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Abstract

The quadratic 0-1 programmingwith linear constraints (QP) is a general class of optimiza-
tion problems that includes many combinatorial optimization problems. The Quadratic
Assignment Problem (QAP), Quadratic Traveling Salesman Problem (QTSP), Graph Par-
titioning, Quadratic Knapsack Problem (QKP) and Quadratic Minimum Spanning Tree
Problem (QMSTP) are among the well-known particular cases of the QP which arise in
a variety of real-world applications. Since in general the QP is an NP-hard non-linear
optimization problem, usually a problem reformulation is considered so that a computa-
tionally inexpensive bound on the optimal objective function value is obtained. In the first
part of this thesis the most important solution methods for the QP are studied. These so-
lution methods are divided into two main groups: Reformulation-Relaxation approaches
(RR), and Reformulation-Decomposition approaches (RD). It is discussed how one can re-
formulate and solve the problem taking into account the problem structure. In the second
part of the thesis, different RR and RD approaches are developed to four classical com-
binatorial optimization problems including QAP, QTSP, QMSTP, and Quadratic Shortest
Path problem (QSP). As for the QAP, new compact reformulations are presented for the
general case, and different decomposition strategies are developed for two special cases
of the problem. The QTSP is another special case of QPs that is studied and analyzed in
the spirit of the reformulation-decomposition. More precisely an extended Linear Pro-
gramming formulation that contains a variable for each cycle in the graph is presented.
Since the number of cycles is exponential in the graph size, the new formulation is solved
via Column Generation approach. In the context of QMSTP, new bounding procedures
based on a novel reformulation scheme and some new mixed 0-1 linear formulations
are proposed. The efficiency of the proposed bounds is comprehensively discussed and
some efficient dual-ascent algorithms to derive the new bounds are developed. Finally,
quadratic shortest path problem is introduced as a novel QP. The NP-hardness of the
problem is proved, and some bounding techniques for the problem are presented.





Contents

Contents ix

List of Figures xiii

List of Tables xv

Nomenclature xvi

1 Introduction 1

I Quadratic 0-1 Programming 7

2 Reformulation and Relaxations Strategies for the QP 9

2.1 LP-based reformulation relaxation . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Standard linearization . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Glover linearization . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Revised Glover linearization . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Enhanced Glover linearization . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Some additional linearization models . . . . . . . . . . . . . . . . 13
2.1.6 Reformulation-linearization technique . . . . . . . . . . . . . . . 14

2.2 Semidefinte programming . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Semidefinte realaxation for the QP . . . . . . . . . . . . . . . . . 16
2.2.2 SDP-based reformulation for the QP . . . . . . . . . . . . . . . . 18

3 Reformulation and Decomposition for the QP 19

3.1 Reformulation and Lagrangian decomposition . . . . . . . . . . . . . . . 19
3.1.1 Lagrangian decomposition for the QP . . . . . . . . . . . . . . . 20
3.1.2 Lagrangian decomposition for the linearized QP . . . . . . . . . . 22

3.2 QP-based reformulation and a simple decomposition . . . . . . . . . . . 25



x Contents

3.2.1 A simple decomposition-based lower bound . . . . . . . . . . . . 26
3.2.2 Improving the bound based on a reformulation . . . . . . . . . . 26

II Special Cases of the Quadratic 0-1 programming 29

4 Quadratic Assignment Problem 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Lower bounding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Gilmore-Lawler lower bound . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Reformulation-based lower bounds . . . . . . . . . . . . . . . . . 33
4.2.3 MILP-based lower bounds . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Reformulation-linearization technique . . . . . . . . . . . . . . . . . . . 38
4.4 A Revised RLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 QAP with Special Structure 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Adjacent QAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Partial RLT Representation of the AQAP . . . . . . . . . . . . . . . . . . 49

5.3.1 A flow-based solution method . . . . . . . . . . . . . . . . . . . . 51
5.4 Bounds of the AQAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Lagrangian Relaxation Scheme . . . . . . . . . . . . . . . . . . . 54
5.5 QAP on Reducible graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.1 Reducible graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.2 Quadratic Semi-Assignment Problem on reducible graph . . . . . 59
5.5.3 A Lagrangain Decomposition approach . . . . . . . . . . . . . . 61

5.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6.1 Computational results for AQAP . . . . . . . . . . . . . . . . . . 63
5.6.2 Computational results for QAP on reducible graphs . . . . . . . . 67

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Quadratic Traveling Salesman Problem 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 The Symmetric QTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 MILP representation for the SQTSP . . . . . . . . . . . . . . . . . 73
6.3 The Asymmetric QTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 MILP formulation for the AQTSP . . . . . . . . . . . . . . . . . . 75



Contents xi

6.4 Cycle Reformulation of the General QTSP . . . . . . . . . . . . . . . . . 78
6.5 A Column Generation Approach . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.1 Pricing subproblems . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.2 The Stabilized version of the column generation . . . . . . . . . . 83

6.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6.1 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6.2 Lower bound computation . . . . . . . . . . . . . . . . . . . . . . 86

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Quadratic Minimum Spanning Tree Problem 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Problem formulation and lower bounds review . . . . . . . . . . . . . . . 91

7.2.1 Gilmore-Lawler type bound . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Assad and Xu bound . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 Öncan and Punnen bound . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Bounds based on a new reformulation . . . . . . . . . . . . . . . . . . . . 96
7.4 Reformulation-linearization technique applied to the QMSTP . . . . . . . 100

7.4.1 Level-2 RLT on the QMSTP . . . . . . . . . . . . . . . . . . . . . 101
7.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.2 Lower bound computation . . . . . . . . . . . . . . . . . . . . . . 106

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Quadratic Shortest Path Problem 113

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Motivations and Related work . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Problem formulation and complexity . . . . . . . . . . . . . . . . . . . . 117
8.4 Lower bounding procedure for the QSPP . . . . . . . . . . . . . . . . . . 120

8.4.1 Trivial Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.2 A Simple lower bound . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.3 The reformulation lower bound . . . . . . . . . . . . . . . . . . . 122
8.4.4 Reformulation-linearization technique applied to the QSPP . . . 124

8.5 A polynomially solvable case . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.6.1 Problem Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.6.2 Lower Bound Performance . . . . . . . . . . . . . . . . . . . . . . 129

8.7 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

References 135





List of Figures

6.1 Graph G and its corresponding Gadget graph G̃. Note that we assume
G to be complete, but for simplicity this example shows the connections
in the gadget graph when G is not complete, or when some of its edges
have infinite cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Extended graph K4 of the complete graph K4 . . . . . . . . . . . . . . . 77

8.1 A logical network and the underlying physical infrastructure. . . . . . . 116
8.2 The graphs G and G̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Assignment of linear costs in the QAP to QSPP reduction. . . . . . . . . 119
8.4 Possible solutions to Pij . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122





List of Tables

4.1 Comparison the level-1,2 RLT and RRLT lower bounds and CPU times for
the instances of QAPLIB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Comparison the level-1,2 RLT and RRLT lower bounds and CPU times for
the cQAP data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Comparison of different lower bounding approaches for the AQAP in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Comparison of different lower bounding approaches for the AQAP in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 AQAP: Comparison of NewRLT and RLT2 in terms of CPU execution time
and the gap for AQAP instances of size 15 ≤ n ≤ 20 . Each row gives
the average values for the respective 10 instances. . . . . . . . . . . . . . 66

5.4 Comparison of four different lower bonding approaches for QAP on re-
ducible graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Computational time of Column Generation (CG) and Stabilized CG ap-
proaches for both The SQTSP and AQTSP instances . . . . . . . . . . . . 85

6.2 Comparison of three different lower bounding approaches for symmetric
QTSP instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Comparison of three different lower bounding approaches for the asym-
metric QTSP instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Comparison of different lower bounding approaches on TestSet OPvsym. 104
7.2 Comparison of different lower bounding approaches on TestSet OPesym. 105
7.3 Comparison of different lower bounding approaches on TestSet OPsym. . 106
7.4 Comparison of different lower bounding approaches on TestSet CP1. . . 107
7.5 Comparison of different lower bounding approaches on TestSet CP2. . . 108
7.6 Comparison of different lower bounding approaches on TestSet CP3. . . 109
7.7 Comparison of different lower bounding approaches on TestSet CP4. . . 110



xvi List of Tables

7.8 Comparison of different lower bounding approaches on TestSet CP. Each
row reports the average on 12 instances. . . . . . . . . . . . . . . . . . . 112

8.1 Lower-bound performance in the 30nodes set of instances. . . . . . . . 131
8.2 Lower-bound performance in the 50nodes set of instances. . . . . . . . 132
8.3 Lower-bound performance in the 30sparse set of instances set of instances.

133



Chapter 1

Introduction

The Quadratic 0-1 program with linear constraints is a very general class of optimization
problems and has a wide range of applications. Let n, m1, m2 be positive integers, B =
{0, 1}, R denote the set of reals, R+ denote the set of non-negative reals, Q ∈ Rn×n,
A ∈ Rm1×n, D ∈ Rm2×n be real matrices and c ∈ Rn

+, b ∈ Rm1 , and g ∈ Rm2 be three
real vectors. A Quadratic 0-1 Programming with linear constraints is a problem of the
following form:

QP: min xT Qx + cT x

s.t. x ∈ S ∩ Bn,

where S is described as:

S = {0 ≤ x ≤ 1 : Ax ≤ b, Dx = g}.

Many combinatorial optimization problems admit natural formulations as quadratic
0-1 programming problems. The Quadratic Assignment Problem (QAP), Quadratic Trav-
eling Salesman Problem (QTSP), Graph Partitioning, Quadratic Knapsack Problem (QKP),
and Quadratic Minimum Spanning Tree Problem (QMSTP) are among the well-known
particular cases of the QP which arise in a variety of real-world applications. All of these
problems are known to be NP-hard in general and therefore the QP is also NP-hard.

Branch-and-bound algorithms are the most successful procedure for solving the QP.
The branch-and-bound algorithm is based on decomposition of the original problem into
a series of smaller subproblems, then recursively solves each subproblem, and discards
the non-optimal solutions by using the best obtained lower estimated bound. In fact this
approach behaves well only if one gets tight lower bounds for the objective function. In
general, the solution methods of finding a lower bound for the QP can be divided into two
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main groups: Reformulation-Relaxation approaches, and Reformulation-Decomposition
approaches. Reformulation is the first step of the lower bounding procedure for the QP
which tries to convert the problem into an equivalent one in such a way that solving
the resulting problem be easier or more efficient than the original one. We say that two
problems P and P ′ are equivalent if they admit the same set of solutions in the original
variable space and the objective function values are equal at the corresponding solu-
tions. Since in general the QP is a non-linear non convex problem, most of the proposed
approaches try to reformulate the problem either as an equivalent Mixed Integer Lin-
ear Program (MILP) or as an equivalent quadratic 0-1 program and solve the resulting
program by effective algorithms that take the problem structure into account. Based on
the structure of the resulting problem different relaxation and/or decomposition meth-
ods may be applied to provide a lower bound. If the resulting problem is an MILP, then
the most common method to obtain a lower bound is to drop the integrality require-
ment on the binary variables and solve the resulting linear programming relaxation of
the problem. Usually a considerable gap between the optimal value of the MILP and its
LP relaxation leads to apply some efficient decomposition methods to improve the LP
bounds. Dantzig-Wolf decomposition, Lagrangian relaxation, and Cutting plane methods
are among the most well-known decomposition methods in the literature which gener-
ate approximations to the convex hull of feasible solutions. If the resulting problem is
a quadratic 0-1 Program, then unlike the MILP, using traditional decomposition meth-
ods may not be so trivial. Therefore, considering the problem structure, some different
relaxations and decompositions approaches may be used.

The basic approach in optimizing a quadratic 0-1 program is to employ an initial lin-
earization to transform the problem into an equivalent linear form. In order to achieve the
linearity, auxiliary variables and constraints are added to the problem. However dealing
with linear programming-based reformulations, two different issues must be considered:
the increasing size of the problem in terms of number of the variables and constraints,
and also tightness of the obtained lower bounds. More precisely, two different linearized
reformulations P ′ and P ′′ of problem P may equivalently depict the same nonlinear
program, but their size and continuous relaxations can be drastically differ depending on
the manner in which the auxiliary variables and constraints are defined. The standard
strategy to linearize the quadratic terms xixj for all i, j = 1, 2, . . . , n is to introduce new
binary variables yij = xixj which satisfy the following set of constraints:

yij ≤ xi, yij ≤ xj , and yij ≥ xi + xj − 1.

The new formulation requiresO(n2) additional variables and constraints andwell-known
from the literature (see [57, 62].) In order to improve the standard linearization technique,
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Glover [56] proposed a new strategy to linearize the quadratic terms xixj through the
introduction of n unrestricted continuous variables and 4n linear inequalities. Adams
et al. [1], Adams and Forrester [2], Chaovalitwonges [29], and Sherali and Smith [112]
provide different O(n) linearization approaches.

The reformulation-linearization technique (RLT) is an alternative and successful ap-
proach which was first introduced by Adams and Sherali [5] for 0-1 quadratic program-
ming problems and then was generalized for a class of 0-1 mixed integer programming
problems by the same authors [6]. The best description of the RLT with complete de-
tails can be found in Sherali and Adams [111]. The RLT is a technique for generating an
n-level hierarchy of polyhedral representation for linear and polynomial 0-1 program-
ming problems with the n-th level providing an explicit algebraic characterization of the
convex hull of feasible solutions. The level of the hierarchy directly corresponds to the
degree of the polynomial terms produced during the reformulation stage. Hence, in the
reformulation phase, given a value of the level d ∈ {1, . . . , n} the RLT constructs various
polynomial factors of degree d comprised of the product of some d binary variables xj or
their complements (1−xj). The RLT essentially consists of two steps: (i) a reformulation
step, in which nonlinear valid inequalities are generated by combining constraints of the
original problem, and (ii) a linearization step in which each product term is replaced by a
single continuous variable. Applying RLT to the special cases of the QP (e.i., QAP) leads
to tight linear relaxations [3, 4, 60].

Another relevant track of research on QP is to study the polyhedral structure of the
set of feasible solutions to improve the strength of the LP-based reformulation bounds.
Toward this end, one may construct a polyhedral approximation of the convex hull of the
feasible solutions of the LP-based reformulation and then solve the QP over it to obtain
a bound. One way to construct such polyhedral approximation is to generate some valid
inequalities in a dynamic way by using Cutting-plane methods. Padberg [96] proposed a
polytope, called Boolean quadratic polytope, associated to a linearized integer program-
ming formulation of an unconstrained quadratic 0-1 programming and introduced three
families of valid and facet-defining inequality for it. There are several papers devoted to
study the polyhedral structure of the special cases of the QP [41, 43, 66, 69, 109].

Semidefinite programming (SDP) is another popular approach to generate strong re-
laxations of the QP. The SDP can be viewed as an extension of linear programming
where the nonnegativity constraints are replaced by positive semidefinite (psd) con-
straints on matrix variables. More precisely for any vector x ∈ Bn of decision vari-
ables, we first introduce the new matrix Y = xxt, which transform the quadratic func-
tion of x to a linear function of Y , and then impose a “rank one” non-convex constraint
Y = xxt to the problem. Because of the non-convexity of the rank one constraint, a
relaxation of this constraint is considered such that the resulting problem be a SDP. Ap-
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plications of SDP for finding strong bounds for the various types of the QPs can be found
in [49, 66, 95, 100, 105]. More recently, Billionnet et al. [19] proposed a reformulation ap-
proach to the QP based on converting the non-convex quadratic objective function to an
equivalent convex quadratic function. The idea is to perturb the objective function with
some specific multipliers in such a way that it is convex and the continuous relaxation of
the QP is tighter. They showed that the optimal multipliers for the new convex program
can be found by solving a SDP.

Decomposition methods provide a different approach to compute a lower bound for
QP. Michelon and Maculan [89] applied a Lagrangian decomposition to obtain a lower
bound for the integer non-linear programming with linear constraints. In fact they split
the original variables into two groups and then joined these two groups of variables with
a new “linking” constraint. Dualizing the new problem in the linking constraint, they
could decompose the problem into two subproblems: a continuous nonlinear program-
ming and an integer linear programming. Chardaire and Sutter [30] introduced a new
decomposition method for unconstrained quadratic 0-1 programming that can be viewed
as a more general Lagrangian decomposition where several copies of each variable are
added. Following the same idea, Billionnet et al. [20] and [21] applied Lagrangian decom-
position methods to the quadratic knapsack problem. Mauri and Lorena [87] introduced
a new Lagrangian decomposition method for the unconstrained QP based on a graph
partitioning. In fact they first linearized the unconstrained QP as an MILP, represented
the resulting MILP by a graph, and then decomposed the MILP on some subproblems
through the copy of the edges formed by vertices belonging to different clusters and of
their respective vertices. Later, the same authors in [88] proposed a new alternative based
on column generation to solve a Lagrangian decomposition approach reported in [87] to
find lower bounds and feasible approximate solutions for QP.

The remaining of the thesis consists of two parts. Part I deals with the solution meth-
ods for the general case of the QP. We review the most important approaches from two
different point of views. In Chapter 2 we present different reformulations and relaxation
strategies based on linear and semidefinite programming. More precisely we start with
classic linearization methods to obtain a lower bound, and then try to improve the refor-
mulation so that its LP relaxation provides a stronger lower bound in a reasonable time.
Moreover we propose the Semidefinite programming as a different approach which can
be used either for generate a strong relaxation of the QP or to provide a convex reformu-
lation of the problem. Chapter 3 describes different reformulations of the QP based on an
equivalent convex or non-convex quadratic 0-1 programming. After introducing the dif-
ferent QP-based reformulation strategies, we use various decomposition techniques (in-
cluding Lagrangian decomposition) to obtain a strong lower bound. Part II is concerned
with the some special cases of the QPs related to quadratic version of some well-known
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combinatorial optimization problems. Among the most important classical combinato-
rial optimization problems, we study the quadratic assignment problem (QAP), quadratic
minimum spanning tree problem (QMSTP), quadratic traveling salesman problem (QTSP)
and finally, quadratic shortest path problem (QSP).

In Chapter 4 we consider the QAP as a classical difficult combinatorial optimization.
Due to its wide verity of applications and its resistance to solution strategies, numerous
researchers have studied the QAP and proposed both heuristic and exact solution meth-
ods. We review different reformulations and lower bounding procedure for the problem
and then dedicate our efforts to analysis and the interpretation of lower bounds. More-
over, we present a novel revised version of the level-d RLT representation with a reduced
number of constraints and provide a decomposition to solve the new MIP formulation.

In Chapter 5 we study two special cases of the QAP including the Adjacent QAP and
QAP on reducible graphs. The Adjacent Quadratic Assignment Problem (AQAP) is a vari-
ant of the QAP where the cost coefficient matrix has a particular structure. Motivated
by strong lower bounds obtained by applying RLT to the classical QAP, we propose two
special RLT representations for the problem. The first is based on a “flow” formulation
whose linear relaxation can be solved very efficiently for large instances while the second
one has significantly more variables and constraints, but possesses some desirable prop-
erties relative to the constraint set. For the QAP on reducible graph we give a Lagrangian
decomposition based on splitting the variables and then dualizing the copy constraint so
that the resulting problem can be decompose to two quadratic semi-assignment problems.

Chapter 6 is concerned with the QTSP. The QTSP is as a variant of the classical Trav-
eling Salesman Problem (TSP) whose costs are associated with each two edge that are
traversed in succession. In this chapter we first present the problem statement and pro-
pose some linearized integer formulations for both symmetric and asymmetric version of
the problem. In order to obtain a tight lower bound to the problem we provide a Linear
Programming formulation for the general QTSP that has a variable for each cycle in the
given graph. Then we apply a Column Generation approach to solve the new LP repre-
sentation whose pricing sub-problem is considered as a resource-constrained elementary
shortest path.

The QMSTP is a variant of the minimum spanning tree problem (MSTP) whose cost is
not only depend on an edge-cost but also the interaction cost between every pairs of edge.
In Chapter 7 we review different strategies found in the literature to compute the lower
bound for the QMSTP. We develop new bounds based on a reformulation scheme and
some new mixed 0-1 linear formulations that result from a reformulation-linearization
technique (RLT). To derive new lower bounds we provide some efficient dual-ascent al-
gorithms and compare the new bounds with the other bounding procedures in terms of
both overall strength and computational effort.



6 Introduction

Finally, in Chapter 8 we study the novel QSP which calls for the minimization of a
quadratic objective function subject to shortest-path constraints. We first show that the
problem is NP-hard. Then we propose and evaluate bounding techniques which exploit
the structure of the problem. Finally, we present the possible polynomially solvable cases
of the problem.



Part I

Quadratic 0-1 Programming





Chapter 2

Reformulation and Relaxations

Strategies for the QP

The goal of this chapter is to show the numerous ways in which, given an initial formu-
lation of the QP, problem structure can be used to obtain a reformulation which can be
solved in an efficient way. In the first part of the chapter we present the LP-based refor-
mulations which are the most frequently used approaches. These approaches consist in
reformulating the problem as an equivalent MILP and solving the Linear programming
relaxation of the latter problem to obtain a lower bound for the former. However, since
solving the LP relaxation of the linearized formulation usually does not provide a strong
lower bound, in the second part of the chapter we turn our attention to Semidefinite pro-
gramming (SDP). SDP is a different approach which can be used either for generate a
strong relaxation of the QP or to provide a convex reformulation of the QP.

2.1 LP-based reformulation relaxation

Several linearization strategies have been proposed in the literature for reformulating
the quadratic 0-1 program as equivalent mixed integer programming. In the following,
we present the most important strategies in terms of tightness of the bounds and also
computational performance.

2.1.1 Standard linearization

The standard linearization (see [57, 62]) of the QP amounts to replace the quadratic terms
xixj ∀i, j = 1, 2, . . . , n, i ̸= j, by a new binary variable yij such that yij = 1 if and only
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if both xi and xj are equal to one. The linearized model has the following form:

LQP1: min
∑

i

∑
j

qijyij +
∑

i

cixi

s.t. yij ≤ xi ∀i, j = 1, 2, . . . , n, i ̸= j (2.1)

yij ≤ xj ∀i, j = 1, 2, . . . , n, i ̸= j (2.2)

yij ≥ xi + xj − 1 ∀i, j = 1, 2, . . . , n, i ̸= j (2.3)

y ∈ Bn (2.4)

x ∈ S ∩ Bn.

This model contains O(n2) additional constraints (2.1) to (2.4) to guarantee the equation
yij = xixj . Solving the Lp relaxation of LQP1 by a general-purpose solver provides a
lower bound to the objective value of QP.

2.1.2 Glover linearization

Glover in [56] introduced an equivalent MILP formulation of QP by defining a new con-
tinuous variable yi = xifi(x) for each i = 1, 2, . . . , n, where fi(x) =

∑
j qijxj . By

adding some additional constraints to enforce the equality yi = xifi(x) for each i, the
following problem implies:

LQP2:

min
∑

i

yi +
∑

i

cixi

s.t. Lixi ≤ yi ≤ Uixi ∀i = 1, 2, . . . , n (2.5)

fi(x) − Ui(1 − xi) ≤ yi ≤ fi(x) − Li(1 − xi) ∀i = 1, 2, . . . , n (2.6)

x ∈ S ∩ Bn.

where for each i ∈ {1, 2, . . . , n}, Li and Ui are defined as follows:

Li =
∑

j

min(qij , 0) and Ui =
∑

j

max(qij , 0). (2.7)

Note that the problem QP and LQP2 are equivalent in a sense that for any feasible so-
lution x of QP there exists a y such that (x, y) is a feasible solution to LQP2 with the same
objective value. Conversely, for any feasible solution (x, y) to LQP2, the corresponding
x is feasible to QP with the same objective value.
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2.1.3 Revised Glover linearization

Motivated by desire to find an equivalent linearized model to the QP with less variables
and constraints, Adams and Forrester [1] proposed a revised version of LQP2 with just
n additional constraints. In this approach Li and Ui are the lower and upper bounds on
the linear functions fi(x) which are calculated as follows:

Li = min{fi(x) : x ∈ S} and Ui = max{fi(x) : x ∈ S}.

The following theorem provides the reason of revising the Golver model.

Theorem 2.1.1 (Adams and Forrester [1]). Removing the right hand side of constraints
(2.5) and (2.6) does not have any affect on the minimum value of the LQP2.

Proof. The proof follows from the fact that variable y has the non-negative coefficient
in the objective function and just appears in constraints (2.5) and (2.6). Let the objective
coefficient of yi be positive, then by removing the right-hand sides of these two con-
straints, an optimal solution must be yi = max{Lixi, fi(x) − Ui(1 − xi)}. Considering
0 ≤ x ≤ 1, we have

yi = max{Lixi, fi(x) − Ui(1 − xi)} ≤ min{Uixi, fi(x) − Li(1 − xi)}. (2.8)

Not that for variable yi with zero coefficient, there exists an optimal yi that satisfies
(2.8).

As a consequence of Theorem 2.1.1 and substituting zi = yi −Lixi in the constraints
and the objective function of LQP2 a revised form of the Glover model is obtained:

LQP3: min
∑

i

(zi + Lixi) +
∑

i

cixi

s.t. zi ≥ fi(x) − Ui(1 − xi) − Lixi ∀i = 1, 2, . . . , n

z ≥ 0, x ∈ S ∩ Bn.

Although the strength of the lower bound obtained by the continuous relaxation of
LQP3 is the same as the provided bound by LQP2, but the number of additional con-
straints from 4n have been reduced to n.

2.1.4 Enhanced Glover linearization

In order to improve the revised Glover model in sense of the quality of the lower bound
let us consider the basic model of LQP3 with additional assumption qii = 0. Note that
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this assumption is not restrictive, since qiix
2
i = qiixi.

min
∑

i

(yi + cixi)

s.t. yi ≥ f i(x) − U i(1 − xi) ∀i = 1, 2, . . . , n (2.9)

yi ≥ Lixi ∀i = 1, 2, . . . , n (2.10)

x ∈ S ∩ Bn. (2.11)

where f i(x) =
∑

j ̸=i qij , U i = max{f i(x) : x ∈ X, xi = 1} and Li = min{f i(x) :
x ∈ X, xi = 1}.

Let ci +
∑

j ̸=i qij =
∑

j qij . Then U i = max{fi(x) − cixi : x ∈ X, xi = 1} and
Li = min{fi(x) − cixi : x ∈ X, xi = 1}. Thus Ui = ci + U i and Li = ci + Li. By
adding cixi to the both sides of (2.9) we have

yi + cixi ≥f i(x) − U i(1 − xi) + cixi = (fi(x) − cixi) − (Ui − ci)(1 − xi)

=fi(x) − Ui(1 − xi) + ci(1 − xi). (2.12)

Similarly, adding cixi to the both side of (2.10) implies:

yi + cixi ≥ Lixi + cixi = (Li − ci)xi + cixi = Lixi (2.13)

Considering (2.12) and (2.13), and replacing yi + cixi by z̃i we have

z̃i ≥ fi(x) − Ui(1 − xi) + ci(1 − xi) (2.14)

z̃i ≥ Lixi. (2.15)

Substituting zi = z̃i − Lixi in (2.14) and (2.15) we obtain a new linearized model with
just n additional constraints as shown in LQP4.

LQP4: min
∑

i

(zi + Lixi) +
∑

i

cixi

s.t. zi ≥ fi(x) − Ui(1 − xi) − Lixi + ci(1 − xi) ∀i = 1, 2, . . . , n

z ≥ 0, x ∈ S ∩ Bn.

Problems QP and LQP4 are equivalent in the sense that for each optimal solution
to one problem, there exists an optimal solution to the other problem having the same
optimal objective value.

Theorem 2.1.2. Continuous relaxation of LQP4 provides a lower bound on QP at least as
large as the continuous relaxation of LQP3.
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Proof. It is sufficient to show any feasible solution of LQP4 is also feasible in LQP3, which
follows from the fact that fi(x)−Ui(1−xi)−Lixi+ci(1−xi) ≥ fi(x)−Ui(1−xi)−Lixi

since c ∈ R+
n.

2.1.5 Some additional linearization models

Chaovalitwongse et al. [29] introduced a new linearization technique with O(n) addi-
tional continuous variables and constraints. The new linearized model has the following
form:

LQP5: min
∑

i

zi +
∑

i

(ci − M)xi

s.t.
∑

j

qij − yi − zi + M = 0 ∀i = 1, 2, . . . , n

yi ≤ 2M(1 − xi) ∀i = 1, 2, . . . , n

z, y ≥ 0, x ∈ S ∩ Bn.

where M = maxi{
∑

j |qij | + |ci|}.

Theorem 2.1.3 (Chaovalitwongse et al. [29]). problems QP and LQP5 are equivalent,i.e.,
QP has an optimal solution x if and only if there exist y, z such that (x, y, z) is an optimal
solution of LQP5.

Sherali and Smith [112] linearized the QP in a more general form than LQP5 whose
size is linear in terms of the number of variables. LQP6 gives the new linearization:

LQP6: min
∑

i

zi +
∑

i

cixi

s.t.
∑

j

qij − yi − zi = 0 ∀i = 1, 2, . . . , n

yi ≤ Ui(1 − xi) ∀i = 1, 2, . . . , n

z, y ≥ 0, x ∈ S ∩ Bn.

where Ui is defined as (2.7). The authors proved that for a specific value of Ui =
∑

j qij

for each i, the lower bound obtained by solving the continuous relaxation of the standard
linearized model, LQP1, is tighter than then one obtained by continuous relaxation of
LQP6. Moreover they mentioned that by taking Ui = M = maxi{

∑
j |qij | + |ci|} ∀i,

the LQP6 is exactly the same as LQP5, i.e., LQP5 is a special case of LQP6.
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2.1.6 Reformulation-linearization technique

The reformulation-linearization technique (RLT) is a successful approach which was in-
troduced by Adams and Sherali [5] for 0-1 quadratic programming problems. The ap-
plication of RLT to QP, transforms the problem into an MILP via two basic steps of re-
formulation and linearization. In the reformulation step, the problem is reformulated by
constructing redundant nonlinear restrictions, obtained by multiplying the constraints
of S by product factors of the binary variables and their complements, while in the lin-
earization step, the objective and constraints of the reformulated problem is linearized
by substituting a continuous variable for each distinct nonlinear term. Depending on
the product factors used to compute the nonlinear restrictions, different level of RLT can
be obtained. Each level of the hierarchy provides a program whose continuous relax-
ation is at least as tight as the previous level, with the highest level giving a convex hull
representation.

We concern ourselves in this sectionwith the level-1 RLT formulation of theQPwhich
is generated via the following two steps:

Reformulation. Multiply each of the m1 inequities Ax ≤ b defining S by each binary
variable xj and its complement (1 − xj) and each of the m2 equalities Dx = g by
each binary variable xj , for all j = 1, 2, . . . , n. Append these new restrictions to S and
Substitute x2

j = xj ∀j throughout the constraints and objective function.

Linearization. Linearize the resulting problem by substituting, for every occurrence of
each product xixj with i ̸= j the continuous variable yij . Enforce constraints yij = yji

for all (i, j), with i < j.

The resulting level-1 RLT formulation is as follows:

RLTQP: min
∑

i

∑
j ̸=i

qijyij +
∑

i

cixi

s.t.
∑
i ̸=j

ahiyij ≤ (bh − ahj)xj ∀j = 1, 2, . . . , n, h = 1, 2, . . . , m1∑
i ̸=j

ahi(xi − yij) ≤ (bh − ahj)(1 − xj) ∀j = 1, 2, . . . , n

∀h = 1, 2, . . . , m1∑
i ̸=j

dhiyij = ghxj ∀j = 1, 2, . . . , n, h = 1, 2, . . . , m2

yij = yji ∀i, j = 1, 2, . . . , n, i < j

yij ≥ 0 ∀i, j = 1, 2, . . . , n, i ̸= j

x ∈ S ∩ Bn.
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Problem QP and RLTQP are equivalent in the following sense. Given any feasible
solution x to the QP, there exists a y such that (x, y) is feasible to the RLTQP with the
same objective value. Conversely, for any feasible solution (x, y) to the RLTQP, the cor-
responding x is feasible to the QP with the same objective value. The proof is straight-
forward and follows the RLT theory [5, 6].

2.2 Semidefinte programming

Semidefinte programming (SDP) is a general form of linear programming which enables
us to specify in addition to a set of linear constraints a special form of nonlinear constraint
called “Semidefinte” constraint. In general a SDP has the following form:

SDP: min Q0 • X

s.t. Qk • X = bk ∀k = 1, 2, . . . , m

X < 0.

where Qk and X are n × n matrices, X is symmetric, bk are scalars, and Qk • X =∑n
i=1
∑n

j=1 Qk
ijXij . The inequality sign inX < 0means thatX is positive semidefinite,

i.e., yT Xy > 0 for all y ∈ Rn.
The SDP program is a convex optimization problem and can be solved very efficiently,

both in theory and in practice. Themost common approach to solve the SDP is the interior
point method. Interior point methods were first introduced by Karmarkar in [72] for LPs
and then were generalized by Alizadeh [8] and Kamath and Karmarkar [71] from linear
programming to semidefinite programming. For more recent papers on interior-point
methods for semidefinite programming we refer the reader to [10, 40, 47, 65, 68, 90].

Semidefinte programming has variety of applications in combinatorial optimization.
Lovász in [81] applied the semidefinte programming to approximate the clique number
and chromatic number of graphs. After the first application of SDP to graph optimization
problem [81], Alizadeh was among the first researchers to realize the potential of SDP
in connection with integer programming [9]. Since then, semidefinte programming has
been applied to derive strong tractable convex relaxations of variety of NP-hard optimiza-
tion problems including various quadratic optimization problems [49, 64, 66, 82, 95, 100].
More recently Billionnet et al. [19] applied SDP to reformulating the quadratic 0-1 pro-
grammingwith linear constraints into an equivalent 0-1 programwith a convex quadratic
objective function. The idea is to perturb the objective function in such a way that it is
convex and the continuous relaxation of the 0-1 QP is tighter. Their method which called
quadratic convex relaxation (QCR) has the advantage that it can be applied also for the
convex instances and it improves the bound obtained by solving the continuous relax-
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ation of the instance.
In the following subsections we present the applications of the SDP as a relaxations

of the QP and also as a reformulation technique.

2.2.1 Semidefinte realaxation for the QP

Consider the following form of the QP

QP: min xT Qx + cT x

s.t. Ax ≤ b, Dx = g

x2
i = xi ∀i.

where constraints x ∈ Bn have been replaced by the non-convex quadratic constraints
x2

i = xi. By defining an n × n symmetric matrix X = xxT and denoting the diagonal of
this matrix by x we can rewrite the QP as follows:

min Q • X + cT x

s.t. Ax ≤ b, Dx = g

X = xxT

diag(X) = x.

Relaxing constraint X −xxT = 0 to X −xxT < 0, i.e., X −xxT be positive semidefinite,
implies the following SDP:

SDR: min
{

Q • X + cT x : Ax ≤ b, Dx = g, diag(X) = x, Y < 0
}

(2.16)

where

Y =
(

X x

x 1

)
.

The solution of the simidefinite programming SDR provides a lower bound on the
QP. In order to tightening the above simidefinite relaxation one can add some additional
valid equalities and inequalities to the SDR by considering the general idea presented in
[82, 111]. Consider constraints ahx ≤ bh for each h and multiply either by xj or (1−xj),
∀j, to obtain the following inequalities:∑

i

ahiXij ≤ bhxj (2.17)∑
i

ahi(xi − Xij) ≤ bh(1 − xj). (2.18)
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Replacing ahx ≤ bh in (2.16) by these two new inequities (2.17) and (2.18) a revised form
of SDR with tighter bound is found.

RSDR1: min Q • X + cT x

s.t.
∑

i

ahiXij ≤ bhxj ∀(j, h)∑
i

ahi(xi − Xij) ≤ bh(1 − xj) ∀(j, h)

Dx = g, diag(X) = x, Y < 0.

In a similar way, any linear constraints Dx = g can be multiplied by any variable xj

to yield a valid quadratic constraint. Imposing this new quadratic constraint to the SDR
provides a different relaxation as follows:

RSDR2: min Q • X + cT x

s.t.
∑

i

dhiXij − ghxj = 0 ∀(j, h) (2.19)

Ax ≤ b, Dx = g, diag(X) = x, Y < 0.

