
i
i

“thesis” — 2015/11/30 — 17:40 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

A COMPREHENSIVE FRAMEWORK FOR THE

DEVELOPMENT OF DYNAMIC SMART SPACES

Doctoral Dissertation of:
Adnan Shahzada

Supervisor:
Prof. Luciano Baresi

Tutor:
Prof. Carlo Ghezzi

The Chair of the Doctoral Program:
Prof. Carlo Fiorini

2015 – XXVIII

i
i

“thesis” — 2015/11/30 — 17:40 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 1 — #3 i
i

i
i

i
i

Acknowledgements

First, I would like to thank my advisor Prof. Luciano Baresi for all his time, ideas,
and support to make my Ph.D. experience productive and stimulating. I have learnt a
lot during our long and lively discussions, and that has contributed significantly to the
development of this work.

I am also thankful to Prof. Sam Guinea who has helped me initially to formulate the
basis for this research and then worked together with me in pursuing it.

I am grateful to Telecom Italia for funding my Ph.D. studies under the initiative of
Joint Open Lab (S-CUBE). This work would not have been possible without their fi-
nancial and technological support. Specifically, I would like to thank Massimo Valla,
Laurent-Walter Goix, Danny Noferi and Naser Derakhshan for the useful and produc-
tive collaboration.

A special thanks goes to Prof. Patricia Lago for accepting to review my manuscript and
giving her valuable comments.

I also want to offer my gratitude to my tutor Prof. Carlo Ghezzi.

i
i

“thesis” — 2015/11/30 — 17:40 — page 2 — #4 i
i

i
i

i
i

to my wonderful family

i
i

“thesis” — 2015/11/30 — 17:40 — page I — #5 i
i

i
i

i
i

Abstract

SMART SPACES have gained a lot of attention during the last few years. These
spaces are getting increasingly enriched with a variety of sensors, mobile de-
vices, wearables, actuators and other smart objects. These devices are usually

equipped with one or multiple network interfaces that allow them to connect with each
other in order to provide useful contextualized services to the smart space inhabitants.
Numerous solutions have been proposed by the researchers to solve different aspects
related to the realization of these smart spaces. Despite many standalone middleware
solutions, development methodologies, IoT-enabled devices, and simulators, there is
still a gap between what is available today and the need for an effective end-to-end
development/deployment framework.

This study investigates where do existing solutions and approaches lack and what
is the right approach for building diversified smart spaces. The fundamental challenge
of smart space development is to design a suitable framework that structures and facil-
itates the conception of these spaces at large, that is, it should be able to support the
development of a wide variety of spaces and scenarios. Moreover, there is a big gap
between the existing design solutions and their possible transition towards a concrete
deployment in the real world. The major reason for this is the inability of the design
abstractions (provided by these solutions) to be translated into their proper implemen-
tation counterparts.

This thesis bridges this gap by proposing a framework that covers the entire devel-
opment life-cycle of smart spaces. It offers the same abstractions throughout all the
development phases while providing means for both the seamless integration of var-
ious components and the utilization of existing systems. The framework provides a
fixed software backbone that allows the developer to move seamlessly from a fully vir-
tual, simulated solution to a completely deployed system in an incremental manner.
It provides interfaces both to surrogate system components through external simula-
tors, and to ease the deployment of physical elements. The proposed solution also
integrates the conventional component-based control (autonomic computing) and the
inherent self-adaptive capabilities of the bio-inspired (firefly-based) ecosystem. The
framework eliminates the individual shortcomings of these approaches, that is, lack

I

i
i

“thesis” — 2015/11/30 — 17:40 — page II — #6 i
i

i
i

i
i

of inherent situated awareness and mobility, for autonomic approaches, and lack of
control over the self-organization in bio-inspired systems. Realistic scenarios are used
throughout the thesis to showcase and evaluate the key features of the proposed solu-
tion. The results demonstrate that presented solution complements the existing growth
of the smart objects and plethora of software solutions by providing a framework to
integrate/utilize the available solutions as a step forward towards the efficient end-to
end development of smart spaces.

II

i
i

“thesis” — 2015/11/30 — 17:40 — page III — #7 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Problem and Research Questions . 2
1.2 Research Objectives . 4
1.3 Major Contributions . 5
1.4 Thesis Structure . 5

2 Smart Spaces 7
2.1 Definition . 7
2.2 Diverse Smart Spaces . 8

2.2.1 Personal/Restricted Smart Spaces 10
2.2.2 Public/Social Smart Spaces . 10

2.3 Example Scenarios . 11
2.3.1 Modern Greenhouse . 11
2.3.2 Smart Office . 12
2.3.3 Public Park . 13

2.4 Properties . 14
2.5 Challenges . 15
2.6 Life Cycle of Smart Spaces . 17

3 State of the Art 21
3.1 Approaches . 21

3.1.1 Architecture-Centric Approaches 22
3.1.2 Multi-Agent Systems . 24
3.1.3 Nature-Inspired Computing . 27

3.2 Solutions . 28
3.2.1 Fixed Indoor Deployments . 29
3.2.2 Automation (IoT) Hubs . 29
3.2.3 Integration Platforms . 29
3.2.4 Middleware Infrastructures . 30
3.2.5 Complete Development Solutions 31
3.2.6 Validation Tools . 32

III

i
i

“thesis” — 2015/11/30 — 17:40 — page IV — #8 i
i

i
i

i
i

Contents

3.3 Comparative Analysis . 32

4 Proposed Framework 37
4.1 Revisiting the Perspective . 37

4.1.1 Incremental Development . 37
4.1.2 Integrated Self-Adaptive Approach 39

4.2 Design Abstractions . 40
4.2.1 Component . 41
4.2.2 Role . 42
4.2.3 Group . 44

4.3 Semantic Layer . 46
4.3.1 Semantic Model . 48

4.4 Integration Layer . 49
4.4.1 Separation of Functional and Management Design 51
4.4.2 Autonomic Management . 53

4.5 Self-Adaptation Capabilities . 55
4.5.1 Fireflies Algorithm . 55
4.5.2 Adaptation based on Fireflies Metaphor 56
4.5.3 Self-Organization Algorithm 58

4.6 Continuous Validation . 62

5 Implementation and Concurrent Execution 67
5.1 Implementation Model . 67
5.2 Component Class . 69
5.3 Component Roles and Behaviors . 70

5.3.1 Supervisor Role Class . 70
5.3.2 Follower Role Class . 70

5.4 Asynchronous Message Exchange . 71
5.4.1 Message Class . 72
5.4.2 Physical Communication . 72
5.4.3 Messaging Queues . 73
5.4.4 Rendezvous Exchange . 73

5.5 Group Coordination Styles . 73
5.5.1 Group Class . 73
5.5.2 Synchronous Timed Coordination 74
5.5.3 Event-based Coordination . 75

6 Evaluation 77
6.1 Evaluation Plan . 77
6.2 Case Study 1: Smart Office . 79

6.2.1 Simulation with Native APIs 80
6.2.2 Simulation based on External Simulators 81
6.2.3 Partially Deployed (Simulated) System 82
6.2.4 Fully Deployed System . 82

6.3 Case Study 2: Modern Greenhouse . 86
6.3.1 Managing incoming carts . 89
6.3.2 Sick flowers . 89

IV

i
i

“thesis” — 2015/11/30 — 17:40 — page V — #9 i
i

i
i

i
i

Contents

6.4 Case Study 3: Energy Efficient Buildings 90
6.4.1 Building Model . 90
6.4.2 Integrated Control . 92
6.4.3 Experimental Details . 94

6.5 Case Study 4: Public Park . 96
6.5.1 Experimental Setup . 96

6.6 Discussion . 101

7 Conclusions and Future Directions 105
7.1 Answers to Research Questions . 106
7.2 Future Directions . 109

Bibliography 111

V

i
i

“thesis” — 2015/11/30 — 17:40 — page VI — #10 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page VII — #11 i
i

i
i

i
i

List of Figures

2.1 Constructs of a Typical Smart Space 8
2.2 Smart Space Requirements . 9
2.3 Smart Spaces . 10
2.4 Greenhouse. 11
2.5 Joint Open Lab Map . 13
2.6 Example park scenario. 14
2.7 Smart Space Life Cycle . 17

4.1 Incremental Smart Space Development 38
4.2 Incremental Smart Space Development Life Cycle 39
4.3 The Proposed Framework . 41
4.4 Component Model . 42
4.5 Framework Meta-Model . 43
4.6 Group Abstraction . 45
4.7 Group Compositions . 46
4.8 Design Abstractions . 47
4.9 Group Example - Light Management 48
4.10 Sensor Ontology. 49
4.11 RDF graph of a semantic model for sensors. 49
4.12 Taxonomy of semantic model —We have used namespaces instead of

URIs for the sake of clarity. 50
4.13 JOL Semantic Model . 51
4.14 Example configuration of a Smart Space. 52
4.15 Autonomic Management . 53
4.16 JOL- Possible Groups . 55
4.17 Integrated Self-Adaptive Mechanism 56
4.18 Fireflies Adaptation Mechanism . 58
4.19 Example bootstrapping scenario. 60
4.20 JOL- Topology with external simulators 62
4.21 JOL- High Level View . 63
4.22 Design Tasks . 64

VII

i
i

“thesis” — 2015/11/30 — 17:40 — page VIII — #12 i
i

i
i

i
i

List of Figures

5.1 Implementation Model . 68
5.2 Example Runtime Snapshot of a Component 69
5.3 Component Behaviours . 71
5.4 Communication Channels . 72
5.5 Asynchronous Messaging Paradigms 74
5.6 Group Coordination Styles . 75

6.1 Bootstrapping Time for Components 81
6.2 Simulation in Freedomotic and Siafu 82
6.3 Partially Deployed System (Siafu and real ZigBee enabled lights). . . . 83
6.4 Fully Deployed System . 84
6.5 Greenhouse Domain Concept Ontology (DCO). 86
6.6 Group topology: the SSM manages the room supervisors (Room1SV,

Room2SV and Room3SV) that play the role of supervisors for carts, but
act as followers for the SSM node. 87

6.7 RDF graph for greenhouse group topology. 88
6.8 Discovery and self-configuration of components. 88
6.9 Benchmark office building. 91
6.10 Example control group. 92
6.11 Integrated Control Groups. 93
6.12 Concurrent execution/simulation. 94
6.13 Energy consumption for lighting. 95
6.14 Energy consumption for building. 95
6.15 Park simulation in NetLogo. 97
6.16 Park Topology . 98
6.17 Average number of messages per screen. 99
6.18 Average number of messages per user. 100
6.19 Results . 100
6.20 Power consumption. 101
6.21 Group size variation. 102

VIII

i
i

“thesis” — 2015/11/30 — 17:40 — page IX — #13 i
i

i
i

i
i

List of Tables

2.1 Diverse Smart Spaces . 10
2.2 Smart Spaces - Challenges . 17

3.1 Approaches and Solutions . 31
3.2 Comparison of most relevant existing systems 35

4.1 Mapping - Component Abstractions and Fireflies Metaphor 57

6.1 Quantitative Evaluation . 77
6.2 Qualitative Evaluation . 78
6.3 Evaluation Plan . 78
6.4 Joint Open Lab - Components . 79
6.5 Message Delays . 84
6.6 Groups Specification . 85

IX

i
i

“thesis” — 2015/11/30 — 17:40 — page X — #14 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 1 — #15 i
i

i
i

i
i

CHAPTER1
Introduction

We are living in an era where computers are becoming more and more ubiquitous in
our everyday lives. There is an enormous technological growth in terms of increase
in computing power, memory sizes and miniaturization of devices over the past few
years. Many new types of inter-connectable devices such as tablets, smart watches,
wearable gadgets, and a plethora of sensing equipments are now available in a ready
to use packaging. Moreover, various low cost (single-board) micro-controllers such as
Arduino have now also enabled the consumers to have access to various sensors and
actuators for their personal automation projects.

With all this advancement, Mark Weiser’s [98] vision of ubiquitous and pervasive
computing world, where technologies interweave themselves into the fabric of every-
day life in an invisible manner and providing computing nearly everywhere, seems to
be realized in coming years. A pervasive computing system is situation-aware and can
reason intelligently in an autonomous manner to respond to the needs of the users in
a given context [29]. The goal of such systems is to create intelligent services within
an environment, embedded with various network devices that provide continuous and
unobtrusive connectivity to perform useful functions to facilitate their users [38]. Light-
ing, heating, air conditioning and ventilating control in closed spaces or buildings (with
the aim to maintain user comfort and save energy) are the few examples of such ser-
vices. Moreover, there is also a growing trend of providing ad-hoc services to the users
in more open and dynamic outdoor spaces (such as stadiums, malls, and parks) based
on their proximity and personal interests.

The manifestation of distributed computing [17, 79, 93] through cloud infrastruc-
tures [74], and mobile computing [45] enabling ubiquity of smart inter-connected mo-
bile devices has supported the realization of such pervasive computing systems. The
wireless communication technology and portability of various devices also play an im-

1

i
i

“thesis” — 2015/11/30 — 17:40 — page 2 — #16 i
i

i
i

i
i

Chapter 1. Introduction

portant part in enabling the mobility of pervasive computing infrastructure.

1.1 Problem and Research Questions

Despite all these advancements, the pervasive computing vision is still reality only in
parts, as of today. There have been some limited deployments such as smart homes
[25, 26] and automation solutions for indoor spaces. But, they are yet to be widely
exploited in physical spaces in the same manner as the ubiquitous Web and smartphones
have been used – effectively revolutionizing/changing the way we interact with others,
work, and conduct our daily lives [57].

Many efforts have been put to manifest pervasive computing in bound (physical
or conceptual) environments to convert them into Smart spaces. Smart spaces can
be regarded as technology augmented intelligent environments with the ability to un-
derstand user/human needs within a space and react accordingly in order to provide
contextualized services to the inhabitants [28]. Typically, a smart space comprises mul-
tiple autonomous entities (with different capabilities) that are heterogeneous in terms of
functionality, communication protocols, and execution models. These heterogeneous
entities co-exist and collaborate with each other to help inhabitants accomplish their
tasks.

Smart spaces are dynamic self-adaptive systems where each entity is characterized
by its state (current situation), functionality (affect to/from the system), transitional
policies (events/situations that trigger a state change) and the situatedness (position in
the environment). These distributed system entities interact with each other (and con-
stitute system events) through direct or indirect communication means. Another im-
portant characteristic of these spaces is openness as different entities move while being
connected to the space (other entities) and can join or leave the system unannounced
and without a central control.

Given the state of all these sophisticated smart objects and technologies, one must
ask why do we not already live in smart pervasive spaces (environments) where all
these available smart and mobile devices are seamlessly providing us the services to
enhance our efficiency and improve our lifestyles? One of the reasons for this is that all
these hardware equipment and smart objects are one of the many pre-requisites for the
realization of such environments. The growing complexity of the devices also requires
the software development process for such systems to be re-modeled. As the smart
spaces are inherently complex, dynamic and open in their nature, the required software
solution needs to be able to adapt itself to the always changing conditions of the spaces
without any (or limited) external human intervention. Another reason for that is the lack
of aggregation of the existing solutions, which try to tackle the problem from different
angles and do not put an effort to build on top of/in complement to existing solutions.
Many smart devices and off-the-shelf autonomous objects are available which have
limited sensing and actuating capabilities, but these systems often work in isolation
and hence do not enable the implementation of holistic pervasive computing scenarios.

The majority of these solutions are developed through centralized architectural con-
trol loops and hence they are prone to have scalability issues. To deal with these issues,
some bio-inspired adaptations systems are proposed to move towards complete decen-
tralized and autonomous solutions. Although, all these approaches are interesting and

2

i
i

“thesis” — 2015/11/30 — 17:40 — page 3 — #17 i
i

i
i

i
i

1.1. Problem and Research Questions

useful for certain kind of scenarios, there is a need for a decentralized yet manageable
solutions.

Following are the three important challenges and open research questions for the
development of smart spaces today that are addressed in this thesis.

RQ 1. Do we need to revisit/improve our development processes for the cre-
ation of smart spaces in order to realize effective smart spaces and, in
case, what would that revision be? (Sec. 4.1)

RQ 2. What kind of software (framework) abstractions and interaction mech-
anisms are required for the design and implementation of smart spaces
to overcome the fragmented (in terms of technologies and functionality)
devices and continuously changing user requirements? (Sec. 4.2)

RQ 3. How can we evaluate the effectiveness and capability of such a frame-
work to design, develop and assess highly dynamic diversified smart
spaces? (6.1)

The aforementioned questions describe the two major dimensions of the research.
RQ.1 is more general and requires an investigation to find out why the existing ap-
proaches are not successful in creating these diversified smart spaces. Moreover, it also
concerns with studying the need to re-define (or integrate) the current perspectives to-
wards the design and development. Therefore, RQ.1 can further be subdivided into the
following questions:

RQ 1.1. What are the requirements for the development of diversified smart
spaces and where do existing systems lack? (Sec. 2.5)

RQ 1.2. Which and how can we employ/integrate various principles from the
existing design paradigms to address those deficiencies, if possible?
(Sec. 4.1.2)

RQ 1.3. What is the suitable development life-cycle for the development of
diversified smart spaces? (Sec. 4.1.1)

RQ.2 deals with the implementation of a development framework that would be
required to realize the approach which will emerge as an answer to RQ. 1.2. It can be
further subdivided into the following questions:

RQ 2.1. How can we build a software framework that fulfils the requirements
(Sec. 2.5) identified in answering to RQ.1?

RQ 2.2. How can we use (some of the) existing smart objects, architectures,
middleware infrastructures, and simulators to implement smart spaces
dynamically, effectively, and opportunistically? (Sec. 4.4 and 4.6)

RQ.3 addresses the problem of assessing development frameworks for smart spaces.
It seeks an answer to how one can define challenges that correspond to different sce-
narios in diversified smart spaces and then being able to evaluate it.

This thesis proposes answers to the above questions by proposing a comprehensive
framework, and shows how the proposed framework can be used to design, implement
and assess/validate Smart Spaces.

3

i
i

“thesis” — 2015/11/30 — 17:40 — page 4 — #18 i
i

i
i

i
i

Chapter 1. Introduction

1.2 Research Objectives

The questions and challenges described above can be reformulated as the following:

There is a need to integrate the control mechanisms from architectural solutions/ap-
proaches for self-adaptation and inherent self-organizing capabilities from bio-inspired
approaches in order to design both effective and continuously evolving smart spaces.

The inability of existing smart spaces to evolve over the time and deal with changing
requirements calls for the need of an incremental development framework that offers
proper blending of different aspects: provision of appropriate design abstractions to
support co-execution of physical and virtual components through proper middleware in-
frastructures, ad-hoc integration and coordination of heterogeneous components, early
evaluation of "incomplete" systems, assessment of alternative solutions and deploy-
ments of the system.

This research, first implements the proposed framework and then evaluates it accord-
ing to the various smart space development challenges. The goal and major objective
of the thesis can thus be described as:

"Provide a self-adaptive framework that enables the developers to design, imple-
ment and validate dynamic smart spaces by offering programming abstractions that
are suitable for the whole development life-cycle."

The main objective can be divided into the following sub-objectives:

O.1. Provide the appropriate abstractions and interfaces for device/system inter-
operation

O.2. Provide solutions for the whole development life-cycle of the smart spaces

O.3. Structure and facilitate the dynamic (automated) composition of different
systems/devices at run-time

O.4. Facilitate the creation of diverse types of smart spaces and scenarios

The dissertation starts with the analysis of the implementation of smart spaces that
exist presently (Ch. 2). The lack and the need for a comprehensive development frame-
work, suitable for the complete life-cycle and applicable for diverse scenarios, are iden-
tified. To define what is "comprehensive", requirements for the development of differ-
ent spaces are analyzed. These requirements have to be addressed/solved to achieve the
objectives of the thesis.

A comprehensive study of the related state of the art (Ch. 3) was conducted to
understand the pertinence of the identified requirements (in Ch.2) and to ensure that
no solutions exist that completely solves those requirements. The short comings of the
existing solutions to achieve the objectives were also analyzed along with the possibility
of (re)using them in a more comprehensive solution.

A group-based self-organizing framework is designed which is described in Ch.
4. The mapping of the requirements to the solutions provided by the framework is
also embedded in the text. Prototypes are developed to demonstrate the feasibility

4

i
i

“thesis” — 2015/11/30 — 17:40 — page 5 — #19 i
i

i
i

i
i

1.3. Major Contributions

of the proposed concepts and solutions and they are evaluated, both qualitatively and
quantitatively, on the realistic scenarios (Ch. 6).

1.3 Major Contributions

The major contribution of the thesis is a comprehensive development framework for
dynamic smart spaces. The proposed framework provides relevant programming ab-
stractions to build a space and also bridges the gap between existing isolated solutions
by integrating them to enable a complete end-to-end solution for smart spaces. It com-
prises several novelties as described in Ch. 4, and summarized in the abstract at the
beginning of that chapter.

The most important concepts of the proposed framework are:

• Abstractions that are suitable for the whole development life cycle

• A semantic model for the inter-operation of the components speaking different
languages

• A dynamic, self-organizing and extensible middleware/coordination style for the
management of smart space components

• Mechanisms for the concurrent execution of heterogeneous components with dif-
ferent time and execution cycles

• Integration of software architectural approach with bio-inspired metaphors for
self-adaptation

The side-contributions of the thesis are the following:

• Automated management of components at different levels of abstraction

• Building blocks to build the system from the scratch or integrate different physical
or virtual existing systems

• Requirements analysis for different types of smart spaces

• Analysis of the state of the art solutions for the development of smart spaces

1.4 Thesis Structure

The thesis is constituted of seven chapters. Following is the brief summary of each
chapter:
Chapter 1 introduces the scope of the work and formulates the research questions with
references to their answers presented in the rest of the chapters.

Chapter 2 discusses the theoretical background. It defines and elaborates the con-
cept of a smart space. First, a definition of smart space is provided. Later, a broad
classification of diversified smart space infrastructures along with their key characteris-
tics are presented. The chapter is concluded by stating technical requirements for each
type of smart spaces. The chapter will serve as a conceptual background and domain

5

i
i

“thesis” — 2015/11/30 — 17:40 — page 6 — #20 i
i

i
i

i
i

Chapter 1. Introduction

for the thesis.

Chapter 3 surveys the state of the art. It analyzes the existing solutions in terms
of the approaches they employ as well as the fraction of target solution space they aim
to address. It discusses how approaches such as software architectures, model driven
engineering of systems, multi-agent systems and nature-inspired computing are used to
develop smart spaces. Moreover, the chapter also provides an overview of the type of
solutions currently available for the end-users (off the shelf/ready to use solutions) or
the developers (middleware infrastructures and frameworks).

Chapter 4 defines our proposal to adopt an incremental and evolutionary approach
to build smart spaces. It provides a conceptual description of the key components of
the proposed framework that includes design and programming abstractions, semantic
model, integration and collaboration mechanisms and self-adaptive capabilities.

Chapter 5 elaborates the implementation details of the proposed framework. It
focuses on how different components of the space, which are conceived through the
conceptual framework defined in the previous chapter, can be concurrently executed. It
also describes what are the behavioural and coordination styles available for the devel-
opers to implement their systems.

Chapter 6 describes the evaluation of the framework through the case-studies and
scenarios defined in 2.3. It demonstrates that how the proposed framework can be used
efficiently to design diverse smart spaces such as greenhouse, smart office, public build-
ings and large open spaces like parks.

Chapter 7 concludes the thesis by listing out the contributions and lessons learned.
Further, it discusses the possible future work in this area.

6

i
i

“thesis” — 2015/11/30 — 17:40 — page 7 — #21 i
i

i
i

i
i

CHAPTER2
Smart Spaces

This chapter defines and elaborates the concept of a smart space. First, a definition of
smart space is provided. Later, a broad classification of diversified smart space infras-
tructures along with their key characteristics are presented. The chapter is concluded
by stating technical requirements for each type of smart spaces. The chapter will serve
as a conceptual background and domain for the thesis.

2.1 Definition

Many researchers have described the concept of smart spaces from various perspec-
tives [65]. For instance, Ramesh et al. [86] view smart spaces as ordinary environments,
equipped with both visual and audio sensing systems, and are capable of perceiving and
reacting to the people needs without any wearable or special purpose devices. Saleemi
et al. [83] define smart spaces as dynamic environments that change their identity over
the time whenever they interact with different entities and exchange (share) information
among them. Similarly, Cook and Das [28] perceive smart spaces as physical environ-
ments where smart objects collaboratively monitor the environment, interact with the
inhabitants, and adapt their behaviour according to the information gathered from the
environment. We attempt to incorporate all these views and provide an aggregated
definition and constructs of a smart space (see Figure 2.1):

Definition 2.1.1. Smart space is a technology augmented intelligent environment with
the ability to acquire situational data, understand user needs, and react accordingly to
provide contextualized services to the inhabitants in order to improve their experience
in that environment.

The aforementioned definition implies the need for a continuous and dynamic inter-
action between the space and its inhabitants. The construction of smart spaces with the

7

i
i

“thesis” — 2015/11/30 — 17:40 — page 8 — #22 i
i

i
i

i
i

Chapter 2. Smart Spaces

Environment
(Physical Space)

Sensors Actuators

UsersServices

AffectSense

provision

consumed by

Interact

Figure 2.1: Constructs of a Typical Smart Space

ability to support such interaction requires the following characteristics:

• Context Sensing through continuous monitoring of the environment is required. It
will provide the information related to both the physical state and the users within
a space.

• A collaboration model or a coordination style is needed to form collaborations
among different components of the space. It will enable information sharing and
implementation of various functionalities and services that the space needs to pro-
vide to its users.

• Self-Adaptation is required to adjust the smart space according to the changes in
the environmental state or the mobility of the components that inhibit the space.

• Actuating functionality is required to change or induce new environmental condi-
tions or collaboration topology of the system in response to the changing needs of
the space.

2.2 Diverse Smart Spaces

Smart spaces are developed using multiple heterogeneous objects, models, and commu-
nication technologies requiring integration and adaptation of many smart space subsys-
tems to the particular user needs [51]. Many of such spaces, with diversified purposes,
spatial attributes, and technological infrastructures are being created and deployed [70].
A space can be personal such as home, office, and assisted health care system, or a more
open place such as shopping malls, parks, train terminals and airports as shown in Fig-
ure 2.3.

This diversity and heterogeneity of real spaces are one of the main hindrances in
deploying a research-based system to a practical one. The types of services required by

8

i
i

“thesis” — 2015/11/30 — 17:40 — page 9 — #23 i
i

i
i

i
i

2.2. Diverse Smart Spaces

Smart Space

Contextualized Services

Sensing and Actuation Infrastructure

Sensing

Environmental Variables

Actuation

Collaboration Model

Devices

Users

Integration
Support

Self-Adaptation

Dynamism Support

Distribution
Mobility
Support

Figure 2.2: Smart Space Requirements

the inhabitants vary significantly with the type of space being considered and the way
users interact with that space. For instance, users may want the space to automate the
typical everyday tasks they perform within the space, or alternatively, they may expect
the smart space to optimize the resources usage such as energy and communication
bandwidth.

Therefore, It is very important to have some taxonomy to classify the great num-
ber of diverse smart spaces created till now and the ones to be created in the next few
years [70]. We believe that defining a smart space taxonomy and laying out the cor-
responding specification criteria is very effective for guiding the development process
and systematic evaluation of various smart space systems. Therefore, given the diverse
characterization of smart spaces and the various challenges they pose, we can divide
the existing spaces broadly into two categories (see Table 2.1):

1. Personal/Restricted smart spaces

2. Public/Social smart spaces

It is important to note that this classification is quite preliminary and it is devised by
analyzing various properties of the existing smart spaces. We discuss the properties of
each category of spaces, and then, layout some challenges related to the development
of these spaces.

9

i
i

“thesis” — 2015/11/30 — 17:40 — page 10 — #24 i
i

i
i

i
i

Chapter 2. Smart Spaces

Offices

Large Public Events Homes Terminals

Stadia Shopping Malls

Figure 2.3: Smart Spaces

Table 2.1: Diverse Smart Spaces

Category Scope
Interaction

Layout

Scale Example

SpacesUsers Devices

Personal/

Restricted

Closed

(Mostly Known devices

and users)

Fixed Location

and context

Small Small

Smart homes

Smart Offices

Assisted Living

Smart Buildings
Many Many

Social/

Public

Open

(Most of devices/users

are not known a-priori)

Dynamic

Proximity-based

context

Large Large
Public Places

(Parks, Airports, etc.)

Large Events

(Exposition, Football Match)

2.2.1 Personal/Restricted Smart Spaces

We characterize personal smart spaces with the following two important properties:

• They have limited/restricted user participation.

• Most of the components are known a-priori.

Typically, these spaces are small/medium scale indoor (buildings) where inhabitants
interact with all the devices in a pre-defined manner. These smart spaces comprise static
components that do not change (frequently) over the time, and mostly, these spaces are
"only” required to connect different smart appliances in closed spaces such as homes
and offices. Components of these spaces operate on some (limited) standard protocol(s)
and the interaction is based on static layout of the physical space (e,g. floor-plans etc.).

