
Politecnico di Milano
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO
Master of Science in Computer Engineering

Design and Implementation of a Siafu-based
Simulator for Activities of Daily Living

Supervisor: Prof. Sara Comai
Assistant Supervisor: Hassan Saidinejad

Master Graduation Thesis by: Chiara Galbussera
Student Id. Number: 796143

Academic Year 2014-2015





i

Abstract

In recent years, the expected lifespan is in constantly growing.
This trend has as consequence an important increase of the number
of aged people and a large number of requests for health care assis-
tances of elderly people. Current health care system has not enough
resources to ensure a satisfactory assistance for a large number of
elderly. Sometimes the elderly themselves do not consider the as-
sistance’ solution as acceptable because it implies radical changes,
like leaving his/her own home, a drastic change in his/her daily rou-
tine and a decrease of his/her independence. A different choice can
involve the potentialities of Information and Communication Tech-
nology to reduce care costs and delay the recovery in a specialized
structure, granting a satisfactory well-being level. In order to do
this an Ambient Assisted Living (AAL) approach can be adopted
transforming the elderly’ house in a Smart-home by installing sen-
sors, actuators and interfacing mechanisms. In this way, elderly’s
life can be monitored in an unobtrusive way and without a radical
change in the resident’s routine. Nonetheless, the implementation of
Smart-homes may have high costs and require a particular attention,
during the installation phase, at the type of sensors that should be
installed and where they should be installed. The usage of a simu-
lator of Activities Daily Living (ADL) before the installation of the
Smart-home can solve these problems. This thesis work presents a
Siafu-based simulator (a large scale simulator of ADLs). The simu-
lator aims to reproduce the environment in which the older person
lives, the behavior of the dwellers and of their daily activities and the
behavior of the various sensors installed in the environment, reaching
a simulation close to real situations.



ii

Sommario

Negli ultimi anni le aspettative di vita della popolazione si sono
alzate, portando ad un aumento del numero di persone anziane nella
popolazione. Questo porta ad avere un numero elevato di richieste
di assistenza socio-sanitaria, che non può sempre essere garantita
anche a causa dei costi elevati di tale assistenza. Molte volte è la
stessa persona anziana a non accettare il “modello” di assistenza che
viene proposto in quanto comporta dei cambiamenti radicali, come
ad esempio il ricovero in una casa di riposo, che porterebbe l’anziano
ad abbandonare la propria casa, le proprie abitudini e la propria in-
dipendenza. Queste soluzioni sono inoltre molto costose e possono
portare ad un declino nel benessere della persona anziana. Una so-
luzione alternativa potrebbe essere quella di sfruttare le potenzialità
dell’Information and Communication Technology così da ridurre i
costi di assistenza e ritardare l’eventuale ricovero in case di riposo,
garantendo il benessere delle persone anziane. Per fare ciò si può
usare un approccio Ambient Assisted Living (AAL) rendendo la ca-
sa del paziente una Smart-home tramite l’installazione di sensori,
attuatori ed interfacce di comunicazione nell’abitazione dell’anziano.
Questo approccio non richiede particolari cambiamenti nelle abitudi-
ni dell’anziano, la persona non interagisce direttamente con i sensori
che vengono installati. Tuttavia l’implementazione di Smart-home
ha costi che potrebbere essere elevati e richiede una particolare at-
tenzione, in fase di installazione, al tipo di sensori da utilizzare e
alla loro posizione all’interno della casa. Per questi motivi vengono
utilizzati dei simulatori di Activity of Daily Living (ADL) prima di
procedere con l’installazione. In questo lavoro di tesi viene presen-
tato un simulatore basato su Siafu (un simulatore di ADL su larga
scala). Il simulatore mira a riprodurre l’ambiente in cui la persona
anziana vive, le tipiche attività che tale persona può svolgere durante
la giornata all’interno della propria abitazione e il comportamento
dei sensori presenti all’interno della casa per una simulazione che si
avvicini il più possibile alla vita reale.



Acknowledgements

I would like to thank my supervisor, Professor Sara Comai and her assistant
Hassan Saidinejad for their precious advices, patience and assistance in the
development of this work.

I would also like to thank my family and all my friends for their support,
their trust in me and their patience during my entire academic path.

iii



Contents

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Siafu simulator overview . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7
2.1 Agent Based modeling and Simulation (ABMS) . . . . . . . 7

2.1.1 Agent definition . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Review of some existing ABMSs . . . . . . . . . . . . 8

2.2 Smart Environments Simulators . . . . . . . . . . . . . . . . 10
2.3 Real life Datasets . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Summary of the presented simulators . . . . . . . . . . . . . 15

3 Design and Implementation of the Simulator 17
3.1 Defining the environment of the simulation . . . . . . . . . . 17

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Places . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Programming the Behavior . . . . . . . . . . . . . . . . . . . 20
3.2.1 Activities and parameters definition . . . . . . . . . . 20
3.2.2 The AgentModel . . . . . . . . . . . . . . . . . . . . 22

3.2.2.1 Agents definition and parameters initializa-
tion . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2.2 Managing the agent’s activities . . . . . . . 23
3.2.3 The WorldModel . . . . . . . . . . . . . . . . . . . . 25

3.2.3.1 Places definition . . . . . . . . . . . . . . . 25

iv



CONTENTS v

3.2.3.2 Choosing the activity to perform . . . . . . 26
3.2.3.3 Activities definition . . . . . . . . . . . . . . 26
3.2.3.4 Events planning . . . . . . . . . . . . . . . 27

3.2.4 The ContextModel . . . . . . . . . . . . . . . . . . . 28
3.3 Additional feature: usage of sensors in the simulation . . . . 29
3.4 Packaging the Simulation . . . . . . . . . . . . . . . . . . . 31
3.5 Simulation Output . . . . . . . . . . . . . . . . . . . . . . . 31

4 Evaluation of the Simulator 33
4.1 Features definition . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Features analysis and comparison . . . . . . . . . . . . . . . 34

4.2.1 Analysis in the base version of SIAFU . . . . . . . . 35
4.2.2 Analysis in the extended version of SIAFU . . . . . . 40
4.2.3 Summarizing the behavior of the two different ver-

sions of SIAFU . . . . . . . . . . . . . . . . . . . . . 47
4.3 Limits of the simulator . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusions and Future Work 51
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53



List of Figures

1.1 Example of living simulation in a city . . . . . . . . . . . . . . . 4
1.2 Example of simulation working life in an office . . . . . . . . . 4

2.1 A typical agent according to Macal and North definition . . . . 8
2.2 eHome example of graphical simulation . . . . . . . . . . . . . . 11

3.1 SIAFU: Background image for the simulation . . . . . . . . . . 18
3.2 SIAFU: Walls image (in white) of the simulation . . . . . . . . 19
3.3 SIAFU: Places image of the simulation . . . . . . . . . . . . . . 20
3.4 SIAFU: Places image of the simulation . . . . . . . . . . . . . . 20
3.5 List of possible agent activities . . . . . . . . . . . . . . . . . . 21
3.6 List of constants . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Fields of the agent object . . . . . . . . . . . . . . . . . . . . . 22
3.8 AgentModel to create agents and dweller methods . . . . . . . . 23
3.9 AgentModel handlePerson function . . . . . . . . . . . . . . . . 24
3.10 AgentModel handleEvent function . . . . . . . . . . . . . . . . . 24
3.11 AgentModel eat function . . . . . . . . . . . . . . . . . . . . . . 25
3.12 WorldModel create place method . . . . . . . . . . . . . . . . . 25
3.13 WorldModel doIteration function . . . . . . . . . . . . . . . . . 26
3.14 WorldModel eat function example . . . . . . . . . . . . . . . . . 27
3.15 Activities text file . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16 WorldModel start variable definition in planDayEvent . . . . . . 28
3.17 WorldModel end variable definition in planDayEvent . . . . . . 28
3.18 ContextModel overlays example . . . . . . . . . . . . . . . . . . 29
3.19 SensorModel createSensor function . . . . . . . . . . . . . . . . 30
3.20 SensorModel handleSensor function . . . . . . . . . . . . . . . . 30
3.21 Package of the simulation files . . . . . . . . . . . . . . . . . . . 31
3.22 Simulation output example . . . . . . . . . . . . . . . . . . . . . 32

