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Abstract

The multi-core revolution push to the limit the need for a fresh interconnect

and memory design to deliver architectures that can match current and

future application requirements. Moreover, the current trend towards multi-

node multi-core architectures to further improve the system performance

impose the use of hierarchical and eventually heterogeneous interconnection

subsystems.

In this scenario the Network Interface (NI) controller represents a critical

component to allow an easy efficient and effective link between the cores

and the memory blocks to the interconnect. Moreover, the buffers and the

pipeline stages of the NI must be carefully evaluated not to waste valuable

on-chip resources.

The thesis explores the NI design in the multi-core multi-node architec-

tures, with particular emphasis on the timing and performance metric. An

NI design developed in RTL Verilog is used to analyze the timing metric

and is used as a basis to develop a cycle accurate software simulation model

that has been integrated into GEM5 multi-core cycle accurate simulator.

Simulation results show the benefit of the proposed NI model from the re-

sult accuracy viewpoint. In particular, our NI model demonstrates how the

baseline NI GEM5 model overestimates the performance of the simulated

architectures mainly due to the avoid of the contention between the cores in

the same node to access the on-node bus interconnect. Moreover, presented

results highlight the modest and linear (with the number of pipeline stages)

impact due to the NI considering different number of stages.
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Chapter 1

Introduction

During the last ten years, multi-core architectures emerged as the de-facto

solution to satisfy the performance requirements of modern applications.

Their versatility makes them suitable in different areas ranging from em-

bedded up to high performance computing (HPC) architectures. In partic-

ular, the great diffusion of portable devices with low power requirements

exploits the Multi-Processor System-on-Chip (MPSoC) architectures to op-

timize their power-performance trade-off. Nowadays, the heterogeneous

multi-cores [27] composed of in-order and out-of-order cores as well as GPU

in the same SoC, represent the de-facto standard for hand-held devices due

to their better suitability to match the applications requirements.

The increase number of cores requires an enormous bandwidth capacity

and stringent latency requirements, making the use of bus-based intercon-

nection infeasible. Networks-on-Chips (NoCs) [13, 3] represent the widely

accepted solution to connect multiple cores, due to its scalability, flexibility

and high bandwidth properties. However, bus-based architectures can pro-

vide better performance when used in multi-cores with a limited number of

cores. Moreover, the interconnect greatly impacts the total chip power [18],

thus encouraging several ad-hoc optimizations.

However, an IP block usually does not fully exploit the bandwidth offered

by a NoC, so multi-node multi-core architectures have been introduced. In

this architectures, the cores are connected using a hierarchical interconnec-

tion fabric composed of a possibly heterogeneous inter-node and an intra-

node pair of interconnects. The expectations on these architectures are high,

but the research is still at its infancy. There aren’t suitable tools that are

flexible enough to make a design space exploration of this huge family.

A critical component in the interconnect design is the Network Interface

(NI) controller, that implements the necessary logic to interface the IP blocks
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with the underlined communication architecture from both the hardware

and protocol viewpoints. In particular, the NI organizes the access to the

shared interconnect by each IP block, also providing a decoupling temporal

storage buffer without blocking the IP computation when the interconnect

is congested. Thus, the NI plays a critical role from the timing, power

and performance of the entire multi-core while accurate balance of allocated

resource in the NI is required to constraint its area.

1.1 The Importance of the NI in the Multi-Node

Multi-Cores

The rapid introduction of the multi-core multi-node architectures requires

proper NI designs to interface two different interconnects in the same chip,

rather than a single IP block to the interconnect. This component has a

great impact on the overall interconnection system and its design is crucial.

In order to evaluate this emerging multi-core multi-node is important to

have an accurate model of the NI which allows the extraction of accurate

information.

Figure 1.1 shows the performance overhead, evaluated using the GEM51

simulator [5, 20], introducing an accurate NI software model instead of using

the baseline model in a NoC based multi-core. With this simulation errors

a good exploration of multi-node multi-cores is not possible.

1.2 The Goal of the Thesis and Spot Considera-

tions

Considering the current trend towards multi-node multi-core architectures

and the critical rule the interconnect plays in the whole system, the thesis fo-

cuses on an accurate NI design accounting for both timing and performance

metrics with two main objectives. First, the timing metric is evaluated start-

ing from a proposed RTL NI model. In particular, different parameters in

the NI design have been explored, i.e. number of stages, different allocated

resources etc. Second, a software simulation model of the proposed RTL NI

has been integrated into the GEM5 performance simulator to be exploited

by the research community to provide more accurate results. The proposed

results in the rest of the thesis highlight the need for a more accurate NI

model with respect to the one actually integrated in the software simulator

1http://gem5.org
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Figure 1.1: Comparison Between the vanilla NI Models of GEM5 with a more accurate

developed one.

to better validate the multi-node multi-core architectures. In particular,

different design of the proposed NI model have been studied considering an

hybrid interconnection scheme, where a bus is used to connects cores inside

each node, while an NoC connects the nodes.

The proposed results show how the tremendous impact of the inter-

node bus contention represents the first overhead source, while the overhead

due to a deeper NI pipeline marginally affects the performance results. On

the other hand providing a deeper pipeline allows to greatly improve the

operating frequency of the NI. For example a single cycle NI design decreases

the operating frequency up to 66% with respect to a four cycle one.

1.3 Backgrounds

A Network-on-Chip is a scalable and reliable interconnect that allows nodes

to exchange data. A node can be both a CPU or a part of the memory

subsystem. The NoC is composed by routers, links and Network Interface

Controllers (NICs).

