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Sommario

Questa tesi presenta il lavoro di identificazione e analisi di metodi per la
predizione del comportamento di un guidatore in un incrocio stradale. In
particolare, vengono proposti i principali metodi di predizione trovati in
letteratura, ovvero: Bayesian Approach, Hidden Markov Model e Interact-
ing Multiple Model. Per ogni metodo sono presentate le caratteristiche, le
equazioni e gli algoritmi che calcolano le probabilità degli intenti del guida-
tore, che per semplicità di calcolo si limitano a due: curvare o andare dritto.
Per avere un’analisi più precisa, vengono testati gli algoritmi su diverse trai-
ettorie in modo da confrontare i metodi sui risultati ottenuti, in particolare
sul tempo di predizione e la corrispettiva probabilità. In una prima fase, le
traiettorie utilizzate sono simulate da un generatore di traiettorie mentre,
successivamente, sono ricavate da un dispositivo GPS, che misura la dinam-
ica di un veicolo reale. Infine vengono presentate le analisi di efficienza, con
curve di sensitività e specificità che descrivono in modo definitivo la qualità
dei metodi affrontati.
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Abstract

This thesis describes and analyses methods for the driver behaviours pre-
diction in an urban intersection. The principal prediction methods found in
literature are considered: Bayesian Approach, Hidden Markov Model and
Interacting Multiple Model. For each method the features, equations and
algorithms are discussed. The algorithms are tested on simulated and real
trajectories, comparing the methods’ results in terms of prediction horizon
for a set intent probability. On the real trajectories a sensitivity and speci-
ficity analysis is also performed.
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Chapter 1

Introduction

Looking at the latest statistics from ISTAT, the number of vehicle collisions
in Milan between 2001 and 2014 are equal to 531978, of which 51% occurred
in an crossroad. Moreover, 34% of the deaths and 52% of injuries occurred
in an urban intersection. Despite the technological advances, it is commonly
believed that humans will keep driving cars for the next years to come.
Systems trying to prevent (or limit) the effects of the collisions can be di-
vided in two groups: passive and active security systems. Passive systems
are protections that prevent a possible injury for the passengers of the ve-
hicle upon an accident, such as the safety belt and the airbag. The active
systems, instead, are designed to reduce the probability of a accident. As
example, we can mention the Antilock Braking System (ABS) that pre-
vents the blocking of wheels upon an hard braking, the Electronic Stability
Program (EPS) controlling the dynamic stability and the Traction Control
System (TCS) that restores traction if the wheels start to spin.
Within the Advanced Driver Assistant Systems (ADAS), one of the most
innovative areas concerns the design of methods that are able to predict
the actions of the driver and prevent, if and only if strictly necessary, the
collision. The reader can refer to [2] and [3] for further information on these
approaches.
In this works, the driver behaviour is assumed to be known. Therefore, an
important improvement to these works is the prediction of the driver intent
before the vehicle reaches the intersection, so that the active safety system
has more time available to determine if an intervention is necessary to pre-
vent a collision early in time.
This thesis aims to analyse the most important methods available in litera-
ture, which have been applied to intent estimation.
The thesis is organized as follows. Chapter 2 introduces the different meth-



ods’ theoretical background, equations and algorithms used to predict the
driver intent. Chapter 3 provides simulation results and performance analy-
sis, while Chapter 4 includes experimental results considering real, measured
trajectories of full scale vehicle. Finally, Chapter 5 presents some concluding
remarks and perspectives for future research.

2



Chapter 2

Theoretical background
2.1 Aim of the project

Considering the scenario illustrated in Figure 2.1, the goal is to predict as
soon as possible the driver intent using only the distance D to the crossroad
and the variables describing the trajectory of the car: the longitudinal posi-
tion s, i.e., the distance between the vehicle and its starting point along the
longitudinal path of the car, the longitudinal speed v and the acceleration a.
Information such as the steering angle or the relative distance between two
cars will be disregarded in this work. The main methods of identification
that can be applied to this problem are:

• Bayesian approach

• Hidden Markov Model

• Interacting Multiple Model

Despite the extensive state-of-art on collision avoidance methods, there
doesn’t exist a vast literature regarding our specific problem, and the ad-
vantages and disadvantages of each method are yet not clear. In this thesis
our aim is to compare all the methods in order to identify the strong and
week points of each method.

2.2 Preliminary definitions

Before focusing in the study of the methods, we want specify some definition.
To keep the problem simple, we consider a scenario with a single vehicle with
only two options:

• Turn

• Go straight



s = position
v = speed
a = acceleration
D = distance to intersection

s,v,a

D

Figure 2.1: Typical scenario of the vehicle

We call them the possible intents of the driver. Note that the intents are
only the high level description of the behaviour of the driver. The same
intent may correspond to different trajectories of the car. For instance, a
driver intending to go straight may keep a constant speed or slow down at
the junction.
We call hypotheses a finite set of representative trajectories corresponding
to an intent (Figure 2.2). An illustration of the system as considered in
this work is presented in Figure 2.3: the vehicle trajectory (generated by
simulation or measured in a real vehicle), is analysed by a classifier (based
in the previously mentioned methods), that computes the probability of the
driver intent.

I1 I2

H1 HN H1 HN

Intents
High Level

Hypotheses
Low Level

... ...

Figure 2.2: Classification of a driver behaviour
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Vehicle
trajecotry Classifier

P (T )

P (S)

BA HMM IMM

Figure 2.3: Illustration of the classification process

O

I1 I2

H1 HN H1 HN
... ...

