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Abstract 

Tunnelling has become a preferred construction as urbanization increases and available land decreases in 
all over the world. One method that is commonly used in tunneling is so called conventional tunnel 
method (CTM); despite tunnel boring machines are becoming more popular. One of the main 
consideration concerning construction of tunnel is the stability of tunnel face during excavation. Scientist 
and engineer depend on physical modelling to understand different phenomena such as deformation 
patterns and failure mechanism. Since full-scale physical model is expensive and hard to repeat, it is 
preferable to use reduced model. There are three categories of reduced physical model: centrifuge, 1-g 
scale and extrusion tests. The main aim of the present research is to study stability of the deep 
underground opening of CTM by adapting results of extrusion tests which are obtained numerically thanks 
to the use of the commercial code Midas GTS NX 2014. The study focuses on rocks or soils whose viscous 
effect are negligible and behave under undrained condition. Static analyses using an elasto-plastic Tresca 
constitutive model with axisymmetric model are used to obtain relationship between stresses and 
displacements or characteristic curve and the development of platic zone surrounding the face. 
Interpretation of the results is done by considering real behaviour of phenomena which are three-
dimensional problems. Therefore, the results have been always compared with those of a 3D tunnel as a 
reference model.  

Although the past experiments on extrusion furnished a guide that is sufficiently reliable for 
qualitative predictions of the phenomena, however, problems that are typical of studies performed in the 
laboratory do exists. One of the problems associates with an effect of small scale due to geometry. This 
leads us to investigate any possible effect on boundaries in extrusion tests considering different specimen 
dimensions. The study indicates that the numerical results of extrusion tests show a strong dependency of 
the geometry of specimen and the ratio between initial stress and shear strength. For instance, the results 
reveal that the effect of small scale is less significant when the ratio between the initial stress and the 
undrained shear strength is equal or lower than 8.5, and is applied in the standard triaxial specimens 
whose ratio between diameter of extrusion and specimen is 5.4.  

Another problem of extrusion tests is difficulty in reproducing in situ conditions: distribution of 
initial stresses and boundary conditions. As consequence, the results give different outcomes with respect 
to those of the 3D tunnel. The major concern is the evidence of stress evolution stresses in the boundaries 
close to the face during excavation or reduction of the face pressure. The reduction of stresses in one of 
the boundaries is evidence in the extrusion tests. In the other hand, the stress evolution is negligible in all 
the boundaries in the 3D tunnel. This reduction causes, therefore, reduction in destabilizing loads and, 
hence, reduction of displacement at the face. This is the main reason why the characteristic curve 
produced by the model extrusion tests is more stable than that of the 3D tunnel.  
 The present study implies also some conclusions that are valid for both models. (i) Pincers effect 
occurs and is quantified as the stress migrates around the face. (ii) By means of a suitable dimensionless 
plane, all of the numerical results are collapse into a unique curve (so called front mother curve (FMC)) 
even though the soil parameters are varied. (iii) Although, the FMC of the extrusion tests is different than 
that of obtained by the 3D tunnel (due to different boundary conditions), both models give similar 
responses. 
 
Keywords: Extrusion tests; Deep tunnel; clays; Finite-Element Modeling (FEM); 2D-axisymmetric; 
Elasticity and plasticity. 
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Sommario 

 
La costruzione di opere sotterranee sta acquisendo una sempre maggiore diffusione per via della sempre 
crescente urbanizzazione ed occupazione del suolo. Nonostante la sempre crescente popolarità dello scavo 
meccanizzato, lo scavo in tradizionale è ad oggi ancora molto utilizzato. Un aspetto importante nello scavo 
di gallerie è l’aspetto della stabilità del cavo. Per valutare il comportamento del sistema, prestando 
particolare attenzione allo sviluppo di deformazioni e di meccanismi di rottura, la ricerca ha fatto uso di 
modellazione fisica, in piccola scala: in particolare è possibile eseguire prove in centrifuga, prove a 1g o 
utilizzare prove di estrusione. Lo scopo principale del presente elaborato è studiare la stabilità di scavi di 
gallerie profonde adattando i risultati di analisi numeriche, eseguite mediante il codice di calcolo Midas 
GTS NX 2014, che riproducono prove di estrusione su campioni triassiali. Lo studio si concentra su terreni 
in condizioni non drenate che hanno un comportamento, in prima approssimazione, indipendente dal 
tempo. Si sono eseguite analisi statiche in assialsimmetria, utilizzando un legame costitutivo elastico-
perfettamente plastico con legge di rottura alla Tresca, per ottenere la relazione fra sforzi e spostamenti 
del fronte (curva caratteristica) e lo sviluppo di plasticizzazioni intorno al fronte. L’interpretazione dei 
risultati è stata guidata dall’analisi della risposta di fronti di scavo di gallerie.  

Nel passato si sono utilizzate le prove di estrusione triassiali per prevedere qualitativamente la 
risposta di tunnel, tuttavia queste prove sono affette dai problemi legati alla sperimentazione in scala. 
Questo ha portato alla ricerca dell’influenza delle condizioni al contorno, in particolare la geometria del 
dominio, sui risultati delle prove di estrusione. Questo studio mostra che c’è una forte dipendenza fra la 
geometria del sistema e il rapporto fra io stato di sforzo iniziale e la resistenza al taglio. Ad esempio i 
risultati numerici mostrano che nel caso in cui il rapporto fra sforzo iniziale e coesione non drenata è 
inferiore a 8.5 è possibile considerare un campione il cui rapporto fra diametro esterno e diametro della 
camera di estruzsione è pari a 5.4. Un altro problema è riprodurre le condizioni in sito in termini di stato di 
sforzo e condizioni al contorno. In particolare si nota che per effetto dello scavo (visto come progressiva 
riduzione della pressione al fronte) nelle prove di estrusione sulla base del campione opposta alla camera 
di estrusione si assiste ad una progressiva diminuzione dello stato di sforzo, mentre nel caso di scavi di 
gallerie lo sforzo corrispondente rimane costante. Per tale ragione si ottiene che nel sistema riprodotto da 
prove di estrusione triassiale la forza instabilizzante si riduce progressivamente e dunque la risposta del 
sistema sarà più stabile rispetto alla risposta che avrebbe una galleria nelle stesse conclusioni.  

Nello studio sono presenti delle conclusioni che sonovalide sia per le prove di estrusione sia per lo 
scavo di gallerie: (i) avviene una migrazione di sforzi definita “effetto tenaglia”. (ii) Definendo un 
opportuno piano adimensionale tutti i risultati delle analisi numeriche collassano su un'unica curva definita 
Curva Caratteristica Madre per il Fronte (FMC). (iii) Nonostante le curve madri ottenute dai diversi modelli 
siano diverse (per effetto delle condizioni al contorno) i modelli forniscono una risposta simile. 
 
Keywords: Prove di estrusione; Tunnel profondi; argilla; Analisi a Elementi Finiti; Assialsimmetria; 
Elasticità e plasticità 
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Symbols 

Symbols 
a Radius of the uniform load, p, considering an elastic problem 

ALSR The absolute load sharing ratio 

b Axis between a and z  which its inclination is 45 degree considering elastic 
problem 

c The cohesion of soil 

c’ The effective cohesion of soil 

CU The consolidated and undrained test in standard triaxial test 

 The consistent tangent stiffness matrix 

 Internal diameter of extrusion chamber or the equivalent tunnel diameter 

 Material stiffness matrix 

Dep Continuum tangent stiffness matrix 

 The Young modulus of soil 

 The failure function 

 The plastic potential 

el. Index for ‘elastic’ 

 The Young modulus of soil in undrained condition 

FMC Front Mother Characteristic 

H The tunnel cover 

 Height of the extrusion chamber of extrusion test 

 Height of the symmetry of axis of axisymmetrical model of extrusion test 

 and  Scalar invariance of stress 

 The coefficient of lateral earth pressure. In standard triaxial test it can be 
defined as ratio between radial and axial pressure 

;  Lowest value of  that can be applied in the extrusion test 

;  Highest value of  that can be applied in the extrusion test 

Kel The elastic slope on the RLSR-Ωf plane for non-rigid lining 

Kel,r The elastic slope on the RLSR-Ωf  plane for rigid lining 

 Stability ratio proposed by Broms and Bennemark (1967)  
∗ Normalised stability ratio by considering the coefficient of lateral earth pressure 
 Direction vector 

 The dimensionless average displacement of the front 

 The undrained strength of cohesive soil  
 The deviatoric stress 

uσ the dimensionless average displacement of the front 

p An uniform load considering an elastic problem 

pl Index for ‘plastic’ 

q An uniform terrain load 

 Coefficient matrix as hardening variable 

 Residual vector 

RLSR the relative load sharing ratio 

 Thickness of circular steel plate being extruded to extrusion test’s sample 
 Average of radial displacement of the face of the tunnel or extrusion chamber 

;  Average of radial displacement of the face of the tunnel or extrusion chamber 
for perfectly elastic condition 
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UU The unconsolidated and undrained test in standard triaxial test 

 Displacement at elevation z  below the ground, considering elastic problem 

 The normalized radial displacement, / ;  

 Horizontal distance from the tunnel face 

z Elevation 

 

Greek’s symbols 
 Parameter of a function used for interpolation 

 Parameter of a function used for interpolation 
 Kronecker delta 

  Plastic multiplier 

 Elastic strain 

 Plastic strain 

 Parameter of a function used for interpolation or unit weight of soil 

γsat The saturated weightper unit volume of the soil 

 The hardening parameter 

Ø External diameter of sample of extrusion test 

 Stress vector 

 Axial pressure 
 The pressure in front of the face of the tunnel or extrusion chamber 

 The average stress 

 Radial pressure 
 The overburden total soil pressure located at the centre of the tunnel 

 Total stress in x axis 

 Initial horizontal stress at face or initial pressure in extrusion tests 

 and  Principle stresses in axial and horizontal or radial directions 

θ  Lode’s angle 

ѱ Dilatancy angle of soil 

;  The dimensionless average displacement of the front for rigid lining 

 The Poisson’s ratio of soils 
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Figure 1-3 The basic princple design philoshopy of conventional tunneling method (CTM), 
after Müller and Fecker, 1978. 

