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Summary

Framework: This thesis deals with the free vibration analysis of beams, composite
plates and shells with different boundary conditions. A spectral collocation technique is
adopted for the numerical solution of the differential problem. Solutions are sought in
the form of interpolating polynomials over 1D and 2D grid of Chebyshev-Gauss-Lobatto
points. Such approximation is substituted into the equations of motion and the resulting
residual is enforced to vanish at the interior collocation points. The same approximation
is also put into the set of boundary conditions which are enforced to be satisfied at the
boundary points. The implementation of the method is performed in an efficient and el-
egant matrix notation by using the Chebyshev differentiation matrix and the Kronecker
product.

Motivation: In most engineering areas, such as aerospace, naval and automotive in-
dustries, the use of plate-and shell-like structural elements having anisotropic properties
through the thickness has considerably increased in recent years. This work should be
able to give accurate results for structures exhibiting non-classical behavior of trans-
versely anisotropic structures (sandwich plates with soft core, laminated plates and
shells). Anisotropic multi-layered structures often posses higher transverse shear and
normal flexibility than traditional isotropic one-layer construction. An accurate descrip-
tion of the stress and strain fields of these structures requires theories that are able to
describe the so-called zig-zag form of displacement fields in the thickness direction as
well as inter-laminar continuous transverse shear and normal stresses. Transverse and in-
plane anisotropy of multi-layered structures make it difficult to find closed-form solutions
when these structures are subjected to the dynamical loading. Combination of spectral
collocation method which is showing very good convergence and having straight forward
implementation, and also (CUF) technique which is a power full 3D quasi technique for
solving composite plates and shells with considering real behavior through the thickness
in structures is so helpful and is a good framework.

Approach: In this thesis, a relatively new modeling technique will be adopted. It
is known as Carrera’s Unified Formulation (CUF). The proposed technique meets all the
requirement introduced thus far since it allows to generate arbitrarily accurate solutions
from a large variety of refined theories by properly expanding so-called fundamental nu-
clei of the mass, stiffness and load matrices. The fundamental nuclei are invariant with
respect to the order of theory and thus any theoretical development and software coding
is needed when the order is changed.

Novelty: CUF was already implemented in standard finite element [173, 174], Ritz
[180, 181] and Galerkin [190] methods based on the weak form and recently, using GDQ
[183] method. The aim of this work is to build a power full and general numerical
framework into which CUF modeling is associated with spectral methods. The proposed
method is based on strong form.
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Chapter 1

Introduction and Literature review

Review of Chebyshev collocation method

The Chebyshev collocation method has been applied to different applications due to
its high rate of convergence and accuracy. Gottlieb and Orszag [1] surveyed application
of spectral methods for solving hyperbolic and advection-diffusion equations and studied
these methods not only on solid mechanics but also on incompressible fluid dynamics.
Yagci et.al [2] used a spectral Chebyshev technique for solving linear and nonlinear beam
equations, and the method was applied for Euler-Bernoulli and Timoshenko beams, in
which the spectral-Chebyshev technique incorporates the boundary conditions into the
derivation, thereby enabling the utilization of the solution for any linear boundary condi-
tions without re-derivation. Furthermore, Lin and Jen [3] applied the collocation method
on the laminated anisotropic plates in which the solution of the problem is assumed to be
a set of Chebyshev polynomials with unknown constants. A set of collocation points, also
called Gauss-Lobatto points, are selected to be substituted into those polynomials. Also,
Lin and Jen [4] applied the collocation method on non-rectangular anisotropic plates, and
the results were verified by comparing them with the finite element method. Moreover,
Deshmukh [5] applied the method with quadratic optimization for parameter estimation
in nonlinear time varying systems, and the results were accurate. Trefethen [6] obtained
the natural frequencies of a clamped square Kirchhoff plates by defining a function that
satisfies the boundary conditions in the x and y directions. Luo [7] used the Chebyshev
collocation method to solve a wave propagation problem in a three-dimensional cube with
all sides constrained with homogeneous Dirichlet boundaries, by stacking two-dimensional
(x, y) slice matrices along the z direction. Ehrenstien and Peyret [8] applied the Cheby-
shev collocation method for solving the unsteady two-dimensional Navier-Stokes equa-
tions in vorticity-stream function variables. Furthermore, the method was applied to a
double diffusive convection problem concerning the stability of a fluid stratified by salin-
ity and heated from below, and the results showed excellent agreement when compared to
other results available in the literature. Deshmukh et.al [9] applied the Chebyshev spec-
tral collocation method to reduce the dimensions of nonlinear delay differential equations
with periodic coefficients. Regarding the Chebyshev polynomials, Zhou et al. [10] used
Chebyshev polynomials for studying the three-dimensional vibration of thick rectangular
plates. Also, Sinha and Butcher [11] used Chebyshev polynomials to study the stabil-
ity of systems with parametric excitation and structures with time-dependent loads. In
these works, the product and integration operational matrices associated with the shifted
Chebyshev polynomials are utilized. The advantages of this method are, it is easily em-
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ployed in a symbolic form and, the number of polynomials may be adjusted to attain
convergence. Gourgoulhon [12] implemented basic principles of spectral methods, Leg-
endre and Chebyshev polynomials with their behavior and some examples. Ferreira [13]
presented vibration solution of thin composite plates using combination of radial basis
function and Pseudospectral method for more accuracy. Karageorghis [14] reported the
grid collocation points distribution on the boundary conditions of horizontal and vertical
sides in rectangular plate. Several researchers [15, 16, 17] published books about spectral
methods for solving differential equations.

Review of Timoshenko beam

Vibration analysis of beams has an important role in applications of mechanical,
aerospace and civil engineering. Two models for beams include Euler beams and Timo-
shenko beams. In the Euler beam model (classical model), the ratio of the beam thickness
to its length is relatively small ( h

L
∼ 1

20
), and thus the transverse shear and the rotary

inertia are neglected. The Timoshenko beam, on the other hand, transverse shear and
rotary inertia are not neglected as in the classical model. Thomas and Abbas [18] and
Friedman and Kosmatka [19] applied the finite element method to obtain the natural
frequencies for the Timoshenko beam. Laura and Gutierrez [20] applied the differential
quadrature method for the free vibration of non-uniform Timoshenko beams. The free
vibration of Timoshenko beams with elastically restrained boundaries were studied by
Abbas [21] using the finite element method, where the effects of the translational and
rotational springs on the natural frequencies were investigated. Stafford and Giurgiuti
[22] applied a semi-analytical approach by assuming converged power series to obtain
the eigenvalues for a rotating Timoshenko beam. Yokoyama [23] analyzed in-plane and
out-of-plane free vibrations by the finite element technique. Moreover, Lee and Kuo [24]
derived the upper bound of the fundamental frequency of a rotating Timoshenko beam
with elastically restrained boundaries by Rayleigh’s principle. Banerjee [25] applied the
dynamic stiffness matrix to obtain the natural frequencies of the rotating Timoshenko
beam, where the author showed that other researchers [24, 26] had incorrect results due
to omitting the term related to the rotational speed in the governing equations. It was
shown that at higher rotational speeds the previous results are not accurate. Recently,
Kaya [27] applied the differential transform method to solve the natural frequencies of a
uniform Timoshenko beam with constant rotating speed. Lee and Schultz [28] used the
Chebyshev Pseudospectral method to solve the natural frequencies of Timoshenko beam
for many boundary conditions and thickness ratio. Sprague and Geers [29] studied and
compared Spectral, hierarchical and h-type finite elements in the context of their applica-
tions to structural vibration and plotted the eigenvalues convergence. Coskun et al. [30]
evaluated eigenvalues of Euler-Bernoulli beam using several methods such as adomain
decomposition, variational iteration and homotopy perturbation method with constant
cross-section and also variable cross section and compared all these methods with exact
solution.

Review of classical plate theory

Vibration analysis of plates has an important role in applications of mechanical,
aerospace and civil engineering. Studying the free vibration of plates has a wide range of
interest in the literature. For the Kirchoff plate, the ratio of the plate thickness to edge
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lengths is relatively small, and thus the transverse shear and rotary inertia are neglected.
The well known paper by Leissa [31] is considered as the main reference for studying the
free vibration of rectangular plates, in which exact characteristic equations are obtained
when two opposite edges are simply supported, and the Ritz method is applied to the
remaining cases. Dickinson and Li [32] used the Rayleigh-Ritz method with simply sup-
ported plate functions to solve the free vibration problem. Cupial [33] and Bhat [34] used
the Rayleigh-Ritz method with orthogonal polynomials to study the free vibration of com-
posite and isotropic plates respectively. Dozio [35] studied free in-plane vibration analysis
of rectangular plates with edge elastic restrained varying linearly and parabolically both
against the rotational and translational direction based on the classical theory of plate
using Ritz method via trigonometric functions. Li et al. [36] applied two-dimensional
Fourier series supplemented with several one- dimensional Fourier series to solve the free
vibration problem of plates with general elastic boundary supports. Shu and Du [37]
applied the differential quadrature method to solve the free vibration problem. Bert et
al. [38] applied the differential quadrature method with δ-technique to solve the static
and free vibration problems of anisotropic plates. Due to their importance in the design
of structural elements in aerospace, ocean and naval structures, orthotropic plates are
widely used in the fields of structural engineering where the use of such structures re-
quires an understanding of the vibration features of orthotropic plates. The free vibration
analysis of orthotropic plates was analyzed by many researchers. Hearmon [39] applied
the Rayleigh method with characteristic beam functions for the free vibrations of the
orthotropic plates. Dickinson and Di Blasio [40] studied the free vibration and buckling
of rectangular isotropic and orthotropic plates with various boundary conditions using or-
thogonal polynomials in the Rayleigh-Ritz method. Rossi et al. [41] analyzed the rectan-
gular orthotropic plates with one or more free edges through the optimized Rayleigh-Ritz
method and a pseudo-Fourier expansion, in which the obtained results showed excellent
agreement with those obtained by analytical and numerical methods. Gorman and Ding
extended the method based on the superposition of appropriate Levy type solutions for
the analysis of rectangular plates to the free vibration analysis of clamped orthotropic
[42] and free orthotropic plates [43, 44]. Yu and Cleghorn [45] obtained the natural
frequencies for orthotropic rectangular plates with combinations of clamped and simply
supported boundary conditions by applying the superposition method. Dalaei and Kerr
[46] applied the Kantorovich method [47] of reducing a partial differential equation to an
ordinary differential equation to obtain natural frequencies of orthotropic thin plates with
clamped edges. Sakata et al. [48] analyzed the free vibration of orthotropic rectangu-
lar plates by applying the successive reduction of the plate partial differential equations
and assuming an approximate solution which satisfies the boundary conditions along one
direction while employing the Kantorovich method. Ramkumar et al. [49] studied the
free vibration analysis of clamped orthotropic plates through the Lagrange multiplier
method. Huang et al. [50] studied the free vibration of orthotropic rectangular plates
with variable thickness and general boundary conditions by applying a discrete method
in which the Green function is used to establish the characteristic equation of the free
vibration. Xing and Liu [51] obtained new exact solutions for free vibrations of thin
orthotropic rectangular plates through a novel separation of variables method. Bert and
Malik [52] applied the differential quadrature method to study the free vibration anal-
ysis of tapered isotropic and orthotropic rectangular plates having two opposite edges
simply supported. Sari et al. [53] reported the solution of Kirchhoff plate’s vibration
using spectral collocation technique with and without damage boundary conditions and
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compared the results with perturbation method. Zhao and Wei [54] compared the results
obtained for thin isotropic plates using discrete singular convolution (DSC) method with
exact solution which is called Levy solution in high frequencies and showed that DSC
method is so applicable for this analysis. Shu and Wang [55] dealed with the treatment
of mixed and non-uniform boundary conditions using generalized differential quadrature
method for thin plates. Ashour [56] applied the finite strip transition technique to angle-
ply laminated thin plates with edge elastically restrained against rotation and translation
and studied the effect of edge conditions on the natural frequencies and mode shapes.
Chow et al. [57], Leissa and Narita [58] applied Ritz method using the admissible 2D or-
thogonal polynomials for solving vibration of composite thin plates considering the effect
of material properties, number of layers and fiber orientation. Ng et al. [59] compared
DSC-LK method with GDQ method in vibration analysis of thin isotropic plates in many
cases such as mixed boundary conditions, edge constrained and non-uniform boundary
conditions. Also Wei et al. [60] applied DSC for the same problem. Leissa et al. [61]
presented vibration analysis of rectangular thin plates with elastic edge constraints for
first time using two methods, one is exact solution and the other one is extension of
Ritz method. Karami et al. [62] reported solving the vibration and stability analysis of
laminated skew and trapezoidal thin plates using differential quadrature method. Yousefi
et al. [63] used a semi analytical method based on the Rayleigh-Ritz method for thin
composite laminated plates in various shape such as square, triangular, circular and rect-
angular by cut off quarter circle. Catanial and sorrentino [64] adopted Ritz method using
Trigonometric and polynomial interpolation functions for mapping the shape of the skew
and trapezoidal plate with curved edge, annular and sector annular plate and triangu-
lar plate. Secgin and Sarigul [65] considered vibration analysis of composite laminated
of thin plates using discrete singular convolution for clamped and simply-supported cases.

Review of in-plane vibration

Kim et al. [66] presented the in-plane vibration of circular plates with edge restrained
elastically both radial and tangential. Mode shapes are presented by trigonometric func-
tions with a number of nodal diameters in the circumferential direction and mode func-
tions in the radial directions. Singh and Muhammad [67] studied free in-plane vibration
of skew and sector annular plate for isotropic plates using energy functional. Plate is
defined by four curved boundaries using eight points and natural coordinates to map the
geometry. Each displacement nodes has two degrees of freedom. Du et al. [68] considered
the free in-plane vibration of isotropic rectangular plates with edge elastically restrained
using analytical solution. Dozio [69] solved free vibration of rectangular plates with elastic
boundaries using Ritz method with a set of trigonometric functions. Irie et al. [70] consid-
ered the in-plane vibration of annular isotropic plates using Runge-Kutta-Gill integration
method and assumed that the in-plane displacements are periodic in circumferential di-
rection. Gorman [71] solved in-plane vibration of plates for fully free boundary conditions
using superposition method as an analytical solution and compared it with in the liter-
ature which is done by Ritz method. Ravari and Forouzan [72] present the vibration
analysis of orthotropic circular plate using Helmholtz decomposition method for uncou-
pling the equations of motion and separation of variable. Wave equations are assumed in
a harmonic type. Park [73] studied in-plane vibration analysis of clamped circular plates
using kinetic and potential energy and applying Hamilton’s principle on them and after
that the same as previous author used Helmholts decomposition for solving differential
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equations and also separation of variable. Liu and Xing [74] solved in-plane vibration of
rectangular plates analytically for simply-supported condition at two opposite edges and
other type of conditions for other two edges. The characteristic equations for obtaining
eigenvalues are solved by Newton-Raphson method. Bashmal et al. [75] reported in-
plane modal characteristic of circular annular disk under classical boundary conditions.
The boundary characteristic orthogonal polynomials are employed in the RayleighRitz
method to obtain the natural frequencies and associated mode shapes. Fantuzzi et al.
[76, 77, 78] considered decomposition method for solving composite laminated arbitrary
shape plates using differential quadrature method.

Review of first and higher-order theories of the plates

Beams and plates usually are modeled as either Kirchhoff or Mindlin theory. For the
Kirchhoff plate, the ratio of the thickness to the lengths is relatively small, and thus the
transverse shear and rotary inertia are neglected, unlike in the Mindlin model where this
ratio is no longer considered small. Mindlin [79] developed a theory of the transverse vi-
bration of thick plates including the effect of transverse shear and rotary inertia, in which
few analytical solutions were obtained for plates with free edges. Levinson [80] obtained
an exact solution for free vibrations of a simply supported rectangular plate. Srinivas and
Rao [81] obtained analytical solutions for the problem of bending, buckling and vibration
of simply supported thick orthotropic plates. Chen and Doong [82] applied the Galerkin
method to study the vibration of simply supported rectangular plates initially stressed
by a uniform bending stress. Dawe and Roufaeil [83] applied the Rayleigh-Ritz method
for the free vibration problem of Mindlin plates by using Timoshenko beam functions as
the trial functions. Greimann and Lynn [84] applied the finite element method to study
the plate bending with transverse shear deformation. Moreover, Rock and Hinton [85]
applied the finite element method to study the transient response and free vibration of
both thin and thick plates. Liew et al. [86] used boundary characteristic orthogonal
polynomials. Liew et al. [87] applied pb-2 Ritz method to obtain the natural frequen-
cies of skew plates based on shear deformation theory. Chung et al. [88] applied the
Rayleigh-Ritz method with Timoshenko beam functions to study the free vibrations of
orthotropic Mindlin plates with non-classical boundary conditions where the edges were
elastically restrained against rotation. Saha et al. [89] studied the free vibration analy-
sis of Mindlin plates with elastic restraints by a variational method. Many researchers
studied the free vibration of annular plates using different techniques. Rao and Prasad
[90] derived the frequency equations in explicit form for nine sets of boundary condi-
tions, and they concluded that the shear deformation has a larger effect on the natural
frequencies than does the rotary inertia effect. Furthermore, Irie et al. [91] studied the
free vibration of Mindlin annular plates of radially varying thickness using the transfer
matrix approach in which the governing equations of an annular plate are written as
a coupled set of first-order differential equations using the transfer matrix of the plate.
Irie et al. [92] obtained the natural frequencies for uniform annular plates under nine
combinations of boundary conditions by assuming the displacements in terms of Bessel
functions of the first and the second kind. They were then substituted back into the gov-
erning equations after applying the boundary conditions to obtain the frequency equation.
Moreover, Sinha [93] calculated the natural frequencies of a thick spinning annular disk
(modeled as a Mindlin plate) using the Rayleigh-Ritz method with trial functions ob-
tained numerically by an iterative scheme. In a like manner, Nayar et al. [94] applied
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the finite element method to calculate the buckling loads and the natural frequencies for
moderately thick annular plates uniformly compressed at the inner edge. Han and Liew
[95] obtained the first five non-symmetric natural frequencies of thick annular plates for
different thickness and radii ratios by the differential quadrature method. Civalek and
Giirses [96] studied the free vibration analysis of annular Mindlin plates with free edges
by the discrete singular convolution method. Regarding circular Mindlin plates, Pardoen
[97] studied the vibration and buckling analysis of non-symmetric circular plates using
the finite element method. Liew et al. [98] applied the differential quadrature method
to study the free vibration problem. Lee and Schultz [99] studied the same problem by
the Chebyshev pseudospectral method. Both of these studies showed excellent results.
Mindlin plates can have different geometries; for example, there are rectangular, circular,
circular annular, triangular, and annular sector plates, and the later type of plate is one
of the most widely used structural components in engineering applications. Vibration
analysis of annular sector plates is of principal importance in practical design. Many
researchers have analyzed the free vibration of the annular sector plates. Guruswamy
and Yang [100] developed 24 degrees of freedom sector finite element for the static and
dynamic analysis of thick circular plates, where the flexibility of the proposed method
was validated by performing free vibration analysis of full clamped sector plates with
different sectoral angles and various thicknesses. In the same manner, Cheung and Chan
[101] proposed two and three-dimensional finite strips for the analysis of thin and thick
sectoral plates, in which the displacement functions for the finite strips are expressed
in terms of beam eigenfunctions and polynomial shape functions. In their developed
method, the two- dimensional finite strips were derived based on plate bending theory,
while three- dimensional finite strips were formulated using three-dimensional elasticity
constitutive equations. Srinivasan and Thiruvenkatachari [102] applied the integral equa-
tion technique to study the free vibration problem of fully clamped plates. Mizusawa [103]
studied the free vibration problem for thick annular sector plates with simply supported
straight edges through the semi analytical finite strip method and finite prism method.
Xiang et al. [104] applied the Rayleigh-Ritz method for the analysis of the same prob-
lem. Liew and Liu [105] obtained the natural frequencies for the annular sector plates
by applying the differential quadrature method, in which six different boundary condi-
tions were considered. Lanhe et al. [106] presented vibration analysis of non-symmetric
angle-ply laminated composite thick plate based on first-order shear deformation theory
using moving least square differential quadrature method. Xiang et al. [107] proposed
a nth-order shear deformation theory for solving vibration analysis of general compos-
ite laminated plate. This theory can satisfies the zero transverse shear stress boundary
conditions on the top and bottom surface of the plate and Reddy’s plate theory can be
considered as a special case of this theory. Natural frequencies are computed by a mesh
less radial point collocation method based on the thin plate spline radial basis function.
Liew and Liu [108] presented free vibration analysis of moderately thick annular sector
isotropic plates for various boundary conditions, sector angle and thickness ratio based
on the Mindlin first-order shear deformation theory using differential quadrature method.
And also Liew et al. [109] solved the free vibration analysis of circular Mindlin plates
using the same method. Viswanathan and Kim [110] applied point collocation and spline
function method for solving non-symmetric laminated thick plate. Tai and Kim [111]
proposed a refined plate theory which accounts for parabolic distribution of the trans-
verse shear strains through the plate thickness and satisfies the zero traction boundary
conditions on the surfaces of the plate without using shear correction factors. Equations
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were derived using Hamilton’s principle and Navier solution was applied for obtaining
closed-form solution. Results are compared with three-dimensional elasticity, first- and
third-order shear deformation theory. Gurses et al. [112] presented free vibration analysis
of symmetric laminated trapezoidal using first-order shear deformation theory of plate
by discrete singular convolution method. Kant and Swaminathan [113, 114] presented a
comparison between several theories for thick plates including theory of Kant and Man-
junatha (1988), Pandya and Kant (1988), Reddy (1984), Senthilnathan et al. (1987)
and Whitney and Pagano (1970). Equation of motion for all displacements were derived
using Hamilton’s principle and solutions are obtained in closed-form Navier type solu-
tion. Karami et al. [115] considered differential quadrature method for solving cross-ply
and angle-ply with and without elastic edges for laminated composite thick plates based
on Mindlin theory. Wang [116] considered the free vibration analysis of skew composite
laminated plates using B-spline Rayleigh-Ritz method for symmetric and antisymmetric,
skew and rectangular Mindlin plate for clamped and simply-supported cases. Daia et
al. [117] presented a mesh-free formulation for the static and free vibration of composite
Mindlin plates via a linearly conforming radial point interpolation method. The radial
and polynomial basis functions were employed to construct the shape functions bearing
Delta functions property. A strain smoothing stabilization technique for nodal integration
was employed to restore comformability and to improve the accuracy and the rate of con-
vergence. Civalek [118] was developed Discrete singular convolution for vibration analysis
of moderately thick symmetrically laminated composite plates based on the first-order
shear deformation. Regularized Shannon’s delta (RSD) kernel was selected as singular
convolution. Kant and Mallikarjuna [119] reported a refined higher-order theory for free
vibration analysis of non-symmetrically multi-layered plates using a simple co finite el-
ement formulation and nine-coded Lagrangian element with seven degrees of freedom.
The theory accounted for parabolic distribution of the transverse shear strains through
the thickness of the plate and rotary inertia effects. Ngo-Cong et al. [120] presented
a new effective radial basis function (RBF) collocation technique for the free vibration
analysis of laminated plates using Mindlin plate theory. In this method instead of us-
ing conventional differential RBF networks, one-dimensional integrated RBF networks
(1D-IRBFN) were employed on grid lines to approximate the field variables. Plates can
be rectangular or non-rectangular but could simply discretized by means of Cartesian
grids. Nguyen-Van et al. [121] presented a method based on a novel four-node quadrilat-
eral element namely MISQ20 within the framework of the first-order shear deformation
theory for vibration analysis of composite laminated plates. The element was built by
incorporating a strain smoothing method into the bilinear four-node quadrilateral finite
element where the strain smoothing operation is based on mesh-free conforming nodal
integration. The bending and membrane stiffness matrices were based on the boundaries
of smoothing cells while the shear term is evaluated with two by two Gauss quadrature.
Liew et al. [122] adopted first shear deformable theory in the moving least squares differ-
ential quadrature (MLSDQ) for vibration analysis of composite laminated symmetrically
rectangular and circular plates. The transverse deflection and two rotations of the lamina
are independently approximated by moving least squares (MLS). The weighting coeffi-
cients approximated through the fast computation of the MLS shape functions and their
partial derivatives. Asadi and Fariborz [123] considered a higher-order shear deforma-
tion theory to obtain the governing equations of composite plates non-symmetrically in
various boundary conditions and lay-up under dynamic excitation. The time-harmonic
solution leads to an eigenvalue problem and it is converted to a set of homogeneous al-
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gebraic equations using differential quadrature method. Liew et al. [124, 125] employed
vibration analysis of rectangular laminated Mindlin plates with various boundary con-
ditions. In this method a set of boundary beam characteristic orthogonal polynomials
is used as admissible functions in the Ritz minimization procedure. Han and Liew [126]
reported the non-symmetric free vibration of moderately thick annular plates using dif-
ferential quadrature method for various combination of boundary conditions. Sari [127]
presented vibration analysis of isotropic rectangular and annular Mindlin plates with and
without damaged boundary conditions using spectral collocation technique. Khdeira and
Reddy [128] presented a second-order shear deformation theory for vibration analysis of
generally composite laminated plates using generalized Levy type solution in conjunction
with the state space concept. The exact analytical solutions were obtained for thick and
moderately thick plates as well as thin plates and strip plates. Hosseini-Hashemi [129]
studied free vibration of moderately thick plates with several internal line support. Po-
tential and kinetic energy are based on Mindlin plate theory. Ritz method assumed in
two-dimensional polynomial functions as admissible displacement functions. Zamani et
al. [130] reported vibration analysis of moderately thick trapezoidal, skew and triangular
symmetrically laminated Mindlin plates using generalized differential quadrature method.
Effect of various parameters such as geometry, thickness, boundary conditions and lay-up
configuration was considered on the natural frequencies. Naginoa et al [131] considered
three-dimensional analysis of thin and thick isotropic rectangular plates using B-spline
Ritz method based on the theory of elasticity. The geometry boundary conditions were
numerically satisfied by the method of artificial spring and the proposed method formu-
lated by a triplicated series of B-spline functions as amplitude displacement components.
Zhoua et al. [132] studied free vibration analysis of isotropic sector annular plates using
Chebyshev-Ritz method based on three-dimensional theory. Sharma et al. [133] studied
free vibration analysis of non-symmetric composite laminated sector annular plate using
analytical method and Chebyshev polynomials based on first-order shear deformation
theory.

Review of shells

Mochida et al. [134] presented vibration analysis of isotropic thin doubly curved
shallow shells of rectangular platform using the Superposition-Galerkin method for seven
sets of boundary conditions. Monterubbio [135] presented the Rayleigh-Ritz and penalty
function method for solving free vibration of isotropic thin shallow shells of rectangular
platform with spherical, cylindrical and hyperbolic paraboloidal geometries. Liew and
Lim [136] considered the vibration analysis of thin doubly-curved shallow shells of rect-
angular platform in many boundary conditions and with many Gaussian curvatures. The
pb-2 Ritz energy based approach along with in-plane and transverse deflections assumed
in the form of a product of mathematically complete two-dimensional orthogonal polyno-
mials and a basic function, was employed to model of vibration. Ruotolo [137] compared
Donnell’s, Love’s, Sander’s and Flugge’s thin shell theories in the evaluation of natural
frequency of cylindrical shells based on Kirchhoff Hypothesis. He used energy function
for soling the equation of motion and levy solution for satisfaction of boundaries. Civalek
[138, 139] presented free vibration analysis of laminated conical and cylindrical shell using
discrete singular convolution approach. This study carried out using Love’s first approx-
imation thin shell theory. Free vibration of isotropic cylindrical shell and annular plates
are solved as special cases. The effects of circumferential wave number and number of
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layers on natural frequencies were considered. Lim et al. [140] presented the vibration
analysis of composite shallow conical shells including the effects of pretwist using energy
method for symmetric, non-symmetric and various number of layers. Kabir [141, 142,
143] presented an analytical solution to the boundary value problem for free vibration
analysis of antisymmetric angle-ply laminated cylindrical panels. The solution is based
on a boundary-continuous double Fourier series. Equations including rotary and in-plane
inertias. The characteristic equations of the panel are defined by five highly coupled
second and third-order partial differential equations in five unknowns. Noseir and Reddy
[144] presented Donnell shear deformation type theory and Donnell’s classical theory for
vibration and stability of cross-ply laminated circular cylindrical shells using analytical
solution based on Levy-type. Soldatos [145] reported vibration analysis of composite
laminated thin cylindrical shallow shell panels based on thin hypothesis theory of shell
and compared four types of theory of shell including Flugge, Sanders, Love and Don-
nell. Soldatos [146] considered vibration analysis of laminated shells either circular or
non-circular using refined shear deformation theory. This theory accounts for parabolic
variation of transverse shear strains and it is capable of satisfying zero shear traction
boundary conditions at the external shell surfaces, and make no use of transverse shear
correction factor. Shu [147, 148] applied generalized differential quadrature method for
vibration analysis of isotropic and composite laminated conical shells based on Love’s first
approximation thin shell theory. The displacement fields were expressed as product of un-
known functions along the axial direction and Fourier functions along the circumferential
direction. The same author [149] considered vibration analysis of laminated cylindrical
shells using the same method and based on the same theory. Ganapathi et al. [150,
151] characterized free vibration of thick laminated composite non-circular shells using
higher-order theory. The formulation accounts for the variation of the in-plane and trans-
verse displacements through the thickness, abrupt discontinuity in slope of the in-plane
displacements at the interfaces, and includes in-plane, rotary inertia terms, and also the
inertia contributions due to the coupling between the different order displacement terms.
The energy method and finite element procedure used for solving the governing equations.
Leissa et al. [152] considered vibration analysis of circular cylindrical cantilevered thin
shallow shells of rectangular platform using Ritz method. Leissa [153] presented a closed-
form solution for vibration analysis of shallow shells and studied the effects of shallowness
on the natural frequencies. Soldatos and Hadjigeorgiou [154] studied three-dimensional
vibration analysis of isotropic cylindrical thick shells and panels according to Levy solu-
tion. Asadi and Qatu [155, 156] presented the vibration analysis of generally moderately
thick deep composite laminated cylindrical shells with various lay-up using differential
quadrature method based on the first-order shear deformation theory. Hosseini-Hashemi
and Fadaee [157] presented an exact closed-form procedure using a new auxiliary and po-
tential functions for free vibration analysis of moderately thick spherical shell panels based
on the first-order shear deformation theory. The strain-displacements relations of both
Donnell and Sanders theories were used and compared with 3D finite element analysis.
Shell has two opposite simply supported (Levy-type). The effects of various stretching-
bending coupling on the frequency parameters were discussed. Hosseini-Hashemi et al.
[158] dealed with closed-form solution for in-plane and out-plane free vibration of moder-
ately thick laminated transversely isotropic spherical shell panels based on Sanders theory
without any approximation. The governing equations of motion and boundary conditions
were derived using Hamilton’s principle. The highly coupled governing equations were
recast to uncoupled equations introducing four potential functions. According to the
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proposed analytical solution both Levy and Navier type solutions were developed for this
problem. Qatu [159, 160] reviewed many papers 1989-2009 for many shell theories and
shell problems. Liew et al. [161] studied three-dimensional vibration analysis of thin and
thick doubly curved shell panels of rectangular platform in various boundary conditions
using p-Ritz method. Chen and Ding [162] also used three-dimensional vibration analysis
for spherical isotropic shells using a state-space method. They introduced three displace-
ment functions and two stress functions for derivation of two independent state equations
with varying coefficients. Taylor expansion theorem employed to obtain solutions to the
two state equations and relationships between the state variables at the upper and lower
surfaces of each lamina. Liew and Lim [163] presented vibration analysis of thick rectan-
gular shallow shells using Ritz method based on a refined first-order theory. Displacement
formulation followed the first-order shear deformation but Lame parameters for the trans-
verse shear strain through shell thickness was considered and they multiplied by in-plane
displacement of mid surface of the shell. Chern and Chao [164] studied three-dimensional
composite shallow spherical, cylindrical, plates and saddle (hyperbolic) panels in rectan-
gular platform using Ritz method and Levy solution. Yu et al. [165] studied the free
vibration analysis of thin shallow shells based on Donnell Mushtary Vlasov theory an-
alytically using generalized Navier solution. Considering different boundary conditions
leads to different analytical solutions. Buchanan and Rich [166] reported the vibration
analysis of thick isotropic spherical and toroidal shells using nine-node Lagrangian finite
elements. Viola et al. [167, 168] investigated static vibration analysis of doubly-curved
composite laminated shells and panels based on the 2D Higher-order shear deformation
theory using generalized differential quadrature method. The HSDT is based on nine
parameters kinematic hypothesis in a unified form. Strains and stresses are corrected
after the recovery to satisfy the top and bottom boundary conditions of the laminated
composite shells or panels. They compared the results for plotting the displacements and
stresses distribution through the thickness in FSDT case and reported the frequencies
for various types of doubly-curved composite shells such as conical, elliptical, catenoidal
and toroidal in many kinds of boundary conditions. Tornabene [169] applied general-
ized differential quadrature method on the composite laminated doubly-curved shells
and panels such as toroidal shell, parabolic panel, elliptic panel, cycloidal shell, cate-
nary panel, hyperbolic panel and shell based on the first-order shear deformation theory.
He produced the geometries of shells and panels through the revolution of curved line
about one axis. Bardell et al.[170] considered free vibration analysis of isotropic conical
shells using hirarcial finite element based on thin shallow shells theory. Cheung et al.
[171] considered free vibration analysis of conical shells using spline finite strip method.
Zhoa et al. [172] considered free vibration analysis of conical shells using 2D Ritz method.

Review of CUF technique

Carrera [173, 174] proposed a new technique for vibration analysis of plates and shells
which is suitable for every thickness such as thin and thick and suitable for any kinds of
lay-up for laminated composite structures. He presented this procedure based on weak
form using finite element method, stiffness and mass matrices were derived by integra-
tion. He satisfied the simply supported boundary conditions using Navier solution. He
presented also his method [175, 176, 177, 178] in strong form using finite element and
Navier solution. Demasi [179] applied Carrera’s Unified Formulation technique for vibra-
tion analysis of generally composite plates based on Reissner’s mixed variational theorem



23

(RMVT) which allows one to assume two independent fields for displacements and trans-
verse stress variables. The inter-laminar continuous transverse shear and normal stress
fields, so called C0

z -requirements can be satisfied. Results were validated by NASTRAN
software. Dozio [180, 181] applied CUF model on the rectangular and quadrilateral,
isotropic and composite plates respectively. He considered many boundary conditions
and skew angles. He used Trigonometric Ritz formulation for implementing this model.
The same author [182] presented vibration analysis for annular isotropic plates using
CUF model and Trigonometric Ritz formulation. Tornabene et al. [183] presented a
general formulation of a 2D Higher-order equivalent single layer theory for free vibration
of thin and thick doubly-curved composite laminated shells and panels using general-
ized differential quadrature method with different curvature, geometry and boundary
conditions. General displacement field was based on the Carrera’s Unified Formulation
(CUF), including the stretching and zig-zag effects. The order of the expansion along
the thickness direction is taken as a free parameter. The fundamental operator can be
used not only for equivalent single layer approach, but also for layer-wise approach. Fer-
reira et al. [184, 185, 186] applied CUF model on the laminated shells using radial basis
functions collocation according to a sinusoidal shear deformation theory (SSDT). Dis-
placements were assumed in sinusoidal forms and used Navier solution for satisfaction
of the boundary conditions. Carrera [187, 188] presented some solutions for thickness
locking because in some boundary conditions considering thin plates and shells, natural
frequencies are not very accurate. For overcoming this problem by using new coeffi-
cients in the Nuclei, quasi-3D analysis recovers to the Mindlin plate and accurate results.
Carrera [189] considered the effects of transverse normal stress σzz on vibration of multi-
layered structures using Reissner’s mixed theorem. The evaluations of transverse stress
effects have been conducted by comparing constant, linear and higher-order distributions
of transverse displacement components in the plate thickness directions. Fazzolari and
Carrera [190] applied Ritz, Galerkin and generalized Galerkin method on the CUF model
and compared all of them for nonlinear analysis vibration analysis in two problem, one
is nonlinear strains considered in Von-karman theory and the other to exact nonlinear
strains.





Chapter 2

Implementation of Method

2.1 Spectral Methods

This method is based on the Chebyshev spectral collocation technique for directly solving
high-order ordinary differential equations (ODEs). Consider the PDE with boundary
condition

Lu(x) = s(x) x ∈ U ⊂ Rd

Bu(x) = 0 x ∈ ∂U (2.1)

where L and B are linear differential operators.

The answer is a function ū which satisfies the boundary condition and makes the
residual R := Lū−s. Search for solutions ū in a finite-dimensional sub-space PN of some
Hilbert space W (typically a L2 space) [12, 17].

Expansion functions = trial functions: basis of PN : (φ0, ..., φN), ū is expanded in
terms of the trial functions: ū(x) =

∑N
n=0 ũnφn(x)

Test functions: family of functions (X0, ...,XN) to define the smallness of the residual
R, by means of the Hilbert space scalar product:

∀n ∈ {0, ..., N}, (Xn, R) = 0 (2.2)

Classification according to the trial functions φn:

Finite difference: trial functions = overlapping local polynomials of low-order
Finite element: trial functions = local smooth functions (polynomial of fixed degree which
are non-zero only on sub domains of U)
Spectral methods : trial functions = complete family of smooth global functions

Classification spectral methods according to the test functions χn:

Galerkin method: test functions = trial functions: χn = φn and each φn satisfies the
boundary condition : Bφn(y) = 0.
Tau method: (Lanczos 1938) test functions = (most of) trial functions: χn = φn but the
φn does not satisfy the boundary conditions; the latter are enforced by an additional set
of equations.
Collocation or pseudospectral method: test functions = delta functions at special points,

25
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called collocation points: χn = δ(x− xn).

Collocation method

The integral of the weighted residual over the domain of the problem is set equal to
zero where the weighting function is the same as one of the comparison functions used in
the series solution. The weighting functions are spatial Dirac delta functions. Thus, for
a one-dimensional eigenvalue problem, an approximate solution is assumed in the form
of a linear sum of trial functions φi(x) as

φ̄(n)(x) =
n∑
i=1

ciφi(x) (2.3)

where ci are unknown coefficient and the φi(x) are the trial functions. Depending on the
nature of the trial functions used, The collocation method may be classified in one of the
following three types:

1. Boundary methods: used when the functions φi(x) satisfy the governing differential
equation over the domain but not all the boundary conditions of the problem.

2. Interior method: used when the functions φi(x) satisfy all the boundary conditions
but not the governing differential equation of the problem.

3. Mixed method: used when the functions φi(x) do not satisfy either the governing
differential equation or the boundary conditions of the problem.

When the integral of the weighted residual is set equal to zero, the collocation method
yields,

∫ l

0
δ(x− xi)R(φ̄(n)(x))dx = 0, i = 1, 2, ..., n (2.4)

where δ is the Dirac delta function and xi, i = 1, 2, ..., n are the known collocation points
where the residual is specified to be equal to zero. Due to the sampling property of the
Dirac delta function, above equation require no integration and hence can be expressed

R(φ̄(n)(x)) = 0, i = 1, 2, ..., n (2.5)

This amounts to setting the residue at x1, x2, ..., xn equal to zero. Above equation denote
a system of n homogeneous algebraic equations in the unknown coefficients c1, c2, ..., cn
and the parameter λ. In fact, they represent the algebraic eigenvalue problem of order n.
It can be seen that the selection of the collocation points x1, x2, ..., xn is important in ob-
taining a well-conditioned system of equations and a convergent solutions. The location
of the collocation points should be selected as evenly as possible in the domain and/or
boundary of the system to avoid ill-conditioning of the resulting equations.

The main advantage of the collocation method is simplicity. Evaluation of the stiff-
ness and mass coefficients involves no integration. The main disadvantage of the method
is that the stiffness and mass matrices, are not symmetric although the system is conser-
vative. Hence, the solution of the non-symmetric eigenvalue problem is not simple. In
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Figure 2.1: Reference scheme of spectral methods

general we need to find both right and left eigenvectors of the system in order to find the
system response.

(Figure 2.1) shows how to deal with the differential problems through spectral meth-
ods in strong and weak forms.

Solving PDE with Tau method:

Since φn = χn, but the φn does not satisfy the boundary condition: Bφn(y) 6= 0. Let
(gp) be an orthonormal basis of M + 1 < N + 1 functions on the boundary ∂U and let us
expand Bφn(y) upon it.

Bφn(y) =
m∑
p=0

bpngp(y) (2.6)

The boundary condition then becomes

Bu(y) = 0⇐⇒
N∑
k=0

M∑
p=0

ũkbpkgp(y) = 0 (2.7)

hence the M + 1 conditions:

N∑
k=0

bpkũk = 0 0 ≤ p ≤M (2.8)
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The system of linear equations for the N+1 coefficients ũn is then taken to be the N−M
first raws of the Galerkin system plus the M + 1 equations above:

N∑
k=0

Lnkũk = (φn, s) 0 ≤ n ≤ N −M − 1

N∑
k=0

bpkũk = 0 0 ≤ p ≤M (2.9)

The solution (ũk) of this system gives rise to a function ũ =
∑N
k=0 ũkφk such that

Lũ(x) = s(x) +
M∑
p=0

τpφN−M+p(x) (2.10)

Solving a PDE with a Pseudospectral (collocation) method

Since χn(x) = δ(x − xn), where the (xn) constitute the collocation points. The
smallness condition for the residual reads, for all n ∈ 0, ..., N ,

(Xn, R) = 0 ⇐⇒ (δ(x− xn), R) = 0⇐⇒ R(xn) = 0⇐⇒ Lu(xn) = s(xn)

⇐⇒
N∑
k=0

Lφk(xn)ũk = s(xn) (2.11)

The boundary condition is imposed as in the tau method. One then drops M + 1 raws
in the above linear system and solve the system

N∑
k=0

Lφ(xn)ũk = s(xn) 0 ≤ n ≤ N −M − 1

N∑
k=0

bpkũk = 0 0 ≤ p ≤M (2.12)

There are two choices for trial functions φn, Periodic problem: φn = trigonometric poly-
nomials (Fourier series) Non-periodic problem: φn = orthogonal polynomials.

