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Abstract

THE software development process concerns a sequence of design decisions that
transforms the initial, high-level model of the system into a fully detailed and
verified implementation. This process is based on an iterative decomposition

of the model of the system into smaller functionalities. At each iteration, the devel-
oper may leave the system deliberately incomplete. Incompleteness arises when the
design of some functionalities is postponed to a later development stage or when they
are left unspecified (e.g., if they will be developed by third parties). The final, fully
specified, model of the system is obtained by refining the incomplete parts. The devel-
opment process concerns the iterative substitution of the postponed functionalities with
sub-modules (replacements) and, eventually, executable code. During this process al-
ternative replacements are often explored to evaluate their tradeoffs. It can also happen
that replacements of postponed functionalities are only detected at run time, as in the
case of adaptive systems.

Formal verification has now become mature. Several techniques [9, 33] allow the
designer to check whether the model of the system under development possesses the
properties of interest. Formal verification has already been used in practice in several
application domains and has also been adopted in many industrial settings. However,
there is still a gap between the model checking techniques and the currently used soft-
ware development lifecycles.

Model checking is a technique that found a prominent role in formal verification.
Given a model of the system and a formal property, model checking exhaustively ana-
lyzes the model of the system to ensure that all of its behaviors satisfy the property of
interest. If the property is not satisfied a counterexample is also returned. Mainstream
model checking techniques assume that the model of the system and the properties
against which it should be verified are completely defined when the verification takes
place. However, this assumption is not always valid during the software development
process, as we discussed earlier, since models are often incomplete.

To support continuous verification during the development process, we should be
able to verify incomplete models. By checking incomplete models even initial, incom-
plete, and high-level descriptions of the system can be verified against their properties,
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supporting an early error detection. Furthermore, when an incomplete part is refined
by designing the corresponding replacement, it is desirable to check only the modified
part and do not perform the whole verification process from scratch. This approach may
distribute the verification effort more uniformly over development and enable also run-
time verification, as required by adaptive systems, where certain functionalities only
become available while the system is running. In this case, it necessary to check if the
functionalities possess certain properties before linking them to the running system.

This thesis aims to provide techniques that support the analysis of incomplete mod-
els designed in the software development. First, it proposes Incomplete Büchi Au-
tomata (IBAs) a novel modeling formalism that natively supports incompleteness as in
the case of top-down development. IBAs extend the well known Büchi automata (BAs)
with unspecified states, called black box states, which encapsulate unspecified func-
tionalities. Black box states can be (recursively) refined into other (Incomplete) Büchi
automata. In order to analyze IBAs, we propose an automata-based model checking
technique to verify if an IBA M satisfies a property φ, written in Linear Temporal
Logic (LTL). Due to the presence of black box states, the model checking procedure
is modified to produce three different values: yes, if the model of the system satisfies
its property; no (plus a counterexample), if it does not; unknown, when the property is
possibly satisfied, i.e., its satisfaction depends on the replacements, still to be designed,
associated to the black box states. Whenever the property is possibly satisfied, a con-
straint synthesis procedure, which is presented in this thesis, allows the computation
of a constraint for the unspecified parts. A constraint concerns a set of sub-properties
that must eventually be satisfied by the automata fragments (replacements) that will
replace the black box states in the refinement process. The developer may use these
sub-properties as guidelines in the replacement design. Finally, the thesis presents a
replacement checking procedure able to verify a replacement against the previously
generated constraint. In this way, at each development step, only the new increment is
considered in the verification activity.

The approach presented in this thesis has been implemented in the CHIA (CHecker
for Incompete Automata) framework1. CHIA is a prototype tool which supports the
designer in the system development and its verification and it has been used to evaluate
the approach over two practical examples. The first is a classical computer science
example and concerns the well known mutual exclusion system. The mutual exclusion
system has considered in several works, such as [9,104]. The second example has been
described in [139] and concerns the evolution of a Pick and Place Unit (PPU). The PPU
example is used to compare tools that analyze the evolution of automation systems. It
is a limited size example, but it provides a valuable trade-off between complexity and
evaluation effort [79].

Finally, to analyze the scalability of the approach, in absence of a realistic bench-
mark suite, the thesis considers a set of random models with increasing size. The
evaluation compares the difference in terms of time and space between checking the re-
placement against the previously generated constraint (the corresponding sub-property)
and the effort required to verify the refined model (the original model in which the new
component is injected) against the original property.

1The tool is available at https://github.com/claudiomenghi/CHIA/.
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Sommario

IL processo di sviluppo del software è costituito da un insieme di scelte progettuali
medianti le quali il modello iniziale del sistema viene iterativamente modificato
fino ad ottenere l’implementazione finale. Ad ogni raffinamento lo sviluppatore

può lasciare parti del sistema non specificati. In questi casi la specifica viene definita
incompleta. L’incompletezza sorge quando il raffinamento di alcune funzionalità viene
posticipato ad una successiva fase dello sviluppo, o quando i componenti vengono
sviluppati da terze parti. Il modello finale del sistema viene ottenuto mediante una
sequenza di raffinamenti successivi attraveso i quali le funzionalità identificate ven-
gono iterativamente raffinate in sottomoduli, ed infine rimpiazzate dal corrispettivo
codice eseguibile. Durante questo processo varie funzionalità vengono analizzate e
confrontate per valutare le loro proprietà. A volte alcune funzionalità possono anche
essere aggiunte a run-time, come nel caso dei sistemi adattativi.

Le tecniche di verifica formale sviluppate negli ultimi anni [9,33] consentono di ver-
ificare se il sistema sviluppato possiede un insieme di proprietà definite dallo svilup-
patore. La verifica formale è utilizzata in pratica in vari domini applicativi e viene
utilizzata in diversi contesti industriali. Tuttavia, la verifica formale, ed in particolare le
tecniche di model checking, non sono completamente integrate nei processi di sviluppo
software correntemente utilizzati.

Le tecniche di model checking, dato un modello del sistema e una proprietà di inter-
esse, analizzano esaustivamente tale modello per garantire che tutte le sue esecuzioni
soddisfino la proprietà. Se la proprietà non è soddisfatta viene generato un controesem-
pio. Nelle tecniche di model checking convenzionali il modello del sistema e le pro-
prietà di interesse sono completamente specificate al momento dell’esecuzione della
procedura di verifica. Tuttavia, questa assunzione non è sempre valida, infatti, come
discusso in precedenza, i modelli considerati sono spesso incompleti.

Per consentire una verifica continua durante il processo di sviluppo del software è
necessario fornire delle tecniche capaci di supportare dei modelli incompleti. La veri-
fica di modelli incompleti permette di considerare descrizioni di alto livello del sistema,
e di rilevare in anticipo eventuali errori. Inoltre, quando le parti incomplete vengono
raffinate e rimpiazzate dai rispettivi componenti, è auspicabile la verifica della sola
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parte modificata, in modo da evitare l’esecuzione della procedura di verifica sull’intero
modello. Questo approccio consente di distribuire la verifica in maniera più uniforme
nel corso del processo di sviluppo software, riducendo significativamente i tempi di
verifica e supportando la verifica a run-time. Nella verifica a run-time, richiesta per
esempio nel contesto dei sistemi adattativi, è necessario verificare le proprietà delle
funzionalità rilevate prima di inserirle nel sistema in esecuzione.

Questa tesi si pone come obbiettivo di fornire tecniche e strumenti atti a supportare
specifiche incomplete nel processo di sviluppo software. La tesi propone un formal-
ismo che supporta nativamente l’incompletezza chiamato Incomplete Büchi Automata
(IBAs). Gli IBAs estendono i Büchi Automata (BAs) con degli stati non specificati,
chiamati black box che incapsulano funzionalità ancora da definire. I black box pos-
sono essere ricorsivamente raffinati in altri (Incomplete) Büchi automata. Al fine di
analizzare gli IBAs proponiamo una tecnica di verifica basata su automi che consente
di verificare se un IBA M soddisfi una proprietà φ, specificata in Linear Temporal
Logic (LTL). A causa della presenza degli stati black box, la procedura produce tre dif-
ferenti valori, “si" se la proprietà è soddisfatta dal modello, “no" (e un controesempio)
se non è soddisfatta, “forse" se la validità della proprietà dipende nel raffinamento degli
stati black box. In questo ultimo caso, viene proposta una tecnica di sintesi capace di
computare un vincolo per le parti del modello non specificate. Il vincolo è un insieme di
sottoproprietà che devono essere soddisfatte dagli automi che rimpiazzeranno gli stati
black box nel processo di raffinamento. Tali automi vengono chiamati replacements.
Le sottoproprietà possono essere utilizzate per guidare lo sviluppatore nel processo di
raffinamento. Infine, questa tesi propone una tecnica di verifica capace di consider-
are il raffinamento associato a un black box in riferimento al corrispondente vincolo.
Questa procedura evita la verifica del modello originale ogni volta che un raffinamento
è proposto, rendendo l’analisi del modello incrementale.

L’approccio presentato in questa tesi è stato implementato nel framework CHIA
(CHecker for Incompete Automata)2. CHIA è un tool in versione prototipale che sup-
porta il progettista nello sviluppo del software e nella sua verifica. Il tool è stato utiliz-
zato per valutare l’approccio su due esempi pratici. Il primo è un esempio classico nel
campo dell’informatica e riguarda un sistema di mutua esclusione. Tali sistemi sono
stati considerati in molti lavori, per esempio [9, 104]. Il secondo esempio, descritto
in [139], si riferisce all’evoluzione di un sistema di spostamento pezzi-“Pick and Place
Unit"-all’interno di una catena di montaggio.

Infine, per valutare la scalabilità dell’approccio, sono stati considerati un insieme di
modelli randomici di dimensione crescente. È stata analizzata la differenza di prestazio-
ni, in termini di tempo e spazio, tra la verifica del replacement associato a un black box
in riferimento al vincolo corrispondente e la verifica del raffinamento (il modello orig-
inale nel quale il replacement del black box viene inserito) in riferimento alla proprietà
originale.

2Il framework è disponibile all’indirizzo https://github.com/claudiomenghi/CHIA/.
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CHAPTER1
Introduction

“What we see depends on mainly what we are looking for.”

Sir John Lubbock, 1834-1913

In the last few years, software systems overspread the human society. Software per-
vades every aspect of the every day life: electronic banking, telephone and medical
systems, are only few examples of highly computerized systems which are of common
use. The massive development of software systems is continuously supported by the
reduction of hardware costs, and in particular memory costs, and the grow of the In-
ternet which allows a constant communication between the software executed on the
different devices connected to the network [105].

The software development industry is obviously affected by the dynamism of this
technological environment. Developers are no longer talented individual people which
write the whole software system in isolation. Conversely, nowadays software is de-
veloped by tens or thousands of programmers which interact, share code, ideas and
components. Sometime developers do not even reside in the same physical location
and use other software systems to communicate and integrate their work. In this set-
ting, software development life-cycles evolve from being purely sequential and mono-
lithic to iterative, incremental and agile [50]. Instead of being obsessed by a complete
elicitation of requirements, followed by a waterfall shaped development based on hi-
erarchical teams of highly specialized engineers, in an agile approach requirements
and solutions evolve through collaboration between self-organizing, cross-functional
teams. These factors, in conjunction with the growing complexity of software systems
and their increasing interaction, make these systems more vulnerable to errors and mal-
functions [9].



Chapter 1. Introduction

Errors may have devastating consequences. In 1994, the crash of a Royal Air Force
(RAF) Chinook helicopter killed twenty-five passengers due to an error in the digital
engine control system. In 1983, the warning system of the Soviet Union reported in-
coming US missiles from bases in United States. Luckily the officer recognized the
false alarm and decided to do nothing. To prevent these errors, it is crucial to ensure
that the software under development satisfies the properties of interest, i.e., its func-
tional and non functional requirements. Functional requirements concern the effect of
operations the system is expected to deliver [135]. Typically, functional requirements
specify the behavior of a component, such as “after a message is sent it is finally de-
livered" and “two processes cannot access a critical section together". Non functional
requirements refer to the software characteristics, such as performance, availability, us-
ability, energy consumption, and costs [83, 136]. Examples of non functional require-
ments are “the probability that a message is not delivered must be lower than 0.001"
and “the encryption of the sensitive data must take less than 1 second". A system is
said to be correct if it meets its functional and non functional requirements.

Verification concerns a set of activities and practices performed to guarantee that
the software under development possesses the properties of interest. One of the most
used verification techniques is testing [146]. Testing requires to choose a representative
set of input values that provide useful information about the behaviors exhibited by the
running software and to check the correctness of the produced outputs. The set of test
cases must provide enough evidence to give the developer confidence that the system
is providing the desired behavior [54]. This makes testing strongly dependent on the
correct selection of the suite of test cases. Another technique to check whether the
software possesses the properties of interest is model checking [33]. Model checking
is usually performed on a model which abstracts the behavior of the real system and
reduces the risk of implementing a flawed design. Given a model of the system M
and a formal property φ, the model checking tools exhaustively analyze the state space
of M to check whether all of the system behaviors satisfy φ [9]. The property φ,
usually expressed as a temporal logic formula, specifies the requirements the system
must satisfy.

Model checking has matured to a stage where practical use is often possible. It
has already been used in practice in several application domains and has been adopted
in many industrial settings. However, formal verification techniques are still not fully
integrated with the current software development cycles, i.e., they do not support in-
complete and evolving specifications.

The development process of any complex system can be viewed as a sequence of
design decisions that make the system evolve from an initial, high-level model into a
fully detailed and verified implementation. Typically, this process is performed by it-
eratively decomposing the model of the system into smaller functionalities. We would
like the initial specification to allow a wide collection of possibly inequivalent imple-
mentations, which is constantly reduced during the design process, until one single
implementation is determined [77]. Thus, at each stage, the model may be deliber-
ately incomplete, either because development of certain functionalities is postponed
or because the implementation will be provided by a third party, as in the case of a
component-based or a service-based system. In the case of a postponed functionality,
an implementation is usually provided at some later stage of the development process,

2



1.1. Research baseline

possibly after exploring alternative solutions to evaluate their trade-offs. There are also
cases in which the postponed functionality may become available at run-time, as in the
case of dynamically adaptive systems. A similar process is performed when the system
undergoes future evolution.

In this setting, the benefit of analysis performed using classical verification tech-
niques, such as model checking, only appears at the end of a costly process of construct-
ing a comprehensive behavior model, which contains a fully description of the system.
Indeed, verification techniques usually do not support the verification of incomplete
models. Conversely, highly explorative iterative and incremental model-driven design
approaches, like the one we discussed insofar, require the existing formal verification
techniques to be profoundly revisited, i.e., they should accomodate incomplete designs.
More precisely, classical model checking techniques, which return two possible val-
ues depending on whether the requirements are satisfied or not in the current model,
must consider the case in which the satisfaction of a property depends on the still to be
refined components. In this case, the model checking algorithm must return a maybe
value which specifies that the satisfaction of the property depends on how the incom-
plete is refined.

Furthermore, when the answer is maybe, the developer may also be interested in
knowing the set of models that makes the property (not) satisfied, i.e., having an upper
bound on the behaviors of the system which guarantee that the property of interest is
satisfied. These behaviors represent guidelines, a constraint, the developer may fol-
low in the refinement activity. As changes are made, by either adding a part that was
previously not specified or by revisiting a previous design decision, we want to ensure
that only a minimal part of the system-the one that is affected by the change-needs to
be analyzed, thus avoiding re-verifying everything after any change. This would other-
wise become intolerably expensive in practice and would alienate practical interest to
incorporating formal verification into agile development processes.

This thesis tries to reduce the gap between verification and modern development
processes, where, at each stage, alternative design decisions should be explored, and
models should be progressively transformed, along with the required properties, until
the code level is reached and all assurances are checked. This thesis proposes a model-
ing formalism and a model checking tool that support the designer in the development
of systems which contain incomplete parts which are iteratively removed during the
refinement activity. The modeling formalism can be used both during the design phase,
when the developer may be uncertain about the refinement of some components of the
system, and at run-time, when new components can be plugged or removed from the
running system. The model checking framework allows the developer to check the in-
complete specification of the system supporting an early error detection. The work also
proposes a constraint computation algorithm which gives the developer a set of sub-
properties the designer must follow in the refinement of the incompletenesses. Finally,
the thesis proposes a model checking algorithm which considers only the refined part
against the previously generated constraint.

1.1 Research baseline

The work in this thesis is mainly based on the following assumptions:

3
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• Incomplete designs are baselines to develop fully specified and detailed models
of the systems. The development process is not a straightforward activity: the
design of the system may include parts whose behavior is not clear at the current
development stage. The developer usually includes these parts in his/her design,
but the corresponding specific implementation will be later discussed. Thus, the
model of the system is often incomplete.

Example 1.1.1. Let us consider the design of a sending message protocol. The
developer may start defining a high level view of the system, with an initial state,
which is the state from which the system starts, the success state, which is reached
when the system has correctly sent the message, and the abort state, which is
reached when the sending message activity fails. Then, he/she defines two states
send1 and send2 that represent two attempts of sending a message. When the first
attempt fails the state send1 is left and the system moves to the state send2. At
the current level of abstraction, the developer is not interested in defining precisely
the behavior of the system inside the states send1 and send2; he/she is sketching a
solution identifying the main components of the application and how they interact
each other.

• Software development concerns iteratively refining incomplete designs. The re-
finement of an incomplete design is a critical task. The developer may provide
different alternatives which may differ both in term of their functional and non-
funcional characteristics. He/She may want to explore and compare different de-
sign alternatives before finally choose one of them.

Example 1.1.2. Considering the sending message protocol previously described,
the two states send1 and send2 may represent two different sending procedures,
i.e., they may specify different strategies to send a message, such as the use of
different physical links. The developer may define a protocol which in the state
send1 tries to send a message using the optical fibre, while in the state send2 uses
a third generation mobile telecommunications technology or vice versa. Whenever
a failure in the use of any of these links is detected, the system may try to analyze
the state of the connection and, in case of problems, to recover it. This analysis
can be performed inside one the states send1, send2, or in both of them.

• The choice of the design to be employed depends on its functional and non-
functional properties. When the developer has to choose the design to be fi-
nally implemented, he/she may consider a set of characteristics which include
both functional and non-functional aspects.

Example 1.1.3. In the sending message protocol example, how can the devel-
oper choose between the different refinements? Whenever the sending message
activity performed inside the state send1 fails, does the system have recover the
optical fibre connection? Is it better to start the recovering process only after
also the sending message activity performed using the third generation mobile
telecommunications technology fails? The developer may choose between these
two solutions depending on the functional and non functional requirements of the
application. For example, one functional requirement may specify that the recov-
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ering can be performed if and only if both the communication channels are not
available.

• Incompleteness is the cornerstone for adaptability. A system with one variant
may be insufficient in most of the real world problems. In real world problems
a system has usually many possible replacements for each component. When a
component changes (evolve), its old version is removed from the system (leaving
its specification temporary incomplete) and replaced by the new one.

Example 1.1.4. Imagine that the sending message protocol previously described
is deployed on a real system and the state send1 is associated with different strate-
gies to be used at run-time to send the massage. For example, send1 can be as-
sociated to two components that use different network links (fibre connection and
WiFi). The adaptation procedure can be framed in a model-driven way; that is,
the adaptation procedure is based on the use of a model which is kept alive and
updated at run-time. Whenever the fibre connection does not allow the sending
message activity, the system chooses to change the communication protocol, for
example by exploiting the WiFi connection. In this case, the fibre connection com-
ponent associated with the state send1 is removed from the model of the system,
leaving the system temporarily incomplete and replaced by the WiFi component.
The model of the system is checked against the corresponding requirements. If the
new configuration guarantees the requirement satisfaction, the WiFi component is
plugged into running system, otherwise other configurations are analyzed.

• Verification proves the correctness of software under development. System verifi-
cation techniques are used to establish if the software posses certain properties. A
defect is found when the system does not satisfy one of its properties.

Example 1.1.5. Considering the sending message protocol example, the devel-
oper may want to ensure that the sending activity succeeds, i.e., after a message
is sent, a success state is always reached. If the property is satisfied the design is
approved, if it is not the design must be revisited.

1.2 Questions

Software development is not a trivial activity. It is an incremental and iterative process
which requires the elaboration of the model of the system, the evaluation of different
design solutions, the integration with new and existing software. Incompleteness may
appear in several stages of the software development cycle. It may occur when a com-
ponent still has to be specified, when it is removed from the running system, or when it
is going to be developed by third party companies. These are common cases that occur
when the system is developed using a top-down approach or in adaptive systems, when
new components are plugged and removed at run-time. In all these cases, the developer
may be interested in checking designs that are incomplete.

Even if incompleteness has been exhaustively studied in the research community, a
fully comprehensive approach that supports the designer in the development of a se-
quential systems is still missing. Differently from concurrent systems, where multiple
processes are executed in parallel, a sequential system is based on a single process.

5
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The behavior of this process is usually described through a state machine which speci-
fies the set of states reachable during the computation and how the state of the system
changes over time. This thesis mainly addresses the following questions:

• Incompleteness may occur is several stages of the software development cycle,
such as when the development of a certain component is postponed to a later
development stage or when it is developed by a third party company. This raises
the question:

Question 1.2.1. How can the developer specify systems which contain parts whose
refinement is postponed? How is it possible to effectively specify the relation be-
tween these parts and the rest of our model?

• Incompleteness and run-time adaptation are two aspects of the same problem.
When a component changes, it is removed from the running system leaving the
system specification temporarily incomplete. This incomplete specification evolves
into a complete one when the new component is plugged. The relation between
incompleteness and evolution raises the following question:

Question 1.2.2. Whenever it is possible to isolate the portions of the system that
will change at run-time, how is it possible to specify these components? How to
update the model of the system when the replacements of these components are
available?

• Model checking gives the developer feedback about its design choices. It is usu-
ally performed at the end of the development cycle when the final specification is
provided. The presence of incompleteness in the specification induces the follow-
ing question:

Question 1.2.3. Are classical model checking techniques able to support the ver-
ification of incomplete specifications? If this is not the case, how is it possible to
adapt the existing techniques? Is it possible to distribute in a more effective way
the verification effort in the development life-cycle when incomplete specifications
are refined?

• Model checking can be used at run-time when new components are detected. In
this case, the system has to check whether the plugging of the components make
the requirements of the system satisfied or not. If the requirements of the system
are satisfied, the component can be plugged into the running system. If this is not
the case the components are discarded. This raises the following question:

Question 1.2.4. Is it possible to not verify everything from scratch when new
components (replacements) are detected? Is there a way to move some of the
verification effort from run-time to design-time?

• When the developer is refining an incomplete part of the system, he/she is design-
ing a replacement, he/she may be uncertain on the behaviors that violate/satisfy
the requirements of the system. He/She may need, for example, to choose be-
tween two different replacements which differ in their functionalities. This raises
the following question:
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Question 1.2.5. Is it possible to compute a constraint (a set of requirements) that
the developer must consider in the refinement of incompleteness? How to compute
this constraint? Whenever a replacement is proposed is it necessary to check
everything from scratch?

1.3 Contribution of the thesis

This thesis proposes a framework that supports incompleteness in the design of se-
quential systems, where the systems are expressed in terms of state machines. The
contributions of this thesis include:

• A modeling formalism to represent incomplete models. Whenever a new system is
developed, the designer starts by identifying the set of the system states and how
the state of the system changes over time. However, in several cases, the developer
may be uncertain about the behavior of the system inside some of its states and
can mark these states as placeholders for other state machines that will be later
developed. Several modeling formalisms have been proposed in literature to over-
come this problem, such as Statecharts [62], Hierarchical State Machines [6] and
Modal Transition Systems [77]. Some of these formalisms, such as Statecharts
and Hierarchical State Machines, allow the iterative development of the model
of the system but do not support early analysis, i.e., the model can be checked
against its requirements only when the final, fully comprehensive specification of
the system is produced. Other modeling formalisms consider other types of in-
completeness. For example, Modal Transition Systems express uncertainty over
the presence of a set transitions.
This thesis proposes Incomplete Büchi Automata an extension of the well known
Büchi automata which allow easy identification and specification of incomplete
parts. The incomplete parts are represented through a set of states that will be
refined into other state machines. Each of these state machines, a replacement,
is designed in a later development step or, in the case of adaptive systems, can
be identified at run-time. Incomplete parts can also be used to abstract parts of
the state space, by hiding complex design parts. The thesis provides a formal
definition of IBAs, of replacements, and on how IBAs can be iteratively refined
adding new replacements.

• Reasoning techniques. We develop three reasoning techniques over the model-
ing formalism previously discussed to support the designer in the development
activity.

– Incomplete model checking: allows the developer to check incomplete de-
signs. More precisely, it verifies whether an incomplete model satisfies, pos-
sibly satisfies or does not satisfy its requirements. If an incomplete design
satisfies or does not satisfy its requirements, whatever replacement for the
incomplete parts the developer proposes, the requirement remains satisfied
or not satisfied, respectively. If the requirement is possibly satisfied, the de-
veloper must refine incompleteness in a way that satisfy the requirements of
interest. The incomplete model checking technique is fully automatic, allows
an early detection of errors and does not require any user interaction.
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– Constraint synthesizer: supports the developer in the cases in which the re-
quirements are possibly satisfied. It computes a constraint, a set of sub-
properties, describing the set of replacements that satisfy, possibly satisfy
or do not satisfy the properties of interest. The developer may use these sub-
properties as guidelines in the replacement design.

– Replacement checker: whenever a new replacement is designed, the devel-
oper may want to check whether the new refinement obtained by injecting
the replacement into the original model satisfies, does not satisfy or possibly
satisfies the properties of interest. The replacement checker does not check
everything from scratch, but just considers the replacement against the previ-
ously generated constraint.

• Evaluation and Tool support. The presented approach has been evaluated over
two case studies: the first [9, 104] concerns a well known example coming from
academy, while the second is a real case study presented in [139]. We have also
analyzed the complexity of all the algorithms proposed in our framework, and
the scalability of the approach considering a set of randomly generated models.
The entire approach has been implemented in the CHIA (CHecker for Incompete
Automata) framework1. CHIA is a prototype tool which supports the designer in
the system development and its verification.

1.4 Structure of the thesis

The thesis is structured as follows:

• Chapter 2 contains an overview of the state of the art. The state of the art includes:
a) the modeling formalisms that can be used to specify incompleteness in the
model of the system to be verified; b) how the different modeling formalisms sup-
port the refinement of incompleteness; c) the techniques that can be used to check
incomplete designs; d) the algorithms that provide the developer feedback on how
to design the replacements of the unspecified components; e) the approaches that
allow reducing the verification effort necessary to check the automata obtained
after the refinement of an incompleteness.

• Chapter 3 briefly recalls the main steps of the classical automata based model
checking procedure. It describes Büchi automata (BAs) and Linear Time Tempo-
ral logic (LTL) which are two of the modeling formalisms considered by the com-
monly used model checking tools. Furthermore, the chapter describes the classical
automata based model checking framework, providing the reader the background
necessary for understanding the rest of the thesis.

• Chapter 4 proposes Incomplete Büchi automata (IBAs), an extension of BAs that
support incompleteness. The chapter discusses how IBAs can be iteratively refined
into other IBAs until the final design of the system is provided.

• Chapter 5 contains the set of reasoning techniques to analyze incomplete mod-
els. The first reasoning technique is based on the automata based model checking

1The tool is available at https://github.com/claudiomenghi/CHIA.
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framework and addresses the problem of detecting whether the model of the sys-
tem satisfies, possibly satisfies or does not satisfies its requirements. The second
reasoning technique synthesizes a constraint that the replacements of the incom-
plete parts must satisfy. The third reasoning technique allows the distribution of
the model checking overhead in a more uniform way over the different stages of
the software development cycle. More precisely, when a replacement is provided
it is only checked against the previously computed constraint, i.e., it is not nec-
essary to check from scratch the refined version of the model against the original
requirements.

• Chapter 6 describes CHIA (CHecker for Incompete Automata) the framework
that supports the specification of incomplete models and their refinements and the
reasoning techniques proposed in Chapter 5. The chapter describes the architec-
ture of the tool, its input formats and a systematic process to use the tool in the
software development.

• Chapter 7 applies the modeling and reasoning framework on two different case
studies. The first is a well known example coming from academy [9, 104]. The
second is a real case study presented in [139]. The case studies have been slightly
modified to fit with the modeling formalism presented in Chapter 4. The models
are transformed since the approach presented in this thesis only supports sequen-
tial systems, i.e., it does not support parallel execution, and in BAs transitions
rather than states are labeled.

• Chapter 8 analyzes the applicability of the approach. It discusses the performance
of the tool when applied to the case studies presented in Chapter 7. The time
complexity analysis of the approach is presented and the scalability evaluation
is performed by considering a set of random models with increasing sizes. Fi-
nally, the chapter discusses the generality of our approach with respect to other
approaches that consider incomplete specifications.

• Chapter 9 concludes the thesis and presents some future work. We outline a set
of limitations of the proposed approach and possible extensions.
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CHAPTER2
Related work

“If we knew what it was we were doing, it would not be called research, would it?”

Albert Einstein, 1879-1955

The term incompleteness is generally used to indicate not fully specified systems
or systems which do not have all the necessary or appropriate parts. In the software
case, incompleteness arises in different stages of the software development cycle and
for different reasons. For example, incompleteness may arise in the early stages of
the software development when an initial draft (approximation) of the software is de-
signed [130]. This preliminary draft may contain parts that are not specified, i.e., it is a
partial design. Abstraction [33] is another technique that generates incomplete specifi-
cations. Abstraction allows hiding details of the system to reduce the size of the model.
The abstracted models are designed to be conservatively true with respect to the prop-
erties of interest, i.e., if a property is satisfied in the abstract model it is also satisfied in
its refinement.

Whenever an incomplete model is considered, the developer may clash with the fol-
lowing problems: a) how to specify models and claims which are incomplete; b) how
to refine the incomplete models; c) how to check the incomplete models and claims;
d) how to synthesize constraints for the incomplete parts, i.e., sub-properties the de-
veloper may consider in the refinement activity; e) when an incomplete part is refined,
how to check the new model of the system. This chapter reviews the main works and
solutions proposed for these problems. The focus of the chapter is on the possible ways
in which incomplete models are specified and analyzed and does not consider incom-
pleteness in the property (claim) to be verified. Incompleteness in the properties to be
checked has been strongly studied in literature. The problem of checking incomplete
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properties is identified in literature as query checking [20]. The interested reader may
refer to [60] for additional information.

2.1 Modeling formalism

Different modeling formalisms have been proposed in literature to support incomplete-
ness. Most of them are variations of the ordinary Finite State Machines (FSMs). In
FSMs a system is usually modeled through a set of states and transitions between these
states. Transitions specify how the configuration of the system changes over time.

Modal Transition Systems (MTSs) are one of the most studied modeling formal-
ism to deal with incompleteness. MTSs have been originally proposed by Larsen and
Thomsen [77, 78] as an extension of Labeled Transition Systems (LTSs). LTSs are not
suitable to describe initial, high-level specifications where a wide collection of possibly
not equivalent models can be defined and then refined during the development process
until a single (final) implementation is determined. MTSs extend the formalism of
LTSs by dividing the transitions of the LTSs into necessary and admissible1. A transi-
tion s a−→ s′, which specifies that the system moves from the state s to the state s′ by
reading a, may be prefixed by a necessary (2) or an admissible (3) operator. A transi-
tion prefixed by a necessary operator (2(s

a−→ s′)) specifies that the system must be able
to perform the transition. A transition prefixed by the admissible operator (3(s

a−→ s′))
specifies that the transition may be implemented by the system. Formally, a MTSM
is a tuple 〈S,A,→2,→3〉, where S is the set of the states of the MTS, A is the set of
actions,→2⊆ S×A×S is the set of necessary transitions and→3⊆ S×A×S is the
set of admissible transitions, such that→2⊆→3

2.
Kripke MTSs [67,123] (KMTSs) are similar to MTSs. They represent the necessary

and the possible behaviors of a system by partitioning the set of transitions in two sets:
must (must→ ) and maybe (

maybe→ ) transitions. The set of must transitions is included into
the set of maybe transitions. However, an abstract state sa of the KMTS M is used
to represents a set of concrete states of the Kripke Structure (KS) M′ which refines
M. Furthermore, differently from MTSs, states rather than transitions are labeled. The
labeling of an abstract state contains the atomic propositions that are satisfied or not
satisfied by all the concrete states ofM′. However, the value of some of the proposition
of a state s may not be specified inM and assigned only when s is refined.

Generalized Kripke MTSs [123] (GKMTSs) replace must transition with must hyper-
transitions which connect an abstract state sa with a set of states A = {s1, s2 . . . sn}.
A GKMTS contains a transition sa

must→ A if and only if for each concrete state sc
represented by sa there exists a s′c represented by some s′a ∈ A such that sc → s′c. In
GKMTS an abstract state sa can be mapped into several concreted states sc.

Partial Kripke Structures [11, 12] (PKSs) are a state based modeling formalism
which allow the specification of incomplete models. Given a set of proposition P , a
partial Kripke Structure is represented as a tuple 〈S, L,R〉, where S is the set of states,
L : S × P → {T,⊥, F} is the interpretation function and R ⊆ S × S is a transi-
tion relation on S. As evidenced by the interpretation function L, PKSs associate to

1These transitions are also identified as possible transitions, such as in [21].
2The interested reader may refer to [130] for a review on the current state of the art of MTSs, and how they are used to support

incremental model elaboration.
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each proposition a truth value in {T,⊥, F} for each state in S, i.e., a proposition can
take also the truth value ⊥. This value is used to specify propositions whose value is
currently undefined, it can be either true or false3. A PKS can be used in the model
checking activity to iteratively explore the state space of the system. The set of states
still to be explored by the checker can be represented as a single state s⊥ that models
all of them and has the value ⊥ assigned to all the atomic propositions. Thus, while
it is operating, the model checker explores the state space and maintains an abstracted
version of the real state space of the system where the states still to be visited are rep-
resented by the single abstract state s⊥. Alternatively, states where all the propositions
are assigned to the ⊥ value can be used in the software development as abstract states
that have still to be refined.
XKripke Structures (XKSs) [22] extend KSs by labeling states and transitions with

multivalued sets. A multivalued set is a boolean algebra where a variable can be marked
with TT , FT , TF and FF . Intuitively, an atomic proposition a can be associated to a
value in the set {TT, FT, TF, FF}. When the value of the proposition a is FT or TF ,
its actual value is unknown. Similarly, every transition is associated with a value in the
set {TT, FT, TF, FF} which specifies whether the transition is present, not present or
possibly present in the final KS. Again, when a transition δ is marked with FT or TF
its presence in the final model is not guaranteed.

Hierarchical State Machines [6] (HSMs) are usually considered as a notation to deal
with incomplete specifications. In HSMs states can be ordinary states or superstates
(also called boxes) which are refined into other HSMs. Each ordinary state is labeled
with the atomic propositions true in that state. Furthermore, a HSM has one state
denoted as entry state and one or more ordinary states denoted as exit states. Entry and
exit states allow to connect the HSM of the current level with a HSM of the lower/upper
levels. HSMs offer two main advantages: a) superstates allow the specification of
systems in a stepwise refinement way and to consider the system at different levels of
granularity; b) it is possible to map different superstates on the same HSM, i.e., it is
possible to specify a component only once and plug it into different superstates. In
this case, HSMs allow sharing. Formally, a HSM is composed by a set of structures,
i.e., HSMs, which are connected by an indexing function which maps superstates to
other HSMs. The transition relation (called edge relation) connects together states of
the same HSMs or states of a HSM with entry/exit nodes of another HSM.

Giannakopoulou et al., [56] consider LTSs as a formalism to express the behavior
of the system when it is executed in an unknown environment. The environment can
interact with the LTS by triggering some of the actions which label the transitions of the
LTS. The set A of the actions of the model which are observable from the environment
are specified through the interface operator ↑. In the rest of this thesis this type of
LTS will be indicated as LTS↑. The interface operator intrinsically makes the model
incomplete, meaning that some actions may be triggered or not by the environment.
From the environment point of view, all the actions which are not in A can be replaced
by the symbol τ which is outside the alphabet, since they are not observable. More
precisely, the transitions marked with the τ symbol cannot be executed synchronously
with transitions of the claims or of the environment, but instead they are interleaved.

In [95], incompleteness of sequential circuits is considered. In this case, incom-

3Note that, in general, the symbol ⊥ can be associated with different interpretations [31].
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pleteness is used to describe a specific part of the circuit whose behavior is unspecified,
i.e., we know its inputs and outputs but not the internal representation of the logic. The
output of the system is marked with an X meaning that its value is unknown (0 or 1)
for a specific input. In this case incomplete parts are named as black boxes.

In other works, such as [29, 30], the system is decomposed into a set of unknown
components which communicate through signals. The developer knows the structure of
the system, i.e., how the different components are interconnected, and wants to produce
contracts for these components. The components are represented as black-boxes, while
their behavioral models are specified in a different language. Each component has a set
of incoming and outgoing ports. The incoming ports receive signals from the environ-
ment, i.e., the surrounding components. The outgoing ports are used to communicate
signals to the other components of the system.

A concept which is often associated with incompleteness is uncertainty. The sim-
plest example of uncertainty is non-determinism, which has been considered for ex-
ample in [28]. In a non-deterministic domain a model contains actions which have
different outcomes and whose occurrence cannot be predicted at design time, i.e., it is
not possible to know a priori the set of action (e.g., transitions) that will be executed at
run-time. When the model is non deterministic, an execution may result in general in
different sequences of states.

Uncertainty has also been considered in [44]. In this work multiple design pos-
sibilities are associated with a component, i.e., uncertainty refers to “multiple design
alternatives". The developer proposes different design alternatives for the same com-
ponent but he/she is uncertain on the one to select and deploy in the final system.

Several works also consider incompleteness when the model is used to represent the
non-functional properties of the system [45]. In this setting incompleteness refers to
the values of the parameters of its transitions, e.g., the probability to move from one
state to another.

2.2 Refining process

The refinement process is an iterative activity in incompleteness is iteratively removed.
The refinement operation is the base block of the software development cycle, in par-
ticular when a stepwise development technique is used. This section discusses the
refinement notions of some of the modeling formalisms that support incompleteness.

Different definitions of refinements have been proposed for Modal Transition Sys-
tems (MTSs) [48,49,77,131,132]4. The common idea behind these refinement notions
is to refine a MTS by converting maybe transitions into required or proscribed one. The
first notion of refinement, also known as classical refinement or strong refinement, is
described in the original work of MTSs [77] and considers two MTSs defined over the
same alphabet. A MTSM′ is a refinement of a MTSM (M′/M5) if every admissible
behavior inM′ is also an admissible behavior inM, and every necessary behavior in
M is necessary inM′. A MTSM is called implementation if →2=→3, that is, M
is a labeled transition system [107]. Note that the refinement relation / is a pre-order
(reflexive and transitive) and is a generalization of the notion of bisimulation [90, 97].

4The interested reader may refer to [21, 130] for additional information on the use of MTSs in the context of incremental
behavioral model elaboration.

5The classical refinement is also indicated in some works with the symbol �, such as in [21].
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When→2= ∅, the refinement relation / corresponds to the notion of simulation, while
corresponds to bisimulation when→2=→3. The classical refinement notion has been
extended in [48, 131] to accomodate different alphabets, while in [21, 46, 47] observa-
tional refinement (usually indicated with �o) is introduced. Observational refinement
is useful when the alphabet Σ of a MTSM is extended with the additional symbols,
such as τ , which describe actions ofM which are not visible by the MTSs running in
parallel withM. In this case, the alphabet of the MTS is Σ′ = Σ ∪ {τ} which is com-
posed by the communicating part Σ and the non observable one τ . The observational
refinement reflects the classical refinement notion considering only the communicating
alphabet of the MTS. Given a MTS M and a set of symbols X , the MTS M@X is
the MTSM where all the occurrences of a symbol in X is replaced with τ . Observa-
tional refinement allows the comparison of a model with a biggest one by hiding the
additional actions present in the biggest model.

The refinement notion of Partial Kripke Structures [11,12] (PKSs) is defined through
the completeness pre-order relation �, which relates properties of less complete PKSs
to more complete PKSs. Given a modelM and another model N , N is a refinement
ofM if there exists a completeness pre-order relation between their states. Given two
states s1 and s2 ofM and N , respectively, s1 � s2 if the atomic propositions of s1 are
“less defined" than the atomic propositions of s2 and the successors of s1 and s2 are in
a pre-order correspondence. In other words, a modelM and another model N are in a
pre-order relation if N is “more complete" thanM, which means that N has “more"
definite properties with respect toM. The completeness pre-order relation can be used
both for abstracting (P)KS by encapsulating portions of the state space into abstract
states or to iteratively refining incomplete specifications.

The refinement process of Hierarchical State Machines (HSMs) is obtained by con-
necting a superstate of a HSM to another HSM (its replacement). When the refinement
process is ended, a HSM can be converted into a flat FSM KF , usually called expanded
FSM (or expanded structure), by recursively substituting each box of the structure by
the corresponding FSM [8]. As demonstrated in [5] such flattening causes an expo-
nential blow up, i.e., O(|K|nd(K)) where |K| is the size of the HSM and nd(K) is the
nesting depth, i.e., the the length of the longest “refinement chain".

Giannakopoulou et al., [56] assume the model of the system specified through a La-
beled Transition System with an additional interface operator (LTS↑) , which describes
how the model can interact with its environment. The refinement activity concerns the
specification of the environment in which the model is executed.

In [29, 30] a component (black-box) can be refined into other components. The
developer starts with a view of the system which is composed by a single black box
with a set of ports that allow to communicate with the environment. Then, the black-
boxes are iteratively refined. At each refinement round, the developer specifies the
sub-components included in the refined component. Additionally, the developer also
specifies how the incoming and outgoing ports of the sub-components are connected
together and to the incoming and outgoing ports of the refined component.
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2.3 Model Checking

Several works have considered the problem of checking models that are incomplete.
When an incomplete model is analyzed, the output of classical model checking tech-
niques must be revisited. Classical model checking algorithms, given a model of the
systemM and a property φ, return “true" if the property is satisfied, “false" if it is not.
Model checkers that support incompleteness must be multivalued [22], i.e., they should
rely upon some type of three value [71] or multivalued logic.

A multivalued model checking framework allows the reasoning on additional truth
values rather than just “true" or false". A particular instance of multivalued model
checking is 3-valued model checking [11] where three possible outputs can be returned
by the model checker: “true", “false" and “maybe" (or possibly). The procedures pro-
posed in literature differ from the modeling formalism considered by the model check-
ing framework and on the type of result the tool is going to provide. This section mainly
considers the state of the art with respect to the verification of LTL properties.

The model checking problem of Modal Transitions Systems (MTSs) has been con-
sidered for example in [66, 67, 129]6. The model checking procedure is based on two
classical model checking activities. First, an under approximation M− of the model
M to be checked is considered. To obtainM− all the maybe transitions are removed
fromM. Then, all the required transitions that are not part of an infinite run that starts
from the initial state of the system are deleted. The new automaton is checked against
the property of interest. IfM− does not satisfy φ the original modelM does not satisfy
the property of interest. If this is not the case the over approximationM+ is computed.
M+ is obtained by converting all the maybe transitions into required and by removing
the transitions that are not a part of infinite runs starting from the initial state of the sys-
tem. IfM+ satisfies φ, then φ is satisfied in the final model, otherwise, the property is
possibly satisfied. As a consequence the verification procedure has a complexity which
is comparable to the classical model checking algorithms, i.e., the overall complexity
is O(2 · |A¬φ| · |M|), where |A¬φ| is the size of the automaton associated with the
property ¬φ while |M| is the size of the model to be checked, respectively.

The model checking of XKripke Structures (XKSs) has been considered both with
respect to CTL (XCTL) [22] and LTL (XLTL) properties. In particular, checking a
XKS structure versus an XLTL formula can be performed by checking XLTL against
a XBüchi automata [23]. XBüchi automata assign to each symbol a that labels a
transition δ its value from a multivalued set. As in the case of Modal Transition Systems
the model checking problem can be reduced to a set of executions of the classical model
checking algorithm. The overall complexity of the procedure is O(2 · |A¬φ| · |M|).

The model checking problem of Partial Kripke Structures (PKSs) has been consid-
ered in [11]. The main issue of checking a partial state space is to relate the verification
of the properties on the partial state space to the results obtained when the procedure
is applied to the full state space. In [11], Propositional Modal Logic (PML) [137] and
Computation Tree Logic (CTL) [32] is considered. PML extends propositional logic
with the eventually operator F and is a subset of both CTL and LTL. The third value ⊥
is used to specify an “unknown" result, meaning that the model does not contain enough
information to say whether the property is true or false. The authors demonstrate that

6The model checking problem is considered with respect to the inductive semantic of LTL and only deadlock-free MTS are
supported. The complexity of the model checking procedure corresponds to the one presented in [11].
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given a Partial Kripke Structure M = 〈Q,L,∆〉 it is possible to solve the model check-
ing problem by performing two “normal" model checking activities, one considering
an optimistic labeling La, where the uncertain atomic propositions are associated with
the true value, and the other considering a pessimistic labeling Lp, where the uncertain
atomic propositions are associated with the false value. The formula is true in a state
s if it is true in its under pessimistic interpretation, it is false if it is not satisfied in its
optimistic interpretation, ⊥ otherwise. For this reason, the model checking procedure
does not have additional complexity: the overall complexity isO(2·|A¬φ|·|M|), where
|A¬φ| is the size of the automaton associated with the property ¬φwhile |M| is the size
of the model to be considered.