Considering the framework of risk that already described, the scope of this study can be included 
within the framework of hazard, e.g. stability faces tunnelling. The use of this type of analysis could be 
useful to improve the theoretical knowledge considering possible instability of the face tunnelling in order 
to avoid such of hazard, therefore reducing risk. 

1.3 Outline 
Chapter 2 describes the general overview of the research. This includes the questions that are addressed 
and its research objective. Chapter 3 discusses the constitutive model that has been implemented to the 
present study. A brief introduction of analysis of the software has been also included. Chapter 4 focuses 
on about how to set up 2D FEM model of triaxial extrusion test considering different discretization and 
geometry. Idealization with respect to the real and complex behaviour of face tunnelling has been 
assumed. The final model has been validated with a 3D FEM model of extrusion test and has been chosen 
for further analysis. Chapter 5 concerns the analysis and starts with a parametric study. Elastic and elasto-
plastic solutions of the 2D FEM extrusion test have been discussed. Moreover, the results are compared 
with those of the 3D FEM real tunnel as a reference model (di Prisco et al., 2015). The differences are 
critically discussed. In the last chapter the study is summarized. Moreover, recommendations for any 
future development have been discussed. 
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2. Literature review, research methodology and 
objective 

2.1 Extrusion triaxial test 
A comprehensive understanding of the tunnelling is important because it induces displacements and 
stresses and impacts on surrounding the face tunnel. Geotechnical engineering researchers depend on 
physical modelling to understand the process. Full-scale experiments are very expensive and hard to 
repeat. Therefore, reduced physical modelling of face tunnel on soft ground is preferred in order to 
understand different phenomena such as deformation patterns and failure mechanism. In general, we can 
have three different categories of reduced physical model: centrifuge, 1g scale and extrusion tests. The 
application of extrusion tests to study the stability around the opening face had already been implemented 
by Broms and Bennemark (1967). Moreover, they also developed similar test by modifying standard 
triaxial tests. Similar apparatus had been also examined by Attewel and Boden (1968). Lunardi (1990) 
continued to develop a dynamic experimental device with the same principle (extrusion test). The results 
of this test are typically carried out during preliminary phase of tunnel construction (Lunardi, 1995) in 
order to make prediction of the deformation response of the face in term of the characteristic lines. 

In this section, we describe in detail about the extrusion tests developed by different researches 
as listed in the previous paragraph. Any limitation of the tests developed by each developer is also 
discussed. 

2.1.1 Broms and Bennemark, 1967 (Load controlled test) 
Broms & Bennemark (1967) developed the extrusion experiment for homogenous clay. This test was 
originally intended for studying the stability of clay mass located behind a circular vertical opening. The 
hypothesis was analogous to that proposed to predict failure by bottom heave (Bjerrum and Eide, 1956) 
having centres deeper than four hole-diameters from the ground surface. It has been shown that failure 
by bottom heave takes place when the total overburden pressure at the level of bottom of an excavation 
exceeds about nine times the undrained strength of the clay (Figure 2-1).  
 

 

Figure 2-1 Base heave stability in supported retaining wall (Bjerrum and Eide, 1956) 

In the case of a vertical circular hole, this type of failure, assumed that the failure surface is 
cylindrical, is expected at a lower overburden pressure than that causing bottom heave, as, which is 
6.28	 . This critical overburden pressure is independent of the diameter of the hole. While the value of 

this coefficient (ratio between the overburden pressure and undrained shear strength) will depend on the 
assumed boundary conditions, e.g. the roughness of the wall and the shape of the hole. 
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2.1.2 Attewel and Boden, 1971 (Displacement controlled test) 
Attewell and Boden (1971) conducted similar studies with those of Broms and Bennemark (1967). They 
concluded that the stability ratio at collapse is 4.0. This differed from that found in Broms and 
Bennermark’s tests because displacements of the extruding clay plug instead of the piston that pushed the 
clay were used to determine the collapse pressure (Figure 2-4). 

 

Figure 2-4 Extrusion test (Attewel and Boden, 1971. Courtesy: Lunardi, 2008). 

Some limitations of these tests (for Broms and Bennemark, 1967 and Attewell and Boden, 1971): 
 The experiments were conducted in 1-g and so the effects of gravity were excluded. Thus, the 

influences of soil self-weight and ground cover thickness cannot be studied; 
 Their tests were originally intended to study the stability of an opening in a thin retaining wall 

that supports soft soil and therefore the tests involve the extrusion of soft soil through a hole in a 
vertical cylinder. When this is applied to a tunnel heading stability analysis, this assumes a 
vertical plane of stress acting on the tunnel face that might be oversimplification;  

 The field observations were mostly base tunnels having centres deeper than four hole-diameters 
from the ground surface; 

 The results showed only the behaviour of the tunnel stability at failure. 

2.1.3 Lunardi, 1990 (Load controlled test) 
A cylindrical specimen with a diameter of 50 mm and a height of 10 mm is used having similar dimension 
for a triaxial test. Hollow steel, with an outer diameter of 22 mm, inner diameter of 16 mm and height of 
about 32 mm, is axially driven into the top part of the undisturbed specimen. By using a special die, at the 
end of the penetration, a cavity is formed having dimensions coinciding with the diameter of the extrusion 
chamber. On its end it is fixed with a thin latex membrane that separates the interior of the cavity and the 
specimen. Water is filled in the cavity and is connected to an external burette to measure the pressure 
within the interior. By letting the water to be drained it is possible to have decreasing in pressure within 
the cavity.  
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(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

Figure 2-5 (a) The extrusion test on triaxial specimen and (b) extrusion chamber or cavity 
(Lunardi, 1990). 

Equipment shown in Figure 2-5 is similar to the triaxial used for undrained consolidated 
anisotropic test. 

The specimen is prepared in saturated condition against back-pressure and subsequently 
consolidated isotropic or anisotropic in conditions K0. During this phase, the pressure inside the extrusion 
chamber is maintained equal to the total isotropic stress (in the case of isotropic consolidation) or only the 
vertical stress (in the case of anisotropic consolidation) acting on the specimen. 
 Having consolidation condition during the test, the extrusion step is started decreasing, in several 
steps. Of each step the pressure inside the chamber and the variation of height of the test specimens are 
measured. Every step has been continued until the stabilization of the extrusion or otherwise until his 
defection tube being corrected. 

There are some remarks considering this type of extrusion tests: 
 The test is performed in the drained condition in the consolidation phase, while in the real case 

the face stability of the tunnel is in undrained behavior, since the rate of the excavation is 
adequate fast in such that no consolidation process would develop significantly; 

 Another issue is regarding possible boundary effect considering dimension of the sample. 

2.2 Three-dimensional problems of stability around face tunnelling 
Empirical formula have been established to roughly estimate the load acting on the support structure (e.g. 
Terzaghi, 1943; Bjerrum & Eide, 1956, Brom & Bennemark, 1971) to justify only in the case of shallow 
tunnelling according to mass material above the tunnel. See Figure 2-1, Figure 2-2 and Figure 2-6. 
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Figure 2-6 Analgous model of base heave stability on the support structure (Terzaghi, 1943; 
Bjerrum & Eide, 1951) 

In more advance approach, the attempt tried to construct limit equilibrium (Horn, 1961 in Figure 
2-7) and kinematic analysis based on arbitrarily defining certain failure mechanism around face tunnelling 
(Mair, 1979; Davis, et al., 1980; Casarin & Mair, 1981; Leca & Dormieux, 1990; Klar et.al., 2007; Molen 
et.al., 2009 in Figure 2-8). 

 

Figure 2-7 Limit equilibrium model for tunnel face (Horn, 1961) 

In fact these methods involve the construction of rupture figures and defining possible critical 
equilibrium from the point of view of the equilibrium of forces.  

 

 
(a) 

 
(b) 



9 
 

 
(c) (d) 

 
(e) 

 

 
(f) 

Figure 2-8 Mechanism for collapse of tunnel heading: (a) for fully lined to the face (Mair, 
1979); (b) for upperbound failure (Davis et.al., 1980); (c) considering net of stress 

characteristic (Casarin & Mair, 1981); (d) in compressible material (Klar et.al, 2007); (e) and 
(f) using conical blocks in Mohr Coulomb material (Leca & Dormieux, 1990; Molen et.al., 

2009). 

Moreover, Lombardi (1974) already emphasised that the excavation of a tunnel is a problem of 
three-dimensional stresses and deformations in the region of the face where there is a change in the 
stress field due to possible shearing stresses in planes perpendicular to the tunnel axis (Figure 2-9). 
 

 

Figure 2-9 Stress state around the face of deep tunnel. (1) axis of the tunnel, (2) face, (3) 
pseudo-two-dimensional behavior, (4) zone of influence of the face and (RA) radius of 

influence of the face (Lombardi, 1974). 

Therefore, a complete study of tunnel face stability has to deal with the three-dimensional field. A general 
method of calculation this three-dimensional problem is the use of a 3D finite element (FEM) analysis. 
Study of face stability of shallow tunnels in granular strata using 3D FEM analyses had been considered by 
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Vermeer et al., (2002), Yoo (2002), Sterpi and Cividini (2004), Shin et al. (2008) and Kirsch (2009).  

 
(a) 

 
(b) 

Figure 2-10 (a) Typical strength-displacement curve. (b) Shading of incremental 
displacement at collapse (Vermeer et al., 2002). 

