
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’ Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

A randomized approach for NARX model
identification based on a multivariate

Bernoulli distribution

Relatore: Prof. Luigi Piroddi
Correlatore: Dott. Alessandro Falsone

Tesi di Laurea di:
Federico Bianchi, matricola 819133

Anno Accademico 2014-2015

POLITECNICO DI MILANO

Sommario
Scuola di Ingegneria Industriale e dell’ Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

A randomized approach for NARX model identification based on a
multivariate Bernoulli distribution

by Federico BIANCHI

Nell’ambito dell’identificazione di sistemi, uno degli obiettivi primari è quello
di ottenere un modello matematico del sistema atto a sviluppare strumenti di
analisi e sintesi.
La famiglia dei modelli non lineari NARX (Nonlinear Autoregressive mod-
els with eXogenous variables) basati su espansione polinomiale è stata ampia-
mente studiata nella letteratura di settore e molti metodi di identificazione sono
stati proposti. Tali metodi sono tipicamente basati su una costruzione incre-
mentale del modello per cui i termini sono progressivamente selezionati come
candidati all’inclusione nel modello. Il limite principale di questi metodi è la
difficoltà nel calcolare per ogni termine la giusta significatività, cosa che può
pregiudicare la corretta selezione del modello.
Per superare questo limite, negli ultimi anni il problema dell’identificazione
è stato riformulato in termini probabilistici. Sono stati quindi definiti metodi
randomizzati basati sul campionamento di distribuzioni di probabilità definite
sullo spazio dei possibili modelli. Tra questi, di particolare interesse è il metodo
RaMSS che è basato sul campionamento progressivo di distribuzioni Bernoul-
liane indipendenti, ognuna associata ad un termine. Tali distribuzioni sono poi
aggiornate sulla base delle performance dell’intera popolazione di modelli es-
tratti.
In questa tesi è formulata una variante del metodo RaMSS, che tiene conto di
eventuali dipendenze tra i termini del modello. I termini sono descritti da una
distribuzione Bernoulliana multivariata e il campionamento di un termine è
quindi condizionato all’esito dell’estrazione degli altri.
I risultati ottenuti su alcuni sistemi analitici di diversa natura confermano le as-
pettative: la nuova variante del RaMSS riesce maggiormente nell’identificazione
del modello corretto anche per quei sistemi per i quali il miglior modello se-
lezionato dall’algoritmo base non corrisponde a quello corretto. Inoltre, rispetto
all’algoritmo base, la variante proposta identifica modelli più compatti nel caso
di sistemi con ingressi lenti. Il nuovo algoritmo è stato validato anche rispetto
a metodi classici, quali il FROE.

i

POLITECNICO DI MILANO

Abstract
Scuola di Ingegneria Industriale e dell’ Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

A randomized approach for NARX model identification based on a
multivariate Bernoulli distribution

by Federico BIANCHI

In the field of system identification, one of the primary goal is to obtain a
mathematical model of a system useful to develop formal tools of analysis and
synthesis.
The polynomial Nonlinear Autoregressive with eXogenous inputs (NARX) model
family has been widely studied in the literature and several methods have been
proposed. These methods are typically based on incremental model building
techniques that progressively select from a candidate set the terms to include
in the model. The main limitation of these methods concerns the difficulty to
correctly assess the significance of each term which can lead to wrong model
selections.
To overcome this limit, the identification task has been recently restated in a
probabilistic fashion and new randomized methods have been proposed. These
methods are based on the sampling from probability distributions defined over
the space of possible model structures. Particularly interesting is the RaMSS
method which progressively samples from independent Bernoulli distributions
associated to the terms. Then, the method updates the distributions according
to the performances of all the sampled model structures.
In this thesis a variant of the RaMSS is presented. It takes into account the de-
pendences between model terms. The model terms are described by means of
a multivariate Bernoulli distribution and the sampling of a term is thus condi-
tioned by the sampling of the others.
The new algorithm is tested on several analytic systems and the obtained re-
sults confirm the expectations: the proposed variant is capable of consistently
identifying the correct model even for those systems for which the RaMSS occa-
sionally fails to select the correct model structure. Furthermore, the identified
models in the case of system excited with slowly varying input signals are more
compact than those selected by the RaMSS. The new algorithm is validated over
classical methods such as the FROE as well.

ii

Acknowledgements
Foremost, I would like to thank my advisor Prof. Luigi Piroddi for his will-
ingness, the opportunity to work with him on a such interesting topic, and the
continuous support during the preparation of this thesis.
I would like to thank also:

• my assistant advisor Dott. Alessandro Falsone, for his support offered
during the preparation of my thesis,

• all the professors and colleagues that I met in these five years and with
whom I had the pleasure of working,

• all my friend.

Lastly, but most importantly, I would like to thank my family who always
supported me and believed in me, and Elena for constant support and motiva-
tion.

iii

Contents

Sommario i

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Review of the State of the Art 5
2.1 Nonlinear system identification framework 5
2.2 The NARX model class . 7
2.3 The over-parametrization problem 8
2.4 The FROE for polynomial NARX identification 12
2.5 The RJMCMC for polynomial NARX identification 15
2.6 The GA for polynomial NARX identification 17
2.7 RaMSS . 19

3 CLF based RaMSS 24
3.1 The Conditional Linear Family . 24
3.2 Update rule for the correlation matrix 26
3.3 The C-RaMSS algorithm . 33

4 Simulation results 36
4.1 Typical run of the C-RaMSS algorithm 37
4.2 C-RaMSS algorithm performance 43

4.2.1 Learning factor . 45
4.2.2 Number of extracted models 47

4.3 Comparative analysis . 49
4.3.1 RaMSS vs C-RaMSS . 49
4.3.2 RaMSS vs C-RaMSS with colored noise as input 52
4.3.3 FROE vs C-RaMSS . 57
4.3.4 RJMCMC vs C-RaMSS . 58

5 Conclusions and future work 59

A Appendix 61
A.1 Orthogonal Least Squares . 61
A.2 Sampling methods . 63

A.2.1 Inverse Sampling method 63
A.2.2 Rejection Sampling method 63

iv

A.2.3 Importance Sampling method 64
A.3 Monte Carlo techniques . 66
A.4 RaMSS - RIPs update rule . 68
A.5 Pseudoinverse . 69

Bibliography 73

v

List of Figures

2.1 Graphical illustration of bias and variance 9
2.2 Bias-variance tradeoff . 10
2.3 Training and prediction error . 10
2.4 FPE error curve . 11
2.5 Genetic Algorithm pipeline . 18
2.6 A typical run of the RaMSS - RIPs 21
2.7 A typical run of the RaMSS - AMS 21

3.1 Vector space model . 32

4.1 A typical evolution of the RIPs . 37
4.2 A typical evolution of the AMS value 38
4.3 Evolution of the correlation associated to true regressors - S2 . . . 38
4.4 A not straightforward evolution of the RIPs 41
4.5 A not straightforward evolution of the AMS value 41
4.6 Evolution of the correlation associated to true regressors - S4 . . . 42
4.7 RIP value for each regressor . 44
4.8 Slowly varying input signals . 54
4.9 RaMSS vs C-RaMSS - Performances with slowly varying inputs . 56

A.1 Graphical illustration of rejection sampling method 64
A.2 Importance sampling method . 65
A.3 Comparison between methods of computation of the pseudoin-

verse . 72

vi

List of Tables

2.1 Update factor values for the RIPs 22

4.1 Estimated parameters . 39
4.2 C-RaMSS - ν = 0.1 . 43
4.3 C-RaMSS - ν = 0.3 . 45
4.4 C-RaMSS - ν = 0.5 . 45
4.5 C-RaMSS - Analysis on S2 of the effect of NP 47
4.6 C-RaMSS - Analysis on S4 of the effect of NP 47
4.7 C-RaMSS - Analysis on S4 of the effect of increasingly big NP . . 48
4.8 C-RaMSS - Analysis on S1 of the effect of NP 48
4.9 Comparative analysis - S1 . 49
4.10 Comparative analysis - S2 . 49
4.11 Comparative analysis - S3 . 49
4.12 Comparative analysis - S4 . 50
4.13 Comparative analysis - S5 . 50
4.14 Comparative analysis - S6 . 50
4.15 Gain in the number of required iterations 50
4.16 RaMSS - Slowly varying input signals 55
4.17 C-RaMSS - Slowly varying input signals 55
4.18 FROE results - S1 . 57
4.19 FROE results - S2 . 57
4.20 FROE results - S3 . 57
4.21 FROE results - S4 . 57
4.22 FROE results - S5 . 58
4.23 FROE results - S6 . 58
4.24 RJMCM results - S2 . 58

vii

List of Algorithms

3.1 Nearest Correlation Matrix . 29
3.2 C-RaMSS . 34
A.1 Inverse Sampling . 63
A.2 Rejection Sampling . 64
A.3 Metropolis-Hasting . 67

viii

List of Abbreviations

AIK Akaike Information Criterion
AMS Average Model Size
ARX Auto Regressive with eXogenous input
CLF Conditional Linear Family
EA Evolutionary Algorithm
ERR Error Reduction Ratio
FPE Final Prediction Error
FROE Forward Regression Othogonal Estimator
FIR Finite Impulse Response
GA Genetic Alogorithm
LS Least Squares
LTI Linear Time Invariant
MDL Minimum Description Length
MSE Mean Squared Error
MSPE Mean Squared Prediction Error
MSSE Mean Squared Simulation Error
MSS Model Structure Selection
NARX Nonlinear Auto Regressive with eXogenous input
NN Neural Networks
OLS Orthogonal Least Squares
PEM Prediction Error Minimization
RaMSS Randomized Model Structure Selection
RBF Radial Basis Function
RIP Regressor Inclusion Probability
RJMCMC Reversible Jump Markov Chain Monte Carlo
SRR Simulation error Reduction Ratio
SVD Singular Value Decomposition
VSM Vector Space Model

ix

To everyone who have allowed me to get here

x

Chapter 1

Introduction

The concepts of system and model are the basis of the engineering disciplines,
where one is generally interested in a quantitative assessment of the behavior
of a dynamical system. It is necessary, therefore, to obtain a mathematical de-
scription of it. Starting from the model it is possible to develop formal tools of
analysis and synthesis. Basically, there are two ways of constructing mathemat-
ical models:

• Mathematical modeling. This is an analytic approach. Prior knowledge and
physical insight about the system are used to describe the dynamic be-
havior of a system.

• System identification. This is an experimental approach. Some experiments
are performed on the system in order to learn a model from the collected
data by means of parameter estimation (Ljung, 1987; Söderström and Stoica,
1989).

The nonlinear auto-regressive (moving average) with exogenous inputs
(NAR[MA]X) model (Leontaritis and Billings, 1985a; Leontaritis and Billings,
1985b) is an input-output description often used in nonlinear system identifica-
tion, where the current output is obtained by means of a nonlinear functional
expansion of lagged inputs, outputs (and possibly noise) elementary terms. The
NAR[MA]X class potentially reduces the number of model terms - combina-
tions of elementary terms - w.r.t. other parametric classes such as the Volterra
series and Wiener’s models. This peculiarity is very important when the model
structure that represents the dynamical nonlinear system is unknown since it
allows to reduce the number of possible candidate structures amongst which
look for the best one (model structure selection). The simplest way to select the
best model structure is to generate all the possible structures and choose be-
tween them by comparing their performance. Although this could be in princi-
ple done in the linear case (AR[MA]X models), it is not feasible in the nonlinear
one since the number of possible model terms, and therefore the number of
possible models, increases rapidly with the number, maximum lag and degree
of elementary terms (curse of dimensionality). Therefore, we need to develop al-
ternative search methods for the nonlinear case (Sjöberg et al., 1995), keeping in
mind that over-parametrization leads to very accurate models at the expense of
a lower capability to provide approximation to the true system output for un-
seen input data (loss of the generalization property) (Hong et al., 2008; German,
Bienenstock, and Doursat, 1992; Aguirre and Billings, 1995).

1

Chapter 1. Introduction 2

Polynomial NAR[MA]X models have been widely used since they are linear- in-
the- parameters and can thus be identified with least squares (LS) algorithms in
a prediction error minimization (PEM) framework. However, PEM methods
require a precise matching of the model structure with that of the underlying
system in order to guarantee unbiased parameter estimates.
In the linear case, information criteria such as the final prediction error (FPE),
the Akaike information criterion (AIK) and the minimum description length
(MDL) are used to prevent over-parametrization since they allow to estimate
the correct model size taking into account the model accuracy, which decreases
as the number of parameters increases, and the number of parameters itself. In
(Palumbo and Piroddi, 2000) it is shown that these indices are not easily ap-
plicable to the nonlinear case since in this context there is no a simple relation
between model accuracy and model size.
In (Billings, Chen, and Korenberg, 1989) a forward-regression orthogonal esti-
mator (FROE) based on the error reduction ratio (ERR) criterion has been pre-
sented. This identification algorithm represents a milestone and several vari-
ants of this method have been proposed in the literature (Mao and Billings,
1999; Bonin, Seghezza, and Piroddi, 2010; Piroddi and Spinelli, 2003). The ERR
is used to express the capability of a term to improve the model accuracy if it
were added to the model. The idea behind the FROE method is to decouple
the estimation of additional parameters from that of the parameters already in-
cluded in the model by means of an orthogonalization technique, the orthogonal
least square (OLS). In this way, at each step the significance of each candidate re-
gressor can be separately evaluated by computing the ERR criterion. The main
drawbacks are the incremental nature of the model building procedure and the
fact that this method is based on the PEM approach, that leads to a procedure
that is initialization dependent. Therefore, the overall selection procedure is not
guaranteed to converge to the correct structure. Additionally, methods based
on forward/forward-backward regression do not provide an indication of the
uncertainty in the model structure.
In (Baldacchino, Anderson, and Kadirkamanathan, 2013) the problems of model
structure selection and parameter estimation have been dealt with in a uni-
fied Bayesian framework, that is suitable for describing uncertainty since this
approach does not obtain a single description, but rather, a distribution over
models. These posterior distributions are obtained using the Reversible Jump
Markov Chain Monte Carlo (RJMCMC) procedure which is based on three op-
erations: sampling of unselected terms to include in the model, sampling of
previously selected terms to remove from the model and updating of the ex-
isting parameters. At each step only one of these operations is randomly at-
tempted and its result is accepted or not according to an acceptance ratio. The
Markov Chain requires a burn-in period (many iterations) to converge to the
desired stationary distribution (it is initialization independent) and this is the
main drawback of RJMCMC. Nonetheless, the stochastic nature of the RJM-
CMC algorithm ensures to a global search of term space.
The RJMCMC algorithm is analogous in some regards to the genetic algorithm
(GA) procedure (Rodriguez-Vazquez, Fonseca, and Fleming, 2004; Mao and

Chapter 1. Introduction 3

Billings, 1999): both approaches use random sampling methods. In detail, a GA
is a search heuristic that mimics the process of natural selection. GAs belong
to the larger class of evolutionary algorithms (EA), which generate solutions to
optimization problems using techniques inspired by natural evolution, such as
inheritance, mutation, selection, and crossover.
In (Falsone, Piroddi, and Prandini, 2014) a novel iterative randomized algo-
rithm for model structure selection (RaMSS) has been introduced focusing on
NARX models only. This method has some features in common with both RJM-
CMC and GA: as RJMCMC it defines distributions (Bernoulli distributions)
over model terms, describing the probability that the term is present in the
"true" model. As GA it is based on the concept of population. In fact, at each
iteration a new population of models is generated according to the Bernoulli
distributions. The performances of the whole population of extracted mod-
els are then used to update the mean of each individual Bernoulli distribution.
More precisely, the mean performance of the models that include a specific term
is compared with those that do not. The result of this comparison is then used
to increase or decrease the term’s probability taking into account also the dis-
persion of the values of the model’s evaluation criterion. As the number of
iterations increases, the number of different explored models decreases, con-
verging to a specific model structure. A deeper analysis of the inclusion mech-
anism of regressors into the model has emphasized that often regressors tend
to enter/disappear jointly in a model. So, although the regressors are extracted
independently, often they are somehow related. This fact has motivated the
work that will be presented in this thesis.
The idea is to introduce second order information about relations among re-
gressors in the updating of the Bernoulli distributions, in order to improve the
performance of RaMSS algorithm, in terms of correctness, number of explored
models and number of iterations required to achieve convergence. Unlike the
classic RaMSS, this time the regressors will be not independent but they will
be correlated with a given marginal mean vector and a correlation matrix. To
simulate these correlated binary variables, a family of multivariate binary dis-
tributions, the Conditional Linear Family (CLF), will be used. This family was
introduced in (Qaqish, 2003). The basic idea behind CLF is to simulate corre-
lated binary variables with specified mean vector and correlation matrix with-
out fully specifying the joint distribution since this becomes impractical as the
number of variables grows. Since in the RaMSS each regressor is independent
from the others, the algorithm, as is, lacks the correlation matrix needed by CLF.
To fill this gap, an approximation of the correlation matrix will be obtained from
the cosine similarity matrix, computed considering each regressor as a vector in
the Euclidean space of the models. This kind of similarity measure is widely
use in the Information Retrieval field to assess the relevance of a document to a
given query (Berry, Drmac, and Jessup, 2006).