Figure 1.2 shows an MPSoC with an NoC based interconnect. The de-

picted NoC has a 4x4 2D-mesh topology. Each node is connected to the

local router via NIC, which allows the communication between a node and

a router. Routers routes data, injected by nodes, into the network. Links

connect two adjacent routers or a router and a NIC.
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The NoC divides node’s messages in packets, and splits these packets

in flits. Flits are used to better utilize the NoC resources. These different

granularity are shown in Figure 1.3. The packet packaging and un-packaging

task is performed by the NIC. A packet is composed of different types of flits.

The head flit is the first part of a packet, the body flit is an intermediate

chunk of a packet and the tail flit is the last part. If a packet is composed

of only one flit it is called head/tail flit.

Figure 1.2: A multi-core based on NoC interconnect. It is pictured a 4x4 2D-mesh

NoC. In detail the connection between a node and a router through an NI

The NoC is characterized by: the layout topology, the routing scheme,

the switching mechanism, the flow control mechanism and the router archi-

tecture.

The NoC topology defines how the links connect routers to each others

and to nodes. The most common topologies are mesh [9], concentrated

mesh [2], hybrid bus based [25] and high radix [15]. 2D-mesh topology is

the most used due to its facilitated implementation. An example of a 2D-

mesh is shown in Figure 1.2.

The routing scheme determines the path of a packet inside the NoC from

a source node to a destination node. If the path for a source-destination pair

is fixed, the routing scheme is called deterministic [2]. Otherwise, if the path

can be altered, the routing scheme is called adaptive [11, 10].
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Figure 1.3: Message structure in NoC. Messages are divided in packets and, furthermore,

in flits.

The switching mechanism defines how a router forwards the received

packets to the next hop, a router or a node. Some switching mechanism are

Store-and-Forward [17], Virtual cut-Through [16], Wormhole switching [19]

and Virtual-Channel Wormhole switching [8]. The latter technique is the

most used one.

The flow control mechanism are used by routers to control the available

storage resources of adjacent hops. A router has to stop the transmission of

a packet if the downstream router is out of buffers. Three mechanism are

used: Credit-based, Stop & Go and Ack/Nack [9].

A detailed description of the used NoC is given in the rest of this section.

Figure 1.4 shows a wormhole router architecture that supports virtual chan-

nels (VC) and virtual networks (VNET). The VNET support allows dead-

lock avoidance in coherence protocol. It has four internal pipeline stages,

i.e. Buffer Write/Route Computation (BW/RC), Virtual Channel Alloca-

tion (VA), Switch Allocation (SA), and Switch Traversal (ST). The Link

Traversal (LT) stage is executed outside the router and is assumed to be

one cycle. Figure 1.5 shows the router’s pipeline stages. When a new flit

is transmitted by the upstream router, it is stored in a reserved VC buffer

(BW) and the output port is computed (RC). In the VA stage an idle VC
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buffer of the output port is reserved for its transmission. Note that only the

head flit needs the RC and VA stage. All the other flits inherit the output

port and the VC buffer from the head flit. In the Switch Allocation stage

an arbiter decides which flits, stored in the input ports with a VC allocated,

can pass the crossbar in the next cycle. If the flit won the SA stage, it passes

the crossbar in the ST stage and reaches the downstream router after the

LT stage.

Figure 1.4: The baseline router architecture. The figure shows a virtual-channel, worm-

hole, credit-based router and its main components.

Figure 1.5: The baseline router pipeline.

The NIC allows the communication between a node and a router. A

message received by the node is packaged and flitisized. After that a VC

is allocated for the packet’s flits and then they are sent over the link. On
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the other hand when it receives an entire packet from a router, the tail flit

arrives, the message is reconstructed and sent to the attached node.

1.4 The Thesis Structure

The rest of thesis is organized in four chapters. Chapter 2 describes the state

of the art of NI design. Chapter 3 provides the architecture and software

model of the proposed NI controller. Chapter 4 shows the results of the

design space exploration with synthetic and real application traffic. Chapter

5 discusses the final benefits of the proposed NI model as well as the possible

future works and optimizations.
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Chapter 2

State of the Art

NI design is important in the interconnection system of MPSoC. In [23], a

TV companion chip was redesigned with a NoC as interconnect, and 78% of

increase in chip area was proved to come from the NIs. Similar case, in the

xpipes based system in [1], more than half of the NoC area is due to NIs.

Despite this NI design doesn’t receive a lot of attention in the litera-

ture, since the support for processing cores with advanced communication

capabilities (e.g., multiple outstanding transactions, out-of-order comple-

tion, quality of service guarantees) requires complex architectures with a

restricted margin for optimization.

2.1 Bridging Different Interconnects in Multi-Node

Multi-Cores

Paul Wielage and Kees Goossens [26] proposed to investigate hybrid ar-

chitecture with first-level communication over a shared-medium, and the

higher levels using a packet-switched network. This can bring several bene-

fits. First, a single IP connected can underutilize the bandwidth capacity of

an individual router port. Second, Network Interfaces are more expensive

(in terms of area) than, for example, a bus adaptor.

The strong of resource sharing has been proved in [12], where sharing

an NI between several nodes significantly reduced the area overhead of the

NoC with low performance overhead in terms of execution cycles. The ar-

chitecture consist in an arbiter placed between the processing elements and

the Network Interface.

