfect mapping tests run on Generic Configu-
rations < 2, 1900, 2, 1300 > and < 3, 1900, 2, 1300 >, where we used
a perfect mapping of threads on the available cores, according to the
ratio we found for BS benchmark. While in the former configuration
we changed the number of usable threads, the latter configuration was
already suitable for this goal.
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3.7.1.1 2 big cores - 2 LITTLE cores

Since for configuration < 2, 1900, 2, 1300 > a perfect mapping with 8
threads was not available, we set the number of usable threads to 6.
Hence, we ran the tests with the following schedules:

1) HMP with 8 and 6 usable threads,

2) 2 threads on each big core, 1 threads on each LITTLE core.

The results of the perfect mapping test for the Generic Configuration
< 2, 1900, 2, 1300 > are the following:

throughput: 6-threads HMP and our perfect mapping have, on av-
erage, throughput almost identical to 8-threads HMP (Figure 3.4(a)).
In particular, while 8-threads HMP throughput is 24.73 × 105, 6-
threads HMP throughput is 24.50 × 105, and our perfect mapping
throughput is 24.69×105. In terms of slowdown, for 6-threads HMP
it is 0.991X, for our perfect mapping it is 0.999X.

power consumption: both 6-threads HMP and our perfect map-
ping power consumption are slightly smaller than 8-threads HMP
(Figure 3.4(b)); indeed, while 8-threads HMP power consumption
is 3.48W, 6-threads HMP requires, on average, 3.46W, and our per-
fect mapping averagely consumes 3.45W, which is higher than the
power consumed by the previous mappings for this Generic Configu-
ration. If we consider the execution time, 8-threads HMP is still the
best solution (122s), while the time needed by 6-threads HMP and
our perfect mapping to complete the benchmark is nearly the same
(respectively, 127s and 126s). The execution time of our perfect
mapping is definitely shorter than the one required by our previous
mappings.

energy consumption: since the power consumption our the three
solutions we are considering in this test are very similar, the energy
consumption mainly depends on the execution time (Figure 3.4(c)).
As consequence, 8-threads HMP is still the most energy efficient so-
lution (856.06J), instead 6-threads HMP is the most energy-hungry
solution (886.28J). Finally our perfect mapping consumes 872.39J,
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and, due to the higher power consumption, such value is higher than
the energy consumed by the previous mappings.

throughput-energy ratio: again, 8-threads HMP results to be the
most efficient schedule, according to this metric (Figure 3.4(d)). On
one hand, 8-threads HMP throughput-energy ratio is 2888.39, on
the other, 6-threads HMP ratio value is 2763.97, and our perfect
mapping ratio value is 2830.06, an enhancement with respect to the
previous mappings.

This test shows that, when we can exploit a perfect thread mapping,
our solution is capable of reaching and overtaking HMP performance.
Indeed, our perfect mapping solution is superior to 6-threads HMP so-
lution in each metric we considered, even though some values are very
close. On the other hand, 8-threads HMP has still better performance
than our solution, although our perfect mapping performance are similar
to 8-threads HMP than our previous mappings for this Generic Config-
uration.
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3.7.1.2 3 big cores - 2 LITTLE cores

Configuration < 3, 1900, 2, 1300 > provides a perfect thread mapping,
which is: 2 threads on each big core, 1 thread on each LITTLE core.
Here, we introduce the results of the tests for Generic Configuration
< 3, 1900, 2, 1300 >:

throughput: differently from previous Generic Configuration tests,
our perfect mapping is able to surpass HMP performance in terms of
throughput (Figure 3.5(a)). Specifically, HMP throughput is, on av-
erage, 28.75× 105, whereas our perfect mapping average throughput
is 32.74× 105.

power consumption: HMP results to be more power efficient than
our perfect mapping solutions (Figure 3.5(b)); indeed, HMP power
consumption is averagely 4.55W, while our perfect mapping consumes
little more power (4.63W). In terms of execution time, our perfect
mapping results to be faster than HMP. (95s versus 108s).

energy consumption: Our perfect mapping results to be more en-
ergy efficient than HMP solution (Figure 3.5(c)). In particular, HMP
consumes 986.98J, while the energy consumption of our perfect map-
ping is 888.39J. This is due to the difference in the execution times,
since the power consumption are quite close.

throughput-energy ratio: this metric suggests that the most ef-
ficient schedule is our perfect mapping solution (Figure 3.5(d)). The
throughput-energy ratio value of our perfect mapping is 3685.14,
while the value of HMP scheduler is 2913.27.
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3.7.1.3 Thread Mapping Summary

These tests proved that, when a perfect mapping is available (thanks to
the configuration or setting the number of usable threads), it is possible
to achieve at least the same throughput of 8-threads HMP scheduler.
In Generic Configuration < 2, 1900, 2, 1300 >, our perfect mapping
reached, on average, performance very similar to 8-threads HMP, in
terms of throughput and power consumption. On the other hand, ex-
ecution time and energy consumption of 8-threads HMP are slightly
better than our perfect mapping ones. If we compare our solution with
6-threads HMP, it results to have better performance in all metrics.
Finally, in throughput-energy ratio metric, our perfect mapping perfor-
mance is very close to 8-threads HMP, whereas it surpasses 6-threads
HMP.
General Configuration < 3, 1900, 2, 1300 > did not require a change
in the number of available threads, since it already provided a per-
fect mapping. Our solution performs certainly better than HMP in
terms of throughput, execution time and energy consumption, while
just the power consumption is marginally higher than HMP. Therefore,
also throughput-energy ratio of our perfect mapping is superior to HMP
ratio.

3.8 Conclusions

We have seen so far that it is possible to improve the performance of
HMP, the Odroid XU3 heterogeneous scheduler. In particular, our solu-
tion is manually mapping threads to cores according to a ratio between
big and LITTLE cores we found analyzing how BS benchmark scales as
the number of cores and frequency change.
We tested two kinds of configurations: Critical and Generic Configura-
tions. In the former case, we took advantage of HMP improper behavior,
and we always achieved great results. In the latter case, at first, HMP
performance was definitely better than our thread mapping solution.
Here HMP properly spreads the workload over the available cores. Be-
sides, the Generic Configurations we tested did not provide a perfect
mapping. Hence, we either changed the number of usable threads or
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chose a suitable configuration in order to achieve a perfect mapping. In
this way, we improved our solution throughput performance and reached,
at least, 8-threads HMP throughput. Finally, we exploited OpenMP
features to further progress our solution performance, but we did not
achieve the desired results. Table 3.2 collects the results of all the tests
we ran. The speedup is computed with respect to the 8-threads not-
dynamic HMP schedule of each configuration.
The limitations of HMP scheduler we presented in this chapter will be
used as starting point for the development of our proposed solution, i.e.
a workload-aware run-time resource management policy able to find a
convenient configuration for the application goal, automatically compute
the mapping ratio, and finally distribute the workload.

48



3.8. Conclusions

C
on

fi
gu

ra
ti
on

S
ch
ed

u
le
r/
M
ap

p
in
g

T
h
re
ad

s
S
p
ee
d
u
p

T
h
ro
u
gh

p
u
t
(M
sp

s)
T
im

e
(s
)

P
ow

er
(W
)

E
n
er
gy

(J
)

T
h
ro

u
gh

p
u
t

E
n
er

gy
(s

ps J
)