Chapter 1. Introduction 4

The work is organized as follows:

• Chapter 2 provides the basic framework and notation for nonlinear system
identification of NARX models and briefly reviews the main approaches
in the literature, with particular interest in the RaMSS method that has
been used as starting point for this work.

• Chapter 3 presents the necessary tools to introduce dependence informa-
tion among the regressors into the RaMSS. Finally, the new algorithm is
presented.

• Chapter 4 reports the results obtained on several systems taken from the
literature. The performed analysis aims to assess the effectiveness of the
new algorithm w.r.t. the RaMSS and classical methods as the FROE.

• Finally, in Chapter 5 the main considerations are recapped and possible
future works are proposed.

Chapter 2

Review of the State of the Art

In this section we review the basic framework and notation used in the nonlin-
ear system identification problem, the NARX model class and finally we ana-
lyze the state-of-the-art methods for the identification of these models. Many
algorithms have been proposed in the literature that combine model structure
selection and parameter estimation in a single optimization procedure. It is
usually required to specify only the set of candidate regressors for inclusion in
the model. By combining the elements of this set the identification procedure
selects the most significant terms to include in the model, based on a quantita-
tive evaluation of the quality of the estimated model. The following methods
define the path for the presented work: from the most popular (FROE), mov-
ing to randomized methods (RJMCMC and GA), to finally consider the starting
point of the thesis (RaMSS).

2.1 Nonlinear system identification framework

System identification starts from observed inputs u(t) and outputs y(t) taken
from some experiments performed on a dynamical system

ut = [u(1), u(2), · · · , u(t)] (2.1)

yt = [y(1), y(2), · · · , y(t)] (2.2)

and the objective it to look for a relationship between these past observations
[ut−1, yt−1] and future outputs y(t):

y(t) = g(ut−1, yt−1) + e(t) (2.3)

The additive term e(t) accounts for the fact that there is an unpredictable part in
the behavior of the system, i.e. the next output y(t) will not be an exact func-
tion of past data. In other words, we will think of the available observations as
being a finite length realization of a stochastic process. This stochastic nature is
explicitly represented by e(t). Therefore, the goal of the identification task must
be that e(t) is small, so that g(ut−1, yt−1) is a good prediction/approximation of
y(t) given the observations. When the model structure is unknown the identi-
fication task can be decomposed in two subtasks:

• model structure selection (MSS);

5

Chapter 2. Review of the State of the Art 6

• parameter estimation.

The aim of MSS is to find the form of nonlinear dependence between data,
within a family of functions which is usually parametrized with a finite-dimensional
parameter vector θ:

g(ut−1, yt−1; θ). (2.4)

Amongst all the possible parametrizations of the chosen family, we are looking
for the one that provides the best approximation of y(t). The parameter esti-
mation task deals with this approximation problem, minimizing w.r.t. θ a cost
function of the following type:

J(θ) =
N∑
t=1

‖y(t)− g(ut−1, yt−1; θ)‖2 (2.5)

Since the past observations are potentially infinite, we have to restrict the ob-
servability scope, obtaining a finite-dimensional vector

x(t) = [y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)] (2.6)

where ny and nu are suitable maximum lags. A mapping ϕ is applied on this
vector that projects the observations into a finite-dimensional space called basis
functions space:

ϕ(t) = ϕ(y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)) (2.7)

Finally, this finite-dimensional vectorϕ(t) is used as input to the nonlinear map-
ping g(ϕ(t)) that returns the final output values relative to the provided basis
functions set. So, the MSS can be seen in turn as the composition of two sub-
problems:

• how to combine past lagged observations in order to obtain the vector
ϕ(t);

• how to define the nonlinear mapping g(ϕ(t)) between basis functions and
output values.

Often, the nonlinear mapping g(ϕ(t)) is a nonlinear functional expansion, pro-
vided that the chosen expansion is a universal approximating function, i.e. it
should be capable of approximating any continuous function at whatever preci-
sion level, on a compact domain, provided it is endowed with sufficient degrees
of freedom. The following are universal approximating functions: polynomi-
als, splines, multi-layer perceptron neural networks (NN), radial basis function
(RBF), wavelets.

Chapter 2. Review of the State of the Art 7

2.2 The NARX model class

A popular choice is the polynomial functional expansion which is a linear com-
bination of all monomials of x(t) up to a given order.

Example 1. Consider x(t) = [x1, x2, x3]. Then, a full cubic expansion contains
the following basis functions:

order 0 1 (1 term)

1st order x1, x2, x3 (3 terms)

2nd order x21, x1 · x2, x1 · x3, x22, x2 · x3, x23 (6 terms)

3nd order x31, x
2
1 ·x2, x21 ·x2, x1 ·x2 ·x3, x1 ·x22, x1 ·x23, x32, x22 ·x3, x33, x23 ·x2 (10 terms)

This functional expansion allows us to represent the chosen parametrized
family 2.3 as a linear regression:

y(t) = ϕT (t)θ + e(t) (2.8)

In this case the basis functions are called regressors and the vector ϕ(t) is referred
as regression vector. Linear-in-the-parameters models are convenient from the
computational point of view since their parameters can be estimated by sim-
ple LS algorithms which have well known variants suitable also to the on-line
identification problem - problems in which the data are not given as a batch but
they are collected during the execution of the algorithm - and adaptive learn-
ing. Also, linearity provides an easier model interpretation (the capability to
interpret the properties of the process that the model represents and to extract
the knowledge of the underlying system). In fact, the terms in a linear model
are often associated to physical aspects of the system and so the parameters act
as importance factors for the relative physical phenomenon. This peculiarity
does not hold for all the functional expansions: for example Artificial NNs -
which are inspired by biological neural networks, composed by networks of
simple computing units that perform very simple operations according to an
”activation” function - are very powerful estimators which, however, do not
provide transparent models. Neither the single unit nor an entire layer has a
direct interpretation in terms of the system properties. Finally, in a polynomial
model all the nonlinearity is confined in the regressors.

Chapter 2. Review of the State of the Art 8

2.3 The over-parametrization problem

Consider Example 1. Notice that the total number of monomials up to order
k for a set of n variables equals (n+k)!

n!k!
, and grows rapidly with n and k (this

problem is often referred as curse of dimensionality). Therefore, the MSS task
assumes a key role in the identification procedure provided that it is not too
time-consuming. In fact, the use of over-parametrized models arises from the
inability to find selection criteria that do not heavily impact on the computa-
tional performance of the overall procedure and, moreover, from the fact that
the prediction error usually decreases as the model accuracy increases. How-
ever, this accuracy improvement does not necessarily lead to models that are
more effective in capturing the dynamics of the underlying system than sim-
pler ones, due to loss in generalization. The mean squared error (MSE) can
be used as a measure of model generalization. Denoting ŷ = g(ut−1, yt−1; θ) -
one-step-ahead prediction of y(k), the MSE is defined as

E[(y − ŷ)2] (2.9)

According to the bias/variance dilemma (German, Bienenstock, and Doursat, 1992),
the MSE can be decomposed into two components, the bias and the variance, as

E[(y − ŷ)2] = Bias[ŷ]2 + V ar[ŷ] + σ2 (2.10)

where
Bias[ŷ] = E[ŷ]− y (2.11)

V ar[ŷ] = E[(ŷ − E[ŷ])2] (2.12)

and σ2 is the variance of the white noise e(t), which is an irreducible error.
Suppose we repeat the whole model building process more than once: each
time we gather new data and run a new analysis creating a new model. Due to
randomness in the underlying data sets, the resulting models will have a range
of prediction performance. The bias measures how far off in general the model
predictions are from the correct value, while the variance describes how much
the predictions vary between different realizations of the model (see Figure 2.1
where each hit represents an individual realization of our model and the center
of the target is a model that perfectly predicts the correct values).

Chapter 2. Review of the State of the Art 9

FIGURE 2.1: Graphical illustration of bias and variance.

At its root, dealing with bias and variance is really about dealing with over-
and under-fitting. High bias can cause a model to miss the relevant relations be-
tween inputs and target outputs (underfitting). High variance can cause overfit-
ting: modeling the random noise in the training data, rather than the intended
outputs. Hence, there is a tradeoff between bias and variance, i.e. the mini-
mization w.r.t. model size, since the bias is reduced and variance is increased
in relation to model complexity, see Figure 2.2.
MSS is therefore particularly challenging since there is not an analytical way to
find the optimal model complexity. Instead we must use an accurate measure
of prediction error, as MSE, and explore differing levels of model complexity
and then choose the complexity level that minimizes the overall error on the
validation dataset (Cross Validation). Let’s see what this looks like in practice
with a simple example.

Example 2. Suppose that one wants to implement a wealth and happiness
model as a linear regression. We can start with the simplest regression possible:

Happiness = a+ b ·Wealth+ e (2.13)

and then we can add polynomial terms to model nonlinear effects. Each poly-
nomial term we add increases the model complexity. For example:

Happiness = a+ b ·Wealth+ c ·Wealth2 + e (2.14)

Chapter 2. Review of the State of the Art 10

FIGURE 2.2: Bias-variance tradeoff.

The Figure 2.3 represents the training and prediction error curves of the model
for different levels of model complexity.

FIGURE 2.3: Training and prediction error.

Information criterion, such as FPE, AIK and MDL have been also applied
to the general problem of model selection as model generalization metrics. All

Chapter 2. Review of the State of the Art 11

FIGURE 2.4: FPE error curve.

three indices are related to each others. Consider as reference the FPE

FPE(m) =
N +m

N −m
· JN(θ̂mN)) (2.15)

where N is the number of data, m is the number of parameters.
N+m
N−m is increasing with m, while JN(θ̂mN) is decreasing with m. Hence, there is
a unique minimum, see Figure 2.4. The optimal m indicates the number of pa-
rameters for which the model starts to over-fit the data, losing in generalization.
These indices are widely used in both the linear and nonlinear cases, but in the
latter they rarely yield conclusive proofs in favour of a specific model structure
as pointed out in (Piroddi and Spinelli, 2003).

Chapter 2. Review of the State of the Art 12

2.4 The FROE for polynomial NARX identification

A common approach for solving the MSS problem is based on an iterative
model construction - forward regression - where at each iteration a regressor is
chosen from a candidate set, according to some criterion, and it is added to
the current model. Sometimes, pruning methods are also applied. This proce-
dure continues until a chosen level of accuracy is reached. Alternatively, some
heuristics are applied, such as the elbow method: one should choose to stop the
procedure, if adding another regressor does not improve much the model. The
iterative model construction approach is thus based on a greedy selection pol-
icy, therefore it is sub-optimal, although it works fine in most cases. The usage
of some criterion for selecting the regressor to add, is needed since a complete
trial-and-evaluate approach is not feasible due to the numerous repetitions of
parameter estimation and model performance evaluation. In FROE, parame-
ters are estimated by means of orthogonal least squares (OLS), while the structure
selection is based on the error reduction reduction ratio (ERR) criterion which
measures the increment in the output explained variance. The idea behind the
FROE method is to project the regressors (and parameters) in a new space in
which they are mutually independent. In so doing, the relevance of each re-
gressor can be independently evaluated from that of other regressors, by means
of the ERR criterion:

[ERR]i =
ĝ2i
∑N

t=1w
2
i (t)∑N

t=1 y
2(t)

(2.16)

where wi is the i-th auxiliary orthogonal regressor and ĝi the corresponding es-
timated auxiliary parameter. For a better explanation of the OLS, see Appendix
A.1. The regressor with the highest value of the ERR is added to the model.
At the end of the procedure the regressors and parameters in the original space
can be recovered from the auxiliary ones in a recursive way. The whole forward
regression selection procedure based on OLS is:

1. Test all ϕi(t), i = 1, . . . , n, for inclusion in the model as w1(t). Precisely, set
w

(i)
1 (t) = ϕi(t) and compute [ERR]

(i)
1 according to Equation 2.16.

Let j = arg maxi([ERR]
(i)
1). Then, select w1(t) = w

(j)
1 (t) = ϕj(t), ĝ1 = ĝ

(j)
1

and [ERR]1 = [ERR]
(j)
1 .

2. Test all ϕi(t), i = 1, . . . , n, i 6= j for inclusion in the model as w2(t). Pre-
cisely, setw(i)

2 (t) = ϕi(t)−a(i)12w1(t), where a(i)12 =
∑N

t=1 w1(t)ϕi(t)∑N
t=1 w1(t)2

, and calculate

[ERR]
(i)
2 . Let j = arg maxi([ERR]

(i)
2). Then, select w2(t) = w

(j)
2 (t) = ϕj(t),

ĝ2 = ĝ
(j)
2 and [ERR]2 = [ERR]

(j)
2 .

3. Iterate the procedure until a sufficient portion of the output variance has
been explained, i.e. until 1 −

∑ns
i=1[ERR]i, where ns is the number of

selected terms, is less than a prescribed tolerance.

There are some known drawbacks related to the FROE procedure, due to the
PEM based MSS task. Indeed, in the PEM framework the parameter estimates

Chapter 2. Review of the State of the Art 13

are unbiased only if the model structure is exact. This condition does not hold
in the early stages, when the model structure is at least incomplete due to the in-
cremental nature of the selection procedure, leading to bad estimations. These
wrong estimates make the order in which the regressors are added very im-
portant, especially because the relative importance of a regressor changes as
the model building process goes on, as pointed out in (Piroddi and Spinelli,
2003). In addition, to have correct estimates, PEM requires the input signal to
have sufficiently exciting properties. This condition becomes essential espe-
cially due to the usage of the ERR criterion which measures the increment in
the output explained variance and not the output explained variance itself. In
fact, if the input is a slowly varying process - the relative outputs are therefore
similar, y(t) ' y(t − 1) - the ERR tends to encourage autoregressive terms, re-
gardless of the actual underlying system dynamics. In conclusion, there is no
guarantee that the algorithm will converge to the optimal solution, i.e. the true
model. To deal with this issue, pruning techniques can be adopted to eliminate
wrong terms at the expense of an increasing computational complexity. Such
as an example, consider the pruning method proposed in (Piroddi and Spinelli,
2003). In the proposed approach, each iteration starts with the inclusion of a
new regressors in the current model. Then, an iterative pruning procedure is
applied:

1. Consider each sub-model obtained after the elimination of a previously
selected regressors. Re-estimate its parameters and compute the corre-
sponding performance index.

2. Amongst all the sub-models, consider the one associated to the best value
of performance index. The candidate regressor to elimination is the one
that has lead to the generation of the selected sub-model.