2.2 Discretization of 1D problem

Chebyshev polynomial of the first kind is defined by

Tk+1 = 2xTk(x)− Tk−1(x) (2.13)

where T0(x) = 1 and T1(x) = x, and relation between differentiation of two polynomials
is as

2Tk(x) =
1

k + 1
T ′k+1(x)− 1

k − 1
T ′k−1(x) (2.14)



2.2. DISCRETIZATION OF 1D PROBLEM 29

Some properties of the Chebyshev polynomials are as

| Tk(m) |≤ 1, −1 ≤ x ≤ 1, (2.15)

Tk(±1) = (±1)k, (2.16)

| T ′k(m) |≤ k2, −1 ≤ x ≤ 1, (2.17)

T ′k(±1) = (±1)(k+1)k2, (2.18)∫ 1

−1
T 2
k (x)

dx√
(1− x2)

= ck
π

2
, (2.19)

where

ck =

{
2 i = 0 or N
1 otherwise

(2.20)

Eigenfunctions of the singular Sturm-Liouville problem

d

dx
(
√

1− x2
dTn
dx

) = − n2

√
1− x2

Tn(x) (2.21)

are orthogonal family in the Hilbert space L2
ω[−1, 1], equipped by the weight w(x) =

(1− x2)−
1
2 .

(f, g) :=
∫ 1

−1
f(x)g(x)w(x)dx (2.22)

Let w be a Jacobi weight and let φk be the corresponding system of orthogonal polyno-
mials. Gauss-type quadrature formula are in the form of

N∑
j=0

f(xj)wj ∼
∫ 1

−1
f(x)w(x)dx (2.23)

formula (2.23) allows for the approximate computation of the Jacobi coefficients of a
continuous function u defined in the interval [1, 1]. The coefficients

ũk =
1

γk
(u, φk)n k = 0, ..., N (2.24)

are called the discrete Jacobi coefficients of u. Since

u(xj) =
N∑
k=0

ũkφk(xj) k = 0, ..., N (2.25)

equations (2.24) and (2.25) enable one to transform between physical space u(xj) and
transform space ũk. Chebyshev expansion of function u ∈ L2

ω(−1, 1) is

u(x) =
∞∑
k=0

ûkTk(x), ûk =
2

πck

∫ 1

−1
u(x)Tk(x)w(x)dx (2.26)

The derivative of function u expanded in Chebyshev polynomials according to above
equation can be represented formally as

u′ =
∞∑
k=0

û
(1)
k Tk (2.27)
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From eq. (2.14) one has

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1 k ≥ 1 (2.28)

or, equivalently

ckû
(1)
k = û

(1)
k+2 + 2(k + 1)ûk+1 k ≥ 0 (2.29)

This yields,

û
(1)
k =

2

ck

∞∑
p=k+1
p+k odd

pûp k ≥ 0 (2.30)

Chebyshev-Gauss-Lobatto (CGL) points which are used for construction of differentiation
matrix for solving differential equations are as

ξi = cos
(
i
π

N

)
, i = 0, 1, ..., N (2.31)

The characteristic Lagrange polynomials for the Chebyshev-Gauss-Lobatto points are
expressed as

φl(x) =
(−1)l+1(1− x2)T́N(x)

clN2(x− xl)
(2.32)

By eq. (2.25), the polynomial

INu =
N∑
k=0

ũkφk (2.33)

satisfies

INu(xj) = u(xj), 0 ≤ j ≤ N (2.34)

Another expression of INu is

INu =
N∑
l=0

u(xl)φl (2.35)

where φl denoted the lth characteristic Lagrange polynomial relative to the given set of
nodes, i.e., the unique polynomial that satisfies

φl ∈ PN(−1, 1), φl(xj) = δjl for j = 0, ..., N (2.36)

Differentiation in physical space is accomplished by replacing truncation by interpolation.
Given a set of (N + 1) Gaussian nodes in [1, 1], the polynomial

DNu = (INu)′ (2.37)

is called the Jacobi interpolation derivative of u relative to the chosen set of quadrature
nodes. The physical values of the interpolation derivative can be expressed as linear
combinations of the physical values of the function, i.e.,

(DNu)(xj) =
N∑
l=0

(DN)jlu(xl), j = 0, ..., N (2.38)
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By eq. (2.35), the coefficients are given by (DN)jl = φ′l(xj) they form the entries of the
first-derivative interpolation matrix DN .

Differentiation matrix is as (N + 1) × (N + 1) order. The first derivative matrix
(Gottlieb, Hussaini and Orszag (1984)) is

(D
(1)
N )jl =



cj
cl

(−1)(j+l)

xj−xl
j 6= l

− xl
2(1−x2

l
)

1 ≤ j = l ≤ N − 1
2N2+1

6
j = l = 0

−2N2+1
6

j = l = N

D
(2)
N = (D

(1)
N )2 D

(3)
N = (D

(1)
N )3 D

(4)
N = (D

(1)
N )4 (2.39)

2.3 Euler-Bernoulli Beam

Perpendicular surface to the mid surface before and after deformation remains normal
and strains except εxx all are zero and shear deformation is neglected. Pure bending
moment is just analyzed in this theory. Displacements (u,w) for Euler-Bernoulli theory
of beam (see Figure 2.2) are assumed as

u = u0 − z
dw0

dx
w = w0 (2.40)

Strain-displacement relation is as follows

εxx =
du

dx
=
du0

dx
− zd

2w0

dx2
(2.41)

Deriving the equilibrium equations using Newton’s second law of motion are as follow

∑
Fx = −ρAd

2u0

dt2
→ −dN

dx
− f(x) = −ρAd

2u0

dt2∑
Fz = −ρAd

2w0

dt2
→ −dV

dx
− q(x) = −ρAd

2w0

dt2∑
My = 0 → V =

dM

dx
(2.42)

where

N(x) =
∫
A
σxxdA = E

du0

dx

∫
A
dA = EA

du0

dx

M(x) =
∫
A
σxxzdA = E

∫
A

(
du0

dx
− zd

2w0

dx2

)
zdA = −EI d

2w0

dx2
(2.43)

Assuming (E) modulus elasticity, (I) inertia moment and (A) cross section of the beam
are constant by changing x. After substitution eqs. (2.43) into eqs. (2.42) yield,

EA
d2u0

dx2
= f(x) + ρA

d2u0

dt2
(Rod problem)

EI
d4w0

dx4
= q(x)− ρAd

2w0

dt2
(Euler-Bernoulli beam) (2.44)
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Figure 2.2: Bending of beams. (a) Kinematics of deformation of Euler-Bernoulli beam,
(b) Equilibrium of a beam element, (c) Definitions of stress resultants

where f(x) is axial force correspond to the rod problem and q(x) is shear force correspond
to the Euler-Bernoulli beam, which both are zero in the free vibration analysis.

Euler-Bernoulli beam’s displacement is assumed in the form of

w(x, t) = w(x)eiwt (2.45)

After substitution above equation into the second part of eq. (2.44) and neglecting q,
yields

EI
d4w

dx4
= ω2ρAw (2.46)

Since the range of displacement is given by x ∈ [0, L], where L is the length of the beam,
one non-dimensional variable is introduced as:

X =
x

L
∈ [0, 1] (2.47)

Chebyshev-Gauss-Lobatto points in this range are

ξi =
1

2

(
1− cos

(
i
π

N

))
, i = 0, 1, ..., N (2.48)

Thus, differentiation matrix based on these CGL points are as

(DN)00 =
2N2 + 1

3
(DN)NN = −2N2 + 1

3

(DN)jj = − xj
(1− x2

j)
j = 1, ..., N − 1
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(DN)ij = − ci
cj

2(−1)(i+j)

xi − xj
i 6= j j = 1, ..., N − 1

ci = 2 (i = 0, N) otherwise ci = 1 (2.49)

Equation of motion is rewritten as

Lw = λ2w (2.50)

where λ2 = L4ω2ρA/EI and L = ∂4

∂X4 .

Displacement implementation of Euler-Bernoulli beam in spectral collocation method
is expressed as

u(x) =
N∑
j=0

ujφj(x)→ ∂u

∂x
=

N∑
j=0

uj
∂φj
∂ζ

(ζi) =
N∑
j=0

D
(1)
(i,j)uj (2.51)

where uj which includes displacements is the vector of all unknown values at the grid
points and uj = uN(ζj), uN is vector of displacement of the problem and φl(l = 0, ..., N)
is the Lagrange interpolating polynomial corresponding to the Chebyshev-Gauss-Lobatto
(CGL) points, thus φj(ζi) = δij for (i = 0, ....N).

Vector of displacements at grid points (w ∈ R(N+1)×1) are

w = {w0, w1, ... wN} (2.52)

Equation of motion should be satisfied for interior points (i = 3, ..., N − 1). ZI ∈
R(N−3)×(N+1) is a matrix correspond to interior points.

ZI =


eT3
eT4
...

eTN−1

 (2.53)

where ei ∈ R(N+1)×1 is the ith unit vector. This vector is zero in all entries expect for the
ith entry at which it is equal to 1. Matrix ZB ∈ R4×(N+1) corresponding to the border
point and a point before the border point.

ZB =


eT1
eT2
eTN

eT(N+1)

 (2.54)

Displacements and their derivatives at the CGL points are expressed as

w = I,
∂w

∂X
= D(1),

∂2w

∂X2
= D(2)

∂3w

∂X3
= D(3),

∂4w

∂X4
= D(4) (2.55)

where I is identity matrix by order (N + 1) and D is a matrix for implementing differ-
entiation with respect to the length based on the CGL points, thus eq. (2.50) can be
written as

D(4) = λ2I (2.56)
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The equation of motion for interior points can be written as

(LBsB + LIsI) = λ2sI (2.57)

where

LB =
[
ZIKZ

T
B

]
LI =

[
ZIKZ

T
I

]
(2.58)

and K is left hand side of eq. (2.56).

sI =
{
wI

}
sB =

{
wB

}
(2.59)

where sI and sB denote interior and boundary points, respectively.[
Bw̄
Bŵ

] {
w
}

=

{
0
0

}
(each end) (2.60)

Bw̄ is applied on the border point at each end and Bŵ is applied on the point before the
border point at each end.

Analysis of problem is summarized in the form below as[
Bw

] {
w
}

=
{

0
}

(2.61)

where Bw is a matrix which is included Bw̄ and Bŵ and are correspond to the displacement
variable w.

The boundary equations can be written as

BBsB +BIsI = 0→ sB = −B−1
B BIsI (2.62)

where

BB =
[
BwZ

T
B

]
, BI =

[
BwZ

T
I

]
(2.63)

Substitution of equation (3.62) to (2.57) results into

(LI − LBB−1
B BI)sI = λ2sI (2.64)

Boundary conditions:

Clamped: w = 0, ∂w
∂x

= 0

Pined: w = 0, ∂
2w
∂x2 = 0

Sliding: ∂w
∂x

= 0, ∂
3w
∂x3 = 0

Free: ∂2w
∂x2 = 0, ∂

3w
∂x3 = 0
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Boundary conditions implementation at (ζ0)

Clamped

Bw̄ = eT1 I Bŵ = eT1D
(1) (2.65)

Pined

Bw̄ = eT1 I Bŵ = eT1D
(2) (2.66)

Sliding

Bw̄ = eT1D
(1) Bŵ = eT1D

(3) (2.67)

Free

Bw̄ = eT1D
(2) Bŵ = eT1D

(3) (2.68)

Describing boundary conditions at (ζN) is similar, and it is easily done by replacing e1

with eN+1.

Table 2.1: Non-dimensional natural frequencies of the Euler-Bernoulli beam, λ =

ωL2
√

M
EI

BCs Method ω1 ω2 ω3 ω4 ω5 ω6

C-C Present 4.73004 7.85320 10.9956 14.1371 17.2787 20.4203
[28] 4.73004 7.85320 10.9956 14.1372 17.2788 20.4204

P-P Present 3.14159 6.28318 9.42477 12.5663 15.7079 18.8495
[28] 3.14159 6.28318 9.42477 12.5664 15.7080 18.8496

P-S Present 1.57079 4.71238 7.85398 10.9955 14.1371 17.2787
[28] 1.57080 4.71239 7.85398 10.9956 14.1373 17.2788

C-P Present 3.92660 7.06858 10.2101 13.3517 16.4933 19.6349
[30] 3.92660 7.06858 10.2101

C-F Present 1.87510 4.69409 7.85475 10.9955 14.1371 17.2787
[30] 1.87510 4.69409 7.85475

C-S Present 2.36502 5.49780 8.63937 11.7809 14.9225 18.0641
[30] 2.36502 5.49780 8.63938

For Euler-Bernoulli beam the eigenvalues in some boundary conditions are the same. C-
C, C-P, C-S and P-P are the same as F-F, P-F, F-S and S-S without considering rigid
mode or modes, respectively. Among 10 types of boundary conditions which fourth of
them are similar and fourth of them has rigid mode or modes. F-F has two rigid modes
and S-S, F-S and P-F has one rigid mode.
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2.4 Rod problem

Axial behavior of all beam theories is called rod problem. According to the first part of
eq. (2.44) equation of motion for rod problem is as

∂

∂x

[
E(x)A(x)

∂u(x, t)

∂x

]
+ f(x, t) = ρ(x)A(x)

∂2u(x, t)

∂t2
(2.69)

If the young modulus and cross area are constant by neglecting the axial force, equation
of motion becomes

EA
[
∂2u(x, t)

∂x2

]
= ρA

∂2u(x, t)

∂t2
(2.70)

Displacement of the rod problem is assumed in the form of

u(x, t) = u(x)eiωt (2.71)

Substituting the exponential transformation on time into the equation of motion, yields

E(x)A(x)u(x, t)′′ = −ρ(x)A(x)ω2u(x, t) (2.72)

For non-dimensional equation of motion with respect to the x ∈ [0, L], where L is the
length of the rod, introduce the non-dimensional parameter as follows

X =
x

L
∈ [0, 1] (2.73)

The equation of motion becomes

E(x)A(x)
4

L2
u(x, t)′′ = −ρ(x)A(x)ω2u(x, t) (2.74)

where (
′
) denotes the differentiation with respect to X.

Assuming E and A are constant, yields

−Lu = λ2u (2.75)

where L = ∂2

∂X2 , λ2 = ρL2ω2/4E.

Vector of displacements at grid points (u ∈ R(N+1)×1) are

u = {u0, u1, ... uN} (2.76)

Equation of motion should be satisfied for interior points (i = 2, ..., N). ZI ∈ R(N−1)×(N+1)

is a matrix correspond to interior points.

ZI =


eT2
eT3
...
eTN

 (2.77)
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where ei ∈ R(N+1)×1 is the ith unit vector. This vector is zero in all entries expect for
the ith entry at which it is equal to 1. Similar matrix ZB ∈ R2×(N+1) corresponding to
the border point.

ZB =

[
eT1

eT(N+1)

]
(2.78)

Displacements and their derivatives at the CGL points are expressed as

u = I,
∂u

∂X
= D(1),

∂2u

∂X2
= D(2) (2.79)

where I is identity matrix by order (N + 1) and D is a matrix for implementing differ-
entiation with respect to the length based on the CGL points, thus eq. (2.75) can be
written as

−D(2) = λ2I (2.80)

The equation of motion for interior points can be written as

(LBsB + LIsI) = λ2sI (2.81)

where

LB =
[
ZIKZ

T
B

]
LI =

[
ZIKZ

T
I

]
(2.82)

and K is left hand side of eq. (2.80).

sI =
{
uI

}
sB =

{
uB

}
(2.83)

where sI and sB denote interior and boundary points, respectively.[
Bu

] {
u
}

=
{

0
}

(each end) (2.84)

Bu is applied on the first point at each end.

The boundary equations can be written as

BBsB +BIsI = 0→ sB = −B−1
B BIsI (2.85)

where

BB =
[
BuZ

T
B

]
, BI =

[
BuZ

T
I

]
(2.86)

Substitution of equation (2.85) to (2.81) results into

(LI − LBB−1
B BI)sI = λ2sI (2.87)

Boundary conditions

Clamped: u=0
Free: ∂u

∂x
= 0
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Boundary conditions implementation at (ζ0)

Clamped

Bu = eT1 I (2.88)

Free

Bu = eT1D
(1) (2.89)

At (ζN) describing boundary conditions are similar, and it is easily done by replacing e1

with eN+1.

Table 2.2: Non-dimensional natural frequencies of the rod problem, λ = ωL2
√

M
EI

BCs Author ω1 ω2 ω3 ω4

C-C Present 3.141592 6.283183 9.424777 12.566370
Exact π 2π 3π 4π

C-F Present 1.570796 4.712388 7.853981 10.995574
F-F Present 3.141592 6.283185 9.424777 12.566370

Table (2.1) is shown natural frequencies of Euler-Bernoulli beam for many boundary con-
ditions and results are compared with pseudospectral method using tau method. Table
(2.2) is shown C-C boundary condition of the rod problem which the results are similar
to P-P of Euler-Bernoulli beam. Exact solution in this case is π, 2π, 3π, ... which is ex-
actly similar to the above table. C-F and F-F boundary conditions of the rod problem
also are shown in this table, results are similar to P-S and S-S of Euler-Bernoulli beam,
respectively. The F-F case has one rigid mode.

2.5 Timoshenko Beam

Transverse normals do not remain perpendicular to the mid surface after deformation
and this theory of beam includes pure bending and shear deformation. Displacements
(u,w) of Timoshenko theory of beam (see Figure 2.3) are assumed as

u = u0 + z
(
∂u

∂z

)
z=0

= u0 + zθ

w = w0 (2.90)

After using principle of virtual displacements, equilibrium equations are as follow

∂Nxx

∂x
+ f = ρA

∂2u0

∂t2
(Rod problem)

∂Qx

∂x
+ q = ρA

∂2w0

∂t2
(Timoshenko beam)

∂Mxx

∂x
+Qx = ρI

∂2θ

∂t2
(Timoshenko beam) (2.91)
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Figure 2.3: Timoshenko beam

where

Qx = K
∫
A
σxzdA = KG

∫
A
γxzdA = KG

∫
A

(−θ +
∂w0

∂x
)dA = KGA(−θ +

∂w0

∂x
)

Mxx =
∫
A
σxxzdA = E

∫
A

(
∂u0

∂x
+ z

∂θ

∂x
)zdA = EI

∂θ

∂x
(2.92)

Substituting of eqs. (2.92) into the second and third parts of eqs. (2.91) and elimination
of time with exponential transformation, yield governing equations of Timoshenko beam
as follow

−EI ∂
2θ

∂x2
+KGAθ −KGA∂w0

∂x
= ρIω2θ

KGA
∂θ

∂x
−KGA∂

2w0

∂x2
= ρAω2w0 (2.93)

where I = bh3/12 is moment of area, A = bh is cross sectional area of beam, h is thick-
ness of beam, b is width, ρ is density, K is shear coefficients and it is assumed 5/6, M is
bending moment, Q is shear force and G is shear modulus and equal to 1/2(1 + ν).

Applying non-dimensional parameter z = x
L
∈ [0, 1], spectral collocation method and

considering the parameters χ = 2(1 + ν)/K, µ = I/AL2, equation of motion on matrix
form can be written as

[
K11 K12

K21 K22

]{
θ
w

}
= λ2

[
I 0
0 I

]{
θ
w

}
(2.94)

where

K11 = 1/χµ2(−χµ 4

L2

∂2

∂x2
+ 1) = 1/χµ2(−χµ 4

L2
D(2) + I)

K12 = −1/χµ2 2

L

∂

∂x
= −1/χµ2 2

L
D(1)

K21 = 1/χµ
2

L

∂

∂x
= 1/χµ

2

L
D(1)

K22 = −1/χµ
4

L2

∂2

∂x2
= −1/χµ

4

L2
D(2) (2.95)



40 CHAPTER 2. IMPLEMENTATION OF METHOD

where λ2 = ρAL4ω2/EI and matrix I is identity matrix by order (N + 1), matrix 0 is
zeros matrix by order (N + 1).

Vector of displacements at grid points (w ∈ R(N+1)×1) are

w = {w0, w1, ... wN} (2.96)

Equation of motion should be satisfied for interior points (i = 2, ..., N). ZI ∈ R(N−1)×(N+1)

is a matrix correspond to interior points.

ZI =


eT2
eT3
...
eTN

 (2.97)

where ei ∈ R(N+1)×1 is the ith unit vector. This vector is zero in all entries expect for
the ith entry at which it is equal to 1. Similar matrix ZB ∈ R2×(N+1) corresponding to
the boundary points.

ZB =

[
eT1
eTN+1

]
(2.98)

The equation of motion for interior points can be written as

(LBsB + LIsI) = λ2sI (2.99)

where

LB =

[
ZIK11Z

T
B ZIK12Z

T
B

ZIK21Z
T
B ZIK22Z

T
B

]
LI =

[
ZIK11Z

T
I ZIK12Z

T
I

ZIK21Z
T
I ZIK22Z

T
I

]
(2.100)

and interior and boundary points are

sI =

{
θI
wI

}
sB =

{
θB
wB

}
(2.101)

For other end (ζ = 1) describing boundary conditions are similar to the end (ζ = 0) and
it is easily done by replacing e1 with eN+1.[

Bθθ Bθw
Bwθ Bww

]{
θ
w

}
=

{
0
0

}
(each end) (2.102)

Analysis of problem is summarized in the form below as

[
Bθ Bw

] { θ
w

}
=

{
0
0

}
(2.103)

where Bθ is a matrix which is include Bθθ and Bwθ and are correspond to rotation variable
θ, Bw also is a matrix which is include Bθw and Bww and are correspond to displacement
variable w.
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The boundary equations can be written as

BBsB +BIsI = 0→ sB = −B−1
B BIsI (2.104)

where

BB =
[
BθZ

T
B BwZ

T
B

]
, BI =

[
BθZ

T
I BwZ

T
I

]
(2.105)

Substitution of equation (2.104) to (2.99) results into

(LI − LBB−1
B BI)sI = λ2sI (2.106)

Boundary conditions:

Clamped: θ = 0, w = 0
Pined: M = 0, w = 0
Sliding: θ = 0, N = 0
Free: M = 0, N = 0

Boundary condition implementation at (ζ0)

Clamped

Bθθ = eT1 I, Bθw = eT1 0, Bwθ = eT1 0, Bww = eT1 I (2.107)

Pined

Bθθ = eT1D
(1), Bθw = eT1 0, Bwθ = eT1 0, Bww = eT1 I (2.108)

Sliding

Bθθ = eT1 I, Bθw = eT1 0, Bwθ = −eT1 I, Bww = eT1D
(1) (2.109)

Free

Bθθ = eT1D
(1), Bθw = eT1 0, Bwθ = −eT1 I, Bww = eT1D

(1) (2.110)

Describing boundary conditions at (ζN) is similar, and it is easily done by replacing e1

with eN+1.

Table (2.3) is shown natural frequencies of Timoshenko beam which is applied on many
boundaries and result are compared with pseudospectral method. As seen with increasing
the ratio of thickness with respect to length of the beam, frequencies are decreased. And
also in table (2.4) other boundary conditions for Timoshenko beam are tabulated.

Among all the boundary conditions for Timoshenko beam theory, for SS and PF cases
there is one rigid mode and for FF there are two rigid modes.
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Table 2.3: Non-dimensional natural frequencies of the Timoshenko beam, λ = ωL2
√

M
EI

BCs h/L Author ω1 ω2 ω3 ω4

C-C 0.1 Present 4.57954 7.33121 9.85611 12.1453
[28] 4.57955 7.33122 9.85611 12.1454

0.2 Present 4.24201 6.41793 8.28531 9.90372
[28] 4.24201 6.41794 8.28532 9.90372

P-P 0.1 Present 3.11568 6.09066 8.84051 11.3431
[28] 3.11568 6.09066 8.84052 11.3431

0.2 Present 3.04533 5.67155 7.83951 9.65709
[28] 3.04533 5.67155 7.83952 9.65709

P-S 0.1 Present 1.56749 4.62768 7.49632 10.1223
[28] 1.56749 4.62769 7.49632 10.1223

0.2 Present 1.55784 4.42025 6.80658 8.78524
[28] 1.55784 4.42026 6.80658 8.78525

F-F 0.1 Present 4.64849 7.49718 10.1254 12.5076
[28] 4.64849 7.49719 10.1255 12.5076

0.2 Present 4.44957 6.80257 8.77286 10.4093
[28] 4.44958 6.80257 8.77287 10.4094

Table 2.4: Non-dimensional natural frequencies of the Timoshenko beam, λ = ωL2
√

M
EI

BCs h/L ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SS 0.1 3.1157 6.0907 8.8405 11.343 13.613 15.679 17.570 19.314
0.2 3.0453 5.6716 7.8395 9.6571 11.222 12.602 13.444 13.843

CF 0.1 1.8677 4.5724 7.4154 9.9873 12.322 14.445 16.388 18.176
0.2 1.8466 4.2853 6.6113 8.5186 10.158 11.572 12.782 13.349

CP 0.1 3.8518 6.7306 9.3659 11.758 13.933 15.920 17.750 19.446
0.2 3.6656 6.0727 8.0744 9.7862 11.286 12.623 13.141 13.784

CS 0.1 2.3450 5.3201 8.0795 10.591 12.871 14.948 16.853 18.613
0.2 2.2898 4.9281 7.1162 8.9607 10.559 11.973 13.229 13.461

PF 0.1 3.8770 6.8020 9.4906 11.932 14.147 16.163 18.010 19.711
0.2 3.7486 6.2538 8.3179 10.048 11.522 12.750 13.148 13.643

FS 0.1 2.3544 5.3666 8.1775 10.741 13.066 15.178 17.106 18.877
0.2 2.3242 5.0627 7.3341 9.2187 10.814 12.173 13.193 13.567



Chapter 3

Plates

3.1 Discretization of 2D problem

A grid of Chebyshev-Gauss-Lobatto (CGL) points (ζi, ηj), (i, j = 0, ..., N) over two-
dimensional problem such as plate or shells is defined as (see Figure 3.1)

ξi = 1
2

(
1− cos

(
i π
N

))
ηj = 1

2

(
1− cos

(
j π
N

))
(3.1)

The discrete solution of the problem is sought in the form of tensor product of one-
dimensional expansions as follows

ûN(ξ, η) = IN û =
N∑
m=0

N∑
n=0

û(m,n)Lm(ξ)Ln(η) (3.2)

where ûmn is the vector of unknown values at the grid points and ûmn = ûN(ζm, ηn),
ûN is vector of displacements and rotations of the problem and Ll(l = 0, ..., N) is the
Lagrange interpolating polynomial corresponding to the given set of CGL points, thus
Lm(ζi) = δmi and Ln(ηi) = δnj for (i, j = 0, ....N).

Approximation should satisfy the differential equation of the problem along with the
boundary conditions at the CGL points. The resulting residual is enforced to vanish at
the interior collocation points

−LûNξ=ξi,η=ηj = λ2ûNξ=ξi,η=ηj

−LN ûN = λ2û(i,j) (3.3)

where LN is the pseudo-spectral operator obtained by approximating each derivative by
the corresponding interpolation derivative

DN û = D (IN û) (3.4)

The remaining equations are prescribed by enforcing the satisfaction of the boundary
conditions.

43
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Figure 3.1: Two dimensional grid of (CGL) points on the computational domain(N=8)

The interpolation derivatives are given by:

∂2ûN

∂ξ2 ξ=ξi,η=ηj =
N∑
m=0

ûmj
∂2Lm
∂ξ2

(ξi) =
N∑
m=0

D
(2)
N(i,m)û(m,j) = (D2

(N) ⊗ I(N))

∂2ûN

∂η2 ξ=ξi,η=ηj =
N∑
n=0

ûin
∂2Ln
∂η2

(ηj) =
N∑
n=0

D
(2)
N(j,n)û(i,n) = (I(N) ⊗D2

(N))

∂2ûN

∂ξ∂η
ξ=ξi,η=ηj =

N∑
m=0

N∑
n=0

ûmn
∂Lm
∂ξ

(ξi)
∂Ln
∂η

(ηj)

=
N∑
m=0

N∑
n=0

D
(1)
N(i,m)D

(1)
N(j,n)û(m,n) = (D(N) ⊗D(N)) (3.5)

The following interpolation derivative matrices are introduced as

D
(1)
N =


D

(1)
N (0, 0) D

(1)
N (0, 1) · · · D

(1)
N (0, N)

D
(1)
N (1, 0) D

(1)
N (1, 1) · · · D

(1)
N (1, N)

...
...

...
...

D
(1)
N (N, 0) D

(1)
N (N, 1) · · · D

(1)
N (N,N)

 (3.6)

Chebyshev differentiation matrix with CGL points is defined by

(DN)00 =
2N2 + 1

3
(DN)NN = −2N2 + 1

3

(DN)jj = − xj
(1− x2

j)
j = 1, ..., N − 1

(DN)ij = − ci
cj

2(−1)(i+j)

xi − xj
i 6= j j = 1, ..., N − 1

ci = 2 (i = 0, N) otherwise ci = 1 (3.7)
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The Kronecker product ⊗ in two-dimensional domain is as follows

∂n

∂xn
= (D

(n)
N ⊗ IN)

∂n

∂yn
= (IN ⊗D(n)

N ) n = 1, 2, 3, 4

∂2

∂x∂y
= (D

(1)
N ⊗D

(1)
N )

∂4

∂x2∂y2
= (D

(2)
N ⊗D

(2)
N ) (3.8)

where I is the identity matrix by (N+1) order D(1), D(2), D(3), D(4) are the first-, second-,
third- and fourth-order derivatives of the interpolation at the CGL nodes, respectively.
Kronecker product tensor works as follows

[
1 2
3 4

]
N×N

⊗
[
a b
c d

]
N×N

=


a b | 2a 2b
c d | 2c 2d
−− −− −− −− −−
3a 3b | 4a 4b
3c 3d | 4c 4d


N2×N2

(3.9)

3.2 Classical plate theory

Consider a plate with length a, width b, thickness h and number of layers Nl which can
be isotropic or orthotropic is defined in the orthogonal coordinates (xk1, x

k
2, x

k
3) of the kth

lamina oriented at an angle θk. Take xy-plane of the problem in the undeformed mid
plane Ω0 of the laminate. The z-axis is taken positive downward from the mid plane.
The kth layer is located between the points z = zk and z = zk+1 in the thickness direction.

Assumption of theory of thin plates which is called classical plate theory (CLPT)
or Kirchhoff plate theory are similar to Euler-Bernoulli beam theory in two-dimension.
Assumptions are in the following

1- Thickness of the plate is small compared to other dimensions.
2- The mid plane of the plate does n’t have any in-plane deformation after loading.
3- The displacement components of the mid surface of the plate are small compared

to the thickness.
4- Transverse shear deformation is neglected. Perpendicular surface to the mid surface

before and after deformation remains normal and leads to εxz = εyz = 0.
5- The transverse normal strain εzz under transverse loading can be neglected and

also σzz is small and is negligible compared with the other stress components.

3.2.1 Out-of-plane vibration of rectangular plates

In the Kirchhoff hypothesis displacements (u, v, w) are assumed as (see Figure 3.2)

u(x, y, z, t) = u0(x, y, t)− z∂w0

∂x

v(x, y, z, t) = v0(x, y, t)− z∂w0

∂y

w(x, y, z, t) = w0(x, y, t) (3.10)
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Figure 3.2: Undeformed and deformed geometry in thickness direction under Kirchhoff hypothesis

where u0, v0, w0 are displacements of the mid surface. x, y are in-plane coordinates and
z is the thickness direction.

The linear three-dimensional strain-displacement relations are written in below as

εxx =
∂u

∂x

εxy =
1

2
(
∂u

∂y
+
∂v

∂x
)

εyy =
∂v

∂y

εxz =
1

2
(
∂u

∂z
+
∂w

∂x
)

εyz =
1

2
(
∂v

∂z
+
∂w

∂y
)

εzz =
∂w

∂z
(3.11)

where the strains (εxx, εyy, γxy) are linear through the thickness, considering assumptions
of Kirchhoff plate theory while ∂u0

∂z
= −∂w0

∂x
and ∂v0

∂z
= −∂w0

∂y
the transverse shear strains

(εxz, εyz) are zero and also εzz = 0 in this theory of laminated plates.

Substituting eq. (3.10) into the eq. (3.11), strain-displacement relations yield as


εxx
εyy
γxy

 =


ε(0)
xx

ε(0)
yy

γ(0)
xy

+ z


ε(1)
xx

ε(1)
yy

γ(1)
xy

 =


∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x

+


−∂2w0

∂x2

−∂2w0

∂y2

−2∂
2w0

∂x∂y

 (3.12)
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where ε(0)
xx , ε

(0)
yy , γ

(0)
xy are the membrane strains and ε(1)

xx , ε
(1)
yy , γ

(1)
xy are the flexural (bending)

strains which is known as the curvature.

Based on the principle of virtual work, dynamic equation is written as follows∫ t

0
(δU + δV − δK)dt = 0 (3.13)

where δU is virtual strain energy, δV is virtual work done by applied forces and the
virtual kinetic energy δK are given by

δU =
∫

Ω0

∫ h
2

−h
2

(σxxδεxx + σyyδεyy + σxyδγxy + σxzδγxz + σyzδγyz + σzzδεzz)dzdxdy

δV = −
∫

Ω0

(
qb(x, y)δw0(x, y,

h

2
) + qt(x, y)δw0(x, y,−h

2
)
)
dxdy

−
∫

Γσ

∫ h
2

−h
2

(σnnδun + σnsδus + σnzδuz)dzds

δK =
∫

Ω0

∫ h
2

−h
2

ρ0(uδu+ vδv + wδw)dzdxdy (3.14)

Above equations are general form of principle of virtual work. Virtual strain energy for
classical plate theory just has first three terms, First-order shear deformation theory has
first five terms and complete form of δU is used for three-dimensional theory of plates.
σnn, σns, σnz are specified stress components on the portion of Γσ. qb and qt are distributed
forces on the bottom and top surfaces of plate, respectively.

Substituting eqs. (3.10) and (3.12) into the eq. (3.14) and integration by part, Euler-
lagrange equations of the theory are obtained by setting the coefficients of δu0, δv0, and
δw0 equal to zero separately as follow

δu0 :
∂Nxx

∂x
+
∂Nxy

∂y
= I0

∂2u0

∂t2
− I1

∂2

∂t2
(
∂w0

∂x
)

δv0 :
∂Nxy

∂x
+
∂Nyy

∂y
= I0

∂2v0

∂t2
− I1

∂2

∂t2
(
∂w0

∂y
)

δw0 :
∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+ q = I0

∂2w0

∂t2
− I2

∂2

∂t2
(
∂2w0

∂x2
+
∂2w0

∂y2
)

+I1
∂2

∂t2
(
∂u0

∂x
+
∂v0

∂y
) (3.15)

where q is transverse force, Mxx,Myy,Mxy are moments resultants and Nxx, Nyy, Nxy are
force resultants as


Nxx

Nyy

Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66



ε(0)
xx

ε(0)
yy

γ(0)
xy

+

 B11 B12 B16

B12 B22 B26

B16 B26 B66



ε(1)
xx

ε(1)
yy

γ(1)
xy


Mxx

Myy

Mxy

 =

 B11 B12 B16

B12 B22 B26

B16 B26 B66



ε(0)
xx

ε(0)
yy

γ(0)
xy

+

 D11 D12 D16

D12 D22 D26

D16 D26 D66



ε(1)
xx

ε(1)
yy

γ(1)
xy

 (3.16)
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and I0, I1, I2 are mass moment of inertia as

Ii =
N∑
k=1

∫ zk+1

zk

C̃
(k)
ij (1, z, z2)dz i = 0, 1, 2 (3.17)

Stress resultants are as {
Nαβ

Mαβ

}
=
∫ h

2

−h
2

σαβ

{
1
z

}
dz (3.18)

Aij, Bij, Dij are extensional stiffness, bending-extensional coupling stiffness and bending
stiffness, respectively as

(Aij, Bij, Dij) =
N∑
k=1

∫ zk+1

zk

C̃
(k)
ij (1, z, z2)dz (i, j) = 1, 2, 6 (3.19)

where

C̃ij = T ′CijT =

 C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66

 (3.20)

is the elastic coefficients of the kth lamina taking into account the angle of orthotropy
θ(k) in each layer. Cij is the engineering parameters as

Cij =

 C11 C12 0
C12 C22 0
0 0 C66

 (3.21)

where

C11 =
E1

1− ν12ν21

C12 =
ν12E2

1− ν12ν21

=
ν21E1

1− ν12ν21

C22 =
E2

1− ν12ν21

, C66 = G12 (3.22)

and also E1, E2 are Young’s moduli in first and second material coordinates, νij are
poisson’s ratio, defined as the ratio of transverse strains in the j direction to the axial
strain in the ith direction when stressed in the ith direction and Gij are shear moduli in
the x− y plane.

T =

 cos2 θ sin2 θ 0
sin2 θ cos2 θ 0

0 0 1

 (3.23)

is transformation matrix. Complete matrix and relations which is for three-dimensional
theory is expressed by eqs. (5.9) to (5.12). In Kirchhoff hypothesis Cij and T matrices
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Figure 3.3: Interior and boundary points of the classical theory

are 3 × 3 matrix, in first-order shear deformation theory are 5 × 5 and finally for three-
dimensional theory are 6× 6.

Vx =
∂Mxx

∂x
+ 2

∂Mxy

∂y

Vy = 2
∂Mxy

∂x
+
∂Myy

∂y
(3.24)

are transverse force resultants. Complete form of the above equation is mentioned in
equation (4.10) for shells structure.

Substituting eq. (3.12) and second part of eq. (3.16) into the third part of eq. (3.15),
yields the governing equation for out-of-plane vibration of Kirchhoff plate as

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3

+D22
∂4w

∂y4
= I0

∂2w

∂t2
− I2

∂2

∂t2
(
∂2w

∂x2
+
∂2w

∂y2
) (3.25)

Vector of displacements at grid points (w ∈ R(N+1)2×1) are

w = {w(0,0) w(0,1) ... w(0,N) w(1,0) w(1,1) ... w(1,N) ... ... w(N,0) w(N,1) ... w(N,N)}
(3.26)

Equation of motion should be satisfied only for interior points (i, j = 2, ..., N − 2). ZI ∈
R(N−3)2×(N+1)2

is a matrix correspond to interior points.
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ZI =



eT2(N+1)+3
...

eT3(N+1)−2

eT3(N+1)+3
...
...

eT(N−2)(N+1)−2

eT(N−2)(N+1)+3
...

eT(N−1)(N+1)−2



(3.27)

where ei ∈ R(N+1)2×1 is the ith unit vector. This vector is zero in all entries expect for the
ith entry at which it is equal to 1. Matrices ZBw̄ ∈ R4N×(N+1)2

and ZBŵ ∈ R(4N−8)×(N+1)2

corresponding to the border points and set of points before the border points, respectively.
(see Figure 3.3)

ZCLPT
B =

[
ZBw̄
ZBŵ

]
(3.28)

where

ZBw̄ =



eT1
eT(N+1)+1

eT2(N+1)+1
...

eT(N)(N+1)+1

eT(N)(N+1)+2
...

eT(N)(N+1)+N

eT(N+1)

eT2(N+1)
...

eT(N+1)(N+1)

eT2
...
eTN



ZBŵ =



eT(N+1)+2

eT2(N+1)+2
...

eT(N−1)(N+1)+2

eT(N−1)(N+1)+3
...

eT(N−1)(N+1)+N−1

eT2(N+1)−1

eT3(N+1)−1
...

eT(N)(N+1)−1

eT(N+1)+3

eT(N+1)+4
...

eT2(N+1)−2



(3.29)

The equation of motion for interior points can be written as

L−1
R (LBsB + LIsI) = −λ2sI (3.30)
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where

LB =
[
ZIKZ

T
B

]
LI =

[
ZIKZ

T
I

]
LR =

[
ZIMZT

I

]
(3.31)

K is the left hand side of eq. (3.25) and also M is the right hand side of the this equation
which the second term is neglected because it is very negligible in compared with the first
term in the right hand side and LR is what does we have in the right.

sI =
{
wI

}
sB =

{
wB

}
(3.32)

where sI and sB are displacement vector variable of interior and boundary points, re-
spectively.

Displacements and their derivatives at the CGL points along ζ = 0 are expressed as

w = (eT1 ⊗ I)w wζη = (eT1D
(1) ⊗D(1))w

wζ = (eT1D
(1) ⊗ I)w wζζ = (eT1D

(2) ⊗ I)w

wη = (eT1 ⊗D(1))w wηη = (eT1 ⊗D(2))w

wζζη = (eT1D
(2) ⊗D(1))w wζηη = (eT1D

(1) ⊗D(2))w

wζζζζ = (eT1D
(4) ⊗ I)w wηηηη = (eT1 ⊗D(4))w (3.33)

Similarly, for edge η = 0 it is written as

w = (I ⊗ eT1 )w wζη = (D(1) ⊗ eT1D(1))w

wζ = (D(1) ⊗ eT1 )w wζζ = (D(2) ⊗ eT1 )w

wη = (I ⊗ eT1D(1))w wηη = (I ⊗ eT1D(2))w

wζζη = (D(2) ⊗ eT1D(1))w wζηη = (D(1) ⊗ eT1D(2))w

wζζζζ = (D(4) ⊗ eT1 )w wηηηη = (I ⊗ eT1D(4))w (3.34)

For the edges (ζ, η = 1) describing boundary conditions and equation of motion are
similar to the previous formula and it is easily done by replacing e1 with eN+1. For each
edge, there are two boundary conditions, Bw̄ is applied on w̄ and Bŵ is applied on ŵ.[

Bw̄
Bŵ

] {
w
}

=

{
0
0

}
(each edge) (3.35)

where Bw̄ and Bŵ matrices should implemented on four edges correspond to displacement
vector w.