4.1 SCENARIO 1, constants definition . . . . . . . . . . . . . . . . 36
4.2 SCENARIO 1, planning an event . . . . . . . . . . . . . . . . . 36

vi



List of Figures vii

4.3 SCENARIO 2, staff 6 constants . . . . . . . . . . . . . . . . . . 37
4.4 SCENARIO 2, staff 6 remaining at the meeting . . . . . . . . . 37
4.5 SCENARIO 2, staff 6 goes to the toilet after the end of the meeting 38
4.6 SCENARIO 3, activity execution example . . . . . . . . . . . . 39
4.7 SCENARIO 4, example of binary overlay . . . . . . . . . . . . . 40
4.8 SCENARIO 4, example of discrete overlay . . . . . . . . . . . . 40
4.9 Activities text file . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10 Activities interaction . . . . . . . . . . . . . . . . . . . . . . . . 42
4.11 Activities interaction: from parallel to sequence . . . . . . . . . 43
4.12 Hob function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.13 Fridge function . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.14 Cook function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 PIR sensor example . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.16 Switch sensor example . . . . . . . . . . . . . . . . . . . . . . . 46
4.17 Example of sensors’ output . . . . . . . . . . . . . . . . . . . . 47
4.18 Read function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Tables

2.1 Smart Home projects . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Comparison between Smart Environment Simulators . . . . . . 15
2.3 Comparison between ABMS tools . . . . . . . . . . . . . . . . . 16

4.1 Features table and scenarios . . . . . . . . . . . . . . . . . . . . 34
4.2 Comparison with the two version of SIAFU . . . . . . . . . . . 48

viii







Introduction 1

In our century there is a slow but significant increase of the average age of
the world population that will impact several aspects of our lives, [1]. As
a consequence, there will be an increment of the difficulty in taking care of
elderly people within their own family. For this reason there is an increase in
developing care-based technological solution: the smart-environments, like
Smart-homes. In order to have a functional smart-home some tools, like
Smart Environments Simulators, are needed to design these solutions in a
correct way. SIAFU, as we will introduce in Section 1.2, is a simulator that
has been developed to generate data for the evaluation and the comparison
of different machine learning methods in context-aware settings and it’s
meant to serve as a way to perform sanity checks, preliminary evaluations
and scalability tests before validation with real users [2].

In this chapter we are going to introduce the problem context, the works
motivations and goals.

1.1 Problem definition
The implementation of domotic pervasive systems requires some verification
and validation before it can be apply. The installation of a prototype in the
home of a user can create some issues: study and collection of data requires
long periods increasing the development time and the costs, a physical
person is needed to install and update the sensors parameters. For these
reasons behavior simulators are preferred: they can simulate many data
simultaneously.

A behavior simulator can generate in a few minutes a big amount of data,
months or years, of one or more person inside the domestic environment.

1



1. Introduction

With this approach it is possible to analyze data quickly and reduce costs
and development time.

The main goal of this thesis is to design and develop some improve-
ments of an existing generic large-scale simulator called SIAFU to support
a wide range of tasks and scenarios in the complex world of gathering and
processing contextual data.

In particular, we would implement a simulator in which we can design
a home or a flat environment with more than one room. In the simulation
we can have 1 or more persons that live in the house and can move from a
room to another one. The persons are involved in different activities during
the entire day, in particular we would like to model everyday activities like:

• Make a shower;

• Read a book;

• Relax watching the TV in the bedroom;

• Sink;

• Eat the meal (breakfast, lunch and dinner);

• Sleep during the night;

• Wake up in the morning;

• Seat on a chair in a room;

• Turn on/off the hob;

• Go to the fridge to take something from it;

• Cook a meal.

To simulate an activity several aspects need to be defined: in particular,
we need to specify where it would be performed, the time in which it starts
and its duration and which agent would be involved in it and then automat-
ically change the agent parameters like the name of the activity that s/he
is performing, her/his status and her/his temporary destination.

We would simulate the persons’ behavior and the activities in which
they are involved for many days in an automatic way. In particular, for
each day we would like to memorize different kinds of data:

2



1.2. Siafu simulator overview

• Persons’ data: for each instant of time of the simulation we would
like to know where each person is, in which activity they are involved,
their status (that means know if they are seating somewhere or if they
are standing in some part of the house);

• Sensors’ data: we would like to know the position of each sensors and
their status (on or off) for each instant of time of the simulation.

1.2 Siafu simulator overview
SIAFU [2] is a large-scale Ambient Based modeling and Simulation (ABMS)
simulator, written in Java and with a pleasant GUI. It is a generic simulation
tools for ubiquitous computing. It was developed with the idea to test
the functionality of group services and application before performing user
evaluations. It make possible to reproduce worlds and scenarios, designing
a modular world composed by three elements: the agents, the world and
the context. The behavior of the agents, the world and the context are
modeled in separate models.

The agent model, described in details in Section 3.2.2, is the decision
logic of an agent. It decides what an agent should do given it current
context and the status of the entities such ad places and other people. It
can change the properties of the agent and also set a destination for an
agent. The agents are represented as state machines in which the status
change is triggered by context switches or by random factors. With SIAFU
it is possible to gather context data for each agent, simplifying statistical
analysis.

The world model, described in details in Section 3.2.3, consists of three
parts: the environment that we want to simulate, the places and a global
event model that handles events.

The context model, described in details in Section 3.2.4, manages the
context variables that are used in the simulation. For each variable the
context model specifies the possible value of the variable, the model that
is used to simulate the values and how the values are distributed over the
environment.

There are some implemented examples available on the simulator web-
site [3] like the living simulation of few inhabitants in a city scenario, shown
in Figure 1.1 or in smaller contexts such as the working life in an office,
Figure 1.2.

3



1. Introduction

Figure 1.1: Example of living simulation in a city

Figure 1.2: Example of simulation working life in an office

1.3 Motivation and goals
The simulation of human behavior is a very complex problem caused by its
variability. It’s difficult to simulate the humans life with a good accuracy,
also the routines of people can have unpredictable variations. The attention
has been pointed out on a subset of humans events and only on elderly
people. We made this choice from the fact that elderly people tend to have
more regular life.

The idea to build a simulator like SIAFU stands in the need to test
the functionality of group services and applications before performing user
evaluations, and we wanted to generate data that are closed to real data.

4



1.4. Thesis organization

In particular in this thesis work we are going to:

• Analyze which tools the literature proposes for agent based model-
ing simulation (ABMS) and for the simulation of smart environments
(Smart-home);

• Extend the Siafu simulator in order to handle more complex activities,
like nested activities, and in order to have the possibility to introduce
and simulate some sensors for a dynamic environment simulation.

• Evaluate the simulator with a features comparison, throw examples,
between the base and the extended version of the simulator.

1.4 Thesis organization
The next chapters will focus on the thematics faced during the realization
of this work. In particular they are organized as follows:

• Chapter 2 analyzes and discusses the simulation of digital life focusing
in particular on two simulators categories: ABMS (Agent Base Mod-
eling Simulators) and simulators of Smart Home Environments. It is
also introduced the thematic of the open and free dataset containing
sensors domestic recordings.

• Chapter 3 deeply discuss the design and the implementation of the
simulator. In particular it focus on the definition of the environment
and on the behavior of the various part of the simulation (agents,
places and context).

• Chapter 4 discuss and compare our extended version of the simulator
and the base one, analyzing some examples of usage.

• Chapter 5 concludes the work with some final remarks and presents
some ideas for the future.

5





State of the Art 2

In this chapter we present the background needed to better understand
the topics discussed in this work. In particular, we focus on how the real
life can be simulated in a digital way. We are going to analyze the Agent
Base Modeling and Simulation (ABMS) tools and the Smart Environments
Simulators (that include the usage of sensors in the simulation). In partic-
ular, we focus on software solutions that emulate domestic environments,
agent-based simulators and general-purpose simulators.

2.1 Agent Based modeling and Simulation
(ABMS)

ABMS is a modeling approach that has gained more attention over the past
10 years, as mentioned in Macal et al. work [4], by the increasing number
of conferences and presentations and Agent-based software. According to
Macal and North [4], ABMS is becoming so popular, thanks to the following
factors:

1. Interdependency: ABMS makes possible to model parts of the system
as independent agents and simplifies the management of the interde-
pendencies within the whole model;

2. Modularity: with the definition of the behavior of each agent it is
possible to simulate more complex systems than with the monolithics
approaches. Splitting the complexities over more agents, we can pro-
duce more realistic systems;

7



2. State of the Art

3. Computational Power: computational power is advancing rapidly, al-
lowing to compute large-scale microsimulation models which were not
be possible to model a few years ago.

