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Abstract

The discovery of electrical conduction properties of a class of organic materials

[HMS00] (Nobel Prize in Chemistry, 2000) represents a potential breakthrough opening

the way to a plethora of highly innovative products benefiting from the peculiar

properties of organic semiconductors, such as the ability of being produced ad a low

cost and deposited on flexible substrates, and bio-compatibility. In particular in this

thesis we focus on mathematical models and numerical methods for the simulation of

Organic Thin Film Transistors (OTFTs), which are Field-Effect Transistors (FETs) made

by depositing thin films of a semiconductor layer over a non-conducting substrate

(such as glass) and are being adopted in the development of products such as flexible

displays and integrated circuits, sensors, organic memories and e-paper.

Charge transport in organic semiconductors occurs via a sequence of thermally

activated hopping events between strongly localized energetic sites. Although such

a mechanism is inherently different with respect to principles of charge transport in

inorganic materials, the mathematical models to describe the former are based on the

same Drift-Diffusion (DD) equations used for the latter; the peculiar characteristics

of conduction in organic semiconductors are represented via specific models for the

equation coefficients and in particular for the mobility. The state of the art is the

Extended Gaussian Disorder Model (EGDM), which allows to factor the mobility as a

constant, representing the low-applied-field and low-charge-density mobility, times a

set of enhancement factors expressing the effects of electric field and charge density

on the mobility. The enhancement factors strongly depend on the parameter σ which

represents the degree of energetic disorder of the system. Such parameter can not be

directly measured but it is usually left as a fitting parameter when modeling current

transport.

In [Mad+15] the authors presented a method to extract the value of σ from quasi-

static capacitance-voltage (C −V ) measurements. Here we present some significant

modifications to this procedure consisting of an improved optimization algorithm

for assessing σ from C −V measurements and an unsteady simulation model which

allows to capture the effects of the charge injection barrier at metallic contacts on

capacitance measurements.
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Sommario

La scoperta di proprietà conduttive in una classe di materiali organici [HMS00]

(Premio Nobel per la Chimica, 2000) rappresenta un importante passo verso lo svi-

luppo di prodotti altamente innovativi che godono delle particolari proprietà dei

semiconduttori organici, come ad esempio la possibilità di produrli a basso costo e

di depositarli su sottostrati flessibili e la bio-compatibilità. In particolare in questa

tesi si farà riferimento ai modelli matematici e ai metodi numerici per la simulazione

di Organic Thin Film Transistor (OTFT), cioè Field-Effect Transistor (FET) costruiti

depositando pellicole sottili di uno strato semiconduttore su un sottostrato isolante

(come il vetro), il cui impiego rientra nello sviluppo di prodotti come display e circuiti

integrati flessibili, sensori, memorie organiche e carta elettronica.

Il trasporto di carica nei semiconduttori organici avviene mediante una sequenza

di eventi di hopping, attivati all’aumentare della temperatura, tra siti energetici for-

temente localizzati. Nonostante questo meccanismo sia intrinsecamente differente

dai principi del trasporto di carica nei materiali inorganici, i modelli matematici che

descrivono entrambi i sistemi sono basati sullo stesso sistema Drift-Diffusion (DD); le

particolari caratteristiche della conduzione nei semiconduttori organici sono rappre-

sentate attraverso una specifica modellazione dei coefficienti di queste equazioni e in

particolare della mobilità. Lo stato dell’arte è il modello Extended Gaussian Disorder

Model (EGDM), che prevede di fattorizzare la mobilità come una costante, che rappre-

senta la mobilità a bassi campi applicati e a basse densità di carica, moltiplicata per

dei fattori di enhancement, espressione degli effetti esercitati dal campo elettrico e

dalla densità di carica sulla mobilità. I fattori di enhancement dipendono fortemente

dal parametro σ, che rappresenta il grado di disordine energetico del sistema. Questo

parametro non può essere direttamente misurato ma, di solito, ricopre il ruolo di

parametro di fitting nella modellazione del trasporto di corrente.

In [Mad+15] gli autori hanno presentato un metodo per estrarre il valore di σ a

partire da misurazioni quasi-statiche di capacità-tensione (C −V ). In questo lavoro

presentiamo alcune rilevanti modifiche a questa procedura che consistono in una

versione migliorata dell’algoritmo di ottimizzazione per valutare σ dalle curve C −V e

in un modello di simulazione in condizioni non stazionarie che consente di catturare
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Sommario

gli effetti della barriera di iniezione di carica ai contatti metallici sulle misure di

capacità.

Parole chiave: semiconduttori organici; densità degli stati; misure di capacità-

tensione; misure di corrente-tensione; metallo-isolante-semiconduttore; transistori

organici a film sottile; simulazioni non stazionarie.
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Sommario

Contenuto

Il presente lavoro è diviso in quattro parti principali.

Parte I (Introduzione) Nel capitolo 1 verranno dettagliate le motivazioni alla base

dello studio dei dispositivi basati su semiconduttori organici, presentandone le

principali proprietà e descrivendo alcuni importanti e recenti esempi di appli-

cazione nel campo delle nuove tecnologie. Il capitolo 2 è invece dedicato alla

particolare classe di dispositivi che si vuole studiare, i transistori organici a film

sottile (OTFT); verrà illustrato il principio del loro funzionamento, cercando di

far emergere l’importanza che i transistori rivestono ancora oggi nel mercato del-

l’elettronica, anche nella loro più moderna variante basata sui semiconduttori

organici.

Parte II (Modelli matematico-fisici) Il capitolo 3 riguarderà la descrizione dei feno-

meni di trasporto di carica all’interno dei dispositivi a semiconduttore. Verranno

messe in luce le differenze che intercorrono tra i dispositivi a base organica e

quelli, ben più studiati, a base inorganica spiegando come la diversità dei mec-

canismi in gioco nei due casi abbia poi delle importanti ricadute nei modelli

matematici che li descrivono. Questi modelli, di natura discreta o continua,

saranno poi introdotti nel capitolo 4 a partire da naturali principi fisici di base

(come leggi di conservazione, ad esempio). Ci si concentrerà in particolare

sul modello DD, un sistema di equazioni alle derivate parziali avente come

incognite il potenziale elettrico e le densità di portatori di carica. La princi-

pale differenza del sistema DD tra il caso organico e inorganico consiste nella

diversa modellizzazione delle mobilità dei portatori, cioè di quei coefficienti

che descrivono la risposta delle cariche sotto l’effetto di un campo elettrico.

L’elevato livello di disordine molecolare nei materiali organici, a differenza della

struttura perfettamente cristallina dei semiconduttori come ad esempio il silicio,

si riflette nei coefficienti di mobilità mediante delle espressioni funzionali forte-

mente non-lineari e dipendenti da parametri che non possono essere misurati

sperimentalmente, come la mobilità a bassi campi e a basse concentrazioni µ0

e il parametro di disordine molecolare σ. Il modello più largamente utilizzato in

letteratura è l’EGDM, oggetto di studio del capitolo 5. Nel capitolo 6 i modelli

descritti saranno chiusi da delle opportune condizioni al contorno, espressione

dei meccanismi fisici coinvolti in corrispondenza dei contatti elettrici. Infine,

nel capitolo 7, si spiegherà come la natura degli effetti capacitivi del disposi-

tivo in esame siano legati al parametro di disordine σ e come sarà possibile

sfruttare questa informazione per estrarre σ a partire da misure sperimentali di

capacità-tensione.
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Parte III (Metodi numerici) Interesse di questa parte è lo studio dei metodi numerici

utilizzati per la simulazione degli OTFT. Nel capitolo 8 si delineerà un generico

algoritmo di fitting per estrarre il parametro di disordine σ a partire dal con-

fronto delle curve capacità-tensione simulate (in condizioni stazionarie) con

quelle sperimentali, mentre il capitolo 9 si occuperà dei metodi per ricavare la

mobilità a bassi campi e a basse concentrazioni µ0 fittando le caratteristiche

corrente-tensione simulate (in condizioni stazionarie) con i dati sperimentali

a disposizione. Il contributo più originale di questo lavoro risiede nel capitolo

10, dove si darà la descrizione di un algoritmo numerico per la simulazione

di dispositivi a semiconduttore organico in condizioni non stazionarie sotto

il controllo di un circuito esterno; in particolare verrà data una formulazione

del problema in termini di un metodo di Newton e in termini di un metodo di

punto-fisso alla Gummel, opportunamente generalizzati per tener conto della

natura evolutiva del problema, dei modelli fisici coinvolti (come ad esempio

le relazioni costitutive tra densità di cariche e potenziale elettrico) e delle forti

non-linearità introdotte dal modello EGDM.

Parte IV (Risultati numerici) Nei capitoli 11, 12 e 13 verranno infine illustrati e com-

mentati i risultati ottenuti, rispettivamente, dalle simulazioni numeriche ese-

guite mediante le tecniche descritte nella precedente parte.
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1 Organic-based semiconductor devices

Several factors have motivated a continuous research in organic semiconductor

technologies, such as easy and low cost fabrication of large area circuits, mechan-

ical flexibility, high transparency and bio-compatibility. The molecular nature of

organic materials allows sub-micron structures to be created at a low cost using soft-

lithography, self-assembly or printing techniques instead of expensive conventional

optical lithography used for inorganic (usually silicon-based) ones [BS+14]. Moreover,

organic sensors and transistors can be produced without the need of heavy hazardous

metals or other harmful materials, thus guaranteeing bio-compatibility and the pos-

sibility to implant them within biological surfaces such as human tissues and skin.

Ultimately, since they do not require high temperature processing, sensible substrates

such as plastic or textiles can be exploited for the fabrication.

However, when drawing comparisons between plastic and silicon circuitry one

must be aware that the two systems are deeply different and their behavior and

performances do not necessarily match. A major drawback of organic devices is a

lower charge carrier mobility, i.e. the ability of charged particles to move in response

to an electric field, due to weak intermolecular interactions in the solid state (despite

recent improvements, as shown in fig. 1.1). Therefore, organic materials should not

be expected to replace silicon as the favored basis for electronic circuits, but to enable

research for new and emerging applications.

An important trend is that key industry sectors are starting to implement a variety

of products based on organic and printed electronics. In particular, a strong en-

gagement and product introduction is seen in the automotive, consumer electronics,

packaging and medical/pharmaceutical sectors.

New possibilities of this kind of technology can be grouped into five clusters [OEA]:

1. lighting (Organic Light-Emitting Diodes (OLEDs));

2. light-harvesting (photovoltaics);

3. flexible displays;

3



Chapter 1. Organic-based semiconductor devices

Figure 1.1: Mobility trend for a class of organic semiconductors. Source: [Zho+14].

4. electronics and components (memories, batteries, . . . );

5. integrated smart systems (smart objects, sensors and smart textiles).

1.1 Lighting

OLED-based lighting is seen as the most promising approach for future lighting

due to superior efficiency, flexibility, and high durability. Besides, devices like white

emitting OLEDs for general lighting, monochrome OLED lamps for automotive or

signage applications, are growing in importance. The market is expected to grow

steadily, especially if some key challenges, such as continued lowering of production

costs, are met.

1.2 Photovoltaics

Organic Photovoltaics (OPV) is an recent energy technology. OPV devices typi-

cally consist on a semi-transparent substrate and a photo-absorbing organic layer.

They can be made on flexible substrates, thus enabling power sources to be suitable for
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many emerging applications, such as wearables and mobile devices. The production

of this kind of devices grants a much shorter payback time than inorganic technology,

although their efficiency and lifetime are still under improvement.

1.3 Flexible displays

Flexible displays are an extension of flat panel displays that successfully replaced

cathode-ray tubes for use in computers and televisions and made the existence of

laptops, tablets, e-readers, smartphones possible. Flexible organic-based displays can

dispense with some key issues of current flat ones, such as the presence of breakable

and heavy glass and the inability to be bent or used with different form factors. The

market is starting to demonstrate a variety of flexible displays, from mobile phone

to watches, and it is growing to lead into wider availability of flexible consumer

electronics.

1.4 Electronics and components

Electronics and components include, for example, printed memories and flexible

batteries.

Printed memories are needed for applications where the user is required to store

information (companies use printed memory labels for brand protection against

counterfeiters), while flexible batteries are of central importance in solving the issue

of power supply in gaming as well as in mobile and wellness devices, besides being

employed in smart packaging applications.

Active (such as transistors, diodes, logic circuits and display elements) and passive
(resistors, capacitors, inductors, tubes) components can also be printed.

An area that was recently interested by intense research activity is that of transpar-
ent conductive films, to be used in optical devices, photovoltaics, electromagnetic

shielding and for touch sensors in mobile devices.

1.5 Integrated smart systems

Smart objects bring multiple functionalities to perform complex tasks without the

need for external hardware; integrated smart systems are being used in the develop-

ment of sensors and smart textiles.

Sensors allow to detect informations from the surroundings. Organic-based force sen-

sors, for example, have found use as part of touch screen displays in consumer devices,

but also in health care and automotive applications. More specifically, photodetectors

5



Chapter 1. Organic-based semiconductor devices

are gaining importance in the market of logistics, environmental monitoring, and

medical imaging.

Smart textiles are able to alter their properties in response to external stimuli; these

functionalities are being embedded, for example, into clothing. Organic and printed

electronics opens new possibilities in health monitoring with enhanced comfort for

the wearer; the ability to process and transmit data makes wearable electronics a

reality.
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2 OTFTs

Organic electronics is moving ahead on its journey towards reality: the continuous

progress made in the field of organic semiconductors has achieved important goals

such as relatively high charge carrier mobility, thus offering ample opportunities for

organic-based printed integrated circuits [MN15].

Field-Effect Transistors (FETs) are nowadays the basis for all electronic circuits

and processors. The ability to create transistors from organic materials raises exciting

possibilities for low cost electronics. In particular OTFTs, which are FETs made by

depositing thin films of a semiconductor layer over a non-conducting substrate (such

as glass), are being adopted in the development of products such as backplanes of

flexible displays and circuits for sensor applications.

Research on organic FETs over the past 25 years has contributed greatly to the

scientific understanding of the fundamental charge transport physics of conjugated

polymer and small-molecule organic semiconductors [Sir14]. These materials provide

unique realizations of systems where transport is intermediate between conventional

low-mobility transport in amorphous glasses and high-mobility transport in crys-

talline materials.

