
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Improving Trigger-Action Programming in Smart

Buildings through Suggestions Based on

Behavioral Graphs Analysis

Relatore: Prof. Donatella SCIUTO

Correlatore: Dott. Alessandro A. NACCI

Tesi di Laurea di:

Jacopo FIORENZA, matricola 814218

Andrea MARIANI, matricola 814508

Anno Accademico 2014-2015

Ringraziamenti

Ringraziamo anzitutto la nostra Relatrice Prof. Sciuto, per averci seguito in questo

percorso di tesi dandoci dei consigli chiari e precisi.

Un ringraziamento speciale va al nostro correlatore Alessandro (Lo Zio) per averci

guidato in questo percorso di tesi a colpi di “sarebbe bello se..”. Ci hai insegnato molto

ed e’ stato veramente un enorme piacere lavorare con te! Grazie di cuore!

Un ringraziamento va a tutte le persone del NECSTLab, in particolare al Prof. San-

tambrogio (Santa) che ci ha accolti nel laboratorio credendo in noi fin dal principio e ci

ha permesso di vivere delle esperienze indimenticabili.

Nella vita si continua a migliorare soprattutto grazie agli insegnamenti ricevuti e

alle persone incontrate. Noi abbiamo incontrato un trio che ha letteralmente cambiato

la nostra vita: Ale, Rik e TeoF (i veri Giovani di Talento). Hanno creduto in noi inclu-

dendoci nei loro progetti e ora ci ritroviamo a condividere una scrivania per lavorare

insieme. Grazie di Tutto!

Infine un ringraziamento va a tutti i nostri amici che ci hanno seguito, anche sem-

iii

iv

plicemente con una birra, durante il nostro corso di studi. Merita un ringraziamento

particolare Asna (detto Asnaghiñovic, asso del Milan) per aver condiviso con noi ogni

singolo giorno.

Jacopo e Andrea

v

Un sincero ringraziamento va a tutti coloro che mi hanno aiutato, anche con un

semplice sorriso, durante questo percorso.

In primo luogo ringrazio i miei genitori per avermi dato la possibilità di compiere

questo cammino e per aver creduto in me, dandomi sempre piena fiducia. Senza di voi

non sarei mai riuscito a completare questo percorso impegnativo. Grazie per avermi

insegnato a non mollare mai!

Desidero ringraziare la mia fidanzata Lisa, per essermi sempre stata vicina e per

avermi preso per mano anche nei momenti difficili. Non so come avrei fatto senza i tuoi

abbracci e i tuoi sorrisi! Grazie di tutto!

Meritano un ringraziamento anche i miei nonni, tanto fieri ed orgogliosi di suo

nipote Ingegnere, Grazie Nonni!

Un particolare ringraziamento ai ragazzi con cui ho condiviso molti anni della mia

vita. Sono arrivato alla fine di questo lungo percorso anche grazie a voi! Dicono sempre

che chi trova un amico trova un tesoro, è proprio vero! Grazie Bucch, Ste e Benny!

Un enorme GRAZIE va al ragazzo che vedo in media 14 ore al giorno (sicuramente

lo vedo più della mia ragazza e della mia famiglia). Insieme abbiamo superato qualsiasi

ostacolo! Non c’è niente da fare, siamo troppo forti! Grazie Jaco!

Infine (ma non per questo meno importante) ringrazio mia sorella. Non avrei potuto

sperare in una compagnia migliore per crescere e condividere tanti momenti speciali. Le

vi

chiacchierate prima di dormire sono sempre le migliori! Grazie Vale!

“I’ve missed more than 9000 shots in my career. I’ve lost almost 300 games. 26

times, I’ve been trusted to take the game winning shot and missed. I’ve failed over and

over and over again in my life. And that is why I succeed.” - Michael Jordan

Andrea

vii

Innanzitutto, il ringraziamento più grande va ai miei genitori, senza i quali non

sarei stato in grado di compiere questo percorso. Grazie per avermi sempre sostenuto

e aver creduto sempre in me, anche nei momenti più difficili. Grazie soprattutto per

avermi sempre dato l’opportunità di crescere sotto ogni punto di vista. Non potrei

desiderare genitori migliori di voi.

Un enorme grazie lo merita sicuramente la mia fidanzata Vanessa per essere sem-

pre stata presente da 4 anni a questa parte, per aver gioito con me e avermi sempre dato

man forte. Grazie di cuore.

Non potrei mai non ringraziare anche le mie nonne, in particolare la “nonna

Mina”, che mi ha cresciuto fin da piccolo e che tuttora ci tiene a sapere se ho “man-

giato tutto”. Un bacione nonna!

Un grazie va anche a Riky, Andre e Same, amici da una vita e compagni di suonate

il lunedì sera!

Per ultimo, ci terrei a ringraziare Andre, compagno durante tutto il percorso di

studi, compagno di tesi, socio e, cosa più importante, grande amico. Un grazie va a te

per aver condiviso con me ogni momento di questi ultimi 5 anni.

Jacopo

Summary

Programming a smart building so that its behavior reflects the user’s needs,

is not a simple task, and often requires technical skills. As shown in the state of

the art, the trigger-action paradigm is a method that has been demonstrated

to be perceived as natural by the users to describe the behavior of a smart

building. Unfortunately, using such paradigm, the interaction problems rise

when many users insert their preferences in the system, as in case of commer-

cial buildings. In fact, the aforementioned problems emerge, first, due to the

possible conflicts between user preferences and, second, due to the difficulty of

the users to understand how the building will behave. To solve these problems,

we have developed a methodology that improves trigger-action programming

providing suggestions about the building status. The suggestions are gener-

ated by the analyses carried out on graphs representing the behavior of the

building. We have tested the system both in a real building (Joint Open Lab

of Telecom Italia in Milan) and in a virtual environment. The results obtained

showed that the proposed methodology improves the usability of the system,

giving a clearer vision on the behavior of the building to the occupants, and an

easy integration with actual Building Management Systems.

ix

Sommario

Programmare un edificio intelligente in modo che il suo comportamento

rispecchi le necessità dell’utente, non è un compito semplice, e spesso richiede

competenze informatiche specifiche. Come mostrato nello stato dell’arte, il pa-

radigma trigger-action è un metodo è stato dimostrato essere percepito come

naturale dagli utenti che necessitano di descrivere il comportamento di un ed-

ificio intelligente. Sfortunatamente, utilizzando tale paradigma, i problemi di

interazione sorgono quando sono presenti molti utenti che inseriscono le pro-

prie preferenze nel sistema, come nel caso di un edificio commerciale. In questo

contesto nascono problematiche dovute sia ai possibili conflitti tra le preferenze

degli utenti che alla difficoltà di questi ultimi a comprendere l’effettivo compor-

tamento che avrà l’edificio. Per risolvere questi problemi, abbiamo sviluppato

una metodologia che migliora il paradigma trigger-action introducendo sug-

gerimenti riguardanti il comportamento dell’edificio, ricavati effettuando anal-

isi su grafi. Abbiamo installato il nostro sistema sia in un edificio reale (Joint

Open Lab di Telecom Italia a Milano) che in un ambiente virtuale. I risultati ot-

tenuti hanno evidenziato che la metodologia proposta migliora l’usabilità del

sistema, dando una più chiara visione del comportamento dell’edificio, e che il

sistema è di facile integrazione con un Building Management System reale.

xi

Contents

Summary ix

Sommario xi

Estratto in lingua italiana xxi

1 Context Definition 1

1.1 Introduction . 1

1.1.1 Smart Buildings: features and goals 2

1.1.2 The current Smart Building idea 4

1.2 Problem definition . 5

1.2.1 Users interaction with Smart Buildings 6

1.2.2 Multi-user and input conflicts 8

1.2.3 Proposed Solution . 9

1.3 Contribution and outline . 11

2 State of the art analysis 13

2.1 Building Management Systems . 13

2.1.1 Standard Building Management Systems 14

2.1.2 Web Based Building Management Systems 16

xiii

xiv CONTENTS

2.1.3 Building Management Systems integration 18

2.2 Trigger-action Programming Technique 19

2.2.1 Trigger-action programming: the If This Than That paradigm 21

2.3 Conflict resolution . 23

2.3.1 Sensor centric resolution . 24

2.3.2 User centric resolution . 25

2.4 Conclusion . 26

3 The Proposed Methodology 29

3.1 Introduction . 29

3.2 The starting point: BuildingRules 1.0 31

3.2.1 Rules . 34

3.2.2 Conflicts among rules . 36

3.2.3 Static conflicts . 37

3.2.4 SMT Solver . 37

3.2.5 Run-time conflicts . 41

3.2.6 Users . 42

3.2.7 Groups . 43

3.3 BuildingRules 2.0: theoretical contribution 45

3.3.1 From Ruleset to Building Behavioral and Status Graph . . 47

3.3.2 Analysis . 61

4 Implementation 67

4.1 General Overview . 67

4.2 Backend . 70

4.2.1 Model . 70

CONTENTS xv

4.2.2 Drivers . 72

4.2.3 Controller . 73

4.2.4 REST Interface APIs . 77

4.3 Frontend . 79

5 Experimental results 85

5.1 Overview . 85

5.2 Baseline Experiments . 86

5.3 Usability Experimental Campaign 91

5.4 Integration Experimental Campaign 94

5.5 Results Discussion and Limitations 96

6 Conclusions and Future Works 99

6.1 Conclusions . 99

6.2 Limitations Analysis and Future Works 101

A Frontend Views 103

Bibliography 105

References . 105

List of Figures

1.1 Centralized and distributed BMS architectures 6

2.1 BuildingDepot architecture 1 . 17

2.2 IFTTT . 21

3.1 BuildingRules Architecture . 32

3.2 BuildingRules 1.0 features . 33

3.3 User level and rule priority relation 43

3.4 (A) Example building groups (B) Example building thermal zones

distribution . 44

3.5 Representation of the two different kinds of supported groups . . 45

3.6 From Ruleset to Graph . 47

3.7 Representation of Node of the Graph 48

3.8 Representation of the Edge of the Graph 53

3.9 Snippet of a Building Behavioral Graph 56

3.10 Interval Trigger . 57

3.11 Snippet of a Building Status Graph 61

3.12 Toy Example that shows an unmanaged room with uncontrolled

states . 63

xvii

xviii LIST OF FIGURES

3.13 Toy Example that shows a run-time conflict 64

3.14 Toy Example that shows a useless rule 66

4.1 BuildingRules System Architecture 68

4.2 Differences between BuildingRules 1.0 and BuildingRules 2.0 fea-

tures . 69

4.3 BuildingRules Database . 74

4.4 Room Home Page . 81

4.5 New Rule Page . 82

4.6 Conflict Detection Page . 83

4.7 GraphGenerator Page . 84

5.1 Virtual Office Environment . 87

5.2 Composition of rules created during the baseline campaign 89

5.3 BuildingRules Game Interface . 91

5.4 Composition of rules created during the usability experimental

campaign . 94

A.1 The Rule Navigator Tab represents the view tab in which the

user can see the rules grouped by category. 103

A.2 The Summary Tab represents the view tab in which the user can

see a summary of how the building will behave during the cur-

rent day. 104

A.3 The Rule Editor Tab represents the view tab in which the user

can manage the room rules. 104

List of Tables

2.1 BMSes Summary . 20

3.1 Currently supported rule triggers (T) and actions (A) categories.

An example of trigger or action for each category is provided . . 35

3.2 Translation to Z3 examples. Refer to table 3.1 for more details. . . 40

3.3 Examples of direct and indirect State Variables 50

4.1 REST interface APIs . 80

5.1 Surveys results . 90

xix

Estratto in lingua italiana

Gli edifici, oggi, sono un insieme complesso di strutture, sistemi e tecnolo-

gie. Nel corso del tempo, ciascuno dei componenti all’interno di un edificio è

stato costantemente sviluppato e migliorato, permettendo alla gente che li oc-

cupa di controllare i sistemi di illuminazione, di sicurezza, di riscaldamento e

condizionamento mediante un’interazione digitale con gli oggetti fisici, utiliz-

zando le Tecnologie dell’informazione e della comunicazione (TIC). Gli edifici cor-

renti forniscono servizi utili al fine di rendere i propri occupanti più produttivi

ma riducendo sia il costo energetico che l’impatto ambientale. Questo tipo di

edificio prende il nome di edificio intelligente.

Gli edifici intelligenti sono, quindi, edifici abilitati alla cooperazione di oggetti

(ad esempio sensori, dispositivi ed elettrodomestici) e sistemi che hanno la ca-

pacità di auto-organizzarsi dato alcune politiche [1]. Il significato di edificio

intelligente, però, non è lo stesso in tutti gli ambiti in cui viene utilizzato [2].

In realtà, dal punto di vista degli utilizzatori finali, un edificio è intelligente

se è possibile accedervi in remoto per accendere o spegnere dispositivi, anche

se, potenzialmente, potrebbe non esserci alcun tipo di automazione effettiva-

mente messa in atto. Dal punto di vista di ricercatori ed esperti, invece, un

edificio è intelligente quando è attento ai residenti presenti al suo interno ed è

xxi

xxii ESTRATTO IN LINGUA ITALIANA

in grado di adattarsi autonomamente alle situazioni in cui si potrebbe trovare.

Un esempio potrebbe essere quello di fare uso di algoritmi di apprendimento

automatico per prevedere quando un utente sarà presente o meno nell’edificio

per controllare in maniera efficiente il sistema di riscaldamento. Nell’industria,

un edificio intelligente ha ancora un altro significato; questa parola è, infatti,

generalmente utilizzata semplicemente come un termine per fare campagne

di marketing in cui vengono descritte le nuove tecnologie. All’interno della

nostra tesi, per edificio intelligente si intenderà un edificio che ha come obi-

ettivo quello di aumentare il comfort, l’efficienza energetica e la sicurezza dei

suoi occupanti. Il comfort verrà inteso come il livello di benessere dell’utente

all’interno dell edificio, misurato con diversi parametri come il comfort termico

o il comfort visivo. Per efficienza energetica, invece, intenderemo quando un

dispositivo realizza un certo compito utilizzando meno energia di quella soli-

tamente necessaria mentre per quanto riguarda la sicurezza, questa si concen-

tra sull’eliminazione o prevenzione dei rischi per il personale. Considerando,

nello specifico, il comfort dell’utente, l’uso delle TIC all’interno degli edifici

intelligenti è in grado di migliorare profondamente il benessere degli occu-

panti, controllando automaticamente la temperatura, l’umidità e la luminosità

dell’edificio in modo da soddisfare le richieste degli utenti. Per fare qualche

esempio, un edificio intelligente deve essere in grado di accendere e spegnere

automaticamente le luci quando una stanza è vuota oppure chiudere le finestre

in caso di condizioni meteo avverse. All’interno della nostra tesi, inoltre, si farà

riferimento ai soli edifici commerciali. Il motivo che ci ha spinto a scegliere gli

edifici commerciali come quelli su cui concentrare il nostro lavoro di tesi, è il

fatto che, prima di tutto, contribuiscono al 70% del consumo totale di energia

xxiii

della rete elettrica [11] e perché di solito sono dotati di infrastrutture tali da

semplificare la creazione di un ambiente intelligente.

Per edificio intelligente si intende un sistema di controllo distribuito, dove

sono presenti sensori e attuatori e dove sono effettuate decine di computazioni

per migliorare la sicurezza, il comfort e l’efficienza dell’edificio stesso [3]. Con-

siderando il continuo sviluppo delle tecnologie che compongono sensori e degli

attuatori durante gli ultimi anni e la crescita incessante delle loro applicazioni

in quasi tutti gli aspetti della nostra vita quotidiana, sarebbe possibile creare

edifici intelligenti se ne considerassimo solo l’aspetto tecnologico.

Per quanto riguarda l’hardware di cui è composto un edificio intelligente,

possiamo individuare due reti principali: una rete di sensori e una di attua-

tori. Una rete di sensori è generalmente composta di sensori per monitorare la

presenza, la temperatura, l’umidità e la luminosità. Questi sensori vengono uti-

lizzati per raccogliere informazioni sull’ambiente come la temperatura esterna,

la luminosità in una stanza, ecc. Una rete di attuatori è solitamente utilizzata,

invece, per modificare lo stato dell’edificio. Esempi di attuatori sono le luci,

l’impianto di climatizzazione, le finestre e gli elettrodomestici intelligenti. Sul

mercato sono già presenti esempi di sensori ed attuatori: possiamo trovare ter-

mostati intelligenti come Nest Learning Thermostat [4], Ecobee Wifi Thermostat [5]

e Honeywell Lyric Thermostat [6] con cui l’utente può monitorare la temperatura

all’interno dell’edificio e agire sul sistema di climatizzazione. Un altro dispos-

itivo che possiamo trovare sono le luci intelligenti, come le Philips Hue Lam-

pade, con cui è possibile controllare la luce emessa dalla lampadina in modo da

poterla regolare basandosi sul numero di persone nella stanza e la condizione

di luce esterna.

xxiv ESTRATTO IN LINGUA ITALIANA

In un edificio intelligente sono presenti, quindi, tanti sensori ed attuatori,

ma ognuno di essi utilizza, tuttavia, un protocollo di comunicazione diverso.

Per questo motivo, per rendere veramente intelligente il comportamento di un

edificio sorge la necessità di avere un sistema che gestisca tutti i vari proto-

colli, un sistema di gestione dell’edificio chiamato Building Management Sys-

tem (BMS) [27, 28, 29]. In particolare, un BMS è responsabile della lettura dei

dati provenienti dai sensori e del controllo degli attuatori in base allo stato

dell’edificio.

Un punto chiave da tenere a mente quando si progettano edifici intelligenti

è che sono strettamente collegati alle persone al loro interno e che non abbiamo

bisogno di concentrarsi solo sull’edificio stesso, ma anche sul modo in cui le

persone interagiscono con esso. Il vero problema, tuttavia, è che quando qual-

cuno cerca di programmare un BMS, questo risulta un compito molto difficile.