2.2.2 Public/Social Smart Spaces

Social spaces, on the other hand, have components that are highly dynamic (open) and
they may enter or leave the space on frequent basis. Moreover, the components are
usually mobile and they move within the space. Interaction between users and different

10

i
i

“thesis” — 2015/11/30 — 17:40 — page 11 — #25 i
i

i
i

i
i

2.3. Example Scenarios

devices is, therefore, ad hoc (proximity-based). For example, one can think of the
interactions between humans —through their devices— and the environment to exploit
location-based services in big public places like stadia, transport stations and exposition
centers. Components of these spaces, mostly, are not known a-priori and they operate
on different protocols. Typically, these spaces are big in size and they are shared by
large number of users (public). Stadia, large public events (concerts, expositions) and
mobile ad-hoc spaces are few examples of such systems.

2.3 Example Scenarios

Some example scenarios are presented here that will be used throughout the thesis to
demonstrate various aspects of the proposed solution. Moreover, they have also been
implemented for system evaluation.

2.3.1 Modern Greenhouse

The greenhouse is equipped with various kinds of sensors that monitor its temperature,
light, and humidity levels. It is essential that the greenhouse be able to utilize its re-
sources optimally, by grouping similar plants together in certain rooms according to
their temperature and other physiological needs.

Greenhouse
Warm Temperature Room

Cool Temperature Room

Mild Temperature Room

Temperature
Requirements

Room
Allocation

Figure 2.4: Greenhouse.

The carts in our system vary in terms of their APIs, and in particular in the structure
of the messages they can send and receive. Some carts are fully automatic and do not
require any human interface, while others require a human to operate them through
a mobile device. The greenhouse is interested in separating plants that get sick from

11

i
i

“thesis” — 2015/11/30 — 17:40 — page 12 — #26 i
i

i
i

i
i

Chapter 2. Smart Spaces

those that are healthy. The example greenhouse requires the following features to be
implemented:

• Automated configuration and management of various types of carts

• Enable effective communication among heterogeneous carts

• Manage carts with sick flowers/plants

Although it might sound like a simple example, we think it embeds many interesting
characteristics that belong to different “more conventional” smart spaces such as self-
configuration and interoperation among various components.

2.3.2 Smart Office

A typical example of our target systems is a Smart Office where different automation
facilities are leveraged for the inhabitants to optimize building processes and user ac-
tivities. In this thesis, we have used our Joint Open Lab (JOL), a collaboration between
Telecom Italia and Politecnico di Milano, as our case study. The lab consists of an open
space, a meeting room, demonstration area, two offices and a Kitchen (See Figure 2.5).
Rooms of the lab are equipped with controllable lights, HVAC (heating, ventilation, air
conditioning), and window shutters. JOL also has luminescence and temperature sen-
sors, and BLE enabled beacons to collect the contextual information about the space.
Each person entering the space has a badge (or a mobile device) to identify his/her
presence in a room. The space has central HVAC system and one set of windows in
Demo area wall. Open space has 12 work desks for the students whereas the two offices
have 6 desks in total that are used continuously during the office works hours. There is
one controllable light available for every two work desks. Apart from the daily work
routine, there are some other scheduled activities that can take place on random days
and time such as meetings, demos, and lunch breaks.

The overall goal of the system is to reduce light and heating energy consumption
of the lab. The task is to control lights and HVAC in the lab according to the user
activities with the aim of increasing energy efficiency. The lights within a room will
be switched on or off according to the users entering or leaving the rooms (or the work
desks). The workplace occupancy and the general events (meetings, lunch times, non-
working hours etc.) are also considered to anticipate the lighting needs in particular
rooms. The lights and shutters should also be adjusted based on the intensity of light,
and on the activities being pursued. For example, lights can be dimmed, and shutters
can be closed, during a presentation. Further, if there is enough daylight available
in the lab (or at certain desk), there is no need to turn on the lights. Similarly, the
second control aspect deals with the efficient use of HVAC systems. The temperature
should be managed according to the thermal comfort level and global energy usage
constraints. The thermostat in each room must adopt a compromise between a purely
local policy and a building-wide solution, to avoid wasting energy with useless and
dangerous spikes. We will use various aspects of this case study to demonstrate features
of our proposed framework.

12

i
i

“thesis” — 2015/11/30 — 17:40 — page 13 — #27 i
i

i
i

i
i

2.3. Example Scenarios

Prox.
Beacon

Figure 2.5: Joint Open Lab Map

2.3.3 Public Park

Figure 2.6 shows a public park that is divided into sections; each section comprises
different attractions (e.g., ferris wheel, kids rail, and cafeteria). Thousands of visitors
enter the park every day; each visitor carries a mobile device and is interested in differ-
ent points of interest. The park is equipped with proximity sensors and large interactive
screens that also work as access points for the users to connect with the space.

The park smart space groups the visitors with similar interests —within a certain
distance— together by exploiting user profiles and contextual information from the
proximity sensors. This special-purpose grouping can enable effective cooperation
among the users with similar interests and location by providing efficient data dis-
semination. Every member is notified in a timely manner about important events and
other recommendations so that users can act collaboratively and proactively. Moreover,
visitors can also interact (or receive personalized information) with the screens about
nearby attractions in the park according to their interests. The same smart infrastruc-
ture can also be used to coordinate and evacuate people in the case of an emergency by
providing information about the safest and nearest exits.

Given this scenario, the park infrastructure must be capable of adapting to newly
joined components and users, and also of self-organizing/self-configuring to ensure
continuous service provision. For example, if a new screen is installed, it must be-
come part of the infrastructure seamlessly, and users must be able to utilize it to exploit
provided services and interact with the others.

13

i
i

“thesis” — 2015/11/30 — 17:40 — page 14 — #28 i
i

i
i

i
i

Chapter 2. Smart Spaces

Entrance

Cafeteria

Kids Rail

Ferris
Wheel

Screen/
Access Point

Screen/
Access Point

Screen/
Access Point

Screen/
Access Point

Screen/
Access Point

Figure 2.6: Example park scenario.

2.4 Properties

It is easy to understand that a home or office spaces are significantly different from a
shopping mall or a car space in terms of (properties such as) size, mobility, scale and
ownership, and hence, all of these spaces have different development requirements.

Following is the detail of how different smart spaces vary in terms of various prop-
erties:

- Scope. Personal spaces have limited/closed scope. Scope refers to the possible
domain of objects and various protocols that can be employed by a space. Mostly,
all the types of objects and users are known a-priori by the personal spaces such
as smart homes, offices and other buildings.
Social spaces, on the other hand, are usually characterized as dynamic spaces as
they require management of large domain of objects and various protocols, which
may or may not be known a-priori by the smart space.

- Spatial Boundaries. Personal spaces are private or restricted, bounded and indoor
because they target to provide services to the users in a defined physical space.
Social spaces are usually public and loosely (or un) bounded because they target to
provide services to the users in a shared open place where they have no individual
ownership of the physical space.

- Scale. Typically, personal spaces are smaller in size as compared to social/public
spaces due to the private nature of their usage. They have very few users/in-
habitants and the change in the number of users of these spaces does not vary
frequently, in case it does at all.

14

i
i

“thesis” — 2015/11/30 — 17:40 — page 15 — #29 i
i

i
i

i
i

2.5. Challenges

On the contrary, social spaces are larger in size as compared to personal spaces
due to the public nature of their usage. There are large number of users of these
spaces, which enter or leave the space on frequent basis.

- Interaction and Spatial Layout. The distribution of the various components and
user activities in personal spaces are usually based on the spatial layout (e,g. floor-
plans), which rarely change. Most of the interactions take place between the users
and the smart objects around him/her in the given locational context.

The distribution of the various components and user activities in dynamic spaces
are based on the situational (proximity and temporal based) layout, which changes
continuously as the users become part of/leave these spaces on frequent basis.
There are frequent user to user, and, user to other smart objects, interactions.

2.5 Challenges

The aforementioned properties of different types of smart spaces provide a list of re-
quirements and challenges that need to be solved in order to realize these spaces. The
development framework for smart spaces (with diverse properties) is thus required to
cater for the following challenges (see Table 2.2):

- Heterogeneity. The solution must provide the appropriate abstractions to deal
with the heterogeneity of the space components. The components vary in terms
of their vendors, platforms they are developed on, and also the communication
standards (WiFi, ZigBee, BLE etc.) they support. There is thus the need to support
the use of existing IoT enabled objects ranging from sensing devices and smart
plugs to home and office appliances.

Social spaces are usually open systems composed of various subsystems (with
varying execution models) operating on different protocols that must be blended
together to make the whole system work. Therefore, the development solution
should provide the right set of abstraction to cater for following three dimensions
of heterogeneity: (i) heterogeneous components, (ii) heterogeneity of communi-
cation protocols, and (iii) heterogeneity of communication models.

- Ad-hoc Integration. Personal spaces require the integration of different compo-
nents (sensors, appliances) capable of performing different tasks. Both the com-
ponents and the integration protocol(s) are usually predefined, and the framework
needs to provide the mechanism to integrate those components together by pro-
viding some simple contextual reasoning and automation (rules) mechanism. On
the other hand, social spaces need more adaptive integration mechanisms to deal
with the high dynamism of the components.

Therefore, the system should facilitate the following aspects: (i) the seamless
integration/replacement of components at run time, (ii) support for various coor-
dination styles (patterns) for interacting subsystems, and (iii) concurrent and syn-
chronous execution of subsystems with different execution models (time flows).

15

i
i

“thesis” — 2015/11/30 — 17:40 — page 16 — #30 i
i

i
i

i
i

Chapter 2. Smart Spaces

- Situatedness. Various components in the personal spaces have the notion of being
situated in certain physical partitions (e,g. room, block, floor, building), which
most of the times is very crucial to define how that particular component will
behave or how it will coordinate with other components. There is thus this need
for the development framework to facilitate and provide abstractions to model
fixed situatedness of various components and design the interaction among them.

Situatedness and location-awareness are very important aspects of social smart
spaces as components are highly dynamic and mobile. They continuously en-
ter/leave the space unannounced and change their locations frequently. The frame-
work is required to provide abstractions where location and situatedness are con-
sidered as the focal points.

- Dynamism. The development of social smart spaces requires a self-configurable
coordination mechanism of large numbers of heterogeneous components with
high churn rate (may enter, leave or fail at any given time). The system should
have the ability to self-adapt without (or minimum) human intervention.

- Scalability. As social spaces are mostly large and number of components can vary
drastically any time, the development framework for these spaces must scale up
with increasing (i) number of system components, and (ii) functional requirements
(new features and applications) without incurring additional delays or degradation
in performance.

- Flexibility. The framework should be flexible enough to enable the use of alter-
native subsystems (e,g. different protocols, simulators, etc.) to explore various
possible solutions. It is important to be able to replace set of components with
other component(s) without much effort and the need for changing the rest of the
system.

- Incrementality. Incremental development of smart spaces requires the framework
to provide the following features: (i) the continuous evaluation of the system by
means of simulation and testing throughout the development life-cycle, and (ii)
enabling co-existence of both physical and virtual subsystems at any given stage
of development.

The challenges described above answer the first half of RQ 1.1. by listing out the
requirements for a development framework for smart spaces. We will use these chal-
lenges to analyze the capabilities and shortcomings of the existing systems (Table 3.2)
to answer the second half of RQ 1.1.. Later, we will use these challanges to guide
the design of our proposed framework with the aim to bridge the gap in the existing
solutions.

16

i
i

“thesis” — 2015/11/30 — 17:40 — page 17 — #31 i
i

i
i

i
i

2.6. Life Cycle of Smart Spaces

Table 2.2: Smart Spaces - Challenges

Challenges Personal Spaces Social/Public Spaces

Heterogeneity
3

(Components)
3

(Components + Protocols)

Integration
3

(Pre-defined)
3

(Ad hoc)
Incrementality 3 3

Dynamism 7 3

Situatedness
3

(Fixed Locations)
3

Proximity-based + Mobile
Scalability 7 3

Flexibility 3 3

2.6 Life Cycle of Smart Spaces

The realization of smart spaces is a multi-phase process where required infrastructure
for device collaboration and smart services are designed and implemented. Typically,
we have found the life cycle of existing smart spaces to have the following four major
phases (See Figure 2.7), where each of these phases is managed in an independent
manner:

Design

Implementation

Validation

Operation

Requirements
&

Specifications
Modeling of

sensing,
actuating and

controlling
functionality

Construction of
infrastructure

and Realization
of the

designed
system

Testing of the
system through

some
simulation

Deployment of
the system

Figure 2.7: Smart Space Life Cycle

Design. Design is the first phase that is executed after one establishes the require-
ments and specification of the system to be. The design phase comprises the following
tasks in accordance to scenario-specific requirements:

• Identification of the different constructs (sensors, actuators, controllers, services,
etc.) of the smart space

• Definition of the relationships and interactions between those constructs

• Description of continuous services provision to the users in result of those inter-
actions

17

i
i

“thesis” — 2015/11/30 — 17:40 — page 18 — #32 i
i

i
i

i
i

Chapter 2. Smart Spaces

In this phase, it is analyzed how and what kind of sensors and actuators are needed
to be deployed in different spatial locations within the space. Moreover, the required
user services, which the space is expected to provide to its inhabitants, are also elicited.
As smart space are dynamic and service oriented in nature, it needs to be able to adapt
itself according to the changes in the behavior of the users or the space itself. Therefore,
after deciding about all the sensing/actuating elements and the required services, one
needs to define how different elements will interact with each other in order to provide
required contextualized services to the users of the space.

Implementation. The implementation phase encompasses the construction of (both
software and hardware) infrastructure. It defines the mechanisms that are required to
translate the design into the actual implementation of the system. The ease of this trans-
lation is very crucial and it is important to have the same abstractions used for both the
design and implementation of the system as it will have a significant impact on the
maintainability of the system in later phases. This process may use some programming
languages, middleware infrastructures or the support of various development frame-
works.

Validation. Validation is one very important phase in the life-cycle of smart spaces
as the development process requires integration of large number of heterogeneous ele-
ments and devices with each other. In the absence of appropriate validation mechanism,
various problems may be discovered in later phases while (deployed and in operation)
would be very expensive to be fixed [69]. One of the major reason for that is the inabil-
ity to generate real environmental settings for evaluation of certain scenarios.

For instance, it is not trivial to create situations to test emergency evacuation or
crowd navigation in large dynamic spaces and use of simulation frameworks becomes
necessary. Simulators help verify and validate a certain set of features and functional-
ities of smart spaces without the need to set up real sensors and devices [57]. In this
way, evaluation of alternative design decisions can be made to optimize the efficiency
and correctness of a smart space.

Operation. Smart spaces evolve over the time due to ever changing and emerging
nature of technologies [57]. The technological changes and rapid advancement bring
many maintenance challenges for the smart spaces that are already in operation. The
operational issues encompass a wide variety of tasks such as replacement of devices
and other components, software updates, changing the control logic and other spatial
and logical alteration of the system elements. Moreover, as users are the focal point of
these spaces, their behaviour, expectations and preferences may change over the course
of time. This change, therefore, may trigger the need for adaptation in the existing
infrastructure, services or other devices within the space [32].

These are the phases, which are typically used for the development of smart spaces.
Most of the existing solutions execute these phases in a linear manner, that is, first the
system is designed and implemented. Later, it is validated through some validation
tools (mostly simulators) and then physically deployed for the operation. These pro-
cesses are independent of each other and system is either executed either completely
deployed or totally virtual (simulated). This linearity of development phases is a prob-

18

i
i

“thesis” — 2015/11/30 — 17:40 — page 19 — #33 i
i

i
i

i
i

2.6. Life Cycle of Smart Spaces

lem for achieving one of the challenges discussed earlier, that is , incrementality. The
issue is discussed later in Section 4.1.1.

19

i
i

“thesis” — 2015/11/30 — 17:40 — page 20 — #34 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 21 — #35 i
i

i
i

i
i

CHAPTER3
State of the Art

This chapter surveys the state of the art in the field of smart pervasive spaces (en-
vironments) and highly dynamic software systems. Researchers have proposed and
developed numerous solutions for the design and deployment of smart environments.
Existing solutions and proposed approaches address one or a limited subset of the chal-
lenges discussed in the previous section. The survey analyzes the existing literature
into two important dimensions:

1. The general approaches and paradigms are discussed in order to understand how
they tackle various challenges in the development of smart environments and dy-
namic systems.

2. Existing concrete solutions, which target to solve one (or more) aspects/develop-
ment phases of the smart spaces, are discussed along with their short comings.

The discussion is concluded by a comparative analysis of surveyed solutions accord-
ing to the challenges identified in Section 2.5.

3.1 Approaches

We find various approaches in the literature that have been employed to propose solu-
tions for the creation of smart spaces. Among these, architecture-centric approaches,
multi-agent systems (MAS), and nature-inspired computing (NIC) seem to draw more
of the researchers attention as compared to other paradigms.

These different research communities target the problem of developing smart perva-
sive environments (systems) from different perspectives. For instance, software archi-
tecture and autonomic computing researchers propose solutions that focus on providing
adaptation mechanisms on top of these dynamic and continuously changing systems.

21

i
i

“thesis” — 2015/11/30 — 17:40 — page 22 — #36 i
i

i
i

i
i

Chapter 3. State of the Art

Typically, they provide centralized control loops to monitor the system state and sug-
gest some adaptation or re-configuration directives accordingly. MAS, on the other
hand, present a more open and loosely control solution where autonomous agents take
local decisions and adapt to their environment. Hence, the multi-agent community pro-
vides solutions which have more distributed adaptation mechanisms as compared to
autonomic software approaches. NIC puts forth a radically different approach where
these systems are modeled on the principles borrowed from the self-organizing natural
system and focus shifts from control adaptation to emergence that leads to continuously
evolving systems.

We analyze these approaches in terms of the system design, control, organization/-
coordinations styles and adaptation mechanisms.

3.1.1 Architecture-Centric Approaches

Architecture-based adaptation is mainly concerned with structural changes at the level
of software components [36, 99]. A component should have the ability to configure
itself in a manner that enables it to interact with other components and contribute to-
wards achieving the general goal of the system. The architecture of a software system
describes its structure that highlights the high-level design decisions about how inter-
acting (system) elements are composed and what interaction principles are employed
by them, along with the key properties of both the participating components and the
system as a whole [46, 49]. A software architecture also provides the global system
level perspective and reduces the complexity of a system through abstractions and sep-
aration of concerns and provides a common understanding of system components and
their interactions. Moreover, architecture enables the understanding of system’s topo-
logical and functional constraints at a higher level and hence provides a better way
to ensure the validity of system with changing needs [99]. The goal of architecture-
based adaptation is to minimize human intervention for managing the system in a way
that system should be able to organize itself according to the architectural specifica-
tion [50]. This makes architecture-centric approaches a popular choice for building
self-* systems, and therefore, many researchers from different domains have proposed
this type of solutions for conceiving highly dynamic systems.

Architecture-based adaptation offers various benefits [66, 77]:

• The underlying architectural concepts and principles are applicable to a wide
range of application domains, which enable software architectures to be the gen-
eral solution for building systems with different needs.

• It can provide an appropriate level of abstraction to describe the dynamic change
in a system by using components, bindings, and composition, rather than handling
it at the algorithmic level.

• Architectures generally support various kind of component compositions which
are very useful for the development of large-scale complex applications.

• There are lot of architecture description languages and notations which include
some support for dynamic architectures and for formal architecture-based analysis
and reasoning

22

i
i

“thesis” — 2015/11/30 — 17:40 — page 23 — #37 i
i

i
i

i
i

3.1. Approaches

Self-adaptation and Organizational styles

There exist a number of architecture-based solutions for pervasive systems, which
employ a wide variety of architectural styles, properties, and external control mech-
anisms. Two of the commonly adopted architecture-based adaptation approaches are:
goal driven self-adaptation and model-based self-adaptation.

Goal driven Self-adaptive Architectures

Kramer and Magee proposed an approach [55,66] for self- management at the architec-
tural level in which components configure their interactions autonomously to be com-
patible with the overall goal of the system. A three-layer reference model is introduced
that consists of component control, change management, and goal management.

The component control layer contains a set of interconnected components where
each component implements a set of provided services and requires some services to
be implemented by other components. In addition, a component has externally visible
mode, which is an abstract view of the internal state of the component. Some compo-
nent level operations are also provided such as creating or deleting components, binding
or unbinding connections, and setting values for component mode.

Change management layer is responsible for handling changes by receiving the re-
ported changes in states from the lower level or changes in goals at higher level. This
layer contains a set of precompiled set of plans and strategies for predicted class of
changes.

The goal management layer processes the state of the system and the goals specifi-
cation, and tries to generate a plan to achieve that goal. The reference model suggests
various research challenges in different layers of the proposed self-management ar-
chitecture. At the component layer, the most important challenge is the provision of
change management capable of component reconfiguration to avoid the undesired tran-
sient behavior. Decentralized configuration management that provides the resilience
in case of any inconsistent system state, is an important challenge to be managed at
change management layer. Similarly, the goal management layer requires constraint-
based planning to translate goals into plans.

FlashMob [91], for example, incorporates an aggregate gossip protocol to enable
various components of a system to agree on a global configuration (goal). In the pro-
posed solution only one or few (for greater performance) knows about the structural
constraints, whereas, all of them are aware of functional and non-functional require-
ments. On instantiation, components are connected automatically by the specified con-
figuration rules.

External Model-based Self-Adaptation

Many researchers have proposed architecture-centric adaptation approaches in which
system architectural models are maintained at runtime and used as a basis for system re-
configuration [34,77]. An architectural model of a system externally captures the over-
all structure (composition) of interacting components within a running system [48,85].
The external model-based adaptation, such as the one described by Rainbow frame-
work [47], provides reusable infrastructure with some mechanisms for customizing it
according to the needs of specific target systems.

23

i
i

“thesis” — 2015/11/30 — 17:40 — page 24 — #38 i
i

i
i

i
i

Chapter 3. State of the Art

The framework is usually constituted of adaptation infrastructure and system-specific
adaptation knowledge. The adaptation infrastructure provides some common adapta-
tion functionalities that are reusable across all target systems whereas the adaptation
knowledge is always specific to target systems. Probes and Gauges observe the running
system and report the observation to the model manager that updates the architectural
model. Rainbow, for example, uses the architectural building blocks to create an ar-
chitectural model by abstracting the behavior of target system. The provided building
blocks are component and connector type, constraints, properties, analysis, adaptation
operators, and adaptation strategies. The architecture evaluator checks for any violation
of constraints and signals the adaptation manager to select an appropriate adaptations
strategy. The selected strategy is then executed on the running system, and the action
is typically accomplished via system-level effectors.

Architectural Patterns/Styles

The architectural-centric approaches employ different architectural patterns and styles
to provide self-adaptive software solutions. A common approach is to exploit a service-
oriented infrastructure to provide the right abstractions over hardware (device) hetero-
geneity and configuration alternatives [92]. The other popular choice is the use of
event-based architecture [87,90] to model the behavior of self-adaptive systems. Many
of these approaches make use of publish/subscribe mechanism to manage services or
events. We will discuss some of these solutions in the section. 3.2. The problem with
these approaches is that services are considered the loci of all the functionality and they
do not offer spatiality and situatedness as primary abstractions.

Autonomic computing approaches [18, 39] aim to solve these issues by embedding
the adaptation logic within the architecture that monitors the changes in the system
and suggests re-configuration (through control loops) accordingly [106]. For example,
Gurgen et al. [53] propose an approach for building self-aware cyber-physical systems
for smart buildings and cities. The downside of such solutions is that adaptation logic
would have to be very complex and heavyweight to ensure the capability of adapting
to any foreseeable situation, and especially hard for long-term adaptivity. Moreover,
as systems with high churn rate require frequent access to discovery and orchestration
mechanisms to get updated contextual information, the extraction of situatedness and
proximity related information would be costly.

3.1.2 Multi-Agent Systems

Multi-agent systems (MAS) is another paradigm that has emerged as a preferred prece-
dent to design and develop complex software systems [30]. A multi-agent system typi-
cally consists of many collaborative autonomous software agents that work together to
achieve overall system goals.

An agent is a software entity with human-like properties such as autonomy, reason-
ing and learning, and sociability through high level knowledge exchange. A widely
accepted definition of an agent is defined by Russell and Norvig [82]:

"An agent is anything that can be viewed as perceiving its environment through sen-
sors and acting upon that environment through actuators."

24

i
i

“thesis” — 2015/11/30 — 17:40 — page 25 — #39 i
i

i
i

i
i

3.1. Approaches

From the technological perspective, these software agents are self- contained pro-
grams with the ability to control their decisions and actuation with respect to their
perception of the environment at a given time in order to achieve personal objec-
tive(s) [103]. Whereas from the functional perspective, they can be viewed as soft-
ware entities that can perform various tasks delegated to them in pursuit of achieving
the greater system level goal. This ability of agents convinced researchers to employ
multi-agents to design and develop automation solutions and smart environments. MAS
provide the following beneficial features for the development of dynamic software sys-
tems:

• The agent’s inherent capability of monitoring the environment and autonomous
decision making is suitable to design dynamic systems with frequent changes.

• Agents have the ability to communicate/collaborate with other agents through
high-level asynchronous knowledge exchange that is required for the better un-
derstanding of the environment and leads to more informed actuating decisions.

• MAS provide pre-define mechanisms for defining various behaviors and learning
methodologies that ease the implementation the application logic of the system.

• MAS also support re-configuration and self-organization in order to recover from
partial failures.

Standards. Multi-agent systems got a lot of attention during the 1990s, and many
platforms were developed for agent-oriented programming. In result of the grow-
ing popularity, the Foundation for Intelligent Physical Agents (FIPA) was formed in
1996 [76] with the aim to promote and standardize agent-oriented systems in order to
enable its inter-operation with other technologies. These standards include specification
for agent communication language (ACL), agent architectures and their management
policies.

JADE (Java Agent Development Framework) [16], for instance, is one of the most
widely used distributed agent platform, that is fully compliant with FIPA specifica-
tions. It provides developers with a toolkit comprising of agent-platform runtime, Java
libraries to create agents and debugging tools. It also provides built-in behavior tem-
plates (classes) that can be used by each agent to implement its behavioral logic and
capabilities. The message based communication among these agents are ACL (FIPA
standard language for communication) compliant.

Self-adaptation

Given that the agents are autonomous goal-directed entities. In a multi-agent system,
many agents collaborate to achieve certain goals (tasks) of the system and each agent
get its adaptability from these goals [102]. Typically, any goal or task can be achieved
dynamically at runtime by selecting from the set of multiple available agents without
the need to define exact configurations at design time.

To understand this, let us consider an e-market place where sellers provide a virtual
shop for the buyers to purchase items online through delegating requirements to soft-
ware agents. These agents could negotiate and form a collaboration at runtime based

25

i
i

“thesis” — 2015/11/30 — 17:40 — page 26 — #40 i
i

i
i

i
i

Chapter 3. State of the Art

on the availability of seller (product) availability and certain preferences of the collab-
orating parties. This goal-directed behavior is dependant on the agent’s internal state
and processing, which is usually designed on BDI (belief, desire, intention) model. An
agent can, therefore, enhance its self-adaptive capabilities by extending its BDI models.
This ability provides agents with the flexibility that is required for the self-adaptation.

Adaptive task coordination and management in MAS is a complex issue, particu-
larly in systems where operating conditions change frequently. Approaches such as
DynCNET [101] (extension of classic CNET protocol [88, 89]), and FiTA [100] aim
to solve the issue of adaptive task coordination in agent-based systems. DynCNET
uses the explicit negotiation to assign various tasks to the agents, whereas, FiTA is a
field-based approach where tasks emit fields in the environment that guide free agents
to perform different functions and tasks as per the requirement at hand.

Organizational Styles

Most of the initial MAS proposals for creating smart spaces and intelligent environ-
ments are based on the principle of autonomous individual agents that act to achieve
personal objectives, which are in turn designed to move the environmental state towards
the system level goal [60]. These systems provide a distributed framework and sophis-
ticated message based communication protocols. However, in order to be an effective
paradigm for the development of such dynamic spaces, MAS should be able to work at
various abstraction levels and must support openness of the system.

To this end, some middleware platforms [84] were developed for the conception of
ubiquitous computing applications with the aim to provide abstractions for sensors, ac-
tuators and other elements within a system. These system elements are represented by
an agent that acts on its behalf in the MAS. These systems are implemented through
development platforms such as JADE, where all agents reside within a runtime en-
vironment, and this limits the collaboration between different subsystems. For this,
SETH [72] puts forth the concept of hierarchical aggregation and organization of mul-
tiple agent-based spaces and the mobility of the agents residing within those spaces.

ASPECS [30] provides a software development process for creating complex sys-
tems. It advocates the concept of having agent holons for the organization of au-
tonomous agents. A holon is a system (or phenomenon) which is a self- organizing
structure, consists of agents or other holons.

The MAS approaches present various solutions for the component organization in
dynamic systems, but there are various issues that these approaches do not address:

• Many of the MAS approaches are local, and they do not provide the developer
with the ability to define the desired control mechanisms at various levels.