2.1 Mechanism of operation

A FET is a three-terminal component where the current flow between the source

and the drain is controlled by the voltage applied to the gate terminal (see fig. 2.1)

[BS+14]. It can be used as a single component to amplify a current or combined with

other transistors into an integrated circuit.

The metallic gate, the insulator layer and the bulk semiconductor act in effect

as a capacitor, with the gate forming one plate, the insulator acting as a dielectric

spacer, and the semiconductor forming the other plate: this is called a Metal-Insulator-

Semiconductor (MIS) capacitor. Therefore, when applying a bias across the plates,

opposite and equal charges will accumulate at the insulator-semiconductor interface.

7



Chapter 2. OTFTs

Figure 2.1: Schematic of a thin film transistor (side view and top view). Source:
[Mad+15].

This capacitive effect determines the charge density in the channel (the region be-

tween the source and drain electrodes where the charge carriers flow); when applying

a higher bias than a threshold gate voltage VT the conductivity becomes substantial

and the device turns on. Then the motion of charge carriers from source to drain

through the semiconductor layer takes place on applying a suitable drain-to-source

potential VDS [KKN14].

2.2 Applications and perspectives

OTFTs are extremely useful in applications such as flexible integrated circuits,

sensors, organic memories, e-paper and Radio-Frequency Identification (RFID) tags;

moreover, they have turned out to be promising backplane drivers in OLED-based flex-

ible displays (see figs. 2.2 and 2.3) [KKN14]. Recent advancements in organic material

fabrication techniques direct the researchers to make use of flexible substrates, such

as paper, plastic, glass and fiber, for low cost and light weight flexible applications.

OTFTs find also extensive applications in organic inverters and ring oscillators.

Few recent examples of use are described in the following subsections [KKN14].

8
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Figure 2.2: Photographs of A) flexible electrophoretic displays; B) plastic-printed
microprocessors. Source: [Sir14].

Figure 2.3: Pixel circuits for active matrix OLEDs. The letter T denotes OTFTs. Source:
[Sir14].
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RFID tags

A potentially emerging area for OTFTs is Radio-Frequency Identification of an

object. Organic RFIDs are useful in different kind of applications, such as electronic

product coding/labeling, supply chain management, medical science, toll bridges

and identification of inventory in retail shops. Developments in low temperature

fabrication techniques for organic materials encourage to make use of them in RFID

tags instead of their silicon-based counterparts which are almost three orders more

expensive.

Organic DNA sensors

OTFTs are promising for application in flexible Deoxyribonucleic Acid (DNA)

sensors due to their quick response time. This can enable the deployment of DNA

micro-array techniques for disposable diagnosis toolkits. These sensors are often used

to detect and quantify the nucleic acids for forensic analysis and pharmacogenomic

research, by transforming a chemical binding event into electrical signals that can be

easily measured and analyzed.
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3 Charge transport in organic semicon-
ductors

As anticipated in the introduction, while physical mechanisms governing charge

transport in organic semiconductors are inherently different from those in well known

crystalline inorganic materials such as, e.g., silicon, the mathematical models used to

simulate such phenomena are strongly connected. For this reason, it is common prac-

tice to introduce the physical bases of charge transport in inorganic semiconductors

(section 3.1) in order to mark the differences with respect to organic ones (section 3.2).

3.1 Inorganic semiconductors

Atoms in ordered inorganic semiconductors (such as silicon) are kept together

by covalent bonds which originate a perfectly regular, crystalline solid. Typically

inorganic semiconductors are built from elements in group IV of the periodic table

(Si, Ge, . . . ), possibly compounded with elements belonging to group I I I or V (GeAs,

InAs, InP, . . . ). In such systems electronic states are clearly defined and give rise to an

energy-band structure: charge carriers are confined to a number of bands of energy

(valence band and conduction band, separate by an energy gap) and forbidden from

others (see fig. 3.1).

Therefore a band transport is allowed: charge carriers are said to be delocalized as

they are spread across more than one atom and hence free to move in the whole crystal.

Occasionally their motion is hampered by scattering phenomena due to imperfections

in the crystalline structure such as dopants or phonons (due to a vibrational motion of

the lattice). In a wave-only view, carriers are plane waves propagating in a periodic

potential generated by atomic nuclei and charges occupying inner energetic levels in

the periodic lattice.

Because of the band transport described above, a crystalline semiconductor can

be approximated as a charged rarefied gas, where particles are free to move; hence
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Chapter 3. Charge transport in organic semiconductors

Figure 3.1: Valence and conduction bands in different materials. Source: [Hec11].

typical transport models can be deduced from the Boltzmann’s transport equation:

∂ f

∂t
+ dx

dt
·∇x f + dp

dt
·∇p f = 0,

where f = f (x,p, t) denotes the distribution function of a generic charge carrier in

the seven-dimensional space of spatial coordinates (x), momentum (p) and time (t ).

The classical Drift-Diffusion (DD) model is the zero-order moment in the hierarchical

expansion of the Boltzmann’s equation [Jer96; MR90].

Ultimately, in inorganic semiconductors charge carrier densities significantly vary

by introducing dopant impurities (see section 3.3), i.e. atoms having one valence

electron more or less than the host element, into the lattice.

3.2 Organic semiconductors: energetic disorder

Unlike inorganic materials, organic semiconductors are molecular solids, where

molecules are kept together by van der Waals’ interactions which act between perma-

nent and induced dipoles and are relatively weak compared to covalent bonds. As a

result, organic semiconductors have (up to 80%) lower relative dielectric permittivity,

thus Coulomb interactions between charges are stronger.

Weak intermolecular interactions and common production techniques of organic

semiconductor materials often lead to high levels of topological and energetic disorder

[CB12]; these systems can be distinguished into the amorphous and semi-crystalline

categories [Kax03]:

d in amorphous solids there is no long-range order of any type, even though the

local arrangement of atoms has a certain degree of regularity;
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d quasi-crystals show certain symmetries such as rotations, reflections or an un-

derlying regular pattern, but they are not compatible with a three-dimensional

periodicity; these crystalline regions attain dimensions of the order of [nm]÷[
µm

]
.

Each molecule is characterized by the Highest Occupied Molecular Orbital (HOMO)

and Lowest Unoccupied Molecular Orbital (LUMO) (called the frontier orbitals): cur-

rent conduction occurs when excited charges jump from a frontier orbital (which

is the LUMO for electrons and HOMO for holes) to the same frontier orbital of an

adjacent molecule.

In contrast to ordered crystalline semiconductors (with well-defined energy struc-

tures consisting of bands and gaps), the energy spectrum of a disordered material

can be treated as quasi-continuum [Wei+06]. Instead of bands and gaps one can

distinguish between extended and localized states1 (see fig. 3.2), where, according to

the definition given in [And78] by Anderson (Nobel Prize in Physics, 1977), a charge

carrier wave function is respectively spread over the whole volume or localized to

a restricted region. Localized sites can be interpreted as segments of a conjugated

polymer chain and are responsible for the flow of charge, as charge carriers spend

most of their time localized in a precise energetic state on a molecule.

Figure 3.2: Localization and delocalization of energetic states. Source: photonicswiki.

Charge transport occurs by means of a hopping mechanism (see fig. 3.3), which is a

phonon-assisted and thermally activated quantum tunneling effect (where a particle

tunnels through an energetic barrier that could not be classically overcome) from one

site to another neighboring site. This is why in organic materials hopping events are

promoted by high temperatures (which allow for higher molecular vibration ampli-

tude), while in inorganic semiconductors the mobility decreases with temperature.

1In the mathematical formulation, a “state” is a vector in an Hilbert space over a complex field; in an
appropriate basis it is represented as a wave function [Gri05], which contains all the information about
the quantum state of an entire system of particles.
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Chapter 3. Charge transport in organic semiconductors

Usually, the conductivity ς is found to be thermally activated as:

ς(T ) = ς0 exp

(
−Eact

kB T

)
,

where ς0 is the (theoretical) maximum conductivity
[
fm−1

]
, kB the Boltzmann’s

constant
[
J ·K−1

]
, T the temperature [K] and Eact the activation energy [J].

Many hopping models are based on the solution of a Master equation [Wei+06],

which consists of a discrete balance of hopping probabilities from each site to neigh-

boring ones and will be described in more details in section 4.1.

bc

bc

bc

(a) Band transport. In a crystal (the straight line)
charge carriers are delocalized. Lattice vibrations
disrupt the symmetry, thus limiting the carriers mo-
bility.

bc bc
bc

bc

bcbcbc

bc
bc

(b) Hopping transport. Carriers are localized due to
defects or disorder, so the lattice vibrations are es-
sential for a carrier to move from one site to another.

Figure 3.3: Charge transport in inorganic and organic semiconductors. Source: [PS99].
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3.3 Doping

Doping, i.e. introducing charged impurities into a pure (intrinsic) lattice, led to the

breakthrough of conventional semiconductor technologies; it granted the possibility

to control the charge carriers flow, giving rise to the design of p−n junctions, the build-

ing blocks of most electronic devices. Furthermore, doping enhances performances

by adjusting the conductivity and the position of the Fermi level.

Organic semiconductors can be doped by adding electron acceptors or donors,

although doping techniques are still under study. Because of the weak van der Waals’

interactions between molecules, organic materials are less sensitive to impurities and

structural defects than crystalline semiconductors but, because of stronger Coulomb

interactions between charges, dopant concentrations have to be considerably higher

for organic materials, thus affecting the molecular assembly, the morphology, and the

electronic properties of the film (mobility, energy levels distribution, . . . ).

Doping can be described as a two-step process:

1. the dopant is ionized, transferring an electron (hole) to the host material and

leaving a hole (electron) on the dopant; the ionization energy corresponds to

the difference between the HOMO level and the vacuum energy level;

2. the electron (hole) has to dissociate against the Coulomb attraction of the hole

(electron) left on the dopant.

The second step is harder to achieve in the case of organic semiconductors because of

their lower relative permittivity.

Two major drawbacks of doping organic semiconductors are the instability of

the dopant concentration, which is usually not constant in time, and the difficulty

to control the doping level inside the device, because of a lower doping efficiency

(defined as the ratio of the density of free charge carriers to the density of dopants)

due to the molecular disorder. This is why these materials are often used as intrinsic

and charges are preferred to be injected through metal electric contacts.
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4 Mathematical models

The aim of this chapter is to deal with the mathematical models describing the

physical properties of organic semiconductors. Following the qualitative descrip-

tion of phenomena on which charge transport in those systems is based, the Master

equation, a discrete model whose solution allows to determine the charge-carrier

mobility, and the continuum Drift-Diffusion system, describing the spatial-temporal

evolution of the relevant physical quantities, will be introduced in sections 4.1 and 4.2

respectively. Finally, constitutive relations will be exploited in sections 4.3 and 4.4 to

bring closure to the model.

4.1 Discrete models: the “Master equation”

By considering the semiconductor as a system of localized quantum states (that

may or may not be occupied by charged particles), the general transport equation

describing the balance of hopping events between a state i and a state j at equilibrium

is the so-called Master equation [Mei+06]:

Wi j pi (1−p j )−W j i p j (1−pi ) = 0 ∀i , j , (4.1)

where:
pi the time-averaged probability of occupation of the state i by a charge;

Wi j the transition rate for hopping from site i to site j .

The penalty terms 1−pi and 1−p j account for the Pauli exclusion principle by

prescribing that only one charge carrier can occupy a site. By assuming that hopping

of carriers from site to site occur by means of a thermally assisted tunneling process,

the coefficients Wi j can be expressed by the so-called Miller-Abrahams model [MA60]:

Wi j =



ν0 exp

[
−2$Ri j − E j−Ei

kB T

]
, E j ≥ Ei ,

ν0 exp
[−2$Ri j

]
, E j < Ei ,

(4.2)
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where:
kB the Boltzmann’s constant

[
J ·K−1

]
;

T the temperature [K];

ν0 an intrinsic rate (attempt-to-escape frequency);

Ri j =
∣∣R j −Ri

∣∣, the distance between site i and site j [m];

$ the inverse localization length of the states considered
[
m−1

]
;

Ei the energy of site i [J].

Equation (4.1) can be solved by drawing the on-site energies Ei randomly from a

given distribution representing the Density of States (further details about the choice

of this function will be given in section 4.4). The equilibrium distribution of charges

according to eq. (4.1) is usually computed by means of a Monte Carlo method by

simulating the evolution of an initial population until equilibrium is reached [SBS81;

Bäs93; Bou+09a]. Once the solution has been computed, the mobility coefficient µ[
m2V−1s−1

]
related to a generic charge carrier is given by (see [Bou+09a]):

µ=

1
N

∑

i , j
Wi j pi (1−p j )Ri j ,E

|E| , (4.3)

where:
N is the total number of charge carriers: N = nV , V being the total volume and

n denoting the mean (over V ) of the occupation probabilities pi ;

E is an applied electric field
[
V ·m−1

]
;

Ri j ,E is the distance between site i and site j along the direction of E [m].
The numerator of eq. (4.3) can be interpreted as the velocity of the particles. Taking

the limit of the master equation as the dimension of the space of energetic states

becomes continuum leads to the DD model.

4.2 Continuum models: the “Drift-Diffusion” model

A continuum model can be derived by assuming the distribution of charges in the

material to be a function of a continuum spatial variable. The electromagnetic fields

inside the device can be modeled through the Maxwell’s equations:





∇·D = ρ,

∇×E+ ∂B

∂t
= 0,

∇·B = 0,

∇×H− ∂D

∂t
= J,

(4.4a)

(4.4b)

(4.4c)

(4.4d)
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where:
E the electric field

[
V ·m−1

]
;

D the electric displacement field
[
C ·m−2

]
;

ρ the spatial charge density (per unit volume)
[
C ·m−3

]
;

B the magnetic induction field
[
N ·A−1m−1

]
;

H the auxiliary magnetic field
[
A ·m−1

]
;

J the electric current density (per unit area)
[
A ·m−2

]
.

In a linear, isotropic, homogeneous medium the constitutive relation D = εE,

ε = ε0εr holds, ε0 being the vacuum permittivity
[
C ·V−1m−1

]
and εr the material

relative permittivity.

4.2.1 Poisson’s equation

From (4.4c) it is possible to introduce a vector potential, i.e. a vector field A such

that:

∇×A = B.