To ensure the reusability of existing IPs, given the great diffusion of

bus-based architectures, many people proposed interconnection systems that

expose a bus-like protocol. This not only improve the flexibility of the archi-
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tecture, but also reduces the time-to-market allowing a faster development.

In [22], an existing NoC has been extended to support WISHBONE Inter-

connection architecture, so it can be used in many SoC designs based on

the WISHBONE interface. Furthermore, they use an FPGA devices as an

intermediate stage between simulation and ASIC implementations, reducing

verification costs.

2.2 The NI as a Particular Bridge

The literature lacks of complete NI designs while the focus is generally on

the interconnect rather than interface. This is mainly due to the peculiarity

of the NI design that requires a complete IP and interconnect specification

to be completed.

Radulescu et al [21] design a modular NI that interfaces a NoC with

several protocols to allow reusability and flexibility of the attached IPs.

The NI is divided in two parts, the kernel and the shell. The kernel is the

NoC interface. It packetizes messages and schedules them to the routers,

implements the end-to-end flow control and clock domain crossings. Shells

implement the connections, transaction ordering for connections, and other

higher-level issues specific to the protocol offered to the IP. This is an inter-

esting NI design. A shells library can be developed allowing an easy change

of the interfaced protocol during the chip synthesis.

In [7] is implemented a clock gating technique to reduce the NI power

consumption. The NI is designed as a bridge between an OCP interface and

the NoC switching fabric. Its architecture is split in two sub-modules, one for

requests and one for responses. Each of this sub-module is additionally split

in two main part and a memory buffer for request and response respectively.

Like in [21] they call this sub-parts kernel and shell. The kernel is the NoC

interface and the shell is the OCP interface. For the request module there is

a shell input, which build the header and compute the routing table, and a

kernel output that inject flits into the NoC. For the response module there is

a kernel input that receives flits and reassembles packets, and a shell output.

Besides these modules, there is a stoppable clock module which can transfer

or stop the local input clock to part of the two sub modules based on the

activity of the NI. They obtain a significant power reduction, but with more

area overhead and lower achievable frequency.

In [24], a low power architecture of a WISHBONE bus compatible NI of

a Network-on-Chip is proposed. Furthermore, it is designed to operate be-

tween different clock domain without loss of information. Packets from the

attached router are stored in an asynchronous FIFO, unpacked and trans-
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mitted through the WISHBONE bus to the IP core. Vice versa, messages

from the bus are packaged and stored in a second asynchronous FIFO, wait-

ing the injection in the NoC. Power saving is achieved using a configuration

controller which can enable/disable the asynchronous FIFOs based on traffic

and power consumption requirements.

Bhojwani and Mahapatra [4] analyze the network-aware trade-off in a

NoC. They study three different packetization schemes, (i) a software one,

(ii) an on-core HW module and (iii) an NI. In (i) and (ii) the IP can directly

provides packets and an NI is not needed. The software schemes introduces

high latency, but does not introduce area overhead. With an HW module the

latency overhead is low thanks to the hardware support, but a component

must be placed on-chip increasing the area of the MPSoC. Furthermore, (i)

and (ii) requires redesign or programmability of the NoC parameters of IP,

losing flexibility.

End-to-End services greatly affect NI design and is not always enough

analyzed the impact on the NI latency, area and power overhead. In [29], a

frequent value compressor/decompressor is implemented in the NIs of a NoC.

Compression and decompression of messages have a pipeline architecture

partially hided by the packaging operation for compression, and flit receiving

and unpackaging for decompression. The visible latency introduced is of two

cycles in their simulated system with a clock rate of 1GHz. However, this

method does not scale well since it requires a frequent value table for each

node pair. The architecture can become quite complex.

Another compression algorithm is proposed in [28], called Delta Com-

pression. Like for [29], it requires additional logic in the NI. They compared

the area overhead and power consumption of the module implemented in

Verilog HDL with other compressors proposed in the state of the art. Delta

Compression has modest constant hardware overhead and implementation

complexity because the compression and decompression algorithms involve

only simple vector addition, subtraction, and comparison operations. Com-

pression and decompression add, respectively, only one cycle of latency in

their simulated system with a clock rate of 1GHz.

Bolotin et al [6] implement an irregular mesh NoC where NI offers a

bus-like protocol for the connected IP with conventional read and write

semantics, and a QoS with four service priority levels. However, they use a

functional NI description and do not analyze the area and power overhead

introduced by the NI.
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2.3 NI Model in Software Simulators

Traditionally, the available software simulators implement a functional NI

that in the most advanced implementations provides only a delayed for the

incoming or outcoming packets. However, such implementations can greatly

affects the final quality of the performance metrics extracted by the simu-

lator with a concrete risk to overestimate the possibilities of the evaluated

architectures. In particular, no contention is considered to access the fi-

nite resources within the NI or the possible contention to traverse different

pipeline stages.

In the rest of the thesis the NI vanilla implementation of the NI used in

GEM5 is considered as a use case scenario that is generic enough to discuss

the current limitations of current NI design approaches as well as the need

for more formal NI implementations even in software simulation.

The model implemented in GEM5 suffer of several lacks. First, it sup-

poses a connection between the IP and the NI of unlimited bandwidth. Every

Cycle an entire message can be transmitted, regardless its length. Second,

messages and packets only take one latency cycle to pass the NI. From the

IP block to router, the NI packages a message, compute the virtual channel

and send the first flit on the link. From the router to the IP, it extracts the

message from a received packet and sends it to the IP.