The use of the 3D FEM analyses to meet the problems (as described previously) seems to 
encounter with the enormous number of elements, hence, enormous computation resources (storage and 
time). Special cases have been also examined by eliminating one dimension in order to save computation 
time. For instance, a pseudo-two dimensional stress can be assumed only at certain distance out of the 
radius of influence of the face, since it might be possible to assume that the shearing stresses in planes 
perpendicular to the tunnel axis are nil. This radius of influence denotes the area in which the influence of 
the face is still significant (Figure 2-9). If we assume an ideally elastic behaviour of material, the effect of 
any excavation on the radius would extend infinitely. But in practice, since in most materials have also 
plastic behaviour, the radius of action may be assumed to be few times of diameter of the tunnel 
(Lombardi, 1974). This zone depends of the diameter of the tunnel, soil strength, stress states and 
advance rate of the excavation (Lunardi, 1995). Consequently, any two-dimensional state of stresses or 
deformations cannot represent complete and accurate solution of the real three-dimensional problem at 
face. 

2.3 Research methodology 

2.3.1 Axisymmetric finite element method 
As it was described, the complete study of face tunnel has to deal with the three-dimensional fields 
existing in the area of the tunnelling face. Is it possible to study by means of any two-dimensional FEM 
solution? There are two kinds of two-dimensional approach. First approach is two-dimensional model in a 
plane perpendicular to the tunnel axis. If we consider stability of the face tunnelling, the final state of 
equilibrium will be reached within relatively short distance (see also Figure 2-9) from the face (Lombardi, 
1974). Therefore, it is clear that this approach is clearly inadequate to study stability near the face. 
Another approach, a special one, is two-dimensional method that takes into account of the three-
dimensional effect. This radial symmetry model aims of modifying one dimension, or is so called 
axisymmetry. This approach has been examined to study development of plastic zone around deep 
boreholes (Desai and Reese, 1970), to estimate the face influence on tunnel wall convergence along 
tunnel and consequences for support loading (Wagner, 1970, Daemen and Fairhurst, 1970) in rock 
(Daemen, 1975) as shown in Figure 2-11.  
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According to a parametric study by Anagnostou and Kovári (1996), drained conditions tend to apply when 
the ground permeability is higher than 10-7 to 10-6 m/s and the net excavation advance rate is 0.1 to 1.0 
m/hour or less. In a predominately sandy soil, therefore, drained stability conditions should be considered. 
In a clayey, low-permeability soil the undrained analysis is valid during excavation. In general implication 
of the undrained behaviour would be that: excess pore pressures are not generated, no volume change is 
expected. The undrained analysis requires analysis in terms of total stresses and zero dilatancy angle, 
because clays (regardless of over consolidated layers) are characterized by a very low amount of dilation 
(ψ≈0). 

Although undrained conditions are valid during continuous excavation, but in case of excavation 
standstill, drained conditions have to be applied. Therefore, it would be also necessary to investigate 
drained condition for excavation in clay. But this particular case is out of scope of the present study. 

To summarize, the present study concerns any rocks or soils that have an elasto-plastic behaviour 
whose viscous effect is negligible. Moreover, undrained condition has been assumed for this type of 
material assuming low permeability, very high loading rate and negligible long term behaviour. 

2.3.3 Research question 
Although the experiments on extrusion through the face of a tunnel conducted by Broms and Bennermark 
(1967), Attwell and Boden, and continued by Lunardi furnish a guide that is sufficiently reliable for 
predictions of the phenomenon in purely cohesive soils, but it must be kept in mind that all the problems, 
that are typical of studies performed in the laboratory, would give effect of small scale due to geometry, 
impossibility of working on completely undisturbed samples (in some type of soil), difficulty in reproducing 
in situ conditions faithfully and the results that cannot be generalized to all types of ground. Moreover, 
there would be consequence when two-dimensional approaches (whether it is numerical or experimental) 
are considered to study the three-dimensional problem of stability around face tunneling. These lead us to 
discuss the following topics: 

1. Is there any limitation of extrusion triaxial test due to any possible scale effect on boundaries? 
Can we consider this type of test for all type of grounds? These questions are relevant since a 
standard triaxial test can only be used for certain dimension of sample and limited pressure that 
can be applied; 

2. How to define correct procedure in extrusion triaxial tests?; 
3. Is it possible reproducing in situ conditions of tunnel in extrusion tests? What are consequence 

adopting the results extrusion tests to study the real three-dimensional problem of face stability?. 

2.4 Objective 
In order to answer all the research questions, the following section describes how we chose the scheme of 
the study. 

2.4.1 Set up of numerical model of triaxial extrusion test 

2.4.1.1 Constitutive model 
In this study, a simple model of elastic-perfectly-plastic model has been used to simplify the real elasto-
plastic behaviour of the soil under undrained conditions with negligible vicious effects. In this case, Tresca 
failure criteria are considered. The main motivation to use this model is because it is very simple and it 
keeps the computational result reasonable unlike in the case of the linear elastic or the rigid perfectly 
plastic model that are in general not able to accurately representing the true behaviour of the soil. 
Moreover, the main parameters in the model, which are the Young’s modulus, Poisson’s ratio, and 
undrained shear strength, are quite well known by geotechnical engineer and are relatively simple to 
obtain and to use.  
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2.4.1.2 Geometry investigation 
The first phase was intended to set up the 2D FEM extrusion test considering parameters and boundary 
conditions that govern the results and any possible effect on boundary conditions due to geometry 
(because of the limitation of standard trixial test, e.g. size of the sample and maximum applied confining 
stress). 

2.4.1.3 Validation 
An essential part of analysis using any FEM method is to validate the numerical models. In this study, the 
axisymmetrical FEM model is validated considering the 3D model of the extrusion test (4.4.4). 

2.4.2 Reference numerical model: the 3D tunnel model (di Prisco et al., 2015) 
Some authors such as Vermeer et al., (2002), Yoo (2002), Sterpi and Cividini (2004), Shin et al. (2008) 
and Kirsch (2009) considered 3D FEM analysis to study face stability of shallow tunnels in granular strata. 
One of particular author, di Prisco et al. (2015) studied 3D FEM for tunnels at deep cohesive layers and 
reproduced the similar principle of the characteristic curve. 

As it was discussed in section 2.2, the behaviour of face stability is really a three-dimensional 
problem. A 3D FEM numerical analysis of tunnel would provide representative behaviour the stress state 
around the face. Therefore, the 3D FEM tunnel model that was currently studied by di Prisco et al. (2015) 
is chosen as a reference model. Their studies were carried out using the same commercial software, e.g. 
MIDAS GTS NX and were considered similar constitutive model, liner elastic-perfectly plastic with Tresca 
failure criteria. In the present study, parametric studies have been also carried out. The results of the 
sensitivity analyses have been compared with those of the reference model. The aim of making the 
comparison is to check the performance or quality of results provided by the 2D FEM extrusion test with 
respect to the ‘real’ behavior of the tunnel.  
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3. Constitutive model and reference analysis 

3.1 Introduction 
In this study, Tresca’s failure criteria have been chosen as one of elasto-plastic model that exists in 
literature. The main motivation to use this model is because it is very simple and it keeps the 
computational result reasonable unlike in the case of the linear elastic or the rigid perfectly plastic model 
that are in general not able to accurately  representing true behaviour of soil. Moreover, the main 
parameters in the Tresca model, which are the Young’s modulus, Poisson’s ratio, the shear strength, are 
quite well known for geotechnical engineer and are relatively simple to obtain and to use. In contrast to 
the more advance soil models such us the soft-soil creep model or cam clay model, because it requires 
calibration in order to get more advance parameters. Nevertheless, the material that has been considered 
in the present study such as rocks or soils that have elasto-plastic behaviour whose viscous effect is 
negligible. Moreover, undrained condition has been assumed for this type of material assuming low 
permeability, very high loading rate and negligible long-term behaviour. 
 In this section an introduction of a linear elasto plastic behaviour is briefly described in order to 
highlight the fundamental difference between elastic and elasto plastic behaviour. Then, simple elasto 
plastic model without any hardening or softening is introduced as it is considered in the present study. It is 
also highlighted how the Tresca yield function is obtained. This explanation is referred to Potts (1990), and 
the manual of MIDAS GTS NX 2014. 

3.2 Linear elastic perfectly plastic 
As introduction, it is ideally to describe a linear elasto plastic behaviour. For material with linear elastic 
perfectly plastic, the yield surface is fixed in stress space. Moreover, it does not change position when 
loading take place. The behaviour is elastic if the stress state remains below the yield surface.  
 

 

Figure 3-1 Two dimensional behavior of a linear elastic perfectly plastic material considering 
uniaxial (Potts, 1990). 

In Figure 3-1 shows a two dimensional system of stresses,  and , considering an element of 
soil. At point ‘0’ the initial stress of the sample is zero. While keeping 0, the stress component   is 

increased until point ‘a’. Behavior is entirely elastic since the stress state remains inside the yield surface 
(curve). Although,  does not change, there is a strain   due to Poisson’s ratio effect (  is to be 
negative if 0 1/2). The strain  can only be zero if Poisson’s ratio, , is also zero. Then  is 

increased while the stress  is kept constant until it reaches the yield surface at point ‘b’. The behavior is 
again elastic while the stress remains below the yield surface and the strain  is controlled by the elastic 
moduli. Once the yield surface is reached (point ‘b’), it is not possible to increase  any further. In this 

case, plastic straining occurs. If the stress state is maintained on the yielding surface (point ‘b’), the plastic 
strains will keep increasing indefinitely. However, the ratio between plastic components  and   is 

fixed by the gradient of yield surface which equals to the plastic potential at point ‘b’. Consequently, the 
element of soil has failed.  

It should be note that fundamental difference between elastic and elasto-plastic behavior is that 
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the former strain increments are proportional to stress increment, whereas in the latter strain increments 
are a function of the current stress state. Therefore, in real soil the strain increment are not likely to be in 
the same directions at the applied stress increments. 