2.1.1 Agent definition
There isn’t a universal definition of the agent. An agent is an independent
component within a simulation or a model: an agent is an element that
can learn from the environment and dynamically change its behavior with
respect to the context. Jennings in et al. [5] says that the most important
characteristic of an agent is the autonomy in taking decisions. Macal in
[4] joins other characteristics necessary to an agent, shown in Figure 2.1.
In particular, an important requirement is the interaction with both the
environment and the other agents. The behavior of an agent must depend
both on the state in which the agent is and on the context in which he is.
These decisions must be taken with feedback systems in order to have a
continuous comparison with the results suggests if a choice is good or not.

Figure 2.1: A typical agent according to Macal and North definition

2.1.2 Review of some existing ABMSs
According to Macal et al. [6], the ABMS platforms can be divided in
two families: General Tools and Specific Tools. A General Tools is able to
simulate agents’ behavior but also code environmental aspects: are included
all the high level programming language like Java, C++ and MATLAB. It

8



2.1. Agent Based modeling and Simulation (ABMS)

is possible to realize simple and complex systems by implementing some
rules. In this group of Tools are included also Spreadsheets with macro
programming, for example MS Excel that is probably the simplest approach
to model but it produces models with limited agent diversity, restrict agent
behaviors and with a poor scalability. In the group of the Specific Tools we
have software with specific functions to model the agents, according to the
comparison work of Merico et al. [7]. Now we are going to present different
meaningful software solutions.

• MASON: Multi-Agent Simulator of Neighborhoods [8]. Is a free
and open source fast discrete-event multiagent library coded in Java
able to handle lightweight simulation tasks and heavy custom-purpose
simulations. MASON contains also a model library and visualization
tools in 2D and 3D. It was designed to serve ad the basis for a wide
range of multi-agent simulation tasks ranging from swarm robotics to
machine learning to social complexity environments.

• SWARM: Swarm [9] is a kernel and library for multi-agent simula-
tion of complex systems. It was developed at Santa Fe Institute with
a focus on artificial life applications and studies of complexity. It’s
the first ABMS software with hierarchical organization. This software
has a conceptual division between the model coding part and the test-
ing part. The advantage of this division consists in the fact that who
conduce experiments on the model doesn’t need programming skills.
SWARM includes also a hierarchical organization in which each con-
text, called swarm, can contains lower levels of swarms which are
integrated to the higher level. SWARM is considered the most pow-
erful and flexible simulation platform, but it also have some lacks. It
is implemented in Objective-C, because it was designed before the
large widespread of Java language, with all its flaws for example re-
quires a good experience with Objective-C and a knowledge of objects
orientation paradigm and problems in data area protection. As a con-
sequence, a user can monitor and control any simulation object, no
matter how protected it is, also directly from the graphical interface.

• NetLogo: is a free and open source software under GPL license avail-
able on the web [10]. It is a programmable modeling environment for
the simulation of natural and social phenomena, well suited for mod-
eling complex systems. It’s written mostly in Scala, a well scalable
Object-Oriented language while some parts are written in Java. An
example of work developed in NetLogo is the Wolf-Sheep Predation
model. In this model two different types of agents are defined, wolves

9



2. State of the Art

and sheep. Sheep move randomly around the environment trying to
survive, they eat grass and avoid wolves and wolves move randomly
around the environment hunting the sheep. NetLogo is a powerful
software able to scale with large amounts of agents, but is not config-
urable and shows flaws when approaching complex models.

• Repast Simphony: Recursive Porous Agent Simulation Toolkit [11].
It is a free, cross-platform and open source agent-base modeling toolkit.
It was developed at the university of Chicago with a focus on agent
bases simulations in social sciences. It is very similar to SWARM pro-
viding some libraries for creating, running, displaying and collecting
data from simulations. It was born as a Java re-coding of SWARM.
Repast, with respect to SWARM, has a better learning curve permit-
ting also to inexperienced users to build complex models. Repast has,
according to [12], the greatest functionality’s number of any ABMS
package: it supports also 2D and 3D view.

• SIAFU: is a large-scale ABMS simulator written in Java [2]. It makes
possible to reproduce worlds and scenarios, designing a modular world
composed by three elements: agents, places and context. The agents
are represented as a state machines in which the status change is trig-
gered by context switches. SIAFU makes possible to gather context
data for each agent, simplifying statistical analysis.

2.2 Smart Environments Simulators
In this section we are going to analyze some Smart Environment Simulators.
The thematic of the simulators is the same but each one has slightly different
goals and targets. Some of them have as goal the production of information
about users Activity of Daily Living (ADLs), others focus on the low level
parts of the system, activating specified sensors inside the environment.

eHome [13], is a project developed in German. A set of advanced
domotic services, such as “music-follow-person” and the “conform wake-
up” are implemented via hardware. The first one permits to the agent who
decides to listen music to move freely among the rooms without turning the
speakers on and off. The system monitors the person’s position activating
the speakers and adjusting the volume according to the room in which the
agent is. While the second one, comfort wake-up, computes the optimal
wake-up time considering various static and dynamic factors. It analyzes
the data provides by the user such as scheduled activities. As a result it
tunes home’s appliances, like the morning alarm or the coffee machine to be

10



2.2. Smart Environments Simulators

ready at the right time. The installation inside real house has an important
effort therefore they decided to test the system with a software simulator
reducing the test time and the cost. eHome is a 2D indoor simulator. It
is a point-and-click software. Once started the user can select an agent
inside the environment and walk him around rooms interacting with objects
like doors, chairs or appliances and the system will properly perform the
predefined activities. An example is shown in Figure 2.2.

Figure 2.2: eHome example of graphical simulation

ISS (Interactive Smart Home Simulator) [14] is another example
of simulator developed in Korea. It is a software able to reproduce a set
of rules that defines behaviors on devices installed inside a digital home.
The simulator was developed in order to reduce the costs of an hardware
implementation of the system. The main goal is a user’s tasks automation.
The system can reproduce a concrete study case as the following:

Currently, this is the autumn season, the most beautiful season
in Korea. When Mr. Lee arrives home and after certification,
he enters home and the light goes on. Also, the air conditioner
is turned on and switched to cooling mode. After changing his
clothes, he sits on the sofa. At this time, the context manager,
detecting his sitting on the sofa, turns on the TV to a channel
based on his favorite. When he goes out to do something, every
appliance at home will be turned off.

11



2. State of the Art

The system behavior is based on a set of well-defined if-then-else rules by
which every object of the house can change its status. The user cannot be
directly interact with the system but a function can extracts randomly an
event updating the status of the involved subjects.

TATUS [15] is an environment 3D simulator developed in Dublin. It
is able to reproduce smart technological features, like, for example, the
identification of people on entry or exit from a room, providing services to
authorized persons only. It reproduces via software the context-awareness
(the property of pervasive computing to deal with linking change int he en-
vironment and computer system) capability of smart devices within rooms.

2.3 Real life Datasets
Simulators and automated domotic systems need a great quantity of data
to be tuned. This is often a challenge: high hardware costs, long timing
in data gathering, cost of installation, system upgrade and possible faults
are issues that should cause some problems. As discussed in [16] two Smart
Home dataset categories are identified. The first group is composed by sys-
tems with an hight impact and influence in the persons’ life: they need the
installation of more than one hundred sensors within smart environments.
This projects work on the human interaction with Smart environment and
objects but they don’t focus on healthcare. Georgia Tech Smart house [17],
Georgia Tech Aware home [18] and PlaceLab [19] are some examples of soft-
ware of this category. The second group is composed by low impact systems.
A few sensors are used focusing on human activity detection and on health
status monitoring. In Table 2.1, according to [16] some data collection
projects and their modalities are summarized .

Project Multi resi-
dents

Duration Sensors Activities Occurrences

ARAS yes 2 months 20 27 1023-2177
CASAS yes 2-8 months 20-86 11 37-1513
Kansteren no 28 days 14 7 245
UvA no 2 months 14-21 10-16 200-344
Domus no 11.5 hours 78 0 (user feel-

ings)
NA

Mit no 2 weeks 77-84 13 176-278

Table 2.1: Smart Home projects

As we can see in Table 2.1, not all the projects are able to handle

12



2.3. Real life Datasets

more than one agents. We can also identify a broad range of values for the
duration of the simulation, this is caused from different aspects:

• A budget limitation: involving different people on the project has high
costs and also sensors have their costs;

• Number of sensors: also if the system has a low level impact on the
agents’ life it can be an elevate number of sensors, the value depends
on the size of the smart environment, and on the the number of signals
that they want to receive;

• Various different activities: even if all these projects study human
life, they consider different activities performed by the agents, vary-
ing their number between 7 and 27.