3. If the selected sub-models is better than the current model, the regressors
is actually eliminated.

4. If an elimination has occurred, go to step 1, otherwise the iteration ends.

The idea behind this pruning mechanism is to encourage smaller models if
these have the same performance of bigger ones. It is a greedy policy and it
may occasionally eliminate a correct regressor, but this will be typically reintro-
duced in later stage.
In (Piroddi and Spinelli, 2003) is also introduced a variant of the FROE based
on the simulation error reduction ratio (SRR) criterion which is defined as:

[SRR]j =
MSSE(Mi)−MSSE(Mi+1)

1
N

∑N
t=1 y

2(t)
(2.17)

where:

• MSSE is the Mean Squared Simulation Error defined as:

MSSE =
1

N

N∑
t=1

(y(t)− ŷs(t))2 (2.18)

Chapter 2. Review of the State of the Art 14

where ŷs(t) denotes the simulated output of the models,

• Mi is the model obtained at the i-th iteration,

• Mi+1 is the candidate model at the subsequent iteration, with the inclusion
of the j-th regressor.

The ERR (2.16) can be rewritten similarly to SRR as:

[ERR]j =
MSPE(Mi)−MSPE(Mi+1)

1
N

∑N
t=1 y

2(t)
. (2.19)

The Mean Squared Prediction Error(MSPE) is defined as:

MSPE =
1

N

N∑
t=1

(y(t)− ŷ(t))2 (2.20)

where ŷ(t) denotes the one-step-ahead prediction of y(k).
A peculiarity of the SRR criterion is its capability to generally assign compara-
ble values to regressors belonging to the same cluster. As argued in (Piroddi
and Spinelli, 2003), due to this feature, an error in the MSS is less critical since
at least the cluster is the right one. Moreover, if the input signal is a slowly
varying process the one-step-ahead predictor tends to be short-sighted, and the
simulation error can provide more accurate results.

Chapter 2. Review of the State of the Art 15

2.5 The RJMCMC for polynomial NARX identifica-
tion

Methods based on forward/backward regression do not provide an indication
of the uncertainty in the model structure which, however, could be useful to
better determine the relevance of an identified model. In (Baldacchino, An-
derson, and Kadirkamanathan, 2013) the problems of model structure selec-
tion and parameter estimation are treated with a Bayesian inference approach
which, by definition, derives the posterior probability over a population, in our
case the set of all possible models, from observed data drawn from the popula-
tion itself. Bayesian inference computes the posterior probability according to
Bayes’ theorem:

P (θ|X) =
P (X|θ) · P (θ)

P (X)
(2.21)

where:

• X is a set of n observed data points.

• θ is the parameter vector.

• The prior distribution is the distribution of the parameter before any data
is observed, i.e. P (θ).

• The sampling distribution is the distribution of the observed data condi-
tional on its parameters, i.e. P (X|θ). This is also termed the likelihood.

• The posterior distribution is the distribution of the parameters after taking
into account the observed data, i.e. P (θ|X).

The main difficulty in using Bayesian inference in system identification is the
computation of the sampling distribution which requires to analytically solve
an integral. To fill this gap, several sampling methods have been proposed
to numerically compute posterior distributions, such as inverse sampling, ac-
cept/reject sampling, importance sampling and Markov chain Monte Carlo. One
method which has been derived from the Markov Chain Monte Carlo method
is the Metropolis-Hastings (MH) algorithm which defines the base for the RJM-
CMC. For a better explanation of the MH algorithm and others sampling meth-
ods see Appendix A.2 and A.3. The peculiarity of the RJMCMC based iden-
tification method is that it does not provide a single description, but rather, a
distribution over models. The basic idea of this method is to move between
the states of a Markov chain, which represent models of k terms. Three base
operations have been defined to move between states:

• Birth move: sampling of unselected terms to include in the current model,
i.e. k′ = k + 1.

• Death move: sampling of previously selected terms to remove from the
current model, i.e. k′ = k − 1.

Chapter 2. Review of the State of the Art 16

• Update: updating the variance of the parameters relative to existing terms,
i.e. k′ = k.

At each iteration one of this operations is randomly attempted according to
some probabilities and its result is accepted or rejected according to an accep-
tance ratio. The probabilities of performing such operations have been updated
according to the likelihood that the size of the real model is larger or smaller
than the current model.
This method has some well known features:

• it solves jointly both the model structure selection and the parameter esti-
mation problems;

• thanks to its markovian nature it is initialization independent. In fact the
Markov chain will converge to the same steady-state from any initial con-
ditions after some transient behavior;

• it naturally includes a pruning method to remove incorrect terms;

• finally, its stochastic nature lends itself to a global search of the term space.

The main drawbacks are:

• the Markov chain requires a burn-in period (many iterations) to converge
to the desired stationary distribution, so it is not competitive with FROE
in terms of speed

• the joint identification of both structure and parameters could be very
difficult since the importance of a regressor, and therefore its parameter
value, can greatly vary according to the structure of the models in which
it appears, so the parameters distribution over models could be very com-
plex.

Chapter 2. Review of the State of the Art 17

2.6 The GA for polynomial NARX identification

The RJMCMC algorithm is analogous in some regards to the genetic algorithm
procedure: both approaches use random sampling to ensure global searching.
A GA is a search heuristic that mimics the process of natural selection. GAs
belong to the larger class of evolutionary algorithms (EAs), which generate so-
lutions to optimization problems using techniques inspired by natural evolu-
tion, such as inheritance, mutation, selection, and crossover. These techniques
are used to evolve an initial random population of candidate solutions toward
a better one (Figure 2.5). A typical GA requires a genetic representation of the
solution domain and a fitness function to evaluate the solution domain. A stan-
dard representation of each candidate solution is a binary string. In the system
identification context we can think of a population of candidate solutions as a
set of random models represented as binary strings.

Example 3. Assuming for example to have a candidate regressors set composed
by 10 terms, i.e. ϕ = {ϕ1, ϕ2, . . . , ϕ10}.
The model y(t) = a1 · ϕ1 + a3 · ϕ3 + a7 · ϕ7 + a10 · ϕ10 can be represented by the
following binary string

1010001001 (2.22)

Therefore, GAs address the MSS problem, working with a coding of the
parameters rather then with the parameters themselves. The binary string can
be modified by:

• Crossover: two strings are randomly selected from a pool previously de-
fined by means of a selection (tournament selection, roulette wheel selection
and others) on the candidate population. The bit position from which
the two string will be splitted is randomly selected and the obtained sub-
strings finally combined. For example, consider the following strings:
i)1010001001 and ii) 1110101011. Assuming to split from the fifth bit, the
two resulting strings will be: i)1010001001 and ii)1110101001.

• Mutation: randomly flip a bit.

The fitness function assumes a key role in the selection phase: individual so-
lutions are selected through a fitness-based process, where fitter solutions are
typically more likely to be selected. In other words, the idea is to combine good
solutions hoping to find a better one. In this way, the population will be move
toward better solutions. A reasonable choice for the fitness function could be
the MSE.
GAs are simple to implement, but there are some limitations:

• fitness function evaluations, and so the parameters estimation, are per-
formed many times;

• they do not scale well with complexity. As the number of regressors in-
creases, the algorithm has to handle binary strings that become longer and
longer;

Chapter 2. Review of the State of the Art 18

• the second problem of complexity is the issue of how to protect parts that
have evolved to represent good solutions from further destructive muta-
tion or crossover operations. So, there is a tradeoff between exploration
of the search space and exploitation of the current good results.

FIGURE 2.5: Pipeline of a Genetic Algorithm.

Chapter 2. Review of the State of the Art 19

2.7 RaMSS

An iterative randomized algorithm for MSS has been introduced in (Falsone,
Piroddi, and Prandini, 2014) . This method has some features in common with
GAs and the RJMCMC based method:

• As the RJMCMC based method, the RaMSS introduces a probability dis-
tribution over models and iteratively updates it. Indeed, each regressor
has its own Bernoulli distribution that describes the probability that the
term is present in the ”true” model.

• As GAs, RaMSS is based on the concept of population. In fact, at each iter-
ation a new population of models is generated according to the Bernoulli
distributions and, at the end, the entire population is used to decide if to
encourage or not the extraction of a term in the next iteration.

Obviously, there are also some important differences w.r.t. the others two meth-
ods:

• The RaMSS does not perform a joint identification of both structure and
parameters (as done by the RJMCMC based method), but solves instead
the MSS problem in a probabilistic framework while the parameter esti-
mation task is performed along the PEM framework.

• GAs evolve an initial random population of candidate solutions toward a
better one, while in RaMSS at each iteration a new population is generated
from scratch. All the information about previous populations is implicitly
present in the Bernoulli distributions whose parameters are updated ac-
cording to an aggregate analysis on the entire population.

In detail, at each iterationNP models are generated according to the regressors’
probabilities ρj ∼ Be(µj), for j = 1 . . .m, where the µj are referred to as Regres-
sor Inclusion Probabilities (RIPs). A simple check is done to make sure that
there are no empty models. Each extracted model undergoes a t-student statisti-
cal test to remove redundant terms. Then, the model parameters are estimated
by means of a LS procedure and the performance of each model is evaluated
according to:

J = e−K·MSPE (2.23)

K being a tuning parameter that allows to further enlarge or restrict the range
of J values, while MSPE is the mean square prediction error, Equation 2.20. The
exponential mapping on the MSPE emphasizes the difference between model
with high probabilities, in order to improve the selection capabilities of the al-
gorithm when it goes toward its convergence point. Once the performances
have been evaluated, they are used to update the RIPs parameters. Consider-
ing the entire population, for each regressor the aggregate mean performance
of models that include that term has been computed. The same is done also
for those models that do not include that term. Finally, a comparison between

Chapter 2. Review of the State of the Art 20

these two quantities is done to decide if encourage or discourage the extraction
of that regressor. More in details, the j-th RIP is updated according to:

µj(i+ 1) = µj(i) + γ · ∂EP [J]

∂µ̃j
(2.24)

where:

• the adaptive step size γ is a design parameter defined as:

γ =
1

10 · (Jmax − Jmean) + 0.1
(2.25)

where Jmax is the highest performance amongst all the others in the cur-
rent population and Jmean is the average value of the model performances.
It is a relevance measure for the update factor, in relation to the dispersion
of the J values.

• ∂EP [J]
∂µ̃j

is the update factor defined as:

∂EP [J]

∂µ̃j
= EP [J |ρ̃j = 1]− EP [J |ρ̃j = 0] (2.26)

For a better explanation see Appendix A.4.

Finally a thresholding is applied to the obtained RIP values to make sure that
they are still probabilities, i.e. µj ∈ [0, 1]. The algorithm goes on as long as a
chosen stopping criterion is met.
Figures 2.6 and 2.7 show a typical run of the RaMSS on the following analytic
system:

y(k) = 0.7y(k−1)u(k−1)−0.5y(k−2)−0.7∗y(k−2)u(k−2)2+0.6u(k−2)2+e(k)

with u(k) ∼ WUN(−1, 1), e(k) ∼ WGN(0, 0.04).
The RIPs associated to correct regressors are consistently increasing until they
reach 1, while all other RIPs tend eventually to 0. One can note that a spurious
regressor initially has a larger RIP than those associated to correct terms, but the
algorithm is able to discard this term as it proceeds collecting more information
on the true regressors. The average model size converges to the actual value,
implying that very small models are generated and tested.

Chapter 2. Review of the State of the Art 21

FIGURE 2.6: A typical run of the RaMSS - RIP.

FIGURE 2.7: A typical run of the RaMSS - Average Model Size
(AMS).

The RaMSS method is very attractive because of its simplicity and the en-
couraging results obtained on the analytic systems on which it has been tested.
These facts have led us to further investigate the potential of this method. The

Chapter 2. Review of the State of the Art 22

RaMSS is based on an independence assumption between regressors, whereby
each regressor is extracted independently from the others. However, this inde-
pendence is only conceptual since each RIP is updated according to the perfor-
mance of the entire population of models and so, implicitly, each regressor is
related somehow to the others. To better understand this concept, consider a
simple example.

Example 4. We have the following system:

y(t) = y(t− 1) + u(t− 1)2 + e(t).

Set ny = 1, nu = 1 and the maximum degree equal to 2. Thus, the set of all
possible regressors will be

{y(t− 1), y(t− 1)2, y(t− 1)u(t− 1), u(t− 1), u(t− 1)2}

Suppose one extracts 5 models, thus obtaining the following models-regressors
matrix:

M =

r1 r2 r3 r4 r5

m1 1 0 0 1 0
m2 0 1 0 0 1
m3 1 0 0 0 0
m4 1 0 0 0 1
m5 0 0 0 0 1

 (2.27)

The fourth model matches exactly the system and therefore will have the high-
est performance. The performances of models m3 and m5 will be high since
both models include only correct terms, but they will be worse than those of m4

in which both terms occur. Accordingly, suppose that the performance vector
J is as follows:

J = (0.974, 0.977, 0.986, 0.999, 0.983)T (2.28)

The RIPs of r1 and r5 will benefit from the presence ofm4 in the extracted popu-
lation since the performance of this model will increase significantly the update
factor, defined in Equation 2.26, of these two regressors. Conversely, the RIPs
of r2, r3 and r4 will not benefit from the presence of m4. Indeed,

considering m4 without considering m4

r1 0.009 0.003
r2 -0.009 -0.004
r3 -0.984 -0.98
r4 -0.012 -0.008
r5 0.006 0

TABLE 2.1: Update factor values for the RIPs

Thus, we can say that the presence of modelm4 clusters the regressors in two
groups: one containing the regressors which benefit from the the presence ofm4

and a second one containing the remaining ones. The model m4 is defining a
relation between regressors.

Chapter 2. Review of the State of the Art 23

This fact agrees with an experimental evidence: often, as the algorithm pro-
gresses, the regressors tend to enter/disappear jointly in a model. Accordingly
we can conclude that the regressors are somehow mutually related. This con-
clusion has motivated the work that will be presented in this thesis. The idea is
to introduce second order information about relations among regressors in the
MSS phase. In this new scenario, a Bernoulli distribution is associated to each
regressor as before, which defines the probability of extraction of that term.
However, unlike the classic RaMSS, this time the regressors are not indepen-
dent but they are correlated with a given marginal mean vector and a correla-
tion matrix.

Chapter 3

CLF based RaMSS

Correlated random variables are described by means of multivariate distribu-
tions a.k.a. joint distributions, which are parameterized by a mean vector µ and
a covariance matrix V . The components of µ are the means of the different vari-
ables. The (i, j)-th component of V is the covariance between the i-th and j-th
variable (the diagonal of V gives the variances of the variables). If these distri-
butions are known, it is straightforward to simulate the associated correlated
random variables by means of sampling methods, as described in Appendix
A.2. However, fully specifying these distributions becomes impractical as the
number of variables increases. In the literature, several methods have been pro-
posed to simulate correlated random variables with specified mean vector and
correlation matrix without fully specifying the joint distribution (Qaqish, 2003).
The simulation method introduced in (Qaqish, 2003) is here used to simulate
correlated binary variables which represent the regressors in the RaMSS. To en-
sure that the extracted models converge to the correct model we need a mecha-
nism to update the correlation matrix as well, besides that for the mean vector
(Equation 2.24). This second update rule must take into account the model per-
formances.
The chapter is organized as follows. First, we introduce and discuss a mecha-
nism to simulate correlated random variables. Then we define the update rule
for the correlation matrix and finally we discuss how to modify the RaMSS.

3.1 The Conditional Linear Family

In (Qaqish, 2003) a method is introduced to simulate correlated binary vari-
ables, such as the Bernoulli variables associated to the regressors. Let Y denote
an [n× 1] vector of Bernoulli random variables (Y1, . . . , Yn)T , with

• E(Y) = (µ1, . . . , µn)T = µ,

• corr(Y) = {rij} = R,

• cov(Y) = {vij} = V .

