
Politecnico Di Milano

Department of Electronics, Information

and Bioengineering

 Enrichment of City Accessibility

Maps with Crowdsourcing

Techniques

Master Dissertation of:

Ana-Maria Salai

Supervisor:

Prof. Sara Comai

Co-Supervisor:

Prof. Marco Brambilla

2015 - XXVIII

- 2 -

I

Abstract

Currently, one in six people in the European Union – around 80 million –

have a disability that ranges from mild to severe. Over one third of people

aged over 75 have disabilities that restrict them to some extent. These

numbers are set to rise as the EU population grows progressively older.

Most of these people are all too often prevented from fully participating in

society and contribute to the economy because of physical or other

barriers, as well as discrimination. Whilst the European Union raises new

policies regarding accessibility, creating an application which eases the life

of in need people is an important step in building accessible cities.

Large cities are built and designed based on the needs of mobile

people, architectural preferences and budgets. Unfortunately, this

constitutes a big disadvantaged for those with mobility disabilities.

Wheelchair users are regularly hindered by barriers from participating in

daily life on their own.

The purpose of this thesis is to develop a set of solutions for the

enrichment of geographical maps with information about the accessibility

of urban pedestrian for people with mobility problems. The Maps for Easy

Paths project (MEP), of which the thesis is part of, aims in creating a system

able to detect automatically non-accessible features in an urban

environment in order to compute a new accessible path to reach a

destination. The system makes use of a smartphone or tablet which will

guide the users with disabilities throughout the city by visualizing the

accessible path inside the application.

The research work presented in this thesis aims in solving this problem by

means of crowdsourcing and street view images. The process consists of

street view images which are sent to users via crowdsourcing platform and

II

are marked as accessible and non-accessible based on their feedback.

These images focuse on specific points (crossings, traffic lights and

intersections) and precise questions are being asked in order to determine

the accessibility of these points.

III

Sommario

Oggigiorno, una persona su sei nell'Unione europea - circa 80 milioni - ha

una disabilità che varia da lieve a grave. Oltre un terzo delle persone di età

superiore ai 75 anni hanno disabilità che li limitano in qualche modo.

Questi numeri sono destinati ad aumentare in quanto il numero di persone

anzioane dell'UE cresce progressivamente. La maggior parte di queste

persone sono troppo spesso impossibilitate a partecipare pienamente nella

società e contribuire alla sua economia, a causa di barriere fisiche o altro,

così come la discriminazione. L'Unione Europea solleva nuove politiche in

materia di accessibilità, creando così un'applicazione che facilita la vita

delle persone in stato di bisogno, il che e’ un notevole miglioramento per la

costruzione di città accessibili.

 Le grandi città sono state costruite e progettate in base alle

esigenze delle persone senza problemi di mobilità, così come in base alle

preferenze architettoniche e il relativo budget. Purtroppo, ciò costituisce

un grosso svantaggio per le persone con disabilità motorie. Le sedie a

rotelle sono regolarmente ostacolate da barriere architettoniche, problema

che rende difficile la vita quotidiana e lo spostamento dei disabili per conto

proprio.

Lo scopo di questa tesi è quello di sviluppare un set di soluzioni per

l'arricchimento di mappe geografiche con informazioni sull'accessibilità di

percorsi pedonali urbani per le persone con problemi di motorietà. Le

Maps for Easy Paths, progetto (MEP) di cui la tesi fa parte, mira a creare un

sistema in grado di rilevare automaticamente le caratteristiche non

accessibili in un ambiente urbano, al fine di calcolare un nuovo percorso

accessibile e di raggiungere più facilmente una destinazione. Il sistema si

avvale di uno smartphone o tablet che guideranno gli utenti con disabilità

motorie in tutta la città, visualizzando il percorso accessibile all'interno

dell'applicazione.

Il lavoro di ricerca, presentato in questa tesi, mira a risolvere questo

problema tramite crowdsourcing e immagini di Google Street View. Il

IV

processo consiste nelle immagini di Street View che vengono inviate agli

utenti tramite piattaforma di crowdsourcing e contrassegnate come

accessibili e non accessibili, in base al loro feedback. Queste immagini si

concentrano su punti particolari (incroci, semafori e intersezioni) e

richieste specifiche in modo da definire l'accessibilità di questi punti.

V

Content

Chapter 1 .. - 1 -

Introduction .. - 1 -

1.1 Thesis goal... - 2 -

1.2 Structure of the thesis .. - 3 -

Chapter 2 .. - 5 -

Overview ... - 5 -

2.1 MEP Project ... - 5 -

2.2 Thesis Work Phases ... - 8 -

2.3 Literature Analysis ... - 9 -

Chapter 3 .. - 12 -

State of the art .. - 12 -

3.1 OpenStreetMap ... - 12 -

3.2 Google Street View Image ... - 17 -

3.3 Crowdsourcing ... - 19 -

Chapter 4 .. - 24 -

Requirements Analysis .. - 24 -

Chapter 5 .. - 29 -

Design Phase ... - 29 -

VI

Chapter 6 .. - 41 -

Implementation .. - 41 -

Chapter 7 .. - 64 -

User Interface ... - 64 -

Chapter 8 .. - 70 -

Conclusion ... - 70 -

Chapter 9 .. - 72 -

Future Work .. - 72 -

9.1 Thesis Future Contributions .. - 72 -

9.2 MEP Project Future Contributions .. - 78 -

Chapter 10 .. - 83 -

Bibliography .. - 83 -

Appendix A .. - 85 -

Appendix B .. - 87 -

VII

List of Figures

Figure 2.1: MEP Project ... - 6 -

Figure 2.2: Thesis Work Phases .. - 8 -

Figure 3.1: OSM Drinking Water Example .. - 14 -

Figure 3.2: Crossings .. - 16 -

Figure 3.3: Traffic Signals... - 16 -

Figure 3.4: Task Life Cycle .. - 21 -

Figure 3.5: System Architecture ... - 22 -

Figure 5.1: Como City – Entire region ... - 39 -

Figure 5.2: Como City – Considered region ... - 39 -

Figure 6.1: Sequence Diagram ... - 41 -

Figure 6.2: Flowchart ... - 45 -

Figure 6.3: Street Network ... - 49 -

Figure 6.4: Query representation on the map – high level - 52 -

Figure 6.5: Query representation on the map – detailed level - 52 -

Figure 7.2: Evaluation of street accessibility - 68 -

Figure 7.3: Evaluation of sidewalk accessibility - 69 -

Figure A.1: Accessible Path .. - 85 -

VIII

List of Tables

Tabel 3.1: OSM Tags .. - 13 -

Table 4.1: Accessibility Features .. - 26 -

Table 4.2: Framework of responses on attributes - 27 -

Table 6.1: XAPI Request Elements .. - 43 -

Table 6.2: Excluded Key Values .. - 47 -

IX

Chapter 1 - 1 -

- 1 -

Chapter 1

Introduction

Historically, disability has been viewed as a static process, reflecting more

or less enduring functional impairments that were the consequences of

illness and injury. Increasingly, motivated by a combination of political and

intellectual critiques, disability has come to be viewed as the result of

complicated and sometimes unstable processes. Disability is thought to

result from interactions between individuals and environments, which, in

turn, consist of complicated arrays of social, cultural, political, climatic,

topographic, architectural, and technologic components [16].

In their daily lives wheelchair users are confronted with many

obstacles once they leave the security of their homes. As a consequence

city centers are often paved with cobblestone, many subway entrances are

only accessible by stairs or escalators and often shops, public facilities or

even public toilettes can only be reached by stairs. Unfortunately, this

constitutes a big disadvantaged for people with mobility disabilities.

Wheelchair users are regularly hindered by barriers from participating in

daily life on their own. As people without disability are mostly unaware of

the impact of these barriers and cities have hardly any recorded data on

street and sidewalk pavements, curb boarder heights, sidewalk widths,

street inclines, construction sites etc. there is an imperative need to

address, locate and reduce barriers in cities. In addition to that, popular

modern navigation systems on the market (TomTom, Garmin, Nokia Maps,

and Google Maps Navigation) do not support any features for wheelchair

users and handicapped people. Some of these products just recently

enhanced their feature portfolio with pedestrian navigation. Unfortunately

1.1 Thesis goal - 2 -

- 2 -

none of these enhancements include or support data sets that are able to

capture important street condition parameters such as incline, pavement

etc. which would all be necessary for efficient and accurate wheelchair and

handicapped navigation [14].

Currently, one in six people in the European Union – around 80 million –

have a disability that ranges from mild to severe. Over one third of people

aged over 75 have disabilities that restrict them to some extent. These

numbers are set to rise as the EU population grows progressively older.

Most of these people are all too often prevented from fully participating in

society and contribute to the economy because of physical or other

barriers, as well as discrimination. Whilst the European Union raises new

policies regarding accessibility, creating an application which eases the life

of in need people is an important step in building accessible cities.

1.1 Thesis goal

The purpose of this thesis is to develop a set of solutions for the

enrichment of geographical maps with information about the accessibility

of urban pedestrian for people with mobility problems [12]. The Maps for

Easy Paths project (MEP), of which the thesis is part of, aims in creating a

system able to detect automatically non-accessible features in an urban

environment in order to compute a new accessible path to reach a

destination. The system makes use of a smartphone or tablet which will

guide the users with disabilities throughout the city by visualizing the

accessible path inside the application (Figure A.1, Appendix A shows a

possible representation of an accessible path).

The research presented aims in solving this problem by means of

crowdsourcing and street view images. The process consists of street view

images which are sent to users via crowdsourcing platform and are marked

as accessible and non-accessible based on their feedback. These images

focuse on specific points (crossings, traffic lights and intersections) and

1.2 Structure of the thesis - 3 -

- 3 -

precise questions are being asked in order to determine the accessibility of

these points.

The work done was developed based on the following objectives:

 Download of images containing accessibility features which need to

be marked as accessible or non-accessible

 Evaluation of images with crowdsourcing techniques

 Enrichment of map with accessibility and non-accessibility info

1.2 Structure of the thesis

The structure of the thesis is as follows:

 In Chapter 2, an Overview of the thesis is given by introducing the

MEP project, which this thesis is a contribution to. The goals of the

MEP project are presented, the main scenario is described and the

target users of the project are defined. Besides these, the thesis

work phases are also described at a high level of details together

with the selected papers used for research.

 Chapter 3 contains the State of the Art, in which the focus will be on

the three main aspects used in the development of the thesis:

OpenStreetMap, Google Street View Image and Crowdsourcing. For

each of them I am offering the amount of details needed for a

better understanding of the future chapter.

 Chapter 4 presents the Requirements Analysis, in which I will mainly

focus on the process of designing the questions related to the

accessibility of our points of interest.

 In Chapter 5 I am presenting the Design Phase, more precisely the

high level implementation of the process: the OpenStreetMap tags

and bounding box used, details related to the Google Street View

Image link and the accessibility questions.

1.2 Structure of the thesis - 4 -

- 4 -

 Chapter 6 offers the low level Implementation by highlighting the

most important pieces of Java software developed for downloading

the images required for the crowdsourcing platform.

 In Chapter 7 I will present the User Interface, the end part with

which the users will interact in order to provide their feedback .

 In Chapter 8 the Conclusion of the current thesis are presented.

 Chapter 9 presents several suggestions as possible Future Works.

 In Appendix A, I offer additional images to better highlight the

development of the thesis.

 In Appendix B, I offer the entire developed software.

Chapter 2 - 5 -

- 5 -

Chapter 2

Overview

2.1 MEP Project

„Maps for Easy Paths”, or MEP, is a Polisocial project (a program of social

responsibility of Politecnico di Milano) that aims to develop an automated

system to enrich a public map with information about accessibility of city

routes (roads, sidewalks, walkways, etc.) through the active contribution

and participation of the following target users:

 Users with mobility impairments: for the moment the focus is on

people with manual or electric wheelchairs but it can be extended

to elder people with or without mechanical support, injured or in

temporary situations of reduces mobility. Users can take part

actively by contributing to enrich the accessibility information or by

notifying any problems related to the paths.

 Municipalities, local governments and organizations that might be

interested in this type of information to better plan interventions

and help in creating accessible cities. With respect to location, the

solutions presented in this thesis were designed for Como City.

2.1 MEP Project - 6 -

- 6 -

The entire scenario of the project can be described given Figure 2.1:

Figure 2.1: MEP Project

Implicit Data (no intervention required by the user): The application

installed on the users’ smartphone or tablet will track the routes that they

follow throughout the city. Even though these routes can be marked as

accessible there are still plenty of obstacles a wheelchair user can

encounter. To track the user, the application sends GPS and data of sensors

(and optionally pictures taken by the embedded camera of the

smartphone) to the server, which uses fusion techniques to reconstruct the

route.

Explicit Data (requires contribution from user): Users actively participating

in the process by taking pictures of the problems and barriers they face in

the city; these pictures together with sensor information will be uploaded

to the server.

After receiving the implicit and explicit data, the server constructs or

updates a 3D geographical map and in the same time it records the

2.1 MEP Project - 7 -

- 7 -

accessible routes and the corresponding information received from the

users.

The goal of the project is to offer support to people with motor

impairments in finding the accessible paths throughout the city and to help

them be able to move freely in the urban context without the limitations of

architectural barriers. The Final Users can range from people with manual

or electric wheelchair, elder people with or without mechanical support

and people in temporary situations of reduced mobility (injured or with

small children). By using this application, the users request an accessible

path to reach their destination; the server will be able to suggest them one

based on the collected data.