• Most of the agent-based systems still face one issue, and that is the effects of their
autonomous interactions are uncertain and hard to predict at the run time.

• They, usually, lack a systematic engineering or architectural view, e,g., ability
to define elements required for (agent-oriented) architecture to deal with agent’s
particular role in certain collaboration or organizational structure.

26

i
i

“thesis” — 2015/11/30 — 17:40 — page 27 — #41 i
i

i
i

i
i

3.1. Approaches

3.1.3 Nature-Inspired Computing

Over the last few years, there has been a shift towards natural immune systems [21] and
bio-inspired approaches that provide inherent adaptation and self-organization capabil-
ities to the components of the system.

Many researchers observed that the complexity of modern pervasive systems is com-
parable to that of natural ecosystems. Agha [10] suggests the use of natural systems
(e,g. physical, chemical, biological, or social) as inspiration to re-model the architec-
tural design of these systems instead of complicating existing solutions. The design
of these systems is driven by the idea that instead of putting design time relationships
(or static architectural design) among the component of a dynamic system, we should
take a more flexible and autonomous approach, similar to the one we observe in highly
dynamic massive natural ecosystems. It implies that system will be constituted by fully
autonomous agents (having their own beliefs, goals and intentions) and they will oper-
ate under the high-level eco-rules that will govern their behaviour within the system.

System Organization and Self-adaptation

The autonomous components of natural systems (e,g., ant colonies [40], or flower pol-
lination [105]) are inherently situated in the space and their behavior is guided through
the interaction with other components around them under natural laws. Therefore, the
use of natural/bio-inspired systems can provide the following benefits:

• All the system activities and components are inherently situated in a space/loca-
tion and they are triggered by only the local interactions. This property is naturally
suitable for highly dynamic smart spaces.

• The interactions in a natural system are not the pre-defined orchestrations. Typi-
cally, they follow a very limited set of general natural laws, which enable them to
self-organize in an evolutionary way.

• Due to the loose control rules, they have the inherent capability to adapt according
to natural patterns, and hence, they can reconfigure their structural formation in a
given space according to the environmental needs.

NIC is relatively a new paradigm (approach) as compared to its counterparts (archi-
tectural approaches and MAS), and therefore, different proposals and research perspec-
tives exist on how can one build software systems modeled on the principles of natural
systems. The following is the brief description of some of the significant perspectives
in this area:

Variants and Reserach Directions

Zambonelli and Viroli [106] highlight that biological metaphors are suitable for mod-
eling the spatial relationships of components and enable both localized and distributed
social behaviors. They introduce a reference architecture for implementing bio-inspired
pervasive ecosystems where service components are described as species, chemical or
biological signals are spread to and perceived from the environment and used as inter-
action mechanism, eco-laws define the interaction rules for the species, and the space
itself is the software infrastructure.

27

i
i

“thesis” — 2015/11/30 — 17:40 — page 28 — #42 i
i

i
i

i
i

Chapter 3. State of the Art

Fernandez-Marquez et al. [43] present the notion of core bio-inspired services,
which provide various bio-inspired mechanisms, such as evaporation, aggregation or
spreading to be used in various applications. The aim of their work is to ease the design
and implementation of the self-adaptive system by enabling reuse of various reoccur-
ring behavior in different applications. The proposed solution is an execution model,
namely BIO-CORE that provides these bio-inspired patterns as services to be used by
any other middleware framework.

Di Nitto et al. [37] investigated how decentralized bio-inspired self-organization
algorithms can be used/exploited to develop distributed software architectures for dy-
namic systems. They studied how various bio-inspired principles (such as emergence,
evolution, etc.) can be used to develop the heterogeneous decentralized load balancing
in the self-organizing system topology.

Many pervasive frameworks [24, 62] borrow their key principles from natural sys-
tems and focus on providing localized self-adaptive capabilities to conceive dynamic
software systems. SAPERE [24] is the chemical-inspired middleware solution which
is proposed with the aim to address the dynamism in large number of (mobile) com-
ponents. It models a pervasive service framework as a distributed MAS such that the
coordination among various application agents is based on their situated interactions.

Another interesting work in this area introduces the concept of augmented ecolo-
gies [94]. It also takes inspiration from natural ecosystems and maps components of a
pervasive environment to a virtual ecosystem of organisms interacting in a spatial and
context-dependent way.

The above mentioned approaches present some very novel and useful concepts for
the development of smart environments and dynamic software systems. However, there
are certain issues that need to be considered:

• Local decision making and self-organization fail to guarantee the desired control
over self-* mechanisms to ensure reliable, contextualized services to the users.

• This is an evolving paradigm and more rigorous experimentation and evaluation
is required (to prove its ability to converge in very large systems) in order to use
it for diverse real systems.

3.2 Solutions

The second dimension, which we use to study existing systems, is to analyze the type
of solutions proposed by the researchers. It is interesting to note that various solu-
tions employ different approaches (described above) and target certain type(s) of smart
spaces (discussed in Sec. 2.2). Moreover, these solutions provide support for different
phases of space development life-cycle.

Current systems include some ready to use solutions for fixed spaces, middleware in-
frastructures, comprehensive development toolkits and solutions, validation tools, and
few integration platforms. We observed that, mostly, fixed or ready to use solutions
(integration hubs) are employed for static spaces such as smart homes, offices and as-
sisted health-care. As one moves towards more mobile spaces and scenarios, such as
large events and stadia, middleware infrastructure or other development frameworks
and tools are proposed that require scenario-specific customizations by the developer.

28

i
i

“thesis” — 2015/11/30 — 17:40 — page 29 — #43 i
i

i
i

i
i

3.2. Solutions

We present a brief summary of these solutions along with their shortcomings in
solving challenges defined in the previous section. Table 3.1 lists existing solutions
according to the approach they adopt, whereas, Table 3.2 compares few of the repre-
sentative solutions according to the described challenges.

3.2.1 Fixed Indoor Deployments

Many indoor (fixed) spaces such as smart homes, offices, and hospitals have been pro-
posed and deployed with the aim to deliver corresponding domain specific customized
services to the inhabitants [13, 58]. An industry report [63], published by Raymond
James and Associates, shows the growing trend of smart homes and e-health deploy-
ments over the last few years. Microsoft Easy Living project [15], iDorm [60] and Gator
Tech Smart House [56] are examples of significant smart home and assisted living ar-
chitectures that laid the foundation for succeeding systems such as [97]. Easy Living
and iDorm employ the architectural approach, whereas, Gator is an agent-oriented solu-
tion. Shamim et al. [62] present an ant-based (bio-inspired) service selection framework
for a smart home monitoring environment that enables different residents of a home to
access various media services in such a way that their experiences are optimized.

These systems focus on providing abstractions over the heterogeneity of different
sensors, home appliances and communication protocols that are known a priori. They
do not support the co-existence of simulated and physical objects in order to provide in-
cremental development of the system, which results in costly updates in case of chang-
ing components types or adding new devices. The reason for this is the inability to
validate the solution through simulations and partially deployed systems.

3.2.2 Automation (IoT) Hubs

Besides these deployed spaces, there is now a growing trend of developing ready to use
solutions (sometimes refered to as IoT or automation hubs) [75]. The idea is to provide
users with a pre-configured central controlling hub that is capable of interacting and
connect various smart objects present in a fixed space (homes in particular). Many large
manufacturing companies have launched similar products such as Haier (U+ Smart
Living) [4], Samsung (Smart Home) [7], Google (Nest and Revolv) [3] and Apple
(HomeKit) [1]. Most of these systems follow the architectural approach and make use
of cloud infrastructure to deploy their services.

Most of these systems target to solve two of the challenges for fixed spaces: (i)
connecting heterogeneous components (smart objects) with different communication
standards, and (ii) providing automation rules for their integration.

3.2.3 Integration Platforms

There are some other systems that take a more practical approach towards the develop-
ment of smart spaces. Unlike the ready to use solutions, they provide frameworks and
platforms to develop smart spaces by providing support to integrate different smart ob-
jects and existing protocols for device communication. Freedomotic [2] is one of such
mashup-oriented platforms that facilitate the development and integration of standard
building automation protocols to realize smart buildings. Freedomotic is very useful
for building automation and supports the integration of external objects, but it lacks

29

i
i

“thesis” — 2015/11/30 — 17:40 — page 30 — #44 i
i

i
i

i
i

Chapter 3. State of the Art

user mobility and self-organization mechanisms to deal with dynamism. OpenHAB is
another similar [5] integration platform to connect heterogeneous components in smart
homes and offices context. These systems follow architecture-centric approach to inte-
grate different smart objects together and define rules on top of that.

BOSS [35] provides a set of building operating system services to program various
fault-tolerant applications on top of distributed components in large buildings. It offers
abstractions to define building resources, real-time processing and a semantic model
for implementing the communication among the components.

Ambient Dynamix [22] is a context framework (for Android) where sensing and act-
ing capabilities are deployed on-demand on mobile devices to let the devices adapt to
the environment. Vykon [8] is another integration solution for building automation that
supports communication and control of devices running on heterogeneous protocols.
AllJoyn [6] is a platform that supports ad hoc communication and resource sharing be-
tween smart devices in a physical proximity. It is independent of the operating systems
and wireless network protocols used by the participating devices.

These platforms can be used to bridge the gap between physical devices and the
corresponding virtual components defined to model the execution and interaction of
these devices within a space.

3.2.4 Middleware Infrastructures

A lot of work has been done to provide a middleware infrastructure for enabling the
development of pervasive systems in general, and smart spaces in particular. In litera-
ture, we find that all three (described) approaches are adopted by researchers to design
middleware infrastructure.

Most of the earlier work in this field has been done to devise service-oriented mid-
dleware solutions [92]. AMIGO [71] is a middleware that operates over different ap-
plication domains and support context information to facilitate users with intelligent
services. The AMIGO middleware is platform-dependent and also lacks the support for
heterogeneity and fault tolerance. SOCRADES [20] is a service oriented middleware
that provides a service-based interface to interact with heterogeneous devices over the
network. It offers a sophisticated event-driven messaging system. It does not, however,
support contextual information, and does not show how the system will scale and orga-
nize itself in dynamic environments. Reyes and Wong also propose a service-oriented
middleware [81] for integrating various sensors and actuating devices. The proposed
middleware abstracts heterogeneous devices as services that can be invoked by other
devices. AlfredO [80] provides an OSGi-based architecture for flexible interaction with
electronic devices to construct applications in a modular way. The capabilities of de-
vices are represented as services that can be accessed dynamically by mobile phones.
RUNES [31] offers a publish-subscribe middleware solution for wireless sensor net-
works and embedded systems. It offers dynamic reconfiguration capabilities to cater
heterogeneity, resource scarcity, and dynamism in embedded networks. Although it
does not aim to provide a whole development framework for smart spaces, it has useful
device coordination mechanisms and abstractions that can be used to program primitive
devices.

From Table 3.2, it can be observed that these middleware solutions do not support
continuous validation of the designed system by allowing a mix of physical and virtual

30

i
i

“thesis” — 2015/11/30 — 17:40 — page 31 — #45 i
i

i
i

i
i

3.2. Solutions

Table 3.1: Approaches and Solutions

Approach
Solutions

Fixed

Deployments

IoT

Hubs

Integration

Platforms

Middleware

Infrastructures

Complete

Solutions

Architecture-centric
EasyLiving

iDorm

Samsung Home

Apple Kit

Freedomotic

OpenHAB

Vykon

SOCRADES

AMIGO

AlfredO

RUNES

DEECo

DiaSuite

Multi-agent Gator

MUSA

SETH

Ubiware

ASPECS

Nature-inspired
Ant-based

Smart Home

SAPERE

Middleware
SAPERE

components. Further, they do not provide any mechanism for the synchronization of
the different subsystems with different time flows.

Researchers from multi-agent systems (MAS) community have also proposed solu-
tions for the development of smart environments. For instance, iDorm project aims to
realize intelligent healthcare environments by associating embedded agents with vari-
ous sensors and actuators [60]. Ubiware [84], a middleware platform, is developed for
the conception of ubiquitous computing applications. It aims to enable the creation of
self-managed complex systems in general and, industrial systems in particular. Each
of the sensors, actuators and other elements within a system is represented by an agent
that acts on its behalf in the MAS. The middleware provides declarative rule-based
language (S-APL) to define these agents.

ASPECS [30] is an agent-oriented software process for complex systems but it also
provides a self-organizing middleware for user-driven service adaptation. SETH [72]
puts forth the concept of aggregation of multiple agent-based spaces and mobility of
these agents. The architecture supports a layered organization to create complex smart
environments by means of inheritance and aggregation relationships. It assumes a well-
defined system requirements to work with and is unable to adapt itself to evolving user
needs and system requirements. Therefore, it is not a feasible choice for real-time
dynamic and large scale systems.

Similarly, there are some nature-inspired middleware frameworks (e.g., SAPERE
[24]) proposed with the aim to address the dynamism in a large number of (mobile)
components. This is an evolving paradigm and more rigorous experimentation and
evaluation is required (to prove its ability to converge in very large systems) in order to
use it for diverse real systems.

3.2.5 Complete Development Solutions

ASPECS [30] defines a comprehensive agent-oriented process for engineering complex
systems. It proposes a holonic organizational style, and also provides tools for all the
development phases. It offers abstractions to design the system from scratch and does

31

i
i

“thesis” — 2015/11/30 — 17:40 — page 32 — #46 i
i

i
i

i
i

Chapter 3. State of the Art

not offer integration framework to use existing solutions. DEECo [19] is an ensem-
ble based component system where an ensemble represents dynamic binding of a set
of components and thus determines their composition and interaction. DEECo pro-
vides useful tools for the design and deployment of the system, but it lacks the ability
to integrate external systems and does not support continuous evaluation by enabling
both virtual and physical components to coexist. Further, it does not have an optimal
knowledge exchange mechanism and components share all the data while communi-
cating irrespective of the needs. DiaSuite [23] is a development framework to build
pervasive control systems and offers the following features: a language to design sys-
tem taxonomies (through entities), an architectural pattern to model application specific
data-flows, and an embedded simulator called DiaSim that is a customization of Siafu.
This methodology provides developers only with the fixed entities like contexts, con-
trollers, and a particular context simulator. Further, it does not deal with mobility and
dynamism of the system component and lacks the support for coexistence of various
physical and virtual subsystems together.

3.2.6 Validation Tools

Besides all these concrete solutions, we think that it is important to mention various
validation tools that are also available for evaluating the system performance. Usually,
different simulation frameworks are used for mimicking the behavior of the components
(in a virtual environment) to understand how the system will behave in the real scenario.
Siafu [73] is a context simulator that provides a way to generate different contextual
information in a space. It also supports the modeling and visual simulation of the dy-
namic user behavior within the space. Few other simulation frameworks [68,78,96] for
creating virtual smart homes also exist. EnergyPlus [9] is another widely used system
that can be used to simulate the energy needs within a building under given conditions.
Ptolemy II [67] is an actor oriented open source framework to model and simulate dif-
ferent models of computations through defined interfaces and timed synchronization.
Ptolemy II is primarily a tool for experimentation and does not provide any deployment
and run-time support for the designed systems. Further, the models are defined at the
design time, and they do not support any change, reconfiguration or dynamic behavior
of the involved components.

3.3 Comparative Analysis

The first dimension of analysis is the adaptation approach that is employed by vari-
ous research communities and present solutions. Majority of these solutions are de-
veloped through centralized architectural control loops and hence they are prone to
have scalability issues. To deal with these issues, multi-agent systems proposed to
use autonomous agents that collaboratively form distributed systems with runtime self-
adaptation delegated to individual entities of the system. These agent-based systems,
then, laid the foundations for bio-inspired self-adaptive eco-systems, which are pro-
posed to move towards completely decentralized and autonomous solutions. Although,
all these approaches are interesting and useful for certain kind of scenarios, there is a
need for decentralized, yet manageable solutions.

Secondly, Table 3.2 presents a comparison of the representative systems from each

32

i
i

“thesis” — 2015/11/30 — 17:40 — page 33 — #47 i
i

i
i

i
i

3.3. Comparative Analysis

class of solutions (approaches) with respect to the challenges identified in Sec. 2.5.
Following is the brief summary how different solutions address those issues:

Heterogeneity. It is observed that most of the existing solutions cater for the hetero-
geneity in terms of component types and communication protocols. However, almost
all of them (Ptolemy being the exception) does not explicitly provide mechanisms to
handle system elements with heterogeneous execution models.

Situatedness. Although, there are solutions that provide fixed situated properties
and location management, situatedness and mobility are not provided as first class ab-
stractions by any of the systems, except nature-inspired eco-systems (e,g. SAPERE).
This is very important property of a system where components are highly dynamic,
and they frequently move around the space. The mobility changes the context, and
hence, requires the spaces to adapt accordingly to provided location aware services.
This aspect is ignored by many systems and hence it is required to be incorporated in
the development solution.

Ad-hoc Integration. All the surveyed systems provide the integrated automation
of various components of the smart space. DiaSuite and Ptolemy also provide support
for the integration of heterogeneous coordination patterns for interacting components/-
subsystems. Although, Ptolemy is the only solution that allows concurrent and syn-
chronous simulation of subsystems with different execution models, but unfortunately
it is a simulation tool and used only for the validation (and not the deployment) of the
system.

Dynamism. Most of the systems lack the ability to cater for the highly dynamic
nature of components. Among all the solutions, only SAPERE, DiaSuite and ASPECS
provide explicit mechanisms to deal with the dynamism. They offer sophisticated self-
organizing (re-configuration and self-healing) mechanism that are capable of adapting
system without human intervention.

Scalability. Most of the existing solutions deal with adding new features and re-
quirements, but they do not address the issue of scalability in terms of very high num-
ber of components. SAPERE approach provides enough evidence of catering with the
issue and their design choice inherently deals with large self-adaptive systems.

Flexibility. Many of the surveyed systems are flexible when it comes to change or
re-configure some components of the systems, but there is not much support available
for the replicability of different system elements to enable the testing of various alter-
native subsystems.

Incrementalitly. This is the property that is lacking in almost all the existing solu-
tions as they do not support the incremental development and continuous validation of
the system to be designed.

The survey shows that most of the existing solutions and approaches are targeted

33

i
i

“thesis” — 2015/11/30 — 17:40 — page 34 — #48 i
i

i
i

i
i

Chapter 3. State of the Art

to solve a particular subset of the problems (challenges) related to smart space devel-
opment. One can make the following high-level observations from the comparison
presented in this chapter:

• Each of the employed design approaches has some relevant features that are use-
ful for the development of the systems under consideration, yet they fall short in
providing a holistic solution that covers all the challenges.

• These solutions, many of which are useful in limited scenarios, work in isolation
and do not make any effort to integrate other developed elements to support the
complete life-cycle of these systems.

• This isolation results in a sequential development process as one has to develop
the complete system, and then the system is validated through simulators.

We, on the other hand, claim that all these solutions should be employed within
a development framework and integrated through the same middleware to allow con-
tinuous evaluation of the system while moving seamlessly from design to actual de-
ployment. Given the wide range of external simulators, communication protocols, dis-
tributed technologies, a useful framework should be more generic and be able to interact
with almost any external system or simulator. To conclude (the answer of RQ 1.1.), the
existing systems and approaches fall short in following aspects:

• Provision of a generic framework that is applicable for all diversified spaces and
that supports all the development phases for the creation of smart spaces.

• Lack of balance between the control and the autonomy of smart space components

• Inconsideration towards inherent evolutionary nature of the development process
of the smart spaces

• Inability to define/control ensembles of components at various granularity levels.

34

i
i

“thesis” — 2015/11/30 — 17:40 — page 35 — #49 i
i

i
i

i
i

3.3. Comparative Analysis

C
ha

lle
ng

es

Io
T

H
ub

s
M

id
dl

ew
ar

e

In
fr

as
tr

uc
tu

re
s

M
et

ho
do

lo
gi

es
In

te
gr

at
io

n

Pl
at

fo
rm

s
Si

m
ul

at
or

s

[7
5]

[2
0]

R
U

N
E

S
SE

T
H

SA
PE

R
E

A
SP

E
C

S
D

E
E

C
o

D
ia

Su
ite

Fr
ee

do
m

ot
ic

Pt
ol

em
y

II

H
et

er
og

en
ei

ty

C
om

po
ne

nt
s

X
X

X
X

X
X

X
X

X

C
om

m
un

ic
at

io
n

X
X

X
X

X
X

X

M
od

el
s

X
X

A
dh

oc

In
te

gr
at

io
n

A
ut

om
at

io
n

X
X

X
X

X
X

X
X

X
X

Pa
tte

rn
s

X
X

Ti
m

e
Fl

ow
X

Sc
al

ab
ili

ty
C

om
po

ne
nt

s
X

Fu
nc

tio
na

lit
y

X
X

X
X

In
cr

em
en

ta
lit

y
C

oe
xi

st
en

ce
X

E
va

lu
at

io
n

D
yn

am
is

m
C

hu
rn

ra
te

X
X

X

Fl
ex

ib
ili

ty
C

on
fig

ur
ab

ili
ty

X
X

X
X

X

R
ep

la
ca

bi
lit

y
X

X
X

Si
tu

at
ed

ne
ss

Pr
ox

im
ity

-b
as

ed
X

Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

m
os

tr
el

ev
an

te
xi

st
in

g
sy

st
em

s

35

i
i

“thesis” — 2015/11/30 — 17:40 — page 36 — #50 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 37 — #51 i
i

i
i

i
i

CHAPTER4
Proposed Framework

This chapter discusses the proposed perspective shift in the development of dynamic
smart spaces. It also describes a comprehensive development framework (Figure 4.3)
to design, prototype, and assess alternative solutions for smart spaces. The framework
provides design abstractions to abstract over the heterogeneity of devices and manage
the intricacies of distributed components. It also leverages effective architectural coor-
dination styles and integration mechanisms to facilitate the incremental validation and
deployment of the space.

4.1 Revisiting the Perspective

Two major revisions (in answer to RQ 1.) of the current approaches are proposed and
advocated in the thesis. The first one is the incremental development (Figure 4.1)
of the smart spaces where different phases co-exist with each other and where it is
possible to work with ’incomplete’ systems at any given type. The second proposal is
related to self-organization/adaptation mechanisms. We advocate that there is a need to
have a self-adaptive approach that takes the best of the existing software architecture
control loops and bio-inspired emerging algorithms to develop a system, which has
both the control over system processes and the certain level of autonomous emergence
properties.

4.1.1 Incremental Development

It is important to re-iterate the fact here that it is very hard to predict at the design time
about the sensors, actuators, controllers and data that are required for the space-to-be.
This is true because of the following reasons:

• Change in functional or service requirements as an overall evolution of the system.

37

i
i

“thesis” — 2015/11/30 — 17:40 — page 38 — #52 i
i

i
i

i
i

Chapter 4. Proposed Framework

Design

Implement/
Prototype

Deploy Simulate

IntegrateValidate

Requirements and
Specifications

Figure 4.1: Incremental Smart Space Development

• The great variety of smart objects and communication technologies generates the
need for the assessment of alternative solutions.

• Inability to produce certain test case scenarios in the real environment and the need
to test simulated components (or subsystems) with partially deployed system.

Therefore, we claim that it becomes very important for a designer to be able to
try different alternative solutions easily and quickly, and the continuous evaluation al-
lows their "immediate" assessment before committing to the physical deployment of
the system. We argue that the community has mainly followed a code and fix solution,
more aimed to make things work instead of moving a step back and devising a more
comprehensive and principled approach.

RQ 1.3. is concerned about finding a suitable development life-cycle for the devel-
opment of diversified smart spaces. We propose a framework that provides the back-
bone for all the other features and stays unchanged till the final deployment to allow
for an early evaluation of "incomplete" systems. This enables application developers
to use or replace one solution to the other without the need of changing the overall
organizational structure and topology of the system. It provides interfaces to surro-
gate system components through external simulators, to foster rigorous evaluation of
designed systems, and to ease the deployment of physical elements.

In result of this, an incremental development process for the dynamic smart spaces
is presented, which is shown in Figure 4.2.

In the design phase, all the elements of the smart spaces and their interactions are
modeled. These elements may be physical (to be deployed) or virtual (to be simu-
lated). The next phase of the process is implementation/prototyping of the designed
system, which may be physically deployed or simulated through external simulators.
In the integration phase, both simulated and virtual components are executed concur-
rently. It means that the running system comprises of many physically deployed real
elements and some simulated behaviors and components, which are integrated together
by the framework. This property of the framework enables continuous system valida-

38

i
i

“thesis” — 2015/11/30 — 17:40 — page 39 — #53 i
i

i
i

i
i

4.1. Revisiting the Perspective

Prototype
Desig

n

Implementation

Inte
gration

Operation

Requirement &
Specifications

Modeling of sensing,
actuating and controlling

functionality

Deployment of physical
components and simulation

of virtual elements

Concurrent execution
of integrated system

Simulate

Deploy

Physical and
Virtual Components

Re-Configuration

Continuous Validation through
Co-existence of physical and virtual

systems

Working System

Figure 4.2: Incremental Smart Space Development Life Cycle

tion throughout the development process as it enables the early evaluation of various
system elements through simulations. This, in turn, allows one to modify/configure
different elements of the space to test various alternative solutions. It also helps the
developer to move seamlessly from the completely simulated solutions to the fully de-
ployed one in an incremental fashion.

4.1.2 Integrated Self-Adaptive Approach

Section 2.5 and 3.3 answer RQ 1.1. about the shortcoming of the existing systems. The
RQ 1.2. inquires about the possibility to employ/integrate various principles from the
existing design paradigms to address those shortcomings and deficiencies. This section
aims to find an answer for this question and puts forward an integrated self-adaptive
approach towards the development of dynamic spaces.

The autonomic computing community has been focusing on super-imposed adapta-
tion mechanisms by adding further, dedicated components to the (software) architecture
of the system. State of the system is monitored and in case of any changes, the super-
imposed adaptation mechanism analyzes whether the system is still in "desired" state
of operation or it needs to adapt according to the observed changes. As this adaptation
logic is usually external to the system and needs to continuously monitor the state of
the system, it adds to the complexity of already complicated systems.

In contrast, bio-inspired solutions provide inherent self-organization support and
they do not need super-imposed mechanisms in order to able to react to the continuously
changing environments. However, this autonomy and self-organizing capability, on the
other hand, results in systems, which fail to guarantee the desired level of reliability
and control.

This thesis aims to blend the two views and proposes an architecture-centric solu-
tion that synthesizes component-based control and bio-inspired (fireflies-based) mech-
anisms to exploit the best characteristics of the two paradigms. Suitable abstractions

39

i
i

“thesis” — 2015/11/30 — 17:40 — page 40 — #54 i
i

i
i

i
i

Chapter 4. Proposed Framework

help conceive self-organizing, ad-hoc collaborations among the components of a space.
The idea is to define the functional control logic through architectural loops and inter-
dependencies of various system elements through role-orientation. Whereas, the run-
time adaptation and collaboration formation will be handled through embedded fireflies-
based (bio-inspired) adaptation mechanisms that would use the defined interdependen-
cies of elements and then guide system to efficient/desired system topology and config-
uration. The synthesized approach enables the following:

• Components are provided with the capability to self-adapt in dynamic situations
according to their continuous changing spatial and proximity context, while keep-
ing the best possible system configuration.

• The developers, at the same time, are still able to define control mechanisms to
achieve application goals despite the self-organization of components without a
central controlling entity.

• It provides application developers with more flexibility to define control logic
through component control loops, or alternatively/complementary through bio-
inspired organizational rules.

The details of the proposed adaptation approach are provided in Sec. 4.5.

4.2 Design Abstractions

This section answers RQ 2. by proposing abstractions and integration mechanisms for
the design and implementation of smart spaces. The aim is to overcome the issue of
fragmented (in terms of technologies and functionality) devices and support the self-
organization to deal with the continuously changing user requirements.

The survey of the state of the art highlights the issues (Sec 3.3) with the current
approaches and points out the areas that require better or improved solutions. Following
observations were made that will be used as the guiding principles for the design of a
new development framework:

• It is easier to work with small ensembles of devices at functional and management
level and then evolve the system over the time.

• Think big, start small approach is required for the development of Smart Spaces.
It means that, although, the system should be designed considering the broader
and higher level design, but should be implemented in an incremental manner and
step-wise deployments.

• Abstractions are required for the continuous integration and concurrent execution
of physical and virtual components. The provided abstractions are required to be
applicable/usable for all the development phases of smart spaces.

The process of designing a smart space through the proposed framework can con-
ceptually be divided into two distinct activities. First, the designer needs to define the
various elements of the space through provided abstractions defined in the meta-model
in Figure 4.5; second s/he needs to layout how these elements will coordinate together
to achieve the system goals. The proposed framework offers role-oriented components

40

i
i

“thesis” — 2015/11/30 — 17:40 — page 41 — #55 i
i

i
i

i
i

4.2. Design Abstractions

modeling that allows one to successfully capture the contextual and functional relations
among the different components of a smart space.