Another strategy to strengthen the SDR relaxation as proposed in [100], [95], is to
include the following squared-norm in the model.

Dx = g ⇐⇒ ∥Dx − g∥2 = 0 ⇐⇒ DDT • X − 2gT Dx + ∥g∥2 = 0

Faye and Roupin [39] proved that, replacing nm2 constraints (2.19) by a single con-
straint DDT • X − 2gT Dx + ∥g∥2 the feasible region of the resulting problem is equal
to the feasible region of the RSDR2.

Roupin in [107] proposed a different quadratic constraint DDT • xxT = g2 with the
assumption of g ≥ 0 and has been proved that

{
(X, x) : X − xxT < 0, DDT • X − 2gT Dx + g2 = 0

}
={

(X, x) : X − xxT < 0, Dx = g, DDT • xxT = g2} .

Anstreicher in [12] combined the RLT and SDP, to obtain a relaxation that dominates
those obtained by using either technique alone. The author shows that this can yield
significant benefits in terms of bound strength, though computational performance can
be low.
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2.2.2 SDP-based reformulation for the QP

In the previous section we explained how to relax the quadratic 0-1 programming into
a semidefinte programming. In this section we present a different application of SDP to
convert theQPwith equality constraints into a quadratic convex formulation proposed by
Billionnet et al. [19]. The general idea is to solve QP by reformulating the problem into an
equivalent 0-1 program with a convex quadratic objective function, followed by the use
of a standard mixed integer quadratic programming solver. This convexification method
which is called Quadratic Convex Reformulation (QCR), uses the equality constraints of
QP and requires the solution of a semidefinite program.

Given a QP, the QCR method perturbs the objective by adding terms of the form
αi(x2

i − xi) and
∑

j βkj(
∑

i dkixi − gk)xj where α ∈ Rn and β ∈ Rn×n. The resulting
problem QPα,β is written as follows:

QPα,β min xT Qα,βx + cT
α,βx

s.t. x ∈ S ∩ Bn.

where

Qα,β = Q + 1
2(βT D + DT β) + Diag(α)

cα,β = c − βT g − α.

Diag(α) ∈ Rn×n is a diagonal matrix with the elements of α on the diagonal. Consid-
ering x ∈ Bn and Dx = g it is obvious that QPα,β and QP are equivalent.

A natural question arises here about how to generate the values for α and β so that
QPα,β is convex and its continuous relaxation provides a lower bound as tight as possible.
in doing so, we are interested in solving the following problem:

CQP : max
α,β

Qα,β<0

min{xtQα,βx + cT
α,βx : x ∈ S}.

Theorem 2.2.1 (Billionnet et al. [19]). The optimum value of CQP is equal to the optimum
value of the semidefinte programming RSDR2. Moreover the optimal value β∗ is given by the
optimal value of the dual variables associated with constraints diag(X) = x, and optimal
values α∗ are given by the optimal values of the dual variables associated with constraints
(2.19).

In general the QCR method find a lower bound on the QP in two steps: first solves
a SDP to obtain the optimal values of α∗ ad β∗, and then to by using a general-purpose
(MIQP) solver, solves the continuous relaxation of the convex quadratic problemQPα∗,β∗ .



Chapter 3

Reformulation and

Decomposition for the QP

In this chapter we present the general principle of reformulation-decomposition for the
QP which consists of reformulating the QP as an equivalent quadratic programming, and
then decomposing the resulting problem to obtain a strong bound for the original prob-
lem. Decomposition is a general approach of solving a problem by splitting it into smaller
subproblems and solving each of the smaller subproblems separately, either in parallel
or sequentially. In the first part of the chapter we present the Lagrangian decomposition
approaches applied to both the QP and its MILP formulation, while in the second part of
the chapter we introduced some QP-based reformulation strategies for the QP, and then
provide a simple decomposition strategy for the resulting problem.

3.1 Reformulation and Lagrangian decomposition

Decomposition methods are general strategies to solve a problem by breaking it up into
smaller ones and solving each of the smaller ones separately, either in parallel or se-
quentially. These methods can be applied for the problem with special structure called
block-separable, i.e., the variables can be partitioned into p subsets such that the objec-
tive is a sum of functions over each subset, and each constraint involves only variables
from one of the subsets. More precisely we have the following definition:

Definition 3.1.1 (Nowak [93]). ProblemP : min{F0(x) : Fi(x) ≤ 0, ∀i = 1, . . . , m, lj ≤
xj ≤ uj ∀j = 1, . . . , n} is called block-separable, if there exists a partition {I1, . . . , Ip} of
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N = {1, . . . , n} with ∪p
k=iIk = N and Ik ∩ Il = ∅ ∀k, l, k ̸= l such that

Fi(x) =
p∑

k=1
Fi,k(xIk

), i = 0, . . . , m. (3.1)

where xIk
is a vector including all xi ∈ Ik , and function Fi,k(xIk

) is a function of xIk
. If

the size of all Ik is one, i.e., Ik = {k}, then for k = 1, . . . , p, problem P is called separable.
In this case we have

Fi(x) =
n∑

k=1
Fi,k(xk), i = 0, . . . , m. (3.2)

Since, in general, problem QP is not a block-separable problem, some extra efforts
should be considered to reformulate it into a block-separable problem. In the following
we present the decomposition strategies applied for both the original QP and its MILP
formulation.

3.1.1 Lagrangian decomposition for the QP

Consider the extended version of problem QP as follows:

min
∑

i

∑
j

qijxixj +
∑

i

cixi

s.t.
∑

j

ahj ≤ bi h = 1, 2, . . . , m1∑
j

dlj = gl l = 1, 2, . . . , m2

x ∈ Bn.

In order to use a decomposition scheme, we first reformulate the problem into a block-
separable problem and then apply Lagrangian relaxation to solve the resulting problem.
Let I1, . . . , Ip be an arbitrary partition of N = {1, . . . , n} into p subsets such that Ik ∩
Il = ∅ ∀k, l, k ̸= l and ∪p

k=iIk = N . Creating a copy y of each variable x as

yk
j = xj ∀j ∈ N \ Ik

and leting

fk(x, y) =
∑
i∈Ik

∑
j∈Ik

qijxixj +
∑
i∈Ik

∑
j∈N\Ik

qijxiy
k
j +

∑
i∈Ik

cixi.
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the problem is rewritten as follows:

min
∑

k

fk(x, y) (3.3)

s.t.
∑
j∈Ik

ahjxj +
∑

j∈N\Ik

ahjyk
i ≤ bh k = 1, . . . , p, h = 1, 2, . . . , m1 (3.4)

∑
j∈Ik

dljxj +
∑

j∈N\Ik

dljyk
j = gl k = 1, . . . , p, l = 1, 2, . . . , m2 (3.5)

yk
j = xj ∀k = 1, . . . , p, j ∈ N \ Ik (3.6)

x ∈ B|Ik| ∀k = 1, . . . , p (3.7)

yk ∈ B|N\Ik| ∀k = 1, . . . , p. (3.8)

Nowwe consider a relaxation of this problem by relaxing the copy constraints (3.6) using
the multipliers λk

j ∀k = 1, . . . , p, j ∈ N \ Ik . The resulting Lagrangian relaxation is:

RQP1: min

 ∑
k

fk(x, y) +
∑

j∈N\Ik

λk
j (xj − yk

i )

 : (3.4), (3.5), (3.7), (3.8)

 .

Problem RQP1 can be decomposed into p subproblems RQP1k . For each k = 1, . . . , p, if
variables xi, i ∈ Ik are fixed at 0 or 1, each subproblem RQP1k is an Integer linear pro-
gramming on variables yk . Since Integer linear programming is in general an NP-hard
optimization problem, one can consider a continuous relaxation of the RQP1k by drop-
ping the integrality restriction over the variables yk , and then imposing the following
constraints to strengthen the lower bound quality:

xiy
k
j = xjyl

i ∀k, l = 1, . . . , p, k ̸= l, i ∈ Ik, j ∈ Il.

Relaxing these new constraints with Lagrangian multipliers µij ∀k, l = 1, . . . , p, k ̸=
l, i ∈ Ik, j ∈ Il, we obtain the following Lagrangian dual problem:

max
λ,µ

p∑
k=1

Θ∗
k(λ, µ)
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where for each k, l = 1, . . . , p, Θ∗
k(λ, µ) is the optimal value of the below subproblem:

Θk(λ, µ) : min
∑
i∈Ik

∑
j∈Ik

qijxixj +
∑
i∈Ik

∑
j∈N\Ik

(qij + µij − µji)xiy
k
j

+
∑
i∈Ik

(ci +
∑
l ̸=k

λk
i )xi −

∑
j∈N\Ik

yk
j

s.t.
∑
j∈Ik

ahjxj +
∑

j∈N\Ik

ahjyk
i ≤ bh h = 1, 2, . . . , m1

∑
j∈Ik

dljxj +
∑

j∈N\Ik

dljyk
j = gk l = 1, 2, . . . , m2

x ∈ B|Ik|

0 ≤ yk ≤ 1.

Note that for given λ and µ, and fixed values (0 or 1) of the xj ∈ Ik variables, problem
Θk(λ, µ) is a linear programming problem on variables yk which can be solved in an
efficient way.

We note that the quality of the bound depends not only on the size of the subsets and
the quality of the Lagrangian multipliers, but also on how elements are assigned to the
subsets. It is however, not clear which assignment of elements to groups that result in the
tightest bound. The assignment of elements to the subsets can be done by considering
the problem structure, but in general it can be done at random.

3.1.2 Lagrangian decomposition for the linearized QP

Mauri et al. [87] proposed a decomposition strategy for the unconstrained quadratic
0-1 programming which, unlike the reformulation-decomposition strategy proposed in
the previous section, uses an MILP reformulation of the QP to perform the proposed
decomposition. Consider a graph G = (N, E) and adjacency matrix E ∈ Rn×n whose
elements eij = 1 if qij ̸= 0 and eij = 0 if qij = 0. This graph is partitioned into p ≤ n

clusters V1, . . . , Vp, Vk ∩ Vl = ∅ ∀k, l, k ̸= l; Gk = (Vk, Ek) ∀k = 1, . . . , p. Below is
the MILP formulation of the QP obtained by standard linearization presented in Section
2.1.1 and the graph partitioning:
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min
p∑

k=1

∑
i∈Vk

∑
j∈Vk

i ̸=j

qijwij +
∑
i∈Vk

∑
j∈N\Vk

i ̸=j

qijzij +
∑
i∈Vk

cixi


s.t. wij ≤ xi ∀k = 1, . . . , p, i ∈ Vk, j ∈ Vk, i ̸= j, qij > 0 (3.9)

wij ≤ xj ∀k = 1, . . . , p, i ∈ Vk, j ∈ Vk, i ̸= j, qij > 0 (3.10)

wij ≥ xi + xj − 1 k = 1, . . . , p, i ∈ Vk, j ∈ Vk, i ̸= j, qij < 0 (3.11)

wij ≥ 0 k = 1, . . . , p, i ∈ Vk, j ∈ Vk, i ̸= j, qij < 0 (3.12)

zij ≤ yk
i ∀k = 1, . . . , p, i ∈ Vk, j ∈ N \ Vk, i ̸= j, qij > 0 (3.13)

zij ≤ yk
j ∀k = 1, . . . , p, i ∈ Vk, j ∈ N \ Vk, i ̸= j, qij > 0 (3.14)

zij ≥ yk
i + xj − 1 k = 1, . . . , p, i ∈ Vk, j ∈ N \ Vk, i ̸= j, qij < 0 (3.15)

zij ≥ 0 k = 1, . . . , p, j ∈ N \ Vk (3.16)

xj = yk
j ∀k = 1, . . . , p, j ∈ N \ Ik (3.17)

zij = zji k = 1, . . . , p, i ∈ Vk, j ∈ N \ Vk, j > i (3.18)

xi ∈ B k = 1, . . . , p, i ∈ Vk. (3.19)

The variableswij represent the edges between the vertices i and j, while the variables zij

shows edges between the vertex i and the copy of vertex j. Constraints (3.9) to (3.12) are
related to the edge (i, j) inside the cluster k, and constraints (3.13) to (3.16) are related to
the edge (i, j) with vertices in different clusters.

Dualizing constraints (3.17) and (3.18) with multiplier α and β in a Lagrangian fash-
ion, the resulting problem can be partitioned into p independent subproblems, so the
Lagrangian dual is presented as:

max
α,β

p∑
k=1

Φ∗
k(α, β)

where Φ∗
k(α, β) is the optimal value of the subproblem k for each k = 1, . . . , p. In order

to solve the Lagrangian dual, the authors applied a subgradient algorithm, and used the
graph partitioning scheme presented in [73] for the splitting procedure.

Using the same idea described above for the unconstrained quadratic 0-1 program-
ming, we apply Lagrangian decomposition to a linearized version of the QP. For a given
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partition I1, . . . , Ip of N , consider the following relaxation of QP:

RQP2: min
∑

k

∑
i∈Ik

∑
j∈Ik

qijxixj +
∑
i∈Ik

∑
j∈N\Ik

qijxiy
k
j +

∑
i∈Ik

cixi

 (3.20)

s.t. yk
j = xj ∀k = 1, . . . , p, j ∈ N \ Ik (3.21)

xiy
k
j = xjyl

i ∀k, l = 1, . . . , p; k ̸= l; i ∈ Ik; j ∈ Il (3.22)

(3.4), (3.5), (3.7) (3.23)

0 ≤ yk ≤ 1 ∀k = 1, . . . , p. (3.24)

where the binary restrictions on variables y have been relaxed. Relaxing constraints (3.21)
with multipliers λk

j ∀k = 1, . . . , p, j ∈ N \ Ik and constraints (3.22) with multipliers µij

∀k, l = 1, . . . , p; k ̸= l; i ∈ Ik; j ∈ Il, we obtain the following Lagrangian function:

Ψ(x, y, λ, µ) =
∑

k

Ψk(x, y, λ, µ), (3.25)

where for each k = 1, . . . , p, we have

Ψk(x, y, λ, µ) =
∑
i∈Ik

∑
j∈Ik

qijxixj +
∑
i∈Ik

∑
j∈N\Ik

(qij + µij − µji)xiy
k
j

+
∑
i∈Ik

(ci +
∑
l ̸=k

λk
i )xi −

∑
j∈N\Ik

yk
j

To linearize Ψk(x, y, λ, µ) for given λ and µ, we introduce new continuous variables
wk

i = xi

∑
j∈Ik

qijxj and zk
i = xi

∑
j∈N\Ik

(qij + µij − µji)yk
j for each i ∈ Ik , and

add some constraints to enforce these equalities. By doing so, the following Lagrangian
relaxation problem implies:

min
∑

k

Ψk(x, y, λ, µ) (3.26)

s.t. wk
i ≥

∑
j∈Ik

xj − Uk
i (1 − xi) − Lk

i xi ∀k = 1, . . . , p, i ∈ Ik (3.27)

zk
i ≥

∑
j∈N\Ik

yk
j − Ūk

i (1 − xi) − L̄k
i xi ∀k = 1, . . . , p, i ∈ Ik (3.28)

(3.23), (3.24) (3.29)

wk
i , zk

i ≥ 0 ∀k = 1, . . . , p, i ∈ Ik. (3.30)
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where

Ψk(x, y, λ, µ) =
∑
i∈Ik

wk
i + zk

i + (Lk
i + L̄k

i + ci +
∑
l ̸=k

λl
i

xi −
∑

i∈N\Ik

yk
i (3.31)

and for each k and i ∈ Ik , the Lk
i , L̄k

i , Uk
i and Ūk

i are defined as:

Lk
i (Uk

i ) = min(max){
∑
j∈Ik

qijxj : (3.4), (3.5), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

L̄k
i (Ūk

i ) = min(max){
∑

j∈N\Ik

qijyk
j : (3.4), (3.5), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

To solve the problem we can partition it into p independent subproblems and solve the
subproblems at each step of the subgradient algorithm.

3.2 QP-based reformulation and a simple decomposi-

tion

The general idea of the QP-based reformulation is to perturb the objective function to
obtain an equivalent QP so that solving the resulting problem be more easier or provides
a stronger bound for the original problem. Let us first define a reformulation for QP based
on definition of reformulation proposed by Carraresi and Malucelli for the QAP [27]:

Definition 3.2.1. Given an instances P : min{xT Qx + cT x : x ∈ S ∩ Bn} of the QP,
the problem P ′ : min{xT Q′x + c′T x : x ∈ S ∩ Bn} is called a reformulation of the P ,
if for each x ∈ S ∩ Bn we have

xT Qx + cT x = xT Q′x + c′T x. (3.32)

It is easy to see that, if P ′′ is a reformulation of P ′ and P ′ is a reformulation of P , then P ′′

is also a reformulation of P .

The reformulation of the QP into an equivalent quadratic 0-1 programming with con-
vex or non-convex objective function has already been considered for both the general
and special cases of the QP in the literature. Hammer and Rubin [61] proposed the fol-
lowing reformulation which transform a QP into a convex one:

min
x∈S∩Bn

{
xT Qx + cT x − γ(Q)

n∑
i=1

(x2
i − xi)

}
(3.33)

where γ(Q) is the smallest eigenvalue of Q. As we explained in Section 2.2.2, Billionnet
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et al. [19] proposed the QCR method to reformulate the QP into a convex quadratic
programming. In [18], Billionnet and Elloumi provide a different reformulation strategy
for convexifying the unconstraint QP which can be considered as a special case of the
QCRmethod. As for the special cases of theQP,manyQP-based reformulations have been
proposed which among them we can refer to the reformulations approaches by Carraresi
and Malucelli [27, 28] and Assad and Xu [14, 15]. In the following we generalized the
reformulation strategy proposed for the QAP by Carraresi and Malucelli [27, 28] for the
general QP.

3.2.1 A simple decomposition-based lower bound

Consider QP in its general form and rewrite it asminx∈S∩Bn

∑
i

(∑
j qijxj

)
xi+

∑
i cixi.

For each i, if xi = 1, then replacing
∑

j qijxj with its minimum value over the set of
possible feasible solutions provides a lower bound on the objective value of the original
problem. More precisely we can solve a set of subproblems, Pi, with a linear objective
function, one for each i, i.e.,

Pi : wi = min

∑
j

qijxj : x ∈ S ∩ Bn, xi = 1

 . (3.34)

For several combinatorial optimization problems considered in this thesis, QAP, QMSTP
and QSP, problem Pi can be solved in polynomial time. Once Pi has been computed for
each i, one can solve the following problem to obtain a valid lower bound for the original
problem:

P0 : min
{∑

i

(wi + ci)xi : x ∈ S ∩ Bn

}
. (3.35)

This procedure was first introduced by Gilmore [54] and Lawler [78] for the quadratic
assignment problem. The most advantageous property of this lower bounding procedure
is that it can be computed efficiently if one can solve the minimization of a linear function
over S ∩ Bn. However, the main drawback of the method is the fast deterioration of its
quality with increasing problem size, as shown for some spacial cases including QAP [79]
and QMSTP [94].

3.2.2 Improving the bound based on a reformulation

The lower bounding procedure described in previous section transfers part of the quadratic
costs to the linear cost vector by solving each of the Pi subproblems. Nevertheless, the
part of quadratic cost that is not included in the solution of Pi is simply ignored when
computing P0. In order to improve the bound we can shift out as much information as
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possible from the quadratic term. More precisely consider a reformulation of the QP by
defining the following transformations:

q′
ij = qij −

∑
h

ahjλi
h −

∑
l

dljµi
l − νi

j and c′
i = ci + wi. (3.36)

where λi, µi and νi are the optimal dual solutions corresponding to constraints Ax ≤
b, Dx = g and x ≤ 1 of the continuous relaxation of subproblem Pi.

Using these transformations, we can then define the following Reformulated QP in
which the quadratic component has a lower overall impact:

RQP3: min
∑

i

∑
j ̸=i

q′
ijxixj +

∑
i

c′
ixi (3.37)

s.t. x ∈ S ∩ Bn. (3.38)

In the below theorem we prove that problems QP and RQP3 are equivalent, i.e., RQP3 is
a reformulation of the QP.

Theorem 3.2.1. Problems QP and RQP3 are equivalent.

Proof. For any feasible solution x we have∑
i

∑
j

q′
ijxixj +

∑
i

c′
ixi

=
∑

i

∑
j

(qij −
∑

h

ahjλi
h −

∑
l

dljµi
l − νi

j)xixj +
∑

i

(ci + wi)xi

=
∑

i

∑
j

qijxixj +
∑

i

cixi

−
∑

i

∑
h

λi
h

∑
j

ahjxj +
∑

l

µi
l

∑
j

dljxj

xi −
∑

i

∑
j

νi
j +

∑
i

wixi

=
∑

i

∑
j

qijxixj +
∑

i

cixi.

Here, the last equality follows from wi =
∑

h λi
hbh +

∑
l µi

lgl +
∑

j νi
j .

Note that each components of the linear cost vector is updated to include the value
of optimal solution of the corresponding Pi, thus by substituting matrix Q′ in RQP3
with the null matrix, the resulting problem is exactly the same as problem P0. In general
we can iterate the reformulation process to find a sequence of equivalent QP instances
(QP0, QP1, . . . , QPi, QPi+1 with QP0 = QP ), each characterized by a stronger impact
of linear cost than the previous.





Part II
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0-1 programming





Chapter 4

Quadratic Assignment Problem

The Quadratic Assignment Problem is a classical combinatorial optimization problem
that has applications in many real-life problems in several areas. In this chapter after in-
troducing the problem, we study the most important reformulations and lower bounding
approaches including LP-based reformulations, QP-based reformulation and RLT repre-
sentations. Although solving the RLT representations of the quadratic assignment prob-
lem provide a strong lower bound in high level RLT representations, these bounds require
much computational effort, which can be problematic for branch-and-bound algorithms.
In order to speed up the bound computation in the level-d RLT representation, we con-
struct a new compact reformulation for each level of the RLT based on the structure of
the problem.

4.1 Introduction

The quadratic assignment problem (QAP)was introduced by Koopmans and Beckmann in
[76] in the context of facility location to deal with a one-to-one assignment of n facilities
to n locations with the minimum cost. The assignment cost includes the quadratic cost of
each possible assignment being the flow between each pair of facilities multiplied with
the distance between their assigned locations and the total linear cost associated with
allocating a facility to a certain location. More precisely, given n facilities, n locations, a
flow fij from each facility i to each facility j, i ̸= j, a distance dkl from each location k

to each location l, k ̸= l, and a cost cik of assigning facility i to location k, the QAP is
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defined as

QAP: min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

fijdklxikxjl +
n∑

i=1

n∑
k=1

cikxik (4.1)

s.t. x ∈ X, x binary. (4.2)

where

X = {x ≥ 0 :
n∑

j=1
xij = 1 ∀i = 1, . . . , n;

n∑
i=1

xij = 1 ∀j = 1, . . . , n}. (4.3)

A more general QAP version was proposed by Lawler [78] and involves costs qijkp

that do not necessarily correspond to products of flows and distances. The Lawler for-
mulation is as follows:

QAP: min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklxijxkl +
n∑

i=1

n∑
k=1

cikxik (4.4)

s.t. x ∈ X, x binary. (4.5)

The QAP has been used to model many applications including, among others, back-
board wiring [114], coding of signals [17], typewriter keyboards and control panels de-
sign [101], image processing [116], scheduling [53], storage-and-retrieval [99]. It has
been shown that the QAP is among the most difficult NP-hard combinatorial optimiza-
tion problems and in general solving instances of size n ≥ 30 in a reasonable time is
impossible [80]. Many solution methods, exact or heuristics algorithm have been pro-
posed for solving the QAP. Branch-and-Bound approaches and various reformulations
and linearization of the QAP as MILPs are among the main exact solution methods for
the QAP. One of the best attempts to date is [45] where the proposed solution method
takes advantage of the symmetry present in known (and hard to solve) benchmark in-
stances. Due to quadratic nature of the problem, many attempts have been made in the
literature to linearize the objective function so that the resulting lower bound is strong
enough to be used in a branch-and-bound algorithm. Among the best lower bounding
approaches in the literature we can refer the reader to Frieze and Yadegar [48], Assad and
Xu [15], Carraresi andMalucelli [27, 28], Adams and Johnson [4], level-1 RLT dual-ascent
bound byHahn and Grant [59], the convex quadratic programming bound by Anstreicher
and Brixius [13], the level-2 RLT by Adams et al. [3], and level-3 RLT by Hahn et al. [60].



4.2 Lower bounding procedure 33

4.2 Lower bounding procedure

Lower bounds play an important role in success of the Branch-and-Bound type algo-
rithms for the QAPs. The ideal lower bound should be sharp (i.e., “small” gap between
the bound and the optimum solution) and enough fast to compute. In this section we
present most important lower bounding schemes including the historical Gilmore and
Lawler bound, bounds based on “reformulations”, and finally bounds based on the MILP
formulations.

4.2.1 Gilmore-Lawler lower bound

The Gilmore-Lawler bound (GLB) presented by Gilmore [54] and Lawler [78] is one of
the best known lower bounds for QAP. However, it is not very tight even for small size
problems and the gap from the optimal solution increases with the size of the problem.
The GLB is given by the solution of the following linear assignment problem (LAP):

GLB = min
n∑

i=1

n∑
j=1

(cij + zij)xij

s.t. x ∈ X, x binary.

where for each i, j the coefficient zij are found by solving the following problem:

SPij : zij = min
n∑

k=1
k ̸=i

n∑
l=1
l ̸=j

(qijkl)xkl (4.6)

s.t. x ∈ X, x binary (4.7)

xij = 1. (4.8)

Since the GLB is depended on the idea of solving n2 + 1 LAPs of size n, it is among the
easiest approaches to compute.

4.2.2 Reformulation-based lower bounds

Carraressi and Malucelli [27] propose a way of reformulating the QAP so as to transfer
the quadratic cost coefficients to linear cost coefficients. At the end of the transfer, they
solve the linear part to obtain a lower bound. More precisely, they defined a reformulation
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for the QAP as follows:

P : min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

q′
ijklxijxkl +

n∑
i=1

n∑
k=1

c′
ikxik

s.t. x ∈ X, x binary.

where c′
ik = cik + zik and q′

ijkl = qijkl − λik
j − µik

l . The parameters λik and µik are the
dual solutions corresponding to constraints defined in X when the facility i is assigned
to the location k.

In order to strengthen the reformulation, the authors also proposed an iterative ap-
proach which leads to generate sharp bounds for the problem. This iterative procedure
can be obtained by iteratively applying the reformulation presented above and thus defin-
ing a sequence of equivalent QAP instances P0, P1, . . . , Pi, Pi+1 with P0 = QAP . Each
reformulation is characterized by a stronger impact of linear cost than the previous one.

Assad and Xu in [15] proposed another kind of reformulation for the QAP that gen-
erates a monotonic sequence of lower bounds. Their method relies the following trans-
formation:

c′
ik = cik − (n − 1)θik∀(i, k)

q′
ijkl = qijkl + θkl∀(i, j), (k, l), i ̸= k, j ̸= l.

To compute the lower bound, they apply the Gilmore-Lawler procedure to the reformu-
lated problem, i.e.,

AX(θ) : min
{∑

i

∑
k

[zik(θ) + cik − (n − 1)θik]xik : x ∈ X

}
(4.9)

where

zik(θ) = min

∑
j

∑
l

q′
ijklxjl : x ∈ X, xik = 1

 (4.10)

Observe that the optimal value of the QAP is independent from vector θ. However, the
approximated linear costs c′ depend on θ and a better choice of θ yields a tighter bound.
To determine the best value of parameter θ the authors proposed the following algorithm.

The Leveling Algorithm:

Step0: A tolerance limit ε is set for the stopping rule and iteration counter t is set to 1.
Initially θ0 = 0.
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Step1: Compute zik(θt) for all (i, k) using (4.10) and the compute the AX(θt) by using
(4.9).

Step2: If max(i,k){zik(θt)} − min(i,k){zik(θt)} ≤ ε/(n − 1) then stop, else set

θt+1
ik = θt

ik + 1
n − 1zik(θt) ∀(i, k), t = t + 1 and go to step1.

Another reformulation based bound for the QAP has been proposed by Carraressi
and Malucelli [28] which is a generalization of the two aforementioned schemes. For any
value of θ the following transformation defines a reformulation for the QAP:

q′
ijkl = qijkl + γijkl − αikl − βjkl + θkl ∀(i, j), (k, l), i ̸= k, j ̸= l

c′
ik = cik + zik − (n − 1)θik ∀(i, k)

where γijkl = qklij − qijkl, and αikl, βjkl are the dual solutions of subproblem SPkl.
Two update formulas for parameter θ are considered:

θik = θik + 1
n − 1cik ∀(i, k)

θik = 1
n − 1(cik − λi − µk) ∀(i, k),

where λi and µk are the dual solutions of the assignment problem with cost c′. Ob-
serve that, the first choice of updating θ does not guarantee monotonic sequence of lower
bounds, while the second choice of θ yields a monotonic sequence of lower bounds as
proved in [28].

4.2.3 MILP-based lower bounds

In this section we present the most important MILP formulations for the QAP. We will
start with the smallest MILP formulation proposed by Kaufman and Broeckx [74] and
provide its improved versions by Xia and Yuan [118] and Zhang et al. [119]. Then we
describe the MILP formulation proposed by Frieze and Yadegar [48], and finally present
theMIP formulations and the lower bounding approaches obtained by the reformulation-
Linearization technique.

Given a general QAP formulation, Kaufman and Broeckx [74] proposed the following
QAP linearization by introducing the continuous variable wij = xij

∑
k

∑
l qijklxkl as

contribution of each assignment variable xij to the overall cost.
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KB: min
∑

i

∑
j

wij

s.t. wij ≥
∑

k

∑
l

qijklxkl − Uij(1 − xij) ∀(i, j)

wij ≥ 0 ∀(i, j)

x ∈ X, x binary.

Here, Uij =
∑

k

∑
l qijkl. This formulation which employs n2 continuous variables, n2

binary variables and n2 + 2n constraints, is somehow less favored in the literature, due
to its weake lower bound.

Theorem 4.2.1 (Zhang et al. [119]). The optimal value of the LP relaxation of KB is equal
to zero.

Note that the KB formulation can be obtained by applying the general Glover lin-
earization strategy. In order to strengthen the LP relaxation bound of KB, Xia and Yuan
[118] and Zhang et al. [119] provide some alternative linearized models based on the
revised version of the Glover technique explained in Chapter 2. The below program is
the linearized formulation proposed by Zhang et al. [119]:

ZH: min
∑

i

∑
j

(wij + (cij + zij))

s.t. wij ≥
∑

k

∑
l

qijklxkl − Ūij(1 − xij) − (zij + cij)xij ∀(i, j)

wij ≥ 0 ∀(i, j)

x ∈ X, x binary.

where Ūij = max{
∑

k

∑
l qijklxkl : x ∈ X, x binary} and zij is the Gilmore-Lawler

constant defined in (4.6).

In a different linearized model for the QAP, Frieze and Yadegar in [48] introduced n4

continuous variable yijkl, implicity equal to the multiplication xijxkl, and O(n3) new
constraints to drive the following QAP linearization:
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FY: min
∑

i

∑
j

∑
k

∑
l

qijklyijkl +
∑

i

∑
j

cijxij

s.t.
∑

i

yijkl = xkl ∀(j, k, l) (4.11)∑
j

yijkl = xkl ∀(i, k, l) (4.12)

∑
k

yijkl = xij ∀(i, j, l) (4.13)∑
l

yijkl = xij ∀(i, j, k) (4.14)

yijij = xij ∀(i, j) (4.15)

0 ≤ yijij ≤ 1 ∀(i, j, k, l) (4.16)

x ∈ X, x binary.

In fact, the quadratic terms in the objective function have been eliminated at the cost of
the additional decision variables yijkl. In order to compute a lower bound, the authors
proposed a Lagrangian relaxation of FY formulation with multipliers αikl and βjkl for
constraints (4.11) and (4.12) respectively. The Lagrangian functionL(α, β) is thus defined
as

L(α, β) = min
∑

i

∑
j

∑
k

∑
l

q̄ijklyijkl +
∑

i

∑
j

c̄ijxij

s.t. (4.13), (4.14), (4.15), (4.16)

x ∈ X, x binary.

where

q̄ijkl = qijkl − αikl − βjkl ∀(i, j, k, l) (4.17)

c̄ij = cij +
∑

l

αikl +
∑

l

βjkl ∀(i, j). (4.18)

Note that the the objective function of the L(α, β) can be considered as a reformulation
of the general QAP. More precisely by considering the transformation (4.17) and (4.18)
one can obtain the GLB as follows:

GLB(α, β) = min{
∑

i

∑
k

[zik(α, β) + cik − (n − 1)θik]xik : x ∈ X},
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where
zik(α, β) = min{

∑
j

∑
l

q′
ijklxjl : x ∈ X, xik = 1}

Frieze and Yadegar proved that the value of the Lagrangian function L(α, β) is equal
to GLB(α, β); therefore, the solution of the Lagrangian dual maxα,β L(α, β) gives the
optimal reformulation of the QAP.

4.3 Reformulation-linearization technique

In this section we present the Reformulation-linearization technique (RLT) applied to the
QAP. Based on the RLT technique for general zero-one polynomial programs by Adams
and Sherali [5, 6], the first RLT representation for the QAP was introduced by Adams
and Johnson [4]. Consider problem QAP as presented in (4.4) and (4.5). The level-1 RLT
representation is generated via the following two steps:
Reformulation: Multiply each of the 2n equations and each of the n2 nonnegative con-
straints defining X by each of the n2 binary variables xkl, and append these new con-
straints to the formulation. When the variable xij in a given constraint is multiplied
by xkl, express the resulting product as xijxkl in that order. Substitute x2

kl with xkl

throughout the constraints and set xijxkl = 0 if i = k and j ̸= l or i ̸= k and j = l.
Linearization: For all (i, j, k, l) with i ̸= k and j ̸= l, substitute each product xijxkl with
yijkl. Enforce the equality yijkl = yklij for all (i, j, k, l) with i < k and j ̸= l.

The level-1 RLT results as follows:

RLT1: min
∑

i

∑
j

∑
k ̸=i

∑
l ̸=j

qijklyijkl +
∑

i

∑
j

cijxij

s.t.
∑
i̸=k

yijkl = xkl ∀(j, k, l), j ̸= l (4.19)

∑
j ̸=l

yijkl = xkl ∀(i, k, l), i ̸= k (4.20)

yijkl = yklij ∀(i, j, k, l), i < k, j ̸= l (4.21)

yijkl ≥ 0 ∀(i, j, k, l), i ̸= k, j ̸= l (4.22)

x ∈ X, x binary.

Equation (4.21) is very important and says that if an element yijkl, i ̸= k, j ̸= l is
part of a solution (i.e., equal to 1) then it has a “complementary element” yklij that is also
in that solution. In general, the RLT1 representation has a large number of variables and
constraints, which makes it computationally challenging, even for small QAP instances.
Resende et al. [106] performed a computational test of the lower bounds generated by
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the LP relaxation of the RLT1. They reduced the numbers of variables and constraints in
RLT1 by removing all variables yijkl with i > k and j ̸= l and bymaking the substitutions
suggested by (4.21) throughout the objective function and constraints. Then they solved
the LP relaxation by using an experimental interior point method code, called ADP. To
solve the RLT1, Adams and Johnson provide a Lagrangian relaxation which has a block-
diagonal structure. More precisely they dualize constraints (4.21) on the complementary
pairs and decompose the resulting problem into n2 separate linear assignment problems
of size n − 1 and a linear assignment problem of size n. Hahn and Grant [59] gave a
different interpretation of the same decomposition for lower bound calculation by using
a dual-ascent strategy. Their dual-ascent procedure gives a bound very close to optimum
of the LP relaxation of the RLT1, improving upon the computational results of Adams
and Johnson [4], and requiring only a small fraction of the time of Resende et al. [106].