The aim of the application is not only for people with motor impairments,

but also for Public Institutions, Associations and Entities which focus and

deal with these aspects. It is desirable that these collected data will

improve not only the users’ life but also the urban design leading to

accessible cities.

The contribution brought by this thesis stands in the Explicit Data category

and focuses on determining what obstacles can people with motor

disabilities encounter on the streets by means of crowdsourcing. More

precisely, images from different key points in the city (intersections,

crossings, sidewalks) where accessibility problems can be encountered will

be collected and sent to users via crowdsourcing platform. Each image will

have several questions and based on the answers received we can

determine if we have an accessible or non-accessible situation and

consider it in the configuration of the accessible path.

The accessibility features considered were mostly related to crossings and

sidewalks: dropped kerbs, high curbsides, potholes, surface, drains and

many more. Since the images were retrieved using the Google Street View

Image API, one major rollback was the presence of people on the sidewalks

and cars on the crossings which were blocking the view (besides the fact

that some images were not offering a good view or were not having a good

quality).

2.2 Thesis Work Phases - 8 -

- 8 -

2.2 Thesis Work Phases

The work can be divided into three phases:

 Download images of interest from Google Street View – images

containing accessibility features which need to be marked as

accessible or non-accessible

 Evaluation of images with crowdsourcing techniques

 Enrichment of map with accessibility and non-accessibility info

As it can be seen from Figure 2.2, by processing OpenStreetMaps tags

together with several features of the Google Street View Image API in a

Java software, the images of interest can be downloaded and inserted in a

crowdsourcing platform. These images in conjunction with specially

selected questions, will mark as accessible or non-accessible the points of

interest based on the feedback given by the user, feedback which later on

will be used in the creation of the accessible paths.

Figure 2.2: Thesis Work Phases

2.3 Literature Analysis - 9 -

- 9 -

2.3 Literature Analysis

In order to better understand the needs of people with disabilities and to

design important features of the application, specialized literature has

been reviewed. The following list presents the papers used for research

together with a short description of each:

 Lorena de Freitas Pereira, Mariana Silva de Albuquerque, Licínio da

Silva Portugal, „Access of wheelchair users in sportive mega events:

the case of Confederation Cup” , E340XVIII Congreso Panamericano

de Ingeniería de Tránsito, Transporte y Logística (PANAM 2014) -

This article aims to evaluate the access conditions for wheelchair

users in sporting mega-events. It will show the characterization of

some attributes related with the walk, as the variables that express

them, showing the studied group particularities. The data collect

was made in June, 2013 by questionnaire application during the

competitions of The World Confederation Cup realized in Rio de

Janeiro on the Maracanã Stadium.

 Rosemary D.F. Bromley , David L. Matthews and Colin J. Thomas,

„City centre accessibility for wheelchair users: The consumer

perspective and the planning implications” – The research

presented in this paper is drawn from 150 detailed interviews with

wheelchair users, to investigate and reassess current city centre

accessibility 10 years after the introduction of the Disability

Discrimination Act, 1995 in the UK. It shows that aspects of the built

environment, public transport, and current levels of shopper

activity continue to present a range of difficulties for wheelchair

users, which restrict their physical mobility in the city centre.

2.3 Literature Analysis - 10 -

- 10 -

 Hugh Matthews, Linda Beale, Phil Picton and David Briggs,

„Modelling Access with GIS in Urban Systems (MAGUS): capturing

the experiences of wheelchair users” - This paper describes a project

undertaken with wheelchair users, which has developed, tested and

applied a Geographic Information System model. This model acts

both as a navigational device for wheelchairs users - enabling them

to make informed route choices through urban places - and as a

decision support and planning tool for urban planners - making

visible the ways in which built environments are often distorted and

hostile spaces for wheelchair users.

 Christian Menkens, Julian Sussmann, Miriam Al-Ali, Emanuel

Breitsameter, Jelena Frtunik, Tobias Nendel, Tobias Schneiderbauer,

„EasyWheel - A Mobile Social Navigation and Support System for

Wheelchair Users”, Eighth International Conference on Information

Technology: New Generations, 2011 – The research work presented

in this paper tries to solve different problems faced by wheelchair

users by providing EasyWheel, a mobile social navigation and

support system. EasyWheel allows them to access accessibility

information for all sorts of points of interests (POI) such as public

transport, shops, etc and helps them navigate throughout a city

while following the ideal route and avoiding all barriers and

obstacles. To connect EasyWheel with the whole community of

wheelchair users and helpers, EasyWheel includes a social

community system including reputation and reward features

leveraging Facebook.

 Carlos Cardonha, Diego Gallo, Priscilla Avegliano, Ricardo

Herrmann, Fernando Koch, and Sergio Borger, „A Crowdsourcing

Platform for the Construction of Accessibility Maps” - This article

presents a crowdsourcing platform that enables the collaborative

creation of accessibility maps. The platform provides means for

integration of different kind of data, collected automatically or with

2.3 Literature Analysis - 11 -

- 11 -

user intervention, to augment standard maps with accessibility

information.

 Allan R. Meyers, Jennifer J. Anderson, Donald R. Miller, Kathy Shipp,

Helen Hoenig, „Barriers, facilitators, and access for wheelchair

users: substantive and methodologic lessons from a pilot study of

environmental effects” - A month-long intensive pilot study was

undertaken on a sample of adult wheelchair-users in Boston,

Massachusetts and Durham, North Carolina, USA. The study had

four objectives; to: (1) measure experiences of reaching and failing

to reach specific destinations; (2) measure encounters with

environmental facilitators and barriers, including both those

overcome and not overcome; (3) determine the frequencies of

destinations, facilitators, and barriers, and (4) test for consistency

between daily reports and retrospective reports. Full participation

entailed baseline and exit telephone interviews, and 28 daily

telephone contacts.

Chapter 3 - 12 -

- 12 -

Chapter 3

State of the art

In this chapter I will describe the State of the Art of the application and, in

particular, I will focus on three main aspects:

 Open Street Map: I will describe the tools and approaches that aim

to facilitate the development of the application;

 Google Street View Image Link: I will focus on the characteristics of

the link and downloading aspects;

 Crowdsourcing: I will focus on general aspects related to

crowdsourcing.

3.1 OpenStreetMap

OpenStreetMap (OSM) is a collaborative project to create a free editable

map of the world[1]. It represents physical features on the ground (e.g.,

roads or buildings) using tags attached to its basic data structures (its

nodes, ways, and relations). Each tag describes a geographic attribute of

the feature being shown by that specific node, way or relation.

OpenStreetMap's free tagging system allows the map to include an

unlimited number of attributes describing each feature. The community

agrees on certain key and value combinations for the most commonly used

tags, which act as informal standards. However, users can create new tags

to improve the style of the map or to support analysis that rely on

previously unmapped attributes of the features.

https://en.wikipedia.org/wiki/Virtual_community
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Map
http://wiki.openstreetmap.org/wiki/Features
http://wiki.openstreetmap.org/wiki/Tags
http://wiki.openstreetmap.org/wiki/Nodes
http://wiki.openstreetmap.org/wiki/Ways
http://wiki.openstreetmap.org/wiki/Relations
http://wiki.openstreetmap.org/wiki/Tags

3.1 OpenStreetMap - 13 -

- 13 -

A tag consists of a 'key' and a 'value':

 The key describes a broad class of features (for example, highways).

 The value details the specific feature that was generally classified by

the key (e.g. highway=motorway). If multiple values would be

needed for one key the semi-colon value separator may be used in

some situations[3].

Each tag describes a specific feature of a data element (nodes, ways and

relations) or changesets. Both the key and value are free format text fields.

In practice, however, there are agreed conventions of how tags are used

for most common purposes.

The key can be modified with a prefix, infix or suffix namespace to further

qualify it. Common namespaces are language specification and a date

namespace specification for name keys.

The following table describes the tags which will be used further on in the

development of the application:

Key Value
Eleme

nt
Comment Rendering Photo

highwa

y

traffic_sign

als

Lights that

control the

traffic

crossin

g

no /

traffic_sign

als /

uncontrolle

d / island /

unmarked

highway=crossi

ng or

railway=crossin

g

Tabel 3.1: OSM Tags

http://wiki.openstreetmap.org/wiki/Highway
http://wiki.openstreetmap.org/wiki/Semi-colon_value_separator
http://wiki.openstreetmap.org/wiki/Element
http://wiki.openstreetmap.org/wiki/Nodes
http://wiki.openstreetmap.org/wiki/Ways
http://wiki.openstreetmap.org/wiki/Relations
http://wiki.openstreetmap.org/wiki/Changesets
http://wiki.openstreetmap.org/wiki/Namespace
http://wiki.openstreetmap.org/wiki/Date_namespace
http://wiki.openstreetmap.org/wiki/Date_namespace
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dtraffic_signals
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dtraffic_signals
http://wiki.openstreetmap.org/wiki/Key:crossing
http://wiki.openstreetmap.org/wiki/Key:crossing
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dcrossing
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dcrossing
http://wiki.openstreetmap.org/wiki/Key:railway
http://wiki.openstreetmap.org/wiki/Tag:railway%3Dcrossing
http://wiki.openstreetmap.org/wiki/Tag:railway%3Dcrossing
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Rendering-traffic_singals.jpg
http://wiki.openstreetmap.org/wiki/File:Ampel.jpg
http://wiki.openstreetmap.org/wiki/Elements

3.1 OpenStreetMap - 14 -

- 14 -

In order to visualize all these data on the map, OSM offers Overpass Turbo

[17], a web based data mining tool which runs any kind of Overpass API

query and shows the results on an interactive map.

Figure 3.1 shows all the drinking water points in the city of Como:

Figure 3.1: OSM Drinking Water Example

In the above example, amenity represents the key and drinking_water the

value; {{bbox}} refers to the bounding box coordinates of the current map

view and the circles presented on the map are the drinking water points in

the city (the results of the query).

The Export dialog holds various export options for the query and/or data

loaded by the query, where the export as raw data from Overpass API

Interpreter will be the used one in the development as it will generate a

direct link to the result of the query returned by the Overpass-API

interpreter. The output for the above example will be of the following

format:

http://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide

3.1 OpenStreetMap - 15 -

- 15 -

/**/

<osm generator="Overpass API" version="0.6">

<note>The data included in this document is from

www.openstreetmap.org. The data is made available under

ODbL.</note>

<meta osm_base="2015-09-09T15:35:02Z" />

 <node lon="9.0884129" lat="45.8083123"

id="349815060">

 <tag v="drinking_water" k="amenity" />

 </node>

 <node lon="9.0855381" lat="45.8066350"

id="1046778326">

 <tag v="drinking_water" k="amenity" />

 </node>

 <node lon="9.0873451" lat="45.8087394"

id="1051805160">

 <tag v="drinking_water" k="amenity" />

 <tag v="yes" k="wheelchair" />

 </node>

[....]

</osm>

/***/

However, in order to generate all these data, queries like the one above

have to be written. Overpass QL is the second query language for the

Overpass API and was designed as an alternative to Overpass XML. It has a

C style syntax: The whole query source code is divided in statements, and

every statement ends with a semicolon.

http://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide#The_languages

3.1 OpenStreetMap - 16 -

- 16 -

Returning to our points of interest, since the tags for crossings and traffic

lights are already predefined, the queries needed have a simple structure

as in the example above with the water drinking points. Figures 3.2 and 3.3

show the results for highway = crossing and highway = traffic_signals:

Figure 3.2: Crossings

For this region, 97 points have been tagged as crossings and 23 as traffic

signals.

Figure 3.3: Traffic Signals

3.2 Google Street View Image - 17 -

- 17 -

Since the queries for determining the intersections are more complex, they

will be presented more into details in Chapter 6, Implementation.

3.2 Google Street View Image

The Google Street View Image API[5] lets users embed a static (non-

interactive) Street View panorama or thumbnail into a web page, without

the use of JavaScript. The viewport is defined with URL parameters sent

through a standard HTTP request, and is returned as a static image.

A Street View Image request is an HTTP URL of the following form:

https://maps.googleapis.com/maps/api/streetview?parameters

For example, if we were to retrieve the street view image of the point

situated at 40.720032 latitude and -73.988354 longitude, with a 400X400

size image, 235 degrees camera orientation, a zoom in of 90 degrees and

the camera inclined 10 degrees up, the following request should be done:

https://maps.googleapis.com/maps/api/streetview?size=400x400&locatio

n=40.720032,-73.988354&fov=90&heading=235&pitch=10&key=API_KEY

The image is specified using request parameters. As a standard in URLs, all

parameters are separated using the ampersand (&) character. Allowed

parameters and their possible values are listed below.

Required parameters:

Either:

 location can be either a text string or a lat/lng value (40.457375,-

80.009353). The Google Street View Image API will snap to the

panorama photographed closest to this location. Because Street

https://maps.googleapis.com/maps/api/streetview?parameters
https://maps.googleapis.com/maps/api/streetview?size=400x400&location=40.720032,-73.988354&fov=90&heading=235&pitch=10&key=API_KEY
https://maps.googleapis.com/maps/api/streetview?size=400x400&location=40.720032,-73.988354&fov=90&heading=235&pitch=10&key=API_KEY

3.2 Google Street View Image - 18 -

- 18 -

View imagery is periodically refreshed, and photographs may be

taken from slightly different positions each time, it's possible that

the location may snap to a different panorama when imagery is

updated.

Or:

 pano is a specific panorama ID. These are generally stable.