12



Chapter 3

The NI Architecture Design:

from the RTL to the

Software Simulation Model

Considering a multi-node multi-core, an intra-node bus interconnects the

cores within the node with a custom inter-node network-on-chip that con-

nects the nodes. This chapter discusses the proposed NI architecture to

interface a WISHBONE compliant intra-node bus and a custom Network-

on-Chip in a multi-node multi-core architecture. It is worth noticing that

the same NI architecture is used to interface the IP block with the custom

network on chip when the node is composed by a single core.

Both the RTL architecture as well as the software simulation model for

the proposed Network Interface (NI) are presented in this chapter that is

organized in three parts. The RTL implementation represents the standard

methodology to analyze the timing metric of a novel design [31] .Section 3.1

presents the NI architecture and its main component. Section 3.2 discusses

the RTL implementation and Section 3.3 the software implementation.

3.1 Architectural View

Figure 3.1 shows the NI architecture that is composed of two loosely coupled

modules, the first module handles packets coming from the NoC, and sends

them to the node over the bus. The second module receives messages from

the bus and injects them into the network.

In particular, the Input Port receives flits coming from the NoC. When

a tail flit arrives and an entire packet is received, the message is extracted

and moved in the Message Queue. Thus, the message waits until it can be

13



transmitted over the bus through the WISHBONE Master Wrapper. On the

other hand, a message is received from the bus thanks to the WISHBONE

Slave Wrapper, while it remains packaged and stored in the Packet Buffer.

After that, like for NoC, a virtual channel must be assigned at the packet

and a link arbiter manage the transmission of various flits in the buffer on

the single link available. The On-the-Fly table is only required if the bus

doesn’t support split transaction, like the WISHBONE bus for now. The

table tasks and the interaction between the Master and Slave Wrapper will

be presented in Section 3.1.3.

All these discussed passages represent the stages of the two pipelines.

Figure 3.2 shows the NoC-to-Node pipeline which has three stages working

at different data granularity. The first works on flits, the second and the

third on messages. In the first stage, Buffer Write (BW), the received flit

coming from the upstream router is stored in the Input Port. The Packet-

to-Message stage (PKT2MSG) is executed after all the flits of a packet

have been stored, and extract the message from the packet and compute

the needed bus transaction. In the last stage, Bus Arbitration (BA), the

message is transmitted over the bus. Several BA stages take place if the

message is bigger than the bus data width.

Figure 3.3 shows the Node-to-Noc pipeline which has four stages working

on different granularity. The first and the second work on messages, the

third and the fourth on flits. The first stage is the Message Write (MW)

that stores a message, or part of it, received from a bus transaction. In

the second stage, Message-to-Packet (MSG2PKT), when an entire message

is received from the bus, the message is packaged and stored in the Packet

Buffer. The second stage and the third stage, Virtual Channel Allocation

(VA) and Link Allocation (LA), act like the NoC router VA and LA stages.

The VA stage, passed only by the head flit, reserves an idle virtual channel

in the output unit for the packet. The LA stage computes which flit can

use the network link the next cycle, since the link is shared between all the

stored packet in the Packet Buffer.

A detailed discussion is conducted on the principal modules of the ar-

chitecture.

3.1.1 The Input Port Architecture

Given n the number of virtual networks, and m the number of virtual chan-

nels per virtual network, the Input Port consists of n ∗m buffers. Each of

them can be used to store the entire flits of a packet. When an entire packet

is stored, The Input Port requires at the Message Queue module if storage

14



Figure 3.1: The figure shows the proposed NI design for multi-node multi-core that

interfaces a custom NoC and a WISHBONE bus.

Figure 3.2: NI pipeline stages crossed by packets coming from the NoC and destined

to the bus

Figure 3.3: NI pipeline stages crossed by messages coming from the bus and destined

to the NoC
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is available and if the PKT2MSG stage can take place in the next cycle.

3.1.2 The Message Queue Architecture

The Message Queue is a memory buffer which stores messages waiting the

bus arbitration. The implemented queue is composed of several buffers, each

of them can store the longest message transmitted in the network. A free

buffer is filled the cycle after the reception of a storage request from the

Input Port. The module sends at the Master Wrapper the data to transmit

and deletes a stored message when it has been transmitted to the node.

3.1.3 The WISHBONE Wrapper Architecture

The implemented NI exposes the standard interface of a WISHBONE master

and a WISHBONE slave IP, since it must act as a slave and a master from

both the bus and the NoC perspective. Internally, to keep logically separated

the reception and transmission of a message, the Slave Wrapper always

receives messages, and the Master Wrapper always sends messages. This

implies that the Slave Wrapper must receive the reply of a slave node to a

read transaction started by the NI Master Wrapper, and the Master Wrapper

must transmit the reply of a read transaction for the NI Slave Wrapper.

Figure 3.4 shows in details the wrapper interactions. The rest of the section

discusses every possible transaction to clarify the implementation.

When a packet is received, if it is a write transaction, it is simply sent

by the Master Wrapper on the bus, since no reply must be sent back. If the

packet contains a read transaction, the Master Wrapper start the transaction

and the reply is stored in the Slave Wrapper. The Slave Wrapper does not

allow the Master to start a read transaction if no space is available in the

Packet Buffer.