Based on the success of level-1 RLT representation to gain a tight bound for the QAP
and also due to the block-diagonal structure of the problem which lends itself to efficient
solution methods, the level-2 and level-3 RLT can be defined in the same way as the level-
1 RLT via the reformulation and linearization steps. In the level-2 RLT representation,
in addition to the operations done in the level-1, each binary variable in X is multiplied
also by products xklxpq having k ̸= p and l ̸= q. For more details concerning the
reformulation and linearization step for the level-2 RLT we refer the reader to [3]. The
level-2 RLT is called RLT2 and is written as follows:

min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklyijkl +
n∑

i=1

n∑
j=1

cijxij

s.t.
∑

i ̸=k,p

zijklpq = yklpq ∀(j, k, l, p, q), j ̸= l ̸= q; k ̸= p (4.23)

∑
j ̸=l

zijklpq = yklpq ∀(i, k, l, p, q), i ̸= k ̸= p; j ̸= q (4.24)

zijklpq = zijpqkl = . . . = zpqklij ∀(i, j, k, l, p, q), i < k < p; j ̸= l ̸= q (4.25)

zijklpq ≥ 0 ∀(i, j, k, l, p, q), i ̸= k ̸= p; j ̸= l ̸= q (4.26)

(4.19), (4.20), (4.21), (4.22) (4.27)

x ∈ X, x binary.

The linear relaxation of the RLT2 is increasingly large and highly degenerate. Ra-
makrishnan et al. [103] enforced the constraints (4.25) to combine complementary vari-
ables and reduce the number of constraints and variables, then used commercial linear
programming package CPLEX to solve the linear relaxation of the RLT2. However, be-
cause of the problem size and limitations of CPLEX, they were only able to solve in-
stances up to size 12. Following the idea of Hahn and Grant [59] to solve the RLT1 in
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an efficient way, Adams et al. [3] have presented a dual-ascent strategy that exploits the
block-diagonal structure of constraints in the RLT2 form.

In order to get even tighter bounds for the QAP, Zhu presented the level-3 RLT in his
PhD dissertation [121]. The RLT3 formulation is significantly larger than the previous
levels of RLT, but its continuous linear relaxation provides the tightest lower bound of
all three RLT models. Hahn et al. [60] implemented a dual-ascent procedure similar to
that employed in Adams et al. [3] for RLT2.

4.4 A Revised RLT

As far as the tightness of the bounds is concerned, the RLT representations of the QAP
are among the most successful lower bounding approaches. However, in the high level
RLT representation of the QAP these bounds require much computational effort, which
can be problematic within a branch-and-bound algorithm. In order to speed up the bound
computation in the level-d RLT representation of the QAP, we construct a smaller refor-
mulation for each level of the RLT based on the structure of the problem. Let us start
with the level-1 RLT formulation. The revised RLT1 (RRLT1) formulation is defined as
follows:

RRLT1: min
∑

i

∑
j

∑
k ̸=i

∑
l ̸=j

qijklyijkl +
∑

i

∑
j

cijxij

s.t. (4.19), (4.20), (4.21), (4.22) (4.28)

x ∈ X ′, x binary.

where

X ′ = {x ≥ 0 :
n∑

j=1
xij = 1 ∀i = 1, . . . , n}. (4.29)

Note that the only difference with RLT1 is that constraints
∑n

i=1 xij = 1, ∀j = 1, . . . , n

are missing.

Theorem 4.4.1. The problems RLT1 and RRLT1 are equivalent.

Proof. To prove the theorm we use the idea of [2]. Consider any feasible solution (x̂, ŷ)
to Problem RRLT1. We first show that the following equations must hold.

ŷpqst = x̂pqx̂st ∀ (p, q, s, t); p ̸= s; q ̸= t. (4.30)

If x̂pq = 0, constraint
∑

i ̸=k ŷijpq = x̂pq of (4.19), together with the nonnegativity
restrictions ŷijpq ≥ 0 enforce that ŷijpq = 0 for all (i, j), i ̸= p, j ̸= q. Consider the
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case x̂pq = x̂st = 1, and by contradiction assume that ŷpqst = ŷstpq < 1. The constraint∑
j ̸=q ŷsjpq = x̂pq of (4.20), together with ŷstpq < 1 implies that there exists an index

l ̸= t, q with ŷslpq > 0. By considering constraint (4.21), we have ŷpqsl = ŷslpq > 0,
so that (4.20) implies xsl = 1. The equalities xsl = xst = 1 for l ̸= t, contradict the
constraint

∑n
j=1 xsj = 1 of X ′. Consequently, ŷpqst = x̂pqx̂st for binary x̂pq and x̂qr .

Now we show that (x̂, ŷ) is a feasible solution for the RLT1. Since constraints (4.19),
(4.20), (4.21), and (4.22) together with the binary restriction are precisely the same in
both models, the proof is to show that

∑n
i=1 x̂ij = 1, ∀j = 1, . . . , n. Consider an index

s ∈ {1, . . . , n} such that
∑n

i=1 x̂is = ϵ ̸= 1. Multiplying this equation by binary variable
x̂kl with l ̸= s to obtain ∑

i ̸=k

x̂isx̂kl = ϵxkl ∀(k, l), l ̸= s (4.31)

By (4.30) and (4.31), we have∑
i ̸=k

ŷiskl =
∑
i ̸=k

x̂isx̂kl = ϵxkl ∀(k, l), l ̸= s (4.32)

Since ϵ ̸= 1, the equations (4.32) contradict (4.20) and the proof is completed.

The following theorem formally shows that the continuous relaxations of the RRLT1
(CRRLT1) is as tight as the continuous relaxation of the RLT1 (CRLT1), in that a linear
combination of the constraints of CRRLT1 can implies constraint

∑n
i=1 xij = 1 ∀j =

1, . . . , n.

Theorem 4.4.2. Problems CRLT1 and CRRLT1 are equivalent.

Proof. Since constraints (4.19), (4.20), (4.21), and (4.22) appear in both CRLT1 and CR-
RLT1, the proof reduces to show that constraints

∑n
i=1 xij = 1 ∀j = 1, . . . , n of

X defined in (4.3) can be computed as linear combinations of the constraints of CR-
RLT1. Consider any (j, k, l), j ̸= l, and observe that constraints (4.20) enforce that∑

i ̸=k yijkl = xkl. Summing this equations over all (k, l), l ̸= j, we obtain∑
l ̸=j

∑
k

∑
i ̸=k

yijkl =
∑
l ̸=j

∑
k

xkl ∀j = 1, . . . , n. (4.33)

By definition of X ′ in (4.29), the right hand side of (4.33) can be written as follows:∑
l ̸=j

∑
k

xkl =
∑

k

∑
l

xkl −
∑

k

xkj = n −
∑

k

xkj ∀j = 1, . . . , n. (4.34)
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Now consider the left hand side of (4.33). By using (4.19) and (4.21), it can written as:∑
l ̸=j

∑
k

∑
i ̸=k

yijkl =
∑
i ̸=k

∑
k

∑
l ̸=j

yklij =
∑
i̸=k

∑
k

xij =
∑

k

∑
i̸=k

xij

=
∑

k

∑
i

xij −
∑

k

xkj = n
∑

i

xij −
∑

k

xkj ∀j = 1, . . . , n. (4.35)

By (4.34) and (4.35), we have
∑n

i=1 xij = 1 ∀j = 1, . . . , n. The proof is completed.

We now turn to the level-2 RLT representation of the QAP. We give a smaller refor-
mulation of the RLT2 called revised RLT2 (RRLT2) by substituting X defined in (4.3) with
X ′ defined in (4.29) and removing constraints

∑
i ̸=k yijkl = xkl ∀(j, k, l), j ̸= l from

the RLT2 formulation. The RRLT2 has the following form:

RRLT2: min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklyijkl +
n∑

i=1

n∑
j=1

cijxij

s.t.(4.20) − (4.22), (4.23) − (4.26) (4.36)

x ∈ X ′, x binary.

Theorem 4.4.3. Problems CRLT2 and CRRLT2 are equivalent.

Proof. Following the same idea as the proof of Theorem 6.5.1 we show that constraints∑n
i=1 xij = 1 ∀j = 1, . . . , n of X defined in (4.3) and constraints (4.23) can be com-

puted as linear combinations of the constraints of CRRLT1. Since the proof of the first
part is the same as the one in Theorem 6.5.1, here we provide the proof for the second
part. Consider any (j, k, l, p, q) with j ̸= l ̸= q, k ̸= p, and observe that constraints
(4.23) enforce that

∑
i ̸=k zijklpq = yklpq . Summing this equations over all (p, q) having

p ̸= k and q ̸= j, l, we obtain∑
q ̸=j,l

∑
p ̸=k

∑
i ̸=k,p

zijklpq =
∑
q ̸=j,l

∑
p ̸=k

yklpq ∀(j, k, l)j ̸= l. (4.37)

By (4.20) and (4.21), the right hand side of (4.37) can be written as follows:∑
q ̸=j,l

∑
p ̸=k

yklpq =
∑
p ̸=k

∑
q ̸=l

yklpq −
∑
p ̸=k

yklpj = (n − 1)xkl −
∑
p ̸=k

ypjkl ∀(j, k, l)j ̸= l.

(4.38)
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Now consider the left hand side of (4.33). By using (4.19) and (4.21), it can written as:∑
q ̸=j,l

∑
p ̸=k

∑
i ̸=k,p

zijklpq =
∑

i̸=k,p

∑
p ̸=k

∑
q ̸=j,l

zpqijkl =
∑
p ̸=k

∑
i ̸=k,p

yijkl

=
∑
p ̸=k

∑
i ̸=k

yijkl −
∑
p ̸=k

ypjkl = (n − 1)
∑
i ̸=k

yijkl −
∑
p ̸=k

ypjkl ∀(j, k, l)j ̸= l. (4.39)

By (4.38) and (4.39), we have
∑

i̸=k yijkl = xkl ∀(j, k, l), j ̸= l. The proof is completed.

The idea of removing some set of constraints in level-1 and level-2 RLT representation
of the QAP can be generalized for level-d RLT formulation with 1 ≤ d ≤ n. In each
level-d RLT representation we can eliminate one set of constraints generated in level-
(d − 1) RLT, where level-0 RLT represent the original QAP. More precisely for each d,
2 ≤ d ≤ n − 1, the total number of constraints in the level-d RLT can be reduced by

f(d) = f(d − 1) + (n − d + 1)
d−2∏
i=0

(n − i)2

where f(1) = n.

4.5 Computational Experiments

In this section we present the computational results of comparing the level-d RLT with
the level-d RRLT for d = 1, 2, in terms of bound tightness and computational time. To ob-
tain a lower bound for the QAP we solve the continuous relaxation of RRLT1 and RRLT2
by applying the Lagrangian relaxation. We implemented the algorithms in C++ language
and run on an Intel Xeon CPU E5335 (2 quad core CPUs 2GH). Since solving both RRLT1
and RRLT2 are quite similar, we restrict our attention to explain the solving process to
the RRLT2. We first place constraints (4.21) and (4.25) into the objective function. The
Lagrangian function is then defined as:

K + min{
∑

i

∑
j

∑
k

∑
p ̸=i

∑
q ̸=j

∑
l ̸=k

D̄ijkpqlzijkpql +
∑

i

∑
j

∑
k ̸=i

∑
l ̸=j

B̄ijklyijkl

+
∑

i

∑
j

c̄ijxij : (4.20), (4.22), (4.23), (4.24), (4.26), x ∈ X ′}. (4.40)

where B̄ijkl and c̄ij are the adjusted values for qijkl and cij respectively, after placing
constraints (4.21) into the objective function, D̄ijkpql are the coefficients corresponding
to the variables zijkpql after placing constraints (4.25) into the objective function, and
K = 0.
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Theorem 4.5.1. An optimal solution (x∗, y∗, z∗) for problem (4.40) can be obtained via
solving the semi-assignment problem

K + min
{∑

p

∑
q

(c̄pq + ρpq)xpq : x ∈ X ′

}
, (4.41)

where for each (p, q), ρpq is obtained by solving the following semi-assignment problem
Sub1(p, q):

ρpq = min
∑
k ̸=p

∑
l ̸=q

(B̄klpq + γklpq)yklpq (4.42)

s.t.
∑
l ̸=q

yklpq = 1 ∀k = 1, . . . , n, k ̸= p (4.43)

yklpq ≥ 0 ∀(k, l) ̸= k ̸= p, l ̸= q. (4.44)

and where for each (k, l, p, q) with p ̸= k and q ̸= l

γklpq = min
∑

i ̸=p,k

∑
j ̸=q,l

D̄ijklpqzijklpq (4.45)

s.t.
∑

i ̸=p,k

zijklpq = 1 ∀j = 1, . . . , n, j ̸= q, l (4.46)

∑
j ̸=q,l

zijklpq = 1 ∀i = 1, . . . , n, i ̸= p, k (4.47)

zijklpq ≥ 0 ∀(i, j) ̸= i ̸= p, k, j ̸= q, l. (4.48)

We applied the dual ascent algorithm proposed in Adams et al. [3] to this new prob-
lem. The procedure consists of updating the constant term K and the cost matrices D̄,
B̄ and c̄, in such a way that the cost of any (integer) feasible solution with respect to the
modified objective function remains unchanged, while maintaining nonnegative coeffi-
cients. As a consequence of this property, the value of K at any moment of the execution
is a valid lower bound on the optimal solution cost for the QAP.

For computational testing of comparing the RLT and RRLT, we used 14 instances
from the QAPLIB and 20 instances from the test set of Drugan [36]. This new test set
currently was introduced by Drugan in [36] and are called composite QAPs (cQAPs).
Tables 4.1 and 4.2 report the lower bounds and required CPU times of the dual ascent
strategy applied to level-1, 2 RLT and RRLT for the instances of QAPLIB and cQAPs,
respectively. The instance names and the corresponding dimensions are found in the
first column. In the second column, there are the optimal values for each instance. The
third and forth columns give the RLT1 lower bound and its CPU time, followed by the
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Table 4.1 Comparison the level-1,2 RLT and RRLT lower bounds and CPU times for the
instances of QAPLIB.

RLT1 RRLT1 RLT2 RRLT2
Instance Opt. Lb Time Lb Time Lb Time Lb Time

nug12 578 511.45 6 511.59 6 578 774 578 364
nug15 1150 1001.4 15 1000.1 14 1140.05 11067 1141.58 11015
nug18 1930 1622.38 30 1620.04 31 1859.21 40480 1862.51 39379
nug20 2570 2239.20 47 2137.21 47 2449.41 64496 2454.36 63858
had16 3720 3525.22 19 3525.47 19 3720 407 3720 381
had18 5358 5036.65 30 5035.02 31 5358 19044 5358 14448
had20 6922 6504.74 47 6507.57 47 6922 56791 6922 48714
rou12 235528 219365 8 219329 6 235528 33 235528 33
rou15 354210 318496 14 318413 14 351106 11300 351537 12167
rou20 725520 632453 47 632346 47 687320 80052 688391 77251
tai15a 388214 346896 14 347086 14 377805 11244 378347 10037
tai15b 51765268 51459245 14 51443801 14 51765268 240 51765268 208
tai20a 703482 608846 46 608199 47 662750 88497 663855 78890
tai20b 122455319 88400570 54 87855727 57 122455319 3039 122455319 2791

Table 4.2 Comparison the level-1,2 RLT and RRLT lower bounds and CPU times for the
cQAP data set.

RLT1 RRLT1 RLT2 RRLT2
Instance Opt. Lb Time Lb Time Lb Time Lb Time

cqap20-0 238754 215117 48 215045 48 238754 541 238754 393
cqap20-1 233690 204845 46 204837 46 233690 707 233690 513
cqap20-2 230750 204996 47 204970 48 230750 668 230750 443
cqap20-3 235432 211780 47 211781 48 235432 452 235432 450
cqap20-4 242392 212641 47 212928 47 242392 584 242392 461
cqap20-5 236894 205933 47 205995 46 236894 748 236894 459
cqap20-6 241720 210392 48 210639 48 241720 651 241720 525
cqap20-7 242388 217115 48 217151 48 242388 600 242388 545
cqap20-8 236546 210846 47 210863 48 236546 726 236546 413
cqap20-9 239180 209644 47 209660 47 239180 884 239180 607
Average 237775 210331 47 210287 47 237775 656 237775 481
cqap24-0 312308 264043 98 263875 99 312308 1749 312308 1373
cqap24-1 305074 269989 99 270009 100 305074 1848 305074 1474
cqap24-2 310154 269105 97 268987 97 310154 1556 310154 1576
cqap24-3 307622 266878 98 266758 99 307622 1745 307622 1765
cqap24-4 313614 274491 98 274371 97 313614 1558 313614 1179
cqap24-5 308634 268792 98 268766 98 308634 1941 308634 1572
cqap24-6 301196 256687 98 256581 98 301196 2157 301196 1640
cqap24-7 301742 262322 98 262242 98 301742 2128 301742 1428
cqap24-8 303516 265041 99 265383 99 303516 2116 303516 1715
cqap24-9 309774 277585 99 277553 101 309774 1426 309774 1425
Average 307363 267493 98 267452 99 307363 1822 307363 1515
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lower bound values and CPU times of RRLT1 in columns fifth and sixth, the RLT2 in
columns seventh and eighth, and RRLT2 in columns ninth and tenth.

For the 14 tested instances from the QAPLIB, the dual ascent strategy applied to RLT1
and RRLT1 almost provide the same bounds with the same computational times, while
the dual ascent strategy applied to RLT2 and RRLT2 provides the different results. More
precisely, as we can observe from Table 4.1, the bounds from the dual ascent strategy
applied to RLT2 and RRLT2 for problems nug12, had16, had18, had20, rou12, tai15b, and
tai20b are exact, as they equal to the optimal objective values of the QAP. However the
CPU time required by RLT2 to obtain these bounds is longer than the CPU time required
by RRLT2. The bounds of the RRLT2 for the remaining problems are slightly tighter than
the RLT2 bounds, but demand less computational effort except problem rou15 for which
RLT2 requires less CPU time. It should be noted, however, that using RRLT2 the bound
351106 for rou15 achieved in less than 1500 seconds.

For the cQAP instances, as we can observe from Table 4.2, the RLT1 ,on average, is
slightly better than the RRLT1 in both the bound tightness and required CPU time, but
for all 20 instances, the lower bound obtained from the RLT2 and RRLT2 are equal to the
objective value of the CQAPs. However, in terms of the required CPU time the RRLT2
outperforms RLT2 for all instances.

4.6 Conclusions

In this chapter we study the most important reformulations and lower bounding ap-
proaches including LP-based reformulations, QP-based reformulation and RLT represen-
tations. we proposed a revised form of the Reformulation Linearization Technique for
the quadratic Assignment Problem without destroying the problem’s structure. Our ex-
perimental results show that, by increasing the level of the RLT, solving the revised RLT
representation provides a lower bound as strong as the bound obtained by the RLT, but
with less computational effort.



Chapter 5

QAP with Special Structure

In this chapter we study two special cases of the QAP including the Adjacent QAP and
QAP on reducible graphs. Adjacent QAP is defined on the Lawler form of the QAP whose
objective coefficient matrix has a special structure, while QAP on reducible graph is de-
fined on the QAP in Koopmans and Beckmann formwhere the flow and distance matrices
are both reducible. Motivated by strong lower bounds obtained by applying Reformula-
tion Linearization Technique (RLT) for the classical QAP, we propose two special RLT
representations for the AQAP. The first is based on a “flow” formulation whose linear
relaxation can be solved very efficiently for large instances while the second one has sig-
nificantlymore variables and constraints, but possesses some desirable properties relative
to the constraint set. For the QAP on reducible graph we give a Lagrangian decomposi-
tion based on splitting the variables and then dualizing the copy constraint so that the
resulting problem can be decompose into two quadratic semi assignment problems.

5.1 Introduction

Since solving a large scale QAP is extremely challenging in practice, some research has
focused on the special cases of QAP. Christofides and Benavent [32] studied the QAP
on a tree and proved that the problem is NP-hard even for this special case. They pre-
sented a branch-and-bound algorithmwhich uses the Lagrangian relaxation of an integer
programming formulation of the tree QAP. Rendl in [104] generalized the approach pre-
sented by Christofides and Benavent to minimal series-parallel digraphs and showed that
the subclass of series-parallel digraphs not containing bipartite subgraphs is solvable in
polynomial time. Chen [31] proposed three special cases of the general form of the QAP
that can be represented as parametric Linear assignment problems. The computational
results have been reported for test problems up to size 50. Burkard et al. [23] provided
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three polynomial time solvable classes of the Koopmans-Beckmann formwhere one input
matrix is monotone Anti-Monge while the other is either symmetric Toeplitz generated
by a benevolent (or a k-benevolent) function, or symmetric with bandwidth one. Deineko
and Woeginger [34] provided another polynomially solvable class for the Koopmans-
Beckmann form with one matrix being Kalmanson and the other being symmetric de-
creasing circulant. They proved that identity permutation was the optimal solution for
this case. Erdoğan and Tansel in [38] introduced two classes of QAPs namely, additively
decomposable general costs and a subset of multiplicatively decomposable general costs
and showed that both are solvable in polynomial time. More recently Çela et al. [24]
studied two special family of the quadratic assignment problem; the first is QAP where
the flowmatrix is a monotone matrix and the distance matrix is a multi-cut matrix in nor-
mal form, while the second family are the so-called Product-Block QAPs. They showed
that under some specific conditions these two families of QAPs can be solved in polyno-
mial time. In the following sections we study and analyze two special cases of the QAP
including the Adjacent QAP and QAP on reducible graphs.

5.2 Adjacent QAP

Consider a particular case of the Lawler form of the QAP called Adjacent QAP whose
cost coefficient matrix has a special structure. Assume that for all (i, j, k, l) with i ̸= j

and k ̸= l, the quadratic terms qijkl get a nonzero coefficient if i ̸= l and j = k, or if
i = l and j ̸= k, and get infinity if i = l and j = k. By defining a new cost coefficient
D ∈ Rn×n×n corresponding to the non zero elements of q, the AQAP can be written as:

AQAP: min
∑

i

∑
j ̸=i

∑
k ̸=j,i

Dijkxijxjk∑
j ̸=i

xij = 1 ∀ i = 1, . . . , n (5.1)

∑
i ̸=j

xij = 1 ∀ j = 1, . . . , n (5.2)

x binary. (5.3)

This problem was introduced by Fischer et al. [44] as a subroutine for the quadratic
traveling salesman problem (QTSP) where the binary variable xij is 1 if (i, j) belongs
to the TSP tour. Thus the QAP differs from the AQAP in two key respects. First, since
each binary variable xij in the latter represents whether or not travel is conducted along
the route from i to j, no variables xii are found in the assignment set of this problem.
Second, only those quadratic terms of the form xijxkl with j = k and i ̸= l or with



5.3 Partial RLT Representation of the AQAP 49

j ̸= k and i = l have nonzero objective function coefficients in the AQAP. Moreover
the quadratic expressions of the form xijxji are not allowed so as to eliminate subtours
of two cities. It has been shown that the AQAP is NP-hard [44]. In Galbiati et al. [51]
the authors introduce a new Combinatorial Optimization problem calledMinimum reload
Cost Cycle Cover which to best of our knowledge is the only related problem to AQAP.
The MinRC3 consists of the problem of spanning the nodes of a given colored graph by
a set of node-disjoint cycles at minimum reload cost, where a non-negative reload cost
is paid whenever passing through a node where the two consecutive arcs have different
colors.

Our main contribution consists in obtaining tight lower bounds for the AQAP. Our
bounds are based on two mixed binary linear formulations that are derived by applying
the RLT to AQAP. To derive the first model we apply a partial RLT to the AQAP, then
using the special structure of the resulting mixed binary linear formulation, we extract
a flow-based model which forms the basic frame of our study. By applying RLT to the
basic model, we obtain another mixed binary linear programwhose linear relaxation pos-
sesses some desirable properties relative to the constraint set. The second formulation
has a large number of variables and constraints, and it is also highly degenerate. In or-
der to develop a less computationally intensive lower bounding procedure, considerable
attention is given to exploit the separable structure present in the LP relaxation of the
problem and using Lagrangian relaxation techniques to obtain the LP bound.

5.3 Partial RLT Representation of the AQAP

To obtain amixed binary formulation for the AQAP, we define n(n−1)(n−2) continuous
variables yijk such that

yijk = xijxjk for all (i, j, k) with j ̸= i and k ̸= i, j. (5.4)

Then, a partial level-1 RLT representation of the AQAP can be obtained using two sets
of operations. First, we multiply equations (5.1), for each i ∈ {1, . . . , n}, by each of the
(n−1) variables xki for k ̸= i. Then, for each j ∈ {1, . . . , n},wemultiply equations (5.2)
by each of the (n − 1) variables xjl for l ̸= j. All 2n(n − 1) such quadratic equations
are included within the formulation. We then set xijxji = 0 for all (i, j) with i ̸= j.
The linearization step makes the substitution of yijk = xijxjk for all (i, j, k) with j ̸=
i and k ̸= i, j, and enforces that all resulting variables yijk are nonnegative, to rewrite
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the problem as the mixed 0-1 linear program below.

PRLT1: min
∑

i

∑
j ̸=i

∑
k ̸=j,i

Dijkyijk

s.t.
∑

k ̸=i,j

ykij = xij ∀ (i, j), i ̸= j (5.5)

∑
k ̸=i,j

yijk = xij ∀ (i, j), j ̸= i (5.6)

yijk ≥ 0 ∀ (i, j, k), i ̸= j ̸= k, i ̸= k (5.7)

(5.1), (5.2), (5.3).

Lemma 5.3.1. Problems AQAP and PRLT1 are equivalent.

Proof. We prove that for any feasible solution (x̂, ŷ) of PRLT1

ŷijk = x̂ij x̂jk ∀ (i, j, k); i ̸= j ̸= k; i ̸= k. (5.8)

Following the idea in [2], consider any ŷpqr. Constraint
∑

k ̸=p,q ŷpqk = x̂pq of (5.6), to-
gether with the nonnegativity restrictions ŷpqk ≥ 0 for all k /∈ {p, q, r} of (5.7), enforces
that ŷpqr ≤ x̂pq. Similarly, the constraint

∑
k ̸=q,r ŷkqr = x̂qr of (5.5), together with the

nonnegativity restrictions ŷkqr ≥ 0 for all k /∈ {p, q, r} of (5.7), enforces that ŷpqr ≤ x̂qr.

Thus,
ŷpqr ≤ min {x̂pq, x̂qr} ∀ (p, q, r); p ̸= q ̸= r; p ̸= r, (5.9)

hence ŷpqr = 0 if either x̂pq = 0 or x̂qr = 0. In addition, if we subtract constraint∑
k ̸=q x̂qk = 1 of (5.1) from the equation

∑
k ̸=p,q ŷpqk = x̂pq of (5.6) to obtain∑

k ̸=p,q

(ŷpqk − x̂qk) = x̂pq + x̂qp − 1. (5.10)

By (5.9), we have
∑

k ̸=p,q,r(ŷpqk − x̂qk) ≤ 0, hence (5.10) becomes

ŷpqr ≥ x̂pq + x̂qp + x̂qr − 1,

giving us that ŷpqr = 1 if x̂pq = x̂qr = 1. (Here, x̂pq + x̂qp ≤ 1 since subtours of size 2
are not allowed.) Consequently, ŷpqr = x̂pqx̂qr for binary x̂pq and x̂qr, and the proof is
complete.

Considering the special structure of the PRLT1 formulation, one can obtain a compact
representation for the problem as a consequence of the lemma and the theorem below.
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Lemma 5.3.2. The removal of constraints (5.2) from PRLT1 does not affect equivalence
(5.4).

Proof. If xij = 0 for i ̸= j, constraints (5.5) imply yijk = 0 for all k such that k ̸= j.
If xij = xjk = 1 and yijk < 1 then according to constraints (5.5) there exists an index
ℓ ∈ {1, . . . , n}, ℓ ̸= k such that yijℓ > 0. Constraints (5.6) together with yijℓ > 0 imply
xjℓ = 1, which contradicts (5.1). This contradiction completes the proof.

We now prove that constraints (5.2) are redundant in PRLT1.

Theorem 5.3.3. The optimal solution of PRLT1 does not change when removing constraints
(5.2).

Proof. Let PRLT1’ represents the problem PRLT1 without constraints (5.2) and (x, y) be a
feasible solution of PRLT1’. We show that (x, y) is also a feasible solution for the PRLT1.
If not, there exists an index t ∈ {1, . . . , n} such that

∑n
k=1
k ̸=t

xkt = ϵ ̸= 1. Then according
to Lemma 5.3.1, constraints (5.5) for index t and for all j = 1, . . . , n, j ̸= t is written as
follows ∑

k ̸=t

yktj =
∑
k ̸=t

xktxtj = xtj

∑
k ̸=t

xkt = ϵxtj .

Since ϵ ̸= 1, the only possibility is that xtj = 0 for all j = 1, . . . , n, j ̸= t, which
contradicts equations (5.1).

As a consequence of Theorem 7.2.1, the PRLT1 simplifies as follows:

PRLT1’: min

 ∑
i

∑
j ̸=i

∑
k ̸=j,i

Dijkyijk : (5.5), (5.6), (5.7), (5.1), (5.3)

 .

Observe that the continuous relaxations of the PRLT1’ is as tight as the continuous relax-
ation of the PRLT1, in that a linear combination of the constraints of the latter problem
implies constraint (5.2).

5.3.1 A flow-based solution method

In order to solve PRLT1’ efficiently we introduce the following graph representation.
Consider a directed graph G = (V, E) where nodes in V correspond to feasible assign-
ments in AQAP, that is V = {⟨i, j⟩ : i, j ∈ {1, . . . , n}, i ̸= j}, and arcs in E correspond
to feasible pairs of assignments, that is, E = {(⟨i, j⟩, ⟨j, k⟩) : ⟨i, j⟩, ⟨j, k⟩ ∈ V, i ̸=
k}. Set V is partitioned into n clusters V1, V2, . . . , Vn such that Vi = {⟨i, j⟩ : j =
1, 2, ..., n, j ̸= i} for i = 1, 2, ..., n. Note that E only contains arcs between nodes from
different clusters with a non negative cost, and there are no arcs between two nodes in the
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same cluster. A cost function D : E → R+ is associated to the arcs of E and corresponds
to the cost function of the AQAP associated with pairs of adjacent assignments.

A feasible solution of PRLT1’ corresponds to a node disjoint cycle selection in G such
that exactly one node of each cluster appears in one of the selected cycles. Let us call the
problem of determining the cycle selection of minimum cost the Generalized Minimum
Cycle Cover (GMCC). This problem can be formulated as follows:

GMCC: min
∑

i

∑
j ̸=i

∑
k ̸=i,j

Dijkyijk

s.t.
∑
i ̸=j

∑
k ̸=j,i

yijk = 1 ∀j = 1, 2, ..., n (5.11)

∑
j ̸=i

∑
k ̸=j,i

yijk = 1 ∀i = 1, 2, ..., n (5.12)

∑
k ̸=i,j

yijk −
∑

k ̸=i,j

ykij = 0 ∀⟨i, j⟩ ∈ V (5.13)

yijk ≥ 0, binary ∀(i, j, k), i ̸= j ̸= k; i ̸= k, (5.14)

where variables yijk determine the arc selection, constraints (5.11) and (5.12) state that
exactly one of the arcs entering the cluster and one of the arcs leaving the cluster must
be selected. Constraints (5.13) are flow circulation constraints.

In the following theorem we show the possibility of obtaining a compact reformula-
tion for the GMCC.

Theorem 5.3.4. Constraints (5.12) in problem GMCC are redundant and can be removed
from the model.

Proof. Suppose y∗ is a feasible solution of the GMCC after removing constraints (5.12)
and ϵi be the value of

∑
j ̸=i

∑
k ̸=j,i y∗

ijk for i = 1, 2, ..., n, We show that ϵi = 1 for
i = 1, 2, ..., n.

Let s be the index of the s-th cluster. Then according to (5.11),
∑

i̸=j

∑
k ̸=j y∗

isk = 1.
Therefore there is a node ⟨s, t⟩ in the cluster Vs with in-degree one, while the in-degree
of all other nodes in the same cluster is zero. Hence by (5.11) the out-degree of the node
⟨s, t⟩ must be equal to one while out-degree of all the other nodes in the cluster Vs must
be zero. This implies ϵs = 1 and the proof is complete.

As a consequence of Theorem 5.3.4, GMCC is simplified as:

GMCC’: min

 ∑
i

∑
j ̸=i

∑
k ̸=i,j

Dijkyijk : y ∈ Y, y binary

 , (5.15)

where Y = {y ≥ 0 : (5.11), (5.13)}.
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5.4 Bounds of the AQAP

The continuous relaxation of GMCC’ provides a lower bound for the AQAP. In order to
strengthen this lower bound, we apply RLT to GMCC’ at the price of increased size. The
key operation of the RLT applied to GMCC’ is to multiply each constraints of the model
by each binary variables xpql with p ̸= q ̸= l resulting the quadratic expression xijkxpql.
Since for all (i, j, k, p, q, l) with i ̸= j ̸= k and p ̸= q ̸= l, the constraints defining Y do
not allow to include all the products xijkxpql in the model, we introduce the following
index sets:

A = {(i, j, k) : i, j, k ∈ {1, . . . , n}, i ̸= j ̸= k},

B = {(i, j, k, p, q, l) : (i, j, k), (p, q, l) ∈ A; p ̸= i, j, q ̸= i, j, k, l ̸= j, k},

C1 = {(i, j, k, p, i, j) : (i, j, k), (p, i, j) ∈ A},

C2 = {(i, j, k, j, k, l) : (i, j, k), (j, k, l) ∈ A},

I = B ∪ C1 ∪ C2.

where A represents the index set of the feasible pairs of assignments in the original
problem, and I define an index set including all indices (i, j, k, p, q, l) for which the
products xijkxpql are allowed in the formulation.

Considering the definition of the above index sets we apply the following reformula-
tion and linearization steps to obtain an new mixed binary formulation for the GMCC’:

Reformulation: Multiply each of the n + n(n − 1) equations (5.11), (5.13) and each of the
n(n − 1)(n − 2) nonnegativity constraints defining Y by each of the n(n − 1)(n − 2)
variables ypql, (p, q, l) ∈ A, and add these new constraints to the formulation. When
a variable yijk in a given constraint is multiplied by ypql, express the resulting product
as yijkypql in that order. Substitute y2

pql with ypql in the objective function and in the
constraints, and set yijkypql = 0 for all (i, j, k, p, q, l) /∈ I .

Linearization: Linearize the resulting problem by replacing the product yijkypql by the
continuous variable zijkpql for all (i, j, k, p, q, l) ∈ I . Enforce the equality zijkpql =
zpqlijk for all (i, j, k, p, q, l) ∈ I and i < p.

Once these steps have been applied to GMCC’, the following mixed binary program-
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ming model is obtained, where the coefficients Eijkpql found in the objective are all 0.

NewRLT: min
∑

(i,j,k)∈A

Dijkyijk +
∑

(i,j,k,l,p,q)∈I

Eijkpqlzijkpql (5.16)

s.t.
∑

p,l:(i,j,k,p,q,l)∈I

zijkpql = yijk ∀(q, i, j, k); (i, j, k) ∈ A, q ̸= j

(5.17)∑
l:(i,j,k,p,q,l)∈I

zijkpql −
∑

l:(i,j,k,l,p,q)∈I

zijklpq = 0

∀(i, j, k, p, q); (i, j, k) ∈ A, p ̸= i, j, q ̸= j, k (5.18)

zijkpql = zpqlijk ∀(i, j, k, p, q, l) ∈ I; i < p (5.19)

zijkpql ≥ 0 ∀(i, j, k, p, q, l) ∈ I (5.20)

y ∈ Y, y binary.

Note that an optimal solution to the NewRLTwill yield an optimal solution to the GMCC’
problem. However, if the binary restrictions on variables y are relaxed in NewRLT, the
problem is no longer equivalent to GMCC’, providing a lower bound on the optimal ob-
jective value.

5.4.1 Lagrangian Relaxation Scheme

Consider the continuous relaxation of NewRLT (CNewRLT). Due to the large number
of variables and constraints, and also degeneracy of the problem, solving CNewRLT to
obtain a lower bound for AQAP is too time demanding. Therefore we apply a Lagrangian
dual by relaxing constraints (5.19) using a set of Lagrangian multipliers λijkpql for all
(i, j, k, p, q, l) ∈ I, i < p. For convenience we assume that λpqlijk = −λijkpql for all
(p, q, l, i, j, k) ∈ I, i < p. Let Dijk and Eijkpql denote the adjusted values for Dijk

and Eijkpql respectively, after placing constraints (5.19) into the objective function. The
resulting Lagrangian relaxation is:

min

K +
∑

(i,j,k)∈A

Dijkyijk +
∑

(i,j,k,p,q,l)∈I

Eijkpqlzijkpql : y ∈ Y, (5.17), (5.18), (5.20)

 ,

(5.21)
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where

Eijkpql = Eijkpql + λijkpql ∀(p, q, l, i, j, k) ∈ I, (5.22)

Dijk = Dijk ∀(i, j, k) ∈ A,

K = 0.

