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ABSTRACT 
 

The problem of missing data is appearing in some areas such as electrical grid data, 

biomedical signal processing, traffic network analysis, social network services, image 

processing and communication systems in which data set is aim to uncommon errors. 

Moreover, these data collections can be quite large and have more than two axes of 

variation, e.g., frequency, amplitude, time. Many applications in those domains object to 

capture the underlying hidden structure of the data; in other words, factorizing data sets 

with missing entries get a better vision of data structures. If we cannot settle the issue of 

missing data, many important data sets will be discarded or improperly analyzed. By 

considering previous studies which have only reflected on matrices, we focus here on the 

problem of electrical grid data in multi-way arrays (tensors) because the data most of the 

time have more than two modes of variation and are therefore best represented as multi-

way arrays. For instance, in electrical grid, data of each record from a bus can be 

represented as a time-bus matrix; thus, data from multiple channels is three-dimensional 

(time, bus, and voltage or power) and forms a three-way array. Therefore, we need a 

robust and reliable approach for factorizing multi-way arrays (i.e., tensors) in the 

presence of missing data. In this work we present a proper analysis of multi-ways power 

gird data to evaluate the benefits of using tensor-based processing by computing an 

approximate Canonical Polyadic decomposition and High Order Singular Value 

decomposition. After interpolation of missing data, there is a low-rank structure in form of 

a quite dominant rank-one component (periodic) on top of the rest of the data. Moreover, 

in the last chapter we employ one of the most applicable tensor factorizations, Canonical 

Polyadic Decomposition (CP), and work out the CP model as a weighted least squares 

problem that models only the known entries as the second method for factorizing the 

missing data. We apply an algorithm called Canonical Polyadic Weighted Optimization 

using a first-order optimization approach to solve the weighted least squares problem. 

Based on numerical experiments that we use over the sampled data, this algorithm is 

shown to successfully factor matrices with noise and up to 70% missing data. We then 
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illustrate the comparison results between these two methods over our power grid data 

which prove CP weighted optimization algorithm has a better factorization with respect to 

interpolation method. 
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1 INTRODUCTION 
 

Research scheme of signal processing problems increase with involvement the 

quantities of which the elements are arranged by more than two indices. In 

mathematics vector peresent a first order element and matrice apply for second 

order elements. Meanwhile, higher-order equivalents of vectors and matrices are 

called higher-order tensors, multidimensional matrices, or multiway arrays which 

has three or more indices. This notion generally referred to tensor fields in 

mathematics the same as physics and engineering. In some engineering domains 

such as electrical grid data, biomedical signal processing, power grid data 

analysis, image processing and mobile communication in which we involve multi-

way arrays, the utilizing framework of vector and matrix algebra demonstrates to 

be unfavorable and inappropriate.  

Electrical grid which is defined as an interconnected network for delivering 

electricity from generating stations to power consumers. This grid is a combination 

of generating stations which produce electrical power, high-voltage transmission 

lines and buses that transfer power to demand centers, and also distribution lines 

and low voltage buses that connect home customers [12].  

At each power bus we can read the power components such as active power, 

reactive power and voltage which measure the usable and necessary information 

to track, design, analyze, monitor and compensate electrical systems. Active and 

reactive powers are thus used to define system characteristics as power factor, 

installed power capacity, or load. In this work, we consider power grid data of 

buses in multi-way arrays framework as the data often have more than two modes 

of variation. For instance, in one bus, data of each record can be represented as a 

time-bus matrix; thus, data from multiple buses or channels is three-dimensional 

(time, bus, and voltage or power) and forms a three-way arrays. Further processes 
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techniques needed to evaluate the benefits of using power grid data as multi-way 

arrays. 

An increasing electric transmission systems interconnections force to develope 

necessary methods for real-time monitoring and processing of the system 

variables and quantities. Fortunately, this mandatory demand is simultaneous with 

the advantage of more powerful and relaible computers and system processors 

and remarkable developments in analytical techniques which are the tools 

necessary to do this job [12]. 

We will employ a power system consist different buses which gain from using the 

data in multi-way arrays (tensor model). This kind of data framework provides a 

wide range of analytical techniques for further processing such as weighted least 

squares method which suppress bad data in power system state estimation based 

on the model discussed in [12],[13],[14] or adjust nonlinear iterative methods such 

as newton raphson for power flow calculation [15]. 

In this work, two analytical methods based on proper application of multiway 

arrays will be present. To a large extent, multiway arrays are currently starting to 

be considered important due to the advances in the field of signal processing [1]. A 

brief example of some opportunities offered by mutiway arrays gives an idea of the 

promising role of multi-way arrays in signal processing field [1].  

In chapter one we aim to provide an overview of multi-way arrays, their 

charactristics and also their decomposition algortims. Search a data structure via 

high order singular value decomposition (HOSVD) and canonical polyadic 

decomposition to get an idea that there is some low-rank (tensor) structure in 

electrical grid data and gaining from using multi-way arrays are discussed in 

chapter two. Also interpolation method which recovers the missing data in multi-

way arrays is the base of this chapter. 

Moreover, In chapter three we consider a more general method of tensor 

factorization in the presence of missing electrical grid data. Formulating the 

canonical polyadic tensor decomposition for incomplete multi-way arrays as a 

weighted least squares problem and recovering the underlying matrix factors even 
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with high percent of missing data. We will discuss related work in matrix and 

tensor factorizations. We then compared the results between these two methods 

over our power grid data. Results proved that CP weighted optimization algorithm 

has a better factorization with respect to interpolation method. 
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2 Higher Order Tensors 
 

2.1.Basic definitions 

Mathematical Notation and Preliminaries 

In this chapter, we have attempted to review tensor terms that would be applied in 

mathematics and engineering and became familiar with the terminology of 

previous works in the field of multi-way arrays. The order of a multi-way array 

(tensor) is the number of dimensions, also known as ways or modes. Vectors 

(tensors of order one) are denoted by lowercase letters, e.g., a . Matrices (tensors 

of order two) are denoted by boldface capital letters, e.g., A . Higher-order 

tensors (order three or higher) are denoted by boldface Euler script letters, e.g., 

X . 

Scalars are defined by lowercase Euler script letters, e.g., a. The i -th entry of a 

vector a is denoted by a i , element (i, j) of a matrix A is indicated by a ij , and 

element (i, j, k) of a third-order tensor X  is denoted by ijkx . 

Indices typically differ from 1 to their capital version, e.g., i = 1, . . . , I.  

The n -th element in a data series is denoted by a superscript in parentheses, e.g.,
(n)A indicates the n th matrix in a sequence.  

Subarrays are formulated when a subset of the indices is fixed. For matrices, 

these are the rows and columns. A colon is used to define all elements of a mode. 

Thus, the j th column of A is indicated by :a j , and the i th row of a matrix A is 

denoted by i:a . These are the main notations that we employ in this work.  

Fibers are the higher-order analogue of matrix rows and columns. A fiber is 

indicated by fixing every index but one could ambulate. A matrix column is a 

mode-1 fiber and a matrix row is a mode-2 fiber. Third-order tensors have column, 
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row, and tube fibers, denoted by : jkx , i:kx , and ij:x , respectively; see Figure 1. 

Fibers are always supposed to be lied on column vectors direction by extracting 

from the tensor [2]. 

Slices are two-dimensional sections of a tensor, defined by fixing all indices but 

two indices can ambulate.  

In Figure 2, we can easily exhibit the horizontal, lateral, and frontal slides of a 

third-order tensor X , indicated by i::x , : :jx , and ::kx , respectively. Moreover, 

the kth frontal slice of a third-order tensor, ::kx  ,may be defined more compactly 

as kx . 

 

Figure 1. Fibers of a 3rd-order tensor 

 

 

Figure 2. Slices of a 3rd-order tensor 
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The norm of a tensor 1 2 ... NI I IX × × ×∈  is the square root of the sum of the 

squares of all its elements, i.e., 

1 2

1 2

1 2

2
...

1 1 1
...

N

N

N

II I

i i i
i i i

x x
= = =

= ∑∑ ∑
 

2.1.2. Matrix representation of a higher-order tensor 

High order sigular value decompostion definition can be explained by considering 

a proper generalization of the interconnection between the column (row) vectors 

and the left or right singular vectors of a matrix.  

This idea can be formulated if we define “matrix unfoldings” of a given tensor, i.e., 

matrix representations of that tensor in which all the column (row) vectors are 

accumulate one after the other. Matricization, also known as unfolding or 

flattening, is the process of rearranging the elements of an N-way array into a 

matrix. 

Play it safe, here is an example of one particular ordering of the column (row, . . .) 

vectors; for order three, these unfolding procedures are illustrated in Figure 3. 

Consider that the definitions of the matrix unfoldings for the tensor dimensions 

1 2 3, ,I I I in a cyclic way and that, when involving with an unfolding of 

dimensionality c a bI I I× ,we formally propose that the index bi varies more 

faster than ai . 

In general, we have the following definition [3].  

Definition 1. Assume an Nth-order tensor 1 2 ... NI I IA × × ×∈ . 

The matrix unfolding 1 2 1 2 1(
(n)

... ... )n Nn n nI I I I I I I+ + −×Α ∈ contains the element 

1 2 ...iNi ia at the position with row number ni  and column number equal to: 

n+1 n+2N Nn+2 n+3 1 2 n-1 n+3 n+4 1 2 n-1-1 +(i -1) +...(i )I I ...I I I ...I I I ...I I I ...I
N 1 1 2 n-12 n-1 2 3 n-1 3 4 n-1-1 +(i -1) +(i -1) +...+i+(i )I I ...I I I ...I I I ...I
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Figure 3. Unfolding of the (I1 × I2 × I3)-tensor A  

 

2.1.3. Rank definitions of a higher-order tensor 

There are major differences between matrices and higher-order tensors based on 

rank definitions and properties. Alternatively, as we will explain in section 1.3, 

these differences directly change the root an SVD generalization could obtain. As 

a matter of fact, there is not a unique and only one way to generalize the rank 

meaning.  

The starting point is to generalize the d of column and row rank. To formulate this 

problem, if we refer in general to the row (column) vectors of an N th-order tensor 

or multi-way array 1 2 ... NI I IA × × ×∈ as its “n-mode vectors,” dedicated as the 

nI -dimensional vectors obtained from A  by changing the index ni  and keeping 

the other indices fixed, then we have the following definition. This definition is 

based on matrix techniques which is called matrix unfoldings. 
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Definition 2. The n-rank of A , defined by ( )n nR rank A=  is the dimension of the 

vector space covered by the n-mode vectors.  

The n-rank of a given tensor 1 2 ... NI I IA × × ×∈  can be formulated by means of 

matrix techniques as the following expression. 

Note: The n-mode vectors of A  are the column vectors of the matrix unfolding 

(n)Α and 

n (n)rank rank(A )( )A =
 

The fact that the different n-ranks of a higher-order tensor are not certainly the 

same is a major difference with the matrix case as proof easily by giving some 

examples. The rank of a higher-order tensor is usually defined in porportion with 

the fact that a rank-R matrix can be decomposed as a sum of R rank-1 terms; see 

Figure 4. 

 

Figure 4. Tensor rank visualization 
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Definition 3. An N th-order tensor A  has rank 1 when it equals the outer product 

of N vectors 
[1] [2] [N]u ,u ,...,u  , i.e.,  

1 2 1 2

[1] [2] [N]
...i ...

N Ni i i i iu u ua =  

for all values of the indices. 

Definition 4. The rank of an arbitrary Nth-order tensor A ,dedicated by R = rank( A
) is the minimum number of rank-1 tensors that produce A  in a linear 

combination. 