The boundary equations can be written as

BBsB +BIsI = 0→ sB = −B−1
B BIsI (3.36)

where

BB =
[
BwZ

T
B

]
, BI =

[
BwZ

T
I

]
, Bw =

[
Bw̄
Bŵ

]
(3.37)

Bw is evaluated for all four edges considering which points are included or not. Substi-
tution of equation (3.36) to (3.30) results into

L−1
R (LI − LBB−1

B BI)sI = λ2sI (3.38)
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Figure 3.4: Boundary conditions at ζ = 0

Boundary conditions at ζ = 0

Clamped (w = ∂w
∂x

= 0)

Bw̄ = w = (eT1 ⊗ I)w (i = 0, j = 0, ..., N)

Bŵ =
∂w

∂x
= (eT1D

(1) ⊗ I)w (i = 1, j = 1, ..., N − 1) (3.39)

Simply-supported (w = Mxx = 0)

Bw̄ = w = (eT1 ⊗ I)w (i = 0, j = 0, ..., N)

Bŵ = Mxx =
(
D11(eT1D

(2) ⊗ I) + 2D16(eT1D
(1) ⊗D(1))

+D12(eT1 ⊗D(2))
)
w (i = 1, j = 1, ..., N − 1) (3.40)

Free (Mxx = Vx = 0)

Bw̄ = Mxx =
(
D11(eT1D

(2) ⊗ I) + 2D16(eT1D
(1) ⊗D(1))

+D12(eT1 ⊗D(2))
)
w (i = 0, j = 0, ..., N)

Bŵ = Vx =
(
D11(eT1D

(3) ⊗ I) + 4D16(eT1D
(2) ⊗D(1))

+(D12 + 4D66)(eT1D
(1) ⊗D(2)) + 2D26(eT1 ⊗D(3)

)
w (i = 1, j = 1, ..., N − 1)

(3.41)
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Figure 3.5: Boundary conditions at η = 0

Boundary conditions at η = 0

Clamped (w = ∂w
∂y

= 0)

Bw̄ = w = (I ⊗ eT1 )w (j = 0, i = 1, ..., N − 1)

Bŵ =
∂w

∂y
= (D(1) ⊗ eT1 )w (j = 1, i = 2, ..., N − 2) (3.42)

Simply supported (w = Myy = 0)

Bw̄ = w = (I ⊗ eT1 )w (j = 0, i = 1, ..., N − 1)

Bŵ = Myy =
(
D12(D(2) ⊗ eT1 ) + 2D26(D(1) ⊗ eT1D(1))

+D22(I ⊗ eT1D(2))
)
w (j = 1, i = 2, ..., N − 2) (3.43)

Free (Myy = Vy = 0)

Bw̄ = Myy =
(
D12(D(2) ⊗ eT1 ) + 2D26(D(1) ⊗ eT1D(1))

+D22(I ⊗ eT1D(2))
)
w (j = 0, i = 1, ..., N − 1)

Bŵ = Vy =
(
D22(I ⊗ eT1D(3)) + 4D26(D(1) ⊗ eT1D(2))

+(D12 + 4D66)(D(2) ⊗ eT1D(1)) + 2D16(D(3) ⊗ eT1 )
)
w (j = 1, i = 2, ..., N − 2)

(3.44)
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Figure 3.6: Boundary conditions at ζ = 1

At corners for interaction of two free edges Mxy = 0 just for one point in the angle. It
can be assumed that these corners are belong to (ζ = 0 or 1) or (η = 0 or 1). Thus, if
corner is at ζ = 0, boundary condition is written as

(
D16(eT1D

(2) ⊗ I) +D26(eT1 ⊗D(2))

+2D66(eT1D
(1) ⊗D(1))

)
w = 0 (i = 0, j = 0 or N or j = 0, N) (3.45)

and for corner at η = 0 boundary condition is

(
D16(D(2) ⊗ eT1 ) +D26(I ⊗ eT1D(2))

+2D66(D(1) ⊗ eT1D(1))
)
w = 0 (j = 0, i = 0 or N or i = 0, N) (3.46)

For describing boundary conditions at ζ = 1 and η = 1, inside of formula it is enough to
replace e1 with e(N+1) and for points which are imposed by the boundary conditions

ζ = 0 :

{
(i = 0, j = 0, ..., N)
(i = 1, j = 1, ..., N − 1)

→ ζ = 1 :

{
(i = N, j = 0, ..., N)
(i = N − 1, j = 1, ..., N − 1)

η = 0 :

{
(j = 0, i = 1, ..., N − 1)
(j = 1, i = 2, ..., N − 2)

→ η = 1 :

{
(j = N, i = 1, ..., N − 1)
(j = N − 1, i = 2, ..., N − 2)

(3.47)

and at corners

ζ = 0 : (i = 0, j = 0 or N or j = 0, N)→ ζ = 1 : (i = N, j = 0 or N or j = 0, N)

η = 0 : (j = 0, i = 0 or N or i = 0, N)→ η = 1 : (j = N, i = 0 or N or i = 0, N)

(3.48)
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Figure 3.7: Boundary conditions at η = 1

For isotropic plate D = Eh3

12(1−ν2)
, D22 = D11 = D, D12 = νD,D16 = D26 = 0 and

D66 = (1− ν)D
2

.

Displacement assumed as w(x, y, z, t) = w(x, y, z)eiωt, substituting this assumption
into the equation of motion for isotropic plate, yields

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
= −ρhω

2

D
w (3.49)

Using non-dimensional parameter ζ = x
a
, η = y

b
, yields

∂4w

∂ζ4
+ 2β2 ∂4w

∂ζ2∂η2
+ β4∂

4w

∂η4
= −λ2w (3.50)

where β = a
b
, λ2 = ρha4

D
ω2.

Displacement is assumed in the Lagrangian form as

w(ζ, η) =
M∑
m=0

N∑
n=0

amnTm(ζi)Tn(ηj) (3.51)

After substitution the displacement into the equation of motion, yields

M∑
m=0

N∑
n=0

amn[T (4)
m (ζi)Tn(ηj) + 2β2T (2)

m (ζi)T
(2)
n (ηj)

+β4Tm(ζi)T
(4)
n (ηj)] = −λ2

M∑
m=0

N∑
n=0

amnTm(ζi)Tn(ηj) (3.52)

Spectral form using Kronecker product is

(D(4) ⊗ I) + 2β2(D(2) ⊗D(2)) + β4(I ⊗D(4)) = −λ2(I ⊗ I) (3.53)
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Table 3.1: Non-dimensional natural frequencies of the Kirchhoff plate, λ = ωa2
√

ρh
D

BCs β ω1 ω2 ω3 ω4 ω5 ω6

CCCC 2
3

27.004 41.703 66.124 66.521 79.804 100.81
1 35.985 73.393 73.393 108.21 131.58 132.20
3
2

60.761 93.833 148.77 149.67 179.56 226.82

SFSF 2
3

9.6983 12.981 22.953 39.105 40.356 42.684
1 9.6313 16.134 36.725 38.944 46.738 70.740
3
2

9.5581 21.619 38.721 54.844 65.792 87.626

SSSS 1
2

12.337 19.739 32.076 41.945 49.348 49.348
1 19.739 49.348 49.348 78.956 98.696 98.696
2 49.348 78.956 128.30 167.78 197.39 197.39
5 256.60 286.21 335.56 404.65 493.48 602.04

where left hand side of above equation is K for isotropic plates in eq. (3.31).

Table (3.1) is shown results for fully clamped, fully simply-supported and SFSF
boundary conditions in terms of different aspect ratios which are related to the dimen-
sions. Natural frequencies of fully clamped and simply supported boundaries with in-
creasing the aspect ratio, increased except SFSF case, which is behaved in vice versa.

Table 3.2: Non-dimensional natural frequencies of the Classical laminated composite

plate (β,−β, β,−β, β) for E-glass/epoxy, λ = ωa2
√

ρh
D11

BCs βo Author ω1 ω2 ω3 ω4 ω5 ω6

CCCC 0 Present 29.104 50.828 67.286 85.680 87.142 118.56
[65] 29.087 50.792 67.279 85.629 87.112 118.50
[192] 29.13 50.82 67.29 85.67 87.14 118.6

45 Present 28.643 56.342 59.946 86.477 102.996 104.85
[65] 28.624 56.308 59.917 86.486 102.95 104.81
[192] 28.68 56.34 59.94 86.48 103.0 104.9

SSSS 0 Present 15.194 33.299 44.418 60.778 64.529 90.301
[65] 15.171 33.248 44.387 60.682 64.457 90.145
[193] 15.19 33.30 44.42 60.77 64.53 90.29

45 Present 16.387 38.374 41.379 64.353 77.941 79.198
[65] 16.480 38.436 41.478 64.563 77.958 79.223
[193] 16.40 38.37 41.40 64.41 77.94 79.23

In table (3.2) presented results are compared with two methods, discrete singular con-
volution method (DSC) [65] and CLPT [192, 193] based on the finite element analysis
both for fully clamped and fully simply supported. Results are shown natural frequencies
of five layers symmetric composite laminated thin plate in terms of angle orientation.
Increasing angle cause to increasing the frequencies.

For some engineering applications, constrained boundary conditions with constant or
varying coefficients are mostly used. each edge may be constrained with translational
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spring which is a constrained coefficient multiply by displacement, or constrained with
torsional spring which is a constrained coefficient multiply by differentiation of displace-
ment with respect to perpendicular coordinate. Sign of these coefficients for two opposite
edges should be different for equilibrium. For varying constrained coefficients a polyno-
mial in terms of perpendicular to edge with arbitrary order is considered. If all coefficients
are zero, boundary condition becomes free condition and if they are infinity boundary
condition becomes clamped condition. If torsional coefficients are zero and translational
coefficients are infinity, boundary condition becomes simply supported condition.

Constrained boundary conditions with constant coefficients after normalization:

at ζ = 0

(
∂2w

∂x2
+ νβ2∂

2w

∂y2

)
− k1Ta

D

∂w

∂x
= 0(

∂3w

∂x3
+ (2− ν)β2 ∂2w

∂y2∂x

)
+
k1La

3

D
w = 0 (3.54)

at ζ = 1

(
∂2w

∂x2
+ νβ2∂

2w

∂y2

)
+
k2Ta

D

∂w

∂x
= 0(

∂3w

∂x3
+ (2− ν)β2 ∂2w

∂y2∂x

)
− k2La

3

D
w = 0 (3.55)

at η = 0

(
β2∂

2w

∂y2
+ ν

∂2w

∂x2

)
− k3Taβ

D

∂w

∂y
= 0(

β2∂
3w

∂y3
+ (2− ν)

∂2w

∂x2∂y

)
+
k3La

3

βD
w = 0 (3.56)

and at η = 1

(
β2∂

2w

∂y2
+ ν

∂2w

∂x2

)
+
k4Taβ

D

∂w

∂y
= 0(

β2∂
3w

∂y3
+ (2− ν)

∂2w

∂x2∂y

)
− k4La

3

βD
w = 0 (3.57)

where (k1T , k2T , k3T , k4T ) are torsional and (k1L, k2L, k3L, k4L) are translational constrained
coefficients and each group of coefficients can be equal with themselves or not.

Table (3.3) is shown results for isotropic thin rectangular plate with fully constrained
boundaries and with not fully constrained boundaries. Increasing aspect ratio for fully
constrained boundaries cause to increasing the frequency and for other boundaries in-
creasing the elastic coefficients is shown the increasing in the frequencies.
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Table 3.3: Non-dimensional natural frequencies of the Kirchhoff plate with constrained

boundaries, λ = ωa2
√

ρh
D

BCs KL KT c ω1 ω2 ω3 ω4 ω5 ω6

EEEE 100 1000 1 17.509 25.295 25.295 33.901 46.285 46.862
100 1000 4 30.815 35.655 52.784 95.250 161.34 162.31

CSES 10 0 1 13.931 33.676 42.088 63.297 72.682 90.794
100 10 1 19.398 40.718 44.810 67.042 81.051 92.521

CFEE 10 100 1 7.9254 12.504 30.250 34.414 37.683 61.224
2 8.5237 27.599 30.281 57.153 73.321 103.216

Table 3.4: Non-dimensional natural frequencies of the classical plate with elastic support
of parabolically varying stiffness along the four edges both parallel and normal to the

edges, λ = ωa
2

√
ρ(1−ν2)

E

a/b K Author ω1 ω2 ω3 ω4 ω5 ω6

1 1 Present 0.9521 0.9521 1.3307 1.5296 1.7866 1.9089
[69] 0.9521 0.9521 1.3307 1.5296 1.7866 1.9090

100 Present 1.7563 1.7563 2.1073 2.5532 2.9002 2.9318
[69] 1.7564 1.7564 2.1074 2.5535 2.9002 2.9319

0.5 1 Present 0.7799 0.8262 0.9561 1.1607 1.2204 1.3465
[69] 0.7800 0.8262 0.9562 1.1607 1.2205 1.3465

100 Present 1.1894 1.5767 1.6626 1.7478 1.8865 2.0209
[69] 1.1895 1.5769 1.6628 1.7481 1.8867 2.0211

Varying constrained coefficients are written as following

k(T,L)(x) = k0(T,L)x(a− x)→ k(T,L)(ζ) = k0(T,L)diag(ζi − ζ2
i )

k(T,L)(y) = k0(T,L)y(b− y)→ k(T,L)(η) = k0(T,L)diag(ηj − η2
j ) (3.58)

Tables (3.4) and (3.5) are shown results for varying fully elastic support parallel and
normal to edges parabolic ally and linearly for isotropic thin plate with two aspect ratios,
respectively. As seen with increasing the elastic coefficients, natural frequencies increased.

Bulking of plates under in-plane loads

Since plate is subjected to in-plane compressive load (normal forces) (N̂xx, N̂yy < 0)

and sufficiently small, and N̂xy = 0 (shear forces), plate is stable and remains flat until
critical load. This load is called bulking load and plate is not stable at that load. Equi-
librium configuration of plate will be an other one considering load deflection behavior.
This phenomenon without magnificent deformation of plate is called bifurcation. The
load-deflection curve of bulked plates is often bilinear. The magnitude of bulking load
depends on geometry and material properties. For bulking analysis under normal in-plane
load, it is assumed other thermal and mechanical loads are zero. The governing equation
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Table 3.5: Non-dimensional natural frequencies of the classical plate with elastic support
of linearly varying stiffness along the four edges both parallel and normal to the edges,

λ = ωa
2

√
ρ(1−ν2)

E

a/b K Author ω1 ω2 ω3 ω4 ω5 ω6

1 1 Present 0.8535 0.8535 1.1783 1.4294 1.7146 1.7404
[69] 0.8537 0.8537 1.1786 1.4295 1.7149 1.7405

100 Present 1.7467 1.7467 2.1041 2.5285 2.8934 2.9259
[69] 1.7468 1.7468 2.1041 2.5289 2.8935 2.9260

0.5 1 Present 0.7064 0.7360 0.8508 1.0830 1.1031 1.2126
[69] 0.7066 0.7362 0.8509 1.0831 1.1033 1.2128

100 Present 1.1857 1.5698 1.6545 1.7409 1.8774 2.0134
[69] 1.1858 1.5700 1.6547 1.7412 1.8776 2.0137

of bulking (under in-plane load) for orthotropic Kirchhoff plate is

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= N̂xx

∂2w

∂x2
+ N̂yy

∂2w

∂y2
(3.59)

where

N̂xx = N0, N̂yy = −kN0, k =
N̂yy

N̂xx

(3.60)

For k = 0, plate in under bulking with uniform compression and with k = 1 is un-
der biaxial compression. Governing equation of bulking (under shear in-plane load) for
orthotropic Kirchhoff plate is

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
= 2N̂xy

∂2w

∂x∂y
(3.61)

where N̂xy = N0.

Table 3.6: Non-dimensional natural frequencies of the SCSC Kirchhoff plate subjected to

uniform compressive in-plane load at the simply supported edges, λ = ωa2
√

ρh
D11

a/b N0/Ncr Author ω1 ω2 ω3 ω4 ω5 ω6

1 0.5 Present 21.530 38.709 66.570 84.123 86.301 127.61
[35] 21.53 38.708 66.571 84.123 86.303 127.61

0.8 Present 15.452 24.481 64.860 71.090 80.925 119.42
[35] 15.452 24.479 64.861 71.090 80.926 119.43

0.5 0.5 Present 9.677 21.575 37.934 47.912 86.987 95.974
[35] 9.677 21.575 37.934 47.913 86.988 95.977

0.8 Present 6.120 20.231 34.846 45.506 84.030 93.303
[35] 6.120 20.231 34.846 45.507 84.031 93.305

Table (3.6) is shown natural frequencies for SCSC boundary condition of isotropic thin
plate which is subjected to uniform compressive in-plane load. As seen with increasing
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parameter N0

Ncr
which is being in-plane load divided by critical bulking load, natural

frequency is decreased. Natural frequencies of thin rectangular plate for fully clamped
and fully simply supported subjected to in-plane shear load is shown in table (3.7). In
both tables results are compared with Trigonometric Ritz method.

Table 3.7: Non-dimensional natural frequencies of the Square Kirchhoff plate, subjected to

in-plane shear load
Nxya2

D11
, λ = ωa2

√
ρh
D11

BCs Author ω1 ω2 ω3 ω4 ω5 ω6

SSSS Present 18.867 44.277 53.066 76.636 98.336 100.10
[35] 18.868 44.277 53.066 76.636 98.337 100.10

CCCC Present 33.507 63.136 79.618 102.08 130.38 135.63
[35] 33.508 63.138 79.620 102.09 130.39 135.64

3.2.2 Non-symmetric composite laminated rectangular plates

In the case of Non-symmetric composite laminated plate using classical plate theory, in-
plane displacements (u, v) and out-of-plane displacement (w), are coupling together. Be-
cause in symmetric case reaction among all layers are in equilibrium but in non-symmetric
case residual stress can be vanished using in-plane reaction of the layers. Equation of mo-
tion after normalization using these parameters ζ = x/a, η = y/b, β = a/b, δ = h/a, γ =
h/b,W = w/h can be written as

A11
∂2u

∂x2
+ A12β

∂2v

∂x∂y
+ A66(β2∂

2u

∂y2
+ β

∂2v

∂x∂y
)−B11δ

∂3W

∂x3
− 3B16γ

∂2W

∂x2∂y

−B26β
2γ
∂3W

∂y3
= I0

∂2u

∂t2
− I1h

∂2W

∂x∂t2

A12β
∂2u

∂x∂y
+ A22β

2∂
2v

∂y2
+ A66(

∂2v

∂x2
+ β

∂2u

∂x∂y
) +B11γβ

2∂
3W

∂y3
−B16δ

∂2W

∂x3

−3B26γβ
∂3W

∂x∂y2
= I0

∂2v

∂t2
− I1h

∂2W

∂y∂t2

B11(
∂3u

∂x3
− β3∂

3v

∂y3
) +B16(3β

∂3u

∂x2∂y
+
∂3v

∂x3
) +B26(3β2 ∂3v

∂x∂y2
+ β3∂

3u

∂y3
)

−D11δ
∂4W

∂x4
−D22γβ

3∂
4W

∂y4
− (2D12 + 4D66)γβ

∂4W

∂x2∂y2
+ q + N̂xx

∂2W

∂x2

+N̂yy
∂2W

∂y2
+ 2N̂xy

∂2W

∂x∂y
= I0h

∂2W

∂t2
− I2h

∂2

∂t2
(
∂2W

∂x2
+
∂2W

∂y2
)

+I1
∂2

∂t2
(
∂u

∂x
+
∂v

∂y
) (3.62)

In non-symmetric case Bij coefficients connect in-plane equations including Aij coeffi-
cients and out-of-plane equations with Dij coefficients. Equation (3.62) is non-symmetric
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for both cross-ply with B11 coefficient, and angle-ply with B16 and B26 coefficients be-
cause for non-symmetric cross-ply laminated plates all Bij are zero except B11 and B22

where B22 = −B11, and also for non-symmetric angle-ply laminated plates all Bij are
zero except B16 and B26.

Similar to section (3.2.1) we need LB, LI and LR, in this case they are obtained as
following

LB =


ZFSDT
I K11Z

FSDTT

B ZFSDT
I K12Z

FSDTT

B ZFSDT
I K13Z

CLPTT

B

ZFSDT
I K21Z

FSDTT

B ZFSDT
I K22Z

FSDTT

B ZFSDT
I K23Z

CLPTT

B

ZCLPT
I K31Z

FSDTT

B ZCLPT
I K32Z

FSDTT

B ZCLPT
I K33Z

CLPTT

B

 (3.63)

and

LI =


ZFSDT
I K11Z

FSDTT

I ZFSDT
I K12Z

FSDTT

I ZFSDT
I K13Z

CLPTT

I

ZFSDT
I K21Z

FSDTT

I ZFSDT
I K22Z

FSDTT

I ZFSDT
I K23Z

CLPTT

I

ZCLPT
I K31Z

FSDTT

I ZCLPT
I K32Z

FSDTT

I ZCLPT
I K33Z

CLPTT

I

 (3.64)

and also LR is the same as LI but instead of stiffness components, mass components will
be replaced.

These matrices components are presenting methods which are used for solving out-
of-plane classical plate theory (section (3.2.1)) and in-plane analysis which is like sum-
marized method where will be mention in section (3.3.1) with two variables instead of
three variables in first-order shear deformation theory. Therefore FSDT in equations of
this section does not meaning that they are following this theory, it means that com-
putationally they are similar. Because for both in-plane analysis and FSDT theory for
each edge there is just one condition applied on each variable for all edges but in CLPT
theory there are two conditions applied on w displacement variable. For these reasons
LB and LI matrix components are combination of interior and boundary displacements
vectors of both classical plate theory (CLPT) and first-order shear deformation plate
theory (FSDT).

sI =


uFSDTI

vFSDTI

wCLPTI

 sB =


uFSDTB

vFSDTB

wCLPTB

 (3.65)

where sI and sB are displacement vector variable of interior and boundary points, re-
spectively. For applying boundary conditions four equations should be applied on each
edge as


Buu Buv Buw̄
Bvu Bvv Bvw̄
Bw̄u Bw̄v Bw̄w̄
Bŵu Bŵv Bŵŵ



u
v
w

 =


0
0
0
0

 (each edge) (3.66)
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The whole set of discretized boundary conditions are expressed in below

[
Bu Bv Bw

]
u
v
w

 =


0
0
0
0

 (3.67)

where Bu collects the Buu, Bvu, Bw̄u and Bŵu matrices of the four edges correspond to
displacement vector u. Bv puts to gether the Buv, Bvv, Bw̄v and Bŵv matrices of the four
edges correspond to displacement vector v and Bw groups the Buw̄, Bvw̄, Bw̄w̄ and Bŵŵ
matrices of the four edges correspond to displacement vector w. i.e., Bu can be written
as

Bu =



B(0,η)
uu (0 : N, :)
B(0,η)
vu (0 : N, :)

B(0,η)
w̄u (0 : N, :)

B(0,η)
ŵu (1 : N − 1, :)

B(ζ,0)
uu (1 : N − 1, :)
B(ζ,0)
vu (1 : N − 1, :)

B(ζ,0)
w̄u (1 : N − 1, :)

B(ζ,0)
ŵu (2 : N − 2, :)

B(1,η)
uu (0 : N, :)
B(1,η)
vu (0 : N, :)

B(1,η)
w̄u (0 : N, :)

B(1,η)
ŵu (1 : N − 1, :)

B(ζ,1)
uu (1 : N − 1, :)
B(ζ,1)
vu (1 : N − 1, :)

B(ζ,1)
w̄u (1 : N − 1, :)

B(ζ,1)
ŵu (2 : N − 2, :)



(3.68)

First four terms are corresponded to ζ = 0, and second, third and fourth groups are
corresponded to (η = 0), (ζ = 1) and (η = 1), respectively. As in programming languages
zero for rows or columns does n’t have meaning, we can add 1 to rows or columns, i.e.,
(0 : N, :) can be written as (1 : N + 1, :).

BB and BI matrices for obtaining natural frequencies are written as

BB =
[
BuZ

FSDTT

B BvZ
FSDTT

B BwZ
CLPTT

B

]
BI =

[
BuZ

FSDTT

I BvZ
FSDTT

I BwZ
CLPTT

I

]
(3.69)
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Boundary conditions for cross-ply lay-up at ζ = 0

Clamped (u = v = w = ∂w
∂x

= 0)
Simply supported (Nxx = v = w = Mxx=0)

Nxx = A11
∂u

∂x
+ A12β

∂v

∂y
−B11δ

∂2w

∂x2

Mxx = D11δ
∂2w

∂x2
+D12βγ

∂2w

∂y2
−B11

∂u

∂x
(3.70)

Free (Nxx = Nxy = Mxx = Vx = 0)

Nxx = A11
∂u

∂x
+ A12β

∂v

∂y
−B11δ

∂2w

∂x2

Nxy = A66(β
∂u

∂y
+
∂v

∂x
)

Mxx = D11δ
∂2w

∂x2
+D12βγ

∂2w

∂y2
−B11

∂u

∂x

Vx = D11δ
∂3w

∂x3
+ (D12 + 4D66)βγ

∂3w

∂x∂y2
−B11

∂2u

∂x2
(3.71)

Boundary conditions for cross-ply lay-up at η = 0

Clamped (u = v = w = ∂w
∂y

= 0)

Simply supported (u = Nyy = w = Myy = 0)

Nyy = A12
∂u

∂x
+ A22β

∂v

∂y
+B11βγ

∂2w

∂y2

Myy = D12δ
∂2w

∂x2
+D22βγ

∂2w

∂y2
+B11β

∂v

∂y
(3.72)

Free (Nxy = Nyy = Myy = Vy = 0)

Nyy = A12
∂u

∂x
+ A22β

∂v

∂y
+B11βγ

∂2w

∂y2

Nxy = A66(β
∂u

∂y
+
∂v

∂x
)

Myy = D12δ
∂2w

∂x2
+D22βγ

∂2w

∂y2
+B11β

∂v

∂y

Vy = D22β
2γ
∂3w

∂y3
+ (D12 + 4D66)γ

∂3w

∂x2∂y
+B11β

2∂
2v

∂y2
(3.73)
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Boundary conditions for angle-ply lay-up at ζ = 0

Clamped (u = v = w = ∂w
∂x

= 0)
Simply supported (u = Nxy = w = Mxx = 0)

Nxy = A66(β
∂u

∂y
+
∂v

∂x
)−B16δ

∂2w

∂x2
−B26βγ

∂2w

∂y2

Mxx = D11δ
∂2w

∂x2
+D12βγ

∂2w

∂y2
−B16(β

∂u

∂y
+
∂v

∂x
) (3.74)

Free (Nxx = Nxy = Mxx = Vx = 0)

Nxx = A11
∂u

∂x
+ A12β

∂v

∂y
− 2B16γ

∂2w

∂x∂y

Nxy = A66(β
∂u

∂y
+
∂v

∂x
)−B16δ

∂2w

∂x2
−B26βγ

∂2w

∂y2

Mxx = D11δ
∂2w

∂x2
+D12βγ

∂2w

∂y2
−B16(β

∂u

∂y
+
∂v

∂x
)

Vx = D11δ
∂3w

∂x3
+ (D12 + 4D66)βγ

∂3w

∂x∂y2
−B16(

∂2v

∂x2
+ 3β

∂2u

∂x∂y
)

−2B26β
2∂

2v

∂y2
(3.75)

Boundary conditions for angle-ply lay-up at η = 0

Clamped (u = v = w = ∂w
∂y

)

Simply supported (Nxy = v = w = Myy = 0)

Nxy = A66(β
∂u

∂y
+
∂v

∂x
)−B16δ

∂2w

∂x2
−B26βγ

∂2w

∂y2

Myy = D12δ
∂2w

∂x2
+D22βγ

∂2w

∂y2
−B26(β

∂u

∂y
+
∂v

∂x
) (3.76)

Free (Nxy = Nyy = Myy = Vy = 0)

Nyy = A12
∂u

∂x
+ A22β

∂v

∂y
− 2B26γ

∂2w

∂x∂y

Nxy = A66(β
∂u

∂y
+
∂v

∂x
)−B16δ

∂2w

∂x2
−B26βγ

∂2w

∂y2

Myy = D12δ
∂2w

∂x2
+D22βγ

∂2w

∂y2
−B26(β

∂u

∂y
+
∂v

∂x
)

Vy = D22β
2γ
∂3w

∂y3
+ (D12 + 4D66)γ

∂3w

∂x2∂y
−B26(β2∂

2u

∂y2
+ 3β

∂2v

∂x∂y
)

−2B16
∂2u

∂x2
(3.77)
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As more transparency, free boundary condition in angle-ply case for ζ = 0 is explained.

Buu = A11
∂

∂x
Buv = A12β

∂

∂y
Buw̄ = −2B16γ

∂2

∂x∂y

Bvu = A66β
∂

∂y
Bvv = A66

∂

∂x
Bvw̄ = −B16δ

∂2

∂x2
−B26βγ

∂2

∂y2

Bw̄u = −B16β
∂

∂y
Bw̄v = −B16

∂

∂x
Bw̄w̄ = D11δ

∂2

∂x2
+D12βγ

∂2

∂y2

Bŵu = −3B16β
∂2

∂x∂y
Bŵv = −B16

∂2

∂x2
− 2B26β

2 ∂
2

∂y2

Bŵŵ = D11δ
∂3

∂x3
+ (D12 + 4D66)βγ

∂3

∂x∂y2
(3.78)

Position of the points which are imposed by boundary conditions in this case is a combi-
nation of what is shown in Figs. (3.13) and (3.14) in section (3.3.1) for displacements u
and v and Figs. (3.4) and (3.5) in section (3.2.1) for displacement w.

3.2.3 Out-of-plane vibration of annular and circular plates

Consider an annular plate with r radius, inner radius b, outer radius a and β = b/a is
radius ratio. For annular plate (b ≤ r ≤ a) after normalization with parameter R = r/a,
range of non-dimensional radius is (β ≤ R ≤ 1). In this case which is similar to Euler-
Bernoulli beam, w is displacement variable in the thickness direction based on Kirchhoff
hypothesis. Collocation points which are distributed on the annular and circular plates
are shown in Figs (3.8). Interior points are in black and boundary points are in red
color. Figs (3.8) shows distribution of interior and boundary points for annular (left) and
circular (right) plate. The location of these points are not really based on Chebyshev
location points and this figure is a schematic figure but Figs (3.9) and (3.10) show the
real location of collocation points in 1-D dimensional geometry like beam. In the case of
annular plate for inner and outer radius two collocation points are needed. For circular
plate one collocation point for implementing center point and two points for outer radius
are needed.

Governing equation of motion for both annular and circular plates are as

∂4w

∂r4
+

2

r

∂3w

∂r3
− 1

r2

∂2w

∂r2
+

1

r3

∂w

∂r
=
q(r)

D

∂2w

∂t2
(3.79)

where D is bending stiffness and q(r) is the axisymmetric load on the plate.

Bending moment and shear force are as

Mrr = −D(
d2w

dr2
+
ν

r

dw

dr
), Qr = −D d

dr
(
d2w

dr2
+

1

r

dw

dr
) (3.80)

For annular plate b ≤ r ≤ a after doing dimensionless withR = r/a parameter, β ≤ R ≤ 1
and for circular plate which is 0 ≤ r ≤ a, yields ≤ R ≤ 1. Equation of motion in matrix
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Figure 3.8: 2-D distribution of interior and boundary points of annular and circular plate

Figure 3.9: 1-D distribution of interior and boundary points of circular plate

Figure 3.10: 1-D distribution of interior and boundary points of annular plate

form is

Kw = −λ2Mw (3.81)

where stiffness and mass matrices after multiplying by suitable power of R avoiding
singularity is as

K = R3 ∂4

∂R4
+ 2R2 ∂3

∂R3
−R ∂2

∂R2
+

∂

∂R

M =
q(Ra)R3a4

D
(3.82)

and also moment and force resultants are as

MRR = R
d2w

dR2
+ ν

dw

dR

QR = R2 d
3w

dR3
+R

d2w

dR2
− dw

dR
(3.83)

For annular plate equation of motion should be satisfied for interior points (i = 3, ..., N−
1). ZI ∈ R(N−3)×(N+1) is a matrix correspond to interior points.

ZI =


eT3
eT4
...

eT(N−1)

 ZB =


eT1
eT2
eTN

eT(N+1)

 (3.84)
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where ei ∈ R(N+1)×1 is the ith unit vector. This vector is zero in all entries expect for the
ith entry at which it is equal to 1. Matrix ZB ∈ R4×(N+1) corresponding to the boundary
points.

LB =
[
ZIKZ

T
B

]
LI =

[
ZIKZ

T
I

]
LT =

[
ZIMZT

I

]
(3.85)

For both annular and circular geometry, boundary condition on outer radius is as[
B1

B2

] {
w
}

=

{
0
0

}
(3.86)

where B1 is applied on the first point and B2 is applied on the second point of outer radius.

Finally for evaluation of natural frequencies we need

BB =
[
BwZ

T
B

]
BI =

[
BwZ

T
I

]
(3.87)

where Bw =

[
B1

B2

]
.

Boundary conditions at R = 1

Clamped: (w = ∂w
∂R

= 0)

B1 = eT(N+1)

B2 = eT(N+1)D
(1) (3.88)

Simply supported: (w = MRR = 0)

B1 = eT(N+1)

B2 = R(N+1)Ie
T
(N+1)D

(2) + νeT(N+1)D
(1) (3.89)

Free: (MRR = QR = 0)

B1 = R(N+1)Ie
T
(N+1)D

(2) + νeT(N+1)D
(1)

B2 = R2
(N+1)Ie

T
(N+1)D

(3) +R(N+1)Ie
T
(N+1)D

(2) − eT(N+1)D
(1) (3.90)

Distribution of the collocation points for annular plates are as: β+ (1−β)
2

(1−cos( iπ
N

) (i =
0, 1, ...N) and in the case of distribution pattern for circular plate β = 0. For applying
boundary conditions on R = β in the case of annular plate the same procedure is done
and it is needed to replace e(N+1) with e1 and also R(N+1) with R1.
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For circular plate which is (0 ≤ R ≤ 1) equation of motion should be satisfied again for
interior points (i = 2, ..., N − 1).

ZI =


eT2
eT3
...

eT(N−1)

 ZB =

 eT1
eTN

eT(N+1)

 (3.91)

ZI ∈ R(N−2)×(N+1) is a matrix correspond to interior points and similar matrix ZB ∈
R3×(N+1) corresponding to the boundary points. ei ∈ R(N+1)×1 is the ith unit vector.
Boundary condition on center point for circular plate is ∂w

∂R
or Bc = eT1D

(1).

Table 3.8: Non-dimensional natural frequencies of the Kirchhoff circular plate, λ =

ωR2/
√

ρh
D

BCs Author ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

C Present 10.214 39.770 89.103 158.18 247.01 355.57 483.87 631.91
[99] 10.215 39.771 89.104 158.18 247.01 355.56 483.87 631.91
[98] 10.216 39.771 89.102 158.18 246.99 355.54 483.82 631.83

S Present 4.9288 29.716 74.156 138.32 222.22 325.85 449.22 592.33
[99] 4.977 29.76 74.20 138.34
[98] 4.9351 29.720 74.155 138.31 222.21 325.83 499.18 592.27

F Present 9.0017 38.442 87.750 156.82 245.63 354.19 482.49 630.53
[99] 9.084 38.55 87.80 157.0 245.9 354.6 483.1 631.0
[98] 9.0031 38.443 87.749 156.81 245.62 354.17 482.45 630.46

Natural frequencies for thin circular plate with three boundaries such as fully clamped,
simply supported and free are shown in table (3.8) and results are compared with pseu-
dospectral [99] and differential quadrature [98] methods, respectively. For fully clamped
case the presented results are very close to both methods but for other cases presented
results are in a good agreement with results of GDQ method.

3.3 First-order shear deformation plate theory

In first-order shear deformation theory the transverse normals do not remain perpendic-
ular to the mid surface after deformation and it leads to exist εxz, εyz. Displacement in
the thickness direction w is not a function of the thickness coordinate z like thin plate
theory. The transverse normal strain εzz under transverse loading can be neglected and
still σzz is small and negligible compared with the other stress components like thin plate
theory. Thickness of the plate is not small compared to other dimensions, it’s started
from h/a equal to 0.1 which is called moderately thick to greater which is called thick
and a is one dimension of the plate.
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Figure 3.11: Undeformed and deformed in the thickness direction under first-order shear de-
formation assumption

3.3.1 Out-of-plane vibration of rectangular plates

In the first-order shear deformation theory, displacements (u, v, w) are assumed as (see
Figure 3.11)

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t)

w(x, y, z, t) = w0(x, y, t) (3.92)

where (u0, v0, w0, φx, φy) are unknown functions should be determined. (u0, v0, w0) are
the displacements of a point on the plane z = 0. It is to be noted that

φx =
(
∂u

∂z

)
z=0

, φy =
(
∂v

∂z

)
z=0

(3.93)

where φx, φy are the rotations of a transverse normal about the y and x axes, respectively.
For thin plates when the in-plane characteristic dimension to thickness ratio is on the
order 50 or greater, the rotation functions φx and φy should approach the respective
slopes of the transverse deflection as

φx = −∂w0

∂x
, φy = −∂w0

∂y
(3.94)

Stress resultants which are correspond to generalized displacements (u0, v0, w0, φx, φy) are
as follow


Nxx

Nyy

Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66



ε(0)
xx

ε(0)
yy

γ(0)
xy

+

 B11 B12 B16

B12 B22 B26

B16 B26 B66



ε(1)
xx

ε(1)
yy

γ(1)
xy


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
Mxx

Myy

Mxy

 =

 B11 B12 B16

B12 B22 B26

B16 B26 B66



ε(0)
xx

ε(0)
yy

γ(0)
xy

+

 D11 D12 D16

D12 D22 D26

D16 D26 D66



ε(1)
xx

ε(1)
yy

γ(1)
xy

{
Qx

Qy

}
=

[
A55 A45

A45 A44

]{
γxz
γyz

}
(3.95)

where Mxx,Myy,Mxy are bending resultants, Nxx, Nyy, Nxy are force resultants, and
Qx, Qy are transverse force resultants. Stress resultants are as

{
Nαβ

Mαβ

}
=
∫ h

2

−h
2

σαβ

{
1
z

}
dz

{
Qα

}
=
∫ h

2

−h
2

σαz
{

1
}
dz (3.96)

Stiffness coefficients are as

(Aij, Bij, Dij) =
N∑
k=1

∫ zk+1

zk

C̃
(k)
ij (1, z, z2)dz (i, j) = 1, 2, 6

Aij =
N∑
k=1

∫ zk+1

zk

κ2C̃
(k)
ij (1, z, z2)dz (i, j) = 4, 5 (3.97)

Substituting eq. (3.92) into the eq. (3.11), strain-displacement relations yield as

εxx
εyy
γxy
γxz
γyz


=



ε(0)
xx

ε(0)
yy

γ(0)
xy

γ(0)
xz

γ(0)
yz


+ z



ε(1)
xx

ε(1)
yy

γ(1)
xy

γ(1)
xz

γ(1)
yz


=



∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x
∂w0

∂x
+ φx

∂w0

∂y
+ φy


+ z



∂φx
∂x
∂φy
∂y

∂φx
∂y

+ ∂φy
∂x

0
0


(3.98)

where the strains (εxx, εyy, γxy) are linear through the thickness, while the the transverse
shear strains (γxz, γyz) are constant through the thickness of the laminate in the first-
order laminated plate theory.

Substituting eqs. (3.92) and (3.98) into the eq. (3.14) and integration by part, Euler-
lagrange equations of the theory are obtained by setting the coefficients of δu0, δv0, δw0,
δφx and δφy equal to zero separately as follow

δu0 :
∂Nxx

∂x
+
∂Nxy

∂y
= I0

∂2u0

∂t2
+ I1

∂2φx
∂t2

δv0 :
∂Nxy

∂x
+
∂Nyy

∂y
= I0

∂2v0

∂t2
+ I1

∂2φy
∂t2

δw0 :
∂Qx

∂x
+
∂Qy

∂y
+ q = I0

∂2w0

∂t2

δφx :
∂Mxx

∂x
+
∂Mxy

∂y
−Qx = I2

∂2φx
∂t2

+ I1
∂2u0

∂t2

δφy :
∂Mxy

∂x
+
∂Myy

∂y
−Qy = I2

∂2φy
∂t2

+ I1
∂2v0

∂t2
(3.99)
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Since the transverse shear strains are presented as constant through the laminate thick-
ness, it follows that the transverse shear stresses will also be constant. It is well known
from elementary theory of homogeneous beams that the transverse shear stress varies
parabolically through the beam thickness. For composite laminated beams and plats,
the transverse shear stresses vary at least quadratically through layer thickness. The
discrepancy between the actual stress state and the constant stress state predicted by
the first-order theory if often corrected in computing the transverse shear force resultants
(Qx, Qy) by multiplying with a parameter κ2 which is called shear correction factor coef-
ficients.

This amounts to modifying the plate transverse shear stiffness. The factor κ2 is
computed such that the strain energy due to transverse shear stresses in above equa-
tions equals the strain energy due to the true transverse stresses predicted by the three-
dimensional elasticity theory. Shear correction factor computed in this way: actual shear
stress distribution through the thickness of beam with rectangular cross section, width b
and height h is

σcxz =
3Q

2bh

(
1− (

2z

h
)2
)

− h/2 ≤ z ≤ h/2 (3.100)

where Q is transverse shear force. The transverse shear stress in the FSDT thoery is
constant and σfxz = Q/bh. The strain energies due to transverse shear stresses in the two
theories are

U c
s =

1

2G13

∫
A

(σcxz)
2dA =

3Q2

5G13bh

U f
s =

1

2G13

∫
A

(σfxz)
2dA =

Q2

2G13bh
(3.101)

Shear correction factor is the ratio of U f
s to U c

s which gives κ2 = 5/6. The shear cor-
rection factor for a general laminate depends on lamina properties and lamination scheme.

Substituting eq. (3.98) and second and third parts of eq. (3.95) into the third, fourth
and fifth parts of eq. (3.99), yield out-of-plane equations of FSDT as

 K11 K12 K13

K21 K22 K23

K31 K32 K33



φx
φy
w

 = −λ2

 M11 M12 M13

M21 M22 M23

M31 M32 M33



φx
φy
w

 (3.102)

Vector of displacements at grid points (φx, φy, w ∈ R(N+1)2×1)

φx = {φx(0,0) φx(0,1) ... φx(0,N) φx(1,0) φx(1,1) ... φx(1,N) ... ... φx(N,0) φx(N,1) ... φx(N,N)}
φy = {φy(0,0) φy(0,1) ... φy(0,N) φy(1,0) φy(1,1) ... φy(1,N) ... ... φy(N,0) φy(N,1) ... φy(N,N)}
w = {w(0,0) w(0,1) ... w(0,N) w(1,0) w(1,1) ... w(1,N) ... ... w(N,0) w(N,1) ... w(N,N)} (3.103)
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Equation of motion should be satisfied for interior points (i, j = 1, ..., N − 1).

ZI =



eT(N+1)+2
...

eT2(N+1)−1

eT2(N+1)+2
...
...

eT(N−1)(N+1)−1

eT(N−1)(N+1)+2
...

eTN(N+1)−1



(3.104)

ZI ∈ R(N−1)2×(N+1)2
is a matrix correspond to interior points and ei ∈ R(N+1)2×1 is the

ith unit vector. This vector is zero in all entries expect for the ith entry at which it is
equal to 1, and similar matrix ZB ∈ R4N×(N+1)2

corresponding to the boundary points.