Sono necessarie, infatti, competenze informatiche avanzate e, per questo, non

tutti gli utenti sono in grado di capire come interagire con essi e hanno bisogno

di una formazione specifica.Utilizzando un BMS, anche semplicemente accen-

dere una luce in una determinata camera potrebbe risultare un compito dif-

ficile. Se consideriamo un utente di edificio intelligente, come ad esempio un

responsabile della sicurezza, è probabile che egli voglia poter esprimere azioni

più complesse che semplicemente quella di accendere o spegnere una luce. Egli

può decidere, per esempio, per fissare l’edificio se tutti i dipendenti sono andati

a casa e non vi è più nessuno negli uffici. Questo è un comportamento molto

complesso che coinvolge molti sensori e attuatori, dobbiamo infatti control-

lare la presenza di persone in ogni camera dell’edificio, chiudendo ogni porta

e finestra oltre ad accendere il sistema di allarme. Tutte queste azioni devono

xxv

essere specificate al BMS in termini di sensori e attuatori, e questo rende il com-

pito di programmazione più difficile, non solo perché il numero di dispositivi

da tenere in considerazione è notevole, ma anche perché [13, 14, 15] hanno di-

mostrato che gli occupanti preferiscono non interagire direttamente con sen-

sori e attuatori. Infatti, capiscono meglio l’azione se specificata come “qual-

cuno è entrato nella stanza” piuttosto che “il sensore di movimento è stato atti-

vato”. Per facilitare l’interazione tra gli occupanti dell’edificio e l’edificio stesso,

in particolare per quanto riguarda l’espressione di azioni complesse, abbiamo

bisogno di un nuovo tipo di BMS che fornisca un’interfaccia utente intuitiva e

che alzi il livello di astrazione rispetto a quello di sensore e attuatore [47].

Un problema rilevante, nella programmazione di un edificio intelligente,

riguarda l’introduzione della multi-utenza nel BMS. Come mostrato in [16, 17],

la maggior parte dei sistemi di programmazione per ambienti intelligenti è

stata progettata per essere gestita da un utente singolo. In realtà, i BMS che

possiamo trovare [18, 19, 20] sono stati progettati per essere gestiti da ammin-

istratori di condominio e personale addetto alla manutenzione. Il fatto di coin-

volgere più utenti nel sistema fa sorgere una grande quantità di problemi da

gestire. Come mostrato in [17], una sfida rilevante è quella di riuscire a gestire

il fatto che ogni utente all’interno dell’edificio presenta diversi bisogni. Questa

situazione può portare, dopo qualche tempo, ad avere conflitti nei dati inseriti

nel Building Management System. Il problema dei conflitti, se non controllato,

può portare a situazioni spiacevoli in cui il BMS non sa come comportarsi e,

nella migliore delle ipotesi, potrebbe continuare a accendere e spegnere una

luce. Nel peggiore dei casi, invece, potrebbe causare seri problemi di sicurezza

come l’apertura di una porta che si trova tra te ed un incendio. Pertanto, i con-

xxvi ESTRATTO IN LINGUA ITALIANA

flitti devono essere gestiti con cura dal BMS per riuscire a mantenere gli occu-

panti al sicuro ed evitare ogni possibile situazione di pericolo.

Un altro problema relativo alla multi-utenza nei BMS riguarda il fatto che

per l’utente è difficile capire le motivazioni relative ai problemi causati dall’errata

programmazione dell’edificio e, in generale, come si comporterà l’edificio data

la grande quantità di preferenze immesse dagli utenti. Infatti, come mostrato

in [45], anche i più recenti BMS assumono che sia l’utente a controllare ogni

singola preferenza inserita nel sistema in modo che questa non presenti con-

flitti con le altre e in modo che l’edificio si comporti nel modo previsto. Questa

assunzione reca problemi agli utenti che devono programmare un edificio in

quanto non sempre riescono a individuare il motivo specifico alla base del com-

portamento anomalo che potrebbe venirsi a creare e, anche nel caso in cui ries-

cano, questa resta una fase che necessità di un’ingente quantità di tempo.

La soluzione che proponiamo in questa tesi si fonda su un sistema esistente,

che permette agli utenti di un edificio di personalizzare un edificio commerciale

e che può essere integrato con BMS esistenti, BuildingRules 1.0. Questo sis-

tema risolve parzialmente i problemi sopra citati. In primo luogo, per risolvere

il problema di interazione con gli utenti che non sono necessariamente pro-

grammatori, BuildingRules 1.0 fornisce un’interfaccia semplice che permette

agli utenti di personalizzare il loro ufficio utilizzando un sistema di program-

mazione che segue il paradigma trigger-action. In questo modo, gli utenti pos-

sono esprimere le politiche con cui vogliono controllare l’edificio utilizzando il

pattern “SE succede qualcosa ALLORA fai qualcos’altro”. Questo paradigma

è stato scelto in quanto si tratta di un modo intuitivo ed espressivo per le

persone che non hanno esperienze di programmazione per gestire l’edificio.

xxvii

In secondo luogo, invece, per risolvere il problema dei conflitti tra le regole

che si possono venire a creare nel caso in cui ci siano più utenti che hanno la

necessità di personalizzare lo stesso spazio dell’edificio, BuildingRules 1.0 ha

un sistema di risoluzione dei conflitti. Questo sistema fa uso della risoluzione,

trasformando le regole in un linguaggio del primo ordine, utilizzando Z3, un

risolutore sviluppato presso Microsoft Research [46], in combinazione con un

sistema di priorità. Questa combinazione permette BuildingRules 1.0 per co-

prire tutti i possibili problemi di conflitto.

Tuttavia, BuildingRules 1.0 non ricerca una soluzione al problema riguardante

il fatto che, per gli utenti, è difficile capire come si comporterà l’edificio in fu-

turo. Nel caso in cui, infatti, l’utente non riesca a capire chiaramente il com-

portamento dell’edificio, non sarà in grado di inserire correttamente le proprie

preferenze nel sistema. Per risolvere questo problema abbiamo introdotto un

framework teorico che genera suggerimenti agli utenti per aiutarli a capire gli

effetti che le regole che hanno inserito avranno sull’edificio. Per fornire questi

suggerimenti, abbiamo effettuato analisi su dei grafi che abbiamo introdotto

per per formalizzare lo stato di un edificio. I grafi sono, a loro volta, generati

da a partire dall’insieme di regole presenti in ogni stanza dell’edificio mediante

uno strumento di simulazione che abbiamo sviluppato.

Questa soluzione è stata convalidata in una campagna sperimentale che ha

avuto luogo in un edificio intelligente reale al Joint Open Lab (JOL), i labo-

ratori di ricerca e innovazione di Telecom Italia. Dai risultati raccolti ne abbi-

amo dedotto che il sistema di raccomandazione ha effettivamente aiutato gli

occupanti a comprendere il comportamento dell’edificio anche quando erano

presenti una grande quantità di regole nel sistema.

Chapter 1

Context Definition

This Chapter aims at giving an overview about the smart building topic, providing

the essential knowledge about the state of the art and the general theoretical framework

on which this thesis is based on. Starting with a definition of what a smart building is

and which are its main features, the discussion will be around the issues that have still

to be solved and the ones that have been faced during the development of this work.

1.1 Introduction

Buildings are, today, complex concatenations of structures, systems and tech-

nologies. Over time, each of the components inside a building has been devel-

oped and improved, allowing now people to control lighting, security, heating,

ventilation and air conditioning systems with a digital interaction with the real

objects thanks to the use of the Information and Communication Technology

(ICT). Buildings, nowadays, deliver useful services that tries to make occu-

pants more productive at a lower cost and environmental impact. These kind

of buildings are called smart buildings. In this section we will present an intro-

1

2 CHAPTER 1. CONTEXT DEFINITION

duction about the meaning of smart building within this thesis work and how

a smart environment can improve the user comfort and safety and increase the

energy efficiency.

1.1.1 Smart Buildings: features and goals

Smart buildings are buildings that are enabled for the cooperation of objects

(e.g., sensors, devices, appliances) and systems that have the capability to self-

organize themselves given some policies [1]. The meaning of smart building is

not equal for all the different stakeholders interested in this topic [2]. In fact, the

potential final users call smart a building that can be remotely accessed to turn

devices on and off, even though there is in fact no actual automation involved.

On the other hand, for researchers and IT experts, a building is smart when

it is responsive to its inhabitants and it is able to adapt autonomously in so-

phisticated ways, e.g., using intelligent machine learning algorithms to predict

user occupancy and control the heating system. In industry there is a different

meaning of smart, this word is generally used simply as a marketing term to

describe programmable technologies. For this reason, it is essential to have the

notion of what a smart building is within this thesis. A smart building will be

intended as a building that increases the comfort, energy efficiency and safety

of occupants. The comfort is intended as the level of wellness of the user, that

can be measured with different metrics like thermal comfort or visual comfort.

The energy efficiency, instead, is accomplishing a certain task using less energy

whereas safety focuses on eliminating or preventing hazards to personnel.

From the user comfort point of view, the use of ICT in smart buildings can

deeply improve the occupants’ wellness by automatically controlling the en-

1.1. INTRODUCTION 3

vironment temperature, humidity, brightness (and its general behavior), and

fitting all the parameters on the single user needs. Just to make some examples,

a smart building must be able to turn on and off automatically the lights when

a room is used or empty; it has to dynamically open or close the windows with

respect to the weather condition and the current users wishes.

Actually, the field that drove the research in the last two decades, is the

use of ICT to increase the energy efficiency of the buildings: from this point

of view, in fact, a smart building has to carefully manage how it uses energy

to accomplish all the tasks. For instance, knowing the user needs, it is possible

to tune the Heating, Ventilation and Air Conditioning (HVAC) system in order

to heat only for the needed time, without wasting energy resources. A smart

building is then thought to be part of a smart grid, the next generation electric

grid: within this context, the building has to be able to sense and forecast its

energy needs and to reply to energy saving commands coming from the smart

grid.

When we speak about buildings we can mainly distinguish them in two cat-

egories: residential and commercial buildings. A building should be regarded

as a residential building when more than half of the floor area is used for

dwelling purposes, as they can be, for example, apartment blocks or houses.

Whereas, commercial buildings are buildings where more than half of their

floor space is used for commercial activities. One of the most common example

of commercial buildings are office buildings, which contain spaces mainly de-

signed to be used for offices. An assumption that needs to be taken into account

during the reading of this thesis is that we will refer to commercial buildings.

The reason that prompted us to choose commercial buildings as the ones on

4 CHAPTER 1. CONTEXT DEFINITION

which to focus our thesis work, is the fact that, first, they contribute to 70% of

the total energy consumption of an electrical grid [11] (up to 45% of this energy

consumption is due to heating, cooling, and lighting [12]); secondly, because

they are usually provided with highly instrumented distributed systems and

infrastructures that simplify the creation of a smart environment.

1.1.2 The current Smart Building idea

Today a smart building is intended as a distributed control system, where

dozens of distributed computation, sensing and actuation modules [3] are ex-

ploited to increase the safety, the comfort and the efficiency of the construction

itself. Considering the continuous development of the sensor and actuator tech-

nologies (namely, the Internet of things) in the last few years, and the incessant

growth of their applications in almost all the aspects of our everyday life, smart

buildings are something feasible from a technological point of view.

If we have a look at the hardware that composes a smart building, we can

identify two main networks: one regarding the sensors and the other regard-

ing the actuators. A sensors network is generally composed of occupancy, tem-

perature, humidity and luminosity monitors. These sensors are used to collect

information about the environment such as room and external temperature,

luminosity in a specified room etc. An actuators network is usually used to

modify the state of the building. Examples of actuators are lights, HVAC, win-

dows and smart appliances. There are some examples of this type of sensors

and actuators in the market: smart thermostats like the Nest Learning Thermo-

stat [4], the Ecobee Wifi Thermostat [5] and Honeywell Lyric Thermostat [6] with

which the user can control the temperature in the building by acting on the

1.2. PROBLEM DEFINITION 5

heating system and also the air conditioning system or smart lights, like Philips

Hue Lamps [7], with which you can control the light emitted from the bulb so

that the system can adjust it in a smart way, basing on the occupancy and the

daylight condition.

All these smart devices have different communication protocol and every

building is composed by a lot of sensors and actuators that need to cooperate

to act on the building in a smart way, for this reason an orchestration system

is needed: the Building Management System (BMS) [27, 28, 29]. In particular,

a BMS is responsible for the gathering of the data from the sensors and the

actuation to the actuators depending on the status of the building. The BMS can

be centralized or distributed. In case of centralized architecture (Figure 1.1.a),

there is a single BMS module that control all the sensors and actuators, instead,

in the distributed solution (Figure 1.1.b) there are different gateways that are

connected to a central BMS. The task of these gateways is to decentralize the

decision process and, in this way, they reduce the computation to be performed

by the BMS.

1.2 Problem definition

In this section we will provide details about the problems that concern

building environment and that will be useful for the readers to understand

the methodology presented within this thesis work. First, the problems related

to the users’ interaction with sensors and actuators in a smart building envi-

ronment and then, some details about multi-user issues and rule conflicts will

be provided. Lastly, an overview on the problems related to the difficulties in-

6 CHAPTER 1. CONTEXT DEFINITION

BMS

GATEWAY

GATEWAY

GATEWAY

GATEWAY

BMS

(a) (b)SENSOR ACTUATOR

Figure 1.1: Centralized and distributed BMS architectures

troduced by the always increasing rules number will be introduced.

1.2.1 Users interaction with Smart Buildings

As said in the previous section, many BMSes have already been developed

[27, 28, 29]. A key point to keep in mind when designing them is that smart

buildings are interconnected with its occupants and that we don’t need to fo-

cus only on the building itself but also on how the people interact with it. The

real problem, however, when someone tries to program BMSes like the ones

described before, is that they are very difficult to be programmed. Advanced

computer skills are needed and, because of this, not every user is able to un-

derstand how to interact with them and they need, at least, a specific training.

Using a BMS, even simply turning on a light in a certain room may be a hard

1.2. PROBLEM DEFINITION 7

task. If we consider a smart building user, a safety officer for example, we can

think that he may want to express more complex actions to be executed than

simply turning on and off a lamp. He may want, for example, to secure the

building if all the employees have gone home and there is no longer anyone

in the offices. This is a very complex behavior that involves many sensors and

actuators, we need to check the presence of people in each room of the build-

ing, closing every door and window and turning on the alarm system. All these

actions must be specified to the BMS in terms of sensors and actuators, and this

makes the programming task harder, not only because the number of devices

to take into account is considerable, but also because [13, 14, 15] show that oc-

cupants prefer not to interact with sensors and actuators directly. For example,

they relate better to “someone walked into a room” than “motion sensor was

activated”. To make easier the interaction between the occupants of the build-

ing and the building itself, especially as it regards the expression of complex

tasks, we need a new kind of BMS that provides an intuitive user interface and

raises the level of abstraction [47].

Another problem that rises when we try to make people program the build-

ing behavior, is that, as said in [16], people perceive tasks as activities, not

as procedures. Activities are, in fact, the result of people’s thinking, whereas

procedures are how the buildings are actually programmed. What they found

out in their experimental campaign is that occupants, who were asked to think

about how they wanted to automate their home in an interview, identify their

personal tasks as “do the laundry” or “make dinner”. These tasks refer to sev-

eral devices (washing machine, dryer, iron), and many steps are required to

describe the various sub-tasks that compose it. These are activities for which

8 CHAPTER 1. CONTEXT DEFINITION

it is not trivial to understand which sensors and actuators need to be used in

order to obtain the desired behavior, also because the users are not specifying

any detail about the tasks, like the kind of clothes that need to be washed dur-

ing the laundry or if they also need to be ironed. This is something that the

users take for granted, they suppose that the system understand what they are

thinking, they do not perceive all the sub-tasks that compose a complex activ-

ity as important. This is why managing the building by means of sensors and

actuators risks to make the user interaction with the building a hard task for

common people. There are many activities, like the ones previously described,

for which a concept of interaction with sensors and actuators, with the current

BMSes and technologies, is at best, inflexible, and at worst, incapable.

1.2.2 Multi-user and input conflicts

A problem that, over the years, has always been discussed and deeply an-

alyzed is the introduction of multi-user in the BMS. As shown in [16, 17] most

programming systems for smart environments have been designed for a sin-

gle user to control it. In fact, BMS deployed today [18, 19, 20] are designed for

building managers and maintenance personnel. Involving more users, intro-

duces a large amount of issues that needs to be handled by the system, espe-

cially in a collaborative environment. As shown in [17], an important challenge

is dealing with the diversity of building occupants, their different roles and

needs. This behavior may lead, after some time, to conflicts within the inputs

given to the Building Management System.

Conflicts are one of the main problems in an environment where more than

one user is acting. If not controlled, they can lead to unpleasant situations in

1.2. PROBLEM DEFINITION 9

which the BMS do not know how to behave and, at best, may just keep turn-

ing on and off a light, whereas at worst, may cause serious security problems

like opening the only door that stands between you and the fire during a blaze.

Therefore, conflicts must be handled with care by the BMS to keep the occu-

pants safe and avoid every possible dangerous situation that can be produced

by inputs set by unaware users. Despite this, as stated in [45], also in modern

BMSes conflicts are not solved automatically, but they assume that the users

will manually check each single input in order to make sure not to have con-

flicts between them.

Another problem concerning multi-user BMS, considering the fact that com-

mercial buildings have many elements to be handled, is that there will be a lot

of inputs that will cooperate in the system. Dealing with a large amount of in-

puts is difficult for the building occupants and trying to understand how the

building will behave is a hard task [45].

1.2.3 Proposed Solution

Our proposed solution is based on BuildingRules 1.0 a system which allows

the occupants to personalize their living environment in a commercial build-

ing and can then be integrated with existing Building Management Systems.

BuildingRules 1.0 solve partially the aforementioned problems. First, to solve

the problem that building occupants are not necessarily programmers, Buildin-

gRules 1.0 provides an intuitive user interface which enable them to customize

their office using trigger-action programming. This technique allows occupants

to express their policies using the “IF something happens THEN do something”

(IFTTT) pattern because, as shown in prior works [34, 35, 15], it is an expressive

10 CHAPTER 1. CONTEXT DEFINITION

and intuitive interface to implement building automation policies for people

without programming experience. Second, to solve the problem that multiple

users often customize the same building space, BuildingRules 1.0 has a conflict

resolution system which makes use of a combination of first order logic res-

olution using Z3, a high performance theorem prover developed at Microsoft

Research [46], and a priority system. This combination allowed BuildingRules

1.0 to cover all possible conflict problems.

However, BuildingRules 1.0 does not explore the problem regarding the

users’ difficulty in understanding how the building will behave. In this case,

if the building occupant cannot clearly understand the building behavior, he

will not be able to insert his preferences correctly. To solve this problem we

introduced a theoretical framework that generates suggestions to the building

occupants to help them understanding the effects of the inserted rules on the

smart building. To provide these suggestions, we made analysis on the graphs

we introduced to formalize the building state. The graphs are generated from

each room ruleset making use of a simulation tool we developed.

This solution was validated in an experimental campaign that took place on

a real smart building at the Joint Open Lab (JOL), the research and innovation

laboratories of Telecom Italia. From the gathered results we found out that the

recommendation system helped the occupants understanding the behavior of

the building also when there was a large amount of rule to deal with.