<
1,

1
9
00
,1
,1

30
0
>

H
M
P

8
1X

0.
82
8

37
0

2.
15

15
96
.8
0

51
8.
51

<
1,

1
9
00
,1
,1

30
0
>

5 b
ig

3 L
I
T
T
L
E

8
1.
59
X

1.
31
6

23
3

2.
25

10
51
.5
7

12
51
.6
3

<
1,

1
9
00
,1
,1

30
0
>

6 b
ig

2 L
I
T
T
L
E

8
1.
33
X

1.
09
7

27
7

2.
18

12
13
.5
4

90
4.
01

<
1,

1
9
00
,2
,1

30
0
>

H
M
P

8
1X

0.
82
8

36
8

2.
15

15
86
.5
8

52
1.
74

<
1,

1
9
00
,2
,1

30
0
>

4 b
ig

2-
2 L

I
T
T
L
E

8
1.
97
X

1.
64
4

18
7

2.
31

86
5.
23

19
00
.5
5

<
1,

1
9
00
,3
,1

30
0
>

H
M
P

8
1X

0.
82
8

37
4

2.
19

16
38
.3
0

50
5.
04

<
1,

1
9
00
,3
,1

30
0
>

2 b
ig

2-
2-
2 L

I
T
T
L
E

8
2.
44
X

2.
01
7

15
4

2.
07

64
2.
47

31
39
.8
7

<
1,

1
9
00
,3
,1

30
0
>

4 b
ig

2-
1-
1 L

I
T
T
L
E

8
1.
99
X

1.
64
6

18
9

2.
29

86
9.
38

18
93
.3
9

<
1,

1
9
00
,4
,1

30
0
>

H
M
P

8
1X

0.
91
8

36
8

2.
15

15
87
.0
9

57
8.
62

<
1,

1
9
00
,4
,1

30
0
>

4 b
ig

1-
1-
1-
1 L

I
T
T
L
E

8
1.
77
X

1.
64
1

18
6

2.
31

86
4.
17

18
98
.3
9

<
2,

1
9
00
,2
,1

30
0
>

H
M
P

8
1X

2.
47
3

12
2

3.
48

85
6.
06

28
88
.3
9

<
2,

1
9
00
,2
,1

30
0
>

2-
2 b

ig
2-
2 L

I
T
T
L
E

8
0.
82
X

2.
02
0

15
2

2.
70

82
7.
02

24
42
.8
8

<
2,

1
9
00
,2
,1

30
0
>

3-
3 b

ig
1-
1 L

I
T
T
L
E

8
0.
89
X

2.
19
5

14
1

3.
37

95
3.
52

23
01
.5
2

<
2,

1
9
00
,2
,1

30
0
>

H
M
P

6
0.
99
1X

2.
45
0

12
7

3.
46

88
6.
28

27
63
.9
7

<
2,

1
9
00
,2
,1

30
0
>

2-
2 b

ig
1-
1 L

I
T
T
L
E

6
0.
99
9X

2.
46
9

12
6

3.
45

87
2.
39

28
30
.0
6

<
2,

1
9
00
,2
,1

30
0
>

dy
na

m
ic

H
M
P

8
0.
56
X

1.
37
6

22
2

3.
21

14
30
.3
0

96
2.
54

<
2,

1
9
00
,2
,1

30
0
>

dy
na

m
ic

H
M
P

6
0.
55
X

1.
36
7

22
3

3.
20

14
29
.4
8

95
6.
06

<
2,

1
9
00
,2
,1

30
0
>

dy
na

m
ic

2-
2 b

ig
1-
1 L

I
T
T
L
E

6
0.
80
X

1.
98
0

15
4

3.
38

10
43
.2
1

18
98
.1
0

<
3,

1
9
00
,2
,1

30
0
>

H
M
P

8
1X

2.
87
5

10
8

4.
55

98
6.
98

29
13
.2
7

<
3,

1
9
00
,2
,1

30
0
>

2-
2-
2 b

ig
1-
1 L

I
T
T
L
E

8
1.
14
X

3.
27
4

95
4.
63

88
8.
39

36
85
.1
4

<
3,

1
9
00
,2
,1

30
0
>

dy
na

m
ic

H
M
P

8
0.
72
X

2.
07
1

14
9

4.
37

13
10
.1
6

15
80
.9
0

<
3,

1
9
00
,2
,1

30
0
>

dy
na

m
ic

2-
2-
2 b

ig
1-
1 L

I
T
T
L
E

8
0.
90
X

2.
59
7

11
9

4.
59

10
96
.1
4

23
69
.1
1

<
4,

1
9
00
,4
,1

30
0
>

H
M
P

8
1X

4.
42
2

72
5.
98

87
3.
69

50
61
.4
0

<
4,

1
9
00
,4
,1

30
0
>

1-
1-
1-
1 b

ig
1-
1-
1-
1 L

I
T
T
L
E

8
0.
91
X

4.
01
5

82
4.
18

69
3.
23

57
91
.4
7

T
ab

le
3.
2:

T
es
ts

su
m
m
ar
y

49





Problem Definition and Proposed Solution 4

This chapter defines the problem we want to tackle with our work and in-
troduces our solution, which is a workload-aware run-time resource man-
agement policy. Our proposal aims at both satisfying QoS requirement
(i.e. minimum throughput) and reducing power consumption by proper
allocating tasks on a combination of cores (big and LITTLE) number
and frequency, and balancing their threads on available resources. Sec-
tion 4.1 presents the rationale of this thesis work. Section 4.2 outlines
the details of our proposed solution.

4.1 Problem Definition

The actual scenario is characterized by various and flexible on-demand
computing workloads, with different requirements, like throughput, power
consumption and so on. HSAs result to be the most suitable archi-
tectures for such a scenario, since their nature allows them to satisfy
different goals (e.g. throughput, power and energy consumption, etc.).
Therefore, a self-adaptive management of HSA resources capable of deal-
ing with various and dynamic workloads may be the right approach to
tackle this problem.
In the following subsections we will define more in detail the problem
we are focusing on. At first, we introduce the kind of applications that
this work aims at satisfying (Section 4.1.1). Then, we profile such ap-
plications and our target device in terms of both power consumption
(Section 4.1.2) and performance (Section 4.1.3), in order to describe the
properties they are supposed to feature. Indeed, we expect the power
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4. Problem Definition and Proposed Solution

consumption of big and LITTLE clusters to scale as cV 2f (being c a
constant typical of each cluster, V the voltage, and f frequency levels),
while the applications throughput is assumed to linearly scale as the fre-
quency increases and, since the applications are multi-threaded, as the
number of cores enlarges.

4.1.1 Application Models

The approach we propose is designed for applications with computational-
intensive loops, where the user can specify some minimum throughput
constraints on the performance of the loop. Our reference application
model is the one reported in Figure 4.1, which is a cyclic task graph
where the kernel node, the computationally intensive part of the code,
might be potentially parallelized with the fork-join paradigm, by using
state-of-the-art libraries, such as OpenMP [101].
There are many applications that follow such pattern and have been
implemented in a parallel way on CPUs, GPUs or FPGAs; for instance,
financial algorithms, like BS benchmark introduced in Chapter 3, or
video processing ones. Numerical analysis algorithms belong to this cat-
egory too. An example is Jacobi iterative method [102], which is used to
determine the solutions of a diagonally dominant system of linear equa-
tions. Another application is Stochastic Simulation algorithm (SSA)
[103, 104], an exact procedure for numerically simulating the time evo-
lution of a well-stirred chemically reacting system. Then, Barnes-Hut
algorithm [105] is a physics method for directly computing the force on
N bodies in the gravitational N -body problem. Reverse Time Migration
(RTM) [106] is a geophysics algorithm for seismic imaging that aims at
constructing an image of the subsurface from recordings of seismic re-
flections. Finally, Brain Network image analysis applications exploit the
computation of Pearson Correlation Coefficient (PCC) [107], a statistic
coefficient that measures the degree of linear correlation between two
variables, to infer interconnections between neurons.
This kind of applications may have some throughput requirements that
the system has to meet, and they can be expressed as performance re-
quirements over the iterative part of the program. Starting from the
model represented in Figure 4.1, the user can then express a constraint
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Kernel
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Figure 4.1: Application model

on the performance of the program included in the Loop-start - Loop-end
nodes of the description. In this context, we assume that the Pre-process
and Post-process tasks are not computational-intensive and do not im-
pact on application performance.
In order to collect the performance information for all the running appli-
cations, we assume that high-level information is available and exported
by the application. This means that, instead on relying on low-level
metrics such as Instructions Per Cycle (IPC), it is preferable to collect
information at an higher abstraction level that is closer to the final user;
for instance, we want to express the performance of a video processing
application in terms of frames/s. To obtain such a metric, we need to
instrument the applications so that they communicate their progress at
the end of each iteration (i.e. in the Loop-end node).
Even though the instrumentation of an application is a invasive task, cur-
rent libraries such as Application Heartbeats and similar [108, 109, 110]
allow for a minimal modification of the application code (a couple of
lines of code). The availability of this high-level information is a bene-
fit not only for the decision mechanism, which can know exactly when
an application progresses, but also for the final user who can specify
requirements using a meaningful metric.
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4. Problem Definition and Proposed Solution

4.1.2 DVFS Management

A first analysis consisted in profiling the power consumption with dif-
ferent DVFS levels available for the considered architecture. The power
consumption of both big and LITTLE clusters is supposed to scale pro-
portionally to cV 2f expression, where c is a constant typical of each
cluster, V the voltage, and f frequency levels.
Based on the specific architecture, DVFS can be available at the core
level, or cluster-level; in the adopted reference platform, the Odroid XU3
development board, this feature is supported at cluster level, by means
of DVFS actuators and power sensors. This means that, as we set a
frequency value for a type of cores (big or LITTLE), this is set for all
the cores belonging to that cluster. On the Odroid XU3, Big and LIT-
TLE cores have different frequency ranges: big cores frequency goes from
800MHz to 1900MHz, whereas LITTLE cores frequency from 800MHz
to 1300MHz.
To collect per-core full power consumption, we used used the Linux
stress utility [111], which forces a full load on the system and we com-
puted per-core power consumption by dividing the sensed values by the
number of used cores. Table 4.1 reports, per cluster, the power con-
sumed in idle and full power for all the possible DVFS configurations;
Figure 4.2 illustrates the power curves when only a subset of big or LIT-
TLE cluster is used (the cluster may be distinguish by looking at the
reached frequencies).
The collected data (which confirm the above power scaling hypothesis)
show that the Cortex-A7 cluster used at the highest frequency is gener-
ally less power hungry than two Cortex-A15 cores used at the minimum
frequency. Therefore, when running a parallel application, if the LIT-
TLE cores achieve an acceptable performance, it is not necessary to use
big cores even if the running applications do compute-intensive opera-
tions. Furthermore, according to the accurate experimental analysis, we
can also assume that the power profile of the processor does not sig-
nificantly vary depending on the application running on the processor,
but it depends on the load the application causes on the resource. As
a consequence, the power metrics derived from the previous experiment
can be used for any application, provided that a scaling factor given by
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4.1. Problem Definition