As well as:

 size specifies the output size of the image in pixels. Size is specified

as {width}x{height} - for example, size=600x400 returns an image

600 pixels wide, and 400 high.

 key allows to monitor the application's API usage in the Google

Developers Console; enables per-key instead of per-IP-address

quota limits and ensures that Google can contact the user about the

application if necessary.

Optional parameters:

 heading indicates the compass heading of the camera. Accepted

values are from 0 to 360 (both values indicating North, with 90

indicating East, and 180 South). If no heading is specified, a value

will be calculated that directs the camera towards the specified

location, from the point at which the closest photograph was taken.

 fov (default is 90) determines the horizontal field of view of the

image. The field of view is expressed in degrees, with a maximum

allowed value of 120. When dealing with a fixed-size viewport, as

with a Street View image of a set size, field of view in essence

represents zoom, with smaller numbers indicating a higher level of

zoom.

 pitch (default is 0) specifies the up or down angle of the camera

relative to the Street View vehicle. This is often, but not always, flat

horizontal. Positive values angle the camera up (with 90 degrees

https://developers.google.com/console/help/console
https://developers.google.com/console/help/console

3.3 Crowdsourcing - 19 -

- 19 -

indicating straight up); negative values angle the camera down

(with -90 indicating straight down).

 key (optional) identifies the application for quota purposes, and

enables reports in the Google Developers Console[5].

The key elements in the next phases of the development will be the

location, the heading, the fov and the pitch as I will try to calculate them

automatically.

3.3 Crowdsourcing

Crowdsearcher[6] is a platform for crowd management written in

Javascript running on Node.js server; this is a full-fledged event-based

system, which fits the need of a rule-based approach. It offers a plugin

environment to transparently interface with social networks and

crowdsourcing platforms and it implements the following model and

process.

In general, a crowdsourcing application can be modeled with three entities:

a requester, a system, and the crowd. The requester is the one who has a

problem he wants to solve with the crowd. In order to do so he has to

utilize the system in order to interact with the crowd.

The problem can comprehend a wide range of use cases: translating a text,

transcribing an audio file, annotating images, and so on. Currently,

crowdsourcing has been applied in very different scenarios like: databases,

information retrieval, artificial intelligence and social science. The crowd

can be very heterogeneous and can range from the anonymous worker on

Amazon Mechanical Turk to a friend on Facebook or an expert on a

Question Answering platform like StackOverflow. Usually the type of crowd

the requester wants to involve depends on the type of problem needed to

be solved.

https://console.developers.google.com/

3.3 Crowdsourcing - 20 -

- 20 -

This process allows to easily define multi-platform crowd-based

applications through step-by-step specifications, where the application is

initially configured and then automatically generated.

The crowdsourcing task configuration is covered by a 7-step wizard[6] that

guides the task designer in the creation of a task:

 Task Design: The Task Design step consists in the selection of the

task types that will be performed in the task. These task types are

selected from an abstract model, crafted after a careful analysis of

the systems for human task executions and of many applications

and case studies.

 Object Design: Object Design consists of defining the dataset which

is subject to the analysis. In particular, it entails schema definition,

instance collection and data cleaning (so as to eliminate irrelevant

objects and make them conforming to their schema). In this step

the designer can upload the set of objects of interest (e.g., as a

JSON file), possibly together with a partial ground truth, i.e. correct

solutions for a subset of the objects.

 Execution Design: In this stage the user selects the execution

platform. Execution can be performed on traditional crowdsourcing

platforms (e.g., AMT), on social networks (e.g. Facebook), or on

custom user interfaces, implemented ad hoc by the designer.

 Performer Selection or Invitation Design: In this step the user selects

the invitation channel to be used to invite people to perform the

task. The supported invitation platforms are:

 Mail: the invitation is sent via email to a list of contacts

provided by the user;

 Facebook: the invitation to perform the task is posted on

the wall of the user’s account;

3.3 Crowdsourcing - 21 -

- 21 -

 Twitter: the invitation to perform the task is posted as a

tweet on the timeline of the user’s account.

Furthermore, a URL pointing to the task execution UI is generated

by the system and can be sent manually, at any time, by the

designer, through the channels of choice.

 Adaptation Design: The adaptation design consists in the definition

of active rules that change the behavior of the system according to

the status of the execution of the crowdsourcing task.

Once the task is created, the Crowdsearcher takes the specification built in

this process and generates the data structure needed for its execution.

Figure 3.4: Task Life Cycle

3.3 Crowdsourcing - 22 -

- 22 -

Figure 3.4 shows the life cycle of a task in the system. The circles are the

states, while the arrows represent the internal events that occur in the

reactive environment. Once a task is created it only exists as a persistent

object in the database; in order to be executed by the workers it needs to

be deployed to the platforms through the opening phase. In this phase the

system instantiates the reactive rules and the data structure required for

the task control (the control mart) and deploys the task on the correct

platform; afterwards it creates the post on the social networks or the HIT

on Amazon Mechanical Turk. While the task is in the OPEN state, the

system receives and aggregates the answers given by the performer

(represented by the END_EXECUTION arrows). Once the EOF event is sent,

no more objects are accepted, but the answers are still collected. When,

according to some control rules, the evaluation is completed, the task is

closed.

The following figure shows the architecture of the system:

Figure 3.5: System Architecture

3.3 Crowdsourcing - 23 -

- 23 -

The core of the system is a Node.js application, integrating the data

structures stored in a non-sql data source (namely a MongoDB instance)

connected to the reactive control engine, and offering a set of APIs to

support integration with external applications. The Task Designer can

create and manage tasks either through the CrowdSearcher web interface

or through a custom application invoking the API. The application

generator takes the task model and generates the data structure, the rules

and the objects required for the task execution and control; finally, it

deploys the task on the execution platform of choice. Reactive rules are

translated into scripts, whose triggering is modeled through internal

platform events. Precedence between rules is implicitly obtained by

defining the scripts in the proper order.

CrowdSearcher offers also a dashboard that allows designer to

continuously monitor crowd-based applications[6]. For our purposes, the

results generated by the platform will influence the future street view

images and the level of accessibleness for a specific point.

Chapter 4 - 24 -

- 24 -

Chapter 4

Requirements Analysis

In this chapter I will present the requirements phase, a phase which plays

an important role as it is the starting point in designing the proper

solutions for the question: „How to identify street-level accessibility

problems by involving users?”. Within this, the answer lies in combining

crowdsourcing with Google Street View.

Street View Images focusing on several accessibility features will be

sent to users via a crowdsourcing platform and will be marked by them as

accessible or non-accessible based on different aspects, which will be

detailed later in Chapter 5.

Google Street View offers the possibility to download up to 25.000 images

per day and, together with OpenStreetMap, these images can be

customized in such a way to represent only the points of interest strictly

related to our question. Even though the list of accessibility features which

can be analyzed is long, for the time being the project limits itself to only

two major features: crossings and pedestrian areas.

Downloading the images is realized by software written in Java

programming language, Eclipse platform. Java, a general-purpose

computer programming language that is concurrent, class-based, object-

oriented, and specifically designed to have as few implementation

dependencies as possible[7], was the first choice because of its free and

open-source software and good execution speed.

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software

Requirements Analysis - 25 -

- 25 -

Since the purpose is to download all these images in an automatic way, we

need to have the precise location of the crossings, traffic lights and

intersections. The output of the Overpass turbo queries presented in

Chapter 3 is an xml file containing the geographical position of the points

(latitude and longitude); by inserting these two in the Google Street View

Image link, we will be having an automatic downloading process.

With respect to the accessibility features part, specialized literature has

been reviewed. According to [8], accessibility is defined by the ease with

which the locales and activities may be accessed by individuals, considering

their diversity (Aguiar, 2010; Kwan & Weber, 2008). For Vasconcellos, "(...)

it can be measured by the number and nature of the destinations (desired)

that are reachable by a person." (Vasconcellos, 2000. p. 27). In depth, in

terms of accessibility and traffic safety, the following aspects are sought:

Attributes Variables

Accessibility Existence of sidewalks, sidewalk

surface material, width of

pavement, quality of sidewalks,

maintenance of surface longitudinal

profile of the pavement, bumps,

ramps, slopes (topography),

barriers, proximity to crossings,

adequacy of crossings, elevated

tracks to traverse, accessibility,

accessible routes, alternate routes,

overall walk ability, orientation

(boards and signage), length of the

walking trail, distance to the

trailhead, overall quality of the

neighborhood to walk, index

physical composition of the

environment, residential density,

mixed land use, access to commerce

and services, access to leisure

Requirements Analysis - 26 -

- 26 -

(beaches, rivers etc.), access to open

areas, facilities, access by car and

public transport, multimodal

facilities, parking.

Traffic Safety Nearby traffic (volume), traffic

speed, traffic interference with

walking, sense of safety around

adjacent traffic, road width, number

of crossings, ease to cross, safe

crossings, signage, lowering of

sidewalks, view of approaching

vehicles, traffic flow at intersections,

roadway separation between

pavement with grass or flower beds,

unsafe sidewalks (holes), difficulty

walking, low walking speed, drivers

who respect the law, visibility.

Table 4.1: Accessibility Features

The following table points out the the variables associated with the results

of the questionnaires conducted in [8]:

Attributes Responses Related Variables

Accessibility Correction of unevenness Longitudinal profile of the

pavement, ramps, slopes.

Distance (to cover) Accessible routes, alternate

routes, overall walk ability,

length of the walking trail, and

distance to the trailhead.

Sidewalks Existence of sidewalks,

sidewalk surface material,

Requirements Analysis - 27 -

- 27 -

width of pavement, quality of

sidewalks, maintenance of

surface.

Plantings and sidewalks

(discontinuity between

ground and grass)

Barriers.

Adequacy of crossings Proximity to crossings,

adequacy of crossings, elevated

tracks to traverse.

Traffic

Safety

Adequacy of crossings Number of crossings, ease to

cross, safe crossings,signage,

lowering of sidewalks.

Sidewalks Unsafe sidewalks (holes),

difficulty walking, low walking

speed.

Table 4.2: Framework of responses on attributes

According to the interviews conducted in [9], people on pavements, getting

into shops and the lack of dropped kerbs were considered ‘major’ or

‘prohibitive’ obstacles; the next most serious group of obstacles all fall

within the public realm, and include high kerbs, steps, and uneven surfaces

(including the deliberately planned cobbled areas). Other problems noted

by smaller but still substantial proportions of respondents derive from

vehicle traffic and narrow pavements outside the pedestrianized core.

From the in-depth interviews and focus groups, it is apparent that many

users need a keen knowledge of how to get around, often involving long

detours in order to avoid some of the identified obstacles and to minimize

inconvenience.

Requirements Analysis - 28 -

- 28 -

As documented in [10], long inclines without a resting place, high kerbs,

steps or uneven surfaces may prove to be insurmountable obstacles for

wheelchair users. Road crossing represents a big problem; together with

very busy main roads and the nature and positioning of the dropped kerb

can make a difficult maneuvering. Narrowness of main access roads or

even bustling shopping streets can cause considerable frustration. Uneven

and poorly maintained pavements, temporary street obstacles together

with slippery and difficult to negotiate cobbles can cause pain and

discomfort. Last but not least, other problems noticed by users are uphill

journeys without resting places and inaccessible toilets.

Taking all these issues into consideration and as it will be seen in Chapter 5,

proper questions have been composed in order to determine the

accessibleness of several street features.

Based on the research conducted, the following aspects have been

selected for questioning:

 Existence of sidewalks

 Sidewalk surface material

 Quality of sidewalks

 Quality of streets

 Adequacy of crossings

Since accessibleness is determined by visualizing street view images,

aspects such as traffic speed, access to open areas, accessible toilets

cannot be evaluated; even the questions for the five criteria presented

above have been carefully selected in order to target features which can be

analyzed by image viewing.

Chapter 5 - 29 -

- 29 -

Chapter 5

Design Phase

In this chapter I will be describing the high level implementation of the

entire process in which I will be focusing on several aspects of Open Street

Map and Google Street View Image together with the accessibility features

considered for the crowdsourcing platform.

I would like to remember the most common problems wheelchair users

can encounter when moving around the streets of a city:

 Long inclines/ Uphill going without a resting place

 High kerbs

 Position and nature of dropped kerbs

 Pavements in bad state / Uneven surfaces

 Crowdedness – especially for narrow streets

 Temporary obstacles

 Cobbles

 Gratings and drains

 Potholes

 Inaccessible shops

 Inaccessible toilets

Design Phase - 30 -

- 30 -

Since the purpose of the project is to determine accessibility via images,

aspects such as street crowdedness, inaccessible shops and toilets will not

be taken into consideration as they cannot be analyzed from images.

The procedure of selecting the proper questions is split into three main

steps as follows:

 Step A

The image offers a good visibility of sidewalks or zebra?

Yes No There are ways to be improved

The first step is to determine whether the image offers a good view over

the points of interest (sidewalks and zebras); in this way, we can distinguish

three sub-cases:

 Yes – in this case the process will continue with questions regarding

streets and sidewalks

 Yes

Questions about the street Questions about the sidewalk

Step B Step C

 No – no method of improving the images would work (e.g., cars or

people on the zebra, crowded places); in this case the image will be

discharged

 There are ways to be improved – the user can select from the

following possibilities which best fit the case:

 Zoom In

 Yes

 No

Design Phase - 31 -

- 31 -

 Zoom Out

 Yes

 No

 Higher Pitch

 Yes

 No

 Lower Pitch

 Yes

 No

 Rotate Right

 Yes

 No

 Rotate Left

 Yes

 No

For example, an image such as Image 5.1 stands in the category of „There

are ways to be improved” as, by performing a zoom out, it can offer a

proper vision over the street.