In order to solve (8.18) efficiently, we first solve n(n − 1)(n − 2) independent sub
problems SP (i, j, k), one over each (i, j, k) ∈ A:

ϕijk = min
∑

(p,q,l)∈A:
(i,j,k,p,q,l)∈I

Eijkpqlzijkpql (5.23)

s.t.
∑
p,l:

(i,j,k,p,q,l)∈I

zijkpql = 1 ∀q; q ̸= j (5.24)

∑
l:

(i,j,k,p,q,l)∈I

zijkpql −
∑

l:
(i,j,k,l,p,q)∈I

zijklpq = 0 ∀p, q; p ̸= i, j, q ̸= j, k

(5.25)

zijkpql ≥ 0 (i, j, k, p, q, l) ∈ I. (5.26)

then the optimal objective value of (8.18) is given by the solution of the following GMCC’:

MP : ∆ = min {
∑

(i,j,k)∈A

(Dijk + ϕijk)yijk : y ∈ Y }, (5.27)

The decomposition result is stated in the following theorem.

Theorem 5.4.1. An optimal solution (y∗, z∗) to the problem (8.18) is given by

y∗ = ŷ,

z∗
ijkpql = ẑijkpqlŷpql ∀(i, j, k, p, q, l) ∈ I,

where ẑ and ŷ are optimal solutions of sub problem SP (i, j, k), (i, j, k) ∈ A and MP ,
respectively.

Proof. We propose the proof similar to the one used in [3] for the RLT2 representation
of the QAP. We first show that (y∗, z∗) is feasible to problem (8.18). Since ŷ ∈ Y and ẑ

satisfies (8.27)–(5.26), it follows that:∑
p,l:

(i,j,k,p,q,l)∈I

z∗
ijkpql =

∑
p,l:

(i,j,k,p,q,l)∈I

ẑijkpqly
∗
ijk = y∗

ijk,
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and ∑
l:

(i,j,k,p,q,l)∈I

z∗
ijkpql −

∑
l:

(i,j,k,l,p,q)∈I

z∗
ijklpq =

∑
l:

(i,j,k,p,q,l)∈I

ẑijkpqly
∗
ijk−

∑
l:

(i,j,k,l,p,q)∈I

ẑijklpqy∗
ijk = y∗

ijk(
∑

l:
(i,j,k,p,q,l)∈I

ẑijkpql −
∑

l:
(i,j,k,p,q,l)∈I

ẑijklpq) = 0.

Next, we should find a dual solution to (8.18) that, together with (y∗, z∗), satisfies com-
plementary slackness conditions. To this end, let (µ̂, ν̂, π̂, α̂, β̂, γ̂) be the optimal dual
solution corresponding to constraints (8.27) to (5.26), two equality constraints and non-
negativity restriction in Y respectively. For each (i, j, k) ∈ A, dual feasibility of (8.26)–
(5.26) ∀(p, q, l) ∈ A such that (i, j, k, p, q, l) ∈ I gives:

µ̂ijkq + ν̂ijkpq − ν̂ijkql + π̂ijkpql = Eijkpql,

Moreover, dual feasibility of (α̂, β̂, γ̂) to (8.25) for each (i, j, k) ∈ A, and dual optimality
of µ̂ijkq ∀q ̸= j to (8.26)–(5.26) provide:

α̂j + β̂ij − β̂jk + γ̂ijk = Dijk + ϕijk = Dijk +
∑
q ̸=j

µ̂ijkq.

Therefore (µ, ν, π, α, β, γ) = (µ̂, ν̂, π̂, α̂, β̂, γ̂) is a dual feasible solution to (8.18),
where the variables µ, ν and π correspond to constraints (5.17), (5.18) and (5.20) re-
spectively and the variables α, β and γ correspond to the two equality constraints and
nonnegativity restriction defining Y respectively.

Next, we will show that the optimal value of problem (8.18) is equal to∆. Dual optimality
of (α̂, β̂, γ̂) to (8.25) implies:∑

j

α̂j =
∑

(i,j,k)∈A

(Dijk + ϕijk)y∗
ijk =

∑
(i,j,k)∈A

(Dijk +
∑

(p,q,l)∈A:
(i,j,k,p,q,l)∈I

Eijkpqlẑijkpql)y∗
ijk

=
∑

(i,j,k)∈A

Dijky∗
ijk +

∑
(i,j,k,p,q,l)∈I

Eijkpqlz
∗
ijkpqℓ.

Note that the second equality follows from the definition of ϕijk ∀ (i, j, k) ∈ A, while
the last equality results from the definition of z∗.

Using this theorem one can easily check that, if y∗
ijk = 1 for some (i, j, k) ∈ A, then



5.4 Bounds of the AQAP 57

ŵ = ẑijk is a vector that minimize the following problem:

ϕijk =


∑

(p,q,l)∈A:
(i,j,k,p,q,l)∈I

Eijkpqlwpql : w ∈ Y, and wijk = 1


which is the same as the continuous relaxation of GMCC’ (CGMCC) with an extra con-
straint wijk = 1. Thus, the decomposition strategy proposed in Theorem 5.4.1 provides
a way of solving problem (8.18) by solving n(n − 1)(n − 2) + 1 CGMCC problems.

In order to develop a procedure to find the optimal dual multipliers, we use the idea
of splitting the costs between symmetrical entries of E so as to maximize the value of ∆.
This idea has been proposed in [25] and already used to solve the RLT representations
of the QAP in [3, 59, 60]. Using this idea, it is not necessary to explicitly find the value
of the dual multipliers λijkpql in each iteration of the dual ascent algorithm. In fact one
can adjust the coefficient Eijkpql on variables zijkpql every time multiples of (5.19) are
placed into the objective function. More precisely, for any (i, j, k, p, q, l) ∈ I with i < p,
we can increase Eijkpql by the same quantity by which Epqlijk is decreased.

Dual-ascent Strategy

In the following we present a dual-ascent algorithm similar to that used in [3] for the
RLT2 representation of the QAP. The procedure consists of updating the constant term
K and the cost matrices D and E in such a way that the cost of any feasible solution
with respect to the modified objective function remains unchanged while maintaining
nonnegative coefficients. As a consequence of this property, the value of K at any itera-
tion of the algorithm is a valid lower bound on the optimal solution cost for the AQAP.
The main steps of the dual-ascent algorithm are summarizes as follows:

1 Initialization: Set Eijkpql = 0 for all (i, j, k, p, q, l) ∈ I , Dijk = Dijk for all
(i, j, k) ∈ A, K = 0, and an iteration counter I = 0.

2 Spreading: For each (i, j, k) ∈ A, spread the coefficient Dijk amongst the coeffi-
cient Eijkpql for all (i, j, k, p, q, l) ∈ I ; i.e, Eijkpql = Dijk

n−1 . Then update Dijk to 0
for each (i, j, k) ∈ A.

3 Solve the Lagrangian relaxation problem: Use Theorem 5.4.1 to solve (8.18) as fol-
lows:

(a) Solve the sub problems: solve n(n − 1)(n − 2) problems CGMCC defined in
(8.26)–(5.26) to obtain ẑ. For a selected (i, j, k) ∈ A, change the coefficients
Eijkpql to a percentage of the sum of Eijkpql and Epqlijk and adjust Epqlijk
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so that the sum stays constant. (For i < p we set Eijkpql = Epqlijk =
Eijkpql+Epqlijk

2 , and for i > p we set Eijkpql = Eijkpql + Epqlijk , Epqlijk =
0). Solve the subproblem and place the associated equations (5.17) and (5.18)
into the objective function with the optimal dual multipliers, readjust Eijkpql

and increase Dijk by ϕijk .

(b) Solve the problem (8.25) to obtain ŷ and place the equality constraints of Y

into the objective functionwith the optimal dual multipliers, readjustingDijk

and increasing the scalar K by the nonnegative value of ∆.

4 If I ≥ MaxIteration or ∆ = Optimal objective value, stop, otherwise set I =
I + 1 and return to 2.

5.5 QAP on Reducible graphs

Consider a special QAP in Koopmans and Beckmann form where the graphs associated
to flow and the distance coefficient matrices is belong to a class of graphs with a special
structure namely the Reducible graphs. Malucelli and Pretolani in [84] studied quadratic
semi assignment problem (QSAP) on reducible graphs and have presented a polynomial
time algorithm for the problem. In this section we introduce the class of reducible graphs,
review the algorithm presented by Malucelli and Pretolani for the QSAP, and provide
a lower bounding procedure for the QAP on reducible graphs based on a Lagrangian
decomposition whose subproblems are QSAPs.

5.5.1 Reducible graphs

Consider undirected graph G(V, E) with |V | = n and |E| = m. The graph G is called
reducible if and only if it can be reduced to a single node by the following operations:

• Tail reduction: Let i be a node of degree 1 (i.e. there is only one arc incident with
node i) and (j, i) be the arc connecting node i to the rest of the graph G. The graph
G can be reduced to a new graph G′ where node i and arc (j, i) have been deleted.
This reduction operation is denoted by Tail(i).

• Series reduction: Let i be a node of degree 2 and let (i, j) and (i, h), j ̸= h, the
two arcs incident with i; the graph G can be reduced to a new graph G′ obtained
from G by eliminating node i, arc (j, i), arc (i, h) and adding a new arc (j, h). This
operation is denoted by Series(h, i, j).

• Parallel reduction: Let a = (i, j) and a′ = (i, j) be two “parallel” arcs of graph G.
The graph can be reduced to a new graph G′ with a single arc between nodes i and
j. This operation is denoted by Parallel(i, j).
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The reducible graphs have some important properties including and not limit to

• By applying repeatedly reductions to a graph G as far as possible; the resulting
graph is independent of the sequence of reductions.

• If G is a connected graph, any graph G′, obtained from G by reduction, is also
connected.

• Any simple reducible graph (i.e. without parallel arcs) contains at most 2n−3 arcs.

The class of reducible graphs can be considered as an extension of an another calls of
graphs called series-parallel graphs. Applying a sequence of series and parallel reduction
on the series-parallel graphs imply a single arc. More precisely any series-parallel graph
is reducible while there exist reducible graphs which are not series-parallel graphs. As an
example, trees belong to the class of reducible graphs, but they are not series-parallel in
general. More details concerning the reducible graphs can be found in [84].

5.5.2 Quadratic Semi-Assignment Problem on reducible graph

Consider theQAP in the Koopmans and Beckmann form. Dropping constraints
∑n

i=1 xij =
1 ∀j = 1, . . . , n from the set X implies the following relaxed problem which is called
Quadratic Semi-Assignment Problem (QSAP).

SQAP: min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

fijdklxikxjl +
n∑

i=1

n∑
k=1

cikxik (5.28)

s.t.
n∑

j=1
xij = 1 ∀i = 1, . . . , n (5.29)

x binary. (5.30)

This problem is well known to belong to the class of the NP-hard optimization prob-
lems [108]. Malucelli and Pretolani [84] introduced a class of the QSAP where the graph
Gf corresponding to the flow matrix is reducible. They proposed a polynomial time al-
gorithm to solve this special problem and provide lower bounds and solution techniques
for the general case of the QSAP. In the following we present their approach in more
details.

A polynomial algorithm for the QSAP on reducible graphs:

Consider undirected connected graph Gf (Vf , Ef ) where Vf represents the set of fa-
cilities {1, 2, . . . , n} and Ef is determined by the positive coefficients fij , that is Ef =
{(i, j) ∈ Vf × Vf : fij > 0 or fji > 0}. Let Vd represents the set of location. For
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each i ∈ Vf define the labels uik∀k ∈ Vd and for each (i, j) ∈ Ef define the labels
wikjl∀k, l ∈ Vd. The labels are initialized as follows:

uik = cik ∀i ∈ Vf , k ∈ Vd

wikjl = fijdkl + fjidlk ∀i, j ∈ Vf , k, l ∈ Vd

Since in the QSAP any two arcs in the solution can be incident in the same location, the
solution method consists of updating the labels according to the reduction operations
performed on Gf . At the end, when Gf has been reduced to a single node, the minimum
label of that node gives the optimal solution value. The process of updating the labels is
described as follows:

• Updating the labels u by tail reduction: Consider the node i ∈ Vf with deg(i) = 1
and let (j, i) ∈ Ef . First do the Tail reduction Tail(i) on Gf to obtain the Gf (T ),
set Gf = Gf (T ), and for each k ∈ Vd update the labels ujk as follows:

ujk = min{uil + wiljk, l ∈ Vd} (5.31)

Note that ujk is modified in order to take into account the best possible assignment
for i once j has been assigned to k. This operation can be carried out inO(n2) time.

• Updating the labels w by Series reduction: Consider the node i ∈ Vf with deg(i) =
2 and let (i, j), (i, h) ∈ Ef . First do the series reduction Series(h, i, j) on Gf to
obtain the Gf (S), set Gf = Gf (S), and for each k, l ∈ Vd update the labels wjlhk

as follows:
wjlhk = min{witjl + withk + uit, t ∈ Vd} (5.32)

The label wjlhk takes into account the best possible assignment for i once j and h

have been assigned to l and k, respectively. This operation can be carried out in
O(n3) time.

• Updating the labels w by Parallel reduction: Consider two parallel arcs a′ = a′′ =
(i, j) with labels w′

ikjl and w′′
ikjl respectively. By doing the parallel reduction

Parallel(i, j) on Gf obtain the Gf (P ), set Gf = Gf (P ), and for each k, l ∈ Vd

update the labels wikjl as wikjl = w′
ikjl + w′′

ikjl.

Since applying reduction operations on a reducible graph needs at most O(n), the
overall complexity of the transformations is O(nn3).

The process of updating the labels is terminated when Gf is reduced to a single node.
In order to obtain the optimal solution one can store in a stack the local choices made in
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each Series or Tail reduction operation. Let node i and arc (i, j) eliminated from Gf by
tail reduction. For each k ∈ Vd let i(k) denotes the index l ∈ Vd giving the minimum
in (5.31). We put on the stack a label Tail, the nodes i and j, and the set {i(k) : k =
1, 2, . . . , n}. For the Series reduction, let (j, h) be the new arc introduced by the reduction
and let i be the eliminated node; for each pair k, l ∈ Vd, denote by i(k, l) the index t ∈ Vd

giving the minimum in (5.32). We put on the stack a label Series, the nodes j, h and i,
and the set {i(k, l) : k, l = 1, 2, . . . , n}.

By keeping track of the choices made during the reduction process we are able to
obtain the optimal assignment ρ going backwards, once Gf has been reduced to a single
node. More precisely let uik be the minimum label of the remaining single node i; set
ρ(i) = k. Then, repeatedly remove elements from the stack and, according to the label
Tail or Series, perform the following operations:

Tail : let k = ρ(j); set ρ(i) = i(k);

Series : let k = ρ(h) and l = ρ(j); set ρ(h) = i(k, l).

5.5.3 A Lagrangain Decomposition approach

The QAP on reducible graphs is a generalization of the QAP on series-parallel digraph.
Rendl in [104] studied the QAP on series-parallel digraphs and showed that the problem
is NP-hard. He also reported that the class of series-parallel digraphs not containing bi-
partite subgraphs is solvable in polynomial time. Since the class of series-parallel graphs
is included in the class of reducible graphs, and QAP on series-parallel digraphs is NP-
hard, the QAP on reducible graphs is also NP-hard. Considering the NP-hardness of the
problem we focus our attention to find a lower bound for the problem.

Given a QAP in Koopmans and Beckmann form, let Gf (Vf , Ef ) and Gd(Vd, Ed) are
two connected reducible graphs called flow and distance graphs corresponding to the
flow and distance matrices of the QAP where Vf and Vd represent the set of facilities
and the set of locations, and Ef and Ed are determined by the coefficients fij and dkl

respectively, i.e.,

Ef = {(i, j) ∈ Vf × Vf : fij ≥ 0 or fji ≥ 0}

Ed = {(k, l) ∈ Vd × Vd : dkl ≥ 0 or flk ≥ 0}.

The QAP structure along with reducibility of the flow and distance graphs can be
used to obtain improved problem formulations and more effective algorithm that take
the structure into account. One typical way to obtain a reformulation for QAP is to split
the variables x into two groups x and y and then join the two groups of variables with a
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new “linking” constraint x = y. The resulting problem has the following form:

P: min
{

f(x) + g(y) : x ∈ Xf , y ∈ Yd, x = yt
}

,

where

f(x) =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

(1/2fij)dklxikxjl +
n∑

i=1

n∑
k=1

1/2cikxik

g(y) =
n∑

k=1

n∑
l=1

n∑
i=1

n∑
j=1

dkl(1/2fij)ykixlj +
n∑

k=1

n∑
i=1

cikyki

Xf = {x :
n∑

k=1
xik = 1 ∀i = 1, . . . , n; x binary} (5.33)

Yd = {y :
n∑

i=1
yki = 1 ∀k = 1, . . . , n; y binary}. (5.34)

Problem P is clearly equivalent to the QAP in the sense that they have equal optimal
values, but having different variable spaces. In addition if x∗ is an optimal solution of
QAP, then the solution (x, y) = (x∗, x∗) is the optimal solution for problem P, and if
(x∗, x∗) is an optimal solution of P, then x∗ = y∗ is the optimal solution of the QAP.

In order to solve problem P we apply Lagrangian relaxation by dualizing the linking
constraint x = y with multipliers λ. This separates the problem into an x-problem and
an y-problem. the Lagrangian dual is thus defined as:

LD(λ, x, y) : min
x,y

{f(x) + g(y) + λ(y − x) | x ∈ Xf , y ∈ Yd}

= min
x

{f(x) − λx |x ∈ Xf } + min
y

{f(y) + λy | y ∈ Yd}.

Observe that both subproblems are quadratic semi assignment problems on reducible
graphs, thus are solvable by using the polynomial time algorithm present by Malucelli
and Pretolani for QSAP on reducible graphs.

5.6 Computational experiments

In this section we report the computational experiments of lower bounding approaches
for both the Adjacent QAP and the QAP on reducible graphs. In the following we first
present the computational details for AQAP and then present the results for the QAP on
reducible graphs.
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5.6.1 Computational results for AQAP

In the following subsections we first introduce the test instances and then provide the
computational details of applying the dual-ascent procedure to solve NewRLT formula-
tion. We compare the NewRLT with the classical RLT2 representations of the QAP for
evaluating both the strength of the resulting bounds and computational effort.

Test instances of AQAP

We use a class of randomly generated instances with size ranging from n = 10 to n = 20
introduced in [42]. All instances consist of complete graphs with n vertices and m =
n(n − 1)/2 edges. The cost function D : E × E → R+ is defined as an integer number
which is chosen from the set {0, 1, ..., 10000} uniformly for all (i, j), (j, k) ∈ E such
that i ̸= k.

These instances can be transformed to the standard QAP instances by defining a new
interaction cost Cijkl for all (i, j, k, l) with i ̸= k, j ̸= l as follows:

qijkl =


1
2 Dijl (i, j, l) ∈ A, j = k
1
2 Dklj (k, l, j) ∈ A, i = l

M (i = j or k = l) or (i ̸= j, k ̸= l, l = i, k = j)
0, otherwise

where M is a large number. It is not difficult to see that, the optimum value of the
standard QAP instance obtained with this transformation is equal to the optimum value
of the AQAP instance.

Lower bounds computation for AQAP

In this section we present the computational experiments comparing the lower bounds
obtainedwith CGMCC, classical RLT2 [3], andNewRLT2. We implemented all algorithms
in C++ language and run on an Intel Xeon CPU E5335 (2 quad core CPUs 2GH). To solve
the standard RLT2 we applied the dual-ascent algorithm presented in [3] and used the
Hungarian algorithm to solve the assignment sub problems. To solve NewRLT we ap-
plied the dual-ascent algorithm presented in Section 5.4.1, while foe solving the CGMCC
problems arise each sub-problem of NewRLT formulation we used CPLEX 12.5 with de-
fault setting. Due to the tradeoff between bound strength and CPU execution time we
terminated the dual-ascent algorithms for RLT2 and NewRLT in 1000 and 25 iterations,
respectively, if the optimal solution has been not found yet.

Tables 6.1-6.3 report the lower bounds and CPU times obtained by using different
approaches. To do a fair comparison between RLT2 and NewRLT we reported the lower
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Table 5.1 Comparison of different lower bounding approaches for the AQAP instances.

RLT2 NewRLT2
Instance PRLT1 Itr(100) Itr(500) Itr(1000) Itr(5) Itr(15) Itr(25)

n Opt. Lb time Lb time Lb time Lb time Lb time Lb time Lb time

10 12899 10849.9 0 12899 4 - - - - 12899 10 - - - -
10 11477 8213.5 0 11477 4 - - - - 11477 10 - - - -
10 13434 8791.1 0 13434 8 - - - - 13434 13 - - - -
10 10317 8024.1 0 10317 5 - - - - 10317 13 - - - -
10 10936 9632.8 0 10936 5 - - - - 10936 6 - - - -
10 14361 10761 0 14361 6 - - - - 14361 16 - - - -
10 10783 7317.1 0 10783 6 - - - - 10783 16 - - - -
10 13811 10486.9 0 13811 7 - - - - 13811 13 - - - -
10 11937 9416.1 0 11937 5 - - - - 11937 10 - - - -
10 15053 10777.4 0 15053 10 - - - - 15053 10 - - - -
11 13056 10299.8 0 13056 13 - - - - 13056 31 - - - -
11 11463 9416.2 0 11463 12 - - - - 11463 15 - - - -
11 11146 8350.1 0 11146 13 - - - - 11146 20 - - - -
11 12257 9301.7 0 12257 25 - - - - 12248.7 25 12257 36 - -
11 13744 10084.1 0 13744 24 - - - - 13601.6 25 13744 46 - -
11 11171 8965.1 0 11171 9 - - - - 11171 15 - - - -
11 11186 8234.8 0 11186 18 - - - - 11186 30 - - - -
11 12809 9035.0 0 12809 17 - - - - 12809 30 - - - -
11 11347 8906.0 0 11347 17 - - - - 11347 31 - - - -
11 12720 7134.9 0 12720 21 - - - - 12680.3 25 12720 35 - -
12 10961 9200.6 0 10961 18 - - - - 10961 33 - - - -
12 8280 8066.5 0 8280 13 - - - - 8280 17 - - - -
12 10286 8079.0 0 10286 35 - - - - 10286 25 - - - -
12 10627 7685.5 0 10627 42 - - - - 10627 32 - - - -
12 9845 8469.1 0 9845 18 - - - - 9845 25 - - - -
12 12459 9664.1 0 12459 30 - - - - 12459 40 - - - -
12 9414 9237.9 0 9414 17 - - - - 9414 17 - - - -
12 12625 8764.2 0 12625 43 - - - - 12625 33 - - - -
12 12466 9172.5 0 12466 43 - - - - 12466 48 - - - -
12 12016 8894.1 0 12016 42 - - - - 12016 48 - - - -
13 11001 9285.5 0 11001 37 - - - - 11001 39 - - - -
13 11459 8674.1 0 11459 115 - - - - 11459 51 - - - -
13 11319 6680.9 0 10994.4 119 11319 222 - - 11189.1 64 11319 101 - -
13 11688 8011.0 0 11661.3 120 11688 143 - - 11688 75 - - - -
13 11434 8243.7 0 11434 56 - - - - 11434 77 - - - -
13 12604 8911.6 0 12574.9 122 12604 144 - - 12604 76 - - - -
13 9620 8516.5 0 9620 30 - - - - 9620 40 - - - -
13 12015 8104.6 0 12015 100 - - - - 12015 64 - - - -
13 12250 8936. 0 11843.9 120 12250 278 - - 12250 101 - - - -
13 12453 8852.6 0 12396.7 119 12453 150 - - 12453 77 - - - -
14 12668 9077.7 0 12300.8 196 12668 362 - - 12264 99 12668 217 - -
14 9708 7608.5 0 9708 80 - - - - 9708 62 - - - -
14 10611 7100.7 0 10495.7 196 10611 284 - - 10611 99 - - - -
14 11086 8391.2 0 11086 148 - - - - 11086 99 - - - -
14 9264 8582.0 0 9264 91 - - - - 9264 43 - - - -
14 11615 8746.5 0 11615 114 - - - - 11615 99 - - - -
14 11073 7316.4 0 10860.9 206 11073 361 - - 10885.7 100 11073 159 - -
14 11289 7612.6 0 10770.6 195 11289 399 - - 11188.5 100 11289 161 - -
14 10979 8861.3 0 10979 121 - - - - 10979 98 - - - -
14 10704 8530.6 0 10704 131 - - - - 10704 80 - - - -
15 12183 8856.6 0 11916 305 12183 607 - - 12183 155 - - - -
15 11061 8201.2 0 10864.8 307 11061 428 - - 11061 157 - - - -
15 10516 7055.5 0 10024.9 310 10516 741 - - 10509.5 157 10516 216 - -
15 12886 7603.8 0 11004 307 11796.9 1519 11864.6 3015 11928.5 158 12286 308 - -
15 11867 8133.1 0 10569.3 307 11357.1 1552 11413.4 3090 11067.4 154 11867 303 - -
15 13432 8904.6 0 11673.7 303 12273.6 1504 12337.4 3008 12313.6 155 13326.5 446 13432 598
15 9335 7992.8 0 9335 216 - - - - 9335 101 - - - -
15 12416 7973.5 0 10992.3 311 11693 1508 11745.7 2996 11928.6 157 12416 280 - -
15 12140 8279.0 0 11480.8 309 12137.8 1526 12140 1556 12119.6 158 12140 218 - -
15 12252 7946.3 0 10898.7 307 11600.2 1520 11662.6 3030 11741.4 163 12252 321 - -
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Table 5.2 Comparison of different lower bounding approaches for the AQAP instances.

RLT2 NewRLT2
Instance PRLT1 Itr(100) Itr(500) Itr(1000) Itr(5) Itr(15) Itr(25)

n Opt. Lb time Lb time Lb time Lb time Lb time Lb time Lb time

16 13334 8693.2 0 11246.6 618 11917.3 3076 11967.9 6128 12144 231 13187.2 696 1334 1197
16 10166 8084.4 0 10166 622 - - - - 10166 254 - - - -
16 10306 7202.4 0 9513.9 620 10152.3 3076 10209.4 6179 10289.5 268 10306 424 - -
16 10684 7224.5 0 10280.4 608 10684 1520 - - 10683.8 254 10684 349 - -
16 11634 7881.1 0 10385.7 609 11032.8 3099 11091 6336 11158.2 270 11634 591 - -
16 13049 8699.5 0 11091.8 655 11776.1 3236 11853.2 6458 11939.9 253 12907.6 483 13023 1225
16 10453 7188.0 0 9654.1 562 10387.9 3295 10453 5888 10211.3 263 10453 631 - -
16 9956 6571.1 0 9106.4 648 9838.1 3346 9956 6697 9869.8 248 9956 384 - -
16 10383 8136.9 0 10026.2 572 10383 1165 - - 10383 246 - - - -
16 11233 7086.8 0 9477 661 10054.6 3325 10110.6 6648 10221.6 259 11233 771 - -
17 11823 7799.2 0 9882.6 737 10589.6 3460 -10655 6799 10801.4 398 11777.8 1162 11823 1405
17 11072 7283.9 0 9370.6 691 10117.5 3421 10212.6 6805 10186.8 396 11046.7 1161 11072 1406
17 9801 7107.4 0 9475.3 684 9801 1501 - - 9801 403 - - - -
17 12004 7315.0 0 9917.4 682 10702.6 3390 10771.3 7106 10802.7 398 12004 1190 - -
17 11314 7730.7 0 9729.8 709 10374.1 3521 10435.6 6992 10540.6 394 11314 1073 - -
17 11682 6694.8 0 9748.6 711 10413.9 3507 10496.2 6972 10804.1 391 11562.3 1125 11682 1888
17 10248 7286.7 0 9533.8 698 10181.5 3437 10248 6173 10220.5 399 10248 619 - -
17 9009 6707.0 0 8761.1 693 9009 1376 - - 9009 390 - - - -
17 10866 7021.4 0 9338.7 688 9940.7 3551 10019.8 7083 10702.2 394 10866 608 - -
17 11637 7467.1 0 9661.8 672 10270.1 3391 10343.5 6729 10874.8 397 11621.9 1125 11637 1357
18 12302 8096.2 0 10099.4 1151 10855 5544 10935.7 10681 11452 2001 12302 5625 - -
18 8814 6873.9 0 8744 1094 8814 1522 - - 8814 2018 - - - -
18 12460 7930.9 0 9684 1061 10234.5 5388 10296.3 10720 10772.9 1998 11744.1 5496 11981.8 9533
18 11702 7181.0 0 9263.3 1055 9954.8 5341 10041.4 10583 10573.6 1907 11479.4 5348 11700.3 9356
18 10555 6670.5 0 8474 1034 9133.7 5098 9213 10260 9445.4 1921 10417.6 5325 10555 7563
18 12578 8051.8 0 9787.9 926 10640.4 5085 10718.3 10049 11009.1 1987 12132.9 5820 12427.9 10063
18 11054 7502.5 0 9129.5 1002 9700.8 4958 9751.9 9999 10268.7 2041 11054 5954 - -
18 10900 6993.9 0 8909.1 1050 9542.1 5059 9628.5 10001 10113.9 1954 10900 5159 - -
18 10626 6749.5 0 8647.2 1010 9347.6 5068 9417.2 9954 9856.4 1928 10626 5051 - -
18 10055 7759.1 0 9199.7 1043 9864.8 5308 9984.1 10740 10028.7 1937 10055 2909 - -
19 11415 7752.9 0 9348.9 1618 9929.8 7926 9995.2 16050 10423.5 2958 11231.2 8175 11309.8 14272
19 11651 7037.9 0 8523.2 1521 9250 7638 9309.5 15329 9893.6 3049 10968.9 8936 11240.9 15754
19 10587 6877.0 0 8312.2 1396 8959.1 7457 9037.3 14765 9599.7 2962 104449.2 8436 10587 12739
19 11843 6831.9 0 8680 1576 9370.4 8072 9460.8 16148 9963.6 2968 10959.2 8241 11195.1 14081
19 11006 7881.1 0 8967.5 1477 9565.6 7790 9635.7 15111 10134.6 3012 10959.8 8124 11006 10934
19 11256 7411.9 0 9286.3 1519 9957.8 7882 10042.3 15304 10470.1 2988 11256 7162 - -
19 9622 7068.4 0 8691.4 1424 9251.9 7267 9346.1 15050 9605.8 2951 9622 3901 - -
19 12386 8215.9 0 9583.2 1558 10135.9 7696 10205.3 15217 10767 2991 11635.2 8536 11875 15135
19 11030 7783.5 0 9137.3 1489 9810.4 7482 9894.6 15017 10677 2922 11030 4778 - -
19 11282 6834.7 0 8908.3 1529 9526.3 7503 9602.2 14721 10080.3 2877 11071.3 7878 11146.3 13730
20 11627 7086.6 0 8806.1 2489 9488.1 12187 9579.2 24794 10153 4386 11178.6 12088 11443.6 21375
20 11148 7758.9 0 9172.9 2482 9689.1 12445 9757.8 24546 10379.9 4524 11069.1 12092 11148 18849
20 10287 6446.6 0 7827.4 2205 8418.5 10748 8485.8 21770 8923.5 4335 9941.3 11715 10174.6 20306
20 11660 6417.3 0 8370.9 2414 9123.8 12244 9211 24671 9938.7 4490 11078.5 12324 11372 21114
20 11132 7134.6 0 8359.4 2553 9030.7 12759 9114.6 24920 9826 4587 10670.9 12814 10928.8 22215
20 11446 7360.1 0 8725.4 2207 9361.7 10682 9426.5 22247 10115.2 4468 10964.1 13246 11190.1 24181
20 9811 6918.6 0 8136.6 2566 8783.7 12362 8869.3 25173 9543.2 4485 9811 9496 - -
20 10787 6550.1 0 7954.18 2217 8527.5 11638 8603.5 23234 9166.3 4353 10144.6 11703 10403.9 20356
20 11890 6944.4 0 8454.1 2478 9082.2 12991 9168.5 24953 9776.3 4447 10711.1 11962 10943.9 20519
20 10961 6892.9 0 8393.5 2188 9130.5 11785 9195.8 24194 9669.4 4627 10581.5 14755 10829 26940
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Table 5.3 AQAP: Comparison of NewRLT and RLT2 in terms of CPU execution time and
the gap for AQAP instances of size 15 ≤ n ≤ 20 . Each row gives the average values for
the respective 10 instances.

RLT2 NewRLT2
Itr(100) Itr(500) Itr(1000) Itr(5) Itr(15) Itr(25)

size Gap(%) time Gap(%) time Gap(%) time Gap(%) time Gap(%) time Gap(%) time

15 8.45 298 3.49 1112 3.20 1868 3.25 151 0.00 250 0.00 265
16 10.00 617 4.29 2576 3.83 4761 3.68 254 0.22 482 0.02 557
17 14.51 696 6.50 3055 5.16 5653 5.32 396 0.52 885 0.00 1033
18 20.59 1042 12.98 4827 12.14 9450 8.28 1969 1.28 4870 0.51 6323
19 25.36 1510 17.10 7671 16.12 15271 10.43 2967 1.98 7416 1.48 11248
20 31.56 2379 22.20 11990 21.13 24050 12.90 4470 4.30 12219 2.03 20535

bounds and CPU execution times at different intervals; {100, 500, 1000} for RLT2 and
{5, 15, 25} for NewRLT. In all tables, the first two columns give the problem sizes and the
optimal objective values. From left to right, the third and forth columns give the lower
bound and CPU time of CGMCC, followed by the lower bound values and CPU times of
the RLT2 for three intervals in columns fifth to tenth, and NewRLT for three intervals in
columns eleventh to sixteenth. For both the RLT2 and NewRLT, if the optimal objective
values are verified in previous intervals, the current lower bounds and CPU times are
shown by dash marks.

As we observe from these tables, it is clear that the bounds implied by GMCC are the
weakest bounds for all 110 instances. The bounds obtained from the dual ascent strategies
applied to RLT2 and NewRLT for 50 instances of sizes 10 − 14 are exact, as they equal
to the optimal objective values of the AQAP. However, the dual-ascent algorithm takes
254.2 seconds to calculate the NewRLT bounds of all these 50 instances while the dual-
ascent algorithm takes 380 seconds to calculate the RLT2 bounds. Thus, the total average
CPU time spent by NewRLT is 33% less than the total average CPU time spent by RLT2
to solve all instances of size 10 ≤ n ≤ 14.

For the instances of size n ≥ 15, the RLT2with Itr = 100 provides lower bounds that
are much stronger than those provided by GMCC, but need a high computational effort.
The bounds of RLT2 become stronger as Itr grows, but at the cost of increased CPU time.
From 60 instances with size n ≥ 15, the total number of instances solved to optimality by
RLT2 are 14 from which, 2 instances in at most 100 iterations, 8 instances in at most 500
iterations, and 4 instances in at most 1000 iterations. Lower bounds yielded by NewRLT
for these instances outperform both the GMCC and RLT2 bounds. More precisely, the
lower bounds obtained by NewRLT even with Itr = 5 are almost always stronger than
those provided by RLT with Itr = 1000. Moreover, from the 60 instances, the NewRLT
was able to solve 43 instances to optimality; 8 instances in at most 5 iterations, 24 in-
stances in at most 15 iterations , and 9 instances in at most 25 iterations.
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To make a better comparison in terms of CPU execution times and also bounds tight-
ness, we report in Table 5.3 the average CPU time and also the average gap between the
lower bounds and the optimal objective values. Each row of the table gives the average
values of the respective 10 instances of size 15 ≤ n ≤ 20. The formula we used to com-
pute the gaps is 100 × (Opt − Lb)/Lb, where Opt and Lb stand for the optimal objective
value and the lower bound, respectively. As we can observe, the bounds of RLT2 and
NewRLT get stronger as Itr grows, but this progress for NewRLT is more significant.
For problem sizes n = 15, 16, 17, the bounds of NewRLT with Itr = 25 are almost
exact (only 0.02% of gap for instances of size n = 16) with the maximum CPU execu-
tion time of 1033 for n = 17, while there are modest gaps between the RLT2 bounds
and the corresponding optimal objective values, i.e., the gap of 3.20%, 3.83%, 5.16% for
n = 15, 16, 17, respectively, with more computational effort. The significant reduced
gaps of NewRLT for problem sizes n = 18, 19, 20, even with Itr = 5, 15 against the gaps
of RLT2 indicate that NewRLT outperforms the RLT2.