Note that it is easy to switch between (µ, V) and (µ,R) since for Bernoulli vari-
ables var(Y) = vii = µi(1−µi), so that specifying the pair (µ, V) is equivalent to
specifying the pair (µ,R). Indeed, the correlation and the covariance are related

24

Chapter 3. CLF based RaMSS 25

according to
rij =

vij
viivjj

, vij = rijviivjj. (3.1)

So, if one knows the correlation matrix and the variances vii, the covariance
matrix can be easily computed. The same holds if the roles were reversed.
For i = 2, . . . , n define

• Xi = (Y1, . . . , Yi−1)
T ,

• θi = E(Xi),

• Gi = cov(Xi),

• si = cov(Xi, Yi).

Generally, for i = 2, . . . , n, the conditional distribution of Yi given Xi can be
expressed in the form

pr(Yi = 1|Xi = xi) = E(Yi|Xi = xi) = µi +
i−1∑
j=1

∑
a∈Aij

kij(a)

j∏
t=1

(yat − µat) , (3.2)

where Aij is the set of integer j-vectors {a : 1 ≤ a1 < · · · < aj ≤ i− 1} and each
kij is an (

i− 1

j

)
× 1

vector conveniently indexed by elements of Aij . What will be referred to as the
conditional linear family (CLF) is obtained from Equation 3.2 by setting kij = 0,
for i = 2, . . . , n and j = 2, . . . , i− 1, leading to

E(Yi|Xi = xi) = µi + kTi1(xi − θi) (3.3)

Furthermore, for a given (µ, V), the vector of (i − 1) parameters is given in
closed form as

ki1 = G−1i si = bi for i = 2, . . . , n, (3.4)

and the corresponding CLF is given by

λi = λi(xi;µ, V) = E(Yi|Xi = xi) = µi + bTi (xi − θi) = µi +
i−1∑
j=1

bij(yj − µj) (3.5)

where yj ∈ [0, 1] is the simulation’s result of the variable Yj .
The simulation algorithm proceeds as follows. First, simulate Y1 as a Bernoulli
with mean µ1, and then, for i = 2, . . . , n, simulate Yi as a Bernoulli with condi-
tional mean λi given by Equation 3.5. It then follows that the vector Y obtained
has the required mean vector and covariance matrix. This algorithm allows un-
equal means and both positive and negative correlations but there are restric-
tions on the reproducibility of a given (µ, V), which holds if λi ∈ [0, 1]. First, V
should be positive definite in order to compute its inverse needed in Equation

Chapter 3. CLF based RaMSS 26

3.4. This restriction can be easily overcome if one considers the pseudoinverse of
V, rather than the inverse, and thus also positive semidefinite covariance ma-
trices can be considered. Details on the pseudoinverse of a matrix and on how
to compute it iteratively are in Appendix A.5. Secondly, natural restrictions
on rij are imposed by µi and µj , i.e. the marginal means limit the ranges of
covariances and correlations. Specifically,

max(0, µi + µj − 1) ≤ E(YiYj) ≤ min(µi, µj) (i 6= j) (3.6)

or equivalently,

max(−ψiψj,
−1

ψiψj
) ≤ rij ≤ min(

ψi
ψj
,
ψj
ψi

) (i 6= j) (3.7)

where, ψi = (µi/(1− µi))
1
2 .

3.2 Update rule for the correlation matrix

As presented previously, the simulation algorithm requires the mean vector and
the correlation (or covariance) matrix. While the mean vector and its update
rule are already defined in the RaMSS, the method lacks a corresponding rule
for the correlation matrix. The idea is to iteratively construct this matrix starting
from an identity matrix. The updating at the (i+ 1)-th iteration takes the form:

r
(i+1)
ij = ν · r(i)ij + (1− ν) · update factor (3.8)

where, rij is the (i, j)-th element of the correlation matrix R, ν is the learning
factor and update factor is the increment for rij . The update factor must be a
measure of the similarity between the two regressors, taking into account the
performance of the models extracted at the i-th iteration. Therefore, first we
have to define when two regressors are similar each other. Two regressors have
an high similarity when the presence of one of them in a good model implies
the presence of the other one. Vice versa, two regressors have a low similarity
when the presence (or absence) of one of them in a good model implies the
absence (or presence) of the other one. According to these definitions, we need
to discover efficiently when two regressors appear jointly in the same models.
An easy way to do that, is to use a vector space model (VSM) defined on regressors
and models. A VSM is an algebraic model for representing objects as vectors
of identifiers, in our case regressors as vectors of models. Specifically, consider
a NP-dimensional vector space, where NP is the number of models extracted at
each iteration of the algorithm. Into this vector space each model is identified
by a unit vector

mi =
(

0, 1, 0, . . . , 0
)

pointing in the direction of the i-th axis. The set of vectors mi, i = 1, . . . , NP ,
forms a canonical basis of the Euclidean space RNP .
Any regressor vector rj can be represented by a canonical basis expansion

Chapter 3. CLF based RaMSS 27

rj =
NP∑
i=1

wijmi.

The importance weights wij are defined as

wij =

{
Ji, if regressor j appears in model i
0, otherwise

where Ji is the performance of the i-th model. The entire VSM can be described
by means of a [m×NP] weighted regressor-model matrix M̃ , where m is the num-
ber of regressors and the M̃ji component is given by wij . The M̃ matrix can be
viewed as:

M̃ = MJ̃,

where:

• M is the binary regressor-model matrix, i.e. wij = 1 if regressor j appears
in model i, 0 otherwise,

• J̃ = diagonal(J1, J2, . . . , JNP).

Regressors are thus described in terms of the performance of the models in
which they appear. Therefore, two regressors are similar if the associated vec-
tors in the defined VSM are close. So, we need to quantify the distance between
vectors. A widely used distance measure in a VSM is the cosine of the angle be-
tween vectors. Specifically, given two regressors ri and rj , the cosine similarity
is defined as:

CosSim(ri, rj) =

∑
k

rikrjk√∑
k

r2ik

√∑
i

r2jk

=
〈ri, rj〉
‖ri‖‖rj‖

. (3.9)

It is bounded between 0 and +1 since ri and rj are non-negative. In general, the
cosine similarity is bounded between −1 and +1.
The cosine similarity measure defined on M̃ is a good candidate to be the up-
date factor in Equation 3.8 in that it quantifies the co-occurrences of regressors
in the models, taking into account implicitly also the model performances. This
choice is motivated also by the following consideration. Correlation and cosine
similarity are strongly related since both can be viewed as variants on the inner
product. In general, given two vectors x and y, the inner product is defined as:

Inner(x, y) =
∑
i

xiyi = 〈x, y〉

The inner product is unbounded. One way to make it bounded between −1
and +1 is to divide by the vectors’ L2 norms, giving the cosine similarity as in

Chapter 3. CLF based RaMSS 28

Equation 3.9. Cosine similarity is not invariant to shifts. What is invariant is
the Pearson correlation:

Corr(x, y) =

∑
i

(xi − x̄)(yi − ȳ)√∑
i

(xi − x̄)2
√∑

i

(yi − ȳ)2
=
〈(xi − x̄), (yi − ȳ)〉
‖(xi − x̄)‖‖(yi − ȳ)‖

where x̄ and ȳ are the respective means. The correlation is the cosine similarity
between centered versions of x and y, again bounded between −1 and +1. The
correlation is invariant to both scale and shift changes of x and y.
The update rule in Equation 3.8 can be thus expressed as:

r
(i+1)
ij = ν · r(i)ij + (1− ν) · CosSim(ri, rj). (3.10)

Defining
W = M̃M̃T

K = [kij],where kij = ‖ri‖‖rj‖

C =

[
wij
kij

]
the Equation 3.10 takes the matrix form:

R(i+1) = ν ·R(i) + (1− ν) · C. (3.11)

Matrix R(i+1) is symmetric by construction. However, a correlation matrix is a
symmetric positive semidefinite matrix with unit diagonal. So we need a mech-
anism to compute the nearest correlation matrix to a given symmetric matrix.
In (Higham, 2002) the problem considered by the author is, for arbitrary sym-
metric matrix A ∈ Rn×n, that of computing the distance

γ(A) = min{||A−X|| : X is a correlation matrix}

and calculating the matrix that achieves this minimum distance. The norm is a
weighted version of the Frobenius norm, i.e. ||A||F = ||W 1

2AW
1
2 ||F , where W is

a symmetric positive definite matrix.
Define the sets

S = {Y = Y T ∈ Rn×n : Y ≥ 0}

U = {Y = Y T ∈ Rn×n : yii = 1, i = 1, . . . , n}

We are looking for a matrix in the intersection of S and U that is closest toA in a
weighted Frobenius norm. Since S and U are both closed convex sets, so is their
intersection. This problem concerns a projection from the symmetric matrices
onto the correlation matrices, with respect to a weighted Frobenius form. To
find such matrix we might iteratively project by repeating the operation

A←− PU(PS(A))

Chapter 3. CLF based RaMSS 29

where, PU(A) and PS(A) are respectively, the projection of the matrix A onto
space U and S.

Theorem 1. (Higham, 2002)

PU(A) = A−W−1diag(θi)W
−1,

where θ = [θ1, . . . , θn]T is the solution of the linear system

(W−1 ·W−1)θ = φ

where φ = [aii − 1] for i = 1, . . . , n.

In the case where W is diagonal we can write, more simply,

PU(A) = (pij), pij =

{
aij, (i 6= j)

1, (i = j)

For PS(A), we need to define two auxiliary matrices. Given a symmetric matrix
A ∈ Rn×n with spectral decomposition A = QDQT , where D = diag(λi) and Q is
an orthogonal matrix, let

A+ = Qdiag(max(λi, 0))QT , A− = Qdiag(min(λi, 0))QT

Theorem 2. (Higham, 2002)

PU(S) = W− 1
2 ((W

1
2AW

1
2)+)W− 1

2

Using the defined projections PU(A) and PU(S), one can define the following
general algorithm:

Algorithm 3.1 Nearest Correlation Matrix
1: ∆S0 = 0; . Correction term
2: Y0 = A; . Starting real symmetric matrix
3: for k=1,2,. . . do
4: Rk = Yk−1 −∆Sk−1;
5: Xk = PS(Rk);
6: ∆Sk = Xk −Rk;
7: Yk = PU(Xk);
8: end for

The result is a correlation matrix, i.e. a symmetric positive semidefinite with
unit diagonal matrix.

Chapter 3. CLF based RaMSS 30

Example 5. Suppose one has the following unweighted regressor-model ma-
trix:

m1 m2 m3

r1 0 1 1
r2 1 1 0
r3 1 0 1

r1 co-occures with r2 in the m2, r2 co-occures with r3 in the m1 and finally, r1 co-
occures with r3 in the m3. Without importance weights, all the co-occurrences
are equally important. In fact, the cosine similarity measures are:

r1 − r2: 0.5,

r1 − r3: 0.5,

r2 − r3: 0.5.

Consider the following model performances vector:

J = (1, 0.2, 1)T .

The resulting weighted regressor-model matrix is:

m1 m2 m3

r1 0 0.2 1
r2 1 0.2 0
r3 1 0 1

and the similarity measures become:

r1 − r2: 0.0385,

r1 − r3: 0.6934,

r2 − r3: 0.6934.

As one can note, the r1 − r2 similarity is now very low since it concerns a co-
occurrence in a bad model (m2). Meanwhile, the r1 − r3 similarity is increased,
since the two regressors co-occur in a good model (m3) and do not co-occur in
a bad model (m2). The same holds for the pair r2 − r3.
Consider now the following models performances vector:

J = (1, 0.2, 0.2)T .

The resulting weighted regressor-model matrix is:

m1 m2 m3

r1 0 0.2 0.2
r2 1 0.2 0
r3 1 0 0.2

and the similarity measures become:

Chapter 3. CLF based RaMSS 31

r1 − r2: 0.1387,

r1 − r3: 0.1387,

r2 − r3: 0.9615.

The r1−r2 similarity is slightly increased since now it takes into account also the
no co-occurrence in the bad model m3. The r1 − r3 similarity is fell down since
now there is anymore a co-occurrence in a good model. The highest similarity
regards the regressors r2 and r3 which co-occur in the good model m1 and do
not co-occur in both bad models m2 and m3.
To sake of completeness, consider the case in which all the models are poor:

J = (0.2, 0.2, 0.2)T .

The resulting weighted regressor-model matrix is:

m1 m2 m3

r1 0 0.2 0.2
r2 0.2 0.2 0
r3 0.2 0 0.2

and the similarity measures become:

r1 − r2: 0.5,

r1 − r3: 0.5,

r2 − r3: 0.5.

These results are reasonable in that, if there are no truly good models, the poor
ones become the current good ones.
Therefore, including the models performance in the VSM is essential to cor-
rectly quantify the importance of the co-occurrences.

Remark 1. The VSMs are widely used in the Information Retrieval field where
the goal is to retrieve a set of relevant documents to a given query. In this field,
queries and documents are defined as vectors of components. Each component
of the vector reflects a particular concept, key word, or term associated with the
given document. The value assigned to that component reflects the importance
of the term in representing the semantics of the document. Typically, the value
is a function of the frequency with which the term occurs in the document or in
the document collection as a whole. An often used function is the td-idf statistic
whose value increases proportionally to the number of times a term appears
in the document, but is offset by the frequency of the term in the collection,
which helps to adjust for the fact that some terms appear more frequently in
general. A collection of d documents described by t terms is represented as
a [t × d] term-by-document matrix. The d vectors representing the d documents
form the columns of the matrix. Thus, the matrix elementA[i, j] is the weighted
frequency at which term i occurs in document j.

Chapter 3. CLF based RaMSS 32

Query matching consists in finding the documents most similar to a given
query. In the VSM, the documents selected are those geometrically closest to
the query according to some measure, such as the cosine similarity.

FIGURE 3.1: Vector space model in the Information Retrieval filed.

Example 6. Suppose one has the following set of five documents:

d1 : Romeo and Juliet.

d2 : Juliet: O happy dagger!

d3 : Romeo died by dagger.

d4 : ”Live free or die”, that’s the New-Hampshire’s motto.

d5 : Did you know, New-Hampshire is in New-England.

and a search query: die, dagger.
Let A be the term-document matrix, where A[i, j] = a if term i occurs a times in
the document j:

d1 d2 d3 d4 d5

romeo 1 0 1 0 0
juliet 1 1 0 0 0
happy 0 1 0 0 0
dagger 0 1 1 0 0
live 0 0 0 1 0
die 0 0 1 1 0
free 0 0 0 1 0

new−hampshire 0 0 0 1 1

Clearly, d3 should be ranked top of the list since it contains both die, dagger.
Then d2 and d4 should follow, each containing a word of the query. Indeed, the
query vector is given by

q = (0, 0, 0, 1, 0, 1, 0, 0)T ,

Chapter 3. CLF based RaMSS 33

and the cosine similarity measures are, in order, 0, 0.4082, 0.8165, 0.3536 and 0.
However, what about d1 and d5? Should they be returned as possibly relevant
document to this query? As humans we know that d1 is quite related to the
query. On the other hand, d5 is not so much related to the query. Thus, we
would like d1 to be ranked higher than d5. Several approaches have been devel-
oped to solve these failures of the basic VSM, such as Latent Semantic Analysis.

3.3 The C-RaMSS algorithm

The CLF tool presented in the Section 3.1 and the update rule for the correla-
tion matrix defined in the Section 3.2 can be exploited to define a variant of the
RaMSS algorithm that will be referred as the C-RaMSS algorithm (Conditioned-
RaMSS). More in detail, at each regressor ϕi is associated a Bernoulli random
variable ρi which is used to establish if ϕi belongs to the model that we are ex-
tracting. The regressors are dependent on each other and the conditional prob-
ability of extraction of each regressor is computed according to Equation 3.5.
The RIP vector and the correlation matrix R are used by the CLF method as ref-
erence statistics for the new population of extracted models. The m regressors
are initially uniformly distributed while the correlation matrix R is initialized
as an identity matrix. At each iteration a population of NP models is extracted.
The linear coefficients bi depend only on the covariance matrix V , so they are
constant for all models, while the conditional probabilities depend also on the
models due to yj ∈ [0, 1]. So, for each regressor we can simultaneously simulate
the extraction for all the models, considering for each model, its relative λi. A
check is done to verify that no model is empty. If this happens, we randomly
switch a regressor. Once the models have been extracted, parameter estimates
are carried out with LS. A statistical t-test is performed in order to remove re-
dundant regressors and then the parameters are re-estimated. The significance
confidence level α for the statistical test is a tuning parameter. The performance
of each model is evaluated through the index defined in Equation 2.23, where
factor K is a tuning parameter. Finally, the correlation matrix and the RIPs are
updated according to the rules in Equations 3.11 and 2.24. The learning factor
ν is a tuning parameter. Notice that the tuning rule for the RIPs does not en-
sure that the new parameters µj remain in the [0, 1] interval. Therefore, suitable
saturation thresholds µmin and µmax must be introduced to keep the µj in the
mentioned interval. The Algorithm 3.2 summarizes the whole model identifi-
cation procedure.