Design Phase - 32 -

- 32 -

Image 5.1: There are ways to be improved

Instead, an image such as Image 5.2 will not be offering a proper vision

over the street as it is blocked by a bus. In both cases the images will be

discharged and new ones will be selected. In cases where improvements

can be done, they will be applied based on the user’s feedback while in the

other case a new image will be generated. All the new images will be

subject to questioning, ending up in a loop until they get to be marked as

„Yes” – they offer a good visibility over the points of interest.

Design Phase - 33 -

- 33 -

Image 5.2: No proper vision

Design Phase - 34 -

- 34 -

If the image offers a good view such as Image 5.3, steps B and C will be

applied:

Image 5.3: Proper vision

Design Phase - 35 -

- 35 -

Step B

In step B, the first question aims in identifying what elements can be

encountered in the image; afterwards it proceeds with questions related to

the accessibility of the street:

 What elements can be encountered?

 One zebra and possibly sidewalks

 Two zebras and possibly sidewalks

 No zebra

 Does the street have potholes?

 Yes

 No

 Does the street have tramlines?

 Yes

 No

 Does the street have bumps?

 Yes

 No

 Are there any traffic lights?

 Yes

 No

 Is there an intersection?

 Yes

 No

Step C

Step C starts by identifying whether there is a sidewalk present in the

image or not:

Is there a sidewalk?

Yes No

Design Phase - 36 -

- 36 -

In case a sidewalk is reported, then we proceed with questions related to

it:

 Does the sidewalk have potholes?

 Yes

 No

 Does the sidewalk have bumps?

 Yes

 No

 Is the surface of the sidewalk made of cobbles?

 Yes

 No ->

 Is the surface of the sidewalk made of gravel?

o Yes

o No

 Is the sidewalk narrow?

 Yes

 No

 Does the sidewalk have gratings?

 Yes

 No

 Does the sidewalk have drains?

 Yes

 No

 Can you encounter other obstacles such as:

 Arches Bollards

o Yes

o No

 Chains

o Yes

o No

 Does it have a dropped kerb?

 Yes

 Is it positioned correctly with respect to the

zebra?

o Yes

Design Phase - 37 -

- 37 -

o No

 Is the surface neat?

o Yes

o No

 Does it have a proper inclination?

o Yes

o No

 No

 Does the sidewalk have high curbsides?

o Yes

o No

It is considered that a dropped kerb will always be correlated to a sidewalk

even though there are exceptions from the rules as it can be seen in Image

A.2, Appendix A.

If no sidewalk is reported, which can be valid as there are places where the

sidewalk is part of the street (Image A.1, Appendix A), then we proceed

with additional questions related to the street:

 Is the surface of the sidewalk made of cobbles?

 Yes

 No ->

 Is the surface of the sidewalk made of gravel?

o Yes

o No

 Is the sidewalk narrow?

 Yes

 No

 Does the sidewalk have gratings?

 Yes

 No

 Does the sidewalk have drains?

 Yes

 No

Design Phase - 38 -

- 38 -

 Can you encounter other obstacles such as:

 Arches Bollards

o Yes

o No

 Chains

o Yes

o No

For each question Yes/No answers are accepted since they represent the

easiest way to answer and at the same time it is forcing the users to

answer all the questions (there will not be an answer set by default).

In addition, the questions related to potholes, bumps, cobbles, gratings

and gravel will be set as mandatory while the ones related to narrow

streets, drains, arches bollards and chains as optional.

One question will be sent to each user having also the possibility to write

additional comments. Each question will be closed based on the following

majorities:

 Step A – „No” case: 2 out of 3

 Step A – „There are ways to be improved” – no majority as we

accept multiple answers

 Step B – 2 out of 4

 Step C – 2 out of 3

This means that, if two users out of three users state that the image offers

poor visibility, it will be marked as „No”.

Regarding the OpenStreetMap aspects, as described in Chapter 3, the tags

considered are crossings, traffic lights and intersections. Even though at

the beginning the entire region of Como city was considered, due to a high

number of images, I have limited the searches to a smaller region:

Design Phase - 39 -

- 39 -

Figure 5.1: Como City – Entire region

Figure 5.2: Como City – Considered region

Design Phase - 40 -

- 40 -

After manually analyzing several Google Street View images, it has been

decided that the parameters fov and pitch can be set as fixed (fov = 90;

pitch = 10) while only the heading needs to be calculated (in the case of

crossings and traffic lights it is manually set to 0 while for the intersections

it is calculated based on several method as shown in the next chapter).

Chapter 6 - 41 -

- 41 -

Chapter 6

Implementation

In this chapter I will describe the low level implementation process, more

precisely, I will try to explain the Java code used to download the images

for the crowdsourcing platform. The best way to describe the behavior of

the process is by means of sequence diagrams; a sequence diagram shows

the interaction among objects by highlighting the temporal flow of the

messages exchanged between actors.

Figure 6.1: Sequence Diagram

Implementation - 42 -

- 42 -

The Java Code and the Server represent the two main actors which

exchange messages between them; these messages are mostly requests

being sent to the Server and answers coming from its side.

As it can be seen from Figure 6.1, the first step of the process is to

determine all the Open Street Map tags automatically. Since there are

already predefined tags in Open Street Map, for crossings and traffic lights

they can be obtained straightforward by using a XAPI request:

/***/

String url_crossing =

"http://open.mapquestapi.com/xapi/api/0.6/node%5Bhighway=crossings%

5D%5Bbbox=8.9904,45.7581,9.1175,45.8428%5D";

String url_traffic_lights =

"http://open.mapquestapi.com/xapi/api/0.6/node%5Bhighway=traffic_si

gnals%5D%5Bbbox=8.9904,45.7581,9.1175,45.8428%5D";

/***/

Xapi is a read-only OpenStreetMap Extended API that provides enhanced

search and querying capabilities for nodes, ways and relations. The query

can be defined by OSM tags and/or a bounding box and will return all

current data that match the entered search terms[11].

The key elements of the XAPI request are the tags and the bbox; the

following table describes the selection predicates that may be included in

the request[11]:

Predicates Description

tags Features with the specified OSM tags will be returned.

Format must be in the form [key=value].

 node - node[key=value]

 way - way[key=value]

 relation - relation[key=value]

http://wiki.openstreetmap.org/wiki/Xapi
http://www.openstreetmap.org/

Implementation - 43 -

- 43 -

bbox Bounding box used to limit the extent of the result

document. Usage of bbox is currently limited to 10 square

degrees.

Must be in the following order:

 [bbox=left,bottom,right,top]

Table 6.1: XAPI Request Elements

For our case the tags required are highway = crossings and highway =

traffic_signals while the bbox=8.9904,45.7581,9.1175,45.8428 corresponds

to the city of Como.

The response of the XAPI request will be an xml file of the following

format:

/***/

<node id="152649789" version="10" timestamp="2012-11-

25T20:19:42Z" uid="668137" user="ilGianlu"

changeset="14036107" lat="45.8021613" lon="9.0863774">

 <tag k="highway" v="traffic_signals"/>

 </node>

/***/

Where the latitude and longitude attributes represent our point of interest

as they will be later used in the composition of the Google Street View

Image link.

Downloading the intersection tags is not that straightforward as a XAPI

request cannot be used. The issue can be solved instead by using queries in

Overpass turbo, as follows:

/***/

[out:xml][timeout:3600];

// filter ways

way[highway][highway!~"footway|cycleway|path|service|tr

ack"](45.7581,8.9904,45.8428,9.1775)->.hw;

Implementation - 44 -

- 44 -

// for each way

foreach.hw->.eachw(

// get ways which share the same nodes minus current

way into .otherws

node(w.eachw)->.ns;

way(bn.ns)[highway][highway!~"footway|cycleway|path|ser

vice|track"]->.w2;

(way.w2; - way.eachw;)->.otherws;

// get shared nodes

node(w.otherws)->.n2;

node(w.eachw)->.n3;

(((node.n2; node.n3;) -(node.n2; - node.n3;);) -

(node.n3; - node.n2;);)->.shrdnodes;

// ways which are in junction

way(bn.shrdnodes)->.outways;

// union ways and nodes

(way.outways; node.n2.n3); out geom;

);

/***/

Implementation - 45 -

- 45 -

The flowchart presented in Figure 6.2 presents the steps of the algorithm.

Figure 6.2: Flowchart

Implementation - 46 -

- 46 -

I start by filtering out the ways, meaning i am selecting the key highway

from which i exclude the values footway, cycleway, path, service and track.

Given the entire list of values[21] associated to the highway key, Table 6.2

shows a description of the values which were excluded to better highlight

the decision taken.

Key Value
Elem

ent
Comment Photo

highway service

For access roads to, or

within an industrial estate,

camp site, business park,

car park etc. Can be used in

conjunction with service=*

to indicate the type of usage

and with access=* to

indicate who can use it and

in what circumstances.

highway track

Roads for mostly

agricultural or forestry

uses. To describe the

quality of a track, see

tracktype=*.

highway footway

For designated footpaths;

i.e., mainly/exclusively for

pedestrians. This includes

walking tracks and gravel

paths. If bicycles are

allowed as well, you can

indicate this by adding a

bicycle=yes tag. Should not

be used for paths where the

primary or intended usage

is unknown. Use

highway=pedestrian for

pedestrianised roads in

shopping or residential

areas and highway=track if

it is usable by agricultural

or similar vehicles.

http://wiki.openstreetmap.org/wiki/Tag:highway%3Dservice
http://wiki.openstreetmap.org/wiki/Key:service
http://wiki.openstreetmap.org/wiki/Key:access
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dtrack
http://wiki.openstreetmap.org/wiki/Key:tracktype
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dfootway
http://wiki.openstreetmap.org/wiki/Key:bicycle
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dpedestrian
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dtrack
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Alley.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Fr%C3%BChlingslandschft_Aaretal_Schweiz.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Dscf0487_600.jpg

Implementation - 47 -

- 47 -

highway path

A non-specific path. Use

highway=footway for paths

mainly for walkers,

highway=cycleway for one

also usable by cyclists,

highway=bridleway for

ones available to horses as

well as walkers and

highway=track for ones

which is passable by

agriculture or similar

vehicles.

highway cycleway

For designated cycleways.

Add foot=* only if default-

access-restrictions do not

apply.

Table 6.2: Excluded Key Values

The core of the query lies in the loop (foreach) where the shared nodes

(between streets) are being calculated; it puts the element to loop over

into the variable eachw.

Now, by using node (w); (w - forward from ways) , I select the child nodes

from all the ways of the input set:

/***/

node(w.eachw)->.ns;

/***/

Will save all the child nodes of the ways into ns.

Proceeding to way (bn); (bn - backward from nodes), I select the parent
ways for all nodes from the input set.

/***/

way(bn.ns)[highway][highway!~"footway|cycleway|path|ser

vice|track"]->.w2;

/***/

Meaning that I am selecting the parents of the nodes determined with one

step above.

http://wiki.openstreetmap.org/wiki/Tag:highway%3Dpath
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dfootway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dcycleway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dbridleway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dtrack
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dcycleway
http://wiki.openstreetmap.org/wiki/Key:foot
http://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Access-Restrictions
http://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Access-Restrictions
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:GuideFootPathCycleYes.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Rotterdam_Fietspad_Westzeedijk.jpg

Implementation - 48 -

- 48 -

At this moment, if we were to stop here, by applying the difference

between them, I get all the junction nodes and the junction ways but

without their other child nodes:

/***/

(way.w2; - way.eachw;)->.otherws;

node(w.otherws)->.n2;

node(w.eachw)->.n3;

/***/

In order to get also the other points of the ways, a union needs to be

applied between the shared nodes and the ways they belong to.

/***/

(((node.n2; node.n3;) -(node.n2; - node.n3;);) -

(node.n3; - node.n2;);)->.shrdnodes;

// ways which are in junction

way(bn.shrdnodes)->.outways;

// union ways and nodes

(way.outways; node.n2.n3); out geom;);

/***/

Where node.n2.n3; calculates the intersection of the input set .n2 and .n3

The three differences to determine the shared nodes stand for the

following: (all the nodes from n2 and n3 together) – (all the nodes from n2

which are not in n3) – (all the nodes from n3 which are not in n2).

The idea of the query can be better highlighted using the street network

shown in Figure 6.3 where we have the main street (number II) and

additional streets with which it forms intersections.

Implementation - 49 -

- 49 -

Figure 6.3: Street Network

I start by selecting all the child nodes for street II: 1, 2 ,3 ,4 ,5 , 6 and 7.

Now, for each node I retrieve all the parent nodes:

Node 1 -> Parent Street II

Node 2 -> Parent Street II

Node 3 -> Parent Street II

Node 4 -> Parent Street II + Parent Street I

Node 5 -> Parent Street II

Node 6 -> Parent Street II + Parent Street I

By applying now the difference between w2 (the parents) and eachw (the

streets determined in step 1 – meaning street II), for node 4 I will get

Parent Street I. At this point, I know that node 4 is an intersection and that

street II has an intersection with street I.