1.3. CONTRIBUTION AND OUTLINE 11

1.3 Contribution and outline

Starting from the aforementioned considerations, this project aims at im-

proving the trigger-action building programming problem, introducing a theo-

retical framework that generates suggestions to the building occupants to help

them understanding the effects of the inserted rules on the smart building. To

provide these suggestions, we made analysis on the graphs we introduced to

formalize the building state.

The thesis is structured as follows: in Chapter 2 we will present the state of

the art and the current solutions to the problems described in the previous sec-

tion. In Chapter 3 we will explain the theoretical framework introduced during

this thesis, making a detailed analysis on how we provide suggestions to the

building occupants. Chapter 4, will focus on the implementation of the pro-

posed theoretical framework in BuildingRules 2.0 and Chapter 5 will present

the experimental results obtained from the experimental campaigns. In Chap-

ter 6 the conclusion of our thesis work will be presented.

Chapter 2

State of the art analysis

This Chapter presents a survey about the state of the art regarding smart building

management. We will first focus on the existing Building Management System (BMS)

and the features they offer to the smart building and, secondly, we will describe the

trigger-action programming technique. Finally, conflict detection and resolution in the

smart building environment will be introduced.

2.1 Building Management Systems

A Building Management System (BMS) is a control system that can be used

to monitor and manage the mechanical, electrical and electromechanical ser-

vices in a facility. Such services can include power, heating, ventilation, air-

conditioning, physical access control, elevators, lights and so on [51].

With respect to the physical architecture, the BMSes, as said in the previ-

ous Chapter, can be centralized or distributed, as shown in Figure 1.1. In case

of centralized architecture, there is a single BMS module that controls all the

sensors and actuators. This is the most simple solution to be implemented but,

13

14 CHAPTER 2. STATE OF THE ART ANALYSIS

since every request passes through that module, it will be difficult for this so-

lution to scale in case the building grows and, therefore, it needs to have a

large amount of computational power to satisfy all the requests and manage

the whole building [53]. The distributed solution, on the other hand, is com-

posed by different gateways that are connected to a central BMS. The task of

these gateways is to decentralize the decision process and, thus, to reduce the

computation to be performed by the BMS. This kind of architecture has a much

more complex design but it also provide a higher level of scalability and can

manage large buildings without the need of a central powerful machine [53].

First, we will focus on the BMSes designed to be installed in buildings using

standard implementations and then we will provide details about the modern

web-based BMSes.

2.1.1 Standard Building Management Systems

First examples of BMSes, like MetaSys, NiagaraAX and Desigo [18, 19, 20],

still deployed today, were designed using custom solutions for a specific build-

ing focusing on building managers and maintenance personnel. Occupants in-

teract with buildings in a limited manner, using thermostats for HVAC control,

switches for lights, key cards for locks and outlets for plug loads. With these

BMSes, it is not possible for the occupants to automate and personalize their

environment such as setting the temperature according to outside weather or

automatically brewing coffee at 8am, etc. All this kind of personalization can

be made, if the BMS enables them to do so, from facility operators only.

Johnson Control [18], for example, developed a commercial product called

MetaSys that aims at helping facility operators to solve building automation

2.1. BUILDING MANAGEMENT SYSTEMS 15

problems of having many devices to be handled, increasing productivity and

efficiency. MetaSys’ interface provides facility operators with key information

on building performance; its main goal is just to develop a BMS with an in-

tuitive design, helping facility operators identifying and correcting problems

related to the status of the building more quickly and making it easier for them

to troubleshoot equipment. It’s not designed to be flexible, it is scalable only at

cost of a powerful processing unit and it needs a custom implementation for

each building in which it has to be installed.

NiagaraAX [20] is another example of standard centralized BMSes and it

aims at overcoming the problems of multiple, incompatible protocols prevalent

in the industry, allowing devices from different manufacturers to be integrated

together seamlessly within one automation system. This approach to building

automation provides several benefits to building owners and operators: cus-

tomized systems with components and subsystems from different vendors can

be easily implemented; the configuration cost associated with building man-

agement systems can be reduced; systems can be monitored and controlled

remotely; and information from multiple facilities can be centrally accessed

for comparisons and identification of best practices. With respect to MetaSys,

that provides a centralized custom solution for every building in which it is

installed, NiagaraAX makes some steps forward in the direction of a less con-

strained deployment, making it compatible with the major existing protocols

but still making use of a strictly centralized architecture.

16 CHAPTER 2. STATE OF THE ART ANALYSIS

2.1.2 Web Based Building Management Systems

Moving in the direction of providing occupants with the flexibility to ex-

press and implement building customizations, modern web service based BM-

Ses, together with an advanced sensor technology, were introduce. This kind of

BMSes can improve occupant comfort and productivity [30] as well as building

energy efficiency [31, 32, 33].

An example is Buildingdepot [27], which is an extensible and distributed ar-

chitecture for storage, access, and management of building sensor data. Build-

ingDepot provide easy access to the data generated within buildings using user

management tools that let institutions in which the system is installed share

their data to others and allow client applications to be built using a well de-

fined API. It consists of four main components as shown in Figure 2.1: a core

Data Server combined with a web service that exposes access through a REST-

ful API; a Directory Service that maps the Data Server in an institution; a User

Service that provides access to outside users to the system and Data Connectors

that interface with the underlying network to various data servers. The main

features of BuildingDepot are:

• scalability and incremental deployment to allow institutions of different

sizes to grow their installation on their own, without need of an external

support;

• flexibility, so that different types of institutions with different data orga-

nization schemes could be supported by design;

• easily searchable data, so that users could find sensors and actuators eas-

ily;

2.1. BUILDING MANAGEMENT SYSTEMS 17

Figure 2.1: BuildingDepot architecture 1

• extensibility with a standardized API, to provide an easy way to develop

applications on top of it;

• a rich set of user management features, so that data sharing is efficient at

multiple granularities for the institutions in which the system is installed.

Another example is BOSS [28], which aims at supporting the distributed

physical resources present in large commercial buildings being fault-tolerant

and scalable. The BOSS architecture is made of six main subsystems:

• hardware and access abstraction, not to make users interface directly with

the hardware;

• naming and semantic modeling, that is used to describe the relationships

between all the devices that compose the underlying sensor and actuator

networks;

1Y. Agarwal, R. Gupta, D. Komaki, and T. Weng. Buildingdepot: an extensible and dis-

tributed architecture for building data storage, access and sharing.

18 CHAPTER 2. STATE OF THE ART ANALYSIS

• real-time time series processing and archiving, to be able to access the

real-time and historical data coming from the network;

• control transaction system to solve the conflicts and provide security mea-

sures;

• authorization subsystem that provide an access control list;

• actual running applications.

Energy@Home Jemma [52], an Italian project developed by Telecom Italia, is

the Java Energy ManageMent Application framework, a modular, resource-oriented

middleware running in Home Gateways and in the Cloud able to support en-

ergy monitoring, management and awareness applications at home. The main

features of Jemma are:

• the ability to dynamically discover devices attached to the network and

instantiate the proper driver;

• power consumption monitoring to suggest better behavior to the users;

• security measures to securely transport and manage sensitive data.

In summary, all the previously shown examples are very different from the

ones described in the previous section as they all present a more scalable, dis-

tributed architecture and enable the occupants of the building to customize the

environment.

2.1.3 Building Management Systems integration

A slightly different example is OpenHAB [54], a software for integrating dif-

ferent building automation systems and technologies into one single solution

2.2. TRIGGER-ACTION PROGRAMMING TECHNIQUE 19

with uniform user interfaces. The reason for which it is different from the other

BMSes we previously presented is its purpose. OpenHAB, in fact, does not try

to replace the existing solutions, but its purpose is to enhance them. Therefore,

it assumes that the subsystems on which it relies on have already been config-

ured. In this way it avoids performing this task, which is often very specific and

complex. Instead, what OpenHAB tries to do is to focus on the aggregation of

the data coming from sensors and actuators set up in the various submodules,

giving a better vision of the overall status. OpenHAB also provides the ability

not to reference objects with specific information like IP addresses or IDs but to

handle them as an “item”, that provides an higher level of abstraction hiding

all the specific device information. An important aspect of OpenHAB’s archi-

tecture is its modular design. It is very easy to add new features and you can

add and remove such features at runtime.

In Table 2.1 are summarized the key points of each BMS we previously de-

scribed. In particular, it shows the manufacturer of the BMSes (universities or

companies), its name and architecture and it provides some comments to un-

derstand better their main features.

2.2 Trigger-action Programming Technique

Technologies that enable building automation and smart homes have been

around for decades but, since they have been expensive and complex, in the

last few years the scientific community started to investigate a new paradigm,

the trigger-action programming.

if Trigger then Action

20 CHAPTER 2. STATE OF THE ART ANALYSIS

M
anufacturer

N
am

e
A

rchitecture
Installation

Type
C

om
m

ents

Johnson
C

ontrol
M

etaSys
[18]

C
entralized

Standard
N

eeds
a

custom
im

plem
entation

for
each

building
in

w
hich

itis
installed

N
iagara

N
iagaraA

X
[20]

C
entralized

Standard
Less

constrained
deploym

ent,
com

pati-

ble
w

ith
the

m
ajor

existing
netw

ork
pro-

tocols

U
C

SD
BuildingD

epot[27]
D

istributed
W

eb-based
Exposes

the
w

eb
services

through
a

w
ell

defined
R

EST-fullA
PI

Berkeley
BO

SS
[28]

D
istributed

W
eb-based

Scalable,fault-tolerantand
m

ulti-layered

architecture

O
penH

A
B

O
penH

A
B

[54]
Integrator

W
eb-based

H
is

design
is

m
odular

to
m

ake
it

m
ore

scalable.
Integrate

different
BM

Ses
into

one
solution

Energy@
H

om
e

Jem
m

a
[52]

D
istributed

W
eb-based

M
odular

architecture,
supports

energy

m
onitoring

and
m

anagem
ent

applica-

tions

Table
2.1:BM

Ses
Sum

m
ary

2.2. TRIGGER-ACTION PROGRAMMING TECHNIQUE 21

Figure 2.2: IFTTT

if something happens then do something

Trigger-action programming allow the end users to specify the behavior of a

system as an event, that corresponds to the trigger, and the related action, to be

taken whenever the specified event occurs. This programming technique has

recently emerged as a promising solution to involve users in home automation,

as it provides an expressive and an intuitive interface [34, 35, 15]. In fact, it has

also been chosen to carry on the most recent experimental campaigns in the

smart building context like the one presented in [45].

Trigger-action programming is widely used mainly because it is human un-

derstandable and doesn’t require particular programming skills to be used in

practice [15]. In fact, there are also commercial examples that have been devel-

oped to connect various web services and different smart home appliances.

2.2.1 Trigger-action programming: the If This Than That paradigm

Trigger-action paradigm has become so popular that it has been used also

in commercial product like IFTTT [36], that stands for “IF This Than That”. It is

a web application that allows users to create chains of simple conditional state-

ments, called “recipes”. The “recipe” makes easier the interaction between the

users and the applications or product that they need to handle. Trigger-action

22 CHAPTER 2. STATE OF THE ART ANALYSIS

programming and in particular IFTTT, as shown by Dey et al., express 95%

of all the behaviors that the users wished to express in smart homes, demon-

strating its expressiveness across a wide set of context aware applications [34].

More recently, Ur et al. showed that 63% of smart home applications requested

by occupants required programming, and all of these applications could be ex-

pressed by the IFTTT paradigm [15].

However, [48] shows that IFTTT has some deficiencies caused by its over-

simplification that limit the expressivity of the programs that can be created.

During the studies they carried out they identified two distinct types of trig-

gers (event and state triggers) and three types of actions (instantaneous, ex-

tended, and sustained actions). An event trigger indicates the occurrence of

some changes at a specific point in time, as it could be, for example, “the door-

bell rings”. A state trigger, instead, indicates that some condition is currently

true and it is lasting over a period of time. Example of state trigger could be

“time is between 11:00am - 03:00pm”. For what concerns the actions, as said

before, they can be defined as instantaneous, extended or sustained. An action

is instantaneous when it happens at a specific moment in time and does not

change the state of the system, like “sending an email”. It is called extended if it

will be completed within a certain amount of time and, when its effect is over,

the state of the system returns as it previously was. Example of extended ac-

tion could be “brewing coffee”. An action is defined sustained when it involves

a change in the state of the system. An example could be “turn on lights” as the

effect of this action will impact on the building even when the rule stops act-

ing on the building, permanently changing his state. The results of their study

reveal inconsistencies in the user interpretation of the behavior of programs in-

2.3. CONFLICT RESOLUTION 23

volving these different types of triggers and actions. For instance, the rule “if

there is someone in the bedroom, turn on the lights” for some people implies

that the action will also take care of switching off the lights when nobody is in

the bedroom, while for others it means that the lights will remain turned on

unless directed to be turned off by another rule.

With BuildingRules, we will focus on solving the main issues related to an

actual and practical usage of the trigger-action programming a within smart en-

vironment to provide personalized automation in complex commercial build-

ings, and address the challenges that emerge when deploying such a system in

a real environment.

2.3 Conflict resolution

Deploying a system that uses trigger-action programming on a large scale,

involves the rising of conflicting situations due to the fact that, when differ-

ent users interact with such a system, their intentions are likely not to be the

same [40]. Moreover, as shown in [45], when conflicts take place, the building

occupants do not know how to handle this situation. In particular, they notice

that the behavior the building is having is not the one that they wanted to ex-

press, but they do not understand the nature of the conflicting situation and it

takes time to solve these issues. What is needed, is a way to solve these con-

flicts because they can lead to unpleasant situations in which, at worst, people

can be in danger. Conflict resolution can be done in two ways, with or with-

out making use of context information. If we consider context aware systems,

conflict resolution has been studied extensively [40] and a number of conflict

24 CHAPTER 2. STATE OF THE ART ANALYSIS

resolution strategies to automatically resolve application inconsistencies have

been developed. In [41], for example, Chang Xu tries to analyze conflicts in this

kind of systems defining context consistency as the situation in which there is

no contradiction in a computation task’s context, and context inconsistency as

the situation in which a contradiction occurred. To understand the meaning of

context contradiction, they considered a scenario taken from the healthcare in-

dustry. A doctor is in the operating room and a surgery is being performed.

From this information the system will probably conclude that the doctor is do-

ing a surgery. Suppose that, in addition to these, there is another piece of in-

formation that makes the system believe that the doctor is looking for medical

resources. Thus, the system does not know what to do anymore and it might

draw the wrong conclusion. Because of the fact that multiple choices can be

taken, there is a contradiction in the context. In their provided solution they

detect and resolve this type of inconsistency.

However, enhancing human-computer interaction through the use of con-

text is a difficult task and the context-aware models are hardly reusable [42].

Because of this, context-unaware conflicts resolution techniques have been de-

veloped. There are two main types of resolution that do not take into account

context, one that do not involve the end user during the resolution, that we call

Sensor centric resolution, and one that require the user intervention during the

resolution, called User centric resolution.

2.3.1 Sensor centric resolution

As already mentioned, the sensor centric resolution does not involve the users

because it is performed at sensor level using various conflict resolution strate-

2.3. CONFLICT RESOLUTION 25

gies. There are some BMSes that are already using these techniques, for ex-

ample making use of BACNet (Building Automation and Control Networks)

protocol, that is a widely adopted standard in industrial BMSes [37]. In this

protocol, to solve conflicts, each writable sensor has a priority table and all the

applications are sorted according to their importance. Web service BMSes ex-

tend this methodology adding access control and providing more metrics for

conflict resolution as it will be shown in the following examples. SensorAct [38]

uses a script that specifies validation conditions based on date, time, duration,

location and frequency of operations. The combination of this script and a pri-

ority system allows the management of conflicts.

Another example is the BOSS [28] BMS, in which they define a database-

like transactional system mapping every sensor write as a single transaction.

Finally, BuildingDepot [39] proposes a solution similar to BACNet incorporat-

ing a priority array and adding a conflict-default value, used as a fallback in

case there are two or more users with the same priority level. With sensor cen-

tric resolution, the user can not change the result of a conflicts during the conflict

resolution and the system, in case of same conflicts, return always the same re-

sult. This could be a problem because, depending on situational, the user could

want different result and for this reason there is the User centric resolution type.

2.3.2 User centric resolution

In case of conflicting situations, in particular in building environment, the

user may prefer to be in control of the choice of the solution. Because of this,

User centric resolution involves humans during the conflict resolution. Usually

this type of detection finds conflicts and allows the user to solve them. For this

26 CHAPTER 2. STATE OF THE ART ANALYSIS

reason, the system needs to abstract information so that users can understand

the nature of these conflicts, and, thus, try to solve them [34].

CARISMA [43], for example, is a mobile computing middleware that re-

solves conflicts among multiple users for a single application with pre-recorded

preferences. Park et al. [44] use JESS (Java Expert System Shell) [49], a rule en-

gine for the Java platform, which supports the development of rule-based sys-

tems that can be closely related to code written in Java. In their system, an ac-

tuator state variable can change only in two directions, namely increase or de-

crease. When rules trigger a change in opposite direction on the same variable

simultaneously, a conflict is detected. Therefore, using this approach, a conflict

is detected only when an actuation, made by a rule just activated, is in contrast

with the rules already active in the system. Instead, in other solutions, when a

new rule is inserted, all the rules are converted to first order logic and checked

using a SMT (Satisfiability Modulo Theories) solver [46], which is the strategy

followed by Zhang et al. [50]. With respect to JESS, this approach allows solving

conflicts before they actually rise and it does not need to be enriched with infer-

ence rules to define what is considered as conflict. Furthermore, in JESS, every

time a rule type is added, new customized inference rules need to be added as

well.

2.4 Conclusion

As shown in this Chapter, many BMSes have been developed and each of

them have different features. Our approach is not to develop another BMS but,

to realize a system that creates an additional layer between building occupants

2.4. CONCLUSION 27

and the BMS: BuildingRules. The goal of our thesis work is to solve the main

issues related to the actual usage of a trigger-action programming techniques

in commercial buildings. For this reason BuildingRules provides an intuitive

user interface which enable the user to program the BMS using trigger-action

paradigm, which, as we shown in Section 2.2, is human understandable and

does not require particular programming skills. BuildingRules also provides

a recommendation and suggestion system to help occupants understand how

the smart building will react to the inserted rules because, as shown in Section

2.3, Woo [45] stated that for building occupants is difficult to understand the

building behavior in a clear way. Finally, with respect to the different conflict

resolution techniques presented in Section 2.3, we decided to adopt a user cen-

tric resolution to ensure that the user is in control of choosing the solution of

the conflicting situation. To archive this goal, we developed a solution which

makes use of a combination of a SMT solver and a priority system.