Domus [20]: they asked to the agents to autonomously define their ac-
tivities to analyze and categorize them offline.

ARAS [21]: Activity Recognition with Ambient Sensing. It is a project
for the automatic human ADLs recognition. They are considering two
houses with 20 sensors able to capture agents’ actions and movements. For
each house, ARAS’ has recorded a full month of information containing sen-
sor data and activity labels, resulting in a total of two months data. The
dataset is available on the website of the project [21].

CASAS [22]: is a project developed in at Washington State University
in order to provide an interdisciplinary research platform of intelligent en-
vironments. There are two main goals. The first one is the maximization
of the user’s comfort recognizing, discovering and tracking the user’s ac-
tivities for the automated responses. The second one is to minimize costs,
maintenance and saving energy. The datasets are available on the project’s
website [22].

Kastereen Dataset [23]: the aim of this project was to correctly an-
notate human’ ADLs starting from a great amount of binary data. This
experiment left 28 days providing more then 2000 sensor events. Once that
they have obtained the data they used two different approaches to anno-
tated the obtained data (Conditional Random Fields and Hidden Markov
Model). The dataset is available on the project’s website [23].

13



2. State of the Art

Contexta-CARE [24]: this project is under development at the No-
madis labs of University of Milan-Bicocca, is an independent Living system
able to highlight awareness and ambient intelligence in order to improve
the quality of life of users who want to live independently. Awareness is
meant as the technological ability to handle and reason on complex se-
quences of events taking care also the context in which they occur. The
system is composed by the Wireless Sensor Network and by the intelligent
data-concentrator. The first one is used to collect environmental data (like
ambient light, temperature, humidity etc.). The second one processes the
data stored in a database, continuously analyzing physical activities carried
out by the agents, predicting risky situations. The project has been tested
in an independent living environment composed by 4 apartment with 15
agents, proving to be a stable system and collecting necessary data. Their
result are not available.

14



2.4. Summary of the presented simulators

2.4 Summary of the presented simulators
Analyzing the Smart Environments Simulator present in the literature, de-
scribed in Section 2.2 and summarized in Table 2.2, we can see that the
simulators can be too complex to be extended to manage different activities
and sensors, like TATUS; or maybe they aren’t so difficult to implement
but they can’t handle complex context information, like ISS, or work with
a too restricted set of activities, like eHome. In speech words they are or
too complex to implement or they aren’t completely compatible with the
Agent Based modeling simulation.

PROS CONS

eHome

• Handle advance domotic
service;

• More flexible.

• Need the collection of
some data from the user
before the simulation
start;

• Work with a restricted set
of activities.

ISS

• Good for user tasks au-
tomation;

• Based on well-defined if-
then-else rule.

• Users cannot interact di-
rectly with the system;

• Can’t handle complex con-
text information.

TATUS

• Reproduce smart techno-
logical features;

• Deal with context-
awareness capabilities of
smart devices.

• The implementation is
not so easy, it’s based on
a game engine;

• No support real time sim-
ulation;

• It is like a third person
game: the user commands
a virtual character to per-
form tasks.

Table 2.2: Comparison between Smart Environment Simulators

Analyzing the ABMSs present in the literature, described in section
2.1.2 and summarized in Table 2.3, we can understand that some tools
have a steep learning curve, like Repast Simphony and SWARM, or have
some lack in the documentation and are not so popular to be simply used,
like MASON. Netlogo instead is good for complex systems and it is able
to scale with a large amount of data but it isn’t much configurable, also
because written in Scala and not in Java, and it has some flaws with complex
model. SIAFU could be a good solution tool for reach our goals, thanks to

15



2. State of the Art

its pleasant GUI and the support of multi-agent simulation, but it doesn’t
support the implementation of complex activities (like nested activities)
and sensors. However SIAFU has another interesting features: it designs
modular world composed by three elements (agents, places, context). Using
this last features we can extend SIAFU in order to have the possibility to
model also dynamic environments, throw the usage of sensors, and figured
out more complex activities to have a more realistic simulation.

PROS CONS

MASON

• Can handle heavy and
lightweight simulation
tasks;

• Support multi-agent simu-
lations.

• Lack in the documenta-
tion and popularity.

SWARM

• Support multi-agent simu-
lations;

• There is a division from
coding and testing part.

• Implemented in Object-C;
• Lack in data protection;
• Steep learning curve.

Netlogo

• Good for complex sys-
tems;

• Able to scale with a large
amount of data.

• Written in Scala;
• Not much configurable;
• Flaws with complex mod-

els.

Repast Sim-
phony

• It is the Java version of
SWARM. • Not so easy to learn.

SIAFU

• It has a pleasant GUI;
• Design modular world

composed by three el-
ements (agents, places,
context);

• Support multi-agent simu-
lation.

• Doesn’t support the im-
plementation of complex
activities;

• Doesn’t support the sen-
sors implementation.

Table 2.3: Comparison between ABMS tools

After this analysis we have decided to choose SIAFU for our simulation
and we have extended it in order to have the possibility to manage more
complex activities and to be able to modeled some sensors.

16



Design and Implementation of the Simulator 3

This chapter illustrates how the simulator has been designed and imple-
mented, and how a new simulation can be created. We have decided to use
SIAFU, a large-scale ABMS simulator able to reproduce worlds and scenar-
ios designing a modular world composed by three components: the agents,
the places and the context. SIAFU in able to simulate the behavior of one
or more agent (support the multi-agent simulation) that live in house com-
posed by a few rooms. To reach our goals SIAFU isn’t “powerful” enough.
As a consequence, we need to extend the simulator in order to allow the
usage of sensors in the simulation and in order to be able to model more
complex activities.

The creation of a new simulation in Siafu is composed by 3 steps:

1. The definition of the environment;

2. The definition of the behavior;

3. The packaging of the various parts of the simulation to make it con-
forming to a directory structure.

3.1 Defining the environment of the
simulation

The simulation environment is composed of 3 parts: the background (e.g.,
the map of the house), the walls (i.e, the areas that are not accessible),
and the places where agents can stay. All of them are created using PNG
images.

17



3. Design and Implementation of the Simulator

3.1.1 Background

The background image is simply displayed as the “ground” of the simulation,
and is the base of the simulation. The dimension of all the other images
created for the simulation must have the same dimension of the background
image.

In our simulation the background is the second floor plan of a building
of Politecnico di Milano in Como.

Figure 3.1: SIAFU: Background image for the simulation

3.1.2 Walls

The walls image defines the places where the agents (alias the people in
the simulation) can walk and where they can’t. This image is based on the
background one: walkable areas are marked in black, while the walls and
the objects of the room (alias the non-walkable areas) are colored in white.

18



3.1. Defining the environment of the simulation

Figure 3.2: SIAFU: Walls image (in white) of the simulation

3.1.3 Places

Places define areas where the agents can go or stay. In our case places are
used to identify the various activities that an agent can do: for example, if
an agent is in the bed (a “bed place” will be therefore modeled), it means
that the agent is sleeping, or if s/he stay at the “shower place” s/he is
having a shower.

There are two different ways for the definition of places.
• The first one consists in defining the places in the WorldModel (the

java class where it is possible to specify what it happens in a place
and handle the varoius events that can happen during the day), but it
can be very difficult because you need to know the exact coordinates
of the places, which are not so immediate.

• A better and simpler way to define the places is by using images: for
each type of place one can create an image where every place of that
type is represented by a black pixel.

For example, the image in Figure 3.3a represents the places that correspond
to the seats around the kitchen’s table, 3.3b represents the position of the
beds and the Figure 3.3c indicates where the hob is. In the map they are
represented like in Figure 3.4.

19



3. Design and Implementation of the Simulator

(a) Kitchen seat (b) Bed places (c) Hob place

Figure 3.3: SIAFU: Places image of the simulation

(a) Kitchen seat (b) Bed places (c) Hob place

Figure 3.4: SIAFU: Places image of the simulation

3.2 Programming the Behavior
To have a running simulation you need to program in java three behavior
models: AgentModel, WorldModel and ContextModel. These classes extend
the preexisting BaseAgentModel, BaseWorldModel and BaseContextModel
of Siafu. There is also a useful class called Constants, it isn’t mandatory
but it helps making the model more readable and “lighter”.

3.2.1 Activities and parameters definition

In this section we should describe the definition of the activities in which
an agent can be involved. A list of the possible activities is shown in Figure
3.5.