5.6.2 Computational results for QAP on reducible graphs

In this section,we report the computational experiments of lower bounding approaches
for QAP on reducible graphs. In the following subsection we present the generation of
test instances. Then, wewill discuss in detail the results of our lower bounding procedure.

Generation of instances

In this section we generate a class of random instances for the QAP on reducible graphs.
In order to generate QAP instances whose flow and distance graphs are reducible, we
first randomly generated flow, distance and Linear cost matrices F , D and C uniformly
from the set {1, 2, . . . , 10} (i.e., fij , dij , cij ∈ {1, 2, . . . , 10}). Then we transform Gf

and Gd to reducible graphs Gf = (Vf , Ef ) and Gd = (Vd, Ed) with Vf = Vf , Vd = Vd,
Ef ⊆ Ef , and Ed ⊆ Ed. To obtain the reducible graphs Gf (Gd) we removed Ef (Ed)
from Ef (Ed) such that no arcs in Ef \ Ef (Ed \ Ed) can be added to Ef (Ed) that
the reducibility will be maintained. A trivial algorithm to find such reducible subgraphs
has an O(nm) complexity [85]. We generated randomly generated problems with size
n ∈ {10, 15, 20}.

Lower bound Computation

Table 5.4 presents computational results for 30 randomly generated QAP instances. The
computational times are obtained on an Intel Core i5-2410M CPU with 2.30 GHz and
6 GB RAM in single processor mode. All the algorithms are coded in C language. We
compare four different lower bounding approaches in sense of tightness of the bounds
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Table 5.4 Comparison of four different lower bonding approaches for QAP on reducible
graphs.

Gilmore-Lawler Kaufman-Broeckx RLT1 dual ascent Lagrangian Dec.
size Lb time Lb time Imp. (%) Lb time Imp. (%) Lb time Imp. (%)

10 26 0.87 24.67 3.62 -5.11 35.00 44.58 34.61 27.36 0.90 52.30
10 23 0.87 23.02 3.74 0.08 37.60 42.56 63.47 26.69 0.91 16.04
10 19 0.86 22.78 3.61 19.89 34.59 40.25 82.05 28.91 0.91 52.15
10 20 0.85 21.24 3.50 6.20 33.00 40.26 65.00 27.05 0.95 35.25
10 25 0.88 23.02 3.67 -7.92 42.11 44.26 68.44 26.82 0.63 7.28
10 24 0.86 23.00 3.55 -4.16 35.00 41.72 45.83 27.58 0.81 14.91
10 20 0.89 20.34 3.47 1.70 41.76 44.08 108.8 25.03 0.80 25.15
10 20 0.84 19.94 3.59 -0.30 30.50 42.91 52.50 27.86 0.90 39.30
10 16 0.87 20.80 3.62 30.00 29.97 44.16 87.31 25.35 0.61 58.43
10 20 0.86 21.77 3.66 8.85 35.19 43.35 75.95 25.83 0.96 29.15

Ave. 21.60 0.86 22.05 3.60 4.92 35.47 44.82 68.39 26.84 0.83 32.99

15 26 3.76 27.24 8.08 4.76 29.55 138.26 13.65 30.74 1.75 18.23
15 26 3.71 27.48 8.29 5.69 28.87 140.98 11.03 32.07 1.71 23.34
15 26 3.76 26.25 8.08 0.96 30.79 141.88 18.42 29.34 1.45 12.84
15 26 3.88 26.52 8.34 2.00 29.87 142.22 14.88 28.80 1.65 10.76
15 26 3.45 26.16 8.22 0.61 31.43 142.15 20.88 27.49 1.54 5.73
15 26 3.55 26.06 8.29 0.23 29.38 142.38 13.00 28.57 1.46 9.88
15 26 3.45 26.45 8.07 1.73 29.66 143.60 14.07 30.53 1.51 17.42
15 26 3.63 26.57 8.32 2.19 31.77 144.92 22.19 30.10 1.38 15.76
15 26 3.41 26.91 8.42 3.50 30.79 146.27 18.42 31.51 1.38 21.19
15 26 3.56 26.08 8.40 0.30 31.08 146.22 19.53 29.84 1.33 14.76

Ave. 26 3.61 26.57 8.25 2.19 30.31 142.88 16.60 29.89 1.51 14.99

20 28 7.21 29.01 20.39 3.60 31.46 515.63 12.35 31.93 6.73 14.03
20 28 7.20 29.84 19.51 6.57 29.65 503.44 5.89 32.82 7.56 17.21
20 28 7.36 28.00 19.38 0.00 30.69 504.11 9.60 28.58 8.70 2.07
20 28 7.18 28.95 19.47 3.46 30.16 505.90 7.71 29.00 8.24 3.57
20 28 7.21 28.07 19.51 0.25 29.28 505.49 4.57 29.61 8.50 5.75
20 28 7.04 29.76 19.78 6.28 29.55 506.87 5.53 31.13 8.48 11.17
20 28 7.00 28.71 19.59 2.53 30.63 507.14 9.39 30.83 8.23 10.10
20 28 7.40 29.62 19.33 5.78 29.31 506.26 4.67 30.49 8.50 8.89
20 28 7.30 28.88 19.66 3.14 31.12 504.10 11.14 31.08 8.27 11.00
20 28 7.32 28.67 19.62 2.39 30.86 512.31 10.21 29.09 8.26 3.89

Ave. 28 7.22 28.95 19.64 3.39 30.27 507.12 8.10 30.45 8.14 8.75

and also computational performance. From the second to the twelfth, we present the
lower bound values and CPU times obtained with the classical lower bounds of Gilmore
and Lawler, the most recent version of the Kaufman-Broeckx lower bound of Zhang et
al. [119], level-1 RLT dual-ascent bound by Hahn and Grant [59], and our Lagrangian
decomposition approach. We have only reported results for instances with size up to 20
vertices because of excessive CPU time requirements in solving large sized level-1 RLT.
Table is divided into three parts where we separately report results for problems with
dimension 10, 15 and 20.The last row of each part provides the average values of the
corresponding columns.

Considering instances with dimension 10 and 15, the level-1 RLT dual-ascent bound
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byHahn andGrant and the Kaufman-Broeckx type lower bound have the largest (68.39%),
and lowest (4.92%) overall average percent improvement over the Gilmore and Lawler
lower bound respectively, while for the instances with dimension 20 Lagrangian decom-
position has the best overall average (8.75) percent improvement over the Gilmore and
Lawler lower bound. From these results we can conclude that the dual ascent strategy
RLT1 yields tighter lower bound at the expense of the increase in CPU time requirement,
but the bound weakens as n increases, while the Lagrangian decomposition provides the
best overall average lower bounds with a reasonable computational effort as n increases.
Moreover Lagrangian decomposition outperforms Kaufman-Broeckx type approach in
both computational time and bound tightness.

5.7 Conclusions

In this chapter we studied the lower bounding approaches for two special cases of the
QAP including the Adjacent QAP and QAP on reducible graphs. As for the AQAP, we
proposed two mixed binary linear formulations for the problem using reformulation lin-
earization technique. To obtain the first formulation we apply a partial RLT to the AQAP,
then using the special structure of the resulting mixed binary linear formulation, we ex-
tract a flow-based model. Applying the level-1 RLT for the flow-based model, we derived
the second mixed binary linear program, NewRLT, whose linear relaxation possesses
some desirable properties relative to the constraint set. To solve the continuous relax-
ation of the latter, we developed a dual-ascent algorithm similar to the one in [3]. We
compared the NewRLT bounds with those from the classical level-2 RLT [3] in terms of
the bounds strength and also CPU execution time. Our computational experiments indi-
cate that the NewRLT outperforms the classical level-2 RLT, as it obtains lower bounds
close to the optimal solutions for all instances with less computational effort. For the QAP
on reducible graph we give a Lagrangian decomposition based on splitting the variables
and then dualizing the copy constraint in Lagrangian fashion. We applied a polynomial
algorithm to solve the quadratic semi assignment problems arise as subproblems of the
Lagrangian decomposition.





Chapter 6

Quadratic Traveling Salesman

Problem

Given a graph and a function that maps every consecutive pair of edges to a cost, the
Quadratic Traveling Salesman Problem (QTSP) consists in finding a cycle that visits ev-
ery vertex exactly once and such that the sum of the costs over all pairs of consecutive
edges of the cycle is minimum. In this chapter we study both the Symmetric and the
Asymmetric version of the problem and propose an extended Linear Programming for-
mulation that contains a variable for each cycle in the graph. Since the number of cycles
is exponential in the graph size, we solve our formulation via column generation.

6.1 Introduction

The Traveling Salesman Problem (TSP) is one of the most studied optimization problems.
Given an undirected graph G = (V, E) with costs ce, e ∈ E, the problem consists in
finding a cycle C that visits each vertex in V exactly once (i.e., an Hamiltonian), such
that the sum of the costs ce of each edge in C is minimum. In its most common form, the
TSP has a linear cost function. Now, consider a variant of the TSP having a quadratic cost
function, the so-called Quadratic TSP (QTSP). The input of this problem is an undirected
(or directed) graph G = (V, E) and a cost function q : E × E → R+ that maps every
consecutive pair of edges (or arcs) to a non-negative cost. The QTSP consists in finding a
cycle C of minimum overall cost that visits every vertex of G exactly once. This problem
is NP-hard [42]. We distinguish between Symmetric QTSP (SQTSP) and Asymmetric
QTSP (AQTSP), depending on the fact that the direction of the cycle matters.

The QTSP was introduced with an application to bioinformatics in [67] and also has



72 Quadratic Traveling Salesman Problem

application in robotics and telecommunications. In robotics, a variant of QTSP called
Angle-TSP can be used for the optimization of robot paths with respect to energetic as-
pects. The Angle-TSP problem seeks to minimize the total angle of a TSP tour for a set of
points in Euclidean space where the angle of a tour is the sum of the direction changes
at all points [7]. The QTSP also can be viewed as a generalization of the Reload Cost TSP
(RTSP) introduced in [11]. In the RTSP, one is given a graph whose every edge is assigned
a color and there is a reload cost when passing through a node on two edges that have
different colors.

The QTSP has been introduced quite recently and its literature is limited. In partic-
ular, the QTSP has been tackled in [42] with heuristic algorithms based on well-known
heuristics for the TSP, with an ad-hoc branch-and-bound solver, and with a branch-and-
cut approach based on a linearization of a 0-1 Quadratic Programming formulation of
the problem. In [43] and [41] the polyhedral structure of a linearized integer program-
ming formulation has been used to develop a branch-and-cut algorithm for the SQTSP
and AQTSP respectively that are the current state-of-the-art for QTSP.

In this chapter we present an extended Linear Programming formulation of the QTSP
with an exponential number of variables that is solved via Column Generation (CG). The
basic idea is to have a variable for each cycle of G. This yields a pricing subproblem
that consists in finding a cycle of minimum quadratic cost. We formulate the pricing
subproblem as a 0-1 Quadratic Program, which is linearized and solved with standard
techniques. We resort to stabilization techniques to overcome the tailing-off effect of CG
approach.

6.2 The Symmetric QTSP

Consider a complete undirected graph G on a vertex set V = {1, 2, . . . , n} and let
q : E × E → R+ be a cost function that maps every consecutive pair of edges to non-
negative costs. The cost of a subgraph in G is equal to the sum of the costs of the pairs of
edges incident in the same vertex. The SQTSP seeks a tour (i.e., a cycle passing through
each vertex exactly once) of minimum cost. The problem can be formulated in a straight-
forward way by means of a quadratic 0-1 model. Let us define the binary variable xij

that is equal to 1 if edge {i, j} belongs to the minimum cost tour, and 0 otherwise. The
model is:
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min
∑

{i,j}∈E

∑
{j,k}∈E

qijkxijxjk

s.t.
∑

j:{i,j}∈E

xij = 2 ∀i ∈ V (6.1)

∑
{i,j}∈E:
i∈S,j∈S

xij ≤ |S| − 1 ∅ ≠ S ( V (6.2)

xij ∈ {0, 1} ∀{i, j} ∈ E.

The objective function considers all costs between edges incident on the same ver-
tices. Constraints (6.1) ensure that each vertex has degree two in the tour, and constraints
(6.2) ensure that no subtour is formed among the subsets of vertices.

We can linearize all products xijxjk using the standard linearization proposed in
[57, 62]. We introduce binary variables uijk and link them to the original variables using
the following additional linear inequalities:

uijk ≤ xij , uijk ≤ xjk, and uijk ≥ xij + xjk − 1. (6.3)

6.2.1 MILP representation for the SQTSP

In this section we develop a linearized formulation to the SQTSP which yields a tighter
continuous relaxation than the continuous relaxation of the standard linearization seen
in (6.3). The new MILP formulation is obtained by introducing a new graph G̃ = (Ṽ , Ẽ),
called the Gadget graph constructed as follows:

• For each edge in the graph G, create two nodes ⟨i, j⟩ and ⟨j, i⟩ ∈ Ṽ .

• For each node i ∈ V in G, define a super node Si = {⟨i, j⟩ : j = 1, 2, . . . , n, j ̸=
i}. This is only an aggregation of nodes of Ṽ .

• For any i, j, k ∈ V , create an edge between nodes ⟨i, j⟩ and ⟨i, k⟩ in the super node
Si with weight qjik .

• For any i, j ∈ V , create an edge between nodes ⟨i, j⟩ and ⟨j, i⟩ in super nodes Si

and Sj respectively with weight zero.

In Figure 6.1 we present an example of a graph G and the corresponding Gadget graph
G̃.

Defining decision variables ujik to indicate whether edge {⟨i, j⟩, ⟨i, k⟩} in super node
Si is contained in the solution, we can rewrite the SQTSP on graph G as the following
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Fig. 6.1 Graph G and its corresponding Gadget graph G̃. Note that we assume G to be
complete, but for simplicity this example shows the connections in the gadget graph
when G is not complete, or when some of its edges have infinite cost

integer linear problem on graph G̃:

Gadget: min
∑
i∈V

∑
j,k∈V :

{⟨i,j⟩,⟨i,k⟩}∈Si

qjikujik (6.4)

s.t.
∑

j,k∈V :
{⟨i,j⟩,⟨i,k⟩}∈Si

ujik = 1 ∀i ∈ V (6.5)

∑
⟨i,k⟩∈Si:

k ̸=j

ujik −
∑

⟨j,k⟩∈Sj :
k ̸=i

uijk = 0 ∀⟨i, j⟩ ∈ Ṽ (6.6)

∑
i∈S

∑
{⟨i,j⟩,⟨i,k⟩}∈Ẽ:

j,k∈S

ujik ≤ |S| − 1 S ( V (6.7)

ujik ∈ {0, 1} ∀{⟨i, j⟩, ⟨i, k⟩} ∈ Ẽ. (6.8)

Constraints (6.5) guarantee that within every super node we select exactly one edge, con-
straints (6.6) indicate that the number of the edges incident on node ⟨i, j⟩ is equal to the
number of incident edges on node ⟨j, i⟩, and constraints (6.7) are the subtour elimination
constraints. Note that in terms of feasible solutions, in the Gadget graph a tour is called
feasible if it is simple and passes through each super node Si by visiting exactly one edge
of Si. In the example shown in Figure 6.1, the bold lines define a feasible tour (a subtour
of G̃) corresponding to the feasible tour {(1, 2), (2, 5), (5, 4), (4, 3), (3, 1)} in the original
graph G.

An alternative model in the case of reload costs spanning tree was studied in [52],
where it is assumed that the triangle inequality holds for reload costs at each node of the
graph.
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6.3 The Asymmetric QTSP

Consider a complete directed graph G with vertex set V = {1, 2, . . . , n}, and cost func-
tion q : A × A → R+ that maps every consecutive pair of arcs to a non negative integer
cost. The AQTSP seeks a directed tour (i.e., a directed cycle passing through each vertex
exactly once) of minimum cost and is formulated as follows:

min
∑

(i,j)∈A

∑
(j,k)∈A

qijkxijxjk

s.t.
∑

(i,j)∈A

xij = 1 ∀i ∈ V (6.9)

∑
(i,j)∈A

xij = 1 ∀j ∈ V (6.10)

∑
i∈S,j /∈S:(i,j)∈A

xij ≥ 1 S ( V (6.11)

xij ∈ {0, 1} ∀(i, j) ∈ A.

The binary variable xij is equal to 1 if the arc (i, j) belongs to the minimum cost tour.
Constraints (6.9) and (6.10) force to select a single outgoing arc and a single incoming arc
for each node, respectively, and constraints (6.11) are the well known subtour elimination
constraints.

A relaxation of this problem has been studied in [50] where the authors were looking
for a minimum spanning arborescence with changeover costs, that are a particular type
of quadratic costs. The 0-1 formulation of the minimum spanning arborescence, which
could be used for lower bounding the ATSP, does not have constraints (6.10) and fixes a
given vertex as a root.

6.3.1 MILP formulation for the AQTSP

In order to linearize the AQTSP, we follow the idea of constructing an auxiliary graph as
in the SQTSP.We call this auxiliary graph the extended graph and denote it asG = (V , A).
For each arc (i, j) in G we create a node ⟨i, j⟩, and for each triple i, j, k, we introduce
arc (⟨i, j⟩, ⟨j, k⟩) with weight qijk . If we partition the set of nodes of G into n clusters
V1, V2, . . . , Vn such that Vi = {⟨i, j⟩ : j = 1, 2, . . . , n, j ̸= i} for i = 1, 2, . . . , n, then all
arcs are defined between nodes ⟨i, j⟩ and ⟨j, k⟩ from different clusters such that qijk > 0;
therefore there are no intra-set arcs.

Proposition 6.3.1. Any feasible tour in G corresponds to a tour in G that goes through
each cluster exactly once.
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Figure 6.2 represents the extended graph, K4, of a directed complete graph, K4. The
bold lines illustrate a feasible tour.

Definition 6.3.1. Given a directed graph G = (V, A), a cost function c : A → R+, and a
partition {Vi : i = 1, . . . , k} of V such that Vi ∩ Vj = ∅ for i = j = 1, 2, . . . , k, i ̸= j

and
⋃k

i=1 Vi = V , the Asymmetric Generalized TSP (AGTSP) can be stated as the problem
of finding a feasible cycle T ⊂ A which includes exactly one node from each cluster Vi,

i = 1, . . . , k, and whose global cost
∑

e∈T ce is minimum. Therefore the AGTSP involves
two related decisions: (i) choosing a node subset S ( V such that |S ∩ Vi| = 1 for all
i = 1, 2, . . . , n and (ii) finding a minimum cost Hamiltonian cycle in the subgraph of G

induced by S.

Corollary 6.3.2. Solving the AQTSP on graph G is equivalent to solving the AGTSP on G.

Using Corollary 6.3.2, instead of solving the original AQTSP one can solve an AGTSP
on graph G which is again NP-hard, as it can be reduced to an Asymmetric TSP [77, 92].

Now we turn our attention to the integer linear programming formulation for the
AGTSP on G. Defining variables uijk indicate whether arc (⟨i, j⟩, ⟨j, k⟩) is selected or
not in the solution, and variables yij indicate whether node ⟨i, j⟩ is visited or not, the
problem is:

GTSP1: min
∑

(⟨i,j⟩,⟨j,k⟩)∈A

qijkuijk

s.t.
∑
j∈V :

⟨i,j⟩∈Vi

yij = 1 ∀i ∈ V (6.12)

∑
k∈V :

⟨j,k⟩∈V

uijk = yij ∀⟨i, j⟩ ∈ V (6.13)

∑
k∈V :

⟨k,i⟩∈V

ukij = yij ∀⟨i, j⟩ ∈ V (6.14)

∑
i∈S

∑
j /∈S:

⟨i,j⟩∈Vi

∑
k∈V :

⟨j,k⟩∈Vj

uijk ≥ 1 S ( V (6.15)

uijk ∈ {0, 1} ∀(⟨i, j⟩, ⟨j, k⟩) ∈ A (6.16)

yij ∈ {0, 1} ∀⟨i, j⟩ ∈ V .

Constraints (6.12) guarantee that we select exactly one node from each cluster. Con-
straints (6.13) and (6.14) require a solution to include exactly one of the arcs entering and
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Fig. 6.2 Extended graph K4 of the complete graph K4

exactly one of the arcs leaving the node ⟨i, j⟩ if this node is visited. Finally, constraints
(6.15) eliminate all subtours.

Note that the integrality of variables uijk for all (⟨i, j⟩, ⟨j, k⟩) ∈ A is implied by the
other constraints, thus it can be relaxed.

By eliminating variables yij we can write the problem as follows:

GTSP2: min
∑

(⟨i,j⟩,⟨j,k⟩)∈A

qijkuijk (6.17)

s.t.
∑
j∈V

∑
k∈V :

(⟨i,j⟩,⟨j,k⟩)∈A

uijk = 1 ∀i ∈ V (6.18)

∑
k∈V

∑
j∈V :

(⟨k,i⟩,⟨i,j⟩)∈A

ukij = 1 ∀i ∈ V (6.19)

∑
k∈V :

⟨j,k⟩∈V

uijk −
∑

k∈V :
⟨k,i⟩∈V

ukij = 0 ∀⟨i, j⟩ ∈ V (6.20)

(6.15), (6.16). (6.21)

Constraints (6.18) require a solution to include exactly one of the arcs entering a clus-
ter, while constraints (6.19) require a solution to include exactly one of the arcs leaving
a cluster. Constraint (6.20) is equivalent to network flow conservation constraints and
ensure that a solution tour is uninterrupted and continuous.

Theorem 6.3.3. Constraints (6.18) in problem GTSP2 are redundant and can be removed
from the model.

Proof. Suppose u∗ is a feasible solution for problem GTSP2 after removing constraint
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(6.18) and define, for each i ∈ V ,

ϵi =
∑
j∈V

∑
k∈V :

(⟨i,j⟩,⟨j,k⟩)∈A

u∗
ijk.

We show that ϵi = 1 for all i ∈ V .
Consider cluster Vs. Then constraint (6.19) is satisfied for cluster Vs by u∗, i.e.,∑

k∈V

∑
j∈V

(⟨k,s⟩,⟨s,j⟩)∈A

u∗
ksj = 1.

Therefore there exists a node ⟨s, t⟩ ∈ Vs with in-degree one in the tour, while the in-
degree of all other nodes in cluster Vs is zero. Hence by (6.20) the out-degree of node
⟨s, t⟩ must be equal to one while the out-degree of all the other nodes in the same cluster
must be zero.

As a consequence of Theorem 7.2.1 GTSP2 simplifies as follows:

GTSP3: min
∑

(⟨i,j⟩,⟨j,k⟩)∈A

qijkuijk

s.t. (6.19), (6.20), (6.21).

6.4 Cycle Reformulation of the General QTSP

In this section we present a new formulation of the QTSP which is based on a cycle
generation approach in the given graph. Let C be a cycle of G represented by the set of
edges (arcs) that appear in the cycle. The cost of cycle C is the sum of the costs of the
pairs of consecutive edges (arcs) contained in the cycle, i.e.

q(C) =
∑

i,j,k∈V :(i,j),(j,k)∈C

qijk.

Let C and T denote the collection of all cycles and all tours of G, respectively. Clearly,
we have that T ⊆ C, and hence

min
C∈C

q(C) ≤ min
T ∈T

q(T ).

Following the approach of Held and Karp to the TSP [63], we associate a penalty
πi with every vertex i in V , and define π(C) =

∑
i∈C πi. Let us consider a new cost

function defined as follows: d(C) = q(C) + π(C). Let T ∗ denote an optimal tour of G,
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i.e. q(T ∗) = minT ∈T q(T ). Then, the following relations hold:

min
C∈C

d(C) = min
C∈C

{q(C) +
∑
i∈C

πi} ≤ d(T ∗) = q(T ∗) +
∑
i∈V

πi

min
C∈C

{q(C) −
∑

i∈V \C

πi} ≤ q(T ∗).

For any vector of penalty terms π we get a lower bound. However, we are interested in
finding π that maximizes the lower bound:

max
π∈Rn

min
C∈C

{q(C) −
∑

i∈V \C

πi}. (6.22)

We describe an LP equivalent to (6.22) by introducing a variable z as follows:

P:max z

s.t. z +
∑

i∈V \C

πi ≤ q(C) ∀C ∈ C (6.23)

z, π unrestricted.

Let λC be the dual multipliers of constraints (6.23). We can write the dual of problem P
as follows:

D1:min
∑
C∈C

q(C)λC (6.24)

s.t.
∑

C∈C:i/∈C

λC = 0 ∀i ∈ V (6.25)

∑
C∈C

λC = 1 (6.26)

λC ≥ 0 ∀C ∈ C. (6.27)

Since all multipliers in (6.25) are non-negative, (and, in each iteration of a column gen-
eration approach, exactly one column is generated as we explain in Section 6.5), an op-
timal solution to the problem must satisfy λ∗

C = 1 for some C∗ ∈ C and λ∗
C = 0 for

all C ∈ C \ C∗. It follows that the cycle C∗ (single or multiple) is optimal and q(C∗)
provides a lower bound for the original QTSP.

By subtracting each constraint (6.25) from (6.26) and removing (6.26) from D1, one
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can find a relaxation of the problem D1 as follows:

D2:min
∑
C∈C

q(C)λC

s.t.
∑

C∈C:i∈C

λC = 1 ∀i ∈ V (6.28)

λC ≥ 0 ∀C ∈ C.

Problem D2 seeks a minimum-weight “combination of cycles” such that each vertex ap-
pears, on average, in one cycle.

6.5 A Column Generation Approach

In this section we develop a column generation approach to solve problems D1 and D2.
Since the number of cycles in C is exponential with respect to the number of vertices, we
first consider a restricted version of the problem with a feasible subset of cycles, C̄ ⊆ C.
Note that the subset C̄ for problem D1 must include at least one tour, while an initial
set C̄ for problem D2 must satisfy constraints (6.28). Let us first start with problem D1
and suppose that π = (π1, π2, . . . , πn) and z are the dual variables corresponding to
constraints (6.25) and (6.26) respectively. The reduced cost of the variable λC for each
C ∈ C is

q(C) = q(C) − (π(C))′ − z

where (π(C))′ =
∑

i/∈C πi.
A column entering the basis can be found by computing a minimum cost cycle with

respect to qijk + πj for each (i, j) ∈ E, (j, k) ∈ E. Let q(Cp) = minC∈C q(C). If
q(Cp) ≥ 0 then the current solution is optimal. Otherwise we select column Cp to enter
the basis.

Theorem 6.5.1. If the column Cp entering the basis corresponds to a tour, then it is an
optimal tour.

Proof. Consider any cycle C . Since column Cp is the selected column to enter the basis
we have

q(Cp) = q(Cp) − (π(Cp))′ − z ≤ q(C) − (π(C))′ − z.

If cycle C is also a tour, then q(Cp) ≤ q(C).

Note that for problem D2, the reduced cost of the variable λC for each C ∈ C is
modified to:

q(C) = q(C) − π(C).
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6.5.1 Pricing subproblems

A column entering the basis can be found by computing aminimum cost cycle in the orig-
inal graph G with respect to qijk +πj . Looking for a cycle having minimum negative cost
with respect to a quadratic objective is itself an interesting combinatorial optimization
problem, which is NP-hard [7, 51]. In this section we explain how to update the linearized
models, presented in Sections 6.2 and 6.3, to solve the pricing problems. In order to de-
fine a suitable model for the pricing subproblem of the restricted master problem D1, we
consider the SQTSP and AQTSP separately.

Symmetric case

Consider the pricing problem of D1 in the symmetric case. As we mention in Section
6.2, instead of looking for a cycle in the original graph one can easily find a cycle in Ĝ;
i.e., finding a negative reduced cost of problem D1 is the same as finding a negative cost
feasible cycle in Ĝ. Defining a binary variable wi to indicate whether the super node
Si is on the cycle or not, the minimum negative cost cycle is then found by solving the
following problem:

min
∑
i∈V

∑
{⟨i,j⟩,⟨i,k⟩}∈Si

qjikujik −
∑
i∈V

πi(1 − wi) − z

s.t.
∑

j,k∈V :
{⟨i,j⟩,⟨i,k⟩}∈Si

ujik = wi i ∈ V (6.29)

(6.6) − (6.8)

wi ∈ {0, 1} ∀i ∈ V.

Considering the definition of the wi variables, one can obtain an equivalent formu-
lation for the pricing problem by replacing constraint (6.29) with the so-called resource
constraint (6.30) and removing variables wi from the model.∑

j,k∈V
{⟨i,j⟩,⟨i,k⟩}∈Si

ujik ≤ 1, (6.30)

It should be observed that by forcing the solution of the pricing problem to be a cycle with
negative cost one can easily remove constraints (6.7) from the pricing model. Therefore,
finding a cycle with negative reduced cost is simply a matter of finding a path between
each node ⟨i, j⟩ in Ĝ and itself that has a negative cost and satisfies resource constraint
(6.30). Since dual variables π are defined on each super node of Ĝ, the problem of find-
ing a negative reduced cost cycle can be formulated as resource-constrained elementary
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shortest path problem. Let q̄st denote the cost of the resource-constrained elementary
shortest path from origin node ⟨s, t⟩ to itself in Ĝ. The pricing problem can be written
as: min⟨s,t⟩∈V̂ {q̄st}, where q̄st is the optimal value of the following problem.

q̄st = min
∑
i∈V

∑
{⟨i,j⟩,⟨i,k⟩}∈Si

(qjik + πi)ujik −
∑
i∈V

πi − z

s.t.
∑
j∈V :

{⟨s,t⟩,⟨s,j⟩}∈Si

utsj = 1 (6.31)

∑
j∈V :

{⟨s,j⟩,⟨s,t⟩}∈Si

ujst = 1 (6.32)

∑
⟨i,k⟩∈Si:

k ̸=j

ujik −
∑

⟨j,k⟩∈Sj :
k ̸=i

uijk = 0 ∀⟨i, j⟩ ≠ ⟨s, t⟩ (6.33)

∑
j,k∈V

{⟨i,j⟩,⟨i,k⟩}∈Si

ujik ≤ 1 i ∈ V (6.34)

ujik ∈ {0, 1} ∀{⟨i, j⟩, ⟨i, k⟩} ∈ Ê. (6.35)

Constraints (6.31), (6.32), (6.33) and (6.35) find a path from the source node ⟨s, t⟩ to itself.
The resource constraint (6.34) guarantee that each super node Si is visited at most once.

Asymmetric case

In the asymmetric case, finding a negative reduced cost directed cycle for problem D1 is
equivalent to solving the modified version of the GTSP1 or GTSP3 explained in Section
6.3. Here we provide a version of the latter so that the resulting problem gives the most
negative directed cycle.

min
∑

(⟨i,j⟩,⟨j,k⟩)∈A

qijkuijk −
∑
i∈V

πi(1 − ti) − z

s.t.
∑
k∈V

∑
j∈V

(⟨k,i⟩,⟨i,j⟩)∈A

ukij = ti ∀i ∈ V

(6.16), (6.20), (6.19)

ti ∈ {0, 1} ∀i ∈ V.

Binary variable ti is equal to 1 if cluster Vi is visited, otherwise it is zero. Following the
same process as in the symmetric case, one can obtain an equivalent formulation based
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on resource-constrained elementary shortest path problem in the extended graph.

The solution of the subproblems provides either a certificate of optimality of the cur-
rent solutions (λ, π, z) or a new column Cp that will be added to the master problem. It
is worth pointing out that solving the pricing subproblem to optimality is only needed to
prove optimality of the current primal and dual solutions; one can stop solving the sub-
problem whenever a negative reduced cost column is found [16]. This happens because
adding this column to C̄ ensures that the new dual solution (π, z) will be different, and
therefore the termination of the algorithm.

6.5.2 The Stabilized version of the column generation

Column generation methods usually suffer from slow convergence to the optimal solu-
tion and tailing off effects. Primal degeneracy, dual degeneracy and instability in the
behavior of dual variables are well known to be the main causes of this behavior [55, 70].

To control the dual variables during the solution process, we use the stabilized column
generation approach proposed in [37]. This approach combines the box step method [86]
with a kind of descent method proposed in [75]. The box step method introduces a box
around the previous dual vector and modifies the master problem such that the feasible
dual space is limited to the area defined by these boxes, while the latter tries to adapt the
master problem so that the distance separating a dual solution from the previous optimal
dual solution is linearly penalized.

In order to present the idea, let us rewrite the restricted version of the master problem
D1, for C̄ ∈ C, as the following model:

RD1:min
∑
C∈C̄

q(C)λC (6.36)

s.t.
∑

C∈C̄:i∈C

λC ≥ 1 ∀i ∈ V (6.37)

(6.26), (6.27).

Note that since the set partitioning constraints admit negative dual values which can
be problematic for the sub-problem, we used a relaxed version of the problem as the first
step of the stabilization approach.

Consider the dual variables π associated with the constraints (6.37) and bound each πi

in the interval [δ−
i , δ+

i ]. These bounds are first given as parameters to the model and then
automatically updated during the process. The dual variable πi can take values outside
the given bounds, but the dual objective is then penalized by ε−

i (δ−
i − πi) if πi < δ−

i and
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by ε+
i (δ+

i − πi) if πi > δ+
i . The dual of the problem RD1 then becomes:

SP:max z +
∑
i∈V

πi − ε−
i w−

i − ε+
i w+

i

s.t. z +
∑
i∈C

πi ≤ q(C) ∀C ∈ C̄

πi + w−
i ≥ δ−

i ∀i ∈ V

πi − w+
i ≤ δ+

i ∀i ∈ V

π, w−, w+ ≥ 0, z unrestricted.

The primal of the stabilized restricted master problem, and hence the dual of SP, is:

SD1:min
∑
C∈C̄

q(C)λC +
∑
i∈V

−δ−
i µ−

i + δ+
i µ+

i

s.t.
∑

C∈C̄:i∈C

λC − µ−
i + µ+

i ≥ 1 ∀i ∈ V

∑
C∈C̄

λC = 1 (6.38)

µ−
i ≤ ε−

i ∀i ∈ V

µ+
i ≤ ε+

i ∀i ∈ V

λ, µ−, µ+ ≥ 0.

This method is referred to as BoxPen stabilization since the bounds (δ−, δ+) on the orig-
inal dual variables π can be represented by a bounding box containing the current dual
solution. Note that the stabilized version of the problem D2 is the same as SD1 without
the convexity constraint (6.38) and is called SD2. In order to use the stabilized models
efficiently, one must initialize and update the parameters correctly. In order to reduce the
dual variables’ variations, we select [δ−, δ+] to form a small box containing the current
dual solution, and solve the problem SD1 (SD2). At the first iteration, when no solution
is available to the problem, the dual variables π can be simply estimated. If the new π lies
in the box [δ−, δ+], reduce its width and augment the penalty given by ε− and ε+. Oth-
erwise, enlarge the box and decrease the penalty. The update could be performed in each
iteration, or alternatively, each time a dual solution of currently best value is obtained.

6.6 Computational Experiments

In this section we present our computational experiments on a class of randomly gener-
ated instances with size ranging from n = 5 to n = 25 introduced in [42]. All instances
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consist of complete graphs with n vertices and m = n(n−1)/2 edges. The cost function
q : E × E → R+

0 for both symmetric and asymmetric instances is defined as an integer
number which is chosen from the set {0, 1, ..., 10000} uniformly for all (i, j), (j, k) ∈ E

such that i ̸= k and set to infinity for all (i, j), (j, i) ∈ E. We used the AMPL modeling
language [46] with GUROBI 5.0.0 [58] as linear solver for the RMP and as a mixed integer
linear solver for the pricing problem on an Intel Core i5-2410M CPU with 2.30 GHz and
6 GB RAM in single processor mode.

6.6.1 Stabilization

We implemented the stabilized column generation approach using different sets of initial
values. In the following we present the results of some preliminary experiments whose
purpose was to initialize and update the parameters for both SD1 and SD2.