Component Layer

Management Layer

Distributed execution/simulation

Integration
Policies

Physical devices
Abstraction

Virtual(simulated)
components Interface

Smart Space
+ + +

Sensors +
Actuators Infrastructure Personal

Devices Simulators

RDF-based Data Exchange
Semantic

Layer

Component
Abstractions

Layer

Integration
Layer

Concurrency
Layer

Fireflies-based Adaptation

Figure 4.3: The Proposed Framework

4.2.1 Component

The Component Abstraction Layer defines the Component, the basic design level ab-
straction of the framework.

• Components capture the essential attributes of space entities and maintain their
state over time.

• A component may refer to any physical or virtual entity that has some inherent ca-
pabilities (control, sensing, actuating, or simulation) or functionality (room/floor
controller in an office) that may be needed by other components.

All the sensors, actuators, controllers, users or external systems (low level physical
layer in Figure 4.3) within a smart space will be modeled as components. The benefit
of having this component abstraction is that a developer will not have to deal with
any physical level details about the devices (i.e., whether a component is related to
any physical device, any web-service or a virtual source), while defining rules and
behaviors for the components. This plugin ability will, in turn, enable the developers to
replace one component (or any subsystem) with another one in a very easy and seamless
manner.

Figure 4.4 shows the component model employed by the proposed framework. It
consists of the following elements:

• The components maintain identity that is used to identify a specific component
within the system.

41

i
i

“thesis” — 2015/11/30 — 17:40 — page 42 — #56 i
i

i
i

i
i

Chapter 4. Proposed Framework

Component

Shared State

Role A
State Behavior

Role B
State Behavior

View1View2

View3 Environment

Collaboration
Interface

Collaboration
Interface

Identity Capabilities

Figure 4.4: Component Model

• It defines some capabilities, usually programmed functionalities, that may be re-
quired by some other components.

• It collaborates through other components through role (described later) interfaces,
which allow a component to be (temporarily) a part of functionality-specific col-
laboration/view of the space.

• The component also maintains a state, that can be shared among various roles.

This abstraction allows the developer to concentrate on the properties of interest
and define suitable behaviors accordingly. The same component can act as a proxy
of both a physical entity and a simulated one with no external changes. The same
architecture is kept throughout the whole development process: it can evolve by both
decomposing existing components and replacing simulated behaviors with real ones.
Proper simulators can be used for the early validation of conceived artifacts.

4.2.2 Role

Roles are scenario-specific views and behaviors of components. Each component can
play/exhibit different roles at a given time, and in a given context or situation as shown
in Figure 4.4. Role-orientation of the framework components offers the following ben-
efits:

• Components are typed and as such they cannot change their behavior easily. In
contrast, roles provide dynamic views on a component in a specific context, and
thus they are useful for creating context-oriented behaviors and data exchange
among components.

42

i
i

“thesis” — 2015/11/30 — 17:40 — page 43 — #57 i
i

i
i

i
i

4.2. Design Abstractions

Name
Group

State
Component

MAPE
Follower Lists

Supervisor Role

Follower Role

Context
Sensor

State
Action

Actuator
Location
Profile

Personal Device
Interface

Simulator

State
Role

M

N

<<has>>

M

N

Communication

<<Sends>>

<<Plays>>

M

1

M

N
Execution Cycle

Behaviour

Methods
Capability

<<implements>>

Policies

<<implements>>

<<has>>

cycle
Timed

Event
Triggered

ToSupervisor
ToFollower

Unicast

ToFollowers
Multicast

content
Message

MAPE
Control

Figure 4.5: Framework Meta-Model

• Roles provide separation of concerns between the component identity (and data)
and its behavior and collaborations.

• They are superimposed on components and can be changed or removed at runtime
according to contextual needs.

• The dynamic role selection can help specialize the information exchanged be-
tween components, and thus reduce the amount of transferred data.

• The collaborations set between components on the basis of their roles help control
domain dependencies and provided/required features in a fine-grained manner.

A role comprises a type and behaviors. The type defines how these roles could be
used to form collaborations, whereas the behaviors are used to define the tasks that a
role is supposed to perform.

Role Types

Role types are used to define the capacity in which one component can interact with
other components. There are two types of roles that a component can play:

• Follower role, which corresponds to a worker

• Supervisor role, which oversees workers

43

i
i

“thesis” — 2015/11/30 — 17:40 — page 44 — #58 i
i

i
i

i
i

Chapter 4. Proposed Framework

These role types are used to form groups (Sec. 4.2.3) and ad hoc collaborations.
In each collaboration, one component is chosen to play the supervisor role, which is
selected dynamically at runtime, while the other components are followers. The super-
visor component will be responsible for management whereas followers will act upon
the directives they receive from the supervisor. Each component can play many roles
in different groups, enabling information sharing across multiple groups (exemplified
and discussed in next section).

Behaviours

Behaviors are application-specific functionality that a component performs in certain
situations. There may be different types of behaviors such as:

• Timed (cyclic) behaviour, which repeats itself after a defined time interval.

• Triggered behavior, which is executed when a certain (specified) event takes place.

• Controller behavior, which refers to MAPE control loop for decision making.

For instance, a luminance sensor component may implement cyclic behavior that
reads/sends luminance information after every 60 seconds to other interacting compo-
nents. On the other hand, a lamp component may implement a triggered behavior that
is invoked every time an event takes place that requires an action (turn on/off) to be
performed. Controller behavior can be implemented by a computational component
that controls and mediates between sensory information and actuator actions in order
to maintain the desired lighting conditions. Section 5.3 will discuss in detail how these
behaviors can be implemented and coordinated together to achieve certain functional-
ity.

4.2.3 Group

In our framework, components are clustered into groups based on their functionality,
location or other logical factors and dependencies. The rationale for employing the
group-based coordination of smart space components is manyfold:

• Arguably, management of groups of components is intrinsically more meaningful
and less dynamic than managing individual components.

• Groups enable more efficient organization of the components as rules can be de-
fined at various granularity levels to deal with high dynamism and changing con-
texts.

• A group acts as a facilitator to integrate various components and form ad-hoc
collaborations.

• Groups also enable the possibility of surrogating some components to realize the
transition from a simulated entity to the real one.

Figure 4.6 describes the working of a group. There is one component with the
supervisor role that implements the MAPE (Monitor, Analyze, Plan, Execute) control
loop [39]. All the other components in a group participate as followers. Followers (e,g.
sensors) provide environmental context/data to the supervisor which is responsible to

44

i
i

“thesis” — 2015/11/30 — 17:40 — page 45 — #59 i
i

i
i

i
i

4.2. Design Abstractions

Monitor

Analyze Plan

Execute

Environmental
Data

Action
Directives

Supervisor
Component

Follower
Component

Figure 4.6: Group Abstraction

analyze and decide about certain actions that are required to be executed. These action
directives are then sent by the supervisor to the relevant followers (e,g. actuators).

A group provides an abstraction for reasoning about the coordination and manage-
ment of a single set of nodes. It does not, however, allow us to coordinate or manage
the entire system. To enable global coordination, the framework allows groups to be
"composed". Group composition is achieved by allowing a node to belong to more than
one group at a time, and by allowing it to play different roles in different groups (e.g., a
node can be a supervisor in group A and a follower in group B). This way designers can
construct different kinds of organizational structures, depending on the application’s
coordination needs. Figure 4.7 shows some of the possible organizational structures
(e.g., hierarchical, circular, flat). These structures allow groups to share "local" knowl-
edge, and, through appropriate compositional design, reach a "global" understanding
and coordination of the entire system. In the figure, black circles represent supervi-
sors, white circles represent followers, and circles that are half black and half white are
components that play both the supervisor and the follower role, in different groups.

Figure 4.8 describes how all the elements of a space (lamp, sensor, server, simula-
tor, smartphone) can be abstracted as components that are capable of playing multiple
(supervisor and follower) roles in certain groups (proximity and lighting). As a compo-
nent, lamp and sensor play the lighting group follower role, simulator and smartphone
play the proximity group follower role, and the server plays both lighting group super-
visor and proximity group supervisor roles. Based on these role playing capabilities, all
the physical elements (components) are then organized into two groups called lighting
and proximity.

Figure 4.9 explains how information (contextual data) is exchanged and decisions
are made within a group. An example light management group is presented which con-
sists of the following components: (i) a control component (light manager) , (ii) two
sensors (light and proximity sensor), and (iii) two actuators (light and a window). The
light manager plays the supervisor role in the group and hence is responsible for all
context management and decision making. The two sensors and the actuators, on the
other hand, play the follower role in the group and hence send/receive contextual infor-
mation or directives from the light manager. To be precise, light and proximity sensors

45

i
i

“thesis” — 2015/11/30 — 17:40 — page 46 — #60 i
i

i
i

i
i

Chapter 4. Proposed Framework

(a) (b)

(c) (d)

Figure 4.7: Group Compositions

generate light and location context, respectively, and send it to the light manager. The
light manager analyzes the light and proximity information on receiving, decides actu-
ation directives for light and window, and send it to turn on/off the light or open/close
the window shutter.

The ability of a component to be part of multiple groups at a time raises the problem
that it may receive conflicting directives from the different supervisors. For example,
it might be the case that the light management group may prefer a shutter to be opened
whereas the temperature adjustment group wants it to be closed. The framework fosters
the idea that a well designed system would not have to face these situations. However,
the interactions among the different groups, and the system-specific composition of the
commands issued by the different supervisors provide a further way to manage them.
The last option is that the internal logic of each single component can always specify
how to deal with these spurious, conflicting cases. This means that either the groups
are composed in such a way that the commands issued by the temperature supervisors
can filter those issued by the light managers. Otherwise, the shutter itself can be pro-
grammed to decide that the commands received from a temperature supervisor override
the commands received from the other supervisors.

4.3 Semantic Layer

Interaction and information exchange among large numbers of heterogeneous devices is
a major issue while developing applications for smart spaces. The proposed framework
provides a Resource Description Framework (RDF) based Semantic Layer to harmo-
nize heterogeneous components in a smart space. RDF-based ontological representa-
tion of information that makes interoperability among components easy because of its
inherent support for data linking between different ontologies.

RDF [64] is a conceptual modeling approach in which information is described un-

46

i
i

“thesis” — 2015/11/30 — 17:40 — page 47 — #61 i
i

i
i

i
i

4.3. Semantic Layer

Physical Space

Component
Abstraction

Proximity Group SV

Proximity Group FOL

Lighting Group SV

Lighitng Group FOL

Smart
Phone

Server

Simulator
Lamp

Sensor

Groups Proximity Group

Lighting
Group

Figure 4.8: Design Abstractions

der the form of Subject – Predicate – Object triples. The subject field refers to a re-
source, whereas the predicate field describes how the subject relates to an object. The
subject and predicate are both defined by URIs, whereas objects can be either resources
(URIs) or literal values.

In the smart office scenario, each room has its own set of sensors; they feed infor-
mation into the system using a specified model, and, thanks to that model, all the other
components can interpret their values. Figure 4.10 shows a simple example ontology
model for the sensors. Each sensor is defined by its location, the physical property it
measures, the range within which its values can be output, the actual reading, and a
timestamp.

An example of how this sensor ontology can be used to represent information in
RDF is shown in Figure 4.11. The RDF graph shows the property measurements of
two sensors S1 and S2, located inMeetingRoom andDemoRoom, respectively. Both
these sensors measure temperatures; S1 can sense temperatures between−100 and 100
degrees, whereas S2 can measure temperatures between −50 and 100 degrees. The
graph also shows one measurement for each sensor (i.e., the value and its timestamp).
Thanks to this model the sensors can “speak” the same language, and the system can
digest the information they generate. Similarly, the semantic model is also used to
define roles for various components, so that the SSMs can associate the components
with relevant groups by matching relevant ontological information.

47

i
i

“thesis” — 2015/11/30 — 17:40 — page 48 — #62 i
i

i
i

i
i

Chapter 4. Proposed Framework

Light

LightSensor

Window

prox.
Sensor

LightMGr'Light Context' Prox Context

Up, Down, Close, UpTurn Off-On

Generates
Generates

Directs

Consumes

Directs

Components Roles

LightMgr LightSupervisor Role

Light
Window

LightFollower
Role

Light Sensor
Prox. Sensor

LightFollower
Role

Monitor
LightContext
ProxContext

Analyze
If lightContextReading <10 Then Light(low)

If ! proxContextReading (empty) Then Room(occupied)

Execute
SendMsg(light,TurnOn)

SendMsg(Window, Open)

Plan
If Light (low) AND Room(occupied) AND Temp(low) Then Turnon(light)

If Light (low) AND Room(occupied) AND Temp(high) Then Window(open)LightMGr
MAPE-Loop

Figure 4.9: Group Example - Light Management

4.3.1 Semantic Model

Use of a common semantic model helps solve the integration problem as different com-
ponents use the same defined standard for sending messages to other components. The
proposed semantic layer can conceptually be divided into a Group Coordination On-
tology (GCO), a Message Protocol Ontology (MPO), and a Domain Concept Ontology
(DCO) (see Figure 4.12). The GCO defines the generic concepts used by the framework
for automated group formation and self-configuration. According to the GCO, every
Group has multiple Components, and a GroupInfo. A GroupInfo describes the Super-
visor and Follower roles used in that specific group, whereas Components are system
elements that conform to the semantic model. The inter-communication among com-
ponents is carried out according to the MPO. The MPO defines the general messaging
protocol. Not only does it enforce rules such as “followers can only send messages to
their supervisors” (described by Figure 4.12), it also defines message exchange types
that simplify the interpretation of the messages themselves. Besides having a message
protocol, we also need to standardize the content of the system’s messages; this usually
depends on the application domain. The DCO defines the vocabulary that is used to
solve this particular issue.

Figure 4.13 shows the DCO for the JOL case-study that defines the application spe-
cific semantic model. Each device and appliance of JOL is defined as a component and
has an associated location and communication protocol. There are two types of devices
namely sensors and actuators. Sensors are responsible for generating contextual infor-
mation (luminance, temperature and proximity) whereas actuators (smart plugs in our
case) are used to control the power state of the appliances. Components can be identi-

48

i
i

“thesis” — 2015/11/30 — 17:40 — page 49 — #63 i
i

i
i

i
i

4.4. Integration Layer

Sensor

Physical
Property

Property Mesaurement valuetimeStamp

measures

takes

Location

at

Measurement
Range has

at
is

Figure 4.10: Sensor Ontology.

Sensor

S1

temperature

-100 to 100

measurement1

10 3:2
5

S2

temperature

-50 to 100

measurement 2

-4 21:00

is is
measures

measures

has range
has range

is isat
at

Meeting
Room

Demo
Room

at
at

Figure 4.11: RDF graph of a semantic model for sensors.

fied and located based on their area, room and position coordinates. All the components
at JOL can communicate via any of the three (WiFi, ZigBee, and BLE) protocols.

4.4 Integration Layer

The Integration Layer is responsible for coordinating heterogeneous components and
subsystems by organizing (integrating) all of them in various self-organizing groups.
As described earlier, components collaborate with each other through these groups,
which are formed on the basis of common/related functionality, location, or other log-
ical factors and dependencies. In each group (corresponding to a collaboration), one
component is chosen dynamically to play the role of supervisor while the other com-
ponents take part in the group as followers. Each component can play different roles
in diverse collaborations (groups), and enable information sharing across multiple ad-
hoc collaborations. It ensures the separation of concerns between the sensing/actuating
infrastructure and the components responsible for autonomic management (discussed

49

i
i

“thesis” — 2015/11/30 — 17:40 — page 50 — #64 i
i

i
i

i
i

Chapter 4. Proposed Framework

Message Protocol Ontology

SeSaMe: GroupInfo

SeSaMe: Group

SeSaMe:
SupervisorRole

SeSaMe: Component

has

SeSaMe:
FollowerRole

consists of has

has

has has

SeSaMe: Message

SeSaMe:
MessageToSupervisor

SeSaMe:
MessageToFollower

delivered to

sends

sends

delivered to is

is

SeSaMe:
MessageContent

SeSaMe:
MessageType

has

contains

Group Coordination Ontology

accommodates

hashas maintainshas

Greenhouse: Cart Greenhouse: Room

Greenhouse:
TemperatureReqs

Greenhouse:
TemperatureGreenhouse: Health Greenhouse: Status

acts acts

Domain Concept Ontology

Figure 4.12: Taxonomy of semantic model —We have used namespaces instead of URIs for the sake of
clarity.

later).
For example, one can integrate and group all the luminance sensors, lamps and win-

dow shutters at JOL (or a room) for lighting control and management, whereas another
group can be formed to manage temperature by combining temperature and radiation
sensors, external weather data, windows and all HVAC systems. Alternatively, there
can be a room (space) management group that consists of all the devices (sensors and
actuators) in that room to make an integrative (both temperature and lighting) control
system.

Moreover, it is important to note that the component abstraction and the role orien-
tation allow one to blend physical and simulated elements in a system together. One
can also replace a group of components with another component that simulates them.
For instance, a group of lamps can be replaced or simulated by Freedomotic which can
be modeled as one or multiple components. At the architectural level, a component
can be one or a set of element(s) that has a state and some functionality that it exhibits
under certain environmental conditions. This ability of the architecture enables the co-
execution of the system at different levels of maturity and in different versions. Physical
entities and external simulators (emulating one of more entities) can work together to
allow a developer to move seamlessly from a simulated solution towards a concrete de-
ployment of the system. This is important for spaces such as our public park as it is not
easy to evaluate alternatives and create situations with hundreds of people to test the de-
signed system. For example, one may need to test the physical infrastructure (screens,
sensors, alarms, lamps, etc.) of the park before the real deployment and may need to
simulate user behaviors through an external simulator while analyzing the results on
the real screens.

The proposed framework caters for the integration requirements for both fixed and

50

i
i

“thesis” — 2015/11/30 — 17:40 — page 51 — #65 i
i

i
i

i
i

4.4. Integration Layer

has

is

is
JOL: Component

Jol: Location

JOL: Device

JOL: Appliance

is

is
JOL:

Building
JOL:
Floor

has

is

is

JOL: Room

JOL:
Coordintates

has

has

JOL:
Actuator

JOL: Sensor

JOL: Light
JOL: HVAC

JOL:
Window

JOL: Action

isis
is

is
is

has

JOL:
PowerState

changes

JOL: Plug

has

is

has

JOL:
Context

generates

JOL:
Luminance

JOL:
Temperature

JOL:
Proximity

is
is

is

Domain Concept Ontology (DCO) - JOL

Jol: Protocol

JOL: BLE JOL:
WiFi

JOL:
Zigbee

is
is is

follows

has

Figure 4.13: JOL Semantic Model

dynamic spaces. It provides special purpose components for the autonomic manage-
ment of functional component groups in case of fixed/static smart spaces. However,
for the scenarios which are more dynamic and where components need to be more au-
tonomous and self-adaptive, it offers bio-inspired integration mechanism. Following
are the details of autonomic management and self-adaptive capabilities of the proposed
framework:

4.4.1 Separation of Functional and Management Design

The framework offers separation of concerns between the sensing/actuating infrastruc-
ture and the components in charge of its efficient, autonomic management. Sensors,
actuators, displays and computational elements define the Components Groups, while
special-purpose components Smart Space Managers (SSM) are responsible for the (dis-
tributed) management of Components Groups. In Figure 4.14, S1, S2, S3, and S4 are
the supervisors for the component groups whereas SSM1 and SSM2 are the two su-
pervisors responsible for the management of these functional groups.

At both levels, components are still divided into supervisors and followers, grouped
together according to common needs and goals, and groups are composed properly.
The two layers impose that each lower-level group be (indirectly) managed by an upper
level node. This means that each supervisor of a group of components is connected,
as a follower, to an SSM. This way it can receive updates from the management layer
as to how it should coordinate its group. The SSMs can also be connected among
themselves to share information, which can then be used to better manage the groups.
The autonomic group formation is guided by the integration policies.

It is important to note that use of SSMs is not mandatory, rather they provide de-

51

i
i

“thesis” — 2015/11/30 — 17:40 — page 52 — #66 i
i

i
i

i
i

Chapter 4. Proposed Framework

Components Layer

Management Layer

S1

S2

S3 S4

SSM1 SSM2

Figure 4.14: Example configuration of a Smart Space.

veloper an added functionality for the spaces with fixed infrastructures to have more
robust solutions. They may not be used for dynamic or first-responder scenarios where
no fixed infrastructure is available.

Integration Policies

Integration policies consist of rules and information that is used as a guideline by the
framework to form groups at runtime. These policies are used to define the following
configuration rules:

• Group types information (along with their role dependencies)

• Group formation criteria (e,g. location based, proximity based, heuristic func-
tions)

• Location map of the space, which declares the spatial distribution

• Heuristic functions for group formation

• Self-organizing parameters (SOPs) for groups such as: maximum group size,
maximum number of messages processed by the groups, etc.

Location map could be based on both physical distribution (e,g. floors, rooms etc.)
or functional requirements (e,g. a zone with same lighting or heating dependencies) of
the space. Figure 4.15 shows an example of location map and the group information
description. In the given example, a location is characterized by name, attribute (phys-
ical/logical), type (room/floor/zone) and topology (autonomous/composite). Group in-
formation defines the group name, organization style (e,g. supervisor-follower), re-
quired supervisor and follower roles, grouping type (location/heuristic based), group-
ing criteria based on the grouping type defined (e,g. room/floor/zone in case grouping
type is location), and values for SOPs.

Heuristic functions can also be used to optimize the topology of the system by
finding the best group for each component according to the needs of time. The self-
configuring group formation based on fireflies-based heuristic functions are described
in Section 4.5.

52

i
i

“thesis” — 2015/11/30 — 17:40 — page 53 — #67 i
i

i
i

i
i

4.4. Integration Layer

4.4.2 Autonomic Management

The autonomic management is based on the following two activities: (i) specifica-
tion of the roles for each component and (ii) definition of the group formation criteria
(integration policies) to integrate the components in the desired topology using the
declarative language. Once they are defined, the framework then takes care of all the
integration and coordination of components accordingly. One benefit of having this
self-configurable system is that by just changing the group formation criteria, we can
simulate various possible topologies of the system to determine the best configuration
for the system.

Location: MeetingRoom
SV-Roles: None
Follower-Roles: LightMgrFollowerLamp

Location: MeetingRoom
SV-Roles: None
Follower-Roles: LuminanceFollower

Luminance
Sensor

Server

Location: JOL
SV-Roles: SSM, LightMgr
Follower-Roles: None

 LocationMap:
 Location: MR

 name: MeetingRoom
 attribute: physical
 type: room
 topology: autonomous

 Location: Lab
 name: JOL
 attribute: functional, physical
 type: zone
 topology: composite

 Groups
LightManagementGroup:
Style: Supervisor-Follower
SupervisorRole: LightMgr
FollowerRoles: LightMgrFollower,
LuminanceFollower
FormationCriterionType: Location
FormationCriterion: room
MaxMsgs: 100
MaxGroupSize: 15

Integration Policies

Join SystemDiscovery

LightManagementGroup

Server
(SSM/LightMgr)

Lamp
(LightMgrFollower)

Luminance Sensor
(Luminance Follower)

Management
Rules

Autonomic
Management

Figure 4.15: Autonomic Management

The autonomic management deals with dynamism by supporting the automated for-
mation of new groups. A new component can connect to any existing group, or create a
new one. This means that the framework automatically identifies the right group super-
visor and links the new component to it. If the component can play different roles, that
is, it can belong to different groups, the framework will decide its group memberships
according to all its roles and other different aspects.

To understand this, let us first consider the case in which the new component can
only play a single supervisor role. When it connects, the SSM searches for the cor-

53

i
i

“thesis” — 2015/11/30 — 17:40 — page 54 — #68 i
i

i
i

i
i

Chapter 4. Proposed Framework

responding group in the shared group list. If such a group does not exist, it creates a
new group with that component as the supervisor, asks the component to activate its
(SSM) follower role, and updates the lists of shared groups and supervisors. If, on the
other hand, one or more acceptable groups already exist, the SSM will decide, based
on the system’s desired configuration, how to add the component to the already ex-
isting groups. Based on performance and resource utilization, the management layer
will select the group with less followers, and less message exchanges (fireflies-based
adaptation for systems without SSMs is presented in the next section 4.5).

If the new component can play multiple supervisor and follower roles, the integra-
tion layer enacts the above procedures for each and every one of the component’s roles.
This implies that the component will become part of all the groups that it can be part
of, at that particular time. If a component can play both the supervisor and the follower
role in a specific group, the management layer will decide its role based on the system’s
overall needs. The component will become a supervisor if any of the existing groups is
congested. Otherwise, the new component will become a follower.

Figure 4.15 shows a simplified (partial) description of the integration policies that
is used to define grouping criteria for lamps and luminance sensor. The first block
describes the location map that consists of two locations namely MeetingRoom (MR)
and JOL, where MR is a physical room and JOL is both functional and physical zone.
The second block defines the formation criteria for one of the groups called LightMan-
agementGroup. It describes that a component with LightMgr role can supervise this
group, whereas, components with LightMgrFollower and LuminanceFollower roles can
be part of the this group as followers. Moreover, it instructs the framework to group
these components on the basis of their location with room as a granularity.

As described in Figure 4.15, integration policies are fed to the server (component),
which is capable of playing SSM and LightMgr roles. Therefore, it starts acting as an
SSM on its initiation, and later on when lamp and luminance sensors join the system,
it creates the LightManagementGroup by activating its LightMgr role as well. It is
important to note that it puts both these components in the same groups as they are
located in the same room (MeetingRoom) and grouping criteria is set to room.

Let us now consider the JOL building to understand the integration mechanism.
JOL can be divided in different lighting zones and two thermal zones in context of
energy usage. It can be seen that each room has its own lighting controls and hence
corresponds to distinct lighting zones. Whereas, it has only two thermal zones and
single set of windows. Group formations in infrastructure-based spaces (such as JOL)
usually have defined physical locations (rooms) that are used as primary criteria for
grouping.

Figure 4.16 shows one of the possible configurations for the JOL scenario. Rectan-
gles represent controllers (supervisors) and circles represent devices and appliances
(followers). In this configuration, each room has its manager for lighting control
whereas there are two temperature managers for the rooms where we have control-
lable HVAC. This implies that components are grouped according to the zone location
(rooms). There is one SSM for the JOL that is responsible for all the group management
and high level decision making.

The integration mechanism also lays the foundation of the possibility to use external
systems and simulators within the framework to execute/simulate some of the function-

54

i
i

“thesis” — 2015/11/30 — 17:40 — page 55 — #69 i
i

i
i

i
i

4.5. Self-Adaptation Capabilities

Demo Area

Meeting Room
Open Space

 SSM-JOL

LSens1
Wind1
prox1

Heater
TSens1

LightMG-MR

TempMG-MR

Heater2

TSens3

LightMG-OS

TempMG-OS

Lght5

Lght10

LSens2

Wind2

prox2

Lght1 Lght2

Kitchen

Light11 Light12

Offices

Light13 Light15

Coffee
Machine

Screen

Light14

Light3
Light4

Joint Open Lab

Figure 4.16: JOL- Possible Groups

ality (in response to RQ 2.2.). The issue is discussed in detail in Section 4.6.

4.5 Self-Adaptation Capabilities

The framework provides a self-adaptation mechanism, which is inspired by the firefly
algorithm [104] and mimics the behavior of fireflies to form groups. The idea is to guide
the formation of role-oriented component groups through fireflies-based algorithm, and
hence, achieve integrated adaptation mechanism as proposed in section 4.1.2. Figure
4.17 describes the proposed integration of component based control and the fireflies-
based adaptation.

4.5.1 Fireflies Algorithm

Yang [104] was the first who studied the flashing behavior of fireflies and used it for
solving optimization problems. The firefly algorithm (FA) is a meta-heuristic algorithm
that has proven its efficiency [44].

Fireflies are characterized by the flashing light they produce through biolumines-
cence. Such flashing light serves as primary courtship signals for mating. Typically,
flying males are the first signalers and try to attract flightless females on the ground.
In response to these signals, females emit continuous or flashing lights. Both mating
partners produce distinct flash signal patterns that are precisely timed in order to en-
code information about species identity and sex. Females are attracted by behavioral
differences in courtship signals. Typically, females prefer brighter male flashes. The
flash intensity varies with respect to the distance from the source. To summarize, the

55

i
i

“thesis” — 2015/11/30 — 17:40 — page 56 — #70 i
i

i
i

i
i

Chapter 4. Proposed Framework

Components

Component

State

Roles

Supervisor Role
State Behavior

Follower Role
State Behavior

Abstraction
Layer

Integration
Layer

Self-Organization
Adaptation Boot Strapping

Eco-Laws
(Heuristics)

Adaptation
Layer

—————

—————————
——

Roles
<< superimpose >>

Behavior

Role Type

Collaboration
Rules

Ad-hoc
Collaborations

Components

State

Supervisor Role A
State Behavior

Follower Role B
State Behavior

<< guide >>

<< form >>

Species
(Male, Female)

Bio/Chemical Signals

<< components >>

Figure 4.17: Integrated Self-Adaptive Mechanism

FA follows the following rules [104]:

• Fireflies are attracted to each other regardless of gender.