20



3.2. Programming the Behavior

Figure 3.5: List of possible agent activities

For each activity some parameters should be defined. An example is
shown in Figure 3.6. In particular, line 21 indicates when a person wakes
up while line 22 indicates that a person goes to the toilet more or less every
3 hours. The Figure 3.7 lists the constants that are displayed in the Agent
object: for example, line 26 tells in which activity the person is involved, line
29 indicates if the agent is seating or standing somewhere (corresponding
to the value of the variable “status”), line 42 tells where the agent is going
in that particular moment, line 35 indicates the period of time between two
different visits at the toilet, line 33 and 34 tell when the day starts and ends
respectively.

Figure 3.6: List of constants

21



3. Design and Implementation of the Simulator

Figure 3.7: Fields of the agent object

3.2.2 The AgentModel

The AgentModel specifies the behavior of the agents: what they do, where
they go, etc.

3.2.2.1 Agents definition and parameters initialization

Now we want to proceed with the creation of the agents that live in the
environment that we would simulate.

The first step to do consists in the creation of the agents and their
insertion into an ArrayList and in their initialization. For example, in
Figure 3.8 the agents are inserted into an ArrayList called people (line 66):
its size is the value of the constant POPULATION defined in the constants
class. This method invokes another method, see line 70 in Figure 3.8, that
sets all the fields of the agent object. An important thing is that all the
agents must have the same fields.

22



3.2. Programming the Behavior

Figure 3.8: AgentModel to create agents and dweller methods

3.2.2.2 Managing the agent’s activities

In order to tell what can do the dweller of the house we implement the
functions doIteration and handlePerson in which you specify the activities
that the agents can do and where they can be in a specific period of time of
the day. For example, in Figure 3.9, the variable ACTIVITY is analyzed.
Lines 143-148 show the cooking activity, which specifies the action to do
if the agent is in the right place (line 145).With this method it is possible
to verify if the agents are at destination, and after reaching the destination
it is possible to send them back to where they came from and make them
waiting for another activity.

23



3. Design and Implementation of the Simulator

Figure 3.9: AgentModel handlePerson function

Doing an activity for an agent means that he responds to an event that
happens at a specific time: this is modeled through the handleEvent method
that verifies if the agent needs to do something and makes it happen.

For example, in figure 3.10, in line 268 the function checks if the agent
needs to eat and makes it happen in line 269.

Figure 3.10: AgentModel handleEvent function

24



3.2. Programming the Behavior

Each activity corresponds to a different function, defined in the World-
Model, and recalled in the AgentModel. For example, Figure 3.11 shows
the eat function setting:

• The place where the activity is done (the destination), line 239;

• The status of the agent (if the agent is seated in a place or if he is
standing), line 238;

• The activity, line 240;

• The image that represents the agent in the simulation during that
action (the color of the image of the agent can change), line 237.

Figure 3.11: AgentModel eat function

3.2.3 The WorldModel
In the WorldModel it is possible to specify what it happens in a specific
place and handle the various events that can happen during the day like
cooking, eating, having a shower.

3.2.3.1 Places definition

The first thing to do is the creation of all the needed places and the creation
of the variable busy: this variable identifies if in that place there’s an agent
or not. Such a method is shown in Figure 3.12.

Figure 3.12: WorldModel create place method

25



3. Design and Implementation of the Simulator

3.2.3.2 Choosing the activity to perform

Like in the AgentModel there is the function doIteration to check which
event occurred in each period of time. After this point in the WorldModel
an ArrayList called times is created, with all the activities name, start time
and end time. In Figure 3.13 at line 76 every element of the times ArrayList
is analyzed. At lines 77-88 the event eat is checked. The variable now is
compared with the variable that indicates the time in which the meal starts
and the variable that indicates if the activity hasn’t already been done, line
79. If these conditions are satisfied, the agent can do the activity (line
80) and set the variable done at true to indicate that the action is done.
To terminate the activity the variable now is compared with the variable
specifying if the time for the meal is ended and then terminates it, lines
85-87.

Figure 3.13: WorldModel doIteration function

3.2.3.3 Activities definition

Every activity corresponds to a different function where it is possible to set
the variables that are needed to make the activity happen.

26



3.2. Programming the Behavior

For example, to model a person that has to have a meal seated somewhere
in the kitchen, you need to check if there are some places of that type and
if one of these is free: this is exemplified in Figure 3.14 at lines 236-244.
Then the values of the variables of the agent that do the activity can be
updated.

For example, in Figure 3.14 at line 249 the value of the variable EVENT
is set to Eat, to indicate that the agent is having a meal; the variable
STATUS is set to seated, line 251, to indicate the fact that he is sitting in
one of the kitchen seat; the destination is set to the position of the place
where he is seating, line 250.

Figure 3.14: WorldModel eat function example

3.2.3.4 Events planning

The last step consists in planning every event, i.e. when each event occurs
(by specifying some time variables). From a text file called activities, struc-
tured like in Figure 3.15 we read the name of the activities and all the
parameters that we need to calculate the start and end time variables. Fig-
ure 3.16 at lines 384-395 defines the time variable start related to the start
time of an activity. This variable is defined through some randomly time
variables, like in line 385. The parameters for the creation of that random
variables are read from the text file mentioned above, lines 380-382. The
variable end, related to the end of an activity is defined in the same way of
the variable start, lines 399-413 in Figure 3.17. In lines 414-420 in Figure
3.17 the ArrayList times is created and filled.

27



3. Design and Implementation of the Simulator

Figure 3.15: Activities text file

Figure 3.16: WorldModel start variable definition in planDayEvent

Figure 3.17: WorldModel end variable definition in planDayEvent

3.2.4 The ContextModel
The overlays, also called context variables, can be used to define contextual
variables, like for example the noise level, the temperature at each position
in the map, and so on. The ContextModel specifies how the overlays change

28



3.3. Additional feature: usage of sensors in the simulation

on over the time. To initialize the overlays we use images, that are trans-
lated into a matrix form to allow their modification during the simulation.

In this simulation we use the overlays only to identify the different areas
of the map, Figure 3.18: the bathroom area, shown in Figure 3.18a, the
kitchen area in Figure 3.18b, the bed room area, and so on.

(a) Bathroom Area (b) Kitchen Area

Figure 3.18: ContextModel overlays example

3.3 Additional feature: usage of sensors in
the simulation

In our simulation we have also the possibility to introduce and configure
some sensors, in particular we are working with PIR sensors and “switch
sensors”. In order to model the behavior of the sensors a new java class
called SensorModel is needed.

The SensorModel class is similar to the AgentModel class described in
section 13.2.3.

In particular it contains the functions:

• createSensor, shown in Figure 3.19 in which the variables of the
object Sensor are set, lines 59-64; then the sensor that we have already
created is added to an arrayList that contains all the sensors of the
simulation.

• handleSensor, shown in Figure 3.20.
In lines 83-92 the behavior of the PIR sensor is analyzed in particular
the sensor is activated when the agent enters in a specific room. To
verify this condition we check the variable context of the agent and of
the sensor; if the result if true the sensor is activated.
In lines 95-103 the “switch sensor” is analyzed, in particular the sensor
is “on” for the entire duration of the event in which the agent is

29



3. Design and Implementation of the Simulator

involved. In the example in Figure 3.20 the sensor “Hob” is activated
as long as the agent is cooking.

Figure 3.19: SensorModel createSensor function

Figure 3.20: SensorModel handleSensor function

30



3.4. Packaging the Simulation

In addition the function activateSensor and disactivateSensor are cre-
ated. These functions are needed to change the status and the icon of the
sensors. In the first function the status is set to “on” and the image is set
to this one: , the icon image is green; in the second function the status is
set to “off” and the image is this one: , the icon image is blue.

3.4 Packaging the Simulation
Siafu is able to run the simulation if it conforms to a directory structure
and if it refers to a configuration file. This requires the creation of a folder
that contains all the java class needed for the simulation and another folder
with all the images in PNG format, shown in Figure 3.21.

The folder that contains the images is organized in some subfolder:

• The subfolder map will contain the background.png and the wall.png
images;

• The subfolder overlays contains all the overlays images;

• The subfolder places encloses all the places images;

• Sprites are all the icons that represent the agents(e.g., ) or every-
thing else in the simulation.