Implementation - 50 -

- 50 -

In order to determine the precise shared nodes and the ways they belong

to, I continue by retrieving all the nodes from Street I and II and applying

differences among them:

Street I: 4, 7, 8, 9

Street II: 1, 2 ,3 ,4 ,5 , 6 and 7

(all the nodes from Street I and II together) – (all the nodes from Street I

which are not in II) – (all the nodes from Street II which are not in I) = (1, 2

,3 ,4 ,5 , 6, 7, 8, 9) – (7, 8, 9) – (1, 2 ,3,5 , 6) = 4

The query can be exported as a link and, as in the crossings and traffic

lights case, it is possible to download all the tags automatically as an xml

file:

/***/

String url_intersections = "http://overpass-

api.de/api/interpreter?data=%0A%5Bout%3Axml%5D%5Btimeout%3A3600%5D%

3B%0A%2F%2F%20filter%20ways%0Away%5Bhighway%5D%5Bhighway%21~%22foot

way%7Ccycleway%7Cpath%7Cservice%7Ctrack%22%5D%2845.7581%2C8.9904%2C

45.8428%2C9.1775%29-

%3E.hw%3B%0A%0A%2F%2F%20foreach%20way%0Aforeach.hw-

%3E.eachw%28%0A%20%20%2F%2F%20get%20ways%2C%20which%20shares%20same

%20nodes%20minus%20current%20way%0A%20%20%2F%2F%20into%20.otherws%0

A%20%20node%28w.eachw%29-

%3E.ns%3B%0A%20%20way%28bn.ns%29%5Bhighway%5D%5Bhighway%21~%22footw

ay%7Ccycleway%7Cpath%7Cservice%7Ctrack%22%5D-

%3E.w2%3B%0A%20%20%28way.w2%3B%20-%20way.eachw%3B%29-

%3E.otherws%3B%0A%0A%20%20%2F%2F%20get%20shared%20nodes%0A%20%20nod

e%28w.otherws%29-%3E.n2%3B%0A%20%20node%28w.eachw%29-

%3E.n3%3B%0A%0A%20%28%28%28node.n2%3B%20node.n3%3B%29%20-

%28node.n2%3B%20-%20node.n3%3B%29%3B%29%20-%28node.n3%3B%20-

%20node.n2%3B%29%3B%29-

%3E.shrdnodes%3B%0A%0A%20%20%2F%2F%20ways%20which%20are%20in%20junc

tion%0A%20%20way%28bn.shrdnodes%29-

%3E.outways%3B%0A%0A%20%20%2F%2F%20union%20ways%20and%20nodes%0A%20

%20%28way.outways%3B%20node.n2.n3%29%3B%20out%20geom%3B%20%0A%29%3B

%0A%20%20%0A%20%20%0A%20%20%0A%20%20%0A%20%20%0A";

/***/

Implementation - 51 -

- 51 -

The output, containing all intersection points and the ways they belong to,

will be of the following format:

/***/

<node id="283338852" lat="45.7795789" lon="8.9933379"/>

<node id="676633881" lat="45.7821164" lon="8.9749494"/>

<node id="946751825" lat="45.7811333" lon="8.9895299"/>

<way id="53560605">

 <bounds minlat="45.7821164" minlon="8.9718081"

maxlat="45.7852767" maxlon="8.9754394"/>

 <nd ref="676633881" lat="45.7821164"

lon="8.9749494"/>

 <nd ref="946753392" lat="45.7822876"

lon="8.9749637"/>

 <nd ref="676633883" lat="45.7824795"

lon="8.9749256"/>

 <nd ref="946751727" lat="45.7826806"

lon="8.9748991"/>

 <tag k="highway" v="unclassified"/>

 <tag k="name" v="Via Luraschi"/>

 </way>

/***/

e.g. , node 676633881 belongs to way 53560605

Implementation - 52 -

- 52 -

Figures 6.4 and 6.5 show also the representation on the map:

Figure 6.4: Query representation on the map – high level

Figure 6.5: Query representation on the map – detailed level

Implementation - 53 -

- 53 -

Now that we have collected the nodes we can parse the xml file in order to

retrieve only the latitude and longitude of each node (for the crossings and

traffic lights cases):

/***/

// focus only on the node and tag lists

NodeList nList = doc.getElementsByTagName("node");

NodeList nList2 = doc.getElementsByTagName("tag");

for (int temp = 0; temp < nList.getLength(); temp++) {

 Node nNode = nList.item(temp);

 Node nNode2 = nList2.item(temp);

 Element eElement = (Element) nNode;

 Element eElement2 = (Element) nNode2;

// for each element of type nNode („node”) get the id, lat and

long

if (nNode.getNodeType() == Node.ELEMENT_NODE) {

 writer.println("Image: image" + temp + ".png");

 writer.println("ID: " + eElement.getAttribute("id"));

 writer.println("Longitude: " +

eElement.getAttribute("lon"));

 writer.println("Latitude: " + eElement.getAttribute("lat"));

}

// for each element of type nNode2 („tag”) get the tags

if (nNode2.getNodeType() == Node.ELEMENT_NODE) {

 writer.println("Tag: " + eElement2.getAttribute("k") + ";" +

eElement2.getAttribute("v"));

 writer.println("\n");

/***/

I start by focusing only on the „node” and „tag” lists as these are the ones

that I will process later on. While scanning the entire node list (inside the

for loop), I retrieve the node id and the latitude and longitude of the point

(eElement.getAttribute("id");eElement.getAttribute("lon");

eElement.getAttribute("lat")) .

Implementation - 54 -

- 54 -

Due to the fact that the tag list is inside the node one, by simply checking if

it’s a tag, we can retrieve what type of OSM tag it is

(eElement2.getAttribute("k"); eElement2.getAttribute("v")).

The output will be of the following format:

/***/

Image: image0.png

ID: 152649789

Longitude: 9.0863774

Latitude: 45.8021613

Tag: highway;traffic_signals

/***/

The same code applies also for the intersection case, just that here we also

want to determine the street inclination (angle) the node belongs to.

The general formula for calculating the angle (bearing) between two

points, each having a latitude and longitude, is as follows:

θ = atan2(sin(Δlong)*cos(lat2), cos(lat1)*sin(lat2) −

sin(lat1)*cos(lat2)*cos(Δlong))

Where Δlong = long2 - long1.

atan2 is a common function found in almost all programming languages

(mostly in the Math package) which returns the angle whose tangent is the

quotient of two specified numbers. The return value is the angle in the

Cartesian plane formed by the x-axis, and a vector starting from the origin,

(0,0), and terminating at the point, (x,y)[18]. Since it returns values in the

range of -π ... +π, in order to convert the result to a compass bearing, θ

needs to be multiplied by 180/π and after to use (θ+360) % 360, where % is

modulus division operation returning the remainder of the division.

Implementation - 55 -

- 55 -

In Java the formula can be implemented using the below method:

/***/

static double angleFromCoordinate(double lat1, double long1, double

lat2, double long2) {

 double dLon = (long2 - long1);

 double y = Math.sin(dLon) * Math.cos(lat2);

 double x = Math.cos(lat1) * Math.sin(lat2) -

Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLon);

 double brng = Math.atan2(y, x);

 brng = Math.toDegrees(brng);

 brng = (brng + 360) % 360;

 brng = 360 - brng;

 return brng;

 }

/***/

For example, the following request with the heading being calculated using

the above method will give a proper output:

https://maps.googleapis.com/maps/api/streetview?size=600x600&locatio

n=45.7979860,9.0631094&fov=90&heading=187.24566002145684&pitch=

10

https://maps.googleapis.com/maps/api/streetview?size=600x600&location=45.7979860,9.0631094&fov=90&heading=187.24566002145684&pitch=10
https://maps.googleapis.com/maps/api/streetview?size=600x600&location=45.7979860,9.0631094&fov=90&heading=187.24566002145684&pitch=10
https://maps.googleapis.com/maps/api/streetview?size=600x600&location=45.7979860,9.0631094&fov=90&heading=187.24566002145684&pitch=10

Implementation - 56 -

- 56 -

Image 6.1: Google Street View Image Request

As it can be seen from above, the method makes use of two pairs of

latitude and longitude. If the first pair is exactly one intersection point (e.g.,

676633881), the second one can be any other point in the list of points

belonging to that specific way (e.g., 946753392 or 676633883 or

946751727).

This can be done by comparing the node id with the ref attribute contained

in the way; if there is a match, it means that the node belongs to that way:

/***/

if

(eElement.getAttribute("id").equals(childElement.getAttribut

e("ref"))

/***/

Implementation - 57 -

- 57 -

Selecting the second node required by the angleFromCoordinate method

means scanning the entire ways the first node belongs to and retrieve any

other node from the way. In order to achieve this, some check-ups need to

be performed.

Going back to the above example, we see that node 676633881 occupies

the first position in the list but it can occupy any other position including

the last one. Therefore, the positions need to be checked accordingly:

- If it’s the first position => retrieve the second one

- If it’s in the middle => retrieve any other position

- If it’s the last position => retrieve the first one

/***/

NodeList nList2 = doc.getElementsByTagName("way");

for (int i = 0; i < nList2.getLength(); i++) {

Node nNode2 = nList2.item(i);

Element eElement2 = (Element) nNode2;

Node childNode = eElement2.getFirstChild();

Element childElementFirst= null;

Element childElementSecond= null;

if (nNode2.getNodeType() == Node.ELEMENT_NODE) {

 int count=0;

 while(childNode.getNextSibling() !=null){

 count++;

 childNode = childNode.getNextSibling();

 if (childNode.getNodeType() == Node.ELEMENT_NODE) {

 Element childElement = (Element) childNode;

if(count <= 3){

 childElementFirst=(Element) childNode;

 }

if

(eElement.getAttribute("id").equals(childElement.getAttribut

e("ref")) &&

Implementation - 58 -

- 58 -

(!(eElement.getAttribute("id").equals(childElementFirst.getA

ttribute("ref"))))){

writer.println("WAY ID: " +

eElement2.getAttribute("id"));

 writer.println("first: ID:

"+childElementFirst.getAttribute("ref") + " ; Lat: "+

childElementFirst.getAttribute("lat") +" ; Lon:"+

childElementFirst.getAttribute("lon"));

 }

 else if

(eElement.getAttribute("id").equals(childElement.getAttribute("ref"

)) &&

(eElement.getAttribute("id").equals(childElementFirst.getAttribute(

"ref")))){

 writer.println("WAY ID: " +

eElement2.getAttribute("id"));

 String[] rnd_pos =

arr_get_one(reflist,childElementFirst.getAttribute("ref"));

writer.println("next position: id: "+ rnd_pos[0] + " ;

lat:" + rnd_pos[1] + " ; lon:" + rnd_pos[2]);;}}

/***/

While count <= 3 means the first position in the way; it goes until 3

because, while scanning all the siblings, it takes into consideration also the

elements above the first "nd" – e.g. bounds.

/***/

(eElement.getAttribute("id").equals(childElement.getAttribute("ref"

)) &&

(!(eElement.getAttribute("id").equals(childElementFirst.getAttribut

e("ref")))))

/***/

If the node id == ref and it is not the first position => give me the first one.

/***/

(eElement.getAttribute("id").equals(childElement.getAttribute("ref"

)) &&

Implementation - 59 -

- 59 -

((eElement.getAttribute("id").equals(childElementFirst.getAttribute

("ref"))))

/***/

If the node id == ref and it is the first position => give me the second one.

The array rnd_pos refers to an ArrayList containing all the childNodes of

the way from which we can retrieve the second position:

/***/

ArrayList<String[]> reflist = mychild_refs(childNode);

public static String[] arr_get_one(ArrayList<String[]> str_array,

String str_remove) {

 String[] tmp_array;

 for (int i = 1; i < str_array.size(); i++) {

 tmp_array = str_array.get(i);

 if (tmp_array[0] != str_remove) {

 return tmp_array;

 }

 }

 return null;

 }

public static ArrayList<String[]> mychild_refs(Node childs) {

 ArrayList<String[]> my_array = new

ArrayList<String[]>();

 while (childs.getNextSibling() != null) {

 if ((childs.getNodeType() ==

Node.ELEMENT_NODE)) {

 Element childElement = (Element) childs;

 String[] str_myrefs =

{childElement.getAttribute("ref"),

 childElement.getAttribute("lat"),

 childElement.getAttribute("lon") };

Implementation - 60 -

- 60 -

 my_array.add(str_myrefs);

 }

 childs = childs.getNextSibling();

 }

 my_array.removeAll(Collections.singleton(null));

 return my_array;

 }

/***/

Using the mychild_refs() method I save all the children of the way list in

my_array. Here i recall that the output of the Overpass turbo query has the

following format:

/***/

<way id="53560605">

 <nd ref="676633881" lat="45.7821164"

lon="8.9749494"/>

 <tag k="highway" v="unclassified"/>

 <tag k="name" v="Via Luraschi"/>

 </way>

/***/

That is why the elements added to our ArrayList are
childElement.getAttribute("ref"), childElement.getAttribute("lat")

and childElement.getAttribute("lon").