Chapter 3

The Proposed Methodology

The aim of this Chapter is to provide an analysis of the proposed methodology. First,

we will introduce BuildingRules 1.0, the previous version of BuildingRules. We will

then analyze the problems that emerged in this version during the experimental cam-

paign and we will then propose a new theoretical framework that provides suggestions

to the building occupants making use of graphs.

3.1 Introduction

Our thesis work is founded on a previous version of BuildingRules, devel-

oped starting from the idea of programming a building in an easy way, through

the use of the trigger-action paradigm [34, 35, 15]. This version of Buildin-

gRules, that will be analyzed in details in the following Section, handles the

main elements that compose the smart building environment. In particular:

• it manages the building occupants providing different level of building

management with respect to their role;

29

30 CHAPTER 3. THE PROPOSED METHODOLOGY

• it provides a representation of the rooms and the groups of room that

compose the building;

• it enables the occupants to insert rules in each room or group of rooms;

• it handles conflicts among rules originated from multi users interaction

with the smart building providing conflict resolution techniques using a

SMT Solver and assigning priority to each rule.

Even if these aspects seem to cover the fundamentals to manage a smart

building, the experimental results pointed out that the behavior of the building

was not clearly understandable by the building occupants, especially when the

number of rules increased [45].

During our thesis, aiming at solving the aforementioned problem, we in-

troduced a theoretical framework to make suggestions to the building occu-

pants. To support this framework we generated graphs from the ruleset. The

graphs represent the behavior of the building. The nodes represent the build-

ing state and the edges represent the transactions between them. Upon these

graphs we have made some analysis, looking for undesired or unexpected be-

havior, to provide recommendations to the building occupants. The behavior

analysis was made possible by the introduction of a building simulator, which

provides the rules that will be activated during a predefined time period.

To summarize, the contributions of our thesis work are:

• The Suggestions: information collected from the analysis made on the

graphs and provided to the building occupants.

3.2. THE STARTING POINT: BUILDINGRULES 1.0 31

• The Graph Generator: generates the graphs that represent the building

behavior starting from the building simulation;

• The Graph Analyzer: performs analysis on the graphs generated by the

Graph Generator;

• The Simulator: provides the rules that will be activated in a predefined

time period;

In this Chapter we will present the theoretical details about BuildingRules.

First, we will provide details about the previous version of the system (1.0),

needed to understand the work done within this thesis, and, second, we will

explain the theoretical aspects behind BuildingRules 2.0, obtained by extending

BuildingRules 1.0 introducing the aforementioned contributions.

3.2 The starting point: BuildingRules 1.0

The main goal of BuildingRules 1.0 was to provide the building occupants

with a simple, scalable and intuitive system to allow them expressing their pref-

erences regarding the behavior of the building itself, thus making it possible for

them to customize their working environment according to their needs. There-

fore, BuildingRules was designed as an additional layer between the end users

and the Building Management System (BMS) [27, 28, 29], as can be seen in

Figure 3.1. This design enables the users to customize the building environ-

ment without knowing the actual physical configuration of the building itself

and, therefore, simplifying the building programming phase. BuildingRules

1.0 takes charge of handling the users requests delivering them, properly pro-

32 CHAPTER 3. THE PROPOSED METHODOLOGY

Figure 3.1: BuildingRules Architecture

cessed to match the needed format, to the underlying BMS that will manage

the gathering of data from the sensors and the actual actuation on the building.

For example, if the rule “if someone is in the room then turn on the lights” has been

inserted in BuildingRules, it will periodically ask the BMS whether someone

is in the room or not. If this condition is verified, BuildingRules will send a

command, to the BMS that, eventually, will turn the lights on.

Since BuildingRules targets commercial buildings, it represents them as com-

posed of rooms and groups of rooms. In each room there is one or more oc-

cupants. A room represents a physical space of the building like an office, a

conference room, a lobby or a kitchen. Occupants are assigned to these rooms

by the building manager, and they can customize the behavior of the room or

group of rooms they are assigned to, by adding new rules.

To model all these elements and interactions, BuildingRules architecture is

modular and is composed by the modules represented in Figure 3.2. What can

be noticed is that, on one hand, BuildingRules models the actors we previously

3.2. THE STARTING POINT: BUILDINGRULES 1.0 33

Figure 3.2: BuildingRules 1.0 features

described with the following components:

• User: needed to handle different types of users providing a hierarchy sys-

tem to assign different privilege levels to each type of user;

• Rule: needed to manage the trigger-action based rules that are inserted in

the system, partitioning each of them in several predefined categories;

• Room: needed to manage the building rooms, handling the sensors, the

actuators and the rules inserted;

• Group: needed to handle more rooms at once, so that shared preferences

between them can be managed without inserting the rules for each one

individually.

On the other hand, the SMT Solver is the main tool that handles the con-

flicts between the rules, once they have been formalized as propositional logic

formulae.

34 CHAPTER 3. THE PROPOSED METHODOLOGY

3.2.1 Rules

As mentioned earlier, BuildingRules 1.0 uses the trigger-action paradigm

[55, 36, 15] allowing occupants to specify rules in the following format:

if (something happens) then (do something)

The “if” part of the rule is called trigger while the “then” part is called action.

According to this paradigm, a user can specify an action to be performed when

certain event conditions are met. The combination of an action with an event is

defined as a rule. For example, in the rule

if (someone is in the room) then (turn on lights)

“someone is in the room” is the trigger, and “turn on lights” is the action.

BuildingRules 1.0 introduces the concept of simple and complex rules. A sim-

ple rule is composed of a single trigger and action, while a complex rule has

multiple triggers or actions, each of which is connected by a logical AND. For

example, “if it is raining then close the windows” is a simple rule while “if it is

Sunday and it is after 10am then close the curtains” is a complex rule. In Build-

ingRules 1.0 complex rules are restricted to just multiple triggers; in fact, rules

with multiple actions are not supported to keep the user interaction paradigm

as simple as possible. Anyway, this is not a limitation for the expressivity of the

system since those rules can be easily decomposed into multiple rules with the

same trigger.

Two data types for triggers and actions (boolean and integer) are supported.

The Boolean type is used for sensors and actuators that have only two states,

3.2. THE STARTING POINT: BUILDINGRULES 1.0 35

TYPE DATA CATEGORY EXAMPLE NAME EXAMPLE HUMAN READABLE SYNTAX

1 T BOOLEAN OCCUPANCY OCCUPANCY_TRUE someone is in the room

2 T INTEGER EXT_TEMPERATURE EXT_TEMPERATURE_RANGE external temperature is between @val and @val

3 T INTEGER TIME TIME_RANGE time is between @val and @val

4 T BOOLEAN DATE DATE_RANGE the date is between @val and @val

5 T BOOLEAN WEATHER SUNNY it is sunny

6 T INTEGER ROOM_TEMPERATURE ROOM_TEMPERATURE_RANGE room temperature is between @val and @val

7 T BOOLEAN DEFAULT_STATUS NO_RULE no rule specified

8 T INTEGER DAY TODAY today is @val

9 T BOOLEAN EXTERNAL_APP CALENDAR_MEETING calendar meeting event

10 A BOOLEAN LIGHT LIGHT_ON turn on the room light

11 A BOOLEAN WINDOWS WINDOWS_OPEN open the windows

12 A INTEGER HVAC SET_TEMPERATURE set temperature between @val and @val

13 A BOOLEAN APPLIANCES COFFEE_ON turn on the coffee machine

14 A BOOLEAN MESSAGES SEND_COMPLAIN send complain to building manger

15 A BOOLEAN CURTAINS CURTAINS_OPEN open the curtains

�8

Table 3.1: Currently supported rule triggers (T) and actions (A) categories. An example of trig-

ger or action for each category is provided

such as the window that can be only opened or closed. Instead, the integer type

is used to represent the state of sensors and actuator that cannot be represented

by boolean values, such as temperature and humidity. With respect to integer

values BuildingRules 1.0 forces the user to insert a range of values to keep the

conflict analysis (see Section 3.2.2) simple. For instance, a user cannot insert a

rule with “if it is after 8PM” as a trigger; instead he needs to specify a time

interval: “if it is between 8PM and 10PM”. By specifying a time range, a rule

has a time validity, and it reduce the possibility to run an action forever. This

restriction does not change the expressiveness of rules, but forces the user to

define both the start and end points of the rule.

Table 3.1 shows the list of triggers and actions supported by BuildingRules

1.0. Each trigger and action is assigned to a category, representing the informa-

tion it expresses. For example, the rule “if it is rainy then turn on the light”

has the antecedent that belongs to the “Weather” category and the consequent

to the “Light” category. NO_RULE is a special trigger available for the build-

ing administrators (Rule 7 in Table 3.1). This trigger is always set to True and

36 CHAPTER 3. THE PROPOSED METHODOLOGY

is used for setting the default conditions of the building that can be used as a

fallback in case no rule is specified by the user to override them. For example,

if the rule “if no rule specified then close the windows” has been inserted, in case

the occupants forget to insert a rule that manage the windows during the night,

the windows will be closed in any case.

BuildingRules also supports external applications through virtual triggers

that are controlled via RESTful APIs (Rule 9 in Table 3.1).

3.2.2 Conflicts among rules

Since users can express their own rules for rooms, some of which are shared

by multiple users, conflicts can arise. In BuildingRules 1.0 two rules are defined

as conflicting when two or more rules act at the same time on the same actua-

tors trying to apply different effects. To be clear, for example, considering the

following rules:

if time is between 6am and 3pm then turn the light on

if nobody is in the room then turn the light off

in case nobody is in the room and time is between 6am and 3pm, BuildingRules

1.0 will try to turn the light on and off simultaneously. If these conflicts are not

resolved properly, they can lead to damage of equipment, like in the previous

example, or compromise user comfort and safety. BuildingRules 1.0 supports

two type of conflicts: static conflicts and run-time conflicts.

3.2. THE STARTING POINT: BUILDINGRULES 1.0 37

3.2.3 Static conflicts

Two rules conflict statically if the triggers belong to the same category and

the actions act on the same actuator. They are conflicting because the two rules

may be triggered at the same time but they act in an incoherent way on the

actuator. To clarify this concept we can consider two users who independently

specified the two following rules:

if time is between 9am and 6pm then turn the HVAC on

if time is between 5pm and 8pm then turn the HVAC off

As can be seen, between 5pm and 6pm, the system would be in an inconsistent

state since it will try to turn on and off the HVAC simultaneously during this

time interval. This may cause discomfort to the occupants and could damage

the HVAC damper if not actuated properly. To identify this type of conflicts

among rules, a formal verification approach has been used, as will be explained

in the following Section.

3.2.4 SMT Solver

In BuildingRules 1.0, in order to detect static conflicts, the rules are formal-

ized as propositional formulae and then we the SMT Solver Z3 is used to actu-

ally solve them.

As said before, a rule is composed of two parts: a trigger or a conjunction

of triggers, and an action. Before adding a rule, it is verified against the set of

rules already in the room. Each rule is represented as a propositional formula

composed by an implication in which the trigger implies the action. In general,

the implication is satisfied if the trigger is not satisfied, or if both the trigger and

38 CHAPTER 3. THE PROPOSED METHODOLOGY

the action are satisfied. In this context, the action is considered as a proposition

that is true if the action can be executed, false otherwise. The new rule, together

with the existing ones, are seen as a specification and automatically verified to

check their satisfiability. If the specification is satisfiable, the rules are not in

conflict with each other. If not, two or more rules are in conflict and it needs to

be resolved. The rules are formalized as propositional formulae compliant with

the following grammar:

rule ::= trigger⇒ action

trigger ::= sTrig | sTrig ∧ trigger

action ::= bAct | ¬bAct | iAct∈[n,m]

sTrig ::= bTrig | ¬bTrig | iTrig∈[n,m]

A rule is an implication, where the action and trigger have a fixed structure.

The trigger is a conjunction of conditions sTrig, that are built on the triggers

represented in Table 3.1 (Rows 1 - 9). When the trigger is boolean (Rows 1, 4, 5, 7,

9), the condition is satisfied when the data is true (bTrig) or false (¬bTrig). When

the trigger is an integer (Rows 2, 3, 6, 8), the condition is satisfied when value

is in the specified interval [n, m], where n 6 m and they are both specified

according to the data domain. A similar method is used for both boolean (Rows

10 - 11, 13 - 15) and integer (Rows 12) action values. The use of disjunction in

actions or triggers and the use of conjunction in actions is not allowed. The

conjunction in the action is redundant and is equivalent to specifying multiple

rules with the same trigger and different actions. The same reasoning can be

done with the disjunction in triggers as it is equivalent to specifying multiple

rules with the same action and different triggers.

Note that the disjunction in actions introduces non-deterministic rules, mean-

ing that the system can make a choice on the actions that can be performed.

3.2. THE STARTING POINT: BUILDINGRULES 1.0 39

Currently, the user needs to completely specify the action for a rule using pri-

ority. For example consider a user who wants to insert a rule“if the room is dark

then turn on the lights or open the blinds”, with the intention that the system

can choose to “turn on the light” or “open the blinds” in case of poor luminos-

ity. The user is asked to insert two rules with different priorities to make his

intentions clear without any ambiguity.

Since the rules correspond to a subset of propositional logic, they can be

analyzed by encoding them in the language of the Z3 SMT Solver [46]. Since Z3

supports boolean and integer variables, translating the formalization of rules

into the Z3 language is straightforward. Note that formulae must be expressed

in the prefix form adopted by Z3. For example, the rule “If someone is in the

room then turn on light” is represented as:

(assert (=> inRoom lightOn))

and the rule “If someone is in the room then set temperature between 68F

and 72F” is represented as:

(assert (=> inRoom (and (<= 68 temp)

(<= temp 72)))).

The Z3 model was completed with a set of assertions that specify additional

characteristics of the integer data (e.g., time is between 0 and 24) and the rela-

tionship among data (e.g., if it is sunny, then it cannot be rainy). The model

is then verified to check for possible conflicts. It is verified multiple times by

asserting the trigger of each rule in the same category. Thus, it is possible to

identify the conflicts related to the same trigger or related triggers. In Buildin-

gRules 1.0, the rule verification is performed as soon as a new rule is inserted.

40 CHAPTER 3. THE PROPOSED METHODOLOGY

TYPE EXAMPLE HUMAN READABLE SYNTAX EXAMPLE Z3 SMT TRANSLATION

1 T someone is in the room (inRoom)

2 T external temperature is between @val and @val (and (>= (extTempInRoom) @val) (<= (extTempInRoom) @val))

3 T time is between @val and @val (and (>= (time) @val) (<= (time) @val))

4 T the date is between @val and @val (and (>= (day) @val) (<= (day) @val))

5 T it is sunny (sunny)

6 T room temperature is between @val and @val (and (>= (tempInRoom) @val) (<= (tempInRoom) @val))

7 T no rule specified (noRule)

8 T today is @val (= (today) @val)

9 T calendar meeting event (meetingEvent)

10 A turn on the room light (light)

11 A open the windows (openWindows)

12 A set temperature between @val and @val (and (>= (tempSetpoint) @val) (<= (tempSetpoint) @val))

13 A turn on the coffee machine (coffee)

14 A send complain to building manger (sendComplain)

15 A open the curtains (openCurtains)

�9

Table 3.2: Translation to Z3 examples. Refer to table 3.1 for more details.

When a user inserts a rule that is conflicting with existing rules, a notification

is raised and the user is asked to modify the rule. The rules are translated from

human readable syntax to the Z3 syntax using a pre-defined look up table (see

Table 3.2).

Z3 has been chosen to detect conflicts as it is efficient and reusable. Al-

though the satisfiability problem is computationally expensive, it is possible to

ensure low latency as Z3 solves this problem efficiently. An alternative would

be having a custom implementation to deal with our particular variables. To

ensure good performance, the algorithm we would have to be modified and

evaluated every time the variable domain, the rules structure and other details

in the ruleset are modified. Instead, the SMT solver requires only an addition of

transformation rules to create a new model, but does not require re-evaluation

of the algorithm, since it is computed efficiently by Z3. Moreover, the input lan-

guage of the SMT solver is generic, and it would be easy to switch to different

SMT solvers, such as Yices [56].

3.2. THE STARTING POINT: BUILDINGRULES 1.0 41

3.2.5 Run-time conflicts

Some conflicts cannot be statically detected, namely the ones in which the

actions belong to the same category but the triggers do not. Consider the fol-

lowing example:

if nobody is in the room then turn off the light

if time is between 5pm and 8pm then turn on the light

Using Z3 it is not possible to identify the conflicts that arise when the room

is empty between 6pm and 8pm because the SMTs Solver cannot predict if no-

body will be in the room between 6pm and 8pm. In this case, the system, at

runtime, will try to activate both the rules causing possible damages to the light

bulb as it will be continuously turned on and off. Moreover, since the users may

want to express more complex policies than the one previously described, sup-

porting this type of rule conflicts is necessary.

To understand how the resolution of run-time conflicts has been handled,

it is possible to consider this example: suppose that a user want to express a

policy that generally turns on the light between 6pm and 8pm, except when

nobody is in the room. In this case, it is not possibile to solve the conflict stati-

cally because the antecedent “nobody is in the room” is not static by nature. As

we said before, we do not know when it will be triggered a priori. What is clear,

in this example, is the behavior that the user want to express in this room. In

fact, he generally want the room light to be turned on between 6pm and 8pm

but not in case nobody is in the room. As a consequence, BuildingRules 1.0 lets

the user assign a priority value to each rule he inserts. If the user desires to set

a policy like “usually I want this behavior but not when this event takes place”,

42 CHAPTER 3. THE PROPOSED METHODOLOGY

he sets a lower priority to the general rule, and a higher priority to the rule that

is more specific. Consequently, the priority value is used to order the rules by

importance and to dynamically resolve conflicts during the actuation phase in

an efficient way. This approach is simple to be explained to the occupants as

they only need to know: “give a higher priority to the more important rules”.

3.2.6 Users

In a typical commercial building, there are different types of users who may

express automation policies [39]. The employees can control the offices they are

assigned to, a lab manager can control the specific lab he works in while the de-

partment chair and the building manager can have overriding control over the

policies expressed by all the other building occupants. BuildingRules 1.0 needs

to express this hierarchy since it is needed to handle the building hierarchical

structure and it affects how it resolves conflicts. This task is accomplished by

assigning privilege levels to each type of user.

BuildingRules 1.0 supports different user categories. For example, as can be

seen in Figure 3.3, the actual building occupants may be classified as building

managers or standard users; while special users may be assigned to Applications

and Default categories. Applications may be external software that interact with

BuildingRules, while Default can represent agents controlling the default status

of the building, namely when users do not specify any rule, that is represented

by the DEFAULT_STATUS category in Table 3.1 line 7.