For the problem SD1, we initialized δ− and δ+ at −1000 and 1000 respectively. The
vector parameter ε− and ε+ were selected as −5 and 5 respectively and were kept fixed
throughout the solution process. We updated the parameter (δ−, δ+) from (−1000, 1000)
to (π̃ − 100, π̃ + 100), where π̃ is the current dual solution, only if the column returned
by the subproblem had a non-negative reduced cost and (µ−, µ+) ̸= (0, 0). The stopping
criteria of the stabilized column generation algorithm is r(C) ≥ 0 and (µ−, µ+) = (0, 0).

In order to find potentially good initial values of (δ−, δ+) for problem SD2, we first
solved the problem D2 with a feasible subset of cycles. By using the dual variables π̃ of
problem D2, we initialized (δ−, δ+) with (π̃ −10, π̃ +10). The vector parameters ε− and
ε+ were initially set to 0.0001. If the subproblem is able to find a negative reduced cost
cycle, then the values of ε− and ε+ were increased by 10%. However, when there was
no more such column and (µ−, µ+) ̸= (0, 0), the values of ε− and ε+ were decreased by
dividing each one by 100 and the parameters (δ−, δ+)were updated to (π̃−100, π̃+100),
where π̃ is the current dual solution of the SD2. The stopping criterion of the stabilized
column generation algorithm is the same as that of problem SD1.

In order to show the effectiveness of stabilization, we compare the computational time
of column generation to its stabilized version on two instances of different dimensions in
Table 6.1. Each row of the table reports the average computational time over ten instances

Table 6.1 Computational time of Column Generation (CG) and Stabilized CG approaches
for both The SQTSP and AQTSP instances

CPU time (Symmetric) CPU time (Asymmetric)
size CG2 SCG2 CG1 SCG1 CG2 SCG2 CG1 SCG1
10 2.15 1.91 4.36 4.12 3.91 3.26 8.93 7.35
20 43.57 33.34 205.94 60.70 97.43 34.92 508.53 271.81
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Table 6.2 Comparison of three different lower bounding approaches for symmetric QTSP
instances.

SCG2 SCG1
size Opt. LB(LP ) LB time iter Gap LB time iter Gap

5 14922.2 13839.5 13606.3 0.62 6 1.21 14922.2 3.89 65 0.0
6 12217.5 11817.1 11816.2 0.53 7 0.99 12160.4 3.35 43 0.14
7 14648.6 13200.4 13747.9 0.85 11 0.62 14356.5 3.51 41 0.20
8 15055.7 12544.1 12623.9 1.12 14 0.96 14542.6 4.06 43 0.20
9 14562.2 11909.4 12710.7 1.91 16 0.73 14225.7 4.12 37 0.12
10 15018.6 11939.9 13104.5 1.77 18 0.62 14718.7 4.86 45 0.09
11 13819.6 10367.8 11175.9 1.75 17 0.76 12958.9 6.37 33 0.24
12 14719.4 10896.2 12036.6 3.15 21 0.70 13740.2 7.96 31 0.25
13 13174.3 9826.6 10954.4 4.90 23 0.66 12705.5 12.11 32 0.14
14 13548.7 9823.7 11089.7 9.34 25 0.66 12974.4 13.83 32 0.15
15 12531.0 9354.7 10697.8 12.38 28 0.57 12219.3 14.20 25 0.09
16 13426.1 9065.7 10253.3 13.24 26 0.72 12573.4 20.56 28 0.19
17 13022.5 9324.8 10420.6 18.55 30 0.70 12735.9 27.35 32 0.07
18 12388.6 8522.8 9831.7 22.35 34 0.66 12137.6 28.38 29 0.06
19 12697.5 8630.6 10036.8 29.98 39 0.65 12394.9 45.92 34 0.07
20 13246.0 8797.3 10092.8 33.34 40 0.70 12491.8 60.70 35 0.16
21 12699.4 8352.0 9868.1 45.71 45 0.65 12260.4 75.16 34 0.10
22 12032.2 8078.2 9519.4 50.81 47 0.63 11859.1 98.45 32 0.04
23 12378.4 8123.9 9376.2 53.98 46 0.70 11911.7 154.01 37 0.10
24 11871.1 7996.5 9250.5 65.78 51 0.67 11480.9 203.40 41 0.10
25 11673.5 7494.2 8717.8 81.18 54 0.70 11187.1 172.77 28 0.11

of the same size. CG1 and CG2 stand for Column Generation approach to the problem
SD1 and SD2 respectively. SCG1 and SCG2 are for the stabilized version of the CG1 and
CG2 respectively. The results show that stabilization is effective for both symmetric and
asymmetric instances.

6.6.2 Lower bound computation

A solution of the pricing problem, which may contain a single or multiple cycles, is op-
timal for the master problem RD1 if it covers all the nodes i ∈ V . Since looking for a
single cycle in the pricing problem requires some kind of subtour elimination constraint,
we restrict the search to find a cycle (single or multiple) with negative cost. In other
words, we allow subtours in the optimal solution of the original QTSP, which is in fact
a relaxation of the problem. Therefore, when no more new columns can be priced out, a
solution of the master problem RD1 gives a lower bound on the original problem. Note
that the optimal value of the problem RD2 always gives a lower bound on the original
problem, regardless of the solution being a single cycle or multiple ones.

In Tables 6.2 and 6.3 we present computational results of the lower bounding schemes
for the symmetric and the asymmetric QTSPs respectively. Each row of these tables re-
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ports the average results over ten instances of the same size. The problem size is found in
the first column of the tables. The second column shows the average optimal values (opt)
of the 10 instances for each dimension. We compare three different average lower bounds
(LB) on the optimal objective values, their computing time (time), number of iterations
(iter), and the average gap. The first lower bound LB(LP) in column three is the lower
bound obtained with the linear relaxation of problem (6.4)–(6.8) and the linear relaxation
of problem GTSP3 for the SQTSP and the AQTSP respectively. The computation time of
the LP relaxation is less than two seconds for all instances; therefore we did not mention
it in the table. The second lower bound is obtained via the Stabilized Column Gener-
ation approach to the problem SD2 (SCG2); and the third lower bound is obtained via
the Stabilized Column Generation approach apply to the problem SD1 (SCG1). Columns
four to seven and eight to eleven represent the optimal value, computation time, number
of iterations needed to identify the optimal solution and the ratio of gap between the
lower bound obtained by SCG and the optimal solution, and the gap between the lower
bound obtained by the linear relaxation and the optimal solution. The formula we used
to compute these ratio of gaps is (opt − LB(SCG))/(opt − LB(LP )), where opt and
LB() stand for the optimal value and the lower bound, respectively. We can see in these
tables that the bounds obtained by SCG1 outperforms the other two in all instances and
are close to the optimal values in both the SQTSP and the AQTSP. Also, the lower bound
obtained by SCG2 is better than the one obtained with LP relaxation except for the in-
stances of dimension five, for which the LP relaxation gives on average a tighter bound.
On average the ratio of gap between the lower bound obtained by SCG2 and the optimal
solution, and the gap between the lower bound obtained by the linear relaxation and the
optimal solution for the symmetric instances is 0.72, while this ratio for the asymmetric
instances is 0.73. As we see, on average, the improvement of lower bound by applying
the SCG2 for both symmetric and the asymmetric cases is almost the same, while the
computational time for the asymmetric instances is larger than the computational time
for the symmetric ones. According to Table 6.2, applying SCG1 yields a considerable
improvement of the lower bounds in both the symmetric and the asymmetric cases, i.e.,
on average the ratio of gap between the lower bound obtained by SCG1 and the optimal
solution over the gap between the lower bound obtained by linear relaxation and the
optimal solution for the symmetric instances is 0.09, and for the asymmetric instances
is 0.20. These gaps show the improvement of lower bounds in both the symmetric and
asymmetric cases in comparison to the SCG2. However, it should be noted that the im-
provement of the lower bounds and also of the computational time in the symmetric case
is more attractive than in the asymmetric case.
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Table 6.3 Comparison of three different lower bounding approaches for the asymmetric
QTSP instances.

SCG2 SCG1
size Opt. LB(LP ) LB time iter Gap LB time iter Gap

5 12372.2 10758.2 11126.8 1.80 46 0.77 12373.2 2.10 56 0.0
6 11883.1 10291.6 10596.9 1.79 38 0.80 10684.6 1.51 37 0.75
7 13204.9 10486.3 11369.9 1.95 42 0.67 12746.3 2.98 55 0.16
8 13363.4 10116.3 11194.4 2.08 38 0.66 12878.5 3.24 45 0.14
9 13063.2 9610.1 10546.5 2.52 37 0.72 12135.1 5.24 48 0.26

10 12921.5 9427.1 10461.9 3.26 33 0.70 12500.8 7.35 43 0.12
11 12997.5 8965.8 9891.20 4.41 34 0.77 12089.9 11.99 49 0.22
12 11434.8 8723.3 9682.4 5.79 29 0.64 10897.9 10.87 35 0.19
13 12171.5 8421.6 9608.1 8.55 33 0.68 11584.3 21.11 41 0.15
14 11838.3 8182.7 9005.6 9.95 37 0.77 10635.6 20.66 38 0.32
15 12428.8 8094.6 9564.7 16.83 35 0.66 11748.8 37.05 45 0.15
16 12135.7 7726.8 8764.6 16.64 35 0.76 11119.8 47.34 51 0.23
17 11832.2 7241.3 8682.7 21.69 35 0.68 10094.7 60.02 50 0.37
18 11662.2 7380.9 8544.8 24.40 36 0.72 11104.6 119.24 59 0.13
19 12095.9 7264.6 8560.4 31.22 38 0.73 11207.8 157.51 57 0.18
20 11802.8 6951.1 8200.1 34.92 37 0.74 11162.4 271.81 63 0.13
21 11288.2 6948.5 8140.5 51.44 40 0.72 10819.1 435.246 58 0.10
22 11741.0 6906.8 7950.1 51.61 43 0.78 10517.2 480.15 58 0.25
23 11549.7 6821.3 7688.3 59.05 45 0.81 10549.3 671.15 68 0.21
24 11239.1 6580.4 7716.1 84.03 43 0.75 10180.1 877.83 69 0.22
25 11434.8 6663.1 7785.6 105.36 44 0.76 10422.3 1698.31 70 0.21

6.7 Conclusions

In this chapter we proposed two different linearization models to the SQTSP and the
AQTSP. Moreover, we presented a cycle formulation for the QTSP (in general) and solved
the resulting LP problem by a Column Generation approach. We have shown how the
linearized formulations can be applied to find the negative reduced cost in the pricing
problem. To overcome the problems of instability in the behavior of dual variables of
the presented master problem, we used a stabilized column generation approach. Our
experiments show that our column generation approach outperforms the LP relaxation
of the QTSP in both the symmetric and the asymmetric cases.



Chapter 7

Quadratic Minimum Spanning

Tree Problem

The Minimum Spanning Tree Problem (MSTP) is one of the most known combinatorial
optimization problems. It concerns the determination of a minimum edge-cost subgraph
spanning all the vertices of a given connected graph. The Quadratic Minimum Spanning
Tree Problem (QMSTP) is a variant of the MST whose cost considers also the interac-
tion between every pair of edges of the tree. In this chapter we review different strate-
gies found in the literature to compute a lower bound for the QMSTP and develop new
bounds based on a reformulation scheme and some new mixed 0-1 linear formulations
that result from a reformulation-linearization technique (RLT). We develop some effi-
cient dual-ascent algorithms to derive new lower bounds and compare the new bounds
with the other bounding procedures in terms of both overall strength and computational
effort.

7.1 Introduction

Given an undirected graph G = (V, E), with |V | = n and |E| = m, a matrix of quadratic
costs C with Cef ≥ 0, ∀e, f ∈ E, and linear costs de ≥ 0, ∀e ∈ E, the quadratic
minimum spanning tree problem (QMSTP) consists of finding a spanning tree T ∈ G

with minimum overall cost
∑

e,f∈T Cef +
∑

e∈T de.
The QMSTP has been used to model many applications arising in transportation,

telecommunication, and energy networks, where linear costs account for the use or con-
struction of edges while the quadratic costs represent the interference between the edges
[14, 97]. When the interference refers only to pairs of adjacent edges the problem is
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named adjacent QMSTP (AQMSTP). Both the general QMSTP and the AQMSTP are NP-
hard as proved by Assad and Xu [14].

Many exact and heuristic algorithms have been proposed for solving both the QM-
STP and the AQMSTP. Assad and Xu in [14] proposed a lower bounding procedure and
two heuristic approaches. They also described the branch-and-bound algorithm based
on a linearized formulation. Öncan and Punnen [94] introduced a Lagrangian relaxation
procedure to obtain an improved lower bound and an efficient local search algorithm.
Cordone and Passeri [33] have developed two heuristics and an exact approach. Buch-
heim and Klein [22] proposed complete polyhedral descriptions of the QMSTP with one
quadratic term and provide an improved version of the standard linearization by means
of cutting planes. Perrira et al. [98] proposed some new formulations using a particu-
lar partitioning of the spanning trees, and provided a new mixed binary formulation for
the problem by applying the first level of the reformulation-linearization technique. The
most effective heuristic approaches for the QMSTP can be found in [83, 97, 115, 120].

Lower bounds constitute a fundamental component of the branch-and-bound tech-
nique, and are a basic tool for the evaluation of the quality of the solutions obtained
from heuristic algorithms. There are several branch-and bound based solution methods
proposed in the literature for solving the QMSTP [14, 33, 98]. In practice, the lack of
efficiently computable, tight lower bounds for the QMSTP can be key factor in the prob-
lem’s difficulty. In the other hand, the bounding procedure used in branch-and-bound
algorithms must tradeoff between tightness and computational efficiency. The first lower
bounding procedure for the QMSTP, proposed by Assad and Xu [14] iteratively applies
an adaptation of the Gilmore-Lawler procedure to a sequence of equivalent QMSTPs.
Öncan and Punnen in [94] introduced an extended formulation based on the addition of
two sets of valid inequalities to the linearized formulation of [14]. Their lower bounding
approach applies a Lagrangian relaxation where the Gilmore-Lawler procedure is used
to solve the resulting Lagrangian subproblem. Pereira et al. [98] proposed a new mixed
binary formulation for the problem and developed a Lagrangian relaxation approach to
obtain a linear programming based lower bound.

In order to find a common framework for description of the individual bounds we
review and analyze different bounding procedure proposed in the literature and compare
them in terms of continuous relaxation of anMILP.We describe new bounds for the prob-
lem by considering a reformulation of the problem based on dual information retrieved
from the continuous relaxation of the MILP. The basic idea is to solve the continuous re-
laxation of the given MILP, and then use the reduced costs as the objective coefficients of
the reformulated problem. Moreover, for generating superior bounds, we develop amixed
0-1 linear formulation based on the second level of the reformulation-linearization tech-
nique and devise an efficient dual-ascent algorithm to solve the continuous relaxation of
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the proposed model based on reduced costs.

7.2 Problem formulation and lower bounds review

In order to present the mathematical formulation of the QMSTP, let us first introduce
some notation used in the sequel. We denote by E(S) the set of all edges with both
endpoints in S for any S ⊂ V , and δ(i) as the set of all edges incident in node i. We
define the binary variable xe to indicate the presence of edge e ∈ E in the optimal
spanning tree. The QMSTP has the following Integer formulation:

QMSTP: min
∑

e,f∈E
e ̸=f

Cef xexf +
∑
e∈E

dexe

s.t.
∑
e∈E

xe = n − 1 (7.1)∑
e∈E(S)

xe ≤ |S| − 1 ∀ ∅ ≠ S ⊂ V (7.2)

xe integer ∀e ∈ E. (7.3)

where the objective function considers the linear cost of the selected edges and also the
interaction costs between pairs of edges. Constraints (7.2) are the subtour elimination
constraints and ensure that no subgraph induced by the nonempty subsetS ⊂ V contains
a cycle. These subtour elimination constraints together with the cardinality constraint
(7.1) guarantee the connectivity of the induced subgraph. Constraints (7.1) to (7.3) define
the set of spanning trees in G and thereafter is denoted by X , i.e.,

X = {x ≥ 0 : (7.1), (7.2), (7.3)}.

7.2.1 Gilmore-Lawler type bound

The Gilmore-Lawler procedure, shortly denoted by GL, has been adapted to many other
quadratic 0 − 1 problems [e.g. 25, 26]. The popularity of this approach for computing
lower bounds of the linearly constrained quadratic 0 − 1 problems stems from the fact
that it is computationally inexpensive. For each edge e, potentially in the solution, we
consider the best cumulation providing the minimum interaction cost with e. Let Pe be
such a subproblem for a given edge e ∈ E:

Pe : ze = min


∑
f∈E
f ̸=e

Cef xf : x ∈ X, xe = 1

 ∀e ∈ E. (7.4)
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The value ze is the best quadratic contribution to theQMSTP objective functionwhere
edge e is in the solution. Once ze has been computed for each e ∈ E, the GL type bound
is given by the solution of the following MSTP:

LBGL = min
{∑

e∈E

(ze + de)xe : x ∈ X

}
. (7.5)

Although the GL bound that we just described is a pure combinatorial bound of the
QMSTP, it can also be obtained in the terms of a linear programming. More precisely,
consider the following MILP formulation where the decision variables yef equal to 1 if
and only if both edges e and f are present in the solution of the problem:

P: min
∑

e,f∈E
e ̸=f

Cef yef +
∑
e∈E

dexe

s.t.
∑
f∈E

yef = (n − 1)xe ∀e ∈ E (7.6)

∑
f∈E(S)

yef ≤ (|S| − 1)xe ∀ ∅ ≠ S ⊂ V, e ∈ E (7.7)

yee = xe ∀e ∈ E (7.8)

yef ≥ 0 ∀e, f ∈ E (7.9)

x ∈ X.

Constraints (7.6) guarantee that whenever an edge e ∈ E is selected, the total number
of selected edges interacting with e must be equal to (n − 1), including e itself. Overall,
constraints (7.6) to (7.9) enforce ye1e, . . . , yeme to be a spanning tree containing e, in case
xe = 1, or to be the null vector, in case xe = 0.

Let us consider now the lower bound computations taking advantage of the MILP
formulation introduced above. Consider the continuous relaxation of problem P (CP) by
replacing the boolean constraints on variable x by nonnegativity constraint. The problem
CP is computationally interesting since, its optimal objective value gives the GL bound
as stated in the following theorem.

Theorem 7.2.1. The continuous relaxation of problem P gives the GL bound.

Proof. Let λ, µS , αe, and γSe denote the dual variables corresponding to constraints (7.1),
(7.2), (7.6), and (7.7), respectively. Consider the dual of CP
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DCP:

max − λ(n − 1) −
∑
S⊂V

µS(|S| − 1)

s.t. − λ −
∑

S⊂V :
e∈E(S)

µS + (n − 1)αe +
∑
S⊂V

(|S| − 1)γSe ≤ de ∀e ∈ E (7.10)

− αe −
∑

S⊂V :
f∈E(S)

γSe ≤ Cef ∀e, f ∈ E (7.11)

γSe ≥ 0 ∀S ⊂ V, e ∈ E (7.12)

µS ≥ 0 ∀S ⊂ V.

Considering constraints (7.10), one can maximize the objective function by solving the
following m independent subproblems; one for each e ∈ E:

Sube : ze = max
{

−(n − 1)αe −
∑
S⊂V

(|S| − 1)γSe : (7.11), (7.12)
}

. (7.13)

For each e ∈ E, subproblem Sube is precisely the dual of the subproblem (7.4) used in
the GL bound. Thus ze = ze, and DCP can be rewritten as follows:

DCP max − λ(n − 1) −
∑
S⊂V

µS(|S| − 1)

s.t. − λ −
∑

S⊂V :
e∈E(S)

µS ≤ de + ze ∀e ∈ E

µS ≥ 0 ∀S ⊂ V.

which is exactly the dual of the final MSTP (7.5) of the GL bound.

Theorem 7.2.1 shows that the optimal solution of problem CP can be computed by
solving m MSTP containing a fixed edge e, and a single MSTP. Although the LBGL

provides a lower bound for the QMSTP that can be computed very efficiently, as in the
QAP case, the obtained bounds are not so close to the optimal solution values even for
small size instances.

7.2.2 Assad and Xu bound

In order to improve the GL bound for the QMSTP, Assad and Xu[14] proposed a method
that generates a monotonic sequence of lower bounds. Their method relies on an equiv-
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alent reformulation of the QMSTP with coefficients C ′
ef and d′

e where:

d′
e = de − (n − 2)θe ∀e ∈ E, and C ′

ef = Cef + θf ∀e, f ∈ E. (7.14)

The authors proved that, for any value of vector θ, transformation (7.14) defines an equiv-
alent QMSTP, i.e., for each x ∈ X :∑

e,f∈E
e̸=f

C ′
ef xexf +

∑
e∈E

d′
exe =

∑
e,f∈E

e ̸=f

Cef xexf +
∑
e∈E

dexe.

Although the optimum of the QMSTP is independent of vector θ, the approximated linear
cost d′

e depends on θ. Therefore, a better choice of θ yields a tighter bound.
For a given θ, Assad and Xu apply the GL procedure to compute the following lower

bound:

LBAX(θ) = min
{∑

e∈E

(ze(θ) + c′
e)xe : x ∈ X

}
,

where

ze(θ) = min


∑
f∈E
f ̸=e

C ′
ef xf : xe = 1 and x ∈ X

 ∀e ∈ E.

Observe that LBAX(θ) is a piecewise concave linear function, and for θ = 0 it gives
the GL bound. To find the best value of parameter θ the authors provide a leveling proce-
dure to find an ε−optimal solution. More precisely, by updating θi+1

e = θi
e + 1

n−1 ze(θi)
at each iteration i, the LBAX(θ) is iteratively improved until the stopping criterion
maxe{ze(θi)} − mine{ze(θi)} < ε/(n − 1) is satisfied.

We now turn to problem CP and review the AX bound in the context of linear pro-
gramming. To this end, consider problem P and add the following set of constraints to
the formulation ∑

e∈E

yef = (n − 1)xf ∀f ∈ E (7.15)

denoting the resulting formulation as QAX. Assad and Xu showed that QAX and QMSTP
are equivalent. The following theorem shows the relationship between the AX bounds
and the continuous relaxation of QAX.

Theorem 7.2.2. The continuous relaxation of problem QAX gives the AX bound.

Proof. The relaxation of (7.15) in QAX formulation using Lagrangian multipliers θ yields
the Lagrangian dual:

LD : max
θ∈Rm

L(θ)
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where L(θ) is the optimal value of the below problem:
LR(θ):

L(θ) = min


∑

e,f∈E
e ̸=f

(Cef + θf )yef +
∑
e∈E

(de − (n − 2)θe)xe : x ∈ X, (7.6) − (7.9)

 .

Since LR(θ) satisfies the integrality property, the optimal solution value of problem LD
is equal to the optimal solution value of the continuous relaxation of problem QAX. On
the other hand, according to Theorem 7.2.1, the value of L(θ) is equal to the GL bound
of problem LR(θ). This completes the proof.

7.2.3 Öncan and Punnen bound

Öncan and Punnen in [94] proposed an extended formulation for the QMSTP based on
the addition of the following two sets of valid inequalities to QAX:∑

e∈δ(i)

yef ≥ xf ∀i ∈ V, f ∈ E (7.16)

∑
f∈δ(i)

yef ≥ xe ∀i ∈ V, e ∈ E (7.17)

The formulation is presented below as problem QOP:

QOP: min


∑

e,f∈E
e ̸=f

Cef yef +
∑
e∈E

dexe : x ∈ X, (7.6) − (7.9), (7.16), (7.17)

 .

Consider now the Lagrangian relaxation of (7.16) with multipliers λif . The Lagrangian
function has the following form:

L(λ) = min

 ∑
e,f∈E

C ′′
ef yef +

∑
e∈E

d′′
e xe : x ∈ X, (7.6) − (7.9), (7.17)


where

C ′′
ef = Cef −

∑
i∈V :

e∈δ(i)

λif ∀e, f ∈ E, e ̸= f (7.18)

d′′
e = de +

∑
i∈V

λie ∀e ∈ E. (7.19)
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To compute the Lagrangian function for a given λ, the authors use the decomposition
approach presented in Theorem 7.2.1. In so doing, they first sequentially fix one edge at
a time and find the minimum spanning tree containing it, then they solve a MSTP with
the optimal objective values of the subproblems as edge weights.

It should be noted that the actual formula used in [94] for computing coefficients C ′′

is

C ′′
ef = Cef − λif ∀e, f ∈ E, i ∈ V.

which is not correct. However, the general form of the Lagrangian function and con-
sequently the decomposition procedure is still correct. Our computational experiments
(see section 7.5) show that in spite of the correct decomposition structure with easily
solvable subproblems, the produced bounds are not significantly stronger than the AX
bounds and in some benchmark instances are even worse.

7.3 Bounds based on a new reformulation

In order to develop a new bound for the QMSTP, we consider a modified problem based
on dual information retrieved from the solution of the CP. The basic idea is to solve
CP, and then use the reduced costs as the coefficients of a reformulation adapting the ap-
proach proposed in [27, 28] for the QAP. To this end, we introduce the following problem
transformation:


C̃ef = Cef + αe +

∑
S⊂V :

f∈E(S)
γSe + δef + θf ∀e, f ∈ E

d̃e = de − (n − 1)αe −
∑

S⊂V (|S| − 1)γSe − (n − 2)θe ∀e ∈ E.
(7.20)

where αe, e ∈ E, θf , f ∈ E, δef , for e, f ∈ E, are vectors of real parameters, and γSe,
for e ∈ E, S ⊂ V is a vector of nonnegative real parameters. This transformation, in
general, does not provide a reformulation of the QMSTP for any value of parameters α,
θ, δ, and γ, but for some particular values it guarantees the definition of an equivalent
QMSTP. In the following we present the general framework of our reformulation scheme.

Reformulation framework

For any given value of θ0, we initialize the reformulation process by setting α = γ =
δ = 0, and θ = θ0. Noting that this parameter setting guarantees that the transformation
(7.20) provides a reformulation for the QMSTP as proved in [14]. Next, we apply the GL
procedure to obtain a the lower bound. More precisely, we sequentially consider the
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following m subproblems SP (e), e ∈ E:

SP (e) : z(e) = min
∑
f∈E

C̃ef yef

s.t.
∑
f∈E

yef = (n − 1) (7.21)

∑
f∈E(S)

yef ≤ |S| − 1 ∀ ∅ ≠ S ⊂ V (7.22)

yef ≥ 0 ∀f ∈ E

yee = 1.

The solution of the following minimum spanning tree problem gives the GL bound for
the transformed problem:

W ′ =
{∑

e

d̃exe : x ∈ X

}
.

Upon solving SP (e), for all e ∈ E, we retrieve the dual solutions α′
e and γ′

Se corre-
sponding to constraints (7.21) and (7.22), respectively, and modify parameters α, and γ

as

αe = α′
e ∀e ∈ E,

γSe = γ′
Se ∀e ∈ E, S ⊂ V.

Moreover, we define δef for all e, f ∈ ord(E), and set δfe = −δef for all e, f ∈ ord(E),
where ord(E) = {e = (i, j), f = (k, l) ∈ E : i < k or i = k, j < l}.

With the parameter setting just described we have the following:

Theorem 7.3.1. For any value of θ and any value of δ with δfe = −δef , ∀e, f ∈ ord(E),
if αe = α′

e, e ∈ E and γSe = γ′
Se, e ∈ E, S ⊂ V , the transformation (7.20) provides a

reformulation of the QMSTP.

Proof. Consider problem QAX with the following extra constraints:

yef = yfe ∀e, f ∈ ord(E), (7.23)

Associate Lagrangian multipliers αe, θf , and δef with constraints (7.6), (7.15), and (7.23),
respectively, and nonnegative Lagrange multipliers γSe with constraints (7.7). The La-
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grangian function can be computed by solving the following MILP:

MP(α, θ, δ, γ):

min
∑

e,f∈E
e ̸=f

Cef yef +
∑
e∈E

dexe +
∑

e,f∈E
e ̸=f

δef yef +
∑
f∈E

θf [
∑
e∈E
e ̸=f

yef − (n − 2)xf ]

+
∑
e∈E

αe[
∑
f∈E
f ̸=e

yef − (n − 2)xe] +
∑
e∈E

∑
∅⊂S⊂V

γSe[
∑

f∈E(S)

yef − (|S| − 1)xe]

s.t. (7.6) − (7.9)

x ∈ X.

For any feasible solution (x, y) and any value of the multipliers αe, and θf , the terms∑
f θf [

∑
e∈E yef −(n−2)xf ] and

∑
e αe[

∑
f∈E yef −(n−1)xe] are all zero. Moreover,

for each e ∈ E and S ⊂ V complementary slackness properties imply:∑
e∈E

∑
∅⊂S⊂V

γSe[
∑

f∈E(S)

yef − (|S| − 1)xe] = 0.

Therefore, the objective function of MP(α, θ, δ, γ) reduces to

min
∑

e,f∈E
e ̸=f

(Cef + δef )yef +
∑
e∈E

dexe =

min
∑

e,f∈ord(E)

(Cef + δef )yef +
∑

e,f ̸∈ord(E)

(Cfe − δef )yfe +
∑
e∈E

dexe. (7.24)

Since the optimum of (7.24) achieved if yef = yfe, it is simplified as

min
∑

e,f∈ord(E)

(Cef )yef +
∑

e,f ̸∈ord(E)

(Cfe)yfe +
∑
e∈E

dexe.

and proof is completed.

Let us make some observations concerning the way we can choose the multipliers in
(7.20).

Observation 1.

The MP(α, θ, δ, γ) formulation contains an exponential number of constraints with re-
spect to the number of nodes. Therefore, explicitly keeping track of the dual values for
(7.22) is not practical. However, for any given value of θ and δ, transformation (7.20)
can be interpreted by considering the meaning of reduced costs in (7.11), and the optimal
value of subproblem SP (e). More preciesly, we can simplify the transformation (7.20) as
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C̃ef = r̃Cef + δef + θf ∀e, f ∈ E

d̃e = de + z(e) − (n − 2)θe ∀e ∈ E.
(7.25)

where r̃Cef is the reduced cost of edge f with respect to the optimal spanning tree
containing the fixed edge e. In this case, the reduced cost r̃Cef can be computed without
using the dual variables α and γ. More specifically, the reduced cost r̃Cef of any edge f

not in the minimum spanning tree containing the fixed edge e is the difference between
the cost of f and the largest cost of any edge, different from e, in the cycle induced by f .
Note that the reduced costs computed this way are obviously non negative.

Observation 2.

In order to develop a procedure to find the optimal dual multipliers δ, we can split the
costs between symmetrical entries of C̃ so as to maximize the value of W ′. Using this
idea, it is not necessary to explicitly find the value of the multipliers δef in each iteration
of the dual ascent algorithm. In fact one can adjust the coefficient C̃ef on variables yef

every time multiples of (7.23) are placed into the objective function. More precisely, for
any e, f ∈ ord(E), we can increase C̃ef by the same quantity we decrease C̃fe.

Observation 3.

By stopping the procedure at the first iteration, with θ = 0, the value of W ′ gives the GL
bound. To obtain tighter lower bounds we can maximize the function W ′ to obtain the
best value of θ for example through subgradient techniques. However, we follow the idea
of Assad and Xu to update the parameter θ. More precisely, we propose the following
two update rules:

θi+1
e = 1

(n − 2)1/2 θi
e + 1

(n − 2)3/2 (d̃e + r̃de) ∀e ∈ E (7.26)

θi+1
e = 1

n − 2 d̃e ∀e ∈ E. (7.27)

where r̃de for all e ∈ E is the reduced cost of edge e with respect to the optimal span-
ning tree. The first choice of updating θ does not guarantee a monotonically increasing
sequence of lower bounds, while for the second choice our computational experiments
show that it yields a monotonic sequence of lower bounds.
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7.4 Reformulation-linearization technique applied to

the QMSTP

In this section we present the level-1 and level-2 of the RLT representations of the QM-
STP. The level-1 RLT representation of the QMSTP proposed in [98] applies two sets of
operations. First, each constraint defining X is multiplied by each of the m variables xe.
All such quadratic constraints are included in the formulation. Note that when a variable
xe in a given constraint is multiplied by xf the resulting product is expressed as xexf in
that order. The linearization step makes the substitution of yef = xexf for all e, f ∈ E,
and imposes the restrictions yef = yfe for all e, f ∈ ord(E), to rewrite the problem as
the MILP below:

QRLT1: min
∑

e,f∈E
e̸=f

Cef yef +
∑
e∈E

dexe

s.t. (7.6), (7.7), (7.8), (7.9), (7.23)

x ∈ X.

Observe that QRLT1 is exactly the same as problem P with the addition of constraints
(7.23). However, the continuous relaxation of QRLT1 (CRLT1) provides a lower bound at
least as large as the continuous relaxations of QAX (CAX) and QOP (COP) as proved in
[98]. In fact the authors showed that the feasible region to CRLT1 (PRLT 1) is contained
within the feasible region to CAX (PAX ) and COP (POP ), i.e,

PAX ⊇ POP ⊇ PRLT 1. (7.28)

A natural question concerning the relation in (7.28) is whether these inclusions are strict
or not. In the following we show that POP ⊃ PRLT 1. To show the tight inclusion,
consider a graph G = (V, E) with V = {a, b, c, d} and E = {e1, e2, e3, e4} where
e1 = {a, b}, e2 = {b, c}, e3 = {b, d}, and {c, d}. Suppose that the linear cost di for
any ei ∈ E is equal to zero, and the quadratic costs Cij of edges ei, ej ∈ E is also
equal to zero except for (e1, e2) and (e4, e1) which C12 = C41 = 1. Consider the point
(x, y) with x1 = 1, x2 = x3 = x4 = 2

3 , y13 = y14 = y21 = y31 = y42 = 1, y24 =
y32 = y43 = 1

3 and all other yij = 0 with i ̸= j. This point is a feasible and optimal
solution with objective value 0 for problem COP, but it is not feasible for CRLT1, as
1 = y21 ̸= y12 = 0. For the given objective function coefficients, the point (x̂, ŷ) with
x̂1 = x̂3 = x̂4 = 1, x̂2 = 0, ŷ13 = ŷ14 = ŷ31 = ŷ34 = ŷ41 = ŷ43 = 1 and ŷij = 0 for all
other i ̸= j, with objective value of 1 is in fact the optimal solution for problem CRLT1.
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Thus we have the following:

Proposition 7.4.1.

PAX ⊇ POP ⊃ PRLT 1.

In order to solve the CRLT1, the authors proposed constructing a Lagrangain dual
by placing constraints (7.23) into the objective function and applied the GL procedure to
solve the Lagrangian function. They used subgradient method to compute an optimal (or
near-optimal) set of Lagrangian multipliers.

7.4.1 Level-2 RLT on the QMSTP

Based on the success of level-1 RLT representation to gain tighter bounds for the QMSTP
and also due to the block-diagonal structure of the problem which lends to efficient so-
lution methods, we turn attention to the level-2 representation of the problem. We first
present the level-2 RLT formulation of the problem and then show how to handle it via
a Lagrangian relaxation approach to obtain a Lagrangian function with block-diagonal
structure. Since the dualized constraints are indeed much more than those in the level-
1 RLT, finding the near-optimal dual multipliers using the classical subgradient is not
viable. Therefore, we devise an efficient dual-ascent procedure to solve the continuous
relaxation of the level-2 RLT.

The level-2 RLT representation of QMSTP can be obtained in the same way as the
level-1 RLT via the following reformulation and linearization steps.

Reformulation: Multiply each constraints defining X by each binary variable xe, e ∈
E, and also by each pair-wise product of variables xexf , e, f ∈ E. Add these new
restrictions to the problem formulation. When a variable xe is multiplied by xf , the
resulting product is expressed as xexf , and when it is multiplied by xf xh, the resulting
product is expressed as xexf xh, preserving the order in both cases.
Linearization: Linearize the resulting problem by substituting, xexf and xexf xh with
continuous variables yef and uefh, respectively. Enforce the equality yef = yfe for all
e, f ∈ E, and also enforce the equalities uefh = uehf = ufeh = ufhe = uhef = uhfe

for all e, f, h ∈ E. For convenience we set ueef = uefe = ufee = yfe for all e, f ∈ E

and yee = xe for all e ∈ E.