Chapter 3. CLF based RaMSS 34

Algorithm 3.2 C-RaMSS algorithm

1: Input:{(u(k), y(k)), k = 1, · · · , N},< = {ϕj(k), j = 1, · · · ,m},
2: NP,K, ν, α, µ, µmin, µmax
3: Output:µ
4: µi ← 1

m
;

5: R← identity matrix;
6: repeat
7: Compute the covariance matrix V;
8: ψp(k) = [];
9: τp = 0;

10: for p=1,. . . ,NP do . Generate first regressor
11: Extract rp,1 from Be(µ1);
12: if rp,1 = 1 then . Add regressor
13: ψp(k)← ϕ1(k);
14: yp,1 ← 1;
15: τp ← τp + 1;
16: else
17: yp,1 ← 0;
18: end if
19: end for
20: for i=2,. . . ,m do . Generate regressors
21: Gi ← V [1, · · · , i− 1; 1, · · · , i− 1];
22: s← V [i; 1, · · · , i− 1];
23: bi ← pseudoinverse(Gi) · s; . Generate linear coefficients
24: for p=1,. . . ,NP do

25: λi ← µi +
i−1∑
j=1

bij(yp,j − µj); . Compute conditional probabilities

26: Extract rp,i from Be(λi);
27: if rp,i = 1 then . Add regressor
28: ψp(k)← [ψp(k)Tϕi(k)]T ;
29: yp,i ← 1;
30: else
31: yp,i ← 0;
32: end if
33: end for
34: end for
35: Check for empty model;

Chapter 3. CLF based RaMSS 35

36: for p=1,. . . ,NP do

37: θ̂ ←
(∑N

k=1 ψp(k)ψp(k)T
)−1∑N

k=1 ψp(k)y(k); . Estimation

38: V AR←
(∑N

k=1 ψp(k)ψp(k)T
)−1

;

39: σ̂2
e ← 1

N−τp

∑N
k=1(y(k)− ψp(k)T θ̂);

40: for h=1,. . . ,τp do . Remove redundant terms
41: σ2

h ← σ2
e · V ARh,h;

42: if |θ̂h| ≤ σ̂h · tα,N−τp then
43: Remove regressor ψp,h(k) from ψp(k);
44: end if
45: end for
46: θ̂ ←

(∑N
k=1 ψp(k)ψp(k)T

)−1∑N
k=1 ψp(k)y(k); . Re-estimation

47: Jp ← e−K·PEp ; . Model evaluation
48: end for
49: for j=1,. . . ,m do . Update RIPs
50: J+ ← 0; n+ ← 0; J− ← 0; n− ← 0;
51: for p=1,. . . ,NP do
52: if ϕj ∈ ψp(k) then
53: J+ ← J+ + Jp; n+ ← n+ + 1;
54: else
55: J− ← J− + Jp; n− ← n− + 1;
56: end if
57: end for
58: µj ← µj + γ

(
J+

max(n+,1)
− J−

max(n−,1)

)
;

59: µj ← max (min (µj, µmax) , µmin);
60: end for
61: M ← (ψ1(k), . . . , ψNP (k)); . Define unweighted regressor-model matrix
62: M̃ ←M · diag(J1, . . . , JNP); . Define weighted regressor-model matrix
63: W ← M̃ · M̃T ;
64: Ki,j ← ‖ϕi‖‖ϕj‖;
65: Ci,j ← Wi,j

Ki,j
;

66: R← νR + (1− ν)C; . Update correlation matrix R
67: Compute the nearest correlation matrix toR according to Algorithm 3.1;
68: Check constraints on R values according to Equation 3.7;
69: until Stopping criterion on µi is not met . Stopping criterion

Chapter 4

Simulation results

In this chapter several simulation examples are discussed to show the effective-
ness of the C-RaMSS algorithm. First, a typical run of the algorithm has been
shown to illustrate the behavior of the proposed algorithm. Then an analysis of
the algorithm performance has been carried out considering different values of
the several tuning parameters. Finally, a comparative analysis w.r.t. the RaMSS,
the FROE and the RJMCMC algorithms has been carried out to assess the good-
ness of the C-RaMSS method. This analysis has been performed considering
some systems taken from the literature (Wei and Billings, 2008; Baldacchino,
Anderson, and Kadirkamanathan, 2013; Bonin, Seghezza, and Piroddi, 2010;
Piroddi and Spinelli, 2003; Mao and Billings, 1997; Aguirre, Barbosa, and Braga,
2008):

S1:
y(k) = −1.7y(k − 1)− 0.8y(k − 2) + u(k − 1) + 0.8u(k − 2) + e(k),

with u(k) ∼ WUN(−2, 2), e(k) ∼ WGN(0, 0.01)

S2:

y(k) = 0.7y(k−1)u(k−1)−0.5y(k−2)−0.7∗y(k−2)u(k−2)2+0.6u(k−2)2+e(k),

with u(k) ∼ WUN(−1, 1), e(k) ∼ WGN(0, 0.04)

S3:

y(k) = 0.8y(k − 1) + 0.4u(k − 1) + 0.4u(k − 1)2 + 0.4u(k − 1)3 + e(k),

with u(k) ∼ WGN(0, 0.3), e(k) ∼ WGN(0, 0.01)

S4:

y(k) = 0.5y(k − 1) + 0.8u(k − 2) + u(k − 1)2 − 0.05y(k − 2)2 + 0.5 + e(k),

with u(k) ∼ WGN(0, 0.3), e(k) ∼ WGN(0, 0.01)

S5:

y(k) = 0.2y(k − 1)3 + 0.7y(k − 1)u(k − 1)− 0.5y(k − 2)−
−0.7y(k − 2)u(k − 2)2 + 0.6u(k − 2)2 + e(k),

36

Chapter 4. Simulation results 37

with u(k) ∼ WUN(−1, 1), e(k) ∼ WGN(0, 0.01)

S6:
y(k) = 0.75y(k − 2) + 0.25u(k − 1)− 0.2y(k − 2)u(k − 2) + e(k),

with u(k) ∼ WGN(0, 0.25), e(k) ∼ WGN(0, 0.02)

where WGN(η, σ2) is a white noise with a Gaussian distribution with mean η
and standard deviation σ, while WUN(a, b) is a white noise with Uniform dis-
tribution in the interval [a, b].

All the tests have been performed in MATLAB 2014b enviroment, on an HP
ProBook 650 G1 CORE i7-4702MQ CPU @2.20 GHz with 8GB of RAM.

4.1 Typical run of the C-RaMSS algorithm

A typical run of the C-RaMSS algorithm is analyzed considering the system S2.
The candidate regressor set contains all the monomials obtained as combination
of the the lagged input and output signals with maximum lags, nu and ny, equal
to 4 and maximum degree equal to 3 for a total of m = 165 regressors. The
number of models generated at each iteration, NP , is set to 200 and the initial
RIPs equal to µj = 1

m
. By doing so, all the regressors have initially the same

probability of being extracted and the early models have typically a small size.
The initial correlation matrix R is initialized as an identity matrix in order not
to influence the model extraction at the first iteration. The tuning parameter K
in the performance index J is set to 1 and the learning factor ν is set to 0.1.

FIGURE 4.1: A typical evolution of the RIPs.

Chapter 4. Simulation results 38

FIGURE 4.2: A typical evolution of the Average Model Size value.

FIGURE 4.3: Evolution of the correlation associated to true regres-
sors - S2

Chapter 4. Simulation results 39

Figures 4.1, 4.2 and 4.3 illustrate respectively the evolution of the RIPs, that
of the average model size (AMS) value and that of the correlation value associated
to pairs of true regressors. The RIPs associated to the correct (true) regressors
are gradually increasing until they reach 1. On the other hand the RIPs asso-
ciated to the other regressors, after a transient, tend to 0. The AMS is globally
monotonically increasing to the correct value. This emphasizes the incremen-
tal nature of the selection procedure which starts from very small models and
progressively increases the (average) size of the explored models. The correla-
tion values gradually reach 1 but the evolution is not monotonically increasing.
Why does it happen? One can note in Figure 4.1 that around the fifteenth itera-
tion some RIPs associated to spurious regressors are still quite high, leading to
the generation of models with both these regressors and the true ones. This im-
plies that the corresponding correlation values are different from zero. Thanks
to the update rule 2.24 the RIPs associated to the spurious regressors progres-
sively decrease and these regressors tend to disappear from models. The pres-
ence into models of true regressors correlated with the spurious ones is slightly
affected as well, according to Equation 3.5. This leads to a temporary reduction
of the similarity between true regressors. This side effect is temporary since
the RIPs associated to true regressors increase anyway thanks to the significant
gap between them and those associated to the spurious regressors, which en-
sures their inclusion in at least few models. The correlation between true terms,
which is significant despite its reduction, helps as well to ensure the inclusion
of these terms in models. The correlation values, not reported in Figure 4.3,
associated to pairs of spurious regressors or pairs of regressors that do not co-
occur frequently tend to zero.
For the sake of completeness, the parameters estimate of the identified model
is reported in Table 4.1.

real value estimated value
θ1 -0.5 -0.5049
θ2 0.7 0.7013
θ3 0.6 0.5897
θ4 -0.7 -0.6699

TABLE 4.1: Estimated parameters

Other model selection problems may turn out to be more difficult to tackle
compared to the previous example. Consider e.g. Figures 4.4, 4.5 and 4.6 which
refer to a run of the algorithm on system S4. The final model selection is cor-
rect, but this time some spurious regressors have a long transient and the rel-
ative RIPs are quite high for some time. This implies that these regressors are
present in several intermediate models. Another interesting fact is that at a cer-
tain point, roughly at around the 25-th iteration, there is a sort of restart of the
procedure. This can be noted from all the evolution curves. In fact, in Figure 4.4
it is evident how at a certain point some RIPs associated to spurious regressors,
that until then had a rising trend, suddenly converge to 0. In the meanwhile,
some of the other regressors, including one of the true terms which is missing,

Chapter 4. Simulation results 40

start to become relevant. In Figure 4.5, at around the same point, there is a sud-
den rise of the model size towards the true value. This is due to the random
nature of the algorithm which allows to exit from a local optimum point of the
search space, leading to the correct model structure selection. Therefore, these
jumps encourage a global search in the solution space. In Figure 4.6 one can
note that around the 25-th iteration some true regressors start to be correlated,
according to the stable inclusion of these regressors into the models.

Chapter 4. Simulation results 41

FIGURE 4.4: A not straightforward evolution of the RIPs.

FIGURE 4.5: A not straightforward evolution of the Average
Model Size value.

C
hapter

4.Sim
ulation

results
42

r1 w.r.t. r2, r7, r18 and r36 r2 w.r.t. r7, r18 and r36

r7 w.r.t. r18 and r36 r18 w.r.t. r36

FIGURE 4.6: Evolution of the correlation associated to true regressors - S4

Chapter 4. Simulation results 43

4.2 C-RaMSS algorithm performance

To collect some statistics about the algorithm performance, 300 runs of the C-
RaMSS algorithm have been carried out for each system and the results have
been aggregated. For each system, the data-set is composed of 500 randomly
generated input/output pairs. To ensure the reproducibility and consistency of
the results the random number generator is always initialized with the same
seed. Several statistics have been studied:

number of iterations: number of performed algorithm iterations,

elapsed time: time required to obtain the final model,

correctness: percentage of exact model selections,

explored models: number of distinct models explored by the algorithm,

maximum AMS: maximum model size amongst all the mean sizes computed
at each iteration,

final AMS: average model size of the last iteration.

The aggregated results in Table 4.2 are obtained with the following configura-
tion of the tuning parameters: nu = ny = 4, maximum order of non linearity is
set to 3, NP = 200, K = 1, ν = 0.1 and α = 0.997.

S1 S2 S3 S4 S5 S6

Correct selection 88.3% 100% 100% 91.3% 100% 100%
of Iterations 29.57 20.41 19.6 58.77 26.32 98.66
Elapsed Time [sec] 15.63 10.56 10.5 31.92 16.96 48.52
Maximum AMS 4.65 4.02 4.0 5.11 5.01 2.68
Final AMS 4.08 3.99 3.98 4.93 4.98 2.66
Explored Models 562.6 643.0 584.6 796.1 839.0 377.91

TABLE 4.2: C-RaMSS - Overall view

Each cell of Table 4.2 reports the average value over 300 runs of the cor-
responding statistic. Regardless of the correctness of the selected models, the
final values for the AMS show that the algorithm tends to select models which
have the actual number of regressors. Actually, these final values for the AMS
are slightly different from the actual model size values due to the thresholds
imposed on the RIP values. Indeed, µmin > 0 and µmax < 1 and therefore there
is no absolute certainty that a specific regressor is or is not extracted. There-
fore, in the population of extracted models there may be some ”outliers” that
cause these statistics to drift from their actual values. Considering the maxi-
mum AMS values, one can note how close they are to their relative final values,
except for system S1, whose maximum AMS value is somewhat bigger than the
final. This implies that the algorithm mainly explores solutions of size smaller
or equal to the actual one. The large gap between the two statistics of system

Chapter 4. Simulation results 44

FIGURE 4.7: RIP value for each regressor. The red triangular
markers are used to identify the correct regressors.

S1 means that the algorithm remains stalled for some time before converging to
the true model on some local optimum points of the search space which repre-
sent models of larger size. As pointed out in (Falsone, Piroddi, and Prandini,
2014) this aspect may be due to the fact that the chosen family is largely over-
parametrized with respect to the simple linear structure of S1. Notice how the
MSS process explores an infinitesimal fraction of the (2165 − 1) possible models.
Nonetheless, this tiny fraction is enough to drive the MSS procedure toward
the correct model (or an equivalent one) thanks to the update rules for the RIPs
and the correlation matrix which exploit the information extracted from all the
partial models, so that no information is wasted. As an example, consider Fig-
ure 4.7 that illustrates the RIPs at the tenth iteration of the algorithm on system
S2. The gap between the RIPs relative to the correct regressors and the remain-
ing ones demonstrates how this small set of information is enough to select the
correct structure after few iterations.

We next analyze the impact of the learning factor ν, Equation 3.11, on the
selection procedure.

Chapter 4. Simulation results 45

4.2.1 Learning factor

Consider the following configuration of the tuning parameters: nu = ny = 4,
maximum order of non linearity is set to 3, NP = 200, K = 1 and α = 0.997.
The algorithm has been tested on several values of the learning factor. Notice
that it does not make sense to take ν > 0.5 since then older data would be more
influential than recent ones.

S1 S2 S3 S4 S5 S6

Correct selection 85.3% 100% 100% 90.7% 100% 100%
of Iterations 28.78 20.62 20.35 56.4 27.41 96.38
Elapsed Time [sec] 15.63 11.43 11.73 31.56 18.3 47.59
Maximum AMS 4.6 4.01 3.99 5.14 5.01 2.66
Final AMS 4.11 3.98 3.98 4.97 4.98 2.64
Explored Models 551.2 668.6 593 808.4 894.4 378.63

TABLE 4.3: C-RaMSS - ν = 0.3.