In the above discussion, it is implicitly assumed that the elastic behavior in the elastic perfectly 
plastic material is perfectly linear. However, this is not realistic and it is possible to combine nonlinear 
elasticity with the elasto-plastic framework (Potts, 1990). Due to the complex of the nature of soil it has 
not been possible to develop an elasto-plastic model that can capture all the facets of real soil behavior 
and be defined by a limited set of inputs parameters that can be readily obtained from simple laboratory 
test. There are many such models currently in the literature. These range from simple to complex models. 
Some simple models are Tresca and Mohr Coulomb model. In the present study Tresca model is 
considered. In the following sections the material properties considering the linear and plastic parts of the 
chosen model is briefly described. 

3.3 Material Properties of Linear Elastic Isotropic 
Linear elastic isotropic materials are based on Hooke’s law. Using the modulus of elasticity, E, Poisson’s 
ratio v and coefficient of thermal expansion, the stress-strain relationship for any 3D isotropic materials 
can be expressed as follows: 
 

 
 
 
 
 
Equation 3-1 

 
For 2D analysis, 0 and particularly for plain strain analysis 0 

 
 
 
Equation 3-2 

For the present study it is assumed that there is no thermal expansion and the modulus of 
elasticity is constant with height. 

As  approaches 0.5, the (1 2 ) term approaches ‘0’ (zero), and this can cause numerical 

errors. Hence, the range of Poisson's ratio for isotropic materials is restricted as follows: 
 

1 0.5 Equation 3-3 

3.4 Material properties of perfectly plastic 
This section has been referred to the manual of GTS NX 2014. 



16 
 

3.4.1 Failure criterion and invariance 

3.4.1.1 Principle stress invariance 
Principal stress invariance is a convenient method of expressing the failure function. The stress induced at 
an arbitrary point within the material can be expressed using the following equation, which uses the 
direction vector  that defines the principal stress direction: 

 
0 Equation 3-4 

where  is Kronecker delta 
 

0 in Equation 3-4 above, and the necessary and sufficient condition for Equation 3-4 is as 
follows: 
 

| | 0

 
Equation 3-5 

The matrix Equation 3-4 can be expressed as a cubic equation for principal stress, as shown 
below: 
 

 
Equation 3-6 

where, 
 

 
Equation 3-7 
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Equation 3-8 
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Equation 3-9 

in which, ,  and  can be expressed using the principle stresses ( ,  and ) as follows, 

 

 
 

Equation 3-10 

3.4.1.2 Deviatoric stress invariance  
The stress tensor  can be divided into the hydrostatic pressure and invariant stress components, as 

shown below: 
 

Equation 3-11 
  

Here,  represents the average stress as follows, 
 
 

1
3

1
3

 Equation 3-12 

  
Also  is the deviatoric stress and respresents the pure stress states as derives from the 

previous equation as follows, 
 

Equation 3-13 
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The deviatoric stress invariance can be expressed, 

 
0 Equation 3-14 

 
Equation 3-14 can be expressed as follows, 

 
0

 
Equation 3-15 

Here, 
 

0
1
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1
6

 

1
3

 

 
Equation 3-16 

 
, , and  can be expressed using the deviatoric principal stresses ,  and as follows: 

 
0

1
2

1
6

 
1
3

 

 
Equation 3-17 

 
, , , , , and are all scalar invariants, which have properties independent of the coordinate axes. 

To conveniently express the failure function geometrically, , , and  invariants are often used. 

3.4.1.2.1 Geometric meaning of the three stress invariance 

 

Figure 3-2 Stress state definition in principle stress state (Manual Midas GTS NX) 

Vector OP can be defined when point P=( , ,  is expressed as an arbitrary stress state in 

the principal stress space, as shown in Figure 3-2, Vector OP can be divided into vector ON, which 
follows the hydrostatic pressure axis; and vector NP, which exists in the deviatoric plane perpendicular to 
the hydrostatic pressure axis. Their size is as follows: 
 

| | 
1

√3
 

| | 2  

 
Equation 3-18 

 
Vector NP needs to be rotated by θ  in the  axis to define point P on the deviatoric plane. 



18 
 

Here, θ  is called the similarity angle and its equation is as follows: 

 

θ
1
3

3√3
2 /  

 

Equation 3-19 

Here, θ  has the following range: 

 

0 θ
π
3
 

 

Equation 3-20 

For numerical analysis, it is more convenient to use Lode's angle θ rather than θ  and it can be 

defined using the following equation: 
 
 

θ
1
3
sin

3√3
2

J

J /  

 

Equation 3-21 

Here, θ θ  and has the following range: 
 

6 6
 

 

Equation 3-22 

It is often more convenient to express the principal stress as an invariant stress when defining 
the failure function of the material, and it can be rearranged using Lode's angle to give the following 
equation:  
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√3
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Equation 3-23 

3.4.2 Formulation of plastic behaviors 
Plastic materials display permanent deformation on structures even after the external load is removed, 
unlike elastic materials. To express such behavioural properties, strain is formulated following additive 
decomposition, which divides strain into elastic and plastic components, as shown below: 
 

 

 
Equation 3-24 

where  is the total strain, and  are the elastic and plastic strains respectively. 

Because Hook's law defines the relationship between deformation and stress in the elastic region, 
applying this to Equation 3-24 and rearranging gives the following equation for stress: 
 

 Equation 3-25 
 
where  is stress vector and  is material stiffness matrix. 

The failure criterion defines the plasticity criteria and can be defined differently depending on the 
material properties such as soil, steel or concrete. The material failure criterion can be modelled in 
function form using various experiments on the material. Generally, this function has variables that 
represent stress and hardening, and can be expressed as follows: 
 

, 0 Equation 3-26 
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where f is the failure function and  is hardening parameter. 
If the failure function is equal to or smaller than ‘0’ (zero), plastic flow does not occur and if  is 

larger than '0', plastic flow occurs. 

3.4.2.1 Plastic flow rule 
Material failure induces plastic flow, and this plastic flow causes stress redistribution to maintain the 
equilibrium state of the material. The plastic flow calculation is done in nonlinear form and the increment 
form is generally used for formulation. The general values used for calculating the plastic flow in plasticity 
analysis for materials are the incremental stress direction and plastic strain increment direction. The 
incremental stress direction is as follows: 
 

 

 

Equation 3-27 

where  is vector representing the stress increment direction perpendicular to the failure surface and  is 

number of failure functions. 
The plastic strain increment can be divided into the size and directional components using Koiter’s 

law as follows: 

   
Equation 3-28 

 
Here,  is the plastic potential function, which can be expressed as・ 

 
, 0

 
Equation 3-29 

using stress and hardening variable , generally obtained from material tests.   is the plastic multiplier, 

and it needs to satisfy the following Kuhn-Tucker condition: 
 

0,  0,  0 Equation 3-30 
 

From the conditions above, plastic flow does not occur when the failure function  is smaller than 
0and   is always 0. When plastic flow occurs (  is larger than 0), the failure function is always 0. m is the 

vector that defines the plastic strain increment in Equation 3-28. Here, the method of defining the 
plastic strain increment by , which uses the failure function and not the plastic potential function , is 

called the associated flow rule and the method which uses the plastic potential function to define the 
plastic strain increment direction by  is called the non-associated flow rule. Using the non-associated 

flow rule on a material model can suppress the excessive cubical expansion phenomena due to the discord 
between the stress direction and strain direction. However, the amount of calculation increases because 
the stiffness matrix is asymmetric and an asymmetric solver needs to be used. 

The hardening variable・・used for strain hardening can be defined using the dimensionless 

equivalent plastic strain as shown below: 
 


2
3

 
Equation 3-31 

Here, 
 
Equation 3-32 
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3.4.2.2 Stress return method 

3.4.2.2.1 Implicit backward Euler method 
 

 

Figure 3-3 Implicit backward Euler method (Manual Midas GTS NX 2014) 

As shown in Figure 3-3, the implicit backward Euler method can be expressed using the following 
equation: 

∆  Equation 3-33 
 
Because the unknown C values exist on both sides of Equation 3-33, the concept of residual 

vectors  is introduced to find the value using repeated analysis: 

 
∆  Equation 3-34 

 
The residual vector r converges to 0 when the final stress state lies on the failure surface. The 

new residual vector  for recursive calculations using the first order Taylor expansion can be defined 

using the following equation: 
 

 ∆  Equation 3-35 

 
Because the residual vector is  for the converged final stress, substituting this into 

Equation 3-35 and rearranging for  gives, 

 

∆    Equation 3-36 

 
Also, using the 1st order Taylor expansion on the failure function gives the following equation, 
 


  0 Equation 3-37 

 
Substituting Equation 3-37 into equation Equation 3-36 and rearranging for   gives the 

following equation: 
 

  Equation 3-38 
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3.4.2.2.2 The cutting plane method 

 

Figure 3-4 The cutting plane method (Manual Midas GTS NX 2014) 

Considering Figure 3-4, the cutting plane method can be defined as follows, 
 

∆ ∆  Equation 3-39 
 

Defining the stress return direction above at point B in the perpendicular direction modifies 
Equation 3-39 as follows: 

 
∆  Equation 3-40 

 
Also, using the 1st order Taylor expansion on the incremental function gives the following 

equation, 
 

∆

∆ ∆ ∆ 0 Equation 3-41 

 
Hence, the plastic multiplier increment ∆ is as follows, 

 

∆  Equation 3-42 

3.4.2.3 Constitutive equation 
The plastic constitutive equation can be composed as follows. The small stress increment is determined by 
the elastic part of the strain increment vector, which is based on Hooke’s law. 
 

  Equation 3-43 
 

Because the current stress always needs to be positioned on the failure surface, the consistency 
condition  0  needs to be satisfied. Rearranging equation Equation 3-43 for the small strain 

increment gives the following equation: 
 

 Equation 3-44 

 
where Dep in is called the continuum tangent stiffness matrix.  