The gauge freedom allows to write a vector potential in the form A+∇φ [Jac99], where

φ is an arbitrary function, as ∇×∇φ= 0 ∀φ.

We assume basic regularity hypotheses for the functions considered and the domain

(so that derivatives can be exchanged); hence, by inserting last equation into (4.4b):

∇×
(

E+ ∂A

∂t

)
= 0 ⇒ E+ ∂A

∂t
=−∇ϕ

for an appropriate function ϕ called the electrostatic potential.

After a multiplication by ε the equation becomes:

D+ε∂A

∂t
=−ε∇ϕ.

Applying the operator divergence and exchanging time and space derivatives:

∇·D+ε ∂
∂t

(∇·A) =−∇· (ε∇ϕ)

which, inserting (4.4a), gives:

ε
∂

∂t
(∇·A)+∇· (ε∇ϕ)=−ρ.

We choose the arbitrary function φ so that the Lorenz gauge condition is satisfied:

ε
∂

∂t
(∇·A) =− 1

c2

∂ϕ

∂t
,
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c being the vacuum velocity of electromagnetic waves.

The electrostatic potential ϕ is then the solution to the wave equation:

1

c2

∂2ϕ

∂t 2
−∇· (ε∇ϕ)= ρ.

c is usually much greater than the characteristic propagation velocities in the device

considered (for example the mean velocity of a charge carrier); in other words, we

are assuming that the length of the highest frequency electromagnetic wave is much

greater than a characteristic length of the device (there is no substantial propagation).

Therefore, the first term can be then neglected compared to the others and a Poisson’s

equation for the electrostatic potential ϕ is obtained [Mar86]:

−∇· (ε∇ϕ)= ρ.

In the following we will assume that the device domainΩ is made of a semicon-

ductor regionΩsc and an insulator regionΩi ns (see segment A A in fig. 6.1) such that

Ωsc ∪Ωi ns =Ω. Hence the following expressions hold:

ε=
{
εsc , inΩsc ,

εi ns , inΩi ns ,

and

ρ =
{
−q

(
n −p +ND

)
, inΩsc ,

0, inΩi ns .

Here n and p
[
m−3

]
are the charge carrier (electron and hole respectively) densities

(per unit volume) and ND
[
m−3

]
is the net dopant concentration (ND < 0 denotes an

n-type doping and ND > 0 a p-type one).

Finally, the Poisson’s equation becomes:

−∇· (ε∇ϕ)=−q(n −p +ND ). (4.5)

4.2.2 Model assumptions

Hereinafter, we will assume the following hypotheses [Mad+15]:

d the semiconductor is intrinsic, i.e. the dopant concentration ND is zero, as it is

very often in organic semiconductors; hence the total charge density becomes:

ρ =
{
−q

(
n −p

)
, inΩsc ,

0, inΩi ns ;
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d thermal generation effects are negligible (energy gaps are sufficiently large);

d leakage currents are negligible in the insulator regionΩi ns ;

d the semiconductor is unipolar, i.e. the device operation is based predomi-

nantly on the use of majority charge carriers; we will consider n-type devices,

i.e. p ≈ 0 (p-type devices can be treated analogously), and will neglect genera-

tion/recombination phenomena. From these assumptions we get the simplified

expression:

ρ =−qn. (4.6)

Since techniques for establishing stable doping in organic semiconductors are

still under study, bipolar devices have found less attention in the literature; moreover,

the device architecture of FETs is simple and requires only one type of charge carrier

[KB15].

Finally, since the electric potential ϕ is defined up to an additive constant, we

choose a reference level in such a way that:

ϕ=−ELU MO

q
(4.7)

inside the device, where ELU MO is the energy level associated with the molecular

orbital LUMO.

4.2.3 Continuity equations

Equation (4.5) has two unknowns: ϕ and n. One more equation can be deduced

by a basic conservation principle in order to bring closure to the system.

The conservation of the total number of particles, when generation/recombination

phenomena do not occur, is expressed by the following equation:

∂n

∂t
+∇· fn = 0,

where fn is the electron flux density
[
m−2s−1

]
. We define the total electron current

density
[
A ·m−2

]
as:

Jn =−qfn .

By linearizing the electron distribution functions around equilibrium, the follow-

ing constitutive relation for the current density can be derived (see [Sel12]):

Jn =−qµnn∇ϕn , (4.8)

23



Chapter 4. Mathematical models

where µn denotes the electron mobility respectively
[
m2V−1s−1

]
and ϕn is the elec-

trochemical potential [V], accounting for both electrical and chemical interactions

between charges. At equilibrium the electrochemical potential is spatially constant,

while in the non-equilibrium case it is a function of position.

The total number of charge carriers at a given energy can be estimated by means of

statistical mechanics models. Let ELU MO and EHOMO be the energy levels correspond-

ing to the molecular orbitals LUMO and HOMO respectively, and let g (E ) the Density

of States (DOS) function; the quantity g (E )dE represents the density of available quan-

tum states (per unit volume) that may have energy within an infinitesimal range dE of

energies centered at E . The total amount of charge carriers per unit volume is thus

expressed as the sum over all the admissible energies of the DOS function weighted

on the probability of occupation for that state:

n =
∫ +∞

−∞
g (E −ELU MO) · fD (E −EF )dE , (4.9)

where the function fD (E ) denotes the occupation probability of the state having

energy E and EF denotes the Fermi level, a quantity related to the electrochemical

potential. For a population of fermions, i.e. a system of many particles obeying the

Pauli exclusion principle1, the occupation probability is given by the Fermi-Dirac

statistics, which is the statistical distribution identified through the density function:

fD (E ) = 1

1+exp
(

E
kB T

) .

The Fermi-Dirac statistics represents, according to the Pauli exclusion principle

( fD (E ) < 1 ∀E ), the average number of electrons occupying the state having energy E .

We define the Fermi level EF [J] as the thermodynamic work required to add

one electron to a fermion system [Kit08]. An understanding of how it relates to the

electronic structure is essential to describe the physics of a solid-state system. The

Fermi level does not necessarily correspond to an actual energy level (for example, in

an insulator the Fermi level lies in the band gap).

Remark 4.1. By definition, the Fermi level is such that:

fD (EF ) = 1

2
,

which means that an electron or a hole has a 50% probability to occupy the energy

level EF .

1The Pauli exclusion principle states that the same quantum state cannot be occupied simultane-
ously by two identical fermions.
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Equation (4.9) rigorously applies to a system at thermal equilibrium, where EF is

a constant. In a system out of equilibrium we can assume a generalized version of

eq. (4.9) to hold, by allowing the Fermi level EF to depend on spatial coordinates; it

turns out that the resultant force acting on a particle is proportional to the gradient of

such quasi-Fermi energy. Therefore it is related to the electrochemical potential by an

affine relation and we can choose, without loss of generality:

EF =−qϕn .

This expression, together with eq. (4.7), gives the constitutive relation:

n = n(ϕ,ϕn) =
∫ +∞

−∞
g

(
E +qϕ

) · fD
(
E +qϕn

)
dE . (4.10)

Remark 4.2. At high energies, i.e. when E À kB T +EF , then the Fermi-Dirac distribu-

tion can be approximated as:

fD (E ) ≈ exp

(
−E −EF

kB T

)
, (4.11)

which is called the Maxwell-Boltzmann statistics. Carrier densities usually involved

in typical organic semiconductor devices are such that the Fermi level lies inside a

region where the DOS function is not negligible; therefore the Maxwell-Boltzmann

approximation can not be used except for a narrow range of energy values.

Definition 4.1. The quantity Vth = kB T
q is defined thermal voltage. At the room tem-

perature T = 300K , its value is Vth ≈ 26mV .

4.3 Generalized Einstein relation

Definition 4.2. We now define a chemical potential φ as:

φ=ϕ−ϕn . (4.12)

Remark 4.3. The definition above is compatible with [Mad95], while other authors

[AM88] use swapped definitions for chemical and electrochemical potentials.

From eq. (4.10), after a change of variables, the electron density can be represented

as a function of the chemical potential, i.e. n = n(φ). Therefore its spatial gradient is

computed as:

∇n = ∂n

∂φ

(∇ϕ−∇ϕn
)

.

By substituting this expression into eq. (4.8) we get:
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Chapter 4. Mathematical models

Jn =−qµnn∇ϕ+qDn∇n, (4.13)

which corresponds to the familiar drift-diffusion constitutive relation for the electron

current density; here we have introduced the electron diffusion coefficient
[
m2s−1

]
:

Dn =µn
n
∂n
∂φ

. (4.14)

Equation (4.14) provides an generalization of the relation discovered by Einstein and

Smoluchowski in their analysis on the Brownian motion [ES99], valid for a general

DOS shape.

It can be easily shown that the classical Einstein relation can be deduced as a

particular case of eq. (4.14) through an appropriate choice for the function g (E ). For

example, let us consider the typical DOS function for an inorganic semiconductor:

g (E −Ec ) ∝
√

E −Ec · 1{E>Ec },

where the proportionality is intended up to a multiplicative constant, 1 denotes the

indicator function and Ec is the energy of the bottom of the conduction band (analo-

gous to the ELU MO in an organic semiconductor), and the zero-disorder limit for an

organic semiconductor:

g (E −ELU MO) ∝ δ(E −ELU MO),

where δ(E −ELU MO) denotes the Dirac delta centered at ELU MO . Under the Maxwell-

Boltzmann approximation (4.11) in both cases we get:

n(φ) ∝ exp

(
φ

Vth

)
=⇒ ∂n

∂φ
= 1

Vth
n =⇒ Dn =µnVth .

In the following we will make use of a function α(n) representing the deviation of

the diffusion coefficient from the classical Einstein relation:

α(n(φ)) = 1

Vth

n
∂n
∂φ

. (4.15)

Therefore we write:

Dn =µnVth ·α(n(φ)). (4.16)
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4.4. Constitutive relations for the Density of States

4.4 Constitutive relations for the Density of States

In the literature there is no definitive consensus as to the best choice for the shape

of the DOS function g (·) in eq. (4.10) for organic materials [Mad+15]. We assume it to

belong to a family of given functions parametrized by a single parameter (DOS width,

later denoted by σ) corresponding to the degree of disorder of the system. Several

models have been proposed, including:

1. a single symmetric gaussian [FT09; Poe+13; Mar+09];

2. a linear combination of symmetric gaussians [Kwo+12];

3. an exponential [VW11; Riv+11; RE11];

4. an asymmetric gaussian [TM11];

5. a combination of a gaussian and an exponential [Vri+13; Cho+14];

6. others [VW09; Hul+04].

From now on we will focus on the first two cases.

4.4.1 Single gaussian

The ansatz based on a single gaussian is motivated by the physical plausibility in

the case of organic materials [Wei+06]. The DOS function is the following:

gσ(E ) = N0p
2πσ

exp

(
− E 2

2σ2

)
,

where:
N0 the total number of available states (per unit volume)

[
m−3

]
;

σ the disorder parameter [J], corresponding to the standard deviation of the

gaussian.
Thus eq. (4.10) becomes:

n = N0p
2πσ

∫ +∞

−∞
exp

(
− (E −ELU MO)2

2σ2

)
1

1+exp
(

E−EF
kB T

)dE , (4.17)

where ELU MO =−qϕ according to eq. (4.7).

We aim to rewrite eq. (4.17) in order to exploit a gaussian quadrature formula for

efficiently computing the integrals in numerical simulations.

By substituting:

η= E −ELU MOp
2σ

(4.18)
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into eq. (4.17) we obtain:

n(φ) = N0p
π

∫ +∞

−∞
e−η2

(
1+exp

(p
2ση−qφ

kB T

))−1

dη, (4.19)

where φ is the chemical potential introduced in section 4.3.

Now we compute the derivatives of eq. (4.17) with respect to the electric potential

ϕ and the chemical potential φ (of order 1 and 2), playing an important role in the

application of a Newton’s method (which will be described in chapter 8).

From eq. (4.17) we compute:

∂n

∂ϕ
(ϕ) = N0p

2πσ

∫ +∞

−∞
exp

(
− (E +qϕ)2

2σ2

)
1

1+exp
(

E−EF
kB T

) · −2(E +qϕ)q

2σ2
dE ,

which becomes, through eq. (4.18):

∂n

∂ϕ
(ϕ) =−N0q

σ

√
2

π

∫ +∞

−∞
ηe−η2

(
1+exp

(p
2ση−qφ(ϕ)

kB T

))−1

dη. (4.20)

Similarly, from eq. (4.19):

∂n

∂φ
(φ) = N0

Vth
p
π

∫ +∞

−∞
e−η2

exp
(p

2ση−qφ
kB T

)

(
1+exp

(p
2ση−qφ

kB T

))2 dη (4.21)

and:

∂2n

∂φ2
(φ) = N0

V 2
th

p
π

∫ +∞

−∞
e−η2

exp
(p

2ση−qφ
kB T

)

(
1+exp

(p
2ση−qφ

kB T

))2




2exp
(p

2ση−qφ
kB T

)

1+exp
(p

2ση−qφ
kB T

) −1


dη.

(4.22)
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4.4.2 Multiple gaussians

The i -th gaussian is characterized by three parameters:

d N0,i : the total number of available states (per unit volume)
[
m−3

]
;

d σi : the disorder parameter [J] (standard deviation);

d φs,i : the (spatially constant) shift of the chemical potential with respect to the

first gaussian (by definition, φs,1 = 0).

Let k be the total number of gaussians considered; eq. (4.19) can be generalized as

follows:

n(ϕ) =
k∑

i=1

(
N0,ip
π

∫ +∞

−∞
e−η2

(
1+exp

(p
2σiη−q

(
φ+φs,i

)

kB T

))−1

dη

)
.

By linearity, eq. (4.20) becomes:

∂n

∂ϕ
(ϕ) =

k∑

i=1

(
−N0,i q

σi

√
2

π

∫ +∞

−∞
ηe−η2

(
1+exp

(p
2σiη−q

(
φ(ϕ)+φs,i

)

kB T

))−1

dη

)

and similarly eqs. (4.21) and (4.22) can be generalized.
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5 EGDM mobility model

In [Coe+05; VMC08] is presented the Extended Gaussian Disorder Model (EGDM),

which is valid for a single gaussian DOS (see section 4.4.1) and proceeds on the assump-

tion that on-site energies Ei in eq. (4.2) are gaussian-distributed (see section 4.4.1)

and have no spatial correlation. For materials where the energies are spatially corre-

lated Bouhassoune et al. presented in [Bou+09b] the Extended Correlated Disorder

Model (ECDM).