In [12] the approach previously presented is extended and the generalized model
checking problem is defined. The authors specify that the 3-value semantics does not
behaves as expected: there are cases in which the model checking algorithm returns ⊥
in which it does not exist a “more complete" model in which the formula is satisfied
and not satisfied. For this reason the generalized model checking problem has been de-
fined. The generalized model checking algorithm returns the value unknown ⊥ if and
only if the property is possibly satisfied, but ensures that there exists two refinements
one which satisfies and the other which does not satisfy the property of interest. This
3-value semantic is indicated as thorough semantic. The generalized model checking
problem is therefore a generalization of a) the model checking and b) the satisfiability
problem . If the given structure is fully incomplete, the problem reduces to satisfia-
bility checking while if the given structure is fully complete, the problem reduces to
model checking. The generalized model checking procedure over LTL formulae can be
decided in time O(|S|2 · 22·|φ|).

Model checking of Hierarchical State Machines (HSMs) with respect to LTL prop-
erties has been considered in several works such as [6–8]. However, in all these works,
HSMs are not considered as a formalism to model incompleteness, and thus the ver-
ification is assumed to be performed at the end of the development cycle when the
final implementation of the model is provided, i.e., all the components of the HSM are
specified. The verification of a fully specified HSM is discussed in detail in Section 2.5.

Giannakopoulou et al., [56] assume the model of the system specified through a La-
beled Transition System with an additional interface operator (LTS↑). The interface
operator describes how the model can interact with its environment. The system ob-
tained by combining the model and the environment is considered against a safety claim
also specified in terms of an automaton (a deterministic LTS). The authors revisit the
traditional approach that allows verifying a model behavior in all of its possible environ-
ments. Indeed, classical approaches return a) true if the model (component) satisfies
the property in all the possible environments; b) false if there exists some environment
that lead the component to falsify the property. The authors state that this approach is
overly pessimistic since it assume a not helpful environment. Thus, they modify the
model checking framework to return the value a) true if the model (component) satis-
fies the property in all the possible environments; b) false if the component violate the
property in all the environments; c) maybe otherwise. In the maybe case it may exists
some helpful environment which executed in parallel with the model guarantees that
the property is satisfied. The model checking algorithm works in the following steps
a) it first negates the LTS which corresponds to the property, that is it generates the LTS
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S, which corresponds to the LTS S augmented with an error state7; b) it computes the
parallel execution ofM and S (M ‖ S); c) it hides the actions that cannot be controlled
by the environment into τ actions; d) it checks if an error state is reachable inM ‖ S.
If it is not reachable the answer is true, if it is reachable through transition marked only
with τ actions it is false, otherwise it depends on the behavior of the environment. The
complexity of the model checking procedure is linear with respect to the intersection
automaton I generated.

The verification of incomplete circuits versus CTL properties is considered for ex-
ample in [95]. In this case, the model checking framework is split in two parts, real-
izability check (which is undecidable in general [108]), which verifies if it is possible
to refine the incomplete parts in a way that satisfy the original property, and validity
check, which verifies whether the property is satisfied in all the possible refinements
of the incomplete parts. The results of the checking are an approximation: they are
not complete but they are sound. The model checking framework first encodes the
incomplete circuit into a symbolic representation, where an additional variable Zi is
added for each Black Box output (i.e., for each output of the incomplete parts). Then it
computes an over-approximation SatE(φ) and an under-approximation SatA(φ) of the
states of the system which specify whether there exists at least one replacement (or all
the replacements) of the black boxes that satisfy φ. The sets SatE(φ) and SatA(φ) are
computed based on an approximate transition relation.

In the context of very-large-scale integration (VLSI), the problem of checking in-
complete designs is considered, for example, in [96]. More precisely, in this work, two
sub-problems are analyzed: a) realizability, that verify if an incomplete design can
be extended to a complete design satisfying a given CTL formula and b) validity, i.e.,
checking whether the property is satisfied for all possible extensions . In this work,
incompleteness refers to sub-circuits, that is an incomplete part represents a sub-circuit
that can be plugged inside the system. The authors proposed an approximate solution
to the realizability problem, since this problem is undecidable in general (a black box
can be replaced with a circuit with an unrestricted amount of memory).

2.4 Computation of sub-properties

The main goal of the software development process is to produce a system which sat-
isfies the properties of interest. As seen in Section 2.3, the developer usually designs
a model of the system and then check whether it satisfies its properties. However, the
reasoning techniques needed by the developer do not only involve model checking.
Sometimes the developer wants to “compute" or “synthesize" portions of the system
under development. For this reason, problems such as “synthesis", “supervisory con-
trol" and “sub-module construction" are related to this thesis. As specified in [56] “the
particular framework in which these problems are considered makes all the difference
to the proposed solutions".

In program synthesis the developer wants to compute a model of the system that
satisfies the properties of interest. Depending on the type of the system the developer
wants to synthesize and on the information that trigger the synthesis, different proce-
dures have been proposed. For example, the developer may want to synthesize the

7Note that the complexity of this procedure is in the worst case linear since it corresponds to the negation of a FSA and not of
a BA.
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model from the properties the system has to satisfy or from a set of scenarios [72, 134]
or from both of them [129].

In [112] the program synthesis problem is considered in the case of reactive systems.
A reactive system is a system that has an outgoing interaction with its environment,
i.e., the model φ(x, y) characterizes the relation between the input x of the program
(obtained from the environment) and the output y. In this context we can consider two
different components: the component C1, which is the environment where the appli-
cation will be deployed, and the component C2, which is the body of the system the
developer has to design. The point is to show that the developer can design C2 by em-
ploying a winning strategy that for all possible x scenarios makes the property φ(x, y)
satisfied. The system C2 may react to the inputs of the environment in a way that sat-
isfies the properties of interest. Formally, (∀x)(∃y)φ(x, y), for all input x there exists
an action y the component C2 can produce that makes the final property φ(x, y) satis-
fied. The input x and the output y are sequences of values assumed by the variable x
and y along the computation. The theorem proving approach, by proving the validity of
(∀x)(∃y)φ(x, y), is used to demonstrate the existence of a program P satisfying the lin-
ear time temporal formula φ(x, y). The behavior of a program P is an infinite sequence
of pairs 〈xi, yi〉 such that yi = fP (xi, xi−1 . . . x1) where xi, xi−1 . . . x1 are the inputs
received by the system and fP is the program to be constructed. The output yi of the
system in a particular instant depends on the current input xi and the sequence of inputs
xi−1 . . . x1 the system has received before xi. The proof that demonstrates the validity
of (∀x)(∃y)φ(x, y) is used to construct a program that implements φ (a similar idea has
been exploited for example in [15, 42, 140]). In the case of finite systems, the formula
generated can be mapped on a propositional CTL formula, whose implementability can
be checked and a transducer whose size is at most double-exponential in the length of
φ can be computed.

In [85] the authors analyze the problem of the synthesis of the synchronization part
of communicating processes. The processes are specified in the CSP (Communicating
Sequential Processes) language which allows the specification of processes interacting
with I/O operations. The incomplete part to be synthesized is the synchronizer which
filters all the interactions of the communicating processes. The goal of the synthesis
procedure is to compute the synchronizer such that the global system, composed by the
communicating processes and the synchronizer, satisfies the LTL property of interest.
The synthesis procedure works through four steps. First, the relativization procedure
transforms the local specifications of the processes into global specifications. This step
is necessary since each process is specified separately when it is designed, but when
the properties of the system are analyzed (i.e., absence of deadlock), the combination
of the specifications of the components of the system must be considered. Second, a
tableau like satisfability algorithm for the LTL properties is executed. The output of the
algorithm either declares that the specification is unsatifiable, which means that there
is no program that can satisfy the synchronization procedure, or it produces a model
graph from which all the other possible models can be extracted. In the third step the
set of models that satisfy the specifications (unwind the graph to satisfy eventualities if
necessary) is filtered. Finally, the synchronizer is generated.

When FSAs are considered [101], the system has to react to the inputs provided
by the environment in a way that satisfies its specification described through the LTL
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formula φ. The goal is to synthesize a FSA 〈Q, i,Σ,Γ, δ, ρ〉 where Q and i is the set of
the states and the initial state of the system, Σ and Γ are the input and output alphabets,
respectively, δ : S × Σ → S is the transition function and ρ : S × Σ → Γ is the
output function. As in classical synthesis it is not always true that the specification
is realizable [110], i.e., the system has a strategy to satisfy the specification. A typical
case in which it is not possible to synthesize the system is when the choice of the system
depends on some future input. The synthesis algorithm is build upon three main steps
a) translation of the LTL formula into a Büchi automaton (BA); b) determinization of
the BA into a Rabin [117] or parity [106] automaton; c) search for a winning strategy
in the generated automaton. The translation of the LTL formula into a BA and the
determinization step have both an exponential blow up. Thus, the overall procedure is
doubly-exponential in the size of the LTL specification φ.

In the context of FSMs, Uchitel et al., [129] propose a synthesis technique that
constructs Modal Transition Systems (MTSs) from a combination of safety properties
and scenarios. The idea is that safety properties are used to synthesize a model that
represents an upper bound on the behaviors of the system, i.e., they include all the
possible behaviors the system can exhibit, while scenarios are lower bounds on the
behavior of the system, i.e., they describe less behavior than what the final system shall
provide. More precisely in [129], a) the safety property is expressed in FLTL [55].
This property is converted into a MTS using a novel algorithm which is based on the
classical algorithm [80] used to translate FLTL properties into LTS8 and on the three
value semantic of FLTL9. The idea is to obtain the LTS which corresponds to the safety
property. Then, the LTS is converted into a MTS: each state of the obtained LTS is
analyzed and its outgoing transitions are converted into maybe transitions when more
than one transition exit a state since not all of them are required in the refined MTS.
b) the scenario σ is used to generate a MTS M(σ) which includes all the traces the
system must exhibit. Starting from the LTS L(σ) generated from a scenario σ, the
MTS M(σ) is obtained from L(σ) by adding a new sink state. Each state s in L(σ)
is connected to the sink state through a transition labeled with a, if it does not exists a
transition labeled with a that exit the state s, i.e., all the traces which are not explicitly
described in M(σ) are turned into maybe traces. c) after the MTSs generated from
the property and the scenario are computed, by merging these two MTSs10 the MTS
which represents their least common refinement is created. The new MTS preserves the
required (by scenarios) and the proscribed (by properties) behaviors. d) by analyzing
this new MTS it is possible to check whether the property is satisfied, not satisfied
or possibly satisfied. Since the procedure relies on the LTL tableau construction [81]
the complexity of the procedure is exponential. The synthesis and the model checking
approach have been implemented in the Modal Transition System Analyser [41] tool
which is based on the Labeled Transition System Analyzer [84] tool. Other related
works on the synthesis of MTSs are for example [39,40,133]. A more complete survey
can be found in [130].

A particular instance of the synthesis problem is the supervisory control problem. In

8When the property φ is a safety property the corresponding automaton has only one accepting state.
9In the three value semantic, if a property evaluates to true, it is satisfied in all the possible executions of the model. If a

property evaluates to false, it means that it is not satisfied in all the executions of the model. Finally, if a property evaluates to
maybe, there are some executions of the model satisfy and some that do not satisfy the property of interest.

10The merging operator is defined over two consistent, deterministic MTSs with the same alphabet.
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supervisory control [16,92,113,114], given a model of the systemM, such as a Discrete
Event System (DES) or an Extended Finite Automata (EFA) [125], the problem is to
modify its behavior to guarantee that the system satisfies the properties of interest, i.e.,
to synthesize an appropriate controller. The idea is based on the classical control loop
concept. A controller S uses any available information about the system behavior to
continuously adjust the input of the system, i.e., to control the executions of the model.
The model M receives inputs and produces outputs which are in form of events. As
soon as the model M produces some events which are detected by the controller S,
the controller S may disable some input events ofM to guarantee the satisfaction of
certain properties. Note that, the set of input events ofM is usually partitioned in two
sets, i.e., the controllable and not controllable events. The synthesis algorithms for the
supervisory control problem aims at computing a strategy the controller can exploit to
reach a certain goal. For example, the supervisor can be represented as a function that,
for every state of the modelM, disables a subset of actions that can be controlled. The
main idea behind supervisory control is to guarantee that the parallel executionM||S
does not allow/allows to reach a given a set of states E that the system has not/has
to reach (which can be obtained from a property φ). To reach this goal one possible
algorithm is to compute the parallel execution H betweenM and an automaton which
represents the property φ, remove from H the states that are not reachable obtaining a
new FSMH↑. IfH↑ is not reduced to the empty FSM it is the greatest controllable sub-
machine ofM that ensures the satisfaction of the property. The algorithm is polynomial
in the number of the states of the system.

The supervisory control problem has also been analyzed in the context of decentral-
ized control (see for example [116, 144, 145]). In the decentralized supervisory control
problem, there are “many" controllers S1,S2 . . .Sn in charge of controlling the system.
These controllers may have different (possibly overlapping) set of actions which are
monitored and may control different (possibly overlapping) set of inputs ofM. In this
context a conjunctive or a disjunctive architecture can be employed. In a conjunctive
architecture the set of enabled inputs of the model M is obtained by computing the
intersection of the set of events enabled by the controllers, vice-versa in a disjunctive
architecture the set of enabled inputs is the union of all the events enabled by the con-
trollers.

The supervisory control problem has also been considered in the context of Hierar-
chical Finite State Machines (HFSMs) [10, 86, 143]. A particular interest is obtained
by the HFSMs with sharing, i.e., where sub-components can be reused as replacements
for several super-states. Several works solve this problem by translating the HFSM
into an ordinary FSM and then using the classical approaches over the resulting FSM.
However, as mentioned in [51,86], the synthesis algorithms for the supervisory control
problem are polynomial in the number of the states of the system, and the number of
the states of the system grows exponentially with the number of nested sub-systems.
For this reason, it is important to exploit the hierarchical structure of the system. The
algorithm proposed in [86] according to the structure of the hierarchical state machine
computes a collection of supervisors (one for each structure) that are generic, computed
only once and can work in different context, i.e., inside the refinement of several states.

In [56] the assumption generation problem for Labeled Transition System with an
additional interface operator (LTS↑)-which describes how the model of the system in-
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teracts with its environment- is considered. If the modelM possibly satisfies the claim
φ, specified through an automaton (a deterministic LTS), the authors propose an al-
gorithm to compute an assumption, which works in any case there exists an helpful
environment which may guarantee the satisfaction of the property of interest. In this
sense the procedure is similar to the supervisory control problem. The algorithm con-
siders the intersection automaton (where the not observable actions of the model are
marked with τ ) and goes through the following steps: a) it backtracks the error state
over τ transitions, pruning the states where the environment cannot prevent the error
state from being entered via τ steps. b) it extracts the assumption. The assumption to
be satisfied by the environment can be extracted by the intersection automaton in two
steps: extracting the negation of the property, by making the intersection LTS determin-
istic, and negating the property. The bottleneck of the approach is the determinization
step which in the worst case is exponential and is performed since the claim to be
considered must be specified in terms of deterministic LTSs.

In the following work [34], the authors present a framework to perform assume
guarantee reasoning in an incremental and fully automated fashion. While in classical
assume guarantee reasoning the assumption are provided by the developer, in this work
the authors try to automatically derive the assumption A from the description of the
componentM, to guarantee thatM‖M′ satisfies a certain property φ. The framework
checks the componentM against a safety property φ and generates an assumption A
the componentM must satisfy andM′ must guarantee. The assumption A is gener-
ated through a learning algorithm which exploits queries onM and the results of the
checking ofM against φ. The framework works in three steps a) an assumption A is
generated for the componentM through the learning algorithm; b) the model checker
is used to verify that the componentM satisfies the property φ under the assumption
A, if the property is not satisfied another assumption A is generated using the learning
algorithm and the result of the verification; c) the model checker is used to verify that
the component M′ satisfies A in any environment. If this is the case the procedure
terminates, otherwise another assumption is generated through the learning algorithm
and the result of the verification. The componentM, the property φ and the assumption
A are described through LTSs. Note that the LTS that describes the property must be
deterministic11. In [34], the L∗ learning algorithm is used to generate the assumptions.

Cimatti et al., [30] propose a framework that supports the developer in the refinement
process by decomposing contracts when a top-down development process is adopted.
Whenever a component is refined into sub-components the corresponding contracts are
defined. Contracts specify the expected behavior of components in terms of assump-
tions the environment must satisfy and guarantees the components provide in response,
i.e., a contract is specified as a tuple 〈A,G〉, where A is the assumption and G is the
guarantee that must be satisfied by the replacement. The idea is independent on the
formalism which is used to represent A and G, the only requirement is that A and G
have an equivalent trace semantic. The replacement I satisfies the contract if and only
if I ∩ [A] ⊆ [G], where [A] and [G] represents the set of traces which corresponds to
the assumption A and the guarantee G. The framework supports the contract decompo-
sition when the system architecture is iteratively specified and the properties of interest
are described with temporal logic. More precisely, the framework guarantees that if

11The LTS that describes the assumption is obtained from the DFA computed by the learning algorithm.
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the contracts of the sub-components hold, then the contract of the parent component
must also hold. Given a contract C for a component S, the set of the contracts C of
the sub-components of S is a refinement of the contract C if and only if a) correct
implementations of the sub-contracts Ci ∈ C are also correct implementation of the
contract C; b) for every component i with sub-contract Ci ∈ C the correct implementa-
tions of the sub-contracts of the other components and a correct environment of S form
a correct environment for i . In [30] the authors also discuss how to use their contract
refinement framework in a compositional verification setting. In compositional verifi-
cation the properties of the system are obtained by the properties of the sub-components
without using the replacements (implementations) of the components. The procedure
is based on the classical structure of deduction proof, i.e., starting from a set of axioms,
the properties of the system are obtained iteratively applying a set of inference rules.

While in the classical synthesis problem the system reads all the signals generated by
its environment, in [73] the authors consider the synthesis with incomplete information
problem, which concerns the case in which each process can read only a part of the
signals of the underling process. For example, in a distributed program the processes
can read only the signals of the underlying processes. Given a set of readable signals I ,
a set of non readable signals E and the set of output signals O, the synthesis problem
concerns the computation of a strategy P : (2I)∗ → 2O where the computation of P
are the infinite words over 2I∪E∪O.

In an uncertainty context, where non deterministic domains are considered, an ex-
ecution may result in one or more sequences of states. Cimatti et al., [28] propose
an algorithm that allows to compute (synthesize) plans. The goal is to compute plans
which satisfy a reachability property, i.e., a condition on the final state of the execution
of a plan. The planner guarantees that the plans provide a chance to reach the goal
(“weak planning"), that the goal is always achieved (“strong planning") or the goal is
achieved with trial-and-error strategies.

2.5 Checking the refinement

The goal of the refinement checking process is to verify after any change, i.e., when an
incompleteness is refined, if the system possesses the properties of interest. Problems
such as compositional reasoning, modular verification, component substitutability and
hierarchical model checking are related to our work.

Compositional reasoning [70,89] tries to reduce the verification effort by decompos-
ing the system into different components. The idea is to verify properties on individual
components and, starting from these properties, infer the properties that hold in the
whole system without the construction of the global state space. Given a system M
composed by two componentsM1 andM2 executed in parallel, i.e.,M = M1‖M2,
and a property ϕ, compositional approaches try to independently analyzeM1 andM2

to deduce thatM |= ϕ.
The most famous approach for compositional reasoning is the assume-guarantee

paradigm [4, 69, 109]. In assume-guarantee, the classic Hoare style proof system [64]
is extended by adding additional constraints on the context in which the process is
executed, i.e., an assumption, and on the ways in which the program can modify the
context in which it is performed, i.e., a guarantee. The assumption constraints the ways
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in which the system can be changed by other programs, while the guarantee specifies
the conditions the process is ensuring. In the assume guarantee paradigm, assumptions
and guarantees hold during the whole process execution. Formally, 〈true〉M〈φ〉 and
〈φ〉M ′〈ψ〉 implies that 〈true〉M ||M ′〈ψ〉 [109]. The notation 〈true〉M〈φ〉 specifies
that the process M guarantees the property φ in any environment since no assumptions
are specified for M (true), while 〈φ〉M ′〈ψ〉 states that the process M ′ guarantees the
property ψ under the assumption that it is executed in an environment that satisfies
φ. Informally, if the model M guarantees φ and the model M ′ guarantees ψ when it is
located in an environment that satisfies φ, then whenM andM ′ are executed in parallel,
they satisfy ψ. This is proved without constructing the state space of M ||M ′.

Modular verification [124] is a particular instance of compositional reasoning which
is focused on verification. It tries to exploit the natural decomposition of the system
to check properties over the single components and infer the properties that hold in the
global system. For example, a modular verification technique may check that 〈ϕ〉M ′〈ψ〉
and 〈true〉M〈ϕ〉 holds, and starting from these two results infer that 〈true〉M ||M ′〈ψ〉
using an assume guarantee reasoning style.

Grumberg and Long [59] proposed a verification method that supports modular veri-
fication. They develop a framework which is based on a) ∀CTL a subset of the Compu-
tation Tree Logic (CTL) for which satisfaction is preserved under composition. ∀CTL
does not include the existential quantifiers and, to assure that the existential quanti-
fiers are not generated via negation, assume that the formulae are expressed in negation
normal form12; b) a pre-order relation � that captures the correspondence between the
components and the system containing the components. The pre-order relation is based
on the simulation relation13 and supports an assume-guarantee reasoning style for the
verification of the property. Given these two hypothesis, the model checking framework
can be viewed as determining whether a formula is true in all the systems containing
the component. For example, to verify whetherM||M′ |= φ it is possible to verify the
following relationsM � A and A||M′ � A′ andM||A′ |= φ, i.e.,M discharges the
assumptionA,A||M′ dischargesA′ andM||A′ satisfies φ. The framework is exploited
in the context of Moore machines and implemented in a symbolic framework.

Component substitutability [122] concerns the verification of a system when a com-
ponent is removed from the running system (that can lead to unavailability of the previ-
ous provided services) and replaced by a new one (that can lead to violations of global
correctness properties that were previously respected). The substitutability problem
can then be associated with the verification of the following criteria: a) any updated
portion of a software system must continue to provide the services offered by its earlier
counterpart; b) previously established correctness properties must remain valid for the
new version of the software system. The main idea behind component substitutability
is to reduce the amount of time and effort required to verify an entire system after each
(even minor) software update by localizing the verification effort to single components.

In [18, 121, 122] the component substitutability problem is solved by the use of two
model checking techniques. Given a set of components C = {C1, C2, . . . Cn} and a
set of new components C ′ = {C ′i | i ∈ I} and I ⊆ {1, . . . n} the problem is to check

12In negation normal form the negations are only applied to atomic propositions.
13Intuitively, a structureM can be simulated by a structureM′ if every state s ofM can be simulated by a state s′ ofM′.

A state s′ simulates a state s if their labels agree on the atomic propositions and every run starting from s corresponds with a run
starting from s′.
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whether a safety property φ holds in the new assembly. The idea it to reduce the veri-
fication effort of subsequent verifications exploiting the results of the previous one by
focusing only on the portions of the system (components) that have changed. First, the
algorithm checks that the behaviors of Ci are a subset of the behaviors exhibited by C ′i,
i.e., it checks containment. Checking containment is usually an expensive activity in
terms of time. For this reason the proposed procedure exploits an under and over ap-
proximation technique which is based on abstractions [17,57]. The idea it to create two
modelsMi andM′

i such that Ci ⊆ Mi ⊆ M′
i ⊆ C ′i, where ⊆ means less behaviors.

If C ′i is a valid substitute for Ci the procedure terminates otherwise a counterexample
is returned. If the counterexample is valid the property is not satisfied, otherwise it
is a spurious counterexample due to the approximations performed. At this point a
dynamic regular set learning technique in conjunction with the assume-guarantee rea-
soning algorithm is used to refineMi. The overall approach has been implemented in
the COMFORT [19] reasoning framework. The experiments confirm the effective-
ness of the dynamic approach with respect to the complete verification of the model of
the system after any update.

Model checking of Hierarchical State Machines (HSMs) with respect to LTL prop-
erties has been considered in several works, such as [6–8]. In these works the authors
analyze sequential HSMs14 and propose a solution which avoids the exponential blow
up necessary for computing the flattened version KF of the HSM. Given a HSM K and
an automata A which may be obtained from an LTL formula, the model checking prob-
lem is to solve the automata-emptiness problem, i.e., to check whether L(A) ∩ L(KF )
is empty, where KF is the expanded version of K. If L(A) ∩ L(KF ) is not empty, ev-
ery word in L(A) ∩ L(KF ) is a “bad" behavior. The automata-emptiness is solved by
reduction to a cycle detection problem. The idea is to pair each HSM Ki against the au-
tomaton A for every possible way of pairing an entry node of Ki with a state of A. This
implies that every exit node of Ki can be paired with every state of A, which causes an
overhead of |A|2 in the verification procedure. Then, an emptiness checking algorithm
can be applied on this new structure. Thus, the temporal complexity of the verification
algorithm isO(|K|·|A|3) (for ordinary FSMs it would beO(|K|·|A|)) where |K| is the
size of the HSM obtained by summing the cardinality of the set of the superstates, the
normal states and the transitions, and |A| is the size of the Büchi Automaton obtained
from the LTL property. Thus, if we consider the LTL formula φ, the procedure has
a temporal complexity O(|K| · 8|φ|), due to the overhead necessary to convert a LTL
formula into the corresponding BA. Note that a HSM can be analyzed only when all
the refinements levels have been specified, i.e., the analysis process must be conducted
only at the end of the software development cycle. The authors also demonstrate that
the model checking problem of CTL properties can be solved in time O(|K| · 2|φ|·d),
where d is the maximum number of exit nodes15 of each HSMs. The verification of
CTL properties requires to compute all the states that satisfy a particular sub-formula.
The authors also prove that for a single-exit node FSM the problem of checking a CTL
formula is PSPACE-complete in the size of the formula.

Famelis et al., [44] consider uncertainty as “multiple possibilities" (alternatives).
Rather than having a single replacement associated with a component, the developer

14The authors only consider sequential FSM, that is they do not consider parallel execution.
15The exit nodes of a FSMM are the states that are connected to the states of a higher level of the hierarchical FSM.
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has a set of possible replacements and he/she is not sure on which is the correct one.
This implies an uncertainty also in the requirements the system must satisfy. To han-
dle uncertainty the authors propose the use of annotations to precisely encode sets of
possible models. These models are encoded into a propositional logic formula, where
propositions encode the presence of states and transitions into the model. The proper-
ties are expressed into first order logic (FOL) and predicates over the structure of the
graph. The reasoning mechanism is able to answer three different questions: does the
property hold for all, some or none of the alternatives? If the property does not hold
why is it so? If the property is a necessary constraint how to filter the alternatives for
which it gets violated? The model checking algorithm returns true, false and maybe.
The true value specifies that the property holds in all the concretizations of the model,
false means that it does not hold for any of them, maybe is returned when the prop-
erty holds only in some of the concretizations. This type of model checking is also
indicated as through checking. The model checking algorithm exploits a SAT solver
to check whether the propositional logic formulae obtained by combining the model of
the system with the requirements and the negation of the requirements are satisfiable.
If the property and its negation are satisfiable there exists a concretization where the
property holds and one where it does not hold, thus the answer is maybe. Otherwise, if
the requirement or its negation is satisfiable, the answer is true or false, respectively.

Salay et al., [118] proposed a methodology to verify if a partial modelM′ is a re-
finement ofM. The procedure first encodesM andM′ into First order logic (FOL)
formula and checks if the encoding of M′ is satisfiable, that is the model is consis-
tent and there exists a concretization, i.e., a valid refinement. Then, the algorithm
checks that M′ has no more concretizations than M, i.e., it proves that the formula
representing the encoding ofM′ implies the formula representing the encoding ofM.
Furthermore, [118] also analyzes the problem of verifying a refining transformation.
A refining transformation is a change in the model which allows the reduction of its
uncertainty. Given a transformation (i.e., a refinement rule that can be iteratively ap-
plied), the objective is to analyze the result obtained by applying the rule repeatedly
until it can no longer be applied. Salay et al., [118] realized a prototype tool which uses
TXL [35] to translate the ecore models into first order encodings which are analyzed
using Alloy [68].

Larsen and Steffen, [76] present a constraint-oriented proof (verification) method-
ology for MTSs. The procedure is based on the following steps: a) description of
the system constraints, that is, the MTSs specifying particular behaviors of the system,
i.e., projective views. Each projective view (constraint) specifies the behaviors of the
system with respect to a specific parameter configuration (input value) through required
transition. In each view, the behavior of the system with respect to the other values is
described using -a possible infinite number of- admissible transitions; b) separation of
the property to be verified in a conjunction of sub-properties which refer to the different
projective views that can be independently verified (for this reason the procedure is said
to be based on the separation of proof of obligations). The transformation generates a
proof condition which is a First Order Logic formula in a Skolem normal form and
depends on a single Skolem constant. c) verification of a single refinement (MTS) with
respect to the Skolem constant. Note that, since the refinement may contain an infinite
number of transitions, an abstraction technique can be used. The abstraction concerns
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the identification of an equivalence relation to encode the infinite system into a finite
one.

Santone et al., [119] given a formal specification of an incomplete system M, try
to characterize the “collaborators" of M that, given the communication interface I,
guarantee that the property φ is satisfied. The communication interface I is a sub-set
of actions used by M to communicate with the collaborators. The idea is to find a
formula (an assumption) φ′, such that for everyM′ that satisfies φ′, (M‖M′) \I |= φ.
The desired property (φ) and the synthesized one (φ′) are expressed through Selective
Hennessy-Milner logic (SHML) formula, which allows to specify branching temporal
logic formula in the context of CCSs. To generate the assumption, the authors propose a
tableau based approach. Tableau based approaches try to find a proof of the satisfaction
of a property φ inM using a top-down reasoning mechanism. The authors extend the
tableau based approach by separating the property φ (goal) and the environment, where
at each step the goal specifies the part of the formula still to be proved, while the
environment records the solution produced along the branch. At each step the tableau
method simplifies the goal to be proved and extends the environment until a terminal
sequence is reached.
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CHAPTER3
Background

“Ignorance is the curse of God; knowledge is the wing wherewith we fly to heaven.”

William Shakespeare, 1564-1616

This chapter reviews the baselines on which this work is founded. It is a short intro-
duction that contains the background necessary for reading the following chapters of
this thesis1. Section 3.1 describes Finite State Automata (FSAs) and Büchi Automata
(BAs), two of the most used modeling formalisms to describe the system under de-
velopment. Section 3.2 presents Linear Time Temporal Logic (LTL) and its semantic.
LTL is one of the modeling languages commonly used to specify the software proper-
ties of interest. Finally, Section 3.3 discusses how the automata based model checking
framework allows proving that the system under development possesses the properties
of interest.

3.1 Modeling systems

The modeling formalism used to describe the system under development strongly de-
pends on the type of the system and on the properties the developer wants to describe.
In this work we consider systems which are sequentials. A sequential system is char-
acterized by a single execution thread and a state which changes in relation with the
inputs of the system2. This section describes Finite State Automata (FSAs) and Büchi
Automata (BAs), two of the most used modeling formalisms used to describe sequential
systems.

1The interested reader may refer to [9, 33] for additional information.
2Differently from sequential systems, concurrent systems involve different components (usually called processes) which run in

parallel.
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3.1.1 Finite State Automata

Finite State Automata (FSAs) are a widely used modeling formalism which describes
systems through a finite set of states and transitions among them. States represent
snapshots of the system configurations. Transitions specify the possible evolutions of
the system, describing how the state of the system changes over time. Transitions are
labeled with atomic propositions, i.e., the statements that are true when the transitions
are performed.

Definition 3.1.1 (Finite State Automaton [87,93]). Given a finite set of atomic proposi-
tions AP , a non-deterministic finite state automaton (FSA) over finite words is a tuple
〈Σ, Q,∆, Q0, F 〉, where a) Σ = 2AP is the finite alphabet; b) Q is the finite set of
states; c) ∆ ⊆ Q × Σ × Q is the transition relation; d) Q0 ⊆ Q is the set of initial
states; e) F ⊆ Q is the set of final states.

An automaton is non-deterministic whenever reading an input letter σ ∈ Σ, it is
possible to reach two different states of the automaton or when the FSA has more than
one initial state. An example of FSA defined over the set of atomic propositions AP =
{start, send, wait, timeout, ack, fail, ok, abort, success} is shown in Figure 3.1.
The sets Q = {q1, q2, . . . , q13}, Q0 = {q1} and F = {q2, q3} define the set of states,
initial states (graphically marked with an incoming arrow) and final states (graphically
marked with a double circle) of the automaton, respectively3. Note that, since the
alphabet of the FSA corresponds to Σ = 2AP , a transition can be labeled with any
subset of atomic propositions. For example, a transition labeled with the propositions
start and send is performed if and only if both the propositions are satisfied.

q1

q3

q2

-16-
{success}

-14-
{abort}

q4 q5-2- 
{send}

q6-3-
{wait}

q7
-4- 

{timeout}

q8
-5- 

{ack}

-1-
 {start}

q9 q10

-8-
{send}

q11

-9-
{wait}

q12
-10- 

{timeout}

q13
-11-
{ack}

-6-
{fail}

-7-
 {fail}

-15-
{ok}

-17-
{ok}

-13-
{fail}

-12-
{fail}

Figure 3.1: A finite state automaton.

Given a word v ∈ Σ∗ of length |v|, a run defines the sequence of states traversed by
the automaton to recognize v. Formally,

Definition 3.1.2 (FSA run [33]). Given a word v = v0v1v2 . . . v|v−1| of length |v| in
Σ∗ and a FSA M = 〈Σ, Q,∆, Q0, F 〉, a run over the word v is a mapping ρ∗ :
{0, 1, 2 . . . |v|} → Q such that: a) ρ∗(0) ∈ Q0; b) for all 0 ≤ i < |v|, (ρ∗(i), vi,
ρ∗(i+ 1)) ∈ ∆.

Informally, a run ρ∗ corresponds to a path in the FSA M, such that the first state
ρ∗(0) of the path is an initial state ofM, i.e., it is in the set Q0, and the system moves
from a state ρ∗(i) to the next state of the path ρ∗(i + 1) by reading vi. For example,
the word v ={start}.{send}.{wait}.{timeout} corresponds to the run ρ∗ of the FSA

3In Figure 3.1 and in the rest of the thesis the transitions are also marked with a number which has no semantic value, but will
be used only to refer to the transitions in the text.
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M described in Figure 3.1 defined as follows: ρ∗(0) = q1, ρ∗(1) = q4, ρ∗(2) = q5,
ρ∗(3) = q6, ρ∗(4) = q7.

Definition 3.1.3 (Accepting run [33]). A run ρ∗ is accepting if and only if it ends in a
final state ofM, i.e., ρ∗(|v|) ∈ F .

Given a word v, the automatonM accepts v if and only if there exists an accepting
run ofM over v. For example, the finite word v ={start}. {send}.{wait}.{ack}.{ok}
is accepted by the automaton described in Figure 3.1 through a path that goes into the
states q1, q4, q5, q6, q8, q3.

Definition 3.1.4 (Language of a FSA [33]). The language L∗(M) ⊆ Σ∗ associated
with the automatonM contains all the words that are accepted byM.

The size |M| of a FSAM is the sum of the cardinality of the set of its states and
the set of its transitions. Formally,

Definition 3.1.5 (Size of a FSA). The size |M| of a FSAM is |Q|+ |∆|.

3.1.2 Büchi Automata

Software systems may exhibit both finite and infinite behaviors. In the former case the
systems are designed to stop their execution whenever a final state is reached, in the
latter their execution never terminates. The same theoretical framework can be applied
in both the cases, i.e., by translating finite behaviors into infinite ones. This can be done
by extending the alphabet of the FSA with a predefined character (e.g., no_op) that is
not in the original alphabet and represents an operation that can be always executed in
its final states whenever the other transitions are disabled4. Thus, it is only necessary to
consider finite automata over infinite words. An infinite word, also called ω-word is a
word that contains at least a sub-word that is repeated infinitely many times. The most
famous class of automata over infinite words are Büchi automata (BAs).

Definition 3.1.6 (Büchi automaton [14]). A non-deterministic Büchi automaton (BA)
is a FSA 〈Σ, Q,∆, Q0, F 〉 where the set of final states F of the FSA is used to define
the acceptance condition for infinite words (also called ω-words). Hence, for Büchi
automata F is usually called the set of accepting states.

Given an ω-word v = v0v1v2 . . . a run defines an execution of the BA (sequence of
states).

Definition 3.1.7 (BA run [33]). Given an ω-word v = v0v1v2 . . . in Σω and a BA
〈Σ, Q,∆, Q0, F 〉, a run over v is a mapping ρω : {0, 1, 2 . . .} → Q such that: a) ρω(0)
∈ Q0; b) for all i ≥ 0, (ρω(i), vi, ρω(i+ 1)) ∈ ∆.

Note that, when Büchi automata are considered, the domain of ρω refers to the whole
set of natural numbers. We denote as inf(ρω) the set of states that appear infinitely
often in the run ρω. For example, when the automaton M depicted in Figure 3.1 is
interpreted as a BA, the word {start}.{send}. {wait}.{ack}.{ok}.{success}ω is as-
sociated with the run ρω, such that ρω(0) = q1, ρω(1) = q4, ρω(2) = q5, ρω(3) = q6,
ρω(4) = q8 and ∀i > 4, ρω(i) = q3 .

4This technique is also indicated in literature as stuttering [74, 102, 103, 105].
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Definition 3.1.8 (Accepting run [33]). A run ρω of a BAM is accepting if and only if
inf(ρω) ∩ F 6= ∅

Definition 3.1.8 requires that an accepting run contains at least one accepting state
that appears in the run ρω infinitely often. An ω-word v is accepted by a BAM iff there
exists an accepting run associated with v. For example, if we consider the automaton
depicted in Figure 3.1 as BA, the word {start}.{send}.{wait}.{ack}.{ok}.{success}ω

is accepted since the accepting state q3 is entered an infinite number of times.

Definition 3.1.9 (Language of a BA [33]). The language Lω(M) ⊆ Σω of a BA M
consists of all the ω-words accepted byM.

In general, when a BA is used to represent the system, all the states in Q are set as
accepting. The size of a BA corresponds to the size of the corresponding FSA.

3.2 Modeling requirements

After the developer has designed a model of the system, he/she may want to check
whether it possesses certain properties, i.e., it satisfies the requirements of interest. Nat-
ural languages are one of the most frequently used ways to express requirements. The
main problem over the use of natural languages in the context of formal verification, is
ambiguity. Ambiguity concerns the possibility of interpreting the requirements in dif-
ferent ways. Vice versa, to allow formal verification, requirements must be specified in
a modeling formalism which is unambiguous and has a semantic which is compatible
to the one used for describing the model, i.e., it must be possible to precisely identify
the set of models that satisfy and do not satisfy the properties of interest.

3.2.1 Linear Time Temporal Logic

Linear Time Temporal Logic (LTL) [111] provides an intuitive and mathematically
precise notation for expressing properties of the software execution. Linear Time Tem-
poral Logic extends propositional logic with modalities that allow the specification of
“temporal" relations about events. LTL formulae are obtained by combining atomic
propositions with the boolean connectors ∧ (and) and ¬ (not) and the temporal modal-
ities X (next) and U (until).

Definition 3.2.1 (LTL syntax). Given a set AP of atomic propositions (with a ∈ AP ),
a LTL formula φ is formed according to the following grammar:

φ = true | a | φ1 ∧ φ2 | ¬φ | Xφ | φ1Uφ2

where φ1 and φ2 are LTL formulae.

The or (∨), implication (→) and equivalence (↔) boolean connectors can be derived
using the operators and (∧) and not (¬). Furthermore, the temporal operators eventually
(F ) and globally (G), which specify that the property must hold sometimes and always
in the future, respectively, can be expressed in terms of the until operator as (true)U(φ)
and ¬(F (¬φ))5. For example, the LTL formula G(send → F (success)) defined over
the propositions send and success, specifies that always whenever a message is sent

5The interested reader may refer to [9] for additional information.
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(the proposition send is true), the message is finally delivered (the proposition success
is true).

Definition 3.2.2 (LTL semantic over words). Given the alphabet Σ = 2AP and an
ω-word v = v0v1v2 . . . in Σω, the satisfaction relation |= is defined by:

v |= true

v |= a ⇔ a ∈ v0

v |= φ1 ∧ φ2 ⇔ v |= φ1 and v |= φ2

v |= ¬φ ⇔ v 6|= φ

v |= Xφ ⇔ v1 |= φ

v |= φ1Uφ2 ⇔ ∃j ≥ 0 | (vj |= φ2 and ∀i | 0 ≤ i < j, vi |= φ1)

where vi = vivi+1 . . . is the suffix of v starting from the character i.

An ω-word v satisfies the LTL formula φ when v |= φ. The ω-language Lω(φ) de-
fined by φ is the set of all possible words that satisfy φ, i.e., Lω(φ) = {v | v |= φ}. For
example, the language associated with the formula G(send → F (success)) contains
all the words such that every send proposition is followed by a success.

3.2.2 Büchi Automata

Instead of using LTL, the developer can also specify the properties (claims) of interest
using directly Büchi automata [33]. One of the advantages of this choice is that both
the model of the system and its claims are represented in the same formalism [105].
Furthermore, in several cases, it is easier to specify the properties of interest as an
automaton rather than an LTL formula. In these cases, the developer can provide an
automaton Aφ which contains the set of all the allowed behaviors, or the automaton
Aφ which contains the set of violating (undesirable) behaviors. The language Lω(Aφ)
(Lω(Aφ)) of the automaton Aφ (Aφ) contains all the allowed (disallowed) behaviors.
Note that, when claims are considered, the edges of the BA are labeled with boolean
expressions rather than subsets of atomic propositions AP . For example, in a BA
defined over the alphabet Σ = {a, b}, an edge labeled with the boolean expression
a ∨ (¬b) represents the set of transitions labeled with {a}, {a, b} and {∅}.

p2p1

-2- 
send

-3-
¬ success

-4- 
success

-1- 
¬ send

Figure 3.2: The Büchi automaton corresponding to the property G(send→ F (success)).

Note that, each LTL formula can be converted into an equivalent BA which speci-
fies the claim of interest. For example, the property G(send → F (success)) can be
converted into the automaton represented in Figure 3.2. The language of the automa-
ton contains all the words that satisfy the LTL formula, i.e., all the words in which a
sending request is followed by a success.
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3.3 Automata based Model checking

This section recalls the main steps of the classical automata based model checking
procedure [138] which checks the model of the system against the corresponding claim.
The procedure assumes the model of the system and the claim specified through a BA
and an LTL formula, respectively.

Given a BA M and a LTL property φ, the model M satisfies φ if and only if
Lω(M) ⊆ Lω(φ). The condition Lω(M) ⊆ Lω(φ) states that each behavior of the
model of the system must be contained in the set of the behaviors allowed by the
property. As mentioned in Section 3.2.2 each LTL formula φ can be converted into
a BA Aφ which recognizes the same language. Thus, a BAM satisfies an LTL prop-
erty φ if and only if Lω(M) ⊆ Lω(Aφ). Equivalently, M satisfies φ if and only if
Lω(M) ∩ Lω(Aφ) = ∅, where Lω(Aφ) specifies the set of behaviors not allowed by φ,
i.e., the complement of the automaton Aφ. The formula Lω(M) ∩ Lω(Aφ) = ∅ spec-
ifies that there are no behaviors ofM disallowed by φ. This observation allows using
the algorithm to check the emptiness of the language obtained from the intersection
of two Büchi automata for the verification of the property satisfaction. Checking the
emptiness of an automaton is simpler than checking the language containment. Fur-
thermore, when φ is expressed as an LTL formula we can avoid the complementation
of Aφ for obtaining Aφ, since Aφ can be directly obtained by translating ¬φ into the
corresponding automaton. This is more efficient than translating φ and then computing
the complement of the corresponding automaton.

The automata-based model checking procedure is based on the previous observa-
tions and on the fact that BAs are closed under intersection and complement [14]. The
procedure is defined over three steps:

• translating the negation of the formula φ into an equivalent BA Aφ;

• computing the intersection automaton I between the BA Aφ and the modelM;

• check the emptiness of the intersection automaton I.

1) transforming the negation of the LTL formula φ into the corresponding automa-
ton. The negation of a LTL formula φ can be converted into an equivalent BA Aφ,
where the automaton Aφ encodes the set of behaviors forbidden by the property. This
automaton can be designed manually6, or can be constructed starting from the LTL for-
mula ¬φ, where φ is the property to be verified. In the latter case, the procedure can
be executed with a time complexity O(2(|¬φ|)), where |¬φ| is the size of the formula
¬φ [52]. There are different algorithms to convert LTL formulae into the correspond-
ing BAs (e.g., [53]), which are not described here since they are out from the scope of
this thesis. Figure 3.3 describes the BA corresponding to the negation of the property

p1 p2
-2- 

(send)⋀(¬success)
-3-

¬success-1- !