When the NI acts as a slave two cases are possible. If it serves a write

transaction, the Slave Wrapper receives the message and injects it in the

NoC. If it serves a read transaction, the Slave injects the request in the

NoC and saves an entry in the On-the-Fly table, with the information of the

waited message. When the Master receives a packet that contains the reply

for the transaction, it replies for the Slave and closes the transaction.

This kind of architecture is required to overcome the absence of split

transaction in the WISHBONE bus. If this feature had been available it

would not be need of the table, since in this case a master always sends and

a slave always receives messages.
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Figure 3.4: Wrappers architecture
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3.1.4 The Packet Buffer Architecture

The Packet Buffer represents a temporary storage for incoming packets from

the bus that are waiting to be injected into the NoC. It is composed of several

buffers, each of them can store the longest packet of the network. When a

message is received by the WISHBONE Slave Wrapper, it is packeged and

stored in a free buffer. If no free buffer are available, the WISHBONE

Wrapper stops the communication and restart it only when space is freed.

In this buffer the packet wait for virtual channel allocation and transmission

of its flits. A buffer is freed the cycle after the tail flit of the packet won the

link allocation.

3.1.5 The Virtual Channel Allocator Architecture

Traditionally, the Virtual Channel Allocator stage contains the critical path

of the router pipeline. In the Network Interface this module is considerably

less complex since a single output port is available.

An N : 1 arbiter is used for each virtual network. Each arbiter receives

N requests, where N is the maximum number of packets that can be stored

in the Packet Buffer, and allocates an available virtual channel only for one

of them, if any. Note that this architecture does not underutilized the link

bandwidth, since even if only one flit per cycle wins the VA stage, this flit

will be transmitted on the only link available.

3.1.6 The Link Allocator Architecture

The Link Allocator is an arbiter N : 1, where N is the maximum number

of packets that can be stored in the Packet Buffer. It receives the request

transmission from the flits that have already won the VA stage. Only one

of them can win and use the link to the router in the next cycle.

3.2 RTL Modules

The Network Interface model written in RTL Verilog has a modular imple-

mentation that follows the architecture discussed in 3.1. Timing information

about the pipelines stages have been obtained from this model. Furthermore,

the pipeline changes allowed the extraction of conservative timing latency

of three and two stages pipeline architectures as well as of a single cycle NI

architecture.

Figure 3.5 shows the Verilog modules inclusions. In sub-module noc2wb

all the NoC-to-Node pipeline is implemented and in sub-module wb2noc
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all the Node-to-NoC pipeline is implemented. The decoupling of the two

pipelines makes them easy to extend and optimize. The model can be

adapted for other bus interfaces simply changing the wrapper modules. The

On-the-Fly table can be removed from the implementation if the interfaced

bus supports split transactions.

Figure 3.5: Verilog modules inclusion

3.3 An NI Software Implementation Integrated into

GEM5

The performance overhead given by the inclusion of the proposed NI in a

multi-node multi-core has been studied extending the GEM5 software [5].

Unfortunately, the simulator does not allow to model multi-node multi-core,

since an NI has to be used between each cores or memory block and its local

router in the Network-on-Chip.

To overcome this problem, all the network interfaces connected at the

same router, which serve the cluster nodes, are treated like one NI. The NIs

shares buffers, bus bandwidth and the router’s link. Figure 3.6 shows the

approximation of the developed multi-node multi-core architecture. Only
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one between the NI or a core in the node can transmit data to the bus at

a time, and only one NI at a time can use the router link. The weakest

assumption of this approximation is related to local messages. Local mes-

sages are bus transactions between processing elements of the same cluster,

so they do not need to be injected in the NoC. It has not been possible to

prevent the passage of these messages in the Network-on-Chip, but their

impact has been reduced. When inside an NI they do not occupy the shared

resources.

GEM5 is written in C++. An object-oriented paradigm has been used

to implement the NI software model. Each pipeline stage action has been

implemented in a dedicated object, with the exception of the first stage of

both pipelines. The first stages are executed from the Network Interface

object, since it receives messages from the attached core and router. Each

stages execution manipulate messages objects, stored in the Network In-

terface, obtained from the previous stages or from the attached device, and

provides messages to the next stage or to the connected device. The pipeline

stages objects are instantiated at runtime by the Network Interface object,

which is connected via message queue with a core or a memory controller,

and via network link with a router.

Figure 3.6: The figure shows the speculation used to simulate a multi-node multi-core

in the GEM5 software simulator. All the NIs attached at the same router are treated

like one NI for the shared resources.
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Chapter 4

Results

This chapter shows both timing and performance results of the proposed NI

design considering different multi-core architecture. Several NI designs have

been analyzed which differ on the structure of the pipeline. These different

architectures have been discussed in Chapter 3.

Results highlights that the overhead of our architecture is composed

of two subparts. The first part derives from the finite bandwidth of the

additional bus and the pipeline stages that must be crossed by messages.

The second part is due to the bus contention. Both these parts are not

considered in the baseline model of GEM5. Is important underline that the

first part of overhead is always fixed in a given architecture. This is not true

for the bus contention.

Furthermore, timing results are presented of the RTL implementation of

the pipeline stages. this allows an evaluation of the operating frequencies of

the different NIs to find a validation of the pipeline design.

The rest of the Chapter is organized as follows. Section 4.1 describes

the simulation environment setup, the simulated architectures and the used

benchmarks. Section 4.2 presents the timing results. Sections 4.3 and 4.4

show the simulation results under synthetic and real traffic respectively.