Both approaches determine the mobility (eq. (4.3)) starting from a numerical solution

of the Master equation (4.1). For the EGDM it has been shown a dependence of the

mobility on:

1. the temperature T ;

2. the charge carrier density;

3. the component of the electric field in the direction of the motion of charge

carriers E∥ (later simply denoted as E).

More specifically, it was found that only at high voltages and low temperatures the

dependence on the field plays a role. This functional dependence leads to excel-

lent agreement between calculated and measured current-voltage characteristics

[Bou+09a].

By defining the following quantities:

σ̂= σ

kB T
,

δ (σ̂) = 2
log

(
σ̂2 − σ̂)− log(log(4))

σ̂2
,

c1(n) = min

{
n

N0
,0.1

}
,

c2(E) = min

{
qE

N 1/3
0 σ

,2

}
,
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Chapter 5. EGDM mobility model

the complete EGDM for the electron mobility coefficient reads [Coe+05; VMC08]:





µn(T,n,E) =µ0,n(T ) · g1(n,T ) · g2(E ,T ),

µ0,n(T ) = µ̄0,n exp
(−c0σ̂

2)

g1(n,T ) = exp

[
1

2

(
σ̂2 − σ̂)

(2c1(n))δ(σ̂)
]

,

g2(E ,T ) = exp
[
0.44

(
σ̂3/2 −2.2

)] ·
[√

1+0.8c2(E)2 −1
]

,

(5.1)

where:
c0 a dimensionless parameter;

µ̄0,n the low-field and low-charge-density mobility
[
m2V−1s−1

]
.

By a slight abuse of notation, we will later refer to the function µ0,n(T ) as the

low-field and low-charge-density mobility. The functions g1(·) and g2(·) are called

enhancement factors.

Remark 5.1. The DOS widthσ parameter and µ0,n play a leading role in the DD system

because of the EGDM. Nevertheless, their experimental measurement is not possible

but their value is desirable, which is why parameter estimation problems have to be

solved in order to completely close the DD system.

Remark 5.2. The EGDM model introduces further non-linearities into the DD system

(see [Kna+10]) because of the functional dependence of µn on the system variables n

andϕ, thus affecting the overall efficiency of non-linear iteration strategies. Therefore,

standard discretization schemes has to be properly adapted and generalized for taking

into account the peculiar physical model of organic semiconductor.

Part III of this thesis will concern about numerical techniques to address the

identification of theσ and µ0,n parameters and to solve the DD system in the unsteady

regime.
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6 One-dimensional modeling of OTFTs

OTFT are usually characterized by extreme aspect ratios L/W (see fig. 6.1), which

warrant for separate modeling of:

d charge accumulation in the z-direction (segment A A), corresponding to the

MIS capacitor;

d charge transport in the y-direction (segment BB), by assuming simmetry along

the x-direction.

x

y

z

Semiconductor

Insulator

Source

Drain

A

A

B

B

Gate

W
L

H

Figure 6.1: Geometrical setting of the OTFT.
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Chapter 6. One-dimensional modeling of OTFTs

6.1 Model simplifications

Under this geometrical setting, the continuum model presented in section 4.2,

making use of the assumptions discussed in section 4.2.2, can be rewritten as:





−∇· (ε∇ϕ)+qn = 0, inΩ× [0,T ],

∂n

∂t
− 1

q
∇· Jn = 0, inΩsc × [0,T ],

Jn =−qµnn∇ϕn , inΩ× [0,T ],

n = n(ϕ,ϕn), inΩsc × [0,T ],

n = 0, inΩi ns × [0,T ],

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

where T is the final time-step. Equation (6.1d) represents the constitutive relation

(4.10). The separate modeling of the OTFT in the z- and y-directions allows to simplify

the system (6.1) in the two cases:

d quasi-static simulation in the z-direction; the continuity equation (6.1b) and

eq. (6.1e) give Jn = 0, i.e. the electrochemical potential ϕn is spatially constant

and can be set equal to 0[V] without loss of generality. Therefore from eq. (6.1d)

we get that the electron density n is a function of the electric potential ϕ only.

Thus the model can be simplified into the non-linear Poisson’s equation:





− ∂

∂z

(
ε
∂ϕ

∂z

)
+qn = 0, inΩ,

n = n(ϕ), inΩsc ,

n = 0, inΩi ns .

(6.2a)

(6.2b)

(6.2c)

Here Ω = [−tsc , ti ns], Ωsc = [−tsc ,0] and Ωi ns = (0, ti ns] (segment A A), where

tsc and ti ns are the thicknesses of the semiconductor and the insulator layer

respectively. The function n = n(ϕ) is evaluated from eq. (4.10).

d low drain-to-source voltage (VDS) application, i.e. simulation of current con-

duction in the y-direction in the linear regime (segment BB); in this case the

current is proportional to VDS . We then assume that that the electron density is

spatially constant and the resultant force acting on a particle is proportional to

VDS too. Therefore we approximate:

∇ϕ≈∇ϕn ≈−VDS

L
, (6.3)

so that no partial differential equation has to be solved in this case.
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6.2. Boundary conditions

6.2 Boundary conditions

We need to specify appropriate boundary conditions for eq. (6.1) in order to

guarantee the well-posedness of the problem.

6.2.1 Bulk contact: charge injection

The physical phenomenon considered at the bulk contact (corresponding to z =
−tsc ) is the presence of a Schottky barrier, i.e. a potential energy barrier for electrons

formed at a metal-semiconductor interface [Tun14].

Out of thermal equilibrium, the electrical current flowing across the interface

between a metal and a semiconductor is influenced by a discontinuity on the energy

scale of the electronic states responsible for conduction in the two materials. De-

localized electronic states around the Fermi level are responsible for the electrical

conduction in the metal, but these states are not coupled to any delocalized electronic

state in the semiconductor, depending on the doping type: in n-type semiconductors

the electrons near the LUMO are primarily responsible for electrical conduction and

they are at an energy −qΦB (where ΦB is the potential barrier) above the Fermi level.

This energy offset is known as the Schottky barrier height and is such that the flow

of electrons from the semiconductor to the metal is easier than conduction in the

opposite direction. We now define two important physical quantities used to model

the potential barrier.

Definition 6.1. In solid-state electronics, the work function W f [J] is the minimum

thermodynamic work needed to remove an electron from the Fermi level to the

vacuum immediately outside the solid surface. In a semiconductor, the work function

depends on the doping level at the surface.

Definition 6.2. The electron affinity Ea [J] in semiconductor physics is the minimum

thermodynamic work needed to remove an electron from the LUMO level to the

vacuum level.

The potential barrier can thus be expressed as:

ΦB =−W f −Ea

q
, (6.4)

W f being the metal work function and Ea the semiconductor electron affinity.

Scott and Malliaras [SM99] also considered a mechanism of (thermionic) charge

injection from metals into organic semiconductors, which plays an important role in

devices such as OLEDs, where metal electrodes inject charge carriers into the opposite

sides of the emissive organic layer, organic photoconductors (used in laser printers
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Chapter 6. One-dimensional modeling of OTFTs

and photocopiers), where the photogenerated charge must be extracted from the

polymer film, and OTFTs too. Here the effect of the image potential (induced by

charges in the metal) on injected carriers is modeled as a recombination activated

from a Coulomb interaction through an hopping process. The physics of charge

injection can be mathematically represented by making use of a corrected potential

barrier [VDH+09]:

Φ′
B =ΦB +

√
qEc

4πεsc
, (6.5)

where Ec is the electric field at the contact surface.

The boundary condition for the electric potential ϕ must then take into account a

shift equal to ΦB (or Φ′
B , for the corrected model).

6.2.2 Gate contact: applied voltage

At the insulator contact a shift of the electric potential Vshi f t is considered, due to

effects such as permanent dipoles, fixed charge in dielectrics or metal work function

mismatch [Mad+15]. In section 8.4 we will discuss a way to extract this parameter by

comparing numerical results with experimental data.

6.2.3 External control circuit

We suppose that the device contacts are connected to an external control circuit.

The circuit’s evolution can be described by the Modified Nodal Analysis (MNA) equa-

tion obtained from the Kirchhoff’s circuit laws and the constitutive relations for the

electronic components connected to the circuit. It can be written as:

AḞ+C(F)+ r I = 0, (6.6)

where:
F the state vector, containing the circuit variables (such as voltages, magnetic

fluxes, currents, total charges, . . . );

I the vector of the inward currents on contacts;

r an incidence matrix, which accounts for attaching each device contact to a

circuit node.
Here C(F) = BF+s and A,C are matrices; the dot denotes the time derivative.

Let Vb and Vg be the components of F corresponding to the voltages of the circuit

nodes connected to the bulk and gate contact respectively; the boundary conditions
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6.3. Computation of contact currents

for the electric potential are of Dirichlet type:

{
ϕ (−tsc , t ) =Vb(t )+ΦB ,

ϕ (ti ns , t ) =Vg (t )+Vshi f t ,
(6.7)

∀t ∈ [0,T ].

6.2.4 Continuity equation

The boundary conditions imposed for the continuity equation are:

{
n (−tsc , t ) = n

(
ϕ(−tsc , t ),Vb(t )

)
,

Jn(0, t ) = 0,
(6.8)

∀t ∈ [0,T ].

The bulk contact Dirichlet condition is evaluated through the constitutive relation

chosen for the DOS according to eq. (4.10): for example, in the case of a gaussian DOS

(eq. (4.19)), by substituting eq. (6.7) the boundary condition reads:

n (−tsc , t ) = N0p
π

∫ +∞

−∞
e−η2

(
1+exp

(p
2ση−qΦB

kB T

))−1

dη.

At the semiconductor-insulator interface we imposed an homogeneous Neumann

(natural) condition.

6.3 Computation of contact currents

The vector of currents I in eq. (6.6) is computed using the residue method [GS06],

based on the property of local conservation [Hug+00] which holds for discretiza-

tion schemes derived from the Galërkin method (such as finite elements and finite

volumes).

The total current at the i -th contact is the sum of two contributions due to the

displacement current and the conduction current:

Ii = S

[(
∂D

∂t
+ Jn

)
ν

]

i
, (6.9)

where S is the device area
[
m2

]
, D = εE = −ε∂ϕ∂z is the electric displacement field[

C ·m−2
]

and ν the inward unit normal.
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Displacement current

We write the variational formulation of eq. (6.1a) by multiplying by a trial function

ψ ∈ H 1(Ω) and integrating by parts:

∀t ∈ [0,T ] find ϕ(t ) ∈ H 1(Ω) subject to boundary conditions (6.7) such that:
∫ ti ns

−tsc

ε
∂ϕ

∂z

∂ψ

∂z
dz −

[
ε
∂ϕ

∂z
ψ

]ti ns

−tsc

+
∫ ti ns

−tsc

qnψdz = 0, ∀ψ ∈ H 1(Ω),ψ|∂Ω = 0.

Since the Galërkin method is locally conservative [Hug+00], we can choose ψ

among the basis functions omitted to satisfy the Dirichlet boundary conditions [GS06].

For:

ψ(z) =ψ1(z) =




1, z =−tsc ,

0, z 6= −tsc ,

we get: ∫ ti ns

−tsc

ε
∂ϕ

∂z

∂ψ1

∂z
dz +ε∂ϕ

∂z
(−tsc )+

∫ ti ns

−tsc

qnψ1dz = 0,

and finally:

(Dν) (−tsc ) =−ε∂ϕ
∂z

(−tsc ) =
∫ ti ns

−tsc

ε
∂ϕ

∂z

∂ψ1

∂z
dz +

∫ ti ns

−tsc

qnψ1dz, (6.10)

where ψ1 is the first basis function of the discretization scheme considered.

Similarly, for:

ψ(z) =ψK (z) =




1, z = ti ns ,

0, z 6= ti ns ,

where K is the total number of the discretization degrees of freedom, we get:

∫ ti ns

−tsc

ε
∂ϕ

∂z

∂ψK

∂z
dz −ε∂ϕ

∂z
(ti ns)+

∫ ti ns

−tsc

qnψK dz = 0,

and finally:

(Dν) (ti ns) =+ε∂ϕ
∂z

(ti ns) =
∫ ti ns

−tsc

ε
∂ϕ

∂z

∂ψK

∂z
dz +

∫ ti ns

−tsc

qnψK dz. (6.11)

Then the total displacement current at the i -th contact is:

S

(
∂D

∂t
ν

)

i
.
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Conduction current

We write the variational formulation of eq. (6.1b) by multiplying by a trial function

γ ∈ H 1(Ω) and integrating by parts:

∀t ∈ [0,T ] find n(t ) ∈ H 1(Ω) subject to boundary conditions (6.8) such that:
∫ 0

−tsc

∂n

∂t
γdz + 1

q

∫ 0

−tsc

Jn
∂γ

∂z
dz + 1

q

(
Jnγ

)
(−tsc ) = 0, ∀γ ∈ H 1(Ω),γ (−tsc ) = 0,

where we have exploited the boundary condition eq. (6.8).

For:

γ(z) = γ1(z) =




1, z =−tsc ,

0, z 6= −tsc ,

we get:

(Jnν) (−tsc ) = Jn (−tsc ) =−q
∫ 0

−tsc

∂n

∂t
γ1dz −

∫ 0

−tsc

Jn
∂γ1

∂z
dz, (6.12)

while Jn (ti ns) = 0 because of eqs. (6.1e) and (6.8).

The total conduction current at the i -th contact is then:

S (Jnν)i .

Remark 6.1. The volume integrals in eqs. (6.10) to (6.12) can be easily computed

starting from stiffness and mass matrices obtained by the discrete formulation.
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7 Correlation between DOS and capaci-
tance in a MIS capacitor

Capacitance-Voltage (C −V ) curves allow a promising approach for probing the

DOS parameter σ by fitting numerical and experimental results [Mad+15].