Cluster Voltage (V) Freq. (MHz) Idle Power (W) Full Power (W)

A7 1 800 0.041 0.19

A7 1 900 0.059 0.232

A7 1 1000 0.07 0.273

A7 1.1 1100 0.083 0.319

A7 1.1 1200 0.096 0.369

A7 1.2 1300 0.116 0.437

A15 0.9 800 0.187 0.864

A15 0.9 900 0.21 0.955

A15 0.9 1000 0.242 1.116

A15 0.9 1100 0.278 1.284

A15 1 1200 0.318 1.469

A15 1 1300 0.362 1.731

A15 1 1400 0.395 1.836

A15 1 1500 0.43 2.065

A15 1 1600 0.5 2.4

A15 1.1 1700 0.581 2.779

A15 1.1 1800 0.666 3.197

A15 1.2 1900 0.8 3.985

Table 4.1: Samsung Exynos 5422 power measurements table

.

the processor utilization is adopted. These measurements will thus be
used to characterize the power consumption of the cores in the SAVE
Virtual Platform, which registers the system utilization and can provide
at each simulation step a power measurement depending on the current
workload.

4.1.3 Performance Considerations

Our methodology does not focus on power only, but aims at meeting also
performance requirements. We expect the performance to scale linearly
as frequency increases. Moreover, since our target applications are multi-
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Figure 4.2: Samsung Exynos 5422 power measurements chart

threaded, the performance are supposed to scale also with the number
of cores. However, while the power does not depend on the specific ap-
plication but rather on the load, performance, intended as throughput,
depends not only on the specific application, but also on the interaction
between different applications concurrently running on the system. To
design an optimization policy it is thus necessary to put performance
and power into relation, and rapidly investigate the different possible
working points. Figure 4.3 reports the performance profile of two of the
benchmarks we used on the reference platform. The benchmarks are:
PCC and BS. Both benchmarks are parallel versions implemented with
OpenMP starting from the code available in CUDA [112] examples.
The measurements have been collected by running the two applications
in isolation and we collected the average throughput of each application
during its whole execution. For each subset of big/LITTLE cores, we
tested all possible frequencies, starting from 800MHz, to big/LITTLE
maximum frequency (1900MHz/1300MHz), with a step of 100MHz. For
sake of simplicity we report only the curves that use exclusively one
cluster. Such tests confirm the above performance hypothesis, and it
illustrates how we can achieve different performance in using the big or
the LITTLE cores depending on the application running in the system.
In fact, the BS benchmark can benefit from parallelization using the
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Figure 4.3: Benchmarks throughput as frequency and cores change

57



4. Problem Definition and Proposed Solution

Cortex-A7 cores. This benchmark scales almost ideally with the num-
ber of used cores and, for this reason, it has good performance also on the
Cortex-A7 cores. On the other hand, the PCC application distributes
the computation unfairly among the available cores and therefore does
not obtain an ideal speedup, not performing well on Cortex-A7 cores.
Since the proposed policy is tailored for parallel workloads, we can con-
clude that independently of the actual scalability of the single appli-
cations, we will obtain linear dependency on the frequency, and on the
number of cores used and their combination. However, this consideration
holds as long as we use either big or LITTLE cluster separately. In fact,
when we parallelize an application on both clusters, throughput does
not scale linearly, but begins to be affected by side effects due to cores
synchronizations, in particular when we use different clusters at differ-
ent frequencies. In such configuration, the ARM big.LITTLE turns into
an Asynchronous Clock Architecture (ACA), i.e. an architecture where
each core (or cluster in this case) is operated at different voltage levels
and clock frequencies. ACA may suffer of performance degradation due
to the different frequencies of its cores [41]. This means that, paradoxi-
cally, a higher frequency may not imply higher throughput. Figure 4.4
shows how BS throughput scales when we use 2 big cores at 1600MHz
and 1 to 4 LITTLE cores from 800MHz to 1300MHz. As results, given
the number of cores and frequencies, throughput of either big or LIT-
TLE cluster may be estimated, but not when both clusters are employed
(or, at least, an estimate will not be 100% correct). Finally, we noticed
that HMP has difficulties in dealing with multi-threaded applications
and balancing workload, specially when they are executed on different
clusters at different frequencies. An analysis of HMP behavior and how
to overcome this problem will be presented in Chapter 3.
In a multiple applications scenario, the Linux scheduler [113] tries to as-
sign a fair amount of CPU time to applications co-located on the same
core, leading to a scalability profile that scales by some factor when two
or more applications are co-located, but their profile will not drastically
change. In case of parallelization by OpenMP API, the workload is fairly
distributed among the instantiated threads, even though one application
creates more threads than another. For instance, let us consider a bench-
mark that is run on a Cortex-A15 core. Whether we use one or more

58



4.2. Proposed Solution

1 LITTLE core 2 LITTLE cores 3 LITTLE cores 4 LITTLE cores

th
ro

ug
hp

ut
 (s

to
ck

s 
pe

r s
ec

on
d)

1.5×106

1.6

1.7

1.8

1.9

2.0

2.1×106

frequency (MHz)
800 900 1000 1100 1200 1300

Figure 4.4: Black Scholes thoughput using 2 big cores at 1600MHz

threads, the average benchmark throughput will still be the same, let
us call it X. Now, if we run two instances of the benchmark on the
same Cortex-A15 core (the first one creates one thread, the second two
threads), the final throughput will be, respectively, 1

3X and 2
3X.

4.2 Proposed Solution

The overall idea of the run-time resource management policy we propose
is to combine the information regarding power and performance scaling,
reported above, to derive a method to explore quickly and effectively
the search space at run-time. Moreover, the policy distributes the work-
load by mapping threads to the available cores according to a mapping
ratio. Such value is derived as the ratio between the big cores through-
put and LITTLE cores throughput at their given frequencies. Thus,
a proper workload distribution ensures higher application performance.
Such mapping strategy will be defined in Chapter 3. Finally, our pol-
icy can also leverage the availability of online performance estimation
obtained by means of an Application Heartbeat API.
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4.2.1 Configuration Space

The policy we propose is aimed at managing both DVFS and the num-
ber of cores currently used by the system exploiting mechanisms to en-
able/disable cores as the ones exposed by the Linux sysfs file system
[114]. In this context the possible configurations of our system can be
represented by the tuple < NB, fB, NL, fL >, as we did in Chapter 3.
The dimension of the configuration space is:

confB = |NB| × |fB| = 4× 12 = 48

confL = |NL| × |fL| = 4× 6 = 24

confBL = |NB| × |fB| × |NL| × |fL| = 4× 12× 4× 6 = 1152

confB + confL + confBL = 48 + 24 + 1152 = 1224

Note that, in this computation, we assumed that the DVFS controller
sets the frequency for the whole cluster and not for the single core, ac-
cording to the current ARM big.LITTLE architecture, and that there is
no difference in the specific combination of selected active cores, which
is generally true. The configuration space so derived is large (1224 dif-
ferent configurations), but not cumbersome; these information can be
stored in the system memory, but we still need some smart method to
navigate this configuration space in search for the right one to use to
guarantee both throughput requirements and power efficiency.

4.2.2 Power Characterization

A first aspect to consider is that each one of these configurations is char-
acterized by its power consumption, which is given by the sum of the
power consumption of the used cores. The power consumption of given
configuration < NB, fB, NL, fL > is:

idleB = 4−NB
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idleL = 4−NL

powerB = fullPowerB@fB ×NB + idlePowerB@fB × idleB

powerL = fullPowerL@fL ×NL + idlePowerL@fL × idleL

totalPower = powerB + powerL

The power information exploited in these formulas come from the pre-
vious power profiling.

4.2.3 Performance Characterization

Regarding the performance, we can also suppose that each one of these
configurations is characterized by a given performance and that the fol-
lowing assumptions holds:

• application performance benefits from a fairly balanced distribu-
tion among used cores;

• application performance generally improves with the number of
cores on which computations are parallelized;

• given two different processor types, it is possible to measure the
performance gain when switching from one to the other.