When using the consistent tangent stiffness matrix for the Newton-Raphson recursive formula, it 
converges faster than when Equation 3-44 is used because of the second order convergence property. 
This second order convergence property can be obtained from the following process. First, differentiating 
Equation 3-43 gives the following equation: 
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 ∆ ∆




 Equation 3-45 

where ∆ is the change in . 
Equation 3-45 can be rearranged as follows: 
 

  Equation 3-46 
where, 
 

∆ Equation 3-47 

and, 
 

∆





Equation 3-48 

 
 If, , Equation 3-46 can be rearranged as follows, 
 

 Equation 3-49 
 
If Equation 3-49 is rearranged for the total strain term using the consistency condition, the 

following equation can be obtained: 
 

Equation 3-50 

  
  in Equation 3-50 is so called the consistent tangent stiffness matrix. 

3.4.3 Tresca failure criterion 
The Tresca criterion was originally developed to be used on failure conditions of metallic materials. In 
geotechnical analysis, it is often used to simulate the ground material behaviour for undrained conditions. 
The failure condition for this criterion can be expressed using the uniaxial compression strength ( ) 

considering the ordered principal stresses ( < < ), as shown below. 

 
 

| | 2 Equation 3-51 
 
In the case of soil under undrained condition, the failure is governed by two-times of the undrained 
strength. Equation 3-51 can be expressed using stress invariant  and  (for  0° 60°  as follows, 
 

1

√3
cos

2
3

Equation 3-52 

 
 Rearranging the former equation, 
 

, 2 sin
1
3

0 Equation 3-53 

 
Or, it can be expressed using the terms, ,  and (for   

 

,
2
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0 Equation 3-54 
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Figure 3-5 Tresca failure surface shape in principle stress space (Manual Midas GTS NX) 

The effects of hydrostatic pressure on the failure plane are not considered for this criterion and 
so, it’s unrelated to . The Tresca failure criterion is a hexagonal column parallel to the hydrostatic axis in 

the principal stress space, as shown in Figure 3-5, and is expressed as a regular hexagon in the 
deviatoric plane, as shown in Figure 3-6a. 
 
 

 
(a) 

 
(b) 

Figure 3-6 (a) failure surface shape in  plane and (b) failure surface shape in the meredian 
plane for = -/6 (Manual Midas GTS NX) 

According to the experimental results, the shear strength of the saturated soil is unrelated to  
for undrained loading. The Tresca model can obtain appropriate results under these conditions. 
 As this model is perfectly plastic, there is no hardening/softening law required. Moreover, as this 
model is intended to study the undrained behaviour of saturated clay, it should predict zero volumetric 
strains (i.e. on yield surface), both the elastic and plastic components of volumetric strain must be zero. A 
convenience choice is to assume associated plastic flow and adopt the Tresca failure function as plastic 
potential. This causes the vector of incremental plastic strain is normal to the yield surface (Figure 3-7) 
and implies no incremental plastic direct strain (Potts, 1990). 

3.5 Typical results of Unconsolidated-Undrained (UU) triaxial test 
For the most engineering practices, triaxial test has been considered in order to define better soil 
parameters that are used for analysis. There are two distinguish tests in any triaxial test. The first phase is 
consolidation phase, during which the cell pressure is increase. This provides uniform confining stresses on 
the specimen equal to the minor principle stress, . During this phase the soil might be allowed to 

consolidate or not, depending on the type of the test being performed. The second phase of the test is 
fissure or shear phase. During this test a load is applied through the piston located on the top of the 
system. This load increases the stresses at the top of the specimen. Since there are no shear stresses, 
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either the top or the side of the specimen, these are the principle plane. So the major principle stress, , 
is applied to the top of the specimen and the cell pressure provides minor principle, , to the side of the 

specimen. The vertical stress is gradually increased until the specimen failures. 
If we consider Unconsolidated-Undrained (UU) triaxial test, we do not measure the pore pressure 

and do not compute the effective stresses. The results of the test are in terms of total stresses. The 
purpose of UU test is to determine the undrained shear strength . The drainage valve is closed in UU 

tets. Initially there is no initial stress, so the Mohr Coulomb appears as point at the origin of the diagram. 
When we apply the confined stress during consolidation phase, the Mohr Circle remains a point. It is 
because  and  about equal to the cell pressure. However, the Mohr Circle (a point) moves to the right 

along x-axis, as the cell pressure increases. Once the consolidation phase completes, the shear phase 
starts by increasing the vertical stress, , applied to the specimen. The minor principle  does not 

change as we shear the specimen. We continue to increase the vertical stress until the soil fails. Again the 
maximum principle stress at failure is . In addition, we have the undrained shear strength  (sample 

1). Because the drainage valve was closed during the consolidation phase, no consolidation occurred and 
the soil does not gain any strength during this phase. Therefore, the undrained shear strength under 
confining stress is no greater than the undrained shear strength under unconfining stress in the same soil. 
Similarly if we conduct another test (sample 2) on identical specimen, but raise the , the soil would not 

gain any strength, because no consolidation is allowed. This test gave the same results as the previous 
test. If we plot the shear strength envelope of the tests, we will have zero slope and intersect with y-axis 
at . This is known as 0 condition. In general, saturated clay loaded under undrained condition fails 
under 0 condition. See Figure 3-7. 

 

Figure 3-7 Mohr's circle of total stress test (e.g. UU triaxial test). 

A failure criterion is then adopted which relates the undrained strength,Su , to the diameter of the 
Mohr's circle at failure. To complete the model it is only necessary to define the elastic parameters. There 
should be no elastic volumetric strains, therefore, ~ 0.5. In this case the Tresca model can therefore be 

considered and defined by specifying the undrained strength, Su, and the undrained Young's modulus, Eu. 

3.6 Axisymmetrical solid elements 

3.6.1 Coordinate system 
Various coordinate systems (Figure 3-8) are needed to use the finite element method to appropriately 
model and correctly analyze the given problem. For axisymmetrical model, cylindrical coordinate system is 
used on GTS NX. 
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Figure 3-8 Cylindrical coordinate system and its degree-of-freedoms (DOFs) in axysymmetric 
element 

GTS NX uses various coordinate systems for ground or structural modelling and analysis as shown 
on Figure 3-9. 
 

 

Figure 3-9 Various coordinate systems in GTS NX 

In the case of axisymmetrical problem, GTS NX uses Material Coordiante System for ground 
analysis as shown on Figure 3-10. 

 

Figure 3-10 Definition of material axis for axisymmetrical soild element (Manual Midas GTS 
NX) 

3.6.2 Node and DOFs 
Nodes and elements determine the size and shape of the finite element model and are the starting point 
of all analyses. A model defined by nodes and elements is the same as physical phenomena expressed 
using numerical equations in matrix form. The variables that affect the matrix equation are displacement, 
rotation, pore pressure and other physical quantities, which are called degrees of freedom (DOF). Each 
node has a coordinate system that describes the direction of motion. This is called the nodal displacement 
coordinate system. All DOFs mentioned above follow the coordinate system direction assigned to the 
nodes, and all nodes describe the direction of motion with reference to the global coordinate system. 
 Axisymmetric solid elements have displacement DOF in the Global Coordinate System x (radial 
direction) and y directions. 
 

Equation 3-55 
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3.6.3 Stress and strain 
Axisymmetric solid elements consider strain and stress defined on the GCS, and the components are as 
follows: 

,
Equation 3-56 

 

 

Figure 3-11  Stress strain of an axisymmetric element 

3.6.4 Load 
The loads applied to axisymmetric solid elements are as follows: 
 

 

Table 3-1 Loads applied on axisymmetric element 

3.6.5 Element results 
On GTS NX, the results of an axisymmetric solid element are printed in the user defined reference 
coordinate system. The selectable systems are the ECS, MCS and arbitrary coordinate system. The 
component of element result has the x, y direction and a circumferential direction of 
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Table 3-2 Results article of axisymmetric solid elements (Manual Midas GTS NX) 

3.6.6 Non linear analysis 
Geometric nonlinearity can be considered for axisymmetric solid elements and material nonlinearity can be 
considered for elastic and nonlinear elastic materials. The additional result articles for nonlinear material 
usage are listed in the table below. The material states are expressed using symbols. 
 

 

Table 3-3 Nonlinear analysis result article of axisymmetric solid elements 

3.7 Numerical scheme and formulation 
The detail scheme and formula can be further found in the manual. 
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the bottom was assumed to be rough or smooth, would not give any effect since the dimension would be 
chosen in order to avoid any possible boundary effect on the results, if edge H2 is sufficiently high 
(4.4.2.2). 

On the vertical boundaries (along the axis of symmetry as edge H2 and considering the circular 
ring as edge H1) the horizontal displacement and vertical force have been assumed to be zero (Figure 
4-1b). By assuming that the vertical force equals to zero it implies that there can be no vertical shear 
stress on these boundaries. Therefore, the nodes are free to move in the vertical direction. As another 
result of the analysis, however, horizontal reactions will be generated at the nodes. 

Vertical pressures (on the top boundary as radial pressure and on the extrusion chamber as face 
pressure) are applied immediately. In addition any horizontal nodal forces are assumed to be zero. In fact, 
these boundary conditions are similar to a model of a smooth flexible circular footing. Similar principle 
applied also to horizontal pressure that is applied immediately on the mesh boundary located on the outer 
radius of the model. In this case, vertical nodal forces are assumed to be zero. 

4.2.3 Idealization 

4.2.3.1 Material 
The material is assumed to be built perfectly homogeneous. The mechanical response of the material is 
assumed to be isotropic elastic perfectly plastic. The material behavior is under undrained conditions (the 
undrained strength, Su, is the unique constitutive parameter related to the material strength) by neglecting 
viscosity behavior, since in practice the rate of advance of the tunnel is maintained to be sufficiently fast 
(2.3.2.2). 