In the case of a gaussian DOS (section 4.4.1) (other cases are treated analogously)

the system eq. (6.2), valid only in the quasi-static approximation, becomes:





− ∂

∂z

(
ε
∂ϕ

∂z

)
+qn = 0, inΩ,

n = N0p
π

∫ +∞

−∞

e−η2

(
1+exp

(p
2ση−qϕ

kB T

))dη, inΩsc ,

n = 0, inΩi ns .

(7.1a)

(7.1b)

(7.1c)

This is a non-linear integro-differential equation for the electric potential ϕ, with

boundary conditions given by eq. (6.7).

At moderately positive gate voltages, EF is still located within the HOMO-LUMO

gap and far from the DOS (fig. 7.1) [Mad+15], hence no carriers are present in the

semiconductor. For larger gate voltages, EF starts sweeping the semiconductor DOS,

thus determining an accumulation of electrons in the semiconductor.

The spatial distribution of accumulated charges is largely influenced by the disor-

der parameter σ, as shown in fig. 7.2: the super-linearity of eq. (7.1) tends to produce

steep boundary layers for n(z) near the semiconductor-insulator interface, while more

disorder implies that more states are close to or even below EF and hence occupied,

resulting in a smoothing of the peak in n(z). This phenomenon can be exploited

in order to extract the DOS width σ, considered that it is more convenient to probe

a perturbation δn(z) instead of directly n(z); in fact, the additional accumulation

charge induced by a small signal δVg can be experimentally obtained by means of

simple electrical measurements such as C −V curves.

Therefore, once solved eq. (7.1) (for example, by means of a non-linear functional

iteration technique), the differential capacitance C [F] can be the evaluated as δQ
δVg

,
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Chapter 7. Correlation between DOS and capacitance in a MIS capacitor

Figure 7.1: Energy levels in a MIS capacitor. Source: [Mad+15].

Figure 7.2: Influence of the disorder parameter σ on accumulated charge and capaci-
tance. Source: [Mad+15].

where δQ is the variation of the total charge Q accumulated at the gate contact at the

bias Vg and δVg the gate voltage perturbation. In chapter 8 we will explain how to

accurately compute C and its derivative dC
dVg

, used in the fitting algorithm, without

resorting to differentiation techniques which lead to numerical instabilities.
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8 σ extraction: fitting C −V curves

The aim of this chapter is to describe an algorithm for extracting the disorder

parameter σ by fitting C −V curves. We consider a MIS capacitor in the quasi-static

regime: the device is always at equilibrium and no transport phenomena are involved;

the Fermi level EF is spatially constant, thus it can be set equal to 0[J] with no loss of

generality.

8.1 Linearization: Newton’s method

The non-linear Poisson’s eq. (7.1) has been linearized through a Newton’s method.

The equation can be written as F(ϕ) = 0, where F : H 1(Ω) → R is an appropriate

integro-differential functional.

The non-linear iteration proceeds as follows. Given ϕ(0), solve:





DF
(
ϕ(k)

)[
δϕ(k)

]
=−F

(
ϕ(k)

)
,

ϕ(k+1) =ϕ(k) +δϕ(k),

(8.1a)

(8.1b)

for each k ∈N+ until convergence. Here the symbol DF(ϕ)[χ] denotes the Gâteaux
derivative of the functional F at ϕ in the direction χ, defined as:

DF(ϕ)[χ] = lim
κ→0

F(ϕ+κχ)−F(ϕ)

κ
.

The functional derivative can be expressed as:

DF
(
ϕ(k)

)[
δϕ(k)

]
=− ∂

∂z

(
ε
∂χ

∂z

)
(z)+q

∂n

∂ϕ
(ϕ)χ.
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Chapter 8. σ extraction: fitting C −V curves

Therefore eq. (8.1a) becomes:

− ∂

∂z

(
ε
∂
(
δϕ(k)

)

∂z

)
+

[
q
∂n

∂ϕ

(
ϕ(k)

)]
δϕ(k) =−

[
− ∂

∂z

(
ε
∂
(
ϕ(k)

)

∂z

)
+qn

(
ϕ(k)

)]
, (8.2)

with n = 0 inΩsc , which is a diffusion-reaction partial differential equation for δϕ(k).

The term ∂n
∂ϕ (·) is evaluated through eq. (4.20).

Given an initial guessϕ(0) satisfying eq. (6.7) in the stationary regime, the following

boundary conditions are imposed for ϕ(k):

{
δϕ(k)(−tsemi c ) = 0,

δϕ(k)(ti ns) = 0.

A convenient choice for the initial guess is a linear function consistent with eq. (6.7).

Equation (8.2) has been discretized as described in section 10.3.

The stopping criterion used to check the convergence of the Newton’s method is

based on the L∞-error between two successive iterates.

8.2 Computation of charge density

The integral relations in eqs. (4.19) to (4.20) and (4.22) can be numerically approxi-

mated through gaussian, i.e. nodes and weights are unknown, quadrature rules.

The Gauss-Hermite rule allows approximating the integral of a function f (z) mul-

tiplied by a gaussian weight g (z) = e−z2
:

∫ +∞

−∞
e−z2

f (z)dz.

The nodes of the Gauss-Hermite quadrature rule of order N are the roots of the N -th

Hermite polynomial, defined through the recurrence relation:

HN+1(z) = 2zHN (z)−2nHN−1(z),

with H0(z) = 1, H−1(z) = 0.

The integral can thus be approximated as:

∫
g (z) f (z)dz ≈

N∑

i=1
wi · f (zi ),

where {zi }N
i=1 and {wi }N

i=1 are the quadrature nodes and weights respectively and can

be obtained by means of two different algorithms:
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8.3. Computation of the capacitance

d a direct method [KU98] based on the eigen decomposition of a Jacobi matrix

J ∈ RN×N (tridiagonal and symmetric), which can be exploited for families of

orthogonal polynomials defined through a recurrence relation; the nodes are

the eigenvalues of J and the weights its (scaled) eigenvectors.

d an iterative method [Pre07] based on a Newton’s iteration technique; compared

to the direct method it is faster (no factorization of large matrices required) but

less accurate.

8.3 Computation of the capacitance

Let ϕ(z) be the solution of eq. (7.1) for an applied voltage V g ; the corresponding

charge Q [C] (per unit area) on the gate plane can be computed as [Mad+15]:

Q =
(
−ε∂ϕ

∂z

)
(ti ns). (8.3)

When superimposing a perturbation δVg to the applied gate voltage, the electric

potential will vary by an amount δϕ and the charge by an amount δQ in such a way

that:

Q +δQ =
(
−ε∂

(
ϕ+δϕ)

∂z

)
(ti ns),

which, using eq. (8.3), leads to:

δQ =
(
−ε∂δϕ

∂z

)
(ti ns). (8.4)

Neglecting terms of order 2, δϕ is the solution to the following differential problem:





− ∂

∂z

(
ε
∂δϕ

∂z

)
+q

[
∂n

∂ϕ
(ϕ)

]
δϕ= 0, inΩ,

n = 0, inΩi ns ,

δϕ(−tsc ) = 0,

δϕ(ti ns) = δVg .

(8.5)

Once eq. (8.5) has been solved, the differential capacitance of the device can be

computed as:

C (Vg ) = S
δQ

δVg
, (8.6)

where S is the area of the device
[
m2

]
and δQ is given by eq. (8.4).

Given the linearity of eq. (8.5), C will not depend on δVg but only on Vg ; therefore it is
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Chapter 8. σ extraction: fitting C −V curves

convenient to set δVg = 1 without loss of generality.

Remark 8.1. Computing first a finite set of samples of the curve Q(Vg ) and then

computing C (Vg ) through a difference formula would not have been a valid approach

because the fitting procedure also requires computing the derivative dC
dVg

(Vg ), i.e. the

second order derivative of Q(Vg ), which would lead to numerical instabilities when

using standard double-precision floating point numbers [Ant02].

8.4 Post-processing

The post-processing phase consists in comparing numerical results obtained by

means of the techniques described in the previous sections and experimental data.

C −V curves are evaluated over a sample of applied biases V , usually ranging from

the depletion (Vg ,dep ) to the accumulation (Vg ,acc ) regime [SS98].

Issues related to non-ideal effects introduce additional uncertainties affecting the

disorder parameter σ that need to be properly addressed.

A first issue to deal with concerns the gate voltage shift term Vshi f t [Mad+15]. From

the experimental point of view, many phenomena can cause a shift of the C −V

curve along the horizontal axis, such as permanent dipoles, space charge layers,

fixed charge in dielectrics or metal work function mismatch. All these effects are

accounted for through the single fitting parameter Vshi f t , computed as the distance

between abscissas of the maxima of the simulated and experimental dC
dVg

(Vg ) curves

(see fig. 8.1):

Vshi f t = argmax
Vg

dCsi m

dVg
(Vg )−argmax

Vg

dCexp

dVg
(Vg ). (8.7)

Finally, the L2(Ω)- and H 1(Ω)- errors and the distance between the ordinates of

the peaks in the two curves (peak-distance) are computed, together with the center of
charge tCoC [m] of the perturbed density δn (see chapter 7), dependent on the gate

bias Vg and defined as:

tCoC (Vg ) =
∫ 0
−tsemi c

n(z)zdz
∫ 0
−tsemi c

n(z)dz
.

The center of charge allows to compute the equivalent capacitance of the semicon-

ductor layer:

Csc = S
εsc

tCoC
.
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Figure 8.1: Shift of the electric potential caused by non-ideal effects.

8.5 Algorithm for automatic fitting

From now on, we will focus on the single gaussian model (section 4.4.1). In

addition to the shift of the electric potential, a second non-ideal effect to be accounted

for is a parasitic contribution given to the device capacitance [Mad+15], due to a

coupling between the metal gate and the bulk contact. This contribution can be

modeled as a Vg -independent stray capacitance Csb connected in parallel to the MIS

capacitor.

Finally, since the semiconductor layer is buried under the insulating film, the

measurement of its thickness tsc is subject to uncertainties.

We now describe an iterative algorithm, originally presented in [Mad+15], which

allows to automatically find the optimal parameter vector [σ,Csb , tsemi c ]. The (k+1)-th

iteration consists of the following steps:

Step 1 Fixed C (k)
sb and t (k)

semi c , a finite set of samples for σ is initialized, belonging

to the interval [σ(k) −σn ,σ(k) +σp ], where σn and σp are parameters initially set by

the user. Then the non-linear Poisson’s equation is solved (by means of the Newton’s

method described in section 8.1) for each σ in this set, in order to identify the optimal

value σ(k+1) minimizing the distance (in terms of L2(Ω)- or H 1(Ω)- errors or the peak-

distance) of the simulated C −V curve from the experimental data.

Step 2 Csb is updated:

C (k+1)
sb =C (k)

sb +Cexp (Vg ,acc )−Csi m

(
Vg ,acc ;

[
C (k)

sb , t (k)
semi c ,σ(k+1)

])
.
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Chapter 8. σ extraction: fitting C −V curves

Step 3 tsemi c is updated:

t (k+1)
semi c = εsemi c

(
1

Cexp (Vg ,dep )−C (k+1)
sb

− ti ns

εi ns

)
.

A generalization of this algorithm with respect to [Mad+15] consists in an adaptive
identification of the parameters σn and σp , in order to save computational costs and

locate the optimal value for the disorder parameter σ with more accuracy:

if σ(k+1) <σ(k) then
σp =σ(k) −σ(k+1)

else if σ(k+1) >σ(k) then
σn =σ(k+1) −σ(k)

else
convergence reached!

end
Algorithm 8.1: Adaptive identification of σn and σp .

While the robustness of this divide et impera procedure is well demonstrated by

the results obtained, a rigorous study of its mathematical properties has not been

carried out and warrants further investigation.
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9 µ0 extraction: fitting I −V curves

Once the disorder parameter σ of the semiconductor has been computed (us-

ing the algorithms discussed in chapter 8), Current-Voltage (I −V ) curves allow to

probe the low-field and low-charge-density mobility µ0,n of the EGDM model (chap-

ter 5) by fitting numerical and experimental results, thus showing that the DOS width

extraction is a meaningful procedure [Mad+15].

We focus on an OTFT restrained to work in the linear regime, i.e. Vg −VT ÀVDS ,

VT being the threshold voltage and VDS the drain-to-source voltage (see section 2.1).

The DOS width σ is extracted by initially setting VDS = 0, so that the mechanism of

operation of the device is that of a MIS capacitor.

9.1 Computation of channel resistivity

The relationship between drain-to-source current and gate voltage for a fixed VDS

can be expressed as:

IDS(Vg ) =Gch(Vg )VDS , (9.1)

where the channel conductance Gch [f], implicitly dependent on the applied gate

voltage Vg , is given by:

Gch(Vg ) = W

L

∫ 0

−tsc

qµn(z)n(z)dz, (9.2)

W being the channel width and L its length. Here the mobility coefficient µn(z), at a

fixed temperature T , is expressed in terms of the EGDM model (eq. (5.1)) as:

µn(z) =µ0,n · g1(n(z)) · g2(E).

The only fitting parameter in this model is the low-field and low-charge-density

mobility µ0,n
[
m2V−1s−1

]
, since the enhancement factors g1(·) and g2(·) can be easily
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Chapter 9. µ0 extraction: fitting I −V curves

computed once the DOS width σ has been extracted; moreover, in the linear regime

the electric field E can be approximated to be constant from source to drain (see

eq. (6.3)):

Ē = VDS

L
.

Finally, we note that eq. (9.2) can be rewritten as:

Gch(Vg ) = W

L
µn,eff(Vg )Qch(Vg ), (9.3)

where we have introduced the total accumulated charge (per unit area):

Qch =
∫ 0

−tsc

qn(z)dz,

the effective mobility, easily comparable to data collected by experimental measure-

ments:

µn,eff(Vg ) =µ0,nµ̂n,eff(Vg )

and the dimensionless parameter:

µ̂n,eff =
q

Qch
g1

(
Ē

)∫ 0

−tsc

g2(n(z))n(z)dz.

9.2 Computation of low-field and low-charge-density mo-

bility

The parameter µ0,n can be extracted by fitting experimental I −V characteristics.

By using a linear Least Squares procedure, the parameter identification problem reads:

find µ∗
0,n = argmin

µ0,n∈R+

∥∥IDS(Vg )−Gch(Vg )
∥∥2 , (9.4)

where IDS(Vg ) is the experimental current-voltage curve and Gch(Vg ) is computed by

evaluating eq. (9.3) at the simulation results.