Under this considerations we can characterize each configuration
with a performance value, in terms of a speedup with respect to a base
configuration. Let us suppose we know how the performance of the
system scales as we add a Cortex-A15 (Cortex-A7) core or we switch
core frequency. We define such factors as coreScaleB (coreScaleL) and
freqScaleB (freqScaleL). Such factors are approximated values ex-
tracted during performance analysis tests. Assuming linear scaling and
no influence we can compute the speedup with simple formulas. For in-
stance, the speedup expected for the configuration < NB, fB, NL, fL >
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can be computed as:

speedupB = NB × coreScaleB +
fB −minfB

100
× freqScaleB ×NB

speedupL = NL × coreScaleL +
fL −minfL

100
× freqScaleL ×NL

totalSpeedup = speedupB + speedupL

Obviously this is an ideal speedup model, which is not 100% accurate,
in particular due to the not monotonic behavior of throughput in con-
figurations that employ both big and LITTLE cores. A more accurate
model would be too tailored to the benchmark used as reference, and so
useless in case of different benchmarks. Moreover, this speedup value is
characteristic of every application (when running alone), and it depends
on how the applications influence each others when they are co-located.
Therefore, it would be useless to profile offline the applications to de-
termine the scale factors to use to setup the policy. For this reason, in
our methodology we adapt the speedups relying on online performance
measurements and we constantly update those values depending on the
current running conditions (i.e. the application mix); Chapter 5 details
the update process. However, even if we change online the speedups,
our speedup model is monotone; hence configurations can consequently
be ordered on the basis of the speedup or the power. Although this may
be correct for power consumption, it does not hold for speedup, as we
previously stated. Therefore, our policy must be aware of the fact that,
given a configuration, a following one, in terms of speedup, might not
entail higher throughput.

4.2.4 Policy Overview

In this section we provide an overview of our proposed solution. Our
policy is targeted for asymmetric processors and introduces the advan-
tage not only to control DVFS, but, taking care of heterogeneity, also to
control the number of currently active cores (big or LITTLE) to achieve

62



4.2. Proposed Solution

better performance at power and throughput ends.
Figure 4.5 shows the workflow of our policy. Now we briefly describe
each Step, while a more detailed analysis is performed in Chapter 5.

Step 1: the policy starts by building a table with all the possi-
ble available configurations, their power consumption values and
speedup values.

Step 2: the policy profiles the applications in two reference config-
urations, in order to generate a reference mapping ratio. Such value
will then be used to generate the mapping ratios for other configu-
rations.

Step 3: the policy chooses a default operation point to be enforced
as initial starting configuration and begins to monitor the applica-
tions execution. At each monitoring iteration, the policy computes
the needed speedup with respect to the applications performance,
and updates the baseline.

Step 4: the policy scans the configuration table to find the optimal
configuration, i.e. the one that delivers the needed speedup. The
scan is implemented as a variant of binary search.

Step 5: the policy actuates the configuration by changing the affin-
ity mask of all the applications in order to use the same group of
cores and changing the operating frequency of the used computa-
tional resources.

Step 6: when the policy converges, it scans all the configurations
that guarantee the QoS (i.e. all the configurations following the
one the policy has converged to) to find the most power efficient
configuration.

Step 7: when the application set changes, a reset routine is used to
restore some parameters to their default values so that the policy can
converge again to a convenient configuration for the new application
set.
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Figure 4.5: Policy workflow
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In this chapter we illustrate the implementation details of the workload-
aware run-time resource management policy we propose in this thesis
work. As stated in the previous chapters, our policy aims at guaran-
teeing the QoS of the application set (at throughput end), and, at the
same time, reducing their power consumption by enforcing the most con-
venient configuration.
In Section 5.1 we show how we computed the mapping ratios for all the
different combinations of big and LITTLE cores frequencies. In Sec-
tion 5.2, we explain, step by step, how the policy works.

5.1 Mapping Ratio

In ??, we proved that a proper allocation of threads on the available
resources may produce improvements in terms of the application per-
formance. The allocation was done according to the mapping ratio we
found by looking at big and LITTLE cores throughput at different fre-
quencies. In the tests we performed, we approximated such mapping
ratio to 2, hence, for each thread we mapped on a LITTLE core, we
mapped 2 threads on a big core. However, this approximation holds only
if big frequency is set to 1900MHz and LITTLE frequency to 1300MHz,
and, most important, it is application dependent. Therefore, we need
to generalize this method in order to address all combinations of big
and LITTLE cores frequency. We define the mapping ratio as the ratio
between big and LITTLE cores throughput at their given frequencies.
Since this ratio is a real number, it is necessary to approximate it to a
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rational number. Thus, we can consider the numerator as the number of
threads to allocate on each big core and the denominator as the number
of threads to allocate on each LITTLE core, as the following formula
suggests:

approximate(pratio) =
numerator

denominator
=
threadsB
threadsL

When the policy starts or the application set changes, it would be nec-
essary to compute the mapping ratio for each combination of big and
LITTLE cores frequencies. However, this may be a long and intensive
task, and, besides, it may steal time to the policy itself. A convenient
solution is to choose a reference frequency for both big and LITTLE
cores, compute a reference mapping ratio p̄ratio, and then obtain all the
other mapping ratios from the reference one. Hence, we acquire p̄ratio in
this way:

p̄ratio =
throughputB
throughputL

Then, a generic mapping ratio pratio may be compute as follows:

pratio =
throughputB
throughputL

=
fB
fL
· f̄L
f̄B
· pratio

This formula holds since, in first approximation, throughput scales with
frequency, as we showed in Chapter 4. Finally, if the reference frequency
for big and LITTLE cores is the same, the previous formula may be
simplified like this:

pratio =
fB
fL
· p̄ratio

This procedure allows us to steal just a small time to the policy execu-
tion, since we just need to acquire one mapping ratio, and then compute
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the required mapping ratio when we find the new configuration to be
actuated.
As a test, we both measured and computed the mapping ratios for each
combination of frequencies. The configurations used to compute the ref-
erence mapping ratio are: < 4, 800, 0, 800 > and < 0, 800, 4, 800 >, while
the cores employed for the measurements are always 4 (for both big and
LITTLE clusters). In Figure 5.1, we can see that the difference between
the measured and the computed values is not meaningful (the average
mean difference is -0.003, while the standard deviation of the difference
is 0.009). This shows the goodness of our procedure. Finally, if we use
a different number of big or LITTLE cores for the measurements, the
difference between the measured and computed mapping ratios is still
negligible.
The reference mapping ratio p̄ratio is generated in Step 2 of the policy
execution (Section 5.2.2), while, in Step 5, it is exploited to compute the
mapping ratio of the configuration to be actuated (Section 5.2.5).

5.2 Implementation

In this section, we present of our policy design. The policy is imple-
mented in C++ programming language on both SAVE Virtual Platform
and Odroid XU3 development board.
The policy execution Steps that were briefly introduced in Section 4.2.4
are now being explained in detail by the following sections. As described
in Figure 4.5, the policy steps can be summarized as follows:

Step 1) configuration table building (Section 5.2.1),

Step 2) mapping ratio generation (Section 5.2.2),

Step 3) table baseline update (Section 5.2.3),

Step 4) configuration retrieval (Section 5.2.4),

Step 5) configuration actuation (Section 5.2.5),

Step 6) power-efficient configuration retrieval (Section 5.2.6),

Step 7) configuration reset (Section 5.2.7).
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Figure 5.1: Measured and computed mapping ratios

5.2.1 Configuration Table

For our policy to work it is necessary to know the basic resources avail-
able on the underlying architecture. Hence, we first build a map that
stores the data regarding the operating frequencies and the number of
cores for each available family of computing resource in the system. This
guarantees the scalability of our solution as the number and family of
cores change. Such information are available in the SAVE Virtual Plat-
form environment, and can be collected as well on a real system by
analyzing for example proc/cpuinfo and the output of cpufreq-info com-
mand [115].
The content of this processor map is necessary to build the configuration
table, i.e. a table containing all the possible combination of number of
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cores (big and LITTLE) and their frequencies. As we showed in Sec-
tion 4.2.1, the number of different configurations for the Exynos 5422 is
1224. As explained in Chapter 4, each configuration is associated with a
power consumption value and an estimated throughput with respect to
the slowest single processor execution. Such values are computed using
the formulas showed in Section 4.2.
Once the resources configuration table has been built, configurations are
sorted by speedup, and a first configuration has to be set for the system.
We allow to configure the starting configuration point since, depending
on the starting configuration the policy ends up in having different be-
haviors. As an example Figure 5.2 illustrates how the policy behaves
picking different starting configurations in a test using PCC benchmark.
Configurations are ordered by expected speedup, where C0 is the min-
imum (i.e. 1 LITTLE core at 800MHz) while C1223 corresponds to the
most powerful configuration (i.e. 4 big cores working at 1900MHz and 4
LITTLE cores working at 1300MHz). As we can see from the figure, C0
converges slowly and this happens since it takes time for the policy to
have a stable performance measurement from the application. A perfor-
mance measurement is stable after few iterations of the application loop
and, obviously, running with low performance cores increments the time
needed to perform this number of iterations. On the opposite, using
C1223 forces the system to quickly change configuration if needed and
this choice allows for a faster convergence than before; however this so-
lution causes a peak in power consumption for the first iterations, even
though this choice guarantees to satisfy performance requirements from
the start. Finally other solutions are possible picking any configuration
in the middle, basically the most the starting configuration is near the
final one the faster the algorithm converges. As a rule of thumb we
suggest to set either C1223, if paying the power overhead is not a prob-
lem, or C612 (which is the middle configuration) because then the search
space is reduced by an half. In general, since the policy is effective when
the system is not overload (i.e. it does not have to work at full power)
picking C612 will help on average to have a faster convergence time.
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Figure 5.2: Experiments with different starting configurations.