The resulting formulation is presented below where the coefficients Defh found in
the objective function are all zero.
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QRLT2:

min
∑

e,f,h∈E

Defhuefh +
∑

e,f∈E
e̸=f

Cef yef +
∑
e∈E

dexe

∑
f∈E

uehf = (n − 1)yef ∀e, h ∈ E (7.29)

∑
f∈E(S)

uehf ≤ (|S| − 1)yef ∀ ∅ ≠ S ⊂ V, e, h ∈ E (7.30)

ueeh = uehe = uhee = yhe ∀e, h ∈ E (7.31)

uefh = uehf = ufeh = ufhe = uhef = uhfe ∀e, f, h ∈ E (7.32)

uefh ≥ 0 ∀e, f, h ∈ E (7.33)

(7.6), (7.7), (7.8), (7.9), (7.23) (7.34)

x ∈ X.

Note that an optimal solution of the QRLT2 will yield an optimal solution also for the
QMSTP problem. However, if the binary restrictions on variables x are relaxed in QRLT2,
the problem is no longer equivalent to QMSTP, providing a lower bound.

Lagrangian Relaxation Scheme of QRLT2

In order to solve the continuous relaxation of QRLT2 efficiently, we apply a Lagrangian
relaxation to constraints (7.23) and (7.32). Let Defh, Cef and de denote the adjusted
values for Defh, Cef and de respectively, after placing constraints (7.23) and (7.32) into
the objective function. The resulting Lagrangian relaxation is:

K + min
∑

e,f,h∈E

Defhuefh +
∑

e,f∈E
e ̸=f

Cef yef +
∑
e∈E

dexe (7.35)

(7.29), (7.30), (7.31), (7.33), (7.34) (7.36)

x ∈ X. (7.37)

where K is a scalar equal to 0.
To solve the Lagrangian function (7.35) we introduce the following subproblems. For

any two edges e, f ∈ E, e ̸= f , let ϕef denote the cost of the optimal spanning tree
containing the two fixed edges e, f , and for any edge e ∈ e, let ρe denotes the optimal
spanning tree containing the fixed edge e; i.e.,

ϕef = min
{∑

h

D̄efhuefh : uef ∈ X, uefe = 1, ueff = 1
}

, (7.38)
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ρe = min

∑
f

(C̄ef + ϕef )yef : ye ∈ X, yee = 1

 . (7.39)

The following theorem formally shows the decomposition framework of (7.35).

Theorem 7.4.2. An optimal solution of problem (7.35) can be obtained by solving the fol-
lowing minimum spanning tree problem

K + min
{∑

e

(d̄e + ρe)xe : x ∈ X

}
. (7.40)

Proof. The proof is a trivial extension of the proof of Theorem 7.2.1.

In the following we present a dual-ascent algorithm similar to that used in [3] for the
RLT2 representation of the QAP. The most important part of the algorithm is to use the
meaning of reduced costs to readjusting D, C and d. The main steps of our dual-ascent
algorithm are summarized as follows:

1. Initialization.
Set Defh = 0 for all e, f, h ∈ E, Cef = Cef for all e, f ∈ E, de = de for all e ∈ E,
K = 0, and an iteration counter I = 0.

2. Spreading d on C .
For each e ∈ E, spread the coefficient de on coefficients Cef for all f ∈ E, f ̸= e;
i.e, Cef = Cef + de

n−2 . Then update de to 0 for each e ∈ E.

3. Spreading C on D.
For each e, f ∈ E, e ̸= f , spread the coefficient Def on coefficients Defh for
all h ∈ E, h ̸= e, f ; i.e, Defh = Defh + Cef

n−3 . Then update Cef to 0 for each
e, f ∈ E, e ̸= f .

4. Solving the Lagrangian relaxation problem.
Use Theorem 7.4.2 to solve (7.35) as follows:

4 − a) For a selected e, f ∈ E, e ̸= f , change coefficients Defh = (Defh + Dehf +
Dfeh +Dfhe +Dhef +Dhfe)/6 for each h ∈ E, h ̸= e, f . Solve subproblem
(7.38) and compute the reduced cost of edge h with respect to the optimal
spanning tree containing the fixed edges e, f . The reduced cost rDefh of any
edge h not in the minimum spanning tree containing the fixed edges e, f , is
the difference between the cost of h and the largest cost of any edge, different
from edges e, f , in the cycle induced by h. Note that if the cycle contains only



104 Quadratic Minimum Spanning Tree Problem

Table 7.1 Comparison of different lower bounding approaches on TestSet OPvsym.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

6 100 16273.9 1.2 0.8 1.8 4.8 0.0 0.00 0 0 0 0 0 0
7 100 19625.7 1.0 1.1 2.2 5.33 0.0 0.0 0 0 0 0 0 0
8 100 27039.4 2.0 1.5 1.4 4.65 0.0 0.0 0 0 0 0 0 0
9 100 22769.9 0.7 1.1 1.1 2.6 0.0 0.0 0 0 0 0 0 0
10 100 25743.8 0.9 2.1 2.0 6.1 0.0 0.0 0 0 0 0 0 0
11 100 29325.6 1.0 2.1 1.6 4.5 0.0 0.1 0 0 0 0 0 0
12 100 32577.8 0.7 1.2 1.1 3.5 0.0 0.0 0 0 0 0 0 1
13 100 40488.5 1.0 1.1 1.0 3.6 0.0 1.0 0 0 0 0 0 2
14 100 44240.4 0.6 1.1 1.0 2.2 0.0 1.0 0 0 0 0 1 5
15 100 50821.6 0.7 1.1 0.9 2.3 0.0 0.0 0 0 0 1 1 7
16 100 41940.2 1.1 2.3 2.2 2.1 0.0 1.0 0 0 0 2 2 10
17 100 41819.0 1.0 0.8 0.7 1.2 0.0 1.0 0 0 0 2 2 12
18 100 46130.2 1.3 1.5 1.3 2.0 0.0 1.0 0 0 0 3 3 24
20 100 55326.2 0.9 1.1 1.0 1.8 0.0 0.0 0 0 0 5 7 42
30 100 78999.9 0.5 1.10 1.0 0.7 0.0 0.0 0 1 1 23 3 445
50 100 165419.6 0.5 0.5 0.4 0.3 0.0 - 2 17 18 366 371 -

h and the two fixed edges e, f , then the reduced cost of h set to infinity. Set
Defh = rDefh and increase Cef by ϕef .

4 − b) For a selected e ∈ E, change the coefficients Cef = (Cef + Cfe)/2 for each
f ∈ E, f ̸= e. Solve subproblem (7.39) and compute the reduced cost of
edge f with respect to the optimal spanning tree containing the fixed edges
e. The reduced cost rCef of any edge f not in the minimum spanning tree
containing the fixed edge e, is the difference between the cost of f and the
largest cost of any edge, different from edges e, in the cycle induced by f . Set
Cef = rCef and increase de by ρe.

4 − c) Solve problem (7.40) and compute the reduced cost of edge e with respect to
the optimal spanning tree, readjusting de and increasing the scalar K by the
weight of the minimum spanning tree.

4. If I ≥ MaxIteration, stop; otherwise set I = I + 1 and return to 2.

In our implementation, each spanning tree problem is solved with Prim’s algorithm
[102]. Moreover, we start steps 4 − a, and 4 − b with edges having reduced costs equal
to zero, to increase the possibility of obtaining a tight lower bound.

7.5 Computational experiments

In this section we present our computational experiments on the lower bound compu-
tations for the QMSTP. We implemented the algorithms in C++ language and run on an
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Table 7.2 Comparison of different lower bounding approaches on TestSet OPesym.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

6 100 541.2 2.9 2.6 3.2 3.0 0.4 0.5 0 0 0 0 0 0
7 100 783.7 4.8 4.5 4.2 4.7 0.3 1.2 0 0 0 0 0 0
8 100 1020.1 5.2 5.7 5.3 4.4 0.4 1.9 0 0 0 0 0 0
9 100 1356 6.5 5.5 4.8 5.6 0.6 2.2 0 0 0 0 0 0
10 100 1427.1 6.7 5.7 5.2 3.5 0.5 2.3 0 0 0 0 0 0
11 100 1545.1 6.4 5.6 4.7 6.0 0.3 2.4 0 0 0 0 0 0
12 100 1901.6 8.0 6.7 5.5 6.5 0.4 2.8 0 0 0 0 1 2
13 100 2175.3 7.9 6.6 5.7 6.8 0.3 2.9 0 0 0 0 1 4
14 100 2527.9 8.2 6.2 5.4 6.8 0.2 2.9 0 0 0 1 2 6
15 100 2588.8 8.2 6.5 5.6 7.8 0.4 2.9 0 0 0 1 3 11
16 100 2980.1 9.2 7.6 6.4 8.6 0.6 3.3 0 0 0 1 4 19
17 100 3372.2 9.8 7.8 6.9 8.2 0.9 3.7 0 0 0 2 5 24
18 100 3569.0 10.7 7.8 6.8 8.7 0.5 3.9 0 0 0 3 6 34
30 100 8056.7 13.2 11.0 9.6 12.1 1.7 6.3 1 4 9 21 59 493
50 100 15788.8 14.9 12.1 10.5 13.7 1.91 - 9 37 93 392 658 -

Intel Xeon CPU E5335 (2 quad core CPUs 2GH). In the following we first present the test
instances and provide the comparison of the lower bonding approaches in details.

7.5.1 Test instances

We considered the benchmark sets CP and OP introduced in [33] and [94], respectively.
The OP consists of three classes of random instances denoted as OPsym, OPvsym, and
OPesym with size ranging from n = 6 to n = 18, n = 20, n = 30, and n = 50. This
benchmark consists of 450 instances of complete graphs with n vertices and m = n(n −
1)/2 edges. For each problem size, 10 random instances have been generated. The CP
consists of four classes of random instances denoted as CP1, CP2, CP3, and CP4 with size
n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}. This benchmark consists of 108 instances with
different densities d ∈ {33%, 67%, 100%}. These two benchmarks have been generated
as follows:

1. OPsym: The linear and the quadratic costs are chosen at random according to uni-
formly distributed from the sets {1, . . . , 100} and {1, . . . , 20}, respectively.

2. OPvsym: The linear costs are uniformly distributed at random in {1, . . . , 10000}
while the quadratic costs Cef are obtained associating to the vertices random val-
ues uniformly distributed in {1, . . . , 10} andmultiplying the four values associated
to the end vertices of edges e and f , i.e., for two edges ep = (1, 2) and ef = (3, 4)
the value of Cef is computed by multiplying the weight of vertices 1, 2, 3, and 4.

3. OPesym: The vertices uniformly have spread at random in a rectangle with co-
ordinates (0, 0), (0, 100), (100, 0) and (100, 100). The linear costs are chosen as
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Table 7.3 Comparison of different lower bounding approaches on TestSet OPsym.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

6 100 258.4 13.2 14.8 13.1 25.6 1.92 2551.4 0 0 0 0 0 0
7 100 326.8 24.3 22.1 19.0 38.1 5.3 2.9 0 0 0 0 0 0
8 100 438.5 24.2 25.7 22.5 39.5 9.7 5.8 0 0 0 0 0 0
9 100 534.9 31.5 33.9 28.3 44.2 14.7 7.7 0 0 0 0 0 0
10 100 653.9 41.4 45.5 39.3 57.9 23.4 11.89 0 0 0 0 0 1
11 100 785.9 55.5 57.8 51.3 71.8 34.5 17.6 0 0 0 0 1 2
12 100 918.5 64.9 69.5 60.5 84.4 42.0 21.6 0 0 0 0 1 3
13 100 1067.1 75.9 79.9 71.9 92.2 51.0 25.7 0 0 0 0 2 5
14 100 1249.8 82.0 85.0 77.1 98.4 56.4 29.0 0 0 0 1 2 8
15 100 1390.2 101.2 104.8 94.6 118.9 70.4 34.7 0 0 0 1 3 12
16 100 1629.3 115.4 119.6 110.6 134.7 83.7 28.2 0 0 0 2 4 20
17 100 1823.8 123.2 127.1 116.5 142.0 89.6 44.9 0 0 0 2 5 26
18 100 2981 137.3 142.5 131.8 157.3 103.2 49.2 0 0 0 3 6 37
20 100 2572.7 167.9 173.2 160.3 189.5 127.1 59.9 0 0 0 8 10 70
30 100 6015.9 329.9 332.2 315.7 356.3 261.5 111.6 0 2 6 32 59 503
50 100 17616.9 774.2 719.9 699.6 793.2 618.1 - 3 37 76 584 749 -

the Euclidean distances between the end vertices of each edge, while the quadratic
costs are selected as the Euclidean distances between the midpoints of the edges.

4. CP1: The linear and the quadratic costs are chosen at random according to uni-
formly distributed from the set {1, . . . , 10}.

5. CP2: The linear and the quadratic costs are chosen at random according to uni-
formly distributed from the sets {1, . . . , 10} and {1, . . . , 100}, respectively.

6. CP3: The linear and the quadratic costs are chosen at random according to uni-
formly distributed from the sets {1, . . . , 100} and {1, . . . , 10}, respectively.

7. CP4: The linear and the quadratic costs are chosen at random according to uni-
formly distributed from the set {1, . . . , 100}.

7.5.2 Lower bound computation

We compare the lower bounds effectiveness and computational efficiency using six alter-
native approaches discussed in this paper. Due to the tradeoff between bound strength
and CPU execution time we terminated the dual-ascent algorithms for RLT2 in 20 itera-
tions for n < 30, and 10 iterations for n ≥ 30. Moreover, due to the exceeded memory
limit we are not able to solve the RLT2 for instances with size n ≥ 40. In subgradient
implementation, we allow 1500 iterations with an initial step size of 2.

Tables 7.1 to 7.3 present the percent gap between the lower bounds and the objective
value of the best known solutions, and CPU execution times of using different approaches
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Table 7.4 Comparison of different lower bounding approaches on TestSet CP1.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

10 33 350 12.2 5.1 5.1 7.4 0.0 1.7 0 0 0 1 1 1
10 67 255 49.1 42.5 37.1 44.9 25.6 12.8 0 0 0 1 1 1
10 100 239 67.1 64.8 60.4 64.8 48.4 20.1 0.0 0 0 1 1 1

Ave. 281.3 42.8 37.4 32.5 39.1 24.6 11.5 0.0 0.0 0.0 1.0 1.0 1.0

15 33 745 46.6 42.2 38.2 41.1 28.4 16.8 0 0 0 2 30 13
15 67 659 95.0 87.8 82.0 86.7 71.2 34.8 0 0 0 2 3 13
15 100 620 112.3 104.6 102.6 105.3 93.2 40.0 0 0 0 2 3 13

Ave. 674.6 84.6 78.2 74.2 77.7 64.2 30.5 0.0 0.0 0.0 2.0 3.0 13.0

20 33 1379 76.3 71.3 65.6 69.2 55.3 30.5 0 0 1 7 10 78
20 67 1252 132.3 126.8 120.1 120.8 107.6 48.5 0 0 1 6 10 82
20 100 1174 154.7 145.6 141.1 141.1 131.6 59.1 0 0 1 8 10 78

Ave. 1268.3 121.1 114.5 108.9 110.3 98.1 46.0 0.0 0.0 1.0 7.0 10.0 79.3

25 33 2185 95.8 87.1 82.1 83.5 70.1 37.0 0 1 1 15 26 328
25 67 2023 167.6 157.7 152.9 153.5 142.3 63.2 0 1 1 18 27 334
25 100 1943 190.4 182.4 178.8 176.8 170.2 78.1 0 1 1 18 28 332

Ave. 2050.3 151.2 142.4 137.9 137.9 127.5 59.4 0.0 1.0 1.0 17.0 27.0 331.3

30 33 3205 124.1 115.2 110.7 111.4 98.1 49.1 0 3 3 33 54 544
30 67 2998 193.1 182.5 177.8 176.5 168.1 78.3 0 3 3 42 61 521
30 100 2874 208.3 201.5 199.1 195.3 191.4 92.2 0 3 3 46 68 491

Ave. 3025.6 175.1 166.4 162.5 166.1 152.5 73.2 0.0 3.0 3.0 40.3 61.0 518.6

35 33 4474 149.6 139.7 134.9 134.2 122.1 59.1 1 8 8 74 111 1475
35 67 4147 211.5 200.2 198.1 196.0 190.4 87.8 1 6 8 95 118 1393
35 100 4000 222.5 216.9 214.9 210.8 206.8 104.8 1 6 8 92 143 1393

Ave. 4207.0 194.5 185.5 182,6 180.3 174.7 83.9 1.0 6.7 8.0 87.0 124.0 1420.3

40 33 5945 173.3 162.1 156.8 155.4 143.8 - 1 15 16 142 200 -
40 67 5567 229.6 220.6 217.7 214.7 210.0 - 1 12 12 163 244 -
40 100 5368 235.7 231.1 229.7 225.5 222.1 - 1 14 18 189 268 -

Ave. 5626.6 212.8 204.6 201.4 198.5 191.9 - 1.0 3.6 15.3 164.6 237.3 -

45 33 7521 188.9 177.1 172.1 170.8 161.2 - 2 21 26 279 329 -
45 67 7161 241.4 235.1 232.3 228.6 225.2 - 2 22 33 307 395 -
45 100 6944 244.7 241.2 239.7 236.2 234.5 - 2 24 37 351 489 -

Ave. 7208.6 225.0 217.8 214.7 211.8 206.9 - 2.0 22.3 32.0 312.3 404.3 -

50 33 9393 207.9 194.8 190.0 188.3 179.7 - 2 36 51 501 534 -
50 67 8958 251.2 245.6 243.6 239.4 236.8 - 3 42 60 563 712 -
50 100 8713 252.1 248.6 247.5 243.9 243.4 - 3 46 66 649 835 -

Ave. 9021.3 237.1 229.6 227.0 223.8 219.9 - 2.6 41.3 59.0 571.0 693.6 -
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Table 7.5 Comparison of different lower bounding approaches on TestSet CP2.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

10 33 3122 17.2 7.2 7.3 9.2 0.0 2.5 0 0 0 1 1 1
10 67 2042 91.7 78.1 67.5 81.3 45.9 19.4 0 0 0 1 1 1
10 100 1815 137.2 125.7 116.1 127.1 93.7 31.1 0 0 0 1 1 1

Ave. 2326.3 82.0 70.3 63.6 72.5 46.5 17.6 0.0 0.0 0.0 1.0 1.0 1.0

15 33 6539 67.9 59.5 54.2 59.1 39.6 22.7 0 0 0 2 3 13
15 67 5573 170.1 146.1 140.0 148.0 115.2 48.2 0 0 0 2 3 13
15 100 5184 243.5 225.2 210.9 222.9 183.3 60.2 0 0 0 2 3 13

Ave. 5765.3 160.5 143.6 135.0 143.3 112.7 43.7 0.0 0.0 0.0 2.0 3.0 13.0

20 33 12425 113.2 106.4 93.7 100.7 76.6 40.4 0 0 1 6 10 81
20 67 10893 247.4 225.7 214.1 218.4 185.4 65.7 0 0 1 7 10 83
20 100 10215 356.0 321.9 307.4 313.0 271.7 87.7 0 0 1 7 9 83

Ave. 11177.6 238.8 217.6 204.9 210.7 177.9 64.4 0.0 0.0 1.0 6.7 9.7 82.3

25 33 19976 144.4 127.5 119.2 122.5 98.4 48.4 0 1 2 16 24 326
25 67 18251 339.2 307.2 297.1 300.3 261.1 88.8 0 1 2 20 24 314
25 100 17411 504.5 473.4 446.4 451.8 401.9 119.8 0 1 2 20 25 302

Ave. 11177.6 329.3 302.7 287.4 291.5 253.8 85.6 0.0 1.0 2.0 18.6 24.3 314.0

30 33 29731 198.2 184.5 171.2 174.3 146.8 65.7 0 5 6 36 54 507
30 67 27581 427.7 389.7 374.9 377.3 336.4 114.8 0 8 9 47 56 528
30 100 26146 616.7 570.5 550.4 552.5 503.5 146.1 0 6 6 50 66 490

Ave. 27819.3 414.2 381.5 365.5 368.1 328.9 108.8 0.0 6.3 7.0 44.3 58.7 508.3

35 33 42305 248.1 221.3 214.0 215.2 188.1 79.5 0 19 21 77 122 1421
35 67 38490 522.0 474.1 462.6 464.7 419.5 136.5 0 11 14 97 114 1394
35 100 36723 728.7 669.8 653.7 653.4 600.6 168.3 0 10 13 102 117 1394

Ave. 39172.7 499.3 454.7 443.2 444.2 402.3 128.1 0.0 13.3 16.0 92.0 117.6 1403.0

40 33 56237 300.4 275.0 260.3 260.4 229.6 - 1 30 40 150 214 -
40 67 51851 610.6 567.4 542.9 542.6 496.1 - 1 22 30 183 205 -
40 100 49817 861.3 798.9 775.9 774.2 717.4 - 1 22 25 192 232 -

Ave. 52635.0 590.7 546.6 526.2 525.6 480.8 - 1.0 24.7 31.7 175.0 217.0 -

45 33 70603 340.5 311.0 297.1 296.7 266.2 - 1 40 57 294 348 -
45 67 66889 691.8 639.4 619.2 618.0 570.3 - 1 34 46 341 374 -
45 100 64840 974.7 896.0 878.1 875.9 817.8 - 1 35 45 377 382 -

Ave. 67444.0 668.9 615.4 598.1 596.8 551.4 - 1.0 36.3 49.3 337.3 368.0 -

50 33 88942 394.2 363.0 345.5 345.1 310.8 - 2 80 75 516 543 -
50 67 84020 783.3 721.0 702.6 699.3 649.9 - 2 66 81 621 614 -
50 100 81858 1090.8 1008.1 987.3 983.0 925.0 - 2 51 72 611 656 -

Ave. 84940.0 756.1 697.3 678.4 675.8 628.5 - 2.0 65.7 76.0 582.7 604.3 -
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Table 7.6 Comparison of different lower bounding approaches on TestSet CP3.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

10 33 646 0.6 1.8 1.8 3.1 0.0 0.0 0 0 0 1 1 1
10 67 488 11.4 14.2 10.1 22.6 0.0 2.5 0 0 0 1 1 1
10 100 426 18.9 24.2 20.6 35.2 10.3 6.2 0 0 0 1 1 1

Ave. 520.7 10.3 13.4 10.8 20.3 3.4 2.9 0.0 0.0 0.0 1.0 1.0 1.0

15 33 1236 14.0 19.4 14.8 23.9 4.7 5.1 0 0 0 2 4 13
15 67 966 25.7 32.3 24.6 37.0 13.9 9.0 0 0 0 2 4 13
15 100 975 36.1 41.3 36.5 50.4 25.0 14.8 0 0 0 2 3 13

Ave. 1059.0 25.2 31.0 25.3 37.1 14.5 9.6 0.0 0.0 0.0 2.0 3.7 13.0

20 33 1972 29.5 33.4 27.8 38.0 17.9 12.1 0 1 1 6 9 86
20 67 1792 50.9 56.6 48.8 62.7 37.1 21.9 0 1 1 6 10 80
20 100 1544 62.3 61.0 57.0 74.0 46.2 26.5 0 1 1 6 10 81

Ave. 1769.3 47.5 50.3 44.5 58.2 33.7 20.1 0.0 1.0 1.0 6.0 10.0 82.3

25 33 2976 43.7 47.3 42.3 51.9 30.0 19.6 0 1 1 14 28 323
25 67 2546 73.3 75.1 70.0 84.2 56.2 32.8 0 2 2 16 26 324
25 100 2471 93.0 88.7 85.6 104.0 75.3 42.0 0 2 2 15 28 305

Ave. 2664.3 70.0 70.3 65.9 80.0 53.8 31.4 0.0 1.7 1.7 15.0 27.3 319.3

30 33 4070 56.1 59.8 54.5 61.1 42.5 25.8 0 3 4 33 57 507
30 67 3649 95.8 94.7 89.6 104.6 77.7 45.0 0 4 5 34 66 502
30 100 3483 114.8 109.3 105.9 122.9 96.1 54.3 0 4 5 42 68 490

Ave. 3734.0 88.9 87.9 83.3 96.2 72.1 41.7 0.0 3.7 4.7 36.3 63.7 499.7

35 33 5423 78.9 84.8 76.6 84.9 61.4 37.4 0 8 12 69 125 1416
35 67 4981 116.4 112.6 109.2 126.2 98.0 55.9 0 8 12 81 126 1482
35 100 4770 138.0 130.8 127.0 144.1 117.8 66.4 0 8 11 92 146 1457

Ave. 5058.0 111.1 109.4 104.2 118.4 92.4 53.2 0.0 8.0 11.7 80.7 132.3 1451.7

40 33 6925 94.9 95.9 91.2 99.1 76.1 - 1 17 23 135 220 -
40 67 6456 133.6 127.7 123.9 140.0 113.3 - 1 19 25 152 272 -
40 100 6208 158.1 151.7 145.6 159.5 135.9 - 1 17 23 171 272 -

Ave. 6529.7 128.8 125.1 120.2 133.0 108.4 - 1.0 17.7 23.7 152.7 254.7 -

45 33 8720 108.3 110.0 103.5 111.3 89.2 - 1 35 45 285 410 -
45 67 8225 150.6 144.5 139.8 154.1 130.0 - 1 30 45 284 486 -
45 100 7827 171.9 163.6 158.7 170.0 149.9 - 1 30 45 331 502 -

Ave. 8257.3 143.6 139.3 134.0 145.1 122.7 - 1.0 31.7 45.0 300.0 466.0 -

50 33 10717 124.2 122.8 117.7 126.5 103.9 - 2 72 76 421 664 -
50 67 10100 167.9 159.5 155.2 168.6 145.5 - 2 58 81 509 816 -
50 100 9836 191.3 182.8 176.6 186.2 167.5 - 2 53 82 593 873 -

Ave. 10217.7 161.1 155.0 149.8 160.4 138.9 - 2.0 61.0 79.7 507.7 784.3 -
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Table 7.7 Comparison of different lower bounding approaches on TestSet CP4.

Instance Gap(%) CPU Time
n d(%) Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

10 33 3486 14.3 6.1 6.0 8.7 0.0 1.8 0 0 0 1 1 1
10 67 2404 67.4 58.8 49.5 60.8 34.0 15.8 0 0 0 1 1 1
10 100 2197 93.2 87.6 83.5 91.2 66.3 26.0 0 0 0 1 1 1

Ave. 2695.7 58.3 50.8 46.3 53.5 33.4 14.5 0.0 0.0 0.0 1.0 1.0 1.0

15 33 7245 58.5 52.1 47.2 50.9 35.3 20.4 0 0 0 2 3 13
15 67 6188 130.8 119.0 111.4 119.5 92.5 42.6 0 0 0 2 3 13
15 100 5879 172.8 160.5 154.7 162.6 136.1 52.1 0 0 0 2 4 13

Ave. 6437.3 120.7 110.5 104.5 111.0 88.1 38.3 0.0 0.0 0.0 2.0 3.3 13.0

20 33 13288 98.3 90.7 82.3 88.5 67.9 36.4 0 1 1 7 10 78
20 67 11893 198.7 187.3 176.2 180.0 153.4 59.8 0 1 1 7 10 83
20 100 11101 265.2 246.5 237.7 243.3 210.6 78.5 0 1 1 8 11 83

Ave. 12094.0 187.4 174.8 165.4 170.6 143.9 58.2 0.0 1.0 1.0 7.7 10.3 81.3

25 33 21176 127.7 114.1 107.1 110.0 89.3 45.2 0 4 3 18 26 337
25 67 19207 270.5 251.9 242.3 245.8 215.1 80.3 0 2 3 18 27 325
25 100 18370 375.1 359.0 342.6 350.2 309.1 107.0 0 3 3 20 26 350

Ave. 19584.3 257.7 241.6 230.6 235.3 204.5 77.5 0.0 3.0 3.0 18.7 26.3 337.3

30 33 31077 174.3 161.6 152.4 154.6 131.9 61.2 0 5 7 37 56 537
30 67 28777 346.9 326.0 311.1 313.9 280.3 105.3 0 8 7 45 55 504
30 100 27314 465.5 442.9 427.2 433.1 391.7 131.4 0 6 6 46 61 534

Ave. 29056.0 328.9 310.1 296.9 300.5 267.9 99.3 0.0 6.3 6.7 42.7 57.3 525.0

35 33 43629 220.2 200.3 192.3 193.5 169.8 74.6 0 18 21 86 108 1393
35 67 39660 419.7 389.1 381.8 384.8 346.4 120.7 0 12 15 88 113 1394
35 100 38049 552.4 525.8 509.3 514.5 467.3 153.0 0 12 16 93 122 1394

Ave. 40446.0 397.4 371.7 361.1 364.6 327.8 116.1 0 .0 14.0 17.3 89.0 114.3 1393.7

40 33 58874 274.9 254.5 241.4 241.4 214.5 - 1 40 35 158 194 -
40 67 53592 498.6 469.7 453.4 455.1 415.5 - 1 22 29 212 209 -
40 100 51229 652.5 626.6 605.2 609.1 558.1 - 1 22 28 197 232 -

Ave. 54565.0 475.3 450.2 433.3 435.2 396.1 - 1.0 28.0 30.6 189.0 211.7 -

45 33 72676 305.3 282.1 269.7 269.7 242.8 - 1 43 46 286 354 -
45 67 68737 565.0 534.1 516.7 516.9 477.6 - 1 35 52 355 369 -
45 100 66508 744.7 707.1 690.2 692.9 640.3 - 1 39 57 366 398 -

Ave. 69307.0 538.3 507.7 492.2 493.1 453.5 - 1.0 39.0 51.7 335.7 373.7 -

50 33 91009 353.4 328.2 313.4 313.4 282.9 - 2 80 75 541 582 -
50 67 86231 642.8 608.5 588.8 588.4 546.0 - 2 69 80 612 606 -
50 100 83838 838.1 796.5 779.3 781.7 726.7 - 2 69 80 657 690 -

Ave. 87026.0 611.4 577.7 560.5 561.1 518.5 - 2.0 72.7 78.3 603.3 626.0 -
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for OPvsym, OPesym and OPsym, respectively. Each row of the Tables 7.1 to 7.3 gives the
average values of the respective 10 randomly generated test instances. Tables 7.4 to 7.7
report the results for CP1 to CP4 in terms of the gap and CPU execution times. In all tables
the first three columns indicate the problem size (n), the density (d), and the objective
value of the best known solutions (Ub) obtained from [33]. The next six columns from
left to right, give the percent gaps obtained using the Assad and Xu’s procedure (AX),
the Monotonic Reformulation (MR) scheme, the Non Monotonic Reformulation (NMR)
scheme, the revised form of the Öncan and Punnen Lagrangian relaxation approach by
considering the correct formula (7.18) and (7.19) (OP), the subgradient implementation of
QRLT1 (RLT1), and the dual-ascent implementation of QRLT2 (RLT2). The CPU execu-
tion times of each approach are given in the last six columns of the tables. The formula
we used to compute the percent gaps is 100 × (Ub − Lb)/Lb, where Lb stands for the
value of the lower bound.

As we can observe in tables 7.1 to 7.3, the bounds obtained by NMR are almost always
stronger than the AX, MR, and OP bounds for all three data sets, but still weaker than
the RLT1 and RLT2. For the OPVSYM, which seems to be the easiest test set among the
OP instances, the RLT1 and RLT2 almost always give the optimal solutions with more
CPU execution times. For this data set, the AX, MR, NMR and OP approaches provide
tight bounds with short execution times with the exception of OP whose computational
times for instances with n = 50 are high. For the OPESYM, which seems to be more
difficult than the OPVSYM, the best approach is the RLT1 and the worst one is the AX.
For this data set NMR provides good bounds in reasonable times, and always outperform
the AX,MR andOP. The RLT2 provides the bounds slightly worse than RLT1 and requires
more computational effort. For the OPSYM which seems to be the most difficult data set
amongst the OP test set, the RLT2 provides lower bounds that are significantly stronger
than those provided by the other approaches (especially those by RLT1.) For this test set,
the bound obtained by NMR are still stronger than the AX, MR, and OP. Note that, the
revised form of the Öncan and Punnen Lagrangian relaxation approach does not always
yield tighter lower bound values for all the data sets than the ones obtained by the Assad
and Xu’s leveling procedure, as claimed in their paper [94].

The results of comparing different lower bounding approaches for the CP data set
are given in Tables 7.4 to 7.7. For all four CP data sets, the RLT2 outperforms the other
approaches in terms of the bound tightness, but it always needs more computational ef-
fort. After the RLT2, the RLT1 is the one that provides the best bounds. Considering
the significant gaps obtained for this data set, we can conclude that the NMR, OP, and
RLT1 almost provide the same bounds, but NMR outperforms the other two in terms of
execution times. In order to give a better explanation of the comparison we reported the
average results over the 12 different instance of each dimension in Table 7.8. Overall,
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Table 7.8 Comparison of different lower bounding approaches on TestSet CP. Each row
reports the average on 12 instances.

Instance Gap(%) CPU Time
n Ub AX MR NMR OP RLT1 RLT2 AX MR NMR OP RLT1 RLT2

10 1455.8 48.3 43.0 38.7 46.3 27.0 11.6 0.0 0.0 0.0 1.0 1.0 1.0
15 3484.1 97.8 90.8 84.8 92.3 69.8 30.5 0.0 0.0 0.0 2.0 3.2 13.0
20 6577.3 148.7 139.4 131.0 137.5 113.4 47.3 0.0 1.0 1.0 6.7 10.0 81.3
25 10711.2 202.1 189.3 180.5 186.2 159.9 63.5 0.0 1.7 1.9 17.3 26.2 325.0
30 15908.7 251.8 236.5 227.1 231.5 205.4 80.8 0.0 4.8 5.3 40.9 60.2 512.9
35 22220.9 300.7 280.5 272.8 276.9 249.1 95.0 0.3 10.5 13.2 87.2 122.1 1417.2
40 29839.1 363.0 331.7 320.3 323.1 294.4 - 1.0 21.0 24.8 170.3 230.2 -
45 38054.2 394.04 370.1 359.7 361.8 333.7 - 1.3 32.3 44.5 321.3 403.0 -
50 47801.2 441.4 414.9 404.0 405.3 376.5 - 2.2 60.2 73.2 506.2 631.5 -

the table indicates that the dual-ascent strategy applied for RLT2 provides a significant
improvement over all the other approaches reducing the gaps between the linear pro-
gramming and the best known integer solution values. For the size n = 35, which was
the biggest size that we could solve by RLT2, the overall gap reduction of the RLT2 over
the AX is 68%, while the overall gap reduction of RLT1, NMR, OP, and MR over the AX
are 17%, 9.3%, 8%, and 6.6%, respectively. From these results we can conclude that the
RLT2 yields the tightest bound but in the cost of increased CPU execution time. Moreover,
the NMR seems to be a good candidate when the tradeoff between the bounds tightness
and the CPU execution times matters.

7.6 Conclusion

In this chapter we study the QMSTP.We reviewed and analyzed the Gilmore-Lawler type
bound, the Assad and Xu reformulation scheme, and the Lagrangian relaxation of Öncan
and Punnen, and compared them in terms of continuous relaxation of a proposed MILP.
To improve the bounds for the QMSTP, we develop a mixed 0-1 linear formulation based
on using the second level of the reformulation-linearization technique and devised an
efficient dual-ascent algorithm to solve the continuous relaxation of the proposed model
based on reduced costs. The basic idea proposed in the paper is to use the meaning of the
reduced cost to retrieve the dual information of the continuous relaxation of the MILP. In
Computational experiments we compared the tightness and speed of computation of the
new bounding techniques with those of literature. The results indicated that the dual-
ascent procedure applied to QRLT2 provides the best bounds at the price of large com-
putational effort, while the bound obtained by the non-monotonic reformulation scheme
seems to tradeoff between the bound tightness and computational effort.



Chapter 8

Quadratic Shortest Path

Problem

Finding the shortest path in a directed graph is one of the most important optimization
problems which has applications in a wide range of fields. In its basic version, however,
the problem fails to represent situations in which value of the objective function is de-
termined not only by the choice of each single arc, but also by the combined presence
of pairs of arcs in the solution. In this chapter we model these situations as a Quadratic
Shortest Path Problem (QSPP) which calls for the minimization of a quadratic objective
function subject to shortest-path constraints. We first show that the problem is NP-hard.
Then we propose and evaluate bounding techniques which exploit the structure of the
problem. Finally, we present the possible polynomially solvable cases of the problem.