ZB =



eT1
eT(N+1)+1

eT2(N+1)+1
...

eT(N)(N+1)+1

eT(N)(N+1)+2
...

eT(N)(N+1)+N

eT(N+1)

eT2(N+1)
...

eT(N+1)(N+1)

eT2
...
eTN



(3.105)

LB and LI matrices are as following

LB =

 ZIK11Z
T
B ZIK12Z

T
B ZIK13Z

T
B

ZIK21Z
T
B ZIK22Z

T
B ZIK23Z

T
B

ZIK31Z
T
B ZIK32Z

T
B ZIK33Z

T
B



LI =

 ZIK11Z
T
I ZIK12Z

T
I ZIK13Z

T
I

ZIK21Z
T
I ZIK22Z

T
I ZIK23Z

T
I

ZIK31Z
T
I ZIK32Z

T
I ZIK33Z

T
I

 (3.106)

LR is obtained by replacing mass components in LI matrix from above equation.

sI =


φxI
φyI
wI

 sB =


φxB
φyB
wB

 (3.107)
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Figure 3.12: Interior and boundary points of the first-order shear deformation theory

where sI and sB are displacements vector variables of interior and boundary points, re-
spectively.

The same formulation is applied for satisfaction of boundary conditions. Displace-
ments and their derivatives at the CGL points along ζ = 0 are expressed as

φx = (eT1 ⊗ I)φx φy = (eT1 ⊗ I)φy w = (eT1 ⊗ I)w

φxζ = (eT1D
(1) ⊗ I)φx φyζ = (eT1D

(1) ⊗ I)φy wζ = (eT1D
(1) ⊗ I)w

φxη = (eT1 ⊗D(1))φx φyη = (eT1 ⊗D(1))φy wη = (eT1 ⊗D(1))w (3.108)

Similarly, for edge η = 0 it is written as

φx = (I ⊗ eT1 )φx φy = (I ⊗ eT1 )φy w = (I ⊗ eT1 )w

φxζ = (D(1) ⊗ eT1 )φx φyζ = (D(1) ⊗ eT1 )φy wζ = (D(1) ⊗ eT1 )w

φxη = (I ⊗ eT1D(1))φx φyη = (I ⊗ eT1D(1))φy wη = (I ⊗ eT1D(1))w (3.109)

For displacements and their derivatives of the edges (ζ, η = 1) it is enough to write similar
formula, respectively and replace e1 with eN+1. Equation (3.110) shows the discretized
set of boundary conditions for each edge.

 B11 B12 B13

B21 B22 B23

B31 B32 B33



φx
φy
w

 =


0
0
0

 (each edge) (3.110)

The whole set of discretized boundary conditions are expressed in below

[
Bφx Bφy Bw

]
φx
φy
w

 =


0
0
0

 (3.111)
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where Bφx collects the B11, B21 and B31 matrices of the four edges which is corresponded
to the displacement vector φx, and Bφy groups the B12, B22 and B32 matrices of the four
edges which is corresponded to the displacement vector φy and finally Bw puts together
the B13, B23 and B33 matrices of the four edges which is corresponded to the displacement
vector w.

BB and BI matrices are as following

BB =
[
BφxZ

T
B BφyZ

T
B BwZ

T
B

]
BI =

[
BφxZ

T
I BφyZ

T
I BwZ

T
I

]
(3.112)

Using below equation for evaluating natural frequencies

(
L−1
R (LI − LBB−1

B BI)
)
sI = λ2sI (3.113)

Equation of motion for first-order shear deformation composite laminated plate is

 K11 K12 K13

K12 K22 K23

K31 K32 K33



φx
φy
w0

 = −λ2

 M11 0 0
0 M11 0
0 0 M33



φx
φy
w0

 (3.114)

where stiffness matrix components are

K11 = D11
∂2

∂x2
+D66β

2 ∂
2

∂y2
+ 2D16β

∂2

∂x∂y
− A55

K12 = (D12 +D66)β
∂2

∂x∂y
+D16

∂2

∂x2
+D26β

2 ∂
2

∂y2
− A45

K13 = −A45γ
∂

∂y
− A55δ

∂

∂x

K22 = D66
∂2

∂x2
+D22β

2 ∂
2

∂y2
+ 2D26β

∂2

∂x∂y
− A44

K23 = −A44γ
∂

∂y
− A45δ

∂

∂x

K31 = A45
∂

∂x
+ A55

∂

∂x

K32 = A44β
∂

∂y
+ A45β

∂

∂x

K33 = A44βγ
∂2

∂y2
+ 2A45γ

∂2

∂x∂y
+ A55δ

∂2

∂x2
(3.115)

and mass matrix components are as

M11 =
ρh3

12
M33 = ρhδ (3.116)
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Figure 3.13: Boundary condition at ζ = 0

Boundary conditions at (ζ = 0) (i = 0, j = 0, ..., N)

Clamped (φx = φy = W = 0)

B11 = (eT1 ⊗ I)

B12 = 0

B13 = 0

B21 = 0

B22 = (eT1 ⊗ I)

B23 = 0

B31 = 0

B32 = 0

B33 = (eT1 ⊗ I) (3.117)

Simply-supported - type 2 (Mxx = φy = w = 0)

B11 = D11
∂

∂X
+D16β

∂

∂Y
= D11(eT1D

(1) ⊗ I) +D16β(eT1 ⊗D(1))

B12 = D12β
∂

∂Y
+D16

∂

∂X
= D12β(eT1 ⊗D(1)) +D16(eT1D

(1) ⊗ I)

B13 = 0

B21 = 0

B22 = (eT1 ⊗ I)
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B23 = 0

B31 = 0

B32 = 0

B33 = (eT1 ⊗ I) (3.118)

Simply supported - type 1 (Mxx = Mxy = w)

B11 = D11
∂

∂X
+D16β

∂

∂Y
= D11(eT1D

(1) ⊗ I) +D16β(eT1 ⊗D(1))

B12 = D12β
∂

∂Y
+D16

∂

∂X
= D12β(eT1 ⊗D(1)) +D16(eT1D

(1) ⊗ I)

B13 = 0

B21 = D16
∂

∂X
+D66β

∂

∂Y
= D16(eT1D

(1) ⊗ I) +D66β(eT1 ⊗D(1))

B22 = D26β
∂

∂Y
+D66

∂

∂X
= D26β(eT1 ⊗D(1)) +D66(eT1D

(1) ⊗ I)

B23 = 0

B31 = 0

B32 = 0

B33 = (eT1 ⊗ I) (3.119)

Free (Mxx = Mxy = Qx = 0)

B11 = D11
∂

∂X
+D16β

∂

∂Y
= D11(eT1D

(1) ⊗ I) +D16β(eT1 ⊗D(1))

B12 = D12β
∂

∂Y
+D16

∂

∂X
= D12β(eT1 ⊗D(1)) +D16(eT1D

(1) ⊗ I)

B13 = 0

B21 = D16
∂

∂X
+D66β

∂

∂Y
= D16(eT1D

(1) ⊗ I) +D66β(eT1 ⊗D(1))

B22 = D26β
∂

∂Y
+D66

∂

∂X
= D26β(eT1 ⊗D(1)) +D66(eT1D

(1) ⊗ I)

B23 = 0

B31 = A55 = A55(eT1 ⊗ I)

B32 = A45 = A45(eT1 ⊗ I)

B33 = γA45
∂

∂Y
+ δA55

∂

∂X
= γA45(eT1 ⊗D(1)) + δA55e

T
1D

(1) ⊗ I) (3.120)
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Figure 3.14: Boundary condition at η = 0

Boundary conditions at (η = 0) (j = 0, i = 1, ..., N − 1)

Clamped (φx = φy = W = 0)

B11 = (I ⊗ eT1 )

B12 = 0

B13 = 0

B21 = 0

B22 = (I ⊗ eT1 )

B23 = 0

B31 = 0

B32 = 0

B33 = (I ⊗ eT1 ) (3.121)

Simply-supported - type 2 (φx = Myy = w = 0)

B11 = (I ⊗ eT1 )

B12 = 0

B13 = 0

B21 = D12
∂

∂X
+D26β

∂

∂Y
= D12(D(1) ⊗ eT1 ) +D26β(I ⊗ eT1D(1))

B22 = D22β
∂

∂Y
+D26

∂

∂X
= D22(I ⊗ eT1D(1)) +D26β(D(1) ⊗ eT1 )
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B23 = 0

B31 = 0

B32 = 0

B33 = (I ⊗ eT1 ) (3.122)

Simply-supported - type 1 (Mxy = Myy = w = 0)

B11 = D16
∂

∂X
+D66β

∂

∂Y
= D16(D(1) ⊗ eT1 ) +D66β(I ⊗ eT1D(1))

B12 = D26β
∂

∂Y
+D66

∂

∂X
= D26(I ⊗ eT1D(1)) +D66β(D(1) ⊗ eT1 )

B13 = 0

B21 = D12
∂

∂X
+D26β

∂

∂Y
= D12(D(1) ⊗ eT1 ) +D26β(I ⊗ eT1D(1))

B22 = D22β
∂

∂Y
+D26

∂

∂X
= D22(I ⊗ eT1D(1)) +D26β(D(1) ⊗ eT1 )

B23 = 0

B31 = 0

B32 = 0

B33 = (I ⊗ eT1 ) (3.123)

Free (Mxy = Myy = Qy = 0)

B11 = D16
∂

∂X
+D66β

∂

∂Y
= D16(D(1) ⊗ eT1 ) +D66β(I ⊗ eT1D(1))

B12 = D26β
∂

∂Y
+D66

∂

∂X
= D26(I ⊗ eT1D(1)) +D66β(D(1) ⊗ eT1 )

B13 = 0

B21 = D12
∂

∂X
+D26β

∂

∂Y
= D12(D(1) ⊗ eT1 ) +D26β(I ⊗ eT1D(1))

B22 = D22β
∂

∂Y
+D26

∂

∂X
= D22(I ⊗ eT1D(1)) +D26β(D(1) ⊗ eT1 )

B23 = 0

B31 = A45 = A45(I ⊗ eT1 )

B32 = A44 = A44(I ⊗ eT1 )

B33 = γA44
∂

∂Y
+ δA45

∂

∂X
= γA44(I ⊗ eT1D(1)) + δA45(D(1) ⊗ eT1 ) (3.124)

0 is a zeros matrix with order of (N + 1)× (N + 1)2. For describing boundary conditions
at ζ = 1 and η = 1, inside of formula it is enough to replace e1 with e(N+1) and for points
which are imposed by boundary conditions
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Figure 3.15: Boundary condition at ζ = 1

Figure 3.16: Boundary condition at η = 1
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ζ = 0 : (i = 0, j = 0, ..., N)→ ζ = 1 : (i = N, j = 0, ..., N)

η = 0 : (j = 0, i = 1, ..., N − 1)→ η = 1 : (j = N, i = 1, ..., N − 1) (3.125)

For corner points at the cross of two free edges, there is no special condition at the angles
like classical plate theory and fully free condition is like fully simply-supported condition.

3.3.2 Non-symmetric composite laminated rectangular plate

In the case of Non-symmetric composite laminated plates based on first-order shear defor-
mation theory, in-plane displacements (u, v) and out-of-plane displacement (w, φx, φy) are
coupling together. Equation of motion in matrix form of differential operator after nor-
malization using these parameters ζ = x/a, η = y/b, β = a/b, δ = h/a, γ = h/b,W = w/h
can be written as


K11 K12 0 K14 K15

K12 K22 0 K24 K25

0 0 K33 K34 K35

K14 K24 −K34 K44 K45

K15 K25 −K35 K45 K55





u0

v0

w0

φx
φy


= −λ2


M11 0 0 M14 0

0 M11 0 0 M25

0 0 M11 0 0
M14 0 0 M44 0

0 M25 0 0 M44





u0

v0

w0

φx
φy


(3.126)

where stiffness components are as

K11 = A11
∂2

∂x2
+ A66

∂2

∂y2
K12 = (A12 + A66)

∂2

∂x∂y

K14 = B11
∂2

∂x2
+ 2B16

∂2

∂x∂y
K15 = B16

∂2

∂x2
+B26

∂2

∂y2

K22 = A66
∂2

∂x2
+ A22

∂2

∂y2
K24 = B16

∂2

∂x2
+B26

∂2

∂y2

K25 = −B11
∂2

∂y2
+ 2B26

∂2

∂x∂y
K33 = A55

∂2

∂x2
+ A44

∂2

∂y2

K34 = A55
∂

∂x
K35 = A44

∂

∂y

K44 = D11
∂2

∂x2
+D66

∂2

∂y2
− A55 K45 = (D12 +D66)

∂2

∂x∂y

K55 = D66
∂2

∂x2
+D22

∂2

∂y2
− A44 (3.127)

and mass components are as

M11 = I0 M44 = I2 M14 = I1 M25 = I1 (3.128)

where B11 is for cross-ply non-symmetric and B16, B26 are for angle-ply non-symmetric
composite laminated plate.

(I0, I1, I2) =
N∑
k=1

∫ zk+1

zk

ρ(1, z, z2)dz (3.129)
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where Aij is extensional stiffness, Dij is bending stiffness, Bij is bending-extensional
coupling stiffness and I0, I1, I2 are the inertia terms. Hook’s law for the first-order shear
deformation isotropic plate is as

σ = Cε→



σ11

σ22

σ12

σ13

σ23


=


C11 C12 0 0 0
C12 C22 0 0 0
0 0 C66 0 0
0 0 0 C55 0
0 0 0 0 C44





ε11

ε22

ε12

ε13

ε23


(3.130)

For composite laminated plate, matrix of coefficients can be obtained as following

C̃ = TCT ′ =


C̃11 C̃12 C̃16 0 0

C̃12 C̃22 C̃26 0 0

C̃16 C̃26 C̃66 0 0

0 0 0 C̃55 C̃45

0 0 0 C̃45 C̃44

 (3.131)

where transformation matrix is as

T =


cos2 θ sin2 θ −2 sin θ cos θ 0 0
sin2 θ cos2 θ 2 sin θ cos θ 0 0

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ 0 0
0 0 0 cos θ − sin θ
0 0 0 sin θ cos θ

 (3.132)

C̃
(k)
ij are the reduced elastic coefficients of the kth lamina taking into account the angle

of orthotropy θ(k) in each layer.

C11 =
E1

1− ν12ν21

, C12 =
ν21E1

1− ν12ν21

, C22 =
E2

1− ν12ν21

C66 = G12, C55 = G13, C44 = G23 (3.133)

Cij are the engineering parameters.

Using these parameters ζ = x/a (0 ≤ ζ ≤ 1), η = y/b (0 ≤ η ≤ 1),W = w0/h, δ =
w/a, γ = w/b, β = a/b for doing dimensionless.

At ζ = 0, 1

Nxx ∓Kuu0 = 0 Nxy ∓Kvv0 = 0

Qx ∓Kww0 = 0 Mxx ∓Kφxφx = 0 Mxy ∓Kφyφy = 0 (3.134)

At η = 0, 1

Nxy ∓Kuu0 = 0 Nyy ∓Kvv0 = 0

Qy ∓Kww0 = 0 Mxy ∓Kφxφx = 0 Myy ∓Kφyφy = 0 (3.135)
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Figure 3.17: Error of natural frequencies for fully elastic restrained 4 layers cross-ply
composite Mindlin plate

Constraint’s coefficients for all boundary conditions and all edges are as

[K]C =


1e12 1e12 1e12 1e12
1e12 1e12 1e12 1e12
1e12 1e12 1e12 1e12
1e12 1e12 1e12 1e12
1e12 1e12 1e12 1e12

 [K]F =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



[K]S1 =


0 1e12 0 1e12

1e12 0 1e12 0
1e12 1e12 1e12 1e12

0 1e12 0 1e12
1e12 0 1e12 0

 [K]S2 =


1e12 0 1e12 0

0 1e12 0 1e12
1e12 1e12 1e12 1e12

0 1e12 0 1e12
1e12 0 1e12 0

 (3.136)

which rows are corresponded to displacements variables and columns are related to the
edges ζ = 0, η = 0, ζ = 1 and η = 1, respectively.

Solving non-symmetric first-order shear deformation composite plates with all dis-
placements u0, v0, w0, φx, φy coupled, is similar to out-of-plane vibration of first-order
composite laminated plate with variables. All the procedures are the same and just
equation of motion and boundary conditions matrices is 5× 5 instead of 3× 3.

Fig (3.17) shows convergence error of the third natural frequencies of non-symmetric
cross-ply composite laminated first-order shear deformation theory with four layers with
respect to the converged value. As seen, convergence is so fast and with increasing the
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Figure 3.18: Effect of variation of the stiffness parameter on natural frequencies with
different thickness on angle-ply non-symmetric laminated Mindlin plate

Figure 3.19: Effect of variation of the number of layers on natural frequencies with
different thickness on angle-ply non-symmetric laminated Mindlin plate
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Figure 3.20: 2-D Distribution of interior and boundary points of circular and annular plate

Figure 3.21: 1-D distribution of interior and boundary points of circular and annular plate

stiffness parameter K it becomes much more fast. If the value of all stiffness parameters
are the same, increasing this parameter means the boundary condition is fully clamped
and the convergence is fine. But lower quantities of the stiffness parameter means con-
strained boundary conditions and so the convergence is not as fast as clamped boundary
condition. For the stiffness parameter values greater than K = 100, there is no any signifi-
cant change in the graph of variation of natural frequencies with respect to this parameter
as seen in Fig (3.18). In this figure, first, second, fourth and fifth natural frequencies with
two thickness ratio of angle-ply anti-symmetric first-order shear deformation composite
laminated are shown. Also with increasing the thickness ratio, natural frequencies be-
come smaller but remain in the similar behavior. Effect of changing the number of layers
on natural frequencies are shown in Fig (3.19). In this composite laminated plate which is
similar to previous composite in lay-up, with number of layers bigger than six one can not
see remarkable change in variation of natural frequencies with respect to number of layers.

3.3.3 Out-of-plane vibration of annular and circular plates

Consider an annular plate with r radius, inner radius b, outer radius a and β = b/a is
radius ratio. For annular plate (b ≤ r ≤ a) after doing dimensionless with the parameter
R = r/a, range of non-dimensional radius is (β ≤ R ≤ 1). This case is similar to Timo-
shenko beam and w is displacement variable in the thickness direction and ψr is rotation.
Collocation points which are distributed on the annular and circular plates are shown in
Figs. (3.20), interior points are in black and boundary points are in red color, annular
plate (left) and circular plate (right). The location of these points are not really based on
Chebyshev location points and this figure is a schematic figure but Fig (3.21) shows the
real location of collocation points in 1-D dimensional geometry like beam. For annular
plate on inner radius one collocation points is needed and also for outer radius, and for
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circular plate case one point is corresponded to the center point and one point is needed
for outer radius. But it should be considered that in this problem there are two variables
and boundary has four points.

The Governing equations of motion for both annular and circular plate is as

∂Mr

∂r
+

1

r
Mr −Qr =

ρh3

12

∂2ψr
∂t2

∂Qr

∂r
+

1

r
Qr = ρh

∂2w

∂t2
(3.137)

where bending moment and shear force are

Mr = D
(
∂ψr
∂r

+
ν

r
ψr

)
Qr = κ2Gh(ψr +

∂w

∂r
) (3.138)

After substitution and normalization with these parameters

R =
r

a
,W =

w

a
, δ =

h

a
, β =

b

a
(3.139)

Equation of motion in matrix form is as[
K11 K12

K12 K22

]{
ψr
W

}
= −λ2

[
M11 0

0 M22

]{
ψr
W

}
(3.140)

where stiffness components are as

K11 = (R2 ∂2

∂R2
+R

∂

∂R
− 1)− 6κ2(1− ν)R2

δ2

K12 = −6κ2(1− ν)R2

δ2

∂

∂R

K21 = R
∂

∂R
+ 1

K22 = R
∂2

∂R2
+

∂

∂R
(3.141)

and mass components are as

M11 = R2 M22 =
2R

(1− ν)κ2
(3.142)

and also non-dimensional moment and force resultant are

MR = D
(
R
∂ψR
∂R

+ νψR

)
QR = κ2Gh(ψR +

∂w

∂R
) (3.143)
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Avoiding singularity, it is better to multiply each formula by the biggest power of radius.

For annular and circular plate equation of motion should be satisfied for interior
points, ZI ∈ R(N−1)×(N+1) is a matrix correspond to interior points.

ZI =


eT2
eT3
...
eTN

 ZB =

[
eT1

eT(N+1)

]
(3.144)

where ei ∈ R(N+1)×1 is the ith unit vector. This vector is zero in all entries expect for
the ith entry at which it is equal to 1, and matrix ZB ∈ R2×(N+1) corresponding to the
boundary points.

LB =

[
ZIK11Z

T
B ZIK12Z

T
B

ZIK21Z
T
B ZIK22Z

T
B

]
LI =

[
ZIK11Z

T
I ZIK12Z

T
I

ZIK21Z
T
I ZIK22Z

T
I

]
(3.145)

For both circular and annular geometry boundary conditions are implemented as[
B11 B12

B21 B22

]{
ψr
W

}
=

{
0
0

}
(3.146)

The whole set of discretized boundary conditions are expressed in below

[
Bψr Bw

] { ψr
W

}
=

{
0
0

}
(3.147)

where Bψr collects the B11, B21 matrices which are corresponded to the displacement vec-
tor ψr and BW groups the B12, B22 matrices which are corresponded to the displacement
vector W of the inner and outer radius in annular plate, also center point and outer
radius for circular plate, respectively.

BB =
[
BψrZ

T
B BWZ

T
B

]
BI =

[
BψrZ

T
I BWZ

T
I

]
(3.148)

Boundary conditions for annular and circular plates on outer radius are similar.

Boundary conditions at R = 1

Clamped: (ψr = 0,W = 0)

B11 = eT(N+1),B12 = 0

B21 = 0,B22 = eT(N+1) (3.149)
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Simply-supported: (MR = 0,W = 0)

B11 = eT(N+1)(RD
(1)) + νeT(N+1),B12 = 0

B21 = 0,B22 = eT(N+1) (3.150)

Free: (MR = 0, QR = 0)

B11 = eT(N+1)(RD
(1)) + νeT(N+1),B12 = 0

B21 = κ2GheT(N+1),B22 = κ2GheT(N+1)D
(1) (3.151)

Collocation points distribution for annular plates are as: β + (1−β)
2

(1 − cos( iπ
N

) (i =
0, 1, ...N). For applying boundary conditions at R = β, it is enough to replace eT(N+1)

with e1.

Boundary conditions for circular plate which is (0 ≤ R ≤ 1) at center point is as

ψr = 0, ψr +
∂W

∂R
= 0 at R = 0 (3.152)

or in spectral form is as

B11 = eT1 ,B12 = 0

B21 = eT1 ,B22 = eT1D
(1) (3.153)

and the collocation points distribution for circular plates are: 1
2
(1 − cos( jπ

N
)) (j =

0, 1, ...N).

3.3.4 Out-of-plane vibration of sector annular plates

Sector annular plate geometry (see Figure 3.22) is like rectangular plate and all the
procedure of solving is the same. Both of them has two rotations and one displacement.
In this case ψr, ψθ, w are unknown variables. Governing equations for sector annular plate
are following as

∂Mr

∂r
+

1

r

∂Mrθ

∂θ
+

1

r
(Mr −Mθ)−Qr =

ρh3

12

∂2ψr
∂t2

∂Mrθ

∂r
+

1

r

∂Mθθ

∂θ
+

2

r
Mrθ −Qθ =

ρh3

12

∂2ψθ
∂t2

∂Qr

∂r
+

1

r

∂Qθ

∂θ
+

1

r
Qr = ρh

∂2w

∂t2
(3.154)
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Figure 3.22: Sector annular plate geometry

where Mr,Mθ and MRθ are bending moments, and Qr and Qθ are shear forces in radial
and circumferential directions as

Mrr = D
(
∂ψr
∂r

+
ν

r
(ψr +

∂ψθ
∂θ

)
)

Mθθ = D
(

1

r
(ψr +

∂ψθ
∂θ

) + ν
∂ψr
∂r

)
Mrθ =

D

2
(1− ν)

(
1

r
(
∂ψr
∂θ
− ψθ) +

∂ψθ
∂r

)
Qr = κ2Gh(ψr +

∂w

∂r
)

Qθ = κ2Gh(ψθ +
1

r

∂w

∂θ
) (3.155)

Circumferential direction θ can be non-dimensional using Θ = θ/α and so 0 ≤ Θ ≤ 1,
α is angle of the sector annular plate. Radius direction also be non-dimensional using
R = r/a and so β ≤ R ≤ 1. Substituting eq. (3.155) into eq. (3.154), components of eq.
(3.114) are as

K11 = (R2DR(2) ⊗ I) + (RDR(1) ⊗ I)−
(

(I ⊗ I) + F (R2 ⊗ I)
)

+
(1− ν)

2α2
(I ⊗D(2))

K12 =
(1 + ν)

2α
(RDR(1) ⊗D(1))− 3− ν

2α
(I ⊗D(1))

K13 = −F (R2DR(1) ⊗ I)

K21 =
1 + ν

2α
(RDR(1) ⊗D(1)) +

3− ν
2α

(I ⊗D(1))

K22 =
1

α2
(I ⊗D(2)) +

1− ν
2

(R2DR(2) ⊗ I) +
1− ν

2
(RDR(1) ⊗ I)

−
(

1− ν
2

(I ⊗ I) + F (R2 ⊗ I)
)

K23 = −F
α

(R⊗D(1))
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K31 = (R2DR(1) ⊗ I) + (R⊗ I)

K32 =
1

α
(R⊗D(1))

K33 = (R2DR(2) ⊗ I) + (RDR(1) ⊗ I) +
1

α2
(I ⊗D(2)) (3.156)

and

M11 = (R2 ⊗ I) M22 = (R2 ⊗ I) M33 =
2

κ(1− ν)
(R2 ⊗ I) (3.157)

where F = 6κ2(1 − ν)/δ2, δ = h/a and κ2 is shear correction factor. DR(1), DR(2) are
first and second differentiation with respect to radial direction and D(1), D(2) are first and
second differentiation with respect to circumferential direction, respectively.

Boundary conditions: at Θ = 0

Clamped (ψR = ψΘ = W = 0)

B11 = (eT1 ⊗ I) B22 = (eT1 ⊗ I) B33 = (eT1 ⊗ I) (3.158)

Simply-supported (ψR = MΘ = W = 0)

B11 = (eT1 ⊗ I) B21 = ν(eT1DRR1⊗ I) + (eT1 ⊗ I)

B22 = (1/α)(eT1 ⊗D1) B33 = (eT1 ⊗ I) (3.159)

Free (MRΘ = MΘ = QΘ = 0)

B11 = (1/α)(eT1 ⊗D1) B12 = −(eT1 ⊗ I) + (eT1DRR1⊗ I)

B21 = ν(eT1DRR1⊗ I) + (eT1 ⊗ I) B22 = (1/α)(eT1 ⊗D1)

B32 = (eT1 diag(R)⊗ I) B33 = (1/α)(eT1 ⊗D(1)) (3.160)

Boundary conditions at R = β

Clamped (ψR = ψΘ = W = 0)

B11 = (I ⊗ eT1 ) B22 = (I ⊗ eT1 ) B33 = (I ⊗ eT1 ) (3.161)

Simply-supported (MR = ψΘ = W = 0)

B11 = (DRR1⊗ eT1 ) + ν(I ⊗ eT1 ) B12 = ν(I ⊗ eT1D(1))

B22 = (I ⊗ eT1 ) B33 = (I ⊗ eT1 ) (3.162)
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Free (MR = MRΘ = QR = 0)

B11 = (DRR1⊗ eT1 ) + ν(I ⊗ eT1 ) B12 = ν(I ⊗ eT1D(1))

B21 = (1/α)(I ⊗ eT1D1) B22 = −(I ⊗ eT1 ) + (DRR1⊗ eT1 )

B31 = (I ⊗ eT1 ) B33 = (DR(1) ⊗ eT1 ) (3.163)

DRR1 = DR(1) × diag(R). Other unwritten components are zero by order ((N + 1) ×
(N + 1)2). Applying boundary conditions on R = 1 and Θ = 1 is similar to rectangular
plate and it is done by replacing eT1 with eT(N+1).

3.4 In plane vibration

In plane vibration consider the in-plane stresses (σαα, σββ, σαβ) which α and β coordinates
can be of rectangular, circular and annular plate. In plane vibration is not considered the
same as out of plane vibration but it is important in some engineering applications such
as seismic, etc. In this type of problem displacement in the thickness direction of plate is
not considered and the equations of motion correspond to in-plane problem are similar in
all plate’s theory. All vibration problem in this section has two coupled equations with
respect to u and v such as following

[
K11 K12

K21 K22

]{
u0

v0

}
= −λ2

[
M11 M12

M21 M22

]{
u0

v0

}
(3.164)

and matrix of boundary conditions for each edge is as

[
B11 B12

B21 B22

]{
u0

v0

}
=

{
0
0

}
(3.165)

Above equations are solved like section (3.3.1) with one displacement variable less and
two boundary condition for each edge.

3.4.1 Annular and circular plates

The governing equations of motion are as:

∂Nr

∂r
+

1

r

∂Nrθ

∂θ
+

1

r
(Nr −Nθ) = ρh

∂2u

∂t2

∂Nrθ

∂r
+

1

r

∂Nθθ

∂θ
+

2

r
Nrθ = ρh

∂2v

∂t2
(3.166)

Using below equations and after substitution


Nrr

Nrθ

Nθθ

 =
∫ h

2

−h
2


σrr
σrθ
σθθ

 dz

εrr
εθθ
γrθ

 =


∂u
∂r

1
r
(u+ ∂v

∂θ
)

1
r
∂u
∂θ

+ ∂v
∂r
− v

r

 (3.167)
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yield

Er
1− νrνθ

(
∂2u

∂r2
+

1

r

∂u

∂r
+
νθ
r

∂2v

∂r∂θ

)
− Eθ

1− νrνθ

(
u

r2
+

1

r2

∂v

∂θ

)
+

E

2(1 + ν)

(
1

r

∂2v

∂r2
+

1

r2

∂2u

∂θ2
− 1

r2

∂v

∂θ

)
= ρü

E

1− νrνθ

(
νr
r

∂2u

∂r∂θ
+

1

r2

∂2v

∂θ2
+

1

r2

∂u

∂θ

)
+

E

2(1 + ν)

(
1

r

∂v

∂r
+
∂2v

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ
− v

r2

)
= ρv̈ (3.168)

Using above equations, stiffness components are easily obtained and also boundary con-
ditions are the same as in-plane vibration of sector annular plate in section (3.4.5).

3.4.2 Rectangular plates

Matrix components of equation of motion for cross-ply and angle-ply laminated rectan-
gular plate is

K11 = A11(D(2) ⊗ I) + 2A16(D(1) ⊗D(1)) + A66(I ⊗D(2))

K12 = (A12 + A66)(D(1) ⊗D(1)) + A16(D(2) ⊗ I) + A26(I ⊗D(2)) = K21

K22 = 2A26(D(1) ⊗D(1)) + A66(D(2) ⊗ I) + A22(I ⊗D(2)) (3.169)

and

M11 = ρh(I ⊗ I) M22 = ρh(I ⊗ I) (3.170)

Boundary condition at ζ = 0

Clamped (u = v = 0)

B11 = (eT1 ⊗ I) B22 = (eT1 ⊗ I) (3.171)

Simply-supported - type 1 (Nxx = v = 0)

B11 = A11(eT1D
(1) ⊗ I) + A16(eT1 ⊗D(1))

B12 = A12(eT1 ⊗D(1)) + A16(eT1D
(1) ⊗ I) B22 = (eT1 ⊗ I) (3.172)
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Simply-supported - type 2 (u = Nxy = 0)

B11 = (eT1 ⊗ I) B21 = A16(eT1D
(1) ⊗ I) + A66(eT1 ⊗D(1))

B22 = A26(eT1 ⊗D(1)) + A66(eT1D
(1) ⊗ I) (3.173)

Free (Nxx = Nxy = 0)

B11 = A11(eT1D
(1) ⊗ I) + A16(eT1 ⊗D(1)) B12 = A12(eT1 ⊗D(1)) + A16(eT1D

(1) ⊗ I)

B21 = A16(eT1D
(1) ⊗ I) + A66(eT1 ⊗D(1)) B22 = A26(eT1 ⊗D(1)) + A66(eT1D

(1) ⊗ I)

(3.174)

Boundary condition at η = 0

Clamped (u = v = 0):

B11 = (I ⊗ eT1 ) B22 = (I ⊗ eT1 ) (3.175)

Simply-supported - type 1 (u = Nyy = 0)

B11 = (I ⊗ eT1 ) B21 = A12(D ⊗ eT1 ) + A26(I ⊗ eT1D(1))

B22 = A22(I ⊗ eT1D(1)) + A26(D ⊗ eT1 ) (3.176)

Simply-supported - type 2 (Nxy = v = 0)

B11 = A16(D ⊗ eT1 ) + A66(I ⊗ eT1D(1))

B12 = A26(I ⊗ eT1D(1)) + A66(D ⊗ eT1 ) B22 = (I ⊗ eT1 ) (3.177)

Free at (Nxy = Nyy = 0)

B11 = A12(D ⊗ eT1 ) + A26(I ⊗ eT1D(1)) B12 = A22(I ⊗ eT1D(1)) + A26(D ⊗ eT1 )

B21 = A16(D ⊗ eT1 ) + A66(I ⊗ eT1D(1)) B22 = A26(I ⊗ eT1D(1)) + A66(D ⊗ eT1 )

(3.178)

BCs for elastic restrained orthotropic plates in both normal and parallel to the edges:

At x = ∓1

A11
∂u

∂x
+ A12

∂v

∂y
+ A16(

∂u

∂y
+
∂v

∂x
)∓Knu = 0

A16
∂u

∂x
+ A26

∂v

∂y
+ A66(

∂u

∂y
+
∂v

∂x
)∓Kpv = 0 (3.179)
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Figure 3.23: 2-D node distribution with N = 9

At y = ∓1

A12
∂u

∂x
+ A22

∂v

∂y
+ A26(

∂u

∂y
+
∂v

∂x
)∓Knv = 0

A16
∂u

∂x
+ A26

∂v

∂y
+ A66(

∂u

∂y
+
∂v

∂x
)∓Kpu = 0 (3.180)

where Kn, Kp are constrained coefficients normal and parallel to edges, respectively.

Varying elastic restrained:

According to the different varying elastic coefficients of boundaries such as linear and
parabolic, distribution of the elastic restrained along the edges are assumed as k =
kn,p(1− x2) for x side and k = kn,p(1− y2) for y side.

Thus, the parabolic variation of elastic boundary conditions are as follow

at x = ∓1

A11
∂u

∂x
+ A12

∂v

∂y
+ A16(

∂u

∂y
+
∂v

∂x
)∓Kndiag(1− y2)u = 0

A16
∂u

∂x
+ A26

∂v

∂y
+ A66(

∂u

∂y
+
∂v

∂x
)∓Kpdiag(1− y2)v = 0 (3.181)

at y = ∓1

A12
∂u

∂x
+ A22

∂v

∂y
+ A26(

∂u

∂y
+
∂v

∂x
)∓Kndiag(1− x2)v = 0

A16
∂u

∂x
+ A26

∂v

∂y
+ A66(

∂u

∂y
+
∂v

∂x
)∓Kpdiag(1− x2)u = 0 (3.182)

3.4.3 Rectangular plates with mixed boundary conditions

The number of points which are used discretization the boundary conditions in the mixed
boundary case should be equal, although the lengths of the simply supported, clamped or
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Figure 3.24: Skew plate

free portions are not equal. For example if one edge is divided in two parts implementing
the boundary condition including the first 0.5(N+1) rows of the first boundary condition
and the last 0.5(N + 1) rows of the second boundary condition. Number of collocation
points should be odd, thus N should be even like (Figure 3.1) and not the same as (Figure
3.23). Because with odd number of collocation points, one point locates in the middle and
the other points are in the right and left hand side of this point, symmetrically. During
increasing the number of collocation points, location of center point which is being 0.5
is constant and is at the center and location of other points are changed symmetrically
and convergence of the problem is fine. With even number of collocation points there
is no center point and location of all points are changing during increasing N and there
is no good convergence. This problem becomes critical when each edge is divided into
more than two parts. In this case even with odd number of collocation points, there is
no any symmetry. The convergence in these cases are not fine and graphs of convergence
don’t reach to converged value and has fluctuation behavior. Overcoming this problem,
domain decomposition technique is advised. It means that with vertical and horizontal
lines, division points of all edges are connected. i.e. with three division in each edge, there
are nine rectangular parts which should be solved separately and continuity conditions
should apply among all subparts [76, 77, 78]. Continuity conditions include be equal in
displacements, moments and forces.

3.4.4 Skew plates

Consider a skew plate (see Figure 3.24) with length a and width b and skew angle α with
respect to y in the Cartesian coordinate. For generality and convenience, the present
formulation is expressed in dimensionless coordinates using the following relationships

ξ =
1

a
(x− y tanα)

η =
1

b
(y secα) (3.183)
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The skew plate in the (x − y) physical domain is mapped in to a square plate in the
computational (ξ − η) domain (0 ≤ ξ, η ≤ 1) by using the following coordinate mapping

x = x(ξ, η) =
4∑
i=1

Ni(ξ, η)xi

y = y(ξ, η) =
4∑
i=1

Ni(ξ, η)yi (3.184)

where Ni = (1 + ξiξ)(1 + ηiη) is shape function. physical domain coordinates are as

(x1, y1) = (0, 0) (x2, y2) = (a, 0),

(x3, y3) = (a+ b sinα, b cosα) (x4, y4) = (b sinα, b cosα) (3.185)

and also computational domain coordinates are

(ξ1, η1) = (0, 0), (ξ2, η2) = (1, 0),

(ξ3, η3) = (1, 1), (ξ4, η4) = (0, 1) (3.186)

The derivatives of variables with respect to non-dimensional variables (ξ, η) are written
as

(.)/ξ = x/ξ(.)/x + y/ξ(.)/y

(.)/η = x/η(.)/x + y/η(.)/y

(.)/ξξ = [x/ξ(.)/x + y/ξ(.)/y]/ξ

(.)/ξη = [x/η(.)/x + y/η(.)/y]/ξ

(.)/ηη = [x/η(.)/x + y/η(.)/y]/η (3.187)

and in matrix form are as{
(.)/ξ
(.)/η

}
= J11

{
(.)/x
(.)/y

} 
(.)/ξξ
(.)/ηη
(.)/ξη

 = J22


(.)/xx
(.)/yy
(.)/xy

+ J21

{
(.)/x
(.)/y

}
(3.188)

where

J11 =

[
x/ξ y/ξ
x/η y/η

]
, J21 =

 x/ξξ y/ξξ
x/ηη y/ηη
x/ξη y/ξη



J22 =

 x2
/ξ y2

/ξ 2x/ξy/ξ
x2
/η y2

/η 2x/ηy/η
x/ξx/η y/ξy/η x/ηy/ξ + x/ξy/η

 (3.189)

Inverse relations of the matrix transformation are in the following as{
(.)/x
(.)/y

}
= J−1

11

{
(.)/ξ
(.)/η

}


(.)/xx
(.)/yy
(.)/xy

 = J−1
22


(.)/ξξ
(.)/ηη
(.)/ξη

− J−1
22 J21J

−1
11

{
(.)/ξ
(.)/η

}
(3.190)
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where

J−1
11 =

[
1
a

0
− 1
a

tan(α) 1
b

1
cos(α)

]
, J21 =

 0 0
0 0
0 0



J−1
22 =


1
a2 0 0

1
a2 tan2(α) 1

b2
1

cos2(α)
− 2
ab

tan(α)
cos(α)

− 1
a2 tan(α) 0 1

ab
1

cos(α)

 (3.191)

For skew plates all components of matrix J21 are zero but for quadrilateral plates they
are not all zero. Matrix components of equation of motion are as

K11 = (A11 + A66 tan2 α)
∂2

∂ξ2
+ A66φ

2 sec2 α
∂2

∂η2
− 2A66φ

tanα

cosα

∂2

∂ξ∂η

K12 = (A12 + A12)[φ secα
∂2

∂ξ∂η
− tanα

∂2

∂ξ2
]

K21 = K12

K22 = (A66 + A22 tan2 α)
∂2

∂ξ2
+ A22φ

2 sec2 α
∂2

∂η2
− 2A22φ

tanα

cosα

∂2

∂ξ∂η
(3.192)

where A11 = A22 = E/(1− ν2), A12 = νE/(1− ν2), A66 = E/2(1 + ν), φ = a/b.

After applying spectral collocation method on the operators of equations of motion,
yield

K11 = (A11 + A66 tan2 α)(D2⊗ I) + A66φ
2 sec2 α(I ⊗D2)− 2A66φ

tanα

cosα
(D1⊗D1)

K12 = (A12 + A66)
(
φ secα(D1⊗D1)− tanα(D2⊗ I)

)
K21 = K12

K22 = (A66 + A22 tan2 α)(D2⊗ I) + A22φ
2 sec2 α(I ⊗D2)− 2A22φ

tanα

cosα
(D1⊗D1)

(3.193)

and

M11 = ρh(I ⊗ I) M22 = ρh(I ⊗ I) (3.194)

where λ2 = ρa2ω2(1− ν2)/4E.