5.2.2 Mapping Ratio Generation

The second step of the policy is the generation of the reference map-
ping ratio p̄ratio. During this profiling phase, we allocate one thread
on each core. As stated previously, the reference configurations are
< 0, 800, 4, 800 > and < 4, 800, 0, 800 >. At first, we set the former con-
figuration, and, before extracting the throughput, we wait the slowest
application (i.e. the slowest one to produce Heartbeats) to go full speed.
This is done to allow the application (or the slowest one when there are
more applications) to converge in this configuration. At that point, we
can retrieve the throughput of each application. Then, we set the latter
configuration and repeat the procedure. Once we have throughput at
both < 0, 800, 4, 800 > and < 4, 800, 0, 800 > configuration, we can com-
pute the reference mapping ratio p̄ratio for each application. This value
will be used in the following configuration changes to spread properly
the threads among the cores.
Now that we have both the configuration table and the reference map-
ping ratio p̄ratio for each application, the very policy can start.
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5.2.3 Table Baseline Update

The starting configuration we used is C612. Every n millisec the policy
observes the throughput of every application (Heartbeats actually) and,
every k measurements, the policy decides whether the system configura-
tion has to be changed or not. The sampling period of the policy is fixed,
e.g. 200ms, while the throughput stability is application dependent.
The configuration table construction described before assumes as base-
line, for the speedup estimation, the performance of a single core of the
slowest family at the lowest operating frequency (i.e. the baseline is
configuration < 0, 800, 1, 800 >). Starting from this, every time the re-
sources configuration changes, the values of the table need to be updated.
Based on the last chosen configuration, the policy knows what was the
last estimated speedup for that particular configuration. We then divide
every estimated speedup by the last chosen one. This means that the
table now contains the values of the estimated speedups with respect to
the last chosen configuration. We have hence set a new baseline.

5.2.4 Configuration Retrieval

As specified, the goal of the whole policy is to meet much performance
goals as possible. Algorithm 1 reports the pseudocode for the selection
of the new configuration to enforce. Given that each running application
a performs differently and that it has a different goal, we have adopted
the following strategy to meet the policy goal. For each application,
we compute the required speedup Sa as the ratio between the current
performance of the considered application Ta (obtained through online
monitoring) and the declared minimum throughput requirement Ga, i.e.
Sa = Ta/Ga. The speedup Sa is a simple way to understand, overall,
how distant an application is from its performance requirement. The Sa
computation can have three possible outcomes, i.e. it can be greater,
equal, or less than 1. A Sa greater than 1 means that the application has
not reached its goal yet, hence a speedup Sa is required. A Sa equal to 1
is the ideal condition we want to achieve, meaning that the application
is performing exactly the way it should. A Sa less than 1 shows that
the application is running faster than its declared goal, in this case we
can switch to a slower configuration to be more power efficient. Given
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that our main objective function is to maximize the number of applica-
tions that reach their goals, we choose to enforce the overall maximum
required speedup whenever there has been at least a Sa greater than 1;
we stick with the current configuration if all the Sa are 1; or we try to
enforce the minimum slowdown required in case all the computed Sa are
less than 1.
After a given speedup Sa (slowdown if Sa < 1) has been requested, the
policy scans through the configuration table to find the configuration
that can guarantee that speedup. Once we have the speedup (slowdown)
required, we start looking for the closest speedup value in the configura-
tion table. Since it would be useless to scan the whole table every time,
we use two indexes (cLow and cHigh) to indicate the range of configu-
rations we have to check. Before retrieving the new configuration, we
update one of those indexes according to the speedup (slowdown) value
we have just computed. In particular, if we a speedup value greater
than 1, we set the cLow index to the index of the last configuration.
This is done because, if we now need a speedup, it means that the last
configuration was too slow, and so all the configurations preceding that
one, since they are sorted by speedup. On the other hand, if we have a
slowdown, we set the cHigh index to the index of the last configuration.
As consequence, all the configurations following the last one are, for the
moment, ignored because are too fast. In this way, the search has, on
average, a logarithmic time complexity (i.e. it is O(log(n))); hence, the
policy should converge in, more or less, ten iterations. Finally, we now
can retrieve the new configuration to be actuated.

5.2.5 Configuration Actuation

The configuration found contains the tuple < NB, fB, NL, fL > that can
be used to enforce the configuration. Starting from this configuration
the policies uses the NB and NL parameters to enforce the affinity mask
for all the running applications and then fB and fL to control DVFS
actuators. Both the actions can be performed on SAVE Virtual Platform
by proper wrapper interfaces that drives the hardware component in the
simulator, while they can be implemented in a real system by either
taskset utility or sched_setaffinity for the affinity mask selection,
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Algorithm 1: Pseudocode for the selection of next configuration.
Data: cold, cLow, cHigh, A
Result: cnew

1 T ← acquireApplicationsPerformance();
2 G← acquireApplicationsGoal();
3 forall the a ∈ A do
4 Sa = Ta/Ga;
5 end
6 if max(S) ≥ 1 then
7 cLow = ct;
8 else
9 cHigh = ct;

10 end
11 rebaseSpeedups(cold);
12 forall the c ∈ (cLow, cHigh] do
13 if speedup(c) > max(S) then
14 cnew = c;
15 break;
16 end
17 end

and cpufreq-set for enforcing DVFS decisions. Finally, once the new
configuration has been actuated, the policy generates the new mapping
ratios and generates the number of threads to be mapped on big and
LITTLE cores. On the SAVE Virtual Platform, we just set the total
number of threads to be created (a load-balancing algorithm takes care
of properly spread the workload among the cores), while, on the Odroid
XU3, we transfer information about thread mapping to the applications,
which allocate threads to the cores using sched_setaffinity command.

5.2.6 Power Efficient Configuration Retrieval

Once the policy has converged to a configuration able to satisfy the goal
of each application, a power efficient configuration can now be retrieved.
It is important to notice that, if the policy has converged, but there is
one or more applications whose goals are not satisfied (the configuration
the policy has converged to is < 4, 1900, 4, 1300 >), it means that, with
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that goal or application set, those applications cannot be satisfied at all.
In this case, we may adopt different approaches; for instance, we could
decide to drop applications, starting from the furthest one from its goal,
or we could continue the execution until at least one application goal
is satisfied. Section 5.2.7 shows what happens when the application set
changes.
In order to find the most power efficient configuration, we scan all the
configurations following the chosen one and select the one with the lowest
power consumption. However, we have to be aware of the fact that a
following configuration may not imply high throughput, according to
the results we showed in Chapter 4. Therefore, after the configuration
has been chosen, we actuated it and verify whether the goals are still
satisfied or not. In the latter case, the policy excludes such configuration
and looks for another. In the very worst case, the policy converges to
the configuration it chose before entering in this step.

5.2.7 Configuration Reset

When the application set changes, the system usage changes and so we
need to reset some values before retrieving a new configuration. For this
reason, we reset the indexes cLow and cHigh, we restore the speedup val-
ues in the configuration table to their default values, and we recompute
the reference mapping ratio p̄ratio. Finally, the policy restarts from C612
and repeats its execution as usual.
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In this chapter, we provide the analysis we performed on our workload-
aware run-time resource management policy. In particular, at first, we
tested it on SAVE Virtual Platform (Section 6.1), in both a single and
multiple applications contexts. Then, we ported our policy to the Odroid
XU3 development board and evaluated it using BS and PCC benchmarks
(Section 6.2). Finally, we analyzed the overhead introduced by our policy
(Section 6.3).

6.1 Tests on SAVE Virtual Platform

In this section, we present the tests we performed on SAVE Virtual
Platform in order to prototype our workload-aware run-time resource
management policy. Although SAVE Virtual Platform allows to select
the underlying hardware (in our case, we chose the most similar archi-
tecture to the one mounted on Odroid XU3, i.e. 4 Samsung Exynos
5420 big cores and 4 Samsung Exynos 5420 LITTLE cores), it has some
limitations. For instance, it is not possible to directly map threads on
cores, but SAVE Virtual Platform exploits a load-balancing algorithm
that, given N threads, distributes the workload as fair as possible. This
means that we cannot completely test the efficiency of our thread map-
ping solution, since we can only enforce the number of threads we want
to create. Another limitation is the fact that HMP scheduler is not
implemented on SAVE Virtual Platform, hence we cannot compare our
policy with it during the prototyping phase.
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6.1.1 Single Application

The application we considered for these tests is Black Scholes application
since it is a well-balanced multi-threaded application. We ran several
tests where we varied the throughput goal of Black Scholes to check the
goodness of our policy.