The least square estimate is given by the normal equation:

µ∗
0,n = iT g

iT i
,

where i and g are the (column) vectors containing the curves IDS(·) and W
L µ̂n,effQch(·),

respectively, evaluated at a finite set of samples of the gate voltage Vg .
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9.2. Computation of low-field and low-charge-density mobility

Remark 9.1. In the linear region eq. (9.1) can be approximated as (see [Sin+08]):

IDS(Vg ) = W

L
Ci nsVDSµn · (Vg −VT ),

where Ci ns is the capacitance of the insulator layer (per unit area). This approximation

gives:

µn(Vg ) = 1
W
L Ci nsVDS

dIDS

dVg
(Vg ), (9.5)

which provides an alternative way to compute the mobility coefficient. A comparison

between the complete EGDM model (9.4) and the compact model (9.5) will be drawn

in chapter 12.
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10 Unsteady simulation of OTFTs

In this chapter we consider the complete DD system, now totally closed as the

unknown parameters of the EGDM model σ and µ0,n have been extracted by fitting

C −V and I −V experimental curves.

The DD system (6.1), coupled with the external control circuit (section 6.2.3) and

with the equation for the contact currents (section 6.3), reads:





−(
εϕ′)′+qn = 0, inΩ× [0,T ],

∂n

∂t
−

(
µn(n)Vth

(
α(n)n′− n

Vth
ϕ′

))′
= 0, inΩsc × [0,T ],

AḞ+C(F)+ r I = 0,

Ii −S

[(
∂D

∂t
+ Jn

)
ν

]

i
= 0, ∀i ∈ ∂Ω× [0,T ],

(10.1a)

(10.1b)

(10.1c)

(10.1d)

where (·)′ denotes the partial derivative in the z-direction.

10.1 Time semi-discretization

The semi-discretization in time of eq. (10.1) has been carried out by means of

the Implicit Euler method. Let {tm}M
m=0 ⊂ [0,T ] be the discrete set of time-steps and

∆tm = tm − tm−1; thus the semi-discretized system reads:

given (ϕ0,n0,F0,I0), ∀m = 1, . . . , M find (ϕm ,nm ,Fm ,Im) such that:
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Chapter 10. Unsteady simulation of OTFTs





−(
εϕ′

m

)′+qnm = 0, inΩ,

nm

∆tm
−

(
µn(nm)Vth

(
α(nm)n′

m − nm

Vth
ϕ′

m

))′
− nm−1

∆tm
= 0, inΩsc ,

A
Fm

∆tm
+C(Fm)+ r Im − A

Fm−1

∆tm
= 0,

Im,i −S

[(
Dm −Dm−1

∆tm
+ Jn,m

)
ν

]

i
= 0, ∀i ∈ ∂Ω.

(10.2a)

(10.2b)

(10.2c)

(10.2d)

Given an initial condition (ϕ0,n0) satisfying eqs. (6.7) and (6.8) (for t = 0), the

boundary conditions are:

{
ϕm(−tsc )−Vb,m =ϕ0(−tsc )−Vb,0,

ϕm(ti ns)−Vg ,m =ϕ0(ti ns)−Vg ,0,
(10.3)

and: {
nm (−tsc ) = n0 (−tsc ) ,

Jn,m(0) = Jn,0(0).
(10.4)

10.2 Linearization of the semi-discretized DD system

At each time-step tm , eq. (10.2) is a system of four non-linear equations for the

variables (ϕm ,nm ,Fm ,Im), of the form:




Gϕ(ϕm ,nm ,Fm ,Im)

Gn(ϕm ,nm ,Fm ,Im)

GF(ϕm ,nm ,Fm ,Im)

GI(ϕm ,nm ,Fm ,Im)


= 0. (10.5)

Equation (10.5) has been linearized by means of a Newton’s method, which can be

written in compact form:








Gϕ,ϕ Gϕ,n Gϕ,F Gϕ,I

Gn,ϕ Gn,n Gn,F Gn,I

GF,ϕ GF,n GF,F GF,I

GI,ϕ GI,n GI,F GI,I







δϕ

δn

δF
δI.


=−




G (k)
ϕ

G (k)
n

G (k)
F

G (k)
I




,




ϕ(k+1)
m

n(k+1)
m

F(k+1)
m

I(k+1)
m



=




δϕ

δn

δF
δI


+τk




ϕ(k)
m

n(k)
m

F(k)
m

I(k)
m




,

(10.6a)

(10.6b)
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10.2. Linearization of the semi-discretized DD system

for each k ∈ N+ until convergence, where Gi , j (with i , j ∈ {ϕ,n,F,I}) denotes the

Gâteaux derivative of Gi with respect to the j -th variable at (ϕ(k)
m ,n(k)

m ,F(k)
m ,I(k)

m ) in

the direction [δϕ,δn,δF,δI]. The damping factor τk is chosen to preserve the positiv-

ity of the electron density at each iteration and to avoid too long steps.

Expanding eq. (10.6a) gives:





−(
εδϕ′)′+qδn =−G (k)

ϕ ,

δn

∆tm
−

(
µn(n(k)

m )Vth

(
−n(k)

m
′

Vth
δϕ′+α(n(k)

m )δn′−βδn

))′
=−G (k)

n ,
(

A

∆tm
+B

)
δF+ rδI =−G (k)

F ,

δIm,i −S

{[(
Dm−Dm−1

∆tm
+ Jn,m

)
,ϕ

[δϕ] +

+
(

Dm−Dm−1
∆tm

+ Jn,m

)
,n

[δn]
]
ν
}

i
=−G (k)

I ,

(10.7a)

(10.7b)

(10.7c)

(10.7d)

where β=−
(
α′(n(k)

m )n(k)
m

′− ϕ(k)
m

′

Vth

)
and

α′(n(φ)) = dα

dn
(n(φ)) = 1

Vth
∂n
∂φ

−
∂2n
∂φ2

(
∂n
∂φ

)2α(n(φ)),

φ being the chemical potential defined in section 4.3. We remark that the mobility

coefficient, computed through the EGDM model as explained in chapter 9, has been

handled explicitly; therefore the calculation of its functional derivative is not needed.

At every time-step tm , a good initial guess (ϕ(0)
m ,n(0)

m ,F(0)
m ,I(0)

m ) for the Newton’s

method is crucial to guarantee a fast convergence of the linearized problem: it is

computed by means of a linear extrapolation from the solutions computed at the two

older time-steps.

Given an initial guess (ϕ(0)
m ,n(0)

m ) satisfying eqs. (10.3) and (10.4), the boundary

conditions imposed for the linearized system are:




δϕ(−tsc )−δVb =

(
ϕ(k)

m (−tsc )−V (k)
b,m

)
− (
ϕ0(−tsc )−Vb,0

)
,

δϕ(ti ns)−δVg =
(
ϕ(k)

m (ti ns)−V (k)
g ,m

)
− (
ϕ0(ti ns)−Vg ,0

)
,

(10.8)

and: 



δn (−tsc ) = n(k)
m (−tsc )−n0 (−tsc ) ,

[(
Jn,m

)
,ϕ [δϕ]+ (

Jn,m
)

,n [δn]
]

(0) = 0.
(10.9)
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Chapter 10. Unsteady simulation of OTFTs

The calculation of the jacobian matrix in eq. (10.6) is a very time- and resource-

consuming task. For each step of the Newton’s method we choose to fix the same

jacobian matrix and thus to perform a number of subsequent Modified Newton’s

iterations. The coupled method has a worse convergence behavior but allows to

reduce the global computational costs of the linearization procedure.

Algorithm 10.1 outlines the general resolution scheme used for the non-linear

problem; in particular we remark the implementation of the time-step adaptation:

the algorithm tries to reduce the time-step if the linearization procedure fails to

converge, otherwise the time-step is relaxed in order to save computational costs.

10.2.1 Generalized Gummel method

The initial guess for the Newton’s procedure can be refined through the Gummel

fixed-point method (see [Gum64]), which may be seen as a globalization strategy

for the Newton’s method. We now present a generalized version of the classical

Gummel decoupling method suitable for organic devices when the EGDM (chapter 5)

is considered. We focus on the following system:





−(
εϕ′)′+qn(φ) = 0, inΩ× [0,T ],

n(φ)− N0p
π

∫ +∞

−∞

e−η2

(
1+exp

(p
2ση−qφ

kB T

))dη= 0, inΩsc × [0,T ],

∂n

∂t
−

(
µn(n)Vth

(
α(n)n′− n

Vth
ϕ′

))′
= 0, inΩsc × [0,T ],

n = 0, inΩi ns × [0,T ],

(10.10a)

(10.10b)

(10.10c)

(10.10d)

where eq. (10.10a) is the non-linear Poisson’s equation, eq. (10.10b) the equation

defining the electrochemical potentialϕn =ϕ−φ (see section 4.3) and eq. (10.10c) the

continuity equation. The generalized Gummel method to solve eq. (10.10) is described

in alg. 10.2. If we write eq. (10.10b) in the form n̄ −G(ϕn) = 0, by supposing that ϕ and

n̄ are given, this equation can be linearized through a Newton’s method in order to

iteratively compute the electrochemical potential ϕn ; the linearized problem requires

to solve: {
G ′(ϕk

n)δϕn =−(n̄ −G(ϕk
n)),

ϕk+1
n =ϕk

n +δϕn ,

(10.11a)

(10.11b)

for each k ∈N+ until convergence. In the EGDM model the quantity G ′(ϕn) = ∂G
∂ϕn

(ϕn) =
−∂G
∂φ (ϕn) is evaluated through eq. (4.21). Numerical properties of this algorithm has

not been deeply studied yet and certainly warrant further research, as in the one-

dimensional approximation there is no real advantage to use the Gummel decoupling.
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10.2. Linearization of the semi-discretized DD system

Data: Initial condition (ϕ0,n0,F0,I0)
for m = 1 to M do
TIME LOOP

compute initial guess (ϕ(0)
m ,n(0)

m ,F(0)
m ,I(0)

m ) by extrapolation;
k = 0;
while k <= maxI terN and not converged do
NEWTON’S LOOP

update jacobian and compute its LU factorization;
update residual;

solve and compute (ϕ(k+1)
m ,n(k+1)

m ,F(k+1)
m ,I(k+1)

m );

if i ncr ement (or ‖r esi dual‖) < tol er ance then CONVERGED

break;
end
if step too long or i terN == maxI terN then REJECTED

break and reduce time-step;
end

for i terM N = 0 to maxI terM N do
MODIFIED NEWTON’S LOOP

update residual;
solve and compute new state;

if i ncr ement (or ‖r esi dual‖) < tol er ance then CONVERGED

break;
end
if step too long then

break;
end
if i terM N == maxI terM N then REJECTED

break Newton and reduce time-step;
end

end

if Modified Newton converged then
break;

else if Modified Newton’s step too long then
reject and revert to (ϕ(k+1)

m ,n(k+1)
m ,F(k+1)

m ,I(k+1)
m );

end
end

if Newton or Modified Newton converged then
relax time-step;

else REJECTED

reduce time-step;
end

end
Algorithm 10.1: General resolution algorithm.
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Chapter 10. Unsteady simulation of OTFTs

Data: Initial guess (ϕ0,φn,0,n0)
k = 0;
while k <= maxI ter and not converged do

solve eq. (10.10a) for ϕk+1 using the Newton’s method described in
section 8.1 started with φ0

n,k+1 = 0;

given ϕk+1 solve the linear eq. (10.10c) for nk+1;

given n̄ = nk+1 solve eq. (10.10b) for φn,k+1 using the Newton’s method
(10.11);

if i ncr ement < tol er ance then CONVERGED

break;
end

end
Algorithm 10.2: Generalized Gummel method.

10.3 Spatial discretization

Accurate and stable numerical solution of the semiconductor equations requires

spatial discretization methods that employ upwinding techniques to handle with

possible dominant advective phenomena [Boc11; BP11]. In this work we follow an

approach based on a finite volume method, particularly a Scharfetter-Gummel stabi-

lized box method [MW94; BCJC98].

Given a spatial discretization grid {zi }n
i=1 with n the number of mesh nodes, the

box method requires to construct a dual mesh, defined by the boxes [zi− 1
2

, zi+ 1
2

], where

zi+ 1
2

is the middle point of the interval [zi , zi+1] as shown in fig. 10.1; in particular we

assume that the nodes are equally spaced with distance h = tsc+ti ns
n−1 .

z

z1 =−tsc 0 zn = ti nszi− 1
2

zi zi+ 1
2

h

Figure 10.1: Mesh and dual mesh.

Since all the equations presented in the previous sections (such as eqs. (8.2)

and (10.7)) belong to this category, we now focus on a general diffusion-advection-

reaction problem:

J ′+ c(z)u = 0, inΩ, (10.12)

where J =−a(z)u′(z)+b(z)u(z) is the diffusive-advective flux and c(z)u is a reaction
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10.3. Spatial discretization

term. Integrating eq. (10.12) over the box [zi− 1
2

, zi+ 1
2

] yields:

Ji+ 1
2
− Ji− 1

2
+

∫ z
i+ 1

2

z
i− 1

2

c(z)u(z)dz = 0, inΩ. (10.13)

We now approximate the flux J(z) and the coefficients a(z),b(z) to be constant

over each interval [zi , zi+1] (see [Sha99]), so that:

Ji+ 1
2
≈−ai+ 1

2
u′+bi+ 1

2
u,

where u is the solution to the following linear ordinary differential equation with

constant coefficients:





−ai+ 1
2

u′′+bi+ 1
2

u′ = 0, z ∈ [zi , zi+1],

u(zi ) = ui ,

u(zi+1) = ui+1,

(10.14)

which gives:

u(z) = A+B exp
(
λi+ 1

2
z
)

,

with:

A =
ui exp

(
λi+ 1

2
zi+1

)
−ui+1 exp

(
λi+ 1

2
zi

)

exp
(
λi+ 1

2
zi+1

)
−exp

(
λi+ 1

2
zi

) =
ui exp

(
λi+ 1

2
h
)
−ui+1

exp
(
λi+ 1

2
h
)
−1

,

B = ui+1 −ui

exp
(
λi+ 1

2
zi+1

)
−exp

(
λi+ 1

2
zi

) ,

λi+ 1
2
=

bi+ 1
2

ai+ 1
2

.