4.2.3.2 Rigid lining 
The circular ring being extruded to the sample is assumed to be perfectly rigid. Therefore, the influence of 
its stiffness on the system response is disregarded. By considering a very stiff lining, as consequence the 
radial soil movement is equal to the soil movement gives upper bound to lining pressure as illustrated in 
Figure 4-2.  
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Figure 4-2 Variation of Kel/Kel,r with the stiffness of the tunnel lining (di Prisco et al., 2015) 

where is Kel the elastic slope on the RLSR-Ωf (see Equation 4-3 and Equation 5-1) plane for non-rigid 
lining and Kel;r is the elastic slope on the RLSR-Ωf  plane for rigid lining. 

4.2.3.3 In comparison with 3D tunnel model 
The former assumptions are quite similar to those of the 3D FEM models (di Prisco et al., 2015). Actually, 
some differences in assumption of both models do exist. In the case of 2D FEM extrusion test, the 
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Figure 4-5 Elastic and elasto-plastic characteristic curves obtained from 2D FEM extrusion 
test with D=10mm, H=108mm, E=80KPa, ν=0.495, K0=1.0, and Su=30 KPa (elastic curve) 

and 10 KPa (elasto-plastic curve). 

In this study we modify the representation of the characteristic curve by changing the axis: the 
average face pressure, , in y-axis and the average displacement at the face,  in x-axis. For example, 

the typical shape of characteristic curve is shown in Figure 4-5 giving two different responses: the elastic 
and elasto-plastic. This linear curve was typically curve that can be obtained when the geometry is 
adequate to avoid any effect from boundary and when the value  is much higher with respect to . 

Otherwise, the elastic-plastic curve is obtained where irreversibility takes places but the unstable behavior 
is not totally reached. In general, the shape of the curve is actually governed by the geometry and mesh. 
Another observation was that the initial linear shape of both curves is coincident. Afterwards, the 
displacements in the elasto-plastic curve develop faster giving the residual displacement,  higher than 

that of elastic one, ; . Generally, from Figure 4-5 we can define three different behaviors: (i) initial 

part which is linear; (ii) transitional part, where the curvature rapidly increases and (iii) finally a further 
reduction in the curvature, whether in stable face in short term or unstable (Lombardi, 1974 and Lunardi, 
2000). 

It is also a very convenient to introduce a normalized curve as shown in (Figure 4-6), where on 
the y-axis the average stress of the front is normalized with respect to its initial value , so called the 

Relative Load Sharing Ratio (RLSR),   
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 fRLSR  Equation 4-3 

 
whereas on the x-axis the average displacement is normalized ( u ) with respect to the elastic residual 

displacement, ; . 
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Figure 4-6 Normalization of the characteristic curves of Figure 4-5. 

Results of the analysis for the following section consider the characteristic curve and or the 
normalized characteristic curve. 

4.4 Dimension of specimens 
The goal of this section is to define the final configuration of the 2D FEM extrusion test, such as diameter 
and height of the sample and diameter of extrusion chamber to be used for further analysis. This concerns 
an undrained analysis with the ratio /  of 6.0. A limit of dimension of sample does exist since in 

practice a standard dimension of sample of the test is rarely found bigger than 50 mm of diameter and 
100 mm of height. Moreover, any possible errors in discretization of model are studied considering mesh 
(geometry and size) and in distortion due to a singularity velocity.  

4.4.1 Discretization errors (mesh and singularity velocity) 
In some particular cases of numerical modeling care must be taken due to any possible development of 
displacement singularities due to presence of zone of high distortion (van Langen, 1991) considering soil-
structure interaction. It is a fan radiating in different directions at corner point of footing. Two mechanisms 
shown in Figure 4-7 imply displacement singularity at the ends of the rigid bodies on cohesive layer in 
cohesive layer (Cox, 1960 and van Langen, 1991) due to infinitely large of stresses at the edge of the 
structure as a consequence of the constant displacement of the rigid body (Boussinesq, 1885). 
 

 
(a) 

 
(b) 

Figure 4-7 (a) Singularity velocity at corner point of footing and (b) of rigid buried structure 
in a cohesive soil mass (Langen, 1991). 

It would be possible that this type of problem would occur especially at the corner of extrusion 
chamber where the circular steel to be extruded within the sample. Apparently, the singularity at the 
corner of the face of extrusion chamber is not so apparent. This might be due to the fact that the 
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smaller element around face (0.5x0.5 mm). As shown in Figure 4-8a, the solution becomes convergent 
when the model goes to finer mesh. It has been observed that improvement on the results occur when 
finer mesh is considered, in particular area around the face. Moreover, any model finer than 0.5x0.5 mm 
(size of elements located close to the face), would give no further improvement on the results or in other 
word, there would be no big different considering the characteristic curve (see Fine and Very Fine mesh on 
Figure 4-8a). Due to this reason, the model with none uniform and fine mesh closed to face with 851 
elements has been considered as the most efficient model.  

4.4.2 Investigation of geometry 
The internal diameter of the vertical of the vertical cylinder is R, while the total diameter of the sample is 
2Ø. It is assumed that the thickness of the steel cylinder would give no effect to the results. The total 
height of the sample is the sum of H1 and H2 (Figure 4-1). 

Generally speaking, dimension of sample used for triaxial test consists of the total diameter 
between 50 to 70 mm and height between 100 to 140 mm. In practice a standard dimension of sample of 
the test is 50 mm of the total diameter and 100 mm of the total height.  

In this section, a sequence of analysis was carried out in order to check possible effects of 
geometry on the results of numerical analysis. In this case, the ratio /  of 6.0 is considered in the 

analysis. The results shown in the following are in term of the characteristic curve and relationship 
between the normalized stability factor and the normalized extrusion. 

4.4.2.1 Varying the height of the cavity, H1 
By varying the height of the cavity, H1 and keeping the inner and outer diameters at constant value, the 
characteristic curves do not scatter (Figure 4-9a). Moreover, it can be observed that by varying the ratio 
of H1/D at least up to 2.0 and by considering any constant value of ratio ø/D, e.g. 3.1 or 4.3, the 
difference on the result considering elastic and elasto-plastic solutions is negligible (Figure 4-9b). 
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Figure 4-9 (a) Characteristic curve by varying H1/D with constant H2/D=4.3 and 0/Su=6.0. 
Long dash line: ø/D=3.1 and dotted line: ø/D=4.3. (b) Uf versus H1/D. 

In the other hand, different value of ø/D gives different response, in particular elastic solution 
(Figure 4-9a), even though the ratio of H1/D is kept at constant value. Although the offset of the plastic 
evolution for ø/D=3.1 and 4.3 are qualitatively comparable as shown in Figure 4-10, but it would give 
effect on the results (see detail in section 4.4.2.3). 
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(H2/D=8.8), D=10 mm and Ø =54 (Ø/D=5.4) mm. 

4.4.4 Validation 
In order to validate the 2D FEM extrusion test we introduce also a 3D FEM extrusion test having only one-
quart of the total geometry as shown in Figure 4-15b. In this model, similar idealization (boundary 
conditions, applied stress and phase’s analysis) and soil parameters have been applied. The results are 
identical considering elastic, elasto-plastic solutions as shown in Figure 4-16. This implies correct 
integrations (stress-strain relationship) in the numerical scheme and outputs considering the 2D FEM 
extrusion test. In order to save computation time and storage, we consider this 2D model for further 
analysis. 
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Figure 4-16 Comparison of results between the 2D and 3D FEM Extrusion tests considering 
the characteristic (a) and normalized curve (b). 
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Figure 5-9 Elastic curve in the non-dimensional RLSR-Ωf plane considering the results of the 
2D FEM extrusion test and 3D FEM tunnel with v=0.495. 

The inclination of this curve, in this non-dimensional plane, is called Kel,r (where the subscript r 
stands for rigid, since these results are obtained by imposing a rigid lining) which is governed also by 
Possion’ ratio, v. As a consequence, the residual non-dimensional displacement (Ωf,r =Ωf for σf=0 or 
RLSR=1) is equal to 1/Kel,r. The average value of Kel,r for the 2D FEM extrusion test is equal to 1.25 which 
is lower than that of the 3D FEM tunnel which was 2.99, considering constant value of v=0.495. 

In addition, an alternative representation of the numerical results can be done by considering 
RLSR- u plane (Equation 4-3 and Equation 4-4) where elru , becomes, 

 

rel
rfelr EK

D

E
Du

,

00
,,


  Equation 5-2 

 
 

All the curves shown in Figure 5-9 are perfectly superimpose and their inclination is equal to 45 
degrees as shown in Figure 5-12 considering the non-dimensional RLSR- u plane. 

5.2.1 State of stress 
This elastic behavior occurs when the stress state in the ground at the face and around the cavity during 
tunnel advance is sufficient to overcome the capacity of the medium to resist it in the elastic range 
(Lunardi & Kovári, 2000). Moreover, the progressive reduction in stress on the tunnel face causes a stress 
migration (Yoo, 2012), and further defined as “pincers effect” (di Prisco et al., 2015). This causes an 
increase in both vertical and horizontal stresses in the soil around the tunnel. In fact similar behavior does 
exist in the case of the 2D FEM extrusion test.  
 