8.1 Introduction

Shortest Path Problem (SPP) is among the most studied optimization problems in graph
theory. They arise frequently in practice in a variety of settings and often appear as
subproblems in many combinatorial optimization algorithms. Given a directed graph
G(N, A), where N is the set of nodes and A ⊂ N × N is the set of directed arcs, let
c : A → R+ be a cost function associated to each arc. The SPP problem calls for finding
a path of minimal cost from a source node s ∈ N to a target node t ∈ N .

The SPP can be solved efficiently in polynomial time as long as the graph does not
contain a negative cost cycle, i.e., a cycle inwhich the sum of the arc costs is less than zero.
Fore example, Dijkstra’s algorithm [35] takes O(|A| ln |N |) time to provide a shortest-
path tree from a source node s to all other nodes. Even better, Thorup’s algorithm [117]
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in undirected graphs with integer weights, finds a path between a source and a target
node in O(|A|) time and space.

The basic SPP fails tomodel situations inwhich the value of a linear objective function
is not the only interesting parameter in the choice of the optimal solution. Such problems
include situations in which the choice of the shortest path is constrained by parameters
such as the variance of the cost of the path, or cases in which the objective function takes
into account not only the cost of each selected arc but also the cost of the interactions
among the arcs in the solution.

In this chapter we study a variant of the SPP that has a quadratic cost function, the
so-called Quadratic SPP (QSPP). In the QSPP, the value to optimize is a combination of a
linear and a quadratic components, i.e., the cost of the path is determined not only by the
presence of each single arc in the solution, but also by the combined presence of pairs of
arcs. The input of this problem is a directed graphG(N, A), a source node s ∈ N , a target
node t ∈ N , a cost function c : A → R+, which maps every arc to a non-negative cost,
and a cost function q : A × A → R+ that maps every pair of arcs to a non-negative real
cost. The QSPP consists in finding a path from node s to node t with minimum overall
cost.

8.2 Motivations and Related work

The shortest-path problem is important in numerous application and research areas in-
cluding operation research, transportation sciences, artificial intelligence, communica-
tion networks and many others. Even harder problems that cannot be expressed as a
genuine shortest path often involve solving a SPP sub-problem. Nevertheless, its inher-
ent simplicity does not allow the SPP to address more complex situations in which the
“length” of the path is not the only variable of interest.

The first shortest path problem that is directly related to QSPP is probably that of
Variance Constrained Shortest Path [113]. The problem seeks to locate the path with the
minimum expected cost subject to the constraint that the variance of the cost is less than
a specified threshold. The problem arises for example in the transportation of hazardous
materials. In such cases a path must be short but it must also be subject to a constraint
that the variance of the risk associated to the route is less than a specified threshold. In
addition the problem may arise in all situations in which the costs associated to each arc
consist of stochastic variables. Possible approaches to solving the Variance Constrained
Shortest Path problem involve a relaxation in which the quadratic variance constraint is
incorporated in the objective function yielding a QSPP.

A different body of related work comes from research on network protocols. In [91],
authors study different restoration schemes for self-healing ATM networks. In particular,
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the authors examine line and end-to-end restoration schemes. In the former, link failures
are addressed by routing traffic around failed link, in the latter instead traffic is rerouted
by computing an alternate path between source and destination. Within their analysis,
the authors point out the need to solve a QSPP to address rerouting in the latter scheme.
Nevertheless, they do not provide details about the algorithm used to obtain a QSPP
solution.

A more recent work [110] has instead tackled the problem of stochastic costs from a
slightly different perspective. The authors develop amulti-objectivemodel for route plan-
ning to minimize both the expected travel time of a path and its variance. The problem
arises in a route planning system which allows travelers to choose not only the shortest
route but also routes with minimal variance with respect to their expected travel times.
The paper solves the multi-objective optimization problem by combining the linear and
quadratic objective function into a single quadratic shortest path problem. Specifically,
the authors model the travel time associated to the arcs, a ∈ A, in a graph representing
a road network as a multivariate normal random variable, with possible correlation be-
tween travel times on different arcs. The model is represented by a vector of mean travel
times c and a covariance matrix Q representing the correlation between travel times on
different links. Based on this model, the cost of a path between two nodes is also rep-
resented by a random variable where mean and variance are obtained by combining the
mean and variance of the travel times of each arc in the path. Given a path, let xa ∈ {0, 1}
be a binary variable such that xa = 1 if and only if arc a belongs to the path. Then the
mean and variance of the path’s travel time are expressed by the following two equations.

E(x) = cT x =
∑
a∈A

caxa

V (x) = xT Qx =
∑

a,b∈A

qabxaxb

The multi-objective optimization model can then be solved by optimizing some com-
bination of mean and variance, which lead to a “shortest path problem” whose objective
function is a combination of a linear and a quadratic component.

min E(x) + αV (x) =
∑
a∈A

caxa + α
∑

a,b∈A

qabxaxb

The authors in [110] first solve a linear relaxation and then enumerate some selected
paths. An interesting further development of our research is to compare the approach
used by [110] to ours to identify reciprocal strengths and weaknesses.

Another application of the QSPP is related to the design of self-repairing telecommu-
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Fig. 8.1 A logical network and the underlying physical infrastructure.

nication networks. The growing importance of electronic communication in the modern
society has fostered increasing interest in networks that are able to recovery automati-
cally from failures in the underlying infrastructure, for example by rerouting traffic along
alternative paths. These networks are often based on a logical network topology deployed
on top of the underlying physical infrastructure. Communication paths are established
on the logical topology, but they correspond to possibly more complex paths in the phys-
ical network. Let us consider the simple fully connected network depicted in Figure 8.1a.
With the arc costs shown in the figure, the shortest path from nodeA to nodeB is the one
going through node C in the physical topology of Figure 8.1b. Nevertheless, the choice
of ACB as a path may be undesirable in that the path traverses the same gateway G and
the same links - GC and CG - multiple times. Discouraging the choice of such pairs of
links involves assigning a high cost to the selection of pairs of logical arcs corresponding
to the same links (or nodes) in the physical network as shown in Figure 8.1c.

All the problem described above involve variants of the shortest-path problem in
which the cost associated to each arc is integrated by a contribution associated to the pres-
ence of pairs of arcs in the solution. Such a contribution can be expressed by a quadratic
objective function on binary variables associated to each arc, and leads to the definition
of a QSPP.
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8.3 Problem formulation and complexity

The scenarios described in Section 8.2 highlighted the significance of a quadratic exten-
sion to the shortest path problem and provided a motivation for the study presented in
this chapter. In this section we present the problem formulation and discusses the com-
plexity of the problem by proving its NP-hardness. We define the binary variable xij that
is equal to 1 if arc (i, j) is on the minimum cost path from the source node s to the target
node t, and 0 otherwise. The QSPP can be modeled as follows:

QSPP: z∗ = min
∑

i

∑
j

∑
k

∑
l

qijklxijxkl +
∑

i

∑
j

cijxij (8.1)

s.t. x ∈ Xst, x binary. (8.2)

where the feasible region, Xst, is exactly the same as that associated to the standard
shortest-path problem and can be defined as follows.

Xst = {0 ≤ x ≤ 1 :
∑

j

xij +
∑

j

xji = −1 if i = s,

∑
j

xij +
∑

j

xji = 1 if i = t,
∑

j

xij +
∑

j

xji = 0 ∀i : i ̸= s, t}. (8.3)

Theorem 8.3.1. QSPP is strongly NP-hard.

Proof. Let us consider the general form of the QAP on bipartite graph G = (U, V, E)with
nodes U ∪ V , undirected arcs E, a linear cost c which maps every arc to a non-negative
real cost, and a quadratic cost q whichmaps every pairs of arcs to a non-negative real cost.
We show that this generic instance of the QAP can be reduced to a corresponding instance
of QSPP in polynomial time. We define the QSPP instance on a graph G̃ = (Ñ , Ã) and
map each feasible QAP assignment onto a feasible path in G̃. The sets Ñ and Ã are
defines as follows:

• The set of nodes Ñ consists of a source node s, target node t, and a node for each
pair of nodes from U and V in the QAP, that is:

Ñ = (U × V ) ∪ {s, t}.

Each noden ∈ (U×V ) corresponds to an edge in the original QAP and is expressed
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Fig. 8.2 The graphs G and G̃.

by the following two functions:

Given a node n = (i, j) :
U(n) = i

V(n) = j

• The set of arcs Ã is defined as As ∪ A ∪ At, where

As = {(s, n2) : n2 = (i, 1)}, At = {(n1, t) : n1 = (i, |V |)},

and
A = {(n1, n2) : n1 = (i, j), n2 = (h, k), i ̸= h, k = j + 1}.

Figure 8.2 shows the graphs G and G̃ with |V | = |U | = 4. With reference to this
figure, U(n) represents the row of node n in the grid arranged graph on the right. More-
over, it represents the index of the first of the two QAP nodes corresponding to n in the
bipartite graph on the left (i ∈ U ). Analogously, V(n) represents the column in the grid
and the index of the second QAP node in the bipartite graph (j ∈ V ).

It is worth observing that there are no arcs between nodes with the same U value as
these would correspond to infeasible solutions for the original QAP instance, in that the
same node in V would be assigned to two nodes in U .

The graph structure resulting from the above transformation has a number of nodes
equal to |U |2 + 2 and a number of arcs equal to |U |3 + 2|U |. Each arc in G̃ corresponds
to the arc of G determined by the values of the functions U and V on its target endpoint.
This enables the mapping of a given assignment configuration in the original graph G

onto a path from s to t in G̃. The first arc in the path determines the node in V which
is assigned to the first node in U , the second arc in the path determines the node in V

associated to the second node in U and so on. The last arc in the path simply terminates
all possible paths with the target node t.
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Fig. 8.3 Assignment of linear costs in the QAP to QSPP reduction.

This mechanism maps a given feasible assignment in G into a unique feasible path in
G̃. Nevertheless, there are still some infeasible QAP assignments that have a correspond-
ing feasible path in G̃. This apparent problem is easily addressed by correctly generating
the cost matrix as we show next.

The linear cost vector is defined in Equation (8.4). The cost for an arc pointing to
node j is given by the cost of the arc from U(j) to V(j) in the QAP.

c̃ij =

cU(j)V(j) j ̸= t

0 j = t.
(8.4)

The assignment of quadratic costs to pairs of arcs in G̃ is defined according to Equa-
tion (8.5). In general, the cost q̃ijhk is equal to the cost qU(j)V(j)U(k)V(k) in the original
problem. However, Equation (8.5) includes an additional constraint to prevent the cre-
ation of paths corresponding to unfeasible QAP solutions, where two distinct nodes in U

are assigned to the same node in V 1.

q̃ijhk =


qU(j)V(j)U(k)V(k) j ̸= t ∧ k ̸= t ∧ U(j) ̸= U(k)

0 j = t ∨ k = t

∞ otherwise.

(8.5)

This additional constraint prevents situationswhere two arcs are chosenwhose target
endpoints have the same value for function U. For example, the cost corresponding to
the pair of arcs (1, 1) − (3, 2) and (3, 2) − (1, 3) is set to ∞ by Equation (8.5) preventing
their choice in the solution value.

This definition of costs allows a QAP instance to be transformed into a corresponding
QSP instance in a polynomial number of steps. The number of elements in the Q̃ matrix

1Distinct nodes in V are always assigned to distinct nodes in U thanks to structure of G̃
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is the square of the number of arcs in G̃ and is therefore O(|U |6).
Any algorithm to solve QSPP can be applied on the transformed instance to obtain an

optimal solution. The solution to the original QAP problem is then obtained by applying
the U and V functions to the nodes in the optimal QSP path. A node n in the optimal path
corresponds to an arc from node U(n) to node V(n) in the QAP optimal solution.

8.4 Lower bounding procedure for the QSPP

In this section we consider four possible lower bounds for the QSPP. The first bound
is trivially obtained by considering the linear shortest path problem associated to the
QSPP instance. The second bound goes a step forward and builds a new linear shortest
path problem from the quadratic cost matrix. The third bound applies to a sequence of
reformulations to the original problem to shift the contribution of quadratic costs into
the linear cost vector. Finally, the last bound is obtained by applying the reformulation-
linearization technique.

8.4.1 Trivial Lower Bound

The simplest lower bound we consider is obtained by considering only the linear portion
of the quadratic objective function in (8.1). The value obtained by solving the result-
ing shortest path problem (8.6) is clearly a lower bound for the QSPP in that qijkl ≥
0 ∀i, j, k, l.

TB: min {
∑

i

∑
j

cijxij : x ∈ Xst} (8.6)

Clearly, the performance of this lower bound becomes increasingly poor as we in-
crease the ratio of quadratic to linear costs in the QSPP instance. Nevertheless, its simplic-
ity still makes it a good candidate for the integration in a branch-and-bound algorithm.
Finally, the s-t path obtained by the trivial lower bound constitutes a heuristic solution
whose cost can be obtained by computing the quadratic contributions associated to the
arcs in the path.

8.4.2 A Simple lower bound

The second bound we consider derives from a simple observation on the structure of the
quadratic shortest path problem. According to (8.1), the cost of a path from the source
node s to the target node t is the sum of the linear costs cij of each arc (i, j) and the
quadratic costs qijhk associated to each pair of arcs (i, j), (h, k) in the path. A different
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way to view this sum is to associate each arc (i, j) to an overall cost cT OT
ij that depends

on the arcs that are present in the solution.

min
∑

i

∑
j

cT OT
ij xij (8.7)

A lower bound for the problem can therefore be obtained if we replace each cT OT
ij

with its minimum value over the set of possible feasible solutions which contain arc (i, j).
This can be done by solving a set of subproblems with a linear objective function, one for
each arc in the graph. Let Pij represents such a subproblem for a given arc (i, j) ∈ A:

Pij : wij = min{
∑

k

∑
l

qijklxkl : x ∈ Xst, xij = 1}. (8.8)

The idea is for each Pij to compute the shortest among the paths from s to t which
contain arc (i, j), using the ij-th column of the quadratic cost matrix as the cost vector.
This yields a lower bound for the value of cT OT

ij in any feasible solution containing (i, j).
In reality, problemPij represents a relaxation of this shortest path: in particular, it admits
solutions that consist of the union of a path from s to t that does not contain arc (i, j)
and a cycle containing (i, j). More precisely, problem Pij can be viewed as a minimum
cost flow problem with two origins s and j and two destinations i and t in a network
without arc (i, j). Thanks to the integrality property of minimum-cost flow, Pij can be
rewritten as:

Pij : wij = min{
∑

l

∑
k

qijlkxlk : x ∈ Xst, 0 ≤ x ≤ 1, xij = 1}. (8.9)

Thus the solution to Pij can easily be found by solving a minimum-cost-flow problem
with two units of cost to be transferred between two sources s and j and two destinations
i and t in a graph G′ = (N, A \ {(i, j)}). The resulting solution will then have either of
the two forms depicted in Figure 8.4.

The value of the relaxation wij , combined with the linear cost cij of arc (i, j), yields
a lower bound for cT OT

ij , which can then be integrated into (8.7) as follows:

P : z = min{
∑

i

∑
j

(cij + wij)xij : x ∈ Xst}. (8.10)

It is worth observing that problem Pij computes a minimum cost flowwithout capac-
ity constraints and thus allows the same arc to appear multiple times in the solution. This
possibility can be avoided, and the bound can be made tighter, by adding an additional
constraint, xkl ≤ 1, to the problem Pij . Regardless of the presence of this additional
constraint, the solution of P yields a lower bound for the original QSPP as confirmed by
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(b) Path and cycle

Fig. 8.4 Possible solutions to Pij .

the following theorem.

Theorem 8.4.1. P is a lower bound for P ; that is z ≤ z∗

Proof. Let x∗, x, and xij be the optimal solutions of the problems P , P and Pij respec-
tively. Then

z =
∑

i

∑
j

wijxij +
∑

i

∑
j

cijxij ≤
∑

i

∑
j

wijx∗
ij +

∑
i

∑
j

cijx∗
ij

=
∑

i

∑
j

(
∑

k

∑
l

qijklx
ij
kl)x

∗
ij +

∑
i

∑
j

cijx∗
ij

≤
∑

i

∑
j

∑
k

∑
l

qijklx
∗
klx

∗
ij +

∑
i

∑
j

cijx∗
ij = z∗.

Note that the first and second inequalities follow from the optimality of x and x∗ for the
problems P and P respectively, while the second equality results from the definition of
w.

The proof of Theorem 8.4.1 allows us to derive two simple optimality tests.

Corollary 8.4.2. For all k, l, if xij
kl = x∗

kl, ∀(i, j) such that x∗
ij = 1, then z = z∗.

Corollary 8.4.3. For all k, l, if xij
kl = xi′j′

kl , ∀(i, j), (i′, j′) such that (i, j) ̸= (i′, j′), then
z = z∗.

8.4.3 The reformulation lower bound

The lower bound described in Section 8.4.2 transfers part of the quadratic costs to the lin-
ear cost vector by solving each of thePij subproblems. Nevertheless, the part of quadratic
cost that is not included in the solution to Pij is simply ignored when computing P .

Following the Reformulation idea of Carraresi and Malucelli for the QAP [27], we
present our next lower bound for the QSPP. The new bound captures the aforementioned
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left-over part, by means of the reduced costs associated to the optimal solution of each
Pij instance. More precisely, let us consider the dual of problem Pij in its continuous
formulation (8.9) as follows:

Dij wij = max λij
t − λij

s +
∑

k

∑
l

µij
hk (8.11)

s.t. − λij
k + λij

l + µij
hk ≤ qijkl ∀(k, l) ∈ A (8.12)

µ ≤ 0, λ unrestricted. (8.13)

where each of the λij is associated to one of the constraints in the feasible region de-
fined by Xst and µij is associated to constraint x ≤ 1 in (8.9). Let λ∗ij

k , ∀k ∈ N and
µij∗

kl , ∀k, l ∈ N represent the values of the optimal dual variables of Pij . We can define
a matrix comprising the reduced costs of all Pij instances as follows:

qijkl = qijkl + λij
k − λij

l − µij
kl (8.14)

Using this matrix, we define the below Reformulated QSPP (RQSPP) in which the
quadratic component has a lower overall impact.

RQSPP: z∗ = min
∑

i

∑
j

∑
k

∑
l

qijklxijxkl +
∑

i

∑
j

(cij + wij)xij (8.15)

s.t. x ∈ Xst. (8.16)

Each components of the linear cost vector is updated to include the value of optimal
solution of the corresponding Pij ; as a result, we can apply the trivial lower bound to
RQSPP to compute the value of the bound described in Section 8.4.2. Moreover, the use of
the reduced costs as the quadratic-cost matrix balances the increased linear costs making
RQSPP equivalent to QSPP as shown by the following theorem.

Theorem 8.4.4. Problems QSPP and RQSPP are equivalent.

Proof. Consider any feasible solution x for the problem. Since all feasible solutions con-
sist of a connected path possibly combined with a connected cycle, we have∑

kl

(λij
k − λij

l − µij
kl) = λij

s − λij
t −

∑
kl

µij
kl. (8.17)
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Thus for any feasible solution x, it follows:∑
ijkl

qijklxijxkl +
∑

ij

(cij + wij)xij

=
∑
ijkl

qijklxijxkl +
∑

ij

cijxij +
∑

ij

∑
kl

(λij
k − λij

l − µkl)xijxkl +
∑

ij

wijxij

=
∑
ijkl

qijklxijxkl +
∑

ij

cijxij .

Note that the last equality follows from Equation (8.17) and the definition of w.

The strength of reformulating a QSPP instance according to (8.15) is the ability to
iterate the described lower bound procedure. This can be obtained by iteratively apply-
ing the reformulation (8.15) and thus defining a sequence of equivalent QSPP instances
(P0, P1, . . . , Pi, Pk+1 with P0 = RQSPP ), each characterized by a stronger impact of
linear cost than the previous. To improve the bound quality we must allow each iteration
to capture a different part of the quadratic costs of the original instance. Specifically,
complementary slackness implies that the reduced costs corresponding to the optimal
solution of a given P ij

p (i.e. the P ij subproblem of the p-th reformulation) are all zero.
Iterating the reformulation using these quadratic costs as the cost vector for P ij

p+1 would
then lead to the choice of the same path (of cost 0) without changing either the linear or
quadratic costs.

8.4.4 Reformulation-linearization technique applied to the QSPP

In this section we first present an MILP formulation for the QSPP based on an application
of the first level of RLT. Then we develop an effective Lagrangian relaxation scheme to
obtain its LP relaxation bound. The level-1 RLT formulation is generated via the following
steps:

• Reformulation: Multiply each of the n equations and each of the n(n − 1) restric-
tions 0 ≤ x ≤ 1 defining Xst in (8.3) by each binary variable xkl, and append these
new restrictions to Xst. When a variable xij in a given constraint is multiplied by
xkl express the resulting product as xijxkl in that order. Substitute x2

kl = xkl

throughout the objective function and constraints. Set xijxkl = 0 if i = k or
j = l, but not both.

• Linearization: Linearize the resulting problem by replacing the product xijxkl by
the continuous variable yijkl, for all (i, j, k, l) such that i ̸= k and j ̸= l. Enforce
the restrictions that yijkl = yklij for all (i, j, k, l) with i < k and j ̸= l.

Once these steps have been applied, the following MILP formulation is obtained:
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RLT:

z∗ = min
∑

i

∑
j

∑
k ̸=i

∑
l ̸=j

qijklyijkl +
∑

i

∑
j

cijxij (8.18)

s.t. −
∑
j ̸=l

yijkl +
∑
j ̸=k

yjikl =


−xkl ∀(i, k, l) : i = s, i ̸= k, l

xkl ∀(i, k, l) : i = t, i ̸= k, l

0 ∀(i, k, l) : i ̸= s, t, k, l

(8.19)

yijkl = yklij ∀(i, j, k, l) : i < k, j ̸= l (8.20)

0 ≤ yijkl ≤ xkl ∀(i, j, k, l) : i ̸= k, j ̸= l (8.21)

x ∈ Xst (8.22)

x binary. (8.23)

Problem QSPP and RLT are equivalent, i.e, given any feasible solution x to the QSPP,
there exist a y such that (x, y) is feasible to the PRLT with the same objective value and,
conversely, for any feasible solution (x, y) to the PRlT, the corresponding x is feasible to
the QSPP with the same objective value.

Solving the RLT

To address the solution of the RLT formulation, we develop a Lagrangian dual proce-
dure which is in the same spirit as that used in [3] to solve the level-1 RLT for the QAP.
Consider the Lagrangian relaxation of the continuous relaxation of the RLT (CRLT) with
multipliers uijkl for constraints (8.20). The Lagrangian function L(u) is thus defined by

L(u) = min {
∑

i

∑
j

∑
k>i

∑
l ̸=j

(qijkl − uijkl)yijkl

+
∑

i

∑
j

∑
k<i

∑
l ̸=j

(qijkl − uklij)yijkl +
∑

i

∑
j

cijxij

: (8.19), (8.20), (8.21), (8.22)}. (8.24)

The Lagrangian function is computationally interesting in that, for any given value u,
the L(u) can be computed by solving n(n − 1) minimum-cost-flow type problems and
a single shortest path problem of size n. The decomposition structure is stated in the
following theorem.

Theorem 8.4.5. For a given value u, an optimal solution (x∗, y∗) to the Lagrangian func-
tion L(u) can be obtained by solving

∆ = min {
∑

k

∑
l ̸=k

(ckl + ϕkl)xkl : x ∈ Xst} (8.25)
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where for each (k, l) with k ̸= l, the value ϕkl is computed as:

ϕkl = min
∑

i

∑
j

∑
k>i

∑
l ̸=j

(qijkl − uijkl)yijkl +
∑

i

∑
j

∑
k<i

∑
l ̸=j

(qijkl + uklij)yijkl

(8.26)

s.t. −
∑
j ̸=l

yijkl +
∑
j ̸=k

yjikl =


−1 i = s, i ̸= k, l

1 i = t, i ̸= k, l

0 ∀i, i ̸= s, t, k, l

(8.27)

0 ≤ yijkl ≤ 1 ∀(i, j), i ̸= k, j ̸= l. (8.28)

Here, x∗ is an optimal solution to (8.25) and y∗
ijkl = ŷijklx

∗
kl∀(i, j, k, l), i ̸= k, j ̸= l, where

for each (k, l), ŷijkl∀(i, j), i ̸= k, j ̸= l, is an optimal solution to the problem defined in
(8.26)–(8.28).

Proof. The solution (x∗, y∗) is primal feasible to L(u). Since x∗ is a feasible solution for
(8.25), it satisfies (8.22). Also for each (k, l), ŷijkl ∀i ̸= k, j ̸= l, satisfies (8.27) and (8.28),
it follows that 0 ≤ y∗

ijkl = ŷijklx
∗
kl ≤ x∗

kl and

−
∑
j ̸=l

y∗
ijkl +

∑
j ̸=k

y∗
jikl = −

∑
j ̸=l

ŷijklx
∗
kl +

∑
j ̸=k

ŷjiklx
∗
kl

= x∗
kl(−

∑
j ̸=l

ŷijkl +
∑
j ̸=k

ŷjikl)


−x∗

kl i = s, i ̸= k, l

x∗
kl i = t, i ̸= k, l

0 ∀i, i ̸= s, t, k, l

Thus the proof reduces to finding a dual solution to (8.18) that together with (x∗, y∗), sat-
isfy complementary slackness conditions. Toward this end, define (π̂(u), δ̂(u), α̂(u), β̂(u))
to be optimal dual solutions to constraints (8.27) to (8.28) and flow constraint and 0 ≤
x ≤ 1 restriction inXst in (8.25) respectively. For ease of readingwe show these variables
as (π̂, δ̂, α̂, β̂). For each (k, l), dual feasibility of (8.26) – (8.28) gives:

π̂jkl − π̂ikl + δ̂ijkl = qijkl − uijkl ∀(i, j, k, l), k > i, l ̸= j,

π̂jkl − π̂ikl + δ̂ijkl = qijkl − uklij ∀(i, j, k, l), k < i, l ̸= j.

Moreover, dual feasibility of (α̂, β̂) to (8.25), and dual optimality of π̂ and δ̂ to (8.26)
– (8.28) for each (k, l) provide:

α̂l − α̂k + β̂kl = ckl + ϕkl = ckl + π̂tkl − π̂skl +
∑

i

∑
j

δ̂ijkl ∀(i, j), i ̸= k, j ̸= l.

Therefore (π, δ, α, β) = (π̂, δ̂, α̂, β̂) is a dual feasible solution to (8.24), where the vari-
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ables π, δ correspond to constraints (8.19), and (8.21) respectively, and the variables α, β

correspond to the flow constraint and 0 ≤ x ≤ 1 restriction respectively.
Now we show that L∗(u) = ∆∗. Dual optimality of (α̂, β̂) to (8.25) implies:

∆∗ =α̂t − α̂s +
∑

k

∑
l

β̂kl

=
∑

k

∑
l

[ckl + ϕkl]x∗
kl

=
∑

k

∑
l

[ckl +
∑
i<k

∑
j ̸=l

(qijkl − uijkl)ŷijkl +
∑
i>k

∑
j ̸=l

(qijkl + uklij)ŷijkl]x∗
kl

=
∑

k

∑
l

∑
i<k

∑
j ̸=l

(qijkl − uijkl)y∗
ijkl +

∑
k

∑
l

∑
i>k

∑
j ̸=l

(qijkl + uklij)y∗
ijkl

+
∑

k

∑
l

cklx
∗
kl = L∗(u).

Note that the third equality follows from the definition of ϕkl, while the forth equality
results from the definition of y∗.

8.5 A polynomially solvable case

In this section we consider a special case of the QSPP, namely Adjacent QSPP (AQSPP),
where the linear costs of all arcs and the interaction costs of all non-adjacent pair of arcs
are assumed to be zero. Therefore, the quadratic terms of the form xijxkl with j = k

and i ̸= l or with j ̸= k and i = l have nonzero objective function coefficients in the
AQSPP. Also the quadratic expressions of the form xijxji are not considered as a means
of eliminating subtours on two nodes. The AQSPP can be viewed as a generalization of
the Reload Cost path introduced in [11]. In the reload cost problems, one is given a graph
whose every edge is assigned a color and there is a reload cost when passing through a
node on two edges that have different colors.

An Integer linear programming formulation of the AQSPP that takes advantage of
the sparsity of nonzero objective function coefficient can be written as follows:

AQSPP: z∗ = min
∑

i

∑
j ̸=i

∑
k ̸=i,j

q̄ijkxijxjk

s.t. x ∈ Xst, x binary.

where q̄ijk = qijkl∀(i, j, k, l), i ̸= j, k ̸= l, i ̸= l, and j = k.

Theorem 8.5.1. The AQSPP is solvable in polynomial time.

Proof. Consider directed graph G′ = (N ′, E′) obtained from G as follows: for each arc
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(i, j) in the graph G create a node ⟨i, j⟩ in G′, a link between each two nodes ⟨i, j⟩ and
⟨j, k⟩ with q̄ijk > 0 in G′, and assign a weight q̄ijk to each arc (⟨i, j⟩, ⟨j, k⟩). Link the
source node s to all nodes ⟨s, j⟩ by zero cost arc (s, ⟨s, j⟩) and link all nodes ⟨i, t⟩ to
the target node t by zero cost arc (⟨i, t⟩, t). If in G′ we partition the set of nodes into
|N |(= n + 2) clusters Vs, V1, V2, . . . Vn, Vt with Vi = {⟨i, j⟩ : j = 1, 2, . . . , n, j ̸=
i}∀i = 1, 2, . . . , n, and Vi = {i} with i = s, t, then all arcs are defined between the
nodes from different clusters and there are no intra-set arcs. Since G′ contains at most
(n + 1)2 + 2 nodes, it can be constructed in polynomial time.

Now we show that a minimum cost s − t simple path in G′ corresponds to a minimum
quadratic cost s − t simple path in G, and vice versa. Toward this end, let P = (s =
a0, a1, . . . , am, am+1 = t) be the minimum quadratic cost s − t simple path in G with
cost CP . Then the corresponding path P ′ = (s, ⟨s, a1⟩, ⟨a1, a2⟩, . . . , ⟨am, am+1⟩, t) in
G′ with C ′

P = CP is also simple and optimal in G′. Because P ′ is simple, so it is
enough to show that P ′ is optimal, if not, there is a different simple path T ′ = (s =
b0, ⟨s, b1⟩, ⟨b1, b2⟩, . . . , ⟨bl, bl+1⟩, bl+1 = t) in G′ with C ′

T < C ′
P which is optimal. We

claim that the corresponding path T = (s, b1, b2, . . . , bl, t) in G is simple, otherwise;
contains at least one cycle T0 with positive cost CT0 . Thus CT = CT0 + CT \T0 , where
T \ T0 is acyclic part of the T . Projecting the simple path T \ T0 on G′ implies a simple
path (T \ T0)′ with C(T \T0)′ < C ′

T which contradict the optimality of T ′. Therefore, T

is a simple path in G with CT = CT ′ < C ′
P = CP , which is contradict the optimality of

the path P in G.

Consider the optimal s − t simple path P ′ = (s, ⟨s, a1⟩, ⟨a1, a2⟩, . . . , ⟨am, am+1⟩, t) in
G′. We show that the corresponding path P = (s = a0, a1, . . . , am, am+1 = t) is the
minimum s − t simple path in G. P is a simple path in G, otherwise; P ′ can’t be the
optimal s − t simple path in G′. Also P is the minimum s − t path in G, otherwise there
exists a path R in G with CR < CP which is optimal. The projection of the path R on
G′ implies a simple path R′ with C ′

R < CP = C ′
p which is a contradiction, and the proof

is complete.

We can generalize the adjacent QSPP to h-Adjacent QSPP (h-QSPP) by defining the
concept of h-Adjacency.

Definition 8.5.1. Given a fixed positive integer number h, the graph G = (V, E) and two
arcs (i, j) and (k, l) in E. We say that two arcs (i, j) and (k, l) are h-adjacent in G, if there
exist a path Pil of length at most h from node i to node l.

In the h-AQSPP, in addition to the linear costs, all the quadratic costs of non-h-
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adjacency arcs (i, j), (k, l) ∈ E are assumed to be zero, i.e.,

q̄ijkl =

qijkl (i, j) and (k, l) are h-adjacent

0 otherwise.
(8.29)

Note that the AQSPP is a special case of the h-Adjacent QSPP with h = 2.

8.6 Computational experiments

In this section, we describe the results of the numerical evaluation we carried out to
assess the performance of the lower bounds described in Sections 8.4. The section is
structured as follows. In the following subsection we present the generation of test in-
stances.Then,we will discuss in detail the results of our computational results.

8.6.1 Problem Instances

Our evaluation consists of tests carried out in three sets of Quadratic Shortest Path in-
stances, obtained from three different groups of graphs. We generated a number of in-
stances in each graph by varying the source and target node of the desired path. The
first group of graphs will be referred to as 30nodes and consists of a set of 30 nodes
connected by 300 directed arcs. This is a fairly connected topology in which the length
of paths ranges from 1 to 3 arcs. The second group, referred to as 50nodes, is also char-
acterized by a fairly high degree of connectivity and consists of 50 nodes connected by
500 directed arcs. As in the case of 30nodes, two distance between two random nodes
ranges from 1 to 3 directed arcs. Finally, 30sparse is a less connected graph consisting
of 30 nodes but only 100 arcs. This yields a longer path length with the longest path
between two nodes being 7 arcs long.

8.6.2 Lower Bound Performance

We evaluate the performance of our lower bounds on random set of instances by consid-
ering only those yielding a path that is at least three arcs long. We compute the optimal
solution and thus consider the percentage gap between the bound and the optimal solu-
tion as well as the time required by the algorithm to compute the lower bound. For each
set of the instances we compare the lower bounds obtained by different approaches.

Tables 8.1 and 8.2 show the results for paths that are at least three arcs long in 30nodes
and 50nodes respectively; while Table 8.3 shows the results for paths consisting of six or
more arcs in 30sparse.
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In all tables the trivial lower bound is unable to obtain reasonable results. However,
its inexpensive computation time still makes it a valid candidate for use in Branch-and-
Bound. What is more interesting is the comparison between the two improved bounds
and the bound obtained with the RLT formulation.

In the 30nodes instance set, the best values are obtained with the iterated bound,
which yields an average percentage gap of 2.37%. The RLT formulation also achieves
good results with an average gap of 2.84%. The non-iterate bound is only slightly worse
with an average gap of 5.44%. In comparison between computation times, the non-
iterated lower bound runs in an average of only 280ms; the iterated bound runs for an
average of 6.20s; while the bound obtained by CPLEX requires an average solve time of
9.83s

Considering the larger graph of the 50nodes instance set, the reformulated-based
procedure performs better. The iterated bound achieves a percentage gap of only 1.61%
in an average of 23.1s, while the non-iterated bound yields a gap of 5.56% but runs
in as little as 1.19s. The RLT bound computed by CPLEX, on the other hand, runs in an
average of 56.23swith a percentage gap (5.47%) which is only slightly better than that of
the non-iterated bound. Finally, all lower bounds perform better in the 30sparse instance
set, thanks to the lower number of arcs with average solve times that are well below 1s.
The value of the bounds is also better, with percentage gaps ranging from around 0.5%
for RLT and the iterated bound and 2.15% for the non iterated bound.

8.7 conclusion

In this chapter, we presented our study of a quadratic optimization problem which seeks
to minimize a quadratic objective function in the presence of shortest path constraints.
This new Quadratic Shortest Path problem extends traditional shortest paths to address
situations in which the value of the objective function is determined not only by the
choice of each single arc, but also by the combined presence of pairs of arcs in the solu-
tion. This problem arises in application areas such as route guidance and robust network
design. We first provided a definition of the QSP problem proving that it is NP-hard. Sec-
ond, we proposed different bounding techniques which improve the trivial lower bound.
Finally, we evaluated these techniques in sense of bound tightness and computational
performance. Computational experiments demonstrate that the iterative QP-based refor-
mulation approach is an effective method to address this type of optimization problem
by achieving the same or better performance than the RLT (using Cplex) in a shorter
computation time. A future research is to apply the explained decomposition approach
for solving the RLT formulation.
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