• The brighter a firefly is, the more attractive it is and thus less attractive fireflies
must move towards more attractive ones.

• The brightness of a firefly is calculated by means of an objective function.

4.5.2 Adaptation based on Fireflies Metaphor

Since fireflies offer natural clustering capabilities that take distance into account intrin-
sically, they can be used as metaphor for guiding self-organization in dynamic self-
adaptive software systems. We do not use that algorithm as is, rather we use some of its
aspects and the rest of the self-organization is based on the general behavior of fireflies.

Zambonelli and Viroli [106] introduce a reference architecture for implementing
bio-inspired pervasive ecosystems where service components are described as species,
chemical or biological signals are spread to and perceived from the environment and
used as interaction mechanism, eco-laws define the interaction rules for the species,
and the space itself is the software infrastructure. We have paired these guidelines and
the firefly metaphor for implementing our self-adaptation layer.

The component abstractions are mapped (see Table 4.1) to the firefly metaphors as
follows:

1. Component roles are abstracted as flies (species) and role types are male and fe-
male flies.

56

i
i

“thesis” — 2015/11/30 — 17:40 — page 57 — #71 i
i

i
i

i
i

4.5. Self-Adaptation Capabilities

Table 4.1: Mapping - Component Abstractions and Fireflies Metaphor

Software Abstraction Fireflies Metaphor
Component Nest

Role Fly
Supervisor Component Male Fly
Follower Component Female Fly

Message Light Flashes
Integration Rules Eco-Laws

2. Flies live in nests (components) that are used to represent all the entities and in-
terfaces of a system.

3. Light flashes (signals), which are generated (as brightness) and perceived (as at-
traction), guide the interaction mechanism and flies react to these signals accord-
ing to their current state.

4. Rules (eco-laws) — such as: ”brighter fly will be more attractive, and brightness
decreases with distance”— define the existence of flies and their social interac-
tions, and provide guidelines to form collaborations.

5. The collaboration layer (space) enforces spatial relationships among various flies.

Unlike the original firefly algorithm, we consider bi-sex species of flies. Compo-
nents are nests and each nest can host many flies. Male flies act as supervisors, while
female flies are followers, and hence a component can play multiple roles in various
groups. Supervisors flash light to attract followers. The brightness of a supervisor de-
fines its suitability to act as supervisor whereas followers are attracted by supervisors
around them according to their distance and brightness. We have also incorporated
different light colors used to differentiate roles.

Algorithm 1 Self-organization algorithm

1: Define functions for brightness and attraction
2: Define initial nests for fireflies Ni, i := 1, 2, . . . , n . define components
3: Assign fireflies (male/female and color) to each nest . define roles for components
4: for each nest n ∈ N do
5: Call BOOTSTRAPPING(n)
6: end for
7: while System.state := running do
8: Check for new nests and fireflies and update population
9: for each nest n ∈ N do

10: if n[male] := ∅ then . if component has no supervisor
11: Call BOOTSTRAPPING(n)
12: else
13: Call ADAPT(n)
14: end if
15: end for
16: end while

57

i
i

“thesis” — 2015/11/30 — 17:40 — page 58 — #72 i
i

i
i

i
i

Chapter 4. Proposed Framework

4.5.3 Self-Organization Algorithm

The self-organization algorithm (Algorithm 1) consists of two phases:

1. Bootstrapping for new or orphan (with no supervisor) components

2. Adaptation for the components with an active collaboration

The self-organization algorithm requires that the functions for calculating brightness
and attraction be defined. To this end, the following heuristics have been used for
organizing our park:

Component Joins the
System. Categorized as

Male or Female FLY

New Component

Calculate its
Brightness level

Evaluate brightness to
decide whether to

continue playing male

Change Role to
Female

Male Fly
(Supervisor Role)

Female Fly
(Follower Role)

Is brightness low
&& there is any

better male

Put Brightness in
Environment

Yes

No

Calculate Utility of males
around to join a group

Evaluate whether to
continue being current

male fly

Change Role to Male

Is brightness better
than males around

Compare with its
partner’s brightness

Yes

No

Figure 4.18: Fireflies Adaptation Mechanism

βk(t) =
c1∑n

i=1 Lik

+ c2× Pk (4.1)

• βk(t) is the brightness value for supervisor (male fly) k at time t

• n is the number of followers (female flies) for node k

58

i
i

“thesis” — 2015/11/30 — 17:40 — page 59 — #73 i
i

i
i

i
i

4.5. Self-Adaptation Capabilities

Procedure 1 bootstrapping(nest c)

1: let M be the set of male-flies in c . set of supervisor roles of component c
2: let F be the set of female-flies in c . set of follower roles of component c
3: if M != ∅ then
4: for each (male) fly m ∈ M do
5: Calculate brightness[m] according to Equation 4.1
6: end for
7: end if
8: if F != ∅ then
9: for each (female) fly f ∈ F do

10: let CList be the male-flies with color := color[f] within radius X of c
11: if CList.size != 0 then
12: for each fly k ∈ CList do
13: calculate attraction[f ,k] according to Equation 4.2
14: let q be the component with max (attraction[f , CListk])
15: set f [mate] := q
16: end for
17: end if
18: end for
19: end if

• Pk is the energy of supervisor k

• Lik is the communication load between follower i and supervisor k

• c1 and c2 are the constants used to assign weights to the corresponding parameters
(communication load and energy)

αik(t) =
c3

d2ik
+ c4× βk (4.2)

• αik(t) is the attraction of supervisor k towards follower i at time t

• βk is the brightness level of supervisor k, dik is the distance between follower i
and supervisor k

• c3 and c4 are constants used to assign weights to distance and brightness.

Dynamism and Self-Configuration

Whenever a new component joins the system, the bootstrapping procedure (Proce-
dure 1) is called upon, iterates over the set of roles the component can play, and searches
for the best possible collaboration for it according to defined heuristics (brightness and
attraction) functions. Figure 4.19 shows an example bootstrapping scenario where a
follower role tries to connect to the space by finding the best supervisor around. The
follower component (female fly) FF1 can be part of collaboration 1, 2, or 3 by fol-
lowing (mating) supervisors MF1, MF2, and MF3, respectively. The decision of

59

i
i

“thesis” — 2015/11/30 — 17:40 — page 60 — #74 i
i

i
i

i
i

Chapter 4. Proposed Framework

Collaboration 3Collaboration 2Collaboration 1

FF1 - New Female-Fly

MF1

FF2 FF3

Male Fly

Female Fly

Looking for Connection

Connected

βmf1
βmf2 βmf3

αff1-mf1
αff1-mf2

αff1-mf3

MF2
MF3

Figure 4.19: Example bootstrapping scenario.

joining a particular collaboration will be based on the maximum attraction it perceives:
max(αFF1,MFk), where α, with k ∈ 1, 2, 3, is calculated by using Equation 4.2.

The effectiveness of the above function can be understood through the public park
scenario. For instance, whenever a user connects to the space, the user’s interests are
matched to the various existing groups, and s/he is assigned to a group (or to a set of
groups) accordingly. If a user can be part of both the “Kids Rail” and the “Ferris Wheel”
groups, and the group for kids rail is congested, the framework will start by adding the
user to the ferris wheel group. Thanks to the inherent self-organizing capabilities of
fireflies, this is achieved autonomically as per the heuristic functions and one does not
need to explicitly define this behavior.

Adaptation

The second step of self-organization is adaptation (Procedure 2). It first checks if the
component is not part of any collaboration, and in case, it bootstraps it. Otherwise, it
does the following:

• For each supervisor, it checks whether there is another supervisor available with
better suitability, and if it is the case, it changes its role to follower.

• For each follower, it calculates the suitability of the supervisors around and if it
finds a better supervisor then the current one, it switches to it.

The suitability of supervisor is calculated by its brightness (heuristic function),
whereas, the follower calculates the attraction based on the brightness of the supervisor
components around.

Reliability

The fireflies based algorithm is capable of automatically managing situations in which
components leave the system unexpectedly. If a supervisor component leaves the sys-
tem, all the followers become orphans as the group cannot exist without a supervisor.
These components just trigger the bootstrapping procedure again to reconnect and se-
lect the next best supervisor in their proximity. This automated re-configuration of the

60

i
i

“thesis” — 2015/11/30 — 17:40 — page 61 — #75 i
i

i
i

i
i

4.5. Self-Adaptation Capabilities

Procedure 2 adaptation(nest c)

1: let S be the male-flies of c
2: let F be the set of female-flies of c
3: if S := ∅ then
4: if F := ∅ then
5: Call BOOTSTRAPPING(c)
6: Exit Procedure
7: else
8: Connect to nearest fly
9: end if

10: else
11: for each (male) fly s ∈ S do
12: Calculate brightness[s] according to Equation 4.1
13: let CList be the male-flies with color := color[f] within radius X of c
14: let q be the fly with max (brightness[CListk])
15: . where q is number of flies in CList
16: if brightness[s]<brightness[q] then
17: set s[mate] := q
18: end if
19: end for
20: for each (female) fly f ∈ F do
21: let CList be the male-flies with color := color[f] within radius X of c
22: Calculate attraction[f , CListk] according to Equation 4.2
23: let q be the fly with max (attraction[f , CListk])
24: if attraction[f , supervisor[s]]<attraction[f , q] then
25: set f [mate] := q
26: end if
27: end for
28: end if

system (components) topology in case of failures or unexpected events ensures the re-
liability of the whole system. This issue is discussed in detail with our case study 4
(public park) in evaluation section.

Congestion management

The heuristic functions defined for the selection of a groups in our proposed groups
consider the supervisor workload at the given time. It reduces the chances of a compo-
nent to be selected as a supervisor whose workload (in terms of number of messages
or group size) is greater than other components in its proximity. In the public park sce-
nario, the system guides the group of users to their desired destinations by connecting
people with similar interests, but if the system finds out that a group (of people) is ex-
ceeding the set highest limit, it can split the group into multiple sub-groups, and guide
them to the locations in a way that avoids message, and people congestion. This split-
ting of groups is not instant/explicitly defined, rather the system gradually converges
to the more uniform distribution of people as the components try to self-optimize their

61

i
i

“thesis” — 2015/11/30 — 17:40 — page 62 — #76 i
i

i
i

i
i

Chapter 4. Proposed Framework

Demo Area

Meeting Room
Open Space

 SSM-JOL

LSens1
Wind1

prox2

Heater
TSens1

LightMG-MR

TempMG-MR
Heater

TSens1

LightMG-OS

TempMG-OS

Lght5

Lght10

LSens1

Wind1

prox3

Lght1 Lght2

Kitchen

Light11 Light12

Offices

Light13 Light15

Coffee
Machine

Screen

Light14

Light3
Light4

Freedomotic
Interface

LightMG-Demo

LightMG-Kitchen

Freedomotic
Interface

Freedomotic
Interface

Freedomotic
Interface

prox1

prox4

prox5

LightMG-Offices

Siafu
Interface

Freedomotic
Interface

Joint Open Lab

Figure 4.20: JOL- Topology with external simulators

performance by the set heuristics.
An evaluation of these characteristics is presented in section 6.5.

4.6 Continuous Validation

One of the significant challenges for incremental development of smart spaces is the
continuous validation of the system at various development phases. In order to move
from the simulated solution towards a concrete deployment, it is very important to test
the system in a hybrid way by combining simulated entities and physical components
together. One of the major reason for that is the inability to generate real environmental
settings for evaluation of certain scenarios.

For instance, it is not trivial to create situations to test emergency evacuation or
crowd navigation in large dynamic spaces. Moreover, testing with large number of
components, after their deployment, would be very costly and it becomes hard to
change the system/components in case system validation results are not good. There-
fore, use of simulation frameworks becomes necessary to test the implemented system
components, ideally with other deployed ones, to understand how they behave in real-
istic scenarios. Based on the validation results, a developer should be able to deploy the
real components with their simulated behaviors without changing the rest of the system.
More precisely, the framework offers two options to simulate the different entities:

1. The developer can define special-purpose roles that implement the foreseen be-
havior, as long as the real components are not available.

62

i
i

“thesis” — 2015/11/30 — 17:40 — page 63 — #77 i
i

i
i

i
i

4.6. Continuous Validation

2. Any external simulator can be plugged-in to mimic the behavior of a single com-
ponent or of an entire subsystem

 SSM-JOL

Freedomotic
Interface

LightMG-MR

Siafu
Interface

LightMG-OS
LightMG-Demo

Screens Lights

EnergyPlus
WindowsSensors

EnergyPlus
Interface

Users Proximity Info
External Simulators

Interface
Components

Functional/Managerial
Components

Figure 4.21: JOL- High Level View

The proposed framework, therefore, provisions the use of an external system (also
to address the issue raised in RQ 2.2.) in the same way as any other component. It
provides the component interfaces to maintain the state and identity of a (set of) com-
ponents and at the same time being able to plug them to virtual or physical objects. All
the component roles, behaviors and collaborations throughout remain independent of
the type (physical or virtual) of the object associated to it. In this way, an application
programmer can test and validate various configurations of the system using external
simulators without incurring any additional cost.

For example, one can use Freedomotic’s ability to communicate with actual devices
within the lab through ZigBee. Figure 4.20 describes how Freedomotic can use the
provided abstractions to act as an interface between real devices deployed at JOL. Sim-
ilarly, to simulate user activity and mobility for testing, we can use Siafu simulator.
Siafu will provide the proximity information and the rest of the system will act as de-
scribed in Figure 4.16. This ability of the framework to replace a set of components
with external simulators and concurrently execute both virtual and physical elements
allows for the continuous validation of the system.

Figure 4.21 shows the high level view of the JOL design. It shows that how one can
test the system by simulating the communication with all the lights and screens through
Freedomotic, windows and energy needs through EnergyPlus, and the user proximity
information with Siafu. It helps understanding and validating the system design and
once a system component or subsystem is tested virtually, it can be replaced by actual

63

i
i

“thesis” — 2015/11/30 — 17:40 — page 64 — #78 i
i

i
i

i
i

Chapter 4. Proposed Framework

physical components. This hybrid simulation and deployment of the system will enable
the incremental development and evaluation of the designed spaces.

Components
Definition

Role
Identification

Group Types
Identification

Self-
Organization

Semantic Model
Definition

devices
sensors

managers
users

<< component >>
<< role(sv, fol) >>

<< group info >>

behaviour
functionality

interest
clustering
based on
function,

location, or
dependency

<< config. xml >>

grouping criteria
location map
decision rules

<< GCO, MPO, DCO >>

domain
concepts and
relationships

 screen
 user device
 SSM
 beacons

 area mgr
 sv screen
 follower screen
 sv user
 follower user screens group

 screen-user group
 user interest group
 ssm -screen group

Bootstrapping

Adaptation

Heuristic
Functions

Figure 4.22: Design Tasks

Summary

Figure 4.22 summarizes all the high-level tasks pertaining to the design of a smart
space using the proposed framework. The application programmer needs to carry out
the following steps:

• Identify the components of the system and the corresponding capabilities that can
be translated as framework defined "roles".

• Identify the group types and the formation criteria to form groups at runtime.

• Define the domain concept ontology, based on the component, role and group type
identification, to harmonize various heterogeneous components.

• The self-organization takes place at runtime and organizes the components accord-
ing to the defined grouping criteria and heuristic functions (used by firefly-based
self adaptive algorithm).

Figure 4.22 also describes some of the identified component types (e,g. screen, user
device, SSM etc.), roles (area manager, supervisor screen, follower screen, supervisor
user and follower user), and group types (screens, screen-user group, user interest group

64

i
i

“thesis” — 2015/11/30 — 17:40 — page 65 — #79 i
i

i
i

i
i

4.6. Continuous Validation

etc.) for our public park scenario. Chapter 5 explains how these components, roles and
groups can be implemented and executed concurrently.

65

i
i

“thesis” — 2015/11/30 — 17:40 — page 66 — #80 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 67 — #81 i
i

i
i

i
i

CHAPTER5
Implementation and Concurrent Execution

This chapter explains the implementation details of the framework. It describes the
APIs and concurrent execution mechanisms provided by the proposed solutions. The
framework is responsible for coordination, control, and simulation of all the compo-
nents that execute concurrently and communicate through messages. It models the
concurrent heterogeneous components and systems such that their execution and inter-
dependencies can be synchronized. The implementation of the group-based communi-
cation uses A-3 middleware [14] which is built on top of JGroups [12].

5.1 Implementation Model

As described in chapter 4, the framework allows a developer to implement various
components through provided component abstraction or simulate/bridge it through any
external system.

The proposed framework has been developed in Java and it provides APIs to define
both the functional and managerial components of smart spaces. Application program-
mers can define components, roles (including behavioral logic), and groups information
programmatically according to the implementation model shown in Figure 5.1. The im-
plementation model describes the classes (APIs) provided by the framework, which are
required to be used by developers to implement their system and exploit various frame-
work capabilities.

Each component maintains its inherent data that can be used (or shared) by multiple
roles played by that component. Each role, implemented as a separate thread, executes
according to the defined behavior. Supervisor role, in addition to the follower role, also
has an implemented MAPE (monitor, analyze, planing and execution) loop that may be
used by the programmer to define control logic.

67

i
i

“thesis” — 2015/11/30 — 17:40 — page 68 — #82 i
i

i
i

i
i

Chapter 5. Implementation and Concurrent Execution

Each (external) system is also defined as a component that is interfaced with other
system components to exchange data and information among them. The process of
designing the concurrent execution flow can be divided into the following three steps
(levels):

1. Definition of component and their behaviors

2. Selection of a message exchange paradigm

3. Employment of a group coordination style

There are many issues that need to be taken care of in order to achieve this con-
current execution, such as: (i) scheduling of these concurrently executing subsystems
and information dissemination among them, and (ii) management of the data exchange
peculiarities.

- String ID
- List<Role> SupervisorRoles
- List<Role> FollowerRoles
- List<Role> ActiveRoles
- List<Group> GroupParticipations

- addFollowerRole(Supervisor Role)
- addSupervisorRole(Follower Role)
- joinGroup(Group)

<<class>>
Component

+ run()
- monitor()
- analyze()
- plan()
- execute()
- heuristicEval()
- sendMsgToFollowers(List<Followers>)
- receiveMsgFromFollower(Message)
- receiveUpdateFromFollower(Message)

<<class>>
Supervisor Role

+ run()
- receiveMsgFromSupervisor(Message)
- sendMsgToSupervisor(Message)
- sendUpdateToSupervisor(Message)

<<class>>
Follower Role

+ run()

<<Interface>>
java.lang.Runnable

- addGroupInfo()
- addSupervisor(Supervisor Role)
- addFollower(Follower Role)

<<class>>
Group

- String ID
- Object Content
- Message(ID, Content)

<<class>>
Message

joins

runs

runs

implements

implements

maintains

sends/receives
sends/receives

Figure 5.1: Implementation Model

68

i
i

“thesis” — 2015/11/30 — 17:40 — page 69 — #83 i
i

i
i

i
i

5.2. Component Class

5.2 Component Class

Component is the basic abstraction of the proposed framework and, therefore, a devel-
oper needs to extend component class to implement each sensor, actuator, device or
controller that is part of the smart space. A component is identified by an ID and it
maintains a shared state that is used by different roles played by it. As a component
can participate in one or more groups depending on the situation, it is possible to define
multiple roles which the component can employ at runtime.

To achieve this, a component object manages different lists: two of them for defin-
ing supervisors and follower roles (capabilities) that it can play, and the third one for
maintaining the list of groups it is participating at a given moment. Therefore, after
a component is created, its supervisor and follower roles (at least one) must be added
through provided methods. It is important to note that component behavior/functional-
ity is defined through the dynamic roles, and therefore, components will not be able to
execute if there are no appropriate roles added to their role capability lists. A compo-
nent also has a joinGroup method that will be discussed later.

Component Runtime Snapshot

Component
Attributes

Component Memory

Supervisor
Roles

Follower
Roles

Active
Roles

Groups
Participations

LightSVRole TempSVRole

LightFollRole EnergyFollRole

LightSVRole EnergyFollRole

LightManager EnergyManager

Light
Management

Group

Energy
Management

Group

Temperature
Management

Group

Legend

Component
ID

Figure 5.2: Example Runtime Snapshot of a Component

Figure 5.2 shows an example runtime snapshot of a component. The lists maintained
by the component for supervisor and follower roles describe that the component is ca-
pable of playing the following roles: LightSVRole, TempSVRole, LightFollRole, and
EnergyFollRole. These roles belong to three different group types, namely Light Man-
agement, Energy Management and Temperature Management groups. The component
has two active roles in the given example which are LightSVRole and EnergyFollRole.
Therefore, through these lists, components maintains the information about its partici-
pation in various groups in different capacities (i,e. supervisor or follower).

69

i
i

“thesis” — 2015/11/30 — 17:40 — page 70 — #84 i
i

i
i

i
i

Chapter 5. Implementation and Concurrent Execution

5.3 Component Roles and Behaviors

The first step is to define the behaviors of all the roles corresponding to each space
component. A behavior represents a task, rules and execution logic to be carried out
by a component (through roles) in a certain group. Figure 5.3 describes three possible
behaviors that can be defined for a component role.

5.3.1 Supervisor Role Class

The framework also provides the Supervisor role abstract class that may be extended
to define various supervisor roles. As shown in Figure 5.1 that the supervisor role class
implements java runnable, which enables to execute instances of the supervisor class
by a thread. The class must define a method of no arguments called run. This method
is used to define role-specific component behaviors.

It is mandatory to always have an active supervisor in each group and if the su-
pervisor of the group fails, the group stops to exist. Therefore, it only the supervisor
component that can create a new group and followers can then join that group. As the
supervisor component is responsible for managing the group, framework allows it to
implement the MAPE control loop.

The supervisor class also implements two important functions (receiveMessage-
FromFollower and sendMessageToFollowers) for the communication between mem-
bers of the same group. The first function is called whenever a follower sends a mes-
sage to the supervisor. So, this function needs to be implemented for each supervisor
class in order to manage the received message. Similarly, the second function is used to
send (unicast/multicast) messages to the followers. There is also a receiveUpdateFrom-
Follower function that can be implemented to handle various updates received from the
followers. We will discuss messages in the later section.

The last function is the heuristicEval function that is used when there is a need to
define supervisor’s suitability to supervise a group in order to select the best leader
among various possibilities. For example, firefly-based adaptation can make use of this
function to select the appropriate groups for different components.

5.3.2 Follower Role Class

The follower role class is used to define the behavior of follower components. There
can be many followers in a group which can only communicate with supervisors. The
structure of the follower class is similar to the supervisor one. Any class extended from
follower role class is required to provide implementation run method to define desired
behavior of the follower. It also has receiveMessageFromSupervisor, SendMessageTo-
Supervisor, and SendUpdateToSupervisor functions that are used to communicate with
the group supervisor.

As described earlier, both types of roles need to provide implementation for the run
function, which defines the behavior. Following are the three important behaviors that
are supported by the framework:

• State-oriented (triggered) behavior is used to program a component that has
some inherent states such as lamps (on/off state) and window blinds (open/close
state). The components wait in certain state and on some events (or triggers) take

70

i
i

“thesis” — 2015/11/30 — 17:40 — page 71 — #85 i
i

i
i

i
i

5.4. Asynchronous Message Exchange

the transition to the next state that would result in communicating that information
to relevant peers. The triggered behavior is used when there is a need to report (or
request) certain events (changes in state) related to a particular component. Figure
5.3 shows how one can model a two state lamp through triggered behavior.

• Cyclic (timed) behavior repeats itself after a defined time interval. This behavior
type can be used to create behaviors that keep executing continuously and perform
certain tasks after a defined time (e,g. sensors that send/generate periodic data).
In context of the JOL, we can use the cyclic behavior to model temperature and
luminance sensors that send data periodically, say every 60 seconds, to the room
manager.

• Control (MAPE) behavior corresponds to a control loop [27] where certain data
is monitored (collected) and analyzed, and, then the required actions are planned
and executed. This behavior is orthogonal to the cyclic and event triggered be-
haviors as it can be used in complement to those behaviors. For instance, this
behavior may be incorporated by the supervisor role as it needs to collect certain
information from the followers (e,g. running cyclic behaviors), analyze that data,
plan the set of actions that are required, and then send the acting (executing) direc-
tives to the followers (e,g. running trigger behaviors). In case of the JOL, a room
manager will implement this behavior and it can monitor the data collected from
sensors and external simulators, analyze it, plan the actions that are required, and
send execute commands to lamps, windows, or external simulators.

Light/
Lamp Temp

Sensor

Input
Output

On Off

If input = off

If input = On

If input = On If input = off

Current
State

Output
S0 S1

@ t = 60 sec

Current
State

M

A P

E

Input Output

Room
Manager

1) State Oriented Behavior
(Triggered)

2) Cyclic Behavior
(Timed)

3) Control Behavior
(MAPE)

Figure 5.3: Component Behaviours

5.4 Asynchronous Message Exchange

The second step is the selection of messaging paradigm for the different components
of a space to communicate with each other. The components in our framework may be
deployed on different nodes and they generate data flow dependent on concurrent but
asynchronous or untimed processes (roles).

71

i
i

“thesis” — 2015/11/30 — 17:40 — page 72 — #86 i
i

i
i

i
i

Chapter 5. Implementation and Concurrent Execution

5.4.1 Message Class

The message exchange between different components (within a group) is done through
the send/receive message functions implemented by supervisor and follower roles. The
Message class defines the body of the messages to be exchanged among roles. A mes-
sage is a container which has an ID and the content (implemented as a generic object).
The developer is free to define the type of the content. The message objects are serial-
ized in order to perform the exchange of object on the network.

5.4.2 Physical Communication

The framework uses two different mechanisms to model the communication between
the two type of implementations as shown in the Figure 5.4.

As stated earlier, the group communication uses Jgroups, which enables multicast
communication among components and messages can be exchanged using both IP and
TCP. A cluster (group in our case) can be formed with members (components) joining
from both Local Area Networks (LANs) and Wide Area Networks (WANs). It supports
the mechanism to inform each component of the group about the changes within the
cluster. Each component is associated with a channel (per group) that is used to receive
all the communication to/from the component in a group. The supervisor can send
messages in the following ways:

• Broadcast, to each follower of the group

• Multicast, to some of the followers of the group

• Unicast, to only one of the followers of the group

On the other hand, the communication with the framework components and the
external systems is done through sockets. The external system (usually a simulator) is
plugged in with the framework and continuous exchange of data takes place through
the dedicated socket connection. The data refers to the sensing and actuation directives
that can be sent to/from the simulator and the framework.

Components Implemented through Framework Abstractions

Framework
Component External

System

Framework
Component

Framework
Component
(Interface)

JGroups
Channel

JGroups
Channel

TCP
Socket

Figure 5.4: Communication Channels

72

i
i

“thesis” — 2015/11/30 — 17:40 — page 73 — #87 i
i

i
i

i
i

5.5. Group Coordination Styles

The communication and data exchange between the two components is achieved
through asynchronous messages [52]. We support the following two messaging paradigms
within our framework: (i) messaging queue and (ii) rendezvous.

5.4.3 Messaging Queues

Messaging Queues [33] allow one to model the communication between components
based on "Send and Forget" pattern [59]. In the proposed framework, the components
send messages to each other via distributed framework and these messages are stored
in queue associated with each component from where it dequeues them one by one for
the processing.

For the JOL example, let us consider the room manager (supervisor role) that re-
ceives status updates from different sensors and actuators. All the messages directed to
room manager will be stored (put) in the messaging queue (by the framework) associ-
ated with it and will be processed sequentially.

5.4.4 Rendezvous Exchange

Rendezvous data exchange is instantaneous in nature [41]. The framework emulates a
pairing between the two components (sender and receiver) which remain in the block
mode during the communication. Although, the messages are still asynchronous (as
components keep on executing their behaviors), but framework ensures a turn-based
interaction between the two components. In context of the smart spaces, rendezvous
is very useful when two isolated (external) systems need to talk to each other. They
can create a fast paired connection (e.g. sockets) to send and receive data according to
defined information exchange rules.

For example, one can use rendezvous message exchange between the physical de-
vices and an external simulator (such as Siafu) that simulates the mobility of the users
within the space.

5.5 Group Coordination Styles

Scheduling the communication and Coordination among the participating components
within a smart space is the final step. In order to model the dependencies and informa-
tion exchange among various independent components, one needs to define the order
in which these components receive or send messages and then execute their desired
computations and behaviors. Groups can follow different computational and commu-
nication models for their execution that can be customized according to the system and
scenario needs.

5.5.1 Group Class

The Group class is used to define a group. The developer needs to create an instance
of this class with the relevant group information, that is, supervisor and follower roles
specification. The group instantiation requires the name of the role classes that will be
used as default roles for the group. These roles will be used, when any component joins
the group, to determine the capacity (supervisor or follower) in which the joining com-
ponent will participate in the group. If the roles that can be played by the components

73

i
i

“thesis” — 2015/11/30 — 17:40 — page 74 — #88 i
i

i
i

i
i

Chapter 5. Implementation and Concurrent Execution

Distributed Framework Runtime

Light/
Lamp

Temp
Sensor

Room
Manager

Supervisor
Message Queue

Message to
Supervisor

Put Messages
in the Queue Dequeue Messages one

by one and Process it

1) Messaging Queue

Freedomotic
Interface

2) Rendezvous

Freedomotic
Sendt0

Receive

tn

Wait Send

Receive
Wait

Figure 5.5: Asynchronous Messaging Paradigms

are different then the roles required by the group, the component will not be able to join
the group.