 

dis
(p
ho
str

Fi

Figu

To qua
stances from t
oint C) and 0.

orizontal stress
ress variations

0.0


/ 

0

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C

0.0


/ 

0

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

igure 5-11 E
C,& D of Fi

ure 5-10 A sk

antify this effe
the front secti
.5D (point D).
ses considerin
s are larger, as

A: x/D=0.0

RS

0 0.2 0.4

xxxx;

y y y y

C: x/D=0.33

RS

0 0.2 0.4

xxxx;el

y y y y ;el

Evolution of b
gure 4-4 (b)

ketch of mig

ect, four diffe
ion of the extr
 See Figure 4

ng each point
s was expecte

08

SLR

0.6 0.8 1

;el

y ;el

3

SLR

0.6 0.8 1

l

both vertical
) obtained fo

45 

ration of the

erent points (
rusion chambe
4-4b. Figure
variation in t

ed, in the poin

1.0

1.0

l stresses (y

or 0=1320 k
behavio

e horizontal 

Points A, B, C
er (xf): xf =0.0
e 5-11 shows 
the stresses is
nts closer to th

0

 /
 0

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0


/ 

0

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

y) and horizo
kPa, E=10MP
or. 

 

stress: “pinc

C and D) are 
08D (point A),
a linear incre

s investigated 
he face. 

B: x/D=0

R

0.0 0.2 0.4


xxx


y y y

D: x/D=0.5

RS

.0 0.2 0.4

xxxx;e

y y y y ;e

ontal stresse
Pa, ν=0.49 c

cers effect” 

positioned a
, 0.17D (point 
ease in both ve
 during simula

.17

RSLR

4 0.6 0.8

xx;el

yy ;el

5

SLR

0.6 0.8

l

el

es (x) of poi
considering e

t different 
B), 0.33D 

ertical and 
ation. The 

1.0

1.0

ints A, B, 
elastic 



46 
 

5.3 Elasto-plastic behaviour 

5.3.1 Reponse 
In this paragraph, we focus on the results of one particular reference considering 0=1320kPa (typically 

for tunnel with D=12m, H=60m and and γsat=20 kN/m³ considering Equation 4-2) E=10MPa, ν=0.495, 
Su =200kPa. The results of this analysis are shown in Figure 5-12. 
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Figure 5-12 Elastic and elasto-plastic curves in the non-dimensional RLSR-f plane 
considering the results of the 2D extrusion test and the 3D FEM tunnel for E=10MPa, 

ν=0.495, Su =200kPa and0=1320kPa. 

Figure 5-12 shows that in the case of the 2D FEM extrusion test and the 3D FEM tunnel, the 
response started with linear behavior. In the case of the 2D FEM extrusion test, this linear response starts 
at value of RSLR=0.45 while in the case of the 3D tunnel it starts earlier (RLSR=0.25). Afterwards, it gives 
none linear response in both models. The final value of uσ is not 1.0 since the residual displacement at the 
front is quite larger with respect to the elastic one. From Figure 5-12 we can subtract three different 
responses for both 2D and 3D FEM models: a linear initial response (where the linear curve is suporimpose 
to the elastic-plastic curve), a subsequent knee and a final approximatively linear trend.  

As we can also observe from Figure 5-12, the difference in quantity does exist considering 
curves from the 2D and 3D FEM models. In order to justifiy the difference, we consider the state of the 
stresses in terms of ratio between the stresses and the initial one ( / ). The direction of these stresses is 

always perpendicular to the tunnel or the extrusion chamber axis. These stresses give “destabilizing effect” 
to the system during the simulation (reduction of the face pressure) considering both models. The stresses 
have been extracted along the two boundaries of both models as shown in Figure 5-13e and -f. The 
ratio of the stresses is then plotted againts the relative distance to the axis of the tunnel or the exutrusion 
chamber, r/D. The plots consider RLSR=0, 0.25, 0.5, 0.75 and 1.0.   

Figure 5-13a and b show that the evolution of the stresses (considering different value of RLSR) 
is very small when we consider the surfaces of the boundaries (right and left) located close to the tunnel 
face. Therefore, these “destabilizing loads” tend to be constant during the simulation or reduction of the 
face pressure. In the other hand, different conclusion (with respec to the 3D FEM tunnel) is observed in 
the case of the 2D FEM extrusion test since different boundary conditions were applied. In the case of the 
2D model, it is obvious that the evolution of the stresses is constant considering the top boundary (Figure 
5-13c). It is because the constant vertical pressures (  and ) were imposed on the top boundaries. 

Meanwhile, zero displacements in horizontal and vertical directions have been applied considering the 
bottom boundary. Therefore, during the reduction of  (simulating excavation) it causes a reduction of 
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the axis of the tunnel or extrusion chamber corresponds to r/D=0, where D is the equivalent 
diameter of the tunnel or extrusion chamber and r is the distance with respect to the tunnel 

axis. 

Broms and Bennemark (1967) had already defined a direct measure of the occurrence of 
irreversibility of stress-displacement curve by plotting the normalized residual displacement,  
(Equation 4-4), versus the instability ratio N (Equation 2-1). Based on the result of 15 numerical 

analyses (Figure 5-14), if the instability ratio is sufficiently small the normalized residual displacements 
are very close to one (vertical dashed line). In contrast, when N is sufficiently large, the normalized 
residual displacements are very high, having more plastic response.  
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Figure 5-14 Representation of normalized residual front displacements versus the instability 
ratio with different value of K0. 

5.3.2 State of stress 
In Figure 5-15 the evolution of both vertical and horizontal stresses in points A, B, C and D is shown 
considering elastic-plastic response. Moreover, stresses migration has been observed, in particular in the 
point close to the face (point A).  
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Figure 5-18 Results of the 2D FEM extrusion analyses for different values of K0plotted 
onRLSR.N –uf.N plane. (a) K01.0 and (b) K01.0. 0/Su=6.0. 

 Front Mother Characteristic envelope (FMC) is represented in the non-dimensional ALSR-s plane, 
where 
 

*NRLSRALSR   Equation 5-5 

 
is the Absolute Load Sharing Ratio, and 
 

*Nus   Equation 5-6 

 
where the N* instability ratio is defined as: 
 

aKNN 0
*  Equation 5-7 

 
Analogously, if all the characteristic curves, corresponding to the large variety of mechanical and 

geometrical parameters taken into consideration, are plotted considering ALSR-s plane a unique curve 
should be obtained. By multiplying both the x and y axis by the same value N*, it causes a shrinkage for 
all the curves whichever are characterized by a small or large value of N. The non-dimensional coefficient 
a in Equation 5-7, to obtain the Front Mother Characteristic (FMC) envelope represented in Figure 
5-19, has been assumed to be equal 0.50 and 0.65 for 1.0 and 1.0 respectively. 
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Figure 5-19 Results of the numerical elastic-plastic analyses in the ALSR-s plane. (a) K0=0.8 – 
1.0, with a=0.65 (b) K0=1.0 – 1.3 with a=0.50. 0/Su=6.0. 

In general for 0.8 	1.3 , the non-dimension coefficient a is approximately 0.65 (Figure 
5-20a). This value is bit lower with respect to the 3D FEM tunnel, which was 0.85 (di Prisco et al., 2015). 
Moreover, we consider also the results of the parametric study (section 5.1) to be plotted in ALSR-s plane. 
In fact, all these curves are perfectly in superimposition as shown in Figure 5-20b.  
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Figure 5-20 Results of the numerical elastic-plastic analyses in the ALSR-s plane. (a) 
considering 0.8K01.3 in Figure 5-18 with a=0.60 and (b) K0=1.0 different parameters 
considering Figure 5-1, Figure 5-3, Figure 5-5 and Figure 5-7 for 0/Su=6.0. 

5.4.2 Limitation of the chosen dimension extrusion cell 
In section 4.4.2, the characteristic curve for different geometry configuration had been defined by 
considering the ratio of /  up to 6.0. By considering similar cases, the ratio is now extended to higher 
value, e.g. the ratio /  up to 10.0, in order to see the response of each configuration. The results, as 

shown in Figure 5-21, are now plotted on ALSR-s plane. 
In some cases, where one of the edges was to narrow, the plastic zone starts to develop and 

reach the edge. For example, in the case where ø/D=3.1 and H1/D=0.5, the plastic zones propagates out 
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of the bottom plane, although the bottom boundary was constrained. This occurred when the ratio /  

is approximately higher than 6.0. This respond occurs at the higher ratio (approximately higher than 7.0), 
when the ration of ø/D is increased up to 4.3. As concluded also in the previous chapter, the effect of 
varying edge H1 do not affect so much on the mother characteristic curve. The results of this case are 
given in Figure 5-21a. The domain of the results of different geometry configurations is shown in Figure 
5-21d (grey area). Big scattering in the domain implies that the results of FMC are highly dependent on 
the chosen geometry and the ratio of / . 

 
Figure 5-21 Front Mother Characteristic (FMC) curve for different configuration of geometry. 

(a) H1/D=0.5÷3.0, H2/D=4.3 and ø/D=3.1 & 4.3;   

(b) H1/D=2.0, H2/D=1.3÷8.8 and ø/D=3.1, 4.3 & 5.4;   

(c) H1/D=2.0, H2/D=4.3 & 8.8 and ø/D=2.3 ÷ 6.4;  

(d) Domain of curve (a), (b) and (c) and the curve of the chosen dimension 

A unique curve which corresponds to superimposition of the results of different mechanical 
parameters of the soil (section 5.1) is plotted also in the same figure in Figure 5-21d with a (‘plus’) 
marker. It must be noted that the results based on the chosen dimension (e.g. similar dimension used for 
the parametric studies (section 5.1)) would give proper results when the ratio of /  is lower than 8.5. 
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If we wish to consider /  higher than 8.5, higher ratio of ø/D should be used or to consider an 

extrapolation curve based on extrapolation of this data (section 5.4.3). 

5.4.3 Interpolation curve and comparison with the 3D FEM tunnel 
It was discussed that the results of the chosen dimension of the extrusion model were only valid (without 
any possible boundary effect) when the ratio of /  is lower than or equal to 8.5. Therefore, for the 
ratio of /  higher than 8.5, an approximated curve (bold dash line in Figure 5-22) can be considered. 

This extrapolation curve is simply derived based on the following formula used for the interpolation of the 
2D FEM extrusion test for the results up to the ratio 8.5. 
 