Figure 3.3: The BA Aφ corresponding to the LTL property ¬G(send→ F (success)).

6This assumption was also made by the earliest versions of the SPIN model checking tool [65].

34



3.3. Automata based Model checking

G(send → F (success)). The automaton recognizes all the words that contain a send
followed by an infinite number of characters which do not correspond to the symbol
success7.
2) computing the intersection automaton. Given the modelM, whose language L(M)
contains all the possible behaviors exhibited by the system, and the automaton Aφ,
whose language L(Aφ) contains all the words that violate φ, the automaton I contains
the set of behaviors of the model forbidden by the property, i.e., L(I) = L(M) ∩
L(Aφ).

Definition 3.3.1 (Intersection automaton). Let M = 〈Σ, QM,∆M, Q0
M, FM〉 and

Aφ = 〈Σ, QAφ ,∆Aφ , Q
0
Aφ
, FAφ〉 be two BAs defined over the same alphabet Σ, the

intersection automaton I = M ∩ Aφ is the automaton 〈ΣI , QI ,∆I , Q0
I , FI〉, such

that:

• ΣI = Σ is the alphabet of the intersection automaton;

• QI = QM×QAφ ×{0, 1, 2} is the set of the states of the intersection automaton;

• ∆I is the transition relation such that (〈qi, pj, x〉, a, 〈qm, pn, y〉) ∈ ∆I if and only
if (qi, a, qm) ∈ ∆M and (pj, a, pn) ∈ ∆Aφ . Moreover, each transition in ∆I must
satisfy the following conditions:

– if x = 0 and qm ∈ FM, then y = 1.

– if x = 1 and pn ∈ FAφ , then y = 2.

– if x = 2 then y = 0.

– otherwise, y = x;

• Q0
I = Q0

M ×Q0
Aφ
× {0} is the set of initial states;

• FI = FM × FAφ × {2} is the set of accepting states.

The alphabet of the intersection automaton corresponds to the alphabet of M and
Aφ. Each state of the intersection automaton is obtained by combining a state of M
and Aφ. The labels 0, 1 and 2 indicate that no accepting state is entered, at least one
accepting state ofM is entered and at least one accepting state ofM and one of Aφ
are entered, respectively. A transition (〈qi, pj, x〉, a, 〈qm, pn, y〉) is in the set ∆I , if the
components agree on the transitions to be performed. Note that, the transition relation
guarantees that a run of the intersection automaton is accepting if an only if an accepting
state ofM and an accepting state ofAφ are entered infinitely often. For this reason the
label of the states of the intersection automaton is initially 0. It changes from 0 to 1
and from 1 to 2 whenever an accepting state of the model and of the automaton that
corresponds to the negation of the claim is entered, respectively. After an accepting
state of I is visited it is set back to 0. When all the states of the model are considered
as accepting, the set of accepting states of the intersection automaton simply contains
all the states obtained by combining a state of the model with an accepting state of Aφ.

7The Σ character is used to identify all the characters of the alphabet.
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Figure 3.4: A portion of the intersection automaton obtained from the BAs specified in Figure 3.1 and
3.3, respectively.

The intersection procedure builds an intersection automaton that contains (in the
worst case) 3 · |QM| · |QAφ | states [25, 26], where |QM| and |QAφ | are the number of
states ofM and Aφ, respectively8;

Figure 3.4 presents a portion of the state space of the intersection automaton ob-
tained from the BAs specified in Figures 3.1 and 3.3, respectively. As previously men-
tioned, the transitions of the intersection automaton are obtained by the synchronous
execution of the transitions of the model and the claim. For example, the transition 1
of the intersection automaton is generated by firing the transitions 1 of the model and
the claim, respectively, while the transition 9 is generated by the synchronization of the
transitions 2 and 1 of the two automata.
3) check the emptiness of the intersection automaton I. by checking the emptiness of I
it is possible to verify whether the property is satisfied or not in the model. If I is empty,
the property is satisfied, otherwise every infinite word in the intersection automaton is a
counterexample. The emptiness problem is usually solved through a double depth first
search (DFS) algorithm [36, 128], with a linear time complexity O(|QI | + |∆I |) [43].
|QI | and |∆I | are the number of states and transitions of the intersection automaton I.
The double depth first search is based on a simple observation: if there is an (infinite)
accepting run ρω in a BA I, then, there is a suffix ρω′ of ρω that appears infinitely many
times in ρω . This suffix is associated with a strongly connected component (SCC)
of the graph representing the automaton I, which contains at least an accepting state.
The first DFS identifies the accepting states of I (s ∈ FI) that are reachable from the
initial states; the second DFS explores the graph searching for loops that involve these
accepting states. If the second DFS detects a loop, a counterexample is returned, since
an accepting run has been detected.

For example, the intersection automaton described in Figure 3.4 is not empty. In-
deed, there are several words, such as {start}.{send}.{wait}.{timeout}.{fail}.{se-
nd}.{wait}.{timeout}.{fail}.{abort}ω, included in Lω(M) and Lω(Aφ).

If the property φ is expressed as an LTL formula, the time complexity of the model
checking procedure is exponential in the length of the formula and linear in the size of
the model9, while space complexity is polynomial in the size of the specification and

8Other approaches presented in literature can create more succinct automata where, in the worst case, the number of the states
is 2 · |QM| · |QAφ | (see for example [100]).

9Time complexity is considered to be acceptable since the properties expressed in LTL are usually concise [138].
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poly-logarithmic (O(log2n)) in the size of the model [138] [82]. This is one of the main
advantages of the automata-based model checking framework: it separates the hardest
part of the problem, creating the automatonAφ from the LTL formula φ, from the easier
part, building the intersection automaton and solving the emptiness problem [138].
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CHAPTER4
Modeling Incomplete and Evolving Systems

“If I were again beginning my studies, I would follow the advice of Plato and start with mathematics.”

Galileo Galilei, 1564-1642

Software development is an iterative process which includes a set of development
steps that transform the initial high level specification of the system into its final, fully
specified, implementation [142]. The modeling formalism used in this refinement pro-
cess depends on the properties of the system that are of interest. This chapter proposes
two modeling formalisms that support incompleteness when the functional behavior of
a sequential system is considered. Note that in a sequential system the computation
starts from one of its initial states. Then, the state of the system changes by firing
transitions which make the system moving from one state to another.

Section 4.1 describes Incomplete Finite State Automata (IFSAs) and Incomplete
Büchi Automata (IBAs), two modeling formalisms introduced in this work to support
incomplete specifications. Section 4.2 describes how these two modeling formalisms
can be used in the refinement process, i.e., how the initial, incomplete, high level design
of the system can be iteratively refined. Finally, Section 4.3 specifies how the LTL
formula which describes the property over the functional behavior of the system can be
interpreted over IBAs.

4.1 Modeling incomplete systems

This section proposes Incomplete FSAs (IFSAs) and Incomplete BAs (IBAs) two mod-
eling formalisms which extend Finite State Automata (FSAs) and Büchi Automata
(BAs) to support incompleteness.
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4.1.1 Incomplete Finite State Automata

Incomplete FSAs (IFSAs) are a state based modeling formalism that extends FSAs by
partitioning the set of the states Q in two sets: the set of regular states R and the set
of black box states states B1. Regular states correspond to classical automata states,
while black box states are placeholders for configurations in which the behavior of the
system is currently unspecified and will be later refined by other automata, i.e., other
IFSAs. In the rest of the thesis black box states are often abbreviated as black boxes or
boxes.

Definition 4.1.1 (Incomplete Finite State Automaton). Given a finite set of atomic
propositions AP , a non-deterministic Incomplete Finite State Automaton (IFSA) M
is a tuple 〈Σ, R,B,Q,∆, Q0, F 〉, where: a) Σ = 2AP is the finite alphabet; b) R is
the finite set of regular states; c) B is the finite set of box states; d) Q is the finite set
of states such that Q = B ∪ R and B ∩ R = ∅; e) ∆ ⊆ Q × Σ × Q is the transition
relation; f) Q0 ⊆ Q is the set of initial states; g) F ⊆ Q is the set of final states.

Graphically, boxes are filled with black, initial states are marked by an incoming
arrow, and final states are double circled. Note that the transition relation allows the
definition of transitions that connect states of Q irrespective of their type. An example
of IFSA defined over the set of propositions AP = {start, fail, ok, success, abort}
is shown in Figure 4.1. This automaton is a well known example of incompleteness in
the context of software development and has been presented in [8]. Q = {q1, send1,
send2, q2, q3}, Q0 = {q1}, F = {q2, q3} and B = {send1, send2} are the set of the
states, of the initial states, of the final states and of the boxes, respectively.

q1 send1

q3

-1-
{start} send2

q2

-2-
{fail}

-6-
{success}

-3-
{ok}

-4-
{ok}

-7-
{abort}

-5-
{fail}

Figure 4.1: An example of IFSA.

Given a word v ∈ Σ∗ of length |v| a run defines the sequences of states traversed by
the automaton to recognize v.

Definition 4.1.2 (IFSA run). Given a set of atomic propositions AP , an IFSA M =
〈Σ, R,B,Q,∆, Q0, F 〉, such that Σ = 2AP , a set of atomic propositions AP ′, such that
AP ⊆ AP ′ and Σ′ = 2AP

′
, and a word v = v0v1v2 . . . v|v−1| of length |v| in Σ′

∗
, a run

over the word v is a mapping ρ∗ : {0, 1, 2 . . . |v|} → Q such that: a) ρ∗(0) ∈ Q0;
b) for all 0 ≤ i < |v|, (ρ∗(i), vi, ρ∗(i+ 1)) ∈ ∆ or ρ∗(i) ∈ B and ρ∗(i) = ρ∗(i+ 1).

A run ρ∗ corresponds to a path in the IFSA M, such that the first state ρ∗(0) of
the path is an initial state of M, i.e., it is in the set Q0, and either the system moves

1Black box states have been also identified in other works as transparent states, such as in [120].
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4.1. Modeling incomplete systems

form a state ρ∗(i) to the next state ρ∗(i + 1) by reading the character vi, or the state
ρ∗(i) is a box (ρ∗(i) ∈ B) and the character vi is recognized “inside" the box ρ∗(i) =
ρ∗(i + 1). For example, the finite word {start}.{send}.{fail} can be associated with
the run ρ∗(0) = q1, ρ∗(1) = send1, ρ∗(2) = send1 and ρ∗(3) = send2 or with the run
ρ∗(0) = q1, ρ∗(1) = send1, ρ∗(2) = send1 and ρ∗(3) = send1 .

Definition 4.1.3 (IFSA definitely accepting and possibly accepting run). A run ρ∗ is
definitely accepting if and only if ρ∗(|v|) ∈ F and for all 0 ≤ i ≤ |v|, ρ∗(i) ∈ R. A
run ρ∗ is possibly accepting if and only if ρ∗(|v|) ∈ F and there exists 0 ≤ i ≤ |v| such
that ρ∗(i) ∈ B. A run ρ∗ is not accepting otherwise.

Informally, a run ρ∗ is definitely accepting if and only if ends in a final state ofM
and all the states of the run are regular, it is possibly accepting if and only if it ends in
a final state of M and there exists at least a state of the run which is a box, it is not
accepting otherwise.

Definition 4.1.4 (IFSA definitely accepted and possibly accepted word). An IFSAM
definitely accepts a word v if and only if there exists a definitely accepting run ofM on
v. M possibly accepts a word v if and only if it does not definitely accept v and there
exists at least a possibly accepting run ofM on v. Finally,M does not accept v iff it
does not contain any definitely accepting or possibly accepting run for v.

Note that possibly accepted words describe possible behaviors. For example, the
word {start}.{send}.{ok} is possibly accepted by the automaton presented in Fig-
ure 4.1 since no definitely accepting run exists, while it exists a possibly accepting run
described by the function ρ∗, such that ρ∗(0) = q1, ρ∗(1) = send1, ρ∗(2) = send1 and
ρ∗(3) = q3

Definition 4.1.5 (IFSA definitely accepted and possibly accepted language). Given a
finite set of atomic propositions AP ′, such that AP ⊆ AP ′, and the alphabet Σ′ =
2AP

′
, the language L∗(M) ⊆ Σ′

∗
definitely accepted by an IFSAM contains all the

words v1, v2 . . . vn ∈ Σ′
∗

definitely accepted by M. The possibly accepted language
L∗p(M) ⊆ Σ∗ ofM contains all the words v1, v2 . . . vn ∈ Σ′

∗
possibly accepted byM.

Given an IFSAM it is possible to define its completionMc as the FSA obtained
by removing its boxes and their incoming and outgoing transitions.

Definition 4.1.6 (Completion of an IFSA). Given an IFSAM = 〈Σ, R,B, Q,∆, Q0, F 〉
the completion of M is the FSA Mc = 〈Σ, R,∆c, Q

0 ∩ R,F ∩ R〉, such as ∆c =
{(s, a, s′) | (s, a, s′) ∈ ∆ and s ∈ R and s′ ∈ R}.

It is possible to prove that the completion of an IFSA recognizes its definitely ac-
cepted language.

Lemma 4.1.1 (Language of the completion of an IFSA). Given an IFSAM = 〈Σ, R,
B,Q,∆, Q0, F 〉 the completionMc ofM recognizes the definitely accepted language
L∗(M).

Proof. To proof Lemma 4.1.1 it is necessary to demonstrate that a word is recognized
by the completion if and only if it belongs to the definitely accepted language ofM,
i.e., v ∈ L∗(M)⇔ v ∈ L∗(Mc).
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Chapter 4. Modeling Incomplete and Evolving Systems

(⇒) Each word v accepted by M is associated with an accepting run ρ∗ which
contains only regular states. Since Mc contains all the regular states of M and the
same transitions between these states, it is possible to simulate the run ρ∗ ofM on the
automatonMc. This implies that v is definitely accepted byMc.

(⇐) is proved by contradiction. Imagine that there exists a word v in L∗(Mc)
which is not in L∗(M). This implies that there exists a run ρ∗ inMc which does not
correspond to a run ρ∗′ in M. Given one of the states ρ∗(i) it can be associated to
the corresponding state of M. Given two states ρ∗(i) and ρ∗(i + 1) of the run and
the transition (ρ∗(i), a, ρ∗(i + 1)) ∈ ∆c, it is possible to “simulate" the transition by
performing the corresponding transition of M since ∆c ⊆ ∆. This implies that v is
also accepted by M, and therefore it is in the language L∗(M), which violates the
hypothesis.

The size |M| of an IFSAM is the sum of the cardinality of the set of its states and
the set of its transitions.

Definition 4.1.7 (Size of an IFSA). The size |M| of an IFSAM is |Q|+ |∆|.

4.1.2 Incomplete Büchi Automata

As specified in Section 3.1.2 software systems are usually not designed to stop dur-
ing their execution, thus infinite models of computation are usually considered. This
section introduces Incomplete BAs (IBAs) an extended version of BAs that support
incompleteness.

Definition 4.1.8 (Incomplete BA). A non-deterministic incomplete Büchi automaton
(IBA) is an IFSA 〈Σ, R,B,Q,∆, Q0, F 〉, where the set of final states F of the IFSA is
used to define the acceptance condition for infinite words (also called ω-words). As in
the case of BAs, F identifies the set of accepting states.

Given an ω-word v = v0v1v2 . . . a run defines an execution of the IBA (sequence of
states).

Definition 4.1.9 (IBA run). Given a set of atomic propositions AP , an IFSA M =
〈Σ, R,B,Q,∆, Q0, F 〉, such that Σ = 2AP , a set of atomic propositions AP ′, such
that AP ⊆ AP ′ and Σ′ = 2AP

′
, and a word v ∈ Σ′

ω
, a run ρω : {0, 1, 2, . . .} → Q

over v is defined for an IBA as follows: a) ρω(0) ∈ Q0; b) for all i ≥ 0, (ρω(i), vi,
ρω(i+ 1)) ∈ ∆ or ρω(i) ∈ B and ρω(i) = ρω(i+ 1).

Informally, a character vi of the word v can be recognized by a transition of the IBA,
changing the state of the automaton from ρω(i) to ρω(i + 1), or it can be recognized
by a transition of the IBA that will replace the box ρω(i) ∈ B. In the latter, the state
ρω(i + 1) of the automaton after the recognition of vi, corresponds to ρω(i), since the
automaton remains inside the automaton which corresponds with the box ρω(i). For
example, the infinite word {start}.{send}.{ok}.{success}ω can be associated with
the run ρω(0) = q1, ρω(1) = send1 and ρω(2) = send1 or and ∀i ≥ 3, ρω(i) = q3 of
the automaton described in Figure 4.1 when it is interpreted as an IBA.

Let inf(ρω) be the set of states that appear infinitely often in the run ρω.

Definition 4.1.10 (IBA definitely accepted and possibly accepted run). A run ρω of
an IBA M is: a) definitely accepting if and only if inf(ρω) ∩ F 6= ∅ and for all
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4.1. Modeling incomplete systems

i ≥ 0, ρω(i) ∈ R; b) possibly accepting if and only if (inf(ρω) ∩ F 6= ∅) and exists
∃i ≥ 0 | ρω(i) ∈ B; c) not accepting otherwise.

Informally, a run is definitely accepting if some accepting states appear in ρω in-
finitely often and all states of the run are regular states, it is possibly accepting if some
accepting states appear in ρω infinitely often and there is at least one state in the run
that is a box, not accepting otherwise.

Definition 4.1.11 (IBA definitely accepted and possibly accepted word). An automaton
M definitely accepts a word v if and only if there exists an accepting run ofM on v.
M possibly accepts a word v if and only if it does not definitely accept v and there
exists at least a possibly accepting run ofM on v. Finally,M does not accept v iff it
does not contain any accepting or possibly accepting run for v.

As for IFSA, possibly accepted words describe possible behaviors. For example, the
automaton described in Figure 4.1 (when it is interpreted as an IBA) possibly accepts
the infinite word {start}.{send}.{ok}.{success}ω since a definitely accepting run does
not exist but there exists a run which is possibly accepting.

Definition 4.1.12 (IBA definitely accepted and possibly accepted language). Given a
finite set of atomic propositions AP ′, such that AP ⊆ AP ′, and the alphabet Σ′ =
2AP

′
, the language Lω(M) ∈ Σ′

ω
definitely accepted by an IBA M contains all the

words definitely accepted byM. The possibly accepted language Lωp (M) ∈ Σ′
ω

ofM
contains all the words possibly accepted byM.

The language Lω(M) can be defined by considering the BAMc obtained fromM
by removing its boxes and their incoming and outgoing transitions.

Definition 4.1.13 (Completion of an IBA). Given an IBAM = 〈Σ, R,B,Q,∆, Q0, F 〉
the completion of M is the BA Mc = 〈Σ, R,∆c, Q

0 ∩ R,F ∩ R〉, such as ∆c =
{(s, a, s′) | (s, a, s′) ∈ ∆ and s ∈ R and s′ ∈ R}.

As for IFSA, it is possible to prove that the completion of an IBA recognizes its
definitely accepted language.

Lemma 4.1.2 (Language of the completion of an IBA). Given an IBAM = 〈Σ, R,B,
Q,∆, Q0, F 〉 the completion Mc of M recognizes the definitely accepted language
Lω(M).

Proof. The prove of Lemma 4.1.2 is similar to the proof of Lemma 4.1.1 and requires
to demonstrate that v ∈ Lω(M)⇔ v ∈ Lω(Mc).

(⇒) Each word v definitely accepted byM is associated to a definitely accepting
run ρω which only contains regular states. SinceMc contains all the regular states of
M and the same transitions between these states, it is possible to simulate the run ρω

ofM on the automatonMc which implies that v is accepted.
(⇐) is proved by contradiction. Imagine that there exists a word v in Lω(Mc)

which is not in Lω(M). This implies that there exists a run ρω inMc which does not
correspond to a run ρω′ inM. Consider the run ρω, each state ρω(i) can be associated
to the corresponding state ofM. Given two states ρω(i) and ρω(i + 1) of the run and
the transition (ρω(i), a, ρω(i + 1)) ∈ ∆c it is possible to “simulate" the transition by
performing the corresponding transition of M since ∆c ⊆ ∆. This implies that v is
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Chapter 4. Modeling Incomplete and Evolving Systems

also accepted by M, and therefore it is in the language Lω(M), which violates the
hypothesis.

The size |M| of an IBAM is the sum of the cardinality of the set of its states and
the set of its transitions.

Definition 4.1.14 (Size of an IBA). The size |M| of an IBAM is |Q|+ |∆|.

4.2 Refining incomplete models

The development activity is an iterative and incremental process through which the
initial, high level, design M is iteratively refined. After having provided the initial
high level model M, the development activity proceeds through a set of refinement
rounds RR. At reach refinement round i ∈ RR a box b of M is refined. We use
the term refinement to capture the notion of model elaboration, i.e., the model N is a
refinementM if it is obtained fromM by adding knowledge about the behavior of the
system inside one of its boxes. We call replacement the sub-automaton which specifies
the behavior of the system inside a specific box.

4.2.1 Refining Incomplete Büchi Automata

The refinement relation � allows the iterative concretization of the model of the sys-
tem by replacing boxes with other IBAs. These IBAs are called replacements. The
definition of the refinement relation � has been inspired from [123].

Definition 4.2.1 (Refinement). Let ℘M the set of all possible IBAs. An (I)BA N is a
refinement of an IBAM, i.e.,M� N , iff ΣM ⊆ ΣN and there exists some refinement
relation < ∈ QM ×QN , such that:

1. for all qM ∈ RM there exists exactly one qN ∈ RN such that (q0
M, q

0
N ) ∈ <;

2. for all qN ∈ QN there exists exactly one qM ∈ QM such that (qM, qN ) ∈ <;

3. for all (qM, qN ) ∈ <, if qN ∈ Q0
N then qM ∈ Q0

M;

4. for all (qM, qN ) ∈ <, if qN ∈ BN then qM ∈ BM;

5. for all (qM, qN ) ∈ <, if qN ∈ FN then qM ∈ FM;

6. for all (qM, qN ) ∈ <, if qM ∈ Q0
M ∩RM then qN ∈ Q0

N ∩RN ;

7. for all (qM, qN ) ∈ <, if qM ∈ FM ∩RM then qN ∈ FN ;

8. for all (qM, qN ) ∈ < and ∀a ∈ ΣN , if (qM, a, q
′
M) ∈ ∆M then there exists

q′N ∈ QN such that one of the following is satisfied:

• (qN , a, q
′
N ) ∈ ∆N and (q′M, q

′
N ) ∈ <;

• qM ∈ BM and there exists q′′N ∈ QN such that (qM, q
′′
N ) ∈ < and (q′′N , a, q

′
N )

∈ ∆N ;

9. for all (qM, qN ) ∈ < and ∀a ∈ ΣN , if (qN , a, q
′
N ) ∈ ∆N one of the following

holds:
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4.2. Refining incomplete models

• there exists q′M ∈ QM such that (q′M, q
′
N ) ∈ < and (qM, a, q

′
M) ∈ ∆M;

• qM ∈ BM and (qM, q
′
N ) ∈ <.

The idea behind the refinement relation is that every behavior of M must be pre-
served in its refinement N , and every behavior of N must correspond to a behavior of
M.

Condition 1 imposes that each regular state of M is associated with exactly one
regular state of the refinement N . When qM is a box several states (or none) of N can
be associated with qM. Condition 2 imposes that each state (regular or black box) of
the refinement N is associated with exactly one state of the model M. Condition 3
specifies that any initial state of the refinement N is associated with an initial state of
the modelM. Condition 4 guarantees that any box in the refinement N is associated
with a box of the modelM, i.e., it is not possible to refine a regular state into a box.
Condition 5 specifies that each accepting state ofN corresponds with an accepting state
ofM. Condition 6 forces each initial and regular state of the modelM to be associated
with an initial and regular stateN . Condition 7 specifies that each accepting and regular
state ofM is associated with an accepting and regular state ofN . Finally, conditions 8
and 9 constrain the transition relation. Given a state qM in M and a corresponding
state qN of the refined automaton N , conditions 8 specifies that for each transition
(qM, a, q

′
M) either there exists a state q′N that follows qN through a transition labeled

with a, or the state qM is a box and another transition (q′′N , a, q
′
N ) that exits the state

q′′N of the replacement of the box qM is associated with the transition (qM, a, q
′
M)2.

Condition 9 guarantees that each transition (qN , a, q
′
N ) in the refinement N must be

associated with a transition (qM, a, q
′
M) ofM or it is a transition of the replacement of

the box qM, i.e., qM ∈ BM.
Consider for example the automatonM presented in Figure 4.1 and the automaton

N of Figure 3.1,M� N , through the relation < = {(q1, q1), (send1, q4), (send1, q5),
(send1, q6), (send1, q7), (send1, q8), (send2, q9), (send2, q10), (send2, q11), (send2,
q12), (send2, q13), (q2, q2), (q3, q3)}.

Definition 4.2.2 (Implementation). A BA N is an implementation of an IBAM if and
only ifM� N .

The automaton N presented in Figure 3.1 is also an implementation of the automa-
tonM described in Figure 4.1.

It is important to notice that the refinement relation preserves the language contain-
ment relation, i.e., a possibly accepted word ofM can be definitely accepted, possibly
accepted or not accepted in the refinement, but every definitely accepted and not ac-
cepted word remains accepted or not accepted in N .

Theorem 4.2.1 (Language preservation). Given a modelM and one of its refinements
N , for all vω ∈ Σω:

1. if vω ∈ Lω(M) then vω ∈ Lω(N )

2. if vω 6∈ (Lωp (M) ∪ Lω(M)) then vω 6∈ (Lωp (N ) ∪ Lω(N ))

2Note that the state q′′N must not be necessarily reachable in the replacement of the state qN .
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Proof. Let us first prove the statement 1 of Theorem 1. Since vω is accepted by the IBA
Lω(M), it must exists an accepting run ρωM ofM. Note that accepting runs only con-
tains states that are regular. Let us consider the initial state ρωM(0). By Definition 4.2.1
conditions 1 and 6 it must exists a state q0

N ∈ Q0
N such that (q0

M, q
0
N ) ∈ <. Let us

identify with ρωN a run which starts in this state and is iteratively obtained as follows.
Consider a generic step step i. Given two states ρωM(i), ρωM(i + 1) of the run ρωM it
must exist a transition (ρωM(i), a, ρωM(i + 1)) ∈ ∆M. By Definition 4.2.1 condition 8
it must exists a transition (qωN (i), a, qωN (i + 1)) of ∆N , where (ρωM(i), ρωN (i)) ∈ < and
(ρωM(i+1), ρωN (i+1)) ∈ <. Condition 7 imposes that a regular accepting state of qM is
associated with an accepting state of qN . Thus, since ρωM and ρωN move from ρωM(i) and
ρωN (i) to ρωM(i+ 1) and ρωN (i+ 1) by reading the same characters and for construction
the corresponding runs are accepting we conclude that vω ∈ Lω(N ).

Let us now consider the statement 2 of Theorem 1. The proof is by contradiction.
Imagine that there exists a word vω 6∈ (Lωp (M)∪Lω(M)) and vω ∈ (Lωp (N )∪Lω(N )).
Since vω ∈ (Lωp (N ) ∪ Lω(N )), it must exists an accepting or possibly accepting run
ρωN associated with this word. Let us consider the initial state ρωN (0) of this run. By
Definition 4.2.1, condition 2, it must exists a state qM ∈ QM such that (qM, ρ

ω
N (0)) ∈

<. Since ρN (0) is initial by Definition 4.2.1, condition 3, we derive that qM is also
initial. Let us identify as ρωM a run in M which starts from qM. Given two states
ρωN (i), ρωN (i + 1) of the run ρωN it must exists a transition (ρωN (i), a, ρωN (i + 1)) ∈ ∆N .
By Definition 4.2.1, condition 9, either it exists a transition (ρωM(i), a, ρωM(i + 1)) of
∆M or ρωM(i) ∈ BM. Finally, condition 5 imposes that an accepting state of qN is
associated with an accepting state of qM. Thus, since ρωM and ρωN moves from ρωM(i)
and ρωN (i) to ρωM(i+ 1) and ρωN (i+ 1), respectively, by reading the same characters, or
ρωM(i) = ρωM(i+ 1) and ρωM(i) ∈ BM, and for construction the corresponding runs are
accepting, we conclude that vω ∈ Lω(M) or vω ∈ Lωp (M).

4.2.2 Replacements

Consider an IBA M. At each refinement round i ∈ RR, the developer designs a
replacement Ri

3 for one of the boxes b ∈ BMi
ofMi, whereMi is the refinement of

the automatonM before the refinement round i.

Definition 4.2.3 (Replacement). Given an IBAM = 〈ΣM, RM, BM, QM, ∆M, Q
0
M,

FM〉, the replacementRb of the box b ∈ BM is defined as a triple 〈Mb,∆
inRb ,∆outRb〉.

Mb = 〈ΣMb
, RMb

, BMb
, QMb

,∆Mb
, Q0

Mb
, FMb

〉 is an (I)BA, ∆inRb ⊆ {(q′, a, q)
| (q′, a, b) ∈ ∆M and q ∈ QMb

} and ∆outRb ⊆ {(q, a, q′) | (b, a, q′) ∈ ∆M and q ∈
QMb
} are its incoming and outgoing transitions, respectively. Rb must satisfy the

following conditions:

• if b 6∈ Q0
M then Q0

Mb
= ∅;

• if b 6∈ FM then FMb
= ∅;

• if (q′, a, b) ∈ ∆M then it exists (q′, a, q) ∈ ∆inRb , such that q ∈ QMb
;

• if (b, a, q′) ∈ ∆M then it exists (q, a, q′) ∈ ∆outRb , such that q ∈ QMb
;

• if (b, a, b) ∈ ∆M then it exists (q′, a, q) ∈ ∆Mb
.

3The term replacement is also used for example in [95].
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Informally,Mb is the (I)BA to be substituted to the box b, ∆inRb and ∆outRb spec-
ify how the replacement is connected to the states of M. Consider for example the
replacementRsend1 described in Figure 4.2 which refers to the box send1 of the model
M described in Figure 4.1 (the replacement assumes that send1 is bot initial and
accepting). The automaton Msend1 is defined over the set of atomic propositions
APsend1 = {start, booting, ready, send, wait, timeout, ack, fail, ok}. The state q14,
q15 and q17 is the initial, accepting and a box of the replacement, respectively. Note
that the initial/accepting states must be initial/accepting for the whole system, i.e., not
only in the scope of the considered replacement. Furthermore, the destination/source
of an incoming/outgoing transition is not considered as initial/accepting if they are not
initial/accepting forMsend1 .

q15 q16-5-
{send}

q17-6-
{wait}

q18
-7-

{timeout}

q19
-8-
{ack} -9-

{ok}

send1

-10-
{fail}

-1-
{start}

q1

q3

send2

q14 -2-
{booting}-3-

{ready}

-4-
{wait}

Figure 4.2: The replacement of the box send1.

When a replacement is considered four different types of runs can be identified:

• finite internal runs: are the runs which start from an initial state that is internal to
the replacement and reach an outgoing transition of the replacement;

• infinite internal runs: are the runs that start from an initial state that is internal to
the replacement and infinitely enter an internal accepting state without leaving the
replacement;

• finite external runs: are the runs that start from an incoming transition of the
replacement and reach an outgoing transition of the replacement, i.e., they are
finite paths that cross the component;

• infinite external runs: are the runs that start from an incoming transition of the
replacement and reach an accepting state which is internal to the replacement it-
self without leaving the replacement.

We identify as Q0inb = {q ∈ QM such that there exist q′ ∈ QMb
and an a ∈ ΣM and

(q, a, q′) ∈ ∆inRb} and Q0outb = {q ∈ QMb
such that there exist q′ ∈ QMb

and an
a ∈ ΣM and (q′, a, q) ∈ ∆inRb} the set of the states that are sources and destinations of
incoming transitions, respectively. We indicate with F inb = {q ∈ QMb

such that there
exist q′ ∈ QM and an a ∈ ΣM and (q, a, q′) ∈ ∆outRb} and with F outb = {q ∈ QM
such that there exist q′ ∈ QMb

and an a ∈ ΣM and (q′, a, q) ∈ ∆outRb} the set of the
states that are sources and destinations of outgoing transitions.

Infinite internal runs, finite internal runs, infinite external runs and finite external
runs can then formally defined as in the following.
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Definition 4.2.4 (Finite Internal Run). Given a replacementRb = 〈Mb,∆
inRb ,∆outRb〉

defined over the automatonMb = 〈ΣMb
, RMb

, BMb
, QMb

, ∆Mb
, Q0
Mb
, FMb

〉 a finite
internal run ρf∗b over a word v ∈ Σ∗ is a finite run of the finite state automatonM′

b =
〈ΣMb

, RMb
, BMb

, QMb
∪ F outb ,∆Mb

∪∆outRb , Q0
s, F

outb〉.

A finite internal run is associated to the IFSA corresponding to the replacement
where the initial states include only the internal initial states of the replacement and
the final states are the destinations of its outgoing transitions. For example, the run
ρf∗send1

({ready}.{send}.{wait}.{timeout}. {fail}) where ρf∗send1
(0) = q14, ρf∗send1

(1) =

q15, ρf∗send1
(2) = q16, ρf∗send1

(3) = q17, ρf∗send1
(4) = q18, ρf∗send1

(5) = send2, is a finite
internal run of the replacement presented in Figure 4.2.

Definition 4.2.5 (Infinite Internal Run). Given a replacement Rb = 〈Mb, ∆inRb ,
∆outRb〉 defined over the automaton Mb = 〈ΣMb

, RMb
, BMb

, QMb
, ∆Mb

, Q0
Mb
, Fb〉

a infinite internal run ρiωb over a word v ∈ Σω is an infinite run of the (Incomplete)
Büchi automatonM′

b = 〈ΣMb
, RMb

, BMb
, QMb

, ∆Mb
, Q0
Mb
, FMb

〉.

An infinite internal run refers to the IBA obtained from the automatonMb where the
initial and accepting states include only the initial and accepting states of the automaton
associated with the replacement. For example, the infinite internal run ρiωsend1

({ready}.
{wait}ω) is a function such that ρiωsend1

(0) = q14, and ∀i > 1, ρiωsend1
(i) = q15.

Definition 4.2.6 (Finite External Run). Given a replacementRb = 〈Mb,∆
inRb ,∆outRb〉

defined over the automaton Mb = 〈ΣMb
, RMb

, BMb
, QMb

, ∆Mb
, Q0
Mb
, FMb

〉 a fi-
nite external run ρe∗b over a word v ∈ Σ∗ is a finite run of the finite state automaton
M′

b = 〈ΣMb
, RMb

, BMb
, QMb

∪Q0inb ∪ F outb ,∆Mb
∪∆inRb ∪∆outRb , Q0inb , F outb〉.

A finite external run refers to the IFSA obtained from the automaton Mb where
the initial and accepting states include only the sources and the destinations of the
incoming and outgoing transitions, respectively. For example, the finite external run
ρe∗send1

({start}.{send}.{wait}.{timeout}. {fail}) is a function such that ρe∗send1
(0) =

q1, ρe∗send1
(1) = q15, ρe∗send1

(2) = q16, ρe∗send1
(3) = q17, ρe∗send1

(4) = q18 and ρe∗send1
(5) =

send2.

Definition 4.2.7 (Infinite External Run). Given a replacement Rb = 〈Mb, ∆inRb ,
∆outRb〉 defined over the automatonMb = 〈ΣMb

, RMb
, BMb

, QMb
, ∆Mb

, Q0
Mb
, FMb

〉
a infinite external run ρeωb over a word v ∈ Σω is an infinite run of the (Incomplete)
Büchi automatonM′

b = 〈ΣMb
, RMb

, BMb
, QMb

∪Q0inb ,∆Mb
∪∆inRb , Q0inb , FMb

〉.

An infinite external run refers to the IBA obtained from the automatonMb where
the initial states include the source states of the incoming transitions and the accepting
states contains only the accepting states ofMb. For example, the infinite external run
ρeωsend1

({start}.{wait}ω) is a function such that ρeωsend1
(0) = q1 and ∀i ≥ 1, ρeωsend1

(i) =
q15.

Given the four types of runs previously described, which are defined over IFSA
and IBA, it is possible to distinguish between the three types of finite/infinite runs
described in Sections 4.1.1 and 4.1.2: definitely accepting, possibly accepting and not
accepting. For example, the replacement presented in Figure 4.2 contains two types of
definitely accepting infinite runs. The infinite internal runs involve the states q14 and
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q15, i.e., they recognize all the words in the form {booting}∗.{ready}.{wait}ω. The
infinite external runs involve the states q1 and q15 and recognize all the words in the
form {start}.{wait}ω. Furthermore, the replacement contains two types of possibly
accepting finite runs. The finite internal possibly accepting runs includes all the runs
which involve the states q14, q15, q16, q17 and q18 or q19, respectively. The finite external
possibly accepting runs includes all the runs which involve the states q1, q15, q16, q17

and q18 or q19, respectively.
Let us now discuss the language recognized by a replacement. The replacementRb

internally definitely accepts the finite word v ∈ Σ∗ if and only if there exists an internal
finite definitely accepting run of Rb on v. The language of the finite words internally
definitely accepted by the replacementRb is indicated as Li∗(Rb). The replacementRb

externally definitely accepts the finite word v ∈ Σ∗ if and only if there exists an external
finite definitely accepting run of Rb on v. The language of the finite words externally
definitely accepted by the replacement Rb is indicated as Le∗(Rb). The replacement
Rb internally definitely accepts the infinite word v ∈ Σω if and only if there exists
an internal infinite definitely accepting run of Rb on v. The language of the infinite
words internally definitely accepted by the replacement Rb is indicated as Liω(Rb).
The replacement Rb externally definitely accepts the infinite word v ∈ Σω if and only
if there exists an external infinite definitely accepting run of Rb on v. The language of
the infinite words externally definitely accepted by the replacement Rb is indicated as
Leω(Rb).

Let us now consider possibly accepting words. The replacement Rb internally pos-
sibly accepts the finite word v ∈ Σ∗ if and only if there exists an internal possibly finite
accepting run ofRb on v. The language of the finite words internally possibly accepted
by the replacementRb is indicated as Li∗p (Rb). The replacementRb externally possibly
accepts the finite word v ∈ Σ∗ if and only if there exists an external finite possibly ac-
cepting run of Rb on v. The language of the finite words externally possibly accepted
by the replacementRb is indicated as Le∗p (Rb). The replacementRb internally possibly
accepts the infinite word v ∈ Σω if and only if there exists an internal possibly infinite
accepting run of Rb on v. The language of the infinite words internally possibly ac-
cepted by the replacement Rb is indicated as Liωp (Rb). The replacement Rb externally
possibly accepts the infinite word v ∈ Σω if and only if there exists an external infi-
nite possibly accepting run of Rb on v. The language of the infinite words externally
possibly accepted by the replacementRb is indicated as Leωp (Rb).

As for IBA we define the completion of a replacementRbc as the replacement where
the corresponding automaton is discharged from its boxes and their incoming and out-
going transitions.

Definition 4.2.8 (Sequential composition). Given an IBAM = 〈ΣM, RM, BM, QM,
∆M, Q

0
M, FM〉 and the replacementRb = 〈Mb,∆

inRb ,∆outRb〉 of the box b ∈ BM, the
sequential compositionM 1 Rb is an IBA 〈ΣM1Rb , RM1Rb , BM1Rb , QM1Rb ,∆M1Rb ,
Q0
M1Rb , FM1Rb〉 ofM that satisfies the following conditions:

1. ΣM1Rb = ΣM ∪ ΣMb
;

2. RM1Rb = RM ∪RMb
;

3. BM1Rb = BM \ {b} ∪BMb
;
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4. QM1Rb = RM1Rb ∪BM1Rb;

5. ∆M1Rb = (∆M \ {(qM, a, q′M) ∈ ∆M | qM = b ∨ q′M = b}) ∪ ∆Mb
∪ ∆inRb ∪

∆outRb;

6. Q0
M1Rb = (Q0

M ∪Q0
Mb

) ∩QM1Rb;

7. FM1Rb = (FM ∪ FMb
) ∩QM1Rb .

Definition 4.2.8, condition 1, specifies that the alphabet of the refinementM 1 Rb

is the union of the alphabet of the original IBAM and the alphabet of its replacement
Rb. Definition 4.2.8, condition 2, specifies that the set of regular states of M 1 Rb

is the union of the set of the regular states of M and the set of the regular states of
the replacement Rb. Definition 4.2.8, condition 3, specifies that the set of boxes of
M 1 Rb is the union of the set of the boxes ofM, with the exception of the box bwhich
is refined, and the set of the boxes of the replacementRb. Definition 4.2.8, condition 4,
specifies the set of the states ofM 1 Rb which corresponds to the union of its regular
and box states. Note that the box b is not contained into QM1Rb . Definition 4.2.8,
condition 5, specifies the set of the transitions of M 1 Rb. The transitions include
all the transitions of the original model ∆M with the exception of the transitions that
reach and leaves the box b, all the transitions ∆Mb

of the automaton that corresponds
to the replacement and its incoming and outgoing transitions ∆inRb and ∆outRb . The
set Q0

M1Rb of the initial states ofM 1 Rb includes all the initial states Q0
M of the IBA

and the initial states Q0
Mb

of its replacement. The intersection with the set QM1Rb is
computed to remove the box b (if present). The set FM1Rb of the accepting states of
M 1 Rb include all the accepting states FM of the IBA and the accepting states FMb

of its replacement. As previously, the intersection with the set QM1Rb removes the box
b (if present).

Theorem 4.2.2 (Refinement Preservation). Given a modelM = 〈ΣM, RM, BM, QM,
∆M, Q

0
M, FM〉 and a replacement Rb = 〈Mb,∆

inRb , ∆outRb〉 which refers to one of
its boxes b,M�M 1 Rb.

Proof. To prove that M � M 1 Rb we must define a refinement relation < which
satisfies the conditions specified in Definition 4.2.1.

The set of initial states Q0
M1Rb contains the initial states ofM (with the exception

of the refined box b) and the initial states of the automaton corresponding to replace-
mentRb. It is possible to associate to each initial state ofM (with the exception of the
refined box b) the corresponding state ofM and to each initial state of the replacement
Rb the box b. Note that a replacement Rb can contain an initial state only if b is initial
forM. This construction guarantees that the relation < satisfies the conditions 3 and
6 of the Definition 4.2.1. Conditions 4, 5 and 7 can be satisfied in a similar way, i.e.,
by associating the box/final state ofM � M 1 Rb to the corresponding state of the
model or the box b that is refined. Let us finally analyze conditions 8 and 9. Each
transition ∆M whose destination is not a box can be associated with the corresponding
transition of the model, which makes 8 trivially satisfied. The transitions whose destina-
tions are the box b can be associated with the corresponding transitions in ∆inRb . Note
that Definition 4.2.3 forces each incoming/outgoing transition of a box to have at least
a corresponding incoming/outgoing transition inside the replacement. Let us finally
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consider the outgoing transition of the box b of M. Each outgoing transition can be
associated with the corresponding outgoing transition in ∆outRb . The same procedure
can be applied to satisfy the condition 9. Note that, each transition in ∆Mb

is associ-
ated with the box b. By following this procedure the refinement relation < satisfies the
conditions specified in Definition 4.2.1 by construction, therefore M � M 1 Rb is
satisfied.

4.3 Modeling the claim

When a system is incomplete, a different semantic for the formulae of interest must be
considered, e.g., a three value semantic. Given a formula φ (expressed in some logic)
and an IBAM three truth values can be associated to the satisfaction of the formula φ
in the modelM: true, false and unknown (maybe). Whenever a formula is true or false
its satisfaction does not depend on the incomplete parts present in the modelM. In the
fist case, all the behaviors of the system (including the one that the system may exhibit)
satisfy the formula φ. In the second case, there exists a behavior of M, which does
not depend on the incomplete parts which violates the property of interest. In the third
case, the satisfaction of φ depends on the incomplete parts. The three value semantic
of LTL describes the semantic of LTL formulae over IBA.

4.3.1 Three value Linear Time Temporal Logic semantic

Given an LTL formula φ and an IBA modelM the semantic function ‖Mφ‖ associates
toM and φ one of the true values true (T ), false (F ) and unknown (⊥). Whenever a
formula is true, it is true in all the implementations of M, i.e., it does not exists any
refinement of the boxes that makes φ violated. If the formula is false, there exists a
behavior ofM, which does not depend on how the system is refined which violates the
property of interest. Thus, all the implementations ofM will make φ not satisfied. In
the third case, the satisfaction of φ depends on the refinement of the boxes ofM. This
type of three value semantic is also known in literature as inductive semantic [141] and
is different from the thorough semantic defined in [13].