S1 S2 S3 S4 S5 S6

Correct selection 84.3% 100% 100% 92.3% 100% 100%
of Iterations 29.59 21.13 20.02 58.55 28.52 86.05
Elapsed Time [sec] 17.87 11.54 12.22 36.43 16.37 43.16
Maximum AMS 4.6 4.0 4.0 5.12 5.02 2.57
Final AMS 4.10 3.98 3.989 4.93 4.98 2.55
Explored Models 573 730 599.7 840.3 965.6 394.09

TABLE 4.4: C-RaMSS - ν = 0.5.

Regarding ν = 0.1 the aggregated results are those reported in Table 4.2.
Considering Tables 4.2, 4.3 and 4.4 one can immediately note that amongst all
the statistics the number of explored models is the most sensitive to ν while
the others are less sensitive to it. Why does the number of explored models
slightly increase as ν increases? At the early iterations the small model size
leads to many zero regressor vectors and thus the cosine similarity between
two of them is set to zero, according to the definition of similarity between re-
gressors which is based on the concept of co-occurrences (Section 3.2). As ν
increases, the correlation update rule takes progressively into greater account
the past correlation values and this helps to have denser correlation matrices
despite the actual density of the cosine similarity matrix. Denser correlation
matrices influence more significantly the extraction of the models, through the
CLF method, possibly leading to the inclusion of regressors despite of the real
value of the associated RIPs. This causes a greater exploration of the solutions
space. Then, as the algorithm proceeds, these past correlation values become
always smaller due to the learning factor less than 1, and eventually go to zero
if the associated pairs of regressors no longer occur.
The wider exploration of the solution space does not imply an increase in the
maximum and final AMSs. This supports the thesis that the wider exploration

Chapter 4. Simulation results 46

affects mainly the early iterations in which the extracted models have always
size smaller than the correct one (Figure 4.2).
Systems S2, S3, S5 and S6 are not affected by the increase in the learning factor.
In fact, the algorithm is always able to find the correct model for these systems.
Instead, this does not happen with system S1 for which the algorithm fails pro-
gressively more as ν increases. As said before, this may be due to the fact that S1

has a simple linear structure. The algorithm fails to identify the correct model
as well on system S4. This time there is not a strong relation between ν and
the correctness value, the case ν = 0.3 being slightly worse than ν = 0.1 while
ν = 0.5 is the best.
To recap, the learning factor has a direct effect on the number of explored mod-
els, which slightly increases as ν increases. There does not appear to be a strong
relation between ν and the correctness. All the other statistics are not influenced
by ν.

We next analyze the impact of the number of extracted models at each iter-
ation, NP , on the selection procedure.

Chapter 4. Simulation results 47

4.2.2 Number of extracted models

Consider the relation between the analyzed statistics and NP , the number of
models extracted at each iteration. Intuitively, the elapsed time may be strongly
correlated to the increase inNP since the time required to generate all the mod-
els increases. Also the number of explored models may be affected byNP since
as NP increases, the probability to extract distinct models increases, mostly in
the early iterations. The results presented here have been obtained by setting
nu = ny = 4, maximum order of non linearity equal to 3, K = 1, α = 0.997. The
value of ν has been chosen according to the analysis carried on the learning
factor. Specifically, the values ν = 0.1 for system S2 and ν = 0.5 for system S4

have been chosen.

NP = 25 NP = 50 NP = 75 NP = 100 NP = 200 NP = 300
Correct selection 93.7% 100% 100% 100% 100% 100%
of Iterations 54.33 33.72 26.54 24.23 20.41 19.33
Elapsed Time [sec] 15.18 11.4 9.67 10.1 10.55 13.85
Maximum AMS 5.12 4.44 4.18 4.13 4.02 4.0
Final AMS 4.13 3.98 3.98 3.98 3.99 3.99
Explored Models 182.7 235.3 299.5 376.4 642.95 815.57

TABLE 4.5: C-RaMSS - Analysis on S2 of the effect of NP .

NP = 25 NP = 50 NP = 75 NP = 100 NP = 200 NP = 300
Correct selection 67% 75.3% 76.3% 85.3% 92.3% 93.3%
of Iterations 70.14 49.96 51.43 52.21 58.55 54.31
Elapsed Time [sec] 22.22 18.14 20.13 24.08 36.43 41.24
Maximum AMS 6.94 5.94 5.72 5.49 5.12 5.09
Final AMS 5.45 5.3 5.28 5.15 4.93 4.99
Explored Models 269.32 362.83 493.92 580.23 840.28 1040.4

TABLE 4.6: C-RaMSS - Analysis on S4 of the effect of NP .

The aggregated results in Tables 4.5 and 4.6 confirm what one can expect re-
garding the number of explored models. In fact, it increases significantly asNP
increases. Instead, the elapsed time does not necessarily increase because of a
simultaneous reduction of the number of iterations required to achieve conver-
gence. Indeed, the algorithm collects progressively more information in a single
iteration as NP increases and thus it requires fewer iterations to converge to a
specific model structure.
Regarding S2, the decreasing trend of the maximum AMS value is simply due
to the fact that, asNP increases, the importance of the biggest models decreases
thanks to the averaging operator. This occurs also for S4 when NP is greater
than 100. Instead, for NP less than 100 the AMS value is significantly condi-
tioned by the low percentage of exact model selections.
Regarding S4, the interesting fact is that the wider exploration importantly af-
fects the correctness of the selection procedure. In fact the percentage of exact
model selections monotonically increases as NP increases. This is reasonable

Chapter 4. Simulation results 48

since a wider exploration helps the algorithm to collect information from a big-
ger set of intermediate models. As previously said, ν affects the number of
explored models as well. However, this strong relation between explored mod-
els and correctness was not so evident since the increase in the number of vis-
ited models was not significant compared to that caused by the increase in NP .
One can ask if the monotonic increasing trend can lead to a 100% of correctness.
The aggregated results in Table 4.7 show that there is a limit in the correct-
ness achievable by increasing NP . Note that the number of required iterations
remains almost constant leading to a continuous increase of the elapsed time
because of the greater effort required to the models generation.

NP = 400 NP = 500
Correct selection 96% 90.5%
of Iterations 53.05 55.33
Elapsed Time [sec] 61.331 82.61
Maximum AMS 5.12 5.13
Final AMS 5.0 5.04
Explored Models 1234.7 1382.1

TABLE 4.7: C-RaMSS - Analysis on S4 of the effect of increasingly
big NP .

For the sake of completeness, consider what happens with system S1 when
moving toward bigger populations of extracted models. As said before, S1 is
a linear system and thus the chosen family is largely over-parametrized with
respect to its simple linear structure. As pointed out by the analysis on the
learning factor, a wider exploration causes a degradation of the algorithm per-
formance when the procedure is tested on S1. Indeed, one can note how the
correctness is reduced as NP increases (Table 4.8).

NP = 25 NP = 50 NP = 75 NP = 100 NP = 200 NP = 300
Correct selection 78.3% 93.3% 91.7% 90% 88.3% 83%
of Iterations 52.13 40.15 34.0 32.75 29.57 27.19
Elapsed Time [sec] 21.04 18 14.98 13.94 15.63 19.564
Maximum AMS 6.58 5.39 4.98 4.92 4.65 4.44
Final AMS 4.25 4.06 4.08 4.07 4.08 4.06
Explored Models 252.86 329.5 374.7 448.9 562.6 590.4

TABLE 4.8: C-RaMSS - Analysis on S1 of the effect of NP .

Chapter 4. Simulation results 49

4.3 Comparative analysis

For each system, a comparative analysis between the C-RaMSS, the RaMSS and
the FROE has been performed to assess the effectiveness of the C-RaMSS. Fi-
nally, our results on system S2 have been compared with those of the RJMCMC
method. The C-RaMSS was used the following configuration for the tuning pa-
rameters: nu = ny = 4, maximum order of non linearity equal to 3, K = 1,
α = 0.997. The analyzed tuning parameters are set as follows:

S1: NP = 50 and ν = 0.1,

S4: NP = 400 and ν = 0.5,

other: NP = 200 and ν = 0.1.

4.3.1 RaMSS vs C-RaMSS

RaMSS - NP = 100 RaMSS - NP = 200 C-RaMSS
Correct selection 90.3% 78.3% 93.3%
of Iterations 57.2 59.51 40.15
Elapsed Time [sec] 3.27 6.25 18
Maximum AMS 5.23 4.93 5.39
Final AMS 4.08 4.05 4.06
Explored Models 864.7 1056.1 329.5

TABLE 4.9: Comparative analysis - S1

RaMSS - NP = 100 RaMSS - NP = 200 C-RaMSS
Correct selection 100% 100% 100%
of Iterations 33.16 31.92 20.41
Elapsed Time [sec] 1.67 2.77 10.56
Maximum AMS 3.99 3.99 4.02
Final AMS 3.98 3.98 3.99
Explored Models 662.7 1091.3 643.0

TABLE 4.10: Comparative analysis - S2

RaMSS - NP = 100 RaMSS - NP = 200 C-RaMSS
Correct selection 100% 100% 100%
of Iterations 25.53 24.18 19.6
Elapsed Time [sec] 1.24 2.07 10.5
Maximum AMS 3.99 3.99 4
Final AMS 3.98 3.98 3.98
Explored Models 483.4 728.14 584.6

TABLE 4.11: Comparative analysis - S3

Chapter 4. Simulation results 50

RaMSS - NP = 100 RaMSS - NP = 200 C-RaMSS
Correct selection 78% 71.33% 96%
of Iterations 69.4 74.36 53.05
Elapsed Time [sec] 4.57 9.14 61.33
Maximum AMS 5.53 5.43 5.12
Final AMS 5.31 5.37 5.0
Explored Models 744.6 1038.2 1234.7

TABLE 4.12: Comparative analysis - S4

RaMSS - NP = 100 RaMSS - NP = 200 C-RaMSS
Correct selection 100% 100% 100%
of Iterations 46.82 45.53 26.32
Elapsed Time [sec] 2.59 4.42 16.96
Maximum AMS 5.0 4.98 5.01
Final AMS 4.98 4.98 4.98
Explored Models 951.41 1619.6 839.0

TABLE 4.13: Comparative analysis - S5

RaMSS - NP = 100 RaMSS - NP = 200 C-RaMSS
Correct selection 66% 82% 100%
of Iterations 105.89 103.36 98.66
Elapsed Time [sec] 6.66 9.16 48.52
Maximum AMS 2.55 2.33 2.68
Final AMS 2.52 2.32 2.67
Explored Models 287.96 437.84 377.91

TABLE 4.14: Comparative analysis - S6

The C-RaMSS outperforms (or at least equals) the RaMSS for all the systems.
The most significant results are obtained for S4 and S6 for which the gain in
correctness is 18% .
The second significant result concerns the minor number of iterations required
to obtain the final model (Table 4.15).

RaMSS - NP = 100 RaMSS - NP = 200
S1 29.8 32.5
S2 38.4 36.1
S3 23.2 18.9
S4 23.6 28.7
S5 43.8 42.2
S6 6.8 4.55

TABLE 4.15: Gain in the number of required iterations [-%].

Chapter 4. Simulation results 51

Another interesting result concerns the number of explored models. Indeed,
the C-RaMSS outperforms the RaMSS although it explores less (regarding S4

the greater number of explored models by the C-RaMSS is due to NP which
is the double that used by the RaMSS). This seems at odds with what has been
previously said about the benefits of having a wider exploration. Actually, that
consideration still holds. The new evidence simply says that the C-RaMSS ex-
plores better than the RaMSS the solution space thanks to the extra informa-
tion contained in the correlations between regressors which constrain the ex-
ploration.
The maximum and final AMS are not affected by the new method. Regarding
these statistics, the differences between the RaMSS and its variant on systems
S4 and S6 are a direct consequence of the increase in correctness.
All these improvements come at the cost of an increasing elapsed time due
to the extra computation required to generate models according to the CLF
method.

Chapter 4. Simulation results 52

4.3.2 RaMSS vs C-RaMSS with colored noise as input

Assume that the input signal u(t) is a filtered white noise a.k.a. colored noise.
The MSS process is generally sensitive to the excitation characteristics of the
input, and particularly to slowly varying input signals (Piroddi and Spinelli,
2003). The aim of this analysis is to assess how the C-RaMSS behaves w.r.t. the
RaMSS when the signal is not fully exciting. Therefore, an AR(2) process is
generated starting from ξ(·) ∼ WGN(0, σ2) as:

u(t) = a1u(t− 1) + a2u(t− 2) + ξ(t).

Using the backward shift operator z−1, the AR(2) process takes the form:

u(t) = a1u(t− 1) + a2u(t− 2) + ξ(t) = a1z
−1u(t) + a2z

−2u(t) + ξ(t)

→ u(t) =
1

1− a1z−1 − a2z−2
ξ(t) =

z2

z2 − a1z − a2
ξ(t)

where the backward shift operator is defined as z−1u(t) = u(t − 1) . Therefore,
an AR process is always generated through a minimum phase filter (a filter
with all zeros lying at the origin) excited with a white noise.
The idea is to vary the position of the two poles in order to generate different
slowly varying input signals. As the poles move from the origin to the border
of the unit circle, the filtering is greater and thus slower input signals are gen-
erated (Figure 4.8).
Both the RaMSS (NP = 200) and the C-RaMSS (NP = 200, ν = 0.1) have been
tested on system S2 excited with several slowly varying input signals, the ag-
gregated results being reported in Tables 4.16 and 4.17. Both methods get into
trouble as the input signal becomes slower and slower. This is to be expected of
being PEM based methods. Indeed, parameter estimation is performed along
the PEM framework, which requires exact model matching and the input signal
to have sufficiently exciting properties to have correct estimates. Unreliable es-
timates affect the RIPs update process leading to wrong MSS. Thus, it is interest-
ing to analyze the selected structure in terms of model size and identified terms
- are they completely wrong or some of them are somehow equivalent to the
correct ones? - rather than absolute correctness. Accordingly, considering the
maximum and final AMS values relative to slow signals, one can note how the
C-RaMSS tends to explore mostly models of size smaller or equal to the actual
one while the RaMSS explores bigger ones. Consider the case p1 = 0.8, p2 = 0.75
corresponding to the signal:

u(t) = 1.55u(t− 1)− 0.6u(t− 2) + ξ(t).

Amongst all the wrong models identified by the RaMSS, more than half have
model size grater than 10, while the actual one is 4 ({y(t − 2), y(t − 1) · u(t −
1), y(t−2) ·u(t−2)2, u(t−2)2}). Instead with the C-RaMSS, the most frequently
identified model structures are:

model size equal to 4: {y(t−2), y(t−1)·u(t−1), u(t−2)2, y(t−2)·u(t−2)·u(t−3)},

Chapter 4. Simulation results 53

model size equal to 5: {y(t−2), y(t−1) ·u(t−1), u(t−2) ·u(t−3), u(t−3)2, y(t−
2) · u(t− 2)2},

model size equal to 5: {y(t− 2), y(t− 1) · u(t− 1), u(t− 2)2, y(t− 2) · u(t− 2) ·
u(t− 3), y(t− 2) · u(t− 3)2}.

As one can note, most of the identified terms are correct, the remaining ones
belonging to the correct cluster, where a cluster is a set of regressors of the same
order of nonlinearity which have been obtained combining the same type of
elementary regressors, e.g. {y(t−1) ·y(t−2), y(t−1) ·y(t−3), . . . , y(t−2)2, y(t−
2)y(t− 3), . . .} or {y(t− 1) · u(t− 1), y(t− 1) · u(t− 2), . . . , y(t− 2) · u(t− 1), . . .}.
Sometimes, the lack of a true regressor is filled with more than one equivalent
regressor.