The arr_get_one() method processes the above ArrayList in such a way to

return the second element in the list. By using the following calls, the

method receives as an input the list of child nodes and it will return the

second child node in the list:

/***/

ArrayList<String[]> reflist = mychild_refs(childNode);

String[] rnd_pos = arr_get_one(reflist,

childElementFirst.getAttribute("ref"));

/***/

Implementation - 61 -

- 61 -

The output is the following:

/***/

Image: image0.png

ID: 283338852

Latitude: 45.7795789

Longitude: 8.9933379

WAY ID: 81257578

next position: id: 283338853 ; lat:45.7792718 ;

lon:8.9929288

WAY ID: 126101807

first position: ID: 676633881 ; Lat: 45.7821164 ;

Lon:8.9749494

WAY ID: 180358158

next position: id: 1908029109 ; lat:45.7809515 ;

lon:8.9952597

WAY ID: 126101807

first position: ID: 676633881 ; Lat: 45.7821164 ;

Lon:8.9749494

WAY ID: 81257578

next position: id: 283338853 ; lat:45.7792718 ;

lon:8.9929288

WAY ID: 126101807

first position: ID: 676633881 ; Lat: 45.7821164 ;

Lon:8.9749494

WAY ID: 180358158

next position: id: 1908029109 ; lat:45.7809515 ;

lon:8.9952597

WAY ID: 180358158

next position: id: 1908029109 ; lat:45.7809515 ;

lon:8.9952597

/***/

Implementation - 62 -

- 62 -

Node 283338852 belongs to the way 81257578 where it occupies the first

position so I will retrieve the second one. In way 126101807 it is not the

first one, so i will retrieve the first.

After having all the required latitudes and longitudes, the only remaining

step is to call the save_Image_Tags() method which will process the Google

Street View Image link and will download the images for each point:

/***/

 public static void save_Image_Tags(String imageUrl, String

destinationFile)

 throws IOException {

 URL url = new URL(imageUrl);

 InputStream is = url.openStream();

 OutputStream os = new

FileOutputStream(destinationFile);

 byte[] b = new byte[2048];

 int length;

 while ((length = is.read(b)) != -1) {

 os.write(b, 0, length);

 }

 is.close();

 os.close();

 System.out.println("end");

 }

/***/

The method receives as input an URL from where to download the images

and a destinationFile in which it is specified the location where to save the

images. The calls for crossings/traffic lights can be done as follows:

Implementation - 63 -

- 63 -

/***/

String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion="+eElement.getAttribute("lat") + ","

+eElement.getAttribute("lon") + "&fov=90&heading=0&pitch=10";

String destinationFile =

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/cross

ings/image" + temp + ".png";

save_Image_Tags(imageUrl, destinationFile);

/***/

While for the intersections:

/***/

String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion="+ eElement.getAttribute("lat")+ "," +

eElement.getAttribute("lon") + "&fov=90&heading=" +

angleFromCoordinate(

Double.parseDouble(eElement.getAttribute("lat")),

Double.parseDouble(eElement.getAttribute("lon")),Double.parseDouble

(childElementFirst.getAttribute("lat")),Double.parseDouble(childEle

mentFirst.getAttribute("lon"))) + "&pitch=10";

/***/

And

/***/

String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion="+ eElement.getAttribute("lat")+ "," +

eElement.getAttribute("lon") + "&fov=90&heading=" +

angleFromCoordinate(

Double.parseDouble(eElement.getAttribute("lat")),

Double.parseDouble(eElement.getAttribute("lon")),Double.parseDouble

(rnd_pos[1]),Double.parseDouble(rnd_pos[2])) + "&pitch=10";

/***/

At this point we have downloaded all the images required which now can

be passed over to the crowdsourcing platform.

Chapter 7 - 64 -

- 64 -

Chapter 7

User Interface

The User Interface occupies a very important part in the thesis as it

represents the end point by which the users will interact with the project

itself. The goal of this interaction is to allow effective operation and control

of the process/machine from the human end, whilst the process/machine

simultaneously feeds back information that aids the operators' decision

making process[19].

Generally, the goal of user interface design is to produce a user interface

which makes it easy (self explanatory), efficient, and enjoyable (user

friendly) to operate a machine in the way which produces the desired

result. This generally means that the operator needs to provide minimal

input to achieve the desired output, and also that the machine minimizes

undesired outputs to the human[19].

Even though the user interface can arguably include the total "user

experience," which may include the aesthetic appearance of the device,

response time, and the content that is presented to the user within the

context of the user interface[20], for the time being, these aspects have not

been taken into consideration. If the users will be actively participating and

will provide an increased number of feedbacks (leading to a real success of

the platform) then, in addition to all future works presented in Chapter 9,

web and mobile accessibility features can be introduced. For the moment

the platform has been mostly designed as a web application but it can also

be extended to a mobile one. The accessibility features which can be

considered for both cases refer to the following major categories of

disability:

https://en.wikipedia.org/wiki/User_interface_design

User Interface - 65 -

- 65 -

 Sensorial disabilities

o Visual disabilities: complete/partial blindness, low vision,

color blindness

o Auditory disabilities: complete/partial deafness

 Motor

o Inability to use a mouse, slow response time, limited fine

motor control

 Cognitive impairments

o Learning disabilities, distractibility, inability to remember

or focus on large amount of information

 Seizure disorders

 Ageing

The platform addresses itself to any kind of user described in Chapter 1;

the questions can be answered by users with mobility impairments, local

governments and organizations and even volunteers. Therefore, these

aspects are perfectly valid and worth taken into consideration due to the

fact that a wheelchair user (and not only) can suffer from additional

diseases as the ones mentioned above.

Returning to the user interface, the following figures represent the

implementation of the questions presented in Chapter 5.

Figure 7.1 represents Step A, in which the image visibility is evaluated:

The image offers a good visibility of sidewalks or zebra?

Yes No There are ways to be improved

The first image can be improved and therefore the user will have the

possibility to choose the appropriate improvement methods (multiple

answers). These answers are displayed only after the user has clicked on

the „can be improved” button; as it can be seen from the figure, it is

User Interface - 66 -

- 66 -

highlighted in a different way from the other two buttons. The second

image does not offer any proper visibility over the sidewalks and zebras

and it will be removed; the image will not be completely deleted as it

represents a strategic point in the configuration of the accessible path.

Instead, a new image will have to be generated, from the same location

but having a different orientation (the heading, fov and pitch elements in

the Google Street View Image link will have different values). The third and

the fourth images offer a good visibility over the sidewalks and zebras and

therefore it can be proceed to steps B and C.

User Interface - 67 -

- 67 -

Figure 7.1: Evaluation of image visibility

User Interface - 68 -

- 68 -

Figure 7.2 is related to the street questions in Step B. The image presented

was selected as „it offers a good visibility of sidewalk and zebras” in Step A

and now it continues with questions regarding the sidewalk and zebras.

Figure 7.2: Evaluation of street accessibility

Figure 7.3 shows the case of an image which falls into Step C – questions

related to the sidewalk. Since the surface of the sidewalk is not made of

cobbles, the question if it is made of gravel will rise. Additionally, a

dropped kerb cannot be spotted in the image and therefore it will be asked

User Interface - 69 -

- 69 -

if the sidewalk has high curbsides (if the curbsides have a low height then it

is considered that users can cross).

Figure 7.3: Evaluation of sidewalk accessibility

Chapter 8 - 70 -

- 70 -

Chapter 8

Conclusion

Large cities are built and designed based on the needs of mobile people,

architectural preferences and budgets. Unfortunately, this constitutes a big

disadvantaged for those with mobility disabilities. Wheelchair users are

regularly hindered by barriers from participating in daily life on their own.

The research work presented in this thesis aims in solving this problem by

means of crowdsourcing and street view images. The process consists of

street view images which are sent to users via crowdsourcing platform and

are marked as accessible and non-accessible based on their feedback.

These images focus on specific points (crossings, traffic lights and

intersections) and precise questions are being asked in order to determine

the accessibility of these points.

I first started by analyzing the best way to collect the images; this

can be done by combining OpenStreetMap with Google Street View Image.

OpenStreetMap offers pre-defined tags for crossings and traffic lights; for

intersections, instead, special queries in Overpass Turbo were needed. The

requests for these tags give as an output an xml file containing geographic

points, more precisely the latitude and longitude of the points which are

crossings, traffic lights and intersections. By parsing these xml files in a Java

software, only the latitude and longitudes are extracted which later on are

used in constructing the Google Street View Image link, a link which

provides the images needed for the crowdsourcing (images focusing on the

three points of interest).

Conclusion - 71 -

- 71 -

In the meantime I was also focusing on the accessibility questions. By

analyzing and reviewing specialized literature, I tried to determine the

most important problems a wheelchair user can encounter by going on a

street. Even though the list is long, I focused only on aspects related to

zebras and sidewalks which can be determined by analyzing the images:

 High kerbs

 Position and nature of dropped kerbs

 Pavements (Cobbles, Gratings and drains, Potholes, etc.)

 Temporary obstacles

As it is described in Chapter 7, there are several features which can be

added to the application. If the adoption of the platform reaches a level

where accessibility issues are reported with high frequency, then all these

can lead to a big help for wheelchair users (and not only) and hopefully in

the near future to accessible cities.

Chapter 9 - 72 -

- 72 -

Chapter 9

Future Work

In this chapter I will be suggesting future aspects which can expand my part

of the thesis – work which can be added to complete it - and to the

application in general - by focusing more on the accessibility part, I will try

to show how the application can be customized in order to satisfy a wider

number of users.

9.1 Thesis Future Contributions

In this section I am presenting several improvements which can be added

to the thesis in order to reach a higher level of completeness:

 Expand work to the entire region of Como

As stated in Chapter 5, even though at the beginning the entire region of

Como city was considered, due to a high number of images, work has been

limited to a smaller region. Considering the entire region as in Figure 5.1

means getting to know accessibility problems on a wider area and thus,

more users helped. On the other hand, a drawback of this point would be

that more users are needed to answer the accessibility questions and a

longer time is required to collect the feedbacks.

9.1 Thesis Future Contributions - 73 -

- 73 -

 Include more OSM tags

For the time being the application has limited itself to only three OSM tags

(crossings, traffic signals and intersections) but the list can increase. Table

9.1 shows the possible street level tags which can be included[2]:

Key Value

Ele

men

t

Comment Photo

barrier block

A large, solid, immobile block that

can be moved only with heavy

machinery or great effort.

Typically big solid things made of

concrete for stopping larger

vehicles.

Sometimes natural boulders are

used for the same purpose.

barrier bollard

solid (usually concrete or metal)

pillar or pillars in the middle of the

road to prevent passage by some

traffic.

barrier
bus_tra

p

A bus trap is a metal grate placed

over a ditch or depression in the

road with tines spaced far enough

apart that small-diameter-wheeled

vehicles fall in between the tines but

close enough that larger-diameter-

wheeled vehicles, such as buses, may

pass.

barrier
cattle_g

rid

Bars in the road surface that allow

wheeled vehicles but not animals to

cross.

Sometimes known as a Texas Gate,

even outside of Texas

http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dblock
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dbollard
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dbus_trap
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dbus_trap
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dcattle_grid
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dcattle_grid
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Barrier_roadblock.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Bollard_in_residential_area.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Bussluse_05-04-06_02.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Cattle_grid.jpg

9.1 Thesis Future Contributions - 74 -

- 74 -

barrier chain

A chain used to prevent motorised

vehicles.

barrier
cycle_ba

rrier

Barriers to bicycle traffic, most

typically a pair of staggered steel

bars perpendicular to the way itself

whose gaps allow pedestrians to

pass.

barrier debris

A road is blocked by debris with or

without ground. This might be for

short or long time. Often used as

first step in blocking an abandoned

road. The photo does not display the

road after the debris because it was

a slope road and the photo was

taken on the top.

emerge

ncy

fire_hyd

rant

A fire hydrant is an active fire

protection measure, and a source of

water provided in most urban,

suburban and rural areas with

municipal water service or other

water source to enable firefighters

to tap into the municipal water

supply to assist in extinguishing a

fire.

highwa

y
steps

For flights of steps (stairs) on

footways. Use with step_count=* to

indicate the number of steps

tactile_

paving
yes / no

A paving in the ground to be

followed with a blindman's stick.

http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dchain
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dcycle_barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dcycle_barrier
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Ddebris
http://wiki.openstreetmap.org/wiki/Key:emergency
http://wiki.openstreetmap.org/wiki/Key:emergency
http://wiki.openstreetmap.org/wiki/Tag:emergency%3Dfire_hydrant
http://wiki.openstreetmap.org/wiki/Tag:emergency%3Dfire_hydrant
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dsteps
http://wiki.openstreetmap.org/wiki/Key:step_count
http://wiki.openstreetmap.org/wiki/Key:tactile_paving
http://wiki.openstreetmap.org/wiki/Key:tactile_paving
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Barrier_chain.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Unknown_barrier.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Barrier_debris.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Downtown_Charlottesville_fire_hydrant.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Steps.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Tactile_paving.jpg

9.1 Thesis Future Contributions - 75 -

- 75 -

trackty

pe

grade1/

grade2/

grade3/

grade4/

grade5

To describe the quality of the

surface.

traffic_

calmin

g

yes/

bump/

hump/

cushion/

table.

Traffic calming consists of

engineering and other measures put

in place on roads for slowing down

or reducing motor-vehicle traffic as

well as to improve safety for

pedestrians and cyclists.

barrier kerb

A (for example footway) kerb is a

barrier for vehicles and wheelchair

drivers. The height of the kerb is

important and with this

information, the usage by different

groups can be determined. The

height of the kerb is tagged

additionally as height=*, if

available. Right side is bottom, left

side is top.

barrier wall

a freestanding solid structure

designed to restrict or prevent

movement across a boundary.