A second and more important difference between matrices and higher-order 

tensors rank is the fact that the rank is not certainly equal to an n-rank, even when 

all the n-ranks are the same. Based on the previous definitions, it is clear that 

always nR R≤ . 

Example 1. Consider the (2 × 2 × 2) - tensor A  defined as a 

 
211 121 112

111 222 122 212 221

1
0

a a a
a a a a a

= = =
 = = = = =

 

The 1-rank, 2-rank, and 3-rank are equal to 2. The rank, however, equals 3, since 

2 1 1 1 2 1 1 1 2A X Y Z X Y Z X Y Z= + +        

in which,  

1 1 1 2 2 2

1 0
,

0 1
X Y Z X Y Z   

= = = = = =   
   

 

is a tensor decomposition in a minimum linear combination of three rank-1 tensors. 

2.1.4. Orthogonality concept, Scalar product definition, and Frobenius-norm 
of tensors 

In the high order singular value dicomposition (HOSVD) definition of section 2.2, 

the structure limitation of diagonality of singular values matrix in the second-order 
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case study will be substituted by a number of geometrical conditions. For this 

purpose we need a generalization of the well-known definitions of orthogonality 

concept, scalar product and Frobenius-norm of multi-way arrays. These 

generalizations and their definitions can be indicated in a straight forward way as 

follows. 

Definition 5. The scalar product ,A B〈 〉  of two tensors 1 2 ..., NI I IA B × × ×∈ is 

defined as: 

... i ... i1 2 1 2
1 2

*,  ...
i i i iN N

N

def
i i i

A B b a〈 〉 ∑∑ ∑  

in which ∗ denotes the complex conjugation.  

Definition 6. Arrays of which the scalar product of two tensors equals 0 are 

orthogonal. 

Definition 7. The Frobenius-norm of a tensor A  can be defined as: 

,def
F

A A A〈 〉  

2.1.5. Matrix Kronecker products, Khatri–Rao products, and Hadamard 
Products 

In this section we will discuss several matrix products that are important, so we 

briefly define them here [2]. The Kronecker product of matrices A I J×∈  and 

B K L×∈  is defined as A B⊗ . The result is a matrix of size ( ) ( )IK JL×  and 

denoted by: 

11 12 1

21 22 2

1 2

B B   ... B
B B   ... B

         
B     B      B

A  B = 

J

J

I I IJ

a a a
a a a

a a a

 
 
 
 
 
 

⊗
     
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[ ]1 1 1 2 1 3 1a   a   a a   aJ L J Lb b b b b⊗ ⊗ ⊗ ⊗ − ⊗= 

 

The Khatri–Rao product is the “matching columnwise” Kronecker product. 

Given matrices A I K×∈  and B J K×∈ , their Khatri–Rao product is defined by

A B◊ . The result is a matrix of size (  I J ) × K defined by 

[ ]1 1 2 2a   a    aA  B K Kb b b⊗ ⊗ ⊗=◊   

If a and b are vectors, then we can conclude that the Khatri–Rao products and 

Kronecker products are identical i.e., 

aa  b b=◊ ⊗  

The Hadamard product is the elementwise matrix product. Given matrices A  and

B , both of size I J× , their Hadamard product is defined by A B∗ . The result 

can be in size I J×  and defined by 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

   ...
   ...

         
           

A  B = 

J J

J J

I I I I IJ IJ

a b a b a b
a b a b a b

a b a b a b

 
 
 
 
 
 

∗
   

 

2.1.6. Multiplication and product of tensor by a matrix 

The High Order Singular Value Decomposition (HOSVD) of a multi-way tensor 

1 2 ... NI I IA × × ×∈ will be indicated by searching orthogonal coordinate 

transformations of 1 2, ,..., NII I
    which enforce a particular display of the 

higher-order tensor, as the same for matrices. We will discuss below in more 

details. Actually in this section, we will introduce a notation for the multiplication of 

a higher-order tensor by a matrix and their products. This representation will allow 

us to analyze the effect of basis transformations and their properties. Starting point 
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is to have a look at the matrix product TG U×F×V= , involving matrices 

1 2F I I×∈ , 1 1U J I×∈ , 2 2V J I×∈ , and 1 2G J J×∈ .  

To avoid confusion, with “generalized transposes” in the multilinear case, we 

observed that the relationship between U  and F  and the relationship between 

V  (not TV ) and F  are in fact completely similar and show the same behaviors. 

In other words, in the same way as U  makes linear combinations of the rows of 

F , V makes linear combinations of the columns of F ;  

This typical relationship will be indicated by expressing and using the nX -symbol: 

1 2G U× F× V=  

(For complex matrices the product U×F×VH is consequently denoted as 
*

1 2F× U× V in which H denotes matrix hermitian). 

In general, we have the following definition and expression. 

Definition 8. The n-mode product of a tensor 1 2 ... NI I IA × × ×∈  by a matrix

U n nJ I×∈ , indicated by UnA× , is an 1 2 1 1... ...n Nn nI I I J I I− +× × × × × × -

tensor of which the entries are defined by 

 ... i i i ... i ... i i i ... i1 2 1 1 1 2 1 1
( U)

i i i i n nn n n N n n n N
n

dn j i
i

efA a u
− + − +

× ∑  

The n-mode product of a tensor by a matrix states the following properties [2]. 

Property 2. Given the tensor 1 2 ... NI I IA × × ×∈  and the matrices F n nI I×∈ , 

G m mJ I×∈ ( )n m≠ , one has 

( F) G=( G) F= F Gn m m n n mA A A× × × × × ×  

Property 3. Given the tensor 1 2 ... NI I IA × × ×∈  and the matrices F n nI I×∈ , 

G n nK J×∈ , one has  



CHAPTER 1 
 

 

21 

( F) G= (G F)n n nA A× × × ⋅

 

Figure 5.Visualization of the multiplication of a third-order tensor 1 2 ... NI I IB × × ×∈ [2] 

Figure 5 visualizes the equation (1) (2) (3)
1 2 3U × U × UA B= ×  for third-order 

tensors 1 2 3J J JA × ×∈  and 1 2 3I I IB × ×∈  . Unlike the regular way to illustrate 

second-order matrix products, for reasons of symmetry, (2)U has not been 

transposed. Multiplication with (1)U  involves linear combinations of the “horizontal 

matrices” (index 1i  fixed) in B . Stated otherwise, multiplication of B with (1)U  

means that every column of B  (indices 2i  and 3i  fixed) has to be multiplied from 

the left with (1)U . Similarly, we can state that multiplication with (2)U , resp., (3)U , 

involves linear combinations of matrices, obtained by fixing 2i , resp., 3i .  

This can be presented as a multiplication or product, from the left of the vectors 

sequentially obtained by fixing the indices 3i and 1i , resp., 1i and 2i .  

Visualization frameworks like figure 5 have proven to be very useful to gain insight 

in tensor techniques and find the relationships of different slices which creat 

tensors.  

The n-mode product of a multi-way arrays (tensor) and a matrix is a special case 

of the inner product in multilinear algebra and multi-way arrays analysis.  
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2.2. A High Order Singular Value Decomposition (HOSVD) 

In this section, a singular value decomposition model is proposed for N th-order 

tensors. To simplify the comparison, first we repeat the matrix decomposition in 

the same notation, as follows.  

Theorem 1 (matrixSVD). Every complex 1 2 )(I ×I -matrix F can be written as the 

product 

 (1)       
H *(1) (2) (1) (2)

1 2 1 2
(1) (2)F= SU =S U S U× × × × UV V⋅ ⋅ =  

in which  

1. 1

(1) [1] [1] [1]
1 2U =(u u ...u )I is a unitary 1 1(I ×I ) -matrix, 

2. 
*

2

(2) [2] [2] [2] (2)
1 2U =(u u ...u )( V )I = is a unitary 2 2(I ×I ) -matrix, 

3. S  is an 1 2(I ×I ) -matrix with the properties of 

(i) pseudodiagonality: 

(3)        1 21 2 min (I ,I )diag , ,...,S = ( )σ σ σ  

(ii) ordering: 

(4)        1 21 2 min (I ,I )... 0σ σ σ≥ ≥ ≥ ≥  

The σi  are singular values of F and the vectors [1]u i and [2]u i are, resp., an i -th 

left and an i -th right singular vector. The decomposition is visualized in Figure 6. 

Now let’s state the following theorem for a High Order Singular Value 

Decomposition (HOSVD). The same procedures like matrix, but the matrix SVD 

will be changed to core tensor which can be seen as the following steps. 
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Figure 6.Visualization of the matrix SVD 

Theorem 2 (HOSVD). Every complex tensor 1 2 ... NI I IA × × ×∈ can be 

written as the product 

(5)           1
(1) (2

2
) (N)× × U × = U ... UNA S , 

in which 

1. 
(n) [n] [n] [n]

1 2U =(u u ...u )
nI is a unitary n n(I ×I ) -matrix, 

2. S  is a complex N1 2 )(I ×I ×...×I -tensor of which the subtensors
ni

S a= , 

obtained by fixing the n -th index to α, have the properties of : 

(i) all-orthogonality: two subtensors 
ni

S a=  and 
ni

S β=  are orthogonal for all 

possible values of n, α and β subject to a β≠ : 

(6)         , 0
n ni iS a S β〈 = = 〉 =

  when a β≠ ,  

(ii) ordering: 

(7)          1 2 ... 0
n n ni i i nS S S I= ≥ = ≥ ≥ = ≥     

for all possible values of n from 1 to N. 
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Figure 7.Visualization of the HOSVD for a third-order tensor  

The Frobenius-norms
ni

S i= , symbolized by (n)σi , are n-mode singular values 

of A  and the vector (n)u i is an i -th n-mode singular vector. 

The decomposition is visualized for third-order tensors in Figure 7. The difference 

between matrix singular value decomposition (SVD) and tensor high order sigular 

value decomposition (HOSVD) are illustrated in Figure 8. 

Discussion. Applied to a tensor 1 2 3I I IA × ×∈ , Theorem 2 states that it is 

always possible to find orthogonal transformations of the column, row, and 3-mode 

space in order that 
H H H

1 2
(1) (2) (3)

3=  × ×U U U×S A is all-orthogonal and 

ordered (the new basis vectors are the columns of (1)U , (2)U , and (3)U ).  

All-orthogonality need a deep understanding and it means that the different 

“horizontal matrices” of S (the first index -1 is kept fixed, while the two other 

indices, i -2 and i -3, are free) are mutually orthogonal with respect to the scalar 

product of matrices. In other words, the sum of the products of the corresponding 

entries vanishes. Meanwhile, the different “frontal” matrices ( i -2 fixed) and the 

different “vertical” matrices ( i -3 fixed) should be mutually orthogonal as well as 

before.  



CHAPTER 1 
 

 

25 

 

Figure 8. Difference between matrices SVD and tensor HOSVD 

2.3. The Canonical Polyadic Decomposition (CANDECOMP/PARAFAC) 

In 1927, Hitchcock was the first one who proposed the idea of the polyadic form of 

a tensor [3]. In other words, it is a kind of generalization of the matrix singular 

value decomposition to multi-way arrays by expressing a tensor as the sum of a 

finite number of rank-one tensors; Such decompositions represent a tensor as the 

sum of the n-fold outer products of rank-1 tensors, where n  is the dimension of the 

tensor indices. We refer to the Canonical Polyadic Decomposition (CANDECOMP) 

as CP Decomposition. 