C
hapter

4.Sim
ulation

results
54

p1 = 0.10, p2 = 0.05 p1 = 0.95, p2 = 0.90

u(t) = 0.15u(t− 1) + 0.005u(t− 2) + ξ(t) u(t) = 0.185u(t− 1) + 0.855u(t− 2) + ξ(t)

FIGURE 4.8: Slowly varying input signals

C
hapter

4.Sim
ulation

results
55

Correctness Performance # Iterations Elapsed Time [sec] Max AMS Final AMS Explored models
p1 = 0.1, p2 = 0.05 100% 0.99494 28.24 2.50 3.99 3.99 731.8
p1 = 0.6, p2 = 0.55 100% 0.99458 45.02 5.0 5.21 3.99 2641.9
p1 = 0.65, p2 = 0.6 98% 0.99415 80.98 11.50 7.13 4.12 3382.6
p1 = 0.7, p2 = 0.65 84% 0.99326 117.32 21.80 7.13 4.62 3654.7
p1 = 0.75, p2 = 0.7 62% 0.99130 168.8 34.90 8.18 6.52 3899
p1 = 0.8, p2 = 0.75 26% 0.98873 180.66 37.91 8.37 7.66 3157.8
p1 = 0.85, p2 = 0.8 8% 0.98936 121.78 20.74 5.57 5.30 2367.2
p1 = 0.9, p2 = 0.85 0% 0.99333 84.02 11.65 4.26 4.13 1849.7
p1 = 0.95, p2 = 0.9 2% 0.98617 84.68 11.09 3.80 3.64 1089.9

TABLE 4.16: RaMSS - Slowly varying input signals

Correctness Performance # Iterations Elapsed Time [sec] Max AMS Final AMS Explored models
p1 = 0.1, p2 = 0.05 100% 0.99498 18.54 9.69 4.01 3.98 427.26
p1 = 0.6, p2 = 0.55 100% 0.99432 24.54 14.05 4.04 3.98 1324
p1 = 0.65, p2 = 0.6 98% 0.99438 35.56 20.83 4.38 4.03 1591.6
p1 = 0.7, p2 = 0.65 90% 0.99367 50.3 28.88 4.63 4.08 1769.5
p1 = 0.75, p2 = 0.7 60% 0.99141 64.4 37.56 4.99 4.22 2078.6
p1 = 0.8, p2 = 0.75 34% 0.98889 60.9 34.47 4.44 4.33 1505.6
p1 = 0.85, p2 = 0.8 10% 0.99111 65.22 37.20 4.26 4.17 1577.7
p1 = 0.9, p2 = 0.85 8% 0.99344 68.18 38.53 4.22 4.06 1431.3
p1 = 0.95, p2 = 0.9 0% 0.98366 53.7 29.83 3.52 3.46 869.3

TABLE 4.17: C-RaMSS - Slowly varying input signals

Chapter 4. Simulation results 56

FIGURE 4.9: RaMSS vs C-RaMSS - Performances with slowly
varying inputs

In Figure 4.9 the average model performances for both the methods are com-
pared as the cutoff frequency increases (as the input signal becomes more excit-
ing). As one can note both the methods perform well also with slowly varying
signals, in fact all the performance values are greater than 0.98 on a range of
[0, 1]. This leads to an important consideration: though the C-RaMSS tends to
identify more compact modesl than its rival, the performances of the extracted
models are very similar.
Therefore, one can conclude that, when the input signal is not fully exciting,
the second order information of relations between regressors, used by the C-
RaMSS, constrains the exploration of the solution space leading to more com-
pact models than the RaMSS without loss of efficiency. This is very important,
since compact models are typically more robust and more easily interpretable
and thus they are useful for understanding the behavior of the underlying sys-
tem, which is the primary goal of an identification system procedure.

Chapter 4. Simulation results 57

4.3.3 FROE vs C-RaMSS

The FROE method has been tested on all the systems. Only the model structures
of systems S3 and S6 are correctly identified. Two regressors out of four are
correctly selected for system S1 while the remaining ones are lost due to the
wrong selection at the third iteration which leads to a misleading MSS. For
system S2 a constant term is added to the model. The algorithm fails also for
system S4 for which the term y(t − 2) is wrongly included instead of the term
y(t − 2)2 . Finally, for system S5 a constant term and the autoregressive term
y(t− 1) are included, while the cubic term y(t− 1)3 is left out.

Iteration Regressor Correct
1 y(t− 1) yes
2 u(t− 1) yes
3 u(t− 3) no
4 y(t− 3) no

TABLE 4.18: FROE results - S1

Iteration Regressor Correct
1 y(t− 2) yes
2 1 no
3 u(t− 2)2 yes
4 y(t− 1)u(t− 1) yes
5 y(t− 2)u(t− 2)2 yes

TABLE 4.19: FROE results - S2

Iteration Regressor Correct
1 y(t− 1) yes
2 u(t− 1) yes
3 u(t− 1)3 yes
4 u(t− 1)2 yes

TABLE 4.20: FROE results - S3

Iteration Regressor Correct
1 1 yes
2 u(t− 1)2 yes
3 u(t− 2) yes
4 y(t− 2) no
5 y(t− 1) yes

TABLE 4.21: FROE results - S4

Chapter 4. Simulation results 58

Iteration Regressor Correct
1 y(t− 2) yes
2 1 no
3 y(t− 1)u(t− 1) yes
4 u(t− 2)2 yes
5 y(t− 2)u(t− 2)2 yes
6 y(t− 1) no

TABLE 4.22: FROE results - S5

Iteration Regressor Correct
1 y(t− 2) yes
2 u(t− 1) yes
3 y(t− 2)u(t− 1) yes

TABLE 4.23: FROE results - S6

4.3.4 RJMCMC vs C-RaMSS

The analyzed system S2 has been taken from (Baldacchino, Anderson, and
Kadirkamanathan, 2013), so we can compare directly our results with those
reported by the author in the paper. The RJMCMC was run 10 times on the
same input-output data set. The maximum a posteriori model was correct on
7 occasions and the maximum a posteriori model from the aggregated results
corresponded to the true model (Table 4.24). Instead, the C-RaMSS (and the
RaMSS) is always able to identify the correct model for this system. The C-
RaMSS outperforms the RJMCMC also in terms of computational efficiency:
the method proposed in (Baldacchino, Anderson, and Kadirkamanathan, 2013)
requires a huge amount of iterations. In fact, it was run with 30, 000 iterations
and a burn in period of 5, 000 iterations.

Model MAP model Prob Correct
Term1 Term2 Term3 Term4 Term5

1 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.999 yes
2 y(t− 1)u(t− 1) y(t− 2)3 y(t− 4)u(t− 2)2 u(t− 2)2 y(t− 3)u(t− 3) 0.415 no
3 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.946 yes
4 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.775 yes
5 y(t− 1)u(t− 1) y(t− 4) y(t− 2)u(t− 2)2 u(t− 2)2 u(t− 4)2 0.796 no
6 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.961 yes
7 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.995 yes
8 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.870 yes
9 y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.997 yes
10 y(t− 3)u(t− 1) y(t− 2)u(t− 4)2 y(t− 2)u(t− 2)2 u(t− 2)2 u(t− 1)u(t− 3)2 0.76 no

Agg. y(t− 1)u(t− 1) y(t− 2) y(t− 2)u(t− 2)2 u(t− 2)2 − 0.673 yes

TABLE 4.24: RJMCM results - S2

Chapter 5

Conclusions and future work

A variant of the randomized algorithm RaMSS denoted C-RaMSS is proposed
for nonlinear system identification based on the NARX model family. This field
has been dominated by methods based on iterative model construction tech-
niques which progressively select the regressors to include into the model from
a candidate set, according to some significance criterion. Among all, the FROE
is a milestone and it is often used as a reference method for the validation of
the new ones. These methods often yield unsatisfactory models due to the dif-
ficulty to correctly assess the significance of each regressor.
The RaMSS recasts the MSS problem in a probabilistic framework where a
model distribution is defined in terms of the probabilities of each regressor to
be present in a sampled model. Then, these regressor probabilities are updated
according to the performance of the entire population of extracted models. The
algorithm proceeds untill it locally converges to a limit model distribution.
The novel variant introduces a multivariate Bernoulli distribution to formalize
the dependences among regressors, as opposed to the RaMSS which is based
on the assumption of independence between them. More specifically, the CLF
tool is used to simulate these correlated binary variables with specified mean
vector and correlation matrix without fully specifying the joint distribution. In
so doing, the probability of extracting each regressor depends on the simulation
of the previously extracted ones. The RIPs are updated as in the RaMSS, and a
new update rule is introduced for the correlation matrix. It takes into account
the cosine similarity measures calculated on a VSM where each regressor is de-
fined in terms of performances of those models in which it appears. Therefore,
two regressors are similar if they appear jointly in good models and do not ap-
pear concurrently in bad models.
The new algorithm is validated over different systems taken from the literature.
The obtained results show its advantages in terms of robustness and reliability
with respect to the RaMSS at the expense of the computational efficiency, due
to the new heavier simulation mechanism. Nonetheless, this loss in efficiency
is acceptable since the algorithm works on a batch of collected system obser-
vations, rather than on on-line data. Furthermore, the new algorithm tends to
identify more compact models than the RaMSS, when the exciting signal slowly
varies. This is an appreciable result since compact models are more robust and
easier to interpret. The C-RaMSS outperforms classical methods as the FROE
and also competitor probabilistic methods as the RJMCMC.

59

Chapter 5. Conclusions and future work 60

An interesting continuation on this line-up would be to test the algorithm over
NARMAX models, thus including also the identification of the noise process.
Furthermore, it would be useful to better investigate the impact of slowly vary-
ing input signals, in order to improve the algorithm robustness also in such
situation.
Finally, it would be nice to apply the proposed method to the general prob-
lem of features selection that has become an essential task in order to apply
data mining algorithms effectively in real-world scenarios. A challenge in this
area is the feature selection with sparse data matrices. For example, in a busi-
ness context, many individual transactions are recorded in the application such
as market basket analysis, direct-mail marketing, insurance, and health care.
These types of data collections have a sparse matrix with a large number of
attributes. This is a promising scenario for the C-RaMSS. Therefore, the idea
is to test the C-RaMSS on a real data-set and compare its results with those of
well known feature subset selection techniques, such as Stepwise Regression,
LASSO, Decision Trees, Regularized Trees. The goal is to understand if the new
algorithm can be considered an alternative to existing methods in this area and
if not, try to adapt the algorithm to this scenario.

Appendix A

Appendix

A.1 Orthogonal Least Squares

Recall that
S : y(t) = ϕT (t)θ + e(t) e(t) ∼ WN(0, σ2) (A.1)

Define

Y =

 y(1)
...

y(N)

 Ψ =

 ϕ1(1) . . . ϕm(1)
... . . .

...
ϕ1(N) . . . ϕm(N)

 Θ =

 θ1
...
θm

 E =

 e(1)
...

e(N)

(A.2)

where N is the number of observations and m the number of basis functions.
Then, S can be expressed in matrix form as

Y = ΨΘ + E (A.3)

Assume that Ψ has full column rank. Then ΨTΨ � 0, and can be decomposed
as:

ΨTΨ = ATDA (A.4)

where A is an upper triangular matrix with unitary diagonal, and D is a diago-
nal matrix with positive diagonal elements.
Using A one can rewrite the original linear regression in a different form:

Y = ΨΘ + E = Ψ(A−1A)Θ + E = (ΨA−1)(AΘ) + E = Wg + E (A.5)

where

• the columns of W = ΨA−1 are the auxiliary regressors

• g = AΘ is the vector of the auxiliary parameters

This form is convenient, because it turns out that matrixW is orthogonal, indeed

W TW = (ΨA−1)T (ΨA−1) = (A−1)TΨTΨA−1 = (AT)−1ATDAA−1 = D (A.6)

which implies that
∑N

t=1wi(t)wj(t) = 0, i 6= j, i.e. the auxiliary regressors are
mutually orthogonal.

61

Appendix A. Appendix 62

The auxiliary parameter vector can be estimated with LS on the linear regres-
sion Y = ΨΘ + E, which yields:

ĝ = (W TW)−1W TY = D−1W TY (A.7)

 ĝ1
...
ĝm

 =

d−11 0 . . . 0

0 d−12
.

... 0
0 . . . 0 d−1m

 w1(1) . . . w1(N)

... . . .
...

wm(1) . . . wm(N)

 y(1)

...
y(N)

 (A.8)

Thanks to orthogonality of the auxiliary regressor matrix, we can compute each
auxiliary parameter independently of the others:

ĝi =

∑N
t=1wi(t)y(t)∑N
t=1wi(t)

2
(A.9)

Both original regressors and parameters can be easily calculated starting from
the auxiliary form:

W = ΨA−1 → Ψ = WA = WA+ (W −W)→ W = Ψ−W (A− I) (A.10)

g = AΘ = AΘ + (Θ−Θ)→ Θ = g − (A− I)Θ (A.11)

The auxiliary regressors can be calculated recursively as follows:

w1(t) = Ψ1(t), w2(t) = Ψ2(t)−a12w1(t), . . . , wk(t) = Ψk(t)−
k−1∑
i=1

aikwi(t), k = 2, . . . ,m.

(A.12)
As well, the auxiliary parameters can be calculated as follows:

θ̂m = ĝm, θ̂m−1 = ĝm−1 − am−1,mθ̂m, . . . , θ̂i = ĝi −
m∑

k=i+1

aikθ̂k, i = m− 1, . . . , 1.

(A.13)

Appendix A. Appendix 63

A.2 Sampling methods

As described in (Devroye, 1986) several techniques have been introduced to
solve the sampling and integration problems.

A.2.1 Inverse Sampling method

The easiest way to generate random values starting from a distribution, whose
inverse is known and computable, is the inverse sampling method which is based
on the following theorem:

Theorem 3. Let F be a continuous distribution function on R with inverse F−1

defined by
F−1(u) = Inf{x : F (x) = u , 0 < u < 1}. (A.14)

If U is a uniform [0, 1] random variable, then F−1(U) has distribution function
F . Also, if X has distribution function F , then F (X) is uniformly distributed
on [0, 1].

Thus, the inverse sampling procedure is the following:

Algorithm A.1 Inverse Sampling

1: n = 1; . number of samples
2: repeat
3: u ∼ Uniform(0, 1);
4: x = F−1(u);
5: n = n+ 1;
6: until n ≤ threshold

A.2.2 Rejection Sampling method

Often, the inverse sampling method is not applicable since it is difficult to com-
pute the distribution function or its inverse. An alternative is the rejection sam-
pling method, providing that it is possible evaluate the density function p(x) for
each possible x. The idea is to define a proposal density q(x) from which you
can sample easily and, such that, c · q(x) ≥ p(x) for some c > 1 and for each x.
Then, the rejection sampling method works as follows:

1. sample a point (an x-position) from the proposal density;

2. draw a vertical line at this x-position, up to the curve of the proposal
density;

3. sample uniformly along this line. If the sampled value is greater than the
value of the desired distribution at this vertical line, return to step 1.

Algorithmically,

Appendix A. Appendix 64

Algorithm A.2 Rejection Sampling

1: n = 1; . number of samples
2: repeat
3: x ∼ q(x);
4: u ∼ Uniform(0, 1);
5: if u < p(x)

c·q(x) then
6: accept x;
7: n = n+ 1;
8: else
9: reject x;

10: end if
11: until n ≤ threshold

FIGURE A.1: Graphical illustration of rejection sampling method.

A.2.3 Importance Sampling method

Unlike inverse and rejection sampling methods, the importance sampling is
not a method to sample from p(x). Rather, it is a method to compute the Monte
Carlo estimator of the expectation of a function f(x)

µ = Ep[f(x)] =

∫
f(x)p(x)dx ' 1

N

N∑
i=1

f(xi) (A.15)

Therefore, the goal is to numerically compute I(f) =
∫
f(x)p(x)dx. As for the

rejection sampling method, if there is a density q(x) which is easy to sample
from, one can sample x(i) ∼ q(x). Define the importance weight as:

w(x(i)) =
p(x(i))

q(x(i))
. (A.16)

Appendix A. Appendix 65

These weights account for the bias due to the sampling from the proposal den-
sity rather than the desired one. Consider the weighted Monte Carlo sum:

1

N

N∑
i=1

f(x(i)) · w(x(i)) =
1

N

N∑
i=1

f(x(i)) · p(x
(i))

q(x(i))

a.s.−→

∫
(f(x) · p(x)

q(x)
) · q(x)dx (Law of Large Numbers)

=

∫
f(x)p(x)dx

In principle, one can sample from any distribution q(x). In practice, one would
like to choose q(x) as close as possible to |f(x)| · w(x) to reduce the variance of
the Monte Carlo estimator. To better understand the importance of choosing a
good proposal density, consider this example.