Boundary conditions at ζ = 0

Clamped (u = v = 0)

B11 = nx(e
T
1 ⊗ I),B12 = ny(e

T
1 ⊗ I),B21 = ny(e

T
1 ⊗ I),B22 = −nx(eT1 ⊗ I) (3.195)
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Free (Nxx = Nxy = 0)

B11 = [(A11nx
2 + A12ny

2)− 2A66nxny tanα](eT1D
(1) ⊗ I) + 2φ secαA66nxny(e

T
1 ⊗D(1))

B12 = [− tanα(A12nx
2 + A22ny

2) + 2A66nxny](e
T
1D

(1) ⊗ I)

+φ secα(A12nx
2 + A22ny

2)(eT1 ⊗D(1))

B21 = [(A22 − A11)nxny − tanαA66(nx
2 − ny2)](eT1D

(1) ⊗ I)

+φ secαA66(nx
2 − ny2)(eT1 ⊗D(1))

B22 = [− tanα(A22 − A12)nxny + A66(nx
2 − ny2)](eT1D

(1) ⊗ I)

+φ secα(A22 − A12)nxny(e
T
1 ⊗D(1)) (3.196)

Simply-supported - type 1 (v = Nxx = 0)

B11 = ny(e
T
1 ⊗ I),B12 = −nx(eT1 ⊗ I),B21 = Bfree11 ,B22 = Bfree12 (3.197)

Simply-supported - type 2 (u = Nxy = 0)

B11 = nx(e
T
1 ⊗ I),B12 = ny(e

T
1 ⊗ I),B21 = Bfree21 ,B22 = Bfree22 (3.198)

Boundary conditions at η = 0

Clamped (u = v = 0)

B11 = nx(I ⊗ eT1 ),B12 = ny(I ⊗ eT1 ),B21 = ny(I ⊗ eT1 ),B22 = −nx(I ⊗ eT1 ) (3.199)

Free (Nxx = Nxy = 0)

B11 = [(A11nx
2 + A12ny

2)− 2A66nxny tanα](D(1) ⊗ eT1 ) + 2φ secαA66nxny(I ⊗ eT1D(1))

B12 = [− tanα(A12nx
2 + A22ny

2) + 2A66nxny](D
(1) ⊗ eT1 )

+φ secα(A12nx
2 + A22ny

2)(I ⊗ eT1D(1))

B21 = [(A22 − A11)nxny − tanαA66(nx
2 − ny2)](D(1) ⊗ eT1 )

+φ secαA66(nx
2 − ny2)(I ⊗ eT1D(1))

B22 = [− tanα(A22 − A12)nxny + A66(nx
2 − ny2)](D(1) ⊗ eT1 )

+φ secα(A22 − A12)nxny(I ⊗ eT1D(1)) (3.200)
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Simply-supported - type 1 (v = Nxx = 0)

B11 = ny(I ⊗ eT1 ),B12 = −nx(I ⊗ eT1 ),B21 = Bfree11 ,B22 = Bfree12 (3.201)

Simply-supported - type 2 (u = Nxy = 0)

B11 = nx(I ⊗ eT1 ),B12 = ny(I ⊗ eT1 ),B21 = Bfree21 ,B22 = Bfree22 (3.202)

3.4.5 Sector annular plates

Consider a sector annular plate with inner radius a and outer radius b with angle α and
aspect ratio β which is a/b. The governing equations in the matrix form of differential
operator are

K11 = R2 ∂2

∂R2
+R

∂

∂R
− 1 +

1− ν
2α2

∂2

∂θ2

K12 =
1 + ν

2α
R

∂2

∂R∂θ
− 3− ν

2α

∂

∂θ

K21 =
1 + ν

2α
R

∂2

∂R∂θ
+

3− ν
2α

∂

∂θ

K22 =
(1− ν)

2
R2 ∂2

∂R2
+

1− ν
2

R
∂

∂R
+

1

α2

∂2

∂θ2
− 1− ν

2
(3.203)

Distribution of the collocation points in the computational domain of sector annular plate
is in two direction, one is in radial direction which is in the range of (β, 1), and the other
one is in circumferential direction which is in the range of (0, 1). In-plane forces are as

NRR =
Eh

(1− ν2)

(
∂u

∂R
+
ν

R
(u+

∂v

∂θ
)
)

Nθθ =
Eh

(1− ν2)

(
1

R
(u+

∂v

∂θ
) + ν

∂u

∂R

)
NRθ =

Eh

2(1 + ν)

(
1

R
(
∂u

∂θ
− v) +

∂v

∂R

)
(3.204)

After applying spectral collocation method, yield

K11 = (R2DR(2) ⊗ I) + (RDR(1) ⊗ I)− (I ⊗ I) +
1− ν
2α2

(I ⊗D2)

K12 =
1 + ν

2α
(RDR(1) ⊗D1)− 3− ν

2α
(I ⊗D1)

K21 = K12

K22 =
(1− ν)

2
(R2DR(2) ⊗ I) +

1− ν
2

(RDR(1) ⊗ I) +
1

α2
(I ⊗D2)− 1− ν

2
(I ⊗ I)

(3.205)
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and

M11 = ρh(R2 ⊗ I) M22 = ρh(R2 ⊗ I) (3.206)

Boundary conditions at R = β

Clamped (u = v = 0):

B11 = (eT1 ⊗ I) B22 = (eT1 ⊗ I) (3.207)

Simply-Supported (NRR = v = 0)

B11 = (eT1DRR1⊗ I) + ν(eT1 ⊗ I) B12 =
ν

α
(eT1 ⊗D(1)) B22 = eT1 (3.208)

Free (NRR = NRθ = 0)

B11 = (eT1DRR1⊗ I) + ν(eT1 ⊗ I) B12 =
ν

α
(eT1 ⊗D(1))

B21 =
1

α
(eT1 ⊗D(1)) B22 = −(eT1 ⊗ I) + (eT1RDR

(1) ⊗ I) (3.209)

Boundary condition at Θ = 0

Clamped (u = v = 0)

B11 = (I ⊗ eT1 ) B22 = (I ⊗ eT1 ) (3.210)

Simply-Supported (u = Nθθ = 0)

B11 = eT1 B21 = (I ⊗ eT1 ) + ν(RDR1⊗ eT1 )

B22 =
1

α
(I ⊗ eT1D(1)) (3.211)

Free (NRθ = Nθθ = 0)

B11 =
1

α
(I ⊗ eT1D(1)) B12 = −(I ⊗ eT1 ) + (RDR1⊗ eT1 )

B21 = (I ⊗ eT1 ) + ν(RDR1⊗ eT1 ) B22 =
1

α
(I ⊗ eT1D(1)) (3.212)
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Figure 3.25: Undeformed and deformed in the thickness direction under third-order shear deformation
assumption

3.5 Third-order shear deformation plate theory

The third-order shear deformation plate theory (TSDT) which is known to Reddy plate
theory is similar to classical and first-order plate theories, except that we relax the as-
sumption for straightness and normality of a transverse normal after deformation by
expanding the displacements (u, v, w) as cubic functions of the thickness coordinate (see
Figure 3.25). Consider the displacements field as

u = u0 + zφx + z2θx + z3χx

v = v0 + zφy + z2θy + z3χy

w = w0 (3.213)

where (φx, φy), (θx, θy) and (χ,χy) are functions to be determined. Clearly we have

u0 = u(x, y, 0, t) v0 = v(x, y, 0, t) w0 = w(x, y, 0, t)

φx =
(
∂u

∂z

)
z=0

φy =
(
∂v

∂z

)
z=0

2θx =
(
∂2u

∂z2

)
z=0

2θy =
(
∂2v

∂z2

)
z=0

6χx =
(
∂3u

∂z3

)
z=0

6χy =
(
∂3v

∂z3

)
z=0

(3.214)

There are nine dependent unknowns, and the theory derived using the displacement field
will result in nine second-order partial differential equations. The number of dependent
unknowns can be reduced by imposing certain conditions. Suppose that we wish to
impose traction-free boundary conditions on the top an bottom faces of the laminate

σxz(x, y,±h, t) = 0 σyz(x, y,±h, t) = 0 (3.215)
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Expressing the above conditions in terms of strains, we have

0 = σxz(x, y,±h, t) = Q55γxz(x, y,±h, t) +Q45γyz(x, y,±h, t)
0 = σyz(x, y,±h, t) = Q45γxz(x, y,±h, t) +Q44γyz(x, y,±h, t) (3.216)

which in turn requires, for arbitrary Cij(i, j = 4, 5)

0 = γxz(x, y,±h, t) = Qx +
∂w0

∂x
+
(

2zθx + 3z2χx

)
z=±h/2

0 = γyz(x, y,±h, t) = Qy +
∂w0

∂y
+
(

2zθy + 3z2χy

)
z=±h/2

(3.217)

Thus, we have

Qx +
∂w0

∂x
+
(
− hθx + 3h2/4χx

)
= 0, Qx +

∂w0

∂x
+
(
hθx + 3h2/4χx

)
= 0

Qy +
∂w0

∂y
+
(
− hθy + 3h2/4χy

)
= 0, Qy +

∂w0

∂y
+
(
hθy + 3h2/4χy

)
= 0

(3.218)

or

χx = −4/3h2(Qx +
∂w0

∂x
), θx = 0, χy = −4/3h2(Qy +

∂w0

∂y
), θy = 0 (3.219)

The supposed displacements field now can be expressed in terms of u0, v0, w0, φx, φy as

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t)− c1z
3(φx +

∂w0

∂x
)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t)− c1z
3(φy +

∂w0

∂y
)

w(x, y, z, t) = w0(x, y, t) (3.220)

where φx, φy is rotation of normal to the middle surface with respect to thickness direc-
tion. The equations of motion of the first-order theory can be derived from the present
third-order theory by setting c1 = 0, and classical theory also can be derived by replacing
φx with −∂w0

∂x
and also φy with −∂w0

∂y
, and similar to first-order theory εzz = 0.

Strain-displacement relations are as
εxx
εyy
εxy

 =


ε(0)
xx

ε(0)
yy

ε(0)
xy

+ z


ε(1)
xx

ε(1)
yy

ε(1)
xy

+ z3


ε(3)
xx

ε(3)
yy

ε(3)
xy


=


∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x

+ z


∂φx
∂x
∂φy
∂y

∂φx
∂y

+ ∂φy
∂x

− c1z
3


∂φx
∂x

+ ∂2w0

∂x2

∂φy
∂y

+ ∂2w0

∂y2

∂φx
∂y

+ ∂φy
∂x

+ 2∂
2w0

∂x∂y

{
γxz
γyz

}
=

{
γ(0)
xz

γ(0)
yz

}
+ z2

{
γ(2)
xz

γ(2)
yz

}

=

{
φx + ∂w0

∂x

φy + ∂w0

∂y

}
− c2z

2

{
φx + ∂w0

∂x

φy + ∂w0

∂y

}
(3.221)
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where c1 = 4/3h2 and c2 = 3c1.

The stress resultants are related to the strains by the relations



Nxx

Nyy

Nxy

Mxx

Myy

Mxy

Pxx
Pyy
Pxy



=



A11 A12 A16 B11 B12 B16 E11 E12 E16

A12 A22 A26 B12 B22 B26 E12 E22 E26

A16 A26 A66 B16 B26 B66 E16 E26 E66

B11 B12 B16 D11 D12 D16 F11 F12 F16

B12 B22 B26 D12 D22 D26 F12 F22 F26

B16 B26 B66 D16 D26 D66 F16 F26 F66

E11 E12 E16 F11 F12 F16 H11 H12 H16

E12 E22 E26 F12 F22 F26 H12 H22 H26

E16 E26 E66 F16 F26 F66 H16 H26 H66





ε(0)
xx

ε(0)
yy

ε(0)
xy

ε(1)
xx

ε(1)
yy

ε(1)
xy

ε(3)
xx

ε(3)
yy

ε(3)
xy



Qx

Qy

Rx

Ry


=


A55 A45 D55 D45

A45 A44 D45 D44

D55 D45 F55 F45

D45 D44 F45 F44





γ(0)
xz

γ(0)
yz

γ(2)
xz

γ(2)
yz


(3.222)

For in-plane or out-of-plane analysis separately all Bij and Eij coefficients should be zero
and so the in-plane equations are as


Nxx

Nyy

Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66



ε(0)
xx

ε(0)
yy

ε(0)
xy

 (3.223)

and also out-of-plane equation of motion are as{
{M}
{P}

}
=

[
[ D ] [ F ]
[ F ] [ H ]

]{
{ε(1)}
{ε(3)}

}
{
{Q}
{R}

}
=

[
[ A ] [ D ]
[ D ] [ F ]

]{
{γ(0)}
{γ(2)}

}
(3.224)

where elastic coefficients are as

(Aij, Bij, Dij, Eij, Fij, Hij) =
N∑
k=1

∫ zk+1

zk

C̃ij(1, z, z
2, z3, z4, z6)dz (i, j) = 1, 2, 6

(Aij, Dij, Fij) =
N∑
k=1

∫ zk+1

zk

C̃ij(1, z
2, z4)dz (i, j) = 4, 5 (3.225)

Substituting eqs. (3.220) and (3.221) into the eq. (3.14) and integration by part, Euler-
lagrange equations of the theory are obtained by setting the coefficients of δu0, δv0, and
δw0 equal to zero separately as follow
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δu0 :
∂Nxx

∂x
+
∂Nxy

∂y
= I0ü+ J1φ̈x + c1I3

∂ẅ0

∂x

δv0 :
∂Nxy

∂x
+
∂Nyy

∂y
= I0v̈ + J1φ̈y + c1I3

∂ẅ0

∂y

δw0 :
∂Q̄x

∂x
+
∂Q̄y

∂y
+ c1(

∂Pxx
∂x2

+ 2
∂Pxy
∂x∂y

+
∂Pyy
∂y2

) + q = I0ẅ0 − c2
1I6(

∂2ẅ0

∂x2
+
∂2ẅ0

∂y2
)

+c1

(
I3(

ü

∂x
+

v̈

∂y
) + I4(

φ̈x
∂x

+
φ̈y
∂y

)
)

δφx :
∂M̄xx

∂x
+
∂M̄xy

∂y
− Q̄x = J1ü+K2φ̈x − c1J4

∂ẅ0

∂x

δφy :
∂M̄xy

∂x
+
∂M̄yy

∂y
− Q̄y = J1v̈ +K2φ̈y − c1J4

∂ẅ0

∂y

(3.226)

where 
Nαβ

Mαβ

Pαβ

 =
∫ h

2

−h
2

σαβ


1
z
z3

 dz,
{
Qα

Rα

}
=
∫ h

2

−h
2

σαz

{
1
z2

}
dz

M̄αβ = Mαβ − c1Pαβ(α, β = 1, 2, 6), Q̄α = Qα − c1Rα(α = 4, 5)

Ji = Ii − c1Ii+2, K2 = I2 − 2c1I4 + c2
1I6

Ii =
N∑
k=1

∫ zk+1

zk

ρ(k)(z)idz (i = 0, 1, ..., 6) (3.227)

The governing equations of motion for out-of-plane symmetric composite laminated based
on Reddy plate theory in matrix form is as

 K11 K12 K13

K21 K22 K23

K31 K32 K33



φx
φy
w0

 = −λ2

 M11 M12 M13

−M12 M22 0
−M13 0 M22



φx
φy
w0

 (3.228)

Stiffness and mass components are as

K11 =
(
A45 − 6c1D45 − 9c2

1F45

)
∂2

∂x2
+
(
A55 − 6c1D55 − 9c2

1F55

+A44 − 6c1D44 + 9c2
1F44

)
∂2

∂x∂y
+
(
A45 − 6c1D45 − 3c1F45

)
∂2

∂y2

−c2
1

(
H11

∂4

∂x4
+ 2(H12 + 2H66)

∂4

∂x2∂y2
+H22

∂4

∂y4
+ 4H16

∂4

∂x3∂y

+4H26
∂4

∂x∂y3

)
K12 =

(
A45 − 6c1D45 + 9c2

1F45

)
∂

∂x
+
(
A44 − 6c1D44 + 9c2

1F44

)
∂

∂y

+c1

(
(F11 − c1H11)

∂3

∂x3
+ (F26 − c1H26)

∂3

∂y3
+ (2F66 − 2c1H66
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+F12 − c1H12)
∂3

∂x∂y2
+ 3(F16 − c1H16)

∂3

∂x2∂y

)
K13 =

(
A55 − 6c1D55 + 9c2

1F55

)
∂

∂x
+
(
A45 − 6c1D45 + 9c2

1F45

)
∂

∂y

+c1

(
(F16 − c1H16)

∂3

∂x3
+ (F22 − c1H22)

∂3

∂y3
+ 2(F26 − c1H26)

∂3

∂x∂y2

+(F12 − c1H12 + 2F66 − 2c1H66)
∂3

∂x2∂y

)

K21 = −c1

(
(F11 − c1H11)

∂3

∂x3
+ (2F66 − c1H66 + F12 − c1H12)

∂3

∂x∂y2

+3(F16 − c1H16)
∂3

∂x2∂y
+ (F26 − c1H26)

∂3

∂y3

)
+
(
− A45 + 6c1D45

−9c2
1F45

)
∂

∂x
+
(
− A55 + 6c1D55 − 9c2

1F55

)
∂

∂y

K22 =
(

(D11 − c1F11)− c1(F11 − c1H11)
)
∂2

∂x2
+ 2

(
(D16 − c1F16)

−c1(F16 − c1H16)
)

∂2

∂x∂y
+
(

(D66 − c1F66)− c1(F66 − c1H66)
)
∂2

∂y2

+
(
− A45 + 6c1D45 − 9c2

1F45

)
K23 =

(
(D16 − c1F16)− c1(F16 − c1H16)

)
∂2

∂x2
+
(

(D12 − c1F12)

−c1(F12 − c1H12) + (D66 − c1F66)− c1(F66 − c1H66)
)

∂2

∂x∂y

+
(

(D26 − c1F26)− c1(F26 − c1H26)
)
∂2

∂y2
+
(
− A55 + 6c1D55 − 9c2

1F55

)

K31 = −c1

(
(F16 − c1H16)

∂3

∂x3
+ 3(F26 − c1H26)

∂3

∂x∂y2
+ (F12 − c1H12

+2F66 − 2c1H66)
∂3

∂x2∂y
+ (F22 − c1H22)

∂3

∂y3

)
+
(
− A44 + 6c1D44

−9c2
1F44

)
∂

∂x
+
(
− A45 + 6c1D45 − 9c2

1F45

)
∂

∂y

K32 =
(

(D16 − c1F16)− c1(F16 − c1H16)
)
∂2

∂x2
+
(

(D66 − c1F66)

−c1(F66 − c1H66) + (D12 − c1F12)− c1(F12 − c1H12)
)

∂2

∂x∂y

+
(

(D26 − c1F26)− c1(F26 − c1H26)
)
∂2

∂y2
+
(
− A44 + 6c1D44 − 9c2

1F44

)

K33 =
(

(D66 − c1F66)− c1(F66 − c1H66)
)
∂2

∂x2
+ 2

(
(D26 − c1F26)

−c1(F26 − c1H26)
)

∂2

∂x∂y
+
(

(D22 − c1F22)− c1(F22 − c1H22)
)
∂2

∂y2

+
(
− A45 + 6c1D45 − 9c2

1F45

)
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and

M11 = I0 − c2
1I6(

∂2

∂x2
+

∂2

∂y2
) M22 = K2 M12 = c1J4

∂

∂x
M13 = c1J4

∂

∂y
(3.229)

where λ = a/b is aspect ratio, h is plate thickness and ω is natural frequency.

Solving out-of-plane vibration of third-order shear deformation symmetry composite
plate follows the solving procedure of first-order shear deformation symmetry composite
plate with the same distribution of collocation points for interior and boundary points.

Boundary conditions at ζ = 0

Clamped (φx = φy = w = 0)

B11 = (eT1 ⊗ I) B22 = (eT1 ⊗ I) B33 = (eT1 ⊗ I) (3.230)

Simply-supported (Mxx = φy = w = 0)

B11 = D11(eT1D
(1) ⊗ I)− c1(eT1D

(1) ⊗ I)

B12 = βD12(eT1 ⊗D(1))− c1F12(eT1 ⊗D(1))

B13 = −c1F11δ(e
T
1D

(2) ⊗ I)− c1F12γ(eT1 ⊗D(2))

B22 = (eT1 ⊗ I)

B33 = (eT1 ⊗ I) (3.231)

Boundary conditions at η = 0

Clamped (φx = φy = w = 0)

B11 = (I ⊗ eT1 ) B22 = (I ⊗ eT1 ) B33 = (I ⊗ eT1 ) (3.232)

Simply-supported (φx = Myy = w = 0)

B11 = (I ⊗ eT1 )

B21 = D12(D(1) ⊗ eT1 )− c1F12(D(1) ⊗ eT1 )

B22 = βD22(I ⊗ eT1D(2))− c1F22(I ⊗ eT1D(1))

B23 = −c1F12δ(D
(2) ⊗ eT1 )− c1F22γ(I ⊗ eT1D(2))

B33 = (I ⊗ eT1 ) (3.233)
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For corner points at interaction of two free edges, there is no special condition at the
angles like classical plate theory and similar to first-order shear deformation theory of
plate fully free condition is like fully simply-supported boundary condition.

Table (3.9) is shown natural frequencies for annular thin plate for many boundary
conditions in terms of β which inner radius is divided by total radius. Increasing β for
all boundaries cause to growing the natural frequencies and results compared with GDQ
method.

Results for isotropic thick plate and considering many boundary conditions are tab-
ulated in table (3.10). Presented results are compared with the results obtained with
boundary characteristics orthogonal polynomials.

Table (3.11) is shown natural frequency of non-symmetric composite laminated mod-
erately thick plate in the case of fully clamped and fully simply supported and results
are compared with Ritz method.

Table (3.12) is shown natural frequency of symmetric composite laminated moder-
ately thick plate with constrained boundaries in terms of different stiffness coefficients
and results are compared with GDQ method. For constant elastic restrained coefficients
with increasing the thickness of plate, natural frequencies decreased and with in the case
of constant thickness, natural frequencies increased as elastic restrained coefficients is
increased.

In table (3.13) results for non-symmetric composite laminated thick and thin plates
for simply supported condition are evaluated for both cross-ply and angle-ply laminated
and are compared with Navier solution. Similar to previous table with increasing the
thickness of plate, natural frequency decreased.

Natural frequencies with all elastic restrained boundaries and not all edges constrained
for non-symmetric both cross-ply and angle-ply lay-up are tabulated in tables (3.14) and
(3.15), respectively. For all boundaries,lay-up and thickness, increasing the constrained
coefficients cause to increasing the natural frequencies and for constant stiffness coeffi-
cients with increasing the thickness, frequencies decreased.

Table (3.16) is shown frequencies of non-symmetric composite laminated thick plate
in the case of fully free condition for both cross-ply and angle-ply laminated. Frequencies
increased as the number of layers of composite is increased but as seen after six layers
there is no any significant change on frequencies.

Results for isotropic thick circular plate of all boundaries are tabulated in table
(3.17). Results are compared with pseudospectral [99] and also differential quadrature
[98] method. Similar to previous understanding with increasing the thickness, frequencies
decreased.

In table (3.18) results for isotropic annular thick plate and all boundary conditions
are tabulated and compared with GDQ method and the same results tell us frequency
increased as thickness is decreased.
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Results for isotropic sector annular thick plate for all boundaries are shown in table (3.19)
and compared with GDQ method. As seen they are in a good agreement.

Results for in-plane vibration of rectangular plate for many boundary condition are
tabulated in tables (3.20) and (3.21) and compared with Trigonometric Ritz [69] method
and analytical solution [68], respectively.

Results for isotropic thick skew plate subjected to fully clamped and fully simply-
supported are tabulated in table (3.22) and compared with differential quadrature method
and with increasing the skew angle, natural frequencies increased.

Table (3.23) is included results of in-plane isotropic skew plate for fully clamped,
CCCF and CFFF which are compared with modified Ritz method and with increasing
the skew angle, natural frequencies get increased.

Table (3.24) and (3.25) are included results for isotropic in-plane skew plate for many
boundary conditions. Generally, natural frequencies with increasing of skew angle, in-
creased but in the case of simply supported type-1, fundamental frequency decreased,
and also for fully free most of them but not all of the frequencies decreased. For the cases
of S1CS1C and S2FS2F also fundamental frequency get decreased and for S1CS1F case
second frequency get decreased. But in some modes it is oscillated, it means that at first
it is decreasing and after that it is increasing or vice-versa.

Results for isotropic in-plane sector annular plate for fully clamped, CCCF and CFCF
conditions are shown in table (3.26) and results are compared with modified Ritz method
and also with increasing the angle of sector annular plate, natural frequencies decreased.
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Table 3.9: Non-dimensional natural frequencies of the Kirchhoff annular plate, λ =

ωR2
√

ρh
D

BCs Author β ω1 ω2 ω3 ω4 ω5

CC Present 0.1 27.281 75.366 148.21 245.48 367.18
[98] 27.280 75.364 148.21 245.34 367.14
Present 0.5 89.251 246.34 483.22 799.02 1193.8
[98] 89.248 246.33 483.16 798.89 1193.5

CS Present 0.1 17.789 60.144 126.88 218.06 333.65
[98] 17.789 60.143 126.88 218.05 333.63
Present 0.5 59.820 198.05 415.16 711.23 1086.3
[98] 59.819 198.04 415.12 711.12 1086.0

SC Present 0.1 22.701 65.639 132.90 224.42 340.28
[98] 22.701 65.538 132.89 224.41 340.26
Present 0.5 63.973 202.07 419.23 715.33 1090.4
[98] 63.972 202.06 419.19 715.22 1090.1

SS Present 0.1 14.485 51.781 112.99 198.45 308.23
[98] 14.485 51.781 112.99 198.44 308.21
Present 0.5 40.043 158.64 356.09 632.46 987.79
[98] 40.043 158.64 356.06 632.39 987.60

FF Present 0.1 8.7745 38.236 89.026 162.85 260.49
[98] 8.7745 38.235 89.025 162.85 260.48
Present 0.5 9.3135 92.308 249.39 486.20 801.96
[98] 9.3135 92.306 249.37 486.16 801.85

CF Present 0.1 4.2374 25.262 73.901 146.69 243.96
[98] 4.2374 25.262 73.899 146.69 243.94
Present 0.5 13.024 85.033 243.69 480.45 796.25
[98] 13.024 85.031 243.68 480.40 796.12

FC Present 0.1 10.159 39.521 90.445 164.31 261.98
[98] 10.159 39.521 90.443 164.30 261.96
Present 0.5 17.715 93.847 252.19 488.94 804.73
[98] 17.714 93.845 252.18 488.89 804.59

SF Present 0.1 3.4497 20.889 64.202 131.40 222.91
[98] 3.4497 20.889 64.201 131.40 222.90
Present 0.5 4.1210 61.009 199.35 416.47 712.56
[98] 4.1210 61.008 199.34 416.44 712.47

FS Present 0.1 4.8532 29.438 74.823 142.84 234.51
[98] 4.8533 29.438 74.822 142.84 234.50
Present 0.5 5.0768 65.842 203.84 420.90 716.94
[98] 5.0769 65.841 203.83 420.87 716.85
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Table 3.10: Non-dimensional natural frequencies of the square isotropic Mindlin plate,

λ = ωa2
√

ρh
D

BCs Author ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SSSS Present 1.9310 4.6048 4.6048 7.0637 8.6048 8.6048 10.792 10.792
[125] 1.931 4.605 4.605 7.064 8.605 8.605 10.792 10.792

CCCC Present 3.2918 6.2755 6.2755 8.7924 10.355 10.454 12.522 12.522
[125] 3.292 6.276 6.276 8.792 10.356 10.455 12.523 12.523

SCSC Present 2.6996 4.9710 5.9899 7.9722 8.7866 10.248 11.332 12.022
[125] 2.7 4.971 5.990 7.972 8.787 10.249 11.333 12.023

CFCF Present 2.0883 2.4313 3.9012 5.3304 5.7711 6.9288 7.2916 9.6027
[125] 2.088 2.431 3.901 5.331 5.771 6.929 7.292 9.603

SSFF Present 0.3328 1.6773 1.8743 3.5568 4.7184 4.9451 6.4716 6.6308
[125] 0.333 1.677 1.874 3.557 4.718 4.945 6.472 6.631

CFFF Present 0.3475 0.8163 2.0343 2.5824 2.8595 4.8110 5.4769 5.7717
[125] 0.348 0.816 2.034 2.582 2.860 4.811 5.477 5.772

FFFF Present 1.2882 1.9190 2.3626 3.2325 3.2325 5.6043 5.6043 5.6397

Table 3.11: Non-dimensional natural frequencies of the non-symmetric composite lami-
nated Mindlin plate, h/a = 0.1, λ = ωa2h/π2

√
ρ
E2

Lay-up BCs Author ω1 ω2 ω3 ω4 ω5 ω6 ω7

(0/90)2 CCCC Present 2.3946 3.9504 3.9558 5.0663 5.9660 5.9771 6.7673
[116] 2.3947 3.9532 3.9532 5.0665 5.9680 5.9757 6.7679

SSSS1 Present 1.5118 2.4652 2.4652 3.3890 3.3917 4.5677 4.9285
[116] 1.5119 2.4656 2.4656 3.3904 3.3904 4.5679 4.9312

(45/-45)2 CCCC Present 2.2963 3.8894 3.8942 5.3041 5.7445 5.8193 6.9602
[116] 2.2964 3.8919 3.8919 5.3042 5.7449 5.8196 6.9647

SSSS1 Present 1.9169 3.4859 3.5148 3.5297 5.1349 5.4749 5.5249
[116] 1.9171 3.4869 3.5290 3.5290 5.1351 5.4942 5.5251

Table 3.12: Non-dimensional natural frequencies of the Mindlin composite plate (0, 90, ...)

with elastic edges, λ = ωa2
√
ρh/D11

BCs Layers K δ Author ω1 ω2 ω3 ω4 ω5

(ERT )4 9 100 0.2 Present 1.1235 1.7134 1.7635 2.1908 2.5322
[115] 1.1236 1.7134 1.7636 2.1909 2.5323

100 0.001 Present 1.8095 2.5702 2.7234 3.3060 4.6721
[115] 1.8096 2.5703 2.7234 3.3061 4.6721

(S-ER)2 5 10 0.1 Present 10.867 19.381 22.796 27.992 30.177
[115] 10.867 19.382 22.796 27.992 30.178

100 0.1 Present 11.141 19.656 22.922 28.176 30.356
[115] 11.142 19.657 22.923 28.176 30.357
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Table 3.13: Non-dimensional natural frequencies of the Mindlin laminated composite

plate, simply supported, E1/E2 = 40, λ = ωa2/h
√
ρ/E2

Lay-up h/a Author ω1 ω2 ω3 ω4 ω5 ω6

0/90 0.1 Present 10.464 24.236 24.236 25.393 25.712 35.237
[111] 10.473

0.01 Present 11.298 31.428 31.439 45.080 67.225 67.286
[111] 11.299

45/-45 0.1 Present 13.027 26.786 26.962 34.224 41.190 44.370
[111] 13.043

0.01 Present 14.618 33.726 33.731 58.239 62.699 62.699
[111] 14.618

Table 3.14: Non-dimensional natural frequencies of non-symmetric composite laminated
Mindlin plate (0/90)3, λ = ωa2/π2h

√
ρ
E2

Lay-up K δ ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

EEEE 10 0.1 2.4286 3.9756 3.9756 5.0844 5.9750 5.9820 6.7734 6.7734
0.2 1.4048 2.2107 2.2107 2.7991 3.2203 3.2215 3.6512 3.6512

100 0.1 2.4414 4.0065 4.0065 5.1266 6.0274 6.0343 6.8330 6.8330
0.2 1.4256 2.2489 2.2489 2.8487 3.2755 3.2768 3.7147 3.7147

ESES 10 0.1 2.0403 2.4242 3.6865 3.7602 4.8499 4.8686 5.8328 5.8424
0.2 1.1932 1.2834 2.1413 2.1883 2.3890 2.7818 3.1756 3.2125

100 0.1 2.0493 2.4612 3.7046 3.7894 4.9013 4.9225 5.8688 5.8936
0.2 1.2285 1.2997 2.1768 2.2195 2.4570 2.8262 3.2289 3.2619

ECEC 10 0.1 2.4357 3.9801 4.0055 5.1079 5.9813 6.0339 6.7911 6.8221
0.2 1.4164 2.2181 2.2459 2.8268 3.2260 3.2773 3.6725 3.7008

100 0.1 2.4421 4.0069 4.0095 5.1289 6.0294 6.0381 6.8348 6.8379
0.2 1.4268 2.2497 2.2525 2.8515 3.2766 3.2820 3.7168 3.7197

EFEF 10 0.1 1.7131 1.7369 2.3491 2.9520 3.5749 3.6120 4.3622 4.7446
0.2 0.9927 1.0086 1.1551 1.9722 1.9810 2.0049 2.3428 2.6332

100 0.1 1.7221 1.7460 2.4000 2.9577 3.6047 3.6414 4.3868 4.8056
0.2 1.0074 1.0227 1.1961 1.9885 2.0076 2.0385 2.3984 2.6592
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Table 3.15: Non-dimensional natural frequencies of non-symmetric composite laminated
Mindlin plate (45/− 45)3, λ = ωa2/π2h

√
ρ
E2

Lay-up K δ ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

EEEE 10 0.1 2.3322 3.9227 3.9227 5.3242 5.7618 5.8386 6.9677 6.9677
0.2 1.3822 2.2071 2.2071 2.8852 3.1587 3.1916 3.6988 3.6990

100 0.1 2.3445 3.9507 3.9507 5.3641 5.8117 5.8867 7.0241 7.0241
0.2 1.4022 2.2441 2.2441 2.9322 3.2148 3.2464 3.7608 3.7608

ESES 10 0.1 2.1249 3.6225 3.8993 5.2450 5.5886 5.7999 6.8611 6.9729
0.2 1.3224 2.1724 2.2144 2.8932 3.1743 3.1966 3.6346 3.7182

100 0.1 2.1334 3.6326 3.9215 5.2673 5.5965 5.8432 6.8839 7.0110
0.2 1.3348 2.1823 2.2436 2.9178 3.2031 3.2240 3.7394 3.7606

EFEF 10 0.1 1.5511 1.9653 3.0876 3.2807 3.8148 4.8872 5.0096 5.2616
0.2 0.9373 1.2193 1.8760 1.9636 2.1732 2.8280 2.8830 2.9345

100 0.1 1.5578 1.9741 3.0972 3.3024 3.8353 4.8959 5.0314 5.3048
0.2 0.9496 1.2310 1.9075 1.9739 2.2000 2.8528 2.9602 2.9865

ECEC 10 0.1 2.3390 3.9301 3.9464 5.3464 5.7843 5.8706 6.9891 7.0091
0.2 1.3933 2.2161 2.2394 2.9115 3.1770 3.2352 3.7213 3.7457

100 0.1 2.3451 3.9515 3.9531 5.3663 5.8145 5.8895 7.0263 7.0283
0.2 1.4033 2.2450 2.2474 2.9349 3.2178 3.2497 3.7631 3.7656

Table 3.16: Non-dimensional natural frequencies of fully-free non-symmetric composite
laminated Mindlin plate, λ = ωa2/π2h

√
ρ
E2

Lay-up ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

(0/90) 4.8784 15.032 15.139 17.334 17.334 26.271 30.907 35.490
(0/90)2 4.9049 22.315 22.451 23.721 23.721 31.134 34.123 46.179
(0/90)3 4.9068 23.225 23.363 24.549 24.549 31.146 35.192 46.232
(0/90)4 4.9074 23.523 23.662 24.822 24.822 31.149 35.546 46.248
(0/90)5 4.9076 23.658 23.797 24.945 24.945 31.151 35.707 46.256

(45/-45) 7.5760 10.175 13.514 19.945 19.945 27.977 27.977 30.864
(45/-45)2 7.7868 14.823 19.538 25.587 25.588 34.414 36.036 36.382
(45/-45)3 7.8031 15.409 20.327 26.222 26.222 34.414 36.530 37.351
(45/-45)4 7.8081 15.601 20.588 26.428 26.428 34.414 36.687 37.666
(45/-45)5 7.8104 15.688 20.707 26.520 26.520 34.414 36.757 37.808

(30/-30) 6.9490 9.1825 15.756 18.348 18.445 23.455 28.765 31.448
(30/-30)2 7.1845 13.391 21.041 21.928 24.244 31.103 31.540 33.396
(30/-30)3 7.2099 13.940 21.384 22.688 24.934 31.511 32.028 33.397
(30/-30)4 7.2180 14.122 21.499 22.938 25.158 31.519 32.312 33.398
(30/-30)5 7.2217 14.205 21.551 23.050 25.259 31.521 32.440 33.398
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Table 3.17: Non-dimensional natural frequencies of the Mindlin circular plate, λ =

ωR2
√

ρh
D

BCs Author h/a ω1 ω2 ω3 ω4 ω5 ω6 ω7

C Present 0.05 10.144 38.855 84.995 146.40 220.72 305.71 399.31
[99] 10.145 38.855 84.995 146.40 220.73 305.71 399.32
Present 0.1 9.9408 36.478 75.664 123.31 176.41 232.96 291.70
[99] 9.9408 36.479 75.664 123.32 176.42 232.97 291.71
Present 0.15 9.6286 33.393 65.550 102.08 140.93 180.98 221.62
[99] 9.6286 33.393 65.551 102.09 140.93 180.99 221.62
Present 0.2 9.2400 30.210 56.682 85.571 115.55 145.94 174.97
[99] 9.2400 30.211 56.682 85.571 115.56 145.94 174.97
Present 0.25 8.8068 27.252 49.420 73.054 97.197 117.90 122.42
[99] 8.8068 27.253 49.420 73.054 97.198 117.90 122.43

S Present 0.05 4.9247 29.323 71.756 130.34 202.80 286.78 380.12
[99] 4.9247 29.323 71.756 130.35 202.81 286.79 380.13
Present 0.1 4.8938 28.240 65.942 113.57 167.53 225.34 285.43
[99] 4.8938 28.240 65.942 113.57 167.53 225.34 285.44
Present 0.15 4.8440 26.714 59.062 96.774 136.97 178.23 219.85
[99] 4.8440 26.715 59.062 96.775 136.98 178.23 219.86
Present 0.2 4.7773 24.994 52.513 82.765 113.87 145.12 166.29
[99] 4.7773 24.994 52.514 82.766 113.87 145.13 166.29
Present 0.25 4.6963 23.254 46.774 71.603 96.609 108.27 121.49
[99] 4.6963 23.254 46.775 71.603 96.609 108.27 121.50

F Present 0.05 8.9686 37.787 84.442 146.75 222.37 308.97 404.44
[99] 8.9686 37.787 84.443 146.76 222.38 308.98 404.44
Present 0.1 8.8679 36.040 76.675 126.27 181.46 239.98 300.38
[99] 8.8697 36.041 76.676 126.27 181.46 239.98 300.38
Present 0.15 8.7095 33.674 67.827 106.39 146.83 187.79 228.38
[99] 8.7095 33.674 67.827 106.40 146.83 187.79 228.39
Present 0.2 8.5051 31.110 59.645 90.059 120.56 149.62 171.18
[99] 8.5051 31.111 59.645 90.059 120.57 149.63 171.18
Present 0.25 8.2674 28.605 52.584 76.935 99.545 114.52 126.34
[99] 8.2674 28.605 52.584 76.936 99.545 114.53 126.34
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Table 3.18: Non-dimensional natural frequencies of the Mindlin annular plate, β =

0.5, λ = ωR2
√

ρh
D

BCs Author h/a ω1 ω2 ω3 ω4 ω5

CS Present 0.1 51.219 142.71 252.22 369.85 490.92
[95] 51.219 142.71 252.22 369.86 490.92
Present 0.2 38.363 93.780 152.96 173.62 213.65
[95] 38.363 93.781 152.96 173.63 213.66

CC Present 0.1 70.277 159.78 265.44 378.42 496.03
[95] 70.277 159.78 265.44 378.42 496.03
Present 0.2 48.310 97.388 155.46 196.79 220.19
[95] 48.310 97.389 155.47 196.79 220.20

SS Present 0.1 37.326 127.17 240.54 362.48 487.00
[95] 37.326 127.17 240.54 362.48 487.01
Present 0.2 31.871 90.636 152.76 162.98 201.89
[95] 31.871 90.637 152.76 162.99 201.89

SC Present 0.1 55.090 145.82 254.73 371.67 492.22
[95] 55.090 145.82 254.73 371.67 492.23
Present 0.2 41.623 95.269 154.24 174.52 214.77
[95] 41.624 95.269 154.24 174.52 214.78

SF Present 0.1 4.0915 55.120 153.61 270.05 391.95
[95] 4.0915 55.120 153.62 270.05 391.95
Present 0.2 4.0077 44.644 104.94 156.56 178.69
[95] 4.0077 44.644 104.95 156.57 178.70

FS Present 0.1 5.0321 59.530 157.06 273.13 394.78
[95] 5.0321 59.531 157.06 273.13 394.78
Present 0.2 4.9063 48.561 107.48 159.81 176.41
[95] 4.9063 48.562 107.48 159.81 176.41

CF Present 0.1 12.567 69.583 168.72 280.47 398.43
[95] 12.568 69.583 168.73 280.47 398.44
Present 0.2 11.461 49.270 108.36 157.40 196.40
[95] 11.461 49.270 108.37 157.40 196.40

FC Present 0.1 17.023 77.238 174.89 285.68 402.83
[95] 17.024 77.239 174.90 285.69 402.84
Present 0.2 15.397 55.273 112.29 160.61 197.53
[95] 15.397 55.274 112.29 160.61 197.53

FF Present 0.1 9.1019 81.031 184.33 302.86 422.94
[95] 9.1019 81.031 184.33 302.87 422.94
Present 0.2 8.5531 64.011 117.99 174.18 180.85
[95] 8.5531 64.011 118.00 174.18 180.86
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Table 3.19: Non-dimensional natural frequencies of the sector annular mindlin plate,

β = 0.25, α = 120, δ = 0.2, λ = ωR2
√

ρh
D

BCs Author ω1 ω2 ω3 ω4 ω5 ω6

CCCC Present 31.056 41.813 55.950 62.419 71.127 72.862
[105] 31.056 41.814 55.951 62.420 71.127 72.862

SSSS Present 20.611 32.633 48.185 54.668 64.697 66.211
[105] 20.612 32.633 48.186 54.668 64.697 66.211

CSCS Present 29.161 38.136 52.247 61.628 67.946 71.004
[105] 29.161 38.137 52.248 61.629 67.946 71.004

CFCF Present 26.782 28.096 34.203 46.051 58.043 60.249
[105] 26.783 28.096 34.204 46.051 58.044 60.249

FCSC Present 20.779 35.808 42.009 51.555 64.148 67.563
[105] 20.780 35.808 42.010 51.556 64.148 67.564

SCFC Present 7.4836 16.412 27.889 29.702 40.878 43.775
[105] 7.484 16.412 27.889 29.703 40.878 43.776

SSCC Present 27.7041 39.385 54.047 59.945 69.559 70.877
[105] 27.704 39.385 54.947 59.945 69.560 70.878

FFFF Present 9.5465 14.512 20.773 29.123 33.611 36.328
FCFC Present 7.3338 16.372 25.439 28.105 40.847 42.954
SCSC Present 29.161 38.136 52.247 61.628 67.946 71.004

Table 3.20: Non-dimensional natural frequencies of the in-plane vibration of the isotropic

classical plate theory, λ = ωa
√

ρ(1−ν2)
E

BCs Author ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SSSS1 Present 0.9292 0.9292 1.3142 1.8585 1.8585 2.0779 2.0779 2.2214
SSSS2 Present 1.3142 1.5707 1.5707 2.0779 2.0779 2.2214 2.6284 2.9386

[69] 1.3142 1.5708 1.5708 2.0780 2.0780 2.2214 2.6285 2.9387
CCCC Present 3.7268 3.7268 4.4394 5.4360 6.1415 6.1790