4.1 Simulation Setup

The proposed NI designs have been implemented in an enhanced version [37,

35, 36] of the GEM5 cycle accurate simulator [5]. The simulator has been ex-

tended to simulate a multi-node multi-core. For each simulated scenario the

performance overhead have been extracted from the execution of different

synthetic traffic patterns and real applications of the mibench benchmarks

suite [14]. All the extracted results for the proposed NI models are compared
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with the baseline NI model in GEM5 that is called baseline in the thesis.

The baseline architecture consists in a NoC based multi-core, where each

node in the same tile is connected with the NoC through a dedicated NI. As

discussed in Chapter 3 the studied multi-node multi-core use a common NI

shared between the nodes of the same cluster through a local bus. The NI

interfaces the local bus with a NoC that connects the various tile. Table 4.1

presents the alias names, i.e. short names, for each implemented NI model

that are used in the rest of this chapter. Note that the NI architecture are

the same while the different number of stage implementation has been ob-

tained starting from the 4 stage architecture then collapsing multiple stages

in the same clock cycle. The default simulation parameters are detailed in

Table 4.2.

Two configurations have been simulated for both synthetic traffic and

real application simulation to highlight the different parts that compose

the performance overhead of the multi-node multi-core with respect to the

baseline architecture.

Name System

baseline NoC based multi-core with a vanilla NI model

1 stage Multi-node multi-core with one stage pipelines NI model

2 stage Multi-node multi-core with two stages pipelines NI model

3 stage Multi-node multi-core with three stages pipelines NI model

4 stage Multi-node multi-core with four stages pipelines NI model

Table 4.1: Alias table. The table shows short names used for the rest of the Chapter

and the system which they refer.

4.1.1 Synthetic Traffic Setup

In the synthetic traffic setup 3 different traffic patters have been tested:

uniform random, tornado and bit complement. Furthermore a 3 VNET

NoC is considered to simulate coherence protocols like MESI and MOESI.

One of the VNETs is considered the data VNET.

The traffic in the VNETs is unbalanced. First and second VNETs use

a single flit packet size, while the third vnet use long data packet size to

simulate the traffic of a real coherence protocol. Different data packet sizes

and topologies have been tried to stress the bus interconnection of the multi-

node multi-core. The first simulated architecture consists in a 8x8 2D-mesh

topology with 64 cores, one for each tile. Synthetic traffic with data packet

size of 1, 3, 5 and 9 flits has been used. This configuration has only one
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Processor Core Out-of-Order Alpha Core

L1I Cache 32kB 2-way Set Associative

L1D Cache 32kB 2-way Set Associative

L2 Cache 256kB per bank, 8-way Set Associative

Coherence Prot. MOESI (3 VNET protocols)

Router 4-stage Wormhole Virtual Channelled

64bit Link Width

Buffer Depth 4 Flits

2 Virtual Channels (VCs) for each Virtual Network

3 Virtual Networks

Network Interface 64bit Bus Width

Buffer Depth Message Queue: 6 messages

Buffer Depth Packet Buffer: 4 packets

Topology 2D-mesh 2x2 / 4x4 / 8x8

Table 4.2: Experimental setup: core and router architectures for the GEM5 simulation.

traffic generator in a tile. Thus the bus contention part of the performance

overhead is negligible with respect to the bus transmission and pipeline

stages overhead.

The second architecture consists in a 2x2 2D-mesh topology with 16

cores, four for each tile. The data packet size used is 64 bytes. In this

configuration is the bus contention that plays a significant role in the per-

formance overhead, highlighting the limits of the bus interconnection system

when highly stressed. Furthermore, it shows the inadequacy of the simu-

lation results trying to approximate the considered multi-node multi-core

with the baseline GEM5 model.

4.1.2 Real Benchmark Setup

A reduced set of applications of the mibench suite has been used. Table 4.3

exhibits the seven applications of the suite that has been chosen with the

launch parameters details. The applications have different traffic character-

istics used to evaluate the performance of the proposed NI designs under real

traffic. They are single threaded applications, thus a number of instances

equal to the number of cores in the architecture is used.

Two systems have been analyzed. The first simulated system considers

a 4x4 2D-mesh NoC topology with 1, 2 and 4 cores per tile. This implies

a total number of cores equal to 16, 32 and 64. The cache configuration,

coherence protocol and NI parameters are listed in Table 4.2. The second
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simulated system varies from the first in the NoC topology, a 2x2 2D-mesh,

and has 8 cores per tile.

mibench Applications Launch Parameters

susan input small.pgm

qsort input small.dat

sha input small.asc

search stringsearch/search small

dijkstra input.dat

bitcount 75000

basicmath basicmath small

Table 4.3: mibench applications used with the detailed input parameters of each appli-

cation.

4.2 Timing Results

Starting from the NI RTL implementation, this section discusses the clock

period while a different number of pipeline stages is considered for the NI.

The clock periods of the basic pipeline stages are reported in Table 4.4

considering the proposed 4 stages pipeline. The pipeline stages are almost

balanced for a first NI implementation, while different optimizations are still

possible. In particular, the effort has been devoted in the efficient pipeline

design starting from a methodological evaluation of the division between

each stage. However, the Message to Packet stage is unbalanced with respect

to the others. This is due to the need to split the transformation of the

message coming from the bus into a packet while the packet is completely

received from the bus. Otherwise, the single aggregate pipeline stage should

pack both the packet to message and the buffer write that depends on the

bus implementation timing.