User levels are used in two different ways. First, they ensures that low level

users cannot edit or delete the rules specified by users with higher level. For

example, consider a room R1 shared by two users (U1 and U2) (level of U1 >

3.2. THE STARTING POINT: BUILDINGRULES 1.0 43
M
ax
im

u
m
'R
u
le
'P
ri
or
it
y

0

100

200

300

400

Manager Application User Default

User'level'40'
MANAGER

User'level'30'
APPLICATION

User'level'20'
USER

User'level'10'
DEFAULT

M
ax
im

u
m
'R
u
le
'

P
ri
or
it
y

0

100

200

300

400

Manager Application User Default

User'level'40'
MANAGER

User'level'30'
APPLICATION

User'level'20'
USER

User'level'10'
DEFAULT

�1

Figure 3.3: User level and rule priority relation

level of U2), both users are allowed to enter rules into R1; U1 can edit or delete

rules specified by U2 but not vice-versa. Thus, a higher level user, such as the

building manager, can enforce entire building policies by creating rules with a

priority higher than the standard user. The levels restrict the maximum priority

a user can specify for a rule. A higher level user can assign a higher priority to

a rule, giving it more priority in case of runtime conflicts, namely overriding

rules expressed by a lower-level user.

3.2.7 Groups

BuildingRules 1.0 enables the creation of groups of rooms to reuse rules

across rooms. Suppose that the building manager wants to turn off all the build-

ing lights during the night. Without the group feature, he would have to insert

the rule “If time is between 10pm and 7am then turn off the lights” in every

room. Instead, creating a group that is composed of all the building rooms, he

needs to create the rule once by specifying it for that specific group.

Figure 3.4.A shows an example in which the rooms are grouped on per floor

basis. In this example, if Ri is a generic room belonging to a group G, the rules

specified at the group level are inherited by all the Ri rooms.

44 CHAPTER 3. THE PROPOSED METHODOLOGY

Room 1.1

ADMIN GROUP

1st FLOOR GROUP

2nd FLOOR GROUP

3rd FLOOR GROUP

Room 1.2 Room 1.n

Room 2.1 Room 2.2 Room 2.n

Room 3.1 Room 3.2 Room 3.n.....

THERMAL ZONE 1

Room 1.1 Room 1.2

THERMAL ZONE 2

Room 1.3 Room 1.4

THERMAL ZONE 3

Room 1.5 Room 1.6
Room 1.7 Room 1.8

(A) (B)

Figure 3.4: (A) Example building groups (B) Example building thermal zones distribution

BuildingRules 1.0 supports another class of groups to incorporate the physi-

cal characteristics of commercial buildings. In fact, Heating, Ventilation and Air

Conditioning (HVAC) systems and lighting systems often divide the building

into zones of operation, and can only be controlled at the zone level granular-

ity [21, 32]. Figure 3.4.B shows an example of HVAC thermal zone in a build-

ing. As a result, if two rooms (R1 and R2) belong to the same thermal zone, the

HVAC rules specified for R1 is propagated to R2. Such groups are called Cross

Room Validation Group (CRVG), and they are specified for action categories that

need to follow this property. The behavior of a CRVG is shown in Figure 3.5. In

a CRVG, all the rules expressed (for specified actions) in one room within the

group are propagated to the other rooms.

The conflict checking algorithm needs to take care of which groups a room

belongs to. If a room does not belong to any group, the ruleset is composed of

the rules inserted in that room. If the room belongs to one or more standard

groups, the ruleset to be checked is composed of the rules saved in the con-

sidered room and the union of all the rules saved in these groups. If the room

belongs to a Cross Room Validation Group, the ruleset of the room is the union of

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 45

G1

R1 R2

A B C

A B C
E F

A B C
G H

Standard'Group

G1

R1 R2

A B C

A B C

E F

A B C

G H
G H E F

X Rule

Ruleset

LEGEND

(A)
Cross'Room'Validation'Group

(B)

Figure 3.5: Representation of the two different kinds of supported groups

all the rulesets (for specified actions in CRVG) of the rooms belonging to that

group.

3.3 BuildingRules 2.0: theoretical contribution

As we said in Section 3.1, the main problem in BuildingRules 1.0 was that

the building occupants were not able to clearly understand the actual effects

of the ruleset on the smart building, especially with an increasing number of

rules. Let us make an example, consider these three rules:

1. if time is between 9am and 6pm then turn on the computer

2. if it is rainy then close the window

3. if someone is in the room then turn on the lights

it is relatively easy to understand the effects of the ruleset on the room. In fact,

the computer will be turned on during working time, the windows will be close

in case of rain and the lights will be turned on if the room is not empty.

Let us try to increase the number of rules and consider the following ruleset:

46 CHAPTER 3. THE PROPOSED METHODOLOGY

1. if time is between 9am and 6pm then turn on the lights

2. if external temperature is between 69F and 76F then open the window

3. if someone is in the room then turn on the lights

4. if time is between 9am and 6pm then turn on the computer

5. if it is rainy then close the window

6. if it is sunny then turn off the lights

7. if nobody is in the room then turn off the computer

8. if it is sunny then open the window

It is really hard to understand immediately which rules will be triggered by the

system. The only way for the users to clarify how the building will behave, is to

read the entire ruleset taking into account all the possible combinations of rules

that can be activated. Moreover, the building occupants may forget to insert the

rules to control the building in some day periods. In this example, in fact, we

cannot say if the windows of the building will be opened or closed during the

night because no rule has been inserted with that purpose. For this reason, the

building occupants need a way to understand how the building will behave.

Therefore, what is needed is a representation that models the building state

and how the transactions between states occur. The representation that fits the

aforementioned purpose, is the graph. Therefore, provided the ruleset of the

building, we produced the graphs representing the formalization of the build-

ing state. These graphs are then used to support our framework to provide the

users with suggestions about the building status, helping them to understand

its behavior.

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 47

Figure 3.6: From Ruleset to Graph

In the following sections we will introduce the theoretical aspects behind

our thesis work, in particular we will provide a detailed analysis about how

we moved from the ruleset to the building behavioral and status graph.

3.3.1 From Ruleset to Building Behavioral and Status Graph

As said in the previous Chapters, commercial buildings have many occu-

pants and many elements to be handled, such as lights, HVAC, windows and

personal computers. The building occupants want to insert rules to customize

the office the way they want. Therefore, the more users and devices the build-

ing has, the higher will be number of rules inserted. Dealing with a large amount

of rules is difficult for both the building occupants and the building manager.

In fact, the building occupants, before inserting a rule, need to read all the rules

that are already in the room and the building manager needs to understand the

building state and the impact that the rules will have on the building. What is

needed, is a way to provide a clearer understanding of the effects of the inserted

rules to them. Therefore, as can be seen in Figure 3.6, we leveraged the level of

abstraction generating, starting from the ruleset of each room of the building,

the oriented graphs that represent the behavior of the room.

48 CHAPTER 3. THE PROPOSED METHODOLOGY

Figure 3.7: Representation of Node of the Graph

Node

As can be seen in Figure 3.7, the graphs node presents the following prop-

erties:

• State ID: which is used to uniquely identify the node;

• State Variables: that represent the values of each actuator and the envi-

ronmental conditions that are currently controlled by BuildingRules;

• Active Rules: that represent the list of the consequent of the currently

active rules, namely what rules are actually actuating in the room;

• Loser Rules: that represent runtime conflicting rules that are inactive be-

cause they have lower priority than the ones that are currently active;

• Time: that represents the number of times that a node is entered during

the generation of the graph.

The State Variables, as said before, represent the values of each state vari-

able that is currently controlled by BuildingRules. A State Variable is one of the

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 49

set of variables that are used to describe the Room State. For example, the State

Variable “WINDOWS: CLOSE” represents not only the fact that the windows

are closed in the considered room but that a rule in the system is keeping them

closed. All the state variables together form the Room State, that is the actual

room status, not considering only the currently active rules but also the his-

tory of the previously activated ones. For example, in the state represented in

Figure 3.7, the State Variables include “LIGHT: OFF” but there is no active rule

that is currently actuating on the lights. This means that this state variable has

been changed in a previous node of the graph but the effect of that action are

affecting the current node state.

State Variables do not affect the room state by acting only on the state of the

associated actuator, but they can have side effects also on the environmental

conditions. For example, if we set a rule that turns on a light, it will not only

physically switch the light on but it will also change the room luminosity. For

this reason, we defined two types of state variables:

• Direct: the variables directly associated with the actuator

• Indirect: the variables that represents the environmental conditions, indi-

rectly affected by an actuation

Table 3.3 lists some actuators that act directly on some State Variables and

indirectly on others. If we consider a smart-window, it acts directly on its open-

ing state, namely opened or closed, but, indirectly, on the temperature and hu-

midity of the room. On the other hand, there are some actuators like smart-

coffee machine, that acts only on its own state and do not affect other variables

indirectly.

50 CHAPTER 3. THE PROPOSED METHODOLOGY

Table 3.3: Examples of direct and indirect State Variables

Introducing the distinction between direct and indirect state variables, makes

possibile to adapt the graph analysis (see Section 3.3.2) to the different environ-

ment models. For example, if the rule “is someone is in the room then open the

window” is triggered, we do not simulate only the actuation on the window

(direct state variable) itself but we make also the humidity and the tempera-

ture (indirect state variables) of the room change.

The Active Rules represent the list of the actions of the currently active rules,

namely what rules are actually actuating in the room. The Active Rules are state-

less, this means that the Active Rules in one node are not affected by the ones in

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 51

the previous nodes. The effect that the active rules have on the room state are

shown in State Variables. In fact, if there is a node in the graph in which there are

some active rules, those rules will affect the State Variables directly or indirectly

associated with its activation until some other rules modify them. For example,

in Figure 3.7, the rule “turn off the coffee machine” affects the State Variable

“COFFEE: OFF” that will be left unchanged unless the rule “turn on the coffee

machine” will be present in the Active Rules. The Active Rules also provide the

id of the currently active rules because it makes possibile to easily edit or delete

a rule for the building manager if it is not needed anymore or if some anomalies

are detected.

The Loser Rules represent runtime conflicting rules that are inactive because

they have lower priority than the ones that are currently active. This node com-

ponent is important to make detection of the possible conflicting rules at run-

time. If a rule is found in Loser Rules it means that it will not affect the State

Variables and, thus, will be ignored by the system in the current node.

Edge

The edge of the graph is oriented and annotated. The annotation represents

the conditions that trigger a node change following the direction specified by

the head of the arrow. In our case, the conditions are the antecedents of the

rules that need to be triggered to change node. The most trivial case which

may occur, is that there is only one condition associated with the edge. In this

case, to pass through the aforementioned edge, the only condition that needs

to be verified is the one associated to it.

It is also possible to find more than one condition on a single edge. In fact, as

52 CHAPTER 3. THE PROPOSED METHODOLOGY

shown in Figure 3.8, two different conditions can be annotated to an edge. The

room goes from node with ID: 0 to the node with ID: 1 only if the antecedents

are both verified, namely if both nobody is in the room and time is between 6:00 PM

and 6:00 AM are verified. On the other hand, for example, if the only condition

that is verified in the predecessor node is that nobody is in the room, the transac-

tion does not occur because the conditions on the edge are partially triggered,

namely they are not all true at the same time. Therefore, when two different

conditions are annotated to an edge, it represents a logic AND.

The last possible situation that can take place is the one in which there will

be two or more edges that start from the predecessor node and end up in the

successor. In this case the transaction from one node to another occur when the

conditions on one of the edges are verified. Therefore, it represents a logic OR.

Building Behavioral Graph

The Building Behavioral Graph (BBG) is the formal representation of the

building state, made from building simulation (see Section ??), that aims at ex-

ploring all possible states in which the building rooms can be set by the inserted

rules. It makes the building manager easily understand how the building will

behave during a specified time interval and how the active rules will impact

on the current and future states of the building. Moreover, as soon as a rule is

added or deleted from the system, it immediately shows the effect of the change

on the building state.

As can be seen in Figure 3.9, the BBG starts from the node that we defined

Node 0 in which there are no rules and the State Variables field is empty. In this

way, we can explore every possibile condition of the building rooms. However,

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 53

Figure 3.8: Representation of the Edge of the Graph

54 CHAPTER 3. THE PROPOSED METHODOLOGY

if needed, the BBG can start analyzing the behavior of the rooms from a specific

room status. In this case, the BBG will explore all the possibile ways the rooms

can evolve starting from that conditions.

First, a node in the BBG is univocally identified by the State Variables, the

Active Rules and the Loser Rules. This way, we can have a more detailed under-

standing of the building behavior. We can distinguish situations in which, for

example, we have two nodes in the graph that have the same State Variables

field but with different currently active rules or that have the same active rules

but one of them has a loser rule.

Second, in the graph, self loops will not be displayed. Self loops would be

found when the only conditions triggered in the current node are the ones an-

notated on the incoming edges. The decision to not to show self loops was

made because the loops were distracting and not useful to understand the evo-

lution of the building. In fact, the assumption that we made is that it will not

be possibile to leave a node until the conditions on one of the outgoing edges

are verified. Since we did not want to lose the information about the fact that

the room can stay in a certain node in presence of a self loop, we introduced

the concept of Time.

The Time field provides information about how many times an edge enters

the node, considering also loops. Essentially, Time provides an estimation of

the permanence time in a node and it can be exploited, for example, to make

an estimate of the consumed energy of each room of the building considering

the energy consumption of every device which is active in each node.

To have a clearer understanding of how a BBG works, we can analyze the

snippet provided in figure 3.9. What can be seen is that, from the starting node,

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 55

we can reach two different nodes, one with ID: 0 and one with ID: 1, depending

on whether somebody is currently in the room or not. One thing to notice, in

this example, is the fact that these nodes have the same active rules but they

are not the same node. In fact, as said before, the node of the BBG is univocally

identified by all the components that compose it.

To generate this graph, we have to explore all the possible combinations

of antecedents that can be verified with respect to the rules that have been in-

serted. The naive way consists in simulating all possible values in the domain

of the antecedent, analyzing for each one the triggered actuators. Being it too

expensive in terms of time, we decided to simulate only significant values in

the domain that triggers all possible antecedents.

We used two different approaches depending on the type of antecedents,

namely Boolean and Interval. In case of Boolean triggers, being just two val-

ues to be simulated, we made the simulation with both of them. For example,

if we consider the rule “if it is sunny then turn off the room light” we will take

into account both the cases, namely that it is sunny or not. On the other hand,

in case of Interval trigger, we cannot simulate all the values in the domain of

the antecedent because it is too expensive in terms of time. To make the under-

standing of our approach easier, let us make an example. Suppose that the only

rule inserted in BuildingRules with respect to the room temperature is “if room

temperature is between 60F and 67F then close the windows”. In this case, the only

temperature values that need to be simulated to explore all the possibile cases

in which the antecedents can be triggered with respect to temperature are: one

value outside the interval and one value inside it, for example 59F and 63F. In

case there is more than one rule with room temperatures in the antecedent, we

56 CHAPTER 3. THE PROPOSED METHODOLOGY

Figure 3.9: Snippet of a Building Behavioral Graph

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 57

Figure 3.10: Interval Trigger

need to test all the values that assure us to simulate all the combination of rules

that can be triggered. For instance, if we have two overlapping rules: “if room

temperature is between 60F and 67F then close the windows” and “if room tempera-

ture is between 65F and 70F then turn on HVAC”, we are in the situation that can

be seen in Figure 3.10.a. In this situation, one possible solution is to simulate

the room behavior with the following values: 59F, 63F, 66F and 69F. Instead, if

the intervals do not overlap, applying the same reasoning, we need to run the

simulation with only three temperature values, as can be seen in Figure 3.10.a.

For sake of simplicity, here we presented only the case in which we have

temperature values in the antecedent, but it is trivial to understand that this

approach can be generalized to all the other integer antecedents, like humidity.

Building Status Graph

Increasing the number of rules in a room, we found out that the BBG be-

comes hardly readable and difficult to be managed because the number of

nodes grows. For this reason, we need to introduce a new formalism and,

58 CHAPTER 3. THE PROPOSED METHODOLOGY

Algorithm 1 BBG Generation Pseudocode
1: function BBGGENERATOR(simulatedData)

2: nodesList← []

3: nodeInfos← getInfoFromData(simulatedData)

4: if firstHour then

5: for all node ∈ getNodesOfHour(hour) do

6: if node /∈ nodesList then

7: addNode(nodeInfos)

8: nodesList.append(node)

9: end if

10: end for

11: else

12: for all oldNode ∈ getNodesOfHour(hour− 1) do

13: for all node ∈ getNodesOfHour(hour) do

14: updateNodeStateIfNeeded(node)

15: if node /∈ nodesList then

16: addNode(nodeInfos)

17: nodesList.append(node)

18: addEdge(node,oldNode)

19: else

20: addEdge(getSameOldNode(node),oldNode)

21: end if

22: end for

23: end for

24: end if

25: end function

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 59

thus, we generated another type of graph, that we called Building Status Graph

(BSG).

The node in a BSG is uniquely identified only by the State Variables. This

way, the BSG considers only the changes in the building behavior that actually

affect the state of the building. The BSG is generated starting from the BBG

structure, joining the nodes with the same State Variables. Both the active rules

and the loser rules are obtained from the union of the previous nodes active

rules and loser rules. This means that we do not need to simulate the building

behavior again. As shown in Algorithm 2, starting from the BBG (Line 3), if the

nodes have the same State Variables (Line 6) we will join them merging the Ac-

tive Rules and Loser Rules. The arches are then redrawn (Line 14) considering

the ones that connected the nodes of the BBG and connecting the BSG nodes

according to the fact that now some of them have been merged.

As expected, the number of nodes decreases with respect to the BBG and

also if the number of rules increases, the graph is readable and understandable.

In the BSG the Time field has been removed because it is not needed in this

representation. In fact, this graph aims at giving an event based evolution of

the building which is not time based anymore.

As we can see in Figure 3.11, that represents a snippet of the BSG generated

from the previously mentioned BBG (Figure 3.9), the BSG node with ID: 2,7 is

the merge of the BBG nodes with ID: 2 and ID: 7. Making a comparison, this

node has the same State Variables and Active Rules with respect to the one that

can be seen in the BBG, but it has one more loser rule coming from the node

with ID: 7.