The CP decomposition is a simple way to reformulate a tensor into a sum of 

component rank-one tensors. For example, if we consider a noiseless third-order 

tensor I J KX × ×∈ , we can write it as sum of R rank one tensors. Later, we can 

find how to define rank of a tensor by applying this decomposition. 

(8)              
1

R

r r r
r

a b cx
=

=∑  
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where R is a positive integer and I
ra ∈ , J

rb ∈ , and K
rc ∈  for r = 1, . . . , R. 

Elementwise, (8) is written as: 

(9)              
1

R

ijk ir jr kr
r

a b cx
=

=∑     i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , K 

This is illustrated for noisy tensor in Figure 9. 

 

Figure 9. CP decomposition of a three-way array 

The factor matrices defined as a combination of the vectors from the rank-one 

components, i.e., 1 2A = [a  a  ... a ]R  and likewise for B  and C . Using these 

definitions, (8) can be written in matricized form (one per mode): 

(10)                

T
(1)

T
(2)

T
(3)

X A(C B)

X B(C A)

X C(B A)

 ≈
 ≈


≈







 

Remember that   indicates the Khatri–Rao product from section 2.1.5. The three-

way model is sometimes written in terms of the frontal slices of X : 

(k)AD BT
kX ≈ ,            where (k)D ≡ diag( k:C )    for k = 1, . . . , K 
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Similar equations can be written for the horizontal and lateral slices. In general, 

though, slice form expressions can not easily extract beyond three dimensions. 

Following the CP model can be briefly peresented as 

 

1
A,B,C

R

r r r
r

a b cX
=

≈ ≡∑  

 

2.3.1. Tensor Rank  

The rank of a tensor X , denoted rank ( X ), is indicated as the smallest number of 

rank-one tensors (see section 2.1.3) that generate or make X as their sum. In 

other words, this is the minimum number of factorized components in an exact CP 

decomposition, where “exact” means that there is equality in (8). An exact CP 

decomposition with R = rank( X ) components is called the rank decomposition. 

The definition of tensor rank is similar to the definition of matrix rank, but the 

properties and characteristics of matrix and tensor ranks are quite different. One 

difference which we can mention is that the rank of a real-valued multi-way arrays 

may quite be different over  and . 

2.3.2. Uniqueness  

Unlike the matrix decomposition, rank decompositions of higher order tensors are 

often unique which is an interesting property of higher-order tensors. By 

considering the fact that matrix decompositions are not unique, let X I J×∈  be a 

matrix of rank R. Then a rank decomposition of this matrix is 

1
AB

R
T

r r
r

a bX
=

≡= ∑   

If the SVD of X  is TUΣV , then we can define A=UΣ  and B=V . However, 

it is equally valid to indicate A=UΣW  and B=VW , where W is some R × R 

orthogonal matrix. Put differently, we can easily generate two completely different 

sets of R rank-one matrices that sum to the original matrix. The SVD of a matrix is 

unique (assuming all the singular values are distinct) only because of the addition 
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of orthogonality limitations (The diagonal matrix of singular values is located in the 

middle). For the CP decomposition, these properties can be apply but under 

weaker condistions. Let I J KX × ×∈ be a three-way tensor of rank R, i.e., 

 

1
A,B,C

R

r r r
r

a b cX
=

≡= ∑    

To generate tensor X , there is just only one possible summation of rank-one 

tensors, which means Uniqueness. We must consider the exception of the 

elementary uncertainty of scaling and permutation.  

Given a sequence of matrices 
(n)A  of size I ×Rn  for   1,...,n N= , 

(1) (1) (N)A ,A ,...,A









indicates an 1 2 ... NI I I× × ×  tensor whose elements are 

given by: 

( )
1 2

(1) (1) (N) (n)

... 1 1

A ,A ,...,A
n

N

NR

i
i i i r n

a
= =

=∑∏







    all }{1,...,n nIi ∈
 

2.4. Computing the CP Decomposition (ALS Method) 

As we discussed before, there is no confined algorithm for determining the rank of 

a multi-way arrays. Accordingly, the way for choosing the number of rank-one 

components is the first problem that appear in computing a CP decomposition. 

Most algorithms perform some multiple CP decompositions with different numbers 

of components until one combination is “fit”. Ideally, if the noise can be neglect 

from the data and have a reliable procedure for computing CP with a given 

number of components, then we can do that calculation for R = 1, 2, 3, . . . 

components and the convergence criterion is the first value of R that obtains a fit 

of full accuracy. However, there are many issues with this method.  

Considering the number of components is fixed, there are many algorithms to 

calculate a CP decomposition. In this work we focus on the “workhorse” method 

what is today the most simple way to compute CP decomposition: the alternating 
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least squares (ALS) method proposed in the original papers by Carroll and Chang 

[9]. To avoid confusion, we only apply the method for the third-order case, but the 

full algorithm is presented for a multi-way array in Figure 10. 

Let’s assume 
I J KX × ×∈  be a third-order tensor. The goal is to compute a 

CP decomposition with R components that best approximates of tensor X , i.e., to 

solve 



 

1
;A,B,C

R

r r r r
r

a b cX λ λ
=

== ∑  

 


,min
x

X X−  

The Altarnating Least Squares (ALS) approach fixes B and C to solve for A, then 

fixes A and C to solve for B, then fixes A and B to solve for C, and follow the same 

procedure until some stopping criterion is satisfied. Assuming that all the matrices 

fixed, just one can move, the problem re-formulates to a linear least-squares 

problem. For example, consider that B and C are fixed. Then, from (10), we can 

formulate the above minimization problem in matrix form as 





T
(1)

F
min X -A(C  B)

A
◊  

where 
A A.diag( )λ= . The optimal solution is then calculated by 



†T
(1)A=X (C  B) ◊   

Because the Khatri–Rao product pseudoinverse has the special properties, it is 

common to formulate the solution as 



T T †
(1)A=X (C  B) (C C  B B)◊ ◊  

The full Alternating Least Squares (ALS) procedure for a multi-way arrays is 

illustrated in Figure 10. Let’s assume that the number of R components of the CP 
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decomposition is specified. We can set the initial values for factor matrices in any 

way, such as randomly or by defining 

 
(n)A  = R leading left singular vectors of (n)X  for   1,...,n N= . 

At each inner iteration, the pseudoinverse of a matrix V (see Figure 10) must be 

computed, but it is only of size R×R . The iterations repeat until some combination 

of stopping criterion is satisfied. Different stopping conditions can be consider as 

follows: small or no betterment in the objective function, little or no obvious change 

in the factor matrices, the objective value reaches zero or near it, and exceeding a 

predefined maximum number of iterations. 

 

Figure 10. ALS algorithm to compute CP decomposition with R components for an Nth-order tensor X  of 

size 1 2 ... NI I I× × ×  
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3 ELECTRICAL GRID DATA ANALYSIS 
 

3.1. Electrical grid data  

In this chapter, first we apply interpolation method to recover missing data and 

then we present a proper analysis of multi-way power gird data to evaluate the 

benefits of using tensor-based processing by computing an approximate CP 

decomposition and High Order Singular Value decomposition (HOSVD).  

The tensor analysis is inspired by (subspace-based) low-rank modeling. Put 

differently, we typically gain from using tensors if the tensor has a low-rank 

structure that can be exploited. We can present th work in two steps, first we try to 

capture the latent structure of the data via multiway arrays analysis in presence of 

missing data and the second step is to find a low rank structure in our power grid 

data. 

At each power bus we can read the power components such as active power, 

reactive power and voltage which measure the usable information to track, design, 

analyze, monitor and compensate electrical systems. Active and reactice powers 

are thus used to indicate system characteristics as power factor, power 

compensation, installed power capacity, or load behaviour. In this work, we 

consider power grid data of buses in multi-way arrays framework as the data often 

have more than two modes of variation. In other words, in one bus, data of each 

record can be represented as a time-bus matrix; thus, data from multiple buses or 

channels is three-dimensional (time, bus, and voltage or power) and forms a three-

way arrays. 

The data have read from a set power meters from EU energy network (Figure 11). 

Each record per hour from the buses can be represented as a time-voltage matrix; 

thus, data from multiple buses is three-dimensional (time, bus, and voltage) or 
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measured data of loads and generators of a huge power system. Hourly sample 

rate for the bus and generator number 1 is given in Table 1. 

 

Figure 11. EU energy network 

 

The data set contains multi-channel buses (12418 channels) recorded from 36 

country nodes. For each measurement, the data from each bus can be presented 

by time domains (forming a vector of length 692); In other words, each 

measurement can be presented by a bus over time with 5 bus properties (Active 

power, reactive power, voltage, country node, number of buses).  The data of all 

measurements can then be arranged as a buses over time include the bus 

properties, which generate a tensor of size 692 × 12418 × 5. To simplify the 

concept, first we consider the data set 1 with the following properties: 

Data set 1: 

⇒ 12418 channels, 29 days x 24 hours 
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Table 1. Hourly sample rate for the bus and generator number 1 

Data of bus number 1 

 Bus 1 Generator 1 Voltage 

KV 

Country 

node 

Number 

of bus 
Active 

Power 

P MW 

Reactive 

Power 

Q MVAR 

Active 

Power 

P MW 

Reactive 

Power 

Q MVAR 

31-Dec-

2012 

23:30:00 

129.2 6.1 129.2 6.1 240.5 7 1 

31-Dec-

2012 

22:30:00 

126.1 12.3 126.1 12.3 240.1 7 1 

31-Dec-

2012 

21:30:00 

132.1 24.4 132.1 24.4 239.6 7 1 

31-Dec-

2012 

20:30:00 

130.3 25.7 130.3 25.7 239.4 7 1 

 

Hourly sample rates of active power for the 1000 buses ploted, as illustrated in 

Figure 12. In power system, if the set power meters that are used to measure the 

data along the buses loose or disconnected, the data is either lost or discarded. To 

recover the missing data or suppress the data mixed with noise, we nedd to apply 

some analytical techniques. 

To reflect such cases of missing data, let’s define a nonnegative weight tensor W

of the same size as X such that: 
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1 2

1 2

1 2

...
...

...

1     if  is known, Red

0     if  is missing, Blue
N

N

N

i i i
i i i

i i i

x

x
w

= 


 

 

Figure 12. Hourly sample rates for the 1000 channels, missing values shown by blue 

3.2. Preporcessing 

The starting point is to find a reliable method for selecting the interesting channels 

and data which provide the necessary information for further processing. Between 

all the methods, we propose a more simple method based on interpolation of 

missing values that can be divided in two steps as bellow: 

⇒ Select interesting chunk (channels, days): MANUAL! 

⇒ Interpolate missing values: linear (so far) 
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3.2.1. Select interesting chunk (channels, days):  

In this section, we try to select more proper channels of the first data set for further 

analyzing with the minimum missing data. As it is illustrated in Figure 13, we select 

the 600 hours sample rates of active power for 100 buses with the minimum 

missing data out of 12418 channels. 

 

Figure 13. Interesting channels 

 

Based on the weight tensor that we select, the missing values are shown with blue 

color in Figure 13. Further manual selection lead to choose 175 “interesting” 

channels and remove the channels with data which all are missed. At the end, the 

interesting chunk is consist of 175 channels (175 channels, 600 hours) of active 

power data that is shown in Figure 14. 
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Figure 14. Interesting chunk 

 

3.2.2. Interpolate missing values:  

Interpolation is a method of constructing missing data points within the range of a 

discrete set of known data points. One of the simplest methods is linear 

interpolation (sometimes known as lerp). Although it seems a simple way to 

recover the missing values, we applied this method in this chapter because just we 

need to find a tensor low rank structure of power grid data.  