[69] 3.7269 3.7269 4.4395 5.4361 6.1415 6.1790
CFCF Present 1.7748 3.1635 3.2710 3.5125 3.9239 4.0908

[69] 1.7751 3.1640 3.2711 3.5127 3.9248 4.0909
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Table 3.21: Non-dimensional natural frequencies of the in-plane vibration of the isotropic

plate, λ = ωa
√

ρ(1−ν2)
E

BCs Author ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

FFFF Present 2.3191 2.4707 2.4707 2.6299 2.9862 3.4280 3.6817 3.7187
[68] 2.3206 2.4716 2.4716 2.6284 2.9874 3.4522 3.7232 3.7232

CCCC Present 3.5552 3.5552 4.2350 5.1857 5.8586 5.8944 5.8944 6.7077
[68] 3.5552 3.5552 4.2350 5.1859 5.8587 5.8946 5.8946 6.7080

S2FS2F Present 1.4075 2.6284 3.1415 3.2487 3.3639 3.4987 3.7326 5.0348
[68] 1.407 2.628 3.142 3.248 3.363 3.498

S1CS1C Present 1.8586 3.2752 3.4946 3.7172 4.4105 4.9572 5.5758 5.6212
[68] 1.858 3.275 3.494 3.718 4.411 4.957

S1FS1F Present 1.4075 1.8586 2.6285 3.2486 3.3642 3.4988 3.7146 3.7329
[68] 1.408 1.858 2.629 3.249 3.364 3.499

S2CS2C Present 3.1416 3.2752 3.4946 4.4105 4.9572 5.6212 5.6289 5.9978
[68] 3.140 3.275 3.494 4.411 4.957 5.622

SSSS1 Present 1.8586 1.8586 2.6284 3.7172 3.7172 4.1559 4.1559 4.4429
SSSS2 2.6284 3.1416 3.1416 4.1559 4.1559 4.4429 5.2569 5.8774
CFCF 1.6930 3.0178 3.1204 3.3507 3.7432 3.9024 5.0906 5.0937
CCCF 2.2698 3.1630 3.4089 4.3058 4.7181 4.9576 5.2057 5.9622
CCFF 1.4698 1.8839 2.2545 3.4024 3.8428 4.2320 4.3286 4.9546
CFFF 0.6278 1.5068 1.6904 2.6862 2.8967 3.0744 3.8751 4.0796

S1CS1F 0.9293 1.9775 2.7879 3.0615 3.4391 4.1624 4.4610 4.6465
S1CS2F 1.5984 1.7596 2.6500 3.2377 4.1247 4.2687 4.3881 5.1143

Table 3.22: Non-dimensional natural frequencies of the isotropic skew Mindlin plate,

h/a = 0.2, λ = ωa2
√

ρh
D

BCs angle Author ω1 ω2 ω3 ω4 ω5 ω6

CCCC 15 Present 2.8057 4.6296 5.0962 6.3068 7.4051 7.7177
[87] 2.8058 4.6298 5.0963 6.3070 7.4052 7.7179

45 Present 4.1588 5.9019 7.5420 7.7903 9.2156 10.091
[87] 4.1590 5.9021 7.5422 7.7907 9.2159 10.0921

SSSS 15 Present 1.8610 3.7920 4.2803 5.5878 6.8437 7.0728
[87] 1.8560 3.7856 4.2763 5.5784 6.8385 7.0702

45 Present 2.9606 4.9670 6.7741 7.0336 8.6006 9.6533
[87] 2.9129 4.8736 6.6622 7.0148 8.4831 9.5878
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Table 3.23: Non-dimensional natural frequencies for the in-plane vibration of skew plate

with ν = 0.3, λ = ωa2/π
√
ρ/G

Author α ω1 ω2 ω3 ω4 ω5 ω6

CCCC
Present 0 3.7268 3.7268 4.4394 5.4360 6.1415 6.1790
[67] 3.7272 3.7270 4.4395 5.4363 6.1601 6.1741
Present 15 3.6813 3.9741 4.5708 5.4860 6.1667 6.2887
[67] 3.6814 3.9743 4.5708 5.4862 6.1674 6.2888
Present 30 3.8497 4.4855 5.0125 5.6949 6.5249 6.7837
[67] 3.8498 4.4861 5.0125 5.6953 6.5262 6.7847
Present 45 4.3406 5.4574 5.9590 6.2328 7.4378 7.8430
[67] 4.3407 5.4588 5.9608 6.2334 7.4494 7.9611
Present 60 5.5368 7.5134 7.5419 8.0486 9.3356 9.5452
[67] 5.5372 7.5428 7.5231 8.0737 9.3394 9.7038

CCCF
Present 0 2.3794 3.3156 3.5735 4.5137 4.9459 5.1969
[67] 2.3801 3.3165 3.5742 4.5148 4.9459 5.1970
Present 15 2.4396 3.3871 3.6721 4.5570 5.0908 5.2670
[67] 2.4390 3.3865 3.6678 4.5572 5.0827 5.2633
Present 30 2.6430 3.6250 4.0024 4.7483 5.4922 5.6177
[67] 2.6360 3.6174 3.9792 4.7449 5.1358 5.6158
Present 45 3.0850 4.1273 4.6995 5.2410 6.2092 6.4920
[67] 3.0521 4.1027 4.6204 5.2293 6.1184 6.4821
Present 60 4.0907 5.2175 6.1764 6.4591 7.9026 7.9026
[67] 3.9428 5.1716 5.9077 6.4405 7.6716 7.9042

CFCF
Present 0 1.7748 3.1635 3.2710 3.5125 3.9239 4.0908
[67] 1.7758 3.1653 3.2713 3.5130 3.9266 4.0912
Present 15 1.8259 3.2316 3.3224 3.6053 4.0046 4.1488
[67] 1.8283 3.2360 3.3225 3.6059 4.0097 4.1498
Present 30 1.9966 3.4587 3.5191 3.8485 4.3172 4.3553
[67] 2.0040 3.4737 3.5010 3.8486 4.3282 4.3569
Present 45 2.3576 3.9373 3.9726 4.2483 4.8266 5.0414
[67] 2.3776 3.7975 3.9587 4.2501 4.8358 5.0693
Present 60 3.1366 4.9109 4.9656 5.1440 5.9045 6.4776
[67] 3.1955 4.9137 5.0550 5.1719 5.9619 6.5640
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Table 3.24: Non-dimensional natural frequencies for the in-plane vibration of skew plate

with ν = 0.3, λ = ωa2/π
√
ρ/G

α ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SSSS1
0 1.9483 1.9483 2.7553 3.8966 3.8966 4.3566 4.3566 4.6574
15 1.7765 2.2028 2.7021 3.9848 4.0407 4.0805 4.7341 4.7887
30 1.6577 2.5977 2.5977 3.7966 4.2787 4.4994 5.1955 5.1955
45 1.5656 2.5015 3.2660 3.6161 4.5576 4.8953 5.6644 5.9112
60 1.4493 2.4314 3.4742 4.4500 4.6022 5.4752 6.2274 6.4465

SSSS2
0 2.7553 3.2932 3.2932 4.3566 4.3566 4.6574 5.5107 6.1611
15 2.8436 3.3269 3.4238 4.3344 4.6276 4.6493 5.5728 6.2732
30 3.1405 3.4723 3.9242 4.4413 4.6888 5.2540 5.8974 6.5439
45 3.7678 3.8789 4.8353 4.8353 4.9535 6.4323 6.5963 7.2400
60 4.8649 5.4973 5.7245 6.6567 6.6567 6.7986 8.0784 8.0784

FFFF
0 2.4352 2.5896 2.5896 2.7537 3.1378 3.5965 3.9040 3.9277
15 2.1468 2.4157 2.8105 2.9878 3.1263 3.7394 3.8519 3.8692
30 2.0448 2.1913 3.2423 3.2423 3.2464 3.2464 3.7899 3.8225
45 1.3875 2.0910 2.4129 2.9901 3.7649 3.8327 3.8747 4.7259
60 0.9519 1.4901 2.2682 2.4089 2.9856 3.8195 3.8525 4.6185
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Table 3.25: Non-dimensional natural frequencies for the in-plane vibration of skew plate

with ν = 0.3, β = 0.8, λ = ωa2/π
√
ρ/G

α ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

S1CS1C
0 0.8333 1.5406 1.6667 1.7846 2.2493 2.3915 2.5000 2.5735
15 0.8627 1.5747 1.6831 1.8534 2.3007 2.3830 2.5938 2.6352
30 0.9593 1.6890 1.7701 2.0379 2.4494 2.4897 2.7643 2.8328
45 1.1577 1.9312 1.9915 2.3484 2.6697 2.9271 3.0215 3.2315
60 1.5603 2.4587 2.5030 2.9391 3.2167 3.5651 3.7280 4.0222

S2FS2F
0 0.7974 1.2751 1.4086 1.7284 1.7601 1.7804 1.9249 2.4207
15 0.7830 1.2828 1.4608 1.7856 1.7856 1.8590 1.8590 2.4636
30 0.7381 1.3036 1.6432 1.8894 1.8894 1.9086 1.9086 2.5908
45 0.1294 2.2771 2.2771 2.5649 2.9993 2.9993 3.0479 3.0479
60 0.2436 1.4130 2.2030 2.2030 2.5996 2.5996 3.0545 3.3464

S1CS1F
0 0.4167 0.9970 1.2500 1.5900 1.8388 2.0492 2.0783 2.0833
15 0.4242 1.0087 1.2458 1.6186 1.8930 1.9766 2.1152 2.2171
30 0.4453 1.0242 1.2674 1.6990 1.9304 2.0632 2.2650 2.4019
45 0.4719 0.9903 1.4057 1.7668 2.0260 2.2597 2.5267 2.7489
60 0.4719 0.9018 1.5691 1.8828 2.3400 2.4711 2.8653 3.0948

S1CS2F
0 0.7359 0.9029 1.3971 1.5252 1.9594 2.0398 2.2923 2.4121
15 0.7246 0.9740 1.3979 1.5857 2.0082 2.0590 2.3224 2.4456
30 0.7434 1.0870 1.4448 1.7314 2.0335 2.2563 2.3575 2.7027
45 0.7824 1.2939 1.6250 2.0323 2.0323 2.5534 2.5534 3.0001
60 0.8241 1.7592 2.1774 2.1774 2.4850 3.0661 3.0661 3.5670
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Table 3.26: Non-dimensional natural frequencies for the in-plane vibration of sector an-

nular plate with ν = 0.33, β = 0.5, λ = ωa2
√
ρ/E

Author α ω1 ω2 ω3 ω4 ω5 ω6

CCCC
Present 30 8.1585 8.8369 10.1084 12.7629 13.2113 13.3264
[67] 8.1592 8.8379 10.1089 12.7648 13.2623 13.2555
Present 45 6.6082 7.2710 8.1844 10.3453 10.5967 10.8608
[67] 6.6113 7.2730 8.1863 10.3517 10.6104 10.8649
Present 60 5.5885 6.9190 7.4246 8.6194 9.0236 9.2407
[67] 5.5963 6.6935 7.4305 8.6325 9.0380 9.2545
Present 75 5.0466 6.6967 7.0530 7.4496 8.0645 8.5850
[67] 5.0629 6.7002 7.0684 7.4864 8.0930 8.6033
Present 90 4.7277 6.3392 6.8381 6.9152 7.5183 8.0357
[67] 4.7576 6.3458 6.9512 6.9793 7.5749 8.0831

CCCF
Present 30 5.3142 6.8471 7.4536 10.2267 10.7836 11.5196
[67] 5.3158 6.8500 7.4560 10.2296 10.7879 11.5210
Present 45 4.4903 6.5498 6.9076 8.5761 8.5973 9.3191
[67] 4.4936 6.5548 6.9123 8.5881 8.5840 9.3230
Present 60 4.1863 6.3407 6.7048 7.1367 7.7893 8.1870
[67] 4.1930 6.3518 6.7162 7.1459 7.8030 8.1970
Present 75 4.0493 5.8818 6.5864 6.6484 7.2869 7.6837
[67] 4.0631 5.9032 6.6534 6.6604 7.3121 7.7075
Present 90 3.9788 5.3974 6.4451 6.5854 6.9786 7.3158
[67] 4.0055 5.4345 6.5046 6.6321 7.0237 7.3563

CFCF
Present 30 3.4462 6.2267 6.4023 8.3276 8.3819 9.4086
[67] 3.4489 6.2700 6.4037 8.3676 8.3358 9.4104
Present 45 3.6081 5.8848 6.4608 6.6792 7.5550 7.6660
[67] 3.6116 5.8880 6.4635 6.6862 7.5640 7.6711
Present 60 3.6847 5.1754 6.3967 6.4777 7.0244 7.2447
[67] 3.6912 5.1823 6.4017 6.4919 7.0363 7.2645
Present 75 3.7292 4.7201 6.2648 6.4724 6.7256 7.0426
[67] 3.7422 4.7354 6.3011 6.5000 6.7543 7.0761
Present 90 3.7583 4.4493 6.0012 6.4907 6.5517 6.7654
[67] 3.7834 4.4797 6.0711 6.5393 6.5952 6.7786
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Chapter 4

Shells

Shells are three-dimensional bodies bounded by two surfaces or bounded by four surfaces if
it is shell panel. The 3D equations of elasticity are complicated when written in curvilinear
or shell coordinates. All shell theories such as thin, thick, deep and shallow reduce 3D
elasticity problem into the 2D theory. This is done by eliminating the coordinates normal
to the shell surface in the shell equations. The accuracy of thin and thick theories are
assessed in compared with the 3D theory. In this chapter, the equations of thin, thick
shell both deep and shallow are discussed.

A shell is confined by two parallel (unless the thickness is varying) surfaces. Generally,
the distance between top and bottom surfaces of shell which is thickness is small compared
with other shell parameters such as length, width and radii of curvature.

4.1 Thin shells

If the shell thickness is less than 1/20 of the wavelength of the deformation and/or
radii of curvature and shear deformation and rotary inertia are negligible, a thin shell
theory is acceptable. Depending on various assumptions considered for derivation of the
strain-displacements relations, stress-strain relations and equilibrium equations, many
thin shell theories can be derived. Among the most common of these Love, Reissner,
Naghdi, Sanders and Flugge are well known shell theories. For thin shells, some additional
assumptions can simplify the equations: first one is neglecting the term including z/R
because it is negligible in compared with unity and the second one is neglecting the shear
deformation in the equations. It allows the in-plane displacement to be linearly varying
through the thickness.

4.1.1 Deep thin shells

Love’s theory is fundamental theory of deep shells. Other theories related to this case
are Sanders, Flugge, etc. Love’s approximation defines in the follows

1- Thickness of the shell is small compared to other dimensions, such as length, width

and radii of curvature of the middle surface of the shell. This definition defines a

thin shell theory. The ratio of h/R in engineering application is assumed less than

1/50 and the ratio of z/Rα,β is less than 1/100 and so this ratio is negligible.

121
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2- Normal stress in z direction is zero σzz = 0.

3- Transverse normal strains are zeros ε13 = ε23 = ε33 = 0.

Equations of motion according to Love’ approximation are
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∂
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where force resultants are
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(4.2)

and nonzero components of strains are as

εαα = ε0αα + zKαα
εββ = ε0ββ + zKββ
γαβ = γ0

αβ + zKαβ (4.3)

where the membrane and the bending strains are
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and also

ψα =
u

Rα

+
v0

Rαβ

− 1

A

∂w

∂α
ψβ =

v

Rβ

+
u0

Rαβ

− 1

A

∂w

∂β
(4.5)

where A and B are coefficients of the first fundamental form of reference surface which
for cylindrical, spherical and toroidal shells are constant and unity.

Applying Kirchhoff theory and neglecting shear deformation and also σαz, σβz and σzz,
the stress-strain equations for composite laminated thin shell can be written as
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σαα
σββ
σαβ
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k

=
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k

(4.6)

where σαα and σββ are normal stresses, σαβ is the in-plane shear stress, εαα and εββ are
normal strains and γαβ is the in-plane shear strain. Evaluation of C̃ij which is the elas-
tic stiffness coefficients and values of Cij are expressed in section (3.2.1). Stresses over
the shell thickness are integrated to obtain the force and moment resultants. For thin
shell zk/Rα and zk/Rβ are much less than unity and they are neglected. Therefore, the
in-plane force resultants are equal Nαβ = Nβα and also the twisting moments are equal
Mαβ = Mβα.

Stress resultants are as
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Force and moments are related to the strains by the relations
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where Aij, Bij, Dij are defined as follow

Aij =
N∑
k=1
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ij (hk − hk−1)
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Figure 4.1: Shallow shell with plate geometry
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(k)
ij (h3
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k−1) (4.9)

where zk is distance from the mid surface to the surface of the kth layer. For shell
laminated symmetrically with respect to mid surface all the Bij are zero.
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where M11,M22,M12 are moment resultants, N11, N22, N12 are force resultants F12, F21

are in-plane shear force resultants, V13, V23 are transverse shear force resultants.

All of these relations are corresponded to deep thin shell theories, deep thick shell
theories will describe in next section.

4.1.2 Shallow thin shells

The relations for deep shell theory can be simplified by Donnel-Mushtari-Vlasov theory
which is well-known theory for shallow shells (see Figure 4.1). The following assumptions
lead to the DMV theory:
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1- The contribution of in-plane displacements for bending strains are negligible.

Bending strains are as follow
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2- The effects of shear terms Qαz/Rα, Qβz/Rβ, Qβz/Rαβ, and Qαz/Rαβ in the
equations of motion are negligible.

Therefore, shallow cylindrical shell’s bending since α = x, β = θ, Rα =∞, Rβ = R are as
follow

K11 = −∂
2w

∂α2

K22 = −∂
2w

∂β2

K12 = −2
∂2w

∂α∂β
(4.12)

and also strain relations are

ε011 =
∂u

∂α
+

w

Rα

ε022 =
∂v

∂β
+

w

Rβ

ε012 =
∂u

∂β
+
∂v

∂α
(4.13)

Therefore, equations of motion for isotropic shallow cylindrical shells are
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Using ζ = x/a, η = y/b, δ = a/h, φ = a/b, β = a/Rx, γ = Rx/Ry for doing dimensionless
the equations of motion
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Boundary conditions:

C:

{
x : u = v = w = ∂w

∂x
= 0

y : u = v = w = ∂w
∂y

= 0

S1(hard):

{
x : u = v = w = M11 = 0
y : u = v = w = M22 = 0

S2(soft):

{
x : v = w = N11 = M11 = 0
y : u = w = N22 = M22 = 0

Table 4.1: Non-dimensional natural frequencies of shallow shell, λ = ωa2
√

ρh
D
, φ = 1, β =

0.1
γ Author ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

CCCC
0 Present 46.280 74.656 79.289 110.34 132.54 135.55 165.81 166.96

[134] 46.28 74.65 79.28 110.3 132.5 135.5 165.7 166.9
1 Present 58.296 81.754 81.754 114.15 136.00 137.72 168.77 168.77

[134] 58.30 81.75 81.75 114.1 136.0 137.7 168.7 168.7
−1 Present 50.750 79.151 79.151 110.69 135.25 135.73 166.75 166.75

[134] 50.75 79.14 79.14 110.7 135.2 135.7 166.7 166.7
SCSS

0 Present 29.305 52.282 64.346 87.798 100.36 117.05 134.22 142.70
[134] 29.30 52.28 64.34 87.79 100.4 117.1 134.2 143.7

1 Present 41.803 61.543 67.941 92.509 105.60 118.19 137.88 144.83
[134] 41.80 61.54 67.94 92.51 105.6 118.2 137.9 144.8

−1 Present 29.379 56.632 62.888 87.178 103.95 116.47 134.82 141.81
[134] 29.38 56.63 62.89 87.17 104.0 116.5 134.8 141.8

γ = 0, 1,−1 is correspond to cylindrical, spherical and hyperbolic paraboloidal shells.
Procedure for solving thin shell such as shallow and deep are similar to non-symmetric
classical composite laminated plate in section (3.2.2). Table (4.1) is shown results for
isotropic shallow shell for cylindrical, spherical and hyperbolic paraboloidal. Results are
compares with super-position Galerkin method and as seen two methods are very close
to each other. Table (4.2) also is shown analysis of shallow shell panel for fully clamped
and fully simply supported in terms of a/Rx which is the shallowness of the thin shell
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Table 4.2: Non-dimensional natural frequencies of the cylindrical shallow shell with φ =

1, a/h = 100, λ = ωa2
√

ρh
D

BCs β ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

CCCC 0 35.985 73.393 73.393 108.21 131.58 132.20 165.00 165.00
0.1 46.280 74.656 79.290 110.34 132.54 135.55 165.81 166.96
0.2 67.681 78.294 94.610 116.46 134.99 145.76 168.32 172.71
0.3 83.923 90.396 115.047 125.86 140.52 161.25 172.80 181.82
0.4 91.065 108.46 136.888 137.70 152.42 180.12 180.40 193.74
0.5 99.262 118.99 151.126 156.34 172.52 192.43 201.67 207.80

SSSS 0 19.739 49.348 49.348 78.956 98.696 98.696 128.30 128.30
0.1 36.840 51.575 58.382 82.301 99.526 103.65 129.41 131.10
0.2 57.708 63.833 79.216 91.541 102.83 117.23 132.85 139.14
0.3 66.573 85.624 103.770 104.95 113.69 136.67 139.33 151.49
0.4 77.079 95.126 120.832 125.75 137.70 151.89 159.39 167.01
0.5 88.431 99.889 137.823 140.07 166.63 171.87 174.15 182.94

from 0 (plate), 0.1 to 0.5 which is not so shallow. β = 2 is so deep and β = 1 is moder-
ately deep. Table (4.3) also is shown composite laminated simply-supported shallow shell
for three type, cylindrical, spherical and hyperbolic paraboloidal in terms of varying the
shallowness. Results are compared with GDQ method and they are so close.

4.2 Thick shells

Thick shells theory are defined using the value of thickness of shell over length or radii of
curvature which is between 1/10 to 1/20. It is assumed that normals to the mid surface
remains straight during deformation but not normal to the surface. In this theory, shell
displacements are expanded in terms of shell thickness which can be of a first-order.
Difference of this approach with 3D is in assumption that the normal strain acting on the
plane parallel to the mid surface is negligible compared with other strain components.
This assumption is valid except within the vicinity of a highly concentrated force. In
other words, εzz = 0. The displacements can be written as

u(α, β, z) = u0(α, β) + zψα(α, β)

v(α, β, z) = v0(α, β) + zψβ(α, β)

w(α, β, z) = w0(α, β) (4.16)

where u0, v0 and w0 are mid surface displacements of the shell and ψx and ψy are mid
surface rotations. Third part of the above equation leads to εzz = 0. This definition is
called first-order shear deformation theory which is applied on thick shell whether deep
or shallow.

The strains at any points in the shells can be written in terms of mid surface strains
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Table 4.3: Non-dimensional natural frequencies of the simply-supported cross-ply
(0/90/90/0) shallow composite shell, λ = ωa2

√
ρ

E2h2 , h/a = 0.01 a/b = 1, E1/E2 =

15, G12/E2 = 0.5, G13/E2 = 0.5, G23/E2 = 0.5, ν12 = 0.25

γ β Author ω1 ω2 ω3 ω4 ω5 ω6 ω7

-1 0.1 Present 12.264 24.999 43.859 47.786 49.096 65.582 80.149
[155] 12.264

0.5 Present 11.977 48.800 49.354 63.805 70.162 80.545 102.49
[155] 11.977

0 0.1 Present 13.970 26.571 42.909 48.921 49.555 66.111 81.058
[155] 13.970

0.5 Present 35.183 45.460 59.220 66.635 81.599 94.957 95.936
[155] 35.183

1 0.1 Present 18.129 28.197 45.584 49.604 50.883 66.898 81.375
[155] 18.129

0.5 Present 66.577 81.304 82.489 88.705 96.195 104.20 121.57
[155] 66.577

and curvature changes as

εα =
1

1 + z
Rα

(ε0α + zKα)

εβ =
1

1 + z
Rβ

(ε0β + zKβ)

εαβ =
1

1 + z
Rα

(ε0αβ + zKαβ)

εβα =
1

1 + z
Rβ

(
ε0βα + zKβα

)

γαz =
1

1 + z
Rα

(
γ0αz + z(ψα/Rα)

)

γβz =
1

1 + z
Rβ

(
γ0βz + z(ψβ/Rβ)

)
(4.17)

where the midsurface strains are as

ε0α =
1

A

∂u0

∂α
+

v0

AB

∂A

∂β
+
w0

Rα

ε0β =
1

B

∂v0

∂β
+

u0

AB

∂B

∂α
+
w0

Rβ

ε0αβ =
1

A

∂v0

∂α
+

u0

AB

∂A

∂β
+

w0

Rαβ

ε0βα =
1

B

∂u0

∂β
+

v0

AB

∂B

∂α
+

w0

Rαβ

γ0αz =
1

A

∂w0

∂α
− u0

Rα

− v0

Rαβ

+ ψα

γ0βz =
1

B

∂w0

∂β
− v0

Rβ

− u0

Rαβ

+ ψβ (4.18)
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and the curvature and twist changes are as

Kα =
1

A

∂ψα
∂α

+
ψβ
AB

∂A

∂β
, Kβ =

1

B

∂ψβ
∂β

+
ψα
AB

∂B

∂α

Kαβ =
1

A

∂ψβ
∂α
− ψα
AB

∂A

∂β
, Kβα =

1

B

∂ψα
∂β
− ψβ
AB

∂B

∂α
(4.19)

The above equations include the term (1 + z/Rn) where n is either α or β for thick
shallow shells are neglected in all strain components. Carrying out the integration of this
term creates difficulties which in the case of plate don’t exist. This term ignore in most
thin shell theories, but in some theories like Vlasov this term is expand in a geometric
series form. Numerical investigations is shown that this expansion does not lead to better
results because the value if this term in thin shells are between 0.98 and 1.02 depending
on value of z. Applying Mindlin theory, stress-strain equations for composite laminated
thin shell is written as



σ11

σ22

σ12

σ13

σ23


=


C11 C12 0 0 0
C12 C22 0 0 0
0 0 C66 0 0
0 0 0 C55 0
0 0 0 0 C44





ε11

ε22

ε12

ε13

ε23


(4.20)

For thick shell, shear deformation should be considered. The normal and shear forces are


Nα

Nαβ

Qα

 =
∫ h

2

−h
2


σαα
σαβ
σαz

 (1 +
z

Rβ

)dz


Nβ

Nαβ

Qβ

 =
∫ h

2

−h
2


σββ
σαβ
σβz

 (1 +
z

Rα

)dz (4.21)

The bending and twisting moments and higher-order shear force terms are as


Mα

Mαβ

Pα

 =
∫ h

2

−h
2


σαα
σαβ
σαz

 (1 +
z

Rβ

)dz


Mβ

Mαβ

Pβ

 =
∫ h

2

−h
2


σββ
σαβ
σβz

 (1 +
z

Rα

)dz (4.22)

Pα and Pβ are higher-order shear force terms, needed only if the radius of twist curvature
exists (Rαβ 6= 0). Although σαβ = σβα, stress resultants Nαβ 6= Nβα and Mαβ 6= Mβα

even Rα = Rβ which is happened in plates.
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Relation between stress resultants and strains are as



Nαα

Nαβ

Nβα

Nββ

Mαα

Mαβ

Mβα

Mββ


=



A11 A12 A16 A16 B11 B12 B16 B16

A12 A22 A26 A26 B12 B22 B26 B26

A16 A26 A66 A66 B16 B26 B66 B66

A16 A26 A66 A66 B16 B26 B66 B66

B11 B12 B16 B16 D11 D12 D16 D16

B12 B22 B26 B26 D12 D22 D26 D26

B16 B26 B66 B66 D16 D26 D66 D66

B16 B26 B66 B66 D16 D26 D66 D66





ε0αα
ε0ββ
ε0αβ
ε0βα
Kα
Kβ
Kαβ
Kβα


Qα

Qβ

Pα
Pβ

 =


A55 A45 B55 B45

A45 A44 B45 B44

B55 B45 D55 D45

B45 B44 D45 D44




γ0αz

γ0βz

ψα/Rα

ψβ/Rβ

 (4.23)

Combination of eqs. (4.23) yields in a well known matrix 12× 12 as following:



Nαα
Nαβ
Qα
Nβα
Nββ
Qβ
Mαβ

Mαα

Pα
Mββ

Mβα

Pβ


=



A11 A16 0 A16 A12 0 B16 B11 0 B12 B16 0
A16 2A66 0 0 A26 0 B66 B16 0 −B26 B66 0

0 0 A55 0 0 A45 0 0 B55 0 0 B45

A16 0 0 2A66 A26 0 B66 −B16 0 B26 B66 0
A12 A26 0 A26 A22 0 B26 B12 0 B22 B26 0

0 0 A45 0 0 A44 0 0 B45 0 0 B44

B16 B66 0 B66 B26 0 2D66 D16 0 D26 0 0
B11 B16 0 −B16 B12 0 D16 D11 0 −D12 D16 0

0 0 B55 0 0 B45 0 0 D55 0 0 D45

B12 −B26 0 B26 B22 0 D26 −D12 0 D22 D26 0
B16 B66 0 B66 B26 0 0 D16 0 D26 2D66 0

0 0 B45 0 0 B44 0 0 D45 0 0 D44





ε0αα
ε0αβ
ε0αz
ε0βα
ε0ββ
ε0βz
Kαβ
Kαα
Kαz
Kββ
Kβα
Kβz



This matrix is symmetric and as seen for equilibrium, the sign of coefficients which are
multiplied by Kαα,Kββ and ε0αβ, ε0βα in equations of Nαβ, Nβα,Mαα,Mββ are negative.
Aij, Bij, Dij are defined as follow

Aij =
N∑
k=1

C̃
(k)
ij (hk − hk−1), Bij =

N∑
k=1

C̃
(k)
ij (h2

k − h2
k−1), Dij =

N∑
k=1

C̃
(k)
ij (h3

k − h3
k−1) (4.24)

for i, j = 1, 2, 6 and

Aij =
N∑
k=1

κiκjC̃
(k)
ij (hk − hk−1)

Bij =
N∑
k=1

κiκjC̃
(k)
ij (h2

k − h2
k−1)

Dij =
N∑
k=1

κiκjC̃
(k)
ij (h3

k − h3
k−1) (4.25)

for i, j = 4, 5 and also κiκj = 5/6 which both of them are shear correction factor in i and
j directions.
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The equations of motion are

∂

∂α
(BNα) +

∂

∂β
(ANβα) +

∂A

∂β
Nαβ −

∂B

∂α
Nβ

+
AB

Rα

Qα +
AB

Rαβ

Qβ + ABqα = AB(Ī1ü
2
0 + Ī2ψ̈

2
α)

∂

∂β
(ANβ) +

∂

∂α
(BNαβ) +

∂B

∂α
Nβα −

∂A

∂β
Nα

+
AB

Rβ

Qβ +
AB

Rαβ

Qα + ABqβ = AB(Ī1v̈
2
0 + Ī2ψ̈

2
β)

−AB
(
Nα

Rα

+
Nβ

Rβ

+
Nαβ +Nβα

Rαβ

)
+

∂

∂α
(BQα) +

∂

∂β
(AQβ) + ABqn = AB(Ī1ẅ

2
0)

∂

∂α
(BMα) +

∂

∂β
(AMβα) +

∂A

∂β
Mαβ −

∂B

∂α
Mβ

−ABQα +
AB

Rα

Pα + ABmα = AB(Ī2ü
2
0 + Ī3ψ̈

2
α)

∂

∂β
(AMβ) +

∂

∂α
(BMαβ) +

∂B

∂α
Mβα −

∂A

∂β
Mα

−ABQβ +
AB

Rβ

Pβ + ABmβ = AB(Ī2v̈
2
0 + Ī3ψ̈

2
β) (4.26)

where Nα, Nβ, Nαβ, Nβα are force resultants tangent to the midsurface, Qα, Qβ are the
transverse shear force resultants, mα,mβ are body couples (moments per unit length),
qα, qβ are external forces (per unit area), and

Īi =
(
Ii + Ii+1(

1

Rα

+
1

Rβ

) +
Ii+2

Rαβ

)
i = 1, 2, 3 (4.27)

and also

(I1, I2, I3, I4, I5) =
N∑
k=1

∫ zk+1

zk

ρ(k)(1, z, z2, z3, z4)dz (4.28)

Substituting eq. (4.23) into eq. (4.26), yields equations of motion in matrix form as
follow


K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55





U
V
W
ψx
ψy


= −λ2


M11 0 0 M14 0

0 M22 0 0 M25

0 0 M33 0 0
M14 0 0 M44 0

0 M25 0 0 M55





U
V
W
ψx
ψy


(4.29)
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where

K11 = A11
∂2

∂α2
+ 2%A16

∂2

∂α∂β
+ %2A66

∂2

∂β2
− β2γ2A55

K12 = A16
∂2

∂α2
+ %(A12 + A66)

∂2

∂α∂β
+ %2A26

∂2

∂β2
− β2γA45

K13 = βhA12
∂

∂α
+ %βhA26

∂

∂β
+ βγhA11

∂

∂α
+ βγ%hA16

∂

∂β
+ βγhA55

∂

∂α
+ βγ%hA45

∂

∂β

K14 = B11
∂2

∂α2
+ 2%B16

∂2

∂α∂β
+ %2B66

∂2

∂β2
+ βγA55

K15 = B16
∂2

∂α2
+ %(B12 +B66)

∂2

∂α∂β
+ %2B26

∂2

∂β2
+ βγA45

K21 = A16
∂2

∂α2
+ %(A12 + A66)

∂2

∂α∂β
+ %2A26

∂2

∂β2
− β2γA45

K22 = A66
∂2

∂α2
+ 2%A26

∂2

∂α∂β
+ %2A22

∂2

∂β2
− β2A44

K23 = βh(A26 + A45)
∂

∂α
+ %βh(A22 + A44)

∂

∂β
+ βγ%hA12

∂

∂β
+ βγhA16

∂

∂α

K24 = B16
∂2

∂α2
+ %(B12 +B66)

∂2

∂α∂β
+ %2B26

∂2

∂β2
+ βA45

K25 = B66
∂2

∂α2
+ 2%B26

∂2

∂α∂β
+ %2B22

∂2

∂β2
+ βA44

K31 = −βA12
∂

∂α
− %βA26

∂

∂β
− βγA11

∂

∂α
− βγ%A16

∂

∂β
− βγA55

∂

∂α
− βγ%A45

∂

∂β

K32 = −β(A26 + A45)
∂

∂α
− %β(A22 + A44)

∂

∂β
− βγ%A12

∂

∂β
− βγA16

∂

∂α

K33 = hA55
∂2

∂α2
+ 2%hA45

∂2

∂α∂β
+ %2hA44

∂2

∂β2
− β2hA22 − βγhA11 − 2β2γhA12

K34 = A55
∂

∂α
+ %A45

∂

∂β
− βB12

∂

∂α
− %βB26

∂

∂β
− βγB11

∂

∂α
− βγ%B16

∂

∂β

K35 = A45
∂

∂α
+ %A44

∂

∂β
− βB26

∂

∂α
− β%B22

∂

∂β
− βγ%B12

∂

∂β
− βγB16

∂

∂α

K41 = B11
∂2

∂α2
+ 2%B16

∂2

∂α∂β
+ %2B66

∂2

∂β2
+ βγA55

K42 = B16
∂2

∂α2
+ %(B12 +B66)

∂2

∂α∂β
+ %2B26

∂2

∂β2
+ βA45

K43 = βhB12
∂

∂α
+ %βhB26

∂

∂β
− hA55

∂

∂α
− %hA45

∂

∂β
+ βγhB11

∂

∂α
+ βγ%hB16

∂

∂β

K44 = D11
∂2

∂α2
+ 2%D16

∂2

∂α∂β
+ %2D66

∂2

∂β2
− A55

K45 = D16
∂2

∂α2
+ %(D12 +D66)

∂2

∂α∂β
+ %2D26

∂2

∂β2
− A45

K51 = B16
∂2

∂α2
+ %(B12 +B66)

∂2

∂α∂β
+ %2B26

∂2

∂β2
+ βγA45
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K52 = B66
∂2

∂α2
+ 2%B26

∂2

∂α∂β
+ %2B22

∂2

∂β2
+ βA44

K53 = βhB26
∂

∂α
+ β%hB22

∂

∂β
− hA45

∂

∂α
− %hA44

∂

∂β
+ βγ%hB12

∂

∂β
+ βγhB16

∂

∂α

K54 = D16
∂2

∂α2
+ %(D12 +D66)

∂2

∂α∂β
+ %2D26

∂2

∂β2
− A45

K55 = D66
∂2

∂α2
+ 2%D26

∂2

∂α∂β
+ %2D22

∂2

∂β2
− A44

and

M11 = Ī1 M22 = Ī1 M33 = Ī1 M44 = Ī3 M55 = Ī3

M14 = Ī2 M25 = Ī2 (4.30)

Using % = a/b, a/Rβ = β,Rβ/Rα = γ for doing dimensionless equations of motion.

Boundary conditions at ζ = 0

Clamped (U = V = W = ψx = ψy = 0)

B11 = (eT1 ⊗ I) B22 = (eT1 ⊗ I) B33 = (eT1 ⊗ I)

B44 = (eT1 ⊗ I) B55 = (eT1 ⊗ I) (4.31)

Simply-supported (Mxx = V = W = Nxx = ψy = 0)

B11 = B11(eT1D
(1) ⊗ I) +B16(eT1 ⊗D(1))

B12 = B12(eT1 ⊗D(1)) +B16(eT1D
(1) ⊗ I)

B13 = B11β(eT1 ⊗ I) +B12(eT1 ⊗ I)

B14 = D11(eT1D
(1) ⊗ I) +D16(eT1 ⊗D(1))

B15 = D12(eT1 ⊗D(1)) +D16(eT1D
(1) ⊗ I)

B22 = (eT1 ⊗ I) B33 = (eT1 ⊗ I)

B41 = A11(eT1D
(1) ⊗ I) + A16(eT1 ⊗D(1))

B42 = A12(eT1 ⊗D(1)) + A16(eT1D
(1) ⊗ I)

B43 = A11β(eT1 ⊗ I) + A12(eT1 ⊗ I)

B44 = B11(eT1D
(1) ⊗ I) +B16(eT1 ⊗D(1))

B45 = B12(eT1 ⊗D(1)) +B16(eT1D
(1) ⊗ I)

B55 = (eT1 ⊗ I) (4.32)
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Boundary conditions at η = 0

Clamped (U = V = W = ψx = ψy = 0)

B11 = (I ⊗ eT1 ) B22 = (I ⊗ eT1 ) B33 = (I ⊗ eT1 )

B44 = (I ⊗ eT1 ) B55 = (I ⊗ eT1 ) (4.33)

Simply-supported (U = Myy = W = ψx = Nyy = 0)

B11 = (eT1 ⊗ I)

B21 = B12(D(1) ⊗ eT1 ) +B26(I ⊗ eT1D(1))

B22 = B22(I ⊗ eT1D(1)) +B26(D(1) ⊗ eT1 )

B23 = B12β(I ⊗ eT1 ) +B22(I ⊗ eT1 )

B24 = D12(D(1) ⊗ eT1 ) +D26(I ⊗ eT1D(1))

B25 = D22(I ⊗ eT1D(1)) +D26(D(1) ⊗ eT1 )

B33 = (eT1 ⊗ I) B44 = (eT1 ⊗ I)

B51 = A12(D(1) ⊗ eT1 ) + A26(I ⊗ eT1D(1))

B52 = A22(I ⊗ eT1D(1)) + A26(D(1) ⊗ eT1 )

B53 = A12β(I ⊗ eT1 ) + A22(I ⊗ eT1 )

B54 = B12(D(1) ⊗ eT1 ) +B26(I ⊗ eT1D(1))

B55 = B22(I ⊗ eT1D(1)) +B26(D(1) ⊗ eT1 ) (4.34)

This problem is solved like problem section (3.3.2). Table (4.4) is shown the results for
cylindrical panel shell for non-symmetric composite laminated both cross-ply and angle-
ply for many boundary conditions. Results are compared with differential quadrature
method based on the first-order shear deformation theory. As seen results are close.
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Table 4.4: Non-dimensional natural frequencies of composite laminated cylindrical shell,

λ = ωa2
√

ρh
D
, a/h = 10, a/R = 2

Lay-up BCs ω1 ω2 ω3 ω4 ω5

(0, 90)3 CCCC 28.787 40.716 40.740 48.720 56.302
[156] 28.319 40.005 40.196 47.953 55.815

SSSS 14.715 25.041 32.495 36.373 42.928
[156] 14.286 24.242 32.069 35.575 42.031

CSCS 17.243 26.841 34.046 37.979 43.989
[156] 17.039 26.220 33.748 37.342 43.191

CFCF 14.258 15.780 21.582 22.329 29.582
[156] 14.170 15.680 21.787 29.425 31.522

CFSF 12.020 13.755 20.987 28.448 30.647
[156] 11.923 13.639 20.526 28.278 30.478

FCFS 6.4404 12.066 22.289 23.700 24.264
[156] 6.3302 11.691 21.817 23.266 24.229

(−45, 45)3 CCCC 39.578 41.011 47.437 50.069 56.787
[156] 39.462 40.872 46.916 49.538 56.500

SSSS 24.859 26.993 41.180 41.518 43.026
[156] 24.711 27.023 40.721 41.241 42.692

CSCS 29.705 36.948 41.861 47.041 52.652
[156] 29.541 36.743 41.874 46.489 51.782

CFCF 15.953 18.418 27.966 30.240 32.873
[156] 16.158 18.741 27.508 30.034 33.255

CFSF 13.908 14.336 23.002 23.998 29.321
[156] 14.048 14.661 22.691 23.639 29.046

FCFS 4.9677 17.031 18.183 29.243 29.477
[156] 4.9697 16.198 18.107 28.769 29.241
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Chapter 5

Carrera’s Unified Formulation
(CUF)

5.1 Doubly curved shells and rectangular plates

Carrera’s unified formulation is a technique for implementing so higher-order theory of
structures such as beam, plate and shell. This analysis is two-dimensional or quasi-3D. In
this chapter, spectral collocation method is applied on the (CUF) model for free vibration
analysis of composite plates and shells. This technique can cover all the thickness ratio
(thin and thick), lay-up of composite laminated such as symmetric and non-symmetric
structures and so higher-order expansion of variables. In this technique, all variables
(u, v, w) are assumed in higher-order in terms of thickness direction not only (u, v) similar
to FSDT or TSDT but also w. Implementing of formulation is based on principle of virtual
displacement (PVD). Variation of internal work is equal to strain energy. Stresses are
obtained from Hook’s law and the strains from the geometrical relations, which for each
layer k states as

∫
Ωk

∫ zk+1

zk

δεk
T

σkdzkdΩk = −
∫

Ωk

∫ zk+1

zk

δuk
T

ρüdzkdΩk (5.1)

σk and εk are stresses and strains for each lamina, respectively which are divided into
in-plane and out-of-plane (normal) components as

σkp =


σkαα
σkββ
σkαβ

 σkn =


σkαz
σkβz
σkzz

 εkp =


εkαα
εkββ
εkαβ

 εkn =


εkαz
εkβz
εkzz

 (5.2)

where α, β are curvilinear orthogonal coordinates and are in-plane coordinates, and z is
the normal coordinate or out-of-plane coordinate.