60 CHAPTER 3. THE PROPOSED METHODOLOGY

Algorithm 2 BSG Generation Pseudocode
1: function BSGGENERATOR(buildingName, roomName)

2: nodesList← []

3: BBG← getBBG(buildingName, roomName)

4: for all node ∈ getNodes(BBG) do

5: for all node2 ∈ getNodes(BBG) do

6: if getStateVariables(node) = getStateVariables(node2) then

7: unionActiveRules(node,node2)

8: unionLoserRules(node,node2)

9: end if

10: end for

11: BSGNode← addNode(nodeInfos)

12: nodeList.append(BSGNode)

13: end for

14: addEdges(BBG,nodeList) . Takes the edges from the BBG and connect the

one in the BSG

15: end function

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 61

Figure 3.11: Snippet of a Building Status Graph

3.3.2 Analysis

Given the BBG and the BSG we can perform different analysis on the graphs

to make suggestions to the building occupants. The main analysis we made are

the following:

• Unmanaged State

• Uncontrolled State Variables

• Run-time Conflicting Rule

• Useless Rules

With the Unmanaged State analysis we can find out if the room is out of

control in certain time periods. The Uncontrolled State Variables analysis, in-

stead, check the presence of actuator installed in the room not used and, conse-

quently, not controlled. The Run-time Conflicting Rule analysis finds run-time

62 CHAPTER 3. THE PROPOSED METHODOLOGY

conflicting rules before the conflict actually arises. The last analysis is the Use-

less Rules one that discover the unnecessary rules, namely the rules that will

never be active.

Unmanaged State

To analyze the Unmanaged State analysis in detail and to understand the

reasons that brought us to perform this analysis, we can consider a room with

these rules inserted:

if time is between 0am and 8am then turn off the light

if time is between 10am and 1pm then open the window

The BBG that will be generated from these two rules, considering one day

of simulation time, is the one that as shown in Figure 3.12. We can notice that

in the BBG there are two edges that have no conditions associated that enter

two nodes that have no active rules. This is an undesired behavior in a smart

building because it means that we are losing control of the building behavior

for a certain period of time, which means that we are probably wasting energy

and, therefore, money. In fact, if we analyze these simple rules, we find out that

from 8am to 10am and from 1pm to the end of the day we are not specifying

any rule that can be triggered.

BuildingRules Graph Manager makes the analysis looking for empty edges

that lead to nodes without active rules and will then provide a suggestion to

the building occupants and to the building manager so that they can solve the

possible problems.

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 63

Figure 3.12: Toy Example that shows an unmanaged room with uncontrolled states

Uncontrolled State Variables

Regarding the Uncontrolled State Variables analysis we will consider the afore-

mentioned example:

if time is between 0am and 8am then turn off the light

if time is between 10am and 1pm then open the window

Inspecting these rules we find out that there are are two actuators that we

want to control in the room: the light and the window. What we can see analyz-

ing the BBG in Figure 3.12 is that in the nodes with ID: 0 and ID: 1 we are not

controlling the windows, we are not saying anything about how we want them

to behave. This situation may be undesired, because when other rules will be

added to the system it will be easier to lose control on its behavior.

BuildingRules Graph Manager makes the analysis collecting all the actua-

tors placed in the room and checking that every node of the BBG contains in the

State Variables all the actuators, which means they are controlled by Buildin-

gRules. All the uncontrolled actuators will be shown to the building occupants.

64 CHAPTER 3. THE PROPOSED METHODOLOGY

Figure 3.13: Toy Example that shows a run-time conflict

Run-time Conflicting Rules

With respect to the Run-time Conflicting Rules analysis, we will consider the

following example. Consider a room with the following rules, ordered by de-

scending priority:

if it is cloudy then close the window − Priority: 100

if someone is in the room then open the window− Priority: 50

The BSG that will be generated from these three rules, considering one day

of simulation time, is the one that can be seen in Figure 3.13. From the rule-

set, we can see that if someone is in the room when the weather is cloudy,

BuildingRules needs to solve a run-time conflict activating only the rule with

the higher priority, namely “if it is cloudy then close the window”. Analyzing the

BSG, we can see that in the Node with ID:0 the rule “if someone is in the room

then open the window” is in the Loser Rules field.

In general, when the BuildingRules Graph Manager finds a loser rule in a

node of the graph, it means that a run-time conflict is detected. BuildingRules

will provide suggestions to the occupants and building manager notifying the

3.3. BUILDINGRULES 2.0: THEORETICAL CONTRIBUTION 65

fact that a run-time conflict has been detected.

Useless Rules

To provide a better understanding of the Useless Rules analysis we need to

introduce another example. Consider a room with the following rules, ordered

by descending priority:

if time is between 0am and 10am then close the window − Priority: 100

if time is between 10am and 12pm then close the window− Priority: 100

if someone is in the room then open the window− Priority: 50

The BSG that will be generated from these three rules, considering one day

of simulation time, is the one that can be seen in Figure 3.14. It is trivial to

see, from the provided rules, that the rule “if someone is in the room then open

the window” will never be activated, since it has a lower priority then the other

two rules, that cover the entire day. In Figure 3.14 we can see that the BSG is

composed by one node only. This is because there is no way we can move from

this node with these rules in the system. Since the rule “if someone is in the room

then open the window is in the Loser Rules field in every node of the BSG it means

it is a useless rule and therefore, it will never activate.

In general, when BuildingRules Graph Manager finds a loser rule in a node

of the graph, it checks if it is present in the Active Rules field. If it is not, it means

that the above-mentioned rule is never active in the system because every time

it is triggered it has lower priority than the active ones. As for the other analy-

sis BuildingRules provide suggestions to the occupants and building manager

66 CHAPTER 3. THE PROPOSED METHODOLOGY

Figure 3.14: Toy Example that shows a useless rule

notifying the fact that the useless rule can be removed if its presence is not

wanted.

Chapter 4

Implementation

In the previous Chapter the proposed methodology has been described. This Chapter

presents BuildingRules. We will first provide an overview of the system and then a

more detailed analysis about the software design patterns and the main technologies

that has been exploited. Finally, we will show the web interface that we used in our

experimental campaign.

4.1 General Overview

BuildingRules has been developed to be scalable, flexible and intuitive with

respect to existing solutions. It has been designed as a RESTful HTTP/JSON

web service in Python 2.7 using the Flask framework [57]. Flask is a micro

web development framework for Python. We choose to use Flask because its

“micro” feature keeps its core simple but extensible. In this way, the modules

can be changed or added without critical problems.

As can be seen in Figure 4.1, BuildingRules is composed by a frontend that

provides the user interface and a backend that communicates with the BMS,

67

68 CHAPTER 4. IMPLEMENTATION

Figure 4.1: BuildingRules System Architecture

stores information about the rules, runs the conflict resolution algorithm, an-

alyzes the graphs and gives suggestions besides providing RESTful APIs for

native mobile applications or building management applications.

BuildingRules design follows the Model-View-Controller (MVC) architec-

ture. The model is an abstraction layer over BuildingRules MySQL [61] database,

the view is composed of the applications that can be developed as Buildin-

gRules frontend and the controller implements the application logic. In particu-

lar, the controller validates the inserted rules using the Z3 SMT Solver, suggest

the building occupants making use of the Graph Manager and stores the data

to manage buildings, rooms, groups, users and rules using model. Moreover,

the controller gathers the needed data about weather, building systems and

date-time status through a specific model component which is a standardized

driver interface. The frontend helps the users performing tasks like registering,

4.1. GENERAL OVERVIEW 69

Figure 4.2: Differences between BuildingRules 1.0 and BuildingRules 2.0 features

adding triggers and actions or specifying rules for individuals rooms or groups

of rooms. In addition, on top of the backend REST APIs, applications can be im-

plemented. For example, we can think about applications that need to interact

with a building, like a Demand Response application [58] that can inject rules

to reduce energy use across all rooms when a pre-registered trigger condition

is met or a Calendar Manager that can insert rules to turn ON and OFF the

projector or modify temperature set points using room schedules.

BuildingRules 2.0 extends the previous version of BuildingRules (1.0) im-

plementing the theoretical framework described in Section 3.3. For this reason

we introduced new features and we modified others, adapting them to our

needs. In Figure 4.2, we can see the details about the features used by Build-

ingRules 2.0. In particular, we introduced the Simulator, essential for the Graph

Manager to generate the suggestions to the users exploiting its submodules,

namely the Graph Generator, the Graph Analyzer and the Suggestion Manager. We

70 CHAPTER 4. IMPLEMENTATION

modified all the Model components we needed to support the new features,

namely the Rule, the User and the Room.

4.2 Backend

We will describe the functionality of the main modules that compose the

BuildingRules backend. We will first analyze the database logical schema, pro-

viding details about the main entities. Then, we will provide details about the

controller and the main modules that compose it. Finally, we will explain how

the RESTful APIs work.

4.2.1 Model

Commercial buildings are composed of many rooms, such as offices, con-

ference rooms, laboratory and kitchens; these rooms can be grouped based on

their purpose. The building occupants are usually assigned only to some spe-

cific building rooms, for example they can be assigned to their own office, but

they can also share common spaces like the kitchen or the meeting room. To

personalize the behavior of the building, the occupants can insert rules, that

are composed of a trigger and an action, in the system. To store all the infor-

mation needed to manage BuildingRules we have to create the room and user

entities, that permit to describe the rooms and the occupants in the building.

We have also to model the information about the rooms groups and all the de-

tails about the rules that the occupants insert. The model in BuildingRules pro-

vides an abstraction layer which is used from the core system to communicate

with both the database and the physical devices protocols. The communica-

4.2. BACKEND 71

tion between the core system and the database is performed by an Application

Programming Interface (API) allowing to manage the MySQL database from

the controller. As can be seen in Figure 4.3, the main entities that compose the

structure of our database are:

• Building: this entity represents the building in which BuildingRules is

installed and it can have one or more Rooms;

• Room: this entity represents the room located in the Building;

• User: this entity represents all the information of the building occupants

among which we can find the level of the user;

• Group: this entity represents the information about the rooms that are

grouped;

• Rule: this entity represents all the rule information. We also added the

number_of_edits attribute to handle maximum number of rule changes

during the experimental campaign;

• Trigger, Action: these entities represents the antecedent and the conse-

quent of a rule.

Trigger and Action are connected directly to the room because each single room

need to be aware of which sensors and actuators are installed. This way, we can

show only the rules that are compliant with the room capabilities. For example,

the rule with the antecedent “if the temperature is between 69F and 75F” can

be added only if there is a temperature sensor in the room.

In BuildingRules 2.0 we have made some changes to the database structure,

in particular we added the number_of_edits field. We also added methods to the

72 CHAPTER 4. IMPLEMENTATION

APIs interfacing with the database changing the format of the User data and

adding the methods to manage the number_of_edits field during the experimen-

tal campaign. These improvements made feasible the implementation of the

Graph Manager and its submodules.

4.2.2 Drivers

The communication between the core system and the physical devices pro-

tocols is managed by the Drivers module. This module acts as an abstraction

to different sensor protocols providing a standard naming convention across

different vendors, allowing us to deploy BuildingRules across different build-

ings with minimum effort. There are two type of Drivers: genericTriggerDriver

and genericActionDriver. A genericTriggerDriver takes as input a sensor source

(e.g., a humidity sensor in a room) and a condition to verify (e.g., the humid-

ity is between 40% and 50%). It provides a notification through the eventTrig-

gered method when the antecedent is true. Instead, a genericActionDriver takes

a target actuator (e.g. a HVAC control system) and the actual value (e.g. set hu-

midity to 35%) as input, and uses an actuate method to execute a rule action.

The drivers are implemented exploiting the class inheritance, which makes

the structure more extensible. A driver inherits attributes and generic behav-

ior from genericTriggerDriver or genericActionDriver, depending on whether it is

a trigger or an action. Moreover, the driver implements its methods according

to the task it needs to accomplish. For example, if we want to control a HVAC

in a specific building room, we will need to use roomHvacActivationDriver that

extends genericActionDriver and will be in charge of handling the HVAC. Oth-

ers examples of drivers implemented in BuildingRules are: the roomLightActi-

4.2. BACKEND 73

vationDriver to control room lights, the roomWindowActivationDriver to open or

close windows or the weatherTriggerDriver to gather information about weather

conditions.

In BuildingRules 2.0 we have implemented the drivers needed to run the

experimental campaign in a real environment (see Section 5.4) interfacing with

OpenHAB. In particular, we implemented the drivers to communicate with the

available devices, like lights (roomLightActivationDriver) and occupancy detec-

tion sensors (roomTriggerDriver).

4.2.3 Controller

The core module of BuildingRules is the Controller. As said before, it is in

charge of processing all the request made by the users, like the registration or

the insertion or the deletion of a rule in a specific room, to perform all the tasks

that are needed to resolve conflicts statically and dynamically and to provide

suggestions to the building occupants and to the building manager. The con-

troller communicates with both the view, to collect the users inputs, and the

model, to gather data from the devices and to access the database. The main

tools that the Controller exploits to provide the aforementioned functionalities

are the SMT Solver, the ActionExecutor, the Building Simulator and the Graph

Manager.

The SMT Solver is in charge of solving static conflicts among the rules in-

serted by the users. First, it translates all the rules triggers and actions inserted

in the room to match the form that is allowed by Z3 (see Section 3.2), then it

adds them to the list of rules to be validated and, finally, the list items are itera-

tively checked against the solver that performs the logic resolution to check the

74 CHAPTER 4. IMPLEMENTATION

Figure 4.3: BuildingRules Database

4.2. BACKEND 75

satisfiability of the ruleset. The satisfiability problem consists in determining if

exists an interpretation that satisfies a given logic formula. In other words, it es-

tablishes if the variables of a given logic formula can be assigned in a way that

make the formula evaluate to TRUE. If no such assignments exist, the func-

tion expressed by the formula is FALSE for all possible variable assignments

and the problem is unsatisfiable, otherwise it is satisfiable. Since the solver can

only verify the satisfiability of a problem and not the contrary, given a ruleset

with cardinality n, we need to generate n SMT problems, one for each rule. If

only one of the generated SMT problems is unsatisfiable it means we found a

conflict.

The Building Simulator is a fundamental part of BuildingRules 2.0 as it

was needed to generate the Building Behavioral Graph and to test our work in a

simulated environment. For this reason, we focused on two different simula-

tor solutions, one for the experimental campaign and an extended one to make

analysis and give suggestions. The simulator is a time-driven tool that, for each

step, reads the specified environment conditions (the room temperature, the

weather condition, the occupancy status, etc.) and checks which rules are trig-

gered under the provided conditions. We develop two version of the simulator.

In the first version, used in the experimental campaign, all the environment

conditions are specified as parameters, as shown in Algorithm 3, and the be-

havior of each rooms in the building is simulated under the given conditions.

The algorithm is composed by two phases and perform the simulation hour by

hour. In the first phase, after having fetched all the room rules (Line 4), the al-

gorithm verifies which rules are triggered with the provided parameters (Line

5) and it adds them to the triggeredRules (Line 6). In the second one, for each

76 CHAPTER 4. IMPLEMENTATION

rule category, the rule with the higher priority that do not generate conflicts

is chosen to be activated (Line 14). We set up the core of the algorithm in this

way because it is extensible and support different environment models. For ex-

ample, we can model the room temperature changes as linear with respect to

time. If air conditioning is ON it will keep changing linearly until it reaches its

set-point, whereas, if the air conditioning is OFF and windows are OPEN the

temperature would change linearly as a function of difference between indoor

and outdoor temperature. The second version of the algorithm, namely the one

that enabled us to make the analysis we described in the Section 3.3.2, simu-

lates all the possible combination of environment conditions that need to be

simulated by specifying them as parameters, as can be seen in Algorithm 4. We

simulate all the combination of room temperature (Line 2), external tempera-

ture (Line 3), occupancy status (Line 4) and weather condition (Line 5), but it is

easily extensible to support any kind of environment variable.

The ActionExecutor is the module that is in charge of handling the real and

simulated rules actuation. It automatically detects if BuildingRules is acting in

a real or a simulated environment and, therefore, it choses if the action needs to

be actually executed on the building or if it just needs to be logged to a file. The

ActionExecutor is a daemon that runs in background and constantly monitor the

rules inserted in the building. During the actuation phase, the ActionExecutor

checks which rules needs to be triggered and it solves the runtime conflicts by

actuating only the rule with the higher priority in a specific category, as we

have already explained in Chapter 3.

The task of providing suggestions to the users, instead, is delegated to the

Graph Manager. It generates the Building Behavioral Graph (BBG) and the

4.2. BACKEND 77

Building Status Graph (BSG) starting from the simulation of the building be-

havior and, starting from the graphs, it performs all the analysis that were

explained in the previous Chapter. The graphs were created using NetworkX

[59], a Python software package to create and manipulate complex networks.

The graphs structure is then saved to a file in the Backend and, afterwards, an-

alyzed making use of NetworkX graph exploration tools. The graphs structure

was kept separated from the actual visualization, which is made only when the

user request one of the graph to be shown from the frontend. The visualization

of the graph is made with GraphViz [60], which is an open source graph vi-

sualization software, to which we provided the graph structure as inputs. The

output is an HTML based graph that is finally shown to the user.

4.2.4 REST Interface APIs

To enable the communication with the Frontend we developed a RESTful

interface. As can be seen in Figure 4.1, the Rest Interface is the layer between

the Controller and the Frontend. The APIs provide the methods needed by the

applications built on top of it to exploit BuildingRules functionalities in a real

environment. They enable the users to register to the system, giving them the

chance to add triggers and actions, to specify rules for each single room or for

a group of rooms. Table 4.1 shows the available APIs. In particular, we can find

the description of each endpoint and, in case of an API that allows multiple ac-

tion to be performed, we can find the <Action> column that lists all the available

possibility.

To expose these APIs to the aforementioned applications, as previously said,

we used Flask. The methods that we implemented on Flask communicate with

78 CHAPTER 4. IMPLEMENTATION

Algorithm 3 Simulator Pseudocode
1: function STARTACTIONEXECUTOR(parameters)

2: for all room ∈ getBuildingRooms(parameters.building) do

3: triggeredRules← []

4: for all rule ∈ getAllRoomRules(room) do

5: if isTriggered(rule,parameters) then . True if rule is triggered with

the provided parameters

6: triggeredRules.append(rule)

7: end if

8: end for

9: triggeredRules← orderByPriority(triggeredRules)

10: alreadyAppliedCategories← []

11: for all rule ∈ triggeredRules do

12: ruleCategory← getRuleCategory(rule)

13: if ruleCategory /∈ alreadyAppliedCategories then

14: actuate(rule)

15: alreadyAppliedCategories.append(ruleCategory)

16: end if

17: end for

18: end for

19: end function

4.3. FRONTEND 79

Algorithm 4 Simulator Extension Pseudocode
1: function SIMULATOR(parameters)

2: for all roomTemperature ∈ parameters.roomTemperatures do

3: for all externalTemperature ∈ parameters.externalTemperatures do

4: for all occupancy ∈ parameters.occupancies do

5: for all weather ∈ parameters.weathers do

6: startActionExecutor(filteredParameters)

7: end for

8: end for

9: end for

10: end for

11: end function

the frontend using POST. This choice was made because, this way, the HTTP re-

quest does not have restrictions on data type and on data length. The responses

to the frontend requests are provided in JSON (JavaScript Object Notation),

that is a lightweight data-interchange format. In this way, for example, the im-

plementation of the “/rooms/<roomName>/graph” API was straightforward

and it immediately enabled the user to get the BBG or BSG.