A component then, by knowing the details of group information, can join the group
through joinGroup method. Therefore, before a component tries to join a particular
group, it must have received the information concerning the group, and the developer
needs to design the right set of roles and data that are required in order to make a group
work as desired.

5.5.2 Synchronous Timed Coordination

Synchronous Timed Coordination has the notion of common time, and different compo-
nents synchronize among them according to a global (or distributed local) clock [54].
In context of our framework, it refers to the ordering of multiple independent compo-
nents according to the time duration of their execution. Components send and receive
messages to each other (via roles) on clock tick(s) in order to synchronize the informa-
tion.

To understand this, let us consider the JOL scenario where movement of windows
shutters are controlled on the basis of light and temperature in the lab. Weather and en-

74

i
i

“thesis” — 2015/11/30 — 17:40 — page 75 — #89 i
i

i
i

i
i

5.5. Group Coordination Styles

Room
Manager

Weather
Info

Temp
Sensor

Luminance
Sensor

Window

Light/
Lamp

15 minutes

60 Sec

60 Sec

Proximity
Info

5 Sec

5 min

5 Sec

HVAC15 min

1) Synchronous Timed Coordination

Room
 ManagerSiafu

Freedomotic

Send Send

Receive

Temp
SensorProximity Stauts

Change

Updated
Lamp State

Window
Receive
Updated
shutter
State

SSM
Send

Group Info
Receive

Directive

2) Event based Coordination

Figure 5.6: Group Coordination Styles

ergy consumption constraints are also considered during the decision making process.
It can easily be seen that weather information (sometimes updated after 15 minutes),
internal light and temperature (available instantly) and windows movement (should or
may take minutes to change its status from open to close or vice versa), all have differ-
ent time steps and data granularity and it becomes absolutely necessary to synchronize
all of them based on some global time. The group supervisor in this case would take
the responsibility of collecting the information from followers at different time intervals
and then synchronize them according to a common time (step) to make valid decision.

5.5.3 Event-based Coordination

Event-based Coordination works similar to publish-subscribe [42] as some components
sends the messages (or events) to a mediator (supervisor), whereas the other compo-
nents who want to receive that particular information can follow (or subscribe to) that

75

i
i

“thesis” — 2015/11/30 — 17:40 — page 76 — #90 i
i

i
i

i
i

Chapter 5. Implementation and Concurrent Execution

and are notified when any message is generated. The messages are published without
knowing about the subscribers (or receivers) and similarly, they are received by the
subscriber without knowing about the sender. In the proposed framework, sensory in-
formation can adapt this style as sensors (periodically) publish contextual data to the
supervisor which in turn delegates that information (or corresponding directives) to
other components that require it.

In the JOL, room manager can work as a mediator between different components
that need information generated by one another. For example, temperature sensor and
Siafu can send (publish) temperature and user proximity information to room manager,
whereas Freedomotic and window shutters receive (or subscribe to) the relevant infor-
mation from room manager.

A coordination pattern is not enough for data exchange between heterogeneous com-
ponents. Roles explicitly define which information will be received and sent between
them to work (more or less as plugs). We also need to consider the following issues:

• Multiplicity of data that needs to be exchanged between the two involved compo-
nents

• Data dependency and flow rate

• Time steps for execution (no. of iterations in case of simulation)

The first thing we need for efficient data exchange is to define what is the type and
structure of the data that needs to be communicated between two components. For
example, a sensor component would send the context reading to the room manager, a
window shutter needs to get action command (the slat angle) from the manager and
the manager needs to send the status of all lights, windows, sensor and HVAC status to
SSM. The multiplicity of data is defined through roles and supervisor and follower roles
must agree on the data exchange model. As described earlier, roles correspond to the
programmable behaviors and you need to define the execution loop for these behaviors.
The execution loop will represent the data flow rate for a specific component behavior.
The next step is to use one of the communication patterns described above to instruct
the framework to schedule the execution of those components as per the requirements.

76

i
i

“thesis” — 2015/11/30 — 17:40 — page 77 — #91 i
i

i
i

i
i

CHAPTER6
Evaluation

This chapter addresses RQ 3. that is related to the evaluation of the effectiveness the
proposed solution. It describes the assessment and validation of the proposed frame-
work through different case studies and scenarios. The selected case studies are chosen
from different application domains, and they vary in terms of the user requirements,
involved devices and the type of user interactions. First, various quantitative and qual-
itative evaluation metrics are described, which are then used to demonstrate how the
proposed framework can be used efficiently to design diverse smart spaces such as
greenhouse, smart office, public buildings and public parks.

6.1 Evaluation Plan

The evaluation will consider both qualitative and quantitative performance parameters
as summarized in Tables 6.1 and 6.2. All of these measures are defined in correspon-
dence to the challenges identified in section. 2.5.

Table 6.1: Quantitative Evaluation

Measure Metrics
Efficiency Bootstrapping time, Delay (impact on performance)
Scalability Additional delay introduced when number of components grows
Reliability Time required to recover (re-configure) from a component failure

Validity Error rate in synchronizing heterogeneous systems

The quantitative evaluation aims to measure the efficiency, scalability, reliability,
and validity of the proposed framework. Efficiency is measured in terms of the boot-
strap time of a component when it wants to join the system and the overall delay that
is induced by the framework. Scalability measures the additional delay introduced by

77

i
i

“thesis” — 2015/11/30 — 17:40 — page 78 — #92 i
i

i
i

i
i

Chapter 6. Evaluation

the framework when the number of components grows. Reliability of the framework is
analyzed in term of time required by the system in case a component fails or leaves the
system unexpectedly, whereas, validity metric shows the soundness of synchronization
of heterogeneous systems models.

Table 6.2: Qualitative Evaluation

Measure Assessment
Interoperability Is the framework able to handle heterogeneity in terms of de-

vices, protocols, and external systems?
Integration Can the framework concurrently execute (interacting) systems

with different execution models?
Dynamism Does the framework self-organize, in case components join or

fail, without halting?
Extensibility Is it possible to add new functional components (roles) without

changing/halting the system?
Incrementality Does the framework support both physical and virtual compo-

nents together for continuous evaluation?

Similarly, following qualitative evaluation metric will be used to analyze the sys-
tem: interoperability, integration, dynamism, extensibility, and incrementality. Inter-
operability and integration measures would assess framework’s ability to handle het-
erogeneous devices, communication protocols and systems (e,g. external simulators),
integrate them and then co-execute them together in a synchronized manner. The frame-
work will also be evaluated for its capability to manage high dynamism of the compo-
nents without halting the system or other user services. Incrementality of the system
would also be analyzed, that is, whether the framework is able to support continuous
validation and incremental development through ensuring co-existence of both physical
and virtual components together.

Table 6.3: Evaluation Plan

Evaluation Metric Case-Study
Efficiency Smart Office, Public Park
Flexibility Smart Office, Energy Efficient Building
Reliability Public Park, Greenhouse
Scalability Smart Office, Public Park

Interoperability Smart Office, Greenhouse, Energy Efficient Building
Integration Smart Office, Public Park, Energy Efficient Building
Dynamism Public Park, Greenhouse

Extensibility Smart Office, Public Park
Incrementality Smart Office

Four different prototypical implementations for diverse smart space scenarios are
conducted to evaluate the proposed framework. Table 6.3 provides a mapping between
the goal of each implemented case-study in terms of the evaluation metrics it intends to
validate:

• Smart Office (JOL) case-study targets to provide efficient lighting control system
within the lab according to use proximity. It is used to demonstrate the frame-
work’s ability to cater for all the challenges (except for high dynamism).

78

i
i

“thesis” — 2015/11/30 — 17:40 — page 79 — #93 i
i

i
i

i
i

6.2. Case Study 1: Smart Office

• Smart greenhouse case-study demonstrates the autonomic configuration of dy-
namic heterogeneous components.

• Implementation of energy efficient building case-study aims to showcase that
framework is flexible, valid, supports interoperability, and integration of hetero-
geneous systems.

• Public park scenario is implemented to test the ability of proposed synthetic ap-
proach (firefly with architecture level control) to deal with highly dynamic sys-
tems, where different components need to be integrated, without much loss of
efficiency.

6.2 Case Study 1: Smart Office

This case-study is about provisioning automated lighting control in our Joint Open Lab
(JOL). This case-study focuses on the following aspects:

• How can we integrate heterogeneous (in terms of type, function and communica-
tion protocols) components for interoperation through the proposed framework?

• How much time it is required for a component to join the system (bootstrap) and
how does this delay scale up with the increasing number of components?

• How much delay is caused by the framework when components send messages to
each other?

• Is the framework able to co-execute both virtual and real elements together and
how flexible is the framework in terms of replacing one (or set of) virtual compo-
nent(s) with real ones?

Table 6.4: Joint Open Lab - Components

Component Type Communication Technology
Lights Physical Zigbee

iBeacons Physical BLE
Freedomotic Virtual TCP Sockets
OpenHAB Virtual REST Service

Siafu Virtual TCP Sockets
Server Computational WiFi

As a first step, we started with prototyping a virtual system using the provided de-
sign abstractions (native APIs) both for implementing and simulating components (de-
fined in Table 6.4) behaviors. We used the same group configuration as described in
Figure 4.16.

The next step was to use external simulators (Siafu and Freedomotic) to simulate
the behavior of users and devices, while the room and lab level management used the
same abstractions. In the end, we experimented with real ZigBee enabled lights and
BLE proximity beacons (to detect the presence of real users) to understand system
performance in the real scenario.

79

i
i

“thesis” — 2015/11/30 — 17:40 — page 80 — #94 i
i

i
i

i
i

Chapter 6. Evaluation

Experimental Setup:

We used three different machines and a smart phone for conducting our experiments.
We deployed the SSM, room managers and external interfaces on a Windows 8.1 (64
bit) virtual machine (WinVM) with 2 GB of RAM, running on an HP workstation (Intel
Xeon CPU, E3-1245, 3.40 GHz) with OS Windows Server 2012. The Freedomotic
and openHAB instances were hosted by an Intel Atom dual core (D2550, 1.86 GHz)
machine (IntelAM) with 2 GB of RAM and running Windows 7 Home Edition (64
bit). The Siafu was run on a Macbook Air with Intel Core i7 (1.7 GHz) with 8 GB of
RAM running OSX 10.9.5. Estimotes1 (BLE enabled beacons) and Google Nexus 5
(Android 4.4) were used to get the proximity information of the real users. Bticino’s
radio/Zigbee control switches2 and Open Web Net/Zigbee gateway3 (ZigBeeGW) with
Radio 2.4 GHz standard ZigBee technology were used to communicate with lights.

6.2.1 Simulation with Native APIs

In this implementation, we modeled all the JOL components only with framework’s
native APIs. Roles were used to define both the functional and simulation behaviors of
the components. For instance, a luminance (light) sensor role was not only responsi-
ble for generating random luminance level in the room, but it also sent the generated
context to the room managers. We clustered the components in three different type of
groups:

1. Smart Space Management Group (MG), where SSM is the supervisor whereas
each room manager acted as a follower

2. Context Management Group (CG), where room managers are the supervisors and
all the temperature and light sensors are followers

3. Appliances Management Group (AG), where room managers are supervisors and
all the appliances are followers

Table 6.6 summarizes that we have used event-based group coordination for com-
ponents of MG as room managers update the SSM only if they have new context in-
formation to share or some other change has been observed within the group. Room
managers send the summarized context information to the SSM, which in turn send cor-
responding control commands, if required. CG uses synchronous timed coordination
as it needs to synchronize the environmental conditions in the JOL with control deci-
sions to maintain the desired lighting and temperature state within the lab. The time
step of the execution cycle is set to 60 seconds. AG follows event-based coordination
to transit between different appliance states (e,g. luminance level or thermostat setting)
according to the current context generated through CG after 60 seconds.

The delay in message passing between the components was negligible (less than
1 millisecond) in this case as summarized in 6.5. Moreover, each component has to
join a group to be part of the system, and there is some associated bootstrapping cost.
Experimentation with various number of heterogeneous groups (varied from 1 to 20
components), we recorded that it takes each component around 1.4 seconds on average

1http://estimote.com/api/
2http://www.bticino.it/comandi-luce/comandi-radio
3http://www.myopen-legrandgroup.com

80

i
i

“thesis” — 2015/11/30 — 17:40 — page 81 — #95 i
i

i
i

i
i

6.2. Case Study 1: Smart Office

to join a group and start its execution (See Figure 6.1). Each case was run for 5 times
and results are averaged out.

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T(
n)
	
 -­‐
M
illi
se
co
nd

s

No.	
 Of	
 Components	
 -­‐n

Time	
 per	
 Component Avertage	
 Time

Figure 6.1: Bootstrapping Time for Components

6.2.2 Simulation based on External Simulators

In order to test and validate the system, one needs to have a more sophisticated and
realistic scenarios. There are some context and device simulation frameworks available
that enable you to test your system in realistic scenarios and environmental conditions.
We used Siafu to model the detailed user daily routine in JOL. We also designed three
activities, in addition to daily work schedule, namely meeting, demo and lunch time.
Each user is assigned a work desk and room lights are controlled based on the desk
occupancy and overall energy requirements. Similarly, the activity context information
is also used to preempt the lighting or other functional needs in a particular room. For
example, if the context declares that it is meeting time, lights and HVAC in the meeting
room are turned on in advance to prepare for the meeting. The lights and other actuators
are simulated through Freedomotic that also presents a visual representation of all the
objects4 .

We created two interface components to communicate with external simulators and
they form External Interface Group (EIG). Table 6.6 shows that EIG inter-group com-
munication follows synchronous timed coordination style and rendezvous messaging
paradigm (implemented through sockets). External Interface, as a supervisor of the
group, provides the server socket and various external systems can communicate with
it through the defined socket. Both supervisors and followers need to agree on the data
to be exchanged. The communication between room managers and external interfaces
was done through synchronous timed coordination with a time step of 60 seconds.

Figure 4.21 describes the high level view of the system, whereas, Figure 6.2 shows
a snapshot of the co-simulation with Siafu and Freedomotic during a meeting. In this
implementation, a message is passed to other components within 1 millisecond whereas
the bootstrapping cost remains the same. It is important to note that message delay
refers to the time consumed between room manager deciding to change the status of a

4The demo is available online at: http://home.deib.polimi.it/shahzada/JOLDemo/demo-JOL.mov

81

http://home.deib.polimi.it/shahzada/JOLDemo/demo-JOL.mov

i
i

“thesis” — 2015/11/30 — 17:40 — page 82 — #96 i
i

i
i

i
i

Chapter 6. Evaluation

Freedomotic

Siafu

Figure 6.2: Simulation in Freedomotic and Siafu

light (for example) and the control command received by the light. It does not account
for the delays caused by simulation frameworks and data flow restrictions (e,g. time
steps).

6.2.3 Partially Deployed (Simulated) System

The next iterative step is to test the designed system on real objects. We used open-
HAB [5] as a bridge to communicate with ZigBee enabled lights in the JOL and re-
placed the virtual lights with real ones. We used the same Siafu simulation to mimic
user behavior and accordingly controlled real lights in the lab. We just needed to change
the configuration mapping, that is, from virtual lights to real lights in order to make the
previous prototype work on real lights. There is no change required in group formation
or component roles whatsoever. The delay in message communication is 3 to 4 mil-
liseconds in most of the cases as there is also a bridge to ZigBee controller involved
while sending commands to the lights. It is important to note that there is also some
delay caused by the polling time due to the message queue at openHAB HTTP service
interface (external interface in our case).

6.2.4 Fully Deployed System

The final step is to fully deploy the system without simulating user and device behav-
iors. We used real ZigBee enabled lights, BLE proximity beacons and Android based

82

i
i

“thesis” — 2015/11/30 — 17:40 — page 83 — #97 i
i

i
i

i
i

6.2. Case Study 1: Smart Office

Figure 6.3: Partially Deployed System (Siafu and real ZigBee enabled lights).

application that communicates with beacons to understand a user’s location within JOL.
There is no change in how we addressed ZigBee lights in previous partially deployed
system. For user location, an android application interacts with the BLE proximity bea-
cons placed in all rooms in JOL and sends this context information to room managers
using event-based coordination. Figure 6.4 describes the working of the final deployed
system that is based on the following steps:

1. User proximity is sensed through BLE beacons and mobile device (Nexus 5)

2. The proximity info is sent to room manager (WinVM) through Wifi

3. Room manager sends the corresponding lighting control command to external in-
terface that delegates it to Freedomotic (IntelAM)

4. Freedomotic sends the command to actual light through ZigbeeGW

We used the event-based coordination for that as there is no need to cater for the
proximity information periodically if there is no change. The framework only needs
to be notified if any of the users enters or leaves a room. Again, the group formations
remain the same, and we just required to configure the supervisor address informa-
tion. The message delay, in this case, is 5 milliseconds which is slightly more than the
partially simulated system.

The results above demonstrate that framework can integrate (at runtime) heteroge-
neous components (see Table 6.4) that vary in terms of their type, function and com-
munication protocols. Further, the framework was able to support the incremental de-
velopment of the JOL smart space, that is, moving from the completely simulated solu-
tion (using native APIs and external simulators) to the fully deployed one without the
need to change the high-level component organization. This is possible because of the
framework’s ability to co-execute both virtual and real system elements together and

83

i
i

“thesis” — 2015/11/30 — 17:40 — page 84 — #98 i
i

i
i

i
i

Chapter 6. Evaluation

Room
Manager

External
Interface

Figure 6.4: Fully Deployed System

Table 6.5: Message Delays

Average Message Delay (milliseconds)

Native APIs
External Simulators

(Siafu + Freedomotic)
Partially Simulated
(Siafu + real lights)

Fully Deployed

<1 1 3-4 5

the flexibility to replace one (or set of) virtual component(s) with real ones over the
time.

The framework takes around 1.4 milliseconds on average to bootstrap a new com-
ponent and this time does not fluctuate too much even when you increase the number
of components deployed (on a single machine). Moreover, the delay incurred by the
framework is negligible for developed case-study as it takes from less than a millisec-
ond to 5 seconds to deliver one message from one component to other depending on
the communication technologies used and their corresponding limitations.

84

i
i

“thesis” — 2015/11/30 — 17:40 — page 85 — #99 i
i

i
i

i
i

6.2. Case Study 1: Smart Office

Ta
bl

e
6.

6:
G

ro
up

s
Sp

ec
ifi

ca
tio

n

G
ro

up

Su
pe

rv
is

or
Fo

llo
w

er
D

at
a

E
xc

ha
ng

e
M

es
sa

gi
ng

Pa
ra

di
gm

G
ro

up

C
oo

rd
in

at
io

n
D

ev
ic

e
R

ol
e

B
eh

av
io

r
D

ev
ic

e
R

ol
e

B
eh

av
io

r
Se

nt
by

Su
pe

rv
is

or

Se
nt

by

Fo
llo

w
er

M
an

ag
em

en
t

G
ro

up
(M

G
)

W
in

V
M

SS
M

C
on

tr
ol

W
in

V
M

R
oo

m

M
an

ag
er

Tr
ig

ge
re

d
C

on
tr

ol

C
om

m
an

ds

C
on

te
xt

C
ha

ng
e

M
es

sa
gi

ng

Q
ue

ue
E

ve
nt

-b
as

ed

C
on

te
xt

G
ro

up
(C

G
)

W
in

V
M

R
oo

m

M
an

ag
er

C
on

tr
ol

In
te

lA
M

Se
ns

or
C

yc
lic

7
C

on
te

xt

In
fo

M
es

sa
gi

ng

Q
ue

ue

Sy
nc

hr
on

ou
s

Ti
m

ed

A
pp

lia
nc

es

G
ro

up
(A

G
)

W
in

V
M

R
oo

m

M
an

ag
er

C
on

tr
ol

Z
ig

B
ee

G
W

L
am

p

Sc
re

en
Tr

ig
ge

re
d

St
at

e
C

ha
ng

e

C
om

m
an

ds

St
at

us

U
pd

at
es

M
es

sa
gi

ng

Q
ue

ue
E

ve
nt

-b
as

ed

Si
m

ul
at

io
n

G
ro

up
(S

G
)

W
in

V
M

R
oo

m

M
an

ag
er

Tr
ig

ge
re

d
W

in
V

M
E

xt
er

na
l

In
te

rf
ac

e
C

yc
lic

C
on

tr
ol

C
om

m
an

ds

C
on

te
xt

+
St

at
us

M
es

sa
gi

ng

Q
ue

ue
E

ve
nt

-b
as

ed

E
xt

er
na

lI
F

G
ro

up
(E

IG
)

W
in

V
M

In
te

rf
ac

e

SV
C

yc
lic

In
te

lA
M

M
ac

bo
ok

FD
IF

Si
af

u
IF

C
yc

lic
C

on
te

xt
C

on
te

xt
R

en
de

zv
ou

s
Sy

nc
hr

on
ou

s

Ti
m

ed

Pr
ox

im
ity

G
ro

up
(P

G
)

W
in

V
M

R
oo

m

M
an

ag
er

C
on

tr
ol

N
ex

us
5

(B
ea

co
n)

Pr
ox

im
ity

In
te

rf
ac

e
Tr

ig
ge

re
d

7
Pr

ox
im

ity

E
ve

nt
s

M
es

sa
gi

ng

Q
ue

ue
E

ve
nt

-b
as

ed

85

i
i

“thesis” — 2015/11/30 — 17:40 — page 86 — #100 i
i

i
i

i
i

Chapter 6. Evaluation

6.3 Case Study 2: Modern Greenhouse

This case-study aims to develop an automated organization of heterogeneous flower
carts according to their thermal (or other) needs within a modern greenhouse. It focuses
on the following two aspects:

• How can we harmonize heterogeneous components for interoperation through the
proposed semantic model?

• How can the proposed semantic model help in self-configuration of the groups?

Experimental Details

The first step was to develop the domain concept ontology (DCO) for the greenhouse
scenario. Figure 6.5 describes greenhouse DCO that consists of domain concepts such
as cart, room, temperature requirements and health status of a cart, and room status
and temperature. The group coordination ontology (MPO) and the message protocol
ontology are the same as described in Figure. 4.12.

accommodates

hashas maintainshas

Greenhouse: Cart Greenhouse: Room

Greenhouse:
TemperatureReqs

Greenhouse:
TemperatureGreenhouse: Health Greenhouse: Status

Figure 6.5: Greenhouse Domain Concept Ontology (DCO).

The greenhouse is modeled in a way that each room is represented by a group in the
Components Layer, and the carts are components that become followers of these groups
(see Figure 6.6). In the Management Layer we have a single Greenhouse SSM that is
responsible for supervising the room supervisors. Room supervisors are responsible for
collecting data from their followers. Their goal is to identify their follower carts’ needs
and report to the SSM if they see any abnormal behavior or data. The room supervisor
can ask a flower cart to leave the room at any time, either because its flowers get sick or
because the SSM decides that it should no longer be part of that group. The SSM, on
the other hand, issues directives that can change the supervisor for a particular room.
This in turn may have an impact on the type of flower carts that can be accepted in that
room.

We used Siafu to build a model of our greenhouse, and to populate it with agents for
carts and room supervisors, and one for the SSM: the agents are virtualized elements.
We then associated each element with a framework component. The components were
defined using the GCO, communication followed the MPO, whereas special-purpose
greenhouse DCO (see Figure 6.5) is used for application-specific message content.

Components discovery and self-configuration of groups

The framework offers a mechanism for components to connect to the system with-
out having any previous knowledge about the topology. When different components
want to join a system, they insert their role information (described using the GCO) into

86

i
i

“thesis” — 2015/11/30 — 17:40 — page 87 — #101 i
i

i
i

i
i

6.3. Case Study 2: Modern Greenhouse

Greenhouse SSM

Room1SV

Warm Temperature Room

Cool Temperature Room

Mild Temperature Room

Room2SV

Room3SV

cart1

cart4

cart5
cart2

cart6

cart8

cart3 cart7

Components Layer

Management Layer

Figure 6.6: Group topology: the SSM manages the room supervisors (Room1SV, Room2SV and
Room3SV) that play the role of supervisors for carts, but act as followers for the SSM node.

the knowledge base in the form of RDF triples. For example, a component with id
cart1 with the follower role CoolTempeatureRole will insert the following triple into
the knowledge base:

〈SeSaMe : cart1, SeSaMe : FollowerRole, “CoolTemperatureRole′′〉.

SSMs subscribe to this information (see Figure 6.8), so they are notified as soon as
a triple is inserted into the knowledge base. They then collaborate to chose a group for
the component. If we consider the above example triple, the SSMs will find a group
that has listed CoolTempeatureRole as its follower role. After choosing a group for the
component, the SSMs insert their decisions into the knowledge base in the following
form:

〈SeSaMe : cart1, SeSaMe : Group, “CoolTemperatureRoom′′〉.

The component is made aware of this input, and it connects to the assigned group.
If a component can play multiple roles in multiple groups, it will add multiple tuples
to the knowledge base. The SSMs can then decide to add the component to as many
groups as needed.

Semantic group communication

Message exchanges between two components are carried out using the Message con-
cept defined in the MPO. Message communication involves many different aspects,
such as message content encoding, the transportation and communication mechanisms
that should be used, and how message content should be interpreted. Message trans-
portation is managed by the group-based infrastructure, but message content requires

87

i
i

“thesis” — 2015/11/30 — 17:40 — page 88 — #102 i
i

i
i

i
i

Chapter 6. Evaluation

SeSaMe:Group
Warm Temperature Group Cool Temperature Group Mild Temperature Group

is

is
is

WarmTemperature
Role

CoolTemperature
Role

MildTemperature
Role

CoolRoom
Supervisor

MildRoom
Supervisor

SeSaMe:
SupervisorRole

SeSaMe:
FollowerRole

WarmRoomInfo CoolRoomInfo MildRoomInfo

has has has

SeSaMe:
GroupInfo

has has has

SeSaMe:
Component

Room1SV Cart1

WarmRoom
Supervisor

Room2SV Cart2 Room3SV Cart3

has has has has has has

has has has
is

is is

is is is is is

is

isis is

is is is

Figure 6.7: RDF graph for greenhouse group topology.

Knowledge Base

RDF-Triples

Management Layer (SSM)

Components Layer (Things)

Subscribes to
Component
 Role info

Inserts Group Info
for Component

Inserts Role Info
for Component

Subscribes for
Group Info

Figure 6.8: Discovery and self-configuration of components.

an ontology that defines the concepts that are relevant to the application domain. This
is covered by the DCO. Figure 4.12 shows the simple DCO ontology that we have used
in our smart greenhouse. Carts and rooms within a greenhouse become components
if they can play certain roles. Message passing between carts and rooms are achieved
between their supervisor or follower roles. The message contains an instantiation of the
cart’s Health concept, or an instantiation of the room’s Status concept. If wanted, the
DCO can be extended to define more detailed aspects of the health and status messages.

We used a context simulator for ubiquitous systems called Siafu [73] to help demon-
strate our framework. Siafu was run on a Macbook Air with Intel Core i7 (1.7 GHz)
with 8 GB of RAM running OSX 10.9.5. We have tested the framework on two specific
scenarios.

88

i
i

“thesis” — 2015/11/30 — 17:40 — page 89 — #103 i
i

i
i

i
i

6.3. Case Study 2: Modern Greenhouse

6.3.1 Managing incoming carts

The first scenario we tackle represents the case in which three new flower carts, named
cart1, cart2, and cart3, enter the greenhouse. Cart1 is carrying flowers with high
temperature needs, and hence implements the WarmTemperature Role. Similarly, cart2
and cart3 have CoolTemperature Role and MildTemperature Role, respectively. Group
Information (Supervisor and Follower Role) about all the potential group types needs to
be pre-registered with the Greenhouse SSM to enable autonomic discovery and group
assignment.

Upon reaching the greenhouse, the carts insert their role information into the knowl-
edge base to know which room they should go to. The information is received by the
Greenhouse SSM that finds the appropriate rooms for the carts according to their roles
(corresponding temperature needs). In the current example, the SSM allocates cart1 to
the Warm Temperature Group, cart2 to the Cool Temperature Group, and cart3 to the
Mild Temperature Group. The SSM also takes into consideration the number of carts
that are present in each of the system’s groups.

6.3.2 Sick flowers

The second scenario describes what happens when certain flowers become sick. For in-
stance, if some flowers on cart3 get sick, cart3 uses the DCO to notify the Room3SV
through the following RDF-triple:

〈SeSaMe : cart3, Greenhouse : Health, “Sick′′〉,

which in turn notifies the Greenhouse SSM. In the meanwhile, Room3SV asks
cart3, which contains the sick flowers, to activate the sick flower role and to reconnect
to the system through the SSM, which in turn decides where it should put the sick flow-
ers. It can allocate a new room for the sick plants, or transform the room in which the
cart currently is, into the room for sick flowers. In the latter case, the room’s supervisor
has to change its role, and all the other flowers and plants need to leave the room. In this
example, the SSM decides to make the Mild Temperature Room the room for all sick
plants, and changes the role of Room3SV to that of the sick flower supervisor. This
will leave all the nodes following the previous supervisor role in an orphaned state.
According to proposed framework, all the nodes whose supervisor node fails or leaves
the system, automatically try to reconnect to an SSM. The result is that the SSM will
allocate them to a new room, according to the newly defined system topology.