After choosing the interesting buses, next step will be interpolating of the remained 

missing data. As an example, for the bus number 151 the linear interpolation of the 

first 600 hours can be seen in Figure 15. 

To overcome the problem of first/last values missing data in the interpolation, we 

assume zero for them. 
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Figure 15. Channel 151 interpolating, red color is the interpolated one 

 

3.3. Evaluation of the benefits of using tensor-based processing  
Is using tensors has any benefit? 

To answer this question, first we must find an analytical method to analyze the 

electrical grid data such that a low-rank modeling in their structure can be fined. 

In this work, the tensor analysis that we apply is inspired by (subspace-based) 

low-rank modeling. we typically gained from using tensors if the tensor has a low-

rank structure that we can exploited.e.g., HOSVD-based subspace estimate only 

better than SVD if the tensor has low n-ranks in more than one mode. This is 

natural, otherwise we could just reshape an arbitrary matrix into a tensor and gain 

from it. So there must be an underlying structure. In orter to find this low-rank 

structure in our power grid data, we employ Mean Square Error (MSE) algoritm to 

reconstruct a tensor with different rank. Let’s discuss it with more details in the 

next section. 
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How do we check whether there is a low-rank (tensor) structure in the data? 

The idea is to use the “compression graphs” that shows recunstruction error of 

data by applying CP decompostion and High Order Singular Value Decomposition 

(HOSVD) versus compression. coarsely resembles rate/distortion graphs, well 

known in compression theory. 

The goal is to perform low rank (tensor) approximations in order to find low rank 

structure in our data and ploting distortion (reconstruction error) versus 

compression (number of parameters in the low rank model / number of data 

samples). The idea will be more obvious if this curve comparing to one obtained 

from unstructured data, shows a better fractions. Then we concluded that there is 

some low-rank structure. Reconstruction error in this method can be calculated via 

this formula: 

2

0 H
2

0 H

relative MSE = E recX X

X

 − 
 
  

 

There are different low rank approximations for a given tensor 1 ... nM MX × ×∈
with M elements for both CP decomposition and HOSVD. The number of 

parameters in the low rank model for each decomposition mentioned bellow: 

 
1

 elements
R

r
r

M M
=

=∏  

⇒ CP rank-d: 
1

d
R

r
r

M
=

×∏  

⇒ Truncated HOSVD, rank (d,d,…,d): 
1

d 
R

R
r

r

d M
=

+ ×∏  

⇒ Truncated HOSVD, rank ( 1 2, ,..., Rd d d ): 
1 1

d
R R

r r
r r

d M
= =

+ ×∏ ∏  
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Note: truncating HOSVD with d elements is a way to short the core tensor to d 

elements, in addition the singular vector matrices has been truncated to d 

columns. 

Simulated Unstructured data: 

To have a simulated unstructured data and perform low rank approximations, first 

we generate a pseudo random factor matrices U and their associated full tensor T 

with rank specification 5. Furthermore a cell array of pseudo random factor 

matrices { }(1) (2)U= U , U ,...  corresponding to a CPD of a tensor in rank-one 

terms can be generated. 

Assume a cell array of factor matrices { }(1) (2)U= U , U ,... , it is associated full 

tensor T that can be computed. 

We randomly generate three way tensors with size (10 × 10 × 10), using tensor-

based processing by computing an approximate CP decomposition, SECSI 

algoritm (calculated by Semi-algebraic framework for approximate CP 

decompositions via Simultaneous matrix diagonalization) [10] and HOSVD 

decomposition. The procedure for an N-way tensor is shown in Figure 16. As it 

can seen, there is a uniform distortion for different number of parameters in low-

rank modeling. 

The points on the curve show different ranks (n-ranks). As it is shown in Figure 16, 

there is no structure (no fraction) on simulated data, so we can concluded that 

there is no low rank modeling in this case.  

Now let’s generate a random tensor with specific rank 5 (Figure 17) to search low-

rank modeling in our simulated data. Accordingly, by plotting distortion for different 

ranks, the fraction in the simulated tensor structure can be found. The horizontal 

axis considered as a rate for the number of parameters at different ranks over the 

sampled data. As remembered, the vertical axis nominated for the reconstruction 

error in CP decomposition and High Order Singular Value Decomposition. low 

rank (tensor) approximations performed ideally with compression graphs. 
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Figure 16. 10*10*10 random tensor 

 

Figure 17. 10*10*10 random tensor rank 5 
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In Figure 17, easily it can be illustrated that there is a fraction on rank 5 of CP 

decomposition and also in 5-rank of HOSVD, so the low-rank tensor structure 

clearly visible in this case study. As far as, was considered an ideal case (noise 

free), now let’s assume a model with noise in our simulated data. 

The next study case is a random tensor with rank 5 which is added with 10 dB 

noise (Figure 18). 

 

Figure 18. 10*10*10 random tensor rank 5+ noise (10 dB SNR) 

 

As it can be shown in Figure 18, low-rank tensor structure is clearly visible. In 

other words, the fraction of data in CP-rank 5 and 5-rank HOSVD is visible. 

Through compression graphs, we searched for a rough idea whether there is 

some low-rank (tensor) structure in some given data set or no. The last case with 

noise was close to our data structure. Now, the same procedure can be done over 

power grid data set!  
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It would be more appropriate if we broke data set into 3D and 4D for further 

processing. 

3.4. Reshape time axis of the power grid data to 3D and 4D structure 

The data set of power grid can be arranged as buses over time in a matrix of size 

600 × 175 for active powers. Therefore, the time axis can be broken into two 

dimensional space (24 hours x 21 days) or three dimensional space (24 hours x 7 

days x 3 weeks) to generate respectively a 3-D tensor or 4-D tensor. For instance, 

to avoid confusion R-D representation of data illustrated in Figure 19. 

                                       active power          selected buses        

 

• Data set (time ,  : ,1) 

• 3-D = Reshape (24,21,175); 

• 4-D = Reshape (24,7,3,175); 

 

 

Figure 19. R-D data representation  
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Figure 20. Singular values of  CP decomposition rank one 

 

The fraction at the first singular values of 3D tensor is a verification to find a low 

rank structure (Figure 20). The horizontal axis considered as singular values of 

three rank one vector which generate the main tensor. Also, the vertical axis 

nominated for singular values number. After calculating distortion for different 

number of parameters, rank-one components explained a significant fraction of 

data in both HOSVD and CP decomposition; rest seems to be mostly unstructured 

as it can be shown in Figure 21. 

Via compression graphs we can get a rough idea that there is some low-rank  

(tensor) structure in our electrical grid data set, therefore we can typically gained 

from using tensors as the data has a low-rank structure that we can exploited. As 

illustrated, low rank (tensor) approximations performed ideally with compression 

graphs. 
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Figure 21. Distortion vs compression (3-D, 4-D tensor) 

10
-3

10
-2

10
-1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Rate

Di
st

or
tio

n

 

 
Hosv3D
Als3D
Hosv4D

10
-3

10
-2

10
-1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Rate

Di
st

or
tio

n

 

 
Hosv 3D
Als 3D



CHAPTER 2 
 

 

45 

3.5. Analyzing the data:  

We observed that there is a low-rank structure in form of a quite dominant rank-

one component (periodic) on top of the rest of the data (which seems to be not 

periodic) by performing low rank tensor approximations, reconstruction error vs. 

compression. 

Time signature of dominant (rank-one) component: 

Convention which is used to specify how many samples (pulses) contained in 

each time is called the time signature. 

Now we try to perform time signature of dominant (rank-one) component of the 

data, which is calculated by kronecker product of factor matrices obtained by CP 

decomposition-rank one. The CP decomposition calculated by Semi-algebraic 

framework for approximate CP decompositions via Simultaneous matrix 

diagonalization (SECSI) [10]. 

As mentioned before, the data set of power grid can be arranged as buses over 

time in a matrix of size 600 × 175 for active powers. Therefore, the time axis can 

be broken into two dimensional space (24 hours x 21 days) or three dimensional 

space (24 hours x 7 days x 3 weeks) to generate respectively a 3-D tensor or 4-D 

tensor. 

As it can be illustrated at the following Figures: 

⇒   2-D enforces no periodicity (Figure 22) 

⇒   3-D enforces periodicity over days (Figure 23) 

⇒   4-D enforces periodicity over days and weeks (Figure 24) 

After careful consideration, we found that there is a multi-dimensional periodicity in 

2D, 3D and also 4D data structure. There is an appropriate result because it 

means that tensors can potentially help in this method. Data structure in 2D, 3D 

and 4D illustrated a multi-dimensional periodicity which is can be useful for finding 

error location in our system. Time and bus number can be easily extracted from 

this kind of structure which is applicable to find error specifications. 
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Figure 22. Time signature of dominant (rank-one) component 2D, CP decomposition  

 

Figure 23. Time signature of dominant (rank-one) component 3D, CP decomposition  
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Figure 24. Time signature of dominant (rank-one) component 4D, CP decomposition  

 

Figure 25. Daily time signature 
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As it can be seen in Figure 25, daily time signature of 175 buses versus 24 hours 

ploted. With a short glance we can find how many samples (pulses) are to be 

contained in each time. The peak is at 4 am, which is shown the consumption of 

active power is so high. 

Generalizing the method 

Now to generalize the method, we perform all the previous steps for hourly sample 

rates of voltage instead of power for the 1000 buses that is shown in Figure 26. As 

before, data set can be arranged as time with different buses, which is generate a 

matrix of size 600 × 290 for voltages. 

3.6. Preporcessing 

The starting point is to choose the interesting buses and hours which provide 

proper information without missing values for further processing. 

 

Figure 26. Interesting channels 
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3.6.1. Select interesting chunk (channels, days):  

As it is illustrated in Figure 27, final selection resulted to choose 290 buses without 

any missing values out of 1000 buses, from bus number 159 to 448. Unlike the 

previous case, there is no need to remove any buses between this final selection. 

Therefore, we have a better data corrolation between the buses. The known data 

painted with red color. The interesting data chunk is a third way tensor (290 

channels, 600 hours) of voltages. 

 

Figure 27. Interesting chunk 
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3.7. Reshape time axis of the data to 3D and 4D 

Actually, the time axis can be broken into two dimensional space (24 hours x 21 

days) to generate a 3-D tensor or can be reshaped to three dimensional space (24 

hours x 7 days x 3 weeks) to generate a 4-D tensor. 

                    Selected buses                    voltage 

• Data set (time ,159:448 ,3) 

• 3-D = Reshape (24,21,290); 

• 4-D = Reshape (24,7,3,290); 

 

Figure 28. Singular values CP decomposition rank one 
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Figure 29. Distortion vs compression (3-D,4-D tensor) 
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Through these graphs we can get a rough idea that there is some low-rank 

(tensor) structure in our data set, therefore we typically gained from using tensors 

as the data has a low-rank structure that we can exploited. 

3.8. Analyzing the data:  

We observed that there is a low-rank structure in form of a quite dominant rank-

one component (periodic) on top of the rest of the data (which seems to be not 

periodic). After careful consideration, we found that there is a multi-dimensional 

periodicity in 2D, 3D and also 4D data structure. We can conclude that it is an 

appropriate result because it means that tensors can potentially help in this 

method. Data structure in 2D, 3D and 4D illustrated a multi-dimensional periodicity 

which is can be useful for finding error location in our system. Time and bus 

number can be easily extracted from this kind of structure which is applicable to 

find error specifications. 