After these definitions eq. (5.1) could be rewritten in matrix form as

∫
Ωk

∫ zk+1

zk

[
δεk

T

pG δεk
T

nG

] { σkpH
σknH

}
dzkdΩk

=
∫

Ωk

∫ zk+1

zk

(δεk
T

pGσ
k
pH + δεk

T

nGσ
k
nH)dzkdΩk = −

∫
Ωk

∫ zk+1

zk

δuk
T

ρüdzkdΩk (5.3)
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where subscript G for strains means that strains which are obtained from geometrical
relations, subscript H for stresses means stresses which are evaluated using Hooke’s law,
subscript p, n are related to in-plane and out of plane strains and stresses and superscript
T means transpose of array. The following Nth-order expansion have been chosen in the
thickness direction of each layer (k = 1, 2, ...Nl).

The constitutive equation for each lamina can be written as

σkpH = C̃k
ppε

k
pG + C̃k

pnε
k
nG

σknH = C̃k
npε

k
pG + C̃k

nnε
k
nG (5.4)

and the relation among displacements and strains are as follow

εkpG = Dpu
k + Apu

k

εknG = Dnu
k + λDAnu

k (5.5)

where

Dp =


∂α
Hk
α

0 0

0
∂β
Hk
β

0
∂β
Hk
β

∂α
Hk
α

0

 , Dn =


∂z 0 ∂α

Hk
α

0 ∂z
∂β
Hk
β

0 0 ∂z



Ap =


0 0 1

Hk
αR

k
α

0 0 1
Hk
β
Rk
β

0 0 0

 , An = −


1

Hk
αR

k
α

0 0

0 1
Hk
β
Rk
β

0

0 0 0

 (5.6)

and also

Hk
α = A(1 +

zk
Rk
α

), Hk
β = B(1 +

zk
Rk
β

), Hk
z = 1 (5.7)

Rk
α, R

k
β are radius of curvature in the associated coordinates. Eq. (5.7) is associated to

the thick shells because for plates and thin shells (1 + zk
Rk
α,β

) are one. Ap, An are just used

for shells such as thin or thick. λD is a parameter which is one for general shell and
zero for Donnell-Mushtary type shallow shell. Dp and Dn are differential operator matrix
apply on displacements but Ap and An are matrices which are multiplied by displace-
ments. A,B are coefficients of the first fundamental form of Ωk. For simplicity in this
section, it is assumed that A = B = 1. Curvature of cylindrical, spherical and toroidal
shell are constant, if curvature or curvatures are not constant A or B, or A and B are
not constant. For plates also these mentioned coefficients are always identity and the
curvatures associated to α, β coordinates are infinity.

In-plane and out-of-plane devision is also done for C̃k
ij, thus the stiffness coefficients

are as
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C̃k
pp =

 C̃k
11 C̃k

12 C̃k
16

C̃k
12 C̃k

22 C̃k
26

C̃k
16 C̃k

26 C̃k
66

 , C̃k
pn = C̃kT

pn =

 0 0 C̃k
13

0 0 C̃k
23

0 0 C̃k
36



C̃k
nn =

 C̃k
55 C̃k

45 0

C̃k
45 C̃k

44 0

0 0 C̃k
33

 (5.8)

The C̃k
ij coefficients are evaluated from the below formula as

Hook’s law in three-dimensional analysis is

σ = Cε→



σ11

σ22

σ12

σ13

σ23

σ33


=



C11 C12 0 0 0 C13

C12 C22 0 0 0 C23

0 0 C66 0 0 0
0 0 0 C55 0 0
0 0 0 0 C44 0
C13 C23 0 0 0 C33





ε11

ε22

ε12

ε13

ε23

ε33


(5.9)

where stiffness coefficients and poison’ ratio for an orthotropic material are as:

C11 = E1
1− ν23ν32

∆
C22 = E2

1− ν13ν31

∆
C33 = E3

1− ν12ν21

∆

C12 = E1
ν21 + ν23ν31

∆
C13 = E1

ν31 + ν21ν32

∆
C23 = E2

ν32 + ν12ν31

∆
C44 = G23 C55 = G13 C66 = G12

ν21 =
E2

E1

ν12 ν31 =
E3

E1

ν13 ν32 =
E3

E2

ν23

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν32ν13 (5.10)

For composite laminated, stiffness matrix can be obtained as following

C̃ = TCT ′ =



C̃11 C̃12 C̃16 0 0 C̃13

C̃12 C̃22 C̃26 0 0 C̃23

C̃16 C̃26 C̃66 0 0 C̃36

0 0 0 C̃55 C̃45 0

0 0 0 C̃45 C̃44 0

C̃13 C̃23 C̃36 0 0 C̃33


(5.11)

where transformation matrix is as

T =



cos2 θ sin2 θ −2 sin θ cos θ 0 0 0
sin2 θ cos2 θ 2 sin θ cos θ 0 0 0

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0
0 0 0 0 0 1


(5.12)
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and θ is orientation angle of each lamina.

According to the Carrera’s unified formulation (CUF) and assuming harmonic motion
with circular frequency ω, the displacements vector for each layer is expressed as

uk(ζ, η, ξk, t) =


uk(ζ, η, ξk, t)
vk(ζ, η, ξk, t)
wk(ζ, η, ξk, t)

 =


Fτ (ξk)u

k
τ (ζ, η)

Fτ (ξk)v
k
τ (ζ, η)

Fτ (ξk)w
k
τ (ζ, η)

 eiωt = Fτ (ξk)u
k
τ (ζ, η)eiωt(5.13)

τ = t, b, r(r = 2, ..., Nn) is an index related on the chosed theory, Fτ (ξk) are assumed
thickness function and Nn is order of theory. ξk is a local dimensionless layer coordinate
(−1 ≤ ξk ≤ 1) related to the global thickness coordinate z and is defined as

ξk =
2

ztopk − zbotk
z − ztopk + zbotk

ztopk − zbotk
(5.14)

where ztopk and zbotk are correspond to top and bottom surface of each layer k. It is noted
that in (CUF) technique in spite of other theories of plates and shells does not need to
do dimensionless over displacements. Consider a plate or shell with a length and b width
in (α, β) coordinates, only parameter β = a/b is used as dimensionless parameter. In eq.
(5.13) displacements vector is assumed as

uk = (Ftu
k
t + Fbu

k
b + Fru

k
r)e

iωt = Fτu
k
τe
iωt τ = 0, 1, ..., Nn (5.15)

and also the summation convention over indices is as

uk = (Ftu
k
t + F2u

k
2 + ...+ FNukN + Fbu

k
b )e

iωt (5.16)

Subscript t is correspond to top layer and subscript b is correspond to bottom layer and
subscript r is defined for the layers in between. F0 and F1 define functions related to top
and bottom layer or vice versa and other functions are correspond to other layers. Thus
the above relation can be written in the form below

uk = F0u
k
0 + F1u

k
1 + Fru

k
r r = 2, ..., Nn (5.17)

where F0 = 1, F1 = z, FNn = ZNn .

Thickness functions Fτ (ξk) can be arbitrarily chosed for better description of deformed
plates and shells in each lamina which can be in power series form (1, z, z2, ..., zNn ) or other
functions like zig-zag function. Basically with this assumption, displacements assumed
in multiplication of two variables Fτ and uτ which are acting on thickness direction and
surface, respectively. Thus, Fτ just has differentiation with respect to z and uτ has
differentiation with respect to surface coordinates. Expansion of eq. (5.17) for all three
displacements are (see Figure 5.4)

u(ζ, η, ξk) = uk0 + zuk1 + z2uk2 + ...+ zNnukNn
v(ζ, η, ξk) = vk0 + zvk1 + z2vk2 + ...+ zNnvkNn
w(ζ, η, ξk) = wk0 + zwk1 + z2wk2 + ...+ zNnwkNn (5.18)
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This type of definition for the thickness function leads to a theory which is called Equiv-
alant single layer (ESL) naming EDNn. i.e., expansion of ED2 based on this theory
is

uk = ukt + zukb + z2uk2
vk = ukt + zukb + z2uk2
wk = ukt + zukb + z2uk2 (5.19)

In this theory entire thickness assumes as a layer without changing in displacement and
behavior with changing lamina, and the displacement degrees of freedom for a given
EDNn is 3(Nn + 1)(N + 1)2. But an effective way is to not considering whole thickness
as one layer and to satisfy the inter-laminar continuity of the displacements is to choose

Ft(k) =
1 + ξk

2

Ft(k) =
1− ξk

2
Fr(k) = Pr(ξk)− Pr−2(ξk) r = 2, 3, ...., Nn (5.20)

where Pi(ξk) is the Legendre polynomial of ith order, and the inter-laminar continuity
among layers is

ukt = uk+1
b k = 1, ..., Nl − 1 (5.21)

It means that the displacement for the top surface of kth lamina should be equal to
displacement for the bottom surface of the (k + 1)th lamina. This type of formulation
for the thickness function proceeds to layer-wise theory and naming LDNn (see Figure
5.5). for example based on this theory formulation of LD2 is

uk =
1 + ξk

2
ukt +

1− ξk
2

ukb +
3ξ2
k − 3

2
uk2

vk =
1 + ξk

2
vkt +

1− ξk
2

vkb +
3ξ2
k − 3

2
vk2

wk =
1 + ξk

2
wkt +

1− ξk
2

wkb +
3ξ2
k − 3

2
wk2 (5.22)

For layer-wise description, displacements of each layer considered independently. The
properties of the chosen functions, compatibility of the displacement and equilibrium of
the transverse stress components and the additional C0

z requirements are as

ζk =

{
1 : Ft = 1, Fb = 0, Fr = 0
−1 : Ft = 0, Fb = 1, Fr = 0

{
ukt = u

(k+1)
b k = 1, Nl − 1

σknt = σ
(k+1)
nb k = 1, Nl − 1

(5.23)

Displacement degrees of freedom for a given LDNn is
(

3(Nn+1)Nl−3(Nl−1)
)

(N+1)2.
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Substituting eqs. (5.4), (5.5) and (5.15) into eq. (5.3), yields∫
Ωk

∫ zk+1

zk

(
δ(Dpuτ

k +Apuτ
k)T [C̃pp(Dpus

k +Apus
k) + C̃pn(Dnus

k +Anus
k)]

)
dzkdΩk + ...

=

∫
Ωk

∫ zk+1

zk

(
δuτ

kT (DT
p +ATp )[C̃pp(Dpus

k +Apus
k) + C̃pn(Dnus

k +Anus
k)]

)
dzkdΩk + ...

= −
∫

Ωk

∫ zk+1

zk

(
δuτ

kTDT
p [C̃pp(Dpus

k +Apus
k) + C̃pn(Dnus

k +Anus
k)]

)
dzkdΩk

+

∫
Γk

∫ zk+1

zk

(
δuτ

kT [C̃pp(Dpus
k +Apus

k) + C̃pn(Dnus
k +Anus

k)]

)
dzkdΓk

+

∫
Ωk

∫ zk+1

zk

(
δuτ

kTATp [C̃pp(Dpus
k +Apus

k) + C̃pn(Dnus
k +Anus

k)]

)
dzkdΩk + ...

= −
∫

Ωk

∫ zk+1

zk

δuτ
kT ρüsdzkdΩk (5.24)

It is to be noted that, multiplication of Dp and Dn which are 3× 3 matrices by u which
is 3 × 1 vector yields a 3 × 1 vector. σp and σn also are obtained from multiplication of
strains which are (3× 1) matrices by determined coefficients which yield 3× 1 matrices.
Regarding eq. (5.3) transpose of strains which are 1 × 3 multiply by stresses which are
3×1 yields (1×1) matrix including many terms such as equations of motion and natural
boundary conditions after doing integration by parts.

After doing integration by parts for all terms, Eq. (5.24) is simplified in the form
below as

−
∫

Ωk

∫ zk+1

zk

δuτ
kTLkτsuksdzkdΩk +

∫
Γk

∫ zk+1

zk

δuτ
kTBkτsuksdzdΓk

= −
∫

Ωk

∫ zk+1

zk

δuτ
kT ρüksdzkdΩk (5.25)

where Lkτs and Bkτs are the nuclei of stiffness and boundary condition matrices, respec-
tively. Apply integral in the thickness direction using the formula(

Jkτs, Jkτsα , Jkτsβ , Jkτsα
β
, Jkτsβ

α

, Jkτsαβ

)
=

∫ zk+1

zk

FτFs

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

(
Jkτzs, Jkτzsα , Jkτzsβ , Jkτzsα

β
, Jkτzsβ

α

, Jkτzsαβ

)
=

∫ zk+1

zk

FτzFs

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

(
Jkτsz , Jkτszα , Jkτszβ , Jkτszα

β
, Jkτszβ

α

, Jkτszαβ

)
=

∫ zk+1

zk

FτFsz

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

(
Jkτzsz , Jkτzszα , Jkτzszβ , Jkτzszα

β
, Jkτzszβ

α

, Jkτzszαβ

)
=

∫ zk+1

zk

FτzFsz

(
1, Hk

α, H
k
β ,
Hk
α

Hk
β

,
Hk
β

Hk
α

, Hk
αH

k
β

)
dz

(5.26)

and simplified form for plates are as

Jkτs = Jkτsα = Jkτsβ = Jkτsαβ = Jkτsα/β = Jkτsβ/α = Ekτs

Jkτsz = Jkτszα = Jkτszβ = Jkτszαβ = Jkτszα/β = Jkτszβ/α = Ekτsz

Jkτzs = Jkτzsα = Jkτzsβ = Jkτzsαβ = Jkτzsα/β = Jkτzsβ/α = Ekτzs

Jkτzsz = Jkτzszα = Jkτzszβ = Jkτzszαβ = Jkτzszα/β = Jkτzszβ/α = Ekτzsz (5.27)
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Eq. (5.25) is simplified as

Lkτsuks = ρkJτsαβ
küks

Bkτsuks = 0 (5.28)

Lkτs and Bkτs are the nuclei with 3(N + 1)2 × 3(N + 1)2 size. In Ritz or finite element
methods each of these elements are scalar and so nuclei is (3×3). After expansion through
the τ and s, assemblage based on ESL or LW description, new matrix repeats through
rows and columns in a big matrix. The number of these rows and columns are equal and
also equal to order of Ritz expansion or number of nodes of the considered 2D structural
elements, respectively.

But in the presented method each of the elements of nuclei are a matrix by order
(N +1)2× (N +1)2 (see Figure 5.1) and so nuclei itself is 3(N +1)2×3(N +1)2. Nuclei is
expanded via τ and s which comes from the chosed theory, i.e., for ED1 or LD1, Nn = 1
and (τ, s = 0, 1) or in ED2 or LD2, Nn = 2 and (τ, s = 0, 1, 2). Finally, according to
equivalent single layer theory or layer-wise theory matrix is assembled. Therefore, finite
element discretization is applied at the end of procedure for analysis of (CUF) based on
finite element but discretization based on the chebyshev polynimial is applied at first
during (CUF) analysis based on chebyshev spectral method.

Generally, for all structures after multiplication of matrices and vectors inside of
integrals and doing integration by parts and factorization with respect to δuk

T
, δvk

T
and

δwk
T
, it is summarized as

−
∫

Ωk

∫ zk+1

zk

δuk
T

(Lτs
k

11 uk + Lτs
k

12 vk + Lτs
k

13 wk)dzkdΩk +

∫
Γk

∫ zk+1

zk

δuk
T

(Bτs
k

11 uk + Bτs
k

12 vk + Bτs
k

13 wk)dzkdΓk

−
∫

Ωk

∫ zk+1

zk

δvk
T

(Lτs
k

21 uk + Lτs
k

22 vk + Lτs
k

23 wk)dzkdΩk +

∫
Γk

∫ zk+1

zk

δvk
T

(Bτs
k

21 uk + Bτs
k

22 vk + Bτs
k

23 wk)dzkdΓk

−
∫

Ωk

∫ zk+1

zk

δwk
T

(Lτs
k

31 uk + Lτs
k

32 vk + Lτs
k

33 wk)dzkdΩk +

∫
Γk

∫ zk+1

zk

δwk
T

(Bτs
k

31 uk + Bτs
k

32 vk + Bτs
k

33 wk)dzkdΓk

= −
∫

Ωk

∫ zk+1

zk

(δuk
T
ρkük + δvk

T
ρk v̈k + δwk

T
ρkẅk)dzkdΩk (5.29)

Therefore, the equations result into nuclei of stiffness and nuclei of natural boundary
conditions, respectively as

δuk
T

: Lτsk11 u
k + Lτsk12 v

k + Lτsk13 w
k = ρkük

δvk
T

: Lτsk21 u
k + Lτsk22 v

k + Lτsk23 w
k = ρkv̈k

δwk
T

: Lτsk31 u
k + Lτsk32 v

k + Lτsk33 w
k = ρkẅk (5.30)

and

δuk
T

: Bτsk11 u
k + Bτsk12 v

k + Bτsk13 w
k = 0

δvk
T

: Bτsk21 u
k + Bτsk22 v

k + Bτsk23 w
k = 0

δwk
T

: Bτsk31 u
k + Bτsk32 v

k + Bτsk33 w
k = 0 (5.31)
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Nuclei of shell’ stiffness

Lτsk11 = −
(
C̃k

11J
τs
β
α

∂αα + 2C̃k
16J

τs∂αβ + C̃k
66J

τs
α
β
∂ββ

)
+ C̃k

55J
τzsz
αβ

+λC̃k
55

(
1

R2
α

Jτsβ
α

− 1

Rα

Jτzsβ −
1

Rα

Jτszβ

)
Lτsk12 = −

(
(C̃k

12 + C̃k
66)Jτs∂αβ + C̃k

16J
τs
β
α

∂αα + C̃k
26J

τs
α
β
∂ββ

)
+ C̃k

45J
τzsz
αβ

+λC̃k
45

(
1

RαRβ

Jτs − 1

Rα

Jτszβ − 1

Rβ

Jτzsα

)

Lτsk13 = −
(
C̃k

11

Rα

Jτsβ
α

+
C̃k

12

Rβ

Jτs + C̃13J
τsz
β − C̃k

55J
τzs
β

)
∂α

−
(
C̃k

16

Rα

Jτs +
C̃k

26

Rβ

Jτsα
β

+ C̃k
36J

τsz
α − C̃k

45J
τzs
α

)
∂β

−λ
(
C̃k

55

Rα

Jτsβ
α

∂α +
C̃k

45

Rα

Jτs∂β

)
Lτsk21 = −

(
(C̃k

12 + C̃k
66)Jτs∂αβ + C̃k

16J
τs
β
α

∂αα + C̃k
26J

τs
α
β
∂ββ

)
+ C̃k

45J
τzsz
αβ

+λC̃k
45

(
1

RαRβ

Jτs − 1

Rα

Jτzsβ −
1

Rβ

Jτszα

)
Lτsk22 = −

(
C̃k

22J
τs
α
β
∂ββ + 2C̃k

26J
τs∂αβ + C̃k

66J
τs
β
α

∂αα − C̃k
44J

τzsz
αβ

)
+λC̃k

44

(
1

R2
β

Jτsα
β
− 1

Rβ

Jτszα − 1

Rβ

Jτzsα

)

Lτsk23 = −
(
C̃k

16

Rα

Jτsβ
α

+
C̃k

26

Rβ

Jτs + C̃36J
τsz
β − C̃k

45J
τzs
β

)
∂α

−
(
C̃k

12

Rα

Jτs +
C̃k

22

Rβ

Jτsα
β

+ C̃k
23J

τsz
α − C̃k

44J
τzs
α

)
∂β

−λ
(
C̃k

45

Rβ

Jτs∂α +
C̃k

44

Rβ

Jτsα
β
∂β

)

Lτsk31 =
(
C̃k

11

Rα

Jτsβ
α

+
C̃k

12

Rβ

Jτs + C̃13J
τzs
β − C̃k

55J
τsz
β

)
∂α

+
(
C̃k

16

Rα

Jτs +
C̃k

26

Rβ

Jτsα
β

+ C̃k
36J

τzs
α − C̃k

45J
τsz
α

)
∂β

+λ
(
C̃k

55

Rα

Jτsβ
α

∂α +
C̃k

45

Rα

Jτs∂β

)

Lτsk32 =
(
C̃k

16

Rα

Jτsβ
α

+
C̃k

26

Rβ

Jτs + C̃36J
τzs
β − C̃k

45J
τsz
β

)
∂α

+
(
C̃k

12

Rα

Jτs +
C̃k

22

Rβ

Jτsα
β

+ C̃k
23J

τzs
α − C̃k

44J
τsz
α

)
∂β

+λ
(
C̃k

45

Rβ

Jτs∂α +
C̃k

44

Rβ

Jτsα
β
∂β

)
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Lτsk33 = −
(
C̃k

55J
τs
β
α

∂αα + 2C̃k
45J

τs∂αβ + C̃k
44J

τs
α
β
∂ββ

)
+ C̃k

33J
τzsz
αβ

+
1

Rα

(
C̃k

11

Rα

Jτsβ
α

+ 2
C̃k

12

Rβ

Jτs + C̃k
13J

τsz
β + C̃k

13J
τzs
β

)

+
1

Rβ

(
C̃k

22

Rβ

Jτsα
β

+ C̃k
23J

τsz
α + C̃k

23J
τzs
α

)

Mτsk

11 = ρkJτskαβ , Mτsk

11 =Mτsk

22 =Mτsk

33 (5.32)

Nuclei of shell’s natural boundary conditions

Bτsk11 = nα

(
C̃k

11J
kτs
β
α

∂α + C̃k
16J

kτs∂β

)
+ nβ

(
C̃k

16J
kτs∂α + C̃k

66J
kτs
α
β
∂β

)
Bτsk12 = nα

(
C̃k

16J
kτs
β
α

∂α + C̃k
12J

kτs∂β

)
+ nβ

(
C̃k

66J
kτs∂α + C̃k

26J
kτs
α
β
∂β

)
Bτsk13 = nα

(
1

Rk
α

C̃k
11J

kτs
β
α

+
1

Rk
β

C̃k
12J

kτs + C̃k
13J

kτsz
β

)

+nβ

(
1

Rk
α

C̃k
16J

kτs +
1

Rk
β

C̃k
26J

kτs
α
β

+ C̃k
36J

kτsz
α

)
Bτsk21 = nα

(
C̃k

16J
kτs
β
α

∂α + C̃k
66J

kτs∂β

)
+ nβ

(
C̃k

12J
kτs∂α + C̃k

26J
kτs
α
β
∂β

)
Bτsk22 = nα

(
C̃k

66J
kτs
β
α

∂α + C̃k
26J

kτs∂β

)
+ nβ

(
C̃k

22J
kτs
α
β
∂β + C̃k

26J
kτs∂β

)
Bτsk23 = nα

(
C̃k

36J
kτsz
β +

1

Rk
α

C̃k
16J

kτs
β
α

+ C̃k
26J

kτs
)

+nβ

(
C̃k

23J
kτsz
α +

1

Rk
α

C̃k
12J

kτs +
1

Rk
β

C̃k
22J

kτs
α
β

)

Bτsk31 = nα

(
C̃k

55J
kτsz
β − (

λ

Rα

)C̃k
55J

kτs
β
α

)
+ nβ

(
C̃k

45J
kτs − (

λ

Rα

)C̃k
45J

kτsz
α

)
Bτsk32 = nα

(
C̃k

45J
kτsz
β − (

λ

Rβ

)C̃k
45J

kτs
)

+ nβ

(
C̃k

44J
kτsz
α − (

λ

Rβ

)C̃k
44J

kτs
α
β

)
Bτsk33 = nα

(
C̃k

55J
kτs
β
α

∂α + C̃k
45J

kτs∂β

)
+ nβ

(
C̃k

44J
kτs
α
β
∂β + C̃k

45J
kτs∂α

)
(5.33)

For composite structures in ESL (Equivalent Single Layer) theory for layer expansion, all
the layers accumulate (see Figure 5.2) but in layer-wise approach all the layers expand
like finite element assemblage with considering the continuity condition between the lay-
ers (see Figure 5.3).

Note that the first-order shear deformation theory (FSDT) can be easily recovered
from ED1 theory after imposing the condition of null transverse normal stresses σkzz and
introducing a shear zz correction factor κ. The corresponding modified elastic coefficients
are given by:
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Figure 5.1: Assemblage of nuclei via τ and s

Figure 5.2: Assemblage from layer to multi-layered level in ESL description
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Figure 5.3: Assemblage from layer to multi-layered level in layer-wise description

Figure 5.4: ESLM assumption. Linear and cubic cases

Figure 5.5: LWM assumption. Linear and cubic cases
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C̃k
ij = Ck

ij −
Ck
i3C

k
j3

Ck
33

(i, j) = 1, 2

C̃k
ii = Ck

ii i = 4, 5 (5.34)

In the case of isotropic thin rectangular plates for evaluation of natural frequencies of
fully clamped, fully simply supported and CSCS boundary condition theory of ED3 is
enough for CFCF and SFSF boundaries theory of ED4 is enough and for SFFF it is worth
to use theory of ED5. For cantilever plate, in the case of SSFF and CCFF boundaries it
is better using eq. (5.34) to recover them from ED1 because in thin plates results don’t
converge to good results.

5.2 Sector annular plates

Assume a sector annular plate with inner radius Ri, outer radius R0 and thickness h. Ra-
dial direction is defined by Ri ≤ r ≤ R0 which is after normalization by γ = R0, ζ = r/γ
and using β = Ri/Ro becomes β ≤ ζ ≤ 1 and in circumferential direction which is defined
by 0 ≤ θ ≤ φ and 0 < φ < 2π which is after normalization by η = θ

φ
becomes 0 ≤ η ≤ 1,

and thickness direction is −h
2
≤ z ≤ h

2
which is after normalization becomes −1 ≤ ξk ≤ 1.

The displacements vector u = u(ζ, η, ξk, t) of a generic point of the plate is given by:

u(ζ, η, ξk, t) =


uζ(ζ, η, ξk, t)
uη(ζ, η, ξk, t)
uz(ζ, η, ξk, t)

 (5.35)

Strain components are grouped into an in-plane strain vector εp and out-of-plane strain
vector εn as follow

εp =


εζζ
εηη
εζη

 εn =


εζz
εηz
εzz

 (5.36)

In linear framework, strains vector are related to displacements through the following
relations

εp = Dpu
k

εn = Dnu
k (5.37)

where

Dp =
1

γ


∂
∂ζ

0 0
1
ζ

1
ζ
∂
∂η

0
1
ζ
∂
∂η

∂
∂ζ
− 1

ζ
0

 , Dn =
1

γ


∂z 0 ∂

∂ζ

0 ∂z
1
ζ
∂
∂η

0 0 ∂z

 (5.38)



5.2. SECTOR ANNULAR PLATES 149

Three-dimensional Hook’s law and stiffness coefficients are similar to previous section.
According to the approach developed by Carrera, an entire class of two-dimensional
higher-order plate theories can be described through the following indicial notation as

u(ζ, η, ξk, t) = Fτ (z)ukτ (ζ, η, t) (τ = 0, 1, ..., Nn) (5.39)

where uτ (ζ, η, t) is the displacements vector containing the unknown kinematic variables
related to the specific plate theory, τ is an integer index related to the order Nn of the the-
ory and Fτ (z) are selected functions in the thickness directions. Therefore, displacements
vector can be expressed as

u(ζ, η, ξk, t) = Fτ (ξk)


uk(ζ, η)
vk(ζ, η)
wk(ζ, η)

 eiωt (5.40)

Principle of virtual displacement describes as:

∫ 1

0

∫ 1

β

∫ h
2

−h
2

(
δ(εp)

T (C̃k
ppεp + C̃k

pnεn) + δ(εn)T (C̃k
npεp + C̃k

nnεn)
)
dzkζdζdη

= −
∫ 1

0

∫ 1

β

∫ h
2

−h
2

(
δ(uk)ük + δ(vk)v̈k + δ(wk)ẅk

)
dzkζdζdη (5.41)

After some substitution and integrations by part, nuclei of stiffness matrix and natural
boundary condition, respectively are as follow

Lτsk11 = −
(
C11(

1

ζ

∂

∂ζ
+

∂2

∂ζ2
)− C22

ζ2
+

C66

ζ2φ2

∂2

∂η2
+

2C16

ζφ

∂2

∂ζ∂η

)
Ek
τs + C55E

k
τzsz

Lτsk12 =
(
− (C12 + C66)

ζφ

∂

∂ζ∂η
+

(C22 + C66)

ζ2φ

∂

∂η
− C16

∂2

∂ζ2

+C26(
1

ζ

∂

∂ζ
− 1

ζ2
− 1

ζ2φ2

∂

∂η2
)
)
Ek
τs + C45E

k
τzsz

Lτsk13 = −
(
C13(

∂

∂ζ
+

1

ζ
)− C23

ζ
+
C36

ζφ

∂

∂η

)
Ek
τsz +

(
C55

∂

∂ζ
+
C45

ζ

∂

∂ζ

)
Ek
τzs

Lτsk21 = −
(

(C12 + C66)

ζφ

∂

∂ζ∂η
+

(C22 + C66)

ζ2φ

∂

∂η
+ C16(

∂2

∂ζ2
+

2

ζ

∂

∂ζ
)

+C26(
1

ζ2φ2

∂2

∂η2
+

1

ζ

∂

∂ζ
+

1

ζ2
)
)
Ek
τs + C45E

k
τzsz

Lτsk22 = −
(
C22

ζ2φ2

∂2

∂η2
+ C66(

∂2

∂ζ2
+

1

ζ

∂

∂ζ
− 1

ζ2
) + 2C26

1

ζφ

∂

∂ζ∂η

)
Ek
τs + C44E

k
τzsz

Lτsk23 = −
(
C23

ζφ

∂

∂η
+ C36(

∂

∂ζ
+

2

ζ
)
)
Ek
τsz +

(
C44

ζφ

∂

∂η
+ C45

∂

∂ζ

)
Ek
τzs

Lτsk31 =
(
C13

∂

∂ζ
+
C23

ζ
+
C36

ζφ

∂

∂η

)
Ek
τzs −

(
C55(

1

ζ
+

∂

∂ζ
) +

C45

ζφ

∂

∂η

)
Ek
τsz

Lτsk32 =
(
C23

ζφ

∂

∂η
+ C36(

∂

∂ζ
− 1

ζ
)
)
Ek
τzs −

(
C44

ζφ

∂

∂η
+ C45(

∂

∂ζ
+

1

ζ
)
)
Ek
τsz

Lτsk33 = −
(
C44

ζ2φ2

∂2

∂η2
+ C55(

1

ζ

∂

∂ζ
+

∂2

∂ζ2
)− C45(

1

ζ

∂2

∂ζ2
+

1

ζφ

∂2

∂ζ∂η
)
)
Ek
τs + C33E

k
τzsz
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Mτsk

11 = ρkEk
τs, Mτsk

11 =Mτsk

22 =Mτsk

33 (5.42)

Natural boundary condition on straight sides

Bτsk11 =
(
C11

∂

∂ζ
+
C12

ζ
+
C16

ζφ

∂

∂η

)
Ek
τs

Bτsk12 =
(
C12

ζφ

∂

∂η
+ C16(

∂

∂ζ
− 1

ζ
)
)
Ek
τs

Bτsk13 = C13E
k
τsz

Bτsk21 =
(
C66

ζφ

∂

∂η
+ C16

∂

∂ζ
+
C26

ζ

)
Ek
τs

Bτsk22 =
(
C66(

∂

∂ζ
− 1

ζ
) +

C26

ζφ

∂

∂η

)
Ek
τs

Bτsk23 = C36E
k
τsz

Bτsk31 = C55E
k
τsz

Bτsk32 = C45E
k
τsz

Bτsk33 =
(
C55

∂

∂ζ
+
C45

ζ

∂

∂ζ

)
Ek
τs (5.43)

And also natural boundary condition on curved sides

Bτsk11 =
(
C66

ζ2φ

∂

∂η
+
C16

ζ

∂

∂ζ
+
C26

ζ2

)
Ek
τs

Bτsk12 =
(
C66

ζ
(
∂

∂ζ
− 1

ζ
) +

C26

ζ2φ

∂

∂η

)
Ek
τs

Bτsk13 =
C36

ζ
Ek
τsz

Bτsk21 =
(
C12

ζ

∂

∂ζ
+
C22

ζ2
+
C26

ζ2φ

∂

∂η

)
Ek
τs

Bτsk22 =
(
C22

ζ2φ

∂

∂η
+
C26

ζ
(
∂

∂ζ
− 1

ζ
)
)
Ek
τs

Bτsk23 =
C23

ζ
Ek
τsz

Bτsk31 =
C45

ζ
Ek
τsz

Bτsk32 =
C44

ζ
Ek
τsz

Bτsk33 =
(
C44

ζ2φ

∂

∂η
+
C45

ζ

∂

∂ζ

)
Ek
τs (5.44)

For φ = 2π (complete circular annular plate) continuity condition should be apply on
(φ = 0 & φ = 2π). It means that natural boundary conditions at φ = 0 minus natural
boundary conditions at φ = 2π in the straight sides direction should be zero as follow
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( B
τsk

11 Bτsk12 Bτsk13

Bτsk21 Bτsk22 Bτsk23

Bτsk31 Bτsk32 Bτsk33


φ=0

−

 B
τsk

11 Bτsk12 Bτsk13

Bτsk21 Bτsk22 Bτsk23

Bτsk31 Bτsk32 Bτsk33


φ=2π

)
uks
vks
wks

 =


0
0
0

 (5.45)

It means that instead of sector annular plate which there are four set of equations for four
sides, for complete annular plate there are just three set of equations, two set equations
for two curved sides and one set equation for applying continuity conditions between two
straight sides.

Thickness integrals are similar to rectangular plates as

Ek
τs =

∫ h
2

−h
2

FτFsdz Ek
τsz =

∫ h
2

−h
2

FτFszdz

Ek
τzs =

∫ h
2

−h
2

FτzFsdz Ek
τzsz =

∫ h
2

−h
2

FτzFszdz (5.46)

5.3 Conical shells

Assume a conical shell with length a which is a = so−si and thickness h (see Figure 5.6).
Length direction is defined by si ≤ s ≤ so which is after normalization by ζ = s/δ, δ = so
and using β = si/so becomes β ≤ ζ ≤ 1 and the angle between the length direction
and axes of conical shell is defined by (0 < α < π/2) and in circumferential direction
which is defined by 0 ≤ θ ≤ φ and 0 < φ < 2π which is after normalization by η = θ

φ

becomes 0 ≤ η ≤ 1 and in thickness direction be −h
2
≤ z ≤ h

2
which is after normalization

becomes −1 ≤ ξk ≤ 1. Half of distance between two opposite points inside of conical
shell in each point is evaluated using R(x) = Ro + x sinα or RA = Ro + a sinα and also
the coefficients of first fundamental form of Ωk are A = 1, B = ζ sinα. As seen in conical
shell parameters A,B are not constant.

The displacements vector u = u(ζ, η, z, t) of a generic point of the shell is given by

u(ζ, η, z, t) = Fτ (ξk)


u(ζ, η)
v(ζ, η)
w(ζ, η)

 eiωt (5.47)

Strain components are grouped into an in-plane strain vector εp and out-of-plane strain
vector εn are as follow

εp =


εζζ
εηη
εζη

 εn =


εζz
εηz
εzz

 (5.48)
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Figure 5.6: Conical shell geometry
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In linear framework, strains vector are related to displacements through the following
relations

εp = Dpu
k + Apu

k

εn = Dnu
k + Anu

k (5.49)

where

Dp =
1

δ


∂
∂ζ

0 0
1
ζ

1
ζ sinα

∂
∂η

0
1

ζ sinα
∂
∂η

∂
∂ζ
− 1

ζ
0

 , Dn =
1

δ


∂z 0 ∂

∂ζ

0 ∂z
1

ζ sinα
∂
∂η

0 0 ∂z



Ap =
1

δ

 0 0 0
0 0 1

ζ tanα

0 0 0

 , An = −1

δ

 0 0 0
0 1

ζ tanα
0

0 0 0

 (5.50)

Three-dimensional Hook’s law and stiffness coefficients are similar to previous sections.

According to the approach developed by Carrera, an entire class of two-dimensional
higher-order plate theories can be described through the following indicial notation

u(ζ, η, ξk, t) = Fτ (ξk)u
k
τ (ζ, η, t) (τ = 0, 1, ..., Nn) (5.51)

where uτ (ζ, η, t) is the displacements vector containing the unknown kinematic variables
related to the specific plate theory, τ is an integer index related to the order Nn of the the-
ory anf Fτ (z) are selected functions in the thickness directions. Therefore, displacements
vector can be expressed as

u(ζ, η, ξk, t) = Fτ (ξk)


u(ζ, η)
v(ζ, η)
w(ζ, η)

 eiωt (5.52)

Principle of virtual displacement is described as

∫ 1

0

∫ 1

β

∫ h
2

−h
2

(
δ(εp)

T (C̃k
ppεp + C̃k

pnεn) + δ(εn)T (C̃k
npεp + C̃k

nnεn)
)
dzk(ζ sinα + zk cosα)dζdη

= −
∫ 1

0

∫ 1

β

∫ h
2

−h
2

(
δ(uk)ük + δ(vk)v̈k + δ(wk)ẅk

)
dzk(ζ sinα + zk cosα)dζdη (5.53)

After some substitution and integrations by part, nuclei of stiffness matrix and natural
boundary condition, respectively are as follow
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Lτsk11 = −
(
C11 sinα(

1

ζ

∂

∂ζ
+

∂2

∂ζ2
)Ek

τs + C11 cosα
1

ζ

∂2

∂ζ2
Ezkτs −

C22 sinα

ζ2
Econk

τs

+
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ζ2φ2 sinα
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∂η2
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τs + C55 sinαEk
τzsz + C55

1

ζ
cosαEzkτzsz

Lτsk12 = −(C12 + C66)

ζφ

∂

∂ζ∂η
Ek
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(C22 + C66)

ζ2φ

∂
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ζ

∂
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∂
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33 (5.54)

Natural boundary condition on straight sides

Bτsk11 =
(
C11

∂

∂ζ
sinα +

C12

ζ
sinα

)
Ek
τs +

C11

ζ

∂

∂ζ
cosαEzτs

Bτsk12 =
C12

ζφ

∂

∂η
Ek
τs
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Bτsk13 = C13 sinαEk
τsz +

C13

ζ
cosαEzτsz +

C12

ζ
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ζ
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Natural boundary condition on curved sides

Bτsk11 =
C66

ζ2φ sinα

∂

∂η
Econk

τs
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τs (5.56)

where thickness integrals of conical shell are as

Ezkτs =
∫ h

2

−h
2

FτFszdz Ezkτsz =
∫ h

2

−h
2

FτFszzdz

Ezkτzs =
∫ h

2

−h
2

FτzFszdz Ezkτzsz =
∫ h

2

−h
2

FτzFszzdz

Econk

τs = Ek
τs −

cotα

ζ
Ezkτs (5.57)

According to above equations some thickness integrals for conical shells in comparison
with sector annular plates has additional z multiplied by the integrand and some of them
like Econk

τs are vary with ζ in the length direction. Based on the Taylor series,
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1

1 + (z/ζ)
= 1− (z/ζ) + (z/ζ)2 + ...

Thickness integrals are assumed in an expansion but just with two first terms. Conical
shell panel with α = π/2 becomes an annular sector plate, and with α = 0 becomes a
cylindrical shell panel with ζ tanα = ζ sinα = Rβ. For solving complete conical shell
problem we can also use eq. (5.45).

Generally, with increasing Nn more accurate results can be obtained in both ap-
proaches and results are near to the three-dimensional analysis. Because this technique
is quasi-3D and with increasing the order of theory they reach to results of 3D anal-
ysis. But in some cases it does n’t need to evaluate higher-order theories. However,
it depends on how many digits accuracy we want to have. In this thesis, five digits
accuracy is assumed. Most of the uniform boundary conditions such as fully clamped,
simply-supported and free has a good convergence without very high-order theory and
sometimes they just need increasing points. But non-uniform boundaries and boundaries
including free condition or conditions need higher-order theory rather than the uniform
ones.

Solving problems using CUF technique in the Chebyshev spectral collocation frame-
work is similar to first-order shear deformation theory just with more variables, and the
number of variables depends on the theories which are expressed before. For single layer
theory number of variables are 3(Nn + 1) and for layer-wise theory number of variables
are 3(NnNl + 1).

For conical isotropic shell in the case of fully clamped as seen in the table (5.1) ED3
theory is enough and the presented results are very close to hp-finite element analysis
based on the three-dimensional theory rather than the other methods. If β, φ are con-
stant, with increasing α frequencies decreased. If β, α are constant, with increasing φ
frequencies decreased. If α, φ are constant, with increasing β frequencies increased.

In table (5.2) CUF technique analysis based on spectral collocation method is com-
pared with first-order shear deformation theory based on the GDQ method and three-
dimensional theory for evaluation of natural frequencies of isotropic spherical shell panel.
As seen, results for spectral method are very close to 3D analysis. For thin isotropic
spherical panel shell results are more close to 3D results rather than thick spherical shell
panel and for thin panel ED5 theory is enough but for thick and moderately thick panel
ED6 theory with more collocation points is needed. Table (5.8) is also shown results for
isotropic moderately thick spherical shell panel for some boundary conditions.

For the results of isotropic sector plate which is tabulated in table (5.3), as seen using
ED6 is essential for calculating good results. For isotropic sector plate for all considered
boundary conditions, fully clamped, fully simply supported, CFCF and FCFC for φ is
constant with increasing β frequency decreased. If β is constant with increasing of φ
in all boundary condition except CFCF frequency decreased. In table (5.4) ED6 theory
with different number of collocation points are presented. one can see convergence of
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presented is very fast and with fifteen collocation points four digits accuracy is available
for all boundary conditions which are surveyed in this table.