Usually made from solid brick,

concrete or stone and almost always

built so that it is opaque to vision.

bridge yes

If the railway goes over a street,

waterway or other railway.

http://wiki.openstreetmap.org/wiki/Key:tracktype
http://wiki.openstreetmap.org/wiki/Key:tracktype
http://wiki.openstreetmap.org/wiki/Key:traffic_calming
http://wiki.openstreetmap.org/wiki/Key:traffic_calming
http://wiki.openstreetmap.org/wiki/Key:traffic_calming
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dkerb
http://wiki.openstreetmap.org/wiki/Key:height
http://wiki.openstreetmap.org/wiki/Key:barrier
http://wiki.openstreetmap.org/wiki/Tag:barrier%3Dwall
http://wiki.openstreetmap.org/wiki/Key:bridge
http://wiki.openstreetmap.org/wiki/Tag:bridge%3Dyes
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Surface_grade1.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Obrubnik.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Dscf0590-800.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Railway_bridge.jpg

9.1 Thesis Future Contributions - 76 -

- 76 -

railwa

y
tram

One or two carriage rail vehicles,

usually sharing motor road.

Table 9.1: Future OSM Tags

Additionaly, Table 9.2 suggests also other tags which can be taken into

consideration as they represent key points in the daily destinations of a

wheelchair user (more detailed into MEP Project Future Contributions

section). Accessibility should also be evaluated for the following features:

Key Value

Ele

men

t

Comment Photo

amenity
parkin

g

Car park. Nodes and areas (without

access tag) will get a parking

symbol. Areas will be coloured.

Streets on car parking are often

tagged highway=service and

service=parking_aisle.

amenity toilets

Public toilets (might require a fee)

railway
funicul

ar

Cable driven inclined railways. In

many cases they serve touristic

interest, giving easy access to

spectacular mountain views.

shop
super

market

Supermarket

http://wiki.openstreetmap.org/wiki/Key:railway
http://wiki.openstreetmap.org/wiki/Key:railway
http://wiki.openstreetmap.org/wiki/Tag:railway%3Dtram
http://wiki.openstreetmap.org/wiki/Key:amenity
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dparking
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dparking
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Dservice
http://wiki.openstreetmap.org/wiki/Key:service
http://wiki.openstreetmap.org/wiki/Tag:service%3Dparking_aisle
http://wiki.openstreetmap.org/wiki/Key:amenity
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dtoilets
http://wiki.openstreetmap.org/wiki/Key:railway
http://wiki.openstreetmap.org/wiki/Tag:railway%3Dfunicular
http://wiki.openstreetmap.org/wiki/Tag:railway%3Dfunicular
http://wiki.openstreetmap.org/wiki/Key:shop
http://wiki.openstreetmap.org/wiki/Tag:shop%3Dsupermarket
http://wiki.openstreetmap.org/wiki/Tag:shop%3Dsupermarket
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Praha,_Hloub%C4%9Bt%C3%ADn,_Lehovec,_tram_KT8D5.JPG
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:P3030027ParkingLot_wb.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:WC-Anlage.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Vilnius_funicular.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Supermarket_check_out.JPG

9.1 Thesis Future Contributions - 77 -

- 77 -

amenity
hospita

l

Often used in conjunction with

emergency=* to note whether or not

the hospital has emergency facilities

highway
elevato

r

Elevator

public_t

ransport

stop_p

osition

The position on the street or rails

where a bus, tram or train stops.

public_t

ransport

platfor

m

The place where passengers are

waiting for the transportation

vehicle.

Table 9.2: Additional OSM Tags

 Google Street View Image Link Improvement

As explained in Chapter 5 and 7, if an image falls down into one of the

categories „No” or „There are ways to be improved” in Step A, then a new

image needs to be generated; this can also be done automatically by

means of Java software.

For the „There are ways to be improved” category, the Google Street View

Image link can be personalized according to the feedback received.

Therefore, a zoom in/out means modifying the fov value, higher/lower

pitch means modifying the pitch while rotation means

increasing/decreasing the value of the heading with 90 degrees. Further

research is required in order to determine standard values for decreasing

and increasing the values of fov and pitch.

Instead, if an image is marked as „No”, then a new one needs to be

generated from the same location but with a different heading.

http://wiki.openstreetmap.org/wiki/Key:amenity
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dhospital
http://wiki.openstreetmap.org/wiki/Tag:amenity%3Dhospital
http://wiki.openstreetmap.org/wiki/Key:emergency
http://wiki.openstreetmap.org/wiki/Key:highway
http://wiki.openstreetmap.org/wiki/Tag:highway%3Delevator
http://wiki.openstreetmap.org/wiki/Tag:highway%3Delevator
http://wiki.openstreetmap.org/wiki/Key:public_transport
http://wiki.openstreetmap.org/wiki/Key:public_transport
http://wiki.openstreetmap.org/wiki/Tag:public_transport%3Dstop_position
http://wiki.openstreetmap.org/wiki/Tag:public_transport%3Dstop_position
http://wiki.openstreetmap.org/wiki/Key:public_transport
http://wiki.openstreetmap.org/wiki/Key:public_transport
http://wiki.openstreetmap.org/wiki/Tag:public_transport%3Dplatform
http://wiki.openstreetmap.org/wiki/Tag:public_transport%3Dplatform
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Guantanamo_captive's_hospital_beds_-c.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:240_Sparks_Elevators.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Bus_prumyslova.jpg
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/File:Bayview_trstwy.jpg

9.2 MEP Project Future Contributions - 78 -

- 78 -

The new images will also be subject to questioning, ending up in a loop

until they get to be marked as „Yes” – they offer a good visibility over the

points of interest.

 Profiling the users evaluating the images

For the time being, the application focuses on wheelchair users and

therefore, they represent the best category of users to evaluate the

images. In addition, also families and specialized volunteers suit best as

they have direct contact with the problems a wheelchair user might

encounter.

9.2 MEP Project Future Contributions

In addition to all features described in Chapter 4, the following are

suggested:

 Application customization based on how severe the disability is:

According to [14], wheelchair users can be divided into three sub groups:

 Active - Are very active and athletic wheelchair users that are for

example able to do certain sports, are very independent, are able to

travel long distances on their own and are able to overcome many

obstacles and barriers that wheelchair users from the following two

groups can’t. All of the active wheelchair users use manual

wheelchairs.

 Partly Help Dependent - Are still active but not athletic and their

disability does not allow them to do any sports or similar. Traveling

through the city without any help is very exhausting for them, so

9.2 MEP Project Future Contributions - 79 -

- 79 -

they need help to complete certain daily tasks, to overcome

obstacles and barriers and to travel longer distances. This group

uses manual or electric wheelchairs.

 Help Dependent - Their disability does not allow them to be active

or athletic and even short distances are very exhausting for them.

They use electric wheelchairs which makes it very difficult to

overcome any barriers or obstacles, so they are restricted most

when traveling through the city. In general, even for small daily

tasks like shopping they depend on help 24/7.

The group of helpers mentioned above can be divided into two sub groups:

 Family, Voluntary Helpers, Friends - This group has an intrinsic

motivation to help their friends or family members in wheelchairs.

They are looking for ways to contribute to ease the wheelchair

users burden and to help them to get up to date information about

barriers and obstacles so they can avoid them.

 Organizations, Associations, Social Workers – Professional

organizations to support disabled people as well as facilities like

assisted living homes or retirement homes are constantly looking

for ways to support their disabled customers as well as their own

employees better at regular tasks like for example organized guided

wheelchair excursions through the city. These organizations need

up to date data about obstacles and barriers to put more pressure

on city planners. Only so, they can motivate them to renovate parts

of the city, to remove barriers and to include these parameters and

needs into future city plans.

The street navigation and even the design of the mobile application can be

customized in order to serve the three categories presented above. In

addition to this, additional applications can be created for the group of

9.2 MEP Project Future Contributions - 80 -

- 80 -

helpers; they might contain information on how to help the user in special

cases, how to deal with accidents, reminders and to-do lists.

 Sentiment Analysis

This option can show how happy users are with their experience on going

on the street; if the analysis can be done on specific streets/ access points

in the city, then even the accessible path can be generated according to

user’s sentiments.

As suggested in [15], Sentiment Analysis, which aims in identifying the

subjective state of human beings, such as emotions, through language

processing analysis, has the benefit that more information about the state

of the users can be added in an automatic way, improving the estimation

of the crucial problems to be solved in the city.

Prioritization is another aspect which can be taken into consideration;

based on the number of user reports addressing the same accessibility

issue in the city, one can have a first evaluation of how many people are

being affected by it. Nevertheless, different issues affects people in

different ways. Some issues may be a simple inconvenient, while others

may hinder people from reaching their destinations. Different techniques,

such as Sentiment Analysis, help to give relevant insights about how severe

an issue is, and what are its direct and indirect effects in people’s life.

In order to assign a priority level to an urban event, all this evaluations

must be aggregated to determine how negative the effect of an event is

over the population. Events that are preponderantly negative must be

resolved more urgently than neutral ones, thus receiving a higher priority.

An Analytic Hierarchy Process may be used in order to assign weights to

the criteria used to define priority levels.

9.2 MEP Project Future Contributions - 81 -

- 81 -

 Frequency of Destinations Analysis

Based on the interviews conducted in [16], the most commonly daily

destinations by 20 (80%) or more of the 25 respondents, were food stores,

restaurants and bars, drug stores and other kinds of stores and shops.

Destinations reported with moderate frequency (>10–19 respondents, or

40–76% of the sample) included ATMs, friends’ or relatives’ homes, other

places for recreation or leisure, work places, doctors’ offices, churches,

synagogues or other religious buildings and civic buildings. Less frequently

reported destinations (11 respondents, 40% of the sample) included

school, movies, dentists’ or other health professionals’ offices, libraries,

sporting events and parks.

Taking into consideration these aspects, the application can be customized

in such a way to provide further assistance for the most important points

(e.g., remote communication); also these data can be communicated to

municipalities in order to help building more accessible cities.

 Comfort

Comfort deals with the possibility of undertaking any intended activity

without more effort than the daily practice requires. It considers in this

way the characteristics present in the space that may cause some

discomfort. It also may expose one to outdoor urban conditions like noise

and air pollution and climate protection. (Cardoso,2012; Keppe Jr., 2008;

Stradling, 2007). Aspects such as air pollution, exposure to noise, degree of

accessibility to route, rest areas, shade and protection against sun and rain,

time length to reach a destination, effort and other external factors which

can cause stress can be taken into consideration when building the

accessible navigation.

9.2 MEP Project Future Contributions - 82 -

- 82 -

 Keep the user engaged

The application should provide feedbacks to users whenever reported

issues were addressed in order to keep them engaged. The concept of

crowdsourcing for mapping of issues in a city stimulates citizen’s

engagement and in the same time helps improving the application. New

ideas, an increased number of feedbacks and other daily activities can be

rewarded; the only aspect that needs to be considered is the validity of the

feedbacks.

Chapter 10 - 83 -

- 83 -

Chapter 10

Bibliography

[1]OpenStreetMap, https://en.wikipedia.org/wiki/OpenStreetMap

[2] Map Features, http://wiki.openstreetmap.org/wiki/Map_Features

[3] Tags, http://wiki.openstreetmap.org/wiki/Tags

[4] Overpass API/Overpass QL,

http://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL

[5] Google Street View Image API,

https://developers.google.com/maps/documentation/streetview/intro

*6+ Andrea Mauri, POLITECNICO DI MILANO , „METHODOLOGIES FOR THE

DEVELOPMENT OF CROWD AND SOCIAL-BASED APPLICATIONS”

[7] Java (programming language) ,

https://en.wikipedia.org/wiki/Java_%28programming_language%29

[8] Lorena de Freitas Pereira, Mariana Silva de Albuquerque, Licínio da Silva

Portugal, „Access of wheelchair users in sportive mega events: the case of

Confederation Cup” , E340XVIII Congreso Panamericano de Ingeniería de

Tránsito, Transporte y Logística (PANAM 2014)

[9] Rosemary D.F. Bromley , David L. Matthews and Colin J. Thomas, „City

centre accessibility for wheelchair users: The consumer perspective and

the planning implications”

*10+ Hugh Matthews, Linda Beale, Phil Picton and David Briggs, „Modelling

Access with GIS in Urban Systems (MAGUS): capturing the experiences of

wheelchair users”

https://en.wikipedia.org/wiki/OpenStreetMap
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL
https://developers.google.com/maps/documentation/streetview/intro
https://en.wikipedia.org/wiki/Java_%28programming_language%29

Bibliography - 84 -

- 84 -

[11] Xapi Service Developer's Guide, http://open.mapquestapi.com/xapi/

[12] Maps for Easy Paths, http://mep5x1000.wix.com/mepapp

[13] European Day for People with Disabilities: the Swedish city of Borås

wins the Access City Award 2015 for disabled-friendly cities,

http://europa.eu/rapid/press-release_IP-14-2321_en.htm

[14] Christian Menkens, Julian Sussmann, Miriam Al-Ali, Emanuel

Breitsameter, Jelena Frtunik, Tobias Nendel, Tobias Schneiderbauer,

„EasyWheel - A Mobile Social Navigation and Support System for

Wheelchair Users”, Eighth International Conference on Information

Technology: New Generations, 2011

[15] Carlos Cardonha, Diego Gallo, Priscilla Avegliano, Ricardo Herrmann,

Fernando Koch, and Sergio Borger, „A Crowdsourcing Platform for the

Construction of Accessibility Maps”

[16] Allan R. Meyers, Jennifer J. Anderson, Donald R. Miller, Kathy Shipp,

Helen Hoenig, „Barriers, facilitators, and access for wheelchair users:

substantive and methodologic lessons from a pilot study of environmental

effects”