Time signature of dominant (rank-one) CP decomposition components: 

As we can see in the following Figures: 

⇒   2-D enforces no periodicity (Figure 30) 

⇒   3-D enforces periodicity over days (Figure 31) 

⇒   4-D enforces periodicity over days and weeks (Figure 32) 

To review this chapter, first we applied interpolation method to recover missing 

values from the selected channels. That interpolation provided a proper data 

structure to analyze multi-way power gird data. Then the evaluation of the benefits 

of using tensor-based processing by computing an approximate CP decomposition 

and High Order Singular Value decomposition (HOSVD) was performed 

sucessfully with compression graphs. After carefully studying both cases, we 

found that there is a multi-dimensional periodicity in 2D, 3D and also 4D data 

stracture  which is applicable to find system mulfunction by searching the time and 

bus of the error location in this periodic structure. 
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Figure 30. Time signature of dominant (rank-one) component 2D, CP decomposition  

  

Figure 31. Time signature of dominant (rank-one) component 3D, CP decomposition  
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Figure 32. Time signature of dominant (rank-one) component, CP decomposition  
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4 WEIGHTED CP DECOMPOSITION DATA 

RECOVERY  
 

A central power system control can be used to improve the security (reliability) of 

power system generation and an extra high voltage (EHV) transmission line. For 

instance, we can consider the operation of such a central control system in two 

steps: 1) Primary information is processed in real time by a digital computer into a 

applicable data form; and 2) control decisions are handled from the processed 

information either by the digital console processor or by a human command.  

In particular, real-time digital computer programs (algorithms) for converting the 

available raw informations (such as meter readings plus the other useful 

information), including possibly incorrect or missing data is the case that we will 

discuss in this work. Uncertainties appear in power system because of meter and 

communication link errors, incomplete metering process, errors in system models 

and unpredictable system changes. In power system, the goal of state estimator is 

to "analyze" the incoming data (such as real measurements, system status 

updation, and possibly pseudo measurements) and provide the rest of the control 

system with a "reliable" set of measurements (the state estimate) which are truly 

present the actual system status. Thus there is studies that can be use for system 

planning and monitoring. Moreover, it must be consider that no control system can 

effectively plan a proper state for power system to go in the future without some 

knowledge of its present state, so it shows a progresive demand for a correct 

system metering and monitoring. 

In real power system, occasionally "bad data" will occur. That is, a data point will 

be very inaccurate or noisy. This can happen for a number of reasons. Perhaps 

there is a temporary failure in a communications link. Perhaps a meter is out of it’s 
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measuring fault tolerance. Perhaps, the state of the system has changed quickly 

and the pseudo-measurements are very far from the change point. Any of a 

number of cases can happen which will cause a given reading data to be very 

inaccurate.  

Missing data issue is a hidden problem in some areas. For instance, in biomedical 

signal processing, missing data can be happened during Electroencephalogram 

(EEG) measurement, where neuroheadset electrodes are placed to record the 

brain activity along the scalp. By losing or disconnecting one of the electrodes 

during the record, the signal can be lost or ignored because of impurity with high 

noise range. Missing data problem is not limited to one area, in other areas related 

to data mining, we also faced the same problem, such as packet losses in data 

communication along fibers or destructive correlation in images in computer vision. 

For a power system which is controlled by a human being, recorder will 

automatically ignore or report a large missing error that is "obviously" incorrect. 

Unfortunately, computers don’t perform the same task as people, and while it is 

partly easy for a control system operator to recognize certain types of bad data, it 

is quite difficult to program a computer to ignore and report the same task. These 

limitations, forced us to develope necessary methods for real-time monitoring and 

processing of the system variables and quantities. Furthermore, this mandatory 

demand is simultaneous with the advantage of more relaible computers and 

system processors and remarkable developments in analytical techniques which 

are the tools necessary to do this job. 

If we cannot settle the issue of missing data, many important data sets will be 

discarded or improperly analyzed. But, this work contributes to the growing 

evidence that such data can be analyzed. By considering previous studies which 

have only reflected on matrices, we focus here on the problem of electrical grid 

data in multi-way arrays (tensors) as the data often have more than two modes of 

variation and are therefore best represented as multi-way arrays. For instance, in 

power grid, data of each record from a bus can be represented as a time-bus 

matrix; thus, data from multiple channels is three-dimensional (time, bus, and 

voltage or power) and forms a three-way array. These data can have multiple 
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dimensions, are often massively large, and generally have at least some missing 

data. Therefore, we need a robust and reliable approach for factorizing multi-way 

arrays in the presence of missing data. 

In previous chapter, we found that via tensor decomposition we can get a rough 

idea that there is some low-rank (tensor) structure in our data set, so we typically 

gained from using tensors as the data has a low-rank structure that we can 

exploited. Moreover, we illustrated a multi-dimensional periodicity in the data, 

which is good because it means that tensors can potentially help.  

This chapter goal sets to capture the underlying structure of the data through a 

higher-order tensor factorization. Tensor factorization performed in the presence of 

missing data. The algorithm formulated missing data in the context of tensor 

factorizations. There is a close relationship between tensor factorization and 

matrix completion from columns and rows, where we aim to recover the missing 

entries.   

Tensor factorization (higher order factorization) algorithm emerged as an 

applicable method for information analysis. Instead of arranging data in tabular 

(matrix unfolding) multi-way arrays as matrices and applying matrix factorization 

techniques to recover the missing entries, tensor models keep multi-way nature 

structure of the data and generate the underlying latent factors in each mode 

(dimensions in Figure 2) of a higher-order array.  

We focus here on the Canonical Polyadic Decomposition (CP decomposition), 

which is “workhorse” and commonly-used tensor decomposition model in various 

applications [1],[3]. Let I J KX × ×∈ be a noisy three-way tensor of size I×J×K , 

and assume its rank is R. With complete data, the CP decomposition is indicated 

by factor matrices A , B , and C of sizes I R× , J R× , and K R× , respectively 

and can be defined for a multipation of three as following: 

1
 (11)   

R

ijk ir jr kr
r

a b cx
=

≈∑     i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , K 
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In the presence of noise, the real tensor X is not objective and it is an approximate 

equality. Instead, the CP decomposition should minimize the error function which 

is indicated as following: 

2

1 1 1 1
( )(A,B,C)

I J K R

ijk ir jr kr
i j k r

x a b cf
= = = =

−=∑∑∑ ∑  

An illustration of CP for third-order tensors is given in Figure 9 section 1.3. The CP 

decomposition easily can be extended to N-way tensors for N ≥ 3. There are many 

algorithms to calculate a CP decomposition. 

The starting point in case of missing data, is to find a way to attribute missing 

values in different way which can be perform by filling the entries with an 

estimation method such as mean. Next step summerized in a way to employ some 

analytical factorization technique such as multi-way factorization to impute again 

the missing values. 

Another method which we used in this work, is to weight error function in order to 

ignore missing values and consider only the known values. Alternating technique, 

which first calculate the factor matrices and then combined them with iterative 

attribution can be practibale and robust as easy to perform. We must consider that 

by increasing the number of missing data, alternating method may go out of 

convergence and have a wrong result as the initialization and primary model used 

to attribute the missing values, discussed at [7]. In this work, to avoid wrong 

convergence of alternating techniques by increasing the number of missing 

values, we applied nonlinear conjugate gradient optimization to compute the 

weighted least squares problem which is formulated as CP model. 

The weighted version of (11) is: 

2

1 1 1 1
(12) ( )      (A,B,C) 

I J K R

ijk ijk ir jr kr
i j k r

w x a b cf
= = = =

 
− 


=∑∑∑ ∑
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Where W  is a nonnegative weight multi-way array, the same size as X , by 

considering 1 for known entries and 0 for missing one: 

1     if  is known

0     if  is missing
ijk

ijk
ijk

x
x

w
= 
  

Using the notation defined in section 1.3.2, (12) can be rewritten as: 



2
( A,B,C )(A,B,C) W Xf ∗ −= 



 

Let I J KX × ×∈ be a three-way tensor of size I J K× × , and assume its rank is 

R. In the presence of noise, the actual tensor X is not observable and there is an 

approximate equality. 

Let’s present the algorithm in three steps, first we will discuss about tensor 

factorization and it’s properties, then define a method to factorize by CP 

decomposition and the last step is to extend it to weighted optimization with 

nonlinear conjugate gradient. 

The main concepts and their functions are summarized as follows: 

• Using a scalable algorithm called CP Weighted Optimization (CP-WOPT) which 

is applicable for tensor factorizations in the presence of missing values. CP 

Weighted Optimization applies first order optimization to solve the weighted least 

squares error function (12)[1]. 

• Performing numerical experiments for simulated data sets, which shown that CP 

Weighted Optimization can properly recover tensors with missing values.  

• Applying CP_WOPT algorithm over power grid multi-way data to recover actual 

tensor in presence of missing values, then comparing the result with reference to 

interpolation method where we aimed to find low rank tensor structure in our 

power grid data, as illustrated in previous chapter. 
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4.1. Factorization method in presence of missing data 

To summarize this section, based on matrix factorization first we presented 

research approaches for tensor factorizations to overcome missing values 

problem, then discussed the techniques for extending tensor factorizations to 

weighted least squares. 

4.1.1 Generalize matrix factorizations to tensor factorizations 

The matrix factorizations can be considered as a main concept to re-formulate it 

for tensor factorizations in presence of missing data and recover the actual tensor 

values. If we consider the perfect tensor model as


A,B,C



, then recover the 

missing entries of X  to generate a complete tensor according to 



(13)       W +(1-W) A,B,CX X= ∗ ∗
  

Where 1 defined a multi-way array where all entries are equal to one. Using 

alternating least squares (ALS), we performed some multiple CP decompositions 

with different numbers of components of factor matrices until one combination is fit

X . 

4.2. CP Weighted Optimization algorithm 

Let’s consider a general N-way structure for CP factorization to generate a 

complete tensor in presence of missing values. Assume X be a tensor of size 

1 2 ... NI I I× × ×  and consider R for it’s rank. Suppose the model influenced by a 

weight tensor W  of the same size as X such that: 

1 2

1 2

1 2

...
...

...

(14)
1     if  is known

0     if  is missing
         N

N

N

i i i
i i i

i i i

x

x
w

= 
  

We aim to find factor matrices 
(n)A nI R×∈  for 1,...,n N=  which is minimize 

the weighted objective function §4.2.1.  
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In other words, our mission is to solve: 

 (1) (N)
(1) (N)

A ,...,A
min A A( ,..., )fw  

In the following, we will discuss the weighted error function in §4.2.1 and the 

procedure for calculating it’s gradient in §4.2.2 in more details. As soon as we 

found it’s gradient, we can apply different gradient-based optimization techniques 

[9] to solve the optimization problem. 

4.2.1. Error function 

The N-way objective function is indicated as: 

1 2

1 2

1 2

... ...1 2 1 2

(1) (N)

2
(1) (N)

2
...

1 1 1

2
2 ( ) ( )

1 11 1

(15)       A     A

(X A A )

... .

2

(

.

)

.

,  ... ,

,  ... ,
N

N

N

i i i i i i n nN N

II I

i i i
i i i

N NR R
n n

i r i r
r rn n

fw

W

w

x x a a

= = =

= == =

∗ − =

   − +  
 

=



∑∑ ∑

∑ ∑∏ ∏

 

 
 

 

Using tensor operation techniques we can efficiently calculate this function, 

therefore there is no need for element-wise computations [2]. 

If we pre-compute Y W X= ∗ and 
(1) (N)A A,  ... ,Z W= ∗ 







, then we can 

conclude that: 

2
fw y z= −  
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4.2.2. Gradient (Partial derivatives) 

Deriving the gradient of (15) by computing the partial derivatives of fw with respect 

to each element of the factor matrices, i.e., ( )
n

n
i ra  for all 1,...,n ni I= , 1,...,n N=

, and 1,...,r R= .  