The quantity λi+ 1
2

h represents the local Péclet number multiplied by 2. Finally we

compute the approximate flux Ji+ 1
2

:

Ji+ 1
2
=−ai+ 1

2
u′+bi+ 1

2
u = Abi+ 1

2
=

= bi+ 1
2

ui exp
(
λi+ 1

2
h
)
−ui+1

exp
(
λi+ 1

2
h
)
−1

=

=
ai+ 1

2

h
λi+ 1

2
h

ui exp
(
λi+ 1

2
h
)
−ui+1

exp
(
λi+ 1

2
h
)
−1

,

61



Chapter 10. Unsteady simulation of OTFTs

which can be simplified as:

Ji+ 1
2
=−

ai+ 1
2

h

[
ui+1B(λi+ 1

2
h)−uiB(−λi+ 1

2
h)

]
, (10.15)

where we denoted by B(q) = q
exp(q)−1 the Bernoulli function and exploited its property

B(−q) = eqB(q). The expression of Ji− 1
2

can be analogously derived by exchanging

[zi , zi+1] with [zi−1, zi ]:

Ji− 1
2
=−

ai− 1
2

h

[
uiB(λi− 1

2
h)−ui−1B(−λi− 1

2
h)

]
.

Remark 10.1. The expression (10.15) corresponds to the difference formula presented

by Scharfetter and Gummel in [SG69]. An interesting property of this scheme is that it

automatically adapts itself to all possible transport regimes: for example, if we assume

b(z) = 0, i.e. no advective phenomenon is involved (λ= 0), the formula degenerates

in:

Ji+ 1
2
=−ai+ 1

2

ui+1 −ui

h
,

which is a difference approximation of a purely diffusive flow. Conversely, if we

assume b(z) →+∞, i.e. advective phenomena are dominant (λ→+∞), the formula

degenerates in:

Ji+ 1
2
=−

ai+ 1
2

h

[
−ui · (λi+ 1

2
h)

]
= bi+ 1

2
ui ,

while, for b(z) →−∞:

Ji+ 1
2
=−

ai+ 1
2

h

[
ui+1 · (−λi+ 1

2
h)

]
= bi+ 1

2
ui+1;

these two expressions correspond to an upwind discretization of a purely advective
flow.

We are now able to approximate Ji− 1
2

and Ji+ 1
2

in eq. (10.13); the reaction term
∫ z

i+ 1
2

z
i− 1

2

c(z)u(z)dz is approximated using the midpoint quadrature rule:

∫ z
i+ 1

2

z
i− 1

2

c(z)u(z)dz ≈ hci ui . (10.16)

Expanding eq. (10.13) over all the boxes [zi− 1
2

, zi+ 1
2

] through the approximations

(10.15) and (10.16) finally leads to a linear system in the nodal unknowns {ui }n
i=1.
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11 σ extraction

In this chapter we apply the methods described in chapter 8 to extract the DOS

width σ of a MIS capacitor. We discuss how the shape of the C −V curve depends on

each parameter by performing a sensitivity analysis, then the algorithm introduced in

section 8.5 will be used to probe the parameter σ by fitting experimental C −V curves

over a discrete range of applied voltages V = [Vg ,dep ,Vg ,acc ].

11.1 Sensitivity analysis

The simulations are performed by letting a parameter vary and fixing the others;

we group them into the following clusters:

1. single gaussian, as σ varies;

2. single gaussian, as N0 varies;

3. single gaussian, as ΦB varies;

4. double gaussian, as σ2 varies (for different values of N0,2 and ϕs,2);

5. single and double gaussian, as the temperature T varies.

The reference values for the main simulation parameters are shown in table 11.1;

the semiconductor material is the Poly{[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-

bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)} (P(NDI2OD-T2)), a high mo-

bility electron-type polymer used for printed OTFTs that features a good electron

injection from Au metals [Yan+09], while the insulator is made of a Poly(methyl

methacrylate) (PMMA) layer.

65



Chapter 11. σ extraction

Parameter Range Default value

tsc – 40.17756[nm]

ti ns – 534[nm]

Csb – 9.47284 ·10−12 [F]

S – 10−7
[
m2

]

εsc – 2.9[∼]

εi ns – 2.82[∼]

N0 1024÷28
[
m−3

]
1027

[
m−3

]

σ 1÷10.5[kB ·300K] 3[kB ·300K]

ΦB 0÷−2[V] −1[V]

N0,2 1024÷25
[
m−3

]
1025

[
m−3

]

σ2 4÷9.5[kB ·300K] 5[kB ·300K]

ϕs,2 −0.1÷0.3[kB ·300K] 0.1[V]

T 100÷350[K] 295[K]

Table 11.1: Values of the main simulation parameters (k is the Boltzmann’s constant).

11.1.1 Dependence on σ, N0 andΦB

The sensitivity analysis clearly shows that all the parameters strongly alter the final

shape of the C −V curve, whether they directly appear in the mathematical expression

of the DOS function (N0, σ, . . . ) or not (such asΦB ); these effects seem to be amplified

when looking at the first derivative dC
dVg

. In this section we analyze the dependence on

three main parameters, which are the disorder parameter σ, the total density of states

N0 and the barrier ΦB .

The most significant influence seems to be induced by the disorder parameter σ,

as shown in fig. 11.1: the first noticeable effect is that the functional dependence of C

on Vg becomes less steep as the disorder increases (the capacitance is less influenced

by variations of the applied voltage); moreover the curve experiences a shift towards

more negative values of Vg [Mad+15]. This effect may be understood by considering

that, since the Fermi level is closer (asσ increases) to the energy regions where the DOS

is sizable, a smaller gate voltage is needed to accumulate charges in the semiconductor,

as discussed in chapter 7.

An opposite role is played by the total density of available states N0 (see fig. 11.2),

though it has a weaker influence on the final shape of the C −V curve: a variation of

4 orders of magnitude is needed in order to produce a noticeable effect. We remark
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Figure 11.1: Simulation 1: N0 = 1027
[
m−3

]
, σ= 1÷10.5[kB ·300K].
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Figure 11.2: Simulation 2: N0 = 1024 ÷1028, σ= 3.

that for very low values of N0 the C −V curve decreases for high applied voltages. This

behavior has never been noticed in experimental measurements, thus setting a lower

limit to the value of N0. We assume N0 = 1027
[
m−3

]
, a value commonly accepted in

the literature as a valid estimation for organic semiconductors.

The barrier potential ΦB has been assumed equal to −1[V] considering the Au

work function (5[eV]) and the electron affinity of P(NDI2OD-T2) (4[eV]); the sensi-

tivity analysis, shown in fig. 11.3, reveals that large barriers, in modulus, result in an
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Figure 11.3: Simulation 3: N0 = 1027, σ= 3, ΦB = 0÷−2[V].

almost rigid shift of the C −V curve, due to the fact that the smaller the barrier the

closer the Fermi level is to the DOS (see fig. 7.1) and the easier is to drive the device

into accumulation. Conversely, for smaller values of ΦB the C −V shape becomes

smoother and the depletion capacitance starts growing; in fact, a lower barrier deter-

mines an higher carrier density at the metal-semiconductor interface which interferes

with the gate attraction of the center of charge towards the semiconductor-insulator

interface. These results clearly show that ΦB can have a large influence on C −V

curves shape. Since its value is difficult to predict, an adequate fitting algorithm has

to be developed in order to extract ΦB . A promising approach comes from unsteady

simulations, as discussed in chapter 13.

11.1.2 Dependence on σ2

Also in the case of a double gaussian DOS shape we can draw similar conclusions,

as the parameters σ2 and N0,2 play the same roles as σ and N0 respectively.

Double gaussian for different values of N0,2;ϕs,2 fixed

Figures 11.4 and 11.5 show how the C −V curve is altered as σ2 varies for two

different values of the shift potential N0,2. In particular we observe that larger values

of σ2 tend to produce a second peak in the dC
dVg

curve.
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Figure 11.4: Simulation 4.1: N0 = 1027, σ= 3, N0,2 = 1024, σ2 = 4÷9.5, ϕs,2 = 0.1V .
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Figure 11.5: Simulation 4.2: N0 = 1027, σ= 3, N0,2 = 1025, σ2 = 4÷9.5, ϕs,2 = 0.1.
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Chapter 11. σ extraction

Double gaussian for different values ofϕs,2; N0,2 fixed

Figures 11.6 and 11.9 show the C −V curve for a fixed N0,2 and four different values

of ϕs,2, which provide analogous results.
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Figure 11.6: Simulation 4.3: N0 = 1027, σ= 3, N0,2 = 1024, σ2 = 5÷8, ϕs,2 =−0.1.
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Figure 11.7: Simulation 4.4: N0 = 1027, σ= 3, N0,2 = 1024, σ2 = 5÷8, ϕs,2 = 0.1.

We can conclude by remarking that experimental C −V measurements sometimes

corresponded to these typical double gaussian shapes, but they always showed an
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Figure 11.8: Simulation 4.5: N0 = 1027, σ= 3, N0,2 = 1024, σ2 = 5÷8, ϕs,2 = 0.2.
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Figure 11.9: Simulation 4.6: N0 = 1027, σ= 3, N0,2 = 1024, σ2 = 5÷8, ϕs,2 = 0.3.

instability with time leading to crucial difficulties in studying the behavior of the

device.
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Chapter 11. σ extraction

11.1.3 Dependence on the temperature

In this section we analyze the sensitivity of the C −V curve on the system tempera-

ture T . The dependence on the temperature T , shown for a single gaussian DOS in

fig. 11.10 and for a double gaussian DOS in figs. 11.11 and 11.12) reflects the Fermi-

Dirac statistics (see section 4.2.3): as T becomes larger the charge density and the

capacitance grow with a slope dependent on the particular DOS shape considered.
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Figure 11.10: Simulation 5.1: N0 = 1027, σ= 3, T = 100÷350[K].
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11.2. Automatic fitting

Double gaussian for different values of N0,2;ϕs,2 fixed
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Figure 11.11: Simulation 5.2: N0,2 = 1025, σ2 = 5, ϕs,2 = 0.1, T = 200÷350.
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Figure 11.12: Simulation 5.3: N0,2 = 1025, σ2 = 8, ϕs,2 = 0.1, T = 200÷350.

11.2 Automatic fitting

The algorithm described in section 8.5 has been applied to extract the DOS width

σ. We now list the results obtained throughout the fitting procedure by minimiz-
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Chapter 11. σ extraction

ing the distance between experimental and simulated C −V curves in terms of L2-

error, H 1-error and peak-error. The algorithm is initialized from the following guess:

σ(0) = 3[kB ·300K], t (0)
sc = 4.017756 · 10−8 [m],C (0)

sb = 9.47284 · 10−12 [F], motivated by

experimental measurements, though subject to uncertainties. We found that the

minimization of the peak-distance provided the best results, thus we omit the results

obtained by the minimization of L2- and H 1-errors.

11.2.1 Peak-error
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Figure 11.13: Peak-error throughout the fitting procedure.
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Figure 11.14: Peak-error minimization: values of σ throughout the fitting procedure.
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Figure 11.16: Peak-error minimization: values of Csb throughout the fitting procedure.
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11.2.2 Conclusions

We appreciate that the approach based on a single gaussian DOS provides very

accurate results, as fig. 11.17 show a very satisfactory match between experimental

and simulated data.

Table 11.2 shows the summary of the results obtained for the error (see fig. 11.13),

σ (fig. 11.14), tsc (fig. 11.15) and Csb (fig. 11.16) throughout the fitting algorithm.

Iteration Peak-error σ tsc Csb

1 4.656 ·10−15 2.6̄ 4.040 ·10−08 9.486 ·10−12

2 2.162 ·10−15 2.75 4.042 ·10−08 9.488 ·10−12

3 1.974 ·10−15 2.83̄ 4.044 ·10−08 9.489 ·10−12

4 1.446 ·10−17 2.805̄ 4.043 ·10−08 9.488 ·10−12

5 3.046 ·10−16 2.7̄ 4.042 ·10−08 9.488 ·10−12

6 7.456 ·10−17 2.7̄ 4.042 ·10−08 9.488 ·10−12

Table 11.2: Peak-error minimization: summary of the results.

The DOS width σ = 2.7̄ [kB ·300K] extracted by the peak-error minimization is

acceptable and is very similar to the value extracted by manually comparing the C −V

curves, equal to 2.8[kB ·300K]. This value will be used in chapter 12 for probing the low-

field and low-charge-density µ0,n , thus showing that σ= 2.7̄ [kB ·300K] is a meaningful

measurement. The simulated C −V curve has been shifted by Vshi f t = 10.6495[V]

with respect to the experimental one.
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12 µ0 extraction

Knowing the disorder parameter σ = 2.7̄ [kB ·300K] of the semiconductor (see

section 11.2.2), we can now fit experimental and simulated I −V curves in order to

extract the low-field and low-charge-density mobility µ0,n of the EGDM model (5.1),

as explained in chapter 9. We focus on an OTFT device with an aspect ratio:

W

L
= 10−2 [m]

10−5 [m]
= 1000,

with an applied drain-to-source voltage VDS = 5[V]. The least squares solution of

eq. (9.4) provides the followings electron mobility multiplicative coefficient:

µ0,n ≈ 0.0834
[
cm2V−1s−1] . (12.1)

The fitting procedure result in a very good match between experimental and

simulated I −V curves, as shown in fig. 12.1, and the fit becomes more accurate upon

the channel formation (as Vg grows).

The effective mobility µn,eff computed from the compact model (9.5) and the

EGDM model (5.1) is compared in fig. 12.2, showing that the former is quite inaccurate

and provides a too simplified way to compute the mobility in correspondence of

negative Vg values. In particular the effective mobility computed from the EGDM

model tends, as Vg becomes more negative, to the low-field mobility (12.1), while

µn,eff from the compact model tends to vanish.