Laminated composite sector annular plate is considered in table (5.5) and ED6 and
LD4 theories are shown and as seen for β = 0.1 changing the frequencies from ED1 to
ED6 is not so much. Results are compared with analytical solution using Chebyshev
polynomials based on the FDST.

In the case of fully simply-supported isotropic cylindrical shells panel which is shown
in table (5.9) for all a/R and a/h for evaluating good results theory of ED3 is enough. For
fully clamped composite cylindrical shell panel as seen in table (5.10) even the higher-
order equivalent single layer theory ED6 can not given good results and for accurate
results using higher-order layer-wise theory like ED4 is advised. (CUF) results were com-
pared with 3D analysis, FSDT and FSDT with some modification by Qatu. As seen,
presented results are so close to the three-dimensional analysis rather than 2D analysis
based on the first-order and first-order-like shear deformation theory.

Table (5.11) is shown results for many boundaries of isotropic moderately thick plates.
In the case of fully simply supported, fully free and CSCS ED3 theory is enough for good
results but increasing the number of points is recommended. Evaluated results in the case
of SSSS, FFFF and CFFF are compared with 3D analysis based on B-Spline Ritz method
and results which are obtained for CFCF and CSCS are compared with (CUF) technique
based on trigonometric Ritz method. For CFFF, CFCF and SFFF using higher-order
rather than ED3 is better. For other boundaries, there are no results for 3D and they
are compared with first-order shear deformation theory and as seen FSDT theory can
not cover all natural frequencies such as axisymmetric modes like CUF technique. Fully
clamped case is shown in table (5.6) and as seen by ED6 theory good results can be
obtained. The purpose of author by writing FSDT in this table is FSDT results obtained
by the author.

Table (5.12) is shown results for many boundaries of isotropic thin plates. In the case
of fully simply supported ED3 theory is really enough but for fully clamped and fully free
higher-order theory rather than ED3 should be used. Obtained results for CCCC and
SSSS are compared with 3D analysis based on B-Spline Ritz method. For CSCS, CFCF,
SFSF, FFFF and SFFF results are compared with classical plate theory. For CFFF,
CCFF and SSFF higher-order theories don’t show us good converge and good results and
it is recommended to use modified elastic coefficients (see eq. (5.34)) and recover them
to ED1 theory. The purpose of author by writing CLPT in this table is CLPT results
obtained by the author.

In tables (5.7) and (5.13) composite laminated thick rectangular plate is considered
and a comparison between applying CUF technique on spectral collocation method and
Ritz method using trigonometric functions were presented. As seen results are more close
to each other for both approaches such as ESL and LW description.

In table (5.14) results for cylindrical shells panel non-symmetric composite laminated
both cross-ply and angle-ply considering many boundary conditions are tabulated and
compared with GDQ method.
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In table (5.15) results for isotropic moderately thick and shallow spherical shells panel
of fully simply-supported, CSCS and SFSF are tabulated and they are compared with
FSDT based on analytical solution and 3D based on finite element method.

Three following tables were presented results for isotropic thin plates which are com-
pared with analytical solution and differential quadrature methods, isotropic in-plane
vibration of sector annular plates for various boundary conditions from angle 30o to 90o

were investigated in the next table and as seen with increasing sector angle, natural
frequencies get decreased, and also results based on the third-order shear deformation
theory were tabulated in the last tables for symmetric composite laminated and results
just for fundamental frequency are compared with Reddy results.
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5.4 CUF results

Table 5.1: Non-dimensional natural frequencies of fully clamped isotropic conical shell,

λ = ωa2
√

ρh
D
, a/s = 0.6, α = 60, φ = 30, h/a = 0.01

Theory ω1 ω2 ω3 ω4

ED1 221.8769 275.2954 323.8748 371.8919
ED2 209.1731 255.4765 306.6505 349.5340
ED3 209.1086 255.3170 306.5358 349.3015
ED4 209.1082 255.3165 306.5352 349.3005
ED5 209.1081 255.3163 306.5350 349.3002
ED6 209.1081 255.3163 306.5350 349.3002
[170] 209.84 257.11 307.90 351.90
[172] 207.53 266.96 318.53 367.95
[171] 213.4 262.5 314.7 358.6

Present FSDT 205.3911 249.8287 295.6223 337.1081

Table 5.2: Non-dimensional natural frequencies of isotropic fully clamped spherical panel,
λ = ωa

√
ρ
E
, R/a = 2

h/a Theory ω1 ω2 ω3 ω4 ω5 ω6

0.01 ED4 0.5803 0.5803 0.5950 0.6343 0.6529 0.7310
[169] 0.5809 0.5809 0.5959 0.6353 0.6542 0.7329
[161] 0.5763 0.5763 0.5913 0.6303 0.6476 0.7260

0.1 ED4 1.2047 1.9451 1.9451 2.6956 3.1561 3.2018
[169] 1.1886 1.9122 1.9122 2.6625 3.1059 3.1579
[161] 1.1988 1.9301 1.9340 2.6828 3.1288 3.1774

0.2 ED4 1.7625 2.8499 2.8499 3.7794 3.7794 3.8449
[169] 1.7360 2.8062 2.8062 3.7322 3.7322 3.8044
[161] 1.7405 2.8036 2.8091 3.7504 3.7572 3.7904
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Table 5.3: Non-dimensional natural frequencies of isotropic annular sector plate, λ =

ωR2
0

√
ρh
D
, β = 0.25, α = 120, h/(Ro −Ri) = 0.25, N = 10

BCs Theory ω1 ω2 ω3 ω4 ω5 ω6

CCCC ED1 35.3986 47.7797 62.7673 64.1837 71.9614 80.6985
ED2 33.6573 45.5026 61.3768 62.7186 69.2809 78.6371
ED3 32.7619 44.2491 59.5719 62.6967 67.0613 76.2618
ED4 32.7020 44.1729 59.4590 62.6873 66.8765 76.0791
ED5 32.6732 44.1387 59.4125 62.6866 66.8005 76.0269
ED6 32.6717 44.1374 59.4109 62.6849 66.7975 76.0251
[132] 32.649 44.109 59.368 62.677 66.765 75.8690

SSSS ED1 23.1489 26.2510 36.9344 39.8405 48.6116 54.8371
ED2 21.3039 26.2147 34.1419 39.8253 48.6116 51.1613
ED3 21.0572 26.2396 33.6369 39.8379 48.6116 50.1696
ED4 21.0532 26.2314 33.6268 39.8342 48.6116 50.1382
ED5 21.0524 26.2304 33.6264 39.8336 48.6116 50.1377
ED6 21.0523 26.2302 33.6263 39.8336 48.6116 50.1377
[132] 21.069 26.194 33.633 39.806 48.611 50.1450

CFCF ED1 30.3367 31.4445 38.2895 45.5080 52.0806 56.5740
ED2 29.1072 30.4584 36.8175 45.4947 49.5717 56.5183
ED3 28.2890 29.6087 35.8923 45.4913 48.3638 56.4947
ED4 28.2344 29.5671 35.8541 45.4900 48.3203 56.4851
ED5 28.2067 29.5438 35.8321 45.4898 48.3115 56.4839
ED6 28.2059 29.5480 35.8357 45.4900 48.3230 56.4873
[132] 28.181 29.502 35.816 45.545 48.301 56.486

FCFC ED1 7.9138 17.5928 28.8405 29.5850 30.5367 34.1218
ED2 7.5333 17.0891 27.0622 29.5739 29.7722 34.0975
ED3 7.4718 16.8350 26.5176 29.1703 29.5703 34.0822
ED4 7.4694 16.8302 26.4922 29.1560 29.5699 34.0772
ED5 7.4677 16.8269 26.4802 29.1506 29.5694 34.0761
ED6 7.4679 16.8273 26.4806 29.1507 29.5696 34.0752
[132] 7.4547 16.806 26.472 29.111 29.591 34.0820
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Table 5.4: Non-dimensional natural frequencies of isotropic annular sector plate, ED6,

λ = ωR2
0/π

2
√

ρh
D
, β = 0.4, α = 90, h/(Ro −Ri) = 1/6

BCs Theory points ω1 ω2 ω3 ω4 ω5 ω6

CCCC ED6 5 6.1022 12.4784 14.5416 17.0971 19.2707 20.4228
10 5.9344 7.9000 10.9296 13.1516 14.4776 14.5668
15 5.9294 7.8911 10.9136 13.1393 14.4850 14.5641
20 5.9282 7.8896 10.9112 13.1376 14.4822 14.5634

[132] 5.9274 7.8885 10.910 13.135 14.480 14.563

SSSS ED6 5 3.3962 6.0694 9.0964 10.9577 11.1684 14.3688
10 3.4487 5.5706 6.0716 8.6915 9.9610 10.2450
15 3.4469 5.5697 6.0829 8.6811 9.9634 10.2479
20 3.4477 5.5700 6.0802 8.6811 9.9621 10.2473

[132] 3.4476 5.5699 6.0807 8.6811 9.9620 10.248

CSCS ED6 5 5.8255 10.2205 11.1684 14.0378 17.6629 18.6434
10 5.6682 7.1045 9.8119 11.1946 13.0175 13.3632
15 5.6643 7.1014 9.7995 11.1946 13.0060 13.3056
20 5.6633 7.1005 9.7988 11.1946 13.0044 13.3048

[132] 5.6625 7.0999 9.7982 11.194 13.002 13.304

CFCF ED6 5 5.4121 6.1030 6.3060 10.2239 10.2239 11.0141
10 5.2794 5.4918 6.5669 8.6003 10.5850 12.0155
15 5.2633 5.5012 6.5191 8.6298 10.5802 11.7286
20 5.2621 5.4988 6.5180 8.6268 10.5834 11.7292

[132] 5.2615 5.4983 6.5172 8.6262 10.584 11.728

SFSF ED6 5 2.4166 2.6017 3.3787 4.4025 5.7078 5.7078
10 2.6832 3.0558 3.2128 4.9372 5.7993 7.4574
15 2.6593 3.1078 3.2124 4.8665 5.8230 7.4744
20 2.6605 3.1024 3.2109 4.8670 5.8187 7.4714

[132] 2.6606 3.1058 3.2107 4.8665 5.8203 7.4713
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Table 5.5: Non-dimensional natural frequencies of composite laminated annular sector
plate (0,90), λ = ωR2

0/h
√

ρ
E2
, β = 0.1, α = 60, h/Ro = 0.2

BCs Theory ω1 ω2 ω3 ω4 ω5 ω6

CCCC ED1 16.1094 24.7174 24.8425 33.9087 34.2128 34.3279
[133] 16.113 24.720 24.846 33.913 34.216 34.331
ED6 15.8618 24.3087 24.8344 33.5711 33.7167 33.9794
LD4 16.0183 24.5666 25.0621 33.8683 34.1555 34.3579

SSSS ED1 12.3632 12.6608 16.7998 22.9968 23.0005 23.1540
[133] 12.363 12.695 16.962 22.997 23.021 23.176
ED6 11.8404 12.3632 16.3722 21.7090 21.8228 22.9969
LD4 11.9518 12.3632 16.4511 21.9456 22.0521 22.9968

CSCS ED1 12.3632 13.9785 22.9968 23.1404 24.1258 32.7192
[133] 12.363 13.983 22.997 23.141 24.130 32.722
ED6 12.3632 13.3205 22.1404 22.9968 23.0517 31.5083
LD4 12.3632 13.4133 22.3318 22.9968 23.3013 31.8956

FCFC ED1 8.9157 16.3227 17.8928 25.3442 25.6553 27.7412
[133] 8.918 16.323 17.906 25.352 25.688 27.767
ED6 8.5433 15.8179 17.6881 24.5587 24.6480 27.3918
LD4 8.6238 15.9855 17.8008 24.6746 24.8778 27.4883

CSFS ED1 0.8991 5.4611 15.0103 15.1506 16.7246 22.3287
[133] 0.899 5.460 15.022 15.151 16.725 22.375
ED6 0.8995 5.1803 13.9355 14.1580 16.7246 22.0869
LD4 0.9002 5.1735 13.9467 14.2799 16.7244 22.1309

SSFS ED1 0.8991 5.3782 14.3496 15.1332 16.7246 17.6225
[133] 0.899 5.377 14.388 15.133 16.725 17.681
ED6 0.8993 5.0778 13.4483 14.1407 16.7244 17.1805
LD4 0.9002 5.0740 13.4296 14.2632 16.7244 17.2194
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Table 5.6: Non-dimensional natural frequencies of isotropic fully clamped square plate,

λ = ωa2
√

ρh
D
, h/a = 0.1

Theory ω1 ω2 ω3 ω4 ω5 ω6

ED1 35.926 68.464 68.464 95.873 112.93 114.04
[180] 35.927 68.465 68.465 95.874 112.94 114.04
ED2 33.122 63.611 63.611 89.503 105.78 106.76
[180] 33.127 63.619 63.619 89.519 105.80 106.78
ED3 32.782 62.651 62.651 87.918 103.68 104.67
[180] 32.785 62.655 62.655 87.924 103.69 104.67
ED4 32.754 62.589 62.589 87.824 103.56 104.54
[180] 32.768 62.610 62.610 87.862 103.60 104.58
ED5 32.745 62.569 62.569 87.793 103.52 104.50
[180] 32.759 62.592 62.592 87.831 103.56 104.54
[191] 32.743 62.562 62.562 87.783 103.51 104.49
[131] 32.749 62.577 62.577 87.801 103.60 104.59

Table 5.7: Non-dimensional natural frequencies of composite fully clamped square plate,
λ = ωa2/h

√
ρ
E

, h/a = 0.25, E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, ν = 0.25

Lay-up Theory Author ω1 ω2 ω3 ω4

(-30/45) LD1 Present 9.1092 14.0432 15.2005 19.2441
[181] 9.103 14.043 15.191 19.246

LD2 Present 8.9607 13.7798 14.9869 18.8701
[181] 8.954 13.777 14.979 18.865

LD3 Present 8.7491 13.4836 14.6418 18.4747
[181] 8.740 13.480 14.630 18.467

LD4 Present 8.7445 13.4740 14.6307 18.4588
[181] 8.736 13.471 14.620 18.452

Table 5.8: Non-dimensional natural frequencies of isotropic spherical panel shell, ED3,
λ = ωa

√
ρ
E

, a/h = 10, a/R = 0.2

BCs ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SSSS 6.06 13.88 13.88 19.25 19.25 21.22 25.84 25.84
CSCS 8.38 15.01 18.10 19.25 24.03 26.40 30.94 34.00
SFSF 2.87 4.64 10.39 11.03 12.97 14.65 18.86 19.25
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Table 5.9: Non-dimensional natural frequencies of isotropic cylindrical panel shell, λ =
ωa
√

ρ
E

a/h a/R Theory ω1 ω2 ω3 ω4 ω5

20 1 ED1 11.3328 16.0687 22.2990 26.8150 31.1816
ED2 11.0456 14.6575 21.3004 24.7001 28.3594
ED3 11.0168 14.4443 21.1659 24.3685 27.8845
[155] 11.017 14.444 21.166 24.368 27.884

20 2 ED1 15.8645 18.0008 29.8369 30.1451 33.9856
ED2 14.7246 17.9045 27.1787 28.5443 33.4681
ED3 14.5617 17.9453 26.7273 28.3241 33.4551
[155] 14-.562 17.945 26.727 28.324 33.455

20 0.5 ED1 8.0896 16.1370 17.9155 25.8598 31.5286
ED2 7.6166 14.6503 16.5872 23.5739 28.6643
ED3 7.5523 14.4231 16.3896 23.2063 28.1834
[155] 7.5523 14.423 16.390 23.206 28.183

10 1 ED1 7.5363 14.8044 16.7495 19.4833 19.4912
ED2 7.1361 13.5547 15.6516 19.4833 19.4912
ED3 7.0810 13.3097 15.4528 19.8692 19.8771
[155] 7.0810 13.309 15.452 19.869 19.877

10 2 ED1 9.7346 13.6845 19.4833 23.2538 26.7183
ED2 9.5723 12.6115 19.4833 21.7269 24.6695
ED3 9.5791 12.3982 19.6570 21.4038 24.1363
[155] 9.5791 12.397 19.657 21.401 24.131

10 0.5 ED1 6.7037 15.1106 15.6176 19.4833 19.4853
ED2 6.1750 13.8133 14.3646 19.4833 19.4853
ED3 6.0921 13.5601 14.1245 19.8692 19.8712
[155] 6.0921 13.560 14.124 19.869 19.871
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Table 5.10: Non-dimensional natural frequencies of composite fully clamped cylindrical
panel, λ = ωa2/h

√
ρ
E2

, h/a = 0.1, R/a = 0.5, E1/E2 = 25, G12 = G13 = 0.5E2, G23 =

0.2E2, ν = 0.25

Lay-up Theory ω1 ω2 ω3 ω4 ω5

(0/90)3 ED1 30.0179 42.3381 42.4674 50.9338 58.8817
ED2 29.8503 42.1047 42.2398 50.6407 58.5555
ED3 27.9026 39.4615 39.7030 47.3786 55.2173
ED4 27.8579 39.4010 39.6305 47.2839 55.1055
ED5 27.8361 39.3607 39.6054 47.2393 55.0671
ED6 27.6163 39.0386 39.3285 46.8647 54.6645
LD1 26.5404 37.4972 38.0157 45.0429 52.9214
LD2 26.3778 37.2541 37.8167 44.7640 52.6438
LD3 26.3446 37.1903 37.7761 44.6925 52.5785
LD4 26.3444 37.1899 37.7759 44.6922 52.5781
[156] 26.249 37.072 37.624 44.511 52.327
[195] 28.319 40.005 40.196 47.953 55.815
[195] 28.417 40.157 40.346 48.160 56.039

(45/-45)3 ED1 40.8623 42.4399 48.2068 51.7877 58.7900
ED2 40.7293 42.3110 48.0840 51.6059 58.5805
ED3 39.1107 40.5967 46.6800 49.2976 55.9288
ED4 39.0344 40.5094 46.6179 49.1983 55.8203
ED5 39.0198 40.4848 46.6055 49.1703 55.7955
ED6 38.8423 40.2739 46.4503 48.9275 55.4854
LD1 37.7460 38.9171 45.7545 47.8411 53.9360
LD2 37.5960 38.7264 45.6185 47.6556 53.6998
LD3 37.5828 38.6984 45.6079 47.6308 53.6697
LD4 37.5828 38.6982 45.6078 47.6306 53.6696
[156] 37.562 38.711 45.369 47.324 53.543
[195] 39.462 40.872 46.916 49.538 56.500
[195] 39.578 41.011 47.437 50.070 56.788

(30/60/45) ED1 31.0278 38.2398 47.0649 48.4109 52.2447
ED2 30.8300 37.9586 46.7812 48.0276 51.9510
ED3 29.9638 36.8070 45.6621 46.8861 51.0476
ED4 29.8869 36.7278 45.5507 46.7917 50.8401
ED5 29.8520 36.6726 45.4993 46.7301 50.7885
ED6 29.8348 36.6550 45.4704 46.7075 50.7497
LD1 30.3188 37.4267 46.1967 47.5967 51.7574
LD2 29.8627 36.7875 45.5764 46.8988 51.1529
LD3 29.8021 36.6964 45.4793 46.7904 51.1068
LD4 29.7997 36.6927 45.4757 46.7856 51.1048
[156] 29.778 36.579 45.383 46.621 50.667
[195] 29.832 36.505 45.445 46.441 51.166
[195] 29.908 36.690 45.599 46.551 51.587
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Table 5.11: Non-dimensional natural frequencies of isotropic plate λ = ωa2
√

ρh
D
, h/a = 0.1

BCs Theory ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SSSS ED1 21.089 50.279 50.279 64.383 64.383 77.112 91.052 93.925
ED2 19.149 45.938 45.938 64.383 64.383 70.817 86.513 86.513
ED3 19.090 45.621 45.621 64.383 64.383 70.112 85.501 85.501
[131] 19.090 45.619 45.619 64.383 64.383 70.104 85.487 85.487

CFFF ED1 3.7242 8.2872 21.248 21.828 27.675 29.546 50.115 52.365
ED2 3.3569 8.0628 20.326 21.817 25.647 28.637 48.236 52.329
ED3 3.4271 8.0753 20.146 21.820 25.541 28.337 47.689 52.356
[131] 3.4387 8.0746 20.152 21.796 25.541 28.325 47.677 52.302

FFFF ED1 12.839 19.325 26.293 32.974 32.978 58.107 60.377 60.377
ED2 12.796 18.983 23.398 32.167 32.167 55.684 56.004 56.374
ED3 12.739 18.949 23.343 31.959 31.959 55.480 55.590 55.898
[131] 12.723 18.954 23.345 31.955 31.955 55.490 55.490 55.821

CFCF ED1 22.477 25.590 41.576 57.406 58.715 61.293 74.948 77.680
ED2 20.938 24.405 39.117 53.935 58.406 58.704 69.507 73.808
ED3 20.768 24.167 38.719 53.159 57.523 58.700 68.765 72.634
[180] 20.779 24.179 38.730 53.182 57.540 58.722 68.785

CSCS ED1 29.469 54.255 64.383 65.359 86.962 95.884 111.795 113.713
ED2 27.060 49.830 60.616 64.383 80.688 88.516 104.594 113.680
ED3 26.831 49.363 59.745 64.383 79.487 87.392 102.560 113.067
[180] 26.840 49.368 59.764 64.383 79.502 87.395 102.59

SFSF ED1 10.097 15.898 36.372 39.337 45.356 48.764 64.382 66.548
ED2 9.4635 15.468 34.112 36.658 43.226 48.755 62.973 64.383
ED3 9.4461 15.407 33.909 36.438 42.899 48.755 62.337 64.383
FSDT 9.4406 15.389 33.859 36.357 42.792 62.146

SSFF ED1 3.3102 17.066 20.182 37.225 40.194 49.648 53.507 68.701
ED2 3.2948 16.628 18.585 35.429 40.191 47.029 49.312 64.781
ED3 3.2885 16.572 18.523 35.190 40.193 46.708 48.968 64.138
FSDT 3.2859 16.560 18.505 35.127 46.601 48.842 63.936

CCFF ED1 7.0581 23.168 27.030 44.772 51.041 58.728 63.018 65.403
ED2 6.7444 22.370 24.987 42.641 51.028 55.839 58.424 65.388
ED3 6.6775 22.210 24.819 42.191 51.072 55.248 57.779 65.411
FSDT 6.6731 22.143 24.721 41.998 54.903 57.425

SFFF ED1 6.4142 15.317 24.519 26.405 46.140 50.071 55.102 56.585
ED2 6.3925 14.518 23.868 24.702 44.341 46.547 53.121 56.583
ED3 6.3719 14.487 23.738 24.629 44.122 45.940 52.846 56.590
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Table 5.12: Non-dimensional natural frequencies of isotropic plate λ = ωa2
√

ρh
D
, h/a =

0.01
BCs Theory ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

CCCC ED1 39.780 81.057 81.057 119.40 145.12 145.82 181.83 181.83
ED2 35.993 73.349 73.349 108.06 131.35 131.98 164.60 164.60
ED3 35.987 73.329 73.329 108.02 131.30 131.93 164.52 164.52
[131] 35.977 73.315 73.315 108.00 131.39 132.02 164.56 164.56

SSSS ED1 21.839 54.567 54.567 87.260 109.03 109.03 141.66 141.66
ED2 19.733 49.309 49.309 78.857 98.540 98.540 128.04 128.04
ED3 19.732 49.304 49.304 78.846 98.523 98.523 128.01 128.01
[131] 19.732 49.305 49.305 78.846 98.525 98.525 128.01 128.01

FFFF ED1 13.454 21.720 27.584 35.786 35.873 61.248 66.380 67.078
ED2 13.390 19.609 24.301 34.744 34.755 61.081 61.081 63.738
ED3 13.783 19.581 24.260 34.784 34.809 61.000 61.000 62.934
[31] 13.419 19.589 24.258 34.669 34.669 61.016 61.016 63.355

CSCS ED1 32.012 60.509 76.581 104.43 112.89 142.41 154.68 170.65
ED2 28.954 54.704 69.285 94.463 102.05 128.88 139.89 154.42
ED3 28.970 54.713 69.341 94.509 102.04 128.95 139.91 154.47
[31] 28.950 54.743 69.327 94.585 102.21 129.09 140.20 154.77

CFCF ED1 24.227 28.087 46.810 66.812 72.084 86.742 94.171 131.14
ED2 22.195 26.358 43.578 61.187 67.028 79.505 87.505 119.97
ED3 22.186 26.654 43.367 61.172 67.567 79.681 87.159 119.91
CLPT 22.165 26.402 43.591 61.170 67.166 79.813 87.587 120.09
[31] 22.272 26.529 43.664 61.466 67.549 79.904

SFSF ED1 10.357 16.607 39.284 42.308 49.483 75.559 81.888 95.897
ED2 9.6529 16.082 36.716 38.966 46.615 70.692 75.003 87.926
ED3 9.6236 16.404 36.489 38.887 47.122 70.259 75.138 87.773
CLPT 9.6314 16.134 36.725 38.945 46.738 70.740 75.283 87.986
[31] 9.6314 16.134 36.725 38.945 46.738 70.740 75.283 87.986

SFFF ED1 6.6618 15.837 26.124 27.901 50.984 54.817 61.319 71.146
ED2 6.6290 14.925 25.301 26.007 48.411 50.545 58.541 65.064
ED3 6.8310 14.880 25.696 25.962 48.211 50.410 58.974 65.106
CLPT 6.6797 14.904 25.453 26.047 48.457 50.699 58.767 65.275
[31] 6.6480 15.023 25.492 26.126 48.711 50.849

CFFF ED1 3.4696 8.5079 21.261 27.144 30.907 54.924 61.145 63.980
[131] 3.4712 8.4826 21.273 27.150 30.861 53.951 61.278 64.078

CCFF ED1 6.9325 23.865 26.564 47.497 62.582 65.424 85.324 88.018
[31] 6.4921 24.034 26.681 47.785 63.039 65.833

SSFF ED1 3.3792 17.303 19.290 38.134 50.965 53.425 72.714 74.414
[31] 3.3687 17.407 19.367 38.291 51.324 53.738
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Table 5.13: Non-dimensional natural frequencies of composite laminated plate, λ = ωa2/h
√

ρ
E2

Case Theory ω1 ω2 ω3 ω4 ω5 ω6

CCCC ED1 9.1684 14.154 15.337 19.431 20.333 22.577
(-30,45), a/h = 4 ED2 9.1094 14.046 15.213 19.257 20.164 22.361

ED3 8.8940 13.701 14.895 18.765 19.684 21.948
ED4 8.8692 13.664 14.849 18.723 19.637 21.865

[181](ED4) 8.8590 13.660 14.837 18.715

LD1 9.1092 14.043 15.200 19.244 20.162 22.333
LD2 8.9606 13.779 14.986 18.869 19.775 22.048
LD3 8.7490 13.483 14.642 18.474 19.381 21.562

[181](LD3) 8.740 13.480 14.630 18.467

FCCF ED1 2.8606 7.766 8.0184 11.373 15.620 15.653
(0, 90), a/h = 4 ED2 2.8425 7.701 7.9465 11.305 15.310 15.430

ED3 2.8113 7.566 7.8014 11.132 14.949 15.084
ED4 2.8040 7.523 7.7576 11.093 14.829 14.910

[181](ED4) 2.804 7.510 7.748 11.106

LD1 2.8454 7.673 7.9282 11.313 15.256 15.280
LD2 2.8210 7.587 7.8266 11.184 14.980 14.988
LD3 2.7875 7.434 7.6663 10.983 14.653 14.663

[181](LD3) 2.788 7.435 7.667 10.986

FCFC ED1 5.2478 6.366 10.949 11.351 12.619 12.947
(0, 45), a/h = 4 ED2 5.2039 6.111 10.822 11.338 12.103 12.875

ED3 5.0380 5.869 10.497 11.027 12.045 12.471
ED4 5.0270 5.917 10.505 10.928 12.272 12.272

[181](ED4) 4.946 5.956 10.018 10.591

LD1 5.1096 6.148 10.168 10.810 11.556 13.143
LD2 4.9629 5.986 10.030 10.604 11.235 12.955
LD3 4.8995 5.910 9.9491 10.533 11.085 12.729

[181](LD3) 4.903 5.913 9.954 10.541

SSSS ED1 10.665 24.334 24.334 26.415 26.415 36.576
(0, 90), a/h = 4 ED2 10.463 24.334 24.334 25.395 25.395 35.199

ED3 10.431 24.334 24.334 25.214 25.214 34.908
ED4 10.364 24.334 24.334 24.757 24.757 34.332

[181](ED4) 10.364

LD1 10.453 24.334 24.334 25.177 25.177 34.937
LD2 10.414 24.334 24.334 25.065 25.065 34.754
LD3 10.336 24.334 24.334 24.590 24.590 34.109

[181](LD4) 10.336
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Table 5.14: Non-dimensional natural frequencies of composite laminated shell, λ =
ωa2

h

√
ρ
E2

,a/h = 10, a/R = 2

Lay-up BCs Theory ω1 ω2 ω3 ω4 ω5

(-45,45)3 CCCC LD2 26.719 37.853 38.238 45.391 52.993
[156] 26.249 37.072 37.624 44.511 52.327

SSSS LD2 22.510 26.135 37.383 39.601 41.207
[156] 22.842 26.432 37.744 38.975 41.111

CSCS LD2 27.515 35.046 38.139 44.516 49.094
[156] 27.675 35.182 38.499 44.261 48.880

CFCF LD2 15.156 17.636 26.840 28.633 30.885
[156] 15.344 17.798 26.640 28.518 31.178

CFSF LD2 11.358 13.268 19.794 26.367 28.726
[156] 11.251 13.155 19.310 26.175 28.562

FCFS LD2 5.870 11.777 20.315 22.092 23.994
[156] 5.846 11.398 19.907 21.586 24.115

(0, 90)3 CCCC LD2 37.487 38.597 45.676 47.692 53.624
[156] 37.562 38.711 45.369 47.324 53.543

SSSS LD2 14.445 22.983 31.169 33.616 38.710
[156] 14.018 22.265 30.663 32.825 37.790

CSCS LD2 16.581 24.562 32.640 35.181 39.624
[156] 16.338 24.020 32.222 34.513 38.824

CFCF LD2 13.287 15.061 20.798 27.454 29.723
[156] 13.185 14.946 20.394 27.278 29.563

CFSF LD2 12.950 13.931 21.850 23.089 27.703
[156] 13.127 14.149 21.550 23.253 27.606

FCFS LD2 4.6021 15.610 16.849 27.363 28.443
[156] 4.733 15.322 17.011 27.282 28.683
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35.12

E
D

2
2.86

4.68
10.43

11.03
13.05

14.79
19.07

19.63
20.14

23.38
25.26

27.76
28.40

31.09
33.56

34.12
34.21

E
D

3
2.85

4.66
10.37

10.96
12.95

14.79
18.87

19.63
19.97

23.11
24.95

27.76
28.03

30.64
33.13

34.12
34.21

[15
7
,

1
5
8]

2.87
4.62

10.40
11.03

12.93
14.82

18.86
19.51

F
E

M
(3D

)
2.88

4.64
10.43

11.09
13.03

14.80
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Non-dimensional natural frequencies of the Square Kirchhoff plate theory, λ = ωa2
√

ρh
D

BCs Author ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

CCCC Present 35.985 73.393 73.393 108.21 131.58 132.20 165.00 165.00
[31] 35.992 73.413 73.413 108.27 131.64 132.24
[37] 35.986 73.399 73.399 108.23 131.41

SSSS Present 19.739 49.348 49.348 78.956 98.696 98.696 128.30 128.30
[31] 19.739 49.348 49.348 78.956 98.696 98.696 128.30 128.30
[37] 19.739 49.349 49.349 78.958 98.415

CSCS Present 28.950 54.743 69.327 94.585 102.21 129.09 140.20 154.77
[31] 28.950 54.743 69.327 94.585 102.21 129.09 140.20 154.77
[37] 28.951 54.745 69.329 94.589 101.95

CCSS Present 27.054 60.538 60.786 92.836 114.55 114.70 145.78 146.08
[31] 27.056 60.544 60.791 92.865 114.57 114.72
[37] 27.054 60.540 60.788 92.834 114.20

CFCF Present 22.165 26.402 43.591 61.170 67.166 79.813 87.588 120.09
[31] 22.272 26.529 43.664 61.466 67.549 79.904
[37] 22.237 26.594 43.871 61.407 67.659

SFSF Present 9.6314 16.134 36.725 38.945 46.738 70.740 75.283 87.986
[31] 9.6314 16.134 36.725 38.945 46.738 70.740
[37] 9.631 16.135 36.726 38.945 46.739

CFFF Present 3.4349 8.6160 21.272 27.352 30.999 54.224 61.317 64.186
[31] 3.4917 8.5246 21.429 27.331 31.111 54.443
[37] 3.485 8.604 21.586 27.230 31.358

SFFF Present 6.6917 14.905 25.478 26.062 48.459 50.736 58.774 65.307
[31] 6.6480 15.023 25.492 26.126 48.711 50.849
[37] 6.636 14.901 25.388 26.003 48.469

FFFF Present 13.620 19.596 24.325 34.977 34.990 61.140 61.160 64.001
[31] 13.468 19.596 24.271 34.801 34.801 61.111 61.111 69.279
[37] 13.454 19.597 24.271 34.815 34.817
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Non-dimensional natural frequencies for the in-plane vibration of sector annular plate,
λ = ωa2

√
ρ
E
, ν = 0.33, β = 0.5

α ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

SSSS1
30 3.9198 4.2857 7.1534 7.7406 8.2282 9.6151 10.774 11.440
45 2.9825 3.9198 5.6094 5.7644 7.7406 8.2282 8.5126 8.5878
60 2.3779 3.9198 4.2857 5.1111 6.2682 7.1534 7.7406 7.8930
75 2.0534 3.4962 3.9198 4.7476 5.0805 6.3109 6.6621 7.5359
90 1.8624 2.9825 3.9198 4.2857 4.5254 5.6094 5.7644 6.9241

SSSS2
30 6.1118 6.7725 7.7608 9.2674 10.158 12.039 12.733 12.797
45 4.7603 5.6021 6.7725 7.4362 8.4225 9.6103 9.9957 10.158
60 3.8027 4.8741 6.1118 6.7725 7.7608 8.0269 8.1133 8.6481
75 3.1037 4.5984 5.3324 6.4181 6.7725 6.9003 7.7122 8.2796
90 2.6101 4.4609 4.7603 5.6021 6.1118 6.7725 7.4362 7.4704

FFFF
30 4.8464 5.6189 5.6785 6.0716 7.7172 8.5038 9.2103 9.6426
45 3.9516 4.5785 4.7464 5.3662 6.3297 6.8614 6.9257 7.6830
60 2.8185 3.7550 4.0170 5.3325 5.6191 5.8646 6.2471 6.5695
75 2.0687 3.1003 3.4998 4.8642 5.1433 5.1969 5.6156 5.9452
90 1.5608 2.6721 2.9624 4.4167 4.4376 4.6210 5.5091 5.5917

S1CS1C
30 4.9617 7.5080 8.5318 9.9073 10.6550 11.8665 12.9769 13.2176
45 3.4926 5.2923 7.2431 7.2887 8.3676 8.8092 9.9373 10.5923
60 2.7576 4.2218 5.9242 6.0710 7.1480 7.8751 8.3615 8.8992
75 2.3338 3.5739 5.0402 5.1742 6.5946 6.6237 7.7871 7.8661
90 2.0690 3.1224 4.3185 4.7382 5.6409 6.0900 6.9810 7.1982

S2FS2F
30 2.8739 5.8308 6.5960 7.0846 8.0896 8.5094 9.7528 10.3170
45 3.2971 4.6365 5.5711 6.6478 7.1224 7.1636 7.7245 9.0620
60 3.5138 3.6876 4.7016 5.9752 6.6815 7.1667 7.3023 7.3557
75 3.0480 3.6325 4.2456 5.3073 6.2937 6.3970 7.1081 7.1929
90 2.5830 3.6967 4.0297 4.7260 5.5864 5.9957 6.8404 6.8424

S1CS2F
30 3.6889 4.6148 5.9073 8.7098 9.3844 9.4403 10.5557 12.0189
45 2.5659 4.1016 5.3536 6.7821 6.9963 8.3148 8.8595 9.7370
60 2.0287 3.9026 5.1693 5.4703 5.6916 7.0764 8.0003 8.2896
75 1.7338 3.7748 4.4813 4.9488 5.2883 6.3398 6.9092 7.0416
90 1.5579 3.5473 4.0040 4.5907 5.2217 5.7919 5.9877 6.4493
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Conclusion and future development

An efficient numerical technique for studying natural frequencies of beams, plates and
shells has been introduced by applying Chebyshev polynomial on collocation method
using Kronecker product operator which is easy for implementation of the differential
equations. Plates with constrained boundaries was studied in which the constrained
boundaries were modeled using torsional and translational springs. The governing equa-
tions and boundary conditions were expressed in terms of Chebyshev polynomials and
Kronecker product. It was concluded that Chebyshev polynomials can be used to solve
1-D, 2-D and quasi 3-D linear vibration problems, since they show fast convergence and
accurate results compared to other techniques available in the literature. This property
comes from using non-uniform points instead of uniform points. For increasing the ac-
curacy, increasing the order of polynomial N is essential but this leads to increasing the
error. But with this type of polynomial without increasing the error can reach to more
accurate results.

This proposed method was applied to rod problem, Euler-Bernoulli and Timoshenko
beams, in-plane vibration, Classical, first-order and third-order shear deformation theo-
ries of plates both isotropic and composite symmetric and non-symmetric, rectangular,
annular, circular, sector annular and skew plates. Effect of constrained boundaries is con-
sidered on both thin and thick plates, isotropic and composite. The natural frequencies
of several cases were calculated and compared with the well-known results of Leissa [31].
Thin shallow shell was considered in cylindrical, spherical and hyperbolic-paraboloidal
geometry also thin shell is studied from shallow to deep. Thick shell such as shallow or
deep was considered and for thick deep non-symmetric composite laminated shell, many
boundary conditions were studied.

Finally, the quasi 3-D technique so called (CUF) was studied for composite laminated
doubly curved shells and plates, sector annular plates and conical shells. Results for thin,
thick and moderately thick plates both isotropic and laminated composites are evaluated
for higher-order theories and comparison according to layer-level theories between equiv-
alent single layer and layer-wise theory were studied. Results for plates are very close
to 3D-Ritz method results. For shells most of the results are correspond to the isotropic
results for the lack of information and the obtained results are close to 3D results. For
isotropic sector annular plates results are so close to the 3D-Chebyshev Ritz method and
in the case of isotropic conical shells results are close to 3D hp-fem. In the case of com-
posite laminated sector annular plates results are so close to the analytical method using
Chebyshev polynomials based on the first-order shear deformation theory. It is to be
noted that ESL theory is useful for isotropic plates and LW is also useful for composite
laminated plates.
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Ideas for Future Work

It is recommended to apply the Chebyshev collocation method to continuous systems
with viscoelastic and piezoelectric properties, since in many engineering applications these
properties could exist. Moreover, studying the free vibration of continuous systems with
constrained boundaries and internal cracks is highly recommended, since internal crack
is possible to exist. Furthermore, it is specified that the collocation method could also
be applied to nonlinear problems, as in [9], where this method was applied to reduce the
dimensions of nonlinear delay differential equations with periodic coefficients and also it
is advised to applying the proposed method to study the inverse problems in which the
frequencies and mode shapes are known. Finally, it is so useful to apply this method on
the beam vibration analysis using (CUF) technique under presented method and solving
complicated cross section of beam. Aeroelastic analysis of beam with airfoil cross section
using presented method can be of interest.
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Appendix

Derivation of CUF nuclei from principal of virtual work for doubly curved shells and
rectangular plates
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Hk
β

0 0 0


Ip and In are depend on the boundary geometry. For each side of the geometry normal
vector to the edge is zero and shear vector is identity.

↓

−
Nl∑
k=1

∫
Ω
δukτ

TDT
pR

k
pτdΩ−

Nl∑
k=1

∫
Ω
δukτ

TDT
nR

k
nτdΩ +

Nl∑
k=1

∫
Ω
δukτ

TRk
nτ,zdΩ

+
Nl∑
k=1

∫
Ω
δukτ

TATpR
k
pτdΩ +

Nl∑
k=1

∫
Ω
δukτ

TATnR
k
nτdΩ +

Nl∑
k=1

∫
Γk
δukτ

T ITp R
k
pτdΓk

+
Nl∑
k=1

∫
Γk
δukτ

T ITnR
k
nτdΓk = −

Nl∑
k=1

∫
Ω
δukτ

TJkαβρ
küksdΩ

Nl∑
k=1

∫
Ω
δukτ

T [−DT
pR

k
pτ −DT

nR
k
nτ + ATpR

k
pτ + λATnR

k
nτ +Rk

nτ,z]dΩ

+
Nl∑
k=1

∫
Γk
δukτ

T [ITp R
k
pτ + ITnR

k
nτ ]dΓk = −

Nl∑
k=1

∫
Ω
δukτ

TJkαβρ
küksdΩ

Equation of motion:

δukτ : DT
pR

k
pτ +DT

nR
k
nτ −ATpRk

pτ −λATnRk
nτ −Rk

nτ,z = Jkαβρ
küks k = 1, ..., Nl, τ = 0, ..., N

Boundary condition on Γ:

Geometric boundary condition: ukτ = 0 k = 1, ..., Nl, τ = 0, ..., N (Clamped edge)
Natural boundary condition: ITp R

k
pτ + ITnR

k
nτ = 0 k = 1, ..., Nl, τ = 0, ..., N (Free

edged)

After substitution Nuclei of equation of motion and natural boundary condition can be
derived. Operator matrix form of equation of motion is
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 L
τsk

11 Lτsk12 Lτsk13

Lτsk21 Lτsk22 Lτsk23

Lτsk31 Lτsk32 Lτsk33



uks
vks
wks

 = ρkJkαβ


üks
v̈ks
ẅks


and also, operator matrix form of natural boundary conditions (free edge) is:

 B
τsk

11 Bτsk12 Bτsk13

Bτsk21 Bτsk22 Bτsk23

Bτsk31 Bτsk32 Bτsk33



uks
vks
wks

 =


0
0
0


For simply supported at α side: (Mαα = v = w = 0)

 B
τsk

11 Bτsk12 Bτsk13

0 I 0
0 0 I



uks
vks
wks

 =


0
0
0


For simply supported at β side: (u = Mββ = w = 0)

 I 0 0

Bτsk21 Bτsk22 Bτsk23

0 0 I



uks
vks
wks

 =


0
0
0


I is unity matrix by order (Nn + 1)× (N + 1)2.