The partial derivatives of the objective function fw  in (15)  are given by 

1 11

1 2

1 1 1

...1 2

2
...( )

1 1 1 1

(m) (m)

1 1 1

2 ... ...
n n N

N

n n Nn

i i i m mN

I I II

i i in
i i i ii r

N NR

i l i r
l m m

m n

w
a

x a a

fw − +

− += = = =

= = =
≠

∂
=

∂

 
− + 
 

∑ ∑ ∑ ∑

∑∏ ∏  

 

Figure 33. CP-WOPT computation of function value fw and gradient (n)
(N)G

A
fw∂

=
∂

.It is possible to make 

this implementation more efficient by computing ( )(n) (-n)
(n) (n)G 2 Y Z A= − −  
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Once again, by using tensor operation techniques we can efficiently calculate 

gradient, therefore there is no need for element-wise computations. In matrix 

notation, we can rewrite the gradient equation as 

( ) (-n)
(n) (n)(N)(16)     2 Z Y A

A
fw∂

= −
∂  

Where, 

(-n) (N) (n+1) (n-1) (1)A A ... A A ... A= ◊ ◊ ◊ ◊ ◊  

for 1,...,n N= . Remembered (chapter one) that the symbol ◊  denotes the 

Khatri-Rao product and the star ∗  denotes Hadamad product. 

The computations in (16) exploit the fact that W is binary, see (14), such that: 

 
2W X W X Y∗ = ∗ = , 

2 (1) (N) (1) (N)A A A A,  ... , ,  ... ,Z W W= ∗ = ∗ 

 

 
 
 

 

 

Matricized tensor times Khatri-Rao product is the primary computation in (16) and 

can be computed efficiently [5]. The algorithm is summarized in Figure 33. Now 

that we have the gradient, we can apply nonlinear conjugate gradient (NCG) [9] as 

a gradient-based optimization technique to solve the optimization problem. 

4.3. Nonlinear conjugate gradient 

Nonlinear conjugate gradient (NCG) methods are used to solve unconstrained 

nonlinear optimization problems. It is based on conjugate gradient iterative method 

for solving linear systems which is adapted to solve unconstrained nonlinear 

optimization problems. The Poblano function which is applicable for the nonlinear 

conjugate gradient methods is called NCG. There are some general steps of the 

NCG method which are given below in pseudo code: 
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1. Input: 0x , a starting point 

2. Evaluate 0 0( )f f x= , 0 0( )g f x= ∇  

3. Set 0 0 , 0p g i= − =  

4. while 0ig   

5.         Compute a step length ia and set 1i i i ix x a p+ = +  

6.         Set 1( )i ig f x += ∇  

7.         Compute 1iβ +  

8.         Set 1 1 1i i i ip g pβ+ + += − +  

9.         Set 1i i= +  

10. end while 

11. Output: *
ix x≈  

Take into consideration to set 1iβ +  zero in cases where the update coefficient is 

negative to avoid directions that are not descent directions. 

The choice of 1iβ +  in Step 7 leads to different NCG methods. The update methods 

for 1iβ +  are listed in Table 2. The special case of 1 0iβ + =  leads to the steepest 

descent method: 

Tabel 2. Conjugate direction updates available 

Update Type Update Formula 

Fletcher-Reeves 
1 1

1

T
i i

i T
i i

g g
g g

β + +
+

−
=  

Polak-Ribiere 
1 1

1
( )T

i i i
i T

i i

g g g
g g

β + +
+

−
=  

Hestenes-Stiefel 
1 1

1
( )
( )

T
i i i

i T T
i i i

g g g
p g g

β + +
+

−
=

−
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4.4. Experiments 

In this experiment we aim to analyze the performance of the CP Weighted 

Optimization algorithm and estimate it’s capability to recover a multi-way array 

which contains missing values. The experiment proved that CP factor matrices can 

efficiently recover multi-way arrays even if we encountered a significant 

percentage of missing entries or fibers.  

CP Weighted Optimization is formulated using tensor operation techniques 

(Tensor Toolbox) [4], based on the partial derivatives and objective function 

calculations shown in Figure 33. This algorithm used the nonlinear conjugate 

gradient (NCG) method with Hestenes-Stiefel updates [9] for optimization problem. 

CP Weighted Optimization is an iterative method.  

Replacing the missing values of left singular vectors ( )X n  (matrix unfolding) with 

zero is the starting point of this algorithm.  

In this experiment, the stopping criteria are considered as follows [1]: 

1. Set stopping condition ( 610− ) for the related change in the function value fw  in 

(12). 

2. Set the value of 810−
 for the tolerance ratio between two-norm of the gradient 

and the number of entries in the gradient. 

3. The maximum number of iterations and the maximum number of function 

evaluations are set to 310  and 410 ,respectively. 

4.4.1. Simulated data 

In this section we aim to introduce multi-way arrays structure which are recovered. 

Three way tensors generated with ranks 5 and 10, and different sizes. The other 

fact that we employed was missing values percentage and also the patterns which 

can be single entries or fibers. The tensor sizes considered as 50*50*50 or 

150*150*150. The true tensor generated randomly with factor matrices A, B and C 

with related sizes. 
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We aimed to find factor matrices which is minimized the weighted objective 

function. From each set of factor matrices, a third-order tensor, 


A,B,CT = 


, 

is generated.  

To add noise we considered another tensor, I J KN × ×∈ , the same size as T . 

the entries generated randomly and have a normal distribution as follows: 

1/2(100 / 1)
T

X T N
N

η −= + −
 

η% defined as the noise percentage. For sake of simplicity, the value η = 2 is used 

in our experiments [7]. 

The last step is to remove randomly some tensor entries in order to  generate 

missing values. The patterns of missing values can be single entries or fibers. We 

considered three different missing values percentage 10%, 40%, and 70%. 

To remove some tensor entries, we ignore the cases which we miss a complete 

tensor slice because it is not possible to recover the factor matrices in such cases. 

The same problem as we have in matrix completion, which recover matrix from a 

column or row is our goal, so we ignore the cases when the entire row or column 

turns out to be missing, as the matrix cannot be correctly recover due to lack of 

information. 

Let’s say that the factor matrices should be efficiently recovered if the following 

equation satisfied. Let A,B,C be the recovered factor matrices. We require, for 

all { }1,...,r R∈ : 

T T T

3
a a b b c c

sim(r) 0.97 (0.99)
a a b b c c

r r rr r r

r r rr r r

= × × ≈
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Unlike the matrix decomposition, CP decompositions are often unique which is an 

interesting property of higher-order tensors. In other words, to generate tensor T , 

there is just only one possible summation of factor matrices, which means 

Uniqueness. The uniqueness property of CP decomposition gives an applicable 

tool to compare the recovered factor matrices with the generated factor matrices. 

The percentage of successful recovery out of different running times, gives us the 

method accuracy.  

Table 3 and 4 demonstrate the CP Weighted Optimization accuracy. Ten sets of 

factor matrices were generated for different tensor rank (5,10). Each entry in the 

table nominated as the percentage of completely recovered underlying factors out 

of the ten corresponding CP models. In the case of randomly missing entries, CP 

Weighted Optimization can completely recover the factor matrices even in 

presence of 70% missing data. It can be shown through Table 3 that high 

percentage of accuracy achieved for different sizes and ranks in case of missing 

entries.  

Tabel 3. Accuracy for randomly missing entries 

Missing Data 10% 40% 70% 

Rank: R=5 R=10 R=5 R=10 R=5 R=10 

50 × 50 × 50 100.0 100.0 100.0 100.0 100.0 100.0 

150×150×150 100.0 100.0 100.0 100.0 100.0 100.0 

 

Tabel 4. Accuracy for randomly missing fibers 

Missing Data 10% 40% 70% 

Rank: R=5 R=10 R=5 R=10 R=5 R=10 

50 × 50 × 50 100.0 100.0 100.0 100.0 89.3 81.5 

150×150×150 100.0 100.0 100.0 100.0 100.0 100.0 

 



CHAPTER 3 
 

 

68 

On the other hand, Table 4 demonstrates the percentage of accuracy which is 

achieved by recovering true tensor out of ten corresponding factor matrices for 

missing fibers pattern. As it can be shown, CP Weighted Optimization only has 

less accuracy when it has 70% missing fibers for a tensor with size 50*50*50. 

Here's something we should pay attention to that is the smaller problem size are 

more difficult to converge due to the following reason. 

If we consider a tensor of size I I I× ×  with proportion M of missing data. Let D
be indicated by 

3Number of known tensor entries (1 )
Number of variables(degree of freedom) 3

M ID
RI

−
= =  

D  is inversely proportional to the difficulty of the problem. We have an easier 

problem to solve if I  increases as long as M  and R  constant. Figure 34 

illustrates how accuracy can be change with respect to D  for both ranks 5 and 10. 

For instance, D is 50 for smaller size tensors in case of missing fibers for M = 

70% missing data and R = 5, and accuracy of algorithm is 89.3%; on the other 

hand D  is 450 for tensors of size 150×150×150, and accuracy of CP Weighted 

Optimization algorithm reaches to 100%. It is worth noting that we do not use the 

any initialization in the results proposed here, which is suggested in [7].  

The experiments prove that the factor matrices can be recovered even in presence 

of significant amount of missing values. This is because the tensor analysis that 

we applied is inspired by (subspace-based) low-rank modeling. 

A rank-R tensor of size I J K× ×  has ( )R I J K+ +  degrees of freedom. If the 

numbers of data are more than variables, then suggested tensors can be recover 

even with high percentage of missing values. In other words, if the size of data 

defined as 0.3IJK  ,then the number of variables ( )R I J K+ + is much less than 

the data size. As it is a nonlinear problem, the number of entries which we need to 

recover the CP models inspired by (subspace-based) low-rank modeling are 

unknown. 
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Figure 34. Accuracy versus D, i.e., the ratio of the number of known tensor entries to the number of 

variables, for CP-WOPT algorithm for tensors of size 50 × 50 × 50 and 150 × 150 × 150. The plots are for 

the randomly missing fiber case in Table 3,4 

10
2

10
3

10
4

20

30

40

50

60

70

80

90

100

D

Ac
cu

ra
cy

 

 
CP-WOPT,R=5

10
2

10
3

10
4

20

30

40

50

60

70

80

90

100

D

Ac
cu

ra
cy

 

 
CP-WOPT,R=10



CHAPTER 3 
 

 

70 

4.4.2. Capturing underlying factors of power grid data  
 
If we cannot solve the problem of missing data, many important data sets will be 

discarded or improperly analyzed. But, this work focuses to the growing research 

that such data can be analyzed. As we mentioned in chapter 2, data of each 

record from a bus can be represented as a time-bus matrix; thus, data from 

multiple channels is three-dimensional (time, bus, and voltage or power) and forms 

a three-way array. These data can have multiple dimensions, are often massively 

large, and generally have at least some missing data. Therefore, we need a robust 

and reliable approach for factorizing multi-way arrays in the presence of missing 

data. 

In previous chapter, we found that via tensor decomposition we can get a rough 

idea that there is some low-rank (tensor) structure in our data set, so we typically 

gained from using tensors as the data has a low-rank structure that we can 

exploited. Moreover, we illustrated a multi-dimensional periodicity in the data, 

which is good because it means that tensors can potentially help.  

In this section, we aim to capture the underlying structure of the data through a 

higher-order  tensor factorization instead of using interpolation method. Tensor 

factorization performe in the presence of missing data. The algorithm formulate 

missing values in the context of tensor factorizations.  