Definition 4.3.1 (Three value LTL semantic over IBA). Given an IBAM and the claim
φ:

1. ‖Mφ‖ = T if and only if for all v ∈ (Lω(M) ∪ Lωp (M)), v |= φ

2. ‖Mφ‖ = F if and only if exists v ∈ Lω(M) such that v 6|= φ

3. ‖Mφ‖ = ⊥ if and only for all v ∈ Lω(M), v |= φ and there exists u ∈ Lωp (M)
such that u 6|= φ

A formula φ is true in the modelM if and only if every word v that is in the lan-
guage definitely accepted or possibly accepted by the automaton satisfies the claim φ
(Definition 4.3.1, condition 1). A formula φ is false in the modelM if and only if there
exists word v that is in the language definitely accepted by the BA that does not satisfy
the claim φ (Definition 4.3.1, condition 2). A formula φ is possibly satisfied in the
modelM if and only if there exists word u that is in the language possibly accepted by
the BA that does not satisfy the claim φ, but all the words v in the language definitely
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accepted by M satisfy the formula φ (Definition 4.3.1, condition 3). For example,
the property φ = 2(send → 3success) is possibly satisfied by the model described
in Figure 4.1 since there exists a word {start}.{send}.{fail}.{fail}.{abort}ω in the
possibly accepted language which does not satisfy the formula and there are no words
in the definitely accepted language.

Theorem 4.3.1 (Refinement preservation of LTL properties). Given an IBAM and its
refinement N , such thatM� N , Then:

1. if ‖Mφ‖ = T then ‖N φ‖ = T ;

2. if ‖Mφ‖ = F then ‖N φ‖ = F .

Proof. Let us first consider condition 1. The proof is done by contradiction. Assume
that ‖Mφ‖ = T and ‖N φ‖ 6= T . If ‖N φ‖ = F , by Definition 4.3.1 exists v ∈ Lω(N )
such that v 6|= φ. By Theorem 4.2.1 v must be in the possibly recognized language
ofM, or neither in the possibly recognized nor in the definitely recognized language
of M. This implies that the condition 1 of the Definition 4.3.1 is not met, and the
hypothesis ‖Mφ‖ = T is contradicted. If ‖N φ‖ = ⊥, by Definition 4.3.1 it must exists
a word v ∈ Lωp (N ), v 6|= φ. By Theorem 4.2.1 v ∈ Lωp (M), i.e., v must be in the
possibly recognized language ofM. As previously, this implies that the condition 1 of
the Definition 4.3.1 is not satisfied, i.e., it exists a word that does not satisfy φ and is
possibly recognized byM. Thus the hypothesis ‖Mφ‖ = T is contradicted.

Let us now consider condition 2. Since ‖Mφ‖ = F from Definition 4.3.1 condi-
tion 2 it must exists a word v ∈ Lω(M) that does not satisfy φ. By Definition 4.2.1
condition 1 v ∈ Lω(N ). By Definition 4.3.1 Condition 2 we can conclude that ‖N φ‖ =
F .

4.3.2 Three value Büchi Automata semantic

Given a BA Aφ and an IBAM which describes the model of the system, the semantic
function ‖MAφ‖ associates to the modelM and the propertyAφ one of true values true
T , false F and unknown ⊥ depending on whether the model satisfies, possibly satisfies
or does not satisfy the claim specified by the BA Aφ.

Definition 4.3.2 (Three value BA semantic). Given and incomplete BA M and a BA
Aφ which specifies the definitely accepted behaviors ofM,

1. ‖MAφ‖ = T iff Lω(M) ∪ Lωp (M) ⊆ L(Aφ);

2. ‖MAφ‖ = ⊥ iff Lω(M) ⊆ Lω(Aφ) and Lωp (M) 6⊆ Lω(Aφ)

3. ‖MAφ‖ = F iff Lω(M) 6⊆ Lω(Aφ)

Informally, a modelM satisfies the claim expressed as a BA Aφ if and only if the
condition 1 is satisfied, i.e., all the behaviors of the model of the system, including
possible behaviors, are contained in the set of the behaviors allowed by the property. A
modelM possibly satisfies the claim expressed as a BAAφ if and only if the condition 2
is satisfied, i.e., all the behaviors of the model of the system are contained into the
set of behaviors allowed by the property but there exists a possible behavior which is
not contained into the set of behaviors allowed by the property. Finally, condition 3
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specifies that a modelM does not satisfy the claim expressed as a BA Aφ if and only
if there exists a behavior of the model which is not allowed by the property.

Lemma 4.3.1 (Relation between Automata Based LTL Semantic). Given an LTL for-
mula φ and the corresponding BA Aφ, ‖Mφ‖ = ‖MAφ‖.

Proof. The proof follows from the fact that the automatonAφ contains all the words that
satisfy the claim φ. Thus, asking for language containment as done in Definition 4.3.2
corresponds with checking that all the words accepted and possibly accepted by M
satisfy the claim φ as done in Definitions 4.3.1.

Lemma 4.3.1 allows relating the satisfaction of LTL formulae with respect to IBAs
and is necessary since the models and claims of interest must have compatible seman-
tics [33].
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CHAPTER5
Reasoning on Incomplete Systems

“You got to have a problem that you want to solve, a wrong that you want to right, it’s got to be something that
you’re passionate about because otherwise you won’t have the perseverance to see it through.”

Steven Paul Jobs, 1955-2011

The core of the envisaged development process is the development-analysis cycle.
During the development phase, designers refine an incomplete model M which de-
scribes the system up to some level of abstraction. At each development step, they
produce a new replacement (increment) which describes the behavior of the system
inside one of its black box states, leading to a new refined model N , which may in
turn contain incompleteness. When an increment is ready, developers analyze the prop-
erties of the refined model N . If the model satisfies the designer’s expectation, the
development-analysis cycle is repeated, i.e., the development of the new increment is
started.

The verification of incomplete models offers three major benefits: a) instead of
forcing the verification procedure to be performed at the end of the development pro-
cess, it allows the system to be checked at the early stages of the design; b) complex
parts of the design can be encapsulated into unspecified (incomplete) parts (abstrac-
tion); c) the location of design errors can be identified by sequentially narrowing por-
tions of the system into incomplete parts. The incomplete model checking algorithm
proposed to check if an LTL property φ is satisfied, possibly satisfied or not satisfied by
an IBAM that describes the system behaviors is described in Section 5.1.

If the property is possibly satisfied, the developer may be interested in the possible
ways in which the boxes can be refined without violating the requirements of interest,
i.e., the constraint to be followed in the refinement of incompleteness. The constraint
is a set of sub-properties, one for each box. Each sub-property contains an automaton
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that specifies the behaviors that can be exhibited by the replacement of the box. The
constraint computation algorithm proposed in this thesis is described in Section 5.2.

Whenever a new replacement Rb for the box b is proposed, it is important to guar-
antee that the new system satisfies the properties of interest. One of the possible ways
to perform this operation is to inject the replacement Rb inside the original modelM,
obtaining its refinement N , and check the refinement against the property φ. However,
at each refinement round, it is desirable not to verify the whole model from scratch, but
to perform the verification in an incremental way. For this reason, Section 5.3 describes
a model checking procedure which is able to consider the replacement Rb against the
corresponding sub-property obtained from the previously computed constraint.

5.1 Checking incomplete Büchi Automata

Given an IBAM and an LTL formula φ, the incomplete model checking problem ver-
ifies whether the model satisfies, possibly satisfies or does not satisfy the property φ,
i.e., ‖Mφ‖ is equal to true (T ), false (F ) or maybe (⊥). Given an LTL formula φ, it
is possible to transform the formula into a corresponding BA Aφ and check ‖MAφ‖.
Since BAs are closed under intersection and complementation, it is possible to trans-
form ¬φ into the corresponding automaton Aφ and to reformulate the Conditions 1, 2
and 3 of Definition 4.3.2 as: (L(M)∪Lp(M))∩L(Aφ) = ∅; L(M)∩L(Aφ) = ∅ and
Lp(M) ∩ L(Aφ) 6= ∅; and L(M) ∩ L(Aφ) 6= ∅, respectively. However, to check these
conditions, it is necessary to redefine the behavior of the intersection operator (∩) over
an IBA and a BA.

5.1.1 The intersection automaton

This section describes how the intersection between an IBA and a BA is computed. To
exemplify the intersection between an IBA and a BA we will consider the model M
presented in Figure 5.1a and the automaton corresponding to the negation of the LTL
claim φ = G(send→ F (success)) represented in Figure 5.1b.

q1 send1

q3

-1-
{start} send2

q2

-2-
{fail}

-6-
{success}

-3-
{ok}

-4-
{ok}

-7-
{abort}

-5-
{fail}

(a) The IBA that corresponds to modelM.

p1

p2

           -2-      
(send)⋀(¬success)

-3-
(¬ success)

 -1-

 !

(b) The BAAφ that represents ¬φ.

Figure 5.1: The IBA and the BA used as examples in the description of the computation of the intersection
automaton I.

Definition 5.1.1 (Intersection between a BA and an IBA). The intersection automaton
I = M∩Aφ between an IBAM and a BA Aφ is the BA I = 〈ΣI , QI , ∆I , Q

0
I , FI〉,

such as:

56



5.1. Checking incomplete Büchi Automata

• ΣI = ΣM ∪ ΣAφ is the alphabet of I;

• QI = ((RM ×RAφ) ∪ (BM ×RAφ))× {0, 1, 2} is the set of states;

• ∆I = ∆c
I ∪ ∆p

I is the set of transitions of the intersection automaton. ∆c
I

is the set of transitions (〈qi, q′j, x〉, a, 〈qm, q′n, y〉), such that (qi, a, qm) ∈ ∆M
and (q′j, a, q

′
n) ∈ ∆Aφ . ∆p

I corresponds to the set of transitions (〈qi, q′j, x〉, a,
〈qm, q′n, y〉) where qi = qm and qi ∈ BM and (q′j, a, q

′
n) ∈ ∆Aφ . Moreover, each

transition in ∆I must satisfy the following conditions:

– if x = 0 and qm ∈ FM, then y = 1;

– if x = 1 and q′n ∈ FAφ , then y = 2;

– if x = 2, then y = 0;

– otherwise, y = x;

• Q0
I = Q0

M ×Q0
Aφ
× {0} is the set of initial states;

• FI = FM × FAφ × {2} is the set of accepting states.

The intersection I between the modelM, depicted in Figure 5.1a, and the BA Aφ
of Figure 5.1b, that corresponds to the negation of the property, is the BA described in
Figure 5.2. The portions of the state space that contain mixed states associated with
the black box states of the model send1 and send2 are surrounded by a dashed-dotted
frame.

q1,p1,0 send1,p1,0
-1-

{start}

-2- !

send1,p2,0
          -3-
(send)⋀(¬success)

-4- ¬(success)

q3,p1,1

-14- {ok}

send2,p1,0

-8-
{fail}

1

-7-
{ok}

-12- !

send2,p2,0
        -13-
(send)⋀(¬success)

q2,p1,1
-10-
{fail}

-11-
{abort}

-15- ¬(success)

q3,p2,1

-16-
{ok}

-5-
{ok}

-6- 
{fail}

q2,p2,1
-17- 
{fail}

q2,p2,2

q2,p2,0

-18-
{abort}

-19-
{abort}

-20-
{abort}

-9-
{success}

2 6 7 11

5

4 3 8 9 10

send1

send2

Figure 5.2: The intersection automaton I between the incomplete BA M and the BA automaton Aφ
which corresponds to the negation of the property φ.

The alphabet ΣI includes all the characters of the alphabets ofM and Aφ. The set
QI is composed by the states obtained combining states of the automaton associated
with the negation of the propertyAφ with regular states and boxes of the modelM. As
in the classical intersection algorithm for BAs [33], the labels 0, 1 and 2 indicate that
no accepting state is entered, at least one accepting state ofM is entered, and at least
one accepting state ofM and one accepting state of Aφ are entered, respectively. We
define MI = BM × RAφ × {0, 1, 2} as the set of mixed states (graphically indicated
in Figure 5.1b with a stipple border), and PRI = RM × RAφ × {0, 1, 2} as the set
of purely regular states. For example, state 1© is obtained by combining the state q1 of
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M and p1 ofAφ. This state is initial and purely regular since both q1 and p1 are initials
and regulars. Conversely, state 2© is mixed, since it is obtained by combining the box
send1 ofM and the regular state p1 of Aφ.

The transitions in ∆c
I are obtained by the synchronous execution of the transitions of

M and the transitions of Aφ. For example, the transition from 2© to 3© is obtained by
combining the transition from send1 to send2 ofM and the transition from p1 to p1 of
Aφ. The transitions in ∆p

I are, instead, obtained when a transition of Aφ synchronizes
with a transition in the refinement of a box ofM. For example, the transition from 2©
to 6© is performed when Aφ moves from p1 to p2 and the automaton M performs a
transition in the refinement of the box send1.

The language recognized by I is the intersection of the language possibly recog-
nized and recognized byM and the language recognized byAφ. For example, the word
{start}.{send}.{fail}.{fail}.{abort}ω is possibly recognized by M and is recog-
nized byAφ. Indeed, the system may fire the start transition, then perform a transition
in the refinement of the state send1 which satisfies the condition (send) ∧ (¬success),
then perform the two fail transitions and finally perform the transition labeled with
abort an infinite number of times.

Proposition 5.1.1 (Size of the intersection automaton). The intersection automaton I
contains in the worst case 3 · |QM| · |QAφ| states and can be computed inO(|M|·|Aφ|).

Lemma 5.1.1 (Intersection language). The intersection automaton I = M∩ Aφ be-
tween an incomplete BAM and a BAAφ recognizes the language (Lω(M)∪Lωp (M))∩
Lω(Aφ), i.e., v ∈ L(I)⇔ v ∈ (Lω(M) ∪ Lωp (M)) ∩ Lω(Aφ).

Proof. (⇒) If v ∈ L(I), it must exists an accepting run ρω in the intersection automaton
which recognizes v. Since, by Definition 3.1.7, I is a BA for all i > 0 ρω(i) and
ρω(i+ 1) are states of ρω if and only if (ρω(i), vi, ρ

ω(i+ 1)) ∈ ∆I . Let us consider the
two states of the model ρωM(i) and ρωM(i+1) associated with ρω(i) and ρω(i+1). Since
there exists a transition (ρω(i), vi, ρ

ω(i + 1)) ∈ ∆I , by construction it must exists a
transition (ρωM(i), vi, ρ

ω
M(i+ 1)) ∈ ∆M or ρωM(i) = ρωM(i+ 1) ∈ BM. In the first case,

vi is recognized by a transition of the model, in the second case, it is recognized by a
box. Since this condition must hold ∀i ≥ 0 it follows that v ∈ (Lω(M) ∪ Lωp (M)).
The same idea can be applied with respect to the automaton Aφ, which implies that
v ∈ L(Aφ). Thus, v ∈ (Lω(M) ∪ Lωp (M)) ∩ Lω(Aφ).

(⇐) The proof is by contradiction. Imagine that there exists a word v 6∈ L(I)
which is in (Lω(M) ∪ Lωp (M)) ∩ Lω(Aφ). Since v 6∈ L(I), it is not recognized
by L(I), i.e., for every possible accepting run ρω it must exists a character vi of v
such that (ρω(i), vi, ρ

ω(i + 1)) 6∈ ∆I . Let us consider the corresponding states ρωM(i),
ρωM(i+ 1) and ρωAφ(i), ρωAφ(i+ 1) of the model and of the claim, respectively. To make
(ρω(i), vi, ρ

ω(i + 1)) 6∈ ∆I two cases are possible: (ρωAφ
(i), vi, ρ

ω
Aφ

(i + 1)) 6∈ ∆Aφ or
(ρωM(i), vi, ρ

ω
M(i + 1)) 6∈ ∆M and not ρω(i)M = ρω(i + 1)M ∈ BM. However, in the

first case, the condition implies that v 6 inLω(Aφ, while in the second, v 6∈ (Lω(M) ∪
Lωp (M)), thus v 6∈ (Lω(M) ∪ Lωp (M)) ∩ Lω(Aφ), contradicting the hypothesis.

Given an infinite run ρω of I associated with the infinite word v ∈ L(I), we may
want to identify the portions of the word v which are recognized by each box b ∈ BM.
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5.1. Checking incomplete Büchi Automata

Note that these portions may include both finite words (i.e., finite portions of the words
that are recognized inside the boxes) or infinite words (i.e., suffixes of words recognized
inside accepting boxes).

Definition 5.1.2 (Finite abstractions of a run). Given an infinite run ρω of I =M∩Aφ
associated with the infinite word v ∈ Lω(I) and a box b ∈ BM, α∗b(v, ρ

ω) is the set of
finite words νinit.ν.νout ∈ Σ∗ associated with the box b and the run ρω of the infinite
word v. A word ν∗ = νinit.ν.νout is in α∗b(v, ρ

ω) if and only if given two indexes i, j such
that 0 ≤ i < j <∞, for all 0 ≤ k < j − i the following conditions must be satisfied:

1. ν∗k = vi+k;

2. ρω(i+ k) = 〈b, p, x〉;

3. (ρ(k)ω, vi+k, ρ
ω(k + 1)) ∈ ∆p

i ;

4. (ρ(j)ω, vj, ρ
ω(j + 1)) ∈ ∆c

i and νout = vj;

5. (i > 0⇔ (ρω(i− 1), vi−1, ρ
ω(i)) ∈ ∆c

i and νinit = vi−1) or νinit = ε.

Condition 1 specifies that ν∗ contains only the portion of the word of interest, i.e.,
the portion of the word recognized by the box. Condition 2 specifies that the state
ρω(i+k) of the run must corresponds to the tuple 〈b, p, x〉where b is the box of interest.
Condition 3 specifies that the transition that recognizes the character vi+k must be in
∆p
i , i.e., it is obtained by firing a transition of the claim when the system is inside

the box b. Condition 4 forces the word to be of maximal length, i.e., the transition
(ρω(j), vj, ρ

ω(j + 1)) of the run ρω must be a transition that forces the model to leave
the box b. The corresponding character vj is added as a suffix νout of the word ν.
Similarly, Condition 5 forces the transition that precedes the set of transitions which
recognize ν to be a transition that enters the box b (excluding the case in which i = 0,
i.e., the initial state of the run ρω(0) is mixed, in which νinit = ε1). The character vi−1

which labels the transition must be used as a prefix νinit of ν.
Let us consider the intersection automaton I(M∩Aφ) presented in Figure 5.2, the

word v ={start}.{send}.{fai}ω, and the corresponding run ρω = 1© 2© 6© 8©( 9©10©
11©)ω. The finite abstraction of the run associated with the state send1 is the function
α∗send1

such that, α∗send1
(v, ρω) ={start}.{send}.{fail}.

Definition 5.1.3 (Finite abstraction of the intersection). Given the intersection automa-
ton I = M ∩ Aφ, and a box b ∈ BM, the set α∗b(I) of the finite abstraction of the
intersection automaton is defined as α∗b(I) = {

⋃
∀v∈Lω(I) α

∗
b(v, ρ

ω), such that ρω is an
accepting run of v }.

The finite abstraction of the intersection automaton contains the finite abstraction of
the runs associated to every possible word in Lω(I).

Definition 5.1.4 (Infinite abstractions of a run). Given an infinite run ρω of I =M∩Aφ
associated with the infinite word v ∈ Lω(I) and a box b ∈ BM, αωb (v, ρω) is the set of
infinite words νinit.νω ∈ Σω associated with box b and the run ρω of the infinite word
v. A word νω = νinit.ν is in αωb (v, ρω), if and only if given the index i ≥ 0, ∀0 ≤ k the
following conditions are be satisfied:

1The ε character denotes an empty string.
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1. νωk = vi+k;

2. ρω(i+ k) = 〈b, p, x〉;

3. (ρω(k), vi+k, ρ
ω(k + 1)) ∈ ∆p

i ;

4. (i > 0⇔ (ρω(i− 1), vi−1, ρ
ω(i)) ∈ ∆c

i and νinit = vi−1) or νinit = ε.

Condition 1 specifies that νω contains only the portion of the word of interest, i.e.,
the portion of the word recognized by the box b. Condition 2 specifies that the state
ρω(i+k) of the run must corresponds to the tuple 〈b, p, x〉where b is the box of interest.
Condition 3 specifies that the transition that recognizes the character vi+k must be in
∆p
i , i.e., it is obtained by firing a transition of the claim when the system is inside

the box b. Condition 4 forces the transition that precedes the set of transitions which
recognize ν to be a transition that enters the box b (excluding the case in which i = 0,
i.e., the initial state of the run ρω(0) is mixed, in which νinit = ε). The character vi−1

which labels the transition must be used as a prefix νinit of ν.

Definition 5.1.5 (Infinite abstraction of the intersection). Given the intersection au-
tomaton I =M∩Aφ and a box b ∈ BM, the set αωb (I) of the infinite abstractions of
the intersection automaton is defined as αωb (I) = {

⋃
∀v∈Lω(I) α

ω
b (v, ρω) such that ρω is

an accepting run of v }.

Informally, the infinite abstraction of the intersection automaton contains the infinite
abstractions of the runs associated to every possible word recognized by the automaton
I.

5.1.2 The model checking procedure

The model checking procedure between an IBAM and a LTL property φ is based on
the intersection between a BA and an IBA (Definition 5.1.1) and the completion of an
IBA (Definition 4.1.13).

Definition 5.1.6 (Incomplete Model Checking). Given an IBAM and a LTL formula
φ associated with the Büchi automaton Aφ,

1. ‖Mφ‖ = F ⇔Mc ∩ Aφ 6= ∅;

2. ‖Mφ‖ = ⊥ ⇔ ‖Mφ‖ 6= F andM∩Aφ 6= ∅;

3. ‖Mφ‖ = T ⇔ ‖Mφ‖ 6= F and ‖Mφ‖ 6= ⊥.

Theorem 5.1.1 (Incomplete Model Checking correctness). The incomplete model check-
ing technique is correct.

Proof. Let us consider condition 1. (⇐) By Lemma 4.1.2,Mc recognizes the language
Lω(M). SinceAφ describes all the possible infinite words that violate φ, ifMc∩Aφ 6=
∅ it must exists a word v ∈ Lω(M) which violates φ. Therefore, by Definition 4.3.1 it
follows that ‖Mφ‖ = F . (⇒) As specified in Lemma 4.3.1 ‖Mφ‖ = F implies that
there exist v ∈ Lω(M), v 6|= φ. Since v does not model φ, it is a violating behavior
and is included in Lω(Aφ). Since v ∈ Lω(Aφ) and v ∈ Lω(M) and from Lemma 4.1.2
Lω(M) is recognized byMc,Mc ∩ Aφ contains at least the word v.
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5.1. Checking incomplete Büchi Automata

Let us then consider condition 2. (⇐) Given that ‖Mφ‖ 6= F by Definition 4.3.1
it follows that for all v ∈ Lω(M), the word v satisfies φ. Since M ∩ Aφ 6= ∅, by
Lemma 5.1.1 it must exists a word v such that v ∈ (Lω(M)∪Lωp (M))∩Lω(Aφ). Since
for all v ∈ Lω(M), v |= φ, Lω(M)∩Lω(Aφ) = ∅, it must be that Lωp (M)∩Lω(Aφ) 6=
∅. Thus, by Definition 4.3.2 condition 2 it must exist u ∈ Lωp (M) such that u 6|= φ.
Thus, by Definition 4.3.1, condition 3 it must be that ‖Mφ‖ = ⊥. (⇒) The proof is
by contradiction. Imagine that ‖Mφ‖ = ⊥ and ‖Mφ‖ = F orM ∩ Aφ = ∅. Let
us consider the case in which ‖Mφ‖ = F . By Definition 4.3.1 condition 2 it must
exists a word v ∈ Lω(M) that does not satisfy φ. This implies that condition 3 of
Definition 4.3.1 is not satisfied and ‖Mφ‖ 6= ⊥ making the hypothesis contradicted.
Consider then the case in whichM∩Aφ = ∅. Since the intersection automaton I =
M∩Aφ is empty, from Lemma 5.1.1 it must not exists a word v ∈ (Lω(M)∪Lωp (M))∩
Lω(Aφ). This implies that condition 3 of Definition 4.3.1 is not satisfied and ‖Mφ‖ 6=
⊥ making the hypothesis contradicted.

Condition 3 is a consequence of the previous conditions and Definition 4.3.1.

Algorithm 1 Checks if an IBA satisfies a LTL property φ

1: procedure MODELCHECKING(M, φ)
2: Aφ← LTL2BA(¬φ);
3: Mc ← ExtractMc(M);
4: Ic ←Mc ∩ Aφ;
5: empty← CheckEmptiness(Ic);
6: if !empty then
7: return F;
8: else
9: I(M∩Aφ)←M∩Aφ;

10: empty← CheckEmptiness(I);
11: if empty then
12: return T ;
13: else
14: return ⊥;
15: end if
16: end if
17: end procedure

Theorem 5.1.6 suggests the model checking procedure presented in Algorithm 1.
The algorithm works in five different steps:

• Create the automatonAφ (Line 2). As in the classical model checking framework,
the first step is to construct the BA that contains the set of behaviors forbidden by
the property φ. The temporal complexity of this step is O(2(|¬φ|));

For example, the automaton Aφ, corresponding to the LTL property φ = G(send →
F (success)), is represented in Figure 5.1b.

• Extract the automatonMc and build the intersection automaton Ic = Mc ∩ Aφ
(Lines 3-4). The automatonMc contains all the accepting behaviors of the sys-
tem. In this senseMc is a lower bound on the set of behaviors of the system, i.e.,
it contains all the behaviors the system is going to exhibit at run-time. Thus, the
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intersection automaton Ic contains the behaviors ofMc that violate the property.
ComputingMc has in the worst case temporal complexityO(|QM|+ |∆M|) since
it is sufficient to remove from the automaton the black box states and their incom-
ing and outgoing transitions. The intersection automaton Ic contains in the worst
case 3 · |RM| · |QAφ | states.

For example, the automaton Mc associated with the the model M described in Fig-
ure 5.1a contains only the states q1, q2 and q3 and the transitions marked with the labels
success and abort. The intersection between this automaton and the property Aφ de-
scribed in Figure 5.1b contains all the behaviors of the sending message system that
violate the property. Since the automaton is empty, there are no behaviors ofM that
violate φ.

• Check the emptiness of the intersection automaton Ic (Lines 5-8). If Ic is not
empty, the condition L(M) ∩ L(Aφ) 6= ∅ introduced in c) is matched, i.e., the
property is not satisfied and every infinite word in the intersection automaton is
a counterexample. If, instead, Ic is empty, M possibly satisfies or satisfies φ
depending on the result of the next steps of the algorithm.

The intersection automaton Ic of the sending message example is empty since the au-
tomaton Ic does not contain any accepting state reachable from the initial state. Indeed,
both q2 and q3, which are the accepting states ofMc are never reachable from q1 in the
intersection automaton. Thus,M satisfies or possibly satisfies the property φ depend-
ing on the next steps of the algorithm.

• Compute the intersection I = M∩Aφ of the incomplete modelM and the au-
tomatonAφ associated with the property φ (Line 9). To check whetherM satisfies
or possibly satisfies φ it is necessary to verify if (L(M)∪Lp(M))∩L(Aφ) = ∅,
sinceM intrinsically specifies as an upper bound on the behaviors of the system,
i.e., it contains all the behaviors the system must and may exhibit. The intersection
algorithm presented in Section 5.1.1 is used to compute the intersection automaton
I =M∩Aφ.

The intersection automaton I of the sending message example is depicted in Figure 5.2.

• Check the emptiness of the intersection automaton I = M∩ Aφ (Lines 10-15).
By checking the emptiness of the automaton I we verify whether the property φ
is satisfied or possibly satisfied by the modelM. Since we have already checked
that L(M) ⊆ L(Aφ), two cases are possible: if I is empty, Lp(M) ⊆ L(Aφ)
and the property is satisfied whatever refinement is proposed for the boxes ofM,
otherwise, Lp(M) 6⊆ L(Aφ), meaning that there exists some refinement of M
that violates the property.

For example, the word {start}.{send}.{fail}.{fail}.{abort}ω, which is a possibly
accepted byM, violates φ since there exists a run where a send is not followed by a
success. This behavior can be generated by replacing to the boxes send1 and send2

with a component that allow runs where a message is sent and no success is obtained,
and an empty component that neither tries to send the message again nor waits for a
success, respectively.
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Theorem 5.1.2 (Incomplete Model Checking complexity). Checking an IBAM against
the BAAφ associated to the LTL formula ¬φ has a temporal complexityO(|M| · |Aφ|),
where |M| and |Aφ| are the sizes of the model and the automaton associated with the
negation of the claim, respectively.

Proof. Checking an IBAM against a property expressed as a BAAφ requires to check
the emptiness of two intersection automata Ic and I representing a lower bound and an
upper bound on the behaviors of the system, respectively. These automata contain in
the words case 3 · |QM| · |QAφ| states. The emptiness checking procedure is linear in the
size of the considered automaton and has a O(|QI |+ |∆I |) temporal complexity.

5.2 Constraint computation

When a property φ is possibly satisfied, each word v, recognized by the intersection au-
tomaton I =M∩Aφ, corresponds to a behavior B the system may exhibit that violates
φ. To make φ satisfied, the developer must design the replacementsRb1 ,Rb2 . . .Rbn of
the black box states b1, b2, . . . bn to forbid B from occurring. A replacement of a box is
an automaton to be substituted to a box b. The goal of the constraint computation is to
find the set of sub-properties, one for each box, to be satisfied by the replacements of the
boxes of the modelM such that the refinement N does not violate φ. Sub-properties
are guidelines that help the developer in the replacement design and can be considered
as a contract in a contract based design setting [88]. The constraint computation pro-
cedure is based on three subsequent steps: a) intersection cleaning; b) sub-properties
generation; c) constraint identification.

5.2.1 Intersection cleaning

The intersection cleaning phase removes from the intersection automaton I =M∩Aφ
the states that are not involved in any behavior B that possibly violates the property.
Indeed, these behaviors must not be included in any sub-property. Given the intersec-
tion automaton I = M∩ Aφ, the cleaned intersection automaton IΥ is a version of
the intersection automaton where the states from which it is not possible to reach an
accepting state that can be entered infinitely many often are removed.

Definition 5.2.1 (Intersection cleaning). Given the intersection automaton I = 〈ΣI , QI ,
∆I , Q

0
I , FI〉, the cleaned intersection automaton IΥ = 〈ΣIΥ , QIΥ ,∆IΥ , Q0

IΥ , FIΥ〉 sat-
isfies the following conditions:

• ΣIΥ = ΣI;

• QIΥ = {q ∈ QI such that there exits a possibly accepting run ρω and an index
i ≥ 0 and ρω(i) = q};

• ∆IΥ = {(q, a, q′) ∈ ∆I such that q ∈ QIΥ and q′ ∈ QIΥ};

• Q0
IΥ = Q0

I ∩QIΥ;

• FIΥ = FI ∩QIΥ .
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The cleaned version of the intersection automaton can be obtained using Algo-
rithm 2. The algorithm first creates a copy of the intersection automaton I which will
contain IΥ (Line 2). Then, the non trivial strongly connected components are computed
and stored in the SCC set (Line 3). Then, the set Nxt is defined (Line 4). The set next
is used to store the set of states from which it is possible to reach an accepting state
(which can be entered infinitely often) whose predecessors still have to be analyzed.

Algorithm 2 Removes the states that are not involved in a possibly accepting run.

1: procedure INTERSECTIONCLEANER(I)
2: IΥ ←CLONE(I);
3: SCC ←GETNONTRIVIALSCC(IΥ);
4: Nxt← {};
5: for scc ∈ SCC do
6: if scc ∩ FI 6= ∅ then
7: Nxt← Nxt ∪ scc;
8: end if
9: end for

10: V is← {};
11: while Nxt 6= ∅ do
12: s←CHOOSE(Nxt);
13: V is← V is ∪ {s};
14: Nxt← Nxt \ {s};
15: Nxt← Nxt ∪ {s′ | (s′, a, s) ∈ ∆I ∧ s 6∈ V is};
16: end while
17: for s ∈ (QI \ V is) do
18: REMOVESTATE(IΥ, s);
19: end for
20: end procedure

For each set of states that form a strongly connected component scc which is in the
SCC set (Line 5), if at least an accepting state is present (Line 6), the states are added
to the set Nxt of the states to be visited next (Line 7). Then, the set V is is defined
(Line 10). The set V is is used to store the set of the already visited states. The goal of
this set is to guarantee that a state is not visited twice during the state space exploration.
By exploring the state space of I the states from which it is possible to reach a state in
the set Nxt are identified.

The state space exploration is an iterative process that ends when the set Nxt is
empty (Line 11). At each exploration step, a state s ∈ Nxt is selected (Line 12), added
to the set of visited states (Line 13), and removed to the set Nxt (Line 14). Then, all
the states s′, which have not been already visited and are predecessors of the state s, are
added to the set Nxt of the states to be analyzed next (Line 15). Finally, each state that
has not been visited (Line 17) and its incoming and outgoing transitions are removed
from the automaton (Line 18).

The intersection cleaning algorithm applied to the intersection automaton described
in Figure 5.2 removes the states 4©, 5© and 7© since they are not involved in any possibly
accepting run.

Lemma 5.2.1 (Correctness). The cleaning procedure is correct.

Proof. To prove that the procedure is correct, it is necessary to prove that the automaton
IΥ obtained using Algorithm 2 satisfies the conditions specified in Definition 5.2.1.

64



5.2. Constraint computation

Note that, the intersection cleaning algorithm is executed on the intersection automaton
only when the property is possibly satisfied, i.e., it does not exists any accepting run, but
the intersection only contains possibly accepting ones. The proof is by contradiction.
Assume that there exists an automaton IΥ obtained using Algorithm 2 which does not
satisfy Definition 5.2.1. Then, it must exist a state q ∈ QIΥ which is not involved in
any possibly accepting run ρω. Imagine that such a state exists. To not be removed at
the end of the cleaning algorithm it must be contained into the set V is of the visited
states. To be inserted in V is it is necessary that q was before inside the set Nxt. Two
cases are possible: a) the state was included in the setNxt before the while cycle. In
this case, the state was a part of a strongly connected component that contains at least
an accepting state. Thus, the hypothesis is contradicted, since from that state there was
at least a possible way to reach an accepting state that is entered infinitely often; b) the
state is included in the set V is inside the while cycle. Then, the state is a predecessor
of a state q′ from which it is possible to reach an accepting state that can be entered
infinitely often. Thus, the hypothesis is again contradicted.

Theorem 5.2.1 (Complexity). The intersection cleaning procedure can be performed
in time O(|QI |+ |∆I |).

Proof. Cloning the intersection automaton I (Line 2) can be be done in timeO(|QI |+
|∆I |). Indeed, it is sufficient to traverse I and clone its states and transitions. The
same temporal complexity is required for finding the no trivial strongly connected
components (Line 3). For example, it is possible to use the well known Tarjan’s Algo-
rithm [128]. Checking whether a strongly connected component contains an accepting
state (Lines 4-9) can be done in time O(|QI |). Finally, the state space exploration
(Lines 11-16) has O(|QI | + |∆I |) temporal complexity, since each state and transi-
tion is visited at most once. The same temporal complexity is required to remove
the not reachable states (Lines 17-19). Thus, the final complexity of the algorithm is
O(|QI |+ |∆I |).

5.2.2 Sub-properties generation

The sub-property generation algorithm identifies for each box the corresponding sub-
property. Each sub-property Sb encodes the set of behaviors the replacement of the box
b cannot exhibit. Indeed, these behaviors would lead to a violation or a possible viola-
tion of the properties of interest. For example, assume that the box send1 presented in
Figure 5.1a is accepting. If it is replaced by the automaton presented in Figure 5.3a, the
claim G(send→ F (success)) is violated, since the sending activity is not followed by
a success. Instead, if send1 is replaced by the automaton presented in Figure 5.3b, it
possibly violates the claim since it needs the “cooperation" of the replacement of the
box send2 to generate a violating behavior. Indeed, checking the refinement model
after the first replacement is proposed yields to a claim violation, while in the second
case the claim is possibly satisfied.

To encode the behaviors of the replacement of the box b that would lead to a violation
of the claim φ, it is necessary to describe the internal violating behaviors and how these
behaviors garnish the model of the system. For this reason, a sub-property Sb associated
with the box b provides a) a BA Pb, which describes the internal violating or possibly
violating behaviors of the replacement, b) the incoming ∆inSb and outgoing ∆outSb
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(a) A replacement for the box send1.

q4 q5-8-
{send}

-9-
{wait}

q6

send1

-2-
{fail}

-1-
{start}

q1 send2

q7
q3

-3-
{ok}

(b) A replacement for the box send1.

Figure 5.3: Two examples of replacements for the box send1.

transitions, which describe how the replacement must (must not) be connected to the
original model, c) function Π which describes the potential influence of the presence
of these transitions on the claim satisfaction, d) the two reachability relations ℵ and
ℵc which are used to encode how different runs of the automaton Pb cooperate in the
generation of a violation of φ. Formally:

Definition 5.2.2 (Sub-property). Given a modelM defined over the set of states QM,
a sub-property Sb associated with the box b ∈ BM, corresponds to a tuple Sb =

〈Pb,∆inSb , ∆outSb ,Π,ℵ,ℵc,ΓκM,ΓκAφ〉, where:

• Pb = 〈ΣPb , QPb ,∆Pb , Q
0
Pb
, FPb〉 is a BA. Pb must satisfy the following conditions:

if b 6∈ Q0
Pb

then Q0
Pb

= ∅, if b 6∈ FPb then FPb = ∅;

• the sets ∆inSb ⊆
{

(q′, a, q) | (q′, a, b) ∈ ∆M and q ∈ QPb and q′ ∈ QM} and
∆outSb ⊆

{
(q, a, q′) | (b, a, q′) ∈ ∆M and q ∈ QPb and q′ ∈ QM} are the incom-

ing and outgoing transitions of the sub-property Ss;

• Π : ζ → {G, Y,R} is a partial function over ζ = ∆inSb∪∆outSb , which associates
to the incoming and outgoing transitions a value in the set;

• ℵ ⊆ ∆outSb ×∆inSb and ℵc ⊆ ∆outSb ×∆inSb are two reachability relations;

• ΓκM : κ → {T, F} and ΓκAφ
: κ → {T, F} are the accepting functions, such that

κ ∈ {ℵ,ℵc}.

Pb is the BA that encodes the condition the developer must satisfy in the design of
the replacement Rb to be substituted to the black box state b. If the box b is not ini-
tial/accepting, the automaton Pb can not contain initial/accepting states. The incoming
∆inSb and outgoing ∆outSb transitions specify how the behaviors encoded in the au-
tomaton Ps are related to the original modelM. The function Π marks each of these
transitions with a value in the set {G, Y,R}. An incoming transition δ ∈ ∆inSb can
be associated with the value G or Y , which specifies whether it is necessary to “tra-
verse" at least a state of the intersection automaton generated from another box (Y )
of the model, or all the runs that reach the incoming transition only involve states of
the intersection automaton obtained from regular states of the model (G). An outgoing
transition δ ∈ ∆outSb can be associated with the value R or Y which specifies whether
there is an accepting run (R) or a possibly accepting run (Y ) starting from the des-
tination state of the outgoing transition. The reachability relations ℵ and ℵc describe
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how it is possible to reach an incoming transition from an outgoing transition of the
sub-property in the intersection automaton. A tuple (δo, δi) is in ℵ if and only if from
the outgoing transition δo it is possible to reach, in the intersection automaton, the in-
coming transition δi without traversing a state of the intersection automaton generated
from any other box of the model. Conversely, a tuple (δo, δi) is in ℵp if and only if
from the outgoing transition δo it is possible to reach incoming transition δi traversing
at least another box different from b. ΓκM and ΓκAφ

associate to each reachability entry
(δo, δi) in ℵ and ℵc a T or a F value. κ is assigned to ℵ or ℵc depending on the set of
reachability entries considered2. Π, ℵ, ℵc, ΓκM and ΓκAφ

are described more in detail in
the following of this thesis.

The sub-properties Ssend1 and Ssend2 associated with the boxes send1 and send2 of
the modelM described in Figure 5.1a and the claim φ, associated with the automaton
Aφ described in Figure 5.1b, are presented in Figures 5.4a and 5.4b. The sub-properties
are surrounded by a dotted border, which contains the name of the box the sub-property
refers to. The automatonPsend1 , which corresponds to the sub-property Ssend1 , contains
the two states 2© and 6© and the internal transitions 2, 3 and 4. The sub-property Ssend1

is associated with the incoming transition 1 and the outgoing transitions 6 and 8. The
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-2- 

!
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(send)⋀(¬success)
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{fail}
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(a) The sub-property Ssend1
that correspond to the box send1.
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(b) The sub-property Ssend2
that correspond to the box send2.

Figure 5.4: The sub-properties associated with the boxes send1 and send2.

automatonPsend2 , which corresponds to the sub-property Ssend2 , contains the two states
3© and 8© and the internal transitions 12, 13 and 15. The sub-property Ssend2 is asso-

ciated with the incoming transitions 6, 8 and the outgoing transition 17. The function
Π associates to the incoming transition 1 of the sub-property Ssend1 the value G since
this transition is reachable from an initial state of the model through a run which does
not involve the replacement associated with a box (graphically, the source/destination
of an incoming/outgoing transition is depicted with a box which is decorated with the

2ΓκM and Γκ
Aφ

are a shortcut to represent the functions ΓℵM, ΓℵcM and Γℵ
Γφ

, Γℵc
Aφ

, respectively.
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name of the source/destination state and contains the value the function Π associates to
the transition). Differently, Π marks the outgoing transitions of Ssend1 with the value
Y since from these transitions it is possible to reach an accepting state through a run
which involves the refinement of other boxes, i.e., of the box send2. The outgoing
transition 17 of the sub-property Ssend2 is associated with the value R since from the
destination of the transition it is possible to reach an accepting state with a run that
does not involve the refinement of other boxes. The incoming transitions 6 and 8 of the
sub-property Ssend2 are associated with the value Y since the source of the transition
is reachable through a run which involves the refinement of other boxes. Finally, the
reachability relations ℵ and ℵc are empty since it is not possible to reach from an out-
going transition of the sub-property associated with the box send1 (send2) its incoming
transition(s).

As the replacement, the sub-property Sb is associated with the four types of accept-
ing runs identified in Section 4.2.2: finite internal, infinite internal, finite external and
infinite external accepting.

Given the cleaned intersection automaton IΥ (which contains the behaviors that pos-
sibly violate the claim), obtained from the intersection automaton I =M∩Aφ between
the modelM and the automaton Aφ, the sub-property identification problem concerns
the identification of the sub-properties the developer must satisfy in the refinement ac-
tivity. The sub-property identification procedure works through a set of subsequent
steps: automata extraction, computation of the function Π and of the reachability rela-
tion.

First, the automata extraction procedure computes the automata associated with the
sub-properties and their incoming and outgoing transitions.

Definition 5.2.3 (Automata extraction). Given a property φ which is possibly satisfied
by the modelM, the cleaned intersection automaton IΥ obtained from the intersection
automaton I = M ∩ Aφ, and the set ζ =

{
Sb1 ,Sb2 , . . .Sbn

}
of the sub-properties

associated to the black box states b1, b2, . . . bn ∈ BM ofM (at most one for each box),
the automaton Pbi associated with each sub-property Sbi ∈ ζ is a BA, such that:

• ΣPbi
= ΣIΥ;

• QPbi = {〈qM, pAφ , x〉 ∈ QIΥ such that qM = bi};

• ∆Pbi
= {(q, a, q′) such that q, q′ ∈ QPbi and (q, a, q′) ∈ ∆p

I};

• Q0
Pbi

= Q0
IΥ ∩QPbi ;

• FPbi = FIΥ ∩QPbi .

The incoming ∆inSbi and outgoing ∆outSbi transitions associated with the sub-property
Sbi are defined as:

• ∆inSbi = {(qM, a, 〈bi, p′Aφ , y〉) such that (〈qM, pAφ , x〉, a, 〈bi, p
′
Aφ
, y〉) ∈ (∆c

I ∩
∆IΥ)};

• ∆outSbi = {(〈bi, pAφ , x〉, a, q
′
M) such that (〈bi, pAφ , x〉, a, 〈q

′
M, p

′
Aφ
, y〉) ∈ (∆c

I

∩∆IΥ)}.
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A sub-property Sbi associated to the box bi is added to the set of sub-properties ζ if and
only if QPbi 6= ∅.

The automata and the incoming and outgoing transitions of the sub-properties asso-
ciated to the cleaned intersection automaton IΥ are computed using Algorithm 3. First,
the algorithm considers the states sIΥ of the intersection automaton (Line 2). If the
corresponding state of the model q is a box (Line 3), the sIΥ is added to the set QPq of
the states of the sub-property Sq (Line 4). If sIΥ is initial (Line 5) or accepting (Line 8),
it is also added to the set of initial (Line 6) and accepting (Line 9) states of Sq.

Algorithm 3 Identifies the automata associated with the sub-properties and their incoming and outgoing
transitions.