Figure 3.21: Package of the simulation files

3.5 Simulation Output
The output of the simulation is an excel file with the values of the variable
of interest. In our case the output file, an extract is shown in Figure 3.22,
contains these variables and their values:

31



3. Design and Implementation of the Simulator

• Time;

• entityID: the name of agent and sensors;

• position: the coordinates of the agents at that time, and the coordi-
nates of the sensors;

• atDestination: true if the agent is at his destination place, false
otherwise;

• activity: the activity that the agent is involved in;

• desiredToilet: indicates the nearest free toilet;

• seat: the place where the agent returns after each activity;

• sleep: the time at which an agent goes to sleep;

• event;

• nextEventTime;

• nextToiletVisit;

• WakeUp: when the agent wakes up in the morning and start his day;

• status: indicates if an agent is standing or seating somewhere;

• temporaryDestination: the place assigned for a certain activity for
a certain time

• sensor: indicate if the sensor is “on” or “off”;

Figure 3.22: Simulation output example

32



Evaluation of the Simulator 4

This chapter reports an evaluation study in order to verify the improvements
of our version of the simulator. For this purpose, some different possible
features of usage are investigated: each feature is analyzed in the base
version of SIAFU and in its extended version in order to highlight the
differences between the two versions of the simulator. We have decided to
“improve” the simulator in order to have a more “real” simulation of the
typical day of a person that stays for the most of the time in the house,
including more difficult activities. In particular we are dealing with sensors
that monitor the real position of the person and also to have the possibility
to easily understand if the routine of that person changes and if there are
some anomalies in his behavior.

4.1 Features definition
To evaluate the functionality of the simulator we have defined four different
features to analyze.

• Feature 1, activities scheduling: it consists in the definition of
the scheduling of the different activities that the agent will do during
the day.

• Feature 2, activity conflict (overlap) management: it consists
in the management of the different activities, i.e. when to do an activ-
ity, when to stop it or choose which activity is being to be performed
if two of them should start at the same time.

• Feature 3, activities complexity: it consists in the “real” execu-
tion of the different activities in the simulation.

33



4. Evaluation of the Simulator

• Feature 4, dynamic environment simulation: it consists in the
characterization of the environment of the simulation.

4.2 Features analysis and comparison
In this section we will analyze the different features, described above in
section 4.1, in both the version of the simulator in order to shown its
capabilities and limits. In order to do this, we can refer to some cases of
usage of each feature, Table 4.1.

FEATURE 1 Scenario 1: make a shower at
17.00
Scenario 2: cook breakfast start-
ing between 7 and 8 am

FEATURE 2
Scenario3: eat and after that go-
ing to the toilet
Scenario4: randomly choose
from relax or read a book
Scenario5: change activity with-
out ending the first one

FEATURE 3 Scenario6: go out from the bed-
room and go in the kitchen
Scenario7: change place during
the cooking activity: go to the
hob than go to the fridge and re-
turn to the hob

FEATURE 4 Scenario8: show the overlay for
the bathroom area
Scenario9: usage of sensor

Table 4.1: Features table and scenarios

SCENARIO 1: in this context we are taking into consideration two
rooms (the kitchen and the bathroom) and the behavior of only one person.
At a predetermined time (5 p.m) the agent moves from the kitchen and
goes to the bathroom to make a shower. After the shower he goes back to
the kitchen.

SCENARIO 2: in this context we are considering only one room and
one agent. The agent that is in the kitchen at a random time (between 7

34



4.2. Features analysis and comparison

and 8 a.m) moves from his seat and start cook at the hob. When he has
finished, he returns back to his seat and waits for something new to do.

SCENARIO 3: in this scenario we consider the usage of two rooms
(bathroom and kitchen) and the behavior of one agent. The agent is eating
a meal in the kitchen and he needs to go to the toilet. The agent doesn’t
interrupt the meal, he first ends it and then goes to the toilet.

SCENARIO 4: in this case we are going to consider two rooms (bed-
room and kitchen) and one or two agents. The agents at a certain time (for
example 3 p.m) can randomly choose which activity do: read a book lying
in the bed or relax in the bedroom.

SCENARIO 5: in this context we are taking into consideration the
usage of one room (the kitchen) and the behavior of only one agent. The
agent involved in one activity can’t change activity as long as the first one
is ended (he can’t start eating if he hasn’t finished to cook).

SCENARIO 6: this scenario consider the usage of the rooms (bed-
room and kitchen) and the behavior of one agent. The agent is performing
the simple activity of waking up and going to seat in the kitchen.

SCENARIO 7: in this context we are going to take into consideration
the usage of one room (the kitchen), the behavior of one agent and the us-
age of different places in the room. The agent is cooking a meal this means
that he need to go to the hob and turns it on, then goes to the fridge and
takes some ingredients and returns to the hob to cook them.

SCENARIO 8: in this scenario we are simply going to show the static
environment simulation (for example the bathroom area of the map) throw
the usage of the overlays.

SCENARIO 9: in this scenario we are introducing the usage of sensors
(PIR and “on-off” sensors) and shown their behavior and status during an
activity (for example during the cookingBreakfast activity, Figure 4.17).

4.2.1 Analysis in the base version of SIAFU
The base version of SIAFU can model simple simulations with some basic
functionalities. The agent can be involved in simple and “predefined” activ-
ities. We are going to show this, by analyzing the different features defined

35



4. Evaluation of the Simulator

in the previous section.

FEATURE 1: activities scheduling
Referring to SCENARIO 1, the base version of SIAFU permits the schedul-
ing of the different activities during the entire day only in a fixed way, that
means that each activity starts and ends according to the decisions of the
developer. This means that if we want to plan a meeting during the day,
some constant variables, in the Constants java file, are must be created. For
example in Figure 4.1 we are defining respectively the hour at which the
meeting starts, its duration and a possible expected delay of the duration
of the meeting. Then in the WorldModel java file, shown in Figure 4.2, the
event meeting is planned using the constants variables previously defined.
In this way, every day of the simulation the event meeting starts at the
same time and has the same duration.

Figure 4.1: SCENARIO 1, constants definition

Figure 4.2: SCENARIO 1, planning an event

FEATURE 2: activity conflict (overlap) management
Referring to SCENARIO 3, the base version of SIAFU has only one method
to manage the occurrence of two activities in which the second one starts
when another one is being acting: ignore the second activity as long as the
first one is ended. For example, an agent is at the meeting event that starts
at 11.00 while has a duration of one hour and a half plus a possible delay,

36



4.2. Features analysis and comparison

shown in Figure 4.1, and an agent needs to go to the toilet at 11.53, like
“staff 6” in Figure 4.3. In Figure 4.4 we can see that for the agent “staff
6” is arrived the time to go the toilet but he stays at the meeting and go
to the toilet only when the meeting is ended, shown in Figure 4.5.

Figure 4.3: SCENARIO 2, staff 6 constants

Figure 4.4: SCENARIO 2, staff 6 remaining at the meeting

37



4. Evaluation of the Simulator

Figure 4.5: SCENARIO 2, staff 6 goes to the toilet after the end of the
meeting

FEATURE 3: activities complexity
Referring to SCENARIO 6, the base version of SIAFU is able to handle only
simple activities. We define simple activity the one that consist in change
the place were the agent is only when the activity starts and returns to
the place where he stays for his default activity. In particular we have two
default activities, one for the night and one for the day when nothing else
happens: RESTING, during the night (the agents are sleeping in the bed),
AT−SEAT, during the day (when the agents haven’t nothing of particular
to do, they are sitting on a seat in the kitchen).

An activity starts when the time of the current simulation is equal to
the start time of the activity; in that moment the agent moves to the place
associated with the activities. The agent remains in the place of the activity
as long as the activity ends and than he goes back to his place. In the Figure
4.6 the path that the agent follows in order to go from his desk to the seat
in the meeting room and the opposite path to return to his desk are shown.

38



4.2. Features analysis and comparison

(a) Agent going to the meeting (b) Agent returning to his desk

Figure 4.6: SCENARIO 3, activity execution example

All the activities in this version of SIAFU work like we explain before.
Activity that change place more then once can’t be handle in this version
of the simulator. It also isn’t able to deal with activity that should starts
at the same time for the same agent.

FEATURE 4: dynamic environment simulation
Referring to SCENARIO 8, the base version of SIAFU describes the envi-
ronment throw a static behavior: the usage of overlays. Two different types
of overlays are used:
binary overlays, used to identify the different parts of the map, and dis-
crete overlays, used to identify for example the noise level or the WIFI
hotspot range in each position in the map. That’s In the first type any
pixel value above a threshold translate as true, otherwise it translates to
false. In the second type are define multiple thresholds and tag for each
interval of value; the pixel value is then fit on the right one. For each over-
lay an image in gray scale is created. In Figure 4.7 there is an example
of binary overlays: the image used to create the“BathroomArea” overlay,

39



4. Evaluation of the Simulator

Figure 4.7a, the result of that in the simulation, figure 4.7b.