We arrange the data using a CP model, denoting A, B and C as the extracted 

factor matrices corresponding to the time, selected buses, active power, 

respectively. It is common in power system that the data from buses are ignore 

due to malfunction of measurement instruments or quick change in the state of the 

system. This happening generate missing entries and fibers when the data 

arrange in CP model, as shown in Figure 35. Instead of using interpolation 

method, we apply CP Weighted Optimization algoritm to capture the underlying 

data structure. We select the same case study that we discussed in chapter 2, The 

data contains the 600 hours sample rates of active power for 100 buses out of 

12418 channels (Figure 35). 
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Figure 35. Interesting channels 

 
Figure 36. Reconstruction error 
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First we applied CP Weighted Optimization algoritm to find factor matrices and 

recover the missing values, then the benefits of tensor-based processing 

evaluated by computing an approximate CP decomposition and High Order 

Singular Value decomposition (HOSVD) which is performed sucessfully via 

compression graphs. The horizontal axis considered as a rate for the number of 

parameters at different ranks over the sampled data. As remembered, the vertical 

axis also nominated for the reconstruction error in CP decomposition and High 

Order Singular Value Decomposition. As it can be shown in Figure 36, unlike the 

interpolation method, rank-one components in CP Weighted Optimization method 

explained a significant fraction of data in both HOSVD and CP decomposition. 

. 

Now we performed the time signature of dominant (rank-one) component of the 

data, which is calculated by kronecker product of factor matrices obtained by CP 

decomposition-rank one. The CP decomposition calculated by Semi-algebraic 

framework for approximate CP decompositions via Simultaneous matrix 

diagonalization (SECSI) [10]. 

As mentioned before, the data set of power grid can be arranged as buses over 

time in a matrix of size 600 × 175 for active powers. Therefore, the time axis can 

be broken into two dimensional space (24 hours x 21 days) or three dimensional 

space (24 hours x 7 days x 3 weeks) to generate respectively a 3-D tensor or 4-D 

tensor. 

After careful consideration, we found that there is a multi-dimensional periodicity in 

3D and also 4D data structure, the same as before (Figure 37, 38). As we can see 

the priodic behaviour doesn’t change we respect to interpolation method. The 

reason of similarity, can be the number of missing data, which are not more than 

15%, so the periodic behaviour is the same with respect to the interpolation 

method.  

In conclusion, therefore, the CP Weighted Optimization algorithm can scale even 

to larger data sets and observe that it recovers the underlying tensors structure for 

a data set of size 500 × 500× 500 properly [1]. So, it can also apply for power grid 

data sets contained more buses.  
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Figure 37. Time signature of 4-D tensor, CP decomposition rank one 

 

  
Figure 38. Time signature of 3-D tensor, CP decomposition rank one 
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5 CONCLUSION 
 

In this work we focused to solve the problem of missing values. By considering 

previous studies which have only reflected on matrices, we focus here on the 

problem of electrical grid data in multi-way arrays (tensors). Data from multiple 

channels is three-dimensional (time, bus, and voltage or power) and forms a three-

way array.  

After recovering missing values with interpolation method, we observed that there 

is a low-rank structure in form of a quite dominant rank-one component (periodic) 

on top of the rest of the data (which seems to be not periodic). Then the evaluation 

of the benefits of using tensor-based processing by computing an approximate CP 

decomposition and High Order Singular Value decomposition (HOSVD) was 

performed sucessfully with compression graphs. we found that there is a multi-

dimensional periodicity in 2D, 3D and also 4D data structure that‘s good because it 

means that tensors can potentially help. 

In the last chapter, we aimed to capture the underlying structure of the data 

through a higher-order  tensor factorization instead of interpolation method and 

performed the same procedure to find low rank modeling in our data structure. 

Tensor factorization performed in the presence of missing data. Formulating the 

canonical tensor decomposition for incomplete tensors as a weighted least 

squares problem. Our numerical studies proved that the proposed CP Weighted 

Optimization is so accurate and reliable in both simulated data and power grid 

data. 

In future studies, we aim at extending these approaches through the power data 

structure with more than 3 dimensions and also with more than three variables. 

Also it can be done for the buses with much more missing values to test the 

accuracy of the algorithm in higher resolution. On the other hand, a simulated 

power system data can be more reliable to test the accuracy of the CP weighted 

Optimization algorithm, as we can remove randomly some tensor entries in order 

to generate missing values. In other words, a power grid with no missing values is 
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much more reliable to check how much the CP Weighted Optimization algorithm 

can successfully capture the original data structre. 

Finally as the data structure gained from using tensor (CP) model, in future works 

we can use this data structure to solve some nonlinear problem in power system, 

such as weighted least squares method for bad data suppression in power system 

state estimation which is discused in [12],[13],[14] and also use some nonlinear 

iterative methods,i.e. newton raphson to solve power flow. 

In [15] the authorities suggested an approximate model for power system static 

state estimation in matrix notation which can be extend as a proper model for 

multi-way arrays. 
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7 APPENDICES 
 

%%% Calculate Matrix Unfoldings  
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     % computes all unfoldings of the given tensor T 
% | 
% |     out = unfoldings(T, order[, Ndim]) 
% | 
% |     Inputs: T     - tensor 
% |                  
% |     Output: out - matrix unfouldings of T 
% |---------------------------------------------------------------- 
 
function out = unfoldings (T, order, Ndim) 
 
% get dimensions 
sizes = size(T); 
dimension = length(sizes); 
  
if nargin > 2 
    if dimension < Ndim 
        sizes = [sizes,ones(Ndim-dimension)]; 
        dimension = Ndim; 
    end 
end 
  
% Set standard Lathauwer unfolding 
if nargin == 1 
    order = 3; 
end 
  
% initialize out 
out = cell(1, dimension); 
  
% compute all unfoldings 
for n = 1:dimension 
        
    % permute tensor T for reshape - command 
    switch order 
        case 1 
            P = permute(T, [n, 1:(n-1), (n+1):dimension]); % indices go faster with 
increasing index 
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        case 2 
            P = permute(T, [n, fliplr( [1:(n-1), (n+1):dimension] )] ); % indices go slower 
with increasing index 
        case 3 
            P = permute(T, [n, fliplr( 1:(n-1) ), fliplr( (n+1):dimension )]); % Lathauwer: 
indices go slower with I_n+1, ... I_N, I_1, ... I_n-1 
        case 4 
            P = permute(T, [n, fliplr( [ fliplr( 1:(n-1) ), fliplr( (n+1):dimension ) ])]); % 
flipped Lathauwer 
        otherwise 
            disp('Error: unknown ordering for n--mode vectors'); 
            return 
    end 
  
    % compute n'th unfolding 
    out{n} = reshape(P, [sizes(n), prod(sizes)./sizes(n)]); 
     
end 
 
 
%%% Generate random tensor with rank, tensor decomposition 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     Generate random tensor with rank 5 to search low-rank modeling in our  
% |     simulated data 
% |---------------------------------------------------------------- 
 
clear all; 
clc 
 
% generate random tensor with rank 5 
size_tens = [10 10 10]; R = 5; 
U = cpd_rnd(size_tens,R); 
X = cpdgen(U); 
  
X1 = double (X); 
  
f = size(X1); 
element = f(:,1)*f(:,2)*f(:,3); 
 
%% Add Noise 
PS=1; 
SNR = 10; 
X1 = addnoise(X1,SNR,PS); 
  
    for d=1:10   %Diff Ranks 
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%HOSVD 
[S, U_Cell, SD_Cell] = hosvd(X1); 
[S_c, U_c] = CUTHOSVD(S,U_Cell,d);   %Truncated HOSVD 
T2 = nmode_product(S_c, U_c{1}, 1); 
T2 = nmode_product(T2, U_c{2}, 2); 
T2 = nmode_product(T2, U_c{3}, 3); 
  
out_Hosv = ho_norm(X1-T2); 
rec_err_H(d)=(out_Hosv.^2)./(ho_norm(X1).^2); 
  
%Horiz 
Hosv(d)=d^3+sum(f(:,1)*d+f(:,2)*d+f(:,3)*d); 
l1(d)=Hosv(d)/element; 
  
  
%% SECSI  
Fhat = SECSI(X1,d); 
  
%% ALS, multilinear alternating least squares ("plain vanilla") 
method='MALS'; 
[Fac_est_ALS, Xrec_ALS, amplitudes_ALS] = solve_parafac(method,X1,d); 
  
  
%% calculate the reconstructed tensors 
Xrec_secsi = cp_construct(Fhat); 
  
%% calculate forbenious norm;  
out_secsi = ho_norm(X1-Xrec_secsi); 
out_als = ho_norm(X1-Xrec_ALS); 
  
rec_err_secsi_br(d)=(out_secsi.^2)./(ho_norm(X1).^2); 
rec_err_als_br(d)=(out_als.^2)./(ho_norm(X1).^2); 
  
 
%%Horz 
se(d)= sum(f(:,1)*d+f(:,2)*d+f(:,3)*d); 
l(d)=se(d)/element; 
end 
  
%%Plot 
figure  
  
semilogx(l1,rec_err_H,'-.r*'); 
hold on  
semilogx(l,rec_err_secsi_br,'--mo'); 
semilogx(l,rec_err_als_br,':bs'); 
  
grid on  
legend('Hosv','Secsi','Als'); 
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%%% Calculate Tensor Decomposition to find rank one approximation 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     HOSVD, SECSI, ALS methods for 3D and 4D structure 
% |---------------------------------------------------------------- 
 
load export_data_load11.mat 
load dataset2 
  
for d = 1:10   %Diff Ranks 
%%data set 2 
a = dataset2(1:504,:,1); 
c = reshape(a,24,21,175); 
dd = reshape(a,24,7,3,175); 
  
  
X = c; 
X2 = dd; 
  
%% HOSVD 3D 
X1 = double (X); 
[S, U_Cell, SD_Cell] = hosvd(X1); 
[S_c, U_c] = cuthosvd(S,U_Cell,d);   %Truncated HOSVD 
T22 = nmode_product(S_c, U_c{1}, 1); 
T22 = nmode_product(T22, U_c{2}, 2); 
T22 = nmode_product(T22, U_c{3}, 3); 
  
%% HOSVD 4D 
X3 = double (X2); 
[S, U_Cell, SD_Cell] = hosvd(X3); 
[S_c, U_c] = cuthosvd(S,U_Cell,d);   %Truncated HOSVD 
T2 = nmode_product(S_c, U_c{1}, 1); 
T2 = nmode_product(T2, U_c{2}, 2); 
T2 = nmode_product(T2, U_c{3}, 3); 
T3 = nmode_product(T2, U_c{4}, 4); 
%% SECSI 3D 
Fhat = SECSI(X1,d); 
  
%% ALS, multilinear alternating least squares ("plain vanilla") 3D 
method='MALS'; 
[Fac_est_ALS, Xrec_ALS, amplitudes_ALS] = solve_parafac(method,X1,d); 
  
  
%% calculate the reconstructed tensors 
  
Xrec_secsi = cp_construct(Fhat); 
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%% calculate forbenious norm;  
out_secsi = ho_norm(X1-Xrec_secsi); 
out_als = ho_norm(X1-Xrec_ALS); 
out_Hosv = ho_norm(X1-T22); 
  
  
rec_err_secsi_br(d)=(out_secsi.^2)./(ho_norm(X1).^2); 
rec_err_als_br(d)=(out_als.^2)./(ho_norm(X1).^2); 
rec_err_H(d)=(out_Hosv.^2)./(ho_norm(X1).^2); 
  