Finally, figs. 12.3 and 12.4 show that the enhancement factor g1 of the EGDM

model (5.1) starts growing for Vg ∼ 0[V] and, since the carrier density increases from

z =−tsc to z = 0 as Vg grows, it becomes more relevant upon the channel formation

and near the semiconductor-insulator interface. Thus we conclude by remarking that,

for high applied voltages, the mobility varies by a factor ≈ 2.5 from the bulk contact

to the semiconductor-insulator interface, which is why the complete EGDM model

is needed in order to accurately estimate a space- and voltage-dependent mobility

79



Chapter 12. µ0 extraction

coefficient.
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Figure 12.1: Comparison between experimental and simulated I −V characteristics.
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13 Unsteady simulations

Numerical methods discussed in chapter 10 have been used to simulate the behav-

ior of the circuit represented in fig. 13.1 when applying a step input and a sinusoidal

signal. From the results computed we are able to:

d estimate the time constant of the step response (section 13.1);

d compute the C −V curve (section 13.2) by emulating the operation of typical

measuring instruments, i.e. by fitting the equivalent capacitance C of the series

RC circuit represented in fig. 13.2, where VG (t ) and I (t ) are the solution of circuit

13.1.

VG

I Isb

Csb

RB

IB

M I S

IG

RG

V2

V1

Figure 13.1: External control circuit
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Chapter 13. Unsteady simulations

VG

I

C

R

Figure 13.2: Equivalent circuit

The results obtained, shown in sections 13.3 and 13.4, warn that the constant-

barrier model given by eq. (6.4) is no longer valid in the unsteady regime and needs to

be corrected by considering a field-dependent injection barrier.

Let F = [V1,V2,Qsb , I ]T be the state vector of the circuit 13.1, where Qsb is the

accumulated charge in the capacitor Csb . The MNA corresponds to the following

system of equations: 



Isb − I + IG = 0,

V1 −VG +RG IG = 0,

V2 +RB IB = 0,

Qsb −CsbVG = 0,

(13.1)

where Isb = Q̇sb . Then eq. (6.6) is represented by the following variables:

A =




0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


 ,

B =




0 0 0 −1

1 0 0 0

0 1 0 0

0 0 1 0



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13.1. Step response

s =−VG




0

1

0

Csb


 ,

I =
[

IG

IB

]
.

13.1 Step response

We simulate the step response when the device is brought from the depletion to

the accumulation regime, i.e. through the step input:

VG (t ) =



−10[V] , t < 0,

+20[V] , t ≥ 0.

We suppose that the step response of circuit 13.1 (where, for the sake of simplic-

ity, we set Csb = RB = 0, while RG = 10[Ω] is the resistance of the generator) is an

exponential decay:

I (t ) = I0 exp

(
− t

τ

)
. (13.2)

The time constant τ of such a circuit can be qualitatively computed through a

simplified theoretical model by dividing the distance traveled by electrons through

the MIS semiconductor layer by their mean velocity:

τtr =
tsc

µ̄ V̄sc
tsc

, (13.3)

where tsc is the thickness of the semiconductor layer; here µ̄ (the mean mobility

coefficient) and V̄sc (the mean voltage dropping across the semiconductor region) are

computed starting from the numerical solution. The value of τsc is compared to the

time constant τn implicitly defined by eq. (13.2):

τn = τ= argmin
t≥0

(
I (t )− I0 exp(−1)

)
, (13.4)

where I (t ) and I0 are computed starting from the numerical solution.

The order of magnitude of the time constant is about 0.1[ns]; the circuit is simu-

lated for a much longer time (t ≤ 0.1[ms]), thus making sure that the system dynamics

is fully detected.
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13.2 Alternating regime

In order to compute the C−V curve, we simulate circuit 13.1 by applying sinusoidal

voltages of the form:

VG (t ) =




V̂ , t ∈ [−5,0),

V̂ +V0 sin(ωt ), t ≥ 0,
(13.5)

as shown in fig. 13.3, where V̂ varies over a discrete range between −5[V] (depletion)

and +15[V] (accumulation),ω= 2πf is the pulsatance and f≈ 9283.18[Hz] is the signal

frequency. The amplitude V0 is set equal to 0.1[V].

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

·10−3

14.9

14.95

15

15.05

15.1

Time [s]

V
G

[V
]

Figure 13.3: Alternating regime: example of applied voltage (V̂ = 15[V]).

We emulate the operation of typical capacitance meters by approximating the

non-linear circuit 13.1 with a linear one; then we compute the equivalent capacitance

C of the circuit shown in fig. 13.2, whose evolution for t ≥ 0 is described by:

İ (t ) =− I (t )

RC
+ V̇G (t )

R
, I (0) = Ī ,

where VG (t ) = V̂ +V0 sin(ωt ). The general solution to the Cauchy problem is:

I (t ) = Ī exp

(
− t

RC

)
+ V0Cω

1+ (RCω)2 (cos(ωt )+RCωsin(ωt )) . (13.6)

The term Ī exp
(− t

RC

)
is neglected by supposing that the unsteady regime is over.

We use a non-linear regression algorithm in order to estimate the equivalent resistance

R and capacitance C by fitting the numerically computed I (t ) curve to eq. (13.6).
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13.3. Constant barrier model

13.3 Constant barrier model

Numerical results have shown a strong dependence on the injection barrier con-

sidered at the metal-semiconductor interface.

In the following we will consider a general corrected model of the form:

Φ′
B =ΦB +ϑ

√
qEc

4πεsc
, (13.7)

which implies Φ′
B ≥ΦB , where ϑ is a constant multiplicative factor and Ec =−ϕ′(−tsc )

is the electric field at the bulk contact; for ϑ = 0 the formula corresponds to the

constant barrier model.

In this section we will show the results obtained by the constant barrier model

(eq. (6.4)), which suggest that this model is no longer valid in the unsteady regime. In

particular we analyze the results from the step response and the alternating regime

simulations, by assessing in particular the trend of the accumulated charge (defined

as
∫ 0
−tsc

n(z, t )dz) as a function of time.

13.3.1 Step response

Figure 13.4 shows the simulated current when applying a step input signal. In par-

ticular the log-plot 13.5 shows a perfectly straight line, meaning that the exponential

decay is a good approximation of the circuit behavior.

The first relevant result observed in fig. 13.6 is that the total accumulated charge is

still too smaller than the value computed in the steady state simulation, whose order

of magnitude is 1015
[
m−2

]
. Moreover, it does not reach a steady state even over the

wide time interval considered, as well shown in fig. 13.7.

The numerical solution gives τtr = 0.159[ns], τn = 0.357[ns], V̄sc = 1.2318[V] and

µ̄= 8.3464·10−06
[
m2V−1s−1

]
. We remark that in this case the theoretical time constant

τtr is too small compared to τn ; this is due to the fact that the value of V̄sc is relatively

large, thus hampering the flow of electrons. This behavior suggests that the model for

the constant injection barrier at the bulk contact given by eq. (6.4) is too simplified and

can not be adopted in unsteady simulations; in fact, a high barrier potential hampers

the flow of electrons across the MIS channel so that the total conduction current is

almost zero and the system acts as if a large resistance was connected in series to the

device.
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Figure 13.4: ϑ= 0, step response: simulated current.
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Figure 13.5: ϑ= 0, step response: simulated current (log-plot).
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13.3. Constant barrier model
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Figure 13.6: ϑ= 0, step response: accumulated charge.
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13.3.2 Alternating regime

Analogous conclusions can be drawn when simulating the C −V curve in the

accumulation regime: as the total accumulated charge does not reach a steady state

within the 5 seconds preceding the application of the sinusoidal bias, the conduction

current is still negligible with respect to the displacement one and the simulated C −V

curve (fig. 13.8) is completely flat (the device acts like a perfect insulator).
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Figure 13.8: ϑ= 0, alternating regime: equivalent capacitance.

13.4 Field-dependent barrier

This section is devoted to study in details how the results are influenced by the

barrier model chosen; in particular we will compare the results obtained in both

test cases (step response and alternating regime) by considering different correction

factors ϑ.

13.4.1 Step response

Figure 13.9 shows the sensitivity of the step response simulated currents for ϑ=
0, . . . ,5. While the exponential decay constant τn does not seem to depend on the

barrier correction, a more accurate log-plot (fig. 13.10) shows that the exponential

decay does not depend on ϑ in a small interval around t = 0, while asymptotically

equilibrium values are very different.
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13.4. Field-dependent barrier

In fact, the larger is the correction (i.e. the lower is the barrier height in modulus)

and the higher is the amount of conduction current allowed, which allows to gain

several orders of magnitude as for the total current I but increasing difficulties in

reaching an equilibrium value. In other words, a lower barrier allows electrons to

flow across the semiconductor but this is not enough to ensure the reachability of

an equilibrium state (I = 0) over a reasonable time. But we observe a reversed trend

for ϑ = 5, which corresponds to a sufficiently small barrier allowing a significant

conduction current to be transported, though reaching an equilibrium state after less

than 0.05[ms]. This explains why choosing ϑ= 5 as the amplification factor seems to

be a reasonable heuristic model.

These results are confirmed by fig. 13.11, which shows that the theoretical transit

time τtr increases with ϑ. More specifically, the numerical transit time τn does not

depend on ϑ as it is equal to the classical RC circuit time constant, as shown by the

following formula:

τ= RGC = 10
S

ti ns
εi ns

+ tsc
εsc

≈ 0.356[ns] .

Therefore, when τtr < τn the effects of the conduction current produced by electrons

are negligible with respect to the displacement current, which is an unphysical be-

havior. In fact, the larger is the barrier height (in modulus) and the higher is V̄sc , thus

hampering the flow of electrons across the semiconductor.
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Figure 13.9: Step response: sensitivity of the current.
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13.4. Field-dependent barrier

Figures 13.12 and 13.13 bring us to the same conclusions, which show that a

lower barrier allows for a much larger electron density to be accumulated at the

semiconductor-insulator interface z = 0 with respect to the constant barrier model

(fig. 13.7); however the density for ϑ = 2 does not reach an equilibrium value over

the time interval considered, while ϑ= 5 allows to reach an equilibrium value after

≈ 0.02[ms].
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Figure 13.12: ϑ= 2, step response: electron density at different time steps.

Finally, we evaluate how the total accumulated charge varies with the barrier

correction ϑ: fig. 13.14 shows the same results discussed before, the lower the barrier

and the higher is the total accumulated charge inside the device, thus allowing for the

conduction current to flow; however, this is not enough to reach an equilibrium value

over a reasonable time, which seems to be achieved only for ϑ= 5.

The time-derivative of the accumulated charge, which is proportional to the total

conduction current, is shown in fig. 13.15. This figure confirms that ϑ = 5 is the

best value we can choose to correct the barrier model, as it is sufficient to both let

a significant conduction current flow and to bring the system at equilibrium over a

physically meaningful time.
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Figure 13.13: ϑ= 5, step response: electron density at different time steps.
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Figure 13.14: Step response: sensitivity of the accumulated charge.
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Figure 13.15: Step response: sensitivity of the derivative of the accumulated charge.

13.4.2 Alternating regime

Also in the alternating regime, as shown in fig. 13.16, we observe that for small

correction factors, i.e. large barriers, the equivalent capacitance is completely flat as

VG varies, thus meaning that the device acts as an insulator in both depletion and

accumulation regimes. Again, ϑ= 5 is a very reasonable value, as it allows the C −V

curve to recover, thanks to the significant conduction current flowing, the same shape

as the results computed in the quasi-static approximation and previously shown in

sections 11.1 and 11.2.
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Figure 13.16: Step response: sensitivity of the equivalent capacitance.

13.5 Computing C −F curve

The corrected model for the injection barrier described in section 13.3 has been

exploited in order to simulate the Capacitance-Frequency (C −F ) characteristic in the

alternating regime. The applied voltage is the same as given by eq. (13.5), where V̂ =
20[V] (accumulation) and the frequency f varies from 0.2[kHz] to 200[kHz]; we remark

that the electrical permittivity εi ns of PMMA is a decreasing function of frequency

[Mad+15]. Finally, the equivalent capacitance has been computed as described in

section 13.2.

The results are shown in fig. 13.17. The comparison between the simulated C −F

curve and experimental measurements shows a very satisfactory match which slightly

gets worse for very large frequencies, as the injection barrier would require a much

more precise correction model and the non-linear fitting algorithm used provides less

accurate results as the frequency grows.

In conclusion, the results shown in this chapter show how relevant is the role

played by the the parameter ΦB in unsteady simulations, as opposed to the quasi-

static approximation (chapter 11) where the barrier, within a certain range, resulted in

an almost rigid shift of the C−V curve. Therefore an accurate modeling of the injection

barrier certainly warrants further investigation, as the C −V in the quasi-static regime

is not sufficient to determine σ, tsc , Csb and ΦB at the same time. Possibly, fitting

the step response time constant to experimental measurements, which are currently

not available, could be the way leading to assess the most accurate barrier model

correction.
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Figure 13.17: Capacitance-Frequency curve (V̂ = 20).
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14 Conclusions

This thesis project was carried out in collaboration with the Center for Nanoscience

and Technology of the Italian Institute of Technology (IIT), which provided experi-

mental data used in this work.

The thesis addressed the main difficulties met in the mathematical modeling and

simulation of organic semiconductor devices, which have motivated a continuous

research because of their peculiarities such as easy and low cost fabrication of large

area circuits, mechanical flexibility, high transparency and bio-compatibility.

We focused on mathematical models describing charge transport mechanisms in

disordered organic materials, which are inherently different from those in well known

crystalline inorganic systems. The classical DD equations have been adapted in order

to provide an accurate mathematical description of the relevant phenomena involved,

such as a strongly non-linear dependence of the mobility coefficient on the system

variables, i.e. the electric field and the electron density, as provided by the state of the

art model EGDM.

Our work was mainly based on [Mad+15], where the authors described an algo-

rithm to assess the disorder parameter σ, which can not be directly measured but

is crucial for the closure of the system, by fitting simulated results on experimen-

tal data. In particular we proposed significant modifications and generalizations to

these algorithms in order to take into account unsteady regimes too. More specifi-

cally, we presented a generalized version of the classical resolution schemes used in

the semiconductor devices simulation, i.e. the Newton’s method and the Gummel

fixed-point solution map, that include relevant physical models involved in organic

semiconductors.

Chapter 13 is the most significant and original scientific contribution of this work:

numerical results showed an unphysical behavior when simulating unsteady regimes;

we ascertained that this was due to an incorrect modeling of a boundary condition

representing charge injection phenomena which occur at metal-semiconductor inter-

faces and are strictly field-dependent.
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