(a) BathroomArea overlay image (b) OfficeArea overlay result

Figure 4.7: SCENARIO 4, example of binary overlay

In Figure 4.8 there is an example of discrete overlays: the image used
to create the“Temperature perception” overlay, Figure 4.8a, the result of
that in the simulation, Figure 4.8b.

(a) Temperature perception overlay
image

(b) Temperature perception overlay
result

Figure 4.8: SCENARIO 4, example of discrete overlay

4.2.2 Analysis in the extended version of SIAFU
In this version of SIAFU we have improved the basic function of SIAFU,
like the possibility of create random activities, manage the activities that
occur in the same time in a better way and the possibility for the agent to
be involved in complex activities like nested activities (activities that are
formed by different simple activities). We have also introduced the usage
of some sensors in order to have a better and complete simulation and to

40



4.2. Features analysis and comparison

discover if there are some “anomalies” or significant changes during the rou-
tine of the day.

FEATURE 1: activities scheduling Referring to SCENARIO 2, in
this version of SIAFU the activities can be schedule in a fixed way, like in
the base version of the simulator, or in a random way: that means that
the variables that are needed, like the start time of the activity and the
duration of it, are randomly selected between a range of possible values
with a fix minimum and maximum. This values are written in a txt file
called “activities”. The file has a fixed structure, shown in Figure 4.9.
Each line corresponds to a different activity and to be correctly read by the
simulation the variables must be written in the following order:

1. The name of the activity;

2. The minimum hour at which the activity can start;

3. The maximum hour at which the activity can start;

4. The maximum minute at which the activity can start;

5. The maximum hour for the duration of the activity;

6. The maximum minute for the duration of the activity.

Each variable must be separate from the next one by one white space
and when the variable is a number it must be declared as name = number,
(for example, breakfast−start−hour−min = 9).

Figure 4.9: Activities text file

41



4. Evaluation of the Simulator

FEATURE 2: activity conflict (overlap) management
Referring to SCENARIO 4, in the “extended” version of the simulator it
might happen that during an activity another one needs to be perform by
the same agent. In particular we can have 3 different case of interaction
between different activities, shown in Figure 4.10 in which the black line
indicates the activity A and the blue line indicates the activity B.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 4.10: Activities interaction

In case 1 where activity B starts after the end of the activity A (Figure
4.10a) there aren’t any problem in the management of the two activities
because the agent completes the first activity and then performs the second
one, that’s the normal behavior for the activity in the base version of the
simulator.

In case 2 where activity B starts before the start of the activity A
and ends after its end (Figure 4.10b) the simulator can deal with the two
activities different ways:

1. The agent can ignore the second activity and continues the first one;

2. The agent can stop doing the first activity and start from the begin-
ning the second activity;

3. The agent can finish the first activity and then performs the second
one but not from the beginning time. For example A is scheduled to
start at 9.00 and end at 9.30 and B to start at 9.25 and end at 9.40
for a duration of 15 minutes. In this case the agent finishes activity
A and then performs B but with a duration of 10 minutes and not of
15 minutes.

Also in case 3 where activity B starts after the start of A and ends
before the end of A, shown in Figure 4.10c, the simulator can assume
different behaviors:

1. Completely ignore activity B and do the activity A like in the simple
case;

42



4.2. Features analysis and comparison

2. Start A and stop it when B is ready to be performed, then perform
B;

3. Start the first activity, stops it in order to perform the second activity.
When the second activity ends return to the first one to complete it
for the remaining time.

In both case 1 and case 2 there is a particular behavior: when the agent
is performing an activity and he needs to go to the toilet the simulator ends
the activity in which the agent was involved and lets him go to toilet. This
means that the activities are not in parallel but are in sequence, like in
Figure 4.11.

Figure 4.11: Activities interaction: from parallel to sequence

FEATURE 3: activities complexity
Referring to SCENARIO 7, in the implemented version of the simulator we
can easily manage simple activities, like in the base version as described in
FEATURE 3 in Section 4.2.1, and also activities that are more complex.
A complex activity that we have analyzed is relative to the cooking a meal.
This activity is tagged as “complex” because it consists in some consequent
steps with different movements in different places without changing the
activity (in the base version a change of place stands for a change of activity).
In the cooking activity, for example, the first thing that the agent does
consists in going to the hob and turn it on; then he may need to take
something from the fridge and then return back to the hob in order to put
the ingredients in the pan and maybe repeat these actions more than once.
This behavior is implemented with nested activities. The first thing to do
is writing the different functions that correspond to the sub-activities that
are part of the complex activity, in our example the simple activities are
the “hob” function, shown in Figure 4.12, and the “fridge” function, shown
in Figure 4.13. Then, the activity “cook” consists in calling such functions,
as in Figure 4.14.

43



4. Evaluation of the Simulator

Figure 4.12: Hob function

Figure 4.13: Fridge function

44



4.2. Features analysis and comparison

Figure 4.14: Cook function

FEATURE 4: dynamic environment simulation
Referring to SCENARIO 9, the introduction of some sensors allow us to
describe the environment in a dynamic way because we can know where
the agent is and what he is doing at any time thanks to the status of the
sensors. In particular two different types of sensors are introduced:

1. The sensors for the presence of the agent in a room: context driven.

2. The “switch” sensors: activity driven.

The sensors of the first type by default are set to off and they remain in
that state as long as an agent enters in the room where the sensor is placed,
in that case the status change to on. When the agent goes away from the
room the sensor returns to the off state. To understand when the agent
and the sensor are in the same room we perform a context analysis: the
sensor turns on if and only if its context and the context of the agent have
the same value (the context indicates the area of the map where the agent
or the sensor are in a certain moment). This is checked in the function
handleSensor in the SensorModel java class, the Figure 4.15 shown the
check of the context for the bathroom presence sensor.

45



4. Evaluation of the Simulator

Figure 4.15: PIR sensor example

Also the sensors of the second type have as the state set to off as default,
but in this case they remain in that state as long as the agent starts the
activity in which the sensor is involved and turns it off only when the
activity is ended. For example, the activity cook implies that the agent
goes to the hob and cooks something: the sensor related to the hob turns on
when the agent starts cooking and turns off when he ends the activity. Also
this check is performed in the function handleSensor in the SensorModel
java class. An example is shown in Figure 4.16.

Figure 4.16: Switch sensor example

The big difference between the two types of sensors stands in the fact
that the second one remains activated also when the agent aren’t physically
in the same place of the sensor. That is the reason that permits us to
implement and perform complex activities, like nested activities, without

46



4.2. Features analysis and comparison

having an anomalous behavior of the sensor during the execution of the
activities.

4.2.3 Summarizing the behavior of the two different
versions of SIAFU

As we can see from Table 4.2 the two versions of the simulator can be
involved in simple activity. In particular both can:

• manage activities that start and end in a preset time (scenario 1);

• wait to do an activity unless the first one is ended (scenario 3);

• change the place where the agent is staying (scenario 6);

• show during the simulation the overlay of a specific area of the map
(scenario 8);

The extended version of the simulator can also:

• chose the start time and the duration of an activity in a random way
in a specific interval of values defined by the user (scenario 2);

• select which activity to perform among those having the same start
time (scenario 4);

• deal with complex activities that include the change of different places
during its execution (scenario 7);

• use sensors in the simulation and analyze their behavior (scenario 9).
In Figure 4.17 there is an example of the output of the sensors during
the activity cookBreakfast;

Figure 4.17: Example of sensors’ output

47



4. Evaluation of the Simulator

SIAFU
Base Extended

FEATURE 1 Scenario 1: make a shower at
17.00

YES YES

Scenario 2: cook breakfast start-
ing between 7 and 8 am

NO YES

FEATURE 2
Scenario3: eat and after that go-
ing to the toilet

YES YES

Scenario4: randomly choose
from relax or read a book

NO YES

Scenario5: change activity with-
out ending the first one

NO NO

FEATURE 3 Scenario6: go out from the bed-
room and go in the kitchen

YES YES

Scenario7: change place during
the cooking activity: go to the
hob than go to the fridge and re-
turn to the hob

NO YES

FEATURE 4 Scenario8: show the overlay for
the bathroom area

YES YES

Scenario9: usage of sensor NO YES

Table 4.2: Comparison with the two version of SIAFU

4.3 Limits of the simulator

Neither the base version nor the extended version of SIAFU can resolve the
case in which there are two activities that have a partial time overlap and
the second activity starts when the first one is still in execution. In that
case the simulator ignores the second activity and continues the first one.