4.3 Frontend

The frontend, in BuildingRules, is designed to be modular and composed

by different applications that need to interact with the underlying building. In

fact, our backend, through the RESTful APIs enables the integration of multiple

frontend applications to match the need of the commercial building. In this

Section we will present the web view, the main frontend application, used by

80 CHAPTER 4. IMPLEMENTATION

Web API Request
Method

Description <Action>

/buildings POST get buildings list

/buildings/<buildingName> POST get building info

/buildings/<buildingName>/rooms POST get rooms

/users/login POST user login

/users/register POST user registration

/users/logout GET, POST user logout

/groups/<Action> POST add/delete group add, delete

/groups/<groupId>/rules POST get group rules

/groups/<groupId>/rooms POST get group rooms

/groups/<groupId>/<Action> POST get group triggers and actions triggers, actions

/rooms/<roomName> POST get room info

/rooms/<roomName>/<Action> POST add/delete room add, delete

/rooms/<roomName>/simulation POST get room simulation results

/rooms/<roomName>/activeRules POST get room active rules

/rooms/<roomName>/<Action> POST get room triggers and actions triggers, actions

/rooms/<roomName>/<Action> POST get room users/groups users, groups

/rooms/<roomName>/conflictingRules POST get room conflicting rules

/rooms/<roomName>/rules POST get room rules

/rooms/<roomName>/rules/<Action> POST manage room rules add, delete, enable, disable, setpriority, edit

/rooms/<roomName>/graph POST get BBG/BSG graph

/rooms/<roomName>/graphAnalyzer POST get analysis

�1

Table 4.1: REST interface APIs

4.3. FRONTEND 81

Figure 4.4: Room Home Page

the occupants to express their preferences about the building.

Web Interface

Our web interface starts from two simple pages that allow the registra-

tion and the login on BuildingRules. After the login process, the user interface

shows the list of the room that the user can manage. For each room Buildin-

gRules provides three different visualization tools (views can be found in Ap-

pendix A) : a Summary tab, a Rules Editor tab and a Rules Navigator tab. The Sum-

mary tab presents a Gantt diagram that shows the behavior of the room given

some fixed parameters such as occupancy, room temperature, external temper-

ature, etc. The Rules Editor tab presents the list of the inserted rules ordered by

priority. Through this interfaces the user can add, delete, modify, enable and

disable rules. The currently active rules will be shown in green to give a visual

82 CHAPTER 4. IMPLEMENTATION

Figure 4.5: New Rule Page

feedback to the users on the current building status. Despite this, as the num-

ber of rules in a room increases, it becomes harder to read and understand all

the rules. For this reason, we implemented three filters whereby the user can

filter the rules by status, day period and category. Finally, the Rules Navigator

tab visualizes rules in a table in which each row represent an action category.

The addition of a new rule, as shown in Figure 4.5, is simple and intuitive, the

user can choose the trigger and the action that compose the rule and, then, the

associated priority. When the user inserts a rule, if conflicts are detected, the in-

terface shows the rules that are in conflict with the new one, as shown in Figure

4.6.

The room page shows also the suggestions (Figure 4.4) about the useless

rule, unmanaged state and uncontrolled state variables. From this page the building

manager can move to the view that enable interaction with the Graph Manager.

As shown in Figure 4.7, we implemented a simple web terminal in javascript

that allows the building manager to generate BBG, BSG and to run all the build-

4.3. FRONTEND 83

Figure 4.6: Conflict Detection Page

ing analysis. Moreover, the terminal let the building manager enable or disable

the rules making use of the ids provided by the graphs. This interface makes

the changes of the building state immediately clear to the building manager

because the graphs will be immediately redrawn.

In BuildingRules 2.0 we changed the room page adding the suggestions,

the Summary Tab and the filters in the Rules Editor tab. We added the page that

enable the graphs management as described above.

84 CHAPTER 4. IMPLEMENTATION

Figure 4.7: GraphGenerator Page

Chapter 5

Experimental results

This Chapter provides details about the experimental campaigns that we conducted

to validate our thesis work. We will first present the baseline on which we will compare

our results, then we will focus on the two experimental campaigns made to validate

both the usability of the proposed system and the ease of integration.

5.1 Overview

The main problems that affect smart buildings, emerged from the state of

the art presented in Chapter 2, are the following:

• the interaction between the occupants of the building and the building

itself is hard, especially as it regards the expression of complex tasks, be-

cause buildings are managed by means of sensors and actuators;

• smart buildings are not designed to be controlled by multiple users, which

lead to conflicting situations among the inputs when we allow the occu-

pants to personalize the environment in a commercial building scenario.

85

86 CHAPTER 5. EXPERIMENTAL RESULTS

Therefore, BuildingRules was designed to provide an intuitive interface to

the occupants of commercial buildings, enabling them to customize their office

spaces using trigger-action programming. In addition to this, BuildingRules

automatically detects conflicts among the policies expressed by the occupants,

being able to give users suggestions to help them in the building management.

Before providing the details on the experimental campaigns we conducted,

we will introduce the methodology we used to test our results. As we can see

in [62], nowadays, one key approach towards the vision of a smart building

that can support the goals of the occupants is putting more effort on studying

technologies “in the wild”. This means that in smart building research field, the

studies of new proposed technologies need to be tested on the users and on the

buildings to collect information directly from them. Therefore, the approach

that we followed to test our system, was the implementation of the minimum

set of features that allowed us to test a reasonable solution collecting baseline

results. Once the data had been processed and analyzed, we made other exper-

imental campaigns to understand if we were following the right path, testing

both the usability and the integration of the system.

5.2 Baseline Experiments

As said before, to collect the baseline results of our thesis work, an experi-

mental campaign has been conducted using the first version of BuildingRules

(see Section 3.2). Evaluating BuildingRules in an actual environment is not triv-

ial. On the one hand, it is possible to create a testing environment, creating

from scratch a typical smart commercial building and installing an appropri-

5.2. BASELINE EXPERIMENTS 87

Figure 5.1: Virtual Office Environment

ate BMS. In this case, to make the tests relevant, the dimension of the build-

ing, the number of occupants and the amount of smart devices placed in the

testing environment need to be appropriate. For these reasons, reproducing a

smart environment, would be prohibitive in terms of cost. On the other hand,

it is possible to install BuildingRules in an existing real smart building that al-

ready provides its own BMS. Since BuildingRules has never been tested in a

real commercial environment, it risks to endanger the building occupants and

to compromise the security of the building itself. For example, if BuildingRules

runs into a technical malfunctioning during a fire, it could lock the occupants

inside the building.

Since the aforementioned problems were not possible to solve, BuildingRules

was evaluated in a virtual office environment, designed to recreate the struc-

ture of a real commercial building. Usually, a commercial building is composed

of many rooms and each of them has a specific purpose. In addiction to the of-

fices, usually assigned to a limited amount of people, shared spaces, like meet-

ing rooms, kitchen or conference rooms, can be found. Therefore, as can be

seen in Figure 5.1, the building plant has been designed to be representative of

a typical office, and incorporated different types of rooms such as conference

88 CHAPTER 5. EXPERIMENTAL RESULTS

rooms, research laboratory, kitchen, storage and offices. A unique id has been

assigned to each room, and, with respect to the offices, a number that identifies

the maximum amount of users allowed to work in there has been introduced.

In the virtual environment all the components that we can usually find in a real

one have been inserted. For example, computers, lights, desk lights, printers

and other office related devices have been placed in the offices, whereas the

projector and the audio system can be found in the meeting room.

Each participant was assigned to a random set of rooms, for example, an of-

fice space, kitchen, and meeting room. The participants were told to use Build-

ingRules for at least 10 minutes and complete a set of actions, i.e., add, remove,

edit rules, each day (10 actions the first day, then decreasing each day. Average

of 5 actions per day). A final survey was taken at the end of the week to under-

stand the usability of the system. Each user was required to have at least one

month of office experience for participation. Not all the participants started at

the same time, and we had a total of 23 users spread over 17 days. Notice that

there is no bias in the choice of the population; the requirements in the selection

were imposed to test the system with a population conformance to the target

of BuildingRules, i.e., offices.

A total of 636 rules has been obtained from this study, with an average of

15 rules per room, and 16 rules per user. Figure 5.2 shows the distribution of

these rules across the various triggers and actions. The default status rules were

inserted by us for scheduling of lights and HVAC system when no other rules

were specified for a room. The most popular trigger was the day of week, fol-

lowed by occupancy. The most popular action was lights, followed by plug

loads (computer, desk light, monitor and printer). The study was designed in

5.2. BASELINE EXPERIMENTS 89

1

Date Day
Default)
Statatus

External)
Temperature

Occupancy
Room)

Temperature
Time Weather

Audio 0 9 0 0 6 0 3 1
Coffee)Macchine 2 2 0 0 2 0 3 0

Computer 1 43 0 0 5 0 7 1
Desk)Light 1 41 0 0 7 0 5 3

Display)Monitor 2 39 0 0 9 0 1 1
Printer 1 40 0 0 5 0 5 0
Projector 0 10 0 0 10 0 6 0
Blind 3 8 0 0 6 0 7 24

Exhaust)Fan 1 2 0 0 1 1 2 0
Fume)Hoods 0 0 0 0 2 1 0 0
HVAC 12 18 0 4 23 13 3 6

Room)Humidity 0 1 24 2 7 3 2 4
Room)Temp. 3 4 24 6 9 6 1 1
LIGHT 5 47 5 0 38 0 18 24

Send)Complain 0 1 0 2 8 19 5 0
Windows 4 12 0 26 22 9 4 29

Figure 5.2: Composition of rules created during the baseline campaign

a way that forces participants to create or modify rules, so that we can analyze

effect of the combination of these rules in the virtual office. As a result, some

of the rules inserted in the rooms were very similar, but not in conflict. For ex-

ample, in one of the rooms there were three rules to open windows with three

different temperature ranges. In a real deployment, users would probably use

one rule to cover all the three temperature ranges.

To evaluate the usability of BuildingRules the participants was asked to fill

a survey. Table 5.1 shows the results of our survey. In this survey it was noticed

that the system was a good idea (7.0) and BuildingRules can be useful in offices

(7.6). On the other hand, what was found out is that it was very difficult to

understand the behavior of the room when the number of rule increase (5.0)

and also insert (5.4) and edit (5.8).

90 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.1: Surveys results

5.3. USABILITY EXPERIMENTAL CAMPAIGN 91

Figure 5.3: BuildingRules Game Interface

5.3 Usability Experimental Campaign

Based on the feedback from the participants of the baseline user study, we

created a second version of the study to improve the user experience and to

help the users in the creation of realistic rules. In fact, in the previous cam-

paign, no feedback about the room changes was provided to the users and,

moreover, they had no reason to insert rules that could increase the comfort of

the users in the rooms. Therefore, we improved our building simulator to in-

corporate the effects of actuation. For example, room temperature changes with

respect to time, if HVAC is ON the temperature would change until it reaches

its set-point, if the HVAC is OFF it would change linearly as a function of differ-

ence between indoor and outdoor temperature. We provided suggestions to the

users using the Graph Manager to help them understanding the future behav-

ior of the building. We also added power values to different appliances, with

fixed values when they are ON. These effects were a representation of what the

92 CHAPTER 5. EXPERIMENTAL RESULTS

user might expect in a real setting.

The users were provided with a Tamagotchi-like interface that showed the

information about the virtual environment, as can be seen in Figure 5.3. This

choice has been made to develop a higher level of empathy between the real

users and the virtual ones. In fact, exploiting a psychological phenomenon

called Tamagotchi Effect [65], which is defined as the development of emotional

attachment with machines, robots or software agents, we want to make the

users feel personally involved in this experimental campaign. Therefore, each

user was assigned an avatar that represented himself in the virtual building.

The avatar, in turn, was assigned a happiness index based on comfort, i.e., an

occupied room is within temperature and humidity bounds, and lights are ON

when it was dark outdoors. In addiction to the users, also the building manager

was represented by an avatar, which was assigned a happiness index based on

the power consumption of the building. The goal of the participants was to in-

crease the happiness index of both the occupant and building manager avatars.

In fact, if the happiness index of the avatars was above a predefined thresh-

old, the users gained points. The user with the highest score at the end of the

experimental campaign was awarded $20 Amazon Gift Card.

The experiment was conducted over three days, with 13 users. The users

were given a short video tutorial and restricted to create 6 rules on the first day,

4 rules on the second and 2 rules on the final day. Each rule could be edited only

twice a day. We assigned two building managers to support the users, as well

as monitoring rules being created. The users could see which rooms they were

assigned to, the current ranking and the statistics of each room (i.e. room tem-

perature, humidity, etc.). During this experiment 179 rules were created. Their

5.3. USABILITY EXPERIMENTAL CAMPAIGN 93

composition is shown in Figure 5.4. The general behavior of the users was sim-

ilar to the baseline experiment: the majority of the rules were about occupancy,

room temperature, time and weather with respect to room temperature and

humidity, lights and windows.

Table 5.1 shows the result of this survey, users assigned higher scores than

the baseline case study. Thus, improving the user interface, providing a short

preliminary tutorial and giving a runtime support to the users improved our

system usability. Moreover, what emerged from this experimental campaign

is that the improvement we made, namely giving suggestions, improving the

simulator and introducing an interface to give users feedback about the cur-

rent building status, helped the users to have a clearer understanding of the

rooms behavior. In fact, in Table 5.1, the scores that have improved most of

all are those that concern the overall system usability (7.2), the insertion of the

rule (8.3), and the ease to understand how the combination of rules affected

the office (7.2). On the other hand, an unexpected behavior that emerged, is

that, even if we focused on trying to make people behave in a way that could

increase the overall room comfort without impacting too much on the energy

consumption, some users inserted rules with a higher priority than the ones

inserted by the other occupants to try to overcome them. To solve this problem,

the building managers needed to directly disable the rules that were inserted

with this purpose.

In conclusion, from the results that emerged from our campaign, we can

state that, on one hand, the philosophy behind BuildingRules 2.0 was appreci-

ated by the users and the system usability had a positive response. On the other

hand, there is still need of a building manager to resolve situations like the one

94 CHAPTER 5. EXPERIMENTAL RESULTS

Date
External*

Temperature
Occupancy

Room*
Temperature

Time Weather

Audio 0 0 2 0 2 0
Coffee*Macchine 0 0 3 0 4 0

Computer 1 0 3 0 6 0
Desk*Light 0 0 5 0 2 1

Display*Monitor 0 0 5 0 2 0
Printer 0 0 4 0 2 0
Projector 0 0 4 0 2 0
Blind 0 0 1 0 0 1

Exhaust*Fan 0 0 0 0 0 0
Fume*Hoods 0 0 1 0 2 1
HVAC 0 0 2 1 1 0

Room*Humidity 0 1 10 0 4 8
Room*Temp. 1 3 4 19 2 3
LIGHT 0 0 23 0 14 24

Send*Complain 0 0 1 1 0 0
Windows 0 9 4 4 2 13

�1

Figure 5.4: Composition of rules created during the usability experimental campaign

we previously described.

5.4 Integration Experimental Campaign

Since with the previously described experimental campaign we couldn’t

test how easy was the integration of BuildingRules with the existing BMSes,

we installed BuildingRules at the Joint Open Lab (JOL) of Telecom Italia in

Milan. The JOL did not have enough smart offices and smart spaces to make a

usability campaign on a real environment, but it gave us the chance to under-

stand how easy was the integration of the proposed system with an existing

BMS. In fact, it took us 3 hours to install the overall system over OpenHAB,

5.4. INTEGRATION EXPERIMENTAL CAMPAIGN 95

the BMS integrator we described in Chapter 2. OpenHAB is one of the most

popular open source BMS and, therefore, represents a valid sample for our ex-

perimental campaign.

The software architecture of BuildingRules made the integration straightfor-

ward because we needed only to implement the drivers to communicate with

OpenHAB. In particular, we locally deployed BuildingRules and we set up 2

rooms, namely the meeting room and the kitchen. In the meeting room, we imple-

mented the drivers to communicate with the smart lights, the Netatmo Weather

Station [63] that provided room temperature and humidity, and the occupancy

detection made by an Estimote Beacon [64] that communicated with the smart-

phones of the building occupants, sending distance information to them. Af-

terwards, we inserted some rules, like “if someone is in the room then turn on

the light” or “if time is between 6pm and 8am then turn off the light”, to verify it

was properly working. In the kitchen, we implemented the drivers to commu-

nicate with the smart lights, the coffee machine that could be only turned ON

and OFF and an Estimote Beacon to make occupancy detection. In this case,

we inserted rules like “if nobody is in the room then turn off the coffee machine”.

In Algorithm 5, we can see the pseudocode that communicates to OpenHAB

the intention to turn on and off the room light. The only operation that needs

to be performed is the dispatch of a HTTP POST request to the light controller

endpoint of OpenHAB, setting the body of the message with the action to be

executed.

What emerged from the installation of BuildingRules in a real environment

is that we managed to fully integrate the system easily without running into

particular problems related to communication with the underlying BMS.

96 CHAPTER 5. EXPERIMENTAL RESULTS

Algorithm 5 roomLightActivationDriver Pseudocode
1: function ACTUATION(operation)

2: if operation = LIGHT_ON then

3: sendPost(endpoint,ON)

4: else

5: sendPost(endpoint,OFF)

6: end if

7: end function

5.5 Results Discussion and Limitations

The goal of our thesis work was trying to solve the problems of interaction

between the building occupants and the smart buildings. The main problem

we observed, with respect to the building programming phase, was that the

building occupants did not understand how the building would behave. From

Table 5.1, we can see that the goal was reached. In fact, the results we were

interested in improving the most, namely “how easy was to understand how the

combination of rules will affect the office” and “how easy was it to insert new rules”,

are the ones that actually increased their score the most with respect to the

baseline. As a consequence, also the overall “system usability” score increased.