1: procedure SUBPROPERTYIDENTIFICATION(IΥ,M)
2: for sIΥ

∈ QIΥ
do

3: if sIΥ
= 〈q, p, x〉 ∧ q ∈ BM then

4: QPq ← QPq ∪ {sIΥ
};

5: if sIΥ
∈ Q0

IΥ
then

6: Q0
Pq
← Q0

Pq
∪ {sIΥ};

7: end if
8: if sIΥ ∈ FIΥ then
9: FPq ← FPq ∪ {sIΥ

};
10: end if
11: end if
12: end for
13: for (〈b, p, x〉, a, 〈b, p′, y〉) ∈ ∆p

IΥ
and b ∈ BM do

14: ∆Pb = ∆Pb ∪ (〈b, p, x〉, a, 〈b, p′, y〉);
15: end for
16: for (〈q, p, x〉, a, 〈q′, p′, y〉) ∈ ∆c

IΥ
do

17: if q ∈ BM then
18: ∆inSq ← ∆inSq ∪ (〈q, p, x〉, a, 〈q′, p′, y〉);
19: end if
20: if q′ ∈ BM then
21: ∆outSq ← ∆outSq ∪ (〈q, p, x〉, a, 〈q′, p′, y〉);
22: end if
23: end for
24: end procedure

Then, each transition (〈b, p, x〉, a, 〈b, p′, y〉) of the intersection automaton which is
possibly executed inside the box b is considered (Line 13) and added to the corre-
sponding automaton (Line 14). Finally, each transition (〈q, p, x〉, a, 〈q′, p′, y〉) which is
obtained by combining transitions of the model and of the claim is analyzed (Line 16).
If the state of the model associated with the source state (Line 17) or the destination
state (Line 20) of the transition is a box, the transition is added to the set of the outgoing
(Line 18) or incoming (Line 21) transitions of the sub-property.

Theorem 5.2.2 (Automaton extraction complexity). The automaton extraction process
can be performed in time O(|QIΥ |+ |∆IΥ|).

Proof. Lines 2-12 of Algorithm 3 visit each state of the intersection automaton at most
once, while Lines 13-23 visit each transition of the intersection automaton exactly once.
In both the cases, at each step, a constant number of operations is executed inducing a
O(|QIΥ |+ |∆IΥ|) temporal complexity .
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It is important to notice that every word v that is in the finite and infinite abstraction
of the intersection automaton is a word associated with a sub-property and vice versa.

Theorem 5.2.3 (The language of the sub-property corresponds to the abstraction of
the intersection automaton). Given the modelM which possibly satisfies the claim φ,
the intersection automaton I = M∩ Aφ and the set of sub-properties ζ obtained as
specified in Definition 5.2.3, for every box b:

1. v ∈ α∗b(I)⇔ v ∈ (Le∗(Sb) ∪ Li∗(Sb));

2. v ∈ αωb (I)⇔ v ∈ (Leω(Sb) ∪ Liω(Sb)).

Theorem 5.2.3 specifies that the words of the finite abstractions of the intersection au-
tomaton associated with the box b correspond to the union of the external and internal
finite words associated with the sub-property Sb (condition 1). Furthermore, the words
of the infinite abstractions of the intersection automaton associated with the box b cor-
respond to the union of the external and internal infinite words associated with the
sub-property Sb (condition 2).

Proof. Let us first consider the statement 1.
(⇐) Let us first consider the case in which v is in the set of finite externally accepted

words associated with the sub-property Sb, i.e., v ∈ Le∗(Sb). We want to construct
a run ρI(i) whose abstraction corresponds to the word v in the intersection automa-
ton. If such run exists we can conclude that v ∈ α∗b(I). Thus, we write the word
v as νinitν∗νout. By definition, νinit must be associated to an incoming transition of
the sub-property. Thus, it is possible to associate to ρI(0) and ρI(1) the intersection
states associated to the source and the destination of the incoming transition of the
sub-property. Then, each state ρSb(i) of the run that makes the word ν∗ externally
accepted is associated with the corresponding state ρI(i) of the intersection automa-
ton (which must exist from construction). This implies that the run ρI(1) satisfies
the conditions 1 and 2 of Definition 5.1.2. Since (ρSb(i), vi, ρSb(i + 1)) ∈ ∆Sb and
(ρI(i), vi, ρI(i+1)) ∈ ∆p

I by construction, it implies that the run ρSb is also executable
on the automaton I, i.e., condition 3 is satisfied. Furthermore, since by construction
and Definition 4.2.6, ρSb(0) ∈ Q0inb (i.e., the source state of the run must be a source
of an incoming transition) and ρSb(|v|) ∈ F outb (i.e., the last state of the run must be
the destination of an outgoing transition), conditions 4 and 5 are satisfied. Since we
have found a finite abstracted run ρI(i) associated to v and the box b, we conclude that
v ∈ α∗b(I).
The same approach applies to the case in which v is in the set of finite internally ac-
cepted words associated with the sub-property Sb, i.e., v ∈ Li∗(Sb). The only difference
concerns the initial state ρSb(0), which by Definition 4.2.6 must be an initial state of the
sub-property, i.e., ρSb(0) is in Q0

Pb
that by construction implies that ρI(0) ∈ Q0

I . This
implies that ρSb(0) can be considered as the initial state of the run corresponding to the
word, making i = 0 in Definition 5.1.2 condition 5.

(⇒) The proof is by contradiction assume that v ∈ (Le∗(Sb) ∪ Li∗(Sb)) is false and
v∗ ∈ α∗b(I) is true. Since v ∈ α∗b(I), there exists an infinite possibly accepting run in
I and v is an abstraction of the corresponding word which is associated to the box b.
Since Sb is obtained from the intersection automaton by aggregating the portions of the
state space that refer to the box b, it follows that v must be associated with a run that
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traverses Sb (either starting from one of the initial states of Sb and reaching one of its
outgoing transitions, or starting from an incoming transition of Sb and reaching one of
its outgoing transitions). This implies that v∗ ∈ (Le∗(Sb) ∪ Li∗(Sb)) which makes the
hypothesis contradicted.

The proof of the statement 2 corresponds to the proof 1 with the exception that it
considers infinite words.

The second step of the sub-property identification procedure is the computation of
the partial function Π. Π associates to the incoming/outgoing transitions of the sub-
property a value which specifies whether the initial/accepting state is reachable from
the incoming/outgoing transition through a path that only contains only purely regular
states, or it is necessary to traverse other mixed states i.e., the replacement of other
boxes. The Π function is computed for each box b ∈ BM.

Definition 5.2.4 (Π function). Given a sub-property Sb, and given the set of its incom-
ing and outgoing transitions ζ = ∆inSb ∪∆outSb and the intersection automaton I, Π
is a partial function Π : ζ → {G, Y,R}, such that given a δ = (s, a, s′) and δ ∈ ζ the
following are satisfied:

1. Π(δ) = R ⇔ exists ρωI and an i > 0, such that ρω(i) = s′ and (ρω(i −
1), a, ρω(i)) = δ and for all j ≥ i, ρω(j) ∈ PRI;

2. Π(δ) = G⇔ exists ρωI and i > 0, such that ρω(i) = s and (ρω(i), a, ρω(i+1)) = δ
and for all 0 ≤ j ≤ i, ρω(j) ∈ PRI;

3. Π(δ) = Y ⇔ Π(δ) 6= R and Π(δ) 6= G and one of the following is satisfied:

• exists ρωI and i > 0, such that ρω(i) = s′ and (ρω(i − 1), a, ρω(i)) = δ and
for all j ≥ i, ρω(j) 6∈ Qb;

• exists ρωI and i > 0, such that ρω(i) = s and (ρω(i), a, ρω(i+ 1)) = δ and for
all 0 ≤ j ≤ i, ρω(j) 6∈ Qb).

Definition 5.2.4 implies that incoming transitions can be marked as G and Y (or not
be marked), while outgoing transitions can be marked as R and Y (or not be marked).
This follows from the assumption that the constraint computation algorithm is per-
formed in the cases in which the model possibly satisfies the claim (‖Mφ‖ = ⊥). This
assumption implies the absence of an infinite run of purely regular states that connects
an initial state of the intersection automaton to an accepting state that can be entered
infinitely often, since this would imply that ‖Mφ‖ = F . The incoming transitions
marked as G are the ones which are reachable from the initial state of the intersection
automaton I without passing through mixed states, i.e., the incoming transitions are
the transitions whose reachability does not depend on the replacements of other boxes.
The outgoing transitions marked as R are the transitions from which an accepting state
that can be entered infinitely often of the intersection automaton I is reachable with-
out passing through mixed states, i.e., the outgoing transitions are the transitions from
which it is possible to reach a state that makes the sub-property violated independently
on the replacements of the other boxes. Finally, the incoming and outgoing transitions
marked as Y are the transitions such that the reachability of the initial and accepting
states depends on the replacement of other boxes (which are different from the box b
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it-self). Given a sub-property Sb, the function Π specifies whether the corresponding
runs violate or possibly violate the property φ of interest. For example, when the de-
veloper designs the replacement of a box b associated to a sub-property Sb he/she must
not design a component that allows Sb to reach a outgoing port marked as R from an
incoming port marked as G. Indeed, in this case, it is providing the system a way to
reach from an initial state an accepting state of the intersection automaton which can
be entered infinitely often.

The function Π can be computed using the procedure described in Algorithm 4.
The algorithm works in two steps which mark the incoming (Lines 2-5) and outgoing
(Lines 6-7) transitions of the sub-property Sb. The incoming transitions marked as G
(Line 3) and Y (Line 4) are computed through the function FORWARDΠIDENTIFIER
invoked over two different sets of states. When the incoming transitions to be marked
as G are searched (Line 3), only purely regular states PRI of the automaton IΥ are
traversed, while, when the transitions to be marked as Y are considered (Line 4), all the
states of the intersection automaton IΥ which are not states QPb of the automaton Pb
associated with the sub-property Sb can be explored. The outgoing transitions marked
as Y and R are computed through the method BACKWARDΠIDENTIFIER invoked on
a different set of parameters. When the outgoing transitions to be marked as R are
searched (Line 6), only the purely regular states PRIΥ of the automaton IΥ are tra-
versed, while, when the interest is on finding the incoming transitions to be marked as
Y (Line 7), all the states of the intersection automaton IΥ which are not states QPb of
the automaton Pb associated with the sub-property Sb are considered.

Algorithm 4 Computation of the function Π.

1: procedure ΠIDENTIFIER(IΥ)
2: for q0 ∈ Q0

I ∩ PRIΥ do
3: FORWARDΠIDENTIFIER(q0, IΥ, PRIΥ

, G);
4: FORWARDΠIDENTIFIER(q0, IΥ, QIΥ

\QPb , Y );
5: end for
6: BACKWARDΠIDENTIFIER(IΥ, PRIΥ

, R);
7: BACKWARDΠIDENTIFIER(IΥ, QIΥ \QPb , Y );
8: end procedure

The FORWARDΠIDENTIFIER procedure described in Algorithm 5 starts from a state
s and searches for runs that involve only states in the set Q (passed as parameter) until
an incoming transition of a sub-property Sb is reached. Whenever a state s is visited
by the algorithm, it is hashed (Line 2), then, each outgoing transition (s, a, s′) of the
state s (Line 3) is analyzed. If the destination state s′ is in Q (Line 4) and it has not
already been hashed (Line 5), then the FORWARDΠIDENTIFIER is continued (Line 6).
If this is not the case, it means that the state s′ is the destination of the incoming port
(s, a, s′), thus, (s, a, s′) is marked as C (where C is the value between G and Y passed
as parameter) through the function Π (Line 9). Note that, an incoming transition is not
marked as Y if it has been already marked as G.

Theorem 5.2.4 (FORWARDΠIDENTIFIER complexity). The procedure described in Al-
gorithm 5 can be performed in time O(|QIΥ|+ |∆IΥ |).

Proof. It is easy to prove that each state and transition of the cleaned intersection au-
tomaton IΥ is visited at most once, since it is visited if and only if it has not been
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Algorithm 5 The procedure to find the incoming transitions to be marked as G and Y .

1: procedure FORWARDΠIDENTIFIER(s, IΥ, Q, C)
2: hash(s);
3: for (s, a, s′) ∈ ∆IΥ

do ;
4: if s′ ∈ Q then
5: if s′ not hashed then
6: FORWARDΠIDENTIFIER(s′, IΥ, Q, C);
7: end if
8: else
9: Π(s, a, s′) = C;

10: end if
11: end for
12: end procedure

hashed before. At each step, a finite and constant number of operations is performed
leading the O(|QIΥ|+ |∆IΥ |) temporal complexity.

The BACKWARDΠIDENTIFIER procedure is described in algorithm 6. The algo-
rithm first looks for the non trivial strongly connected components that involve only
states which are in the set Q (passed as parameter). To this purpose the algorithm con-
structs a version IQ of IΥ that contains only the states of IΥ that belongs to Q (Line 2).
Then, the non trivial strongly connected components of IQ are identified (Line 3). The
set next is initialized to contain all the strongly connected components that contains at
least a state which is accepting (Lines 4-9).

Then, the state space of I is explored to compute the outgoing transitions from
which it is possible to reach one of the states in the set next. The set visited (Line 10)
is used to keep track of the already visited states of I. The algorithm iteratively chooses
a state s in the set next (Lines 11,12), which is removed from next (Line 14) and added
to the set of visited states (Line 13). For each incoming transition (s′, a, s) ∈ ∆I of
s (Line 15), if the state s is a state of the sub-property (Line 16) the corresponding
transition is marked with the value C passed as parameter (Line 17). Otherwise, if the
purely regular state ′ has not already been visited (Line 19) it is added to the set next
of states to be considered next (Line 20).

Algorithm 6 The procedure to find the outgoing transitions to be marked as R and Y .

1: procedure BACKWARDΠIDENTIFIER(IΥ, Q, C)
2: IQ ←ABSTRACT(IΥ, Q);
3: SCC ←GETNONTRIVIALSCC(IQ);
4: next← {};
5: for scc ∈ SCC do
6: if scc ∩ FI 6= ∅ then
7: next← next ∪ scc;
8: end if
9: end for

10: visited← {};
11: while next 6= ∅ do
12: s← CHOOSE(next);
13: visited← visited ∪ {s};
14: next← next \ {s};
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15: for (s′, a, s) ∈ ∆I do
16: if s′ ∈ QSb then
17: Π(s′, a, s) = C;
18: else
19: if s′ 6∈ visited then
20: next← next ∪ {s′};
21: end if
22: end if
23: end for
24: end while
25: end procedure

Theorem 5.2.5 (BACKWARDΠIDENTIFIER complexity). The procedure described in
Algorithm 6 can be performed in time O(|QIΥ|+ |∆IΥ |).

Proof. The algorithm first extracts a version IQ of the intersection automaton which
contains only the states in Q (Line 2). This can be done by exploring the state space
of the intersection automaton IΥ and isolating the portions of the state space of in-
terest. Then (Line 3), the list of non trivial strongly connected components SCC is
isolated. This can be performed in time O(|QIΥ| + |∆IΥ|), for example by using the
well known Tarjan’s Algorithm [128]. The only states added to the set next are the
states that belong to a strongly connected component which contains at least one ac-
cepting state (Lines 5-8). Starting from these states, the backward search is performed
(Lines 11-24). This search visits each state and transition at most once. Thus, the
BACKWARDΠIDENTIFIER algorithm has aO(|QIΥ |+|∆IΥ|) temporal complexity.

The last step of the sub-property identification procedure concerns the computation
of the reachability relation. The reachability relation specifies how the presence of a
run that traverses a sub-property influences the reachability of another run that traverses
the sub-property itself. Imagine for example that the high level model of the system is
the one presented in Figure 5.5. Differently from the model presented in Figure 4.1, in
this case, the box send2 is not contained in the IBA and send1 can be left also through
a transition that moves the system into the state q4. Whenever the system reaches the
state q4, a timer is started. The transition 7 is fired whenever the timer_ack proposition
is true, i.e., the system is notified that the time has been elapsed. The developer can now
choose to propose a replacement for the box send1 that behaves as follows. Whenever
the replacement is entered through the transition 1, a sending activity is performed. If
the sending activity succeeds, the transition 3 is fired, otherwise, the transition 6 which
activates the timer is performed. If, instead, the replacement is entered through the
transition 7 and the send activity fails, the transition 2 is fired. Imagine that one of
the properties of the system specifies that only one sending message activity must be
performed by the system. The developer must know that if he/she designs the system
such that a send activity is performed on a run that connects 1 to 6, he/she can not
replicate this activity in the run that connects 7 to 2 and vice versa. This is exactly
the purpose of the reachability relation which specifies how the internal runs of a sub-
property influence each others.

The reachability relation is computed by abstracting the portion of the state space
that connects the two runs of the sub-property in the intersection automaton, and spec-
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Figure 5.5: A modeling alternative for the sending message protocol example.

ifies if from an outgoing transition δout ∈ ∆outSb of the sub-property it is possible
to reach its incoming transition δin ∈ ∆inSb . Two versions of the reachability rela-
tion can be considered depending on whether the replacement of other boxes can be
traversed, upper reachability relation, or not, lower reachability relation. In the first
case, other boxes can be crossed, i.e., the replacements of other boxes allow to reach
their outgoing transitions, while in the first case, only the behavior of the system which
has been already specified is considered. The reachability relation will be graphically
specified through directed dotted edges which connects the outgoing transitions of the
sub-property with the corresponding incoming transitions.

Definition 5.2.5 (Lower reachability relation). Given a sub-property Sb associated with
the intersection automaton I and the set of its incoming and outgoing transitions ζ =

∆inSb ∪ ∆outSb , the lower reachability relation ℵc = ∆outSb × ∆inSb is a relation,
such that given an outgoing transition δo = (s, a, s′) and an incoming transition δi =
(s′′, a, s′′′), (δo, δi) ∈ ℵc if and only if one of the following conditions is satisfied:

1. δo = δi;

2. there exist an accepting run ρω, and two indexes i, j ≥ 0 such that s′ = ρω(i) and
s′′ = ρω(j) and for all k, such that j ≥ k ≥ i, ρω(k) ∈ PRIΥ .

In other words, the reachability relation specifies how outgoing and incoming tran-
sitions of the sub-property are connected in the intersection automaton.

Proposition 5.2.1. In the worst case, the lower reachability relation has a dimension
which is O(|∆outSb| · |∆inSb|).

Differently from the lower reachability relation, in the upper reachability relation,
an outgoing and an incoming transitions of the sub-property Sb-which refer to a black
box state b of the model M-are connected if and only if there exists a run between
them that potentially involves also mixed states of the intersection automaton that do
not refer to b, i.e., any state in QI \QPb .

Definition 5.2.6 (Upper reachability relation). Given a sub-property Sb associated to
the intersection automaton I and the set of its incoming and outgoing transitions
ζ = ∆inSb ∪ ∆outSb , the upper reachability relation ℵ = ∆outSb × ∆inSb is a rela-
tion such that, given an outgoing transition δo = (s, a, s′) and an incoming transition
δi = (s′′, a, s′′′), (δo, δi) ∈ ℵ if and only if one of the following is satisfied:
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1. δo = δi;

2. there exist an accepting run ρω and two indexes i, j ≥ 0, such that s′ = ρω(i) and
s′′ = ρω(j) and for all k such that j ≥ k ≥ i, ρω(k) 6∈ QPb .

Proposition 5.2.2. In the worst case, the upper reachability relation has a dimension
which is O(|∆outSb| · |∆inSb|).

The procedure used to compute the upper and the lower reachability relation is
described in Algorithm 7, where ∆outSb and ∆inSb are the outgoing and incoming tran-
sitions of the sub-property Sb to be considered, IΥ is the intersection automaton, Q
is the set of the states to be considered in the computation of the reachability relation
and i represents the lower (ℵc) or the upper (ℵ) reachability relation. When the upper
reachability relation of a sub-property Sb is computed, all the states of the intersec-
tion automaton with the exception of the states in QSb are considered; when the lower
reachability relation is considered Q contains the purely regular states of the intersec-
tion automaton.

The procedure described in Algorithm 7 first computes an abstraction of the state
space which only contains the states in the set Q (Line 2). Then (Line 3), for every pair
of states (s, s′), the Floyd-Warshall algorithm [58] is used to compute if s′ is reachable
from s. Then, each incoming (s, a, s′) (Line 4) and outgoing (s′′, a, s′′′) (Line 5) tran-

Algorithm 7 The procedure to compute the reachability relation.

1: procedure REACHABILITYRELATIONIDENTIFIER(∆outSb , ∆inSb , IΥ, Q, i)
2: IQ ←ABSTRACT(IΥ, Q);
3: Rec← FLOYDWARSHALL(IQ);
4: for (s, a, s′) ∈ ∆outSb do
5: for (s′′, a, s′′′) ∈ ∆inSb do
6: if ((s′, s′′) ∈ Rec) or ((s, a, s′) = (s′′, a, s′′′)) then
7: i = i ∪ 〈(s, a, s′), (s′′, a, s′′′)〉;
8: end if
9: end for

10: end for
11: end procedure

sition is analyzed. If it is possible to reach s′′ from s′ (Line 6), it means that there exists
a run which contains only states in Q which allows to reach (s, a, s′) from (s′′, a, s′′′).
Thus, the pair 〈(s, a, s′), (s′′, a, s′′′)〉 is added to the reachability relation i (Line 7).

Theorem 5.2.6 (REACHABILITYRELATIONIDENTIFIER correctness). The procedure
described in Algorithm 7 is correct.

Proof. Let us first consider the case in which the lower reachability relation is consid-
ered. It is necessary to prove that (δo, δi) ∈ ℵc if and only if one of the conditions 1 or
2 of Definition 5.2.5 is satisfied.

(⇐) If δo is equal to δi (condition 1), (δo, δi) is added in the reachability relation ℵc
in Line 7 since the condition in Line 6 is satisfied. If instead there exists a run, which
contains only purely regular states, that connects the state s′ to the state s′′ (condition 2),
the tuple (s′, s′′) is added to the relation Rec returned by the Floyd-Warshall algorithm,
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which makes the condition in Line 6 satisfied and implies that (δo, δi) is added to the
reachability relation ℵc.

(⇒) If a tuple (δo, δi) belongs to ℵc, the procedure described in Algorithm 7 has
added it to the lower reachability relation. To be added to this relation two cases are
possible: a) the first clause of condition specified in Line 6 is triggered. Since (s′, s′′)
is in Rec it must exists a run made by states contained in the set Q which allow to reach
s′′ from s′ which implies that the condition 1 is satisfied; b) the second clause of the
condition specified in Line 6 is satisfied. In this case δo is equal to δi which makes the
condition 2 satisfied.

The same approach can be used to demonstrate that the procedure is correct when
the upper reachability relation is considered.

Theorem 5.2.7 (Constraint computation complexity). Given a sub-property Sb, as-
sociated with the box b, the procedure described in Algorithm 7 can be executed in
O(|Q3|+ |∆outSb| · |∆inSb|).

Proof. As previously mentioned the abstraction procedure (Line 2) can be executed
in time O(|QIΥ| + |∆IΥ|). The Floyd Warshall algorithm (Line 3) has a temporal
complexity O(Q3), while the steps described in Lines 4-10 have a |∆outSb| · |∆inSb|
complexity. Thus, the final complexity of the algorithm is O(|Q3|+ |∆outSb| · |∆inSb|).

Together with the reachability relation the functions ΓκM, ΓκAφ
are computed, where

κ may refer to ℵ or ℵc. For each tuple (δi, δo) ∈ ℵ and (δi, δo) ∈ ℵc these functions
specify whether there exists a run that connect the outgoing and the incoming transitions
that contains an intersection state made by an accepting state of the model (ΓκM) and
an intersection state made by an accepting state of the sub-property (ΓκAφ), respectively.
These functions specify the developer whether the presence of an accepting state in the
replacement may lead to a violating run in the cases in which fairness conditions are
considered.

A constraint Γ contains the set of sub-properties ζ on the replacements of the boxes
b1, b2, . . . bn ∈ BM that guarantee that φ is satisfied. Furthermore, for each box b the
constraint contains a function U which specifies whether exists in the intersection au-
tomaton IΥ a possible violating run which does not involve any state of the intersection
automaton generated by the box b ∈ BM.

Definition 5.2.7 (Constraint). Given the cleaned intersection automaton IΥ of the in-
tersection automaton I = M ∩ Aφ obtained from the IBA M and the BA Aφ, the
constraint C is a tuple 〈ζ,U〉, where ζ is obtained as specified in Definition 5.2.3 and
U : BM → {T, F}, such that

• U(b) = T ⇔ there exists an accepting run ρω in IΥ such that for all i ≥ 0, ρω(i) 6∈
QPb

The value of the function U can be computed by running |BM| times the emptiness
checking procedure on the automaton IΥ (each time by removing the portion of the
state space that refers to a box b under analysis).
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5.3 Replacement checking

At each refinement round i ∈ RR, the developer produces a replacement Rb for a
black box state b. The developer may want to check whether the properties of interest
are satisfied by the new design. The refinement checking problem is the problem of
checking whether the replacement makes the original property φ satisfied, not satisfied
or possibly satisfied.

The replacement checking problem can be formulated as follows:

Definition 5.3.1 (Refinement Checking). Given a refinement round i ∈ RR, where the
developer refines the box b ofM through the replacement Rb, the refinement checking
problem is to compute whether the refined automaton N , obtained by composing the
replacement Rb of the box b and the model M, satisfies, does not satisfy or possibly
satisfies the property φ.

For example, assume that the box send1 of the modelM, presented in Figure 4.1, is
refined using the replacementRsend1 described in Figure 5.6a. The replacementRsend1 ,
after it is entered through the incoming transition labeled with start, reaches the state
q14. Then, the message is sent and the system moves from q14 to q15. After the sending
activity, the system waits for a notification by moving to the state q16. The state q16 is
a box, meaning that it still has to be refined. When the replacement of q16 is left, two
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q16-9-
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q17
-10-

{timeout}

q18
-11-
{ack} -7-

{ok}

send1

-6-
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{start}

q1

q3

send2

(a) The replacementRsend1
of the box send1.

q1

q3

send2 q2
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-4-
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-7-
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{fail}
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q17
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q18
-11-
{ack} -3-
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(b) The refinementN obtained by plugging the replacementRsend1
into the modelM.

Figure 5.6: The replacement Rsend1
of the model M presented in Figure 4.1 and the refinement N

obtained by plugging the replacementRsend1 into the modelM.

cases are possible: a timeout event occurs and the system moves to the state q17 or an
ack message is received which makes the system moving to q18. In the first case, the
replacement is left through the transition labeled with fail which moves the system to
the state send2. In the second, the replacement is left through the transition labeled
with ok which moves the system to the state q3. The replacement checking problem
is the problem of verifying whether the refined model N (the initial model M plus
the replacement of the box) satisfies the original property φ. The refined model N is
described in Figure 5.6b.
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Whenever a replacement for a black box state b is proposed the idea is to not consider
all the model from scratch, by generating its refinement N , but to only consider the
replacement Rb against the previously generated constraint C and more precisely the
corresponding sub-property Sb. For example, the replacement of the box send1 can
be considered in relation to the sub-property Ssend1 specified in Figure 5.4a. The sub-
property specifies that any finite path that crosses the box send1, entering the box by
means of the incoming transition 1 (which arrives from the state q1) and leaving the
replacement through a transition marked with fail (which reaches the state send2)
is a possibly violating run. The run is possibly violating since if we do not satisfy
the constraint we cannot claim that the property is not satisfied, since the violation
may depend on the replacement proposed for the other boxes. Similarly, the possibly
violating runs also include any finite run entering from the transition which arrives from
the state q1 in which a send is not followed by a success before leaving the replacement
through a transition marked with fail and with destination the state send2.

Checking whether a replacement satisfies a sub-property can be reduced to two
emptiness checking problems. The first emptiness checking procedure considers an
automaton which encodes the set of behaviors the system is going to exhibit at run-
time (an under approximation), and checks whether the property φ is violated. The
second analyzes an automaton which also contains the behaviors the system may ex-
hibit (an over approximation). The under and the over approximation automaton are
generated starting from a common intersection automaton. Section 5.3.1 describes the
intersection between a replacement and the corresponding sub-property and how the
under and the over approximation are obtained from this intersection. Section 5.3.2
presents the replacement checking procedure.

5.3.1 Intersection between a sub-property and replacement

The basic version of the intersection automaton between a replacementRb and the sub-
property Sb of the box b, from which the under and over approximation are computed,
is described in Definition 5.3.2.

Definition 5.3.2 (Intersection between a sub-property and a replacement). Given the
sub-property Sb = 〈Pb,∆inSb , ∆outSb ,Π,ℵ,ℵc,ΓκM,ΓκAφ〉 associated with the box b,

and the replacement Rb = 〈Mb,∆
inRb , ∆outRb〉, the intersection I = Sb ∩ Rb is a

tuple 〈Ib,∆inIb , ∆outIb ,Πb〉 such as:

• Ib is the intersection automaton. Ib is obtained as specified in Definition 5.1.1,
consideringMb and Pb as model and claim, respectively;

• ∆inIb = {(q, a, 〈q′, p, x〉) | (q, a, q′) ∈ ∆inRb , (q, a, p) ∈ ∆inSb and x ∈ {0, 1, 2}};

• ∆outIb = {(〈q′, p, x〉, a, q) | (q′, a, q) ∈ ∆outRb , (p, a, q) ∈ ∆outSb and x ∈
{0, 1, 2}};

• Πb : ∆inIb∪∆outIb → {G, Y,R}, Π(δ) = Π(δ′) where δ′ is the incoming/outgoing
transition of Sb from which δ is obtained.

Informally, the intersection between a replacement Rb and the corresponding sub-
property Sb is an automaton which is obtained by the intersection of the automata
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associated with Rb and Sb and a set of incoming and outgoing transitions that cor-
responds to the synchronous execution of the transitions of Rb and Sb. For example,
the intersection between the replacement Rb described in Figure 5.6a and the corre-
sponding sub-property presented in Figure 5.4a is presented in Figure 5.73. For each
δ ∈ (∆inIb ∪ ∆outIb) we say that Π(δ) = Π(δ′), where δ′ is the incoming/outgoing
transition of the sub-property from which δ is obtained.
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Figure 5.7: Intersection between the replacementRsend1
described in Figure 5.6a and the sub-property

Ssend1
presented in Figure 5.4a.

As for the case of IBA, we define as Ic the intersection obtained considering the
completeness version Mbc of Mb. The intersection between the sub-property Sb =

〈Pb,∆inSb ,∆outSb ,Π,ℵ,ℵc,ΓκM,ΓκAφ〉 associated to the box b and the replacementRb =

〈Mb,∆
inRb , ∆outRb〉 has the same structure of a replacement (Defined in 4.2.3), i.e., it

contains an automata and a set of incoming and outgoing transitions, and it can be asso-
ciated with finite internal, infinite internal, finite external and infinite external accepting
runs as defined in Section 4.2.2.

Lemma 5.3.1 (Finite internal intersection language). The intersection automaton I =
Rb ∩ Sb between the replacement Rb and the sub-property Sb recognizes the finite
internal language Li∗(I) = (Li∗(Rb) ∪ Li∗p (Rb)) ∩ L∗(Sb), i.e., v ∈ Li∗(I) ⇔ v ∈
((Li∗(Rb) ∪ Li∗p (Rb)) ∩ Li∗(Sb)).

Proof. (⇒) If a word v ∈ Li∗(I), it must exists a finite internal run ρ∗ in the intersection
automaton I where the initial states are the initial states of the intersection automaton
and the final states are the destinations of the outgoing transitions of I. Since ρ(0) must
be an initial state of the intersection automaton, it must be obtained from an initial state
of the automatonRb associated with the replacement of the black box b. Let us identify
with ρRb(0) the state of the replacement Rb from which ρ(0) is obtained. For each
i, such that 0 ≤ i < |ρ|, for each transition (ρ(i), a, ρ(i + 1)) that moves the system
from the state ρ(i) to the state ρ(i+ 1), it must exist a transition (ρRb(i), a, ρRb(i+ 1))
in the automaton Rb, which corresponds to the replacement of the box b, or ρRb(i) =
ρRb(i + 1) and ρRb = b4. Since the last state of the run ρ(|v|) is the destination of an

3Note that Figure 5.7 only contains the portion of the state space where x = 0.
4This follows from the definition of the intersection (see Definition 5.1.1).
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outgoing transition of I, and the outgoing transitions of the intersection are obtained
by synchronously executing transitions of the replacement and the sub-property, the
transition must also be outgoing for the replacement. This implies that ρRb(i) is a
finite internal run (accepting or possibly accepting depending on the presence of boxes)
for the replacement Rb. The same reasoning can be applied to demonstrate that v is
contained in the language L∗(Sb).
(⇐) The proof is by contradiction. Assume that there exists a word v 6∈ Li∗(I) which is
in ((Li∗(Rb)∪Li∗p (Rb))∩L∗(Sb)). Since v ∈ ((Li∗(Rb)∪Li∗p (Rb))∩L∗(Sb)), it must
exist a finite run ρRb in the replacement and in the sub-property ρSb associated with v.
Given the initial states ρRb(0) and ρSb(0) of the model and the claim, respectively, from
which the initial state of the run is obtained, it must exist by construction a state s in the
intersection automaton I which is obtained by combining these two states. This state
by construction is also initial for the intersection automaton. Let us identify with ρI the
run that starts from this state. For each 0 < i < |v|−1, ρI(i+1) is associated to the state
of the intersection automaton obtained by combining ρRb(i + 1) and ρSb(i + 1). Note
that if ρRb(i) and ρSb(i) are connected to ρRb(i + 1) and ρSb(i + 1) with a transition
labeled with vi, or ρSb(i) is connected to ρSb(i + 1) and ρRb(i) is a box, then ρI(i)
and ρI(i + 1) are connected by a transition labeled with vi by construction. Finally,
the states ρRb(|v|) and ρSb(|v|) are the destinations of the outgoing transitions of Rb

and Sb by construction. Indeed, it must exist an outgoing transition of the intersection
automaton that corresponds to the synchronous execution of the outgoing transitions of
Rb and Sb. Thus, the run ρI is a finite accepting run for the intersection automaton and
v 6∈ Li∗(I) that contradicts the hypothesis.

Lemma 5.3.2 (Finite external intersection language). The intersection automaton I =
Rb ∩ Sb between the replacement Rb and the sub-property Sb recognizes the finite
external language Le∗(I) = (Le∗(Rb) ∪ Le∗p (Rb)) ∩ Le∗(Sb), i.e., v ∈ Le∗(I) ⇔ v ∈
((Le∗(Rb) ∪ Le∗p (Rb)) ∩ Le∗(Sb)).

Lemma 5.3.3 (Infinite internal intersection language). The intersection automaton I =
Rb ∩ Sb between the replacement Rb and the sub-property Sb recognizes the infinite
internal language Liω(I) = (Liω(Rb) ∪ Liωp (Rb)) ∩ Liω(Sb), i.e., vω ∈ Liω(I)⇔ v ∈
((Liω(Rb) ∪ Liωp (Rb)) ∩ Liω(Sb)).

Lemma 5.3.4 (Infinite external intersection language). The intersection automaton I =
Rb ∩ Sb between the replacement Rb and the sub-property Sb recognizes the infinite
external language Leω(I) = (Leω(Rb) ∪ Leωp (Rb)) ∩Leω(Sb), i.e., vω ∈ Leω(I) ⇔
v ∈ ((Leω(Rb) ∪ Leωp (Rb)) ∩ Leω(Sb)).

Proof. The proofs of Lemmas 5.3.2, 5.3.3 and 5.3.4 can be easily derived from the
proof of Lemma 5.3.1.

The under approximation automaton is used by an emptiness checking procedure
to verify whether the claim is not satisfied, i.e., it encodes the behaviors that violate
the property of interest. The automaton is computed exploiting the information of the
lower reachability relation ℵc and in the Π function.

Definition 5.3.3 (Under approximation automaton). Given the sub-property Sb = 〈Pb,
∆inSb , ∆outSb ,Π,ℵ,ℵc〉 associated to the box b, the replacement Rb = 〈Mb,∆

inRb ,
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∆outRb〉, two additional automata states g and r, the under approximation automaton
Ec is the automaton obtained from Ic as follows:

• ΣEc = ΣIc;

• QEc = QIc ∪ {g, r};

• ∆Ec = ∆Ic ∪∆in
Ec ∪∆out

Ec ∪∆ℵcEc ∪∆stut
Ec , where

– ∆stut
Ec = {(r, stut, r)};

– ∆in
Ec = {(g, a, s′) | (s, a, s′) ∈ ∆inIb and Π((s, a, s′)) = G};

– ∆out
Ec = {(s, a, r) | (s, a, s′) ∈ ∆outIb and Π((s, a, s′)) = R};

– ∆ℵcEc = {(〈q, p, x〉, ε, 〈q′, p′, y〉) | ((q, a, q′′), (q′′′, b, q′)) ∈ ℵc}. Moreover,
the values x and y associated with δo = (q, a, q′′), and δi = (q′′′, b, q′) must
satisfy the following conditions:
∗ if ΓℵcM(δo, δi) = T and ΓℵcAφ

(δo, δi) = T then y = 2;

∗ else if x = 1 and ΓℵcAφ
(δo, δi) = T or p′ ∈ FPb then y = 2;

∗ else if x = 0 and ΓℵcM(δo, δi) = T and p′ ∈ FPb then y = 2;

∗ else if x = 0 and ΓℵcM(δo, δi) = T or q′ ∈ FRb then y = 1;
∗ else if x = 2 then y = 0;
∗ else y = x.

• Q0
Ec = Q0

Ic ∪ {g};

• FEc = FIc ∪ {r}.

The completion of the extended intersection automaton contains all the behaviors
of the intersection automaton that violate the claim φ plus additional transitions which
specify how these behaviors are related to each others. The state g is used as a place-
holder to represent the initial states of the system and the transitions in ∆in

Ec specify
how the states of the intersection are reachable from the initial states. Similarly, the
state r and the transition in ∆stut

Ec are used as placeholders for a suffix of a run that
does not involve the replacement of boxes and violates the claim. The transitions in
∆out
Ec specify how it is possible to reach this violating run from the intersection be-

tween the sub-property and the refinement. Finally, the transitions in ∆ℵcEc specify how
the violating behaviors of the intersection automaton between the replacement and the
sub-property (which are portions of the intersection automaton between the refinement
and the property) influence each other. Note that, as done in the computation of the
classical intersection automaton, it is necessary to compute the value of y in the inter-
section state 〈q′, p′, y〉. The value of y depends on the presence of accepting states of
the replacement and the sub-property over the runs made by purely regular states that
connect the outgoing to the incoming transitions of the replacement, i.e., on the func-
tions ΓℵcM, ΓℵcAφ

. More precisely, y is identified as follows: whenever there exists both
an accepting state of the model and of the claim in the original intersection automaton
in a run made by purely regular states that connects the outgoing transition δo and the
incoming transition δi, the value of y is 2 to force the presence of an accepting state in
the run. Similarly, if the value of x is equal to 1 and there exists a run in the intersection
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automaton that connects δo to δi which traverses an accepting state of Pb, the value of
y is set to 2 to force the presence of an accepting state in the run. Finally, y = 2 also if
the value of x is equal to 0 there exists a run in the intersection automaton that connects
δo to δi which traverses an accepting state of the modelM and the destination state is
accepting for the sub-property. Otherwise, if the value of x is equal to 0 and there exists
a run in the intersection automaton that connects δo to δi which traverses an accepting
state of the modelM or the destination state is an accepting state of the replacement
Rb then y = 1. If x = 2, then y = 0. In the other cases y = x.
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Figure 5.8: The under approximation of the intersection described in Figure 5.7.

For example, the under approximation of the intersection automaton described in
Figure 5.7 is presented in Figure 5.8. Note that the reachability relation does not cause
the injection of any transition in the intersection automaton. Furthermore, the accepting
state marked with r is not reachable.

The over approximation of the intersection automaton is similar to the under approx-
imation, but the upper reachability relation ℵ and the incoming and outgoing transitions
also marked with a Y symbol through the function Π are considered. This because the
over approximation is the automaton to be used by the emptiness checking procedure
to verify whether the claim is possibly satisfied.

Definition 5.3.4 (Over approximation automaton). Given the sub-property Sb = 〈Pb,
∆inSb ,∆outSb ,Π,ℵ,ℵc〉 associated with the box b, and the replacement R = 〈Mb,
∆inRb , ∆outRb〉, the extended intersection automaton E is the automaton obtained from
I such as:

• ΣE = ΣI;

• QE = QI ∪ {g, r, yi, ya};

• ∆E = ∆I ∪∆in
E ∪∆out

E ∪∆ℵcE ∪∆stut
E , where

– ∆stut
E = {(r, stut, r), (ya, stut, ya)};

– ∆in
E = ∆in

Ec ∪ {(yi, a, s
′) | (s, a, s′) ∈ ∆inIb and Π(s, a, s′) = Y };

– ∆out
E = ∆out

Ec ∪ {(s, a, ya) | (s, a, s
′) ∈ ∆outIb and Π(s, a, s′) = Y };

– and ∆ℵ is defined as ∆ℵc with the exception that the upper reachability rela-
tion ℵ and the functions ΓℵM, ΓℵAφ

are considered;

• Q0
E = Q0

I ∪ {g, yi};

• FE = FI ∪ {r, ya};
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Figure 5.9: The over approximation of the intersection automaton described in Figure 5.7.

Since the extended intersection automaton contains all the behaviors of the intersec-
tion automaton that violate and possibly violate the claim φ, it includes all the runs that
connect an incoming transition marked as G or Y with an outgoing marked as R or Y .
These runs may include transitions of the intersection automaton (which can be also
generated by other boxes of the model), or transitions of the reachability graph, which
are used to abstract runs of the intersection betweenM and Aφ made by only purely
regular and mixed states.

A portion of the over approximation of the intersection automaton described in Fig-
ure 5.7 is presented in Figure 5.9. Note that the state ya which describes the presence
of a suffix of a possibly violating is reachable from the intersection automaton.

5.3.2 The model checking procedure

The replacement checking procedure, given the constraint C and a replacement Rb,
checks whether Rb satisfies, possibly satisfies or does not satisfy C. The replacement
Rb does not satisfy the constraint C if and only if the under approximation of the inter-
section automaton obtained considering the sub-property Sb associated to the box b and
the replacement Rb is not empty. The replacement Rb possibly satisfies the constraint
C if and only if the over approximation of the intersection automaton is not empty or
U(b) = T , otherwise, the constraint is satisfied. Formally,

Definition 5.3.5 (Replacement checking). Given the constraint C = 〈ζ,U〉, the sub-
property Sb = 〈Pb,∆inSb , ∆outSb ,Π,ℵ,ℵc,ΓκM,ΓκΦ〉, such that Sb ∈ ζ associated to the
box b, and the replacementRb = 〈Mb,∆

inRb , ∆outR
s 〉,

1. ‖RCb‖ = F ⇔ L(Ec) 6= ∅;

2. ‖RCb‖ = T ⇔ L(E) = ∅ ∧ U(b) = F ;

3. ‖RCb‖ = ⊥ ⇔ ‖RC‖ 6= F ∧ ‖RC‖ 6= T .

where Ec and E are the automata obtained as specified in Definitions 5.3.3 and 5.3.4.

The idea behind the model checking procedure proposed in this section is to reduce
the model checking problem to a cycle detection problem. A similar idea has been

84



5.3. Replacement checking

used, for example, in the model checking of Hierarchical Kripke structures [8]. To
demonstrate the correctness of our definition, we prove that checking a replacementRb

versus its constraint C corresponds to checking the refined automaton N against the
property φ.

Theorem 5.3.1 (Replacement checking correctness). Given a modelM, a property φ,
a replacementRb for a box b and the constraint C obtained as previously described:

1. ‖RCb‖ = F ⇔ ‖NAφ‖ = F ;

2. ‖RCb‖ = T ⇔ ‖NAφ‖ = T ;

3. ‖RCb‖ = ⊥ ⇔ ‖NAφ‖ = ⊥.