A big limit of the simulator consists in the fact that we can specify only
one type of place in which an activity can be perform, we can’t associate
two different place’s types for one activity. For example the activity read
can be perform in places of type bed, line 276 in Figure 4.18, that means
that the agent can’t perform the activity read in place that aren’t bed, he
can’t read seat on a chair because chair and bed haven’t the same place
type.

48



4.3. Limits of the simulator

Figure 4.18: Read function

49





Conclusions and Future Work 5

5.1 Conclusions
In this work we have presented a simulator that is able to handle a multi-
agent simulation in a smart home environment. It serves as a way to per-
form preliminary evaluations and scalability tests before validation with
real users and real smart home. The ambient that has been simulated is
specified by four information sources: an agent model, a context model, a
world model and a sensor model. The latter has been introduced in this
thesis. With this clear separation between the different information sources,
the simulator can easily simulate a wide range of different scenarios.

We have focused on modeling these information sources and on how
they are handled by the simulator. In particular, the ambient that we have
modeled is a house in which two elderly persons live and in the simulator
we handle the activities they do during the day.

We have improved different features of the simulator in order to obtain
a more flexible and complete simulator able to handle more complex activ-
ities and a dynamic environment.

In particular:

• The activities can be schedule in a fixed way or in a random way (the
start time and the duration of the activity is randomly select between
a range of values);

• The simulator can manage the conflict or overlap between different
activities in a better way deciding when to do the activity, when to

51



5. Conclusions and Future Work

stop it and choose which activity is being to be performed if two of
them should start at the same time;

• Now we can handle also simple activities, a simple movement from
a place to another one, and complex activities that consist in some
consequent steps with different movements in different places without
changing the activity;

• Our simulator, with the introduction of some sensors, is able to de-
scribe the environment in a dynamic way because we can know where
the agent is and what he is doing at any time thanks to the status of
the sensors.

5.2 Future Work
The simulation of human behavior is a complex task, from this work it
is possible to identify some interesting further developments in order to
improve the simulation’s power.

One of these improvements could be the possibility, for the simulator,
to recognize particular activities like the absence of the person from the
house, for example when the dweller is out during dinner time (currently
we model activities that are always at home), the simulator might recognize
that he is eating outside. Moreover the set of activities simulated can be
improved with other activities (ADLs) involving all the rooms of the house
and not only one or two rooms. For example the possibility to clean the
entire house or listen the music also if the person is not in the same room
of the radio.

Another interesting improvement should be the inclusion of more sen-
sors in order to have more parameters, like the weather condition and the
sunrise/sunset time, to increase the simulator realism.

One more important topics is the possibility to perform simultaneous
actions to ensure more realistic life simulation, for example the possibility
to watch the TV during a meal or listen the music when a person is reading
a book.

52



Bibliography

[1] CDC. Public health and aging: Trends in aging — united states and
worldwide. In MMWR 2003; 52(06);101-106, 2003.

[2] Miquel Martin and Petteri Nurmi. A generic large scale simulator for
ubiquitous computing. In Mobile and Ubiquitous Systems: Networking
and Services, 2006 Third Annual International Conference on, pages
1–3. IEEE, 2006.

[3] Siafu simulator website. http://siafusimulator.org/, 2015.

[4] Charles M Macal and Michael J North. Agent-based modeling and
simulation. In Winter simulation conference, pages 86–98, 2009.

[5] Nicholas R Jennings. On agent-based software engineering. In Artificial
intelligence, 117(2):277-296, 2000.

[6] Charles M Macal and Michael J North. Tutorial on agent-based mod-
eling and simulation. In Proceedings of the 37th conference on Winter
simulation, pages 2–15, 2005.

[7] Davide Merico and Roberto Bisiani. An agent-based data-generation
tool for situation-aware systems. In Intelligent Environments (IE),
2011 7th International Conference on, pages 129–134. IEEE, 2001.

[8] Mason project website. http://cs.gmu.edu/~eclab/projects/
mason/, 2015.

[9] Swarm project website. http://www.swarm.org, 2015.

[10] Netlogo website. https://ccl.northwestern.edu/netlogo/, 2015.

[11] Repast simphony project website. http://repast.sourceforge.
net/, 2015.

[12] Grids abms comparison. http://www.grids.ac.uk/Complex/ABMS/,
2015.

53

http://siafusimulator.org/
http://cs.gmu.edu/~eclab/projects/mason/
http://cs.gmu.edu/~eclab/projects/mason/
http://www.swarm.org
https://ccl.northwestern.edu/netlogo/
http://repast.sourceforge.net/
http://repast.sourceforge.net/
http://www.grids.ac.uk/Complex/ABMS/


Bibliography

[13] Ibrahim Armac and Daniel Retkowitz. Simulation of smart environ-
ments. In Pervasive Services, IEEE International Conference on, pages
257–266. IEEE, IEEE, 2007.

[14] Jin Gook Kim Tam Van Nguyen and Deokjai Choi. Iss: the interactive
smart home simulator. In ICACT 2009, editor, Advanced Communi-
cation Technology, 2009. 11th International Conference on, volume 3,
pages 1828–1833. IEEE, 2009.

[15] Eleanor O’Neill, Martin Klepal, David Lewis, Tony O’Donnell, Declan
O’Sullivan, and Dirk Pesch. A testbed for evaluating human interaction
with ubiquitous computing environments. In Proceedings of the First
International Conference on Testbeds and Research Infrastructures for
the DEvelopment of NeTworks and COMmunities, TRIDENTCOM ’05,
pages 60–69. IEEE Computer Society, 2005.

[16] Ozlem Durmaz Incel Hande Alerndar, Halil Ertan and Cem Ersoy. Aras
human activity datasets in multiple homes with multiple residents. In
Pervasive Computing Technologies for Healthcare (PervasiveHealth),
2013 7th International Conference on, pages 232–235. IEEE, IEEE,
2013.

[17] Hicham El-Zabadani Jeffrey King Youssef Kaddoura Sumi Helal,
William Mann and Erwin Jansen. The gator tech smart house: A
programmable pervasive space. In Computer, pages 38(3):50–60, 2005.

[18] Brian Jones ED Price Elizabeth D Mynatt Julie A Kientz, Shwetak
N Patel and Gregory D Abowd. The georgia tech aware home. In CHI
08 extended abstracts on Human factors in computing systems, pages
3675–3680. ACM, 2008.

[19] JS Beaudin Jason Nawyn E Munguia Tapia Stephen S Intille, Kent Lar-
son and Pallavi Kaushik. A living laboratory for the design and eval-
uation of ubiquitous computing technologies. In CHI 05 extended
abstracts on Human factors in computing systems, pages 1941–1944.
ACM, 2005.

[20] Domus website. http://domuslab.fr/, 2015.

[21] Aras project website. http://netlab.boun.edu.tr/WiSe/aras/,
2015.

[22] Casas dataset website. http://ailab.wsu.edu/casas/datasets/,
2015.

54

http://domuslab.fr/
http://netlab.boun.edu.tr/WiSe/aras/
http://ailab.wsu.edu/casas/datasets/


Bibliography

[23] Kasteren project website. https://sites.google.com/site/
tim0306/datasets, 2015.

[24] Roberto Bisiani Davide Merico and Hashim Ali. Demonstrating
contexta-care: A situation-aware system for supporting independent
living. In Pervasive Computing Technologies for Healthcare (Pervasive-
Health), 2013 7th International Conference on, pages 309–310. IEEE,
2013.

55

https://sites.google.com/site/tim0306/datasets
https://sites.google.com/site/tim0306/datasets

	List of Figures
	List of Tables
	Introduction
	Problem definition
	Siafu simulator overview
	Motivation and goals
	Thesis organization

	State of the Art
	Agent Based modeling and Simulation (ABMS)
	Agent definition
	Review of some existing ABMSs

	Smart Environments Simulators
	Real life Datasets
	Summary of the presented simulators

	Design and Implementation of the Simulator
	Defining the environment of the simulation
	Background
	Walls
	Places

	Programming the Behavior
	Activities and parameters definition
	The AgentModel
	Agents definition and parameters initialization
	Managing the agent's activities

	The WorldModel
	Places definition
	Choosing the activity to perform
	Activities definition
	Events planning

	The ContextModel

	Additional feature: usage of sensors in the simulation
	Packaging the Simulation
	Simulation Output

	Evaluation of the Simulator
	Features definition
	Features analysis and comparison
	Analysis in the base version of SIAFU
	Analysis in the extended version of SIAFU
	Summarizing the behavior of the two different versions of SIAFU

	Limits of the simulator

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