A conservative evaluation of the clock period of the NI designs are re-

ported in Table 4.5 with the percentage increment with respect to the four

stages architecture. The periods of pipeline architectures with less then 4

stages have been obtained collapsing multiple stages in the same clock cy-

cle. With the exception of the 4 stages pipeline, all the other architectures

have the critical path in the Node-to-NoC pipeline due to the inability to

parallelize the VA and LA stages. The 4 stages pipeline has its critical path

in the Bus Arbitration stage of the NoC-to-Node pipeline.

It can be seen that the clock period rises of about the 30% already
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(a) NoC-to-Node pipeline

Stage Clock Period

Buffer Write 3.068ns

Packet to Message 2.77ns

Bus Arbitration 4.711ns

(b) Node-to-NoC pipeline

Stage Clock Period

Message Write 4.207ns

Message to Packet 1.871ns

Virtual Channel Allocation 3.354ns

Link Allocation 2.892ns

Table 4.4: Table 4.3(a) presents the clock periods of the basic stages of the NoC-to-

Node pipeline, while Table 4.3(b) shows the clock periods of the Node-to-NoC stages.

A detailed discussion of these stages is in Section 3.1.

between the 4 stages and the 3 stages design. This highly encourages the

usage of the 4 stages NI architecture.

Pipelines Width Clock Period Percentage Overhead

1 Stage 7.843ns 66%

2 Stages 7.264ns 54%

3 Stages 6.163ns 30%

4 Stages 4.711ns 0%

Table 4.5: The table presents a conservative evaluation of the clock period for the 4

presented NI designs. The last column shows the percentage overhead with respect to

the 4 stages pipeline architecture NI design.

4.3 Synthetic Traffic Results

This section presents the synthetic traffic results exploiting two multi-node

multi-core topologies. The two architectures are analyzed to emphasize dif-

ferent aspects. The first simulated architecture consist in a 8x8 2D-mesh.

In each tile there is one core, and a directory controller that only receives

messages. This configuration is used to analize the overhead introduced by

the different pipeline architecture and the latency required to transmit data

over the bus.

Figure 4.1 shows the results with synthetic traffic where only single flit
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packets are used. The 1 stage NI architecture provides almost the same

latency of the baseline for low traffic. This is due to the single pipeline

stage and the single flit message that are not impacting both the contention

metric of the node bus. Moreover, the 2 stages introduces 2 more latency

cycles with respect to the 1 stage, due to an additional pipeline stage in each

traversed NI. Similarly, the 3 stages adds 4 more latency cycles, and the 4

stages architecture adds 6 cycles, with respect to the 1 stage, due to their

additional pipeline stages in each traversed NI.

Figure 4.2 presents the results with single flit packets for two VNET, and

three flits packet for the third. In this scenario also the 1 stage architecture

starts with an higher latency then the baseline also for low injection rate.

This is given by the finite bus bandwidth against the unlimited modelled

bandwidth of the link between the NI and the core in the baseline.

For higher injection rate there is an increasing contention on the bus

that leads to a deviation from the baseline latency of all the architectures.

Figure 4.3 better investigates these aspects. Results for Uniform Random

synthetic traffic type are shown, using a different packet size for the third

VNET for each figure. Long packets increase the number of cycles required

to transmit a packet to the bus and also increase the probability to have a

busy bus when another core on the same tile is willing to transmit or receive

a packet. Note that the deviation from the baseline is greatly influenzed by

the bus contention, not by the number of pipeline stages.

Figure 4.4 shows the performance overhead in a system with high con-

tention on the bus. It consists in a 2x2 2D-mesh with in each tile 4 cores

and a directory controller. Similar to NUMA architectures currently avail-

able. In this scenario the bus contention latency prevails in the performance

overhead. The saturation point comes for considerably less injection rate

with respect to the baseline, highlighting again the inaccuracy of the vanilla

NI model in GEM5. Moreover, this architecture shows that the saturation

doesn’t depend on the number of pipeline stages, but it depends from the

high traffic on the bus.

4.4 Real Traffic Results

This section provides the results using the mibench applications.

First of all, Figure 4.5 allows a categorization of the applications based

on the injected traffic. It this context we can call hello and qsort high traf-

fic applications. sha and bitcount low traffic applications. The remaining

benchmarks will be identified as medium traffic applications. These catego-

rization allows a better explanation of the results in the rest of the section.
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(a) Uniform Random

(b) Tornado

(c) Bit Complement

Figure 4.1: Average packet latency with data packet size of one flit. Different synthetic

traffic pattern are used: uniform random, tornado and bit complement.
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(a) Uniform Random

(b) Tornado

(c) Bit Complement

Figure 4.2: Average packet Latency with data packet size of three flits. Different

synthetic traffic pattern are used: uniform random, tornado and bit complement.
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(a) Data packet size 3

(b) Data packet size 5

(c) Data packet size 9

Figure 4.3: Average packet latency with uniform random traffic type and packet sizes

of three, five and nine flits.
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(a) Uniform Random

(b) Tornado

Figure 4.4: Average packet Latency with data packet size of nine flits in a 2x2 2D-mesh

with four cores per tile. Two synthetic traffic patterns are used: uniform random and

tornado. The figures highlights the inadequacy of the vanilla NI model of GEM5 in a

configuration with high injected traffic.
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(a) One Core per Tile

(b) Two Cores per Tile

(c) Four Cores per Tile

Figure 4.5: The figures depict the average injection rate of real applications in a 4x4

2D-mesh with several number of attached core.
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Two different configurations have been simulated to analyze different

aspects.