The framework exploits Semantic Ontologies to achieve interoperability both be-
tween the components of the same layer and between components of different layers.
We used Smart-M3 [61], a platform operating on principles of space-based information
exchange, to embed semantic models into our middleware. Smart-M3 is based on two
kinds of components: Semantic Information Brokers (SIB) and Knowledge Processors
(KP). The former are used to store a system’s semantic information; the latter insert or
retrieve data from a SIB. In our framework, we use SIBs to develop a knowledge base
that supports RDF-based data storage, while components, both from the Components
Layer and from the Management Layer, act as KPs.

89

i
i

“thesis” — 2015/11/30 — 17:40 — page 90 — #104 i
i

i
i

i
i

Chapter 6. Evaluation

Even if this is only a simple preliminary example, the integration of ontologies into
the core middleware infrastructure demonstrated significant benefits in the integration
of truly heterogeneous elements. In general, one may notice that a proper partitioning
of the ontology into coherent pieces helps the designer modularize the whole system
and organize the communication among the different elements. It is also important to
notice the use of a domain specific ontology to take into account the peculiarities of
the particular application domain, and thus a clear and sound design of this ontology is
crucial for the correct and efficient operation of the system.

Our experiments have only been limited to a simulated environment, but even in this
context, where communication delays are negligible, we did not experience significant
delays introduced by the semantic layer. This allows us to be pretty confident that the
framework will also be able to service more complex and complete systems efficiently.

6.4 Case Study 3: Energy Efficient Buildings

The development of energy-efficient buildings is a multi-faceted problem. Besides the
proper design and construction of the building, one must also take into account its
operation, and manage the components in charge of energy efficiency. This implies
that one needs to do the following:

1. define the control components,

2. design the control system (and strategies), and

3. validate it —maybe through simulation— properly

Currently, different software systems such as EnergyPlus (for simulating the energy
requirements of a building) and Matlab/Simulink (for conceiving the control system)
are used to design and validate energy control systems. All these tools, which corre-
spond to different phases, work in isolation.

In this case-study, the proposed framework is evaluated in terms of bridging the gap
between existing design, testing, and simulation solutions, and providing an integration
mechanism to conceive control systems that blend diverse aspects, co-simulate them
through the coordinated use of different simulators, and deploy them in real contexts.

The goal is to provide integration solution for control systems and simulators and
also ease the design and experimentation of different control strategies that can be
changed or modified at runtime.

6.4.1 Building Model

To exemplify the “general” problem, this thesis uses the DOE Commercial Medium
Office Building (Benchmark V 1.0_3.05) as concrete and well-known building model
(see Figure 6.9). The building has the following characteristics:

Building Geometry: The building has a rectangular shape with aspect ratio of 1.5,
and it spans 4,982 square meters (m2). The building has three floors, where each floor
consists of one core, which covers 38% of the area, and four perimeter zones (62%),
for a total of 15 zones in the building. Each perimeter zone is 4.57 m deep, with

5http://energy.gov/eere/downloads/archive-reference-buildings-building-type-medium-office.

90

i
i

“thesis” — 2015/11/30 — 17:40 — page 91 — #105 i
i

i
i

i
i

6.4. Case Study 3: Energy Efficient Buildings

3 Floors

Aspect
Ratio
1.5

Building Envelop
Shape: Rectangle

Area: 4,982 sq.meter

Central Zone

Perim
eter Zone

Perim
eter Zone

Perimeter Zone

Perimeter Zone

Window

Window

Window Window

Floor View
5 Zones per floor

Figure 6.9: Benchmark office building.

windows facing each direction, which receive daylight; the core zones do not receive
any daylight.

Building Envelope: The thermal properties of the building envelope vary with re-
spect to climate according to ASHRAE Standard 90.1-2004 [11]. The exterior walls are
steel-framed, roof is flat, whereas floor is based on concrete slab. There is equal distri-
bution of windows, and window-to-wall ratio is set to 24.3%. Windows use single pane
glazing and horizontal blinds with 0.025 m width. Infiltration takes place in perimeter
zones and the HVAC system of the building is based on gas furnace with economizer
as per [11].

Peripherals: Lighting power density is set to 10.76 W/m2 whereas the electrical
plug loads are set to 8.07 W/m2. The office building accounts for 195 people in to-
tal with the occupancy density set to 3.91 people/100 m2. Occupancy is primarily
controlled by a dynamic statistical occupancy model derived from actual data from a
typical office building.

91

i
i

“thesis” — 2015/11/30 — 17:40 — page 92 — #106 i
i

i
i

i
i

Chapter 6. Evaluation

We have extended the building model by adding dimmable lights in each zone that
are able to react according to the specified luminance level in a zone. EnergyPlus is
then used to simulate the HVAC and lighting conditions within the building to calculate
the corresponding lighting, cooling and heating energy requirements. We are using the
Baltimore climate and weather conditions from TMY3 (Typical Meteorological Year
version 3)6 data set for our experimentation as some other existing solutions use the
same data.

6.4.2 Integrated Control

The integrated control within the building is achieved by organizing the building con-
trol in multiple control groups through the abstractions provided by the framework. It
means that a control group comprises components with two distinct types of roles: (i)
supervisor, that is, a controller, and (ii) follower, that is, sensors and actuators —or
their corresponding interfaces if simulated by external systems (See Figure 6.10).

Group

Controller
(Supervisor)

Interface
(Follower)

Abstraction
(Follower)

Control
Strategies

Configuration
Rules

Simulator Physical
Elements

Configuration
Rules

Figure 6.10: Example control group.

We have implemented the control groups (controllers, sensors and actuators) as de-
scribed in Figure 6.11 initially, and then conducted experiments with different group-
ing criteria to change the decision making granularity (e,g., floor/zone/building level,
isolated lighting and HVAC control, or integrated control at various levels). Further
external simulators (EnergyPlus in this case) is interfaced through our middleware to
the relevant groups. EnergyPlus is also used for simulating the occupancy patterns that
are devised from statistical data.

Let us now consider the zone scheme described in Figure 6.9 to understand the
design of an integrated control; each floor has five zones, where four of them have
windows with controllable blinds, but there is a common shared HVAC control for each
floor. Figure 6.11 shows the control configuration where one can have 5 groups (one
for each zone), each having a zone manager controlling all the components in the zone
according to defined control strategies. These 5 zones act as followers for the lighting

6http://doe2.com/Download/Weather/TMY3/

92

i
i

“thesis” — 2015/11/30 — 17:40 — page 93 — #107 i
i

i
i

i
i

6.4. Case Study 3: Energy Efficient Buildings

and thermal management groups which in turn are managed by the floor manager. Each
zone manager monitors the luminance (measured in lux) and temperature in the zone
and informs the thermal and lighting control groups, which then will decide whether
the window shades or lights could be adjusted to meet the requirements. Besides taking
the requirements of a particular zone under consideration, a thermal manager must also
balance the thermal needs of the whole zone while controlling the HVAC system. Based
on the decision of the thermal control, the zone manager adjusts the lux by turning on
and off some lights adaptively. Different zones collaborate to achieve the optimized
control state.

Temp
Sensor

Floor Mgr
Light ControlThermal Control

Shades

Radiation
Sensor Lum

Sensor

lights

Zone1 Mgr

Temp
Sensor

Shades

Radiation
Sensor Lum

Sensor

lights

Zone5 Mgr

HVAC

Figure 6.11: Integrated Control Groups.

Scheduling the communication among the components is an important task as it
defines the order in which these components receive or send messages.

As each component has its own execution cycle and duration, they must be syn-
chronized, that is, the execution of the different components must be organized, to
let the system evolve through consistent states. Components send messages to/receive
messages from other components (via roles) on clock tick(s) to synchronize the infor-
mation exchange. Data exchange with external simulators is instantaneous; sender and
receiver are paired, and they remain blocked during the interaction.

For example, let us consider that in our example building, the movement of win-
dow blinds is controlled on the basis of the light and temperature in the zone. Weather
conditions and constraints on energy consumption are also considered during the deci-
sion making process. It can easily be seen that weather information (updated every 15
minutes), internal light and temperature values (available instantly) and window move-
ments (that may take thirty seconds to change status from open to close or vice versa)
have different frequencies and execution times: their synchronization on some global
time is mandatory. The group supervisor (controller) in this case takes the responsi-
bility of collecting the information from followers on different time intervals and of

93

i
i

“thesis” — 2015/11/30 — 17:40 — page 94 — #108 i
i

i
i

i
i

Chapter 6. Evaluation

synchronizing it on a common time (step) to make valid decisions (See Figure 6.12).

Control
Components

EnergyPlus
Simulator

Control
Strategies Building Model

(Benchmark office)

Weather
Data

Sensors

Controller
Building
Variables

Control
Signal

Building
Variables

Control
Signal

EnergyPlus
InterfaceInfo

Command

Figure 6.12: Concurrent execution/simulation.

Besides synchronizing the information flow, we also need to take into account the
type, structure, and multiplicity of the data exchanged between parties. For example, a
sensor component sends read values to the zone manager, while a window blind needs
the action command (the slat angle) from the manager. Required and produced data
are then stated in an external configuration file; involved roles (both supervisors and
followers) must agree on the same data exchange model.

6.4.3 Experimental Details

We have experimented with different control strategies for windows shading, HVAC,
and artificial lights. The following two window shading control strategies are used for
experiments:

1. Shades with fixed slat angle

2. Dynamic control of the shades

In the first strategy the slat angle will be fixed (e,g., at 0°, 45°, and 90°) whereas in
the second strategy the shading is adjusted (5° shifting step) according to the lighting
and thermal needs within the building.

For HVAC, we are using the following thermal strategies:

1. On/off control, which is managed on the basis of current zone temperatures and
heating/cooling schedules (set-points)

2. Optimum start with constant temperature gradient, which anticipates the HVAC
needs based on daily schedules and performs pre-heating and cooling with fixed
temperature changes per hour

For artificial lighting, we are using two control strategies:

1. Discrete on/off control, where lights can only be turned on and off based on the
current luminance level and the set-points, and

94

i
i

“thesis” — 2015/11/30 — 17:40 — page 95 — #109 i
i

i
i

i
i

6.4. Case Study 3: Energy Efficient Buildings

30	

35	

40	

45	

Jan	
 Feb	
 Mar	
 Apr	
 May	
 Jun	
 Jul	
 Aug	
 Sep	
 Oct	
 Nov	
 Dec	

El
ec
tr
ic
	
 (L
ig
h-

ng
)	
 E

ne
rg
y	

(G
J)
	

Months-­‐	
 Time	

	
 Fixed	
 Angle-­‐	
 On/Off	
 Lights	
 Fixed	
 Angle	
 -­‐	
 Dimmable	
 Lights	
 Dynamic	
 Angle	
 -­‐	
 Dimmable	
 Lights	

Figure 6.13: Energy consumption for lighting.

2. Continuous (dimming) control, where lights can be dimmed step-wise from com-
pletely bright to turned off.

We have tested the following three integrated control strategies in our preliminary
experiments: the first strategy (S1) uses fixed slat angle (45°) and on/off lighting con-
trol, the second strategy (S2) also uses fixed slat angle but incorporates dimmable light-
ing control, whereas the third strategy (S3) uses dynamic slat angle and dimmable
lighting control. Moreover, we have used on/off control for HVAC system for all three
strategies where heating and cooling set-points, respectively, are 21° and 24° C for
working hours and 15.6° and 30° C otherwise. The luminance set-point for each zone
is set to 500 lux.

The simulation is run for a whole year and the time step is set to 5 minutes in
EnergyPlus, that is, the control system interacts with the building every 5 simulated
minutes. Figure 6.13 shows that S3 always has a better energy efficiency for lighting
than S2, which in turn outperforms S1. S3 saves 12% lighting energy (annually) with
respect to S1, whereas S2 saves 4% in comparison to S1.

85

90

95

100

105

110

115

120

En
er
gy
	
 (G

J)

Fixed	
 Angle

Partial	
 Angle

Figure 6.14: Energy consumption for building.

95

i
i

“thesis” — 2015/11/30 — 17:40 — page 96 — #110 i
i

i
i

i
i

Chapter 6. Evaluation

The partial and fixed angle strategy also had a significant impact on the total energy
usage of the building. Figure 6.14 shows that partial angle strategy almost always out-
performs the fixed angle strategy throughout the year. The only period where dynamic
control of the window shutters (slat angle) is not significant is the month from July to
September, where shutters are usually closed during the daytime to save the cooling
energy.

The primary purpose of this case study was to evaluate the ability of the integration
mechanism of the framework to conceive control systems that blend diverse building
dynamics and co-simulate them through the coordinated use of different simulators.
The framework was successfully able to coordinate building simulation and implemen-
tation of control decisions that take place in different systems in order to enable energy
efficiency in office buildings.

As integrating heterogeneous systems alone is not enough. Provision of a valid
synchronization among the various execution models running in different subsystems
is also very important for a useful solution. These experiments also demonstrate the
framework’s validity in terms of synchronizing multiple components and simulators
together according to their execution and (data) communication cycles. The results
for different strategies were matched to the expected results (through running static
strategies in EnergyPlus without external control system) and they found to be in line
with them.

6.5 Case Study 4: Public Park

This section describes the experiments we conducted to evaluate the scalability, reli-
ability, and efficiency of the proposed architecture by designing and simulating our
public park. It focuses on evaluating the following aspects:

• How well the framework can handle dynamism and mobility of the users/compo-
nents while keeping the reliability of the services?

• How can the proposed framework balance energy consumption of each device?

• How can the proposed framework uniformly distribute the communication load
(group size)?

6.5.1 Experimental Setup

The park is setup and simulated7 (see Figure 6.15) through the Netlogo simulator [95].
NetLogo is a programming language and modeling environment for simulating natural
and social phenomena. It is widely used by researchers for modeling complex systems
that evolve over time and for analyzing micro-level behaviors of autonomous entities
along with the corresponding macro-level patterns that emerge from the mutual col-
laborations. The environment (or simulated world) in Netlogo is spatially organized in
patches and the individuals that live in the simulated world are termed breeds.

Our public park is then structured around a grid of 30×30 patches, where each patch
can be a pathway, a screen, or a point of interest. Components (breeds) can be of three
types: people, screens and points of interests (POI). We started the simulation with a

7The simulation video is available online at: http://home.deib.polimi.it/shahzada/ParkSimulation/
NetLogo-ParkSim.mov

96

http://home.deib.polimi.it/shahzada/ParkSimulation/NetLogo-ParkSim.mov
http://home.deib.polimi.it/shahzada/ParkSimulation/NetLogo-ParkSim.mov

i
i

“thesis” — 2015/11/30 — 17:40 — page 97 — #111 i
i

i
i

i
i

6.5. Case Study 4: Public Park

population size of 120 and decided that 5 new people had to join, and 1 person had
to leave, the system every 25 time units. People move towards the directives received
from the screen 50% of the time and take random movements otherwise.

Figure 6.15: Park simulation in NetLogo.

We have run two different simulations for the example scenario. The first one con-
siders the following role and collaboration types as shown in Figure 6.16:

1. Screen to screen collaboration, which enables them to exchange localized data.

2. Screen to user collaboration, which enables users to connect to the screen and get
personalized information.

3. User to user interest-based collaboration, which allows users with similar inter-
ests to connect together for possible social interactions and exchange of helpful
information.

97

i
i

“thesis” — 2015/11/30 — 17:40 — page 98 — #112 i
i

i
i

i
i

Chapter 6. Evaluation

Public Park

AP1

Ferris Wheel

Cafeteria

Kids Rail
AP2

AP3

AP4

AP5

Supervisor
Follower

Legends
Access Point/Screen (AP)
Interest Point (POI)

Supervisor/Follower

Figure 6.16: Park Topology

98

i
i

“thesis” — 2015/11/30 — 17:40 — page 99 — #113 i
i

i
i

i
i

6.5. Case Study 4: Public Park

We form user collaborations based on the three interest types. The interests of a user
are defined through the corresponding roles, and each user tries to connect to another
user with the same interests that is in turn connected to a screen. The decision of
being part of a collaboration (group) is done through the fireflies-based algorithm. The
second simulation is carried out without any role-orientation (similar to a centralized
approach): the knowledge exchange among components is not filtered by user interests,
and each component receives the same amount of information from the space. The
different components simply try to connect to the first component they find in their
proximity and do not use fireflies-based adaptation.

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

M
es
sa
ge
s	

Time	
 (Popultaion	
 is	
 increasing	
 with	
 6me)	

	
 Without	
 Roles	
 and	
 Adapta;on	
 	
 Proposed	
 Architecture	

Figure 6.17: Average number of messages per screen.

The goal is to evaluate the impact of our architecture on the number of exchanged
messages within the space, while keeping the reliability of services. We recorded that
in the case of supervisor failure, all corresponding follower components of the group
are re-assigned to a new group within 3 time units. We have also measured the energy
and communication load (dependent on the group size) for each (user) supervisor com-
ponent. The energy consumption of each device is measured as a (constant) penalty for
each message sent or received by the device. The proposed solution was able to bal-
ance both the energy consumption and the size of different user groups (communication
load).

Figures 6.17 and 6.18 show the results of the experiments. The simulations were
run for 1000 time units (simulation cycles), and the population was initialized with
120 components and dynamically increased to 280 elements. We have measured the
number of messages for the two cases; messages are the directives that are sent from
the screens or from the users that act as supervisors. In case of simulation without roles
and adaptation, a component receives messages for all the points of interest and then it
selects those to take into account. The absence of special-purpose collaborations costs
more messages since each component receives information about each POI, even if it
is not interested in it. Besides their number, these messages are also a good indicator of
the amount of knowledge that is shared among components. For example, Figure 6.21
shows that on average the proposed architectural solution allows for a reduction of 78%
of the number of messages that each screen receives and of 65% for each user.

99

i
i

“thesis” — 2015/11/30 — 17:40 — page 100 — #114 i
i

i
i

i
i

Chapter 6. Evaluation

0	

500	

1000	

1500	

2000	

2500	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

M
es
sa
ge
s	

Time	
 (Popultaion	
 is	
 increasing	
 with	
 6me)	

	
 Without	
 Roles	
 and	
 Adapta;on	
 	
 Proposed	
 Architecture	

Figure 6.18: Average number of messages per user.

0	

2000	

4000	

6000	

8000	

10000	

12000	

Avg	
 Screen	
 Messages	
 Average	
 Component	
 Messages	

M
es
sa
ge
s	

Popula,on	
 Size	
 (120	
 -­‐280)	

Without	
 Roles	
 and	
 adapta?on	
 Proposed	
 Architecture	

Figure 6.19: Results

It reduces the load of “access point” (screens in our case), which is one of the critical
factors with centralized ways of communication, by distributing and delegating super-
vision to some of the users. Moreover, it also limits the amount of knowledge that is
shared among these distributed and autonomous components that form collaborations
at run-time. The unnecessary knowledge exchange decreases the performance of the
system as it leads to additional execution (computing) cycles and network saturation.

We have also measured the energy and communication load (dependent on the group
size) for each (user) supervisor component. The energy consumption of each device is
measured as a (constant) penalty for each message sent or received by the device. The
proposed solution was able to balance both the energy consumption and the size of
different user groups (communication load). Throughout the simulation, we observed
that the variability of energy consumption for each device remains within the standard
deviation of 1% whereas the difference in group size has the deviation of less then 1
component across all groups.

The results highlight that the proposed architecture maintains reliable service provi-
sion in a scenario with highly dynamic and mobile components. Moreover, it distributes
the communication load uniformly across components by delegating supervision to

100

i
i

“thesis” — 2015/11/30 — 17:40 — page 101 — #115 i
i

i
i

i
i

6.6. Discussion

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

Po
w
er

Simulated	
 Time

Power	
 Consumption

Mean	
 Device	
 Power Power	
 Variance

Figure 6.20: Power consumption.

some users and hence reduces the overall network congestion.

6.6 Discussion

The above four case studies have demonstrated the effectiveness of the proposed frame-
work in various dimensions. We have conducted experiments to evaluate different
quantitative and qualitative characteristics of the network as described in Tables 6.1
and 6.2. Following is the summary of the results corresponding to the various evalua-
tion metrics:

- Efficiency. JOL and public park case studies were used to measure the efficiency
of the framework in terms of bootstrapping time, delay (impact on performance),
and congestion. Our experiments show that a component joins the system within
1.4 seconds on average and sends a message within 5 milliseconds in the worst
case (fully deployed system using various stand alone subsystems). Moreover, the
framework was able to balance the load of the various groups in a uniform manner
where the difference in group size had the deviation of less then 1 component
across all groups in a system of 280 components.

- Reliability and Dynamism. Public park and greenhouse case studies were used
to demonstrate that the framework is able to re-configure the system topology
in case of components frequently joining/leaving the system. We have measure
the time required by the system to recover (re-configure) from a component fail-
ure/leave. We observed that all corresponding follower components of the group
with a failing supervisor component were re-assigned to a new group within 3
time units.

- Scalability. We conducted experiments through both a relatively static space
(JOL), and a very dynamic space (public park) to observe how the proposed solu-
tion scale up in terms of its efficiency. In JOL, we experimented with (up to) 20

101

i
i

“thesis” — 2015/11/30 — 17:40 — page 102 — #116 i
i

i
i

i
i

Chapter 6. Evaluation

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001

G
ro
up
	
 S
iz
e	

Va
ria

nc
e

Simulated	
 Time

Group	
 size	
 variation

Simulated	
 Time Group	
 Size	
 Variance

Figure 6.21: Group size variation.

components (on a machine) to see how much time is required for each component
to bootstrap. It was observed that after deploying 7 components on a machine,
the average bootstrap time per component shows a linear behaviour. Similarly,
for public park scenario it was observed that each component bootstraps within 3
time units where 5 new people had to join, and 1 person had to leave, the system
every 25 time units.

- Interoperability. All the case studies demonstrate interoperation of the compo-
nents with heterogeneous functions, execution cycles and communication tech-
nologies they use. For example, Table 6.4 describes that various components used
in JOL differ from each other in terms of the type and communication protocols.
The framework was able to ensure that these components can interoperate and
communicate with each other to execute functional logic.

- Integration. Similarly, the experiments have also showcased the ability of the
framework to integrate different components together in logical self-organizing
groups at the runtime. The self-organization is triggered by either the static location-
based criteria (enforced by SSMs as in case of JOL) or the heuristic functions that
are used by the individual components (in an ad hoc manner as in the public park)
to decide which group or component to connect with. Moreover, JOL and energy
efficient building scenarios also demonstrate that framework was able to concur-
rently execute (interacting) systems with different execution models. For example,
in energy efficient building, the control system was successful in synchronizing
control decisions with sensor inputs and the energy requirements gathered from
an external simulator (EnergyPlus), where all of these elements had different exe-
cution cycles.

- Extensibility and Flexibility. JOL and public park case studies demonstrated that
it is possible to add new functional components (roles) without changing/halting
the system. Moreover, it was trivial to replace one or set of component(s) with-
out changing the high-level functional and organizational logic. For example, set
of virtual lights (simulated through Freedomotic) in JOL were replaced with real

102

i
i

“thesis” — 2015/11/30 — 17:40 — page 103 — #117 i
i

i
i

i
i

6.6. Discussion

ZigBee enabled lights (using openHAB as a bridge) just by changing the inter-
face component. Similarly, the framework was flexible enough to change the user
proximity data simulated by Siafu with the events generated by smartphone sens-
ing BLE beacons.

- Incrementality. JOL case study showcases that the framework supports concur-
rent execution of both physical and virtual components together for continuous
evaluation. We developed the JOL smart office space in an incremental fashion,
which is, starting with completely simulated solution through external simulators,
testing and validation the functional and managerial logic and then moving on
towards the fully deployed solution in various transitional phases.

The above analysis suggests that the framework is very effective for the incremental
development of both static and dynamic smart spaces.

103

i
i

“thesis” — 2015/11/30 — 17:40 — page 104 — #118 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 105 — #119 i
i

i
i

i
i

CHAPTER7
Conclusions and Future Directions

This chapter summarizes the contents of this thesis and provides an outlook on the
directions for the future work. The thesis started with the challenge/objective to provide
a development framework that enables the developers to design, implement and validate
various dynamic smart spaces by offering programming abstractions that are suitable
for the whole development life-cycle. The challenge was formalized into three high-
level research questions, in result of which, different challenges related to smart space
development were identified and revisiting of the development approach was proposed.

The work presented in this thesis introduces a development framework that enables
developers to design, implement and validate diversified smart spaces. The thesis em-
ploys incremental development process to create smart spaces in order to fill in the gap
caused by the inability of existing smart spaces to evolve over the time and to deal with
changing requirements. The framework offers proper blending of different aspects:

• Provision of appropriate design abstractions to support co-execution of physical
and virtual components through proper middleware infrastructures

• Ad-hoc integration and coordination of heterogeneous components

• Early evaluation of "incomplete" (partially deployed) systems

• Assessment of alternative solutions and deployments of the system

The framework allows the developer to move seamlessly from a fully virtual and
simulated solution to a completely deployed system while enabling continuous valida-
tion at any given stage of development. It offers the same abstractions throughout the
whole development process to provide means for both the seamless integration of vari-
ous components and the utilization of existing systems. Interfaces are provided both to

105

i
i

“thesis” — 2015/11/30 — 17:40 — page 106 — #120 i
i

i
i

i
i

Chapter 7. Conclusions and Future Directions

surrogate system components through external simulators and to ease the deployment
of physical elements.

The thesis synthesizes the control mechanisms from architectural components for
self-adaptation and inherent self-organizing capabilities of fireflies (bio-inspired) in or-
der to design both effective and continuously evolving smart spaces. The synthetic
approach provides the required autonomy to the individual components/groups and at
the same time ensures the desired level of distributed control at various granularity lev-
els. Four different prototypical implementations of diverse smart space scenarios are
conducted to assess the feasibility of proposed concepts, fulfilment of system require-
ments, and various quantitate and qualitative measures (metrics).

7.1 Answers to Research Questions

This section reviews the research questions and discusses the contribution of this thesis
towards them.

RQ 1. Do we need to revisit/improve our development processes for the creation
of smart spaces in order to realize effective smart spaces and, in case, what would that
revision be?

Two major revisions of the current approaches are proposed and advocated in the
thesis. The first one is the incremental development (Figure 4.1) of the smart spaces
where different phases co-exist with each other and where it is possible to work with
’incomplete’ systems at any given time. The second proposal is related to self-adaptation
mechanisms. We advocate and demonstrate that there is a need to have a self-adaptive
approach that takes the best of the existing software architecture control loops and bio-
inspired emerging algorithms to develop a system that has both the control over system
processes and the certain level of autonomous emergence properties.

RQ 1.1. What are the requirements for the development of diversified smart spaces
and where do existing systems lack?

We conducted a comprehensive survey of the state of the art to understand the re-
quirements for the development of various types of smart spaces. We have established
that in order to conceive all kinds of spaces, a framework needs to have the following
properties: ability to abstract over heterogeneity, support to integrate different com-
ponents and protocols at runtime, facilitation of incremental development of the smart
spaces, cater scalability and dynamism of the components and the flexibility to use or
replace alternative solutions or subsystems. Most of the existing systems lack in terms
of providing support for the continuous validation and testing of alternative solutions
in order to move seamlessly from design to actual deployment. Moreover, existing
solutions also lack the balance between the control and the autonomy of smart space
components.

RQ 1.2. Which and how can we employ/integrate various principles from the exist-
ing design paradigms to address those deficiencies, if possible?

106

i
i

“thesis” — 2015/11/30 — 17:40 — page 107 — #121 i
i

i
i

i
i

7.1. Answers to Research Questions

Many researchers have proposed the solutions for the design of smart spaces. The
autonomic computing community has been focusing on super-imposed adaptation mech-
anisms by adding further, dedicated components to the (software) architecture of the
system. In contrast, bio-inspired solutions provide inherent support to self-organization
but they fail to guarantee the desired level of reliability and control. This thesis presents
a hybrid approach that blends the two views and proposes an architecture-centric so-
lution that merges component-based control and bio-inspired (fireflies-based) mech-
anisms. Suitable abstractions help conceive self- organizing, ad-hoc collaborations
among the components of a space.

RQ 1.3. What is the suitable development life-cycle for the development of diversi-
fied smart spaces?