6.1.1.1 Power efficiency test

In the first test we present, we set the minimum throughput goal of
Black Scholes application to 2Msps. In particular, we ran two different
tests: the former test uses the complete policy, as described in Chapter 5
and now one called power efficient policy, the latter executes the policy
without its Step 7, now on called power inefficient policy. In this way,
we want to prove that our policy really converges to the most power
efficient configuration, and satisfies the throughput goal as well.
In Figure 6.1(a), we show the throughput reached by both our policy
executions. The power inefficient policy guarantees the goal by choos-
ing C264 (< 1, 1400, 3, 900 >), while power efficient policy provides an
higher throughput since it is set to a higher speedup configuration, i.e.
C313 (< 0, 800, 4, 1200 >). On the other hand, we can notice that the
configuration chosen by the power efficient policy results to be the least
power-hungry configuration (Figure 6.1(b)). Indeed, C313 turns out the
be the most power efficient configuration of the ones following C264. Al-
though the choice of switching to a more power efficient configuration is
based on the formulas we introduced in Chapter 4, and so the computed
power values may not be accurate, it still provides a convenient and
reliable ordering of configurations, differently from the speedup values
ordering.
This result shows that our policy is able to retrieve the best config-
uration, in terms of power consumption, that guarantees the required
throughput.
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Figure 6.1: Single-app test on SAVE Virtual Platform

(goal = 2Msps)
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Goal Convergence

1Msps C42 (< 0, 800, 3, 800 >)

3Msps C708 (< 2, 900, 4, 1200 >)

4Msps C981 (< 4, 1000, 4, 1000 >)

4.5Msps C1124 (< 4, 1100, 4, 1300 >)

Table 6.1: Single-app other tests on SAVE Virtual Platform summary

6.1.1.2 Other tests

Here we presents all the other tests we ran on the SAVE Virtual Plat-
form for the single application case.
In Figure 6.2(a) we can notice that our policy always satisfies the dif-
ferent throughput goals of Black Scholes benchmark. Table 6.1 contains
the tested throughput goals and the configurations the policy converges
to. In terms of power consumption, Figure 6.2(b) reports the power
required by each different simulation. It is clear that the power con-
sumption charts are not meaningful by themselves since they are not
compared with other solutions. In Section 6.2, we will compare the
power consumed by our policy with the power required by HMP sched-
uler.
These tests, among with the previous ones, demonstrate the goodness of
our policy, at least during prototyping phase, when it has to deal with
one single running application. In terms of throughput, the policy guar-
antees the QoS required by the benchmark, while, at power consumption
end, these tests are not so meaningful since we only have an esteem of
the real power required by the benchmark and, most important, we do
not have a policy that simulate HMP scheduler. However, power con-
sumption tests were useful to check whether our policy can select the
most power efficient configuration, among the ones capable of respecting
the throughput goal, or not.
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Figure 6.2: Single-app other tests on SAVE Virtual Platform
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6.1.2 Multiple Applications

The applications we monitored for these tests are BS and PCC bench-
marks. In the following tests, we first start PCC execution, then, after
200ms (to be sure that the policy has converged), BS execution starts
too. In this way, the policy execution can be split in three parts: PCC
execution, BS and PCC execution, BS execution. Hence, the policy will
converge to three different configurations according to the application
set.
Like in single application case, we ran several tests where we varied the
throughput goal of BS and PCC to check the goodness of our policy.

6.1.2.1 Power efficiency test

In the power efficiency test, we set the minimum throughput goal of BS
application to 1Msps, while PCC application goal to 10fps. Again, we
performed a test with power efficient policy and one with power ineffi-
cient policy.
Figure 6.3(a) displays the throughput curves in both cases. In the power
efficient test, PCC reaches its throughput goal, and then moves to C11
(< 0, 800, 2, 800 >). Once BS execution starts, the policy converges to
a new configuration able to satisfy both PCC and BS goals, i.e. C667
(< 2, 800, 4, 1200 >). After PCC end, the policy converges to power
efficient configuration C42 (< 0, 800, 3, 800 >), which is the same con-
figuration BS converged to in single application case. On the other
hand, using power inefficient policy, throughput goals are still reached;
indeed, policy converges, respectively, to C6 (< 0, 800, 1, 1200 >), C613
(< 2, 1500, 3, 900 >) and C32 (< 1, 900, 1, 1100 >). However, if we look
at power consumption chart in Figure 6.3(b), the power efficiency of
both tests are quite different. Indeed, we can notice that power efficient
policy, at first, converges to the same configuration of power inefficient
policy, but then it moves to a more power efficient configuration, in all
three parts of policy execution (PCC only, BS and PCC, BS only).
This test proves that, also in a multiple applications context, our policy
is able to retrieve the best configuration, in terms of power consumption.
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Goal App Convergence

15fps PCC C14 (< 0, 800, 2, 900 >)
1Msps - 15fps BS - PCC C667 (< 2, 800, 4, 1200 >)

1Msps BS C42 (< 0, 800, 3, 800 >)

20fps PCC C42 (< 0, 800, 3, 800 >)
1Msps - 20fps BS - PCC C667 (< 2, 800, 4, 1200 >)

1Msps BS C42 (< 0, 800, 3, 800 >)

20fps PCC C42 (< 0, 800, 3, 800 >)
2Msps - 20fps BS - PCC C1049 (< 4, 900, 4, 1300 >)

2Msps BS C667 (< 2, 800, 4, 1200 >)

20fps PCC C42 (< 0, 800, 3, 800 >)
3Msps - 20fps BS - PCC C1223 (< 4, 1900, 4, 1300 >)

3Msps BS C708 (< 4, 1100, 4, 1300 >)

Table 6.2: Multi-apps other tests on SAVE Virtual Platform summary

6.1.2.2 Other tests

Here we report all the other tests we ran on the SAVE Virtual Platform
for the multiple applications case.
In Figure 6.4(a) we show that our policy always guarantees the QoS
required by both BS and PCC applications. Table 6.2 contains the
tested throughput goals and the configurations the policy converges to,
in each of the three execution parts. In terms of power consumption,
Figure 6.4(b) reports an overestimation of the power that our policy,
along with BS and PCC may require during its execution.
Like in the single application case, we demonstrate the efficiency of our
policy during the simulations we performed on SAVE Virtual Platform.
Now that both single and multiple applications cases have been tested,
we can port our policy on the Odroid XU3 development board and test
our solution on a real system, and, most important, compare its results
with HMP scheduler.

82



6.1. Tests on SAVE Virtual Platform

BS w/ 1Msps goal PCC w/ 15fps goal

BS w/ 1Msps goal PCC w/ 20fps goal

BS w/ 2Msps goal PCC w/ 20fps goal

BS w/ 2.5Msps goal PCC w/ 20fps goal

 goal BS

 goal PCC

 goal BS

 goal PCC

goal BS

 goal PCC

 goal BS

 goal PCC

th
ro

ug
hp

ut

1

10

100

th
ro

ug
hp

ut

1

10

100

time (ms)
0 500 1000 1500

time (ms)
0 500 1000

(a) BS and PCC throughput with different goals

policy w/ 1Msps and 15fps goal

policy w/ 1Msps and 20fps goal

policy w/ 2Msps and 20fps goal

policy w/ 2.5Msps and 20fps goal

po
w

er
 (w

at
t)

0

2

4

6

po
w

er
 (w

at
t)

0

1

2

3

time (ms)
0 5 10 15×105

time (ms)
0 5 10×105

(b) Policy power consumption with different goals

Figure 6.4: Multi-apps other tests on SAVE Virtual Platform

83



6. Experimental Results

6.2 Tests on Odroid XU3

After that, the policy has been tested on SAVE Virtual Platform in both
single and multiple applications cases, we can test it on a real system. In
this section, we present the tests we ran using our policy on the Odroid
XU3 development board. In this way, we can overcome the limitations
imposed by the SAVE Virtual Platform, like the direct thread mapping
on cores (so far, we relied on the load-balancing algorithm available on
the SAVE Virtual Platform). Therefore, we now can completely test
each part of our workload-aware run-time resource management policy.
Moreover, here it is finally possible to compare the behavior of our pol-
icy with HMP scheduler. Indeed, in each of the tests we performed, we
also ran an execution of the same benchmark using HMP and imposing
the same configuration our policy converged to. This is done because we
cannot impose a throughput goal to HMP scheduler, hence we need to
execute the application using the same resources employed by our policy.
In this way, performance, in terms of throughput and power consump-
tion, of both our policy and HMP scheduler can be properly compared.
As result, we can prove whether our policy is capable of satisfying appli-
cation throughput requirements and, at the same time, reduce the power
consumption.
Finally, in these tests we have to consider that, when we compare our pol-
icy and HMP scheduler, a power consumption comparison makes sense
only if both solutions satisfy the application goal, otherwise, even though
it may still be interesting, such comparison turns out to be less meaning-
ful. The primary goal of our policy is the fulfillment of the application
throughput goal. Once such requirement is respected, the policy can
focus on its secondary goal; i.e. power efficiency.