Proof. Let us starts by proving condition 1.
(⇒) If ‖RCb‖ = F by Definition 5.3.5 condition 1 it must exist a word v accepted by

the automaton Ec. Let us consider the run ρωEc associated with v. We want to generate a
run ρωI in the intersection automaton I between the model N and the claim Aφ which
corresponds to ρωEc . Let us consider the initial state ρωEc(0) of the run ρωEc . Two cases are
possible: a) ρωEc(0) is obtained by combining an initial state p of the automaton Pb of
the sub-property Sb and an initial state q of the replacement Rb. Note that the initial
state p of the sub-property was obtained by combining an initial state p′ of the property
Aφ with a state q′ of M which must be both initials. Furthemore, q′ must be a box
from construction (see Definitions 5.1.1 and 5.2.3). Since the refinement N contains
all the states of the replacement Rb and an initial state of Rb is also initial for N , it is
possible to associate to ρωI (0) the state 〈q′, p, 0〉 of I. b) ρωEc(0) corresponds to the state
g. Consider a transition δ ∈ ∆in

Ec that starts from the g state. The transition δ is obtained
by combining a transition δinRb ∈ ∆inRb with a transition δinSb ∈ ∆inSb , which is in
turn obtained by combining a transition δM ∈ ∆M and a transition δAφ ∈ ∆Aφ . Let
us consider the source states qM and pM of the transitions δM and δAφ it is possible to
replicate the run that reaches these states in the intersection automaton I since by def-
inition plugging a replacement (Definition 4.2.8) does not modify behaviors in which
only regular states are involved. Furthermore, the transition obtained from δinRb and
δinSb can be associated with the transition of the intersection automaton obtained com-
bining δinRb and δAφ . Let us now consider the other states of the run. Each state of the
under approximation automaton can be rewritten as 〈qR, 〈b, p, x〉, y〉 since it is obtained
by combining a state of the sub-property, which has the form 〈b, p, x〉, with a state qR of
the replacement. Each of these states can be associated with the state 〈qR, p, y〉 of the
intersection between the replacement and the sub-property. Similarly, each transition
δI ∈ ∆I of the intersection between the replacement and the sub-property is obtained
by firing a transition of the replacement and an internal transition of the sub-property
which corresponds to a transition of the original property, i.e., in ∆Aφ , and a transition
of the model, i.e., in ∆M. Thus, the same transition can be identified in the intersec-
tion automaton obtained considering N and Aφ. Let us finally consider a transition
(ρEc(i), a, ρEc(i+ 1)) ∈ (∆ℵcEc ∪∆stut

Ec ) from construction (see Definitions 5.2.5) it must
exists a sequence of transitions in the automaton I obtained from N and Φ that con-
nect only purely regular states and reach an accepting state that can be entered infinitely
often and corresponds to this transition.
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(⇐) The proof is by contradiction. Let us assume that ‖RCb‖ 6= F and ‖NAφ‖ = F .
Since ‖NAφ‖ = F , it must exist a word v accepted by the automaton I obtained from
N and Aφ. Since this run must be accepting, it must involve only purely regular states
of I. However, since v was not accepted by the intersection obtained fromM and Aφ,
some of these states must obviously be obtained by combining states of Rb and of Aφ.
This implies the presence of an accepting run in the automaton Ec, which may connect
the state “g" with the state “r" or another accepting state of Ec that can be entered
infinitely often. Thus, ‖RCb‖ 6= F is contradicted.

Let us now consider the condition 2 of Theorem 5.3.1. The proof corresponds to the
one proposed for 1, but, in this case, the mixed states of the intersection automaton and
the upper reachability relation ℵ are considered. Furthermore, if the function U(b) =
T , the sub-property is possible satisfied. Indeed, in this case, there exists a possibly
accepting run in the intersection between the modelM and the property Aφ that does
not depend on the refinement of b. Thus, φ is possibly satisfied since the same run will
be present in the intersection between N and the property Aφ.

The proof of condition 3 of Theorem 5.3.1 follows from the proofs of conditions 1
and 2.

Lemma 5.3.5 (Checking a replacement complexity). The complexity of the model check-
ing procedure is proportional to the size of the automata E and Ec, which in the worst
case isO(|QRb |·|QPb|+|∆Rb|·|∆Pb|+|∆

inRb|·|∆inSb|+|∆outRb|·|∆outSb|+(|∆outSb |·
|∆inSb|) · (|∆outRb| · |∆inRb|))

Proof. The size of the automata described in Lemma 5.3.5 is justified by the following
statements. The size of the automaton obtained by considering the automatonMb as-
sociated with the replacement Rb of the box b and the automaton Pb associated with
the sub-property Sb contains in the worst case |QRb| · |QPb| states and |∆Rb| · |∆Pb|
transitions. This automaton can be reached through a set of transitions which are ob-
tained by the synchronous execution of an incoming transition of the replacement and
the sub-property, leading in the worst case to |∆inRb| · |∆inSb| transitions. Similarly,
the automaton can be left through a set of transitions obtained by the synchronous exe-
cution of an outgoing transition of the replacement and of the sub-property generating
in the worst case |∆outRb| · |∆outSb| transitions. Finally, each pair outgoing/incom-
ing transition contained in the reachability relation of the sub-property can be syn-
chronized with every pair outgoing/incoming transition of the replacement, leading to
(|∆outSb| · |∆inSb|) · (|∆outRb| · |∆inRb|)) transitions.
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CHAPTER6
Automated Tool Support

“I have been impressed with the urgency of doing. Knowing is not enough; we must apply. Being willing is not
enough; we must do.”

Leonardo da Vinci, 1452-1519

This section presents CHIA (CHecker for Incompete Automata) a prototype tool1

realized as a Java 7 stand-alone application. The tool has been developed as a proof
of concepts and does not aim to compete with state of the art model checking tools.
It provides a command-line shell which allows the developer to a) load the models,
the properties, the constraints and the replacements of interest; b) check the incom-
plete models against the corresponding properties; c) in the cases in which the property
is possibly satisfied, compute a constraint for the unspecified parts; d) check the re-
placement against the corresponding constraints. The tool is developed as a Maven
multi-module project. It is composed by different modules which encapsulate different
parts of the CHIA logic. Section 6.1 presents an overview of the CHIA framework.
Section 6.2 illustrates the CHIAAutomata module which contains the classes used
to explicitly model the state space of the automata. Section 6.3 describes the model
checker that bears the verification of the model expressed against the properties of in-
terest. Section 6.4 presents the CHIAConstraint module. This module includes the
classes which describe a constraint and the corresponding sub-properties. Section 6.5
specifies how the constraint is computed, while Section 6.6 contains the module which
allows to check a replacement against a previously generated constraint.

1The tool is available at http://home.deib.polimi.it/menghi/Tools/IncModChk.html.

http://home.deib.polimi.it/menghi/Tools/IncModChk.html


Chapter 6. Automated Tool Support

6.1 Overall framework

The CHIAFramework is the main module of CHIA. It contains the entry point for the
use of the framework, i.e., the method to run the command line shell. The command
line shell is implemented using the jline library [1], which allows to create interactive
command-line user interfaces.
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Figure 6.1: The state machine describing the behavior of the CHIA framework.

The state of CHIA changes in response to the user requests as specified in Figure 6.1.
The user can first select the modality of interest, i.e., if he/she wants to use the automata
checker (aut) or the replacement checker (rep). In the automata mode the user is able
to load the property from an automaton saved in an appropriate file (lp) or generating
the automaton from an LTL formula (lpLTL). Similarly, the model of the system is
loaded from an appropriate file, that contains the corresponding automaton, through
the command lm. After both the model and the property have been loaded, the devel-
oper may verify (ck) if the system possesses the properties of interest. If the property
is possibly satisfied the cc command allows the computation of the corresponding con-
straint. Whenever the replacement checking mode is activated (rep), the developer can
load the replacement (lr) and the corresponding constraint (lc). The ck command
verifies whether the refinement of the automaton possesses the properties of interest as
specified in Section 5.3.

The classes that support the state machine described in Figure 6.1 are contained in
different Maven modules.

6.2 Automata module

The CHIAAutomata module contains the classes which are used to manage BAs and
IBAs, i.e., the BA and IBA class. These two classes describe BAs and IBAs using an ex-
plicit representation of the state space, which is build upon the JGraphT library [94].
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6.2. Automata module

The class diagram of the CHIAAutomata module is represented in Figure 6.2 and is
hereafter discussed:

• State. It is used to represent a state of an automaton. Each state has two final
attributes, the id and the name which are returned through the corresponding
methods int getId() and String getName().

• StateFactory. It is used for creating the states of the automaton. It assign
an auto-generated id to the state, if it is not explicitly defined by the developer. It
implements the VertexFactory interface of JGraphT.

• Transition. It is used to represent a transition of an automaton (BA or IBA).
The transition is identified by an id and it is labeled with a Set of proposi-
tions, which are the propositions to be true for the transition to be fired. These
propositions are represented using the IGraphProposition interface of the
LTL2BA4J [3] tool. This choice allows the easy integration of the LTL2BA4J
library, which supports the conversion of LTL formulae into the correspond-
ing BAs. Note that this representation also allows a proposition to be negated,
i.e., to represent a condition that labels a transition of the property. The set
of propositions (negated or not) added to the transitions are considered as be-
ing connected by a logical AND. The Transition class which represents the
transitions of the automata extends the DefaultEdge class of JGraphT. The
id and the propositions are returned through the methods int getId() and
Set<IGraphProposition> getPropositions(), respectively.

+ addAcceptState(…)
+ addState(..)
+ getSuccessor(…)

- initialStates
- acceptStates
- automataGraph
- propositions

BA
+ getId(…)
+ getName(..)

- id
- name

State

+ getId(…)
+ getPropositions(..)

- id
- propositions

Transition

+ getBlackBoxes()

- blackBoxes

IBA

+ addMixedState(…)
+ addConstrainedTransition(..)

- mixedStates
- constrainedTransitions

IntersectionBA

+ create(…)

- stateCount

StateFactory

+ create(…)

ModelTransitionFactory

+ create(…)

- transitionCount

PropTransitionFactory

Figure 6.2: The class diagram of the CHIAAutomata module.

• ModelTransitionFactory. It is used to create the transitions of the model.
When the factory creates a transition of the model it checks that no negated propo-
sitions are used to decorate the transition, i.e., the propositions specify statements
that are true when the transition is performed.
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• PropTransitionFactory. It creates the transitions of the properties. In the
claim case, also negated propositions are allowed since the transition encodes a
condition (propositional logic formula) that must be satisfied for the transition to
be fired.

• BA. It contains the attributes and methods that describe a Büchi Automaton. The
automataGraph attribute of the BA class represents the graph upon which the
automaton is built. The graph is modeled using the DirectedPseudograph
class of the JGraphT library. The DirectedPseudograph class allows the
creation of a non-simple directed graph in which both loops and multiple edges
are permitted. The BA attributes include the set of initial states, the set of accept-
ing states, and the alphabet of the Büchi Automaton. The constructor of the BA
requires to specify the transition factory to be used. Depending on whether the BA
is used to represent the model or the claim to be checked a different factory can be
specified. The BA class provides methods to access the states of the BA, such as
the one that allow to get the successors of a state (getSuccessors()) or the
initial states (getInitialStates()) of the BA.

• IBA. It models an Incomplete Büchi Automaton. The IBA class extends the
BA class. The blackBoxes attribute is used to store the set of states of the
IBA which are black box. The black box states are returned by the method
getBlackBoxes().

• IntersectionBA. It contains the automaton obtained from the intersection
between a BA and an IBA. The IntersectionBA class extends BA. The
mixedStates attribute is used to store the set of mixed states. The mixed states
are obtained by considering a black box state of the model and a state of the prop-
erty as specified in Section 5.1.1. The constrainedTransition attribute is
used to store the transitions generated by performing a transition of the property
inside a box of the model as specified in Section 5.1.1.

6.2.1 Automata input/output module

The CHIAAutomataIO module provides the classes to load and save BAs and IBAs
from and to an appropriate XML file. The module uses the classes available in the
javax.xml.parsers package of Java instead of using existing libraries, such
as JAXB [2] or the GraphMLExporter class of JGraphT. This choice has been
performed to provide a higher flexibility and customization of the I/O Files. A portion
of the class diagram corresponding to the CHIAAutomataIO module, which refers to
the BA class, is presented in Figure 6.3. The same classes are also present for the IBA
class with a different implementation.

The classes presented in Figure 6.3 are designed to load and save a BA from the
corresponding XML file:

• PropReader. It is used to load a BA from the corresponding XML representation.
It is based on the ElementToBATransformer class which transforms an XML
element into the corresponding BA.

• ElementToBATransformer. It is used to transform an XML element which
represents a BA into the corresponding object.
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Figure 6.3: A portion of the class diagram of the CHIAAutomataIO module.

• BAElementToStateTransformer. It converts an XML element which rep-
resents a BA state into the corresponding State object.

• BAElementToTransitionTransformer. It is used to transform an XML
element which represents a BA transition into the corresponding Transition
object.

• StringToPropPropositions. It converts a String which specifies
the propositions that decorate the transition into the corresponding Set of
IGraphProposition.

• PropWriter. It is used to write a BA to the corresponding XML file. It uses
the BAToElementTrasformer which transforms a BA object into the corre-
sponding XML element.

• BAToElementTrasformer. It is used to transform a BA into the correspond-
ing XML element.

• BAStateToElementTrasformer. It converts a State object into the cor-
responding XML representation.

• BATransitionToElementTrasformer. It is used to transform a
Transition object into the corresponding XML representation.

• PropToStringPropositions. It converts a set of propositions into the cor-
responding String representation.

The structure of the XML files that contain the Büchi and the Incomplete Büchi
automata is specified in the BA.xsd and the IBA.xsd files.

Listing 6.1 contains the XML file of the model presented in Figure 5.1a.
The XML file is composed by three different parts delimited by the XML tags
<propositions>, <states> and <transitions> which contain the propo-
sitions, the states and the transitions of the IBA, respectively.

91



Chapter 6. Automated Tool Support

The name of each proposition of the automaton is specified into the name attribute
of the XML proposition element. The proposition must be specified using lower
case identifiers.

Each state of the Büchi automaton is represented in a state XML element. The
id and the name attributes contain the id and the name of the state, respectively. If
the state is initial, accepting or is a black box the corresponding attributes are set to the
true value.

Each transition of the automaton is represented through an XML transition
element. The id, the source and the destination attributes contain the id of the
transition and the ids of the source and the destination states. The propositions
attribute contains a String which represent a conjunction of propositions which are
true when the transition is performed.

1 <iba>
2 <propositions>
3 <proposition name="ok"/>
4 <proposition name="abort"/>
5 <proposition name="fail"/>
6 <proposition name="start"/>
7 <proposition name="success"/>
8 </propositions>
9 <states>

10 <state id="1" name="q1" initial="true"/>
11 <state id="2" name="send1" blackbox="true"/>
12 <state id="3" name="send2" blackbox="true"/>
13 <state id="4" name="q2" accepting="true"/>
14 <state id="5" name="q3" accepting="true"/>
15 </states>
16 <transitions>
17 <transition id="1" source="1" destination="2" propositions="start"/>
18 <transition id="2" source="2" destination="3" propositions="fail"/>
19 <transition id="3" source="2" destination="5" propositions="ok"/>
20 <transition id="4" source="3" destination="5" propositions="ok"/>
21 <transition id="5" source="3" destination="4" propositions="fail"/>
22 <transition id="6" source="4" destination="4" propositions="abort"/>
23 <transition id="7" source="5" destination="5" propositions="success"/>
24 </transitions>
25 </iba>

Listing 6.1: The XML file corresponding to the model presented in Figure 5.1a

The XML file used to load the claim, i.e., a BA, has the same structure of the one
presented in Listing 6.1 with the following exceptions: a) a state cannot be a black box;
b) the propositions attribute of the transitions can also contain negated proposi-
tions.

6.3 Model checker

The CHIAChecker module contains the classes to check whether a model described
through an IBA satisfies, does not satisfy or possibly satisfies a property of interest. The
class diagram corresponding to the CHIAChecker module is presented in Figure 6.4.

• SatisfactionValue. It is an enumeration that contains the possible re-
sults of the model model checking activity: SATISFIED, NOTSATISFIED or
POSSIBLYSATISFIED.

• Checker. It contains the entry point used to run the model checking tool.
It requires as an input a BA and an IBA. The perform method returns
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+ Checker(property: BA, model: IBA)
+ perform(): SatisfactionValue 
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Figure 6.4: The class diagram of the CHIAChecker module.

one of the satisfaction values depending on the checking result. The checker
uses the IBABlackBoxRemover, the IntersectionBuilder and the
EmptinessChecker classes.

• IBABlackBoxRemover. It is used to remove the black box states and their
incoming and outgoing transitions from the IBA used to represent the model. In
particular, the method removeBlackBoxes() returns a copy of the IBAwhere
the black box states are removed.

• IntersectionBuilder. It computes the intersection between a model (ex-
pressed as an IBA) and a property (expressed as a BA).

• EmptinessChecker. It checks the emptiness of an automaton. It implements
the double DFS algorithm. The method isEmpty() returns true if the automa-
ton is empty, i.e., if it does not exists an infinite run that contains an accepting state
that can be accessed infinitely often, false otherwise.

6.4 Constraint module

The CHIAConstraint module contains the classes which are used to describe con-
straints, subproperties and replacements. The class diagram of the CHIAConstraint
module is presented in Figure 6.5. The main components of the module are described
in the following:

• Component. It is the abstract class which is used to describe components, i.e., re-
placements and sub-properties. Each component refers to a particular state which
is represented by the final attribute modelState.

• Replacement. It is used to represent a replacement. It extends the
Component class with the IBA which is used to refine the black box state and
the set of its incoming and outgoing transitions which specifies how the replace-
ment is connected to the original model. The incoming and outgoing transitions
are modeled through the class PluggingTransition.

• SubProperty. It contains the description of the sub-property. The
Subproperty class extends the Component class by specifying the BA
which describes the claim the developer must consider in the refinement pro-
cess. The set of the incoming and outgoing transitions associated with the

93



Chapter 6. Automated Tool Support
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Figure 6.5: The class diagram of the CHIAConstraint module.

sub-property that specify how the sub-property is related with the original
model. The incoming and outgoing transitions are specified using the class
LabeledPluggingTransition. The reachability relation specifies the
reachability between its incoming and outgoing transitions.

• PluggingTransition. It describes how the automaton that refers to the
sub-property/replacement associated with a box is connected with the states of
the original model. The PluggingTransition class contains the source,
destination and transition attributes, i.e., the source and the destina-
tion state of the incoming/outgoing transition, and the transition itself. Depending
on whether the PluggingTransition represents an incoming or an outgoing
transition the source or the destination state correspond with a state of the model.

• LabeledPluggingTransition. It represents the incoming and outgoing
transitions associated with a sub-property. As specified in Section 5.2.2 these
transitions are also associated with a label. The class Label is an enumeration
that contains the three different values that can be associated with these transitions.

• ReachabilityRelation. It contains a map which specifies for each outgo-
ing transition of the sub-property the set of reachable incoming transitions of the
same sub-property. It is bases on a set of reachability entries described in the
ReachabilityEnty class.

• Constraint contains a set of sub-properties (at most one for each black box
state) that specifies the set of the properties the developer must satisfy in the re-
finement process.
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6.4.1 Constraint Input/Output Module

The CHIAConstraintIO module contains the classes which are used to load and
save the constraint and the replacement from and to XML files. Figure 6.6 contains
the class diagram associated with the Constraint class of the CHIAConstraint
module. The same classes with different implementations are associated with the re-
placement.

+ write()

- file: File

ConstraintWriter

+ trasform(subProperty: 
SubProperty): Element

SubPropertyToElement
Trasformer

+ trasform(transition: 
LabeledPluggingTransition): Element

LabeledPluggingTransition
ToElementTrasformer

«use»
«use»

+ trasform(reachability: 
ReachabilityRelation): Element

ReachabilityRelation
ToElementTrasformer

«use»

+ read(): Constraint

- file: File

ConstraintReader

+ trasform(element: Element): 
LabeledPluggingTransition

ElementToLabeledPlugging
TransitionTrasformer

+ trasform(element: 
Element):  SubProperty

ElementToSubProperty
Trasformer

«use»

«use»

+ trasform(element: Element):  
ReachabilityRelation

ElementToReachabilityRelation
Trasformer

«use»

Figure 6.6: The class diagram of the CHIAConstraintsIO module.

• ConstraintWriter. It writes the constraint to an appropriate file.

• SubPropertyToElementTrasformer. It transforms the sub-property into
the corresponding XML element.

• ReachabilityRelationToElementTrasformer. It converts the reach-
ability relation between the incoming and the outgoing transitions of the sub-
property into the corresponding XML elements.

• LabeledPluggingTransitionToElementTransformer. It converts
an incoming or outgoing transition of the sub-property into the corresponding
XML element.

• ConstraintReader. Given an XML input file, it loads the constraint from the
file.

• ElementToSubPropertyTrasformer. It converts an XML element into the
corresponding sub-property.

• ElementToReachabilityRelationTrasformer. It transforms an XML
element into the corresponding reachability relation.

• ElementToLabeledPluggingTransitionTrasformer. It converts an
XML element into the corresponding incoming or outgoing transition.

As previously mentioned, the ConstraintReader is used to load the constraint
from an XML file. The XML files must satisfy the conditions specified in the XSD file
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Constraint.xsd. Listing 6.2 presents a portion of the XML file of one of the con-
straints generated by the model checking algorithm in the motivating example used
along the Chapter 5.

1 <constraint>
2 <subproperty indispensable="true" modelstateId="3" name="send2">
3 <ba>
4 <propositions>
5 <proposition name="send"/>
6 <proposition name="success"/>
7 </propositions>
8 <states>
9 <state id="11" name="3 − 2 − 0"/>

10 <state id="14" name="3 − 1 − 1"/>
11 </states>
12 <transitions>
13 <transition destination="11" id="15" propositions="SIGMA" source="11"/>
14 <transition destination="14" id="22" propositions="send^!success" source="11"/>
15 <transition destination="14" id="21" propositions="!success" source="14"/>
16 </transitions>
17 </ba>
18 <intransitions>
19 <plugtransition label="Y" id="1">
20 <sourcestate>
21 <state id="2" name="send1"/>
22 </sourcestate>
23 <destinationstate>
24 <state id="11" name="3 − 2 − 0"/>
25 </destinationstate>
26 <trans id="23" propositions="fail"/>
27 </plugtransition>
28 ....
29 </intransitions>
30 <outtransitions>
31 <plugtransition label="R" id="5">
32 <sourcestate>
33 <state id="14" name="3 − 1 − 1"/>
34 </sourcestate>
35 <destinationstate>
36 <state id="4" name="q2"/>
37 </destinationstate>
38 <trans id="20" propositions="fail"/>
39 </plugtransition>
40 </outtransitions>
41 <lowerReachability>
42 <reachabilityElements/>
43 </lowerReachability>
44 <upperReachability>
45 <reachabilityElements/>
46 </upperReachability>
47 </subproperty>
48 <subproperty indispensable="true" modelstateId="2" name="send1">
49 ....
50 </subproperty>
51 </constraint>

Listing 6.2: A portion of the constraint generated by the motivating example used along the Chapter 5.

The constraint is made by two sub-properties which refer to the box states send1 and
send2, respectively. Each sub-property contains a BA (which specifies the property the
developer must satisfy in the refinement activity), the incoming and outgoing transi-
tions, which describe how the claim is related to the system under development, and
the reachability relations.

The ReplacementReader class allows loading the replacement of a box
from an XML file. The XML files must satisfy the specification contained
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in the XSD file Replacement.xsd. The ElementToReplacement trans-
former converts an XML element into the corresponding JAVA object using the
ElementToTransition transformers and the other transformers previously de-
scribed, such as the ElementToIBA transformer.

1 <replacement modelstateId="2" name="send1">
2 <iba>
3 <propositions>
4 ...
5 </propositions>
6 <states>
7 <state id="4" name="q4" />
8 ...
9 <state accepting="true" id="6" name="q6" />

10 </states>
11 <transitions>
12 <transition destination="5" id="8" propositions="send" source="4" />
13 <transition destination="6" id="9" propositions="wait" source="5" />
14 </transitions>
15 </iba>
16 <intransitions>
17 <plugtransition id="1">
18 <sourcestate>
19 <state id="1" name="q1" />
20 </sourcestate>
21 <destinationstate>
22 <state id="4" name="q4" />
23 </destinationstate>
24 <trans id="1" propositions="start" />
25 </plugtransition>
26 </intransitions>
27 <outtransitions>
28 <plugtransition id="2">
29 <sourcestate>
30 <state id="6" name="q6" />
31 </sourcestate>
32 <destinationstate>
33 <state id="3" name="send2" />
34 </destinationstate>
35 <trans id="2" propositions="fail" />
36 </plugtransition>
37 ...
38 </outtransitions>
39 </replacement>

Listing 6.3: A portion of the XML corresponding to the replacement described in Figure 5.3b.

Listing 6.3 presents a portion of the XML file of the replacement corresponding to
the replacement described in Figure 5.3b. The XML file contains the IBA which refines
the box and the incoming/outgoing transitions which specify how the replacement is
plugged into the original model.

6.5 Constraint computation

The CHIAContraintComputation module is used when the property is possibly
satisfied to compute the sub-property associated to each black box state. The class
diagram of the module is represented in Figure 6.7.

• ConstraintGenerator. It is the class that contains the entry point for the
constraint computation. Given the model, the property and the intersection au-
tomaton computed by the CHIA checker, the ConstraintGenerator class
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+ generateConstraint()
+ generateSubProperty(state: State)
+ computeLabeling()
+ computeReachability()

- claim: BA
- model: IBA
- intersection: IntersectionBA

ConstraintGenerator

«use»

+ getSubProperty(): SubProperty

- blackBoxState: State
- intersection: IntersectionBA

SubPropertyIdentifier

+ clean(): IntersectionBA

- intersection: IntersectionBA

IntersectionCleaner

«use»

+ perform()

- identifier: SubPropertyIdentifier

Labeler

«use»

+ perform()

- intersection: IntersectionBa

BackwardLabeler

«use»

+ perform()

- intersection: IntersectionBa

ForwardLabeler «use»

+ computeReachability()

- intersection: IntersectionBa
- identifier: SubPropertyIdentifier

ReachabilityIdentifier

«use»

Figure 6.7: The class diagram of the CHIAContraintComputation module.

computes the corresponding constraint. The computation of the label associated
to each incoming and outgoing transition and of the reachability relation are im-
plemented as features that can be conveniently activated and deactivated.

• IntersectionCleaner. It implements the procedure described in Sec-
tion 5.2.1, i.e., it removes from the intersection automaton the states from which
it is not possible to reach an accepting state that can be entered infinitely many
often, since these states are not useful in the constraint computation.

• SubPropertiesIdentifier. It extracts the sub-properties from the inter-
section automaton, by identifying the portions of the state space (the set of the
mixed states and the transitions between them) that refer to the same box of the
model.

• Labeler. It computes the values associated with the incoming and outgoing
transitions of the sub-properties. It uses the two functions BackwardLabeler
and ForwardLabeler which implement Algorithms 5 and 6.

• ReachabilityIdentifier. It computes for each sub-property the upper
and the lower reachability relations as specified in Section 5.2.2.

6.6 Replacement checker

The CHIAReplacementChecker module contains the classes that allow checking
whether the replacement of a black box state satisfies the corresponding constraint.
Figure 6.8 presents the class diagram of the CHIAReplacementChecker module.

• ReplacementChecker. It is the entry point of the module. It takes as in-
put the sub-property and a replacement for one of the black box states involved
in the constraint. As the Checker class, it returns a value specified by the
SatisfactionValue enumeration depending on whether the replacement sat-
isfies, possibly satisfies or does not satisfy the property of interest.
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+ ReplacementChecker(replacement: Replacement, 
subproperty: Subproperty)
+ perform(): SatisfactionValue

- replacement: Replacement
- subproperty: Subproperty

ReplacementChecker

SATISFIED
NOTSATISFIED
POSSIBLYSATISFIED

«enumeration»
SatisfactionValue

«use»

+ IntersectionBuilder(replacement: 
Replacement, subproperty: Subproperty)
+ computeIntersection(): IntersectionBA

ReplacementIntersectionBuilder

«use» + EmptinessChecker(automaton: BA)
+ isEmpty(): boolean

EmptinessChecker«use»

+ OverApproximationBuilder(replacement: 
Replacement, subproperty: Subproperty)
+ computeIntersection(): IntersectionBA

OverApproximationBuilder
+ UnderApproximationBuilder(replacement: 
Replacement, subproperty: Subproperty)
+ computeIntersection(): IntersectionBA

UnderApproximationBuilder

«use»

«use» «use»

Figure 6.8: The class diagram of the CHIARefinementChecker module.

• UnderApproximationBuilder. It is used to compute the under approxi-
mation of the intersection automaton as specified in Section 5.3.1. It uses the
ReplacementIntersectionBuilder.

• OverApproximationBuilder. It is used to compute the over approxima-
tion of the intersection automaton as specified in Section 5.3.1. It uses the
ReplacementIntersectionBuilder.

• ReplacementIntersectionBuilder. It computes the intersec-
tion between the automaton associated with the replacement and the
automaton of the corresponding sub-property. The intersection au-
tomaton is used by the UnderApproximationBuilder and the
OverApproximationBuilder to compute the under and over approxi-
mation, respectively.
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CHAPTER7
Case Study

“Many of life’s failures are people who did not realize how close they were to success when they gave up.”

Thomas Edison, 1847-1931

We illustrate the applicability of the approach over two different case studies. For
each case study we describe two different refinement scenarios. The first case study is
a classical computer science example and concerns the well known mutual exclusion
system, which has been considered in several works, such as [9, 104]. The second is a
real case study which has been described in [139]. The case studies have been slightly
modified since at the current stage our approach only supports sequential systems, i.e.,
it does not support parallel execution. Furthermore, some of the automata have also
been manually converted from Kripke structures to Büchi automata using the procedure
described in [33].

7.1 The mutual exclusion problem

The mutual exclusion problem considers two processes P0 and P1 which are competing
for entering a critical section. Each of the two processes Pi | i ∈ {0, 1} can be in three
different states a) nti the process i is not in the critical section; b) tri the process i is
in a waiting phase, i.e., the process i tries to enter its critical section but is waiting the
permit from the controller; c) cri the process i is in its critical section. A semaphore
is used to select the process that can enter the critical section. The semaphore can be
in two states t0 and t1 meaning that the process P0 and P1 can enter into their critical
section, respectively.

The following requirements are a set of well known requirements [9, 104] the de-
signer must satisfy in the development of a mutual exclusion system. The first require-
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ment, expressed through the safety Formula 7.1.1, specifies that two processes P0 and
P1 must not be allowed to access simultaneously the critical section.

Requirement 7.1.1. (safety) φ1 = G((¬cr0) ∨ (¬cr1))

The second requirement, described through the LTL liveness formula 7.1.2, specifies
that starting from every state of the system, sooner or later each process will enter the
critical section.

Requirement 7.1.2. (liveness) φ2 = G(F (cr0)) ∧G(F (cr1))

The third requirement specifies that every waiting process will eventually enter its crit-
ical section.

Requirement 7.1.3. (starvation freedom) φ3 = ((G(F (tr0)))→
(G(F (cr0)))) ∧ ((G(F (tr1)))→ (G(F (cr1))))

Finally, the requirement 7.1.4 contains an unconditional fair condition which specifies
that infinitely often finally at least one process is in its critical section.

Requirement 7.1.4. (Unconditional fair condition) φ4 = G(F (cr0 ∨ cr1))

After these requirements have been defined the developer starts designing the mutual
exclusion system. We consider two different refinement scenarios where the developer
has a different feeling on the unknown parts of the system and how these unknowns are
refined.

7.1.1 Scenario 1

When the developer designs the system he/she has to specify how the state of the system
changes depending on the state of the two processes and the value of the semaphore.
Instead of describing two separate cooperating processes, we describe their composi-
tion as one sequential process, since, up to now, our technique only supports sequential
models.

The model described in Figure 7.1 describes a system that starts from the initial
state q1. The system randomly assigns the value t0 or t1 to the semaphore allowing
the process P0 or P1 to enter its critical section and moving the system into the states
q2 or q8, respectively. If the system is in the state q2 and the process P1 (P0) tries to
enter its critical section it moves to the state q3 (q4). If in the state q3 (q4) the process
P0 (P1) tries to enter its critical section the state q5 is reached. In the state q5 both the
processes have done a request to enter their critical sections and they are waiting for the
response of the controller. Whenever the state q5 or the state q4 is reached the controller
allows the process P0 to enter the corresponding critical section reaching the states q7

or q6, respectively. Note that, when the system is in the state q6 and the process P0 is
in its critical section, the process P1 may also try to enter the critical section moving
the system into the state q7. When the system is in q7, as soon as the process P0 exits
from its critical section, the value of the semaphore is changed into t1 and the system
moves into the box b10. The developer does not specify the behavior of the system into
the black box state b10, he/she assumes it enters a component which is in charge of
allowing the process P1 to enter the corresponding critical section. When the system
is in the state q6 and the process P0 exits its critical section, the controller changes the
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Figure 7.1: The incomplete model the developer designs in the Scenario 1.

value of the semaphore into t1 and moves the system into the state q8. The same state
is reached from the initial state q1 if the controller allows the process P1 to enter its
critical section, i.e., in the state q1 the system randomly assigns an initial value to the
semaphore. When the system is in the state q8 and the process P1 tries to access its
critical section, the system moves to the box b10 which is in charge of allowing P1 to
access the corresponding critical section. If the system is in the state q8 and the process
P0 tries to access its critical section it moves into the state q9. If the system is in the
state q9 and the process P1 tries to access its critical section it enters the replacement
associated with the box b10. The black box state b10 is left by two transitions performed
when the system sets the semaphore to the value t0 and the process P1 leaves its critical
section.

After the initial, high level model presented in Figure 7.1 is designed the developer
wants to check whether the model satisfies, does not satisfy or possibly satisfies the
requirements previously discussed. The CHIA framework offers the support for this
activity. After the model and the properties associated to the different requirements are
loaded the checking functionality allows the developer to answer his/her questions.

The safety requirement 7.1.1, which forces the two processes to not enter simulta-
neously their critical section, is possibly satisfied. Intuitively, the model of Figure 7.1
does not allow cr0 and cr1 to be true at the same time instant. However, there is no guar-
antee about the behavior of the system inside the box b10 which may yield a violation
of the requirement.

The liveness requirement 7.1.2, which allows a process to finally enter its critical
section, is also possibly satisfied. The model does not contain any violation behavior,
i.e., it does not exists an accepting run in the intersection automaton which contains a
state from which the critical section of P0 and P1 is not reachable any more. However,
the property may be not satisfied inside the replacement of the box b10, for example
by simply providing a component that does not allow both the processes to enter their
critical sections and never reach the outgoing transitions 14 and 15.

The starvation freedom requirement 7.1.3, specifying that a process asking to enter
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its critical section has finally the permit to enter, is possibly satisfied. Imagine for
example to consider the case in which the process P1 is asking to enter its critical
section when the system moves from the state q2 to the state q3. Since the value of
the semaphore is equal to t0, the system first allows the process P0 to enter its critical
section when it moves from the state q5 to the state q7. Then, the system enters the box
q10 which must take care of allowing P1 to enter the section cr1. However, there is no
guarantee that the replacement of q10 finally allows the process P1 to enter the critical
section.

Finally, also the unconditional fair condition specified in the requirement 7.1.4 is
possibly satisfied. The unconditional fair condition specifies that infinitely often, fi-
nally, at least one process is in its critical section. This forces our system to have an
infinite run and, starting from each state of the run, finally cr0 or cr1 is true. One of the
possible ways to satisfy this condition is to connect an incoming transition of the box
b10 to one of its outgoing transitions, allowing each run to finally satisfy the proposition
cr0, but still the satisfaction of the requirement depends on the replacement proposed
for the box b10.

To summarize, all the requirements are possibly satisfied, since no definitely accept-
ing run exists in the model, and the behavior of the system over the possibly accepting
runs depends on the replacement associated to the black box state b10.

Whenever the property is possibly satisfied, the developer may be interested in
knowing the constraint over the replacement of the box b10 that specifies the behav-
iors that do not violate the requirements of interest. CHIA supports the developer by
computing a sub-property to be considered in the design of the replacement of the box
b10. The developer may consider the requirements one by one, iteratively generating the
sub-properties associated to each LTL formula, or by computing a global sub-property
obtained from the and combination of the requirements.

For the purpose of our discussion we imagine the developer is considering the un-
conditional fair condition specified in the Requirement 7.1.4. The constraint associated
to this requirement is composed by a single sub-property which is represented in Fig-
ure 7.2. The sub-property specifies the possible ways in which the developer may
violate the requirement 7.1.3. The incoming transition with source states q7, q8 and q9

are marked as G since they are reachable in the intersection automaton through a run
which contains only purely regular states, i.e., they are reachable independently of how
the boxes are refined. The absence of outgoing transitions marked as R specifies that
it is not possible to exit the replacement of the box and travel on a violating run made
only by purely regular states. The absence of outgoing transitions marked as Y (both q2

and q4 are not marked) indicates that it is not possible to exit the replacement and travel
on a possibly accepting run of the intersection automaton which does not involve states
associated with the replacement of b10. This is obvious by looking at the model pre-
sented in Figure 7.1. Whenever the box is left, the system reaches either the transition
7 or the transition 8 which guarantees that cr0 is true and the property is satisfied. Thus,
possible ways to violate the requirement imply the presence of accepting runs that guar-
antees both cr0 and cr1 to be not satisfied from a certain point inside the replacement.
The reachability relation which involves the outgoing transitions 7 or the transition 8
specifies that it is possible to re-enter the replacement of b10, i.e., the run that reaches
the outgoing transition may not be violating by it-self but can be a prefix of a run that
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Figure 7.2: The sub-property associated with the box b10 of the model presented in Figure 7.1 and the
Requirement 7.1.3.

violates the claim. The lower and upper reachability relation (described in Figure 7.2
through dotted arrows) specify how it is possible to reach the incoming transitions of
b10 from its outgoing transitions through a run which involve only purely regular states
or also involve mixed states that are not associated with the box b10. For example, from
the outgoing transition with destination q2 it is possible to reach the incoming transition
marked as G with source state q7 (which in this case is also reachable from the initial
state) through a run made by only purely regular states.

Starting from this sub-property, the developer may take two insights: a) by looking
at the portion of the sub-property which refers to the state 2© he/she may conclude that
every suffix of an infinite run which does not contain a cr0 or cr1 is violating; b) every
run which connect an incoming and outgoing transition of the replacement is violating
if the previous condition is not satisfied.

After the sub-property described in Figure 7.2 has been computed, the developer
proposes a replacement for the box b10. For example, the developer may design the
replacement described in Figure 7.3a. This replacement only contains finite runs, i.e.,
runs that enter/exit the replacement through its incoming/outgoing transitions.

The replacement guarantees that the proposition cr1 is satisfied before the replace-
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(b) The refinementN obtained when the replacement of the box b10 is
plugged into the modelM.

Figure 7.3: The replacement and the refinement of the model presented in Figure 7.1.
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ment is left. More precisely, whenever the replacement is entered by the incoming
transitions with source states q7, q8, the state q11 is reached. Note that when q11 is
reached, the value of the semaphore is t1 and the process P1 is trying to enter its critical
section. In this state, the controller may move the process P1 into its critical section,
by moving the system from the state q11 to the state q12, or the process P0 may also
try to enter its critical section, making the system moving to the state q13. This state
is also reached from the incoming transition with source state q9. When the system is
in the state q12, the refinement can be left whenever the process P1 leaves its critical
section, or it can move to the state q14 if the process P0 tries to enter the critical section.
The system moves from q13 to q14 when the controller allows the process P1 to enter
its critical section. Finally, the state q14 of the replacement is left through the outgoing
transition that reaches the state q4 whenever the process P1 leaves its critical section.

The refinement obtained by plugging the replacement of the box b10 presented in
Figure 7.3a in the model described in Figure 7.1 according to the Definition 4.2.8 is
depicted in Figure 7.3b.

After the replacement presented in Figure 7.3a has been proposed, the developer
may want to check whether the refined version of the model satisfies the unconditional
fair requirement. One possibility is to generate the refinement of the model presented
in Figure 7.3b and check it against the original requirements. However, the procedure
described in Section 5.3 allows considering only the replacement against the previously
generated constraint (i.e., the corresponding sub-property of the constraint). CHIA
generates the upper and lower approximation of the intersection automaton as described
in Section 5.3.2 and performs the emptiness checking procedures. Since in both cases
the automata are empty, the property of interest is satisfied. The developer can use
the replacement verification module of the CHIA model checking tool to verify the
requirements 7.1.1, 7.1.2 and 7.1.2 against the previously generated constraints. The
replacement satisfies all the requirements of interest.

7.1.2 Scenario 2

In the second scenario we consider a different developer in charge of designing the
mutual exclusion system. As previously, we assume the developer does not specify
the behavior of the two processes in isolation, but considers the behavior of the global
system. However, the developer has a different notion about the domain he/she is trying
to model and, in particular, he/she is more uncertain about the behavior of the system
under development.

The developer may propose, for example, the model described in Figure 7.4. The
system starts from the initial state q1 and nondeterministically assigns an initial value
to the semaphore. Depending on whether the process P0 or P1 is allowed entering its
critical section, the system moves into the states b11 or q8, respectively. The state b11

is a black box state, i.e., the developer still has to define the behavior of the system
inside the box b11. The developer specifies that it is possible to leave b11 either when
the process P1 tries to enter its critical section reaching the state q3, when both the
processes P0 and P1 try to enter their critical sections reaching the state q5 or when
the process P0 is in its critical section. If the system is in the state q3 and the process
P0 tries to enter its critical section it moves to the state q5, i.e., in the state q5 both the
processes have done a request to enter their critical sections and they are waiting for
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Figure 7.4: The incomplete model the developer designs in the Scenario 2.

the response of the controller. Whenever the state q5 is reached the controller allows
the process P0 to enter the corresponding critical section reaching the state q7. Note
that, when the system is in the state q6 and the process P0 is in its critical section the
process P1 may also try to enter the critical section moving the system into the state q7.
When the system is in q7, as soon as the process P0 exits from its critical section, the
value of the semaphore is changed into t1 and the system moves into the black box state
b10. The developer does not specify the behavior of the system into the box b10, he/she
assumes it enters a component which is in charge of allowing the process P1 to enter
the corresponding critical section. When the system is in the state q6 and the process
P0 exits its critical section, the controller changes the value of the semaphore into t1
and moves the system into the state q8. The same state is reached from the initial state
q1 if the controller allows the process P1 to enter its critical section, i.e., in the state q1

the system randomly assigns an initial value to the semaphore. When the system is in
the state q8 and the process P1 tries to enter its critical section, the system moves into
the black box state b10, in charge of allowing P1 to access the corresponding critical
section. If the system is in the state q8 and the process P0 tries to access its critical
section it moves into the state q9. If the system is in the state q9 and the process P1

tries to enter its critical section it enters the replacement associated with the box b10.
The box b10 is left by the transitions performed when the system sets the semaphore to
the value t0 and the processes P0 and P1 are not trying to access the critical section,
or when the semaphore has the t0 value and the process P0 and P1 is trying and is not
trying to enter the critical section, respectively.

As in the previous scenario, after the initial, high level model is designed, the devel-
oper wants to check whether the incomplete model satisfies, does not satisfy or possi-
bly satisfy the safety, liveness, starvation freedom and the unconditional fair properties.
The CHIA framework supports the developer in this activity. After the model and the
properties of interest are loaded, the model checking functionality allows answering
his/her questions.

The safety requirement 7.1.1, which forces the two processes to not enter simulta-
neously their critical section, is possibly satisfied. The model of Figure 7.4 does not
allow cr0 and cr1 to be true at the same time instant, but there is no guarantee about
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the behavior of the system inside the replacements of the boxes b10 and b11 which may
cause a violation of the requirement.

The liveness requirement 7.1.2, which allows a process to finally enter its critical
section, is also possibly satisfied. There is no violating behavior, i.e., it does not exists
an accepting run in the intersection automaton which contains a state from which the
critical section of P0 and P1 is not reachable any more. However, it is also possible
to never reach the critical section of P0 or P1, e.g., by providing a replacement for b11

which does not allow to reach the outgoing transitions 2, 6 and 7 and never satisfy the
propositions cr0 or cr1.

The starvation freedom requirement 7.1.3, which states that a process asking to enter
its critical section has finally the permit to enter, is also possibly satisfied. For example,
when the system moves from q8 to b10, P1 tries to enter its critical section but there is
no guarantee that inside the replacement of the black box b10 the process P1 has the
possibility to enter that section.

The unconditional fair condition specified in the requirement 7.1.4 is also possibly
satisfied. The unconditional fair condition specifies that infinitely often, finally, at least
one processes is in its critical section. Even if every infinite accepting run contains
either the transition 4 or the transition 7, it may be the case in which b11 and b10 do not
allow to reach one of its outgoing transitions and their replacements do not allow one
of the processes to enter its critical section.

To summarize, as in Scenario 1, all the requirements are possibly satisfied. Indeed,
no accepting run exists in the model that do not depend on the replacements associated
to the black box states b10 and b11. This is also consistent with Theorem 4.2.1 and the
observation that the model proposed in the first scenario is a refinement of the model
described in Figure 7.4.

After the developer has checked its incomplete model against the properties of inter-
est, he/she may be interested in some guidelines on how to design the replacements of
the black box states b10 and b11 in a way that do not violate the requirements of interest.
These behaviors are specified through the sub-properties associated to the boxes b10

and b11. As in the previous scenario, the developer may consider the requirements one
by one iteratively generating the sub-properties associated to each LTL formula or by
computing the global sub-property associated to the conjunction of the sub-properties.

For the sake of clarity, in our discussion we imagine that the developer is considering
the unconditional fair condition specified in the Requirement 7.1.4. The constraint
associated to this requirement is composed by two sub-properties, one for each box of
the model, that are presented in Figure 7.5a and 7.5b. The sub-properties specify the
possible ways in which the developer may violate the requirement 7.1.3.