It is very hard to predict at the design time about what kind of sensors, actuators,
controllers and data are required for the space-to-be. Therefore, it is very important
for a development framework to be able to test different alternative solutions before
committing to the physical deployment of the system. This implies that an incremental
development approach is required for the smart spaces that enables continuous valida-
tion of the system at different stages of the development. Moreover, many concrete
scenarios may also be difficult to reproduce just for testing the system. For example, it
is not trivial to create situations to test daily user activities in the example smart office or
crowd navigation in large events such as the public park. The proposed framework eases
the task and allows for early and continuous validation by combining simulated entities
and physical components together. For instance given a space, one can use Siafu, or
any other simulator, to represent real users and mimic their behavior to evaluate the
developed solution. We have demonstrated that the hybrid execution of heterogeneous
components is very effective tool for the transition from a simulated environment to-
wards its concrete deployment. It enables entities to be added incrementally to the
system over the time.

RQ 2. What kind of software (framework) abstractions and interaction mechanisms
are required for the design and implementation of smart spaces to overcome the frag-
mented (in terms of technologies and functionality) devices and continuously changing
user requirements?

The thesis has presented a self-adaptive framework for highly dynamic and large
smart spaces. It presents a group-based abstraction for coordinating distributed compo-
nents. Each group clusters components with similar or relevant characteristics. These
groups can be exploited in various ways to cluster devices, and/or users, so that they
can act as single coordinated entities. For each group, framework chooses a supervisor
component (role) that is in charge of coordinating the group’s elements, and of commu-
nicating with other existing groups (i.e., with other supervisors). Since each component
can play different roles in the system, a node can participate in different groups at the
same time. The framework also offers basic self-organizing primitives and fireflies-
based heuristics that can be used to specify how groups can be re-organized at runtime.

107

i
i

“thesis” — 2015/11/30 — 17:40 — page 108 — #122 i
i

i
i

i
i

Chapter 7. Conclusions and Future Directions

It provides means for components to connect to the system with no prior knowledge of
its topology, and it provides means to ensure reliability and avoid message congestion
in case of high component churn rates.

RQ 2.1. How can we build a software framework that fulfils the requirements iden-
tified in answering to RQ.1?

The component, role, and group abstractions are complemented with semantic model
and self-organization mechanisms (that integrate component control with firefly-based
adaptation) to ensure communication among heterogeneous components, ad-hoc in-
tegration of dynamic components, and self-configuration/healing in case some of the
components fail or leave the system unexpectedly. Moreover, reconfiguration of the
grouping, as defined in the proposed firefly-based adaptation, ensures the uniform dis-
tribution of workload for each component in order to ensure efficiency of the system
and avoid congestion.

RQ 2.2. How can we use (some of the) existing smart objects, architectures, mid-
dleware infrastructures, and simulators to implement smart spaces dynamically, effec-
tively, and opportunistically?

The proposed framework provisions the use of an existing or external system in the
same way as any other component (implemented with native APIs). It provides the
component interfaces to maintain the state and identity of a (set of) components and at
the same time being able to plug them to virtual or physical objects. All the component
roles, behaviors, and collaborations remain independent of the type (physical or virtual)
of the object associated to it. The framework, hence, offers two options to simulate the
different entities: i) the developer can define special-purpose roles that implement the
foreseen behavior, as long as the real components are not available; ii) any external
simulator can be plugged-in to mimic the behavior of a single component or of an en-
tire subsystem. In this way, an application programmer can test and validate various
configurations of the system using external simulators without incurring any additional
cost.

RQ 3. How can we evaluate the effectiveness and capability of such a framework to
design, develop and assess highly dynamic diversified smart spaces?

In our analysis of the state of the art, we first identified and listed out all the sig-
nificant and necessary dimensions/requirements, which should be addressed by the de-
velopment framework. An important aspect was the ability of this framework to be
applicable to all kinds of smart spaces, that is, provide abstractions and tools suitable
for whole development life-cycle of both dynamic and static spaces. The evaluation
plan describes all the metrics (corresponding to the identified dimensions) that needs to
be measured and observed to understand the effectiveness of the proposed framework.
The next step was to design (or select) appropriate case-studies (with varying needs
and characteristics – from static and closed spaces to more open and dynamic space)
to better demonstrate various aspects and features of the framework. Four different di-

108

i
i

“thesis” — 2015/11/30 — 17:40 — page 109 — #123 i
i

i
i

i
i

7.2. Future Directions

verse smart spaces were used to assess the feasibility of proposed concepts, fulfilment
of system requirements, and various quantitate and qualitative measures (metrics).

The results suggest that the framework is able to fulfil the identified requirements
that are required to develop different types of spaces. The framework incurs small delay
which is not significant for the systems of this scale and hence it provides a practical
solution for the issues identified in the survey of the state of the art. Moreover, the
framework also complements the existing growth of the smart objects and plethora of
software solutions, and provides a framework to integrate/utilize the available resources
as a step forward towards the efficient development of smart spaces.

7.2 Future Directions

The work presented in the thesis opens many interesting research directions for the fu-
ture work. The focus of this thesis has been the integration of various physical and vir-
tual subsystems together to develop and validate individual smart spaces. The proposed
framework can be further extended to integrate/aggregate various smart spaces together
and move towards the concept of hyper-spaces [70]. Arguably, incremental aggrega-
tion of smart spaces into hyper-spaces (and then aggregation of these hyper-spaces) is
one potential way to realize smart cities. There are many research challenges involved
such as:

• Conflict resolution in component control

• Integration of information sources through a common data exchange (semantic)
model

• Self-organizing mechanisms with the ability to adapt according to changes occur-
ring in external (other integrated spaces) systems.

• Security and privacy of smart spaces

Another direction for future work is to experiment with metaphors from other natural
systems that include chemical, physical, social and biological self-organizing systems.
Although the proposed framework has implemented the fireflies-based algorithms for
self-adaptation, the provided abstractions are general enough to be extended by imple-
mentation of other biological metaphors, for example. This would provide the devel-
oper with more freedom to tailor adaptation mechanism to the one that best suits their
system requirements.

At the micro level, some of the possible extensions of the work are:

• Provision of a descriptive language to define/model the system through provided
abstractions

• Various ready to use solutions for decision making related to group formation and
supervisor control logic

• Validation of the system design; currently it is up to the developer to ensure that
s/he provides the appropriate roles and group definitions to make the system work.
By a proper validation mechanism, a developer can verify if all the required com-
ponents, roles, and groups are in place.

109

i
i

“thesis” — 2015/11/30 — 17:40 — page 110 — #124 i
i

i
i

i
i

i
i

“thesis” — 2015/11/30 — 17:40 — page 111 — #125 i
i

i
i

i
i

Bibliography

[1] Apple Home Kit: A High-Level Device Connectivity Framework, [online]. available: https://
developer.apple.com/homekit/.

[2] Freedomotic: Open IoT Framework, [online]. available: http://www.freedomotic.com/.

[3] Google Nest, [online]. available: https://nest.com/.

[4] Haier (U+ Smart Living), [online]. available: http://mg.haier.com/index.php?m=content&c=
index&a=show&catid=42&id=47.

[5] OpenHAB, "openHAB -empowering the smart home,", [online]. available: https://github.com/
openhab/openhab.

[6] Proximal Connectivity Platform, [online]. available: https://allseenalliance.org/
developer-resources/alljoyn-open-source-project.

[7] Samsung Smart Home, [online]. available: http://developer.samsung.com/smart-home/.

[8] Vykon: Integrating Building Automation, [online]. available: http://www.tridium.com/
galleries/brochures/VYKON-FINAL.pdf/.

[9] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, R.K. Strand, R.J.
Liesen, D.E. Fisher, M.J. Witte, J. Glazer. EnergyPlus: Creating a New-Generation Building Energy Simula-
tion Program. Energy and Buildings, 33(4):319 – 331, 2001.

[10] G. Agha. Computing in Pervasive Cyberspace. Communications of the ACM, 51(1):68–70, 2008.

[11] ASHRAE Standard ASHRAE. Standard 90.1-2004, Energy Standard for Buildings Except Low Rise Resi-
dential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, 2004.

[12] Bela Ban et al. Jgroups, A Toolkit for Reliable Multicast Communication. URL: http://www. jgroups. org,
2002.

[13] J. Bardram, T. Hansen, M. Mogensen, and M. Soegaard. Experiences from Real-World Deployment of
Context-Aware Technologies in a Hospital Environment. In Proceedings of 8th International Conference on
Ubiquitous Computing, pages 369–386, 2006.

[14] L. Baresi and S. Guinea. A-3: An Architectural Style for Coordinating Distributed Components. In Proceed-
ings of 9th Working IEEE/IFIP Conference on Software Architecture, pages 161–170, 2011.

[15] B. Barry, M. Brian, K. John, K.Amanda, and S. Steven. Easyliving: Technologies for intelligent environ-
ments. In Proceedings of International Symposium on Handheld and Ubiquitous Computing, pages 12–29.
Springer, 2000.

[16] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A Fipa-Compliant Agent Framework. In Proceedings of
PAAM, volume 99, page 33. London, 1999.

[17] G Blair, G Coulouris, J Dollimore, and T Kindberg. Distributed Systems: Concepts and Design, 2012.

[18] Frances M. T. Brazier, Jeffrey O. Kephart, H. Van Dyke Parunak, and Michael N. Huhns. Agents and Service-
Oriented Computing for Autonomic Computing: A Research Agenda. IEEE Internet Computing, 13(3):82–
87, 2009.

111

https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
http://www.freedomotic.com/
https://nest.com/
http://mg.haier.com/index.php?m=content&c=index&a=show&catid=42&id=47
http://mg.haier.com/index.php?m=content&c=index&a=show&catid=42&id=47
https://github.com/openhab/openhab
https://github.com/openhab/openhab
https://allseenalliance.org/developer-resources/alljoyn-open-source-project
https://allseenalliance.org/developer-resources/alljoyn-open-source-project
http://developer.samsung.com/smart-home/
http://www.tridium.com/galleries/brochures/VYKON-FINAL.pdf/
http://www.tridium.com/galleries/brochures/VYKON-FINAL.pdf/

i
i

“thesis” — 2015/11/30 — 17:40 — page 112 — #126 i
i

i
i

i
i

Bibliography

[19] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil. DEECO: An Ensemble-Based
Component System. In Proceedings of the 16th International ACM Sigsoft Symposium on Component-based
Software Engineering, CBSE ’13, pages 81–90, New York, NY, USA, 2013. ACM.

[20] A. Cannata, M. Gerosa, and M. Taisch. SOCRADES: A Framework for Developing Intelligent Systems in
Manufacturing. In Proceedings of IEEE International Conference on Industrial Engineering and Engineering
Management, pages 1904–1908, 2008.

[21] N. Capodieci, E. Hart, and G. Cabri. Designing Self-Aware Adaptive Systems: From Autonomic Computing
to Cognitive Immune Networks. In Proceedings of International Conference on Self-Adaptation and Self-
Organizing Systems Workshops, pages 59–64, 2013.

[22] D. Carlson and A. Schrader. Dynamix: An Open Plug-and-Play Context Framework for Android. In Pro-
ceedings of IEEE International Conference on the Internet of Things (IOT), pages 151–158, 2012.

[23] D. Cassou, J. Bruneau, C. Consel, and E. Balland. Toward a Tool-Based Development Methodology for
Pervasive Computing Applications. IEEE Transactions on Software Engineering, 38(6):1445–1463, Nov
2012.

[24] G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli. Pervasive Middleware Goes Social: The SAPERE
Approach. In Proceeding of 5th IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops,
pages 9–14, 2011.

[25] E. Chan, M.and Campo, D. Esteve, and J. Fourniols. Smart Homes-Current Features And Future Perspectives.
Maturitas, 64(2):90–97, 2009.

[26] M. Chan, D. Esteve, C. Escriba, and E. Campo. A Review Of Smart Homes-Present State And Future
Challenges. Computer Methods and Programs in Biomedicine, 91(1):55–81, 2008.

[27] Autonomic Computing et al. An Architectural Blueprint for Autonomic Computing. IBM White Paper, 2006.

[28] Diane J. Cook and Sajal K. Das. How Smart Are Our Environments? An Updated Look at the State of the
Art. Pervasive Mobile Computing, 3(2):53–73, March 2007.

[29] Diane J. Cook and Sajal K. Das. Pervasive computing at scale: Transforming the state of the art. Pervasive
and Mobile Computing, 8(1):22 – 35, 2012.

[30] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam. ASPECS: An Agent-Oriented Software
Process for Engineering Complex Systems. In Autonomous Agents and Multi-Agent Systems, 20(2):260–304,
2010.

[31] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G: P. Picco, T. Sivaharan, N. Weerasinghe,
and S. Zachariadis. The RUNES Middleware for Networked Embedded Systems and its Application in a
Disaster Management Scenario. In Proceedings of the Fifth IEEE International Conference on Pervasive
Computing and Communications, pages 69–78. IEEE Computer Society, 2007.

[32] M. Crotty, N. Taylor, H. Williams, K. Frank, I. Roussaki, and M. Roddy. A Pervasive Environment Based on
Personal Self-Improving Smart Spaces. In Constructing Ambient Intelligence, pages 58–62. Springer, 2009.

[33] E. Curry. Message-Oriented Middleware. Middleware for Communications, pages 1–28, 2004.

[34] Eric M. Dashofy, A. Van der Hoek, and Richard N. Taylor. Towards architecture-based self-healing systems.
In Proceedings of the first workshop on Self-healing systems, pages 21–26. ACM, 2002.

[35] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro, N. Kitaev, and D. Culler. BOSS:
Building Operating System Services. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, pages 443–458, 2013.

[36] R. De Lemos, H. Giese, Hausi A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, Norha M.
Villegas, T. Vogel, et al. Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In
Software Engineering for Self-Adaptive Systems II, pages 1–32. Springer, 2013.

[37] E. Di Nitto, Daniel J. Dubois, and R. Mirandola. On Exploiting Decentralized Bio-Inspired Self-Organization
Algorithms to Develop Real Systems. In Proceedings of ICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems, pages 68–75. IEEE, 2009.

[38] COOK J. DIANE and K. SAJAL. Smart environments: Technologies, protocols, and applications. Hoboken:
John Wileyand Sons, 2005.

[39] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey. Fulfilling the Vision of Autonomic Computing. Computer,
43(1):35–41, 2010.

112

i
i

“thesis” — 2015/11/30 — 17:40 — page 113 — #127 i
i

i
i

i
i

Bibliography

[40] M. Dorigo and C. Blum. Ant Colony Optimization Theory: A Survey. Theoretical Computer Science,
344(2):243–278, 2005.

[41] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems,
volume 1. Addison-Wesley Professional, 2003.

[42] Patrick Th. Eugster, Pascal A. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):114–131, June 2003.

[43] Jose L. Fernandez-Marquez, Giovanna Di M. Serugendo, and S. Montagna. Bio-Core: Bio-Inspired Self-
Organising Mechanisms Core. In Bio-Inspired Models of Networks, Information, and Computing Systems,
pages 59–72. Springer, 2012.

[44] I. Fister, X. Yang, and J. Brest. A Comprehensive Review of Firefly Algorithms. Swarm and Evolutionary
Computation, 13(0):34–46, 2013.

[45] George H. Forman and J. Zahorjan. The Challenges of Mobile Computing. Computer, 27(4):38–47, 1994.

[46] D. Garlan. Software Architecture: A Travelogue. In Proceedings of the on Future of Software Engineering,
pages 29–39. ACM, 2014.

[47] D. Garlan, Shang-Wen Cheng, An-Cheng Huang, B. Schmerl, and P. Steenkiste. Rainbow: Architecture-
Based Self-Adaptation with Reusable Infrastructure. Computer, 37(10):46–54, 2004.

[48] D. Garlan and B. Schmerl. Model-Based Adaptation for Self-Healing Systems. In Proceedings of the first
workshop on Self-healing systems, pages 27–32. ACM, 2002.

[49] D. Garlan, B. Schmerl, and S. Cheng. Software Architecture-Based Self-Adaptation. In Autonomic computing
and networking, pages 31–55. Springer, 2009.

[50] I. Georgiadis and J. Magee, J.and Kramer. Self-Organising Software Architectures for Distributed Systems.
In Proceedings of the First Workshop on Self-healing Systems, WOSS ’02, pages 33–38, New York, NY,
USA, 2002. ACM.

[51] V. Gorodetsky. Agents and Distributed Data Mining in Smart Space: Challenges and Perspectives. In Agents
and Data Mining Interaction, pages 153–165. Springer, 2013.

[52] A. Gul. Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed Systems. Formal
Methods for Open Object-based Distributed Systems, 1, 1997.

[53] L. Gurgen, O. Gunalp, Y. Benazzouz, and M. Gallissot. Self-Aware Cyber-Physical Systems and Applications
in Smart Buildings and Cities. In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 1149–1154, 2013.

[54] V. Hadzilacos and S. Toueg. A Modular Approach to Fault-Tolerant Broadcasts and Related Problems. Tech-
nical report, NY, USA, 1994.

[55] W. Heaven, D. Sykes, and J. Magee, J.and Kramer. A Case Study In Goal-Driven Architectural Adaptation.
In Software Engineering for Self-Adaptive Systems, pages 109–127. Springer, 2009.

[56] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The Gator Tech Smart House: A
Programmable Pervasive Space. Computer, 38(3):50–60, 2005.

[57] S. Helal and S. Tarkoma. Smart Spaces. IEEE Pervasive Computing, (2):22–23, 2015.

[58] Y. Hen-I, C. Chao, A. Bessam, and H. Sumi. A Framework for Evaluating Pervasive Systems. International
Journal of Pervasive Computing and Communications, 6(4):432–481, 2010.

[59] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Longman Publishing Co., 2003.

[60] A. Holmes, H. Duman, and A. Pounds-Cornish. The Idorm: Gateway to Heterogeneous Networking Envi-
ronments. In Proceedings of International ITEA Workshop on Virtual Home Environments, volume 1, pages
20–21, 2002.

[61] J. Honkola, H. Laine, R. Brown, and O. Tyrkko. Smart-M3 Information Sharing Platform. In Proceeding of
IEEE Symposium on Computers and Communications (ISCC), 2010, pages 1041–1046, 2010.

[62] M. S. Hossain, S. Alamgir. Hossain, A. Alamri, and M. A. Hossain. Ant-Based Service Selection Framework
for a Smart Home Monitoring Environment. Multimedia Tools and Applications, 67(2):433–453, 2013.

[63] Raymond James and Inc. Associates. The Internet of Things, A Study in Hype, Reality, Disruption, and
Growth. US Industry Report, 2014.

[64] G.and Jeremy J. Klyne. Resource Description Framework (RDF): Concepts and Abstract Syntax. 2006.

113

i
i

“thesis” — 2015/11/30 — 17:40 — page 114 — #128 i
i

i
i

i
i

Bibliography

[65] Dmitry G. Korzun, S. Balandin, and A. Gurtov. Deployment of Smart Spaces in Internet of Things: Overview
of the Design Challenges. In Sergey Balandin, Sergey Andreev, and Yevgeni Koucheryavy, editors, Internet of
Things, Smart Spaces, and Next Generation Networking, volume 8121 of Lecture Notes in Computer Science,
pages 48–59. Springer Berlin Heidelberg, 2013.

[66] J. Kramer and J. Magee. Self-Managed Systems: An Architectural Challenge. In Proceedings of Future of
Software Engineering, pages 259–268. IEEE, 2007.

[67] Edward A. Lee, II. Davis, L. Muliadi, S. Neuendorffer, J. Tsay, et al. Ptolemy II, Heterogeneous Concurrent
Modeling and Design in Java. Technical report, DTIC Document, 2001.

[68] W. Lee, S. Cho, W. Song, K. Um, and K. Cho. UbiSim: Multiple Sensors Mounted Smart House Simulator
Development. In Proceedings of IEEE International Conference on Dependable, Autonomic and Secure
Computing, pages 450–453, 2013.

[69] Z. Lei, S. Yue, C. Yu, and S. Yuanchun. SHSim: An OSGI-based Smart Home Simulator. In Proceedings of
3rd IEEE International Conference on Ubi-media Computing (U-Media), 2010, pages 87–90. IEEE, 2010.

[70] J. Ma, Laurence T. Yang, Bernady O. Apduhan, R. Huang, L. Barolli, and M. Takizawa. Towards A Smart
World and Ubiquitous Intelligence: A Walkthrough from Smart Things to Smart Hyperspaces and Ubickids.
International Journal of Pervasive Computing and Communications, 1(1):53–68, 2005.

[71] C. Magerkurth, R. Etter, M. Janse, J. Kela, O. Kocsis, and F. Ramparany. An Intelligent User Service Archi-
tecture for Networked Home Environments. In 2nd IET International Conference on Intelligent Environments,
2006., pages 361–370, July 2006.

[72] I. Marsa-Maestre, M.A. Lopez-Carmona, J.R. Velasco, and A. Paricio. Mobile Devices for Personal Smart
Spaces. In Proceedings of 21st International Conference on Advanced Information Networking and Applica-
tions Workshops, volume 2, pages 623–628, 2007.

[73] M. Martin and P. Nurmi. A Generic Large Scale Simulator for Ubiquitous Computing. In Proceedings of 3rd
Annual International Conference on Mobile and Ubiquitous Systems, pages 1–3, 2006.

[74] P. Mell and T. Grance. The Nist Definition Of Cloud Computing. 2011.

[75] G. Mone. Intelligent Living. Communications of the ACM, 57(12):15–16, 2014.

[76] Patrick D. O Brien and Richard C. Nicol. FIPA - Towards a Standard for Software Agents. BT Technology
Journal, 16(3):51–59, 1998.

[77] P. Oreizy, Michael M. Gorlick, Richard N. Taylor, D. Heimbigner, G. Johnson, A.and Rosenblum David S.
Medvidovic, N.and Quilici, and Alexander L. Wolf. An Architecture-Based Approach To Self-Adaptive
Software. IEEE Intelligent systems, (3):54–62, 1999.

[78] J. Park, M. Moon, S. Hwang, and K. Yeom. Cass: A context-aware simulation system for smart home. In
Proceedings of ACIS International Conference on Software Engineering Research, Management Applica-
tions, pages 461–467, Aug 2007.

[79] D. Peleg. Distributed Computing. Siam Monographs On Discrete Mathematics And Applications, 5, 2000.

[80] Jan S. Rellermeyer, O. Riva, and G. Alonso. AlfredO: An Architecture for Flexible Interaction With Elec-
tronic Devices. In Proceedings of the ACM/IFIP/USENIX International Conference on Middleware, pages
22–41, 2008.

[81] J.M. Reyes Alamo and J. Wong. Service-Oriented Middleware for Smart Home applications. In Proceedings
of IEEE Wireless Hive Networks Conference, pages 1–4, 2008.

[82] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 1995.

[83] M. Saleemi, N. Díaz Rodríguez, E. Suenson, J. Lilius, and I. Porres. Ontology Driven Smart Space Applica-
tion Development. Semant Interoper. Issues Solut. Chall, 101125, 2012.

[84] Vasile M. Scuturici, S. Surdu, Y. Gripay, and Jean-Marc Petit. UbiWare: Web-Based Dynamic Data & Service
Management Platform for Ami. In Proceedings of the Posters and Demo Track, page 11. ACM, 2012.

[85] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline, volume 1. Prentice
Hall Englewood Cliffs, 1996.

[86] R. Singh, P. Bhargava, and S. Kain. State Of The Art Smart Spaces: Application Models and Software
Infrastructure. Ubiquity, 2006(September):7, 2006.

[87] T. Sivaharan, G. Blair, and G. Coulson. Green: A Configurable and Re-Configurable Publish-Subscribe
Middleware for Pervasive Computing. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE, pages 732–749. Springer, 2005.

114

i
i

“thesis” — 2015/11/30 — 17:40 — page 115 — #129 i
i

i
i

i
i

Bibliography

[88] R. G. Smith. The Contract Net Protocol: High-Level Communication And Control In A Distributed Problem
Solver. IEEE Transactions on computers, (12):1104–1113, 1980.

[89] R. G. Smith. The contract net protocol: High-level communication and control in a distributed problem
solver. In Alan H. BondLes Gasser, editor, Readings in Distributed Artificial Intelligence, pages 357 – 366.
Morgan Kaufmann, 1988.

[90] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and V. Trifa. SOA-Based Integration
of the Internet of Things in Enterprise Services. In IEEE International Conference on Web Services, pages
968–975, 2009.

[91] D. Sykes, J. Magee, and J. Kramer. FlashMob: Distributed Adaptive Self-Assembly. In Proceedings of the
6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
’11, pages 100–109, New York, NY, USA, 2011. ACM.

[92] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas. Service Oriented Middleware for the Internet of
Things: A Perspective. In Towards a Service-Based Internet, volume 6994 of Lecture Notes in Computer
Science, pages 220–229. Springer Berlin Heidelberg, 2011.

[93] D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing In Practice: The Condor Experience.
Concurrency-Practice and Experience, 17(2-4):323–356, 2005.

[94] F. Tisato, C. Simone, D. Bernini, Marco P. Locatelli, and D. Micucci. Grounding Ecologies on Multiple
Spaces. Pervasive and mobile computing, 8(4):575–596, 2012.

[95] S. Tisue and U. Wilensky. Netlogo: A Simple Environment for Modeling Complexity. In Proceedings of
International Conference on Complex Systems, pages 16–21, 2004.

[96] T. Van Nguyen, J.G. Kim, and D. Choi. Iss: The interactive smart home simulator. In Proceedings of .
ICACT International Conference on Advanced Communication Technology, 2009, volume 3, pages 1828–
1833. IEEE, 2009.

[97] E. Warriach, E. Kaldeli, A. Lazovik, and M. Aiello. An Interplatform Service-Oriented Middleware for the
Smart Home. International Journal of Smart Home, 7(1):115–141, 2013.

[98] M. Weiser. The Computer for the 21st Century. Scientific American, 265:94–104, 1991.

[99] D. Weyns and T. Ahmad. Claims And Evidence for Architecture-Based Self-Adaptation: A Systematic
Literature Review. In Software Architecture, pages 249–265. Springer, 2013.

[100] D. Weyns, N. Boucké, and T. Holvoet. Gradient Field Based Transport Assignment in AGV Systems. In
Proceedings of 5th International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS,
Hakodate, Japan, 2006.

[101] D. Weyns, N. Boucke, and T. Holvoet. DynCNET: A Protocol for Dynamic Task Assignment in Multiagent
Systems. In Proceedings of 1st International Conference on Self-Adaptive and Self-Organizing Systems,
pages 281–284, July 2007.

[102] D. Weyns and M. Georgeff. Self-Adaptation Using Multiagent Systems. Software, IEEE, 27(1):86–91, 2010.

[103] M. Wooldridge. Agent-Based Computing. Interoperable Communication Networks, 1:71–98, 1998.

[104] Xin-She Yang. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and
Applications, pages 169–178. 2009.

[105] Xin-She Yang. Flower Pollination Algorithm for Global Optimization. In Proceedings of International
Conference on Unconventional Computation and Natural Computation, pages 240–249. 2012.

[106] F. Zambonelli and M. Viroli. A Survey on Nature-Inspired Metaphors for Pervasive Service Ecosystems.
International Journal of Pervasive Computing and Communications, 7(3):186–204, 2011.

115

	Introduction
	Problem and Research Questions
	Research Objectives
	Major Contributions
	Thesis Structure

	Smart Spaces
	Definition
	Diverse Smart Spaces
	Personal/Restricted Smart Spaces
	Public/Social Smart Spaces

	Example Scenarios
	Modern Greenhouse
	Smart Office
	Public Park

	Properties
	Challenges
	Life Cycle of Smart Spaces

	State of the Art
	Approaches
	Architecture-Centric Approaches
	Multi-Agent Systems
	Nature-Inspired Computing

	Solutions
	Fixed Indoor Deployments
	Automation (IoT) Hubs
	Integration Platforms
	Middleware Infrastructures
	Complete Development Solutions
	Validation Tools

	Comparative Analysis

	Proposed Framework
	Revisiting the Perspective
	Incremental Development
	Integrated Self-Adaptive Approach

	Design Abstractions
	Component
	Role
	Group

	Semantic Layer
	Semantic Model

	Integration Layer
	Separation of Functional and Management Design
	Autonomic Management

	Self-Adaptation Capabilities
	Fireflies Algorithm
	Adaptation based on Fireflies Metaphor
	Self-Organization Algorithm

	Continuous Validation

	Implementation and Concurrent Execution
	Implementation Model
	Component Class
	Component Roles and Behaviors
	Supervisor Role Class
	Follower Role Class

	Asynchronous Message Exchange
	Message Class
	Physical Communication
	Messaging Queues
	Rendezvous Exchange

	Group Coordination Styles
	Group Class
	Synchronous Timed Coordination
	Event-based Coordination

	Evaluation
	Evaluation Plan
	Case Study 1: Smart Office
	Simulation with Native APIs
	Simulation based on External Simulators
	Partially Deployed (Simulated) System
	Fully Deployed System

	Case Study 2: Modern Greenhouse
	Managing incoming carts
	Sick flowers

	Case Study 3: Energy Efficient Buildings
	Building Model
	Integrated Control
	Experimental Details

	Case Study 4: Public Park
	Experimental Setup

	Discussion

	Conclusions and Future Directions
	Answers to Research Questions
	Future Directions

	Bibliography