%Horiz 
f=size(X1); 
sec(d)= sum(f(:,1)*d+f(:,2)*d+f(:,3)*d); 
element= f(:,1)*f(:,2)*f(:,3); 
l(d)=sec(d)/element; 
Hosv(d)=d^3+sum(f(:,1)*d+f(:,2)*d+f(:,3)*d); 
l1(d)=Hosv(d)/element; 
  
  
%% SECSI 4D 
Fhat1 = SECSI(X3,d); 
  
%% ALS, multilinear alternating least squares ("plain vanilla") 4D 
% method='MALS'; 
% [Fac_est_ALS, Xrec_ALS, amplitudes_ALS] = solve_parafac(method,X3,d); 
  
  %% calculate the reconstructed tensors 
  
Xrec_secsi1 = cp_construct(Fhat1); 
  
%% calculate forbenious norm;  
out_secsi1 = ho_norm(X3-Xrec_secsi1); 
out_Hosv1 = ho_norm(X3-T3); 
% out_als1 = ho_norm(X3-Xrec_ALS); 
  
rec_err_secsi_br1(d)=(out_secsi1.^2)./(ho_norm(X3).^2); 
rec_err_H1(d)=(out_Hosv1.^2)./(ho_norm(X3).^2); 
% rec_err_als_br1(d)=(out_als1.^2)./(ho_norm(X3).^2); 
  
%Horiz 
  
f1=size(X3); 
sec1(d)= sum(f1(:,1)*d+f1(:,2)*d+f1(:,3)*d+f1(:,4)*d); 
element1 = f1(:,1)*f1(:,2)*f1(:,3)*f1(:,4); 
l11(d)=sec1(d)/element1; 
Hosv1(d)=d^3+sum(f1(:,1)*d+f1(:,2)*d+f1(:,3)*d+f1(:,4)*d); 
l111(d)=Hosv1(d)/element1; 
 
end 
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%% plots  
figure  
  
semilogx(l1,rec_err_H,'-.r*'); 
hold on  
semilogx(l,rec_err_als_br,':bs'); 
hold on 
semilogx(l111,rec_err_H1,'-g*'); 
hold on  
 
  
grid on  
legend('Hosv3D','Als3D','Hosv4D'); 
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%% % Test for SECSI and ALS  
% We want to investigate the SECSI algorithm for different tensors of 
% different sizes. 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     Apply SECSI algorithm and Alternating Least Squares method  
% |     to decompose the tensors 
% |---------------------------------------------------------------- 
 
clear all; 
clc; 
for L=3:20 
%% generate random tensor. 
% L=3; % size1 
% M=3; % size2 
% N=3; % size3 
d=3; %assumed rank 
for SNR=20:1:50 
PS=1; 
% X= randn(L,M,N); 
A=randn(L,d); 
B=randn(L,d); 
C=randn(L,d); 
I=supereye(3,d); 
X=nmode_product(I, A, 1); 
X=nmode_product(X, B, 2); 
X=nmode_product(X, C, 3); 
for br=1:50 
X = addnoise(X,SNR,PS); 
  
%% SECSI , plain BD default for R=3; 
 Fhat = SECSI(X,d); 
  
%% ALS, multilinear alternating least squares ("plain vanilla") 
method='MALS'; 
[Fac_est_ALS, Xrec_ALS, amplitudes_ALS] = solve_parafac(method,X,d); 
  
%% COMFAC (Sidiropoulos, Bro) 
method='COMFAC'; 
[Fac_est_comfac, Xrec_comfac, amplitudes_comfac] = 
solve_parafac(method,X,d);  
  
%% calculate the reconstructed tensors 
  
Xrec_secsi = cp_construct(Fhat); 
  
%% calculate forbenious norm;  
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out_secsi = ho_norm(X-Xrec_secsi); 
out_als = ho_norm(X-Xrec_ALS); 
out_comfac = ho_norm(X-Xrec_comfac); 
  
rec_err_secsi_br(br)=(out_secsi.^2)./(ho_norm(X).^2); 
rec_err_als_br(br)=(out_als.^2)./(ho_norm(X).^2); 
rec_err_comfac_br(br)=(out_comfac.^2)./(ho_norm(X).^2); 
end 
  
%% calculate normalized recostruction error  
rec_err_secsi(L-2,SNR+6)=mean(rec_err_secsi_br); 
rec_err_als(L-2,SNR+6)=mean(rec_err_als_br); 
rec_err_comfac(L-2,SNR+6)=mean(rec_err_comfac_br); 
end 
end 
  
%% plots  
figure  
semilogy(3:20,rec_err_secsi(:,23),'r'); 
hold on  
semilogy(3:20,rec_err_als(:,23),'b'); 
semilogy(3:20,rec_err_comfac(:,23),'k'); 
grid on  
legend('SECSI','ALS','COMFAC'); 
 
 
 
 
%%%Compare rank one 2D , 3D and 4D structure 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     Using SECSI algoritm to calculate the rank one components of 3D and 4D 
% |     structure 
% |---------------------------------------------------------------- 
 
show_3d = 1; 
show_4d = 1; 
load export_data_load11.mat  
%% reshape 2D structure to 3D and 4D 
a = dataset2(1:504,:,1); 
c = reshape(a,24,21,175); 
d = reshape(a,24,7,3,175); 
  
%%%rank one decomposition  
Fhat_3 = SECSI(c,1); 
Fhat_4 = SECSI(d,1); 
[U,S,V] = svd(unfolding(c,3)); 



APPENDICES 
 

 

86 

 
 %%%calculate time signature  
 
timesig_2d = -V(:,1); 
timesig_3d = kron(Fhat_3{1},Fhat_3{2}); 
timesig_4d = kron(kron(Fhat_4{1},Fhat_4{2}),Fhat_4{3}); 
 
%%% Plot time signature for 2D,3D and 4D structure  
start = 8*24; 
cnt = 4*24; 
leg = {}; 
figure(1); 
clf; 
plot(1:cnt,timesig_2d(start:start+cnt-1)/max(abs(timesig_2d)),'ko-');leg{end+1} = '2-
D'; 
hold on; 
if show_3d 
plot(1:cnt,-1*timesig_3d(start:start+cnt-1)/max(abs(timesig_3d)),'rx-');leg{end+1} = 
'3-D'; 
end 
if show_4d 
plot(1:cnt,-1*timesig_4d(start:start+cnt-1)/max(abs(timesig_4d)),'mv-
','Color',[0.7,0,0.7]);leg{end+1} = '4-D'; 
end 
hold on; 
axis([1,cnt,0,1]); 
xlabel('Time (hours)'); 
ylabel('Time signature'); 
legend(leg,3); 
grid on; 
  
 
 
 
%%% Plot the interpolated tensors 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% | 
% |---------------------------------------------------------------- 
 
load export_data_load11.mat 
 
%%% bus_ts is a grid data which is formulated as a tensor structure  
 
for b = 1:1000 
     
    for a = 1:600 
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        z = abs(bus_ts(a,b,1)); 
         
         
        if z > 0  
            g(a,b)=1; 
        else 
            g(a,b)=0; 
         
        end 
    end 
end 
  
figure  
  
imagesc(g');figure(gcf);  
set(gca,'YLim',[1 1000]) 
  
hold on 
  
 
 
 
%%% Interpolate the missing values of the tensors 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     bus_ts is a grid data which is formulated as a tensor structure, 
% |     blue color define the missing values 
% |---------------------------------------------------------------- 
 
load export_data_load11.mat 
 
zz17 = bus_ts(1:600,905:913,:); 
 
l=1; 
for b=1:175 
i = 1; 
     
    for  a=1:600 
     
        z = abs(zz17(a,b,1)); 
         
         
        if z > 0 
             
             
            k(l,i) = (zz17(a,b,1)); 
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            i = i+1 ; 
                     
        end 
         
    end 
    l = l+1; 
end 
  
  
for b= 1:175 
     
    for  a = 1:600 
     
        z = abs(zz17(a,b,1)); 
         
         
            if z > 0 
              g(b,a)= 1; 
             
            else 
                 
       
                        ZI = interp1(1:520,k(b,1:520),zz17(a,b,1),'linear'); 
                            
                             
             
                        zz17(a,b,1)= (ZI); 
                  
                        if abs (ZI) > 0 
                            
                               g(b,a) = 1; 
                 
                        else 
                               g(b,a)= 0; 
                   
                        end 
            end 
              
        end 
    end 
  
                                
  
figure (1) 
  
imagesc(g);figure(gcf);  
set(gca,'YLim',[1 175]) 
  
hold on 
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%% Weighted CP tensor decomposition inorder to recover the missing data 
%%% |---------------------------------------------------------------- 
% | 
% | 
% |     Danial Jafarigiv 
% |     Three way tensors generated with ranks 5 and 10, and different sizes 
% |---------------------------------------------------------------- 
 
load export_data_load11.mat 
  
%% Create 50*50*50 problem with 10% missing data.  
% Here we have 10% missing data and 10% noise.    
R = 5; 
info = create_problem('Size', [50 50 50], 'Num_Factors', R, ... 
    'M', 0.10, 'Noise', 0.10); 
X = info.Data; 
P = info.Pattern; 
M_true= info.Soln; 
  
%% Create initial guess using 'nvecs' 
M_init = create_guess('Data', X, 'Num_Factors', R, ... 
    'Factor_Generator', 'nvecs'); 
  
  
%% Set up the optimization parameters 
  
% Tighten the stop tolerance (norm of gradient) 
ncg_opts.StopTol = 1.0e-8; 
% Tighten relative change in function value tolearnce 
ncg_opts.RelFuncTol = 1.0e-6; 
% The number of iterations.  
ncg_opts.MaxIters = 10^3; 
% Only display every 10th iteration 
ncg_opts.DisplayIters = 10; 
% Display the final set of options 
ncg_opts; 
  
%% Call the |cp_wopt| method 
% prints the least squares fit function value (being minimized) and the 
% norm of the gradient. The meaning of any line search warnings 
  
[M,~,output] = cp_wopt(X, P, R, 'init', M_init, ... 
    'alg', 'ncg', 'alg_options', ncg_opts); 
  
%% Check the output 
exitflag1 = output.ExitFlag; 
  
%% Evaluate the output 
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%The |score| function on ktensor's gives a score in [0,1]  with 1 indicating a perfect 
match.  
scr1 = score(M,M_true); 
  
%% Create a 150*150*150 problem with 40% missing data.  
% Here we have 40% missing data and 10% noise.    
R = 10; 
info = create_problem('Size', [150 150 150], 'Num_Factors', R, ... 
    'M', 0.40, 'Sparse_M', true, 'Noise', 0.10); 
X = info.Data; 
P = info.Pattern; 
M_true= info.Soln; 
  
%% Create initial guess using 'nvecs' 
M_init = create_guess('Data', X, 'Num_Factors', R, ... 
    'Factor_Generator', 'nvecs'); 
  
  
%% Set up the optimization parameters 
  
ncg_opts.StopTol = 1.0e-8; 
ncg_opts.RelFuncTol = 1.0e-6; 
ncg_opts.MaxIters = 10^3; 
ncg_opts.DisplayIters = 10; 
ncg_opts; 
  
%% Call the |cp_wopt| method 
  
[M,~,output] = cp_wopt(X, P, R, 'init', M_init, ... 
    'alg', 'ncg', 'alg_options', ncg_opts); 
  
%% Check the output 
  
exitflag2 = output.ExitFlag; 
  
  
%% Evaluate the output 
  
scr2 = score(M,M_true); 