6.2.1 Single Application

The application we considered for the tests on Odroid XU3 develop-
ment board is, again, Black Scholes application, for the reasons stated
before. For these tests, we set the number of Black Scholes kernel exe-
cutions to 500, while each kernel computes 1000000 options. Like in the
tests on SAVE Virtual Platform, we performed several tests varying the
throughput goal of Black Scholes benchmark.
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6.2.1.1 Full speed test

In this test, we compare the maximum throughput that can be pro-
vided by our policy and HMP scheduler at full speed, i.e. in C1223
(< 4, 1900, 4, 1300 >). We set a sufficiently high goal in order to let the
policy converge to C1223, while we directly enforced such configuration,
using taskset command, when we used HMP scheduler.
In Figure 6.5(a), it is clear that our policy is definitely more efficient
than HMP (in terms of throughput), since, thanks to thread mapping,
our policy is able of reaching an average throughput of 5Msps. On the
other hand, HMP scheduler throughput is slightly smaller than 4.5Msps.
Therefore, our policy can satisfy throughput goals that HMP scheduler
cannot, due to a not completely efficient load distribution. Finally, our
policy takes 10s to converge to C1223.
In terms of power consumption, Figure 6.5(b) demonstrates that the re-
sults reported by SAVE Virtual Platform were not correct; indeed, those
power values were overestimating the power consumption of policy. On
Odroid XU3, we can truly measure the power consumed by both solu-
tions. As result, not only the power required by our policy is smaller
than the one estimated by SAVE Virtual Platform, but it also turns out
to be more power efficient than HMP scheduler.
Finally, we compared our policy and HMP with a throughput/power
(sps/watt) metric. Differently from throughput/energy (sps/joule)
metric, this one is not execution depended, i.e. it does not take into
consideration execution time. Figure 6.5(c) proves that our policy is
more efficient than HMP also under this metric. HMP execution in
this test may be considered identical to a generic HMP execution of
BS application; indeed, also in the latter case, HMP spreads the work-
load among all the available resources. Hence, we will use this HMP
throughput-power ratio value as a criterion for comparison in the next
tests. In this way, we compare the results of our policy with an usual
HMP execution.
This test demonstrated that our policy results to perform better than
HMP scheduler at both throughput and power consumption ends, thanks
to an efficient workload distribution among available resources.
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Figure 6.5: Single-app full speed test on Odroid XU3
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Figure 6.5: Single-app full speed test on Odroid XU3

6.2.1.2 Power efficiency test

Like we did for the tests on SAVE Virtual Platform, we first want to
check whether our policy finds the most power efficient configuration,
once the throughput goal is satisfied. The minimum throughput goal of
Black Scholes application is set to 2Msps, and we ran two different tests,
one using the power efficient policy, the other using the power inefficient
policy. Then, for each test, we extracted the configurations the policy
converged to and executed Black Scholes with HMP scheduler enforcing
such configurations.
In Figure 6.6(a), we report the throughput reached by both policies ex-
ecution and HMP scheduler. The power efficient policy converges to
C516 (< 1, 900, 4, 1200 >), which is a Critical Configuration for HMP,
while the power inefficient policy converges to C496 (< 3, 900, 2, 1200 >).
Both policies guarantee the QoS required by Black Scholes, whereas nei-
ther of HMP executions are capable of satisfy such goal. In particular,
HMP execution in C516 is the one that has the lowest throughput (al-
most 0.4Msps). This result is due to the fact that C516 is a Critical
Configuration, hence HMP does not spread the workload properly, but
executes all the computation on the big core only. HMP execution in
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C496 has certainly better throughput performance, but it still cannot re-
spect Black Scholes goal. This means that our thread mapping solution
effectively efficient, since it allows our policy to reach throughput values
higher than HMP scheduler.
In terms of power consumption, HMP at C516 turns out to be the most
power efficient execution. Actually, this is a consequence of HMP be-
havior in Critical Configurations, because HMP employs only the big
core, while the LITTLE cores are in idle state. Hence, it cannot be con-
sidered as an effective power efficient solution, since it does not satisfy
the throughput goal either. Excluding HMP at C516, the power efficient
policy results to be the less power-hungry solution. On the other hand,
after an initial transient, the power required by our power inefficient
policy and HMP at C496 is very similar, our policy consumes slightly
more power.
Figure 6.6(c) compares our policy and HMP using throughput/power
metric. Not only both policy executions result to be more efficient
than the respective HMP executions, but they also definitely surpass
full speed HMP.
Finally, while power inefficient policy takes 9s (3% of whole execution
time) to converge, power efficient one requires 19s (7%), since it has
to find a power efficient configuration and test whether it satisfies the
throughput goal.
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Figure 6.6: Single-app test on Odroid XU3

(goal = 2Msps)

89



6. Experimental Results

th
ro

ug
hp

ut
 / 

po
w

er
 (s

to
ck

s 
pe

r s
ec

on
d 

/ w
at

t)

0

2

4

6

8

10

12

14

16

18

20×105

policy power efficient HMP in power 
efficient configuration

policy power inefficient HMP in power 
inefficient configuration

full speed HMP

(c) Policy and HMP throughput-power ratio

Figure 6.6: Single-app test on Odroid XU3

(goal = 2Msps)

6.2.1.3 Other tests

Here we presents all the other tests we ran on Odroid XU3 development
board for the single application case.
Figure 6.7(a) shows that our policy always satisfies the throughput goal
of Black Scholes on the four tested cases (Table 6.3 contains the tested
throughput goals, the configurations the policy converges to, and the
convergence times). On the other hand, HMP scheduler is able to re-
spect the goal only in one configuration (C106), where the system is
actually used as a homogeneous architecture, since no big cores are em-
ployed. In all the other configurations, HMP does not guarantee the
minimum QoS.
Figure 6.7(b) reports the chart power consumption charts for each test.
In C106 and C967, after an initial transient, the power required by our
policy and HMP is almost identical, while, in C1192 and C1222, our pol-
icy consumes definitely less power than HMP scheduler.
Figure 6.7(c) shows that, in terms of throughput-power ratio, our policy
is as efficient as HMP in 1Msps and 3Msps test cases, whereas it is more
efficient than HMP in the other two cases. Moreover, each execution of
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Goal Convergence Time (s)

1Msps C106 (< 0, 800, 4, 800 >) 12 (3%)

3Msps C967 (< 4, 900, 4, 1100 >) 27 (16%)

4Msps C1192 (< 4, 1400, 4, 1300 >) 19 (15%)

4.5Msps C1222 (< 4, 1900, 4, 1200 >) 5 (5%)

Table 6.3: Single-app other tests on Odroid XU3 summary

our policy is more throughput-power efficient than full speed HMP.
In terms of convergence time, in the worst case, our policy requires 27s,
i.e. 16% of BS execution time, while, in the best case, it takes 3%.
These tests, like the previous ones, confirm the tests we performed on
SAVE Virtual Platform and the quality of our policy, in a single applica-
tion case. Most important, these tests demonstrate the goodness of our
thread mapping solution, which is capable of increasing performance (at
throughput and power consumption ends) since it distributes the work-
load among the cores in more efficiently than HMP scheduler. In this
way, configurations that would not guarantee the minimum QoS using
HMP, may be employed to both respect the throughput goal and reduce
power consumption. Finally, each of our policy executions resulted to be
more throughput-power efficient than full speed HMP execution, which,
as we stated, it may be considered as a regular and usual HMP execution
in a multi-threaded context.
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Figure 6.7: Single-app other tests on Odroid XU3 summary
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Figure 6.7: Single-app other tests on Odroid XU3

6.2.2 Multiple Applications

Like for the multiple applications tests on SAVE Virtual Platform, we
monitored BS and PCC benchmarks. Both the considered applications
are multi-threaded, but PCC is not well-balanced. In fact, PCC bench-
mark on SAVE Virtual Platform was designed to be more balanced and
stable than its actual implementation. Therefore, our policy may take
more time to converge, in particular when a power efficient configuration
has to be found; indeed, the fact that our speedup formula is not 100%
accurate, along with PCC features, may force our policy to try different
power efficient configuration before retrieving the right one, in terms of
both throughput and power efficiency.
In the following tests, we first start PCC execution, then, after PCC
convergence, BS execution starts too. Again, the policy execution can
be split in three parts: PCC execution, BS and PCC execution, BS
execution.
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6.2.2.1 Power efficiency test