1 Equation 5-8 

 
,  and  are constant number and  is the reduction ratio of face pressure, 1  (Equation 

4-3). This formula was analogously derived from the failure mechanism of the 3D FEM tunnel that was 
similiar to the very well known inverse circular foundation mechanism under undrained conditions (Eason 
and Shield, 1960) considering momentum equilibrium along the tunnel axis (di Prisco et al., 2015). 
 

3D FEM tunnel 2D FEM extrusion test 

α β γ α β γ 

1 0.024 5.7 1 0.024 6.9 

Table 5-1 Values of non-dimensional parameters for interpolation: the 2D FEM extrusion test 
and 3D FEM tunnel. 
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Figure 5-22 Interpolation of FMC for the 2D FEM extrusion (the present study) test and the 
3D FEM tunnel (di Prisco et al., 2015). Dash line: Inter- and extrapolation  curve of the 2D 

model (the present study);Bold line: interpolation curve of the 3D model tunnel (di Prisco et 
al. ,2015). 

Considering the interpolation curve, we are able to fit the curve. Care must be taken when this 
interpolation curve is being used, since ‘the knee’ (elastic-plastic range) of the interpolation curve is 
underestimation. Afterwards, the curve tends to be linear being in plastic zone. As it is shown in Figure 
5-22, the interpolation curve is able to catch this plastic zone. In general the interpolation curve gave 
approximation with value of root-means-square error around 4%. 
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Although, the results have been already normalized considering FMC, the curve produced by the 
2D FEM extrusion tests is again always higher than that of the 3D tunnel. The main reason of the 
difference was the evidence of reduction of the “destabilizing stresses” during the reduction of the 
pressure in the extrusion chamber. Hence, this condition reduced the radial displacement in the chamber 
(as discussed in section 5.3.1).  
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6. Conclusions and recommendations 

6.1 Conclusions 
 
In order to adopt the results of extrusion tests to study the real behaviour of stability surrounding tunnel 
face, some important aspects should be carefully considered. These aspects were related to the problems 
that are typical of studies performed in the laboratory scale. In this study, the results were focused on 
relationship between stresses and displacements or characteristic curve and the development of platic 
zone surrounding the face. The results were obtained numerically considering static analyses under 
undrained condition using an elasto-plastic Tresca constitutive model with axisymmetric model.  

The first aspect was related to the possibility to have any possible scale effect. This effect was 
governed by dimension of specimens and material properties of the soils. The numerical results showed a 
strong dependency of the results on the chosen dimension of the specimens and the ratio between initial 
stress and the undrained shear strength. The study implied that the higher the ratio is the more the plastic 
response will be. For instance, the specimens that were used for the present study was the standard 
triaxial specimens whose ratio between diameter of extrusion and specimen is about 5.4. For this 
configuration, the effect of small scale was less significant if the ratio of the initial stress to the undrained 
shear strength was equal or lower than 8.5.  

The second aspect was the limitation of extrusion tests to produce in situ condition of tunnel. The 
first limitation related to the distribution of initial stresses that was always uniform due to confining 
pressure applied in the extrusion tests. This might be not so significant in the case of deep tunnel. The 
second limitation concerned the boundary conditions. The bottom of the specimen of the extrusion tests 
must have a support, as it was done in the standard triaxial tests. This bottom boundary condition gave 
significant influence on the numerical results. The study revealed that there was significant reduction of 
stresses in the bottom boundary of the extrusion tests during the simulation (progressive release of the 
face pressure in the extrusion chamber). This reduction caused reduction in destabilizing loads and, hence, 
reduction of displacement at the face. This is the main reason why the characteristic curve produced by 
the extrusion tests was always higher than that of the 3D tunnel numerical analyses. 

The present study also implied some particular conclusions for the extrusion tests as listed below: 
(i) The elastic modulus, E, gave no effect on plasticity; 
(ii) The numerical results showed peculiar response and effect when the  condition was varied. It 

was shown that there were more plastic responce and larger residual displacements when higher 
value of  is used. In the other hand, more confining response and lower residual displacement 
were expected when lower  is considered; 

(iii) The study showed that any asymptotic curves did not represent to any failure condition. In fact, 
they occured due to the scale effect, e.g. propogation of plastic zone reached outer boundary. 
Although the present study showed quantitative discrepancy in the charatistic curves, it implied 

also conclusions that were valid (qualitatively) for the extrusion tests and the 3D tunnel analysis as 
mentioned in the following:  

(i) Pincers effect occurs and is quantified as the stress migrates around the face: monotonically 
increase in elastic condition, while progressive reduction and migration of stresses in elasto-
plastic condition;  

(ii) By means of a suitable dimensionless plane, all of the numerical results are collapse into a unique 
curve (so called front mother curve (FMC)) even though the soil parameters are varied;  

(iii) Although, the FMC of the extrusion tests is also always higher than that of obtained by the 3D 
tunnel (due to different boundary conditions), both models give similar responses: purely elastic 
in which no plastic development is expected, elasto-plastic and perfectly plastic with structural 
‘hardening’ behaviour. 
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6.2 Recommendation for future research 
It is essential to perform the real extrusion tests in order to calibrate the results of present study. In fact, 
we already proposed one of possible prototype of extrusion test on triaxial specimen as shown in Figure 
6-1. 
 

 

Figure 6-1 Proposed improvement of apparatus for extrusion test on triaxial specimen 
(ExTx_PoliMod_15) 

The present study concerned only one specific type of material (cohesive soils under undrained 
condition). It would be also interesting to perform similar study for other type of materials, for instance for 
none cohesive soils under drained condition in case of excavation standstill. 
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obtain the load corresponding to a full circular footing using the following formula: 
2 ∑

Equation 8-1 

 
where   is the reaction force in the y-direction at footing node i and R is effective radius of the footing. 

It must be kept in mind that the error in the bearing capacity is related to the indeterminacy in 
the apparent width of the footing. The mechanism shown in Figure 4 implies a displacement singularity at 
the ends of the footing as it was also anticipated by the work of Cox (1960). It is a fan radiating in 
different directions at corner point of footing. Such singularity cannot be modeled by a conventional finite 
element computation which involves regular displacements for all material points. It might need an 
interface material representing potential slip plane (Langen, 1991).  
 

 

Figure 8-3 Singularity velocity at corner point of footing (Langen, 1991). 

In these numerical simulations, it is no need to introduce any interface element. In fact the effect 
of the singularity is spread over the width of one element. The apparent position of the displacement 
jumps within that element and depends on the exact geometry of the velocity field that develops. The only 
small adjusting is that in deriving the mean pressure beneath the circular footing, it is assumed that the 
jump occurs half a zone width from the end of the controlled boundary segment. 
 
Material:  
The material behavior is represented by the Mohr-Coulomb model. Note that an associated plastic analysis 
is performed by considering, ∅ 30°. 

 
  Problem no. 2   
Dimension 
  

Width 15 m 
Height 10 m 

Element 8-node quadrilateralaxisymmetricelement 

 Material 
  
  
  
  
  
  

Modulus of elasticity E = 257143 kPa 
Possion's ratio v = 0.286 
Saturatedweight γ = 20 kN/m3 
Yieldcriteria Mohr-Coulomb 
Cohesion c = 50 and 100 kPa 
Friction angle φ = 0° 
Dilatancy angle ψ = 0° 

Boundarycondition Left side Constrain x 
  Right & bottom ends Constrain x & y 
Load case Prescribed displacement of 0.25 m at footing nodes 

Table 8-1 Parameters used to analyis smooth circular footings on frictional soil. 

Calculations:  
The initial stress distribution is generated in the initial phase by using the K0 procedure, where the 
displacement was set to zero. In the next phase the prescribed displacements along the width of the 
footing is activated in a separate phase considering none-linear analysis. 
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(i) (ii) 

Figure 8-4 Load displacement curve(i) c=50 kPa and (ii) c=100kPa for smooth circular 
footings on frictional soil. 

 
Output:  
As it was indicated that the effective radius of the footing is the radius to the point midway between the 
last node with an applied displacement (x = 3.00 m) and the adjacent node (x = 3.75 m), therefore, the 
effective radius of the footing is 3.375 m.  

The calculated collapse load is kN/rad, which corresponds to an average vertical stress at failure, 
, with: 

 

;
36096

1008.7 Equation 8-2 

 
for problem no. 1.  
 

;
71545

1999.3 Equation 8-3 

 
Verification:  
The exact solution (Cox, 1962) for the mean yield-point pressure at collapse for cohesion of 50 kPa and 
∅ 20° for the first problem is, 

 

; ; 20.1 ∗ 20.1 ∗ 50 1005
Equation 8-4 

 
while for the second problem, the semi-analytical value of the mean pressure over the footing at failure for 
a friction angle 20°, with cohesion of 100 kPa is found to be 
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dividing with the cohesion and the displacement is normalized by multiplying with the factor G/c.  
The analytical solution for the bearing capacity for punch problem is solved by Hill as follows: 
 

2 Equation 9-1 

 
where c is the cohesion of the material and 1 is the bearing capacity stress at failure. 

In the following figures shown the result of the numerical simulations and analytical solution. 
 

(i) 
 

 
(ii) 

Figure 9-5 Normalized pressure and displacement: (i) without any treatment and (ii) corner’s 
treatmentfor rigid buried structure in a soil mass. 

For Model B, the relative error of the mean bearing stress with respect to the analytical solution 
remains under 2 %. 
 

  
Model 

Analytical 
Midas GTS NX 

  
Mean bearing 

stress at collapse 
(kPa) 

Mean bearing stress at 
collapse (kPa) 

Relative 
error (%) 

A 5.14 
n.a.  

(Osciallation too high) n.a. 

B 5.14 5.05 1.78 

Table 9-2 Results and verification for rigid buried structure in a soil mass. 
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