The sub-property associated with the black box state b10 specifies that a run which
traverses the box b10 and reaches the state b11 is a possibly violating run indeed the box
b11 may cause a violation of the property. Furthermore, every replacement that contains
a run that at some point contains an infinite internal run in which (¬cr0) ∧ (¬cr1)
is not true violates the unconditional fair condition. The incoming transitions with
source states q8 and q9 are marked as G since they are reachable from the initial state
in the intersection automaton through a run which contains only purely regular states,
i.e., they are reachable indipendently on how the boxes are refined. The incoming
transitions with source state q7 are marked as Y since to reach q7 it is necessary to
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Figure 7.5: The sub-properties associated with the black box states b10 and b11 of the model presented
in Figure 7.4.

traverse a run which contains mixed states, i.e., the replacement associated with the
box state b10. The outgoing transitions 10, 11, 12 and 11 are marked as Y since it
is possible to reach an accepting state through a run that involves the replacements
associated to other boxes. In particular, the accepting state is possibly contained inside
the replacement of the box b11. The reachability relation specifies how it is possible
to reach an incoming transition of the sub-property associated with the black box state
b10 from one of the outgoing transitions. In particular, the upper reachability relation
specified in Figure 7.5a with dotted lines states that it is possible to reach the incoming
transitions 4, 5, 6, 7, 8 or 9 from the outgoing transitions 10 and 11.

The sub-property associated with the box b11 specifies that it is possible to reach
the incoming transitions 6 and 7 through a run which contain only purely regular states
while it is possible to reach the incoming transitions 4, 5, 8 and 9 through a run which
traverses some mixed states, i.e., the one associated with the replacement of the box
b10. Furthermore, from the outgoing transitions 10, 11 and 12 it is possible to reach an
accepting state through a run which involves some mixed state which is not associated
to the box b11, i.e., the mixed states associated to the replacement of the box b10. From
these outgoing transitions, the upper reachability relation specifies that it is possible to
reach the incoming ports 4, 5, 8 and 9.

In both the sub-properties, the absence of red outgoing transitions indicate that it is
not possible to exit the replacement of the box and travel on a violating run made only

109



Chapter 7. Case Study

q2 q4

-2-
{t0,nt0,nt1}

q1

-3-
{t0,nt0,nt1}

b10

-6-
{t0,tr0,tr1}

q3

b10

-4-
{t0,tr0,nt1}

-5-
{t0,nt0,tr1}

-1-
{t0,tr0,nt1}

-7-
{t0,cr0,nt1}

b11

q5 q6

Figure 7.6: The replacement designed for the box b11 of the model presented in Figure 7.4.

by purely regular states, i.e., there must be the cooperation of one of the replacement
(or both of them) to make the property (not) satisfied.

After the sub-properties presented in Figures 7.5a and 7.5b have been computed, the
developer proposes a replacement for the box b11. In the current scenario, we assume
the developer proposing the replacement described in Figure 7.6, which generates the
model associated with the first scenario described in Figure 7.1.

The replacement specifies that by firing the incoming transitions coming from b10

and q1 and labeled with t0 ∧ tr0 ∧ nt1, t0 ∧ nt0 ∧ nt1 and t0 ∧ nt0 ∧ nt1 it is possible
to reach the states q4 and q2. The state q2 specifies the condition in which the processes
P0 and P1 are not trying to enter their critical sections, while the state q4 is reached
when the process P0 is trying to enter its critical section and the process P1 is not inside
and neither trying to enter the corresponding critical section. The replacement is left
through the outgoing transitions 5, 6 and 7 when the process P1 tries to enter its critical
section, when both the processes try to enter their critical sections, or when the system
gives the permit to the process P0 to enter its critical section, respectively.

After the replacement presented in Figure 7.6 has been proposed the developer may
want to check the replacement against the previously generated constraint. As previ-
ously mentined, CHIA directly checks the replacement against the sub-property speci-
fied in Figure 7.5b, by generating the upper and lower approximation of the intersection
automaton as described in Section 5.3.2 and performing the emptiness checking pro-
cedures. In this case, there is no violating behavior, i.e., the lower approximation of
the intersection automaton is empty, but the upper approximation contains a possibly
violating behavior. Indeed, by connecting the replacement to the states q6, q5 and q3 the
developer allows the system to reach the state b10 which can be refined in a way that
makes its sub-property (and thus the original property) not satisfied. Thus, the property
is possibly satisfied in the refined automaton.

7.2 The Pick and Place Unit

The effectiveness of the approach has been evaluated on a real case study presented
in [139], where the evolution of a Pick and Place Unit (PPU) is analyzed1. The Pick
and Place Unit is an open case study for analyzing evolution of automation systems,

1A video which describes the PPU unit in action can be found at https://www.ais.mw.tum.de/research/
equipment/ppu/
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since it is a limited size and complexity example, but it provides a valuable trade-off
between complexity and evaluation effort [79]. The goal of the PPU unit is to move
pieces (WP) to different locations of the production line. An overview of the PPU unit
considered in this work is presented in Figure 7.72. Four different components are
considered along the different refinement scenarios: stack, crane, stamp and conveyor.

• The stack is the input storage of work pieces, where they are kept until the crane
is able to move them (marked with 1©).

• The conveyor is used as an output storage of work pieces (identified with 2©).

• The stamp is used to stamp the work pieces (marked with 3©).

• The crane is the transportation unit that moves pieces between the stack, the con-
veyor and the stamp (identified with 4©).

Figure 7.7: A high level description of the PPU unit.

Several evolution steps have been considered in [139]. For the purpose of our dis-
cussion we have transformed the original automata presented in [139] to fit the formal-
ism proposed in this work. Furthermore, since our approach only supports sequential
systems, the refinement scenarios have been modified.

We assume that the system to be developed is based upon the following propositions,
which predicate over the occurrence of certain events into the system. For example,
the proposition stDIWPAV specifies an input event (DI) which states that a WP is
available (AV ) at the stack (st). The list of all the propositions which refers to the the
stack, the stamp, the crane and the conveyor are presented in Table 7.1, 7.2, 7.3 and 7.4,
respectively.

2The images of the PPU case study presented in this thesis have been taken from [139].
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Stack
Proposition Meaning
stDIWPAV a working piece (WP) is available at the stack for being piked up.
stDIAS the crane has reached the stack.
stDIEXT the pneumatic cylinder is extended.
stEMPTY the stack is empty.
stWPAV at least a working piece is on the stack.
stDIEXT the separating cylinder has been extended.
stACTEXT the pneumatic cylinder pushes, by extruding, the bottom WP from the stack.
stDISEXT the separating cylinder of the stack is extended.

Table 7.1: The atomic propositions of the stack component.

Stamp
Proposition Meaning
smDIWPAV a WP is available at the stamp for being printed.
smDISTMP a working piece has been printed by the stamp.
smDIWPSPR a printed WP is available at the stamp for being taken to the conveyor.
smDITMP a timer event has been occurred.
smDISTEXT the stamping cylinder has been extended.
smDISTRET the stamping cylinder has been retracted.
smDISLEXT the sliding cylinder has been extended.
smDISLRET the sliding cylinder has been retracted.
smACTSPW setting the pressure value.
smACTSTEXT the stamp extends the stamping cylinder.
smACTSTRET the stamp retracts the stamping cylinder.
smACTSLEXT extending the sliding cylinder.
smACTSLRET retracting the sliding cylinder.

Table 7.2: The atomic propositions of the stamp component.

Crane
Proposition Meaning
crDIWPM the crane detects an available WP.
crDIPUWP the piece has been picked up.
crDIPCEXT pneumatic cylinder extended.
crDIPCRET pneumatic cylinder retracted.
crDITTTC the crane has reached the conveyor.
crDIATSTRMP the crane has reached the stamp.
crDITTTS the crane has reached the stack.
crDIWPP plastic WP detected.
crDIWPM metallic WP detected.
crDIWPB − PW black (PB) or white (PW ) WP detected.
crACTPCRET retracting the pneumatic cylinder.
crACTPCEXT extending the pneumatic cylinder.
crACTPDWP opening the vaccum gripper.
crACTPUWP closing the vaccum gripper.
crACTTTSTMP moving the crane to the stamp.
crACTTTS moving the crane to the stack.
crACTTTC moving the crane the the conveyor.

Table 7.3: The atomic propositions of the conveyor component.

Conveyor
Proposition Meaning
coDIWPAB a working piece is at the beginning of the conveyor.
coDIWPRM the working piece has been released on the ramp.
coDIWPRP1 working piece at ramp one.
coDIST1NFULL the first ramp is not full.
coDIST2NFULL the secon ramp is not full.
coDIWPRP1 working piece detected at ramp one.
coDIWPRP2 working piece detected at ramp two.
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coDIT1TOUT conveyor timer 1 timeout.
coDIT2TOUT conveyor timer 2 timeout.
coDIT3TOUT conveyor timer 3 timeout.
coDIC1EXT the first pushing cylinder has been extended.
coDIC1RET the first pushing cylinder has been retracted.
cDIPR1 the piece has been placed on the first ramp.
cDIPR2 the piece has been placed on the second ramp.
cDIPR3 the piece has been placed on the third ramp.
coACTTF turn forwards the conveyor.
coACTC1EXT extending the first pushing cylinder.
coACTC2EXT extending the second pushing cylinder.
coACTMS stops the motor of the conveyor.

Table 7.4: The atomic propositions of the conveyor component.

7.2.1 Requirement analysis

The expected behavior of the PPU unit is described by the following requirements.
The working pieces are picked up from the stack and finally released on the con-

veyor. This can be formalized in Requirement 7.2.1 as specified by the formula φ1.

Requirement 7.2.1. (Every WP finally reaches the conveyor)
φ1 = G(stDIWPAV → F (coDIWPAB))

The requirement specifies that after the system signals that a piece is available at the
stack (st) for being picked up (stDIWPAV ), the system will finally signals that the
piece has reached the conveyor (coDIWPAB)3.

We have two types of WP metallic or plastic. If a piece is a metallic WP it must
be stamped. This requirement is formalized trough the LTL formula φ2 specified in
Requirement 7.2.2.

Requirement 7.2.2. (The metallic working pieces must be stamped)
φ2 = G((crDIWPM)→ (F (smDISTMP )))

Formula φ2 specifies that if the proposition crDIWPM , which specifies that a
metallic working piece has been detected by the crane, is true at some point, then,
finally, the proposition smDISTMP must be true. The proposition smDISTMP
specifies that a piece has been printed.

After a piece has been stamped it must be released on the conveyor. This require-
ment is formalized trough the LTL formula φ3 specified in Requirement 7.2.3.

Requirement 7.2.3. (A stamped piece is finally released on the conveyor)
φ3 = G((stDISTMP )→ (F (coDIWPAB)))

Formula φ3 specifies that if a work piece has been printed, the atomic proposition
stDISTMP is true, it is finally released on the conveyor, i.e., the atomic proposition
coDIWPAB is true.

Finally, before preparing a new working piece it is necessary that the previous one
has been released on the conveyor. This is specified by the Requirement 7.2.4.

Requirement 7.2.4. (Before preparing a new piece the previous one must be released
on the ramp)
φ4 = G((stDIWPAV )→ (¬((¬(stDIWPAV ))U(coDIWPRM)))

3Note that the piece that reaches the conveyor can be different than the original one.
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Formula φ4 specifies that after a piece is available (stDIWPAV ), it is not true that
the system prepares another piece (stDIWPAV ) and the event coDIWPRM which
specifies that the WP is released on the ramp has not occurred before.

7.2.2 The PPU components

The developer starts by designing a high level description of the PPU unit. The ini-
tial high level design is presented in Figure 7.8. The system can be in four different
control states, which are represented as black box states since the behavior of the PPU
in these states still has to be defined. Whenever the system is in the stack state, the
stack provides a working piece. The box is left by firing the transition 1 labeled with
stDIWPAV which specifies that a WP is available. The crane box contains the logic

stack
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-4-
{smDIWPSPR}

conveyor
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{coDIWPAB}
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Figure 7.8: The PPU overall architecture.

to move the pieces between the stack, the stamp and the conveyor. Whenever the crane
reaches the stack (crDIAS is true) the system enters the replacement associated to
black box state that represents the stack which contains the logic to provide a piece.
After the crane provides a piece to the stamp device, the transition 3 is performed. The
transition is fired when the proposition smDIWPAV is true, which specifies that a
WP is available at the stamp. The stamp component is left whenever the transition 4
is performed, i.e., the piece is ready to be moved to the conveyor (smDIWPPR).
Whenever a component is ready at the beginning of the conveyor (coDIWPAB), the
transition 5 is fired and the conveyor black box accepting state is reached. The box is
left whenever the piece has placed in one of the ramps (coDIWPRM ).

We imagine the developer is in charge of designing the behavior of the crane, while
the stack, stamp and conveyor behaviors are designed by third parties as described in
the following.

The stack represents an input storage for work pieces. It contains three different
parts: a magazine of pieces (indicated as 1© in Figure 7.9) where the work pieces are
stacked, a pneumatic cylinder (indicated as 2© in Figure 7.9) to get the lower most piece
and the micro-switch (indicated as 3© in Figure 7.9) that indicates whether there exists
a piece in the pick-up position. The pneumatic cylinder is equipped with two binary
sensors indicating the position of the cylinder, i.e., if it is extended or retracted.

The behavior of the stack component is described in Figure 7.10. The stack is started
from its initial state q1 or when the crane reaches the stack (stDIAS is true), which
means the system is waiting for a new working piece. If the stack is empty, the system
moves to the state q3, otherwise a WP is available and the system moves to q2. The
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Figure 7.9: The Stack component structure.

system moves from the state q3 to q2 as soon as a new piece is available. In the state
q2, the system activates the pneumatic cylinder of the stack acting as separator which
pushes, by extruding, the bottom work piece from the stack (stACTEXT ). As soon
as the piece is available (stDIEXT ), the system fires the transition 12 and the system
moves to the state q4. In order to ensure the correct position of the WP, the separating
cylinder of the stack is extended by firing the transition 13 (stACTSEXT ). As soon
as this process is completed, transition 14 is fired and the replacement is left through
the transition 1.
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Figure 7.10: The Stack component behavior.

The stamp module, whose structure is described in Figure 7.11, is used to stamp
work pieces and is made by five different components: a) the sliding cylinder is used
to extend and retract work pieces into or from the stamp component (indicated as 1©).
The sliding cylinder consist of a valve to extend and retract the cylinder as well as two
binary end position sensors for detecting whether the cylinder is extended or retracted;
b) the stamping cylinder is used to stamp the work piece (indicated as 2©). The end
position sensors are used to indicate whether the stamping cylinder is lowered or raised;
c) the micro switch detects whether the WP has been placed by the crane on the stamp
component (indicated as 3©); d) the pressure sensor detects the current pressure on the
WP (indicated as 4©); e) the proportional valve is used to set a specific pressure on the
component (indicated as 5©).

The behavior of the stamp component is described in Figure 7.12. Whenever the
stamp detects a WP (smDIWPAV ) the state q6 is reached. The stamps activates the
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Figure 7.11: The Stamp component structure.

sliding cylinder (smACTSLRET ). As soon as the sliding cylinder has been retracted
(smDISLRET ), the system moves in q7 and the pressure value is set through the
transition 17. The system extends the stamping cylinder (smACTSTEXT ) through
transition 18. Whenever the extension phase is finished, i.e., the transition 19 is per-
formed, and the state q9 is reached. In the state q9 the system is printing the working
piece. The state q9 is left as soon as a timer event occurs, i.e., the system fires the tran-
sition 20 which specifies that a piece has been stamped (smDISTMP ). The stamp
component subsequently retracts the stamping and the sliding cylinder by performing
the transitions 21, 22 and 23, 24, respectively. Finally, the transition 4 which specifies
that the piece is ready to be moved to the conveyor (smDIWPSPR) is fired.
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Figure 7.12: The Stamp component behavior.

The conveyor is a transportation component that takes the work pieces in three dif-
ferent ramps which are used as output storage. The structure of the conveyor component
is described in Figure 7.13. Two of the ramps are filled using the respective pushing
cylinders. The third ramp is mounted at the end of the conveyor and is filled by moving
the work piece using the conveyor. The conveyor contains the following components:
a) the motor for realizing the translational movement of work pieces (indicated as 1©);
b) the presence sensor which is mounted at the beginning and at the end of the conveyor
to detect whether a work piece is placed on the conveyor (indicated as 2©); c) the three
ramps which are filled with the working pieces; d) the two pushing cylinders installed
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to push work pieces in the first two ramps (indicated as 3©); e) the optical sensor it
is used to detect the presence of a piece at a particular position of the conveyor (indi-
cated as 4©); f) the valves are used for extending and retracting the cylinders; g) the
end position sensors are used for detecting whether the cylinders have been extended
or retracted.

Figure 7.13: The Conveyor component structure.

The conveyor behavior is described by the automaton depicted in Figure 7.14. Once
the WP is placed on the conveyor, it is detected by a sensor and the state q13 is reached
and the actuator which turns forwards the conveyor is activated (transition 25). Three
types of behaviors can be exhibited by the conveyor: a) as soon as the WP reaches the
optical sensor positioned at the beginning of the first ramp, if the ramp is not full the
transition 26 fires and the system goes into the state q14. The system waits a time that
depends on the conveyor belt speed and the distance between the sensor and the pushing
cylinder. As soon as the timeout events occurs, the transition 29 is fired. The cylinder
c1 of the conveyor is subsequently extended (transition 30) and retracted (transition
32). Whenever the cylinder is finally retracted the state q17 is reached; b) if the WP is
not placed in the first ramp, the first pushing cylinder remains in the retracted position
and the work piece passes it. Next the work piece passes the second optical sensor,
locate before the second ramp and, if the ramp is not full, the transition 27 is fired
and the state q19 is reached. As in the previous case, the system waits a time that
depends on the conveyor belt speed and the distance between the sensor and the pushing
cylinder. As soon as the timeout events occurs, the transition 35 is fired. The cylinder
c2 of the conveyor is subsequently extended (transition 36) and retracted (transition 38).
Whenever the cylinder is finally retracted the state q17 is reached; c) if instead the WP
is not placed in the second ramp, the transition 28 is fired and the system moves to the
state q22. The system goes into the state q17 when a timeout event which implies that the
WP has reached the ramp occurs. As soon as the state q17 is reached the motor is stopped
by firing the transition 34 labeled with coACTMS and the conveyor component is left.

Finally, the crane is a transportation unit that moves pieces between the stack, the
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Figure 7.14: The Conveyor component behavior.

conveyor and the stamp. The crane structure is represented in Figure 7.15 and it is
composed by the following components: a) a pneumatic cylinder for lifting and low-
ering work pieces (indicated as 1©). The cylinder posses two binary position sensors,
one at each end to detect whether the cylinder is extended or retracted as well as the
valve as actuator. b) a vacuum gripper controlled by two valves which is used to pick
and release pieces (indicated as 2©). A micro switch indicates whether a work piece is
gripped. c) a turning table which allows rotational movement (indicated as 3©). d) a
set of digital sensors are installed at the bottom of the turning table (indicated as 4©).
These sensors indicate whether the stack, the stamp and the conveyor is reached. e) a
motor allows the rotational movement of the turning table (indicated as 5©).

Figure 7.15: The Crane component structure.

7.2.3 Scenario 1

In the first refinement scenario the developer is in charge of designing the behavior of
the crane given the components previously described. Before performing the refine-
ment activity he/she checks whether the requirements 7.2.1, 7.2.2,7.2.3 and 7.2.4 are
satisfied, not satisfied or possibly satisfied. The requirement 7.2.1 is satisfied by the
proposed design. The state q18 is the only accepting state in the model since the crane
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state is not accepting and as a consequence cannot contain any accepting state. Since the
automata based model checking framework considers only accepting run, i.e., runs that
enters the state q18 infinitely many often, the runs have to traverse the transition 5 which
is labeled with coDIWPAB and imply the satisfaction of the property. The require-
ment 7.2.2 is possibly satisfied. Intuitively the developer may propose a replacement
that does not take the metallic work pieces to the stamp. The requirement 7.2.3 is sat-
isfied, i.e, every piece that has been printed is finally released on the conveyor. Indeed,
as previously, the accepting runs must traverse the state q18 which can be reached only
by firing the transition 5 which require the WP to be released on the conveyor. Finally,
the requirement 7.2.4 is possibly satisfied, the developer may design a replacement that
release a type of piece on the conveyor and another piece is left on the stamp.

Before proceeding in the design of a new replacement, the developer computes the
sub-properties the crane must satisfy to guarantee the system possesses the properties
of interest. The sub-property associated with the requirement 7.2.2 specifies that the
only possible way to violate the property is to provide a run that enters infinitely many
times in the conveyor and the metallic piece is detected but it is not taken to the stamp.
The sub-property associated with the requirement 7.2.4 specifies all the possible ways
in which the requirement can be violated. There are many ways to violate this require-
ment. For example, a violating behavior is a run that enters infinitely often the conveyor
but non deterministically, it can fire the transition 2 before reaching the conveyor. An-
other possibility is that whenever a piece is taken to the stamp it is not collected. The
sub-property encodes all these behaviors and how they are related with the PPU overall
architecture depicted in Figure 7.8.

The replacement proposed by the developer for the black box state representing the
crane is depicted in Figure 7.16. As soon as a piece is available on the stack to be
picked up, i.e., the transition 1 is fired,and the crane turns to the stack (transition 41).
As soon as the crane reaches the stack, transition 42 is fired, and the pneumatic cylinder
is extended (transitions 43 and 44). The vacuum gripper is closed to pick up the piece
(transition 45). As soon as the piece has been picked up, transition 46 is fired and
the pneumatic cylinder is extended (transitions 47 and 48). Depending on whether the
piece is a metallic (transition 55) or plastic (transition 49) piece the state q31 or q28 is
reached. If the system reaches the state q28 the turning table is rotated to the conveyor
(transitions 50 and 51), the pneumatic cylinder is extended (transition 52 and 53) and
the vacuum gripper is open (transition 54). As soon as the procedure is finished the
conveyor is notified that a new WP is available (transition 5). If instead the piece is
metallic, the crane is moved to the stamp (transitions 56 and 57) the pneumatic cylinder
is extended (transition 58 and 59) and the vacuum gripper is open (transition 60). As
soon as the procedure is finished the stamp is notified that a new WP is available for
being printed (transition 3). When a printed piece is available on the stamp, transition
4 is fired. First, the crane is moved to the stamp (transitions 61 and 62), the pneumatic
cylinder is extended (transitions 63 and 64) and the piece is picked up (transitions 65
and 66). Then, the cylinder is retracted (transitions 67 and 68), the crane is moved to
the conveyor (transitions 69 and 70), the cylinder is extended (transitions 71 and 72)
and the vacuum gripper is opened (transition 73). Finally (transition 5), the conveyor
is notified that a new WP is available. If the conveyor notifies the crane by firing the
transition 6 that the WP has been placed on one of the output stacks, the crane moves to
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Figure 7.16: The Crane behavior proposed in the first refinement Scenario.

the input stack where it waits that a new WP is available. First, the pneumatic cylinder is
retracted (transitions 74 and 75), then the turning table is moved to the stack (transitions
76). As soon as the stack is reached, the transition 2 is fired and the control is given to
the stack component.

After the replacement has been designed, the developer wants to check whether
the properties of interest are satisfied, possibly satisfied or not satisfied by the refined
automaton. CHIA allows checking the replacement against the previously generated
constraints. The tool notifies the developer that all the properties of interest are satisfied
by the replacement. Thus, the replacement can be added to the system.

7.2.4 Scenario 2

In the second refinement scenario, the developer re-design the behavior of the crane
component. Since he/she already performed the checking of the incomplete model,
he/she knows that the requirements 7.2.1 and 7.2.3 are already satisfied, while the re-
quirements 7.2.2,7.2.4 must be satisfied by his/her replacement.

However, in this refinement round the developer decided to add an additional check
(done with a corresponding optical sensor) which allows detecting whether a piece is a
white piece or a black piece. A plastic piece which is white is also directly send to the
conveyor. The new behavior of the crane component is presented in Figure 7.17. The
automata is similar to the one previously discussed. However, transition 77 is fired if
the WP is plastic and white. If instead the working piece is a black plastic WP, transition
49 is fired since the piece must be send to the conveyor.
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Figure 7.17: The Crane behavior proposed in the second refinement Scenario.

As previously, after the replacement has been designed, the developer checks whether
the properties of interest are satisfied, possibly satisfied or not satisfied by the refined
automaton. CHIA notifies the developer that all the properties of interest are still satis-
fied by the refined automaton.
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CHAPTER8
Evaluation

“Today’s scientists have substituted mathematics for experiments, and they wander off through equation after
equation, and eventually build a structure which has no relation to reality.”

Nikola Tesla, 1856-1943

This chapter reviews the solution proposed in this work over four evaluation lines:
a) Section 8.1 discusses the complexity of the different procedures proposed in this the-
sis and compares the replacement verification procedure discussed in Section 5.3 and
the verification of the corresponding refinement; b) Section 8.2 analyzes the scalability
of the approach by considering a set of random models with increasing size. It evaluates
the difference in terms of time and space between checking the replacement against the
previously generated constraint (the corresponding sub-property) and the effort neces-
sary to check the refined model (the original model in which the new component is
plugged into the box); c) Section 8.3 discusses the advantages and the weaknesses of
the approach encountered during the analysis of the case studies described in Chap-
ter 7; d) Section 8.4 evaluates the contributions of this thesis against the state of the art
by breaking the assessment down into the following items: the modeling formalism to
specify incomplete designs, the model checking algorithm, the constraint computation
procedure and the replacement verification.

8.1 Complexity analysis

This section discusses the complexity of the incomplete model checking, constraint
computation and replacement verification algorithms proposed in Chapter 5. It sum-
marizes the results discussed in Section 5 for each of these operations.
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8.1.1 Incomplete Model checking

The incomplete model checking algorithm presented in Section 5.1 allows the verifica-
tion of an incomplete modelM expressed as an IBA against a property expresses as a
BA. As specified in Section 3.2 the BA corresponding to the property can be designed
directly or obtained from an LTL formula φ. In the second case, given an LTL formula
φ, the procedure to convert the formula ¬φ, into the corresponding automaton Aφ has
a temporal complexity O(2(|¬φ|)), where |¬φ| is the size of the formula ¬φ. As the
property is specified with an automaton Aφ, the model checking procedure presented
in Section 5.1.2 in the worst case computes two intersection automata, i.e., an under ap-
proximation and an over approximation. The under approximation is computed by con-
sidering the automatonMc which contains the set of behaviors the system is going to
exhibit at run time. The automatonMc can be obtained by removing from the automa-
tonM its black box states and their incoming and outgoing transitions with a temporal
complexity O(|QMc|+ |∆Mc |). Given a sub-property Aφ with |QAφ | states and |∆Aφ|
transitions, and a modelMc with |QMc | states and |∆Mc | the intersection automaton Ic
has in the worst case |QMc| · |QAφ| states and |∆Mc | · |∆Aφ | transitions. The emptiness
checking procedure used to verify the presence of violating runs in the automaton Ic
has a temporal complexity O(|QIc | + |∆Ic |), where |QIc| and |∆Ic | is the number of
the states and transitions of the intersection automaton. Thus, the presence of violating
behaviors can be performed in timeO(|QMc |·|QAφ|+|∆Mc |·|∆Aφ|). The over approxi-
mation is used to check the presence of possibly violating behaviors and is computed by
considering the automaton Aφ of the sub-property against the modelM as specified in
Section 5.1.1. As proved by Theorem 5.1.1, given a sub-property Aφ with |QAφ| states
and |∆Aφ| transitions, and a modelM with |RM| regular states, |BM| boxes and |∆M|
transitions, the intersection automaton has in the worst caseO((|RM|+ |BM|) · |QAφ |)
states andO((|∆M|+ |BM|) · |∆Aφ|) transitions. As in the previous case, the emptiness
checking procedure used to verify the presence of violating runs in the automaton I has
a temporal complexityO(|QI |+ |∆I |). Thus, the presence of possibly violating behav-
iors can be performed in time O((|RM|+ |BM|) · |QAφ |+ (|∆M|+ |BM|) · |∆Aφ|) ≈
O(|M| · |Aφ|), where |M| and |Aφ| are the size of the automaton associated with the
model and the claim, respectively. This implies that the incomplete model checking
procedure has a temporal complexity O(|M| · |Aφ|).

8.1.2 Constraint computation

The constraint computation phase aims at identifying for each box the corresponding
sub-property. As described in Section 5.2 the constraint computation is made out of
two phases: intersection cleaning and sub-properties generation.

The intersection cleaning takes as input the intersection automaton I between the
modelM and the automatonAφ associated with the negation of the property of interest
and produces the automaton IΥ, i.e., a version of the intersection automaton where the
states from which it is not possible to reach an accepting state which can be entered
infinitely many often are removed. As demonstrated in Theorem 5.2.1 the cleaning
procedure can be performed in time O(|QI |+ |∆I |).

The sub-property generation step can in turn be divided in three sub-steps: automata
extraction, computation of the Π function (which computes the labels for the incoming
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and outgoing transitions) and computation of the under and over reachabilty relation.
The automata extraction computes the automata associated with the different boxes

and their incoming and outgoing transitions. As proved in Theorem 5.2.2 the automata
extraction process can be performed in time O(|QIΥ|+ |∆IΥ |).

The computation of the Π function aims at associating to the incoming/outgoing
transitions of the sub-property a value that specifies whether the initial/accepting state
is directly reachable from the incoming/outgoing transitions through a run that only
contains purely regular states, or it is necessary to traverse other mixed states i.e., the
replacement of other boxes. The procedure proposed in Section 5.2.2 has a O(|QIΥ|+
|∆IΥ|) temporal complexity and must be executed for each sub-property Sb associated
with the box b ∈ BM leading to aO(|BM| · (|QIΥ |+ |∆IΥ |)) temporal complexity. The
function U which specifies for each box b whether there exists a run in the intersection
automaton that possibly satisfies the claim and does not involve b can be computed by
performing |BM| emptiness checking procedures. Each time the emptiness procedure
is performed on a variation of the intersection automaton where the mixed states gen-
erated by the box b are removed. Thus, the procedure has a O(|BM| · (|QIΥ|+ |∆IΥ |))
temporal complexity.

Let us now evaluate the complexity of computing the under and over reachability
relations. Given the set of transitions |∆IΥ | of the intersection automaton in the worst
case every transition is an incoming or an outgoing transition of a sub-property. Propo-
sitions 5.2.1 and 5.2.2 imply that in the worst case scenario the reachability relations
contain |∆IΥ |

2
· |∆IΥ |

2
transitions. For Theorem 5.2.7 the complexity of the algorihtm

used to compute this relation is O(|Q3| + |∆IΥ |
2
· |∆IΥ |

2
). Note that this complexity is

acceptable since it refers to an operation that is performed at design time. The de-
veloper may accept an additional overhead in exchange of a lightweight replacement
verification, where the developer wants immediate responses over his/her design.

Note that given a box b with |∆−b | and |∆+
b | incoming and outgoing transitions the

number of incoming and outgoing transitions of the sub-property Sb is in the worst case
|∆−b |·|∆Aφ| and |∆+

b |·|∆Aφ |, respectively. Thus, given a box b, the reachability relation
contains in the worst case |∆−b | · |∆Aφ| · |∆

+
b | · |∆Aφ| reachability entries.

8.1.3 Replacement checking

The replacement checking procedure considers a replacement Rb of the box b against
the corresponding constraint C. It generates an under and an over approximation of
the intersection automaton computed as described in Definition 5.3.2. Under and over
approximation decorate the intersection automaton using the reachability relation and
the values associated to each incoming and outgoing transition to encode the behaviors
that do not satisfy and possibly satisfy the properties of interest.

As proved in Lemma 5.3.5, the complexity of the replacement checking procedure is
O(|QRb|·|QPb|+|∆Rb|·|∆Pb|+|∆

inRb|·|∆inSb|+|∆outRb|·|∆outSb|+(|∆outSb|·|∆inSb|)·
(|∆outRb| · |∆inRb|)) since it depends on the size of the over and under approximation
of the intersection automaton.

The term |QRb| · |QPb| + |∆Rb| · |∆Pb| specifies the size of the intersection be-
tween the automaton associated with the replacement and the automaton associated
with the sub-property. Note that each state of this automaton is obtained by combin-
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ing a state of the sub-property, which has the form 〈bM, pPb , x〉, where bM is a box
of M and pPb is a state of the sub-property Aφ, with a state qRb of the replacement,
resulting in a state 〈〈bM, pPb , x〉, qRb , y〉, which corresponds to a state 〈qN , pPb , y〉 of
the intersection obtained by considering the refined automaton N . Note that given a
state 〈qN , pPb , y〉 generated in the replacement checking procedure, in the worst case,
three states 〈〈bM, p, x〉, qRb , y〉 can be generated in the replacement checking, where x
is associated to 0, 1 and 2, respectively.

The terms |∆inRb| · |∆inSb| and |∆outRb| · |∆outSb| refer to the transitions that go from
the artificially injected initial states g and yi to the states of the intersection automaton
and from the state of the intersection automaton to the artificially injected accepting
states r and ya. In the worst case, every incoming/outgoing transition of the replace-
ment can be associated with every incoming/outgoing transition of the sub-property.
Note that an incoming transition δinS ∈ ∆inSb is generated starting from an incoming
transition δ−M ∈ ∆−b ofM and a transition δAφ of ∆Aφ . This implies that in the worst
case (when all the transitions of the automata are incoming/outgoing transitions of the
boxes) |∆inSb| = |∆M| · |∆Aφ| and |∆outSb| = |∆M| · |∆Aφ|. The total number of tran-

sitions from/to the artificially injected states are |∆inSb| · |∆inRb| and |∆outSb| · |∆outRb|,
i.e., .|∆M|·|∆Aφ |·|∆

inRb| and |∆M|·|∆Aφ|·|∆
outRb|. These values are higher compared

to the one necessary to check the replacement against the corresponding sub-property,
where |∆Aφ| · |∆

inRb| and |∆Aφ | · |∆
outRb| transitions are generated with respect to the

incoming and outgoing transitions ofRb.
Finally, the term (|∆outSb|·|∆inSb|)·(|∆outRb|·|∆inRb|)) concerns the number of tran-

sitions injected due to reachability relation which allows to abstract the state space “sur-
rounding" the intersection between the replacement and the sub-property of interest. In
the worst case, every couple of outgoing and incoming transition in ∆outSb ×∆inSb can
be associated with every couple of incoming and outgoing transition in |∆outRb|·|∆inRb|
leading to (|∆outSb|·|∆inSb|)·(|∆outRb|·|∆inRb|)) transitions. Note that however, the size
of |∆outRb| and |∆inRb| depends on the number of incoming and outgoing transitions of
the boxes which is usually small compared to the sizes of the automata. Furthermore,
these relations allow the model checking procedure to not compute huge portions of the
intersection automaton.

8.2 Scalability assessment

Whenever a new replacement Rb for the box b is proposed, the developer can check
the refined automaton N against the automaton Aφ associated with the original sub-
property φ (refinement checking), or the replacement Rb against the corresponding
sub-property Sb (replacement checking). This section compares the efficiency of the
refinement verification (Section 5.1) against the replacement checking (Section 5.3).
In the absence of a realistic benchmark suite, we have randomly generated a set IBAs
and replacements. By controlling the density of transitions, of the accepting states and
of the boxes we have analyzed the performances of the algorithms over different types
of models. The evaluation analyzes the configurations (values of the parameters) for
which the verification of the replacement outperforms the verification of the refinement
of the model.
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8.2.1 Experimental setup

To evaluate the applicability of the approach, in absence of a realistic benchmark suite,
we have randomly generated a set IBAs representing the models of the system which
are considered against a set of predefined LTL properties.

The IBAs generation is based on the procedure presented in [127] (and also used
in [126], [38]), that has been demonstrated to provide an interesting source of bench-
mark problems. In [127], a random Büchi automaton is generated over an alphabet
made by two propositions, e.g., {a, b}. For each proposition of the alphabet a random
directed graph with a single initial state and k transition is generated. The “hardness"
of the problem is changed by controlling the density of the transitions, i.e., the ratio
between the number of transitions per proposition p and the number of the states of
the automaton (r = |∆p|/|Q|, where |∆p| is the cardinality of the set of transitions
labeled with p), and the density of accepting states, i.e., the ratio between the accepting
states and the number of the states of the automaton (f = |F |/|Q|). The transition
density represents the expected number of transitions that exits a state. The number of
accepting states, which are selected randomly between the set of the states of the BA,
is a linear function of the number of the states of the system. The generation procedure
also imposes the initial state to have an outgoing transition for each proposition of the
alphabet, to avoid the generation of trivial automata.

The random generation procedure used in our assessment uses the BA obtained with
the procedure previously described to extract both the IBAs and the replacements of
the boxes. The idea is to randomly encapsulate parts of the BAs into boxes. The
encapsulated automata and the corresponding incoming and outgoing transitions are
the replacements associated with the boxes, while the IBA is the automaton obtained
by replacing the encapsulated parts with the corresponding boxes. The box density
(b = |B|/|Q|) specifies the number of boxes which must be injected into the BA.
The replacement density (r = (|B| · |Qb|)/|Q|) specifies the number of states of the
automaton to be encapsulated inside the replacement of the boxes. The states are chosen
between the states of the BA and randomly inserted into the replacement of one of
the boxes. Given a state s which is encapsulated into a box b, each incoming and
outgoing transition of s is associated with an incoming and outgoing transition of the
replacement Rb of the box b. Furthermore, each incoming (outgoing) transition with
wource (destination) s′ of s is associated with an incoming (outgoing) transition of b
with source (destination) s′.

Parameter Initial Value Increment Final Value
N◦of states 10 10 100

Transition density 1.0 1.0 4.0
Accepting density 0.2 0.1 0.5

Box density 0.1 0.1 0.5
Replacement density 0.1 0.1 0.5

Table 8.1: Values of the parameters used in the scalability assessment.

The values of the parameters used in the scalability assessment are presented in
Table 8.1. The transition density changes from 1.0 to 4.0 with a unitary increment.
The transition density specifies, for each proposition, the average number of transitions
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that exit each state of the model. For example, a transition density of 4 means that,
in average, each state of the system is left from 4 transitions per proposition. The
range of the accepting density is between 0.2, which indicate that two states over ten
are accepting, and 0.5, which states that half of the states are accepting. The number
of states of the model changes from 10 to 100. To transform BA into IBA the values
of the box density and the replacement density presented in Table 8.1 are considered.
Given a BA with n states a box density of 0.5 specifies that n/2 boxes are added to
the BA. The replacement density is the ratio between the sum of the states injected
into the replacements of the boxes and the number of the states of the BA. When the
replacement density is equal to 0.5, the replacements of the boxes contain half of the
states of the BA.

Three claims are considered in the scalability evaluation: the LTL formula φ1 =
(a)U(b), the safety formula φ2 = G(a → (F (b))) and the liveness formula φ3 =
F ((a)U(b)). For each of these formulae, and for each configuration generated as spec-
ified in Table 8.1, 20 tests have been performed, leading to 240.000 configurations.

8.2.2 Experimental results

The tool is evalutated over the 240
.
000 configurations generated as specified in Sec-

tion 8.2.1, over the three LTL properties φ1, φ2 and φ3. When a randomly generated
model is considered with respect to one of these properties, the model checker may
return three possible values, satisfied (T ), possibly satisfied (⊥) and not satisfied (F ).
Figure 8.1 specifies for each LTL formula the percentage of the cases in which the prop-
erty is satisfied, possibly satisfied or not satisfied. Note that, these percentages depend
both on the type of the property which has been considered and on the algorithm which
is used to randomly generate the models to be considered. Notice that the percentage
of the cases in which the formula (a)U(b) is satisfied is less than the percentage of the
percentage in the case in which F ((a)U(b)) is considered. Indeed, if a model satisfies
the property (a)U(b) it also satisfies F ((a)U(b)).

Possibly satisfied Satisfied Not satisfied

54.93 %

12.4 %

32.68 %

(b) Satisfaction of the claim φ1.

46.03 %

2.06 %

51.91 %

(c) Satisfaction of the claim φ2.

50.98 %

16.6 %

32.42 %

(d) Satisfaction of the claim φ3.

Figure 8.1: The model checking results obtained by considering the claims φ1, φ2 and φ3.

The relation between the values returned by the model checker and some of the
parameters specified in Table 8.1 is described in the following.

First, we have considered the relation between the percentage of the models that
satisfy, do not satisfy and possibly satisfy the property of interest and the number of the
states of the automaton. The relation has a similar behavior with respect to all the prop-
erties of interest. Figure 8.2 relates the number of the states and the satisfaction values
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8.2. Scalability assessment

when the property φ1 is considered. The percentage of models that possibly satisfy the
property increases as the number of the states of the model increases. Indeed, the num-
ber of boxes injected into the model increases linearly with the number of states of the
generated automaton. This implies that, the more states are in the models, the higher
is the chance for the property to be possibly satisfied. Since percentages can assume
a maximum value of 100%, we checked the presence of a monotonic relation between
the number of the states and the possibly accepting percentage using the Spearman’s
rank correlation coefficient1.
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Figure 8.2: Satisfaction of φ1 with respect to the number of the states.

The Spearman’s rank correlation coefficient assesses how well the relationship be-
tween two variables can be described using a monotonic function. A perfect Spear-
man correlation of +1 or −1 occurs when each of the variables is a perfect monotone
function of the other. The relation between the number of the states and the possibly
accepting percentage has a Spearman’s rank correlation coefficient close to 1.

The percentage of the models that satisfy, do not satisfy and possibly satisfy the
properties of interest with respect to the states injected inside the replacement of the
boxes is presented in Figure 8.3, where the property φ1 is considered. The percentage
of models that possibly accept the property of interest increases as the density of the
replacements of the boxes increases and has a monotonic shape has confirmed by the
Spearman correlation coefficient. Indeed, the higher is the number of the states encap-
sulated into the replacement of the boxes, the lower is the number of the regular states
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Figure 8.3: Satisfaction of φ1 with respect to the number of the box states.

1The presence of an upper-bound on the percentage values makes the Pearson correlation coefficient [99] not suitable for the
analysis of the relation between the number of the states and the possibly accepting percentage.
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that “remains" in the IBA. For example, when half of the states of the automaton are
encapsulated into the boxes (i.e., the replacement density is equal to 0.5), the property
is possibly satisfied in the 84.20% of the cases.

Over the 240
.
000 experiments, in 24

.
994, 121

.
624, 93

.
382 cases the properties φ1,

φ2 and φ3 were satisfied, possibly satisfied and not satisfied, respectively. Whenever
the property is possibly satisfied the replacement for one of the boxes of the model is
considered. The replacement is used to compare the performance of its verification
against the corresponding constraints and the verification of the claim against the re-
finement of the system. In the first case, the constraint computation algorithm described
in Section 5.2 is used to compute from the model of the system and the corresponding
claim a set of constraints the replacement of the boxes must satisfy. The performances
of the replacement checking activity concerns the time and space necessary to verify
whether the replacement satisfies the corresponding constraint. In the second case, the
replacement is first injected into the original model, and the obtained refinement is
checked against the claims of interest. The comparison between the two approaches is
performed by considering two different measures: time and space. The time concerns
the duration in seconds of the model checking activity. The space is the size of the
automata generated in the verification.

In all the 121
.
624 cases in which the property was possibly satisfied, the experiments

confirm the correspondence between the results of the verification of the replacement
and of the refinement, which prompts a correct implementation of the checkers. The
percentage of the cases in which the property was satisfied, not satisfied and possi-
bly satisfied for each LTL property in the replacement verification is described in Fig-
ure 8.4. As evidenced in Figure 8.4, in most of the cases in which a replacement is
injected into a box, the property remains possibly satisfied. This because it is highly
probable that the automaton to be refined contains possibly accepting runs which do
not involve the refined box b, or the possibly accepting runs involving b contain also
other boxes.

Possibly satisfied Satisfied Not satisfied

85.39 %

3.82 %

10.78 %

(b) Satisfaction of the claim φ1.

84.35 %

1.63 %

14.02 %

(c) Satisfaction of the claim φ2.

85.06 %

3.22 %

11.72 %

(d) Satisfaction of the claim φ3.

Figure 8.4: The model checking results obtained in the replacement verification considering the claims
φ1, φ2 and φ3.

In the 44
.
062, 36

.
859 and 40

.
703 cases in which the property φ1, φ2 and φ3 were

possibly satisfied, respectively, the replacement verification outperforms the refinement
verification in the 95.45%, 93.56% and 96.15% of the cases with respect to the verifi-
cation time and in the 92.52%, 93.26% and 92.99% of the cases with respect to the
verification space. The average and the standard deviation of the verification time and
the size of the automata generated in the refinement and in the replacement checking
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8.2. Scalability assessment

is represented in Table 8.2. The table evidences that the replacement verification gen-
erates automata which in average are smaller than the one generated by the refinement
verification. However, there is a higher variance in the size of the automata generated
(i.e., in the worst case the reachability relation has a polynomial impact on the size of
the automata). Furthermore, the time required by the replacement verification proce-
dure (seconds) is, in average, less than the one required by the refinement verification.
However, as for the size, the higher variance specifies that there are cases in which there
is a high overhead introduced by the replacement verification.

φ1 = (a)U(b) φ2 = G(a→ (F (b))) φ3 = F ((a)U(b))
M SD M SD M SD

Ref Size 991.94 854.04 949.57 752.49 348.99 295.85
Time 3.72 3.38 3.44 2.94 1.70 1.45

Rep Size 179.16 3655.02 174.61 1247.55 56.37 535.03
Time 0.69 12.85 0.67 4.74 0.21 1.82

Table 8.2: The average (Ma) and the variance (SD) on the size of the automata generated and the time
required by the refinement (Ref) and the replacement (Rep) verification procedures.