Here we present the power efficiency test for multiple applications case.
BS application goal is 1Msps, while PCC goal is 20fps.
Figure 6.8(a) shows the throughput curves in both cases. In the power
efficient test, PCC reaches its throughput goal, and then, after trying dif-
ferent configuration, it eventually converges to C442 (< 1, 900, 4, 1100 >).
Once BS execution starts, the policy converges to an initial configura-
tion able to satisfy both both, and then looks for a power efficient one.
The policy converges to C825 (< 3, 800, 4, 1200 >). Finally, after PCC
end, BS easily converges to its power efficient configuration, i.e. C106
(< 0, 800, 4, 800 >). On the contrary, the power inefficient policy con-
verges after few iterations to a configuration able to guarantee PCC QoS,
i.e. C300 (< 3, 1000, 1, 900 >); then, once BS starts its execution, the
policy converges again quite quickly to a new configuration capable of
satisfying PCC and BS goals C811 (< 3, 1800, 1, 900 >). Finally, when
there is only BS running, the policy converges to C78 (< 2, 800, 1, 900 >).
In terms of power consumption, as reported in Figure 6.8(b), power effi-
cient policy, at first, has a behavior similar to power inefficient one, but
then it moves to power efficient configurations, although the policy does
not converge immediately to a configuration able to satisfy both power
efficiency and QoS, as a consequence of PCC unbalanced behavior.
PCC convergence time and, in particular, its percentage with respect to
PCC execution time only may not be as interesting as the other values
since it depends on the time instant we decided to start BS execution.
Power efficient policy takes 77s to converge to C442 (63% of PCC exe-
cution time). After BS starts its execution, the policy converges in 105s
(73% of BS and PCC execution time together). Finally, after PCC end,
the policy converges in 23s (7% of BS execution time). On the other
hand, power inefficient policy does not look for a power efficient config-
uration, hence, when only PCC is running, it converges in 13s (18%).
Then, as BS begins, the policy converges again in 15s (12%). Finally,
the policy with only BS running converges in 13s (4%).
This test proves that, also in a multiple applications context, our policy
is able to converge to a configuration that both guarantees the QoS and
is power efficient.
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Figure 6.8: Multi-apps test on Odroid XU3

(goal = 1Msps and 20fps)
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Goal App Convergence Time

10fps PCC C20 (< 1, 800, 1, 1000 >) 86s (67%)
1Msps - 10fps BS - PCC C727 (< 2, 1100, 4, 1100 >) 136s (67%)

1Msps BS C106 (< 0, 800, 4, 800 >) 22s (9%)

15fps PCC C286 (< 1, 800, 4, 900 >) 65s (66%)
1Msps - 15fps BS - PCC C727 (< 2, 1100, 4, 1100 >) 127s (67%)

1Msps BS C106 (< 0, 800, 4, 800 >) 18s (7%)

20fps PCC C442 (< 1, 900, 4, 1100 >) 72s (71%)
1.5Msps - 20fps BS - PCC C1066 (< 4, 1200, 3, 1300 >) 48s (45%)

1.5Msps BS C313 (< 0, 800, 4, 1200 >) 12s (6%)

10fps PCC C20 (< 1, 800, 1, 1000 >) 86s (70%)
2Msps - 10fps BS - PCC C1213 (< 4, 1900, 3, 1200 >) 31s (29%)

2Msps BS C516 (< 1, 900, 4, 1200 >) 30s (20%)

Table 6.4: Multi-apps other tests on Odroid XU3 summary

6.2.2.2 Other tests

Here we presents all the other tests we ran on Odroid XU3 development
board for the multiple applications case.
Figure 6.9(a) shows that our policy always satisfies the throughput goal
of BS and PCC on the four tested cases, although it does not converge to
a power efficient configuration as fast as it did with only BS benchmark
(Table 6.4 contains the tested throughput goals, the configurations the
policy converges to, and the convergence times)
Figure 6.9(b) reports the chart power consumption charts for each test.
In all the cases, we can notice that, after an initial transient where
the policy converges to a suitable configuration, the power consumption
decreases since the possible power efficient configurations are tested in
order to find one able to also guarantee QoS of PCC and BS.
Finally, in terms of convergence times, when PCC is running, our policy
always takes more time than the time needed to converge when only BS is
running. As stated previously, this is a consequence of PCC unbalanced
nature.
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Figure 6.9: Multi-apps other tests on Odroid XU3
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6.3 Overhead Analysis

So far, we have reported the tests performed on our policy on both SAVE
Virtual Platform and Odroid XU3 development board. In this section,
we analyze the overhead introduced by our policy. More specifically,
we compare the performance of full speed HMP standalone execution,
already reported in Section 6.2.1.1, with HMP on policy execution. To
achieve such goal, we modified our policy in order to remove task alloca-
tion and allow HMP to distribute the workload. We ran BS benchmark
with a sufficient high throughput goal, so that the policy quickly con-
verges to C1223.
Figure 6.10(a) displays HMP standalone and HMP on policy through-
put. We can notice that, while HMP standalone throughput results to
be quite stable, HMP on policy throughput is slightly unstable, due to
the interaction with the policy. HMP standalone average throughput is
4.41Msps, whereas HMP on policy average throughput is 4.26Msps.
Figure 6.10(b) reports the power consumption curves. On average, HMP
standalone consumes 6.09W, while HMP on policy 6.12W.
Finally, we compared HMP standalone with HMP on policy in terms of
throughput-power ratio metric, as showed in Figure 6.10(c). As result,
HMP standalone throughput-power ratio is higher than HMP on policy
(0.72Msps/W and 0.69Msps/W, respectively).
As we expected, our policy introduces an overhead in terms of through-
put and power consumption. The policy overhead results in a 3.5%
throughput loss, while, in terms of power consumption, the overhead is
0.5%. Therefore, the power consumption overhead is negligible, whereas
the throughput loss is not so relevant but it does not affect our policy
execution since, as showed in Section 6.2.1.1, the task allocation solution
is able to provide higher throughput performance than HMP scheduler.
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Figure 6.10: Policy overhead
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Conclusions 7

This chapter reviews the work done within this thesis and derives the
conclusions from what has been presented so far. Section 7.1 discusses
the contributions of this thesis, while Section 7.2 analyzes the limitations
of the proposed work. Finally, Section 7.3 presents some possible future
works and enhancements starting from this thesis.

7.1 Contributions

Considering the state of the art in chapter 3, this work provides sev-
eral contributions. A first contribution of this thesis is that it propose
a global task scheduling able to distribute a multi-threaded applica-
tion among all the available cores. Indeed, the works we presented in
the state of the art, employ either a cluster migration or a core migra-
tion scheduler, while only HMP, the state of the art scheduler for ARM
big.LITTLE architecture, is able to spread the computation across the
available heterogeneous resources. However, HMP has no procedure that
controls and ensures the the requirements of an application, in particular
in terms of throughput. Our work is the first one that proposes a policy
capable of achieving such result, and, at the same time, employing all
the computing cores available on the underlying architecture.
Another contribution of this work is the fact it results to provide high
performance with respect to HMP scheduler. In Chapter 6 we proved
that, in the same configuration, our policy is more throughput and power
efficient than HMP, thanks to a properer workload distribution and
thread assignment. Moreover, in the tests we performed, our policy re-
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sulted to be also more efficient in terms or throughput per watt. Indeed,
all our policy tests were compared with full speed HMP throughput per
watt value and our policy always surpassed HMP results.
Finally, this thesis exposed HMP misbehavior in the so called Critical
Configurations. This was an interesting discovery, because it was the
starting point for our task allocation solution.

7.2 Limits of the present work

In spite of the contributions brought by this work, there are still some
aspects that need to be improved.
First of all, the speedup formula we exploited in this work has to be
inspected and enhanced. Such formula holds as we deal with either big
or LITTLE cluster, but, when we deal with mixed configurations (i.e.
configurations employing both big and LITTLE cores), it does not hold
anymore, or, at least, is not as accurate as in the single cluster case. This
is due to the fact that, in mixed configurations the throughput, as well
as the speedup, does not remain linear and, most important, monotone,
as we proved in Chapter 4. Hence, one configuration that is supposed
to provide an higher throughput value, actually has worse performance.
The motivation for such a behavior is the synchronization between big
and LITTLE clusters at different frequencies. Also for this reason, we
introduced the concept of mapping a convenient number of threads on
big and LITTLE cores, to reduce the waiting time between threads on
different clusters. However, the speedup formula does not take into
account either the synchronization time or the mapping ratio of mixed
configurations, and, as result, it is not accurate in mixed configurations.
Another limitation due to the speedup formula is the different time the
policy requires to converge when not perfectly balanced applications,
like PCC, are running. We showed in Chapter 6 that, when PCC was
running, the policy took more time to converge to a power efficient
configuration, since some of the tested configurations did not provide as
throughput as supposed.
Of course, the speedup formula proposed in this work aims to be as
general as possible, hence, as consequence, it may have drawbacks when
the application is not well-balanced.
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7.3 Future work

One of the future works is the improvement of speedup formula, in order
to make it more robust and accurate. Such formula may be enhanced
in different ways; for instance, it could include information about the
applications are running, like their mapping ratios, or the application
speedups may be extracted only once when it is run for the first time,
stored in memory, and then retrieved when that application is executed
again.
Another possible future work is to expand the policy for other heteroge-
neous resources like GPUs and FPGAs. In fact, Ordroid XU3 develop-
ment board is also powered by ARM Mali GPU, but it was not employed
in this work. It would be interesting to include Mali GPU as an alterna-
tive to big and LITTLE cores. This extension will require some changes
in the policy; for instance, the policy has to be aware whether the run-
ning application has a GPU implementation or not, and GPU power
consumption has to be taken into account to retrieve a suitable power
efficient configuration. In this way, the policy may turn into a more
general resource manager for heterogeneous system, able to allocate a
task on a convenient resource according to different aspects like avail-
able resources, available implementation for that particular resource and
application requirements.
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