The “philosophy behind the system” and the “overall impression score” did not sig-

nificantly change from the baseline results and, therefore, prove the fact that

BuildingRules idea is a good way of programming commercial smart build-

ings. The previous statement is validated also by the fact that the users found

that “BuildingRules would be useful in their office”. Instead, with respect to “how

easy was to edit the existing rules” and “how easy was to resolve conflicts”, the score

did not improve and confirmed a low score. These scores are justified by the

5.5. RESULTS DISCUSSION AND LIMITATIONS 97

fact that we did not focus on improving these phases of the user interaction

with BuildingRules that remained unchanged from BuildingRules 1.0. Despite

the results we obtained achieved our objectives, during our experimental cam-

paign we observed that BuildingRules 2.0 is not enough to manage building

occupants that try to overcome the others to assert their preference. For this

reason we think that BuildingRules cannot be used only by the building oc-

cupants and the presence of a building manager is still needed to orchestrate

them. The conclusions and the future works are presented in the next Chapter.

Chapter 6

Conclusions and Future Works

This Chapter presents the conclusion about this thesis work. First, we will synthe-

size what has been discussed in the previous Chapters, highlighting the results we col-

lected during the experimental campaigns. Finally, analyzing the current limitations,

we will provide direction for future works in this research field.

6.1 Conclusions

Technologies that enable building automation have been around for decades

but, since they have been expensive and complex, in the last few years the sci-

entific community started to investigate a new paradigm, the trigger-action pro-

gramming. Within this context, we analyzed BuildingRules 1.0, a system that en-

ables the expression of personalized automation rules in commercial buildings

using trigger-action programming paradigm. The problem we aimed to solve,

as observed in the state of the art, was that the building occupants could not

understand clearly the behavior of the building, in particular when the num-

ber of trigger-action based rules inserted in the system increased. This thesis

99

100 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

presented a methodology to provide suggestions to the building occupants in a

trigger-action based programmable smart building environment. We presented

a theoretical framework that generates suggestions to the building occupants

to help them understanding the effects of the inserted rules on the smart build-

ing. To provide these suggestions, we made analysis on the graphs we intro-

duced to formalize the building state, namely the Building Behavioral Graph

and the Building Status Graph. The graphs are generated from each room rule-

set making use of a simulation tool we developed. The building simulator is

a time-driven tool that, given the specified environment conditions (the room

temperature, the weather condition, the occupancy status, etc.), checks which

rules are triggered by the system.

Therefore, we improved BuildingRules 1.0 by implementing the aforemen-

tioned framework that was then evaluated in two different experimental cam-

paigns:

• in a virtual environment, that represents an actual smart commercial build-

ing, to evaluate the system usability;

• in an actual smart building environment, Joint Open Lab (JOL) of Telecom

Italia in Milan, to evaluate the system integration on existing BMSes.

From the usability experimental campaign, conducted over three days with 13

users, what emerged is that the improvement we made helped the users to have

a clearer understanding of the rooms behavior. With respect to the integration

experimental campaign, we installed BuildingRules 2.0 over the BMS installed

in JOL (OpenHAB) to manage the available smart rooms. The integration of

BuildingRules 2.0 with OpenHAB took us only three hours because we needed

6.2. LIMITATIONS ANALYSIS AND FUTURE WORKS 101

to implement the communication drivers.

6.2 Limitations Analysis and Future Works

Although the results presented in Chapter 5 have demonstrated the effec-

tiveness of our approach, there are a number of problems that still remains

unresolved.

First, the problem we identified during our experimental campaign (see

Chapter 5), namely when the building occupants try to overcome the other

asserting their rules in the system, needs to be solved. Therefore, we can think

of a rule validation system in which every single rule is evaluated from a build-

ing manager before it is actually inserted in the system. An alternative solution

could be introducing a Quora-like system [66]. Every user is provided with a

predefined number of points that is deducted when a rule is inserted or modi-

fied. Each rule can be scored by the other building occupants; if the rule score

is positive, the user that inserted that specific rule will gain points, otherwise

it will lose them. In this way, if an occupant tries to insert rules that aim at

decreasing the comfort of the other occupants, it will lose his points and will

not be able to insert rules anymore. However, both the previously mentioned

solutions have deficiencies. The first one implies that the building manager is

a neutral and honest person, so that he do not filter rules supporting only few

building occupants. The second one needs the occupants not to form a coalition

against a specific user, making him unfairly losing points.

Second, another problem occurs when we set rules in the system that, once

reached a room state, do not allow the room state to change anymore. In fact,

102 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

this situation may take place in case these rules are never triggered or in case

they always have lower priority than the ones that are currently active. For

example, considering the following two rules: “if time is between 0am and 12pm

then close the windows” with maximum priority and “if someone is in the room then

open the windows” with a lower priority, the system will always keep the win-

dows closed. This situation may be unwanted by the building occupants and

can be detected by making an analysis on the Building Status Graph looking

for sinks.

Third, some methods to analyze the stability of the room need to be inves-

tigated. It might be useful to analyze what are the conditions in which a room

can be considered to be stable. A possible condition would be to have a room

which rules are triggered cyclically every day. In this case the building behavior

will remain inside a specific routine. To detect this routine we can look for cy-

cles in the Building Status Graph, so to ensure that the room remains in those

states and that cannot reach any other state except in case of need, like a situa-

tion in which the occupants’ safety may be in danger. To perform this analysis,

however, we need to make considerations about the routine size. In fact, for ex-

ample, a cycle composed of a small number of nodes could be an undesirable

situation, in which the building state changes too often.

Appendix A

Frontend Views

In this Appendix we will present the images concerning the view tabs that

the users can us

Figure A.1: The Rule Navigator Tab represents the view tab in which the user can see the rules

grouped by category.

103

104 APPENDIX A. FRONTEND VIEWS

Figure A.2: The Summary Tab represents the view tab in which the user can see a summary of

how the building will behave during the current day.

Figure A.3: The Rule Editor Tab represents the view tab in which the user can manage the room

rules.

Bibliography

[1] ICT Labs. European Institute for Innovation and Technology ICT Labs.

2014.

[2] Mennicken, Sarah and Vermeulen, Jo and Huang, Elaine M. Proceedings of

the 2014 ACM International Joint Conference on Pervasive and Ubiquitous

Computing. 2014.

[3] European Institute for Innovation and Technology ICT Labs.

[4] Nest Learning Thermostat. 2015.

[5] Ecobee. Ecobee Thermostat. 2015.

[6] Honeywell. Lyric Thermostat. 2015.

[7] Philips. Hue Lamp. 2015.

[8] Ninja Blocks. 2015.

[9] Nacci, Alessandro Antonio and Rana, Vijay and Sciuto, Donatella. A Per-

spective Vision on Complex Residential Building Management Systems.

2014.

105

106 BIBLIOGRAPHY

[10] Dawson-Haggerty, Stephen and Krioukov, Andrew and Taneja, Jay and

Karandikar, Sagar and Fierro, Gabe and Kitaev, Nikita and Culler, David.

BOSS: building operating system services. 2013.

[11] US Department of Energy. Buildings Energy Data Book. 2012.

[12] Harle, Robert K and Hopper, Andy. The potential for location-aware

power management. 2008.

[13] Timothy Sohn and Anind Dey. icap: an informal tool for interactive proto-

typing of context-aware applications. In CHI 2003 extended abstracts on

Human factors in computing systems, pages 974–975. ACM, 2003.

[14] Khai N Truong, Elaine M Huang, and Gregory D Abowd. Camp: A mag-

netic poetry interface for end-user programming of capture applications

for the home. In UbiComp 2004: Ubiquitous Computing, pages 143-160.

Springer, 2004.

[15] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman.

Practical trigger-action programming in the smart home. Proceedings of

the ACM SIGCHI Conference on Human Factors in Computing Systems,

2014.

[16] Scott Davidoff, Min Kyung Lee, John Zimmerman, Anind Dey. Socially-

Aware Requirements for a Smart Home. Proceedings of the International

Symposium on Intelligent Environments, pages 41–44. 2006.

[17] Jo Vermeulen, Russell Beale. Challenges and Opportunities for Intelligi-

bility and Control in Smart Homes. In CHI 2015 Workshop Smart for Life:

BIBLIOGRAPHY 107

Designing Smart Home Technologies that Evolve with Users’, Seoul, Re-

public of Korea, 2015.

[18] Johnson Controls. http://www.johnsoncontrols.com/content/us/en/products/building

efficiency/building management.html.

[19] Siemens Building Technologies. http://www.buildingtechnologies.siemens.com.

[20] SAMAD, Tariq; FRANK, Brian. Leveraging the Web: A universal frame-

work for building automation. In: American Control Conference, 2007.

ACC’07. IEEE, 2007. p. 4382-4387.

[21] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, and Y. Agarwal. Sentinel: occu-

pancy based hvac actuation using existing wifi infrastructure within com-

mercial buildings. In Proceedings of the 11th ACM Conference on Embed-

ded Networked Sensor Systems. ACM, 2013, p. 17.

[22] A. Beltran, V. L. Erickson, and A. E. Cerpa. Thermosense: Occu-

pancy thermal based sensing for hvac control. In Proceedings of the

5th ACM WorkshoponEmbeddedSystemsForEnergy-EfficientBuildings.

ACM, 2013, pp. 1-8.

[23] S. DeBruin, B. Campbell, and P. Dutta. Monjolo: an energy-harvesting en-

ergy meter architecture. In Proceedings of the 11th ACM Conference on

Embedded Networked Sensor Systems. ACM, 2013, p. 18.

[24] B. Roisin, M. Bodart, A. Deneyer, and P. Dherdt. Lighting energy savings

in offices using different control systems and their real con- sumption. En-

ergy and Buildings, vol. 40, no. 4, pp. 514-523, 2008.

108 BIBLIOGRAPHY

[25] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and imple-

mentation of a high-fidelity ac metering network. In Information Process-

ing in Sensor Networks, 2009. IPSN 2009. International Con- ference on.

IEEE, 2009, pp. 253-264.

[26] T. Weng, B. Balaji, S. Dutta, R. Gupta, and Y. Agarwal. Managing plug-

loads for demand response within buildings. In Proceedings of the Third

ACM Workshop on Embedded Sensing Systems for Energy- Efficiency in

Buildings. ACM, 2011, pp. 13-18.

[27] Y. Agarwal, R. Gupta, D. Komaki, and T. Weng. Buildingdepot: an extensi-

ble and distributed architecture for building data storage, access and shar-

ing. In Proceedings of the Fourth ACM Workshop on Embedded Sensing

Systems for Energy-Efficiency in Buildings. ACM, 2012, pp. 64-71.

[28] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro, N.

Kitaev, and D. Culler. Boss: building operating system services. In Pro-

ceedings of the 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2013.

[29] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware applications.

Human-computer interaction, vol. 16, no. 2, pp. 97-166, 2001.

[30] B. P. Haynes. The impact of office comfort on productivity. Journal of Fa-

cilities Management, vol. 6, no. 1, pp. 37-51, 2008.

[31] V. L. Erickson and A. E. Cerpa. Thermovote: participatory sensing for

efficient building hvac conditioning. In Proceedings of the Fourth ACM

BIBLIOGRAPHY 109

Workshop on Embedded Sensing Systems for Energy-Efficiency in Build-

ings. ACM, 2012, pp. 9-16.

[32] A. Krioukov and D. Culler. Personal building controls. In Proceedings of

the 11th international conference on Information Processing in Sensor Net-

works. ACM, 2012, pp. 157-158.

[33] B. Balaji, H. Teraoka, R. Gupta, and Y. Agarwal. Zonepac: Zonal power

estimation and control via hvac metering and occupant feedback. In Pro-

ceedings of the 5th ACM Workshop on Embedded Systems For Energy-

Efficient Buildings. ACM, 2013, pp. 1-8.

[34] T. Sohn and A. Dey. iCAP: an informal tool for interactive prototyping

of context-aware applications. In CHI’03 extended abstracts on Human

factors in computing systems. ACM, 2003, pp. 974-975.

[35] K. N. Truong, E. M. Huang, and G. D. Abowd. CAMP: A magnetic poetry

interface for end-user programming of capture applications for the home.

In UbiComp 2004: Ubiquitous Computing. Springer, 2004, pp. 143-160.

[36] IFTTT. https://ifttt.com/.

[37] S. T. Bushby. Bacnet: a standard communication infrastructure for intel-

ligent buildings. Automation in Construction, vol. 6, no. 5, pp. 529-540,

1997.

[38] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, and M. B. Srivastava.

Sensoract: a privacy and security aware federated middleware for build-

ing management. In Proceedings of the Fourth ACM Workshop on Em-

110 BIBLIOGRAPHY

bedded Sensing Systems for Energy-Efficiency in Buildings. ACM, 2012,

pp. 80-87.

[39] T. Weng, A. Nwokafor, and Y. Agarwal. Buildingdepot 2.0: An integrated

management system for building analysis and control. In Proceedings

of the 5th ACM Workshop on Embedded Systems For Energy-Efficient

Buildings. ACM, 2013, pp. 1-8.

[40] S. Resendes, P. Carreira, and A. C. Santos. Conflict detection and resolu-

tion in home and building automation systems: a literature review. Journal

of Ambient Intelligence and Humanized Computing, pp. 1-17, 2013.

[41] C. Xu and S.-C. Cheung. Inconsistency detection and resolution for

context-aware middleware support. ACM SIGSOFT Software Engineering

Notes, vol. 30, no. 5, pp. 336-345, 2005.

[42] A. Ranganathan and R. H. Campbell. An infrastructure for context-

awareness based on first order logic. Personal and Ubiquitous Computing,

vol. 7, no. 6, pp. 353-364, 2003.

[43] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-aware reflec-

tive middleware system for mobile applications. Software Engineering,

IEEE Transactions on, vol. 29, no. 10, pp. 929-945, 2003.

[44] I. Park, D. Lee, and S. J. Hyun. A dynamic context-conflict management

scheme for group-aware ubiquitous computing environments. In Com-

puter Software and Applications Conference, 2005. COMPSAC 2005. 29th

Annual International, vol. 1. IEEE, 2005, pp. 359-364.

BIBLIOGRAPHY 111

[45] Jong-bum Woo, Youn-kyung Lim. User experience in do-it-yourself-style

smart homes. In Proceedings of the 2015 ACM International Joint Con-

ference on Pervasive and Ubiquitous Computing. ACM, New York, NY,

USA, 2015, pp. 779-790.

[46] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

Tools and Algorithms for the Construction and Analysis of Systems, 14th

International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture

Notes in Computer Science, pages 337-340. Springer, 2008.

[47] Jeff Kramer and Orit Hazzan. The role of abstraction in software engineer-

ing. In Proceedings of the 28th international conference on Software engi-

neering (ICSE ’06). ACM, New York, NY, USA, 1017-1018. 2006.

[48] Justin Huang and Maya Cakmak. Supporting mental model accuracy in

trigger-action programming. In Proceedings of the 2015 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous Computing (Ubi-

Comp ’15). ACM, New York, NY, USA, 215-225. 2015

[49] Ernest Friedman-Hill. JESS in Action. Manning Greenwich, CT. 2003

[50] T. Zhang and B. Brugge, Empowering the user to build smart home appli-

cations, in International Conference on Smart Home and Health Telemat-

ics (ICOST-04, Singapur, 2004, pp. 170-176.

[51] Knibbe, E.J. Building management system,

https://www.google.com/patents/US5565855, 1996.

112 BIBLIOGRAPHY

[52] Energy@Home Java Energy ManageMent Application (JEMMA).

http://www.energy-home.it/SitePages/Activities/JEMMA.aspx, 2014

[53] Cao, Xianghui, et al. Building-environment control with wireless sensor

and actuator networks: Centralized versus distributed. Industrial Elec-

tronics, IEEE Transactions on, 2010, 57.11: 3596-3605.

[54] Hosek, Jaromir, et al. Universal smart energy communication platform.

In: Intelligent Green Building and Smart Grid (IGBSG), 2014 International

Conference on. IEEE, 2014. p. 1-4.

[55] Dey, Anind K., et al. iCAP: Interactive prototyping of context-aware ap-

plications. In: Pervasive Computing. Springer Berlin Heidelberg, 2006. p.

254-271.

[56] Dutertre, Bruno; DE MOURA, Leonardo. The yices smt solver. Tool paper

at http://yices. csl. sri. com/tool-paper. pdf, 2006, 2.2.

[57] Flask (a python microframework) http://flask.pocoo.org/ [Online; ac-

cessed 02/11/2015].

[58] S Massoud Amin and Bruce F Wollenberg. Toward a smart grid: power

delivery for the 21st century. Power and Energy Magazine, IEEE, 3(5):34-

41, 2005.

[59] https://networkx.github.io/ [Online; accessed 02/11/2015].

[60] http://www.graphviz.org/ [Online; accessed 02/11/2015].

[61] https://www.mysql.it/ [Online; accessed 02/11/2015].

BIBLIOGRAPHY 113

[62] Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. 2014. From to-

day’s augmented houses to tomorrow’s smart homes: new directions for

home automation research. In Proceedings of the 2014 ACM International

Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’14).

ACM, New York, NY, USA, 105-115.

[63] https://www.netatmo.com/en-US/product/weather-station [Online; ac-

cessed 09/11/2015].

[64] http://estimote.com [Online; accessed 09/11/2015].

[65] Holzinger, Andreas, et al. TRIANGLE: A Multi-Media test-bed for exam-

ining incidental learning, motivation and the Tamagotchi-Effect within a

Game-Show like Computer Based Learning Module. In: World Conference

on Educational Multimedia, Hypermedia and Telecommunications. 2001.

p. 766-771.

[66] https://www.quora.com [Online; accessed 15/11/2015].

	Summary
	Sommario
	Estratto in lingua italiana
	Context Definition
	Introduction
	Smart Buildings: features and goals
	The current Smart Building idea

	Problem definition
	Users interaction with Smart Buildings
	Multi-user and input conflicts
	Proposed Solution

	Contribution and outline

	State of the art analysis
	Building Management Systems
	Standard Building Management Systems
	Web Based Building Management Systems
	Building Management Systems integration

	Trigger-action Programming Technique
	Trigger-action programming: the If This Than That paradigm

	Conflict resolution
	Sensor centric resolution
	User centric resolution

	Conclusion

	The Proposed Methodology
	Introduction
	The starting point: BuildingRules 1.0
	Rules
	Conflicts among rules
	Static conflicts
	SMT Solver
	Run-time conflicts
	Users
	Groups

	BuildingRules 2.0: theoretical contribution
	From Ruleset to Building Behavioral and Status Graph
	Analysis

	Implementation
	General Overview
	Backend
	Model
	Drivers
	Controller
	REST Interface APIs

	Frontend

	Experimental results
	Overview
	Baseline Experiments
	Usability Experimental Campaign
	Integration Experimental Campaign
	Results Discussion and Limitations

	Conclusions and Future Works
	Conclusions
	Limitations Analysis and Future Works

	Frontend Views
	Bibliography
	References