The relation between the average size of the automata generated by the replacement
and the refinement verification procedure with respect to the density of the transitions
of the automata is presented in Figure 8.5, where the property φ1 is considered.
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Figure 8.5: Average size of the automata generated and time required by the refinement and the replace-
ment verification procedures with respect to the transition density when the property φ1 is considered.

As demonstrated in Section 8.1.3, the complexity of the replacement verification
procedure has a polynomial overhead in the number of the incoming/outgoing transi-
tions of the replacement. However, the trends of Figure 8.5a specify that in most of the
cases, the reachability between the incoming and outgoing transitions is not computed.
The refinement verification procedure (identified in Figure with a dotted line marked
through circles) increases linearly with respect to the density of the transitions of the
automaton. Instead, the increment in the transition density has a polynomial impact
on the replacement verification (identified in Figure with a dotted line marked through
stars). However, due to the presence of multiple boxes, in many cases, the property
is possibly satisfied since the incoming transitions and outgoing transitions of the re-
placement are not “directly" reachable from the initial and the accepting state of the
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IBA. This means that the replacements of other boxes must be traversed before reach-
ing the considered box. In all these cases the reachability relation is not used in the
replacement verification.

The relation between the size of the automata and the time required by the replace-
ment and refinement verification procedures and the number of the states the model
of the system, when the property φ1 is considered, is presented in Figure 8.6. As evi-
denced in Figure 8.6a, while the verification of the size of the automata generated in the
refinement verification (identified in Figure with a dotted line marked through circles)
increases linearly with the size of the automata to be considered, in the replacement
case (identified in Figure with a dotted line marked through stars) the size of the au-
tomata decrease. The same behavior is shown by the verification time. Indeed, the
number of boxes increases linearly with the automata size and, as the size of the au-
tomata increases, the probability of having accepting runs which involve other boxes
increases. When the incoming transitions of the box which is considered are not “di-
rectly" reachable from one of the initial states of the automaton, and from the outgoing
transitions it is not possible to “directly" reach an accepting state, the property is pos-
sibly satisfied and, in all these cases, it is not necessary to compute any intersection
leading to high performance improvements.
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Figure 8.6: Average size of the automata generated and time required by the refinement and the re-
placement verification procedures with respect to the number of the states of the automata when the
property φ1 is considered.

The relation between the size of the automata generated and the time required by
the replacement and refinement verification procedures and the replacement density is
presented in Figure 8.7. The refinement verification is barely affected by the replace-
ment density: the number of the states encapsulated into a box influence the refinement
verification time since the corresponding refined automaton is generated. Conversely,
the number of the states of the replacement has a strong influence on the replacement
verification. Indeed, the higher is the number of the states encapsulated into replace-
ments the higher is the probability of connecting incoming and outgoing transitions,
making the use of the reachability relation necessary.

Finally, Figure 8.8 presents the average size of the automata generated and the time
required by the refinement and the replacement verification procedures with respect to
the box density when the property φ1 is considered. Again, the refinement verification
is barely affected by the box density: the number of the boxes injected influence the
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Figure 8.7: Average size of the automata generated and time required by the refinement and the re-
placement verification procedures with respect to the replacement density, when the property φ1 is
considered.

refinement verification time since they are added to the states of the automaton. Con-
versely, the sizes of the automata generated in the replacement verification decreases,
until asintotically, the size of the automata generated is three. The reason is the fol-
lowing, by increasing the number of boxes, there is a high chance that the box b which
is refined can be reached from the initial state by runs that traverse other boxes and,
similarly, can reach the accepting states only by traversing other boxes. Thus, all the in-
coming and outgoing transitions of the sub-property associated to the box b are marked
as “Y ". Furthermore, there is a high chance that there exist a (set of) possibly accepting
run(s) which do not involve the refinement of the box currently analyzed. For these
reasons, the lower approximation automaton has a size 3, i.e., the lower approximation
only contains the artificially injected initial (g) the accepting (r) state and the stuttering
transition over the accepting state.
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Figure 8.8: Average size of the automata generated and time required by the refinement and the replace-
ment verification procedures with respect to the box density when the property φ1 is considered.

To analyze the effectiveness of the approach in the worst case, we consider only the
experiments in which the intersection between the replacement and the refinement is
computed and the property results not satisfied. In the 4

.
704, 5

.
119 and 4

.
744 cases in

which the refinement does not satisfy the property of interest the replacement verifica-
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tion was faster in the 64.58%, 58.00% and 66.17% of the cases. The diagrams presented
in the following refers to the property φ1. Similar shapes have been obtained when the
properties φ2 and φ3 have been considered.

Figure 8.9 describes the average size of the automata generated with respect to the
transition density. The figure evidences the quadratic impact of the reachability relation
on the size of the automata generated in the replacement verification. Note that, when
the transition density is low, the replacement outperforms the refinement verification,
while when the density of the transitions increases the refinement verification is more
effective.
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Figure 8.9: Average size of the automata generated and time required by the refinement and the re-
placement verification procedures with respect to the transition density, in the cases in which the
refinement does not satisfy the property of interest.

Figure 8.10 specifies the relation between the number of the states of the model, the
average size and time required by the replacement and refinement checking. Note that,
the number of the states may not correspond to the states included in the final model
since some of them may be encapsulated into boxes as specified in Section 8.2.1. Fig-
ures 8.10a and 8.9b specify that the number of the states barely influence the effort
required in the replacement verification. Indeed, the replacement verification depends
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Figure 8.10: Average size of the automata generated by the refinement and the replacement verification
procedures with respect to the number of the states of the automata when the refinement does not
satisfy the property of interest.
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on the size of the replacement, which depends on how the states of the model are ran-
domly encapsulated into the boxes. For this reason, and since the reachability relation
is used in the generation of the lower and upper intersection automata to be checked, it
is possible that for really small size models the replacement verification procedure gen-
erate big models. Conversely, the effort required in the refinement verification grows
linearly with the size of the model to be checked.

Figure 8.11 describes the average size of the automata generated in the replacement
and in the refinement verification and the corresponding verification time with respect
to the replacement density. The effort required to check the refinement automaton de-
creases when the replacement density increases. The reason is the following. Consider
the case in which the replacement density is 0.5. Given a set of boxes (whose num-
ber depends on the box density), half of the states of the original model are randomly
encapsulated into the boxes. However, when the refinement is generated only the re-
placement associated with one box (the one which is considered) is injected into the
model. Conversely, the replacement density has a direct impact on the replacement
verification. Intuitively, the higher is the size of the replacement, the higher is the effort
necessary in the replacement verification.
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Figure 8.11: Average size of the automata generated by the refinement and the replacement verification
procedures with respect to the replacement density when the refinement does not satisfy φ1.
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Figure 8.12: Average size of the automata generated by the refinement and the replacement verification
procedures with respect to the box density when the refinement does not satisfy φ1.
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Finally, Figure 8.12 shows the average size of the automata generated by the refine-
ment and the replacement verification procedures and the time required by the verifica-
tion procedure with respect to the box density, in the cases in which the refinement does
not satisfy the property φ1 of interest. The effort required in the refinement verification
is barely influenced by the box density. Conversely, when the box density increases,
the average size of the automata encapsulated into each box decreases. This benefits
the replacement verification and results in a lower size of the automata generated.

8.3 Case studies

The approach proposed in this thesis has been used over the two case studies described
in Chapter 7. This section evaluates the approach with respect to three different aspects:

• modeling formalism: we discuss the advantages and limitations of the proposed
formalism evidenced on its use over the two case studies described in Chapter 7;

• constraint computation: we describe how the constraint computed using the pro-
cedure described in Section 5.2 supports the development;

• replacement verification: we evaluate the performances of the replacement verifi-
cation procedure presented in Section 5.3 over two realistic examples.

The IBA modeling formalism natively support hierarchical decomposition, encap-
sulation and iterative refinement. The case studies confirm the advantages of using
this formalism in such a development setting, which easily allows the modeling and
refinement of the features of interest. On the other hand, the case studies also reveals
two main drawbacks (and possible extensions) of the formalism: a) sometimes the
developer may want to specify an assumption, i.e., an invariant over the value of the
propositions inside a specific black box state. For example, he/she may want to spec-
ify that the crane is not able to modify the value of the propositions of the stamp, i.e.,
smACTSLRET is never true inside the crane. This is an assumption specifying that
the stamp actuator is not activated by the crane, and can be performed in the cases
in which the developer in charge of designing the crane has no possibility to modify
the satisfaction of that proposition. The specification of invariants enriches the formal-
ism by supporting a higher separation of concerns; b) IBAs only support sequential
systems, i.e., they do not natively support parallel execution. The specification of con-
current systems such as the mutual exclusion system described in Section 7.1 can be
performed only by generating all the possible interleaving between the actions that can
be performed by the processes and encapsulating the unknown behaviors inside boxes.

The constraint computation algorithm introduced in Chapter 5 has been proposed
to support the designed in the development activity. The two case studies presented in
Chapter 7 evidence the possible advantages that descend by the use of this technique.
Between the others we highlight: a) they are an instrument that allows a more con-
scious development approach. The developer before designing a component can com-
pute and analyze the sub-properties he/she must satisfy, giving him/her an overview on
the behaviors the component must not exhibit. For example, in the development of the
replacement of the box b10 the developer knows that he/she cannot design a component
where there is an infinite internal run where cr0 and cr1 are not satisfied; b) it allows
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contract negotiation. Whenever the model of the system contains multiple components
still to be developed, i.e., different boxes, the design of the components can be delegated
to third parties. In these cases, it is essential to define the features the different compo-
nents are going to exhibit. For example, in the second scenario of the mutual exclusion
problem, it is important to establish whether b10 or b11 is going to allow the process P1

to enter its critical section. On the other hand, at the current stage, the analysis of the
sub-property is not a simple task. The sub-properties encode all the possible ways in
which the replacement can violate the claim of interest. Interpreting such behaviors is
not easy especially because the sub-properties encode through the reachability relation
how the structure of the original model influence the replacement design. Furthermore,
a) at the current development stage a graphical representation of the sub-properties is
not provided by CHIA. The developer must use the textual description whose interpre-
tation is cumbersome and time consuming; b) several reachability entries are duplicated
since they are needed in the replacement verification. A more compact representation
can be obtained by removing the duplicated entries.

The replacement verification has been used to check the replacementRb, of the box
b, against the previously generated constraint. We have compared the performances of
the verification of the refined modelN , obtained by plugging the replacementRb of the
refined box b into the original modelM, with respect to the verification of Rb against
its constraint C. This type of the evaluation provides a feedback on the performances
of the procedure on two realistic case studies. As done for the scalability assessment,
we compare the two approaches with respect to the size of the automata generated and
the time required by the verification procedure.

The results associated with the MUTEX case study are presented in Table 8.3. As
evidenced, the replacement verification outperforms the verification of the refinement.
In the first refinement scenario, the sizes of the automata generated and the time of the
replacement verification are comparable to the refinement verification case. In all the
cases, both the lower and the upper intersection automaton are considered to check the
presence of violating and possibly violating runs, respectively. When the replacement

Req 7.1.1 Req 7.1.2 Req 7.1.3 Req 7.1.4
REF REP REF REP REF REP REF REP

Scenario 1 Time 73 10 38 26 38 33 6 4
Size 66 44 378 284 670 574 162 116

Scenario 2 Time 11 1 6 1 41 6 7 1
Size 120 7 260 17 527 32 130 12

Table 8.3: The time (ms) and the size (|Q| + |∆|) of the automata generated by the refinement (REF)
and the replacement (REP) verification procedures in the two MUTEX refinement scenarios.

is considered, the lower reachability relation contains all the possible ways in which it is
possible to reach an incoming transition of the box from one of its outgoing transitions.
Since b10 is the only box in the model of the MUTEX, the reachability relation abstracts
all the runs of the intersection automaton which do not include states generated from
the combination of b10 and a state of the claim. Furthermore, in this case, the upper
reachability relation corresponds to the lower reachability relation since b10 is the only
box in the system. The combination of the reachability relations with the incoming and
outgoing transitions of the replacement allows the generation of smaller automata with
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respect to the verification of the replacement from scratch. In the second refinement
scenario, the situation is slightly different. When the sub-property of the state b11 is
computed, the lower reachability relation is empty, since to reach an incoming transition
of b11 it is necessary to travel on a run that crosses b10. Furthermore, there exists a
run which does not involve b11 which is possibly violating, i.e., a run in which the
property is not satisfied inside b10 and does not cross b11. This justifies the considerable
speed up obtained by using the replacement verification procedure. In the replacement
verification, the under approximation automaton does not contain any entry related with
the reachability relation and the over approximation is not computed since it is already
exists a run which does not involve b11 where the property is possibly satisfied.

The results associated with the PPU case study are presented in Table 8.4. The
requirements 7.2.1 and 7.2.3 are not considered in the evaluation since they are already
satisfied by the original IBA. In both the refinement scenarios all the states of the model
M to be refined are regular, with the exception of the crane which is the only black box
state. As previously mentioned when only one box is present inM the lower and the
upper reachability relation coincide and contain all the possible ways in which it is
possible to reach in the intersection automaton an incoming transition of the box (the
crane) from an outgoing one. The reachability relation is used to create the under and

Req 7.2.1 Req 7.2.2 Req 7.2.3 Req 7.2.4
REF REP REF REP REF REP REF REP

Scenario 1 Time - - 20 7 - - 6 4
Size - - 502 174 - - 456 148

Scenario 2 Time - - 20 4 - - 6 1
Size - - 502 72 - - 456 72

Table 8.4: The time (ms) and the size (|Q| + |∆|) of the automata generated by the refinement (REF)
and the replacement (REP) verification procedures in the two PPU refinement scenarios.

the over approximation automata as specified in Definitions 5.3.3 and 5.3.4. In both the
refinement scenarios, the dimensions of the automata generated, and the verification
time, is lower than the one required to verify the Requirements 7.2.2 and 7.2.3 from
scratch.

8.4 Comparison with other approaches

This section compares our approach with related work. The comparison includes the
expressiveness of the modeling formalism, the algorithm to check incompleteness, the
procedure to synthesize the constraint and the replacement checking procedure.

8.4.1 Modeling formalisms

Several modeling formalisms have been proposed in literature to describe incomplete
models. A detailed description of these formalisms has been presented in Section 2.1.
This section compares IBAs with existing modeling formalisms over two different cri-
teria: a) the type of the system which is possible to describe; b) the type of incom-
pleteness that can be expressed.

The first characteristic we have considered is whether the modeling formalism is
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suitable for modeling sequential or concurrent systems2. A sequential system is usu-
ally described using its input-output relation. The system changes its state with respect
to the input it receives from the environment and produces outputs. Conversely, in
a concurrent system, different processes (computations) are executed simultaneously,
and potentially interact with each other. Usually, each of the processes is modeled
through a type of FSM and the parallel execution of FSMs is defined. Different mod-
eling formalisms, such as MTS, PKS, XKSs and LTS↑ supports the specification of
incompleteness when concurrent systems are considered. Other modeling formalisms,
such as PKS and HSM are more suitable for modeling sequential processes. As spec-
ified in Chapter 4, at the current development step IBAs can only describe sequential
models of computation. Indeed, the main goal of IBAs is to support the designer when
a top-down development process is adopted and they are not designed for the develop-
ment of concurrent systems.

MTS PKS HSM XKSs LTS↑ IBA

Type of system
Sequential x x x x x
Concurrent x x x
Hierarchical x∗ x∗ x∗ x

Reactive x

Type of
incompleteness

Component x∗ x∗ x∗ x∗ x
Transition x

Proposition x x

Table 8.5: Comparison between the modeling formalisms proposed to manage incomplete models.

The second aspect which has been considered in our classification is whether the
formalism is designed to support hierarchical development. Hierarchical development
concerns the decomposition and partitioning of the system into smaller modules. At
each refinement round different features of the model are analyzed, with a different
level of abstraction. HSMs are a modeling formalism which has been proposed for
hierarchical development. However, HSMs do natively include incompleteness, i.e., a
HSM contains the specifications of all the sub-modules and how they are hierarchically
related with each other. Conversely, MTSs and PKSs which natively support incom-
pleteness have not been expressly designed for being used in a hierarchical develop-
ment context, even if they can be used in this setting (for this reason the corresponding
entry in Table 8.5 is also marked with the symbol ∗). Finally, some works consider
incompleteness in the context of reactive systems. In a reactive system the different
components interact with the environment where the system is running. In LTS↑, the
incompleteness concerns the absence of knowledge about the environment in which the
system is executed.

Regarding the type of incompleteness that can be modeled we identify three differ-
ent types of incompleteness. First, the value of a proposition may not be specified. In
this case, given a state or a transition labeled with a set of propositions, the developer
may be uncertain about the values assumed by some of them. Incompleteness over the
values of the propositions has been considered for example in XKSs and PKS. Other
modeling formalisms support the specification of incompleteness over transitions. In
this case the developer may be uncertain on whether a transition will be present in the

2For further details on the differences between sequential and concurrent systems see, for example [100].
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final model of the system. MTSs are one of the most used modeling formalism in this
context. Finally, the last type of incompleteness we considered is over components.
This kind of incompleteness is associated with the classical concepts of hierarchical re-
finement, where the behavior of the system in components (which are associated with
states) is iteratively refined. As previously mentioned, HSMs are the most suitable
formalism for hierarchical development. However, the formal definition of HSMs re-
quires all the components and their hierarchical relations to be specified. MTSs [77]
can be used in the specification of unknown components even if they are not intrinsi-
cally designed for this purpose. For example, a box of an IBA can be converted into
an incompleteness over transitions (MTS) as specified in Figure 8.13, where Σ is the
universal alphabet and the transitions 1, 2 and 3 are possible transitions. Note that,
with respect to MTSs, IBAs also contain accepting states, which is a necessary require-
ment for the verification of fairness properties [33]. Also PKS can be used to specify
unknown components. PKSs are Kripke structures in which the propositions can take
a third truth value ⊥. This offers a different level of granularity with respect to IBA,
where boxes are refined into other state machines. In PKSs the refinement process
concerns the definition of the truth values of the atomic proposition in the different
states. Note that, a state where all the atomic propositions are uncertain can also be
decomposed into different states since the refinement relation is based on the notion of
a completeness pre-order. However, IBAs have been expressly proposed as a formalism
that supports a hierarchical development strategy in which boxes are iteratively refined
into other state machines. Finally, in LTS↑ the model of the system contains a set of
transitions that can be triggered by an environment whose behavior is not defined, i.e.,
the incompleteness refers to a component (the environment) which is executed in par-
allel to the system. The set of actions Act, which label the transitions, is partitioned in
two sets: one set contains the set of actions that can be triggered (controlled) by the en-
vironment, the other contains the actions that cannot be controlled by the environment
and represent internal actions of the model. In this sense LTS↑ are similar to MTS,
where the presence of some transitions is ensured while other transitions can be present
or not into the final model depending on the behavior of the environment.

t t1 q2

{1} ∑

{2} ∑

{3} ∑

Figure 8.13: Mapping between a box of an IBA and the corresponding MTS.

In conclusion IBAs try to overcome the limitations of the previously mentioned
modeling formalisms by proposing a framework which natively supports the developer
when a top-down development style is employed.

8.4.2 Model checking

The model checking procedure for IBAs presented in this work is similar to other ap-
proaches proposed in literature. The technique presented in Section 5.1 is compared
with existing frameworks which are able to consider properties expressed as LTL for-
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mulae or automata3. In particular, we consider works that check incomplete models
when a three value inductive semantic of LTL is considered. In this semantic, when a
property is possibly satisfied on a model M, there is no guarantee that there exists a
refinement N ofM where the property is satisfied and not satisfied. Differently from
the inductive semantic, in the thorough semantic, a property is evaluated to maybe if
there exist two refinements N and N ′ such that one satisfies and the other does not
satisfy the property of interest4.

LTL Aut
MTS 2|φ|+1 · |M| 2 · |Aφ| · |M|
PKS 2|φ|+1 · |M| 2 · |Aφ| · |M|
HSM − −
XKSs 2|φ|+1 · |M| 2 · |Aφ| · |M|
IBA 2|φ|+1 · |M | 2 · |Aφ| · |M|
LTS↑ − 2 · |Aφ| · |M|

Table 8.6: Comparison between the complexities of the model checking algorithms that support incom-
pleteness.

Table 8.6 shows the asymptotic behaviors of the algorithm proposed for checking
automata and LTL properties over the modeling formalisms which support incomplete-
ness described in Section 8.4.1. The asymptotic behaviors of these algorithms corre-
spond since most of them rely on the same idea, i.e., to perform two classical model
checking procedures which consider an over and an under approximation of the model
of the system, respectively. The under approximation contains the behaviors the devel-
oper is sure will be exhibited by the system. If the property is violated in the under
approximation it will also be violated by the final system. The over approximation con-
tains the behaviors the final system may exhibit. If the property is violated in the over
approximation it is possibly violated. Otherwise the property is satisfied.

In the case of Modal Transition Systems (MTSs) [129] the under approximation is
obtained by removing all the maybe transitions, while in the over approximation all the
maybe transitions are converted into required one. In the case of Partial Kripke Struc-
tures (PKSs) [11] and XKripke Structures (XKS) [22] the under and over approxima-
tions are obtained by associating “true" and “false" values to the atomic propositions,
respectively. The same idea has been used in [56] where Labeled Transition System
with an additional interface operator (LTS↑) are considered. In this context, the model
checking procedure can be used to check only the satisfaction of safety properties. Note
that, in [56], both the model and the property are specified using automata over finite
words. For further information, the interested reader may refer to Section 2.3. Finally,
HSMs are marked with the symbol − since, up to our knowledge, an algorithm that
supports the verification of a HSM which is incomplete when a top down development
approach is used is still missing. However, algorithms such as the one presented in [8]
can be modified to work in this setting.

The model checking procedure for IBAs proposed in this work (Section 5.1) is simi-
lar to the processes presented in literature. However, instead of relying on two classical
model checking procedures the intersection between BA and IBA has been redefined

3Note that we are considering the three value model checking problem and not the generalized model checking which is a
different and more complex problem.

4The generalized model checking problem has been discussed for example in [12].
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(Section 5.1). The reason behind this choice is to use the new extended intersection to
extract the sub-properties related with the different components (boxes). Furthermore,
as specified Table 8.6, this choice has no impact on the asymptotic behavior of the
model checking algorithm.

8.4.3 Sub-property computation

The sub-property computation problem is similar to other problems already analyzed
in literature. This section highlights the main differences and similarities between the
proposed approach and related work, such as synthesis and supervisory control. An
extended discussion on the related work has been presented in Section 2.4. Note that,
as mentioned in [56], “the particular framework in which the problems are considered
makes all the difference to the proposed solutions".

In program synthesis, the developer usually wants to compute a model of the sys-
tem that satisfies a set of properties of interest. For example, in [112], the goal is to
compute a model of the system C2 whose interaction with the environment guarantees
that a specific formula is satisfied. Differently, in this thesis, the goal is to compute
sub-properties for the unspecified components. In this sense, the addressed problem
is more similar to the assumption generation problem presented in [56]. In this work,
the authors, given a model of the systemM, which contains a set of controllable ac-
tions compute an assumption, i.e., an environment executed in concurrency with M
that guarantees the satisfaction of the properties of interest. Again, this is a slightly
different problem with respect to the one considered in this thesis. In particular, the
approach presented in this thesis is more finer-grained since it tries to “allocate" parts
of the assumption over the different components located in the system. Furthermore,
in [56] only safety properties are considered and the proposed algorithm is exponen-
tial since the error LTS↑ obtained as an assumption is converted into a deterministic
LTS↑. An other work which considers the synthesis problem in the context of finite
state machines is [129]. In [129] the authors propose a synthesis techniques that con-
structs Modal Transition Systems (MTSs) from combination of safety properties and
scenarios. Again the problem of updating (synthesizing) the model from properties
and scenarios is slightly different to the constraint computation algorithm where the
goal is to compute sub-properties.

The computation of the constraint can be interpreted as a supervisory control prob-
lem [16,92,113,114] in which each box is associated with a set of controllable actions.
In supervisory control, given a model of the systemM, the set of actions is partitioned
in two sets: a set of controllable controllable actions, which are the one the controller
can constraint, and a set of hidden actions, which are not visible by the controller. The
problem is to synthesize a strategy the controller can employ to modify the behavior of
the modelM in a way that satisfies the properties of interest. In this sense, supervisory
control is more similar to the assumption generation problem presented in [56].

Cimatti et al., [30] propose an approach to compute contracts while the software is
developed. A contract is specified as a tuple 〈A,G〉, where A is an assumption and G is
the guarantee that must be satisfied by the replacement. The idea is independent from
the formalism which is used to represent A and G, the only requirement is that A and
G have an equivalent trace semantic. The replacement I satisfies the contract if and
only if I ∩ [A] ⊆ [G], where [A] and [G] represent the set of traces which correspond
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to the assumption A and the guarantee G. Withing this setting, our approach can be
interpreted as a formalism to compute [G] when no assumption on the behavior of the
environment are required. Note that our procedure generate contracts which are in a
normal form, i.e., [A] ⊆ [G], indeed there are no assumption over the behavior of the
environment A which contains all the possible executable traces. Therefore, [A] is an
empty set of traces.

8.4.4 Replacement checking

The main goal of the replacement checking process is to verify, after a change, only the
portion of the state space affected by the change. The idea presented in this thesis is to
pre-compute a constraint that will be used after any change for reducing the verifica-
tion effort. For this reason, problems such as “compositional reasoning", “component
substitutability" and “hierarchical model checking" are related to our work.

Compositional reasoning [37] tries to reduce the verification effort by verifying
properties on individual components and inferring the properties that hold in the global
system without its explicit creation. For example, in the assume-guarantee paradigm [4,
69, 109, 109], if the model M guarantees φ, and the model M ′ guarantees ψ when it is
located in an environment that satisfies φ, then when M and M ′ are executed in par-
allel, they satisfy ψ. By verifying that M guarantees φ and M ′ guarantees ψ when φ
is satisfied it is possible to infer that the system composed by M and M ′ satisfies ψ
without the generation of the corresponding state space. In some sense, this is the dual
problem of the one considered in this thesis, where starting from the global system the
developer wants to infer properties that must hold into the single components.

In component substitutability [122], the problem concerns the verification of a sys-
tem when a component is removed and replaced by a new one. The main idea is to
check that the new component preserves the behaviors provided by the hold one. Again,
the problem is slightly different from the one considered in this work.

Finally, the model checking of Hierarchical State Machines (HSMs) [6–8] is related
to our work since HSMs support iterative refinement in a way which is similar to the
IBAs case. However, the verification procedures for HSMs assume that the HSMs is
fully specified, i.e., the verification can be performed only at the end of the software
development cycle. Conversely, this thesis proposes a verification technique that aims
to distribute the verification effort in a more uniform way along the development cycle
allowing the verification of models that are iteratively refined.
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CHAPTER9
Conclusion and Future Work

“I am still learning."

Michelangelo di Lodovico Buonarroti Simoni, 1475-1564

The software development process is an iterative activity. The final artifact is ob-
tained through a sequence of development rounds in which new components are de-
fined, different design solutions are analyzed, off-the-shelf components are evaluated.
Incompleteness is a constant element hailing from this dynamic and evolving environ-
ment. The initial solution proposed by the developer usually specifies a wide collec-
tion of possibly nonequivalent implementations, i.e., it is incomplete. The incomplete
parts are constantly reduced during the design process, until one single implementation
is determined [77]. The development of certain functionalities may be simply post-
poned or the implementation will be provided by a third party, such as in the case of a
component-based or a service-based system. When the implementation of a function-
ality is postponed, the developer usually defines the corresponding behavior in some
later stage of the development process, e.g., after exploring alternative solutions and
evaluating their trade-offs. There are also cases in which the postponed functionality
may become available at run-time, as in the case of dynamically adaptive systems. A
similar process is performed when the system undergoes future evolution.

Most of the analysis techniques on the market ignore incompleteness. In this set-
ting, the benefit of analysis only appears at the end of a costly process of constructing a
comprehensive behavior model, which contains a full description of the system. Con-
versely, highly explorative, iterative, and incremental model-driven design approaches
require the existing formal verification techniques to be profoundly revisited, i.e., they
should accomodate incomplete models. This thesis proposed a modeling and reasoning
framework that supports the designer during the software development process, from
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the early stages of the software development cycle, where high level and incomplete
models are considered, to the final implementation.

9.1 Summary of the Thesis

This thesis aimed to reduce the gap between the current analysis techniques, in which
incompleteness is in general neglected, and the need of techniques to be integrated in
the software development process, which is an iterative and incremental activity. In
particular,

• We proposed IBAs, a modeling formalism that supports incremental development.
IBAs extend classical Büchi Automata (BAs) by partitioning the set of states into
regular and black box states. Black box states are used to represent components
that will be later refined. IBAs allow the specification to describe a collection
of models, which are constantly reduced during the design process, until the fi-
nal model of the system is defined. This answers the Question 1.2.1 regarding
how to specify systems which contain parts whose refinement is postponed. A
comparison with the existing modeling formalisms that support incompleteness is
presented in Chapter 2 and Section 8.4.1.

• We have defined a refinement relationship (Definition 4.2.1), which specifies when
an IBA N refines an IBAM. We have formally defined a replacement (Defini-
tion 4.2.3), and how this replacement can be plugged into the original IBA (Defi-
nition 4.2.8). We have demonstrated that the automaton obtained by plugging the
replacement into the original IBA is a refinement (Theorem 4.2.2). This answers
the Question 1.2.2 which concerns how it is possible to specify incompleteness
and to update the model of the system when the replacements of new components
are available.

• We have proposed a model checking technique that supports incomplete models.
We have defined a semantic of LTL over IBA (Definition 4.3.1) and, starting from
this semantic, we have proposed a model checking technique. The model checking
technique considers a model of the system specified through an IBA against a
property specified as an LTL formula, which is converted into the corresponding
BA, or directly as a BA. The model checking technique returns three possible
values, true if the property is satisfied, false if it is not, maybe if the satisfaction of
the property depends on the still to be refined components. Sections 2.3 and 8.4.2
compare our model checking technique with state of the art procedures. This
answers the Question 1.2.3 regarding the use of the model checking techniques in
the context of incomplete specifications.

• We have proposed an algorithm that synthesizes a constraint for the incomplete
parts. The developer may use this algorithm to compute the sub-property related
to each black box state of the IBA. The sub-property contains the weakest assump-
tion the developer may satisfy in the refinement activity. We have demonstrated
the correctness of the procedure (Theorem 5.2.3). This answers the Question 1.2.5
on how is it possible to compute a constraint (a set of requirements) that the de-
veloper must consider in the refinement of incompleteness.
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• We have proposed an algorithm to perform the replacement verification. The algo-
rithm does not re-verify everything from scratch, i.e., by generating a refinement
and checking the refinement against the original requirements, but, conversely, it
considers only the replacement against the previously computed constraint. This
answers the Question 1.2.4 on how to re-check the system when a new replace-
ment is proposed.

• We have evaluated the proposed approach over two different case studies (Chap-
ter 7). For each of them, we described two different refinement scenarios. The first
case study concerns the well known mutual exclusion system which has been con-
sidered in several works, such as [9, 104]. The second is a real case study which
has been described in [139]. The results (see also Section 8.3) demonstrate the
advantages of the proposed approach and entail further analysis and evaluations.

• We have discussed the complexities of the incomplete model checking, constraint
computation and replacement verification algorithms proposed in Chapter 5. We
have also compared the complexity of our procedure with existing state of the art
procedures (Section 8.4).

• We have analyzed the scalability of the approach (Section 8.2). In particular, we
have compared the efficiency of the refinement verification (Section 5.1) against
the replacement checking (Section 5.3). In absence of a realistic benchmark suite,
we have randomly generated a set of IBAs and BAs. By controlling the density
of transitions, of the accepting and black box states, we have analyzed the perfor-
mance of the algorithms over different types of models. The evaluation illustrates
the configurations (values of the parameters) for which the verification of the re-
placement outperforms the verification of the refinement.

We believe that our work also provides the following contributions:

• It introduces a sound and complete framework for designing and analyzing sys-
tems in a hierarchical development setting. In particular, the thesis proposes both
a modeling formalism that natively supports the system design and its iterative
refinement through a hierarchical decomposition.

• It supports step-wise refinement. The developer is encouraged in the description
of general functions and, then, in their iterative decomposition until the whole
program is fully defined.

• It allows an early detection of property violations. The allocation of functions to
the sub-components is decided and proven correct at the moment of the decom-
position. Instead of being obsessed by providing a complete design of the system,
which will then be verified, the developer can decompose the design process in
refinement rounds. At each refinement round, a single component (or a single
functionality) is defined and checked against the property of interest.

• It encourages a more conscious development and separation of concerns. The
developer before designing a component may compute the corresponding sub-
property. The sub-properties specify the set of behaviors that violate and possibly
violate the property. An analysis of these behaviors describe what the compo-
nent should and should not do. Furthermore, when the replacements of different
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components (black box states) are designed by various development teams, the
constraint analysis allows the detection of possible flaws which are consequence
of the interaction among the components.

9.2 Future work

The thesis offers different directions for future works:

• Case studies. An interesting line of the research concerns the use of the approach
in a larger set of case studies. This can provide additional feedback on the advan-
tages and disadvantages of the approach. Furthermore, the scalability evaluation
performed on this thesis has been executed on a set of randomly generated models.
There is no guarantee that the randomly generated models reflect possible design
decisions of the developer. One can argue, for example, that the transition density
is usually lower/higher in real case studies.

• Extension of the modeling formalism. As evidenced in Section 8.3, sometimes
the developer may want to specify assumption, i.e., an invariant over the value
of the proposition inside a black box state. For example, a component R may
not be able to change the value of the proposition a. The introduction of this
additional feature would enrich the formalism by supporting a higher separation
of concerns. Furthermore, Table 8.5 presented in Section 8.4.1 specifies that, at the
current state, IBAs do not support concurrency. An interesting extension concerns
the definition of parallel execution of IBAs. This could give the developer more
expressive power and would allow the use of IBAs in the modeling of concurrent
systems without the manual generation of all the possible interleavings between
two IBAs. Finally, other extensions may concern the addition of incompleteness
over transitions (as in the case of MTSs) or propositions (as for PKSs), which can
increase the expressiveness of the modeling formalism.

• Extension of the model checking procedure. As highlighted in Table 8.6 presented
in Section 8.4.2, no model checking algorithm has been proposed to check CTL
formulae over IBAs. A possible extension concerns the definition of the CTL
semantic over IBA, and the development of the corresponding model checking
framework.

• Expression of the sub-property. As described in Section 5.2, the constraint compu-
tation algorithm returns for each black box state a sub-property which is made by
an automaton which relates the behavior of the replacement to the one of the orig-
inal model through incoming and outgoing transitions and their labels. However,
sometimes these automata are difficult to be interpreted, since they encode all the
possible behaviors which violate and possibly violate the properties of interest.
An interesting question is if and how is it possible to express these behaviors in
terms of LTL formula (in case augmented with additional operators that specify
how the formula is releated with the original model).

• Selection of the replacement checking procedure. Section 8.2 compares the per-
formance of the model checking procedure applied to the replacement and the
corresponding constraint versus the verification of the refined model against the
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original property. The results evidenced that in average the replacement checking
is faster than checking the refinement from scratch. However, when the replace-
ment checking is slower, the additional overhead is polynomial. For this reason
it may be useful to define appropriate heuristics to dynamically select the model
checking procedure to be applied in relation with the values of the parameters
described in Table 8.1.

• Incompleteness in the claim. The reasoning techniques proposed in this thesis
support the developer in the system design when parts of the model are iteratively
specified, using a top-down development style. Since both the model and the
claim are expressed in terms of automata, an interesting line of research concerns
the analysis of the dual case, in which the model is completely specified and the
claim contains parts which are unknown. This problem is also known in litera-
ture as query checking [20]. As stated in [24], query checking offers two main
advantages: a) understanding: the user can check the modelM against partially
defined properties getting a better insight of what the model does; b) sanity check:
the user can compare the expectations of the incomplete properties evaluated over
the model and the results of the query checking procedure. An interesting ques-
tion is how the technique can be adapted to synthesize formulae and how can be
compared with existing state of the art techniques.

• Integrate theorem proving techniques. Theorem proving, or deductive verification,
is an alternative approach to model checking. Instead of looking at a counterex-
ample, in theorem proving the goal is to derive that the property is a theorem of
the checked model, i.e., given the statements of the model, it is demonstrated that
the property holds, by performing the steps of the proof. The main benefit of de-
ductive verification is the possibility to actually explain how and why the system
meets its specification. The question is if and how is it possible to integrate the-
orem proving techniques in an incomplete context, and in particular when IBAs
and LTL formulae are considered.

• Improving the automated support. The tool has been developed as a proof of
concepts and needs optimization. The tool offers a good base-point that allows
checking how the procedure can be used in practice but has several limitation:

– The tool has no GUI. Encoding and designing the model of the system through
XML files is sometime cumbersome, time consuming and error prone. Con-
versely, a graphical user interface will give the user a better support in the
development activity.

– The current implementation is not highly optimized. For example, the data
structures used in the refinement and replacement verification are not high
efficient and can be replaced by others which provide better performances.
Furthermore, the model checking algorithm can be re-implemented exploit-
ing symbolic techniques and relying on state of the art model checking tools,
such as NuSMV [27].
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APPENDIXA
Tool documentation

The CHIA tool is an interactive command line framework which allows to iteratively refine and check models.

A.1 Installing CHIA

The CHIA tool can be found at https://github.com/claudiomenghi/CHIA/. To install CHIA

• download the CHIA.jar file

• run java -jar CHIA.jar

By running the java -jar CHIA.jar command the shell of CHIA is executed. The user interacts with the tool
using a set of commands.

A.2 Commands

The CHIA tool can be executed in two modalities: automata and replacement checking.

• exit: exits the CHIA framework.

• automata (aut): enters the automata mode.

• replacement (rep): enters the replacement mode.

Automata mode commands
The automata commands can be used in the automata mode when a Model (IBA) is considered against the constraint
property.

• lm modelFilePath: is used to load the model from an XML file. The XML file must match the IBA.xsd.
It requires the parameter modelFilePath, i.e., the path of the file that contains the model to be checked.

• dispm: is used to display the model into the console.

• lp propertyFilePath: is used to load the property from an XML file. The XML file must mach the
BA.xsd. It requires the parameter propertyFilePath, i.e., the path of the file that contains the property
to be checked.

• dispp: is used to display the property into the console.
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• lpLTL LTLFormula: it is used to load the property from an LTL formula. LTLFormula is the LTL
formula that represents the property to be checked. CHIA uses LTL2BA4J [3] to translate LTL formulae into
Büchi automaton. The LTL formula can be created starting from a set of propositional symbols, i.e., true,
false any lowercase string, a set of boolean operators, i.e., ! (negation), -> (implication), <-> (equivalence),
∧ (and), v (or), and a set of temporal operators, [] (always) <> (eventually), U (until), R (realease) (Spin
syntax : V), X (next).

• ck: is used to check the model against the specified formula. Before running the model checking procedure
it is necessary to load the model and the property to be considered.

• cc: computes the constraint corresponding to the model and the specified property.

• sc constraintFilePath: saves the constraint in an XML file. The path of the file where the constraint
must be saved is specified by the parameter constraintFilePath.

• dispc: is used to display the constraint into the console.

Replacement mode commands
The automata commands can be used in the replacement mode when a Replacement (BA) is considered against the
constraint or a specific sub-property.

• lc constraintFilePath: is used to load the constraint from an XML file. The XML file must mach
the Constraint.xsd file. The parameter constraintFilePath specifies the path of the file that
contains the constraint to be considered.

• dispc: is used to display the constraint into the console.

• lr replacementFilePath: is used to load the replacement from an XML file. The XML file must
mach the Replacement.xsd. The parameter replacementFilePath specifies the path of the file
that contains the replacement to be considered.

• dispr: is used to display the replacement into the console.

• ck: is used to check the replacement against the corresponding sub-property.

A.3 Using CHIA via Maven

The CHIA framework is published at: https://github.com/claudiomenghi/CHIA/. Before loading the
different modules it is necessary to add the repository dependency to the specified MAVEN project as follows:

1 <repositories>
2 <repository>
3 <id>IncompleteAutomataBasedModelChecking−mvn−repo</id>
4 <url>https://raw.github.com/claudiomenghi/CHIA/mvn−repo</url>
5 <snapshots>
6 <enabled>true</enabled>
7 <updatePolicy>always</updatePolicy>
8 </snapshots>
9 </repository>

10 </repositories>

The CHIAAutomata module described in Section 6.2 can be included in the project by adding the following
dependency:

1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAAutomata</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>

The CHIAAutomataIO module described in Section 6.2.1 can be included in the project by adding the following
dependency:
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1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAAutomataIO</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>

The CHIAChecker module described in Section 6.3 can be included in the project by adding the following depen-
dency:

1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAChecker</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>

The CHIAConstraintmodule described in Section 6.4 can be included in the project by adding the following
dependency:

1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAConstraint</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>

The CHIAConstraintIO module described in Section 6.4.1 can be included in the project by adding the follow-
ing dependency:

1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAConstraintIO</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>

The CHIAContraintComputation module described in Section 6.5 can be included in the project by adding
the following dependency:

1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAConstraintComputation</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>

The CHIAReplacementChecker module described in Section 6.6 can be included in the project by adding the
following dependency:

1 <dependency>
2 <groupId>it.polimi.chia</groupId>
3 <artifactId>CHIAReplacementChecker</artifactId>
4 <version>0.0.1−SNAPSHOT</version>
5 </dependency>
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Glossary

abstraction depending on the property to be verified, the systems are reduced by suppressing details that are not
relevant in the verification. The idea is that given a property to be verified, abstraction techniques reduces
the program state space and generates only a smaller set of states that preserve the relevant behaviors of the
system. Abstraction techniques are usually performed in an informal manual manner and require considerable
expertise. Predicate abstraction [61] is one of the most used and maps concrete data types into abstract data
types through predicates on concrete data. 200

accepting state are a specific type of states used to indicate that some operation or task has been completed. 38,
200

behavioral model describe a system as a set of interacting components where each component is modeled as a state
machine interacting with other components through shared events. 200

bisimulation is a binary relation between state transition systems, associating systems that behave in the same way
in the sense that one system simulates the other and vice-versa. The complexity of checking bisimulation is
linear in the size of the models [91, 98]. 18, 200

calculus of Communicating Systems is a process algebra where the developer defines for each state of the system
the set of actions that ca be performed (or observed) [89]. 200

compositionality is a property that allows the decomposition of the problem of correctness for a combined system,
into simpler problems which refer to its subsystems. 200

counterexample is behavior of the system that causes the failure. 200

design process is a sequence of refinement steps that reduce the number of possible implementations of the system.
200

dynamic system a system is dynamic if the output depends on the current and on the past values of the input [16].
200

first order logic extends propositional logic with predicates and quantification. 33, 200

functional requirement specifies a behavior the system is expected to deliver, such as “after a message is sent it is
finally delivered" and “two processes cannot access a critical section together" [135]. 2, 200

implementation a model of the system described through a formalism that supports the specification of incomplete
parts, such as IBA or MTS, is called implementation if and only if the model does not contains unspecified
parts, i.e., behaviors still to be defined. 18, 200

Java Path Finder is a framework to verify programs written in Java. 200

Labeled Transition System Analyzer is a prototype tool available at that supports the specification and analysis
of LTS models. 26, 200
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Glossary

liveness is a property that specifies a program eventually enters a desirable state. 200

modal CCS extends CCS with modalities, e.g., may and must.. 200

modal process logic extends process logic with modalities. 200

Modal Transition System Analyser is a tool that supports the construction, analysis and elaboration of Modal
Transition System (MTS). The tool is available at http://sourceforge.net/projects/mtsa/.
25, 200

model checking is an automatic technique usually performed on a model which abstracts the behavior of the real
system and it usually reduces the risk of implementing a flawed design. Given a model of the systemM and
a formal property φ, the model checking tools exhaustively analyze the state space ofM to check whether
all of the system behaviors satisfy φ [9]. 2, 200

non functional requirement specifies the software characteristics, such as performance, availability, usability, en-
ergy consumption, and costs [83, 136]. 2, 200

partially labeled transition system extends LTS to capture what are the aspects of the system that are still unde-
fined, i.e., they allow to model in each state the set of actions that may occur. 200

partially synchronous parallel composition The two automaton composed in parallel synchronize on shared ac-
tions but proceed independently on local actions [115]. 200

program synthesis In program synthesis, a specification is transformed into a system that is guaranteed to satisfy
the specification. 200

refinement concerns the elaboration of a (incomplete) partial description into a more comprehensive one in which
additional detailed are specified. 200

reliability the ability of a system or component to function under stated conditions for a specified period of time.
200

robustness is the ability of a computer system to cope with errors during execution. 200

safety specifies the system never enters an undesirable state. 200

simulation is a relation between state transition systems associating systems which behave in the same way [63]
[75]. 18, 200
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