Example 7. One wants a Monte Carlo approximation to
∫ 1

0
g(x)dx for the g(x)

shown in the figure below. Note that g(x) = 0 for x < 0 and x > 1.

FIGURE A.2: Importance sampling method example.

If one has U ∼ Uniform(0, 1), then one can cast the integral as the expecta-
tion with respect to U : ∫ 1

0

g(x)dx = E[g(U)], (A.17)

so one may approximate it by a Monte Carlo estimator. This would work rea-
sonably well. The figure, however, suggests another possibility. One could use
W ∼ Uniform(0, 5) giving:∫ 1

0

g(x)dx = 5 · E[g(W)]. (A.18)

However this possibility doe not make sense because, on average, 80% of the
realized wi would tell you nothing substantial about the integral of g(x) since
g(x) = 0 for 1 < x < 5. This would be barely relevant sampling.

Appendix A. Appendix 66

A.3 Monte Carlo techniques

The distribution of the parameter vector θ conditional on the data X , called
posterior distribution, can be computed by Bayes theorem as:

P (θ|X) =
P (X|θ) · P (θ)

P (x)
=

P (X|θ) · P (θ)∫
P (X|θ) · P (θ)dθ

(A.19)

We know P (θ|X) ∝ P (X|θ) ·P (θ), but we cannot easily evaluate the normaliza-
tion factor

∫
P (X|θ) · P (θ)dθ due to the integral.

Integration can be solved numerically by means of Monte Carlo methods which
are used to approximate an expectation by the sample mean of a function of
simulated random variables. Indeed,

P (X) =

∫
P (X|θ) · P (θ)dθ (A.20)

is a marginal distribution and it can be always written as an expectation:

P (X) =

∫
P (X|θ) · P (θ)dθ = Eθ[P (X|θ)]. (A.21)

Let f(θ) = P (X|θ). Then, Monte Carlo integration makes the approximation:

E[f(θ)] ' 1

n

n∑
t=1

f(θt) (A.22)

where θt are random draws from P (θ). When the samples are independent, the
law of large numbers ensures that the approximation can be made as accurate
as desired by increasing the number of samples n. In general, sampling directly
from P (θ) is hard. One way of doing this is through a Markov chain having
P (θ) as its stationary distribution. This combined technique is called Markov
Chain Monte Carlo. A Markov chain is a random process that undergoes tran-
sitions from one state to another on a state space. It must satisfy the Markov
property: the probability distribution of the next state P (θt+1|θt) depends only
on the current state and not on the sequence of events that preceded it. So, we
can generate a sequence of samples simply by considering the visited states,
starting from an initial state θ0. As t increases, thanks to the Markov property,
the chain will forget its initial state and P (·|θ0) will converge to the station-
ary distribution. Thus as t increases, the sampled points will look like samples
taken from P (θ) and can be used to solve Monte Carlo integration. The main
drawback is that the chain requires a long burn-in period to converge to its sta-
tionary distribution.
The Metropolis-Hasting (MH) algorithm allows to construct a Markov chain such
that its stationary distribution is exactly the desired distribution, i.e. in our case
P (θ). For the MH algorithm, the next state θt+1 is chosen by first sampling a
candidate point y from a proposal distribution Q(·|θ) which is easier to be sam-
pled w.r.t. P (θ). Then with some probability, the candidate y is either accepted

Appendix A. Appendix 67

- in which case the candidate value is used as next state in the next iteration
- or rejected - the current state is reused in the next iteration. The acceptance
probability is:

α(θt, y) = min(1,
P (y)

P (θt)

Q(θt|y)

Q(y|θt)
) (A.23)

Thus, the entire MH algorithm is:

Algorithm A.3 Metropolis-Hasting

1: Initialize θ0;
2: t = 0;
3: loop
4: Sample a point y from Q(·|θt);
5: Sample a Uniform(0, 1) random variable U
6: if U ≤ α(θt, y) then
7: θt+1 = y;
8: else
9: θt+1 = θt;

10: end if
11: t = t+ 1;
12: end loop

Appendix A. Appendix 68

A.4 RaMSS - RIPs update rule

If A is a Bernoulli random variable and B is a random variable that depends on
A, it holds that

EP [B] = P (A = 1)EP [B|A = 1] + P (A = 0)EP [B|A = 0] (A.24)

According to Equation A.24, we can compute EP [J] as:

EP [J] = µ̃jEP [J |ρ̃j = 1] + (1− µ̃j)EP [J |ρ̃j = 0] (A.25)

where:

• P is the probability distribution over all possible models obtained as com-
bination of the candidate regressors;

• J is the performance index defined as J = e−K·MSPE ;

• ρj ∼ Be(µj) is a regressor;

• ρ̃j ∼ Be(µ̃j) is a candidate regressor, i.e. a non-redundant term.

Deriving Equation A.25 w.r.t. µ̃j , one obtains

∂EP [J]

∂µ̃j
= EP [J |ρ̃j = 1]− EP [J |ρ̃j = 0] (A.26)

We can then use the Equation A.26 to update the parameter µj

µj(i+ 1) = µj(i) + γ · ∂EP [J]

∂µ̃j
(A.27)

Appendix A. Appendix 69

A.5 Pseudoinverse

The pseudoinverse A† of a matrix A is a generalization of the inverse matrix.
The most widely known type of pseudoinverse matrix is the Moore–Penrose
one. A common use of this matrix is to compute a LS solution to a system of
linear equations that lacks a unique solution (overdetermined system). Another
use is to find the minimum norm solution to a system of linear equations with
multiple solutions (undetermined system). For a real matrix A, it is defined as:

overdetermined system: A† = (ATA)−1AT

underdetermined system: A† = AT (AAT)−1

The pseudoinverse matrix can be computed using the SVD of A.

Theorem 4. Given A ∈ Rm×n of rank r, there exist

• V ∈ Rmxr with V TV = I ,

• U ∈ Rnxr with UTU = I ,

• Σ = diag(σ1, · · · , σr) with σ1 ≥ · · · ≥ σr > 0

such that

A = V · Σ · UT . (A.28)

This formula is called Singular Value Decomposition of A and the σi are called
singular values of A.

If A is a skinny full rank matrix (number of columns less than number of
rows), which corresponds in a linear matrix equation Ax = b to an overdeter-
mined system, then

A† = (ATA)−1AT = (UΣV TV ΣUT)−1UΣV T = (UΣ2UT)−1UΣV T (A.29)

Since U is a square orthogonal matrix UT = U−1 then

(UΣ2UT)−1UΣV T = UΣ−2UTUΣV T = UΣ−1V T (A.30)

If A is a fat full rank matrix (number of columns grater than number of rows),
which corresponds to an underdetermined system, then

A† = AT (AAT)−1 = UΣV T (V ΣUTUΣV T)−1 = UΣV T (V Σ2V T)−1 (A.31)

Since V is a square orthogonal matrix V T = V −1, one has that

UΣV T (V Σ2V T)−1 = UΣV TV Σ−2V T = UΣ−1V T (A.32)

A recursive computation method can be applied as well. Le A† be the pseu-
doinverse of A and define the matrix:

M =

[
A c
b∗ d

]
,

Appendix A. Appendix 70

where b and c are columns and d is a scalar. According to the full SVD formula,
for any complex [m× n] matrix A, of rank r, there exist unitary matrices U and
V such that:

V ∗ · A · U =

[
Σ 0
0 0

]
, (A.33)

where V ∗ is the complex conjugate of V , Σ is defined as in Equation A.28. If we
partition U and V as

U = [U1, U2] , V = [V1, V2] ,

with U1 = [u1, · · · , ur] and V1 = [v1, · · · , vr] , then it can be proved that the
problem of finding M † reduces to finding the Moore-Penrose inverse of the
following partitioned block matrix:

M =

 Σ 0 q1
0 0 q2
p∗1 p∗2 d

 ,
where:

• p∗1 = b∗U1,

• p∗2 = b∗U2,

• q1 = V ∗1 c,

• q2 = V ∗2 c.

There are 5 cases that can occur, namely:

• rank(M) = r + 2⇔ p2 6= 0 ∧ q2 6= 0,

• rank(M) = r + 1⇔

p2 = 0 ∧ q2 6= 0

p2 6= 0 ∧ q2 = 0

p2 = 0 ∧ q2 = 0 ∧ z 6= 0

,

• rank(M) = r ⇔ p2 = 0 ∧ q2 = 0 ∧ z = 0,

where z = d − p∗1Σ
−1q1 = d − b∗A†. Since we are working with the correla-

tion/covariance matrix which is symmetric and with unit diagonal, rank(M) =
r + 1 and U = V ⇒ p2 = q2, and the only useful case is that which is referred as
case 1 in (Hartwig, 1976), i.e rank(M) = r + 1 ⇔ p2 = 0 ∧ q2 = 0 ∧ z 6= 0. For
this case, since m = n = r, the problem reduces to finding the Moore-Penrose
inverse of the following partitioned block matrix:

M =

[
Σ q1
p∗1 d

]
,

Appendix A. Appendix 71

Accordingly, the Moore-Penrose inverse is computed as:

M † =

 A† + k·h∗
z

−k
z

−h∗
z

1
z

 , (A.34)

where:

• k = A†c,

• h = A∗
†
b,

In this way we are able to compute the pseudoinverse of matrix Gi based on
the pseudoinverse of Gi−1 and the added row and column, without needing
to compute the SVD of Gi. The only needed SVD is that of matrix G1 which
is, actually, a scalar value. A comparison, in terms of elapsed time required to
compute all the bi coefficients has been done between the illustrated iterative
method and the MATLAB pinv function which computes the pseudoinverse
by means of SVD. Considering different matrix dimensions n, a random [n ×
n] sparse symmetric matrix with unit diagonal has been generated and the bi
coefficients have been computed according to Equation 3.4. The aggregated
results on 500 matrices for each n, are reported in Figure A.3. Apparently, as
the matrix dimension increases, the iterative method slightly outperforms the
SVD based method.

Appendix A. Appendix 72

FIGURE A.3: Comparison between methods of computation of the
pseudoinverse.

Bibliography

Aguirre, L. A., B. H. G. Barbosa, and A. P. Braga. In: Mechanical Systems and
Signal Processing, Month = , Number = 24, Numpages = , Pages = 2855-2867, Title
=Prediction and simulation errors in parameter estimation for nonlinear systems,
Volume = , Url = , Year = 2010.

Aguirre, L. A. and S. A. Billings (1995). “Dynamical effects of overparametriza-
tion in nonlinear models”. In: Physica 80.4, pp. 26–40.

Baldacchino, T., S. R. Anderson, and V. Kadirkamanathan (2013). “Computa-
tional system identification for Bayesian NARMAX modeling”. In: Automat-
ica 49, pp. 2641–2651.

Berry, M. W., Z. Drmac, and E. R. Jessup (2006). “Matrices, Vector Spaces, and
Information Retrieval”. In: SIAM Review 41.2, pp. 335–362.

Billings, S. A., S. Chen, and M. Korenberg (1989). “Identification of MIMO non-
linear systems using a forward-regression orthogonal estimator”. In: Internal
Journal of Control 49.6, pp. 2157–2189.

Bonin, M., V. Seghezza, and L. Piroddi (2010). “NARX model selection based on
simulation error minimisation and LASSO”. In: IET Control Theory & Appli-
cations 4.7, pp. 1157–1168.

Devroye, L., ed. (1986). Non-uniform Random Variate Generation. New York: Springer-
Verlag.

Falsone, A., L. Piroddi, and M. Prandini (2014). “A novel randomized approach
to nonlinear system identification”. In: 53rd IEEE Conference on Decision and
Control.

German, S., E. Bienenstock, and R. Doursat (1992). “Neural Networks and the
Bias/Variance Dilemma”. In: Neural Computation 4, pp. 1–58.

Hartwig, R. E. (1976). “Singular Value Decomposition and the Moore-Penrose
Inverse of Bordered Matrices”. In: SIAM Journal on Applied Mathematics 31.1,
pp. 31–41.

Higham, J. (2002). “Computing the nearest correlation matrix - a problem from
finance”. In: IMA Journal of Numerical Analysis 22.3, pp. 329–343.

Hong, X. et al. (2008). “Model selection approaches for non-linear system iden-
tification: a review”. In: International Journal of Systems Science 39.10, pp. 925–
946.

Leontaritis, I. J. and S. A. Billings (1985a). “Input-output parametric models for
non-linear systems part I: deterministic non-linear system”. In: International
Journal of Control 48.1, pp. 303–328.

— (1985b). “Input-output parametric models for non-linear systems part II:
stochastic non-linear system”. In: International Journal of Control 48.1, pp. 303–
328.

Ljung, L., ed. (1987). System Identification: Theory for the User. London: Prentice-
Hall.

73

BIBLIOGRAPHY 74

Mao, K. Z. and S. A. Billings (1997). “Algorithms for minimal model structure
detection in nonlinear dynamic system identification”. In: International Jour-
nal of Control 68.2, pp. 311–330.

— (1999). “Variable selction in non-linear systems modelling”. In: Mechanical
Systems and Signal Processing 13.2, pp. 351–366.

Palumbo, P. and L. Piroddi (2000). “Seismic behaviour of bruttress dams: non-
linear modeling of a damaged buttress based on ARX/NARX models”. In:
Journal of Sound and Vibration 239, pp. 405–422.

Piroddi, L. and W. Spinelli (2003). “An identification algorithm for polynomial
NARX models based on simulation error minimization”. In: International
Journal of Control 76.17, pp. 1767–1781.

Qaqish, B. F. (2003). “A family of multivariate binary distributions for simulat-
ing correlated binary variables with specified marginal means and correla-
tions”. In: Biometrika 90.2, pp. 455–463.

Rodriguez-Vazquez, K., C. M. Fonseca, and P. J. Fleming (2004). “Identifying the
structure of nonlinear dynamic systems using multiobjective genetic pro-
gramming”. In: IEEE Transactions on Systems, Man & Cybernetics, Part A (Sys-
tems & Humans) 34.4, pp. 1157–1168.

Sjöberg, J. et al. (1995). “Nonlinear black-box modeling in system identification:
a unified overview”. In: Automatica 31.12, pp. 1691–1724.

Söderström, T. and P. Stoica, eds. (1989). System Identification. London: Prentice-
Hall.

Wei, H. L. and S. A. Billings (2008). “Model Structure Selection Using an Inte-
grated Forward Orthogonal Search Algorithm Assisted by Squared Corre-
lation and Mutual Information”. In: International Journal of Modeling, Identi-
fication and Control 3.4, pp. 341–356.

	Sommario
	Abstract
	Acknowledgements
	Introduction
	Review of the State of the Art
	Nonlinear system identification framework
	The NARX model class
	The over-parametrization problem
	The FROE for polynomial NARX identification
	The RJMCMC for polynomial NARX identification
	The GA for polynomial NARX identification
	RaMSS

	CLF based RaMSS
	The Conditional Linear Family
	Update rule for the correlation matrix
	The C-RaMSS algorithm

	Simulation results
	Typical run of the C-RaMSS algorithm
	C-RaMSS algorithm performance
	Learning factor
	Number of extracted models

	Comparative analysis
	RaMSS vs C-RaMSS
	RaMSS vs C-RaMSS with colored noise as input
	FROE vs C-RaMSS
	RJMCMC vs C-RaMSS

	Conclusions and future work
	Appendix
	Orthogonal Least Squares
	Sampling methods
	Inverse Sampling method
	Rejection Sampling method
	Importance Sampling method

	Monte Carlo techniques
	RaMSS - RIPs update rule
	Pseudoinverse

	Bibliography