[17] Overpass turbo, http://wiki.openstreetmap.org/wiki/Overpass_turbo

[18] Math.Atan2 Method,

https://msdn.microsoft.com/en-

us/library/system.math.atan2%28v=vs.110%29.aspx

[19] User Interface, https://en.wikipedia.org/wiki/User_interface

[20] User interface (UI) definition,

http://searchsoa.techtarget.com/definition/user-interface

[21] Key:highway, http://wiki.openstreetmap.org/wiki/Key:highway

http://open.mapquestapi.com/xapi/

Appendix A - 85 -

- 85 -

Appendix A

Figure A.1: Accessible Path

Appendix A - 86 -

- 86 -

Image A.1: Zebra + Sidewalk without Dropped Kerb

Image A.2: Street without sidewalk

Appendix B - 87 -

- 87 -

Appendix B

/*

 * Step 1: save all tags from OSM into xml

 *

 * Step 2: parse the xml -> retrieve id of tag, latitude and

longitude

 *

 * Step 3: determine the angle of the street

 *

 * Step 4: download the images: construct the Google Static Images

URL with the lat and long from step 2 and angle from step 3

 */

public class DownloadImagesForCrowdSourcing {

public static void main(String argv[]) throws IOException,

 ParserConfigurationException, SAXException {

/******************** STEP 1 *************************/

// download nodes for crossings

String url_crossing =

"http://open.mapquestapi.com/xapi/api/0.6/node%5Bhighway=crossing%5

D%5Bbbox=9.06042014170467,45.79212088500324,9.129084692483179,45.81

904535824169%5D";

String destination_crossing =

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/cross

ings/crossings.xml";

// download nodes for traffic lights

Appendix B - 88 -

- 88 -

String url_traffic_lights = "

http://open.mapquestapi.com/xapi/api/0.6/node%5Bhighway=traffic_sig

nals%5D%5Bbbox=9.06042014170467,45.79212088500324,9.129084692483179

,45.81904535824169%5D ";

String destination_traffic_lights =

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/traff

ic_lights/traffic_signals.xml";

// download nodes for intersections

String url_intersections = "http://overpass-

api.de/api/interpreter?data=%0A%5Bout%3Axml%5D%5Btimeout%3A3600%5D%

3B%0A%2F%2F%20filter%20ways%0Away%5Bhighway%5D%5Bhighway%21~%22foot

way%7Ccycleway%7Cpath%7Cservice%7Ctrack%22%5D%2845.79212088500324%2

C9.06042014170467%2C45.81904535824169%2C9.129084692483179%29-

%3E.hw%3B%0A%0A%2F%2F%20foreach%20way%0Aforeach.hw-

%3E.eachw%28%0A%20%20%2F%2F%20get%20ways%2C%20which%20shares%20same

%20nodes%20minus%20current%20way%0A%20%20%2F%2F%20into%20.otherws%0

A%20%20node%28w.eachw%29-

%3E.ns%3B%0A%20%20way%28bn.ns%29%5Bhighway%5D%5Bhighway%21~%22footw

ay%7Ccycleway%7Cpath%7Cservice%7Ctrack%22%5D-

%3E.w2%3B%0A%20%20%28way.w2%3B%20-%20way.eachw%3B%29-

%3E.otherws%3B%0A%0A%20%20%2F%2F%20get%20shared%20nodes%0A%20%20nod

e%28w.otherws%29-%3E.n2%3B%0A%20%20node%28w.eachw%29-

%3E.n3%3B%0A%0A%20%28%28%28node.n2%3B%20node.n3%3B%29%20-

%28node.n2%3B%20-%20node.n3%3B%29%3B%29%20-%28node.n3%3B%20-

%20node.n2%3B%29%3B%29-

%3E.shrdnodes%3B%0A%0A%20%20%2F%2F%20ways%20which%20are%20in%20junc

tion%0A%20%20way%28bn.shrdnodes%29-

%3E.outways%3B%0A%0A%20%20%2F%2F%20union%20ways%20and%20nodes%0A%20

%20%28way.outways%3B%20node.n2.n3%29%3B%20out%20geom%3B%20%0A%29%3B

%0A%20%20%0A%20%20%0A%20%20%0A";

String destination_intersections =

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/inter

sections/intersections.xml";

//call method to download nodes

save_Image_Tags(url_crossing, destination_crossing);

save_Image_Tags(url_traffic_lights, destination_traffic_lights);

saveImage(url_intersections, destination_intersections);

Appendix B - 89 -

- 89 -

/********************* STEP 2.1 Crossings **********************/

try {

File fXmlFile = new File(

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/cross

ings/crossings.xml");

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

PrintWriter writer = new PrintWriter(

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/cross

ings/crossings_parsed.txt","UTF-8");

doc.getDocumentElement().normalize();

NodeList nList = doc.getElementsByTagName("node");

NodeList nList2 = doc.getElementsByTagName("tag");

for (int temp = 0; temp < nList.getLength(); temp++) {

Node nNode = nList.item(temp);

 Node nNode2 = nList2.item(temp);

 Element eElement = (Element) nNode;

 Element eElement2 = (Element) nNode2;

 if (nNode.getNodeType() == Node.ELEMENT_NODE) {

writer.println("Image: image" + temp + ".png");

 writer.println("ID: " + eElement.getAttribute("id"));

Appendix B - 90 -

- 90 -

 writer.println("Longitude: " +

eElement.getAttribute("lon"));

 writer.println("Latitude: " +

eElement.getAttribute("lat"));

 }

 if (nNode2.getNodeType() == Node.ELEMENT_NODE) {

writer.println("Tag: " +

eElement2.getAttribute("k") + ";" +

eElement2.getAttribute("v"));

 writer.println("\n");

 }

String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion=" + eElement.getAttribute("lat") + "," +

eElement.getAttribute("lon")

+ "&fov=90&heading=0&pitch=10";

String destinationFile =

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/cross

ings/image" + temp + ".png";

save_Image_Tags(imageUrl, destinationFile);

 }

 writer.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

/******************** STEP 2.2 Traffic Lights ***************/

try {

Appendix B - 91 -

- 91 -

File fXmlFile = new File(

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/traff

ic_lights/traffic_signals.xml");

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

PrintWriter writer = new PrintWriter(

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/traff

ic_lights/traffic_signals_parsed.txt","UTF-8");

doc.getDocumentElement().normalize();

NodeList nList = doc.getElementsByTagName("node");

NodeList nList2 = doc.getElementsByTagName("tag");

System.out.println("----------------------------");

for (int temp = 0; temp < nList.getLength(); temp++) {

 Node nNode = nList.item(temp);

 Node nNode2 = nList2.item(temp);

 Element eElement = (Element) nNode;

 Element eElement2 = (Element) nNode2;

 if (nNode.getNodeType() == Node.ELEMENT_NODE) {

writer.println("Image: image" + temp + ".png");

 writer.println("ID: " + eElement.getAttribute("id"));

Appendix B - 92 -

- 92 -

 writer.println("Longitude: " +

eElement.getAttribute("lon"));

 writer.println("Latitude: " +

eElement.getAttribute("lat"));

 }

 if (nNode2.getNodeType() == Node.ELEMENT_NODE) {

 writer.println("Tag: " +

eElement2.getAttribute("k") + ";"

 + eElement2.getAttribute("v"));

 writer.println("\n");

 }

String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion=" + eElement.getAttribute("lat") + "," +

eElement.getAttribute("lon") + "&fov=90&heading=0&pitch=10";

String destinationFile =

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/traff

ic_lights/image" + temp + ".png";

save_Image_Tags(imageUrl, destinationFile);

 }

 writer.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

/******************* STEP 2.3 Intersections ****************/

try {

File fXmlFile = new File(

Appendix B - 93 -

- 93 -

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/inter

sections/intersections.xml";

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

PrintWriter writer = new PrintWriter(

"/Users/Salai/workspaceEclipse/DownloadImagesForCrowdSourcing/inter

sections/intersection_parsed.txt", "UTF-8");

doc.getDocumentElement().normalize();

NodeList nList = doc.getElementsByTagName("node");

NodeList nList2 = doc.getElementsByTagName("way");

System.out.println("----------------------------");

// determine all nodes

for (int temp = 0; temp < nList.getLength(); temp++) {

Node nNode = nList.item(temp);

Element eElement = (Element) nNode;

Element childElementFirst = null;

if (nNode.getNodeType() == Node.ELEMENT_NODE) {

writer.println("Image: image" + temp + ".png");

 writer.println("ID: " + eElement.getAttribute("id"));

 writer.println("Latitude: " + eElement.getAttribute("lat"));

Appendix B - 94 -

- 94 -

 writer.println("Longitude: " +

eElement.getAttribute("lon"));

 // determine all ways and their nds

for (int i = 0; i < nList2.getLength(); i++) {

 Node nNode2 = nList2.item(i);

 Element eElement2 = (Element) nNode2;

 Node childNode = eElement2.getFirstChild();

 if (nNode2.getNodeType() == Node.ELEMENT_NODE) {

 int count = 0;

 ArrayList<String[]> reflist =

mychild_refs(childNode);

 while (childNode.getNextSibling() != null) {

 count++;

 childNode = childNode.getNextSibling();

 if ((childNode.getNodeType() ==

Node.ELEMENT_NODE)) {

 Element childElement = (Element)

childNode;

 if (count <= 3) {

 childElementFirst = (Element) childNode;}

 if

(eElement.getAttribute("id").equals(childElement.getAttribute("ref"

)) &&

(!(eElement.getAttribute("id").equals(childElementFirst.getAttribut

e("ref"))))) {

Appendix B - 95 -

- 95 -

 writer.println("WAY ID:

"+eElement2.getAttribute("id"));

 writer.println("first position: ID: "+

childElementFirst

 .getAttribute("ref") + ";Lat: " +

childElementFirst

 .getAttribute("lat") + ";Lon:" +

childElementFirst

.getAttribute("lon"));

 String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion=" + eElement.getAttribute("lat") + "," +

eElement.getAttribute("lon") + "&fov=90&heading=" +

angleFromCoordinate(

Double.parseDouble(eElement.getAttribute("lat")),Double.parseDouble

(eElement.getAttribute("lon")),Double.parseDouble(childElementFirst

.getAttribute("lat")),Double.parseDouble(childElementFirst.getAttri

bute("lon")))+ "&pitch=10";

 String destinationFile =

"/Users/Salai/workspaceEclipse/SaveImageFromURL/int/image" + temp +

".png ";

 saveImage(imageUrl, destinationFile);

 } else if

(eElement.getAttribute("id").equals(childElement.getAttribute("ref"

)) &&

(eElement.getAttribute("id").equals(childElementFirst.getAttribute(

"ref")))){

writer.println("WAY ID:

"+eElement2.getAttribute("id"));

 String[] rnd_pos =

arr_get_one(reflist,childElementFirst

 .getAttribute("ref"));

Appendix B - 96 -

- 96 -

writer.println("next position: ID: " +

rnd_pos[0] + ";Lat:" + rnd_pos[1] + ";Lon:" +

rnd_pos[2]);

 String imageUrl =

"https://maps.googleapis.com/maps/api/streetview?size=600x600&locat

ion="+ eElement.getAttribute("lat") + ","+

eElement.getAttribute("lon") + "&fov=90&heading=" +

angleFromCoordinate(Double.parseDouble(eElement.getAttribute("lat")

),Double.parseDouble(eElement.getAttribute("lon")),Double.parseDoub

le(rnd_pos[1]), Double.parseDouble(rnd_pos[2])) + "&pitch=10";

 String destinationFile =

"/Users/Salai/workspaceEclipse/SaveImageFromURL/int/image"+ temp +

".png ";

 saveImage(imageUrl, destinationFile);

}}}}}

}

 writer.println("\n");

 }

 writer.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

public static String[] arr_get_one(ArrayList<String[]> str_array,

String str_remove) {

String[] tmp_array;

for (int i = 1; i < str_array.size(); i++) {

tmp_array = str_array.get(i);

Appendix B - 97 -

- 97 -

 if (tmp_array[0] != str_remove) {

 return tmp_array;

 }

 }

 return null;

 }

public static ArrayList<String[]> mychild_refs(Node childs) {

ArrayList<String[]> my_array = new ArrayList<String[]>();

while (childs.getNextSibling() != null) {

 if ((childs.getNodeType() == Node.ELEMENT_NODE)) {

 Element childElement = (Element) childs;

 String[] str_myrefs = {

childElement.getAttribute("ref"),

 childElement.getAttribute("lat"),

 childElement.getAttribute("lon") };

 my_array.add(str_myrefs);

 }

 childs = childs.getNextSibling();

 }

my_array.removeAll(Collections.singleton(null));

return my_array;

 }

public static void save_Image_Tags(String imageUrl, String

destinationFile) throws IOException {

URL url = new URL(imageUrl);

InputStream is = url.openStream();

Appendix B - 98 -

- 98 -

OutputStream os = new FileOutputStream(destinationFile);

byte[] b = new byte[2048];

int length;

while ((length = is.read(b)) != -1) {

os.write(b, 0, length);

 }

is.close();

os.close();

System.out.println("end");

 }

static double angleFromCoordinate(double lat1, double long1, double

lat2, double long2) {

double dLon = (long2 - long1);

double y = Math.sin(dLon) * Math.cos(lat2);

double x = Math.cos(lat1) * Math.sin(lat2) - Math.sin(lat1)

 * Math.cos(lat2) * Math.cos(dLon);

double brng = Math.atan2(y, x);

brng = Math.toDegrees(brng);

brng = (brng + 360) % 360;

brng = 360 - brng;

return brng;

 }

}

Appendix B - 99 -

- 99 -