4.4.1 A Low Contention System Case

The first analyzed system consists in a 4x4 2D-mesh and has been simulated

with 1, 2 and 4 attached cores per tile. Other configuration parameters can

be found in Table 4.2. This system has been used to test the multi-node

multi-core in a low contention environment.

Figure 4.6 shows the performance overhead on the total execution time.

Different consideration can be made on the basis of the categorization intro-

duced at the beginning of this section. Low traffic applications, like sha, do

not introduce a significant overhead with respect to the baseline architecture

due to the low contention on the on-tile bus. Medium traffic benchmark in-

troduce an overhead less then the 5%. High traffic applications, like qsort,

have the greatest impact but it is limited of about the 10%. Note that

increasing the number of pipeline stages in the NI does not lead to a con-

siderable increase of the overhead. For example as depicted in Figure 4.6(a)

for the qsort application, using a 4 stages pipeline NI architectures only

increase the performance overhead of about the 5% with respect to the 1

stage pipeline architecture.

Figure 4.6 highlights that the traffic overhead of the architectures with

more core per tile leads to worst performance only for high traffic applica-

tions. However, since all these applications have a low traffic injection, the

performance degradation is negligible.

4.4.2 An High Contention System Case

This section examines a configuration with high contention on the local

bus. The system consists in a 2x2 2D-mesh with 8 core per tile. Other

configuration parameters can be found in Table 4.2.

Figure 4.8 shows the results considering a 2x2 2D-mesh where each tile

implements 8 cores. This results clearly highlights how the contention on the

bus leads to totally different performance between the proposed NI model

and the one proposed in the baseline GEM5 implementation, thus supporting

the claim for a better NI GEM5 model to evaluate multi-node multi-core

architectures.
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(a) One Core per Tile

(b) Two Cores per Tile

(c) Four Cores per Tile

Figure 4.6: mibench execution time overhead per core. In each subfigures is fixed the

number of cores and vary the simulated architectures
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(a) One stage pipeline

(b) Two stages pipeline

(c) Three stages pipeline

(d) Four stages pipeline

Figure 4.7: mibench execution time overhead per NI model. In each subfigures the

simulated system is fixed and the number of attached cores varies.
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Figure 4.8: mibench execution time in a 2x2 2D-mesh with 8 core per tile. This system

shows the performance degradetion in a system with high bus contention.
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Chapter 5

Conclusions and Future

Works

Considering the current trend towards multi-node multi-core architectures,

where each node is composed of a multi-core and multiple nodes and glued

into a single system towards a dedicated intra-node interconnect, the thesis

explores different trades-off issues and solutions for the implementation of

the Network Interface (NI) controller for such systems. The NI represents

the junction point between the inter-node and intra-node interconnect, thus

playing a crucial rule in the performance of the whole system. Moreover,

the resource allocation and the NI design represent a critical decision point

for the power-performance-area optimizations.

A novel pipelined NI model has been developed in RTL Verilog and a soft-

ware model has been integrated in the GEM5 multi-core software simulator.

The proposed NI has been evaluated from the timing and the performance

viewpoint. First, different pipeline stages are considered for the same NI ar-

chitecture providing an in depth timing analysis where the 4-stage pipeline

emerges as the best candidate from the proposed results. Second, the perfor-

mance evaluation considering different architectures and both synthetic and

real applications traffic patterns demonstrated the need for a more accurate

NI model to address multi-node multi-cores.

In particular, the proposed results highlights two different contributions

that make the accurate NI model and the GEM5 one to drift in the simulated

architecture. First, the additional latency due to the additional inter-node

bus architecture and the NI pipeline stages. Second, the bus contention

when multiple cores are implemented in the same node. It is worth noticing

that the second contribution greatly overcomes the first one, highlighting

the bus contention as the first issues that requires the use of a mire accurate
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NI model in the GEM5 simulator.

5.1 Future Works

The proposed Network Interface design requires more in-depth analysis.

First of all, a complete support for multi-node multi-cores simulation must

be developed. This is a great lack and does not allow the extraction of

precise information from these systems. Furthermore, it doesn’t allow a

fast design space exploration and comparison between multi-cores based on

heterogeneous interconnection and multi-cores based on homogeneous one.

A design exploration of the architecture is required to dimension the

shared resources of the Network Interface, like the number of message buffers

or the bus data width. Most of these design decisions influence the area and

latency trade-off.

The pipeline can be extended to support several end to end features. For

example insert a compression/decompression stage can be a good addition.

The insertion of a new pipeline stage in both the pipelines will increase the

NI latency overhead, but the injected packets will be smaller and the NoC

less stressed. It can results in a lower total transmission latency.

Low power optimization can be studied to reduce power consumption

or to improve the reliability of some part of the architecture [32, 33, 34]

or both [30]. The presence of many buffers, and their sizing to support

high traffic, makes the Network Interface a good candidate for this kind of

optimization. Power consumption of buffers, especially leakage power, is a

considerable part of the total power consumption and it must be reduced.

Another interesting research branch regards applications dispatch. It can be

studied the impact of dispatch the applications that requires inter-process

communication in the same clustered node and reserve for them the local

shared cache. Almost all the cores communication will be transmitted over

the local bus, and not injected in the network. Thus the Network Interface

traffic will be reduced and less shared resources used.
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