Figure 2.4: Bayesian network with the two intents I and the sets of hypotheses H that
refer to the single observation O

2.3 Bayesian Approach

Our analysis of Bayesian Approach method is based on the results of [4] and
[5], of Christoph Stiller and his team. We choose this work because, to the
best of our knowledge, is the best method that uses the Bayesian approach
showing good results in terms of prediction horizon and probability levels.
We consider several trajectories of the vehicle in different intersections. For
the two possible intents I, we choose a set of hypotheses H describing the
most common trajectories seen in the crossroad.
These hypothesesH, that can be seen as mean trajectories, will be compared
with an observation O. This observation can be a suitable function of the
measured trajectory. In particular, we will compare the values of position
s, speed v and acceleration a.
The probability distribution for the driver intents I, the applicable hypothe-
ses H and the defined observation O can be modelled by a simple Bayes net,
illustrated in Figure 2.4. The probability for a particular intent Ij given the
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observation O can be written as:

P (Ij |O) =
∑
i

P (Ij |Hi)P (Hi|O) (2.1)

where j indicates the j-th intent, i the i-th hypotheses and P (Ij |Hi) is either
0 or 1 depending on the hypothesis. In fact, each mean trajectory chosen as
hypothesis Hi is uniquely assigned to a single intent Ij .
The probabilities for the individual hypotheses are given by:

P (Hi|O) = P (O|Hi)P (Hi)∑
j P (O|Hj)P (Hj)

(2.2)

where the prior probability is equal to P (Hi) = 0.5 and the value P (O|Hi),
that we are interested in computing, represents a particular "distance" be-
tween the current observation O and the hypothesis Hi. There are different
approaches that allow us to compute P (O|Hi) but the most effective ones,
considered throughout of the manuscript, are the following:

• Simulation Based Approach

• Comparison Based Approach

2.3.1 Simulation Based Approach

A possible way to estimate the distance P (O|Hi) at time t is to create a
virtual vehicle which motion is represented as:{¨̂s = f(ŝ, ˙̂s, u),

˙̂s = v̂,
(2.3)

where ŝ and v̂ are simulated values for position and speed, respectively. We
give as input u the acceleration of hypothesis Hi, such that the virtual ve-
hicle simulates the longitudinal behaviour of the car for the time interval
[t− TS , t] with starting values

ŝi(t− TS) := s(t− TS) and v̂i(t− TS) := v(t− TS).

Here, TS is the simulation time and s(t−Ts), v(t−Ts) are the observation
of position and speed of the real vehicle at time t− Ts.
One possible way to compute P (O|Hi) is to compare the final values of the
simulation ŝ(t) and v̂(t) and the actual values s(t) and v(t).
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Assuming a normal distributed noise for both s(t) and v(t), the distance for
hypothesis Hi is given by

P (O|Hi) = 1
2πσsσv

exp

(
−1

2e
2
)
, (2.4)

with

e :=

√(
s(t)− ŝ(t)

σs

)2
+
(
v(t)− v̂(t)

σv

)2
, (2.5)

where σs and σv are the standard deviation for the position and speed. Note
that using appropriate values for σs and σv is important to choose appro-
priately the values of e, as they have a major influence on how easily a
hypothesis will be favoured above others. In our case, we choose the two
standard deviations testing the preliminary trajectories and looking how
much the speed and position parameters change their values.

2.3.2 Comparison Based Approach

As an alternative to the Simulation Based Approach, the distance P (O|Hi)
can be estimated by comparing the actual acceleration a of the vehicle, with
the acceleration v̇ of hypothesis Hi. Similarly to the Equation (2.4), the
distance P (O|Hi) in this case is equal to:

P (O(tj)|Hi) = 1
σa
√

2π
exp

[
−1

2

(
a(tj)− v̇i(tj)

σa

)2]
(2.6)

where i indicates the i-th hypothesis, j indicate the j-th time instant and σa
is the standard deviation for the acceleration. A possible way to calculate
the acceleration v̇ as a function of Hi is using of a simple, continuous model
give as:

v̇ = aMAX

[
1−

(
v

u

)δ]
(2.7)

where aMAX is the maximum acceleration offered by the car, v the speed of
the vehicle in hypothesis Hi, u the desired speed and δ a fixed acceleration
exponent.
The desired speed u depends on the legal speed limit and the individual
driver. For the turn modelling, it is set dynamically since drivers slow down
when approaching the intersection, as showed in this equation:

u = min

(
v

δ
√

1− v̇/aMAX

, ū

)
, (2.8)
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while in case of straight trajectory the value will be:

u = min (v, ū) , (2.9)

where v is the speed of the vehicle and ū is the legal speed limit.
In order to avoid mistakes on the longitudinal behaviour detection and to
improve the robustness of this method, it is useful to take observations over
the full time interval [t−Ts, t]. We obtain P (O|Hi) by computing the average
of the individual scores from Equation (2.6):

P (O|Hi) = 1
N

N∑
j=1

P (O(tj)|Hi) (2.10)

where N is the number of equidistant time intervals of the set [t− Ts, t].

Remark: In [4] and [5] the acceleration v̇ is calculated by a Intelligent
Driver Model (IDM). In traffic flow modelling, the IDM is a continuous
car following model for the simulation of highway and urban traffic that
considers more than a single vehicle. The model is equal to:

v̇IDM = aMAX

[
1−

(
v

u

)δ
−
(
d∗(v,∆v)

d

)2]
. (2.11)

In the above equation, ∆v is the difference of speed between two following
vehicles, d the gap between two vehicles and d∗ the desired gap. As we can
see, the influence of a preceding vehicle is represented by the ratio between
the effective desired gap d∗ and the actual gap d. Since we only consider in
this work one vehicle, such term is discarded, leading us to Equation 2.7.

2.4 Hidden Markov Model

Driver intent identification has been studied in article [1], using a Hidden
Markov Model (HMM). It consists in a suitable model grammars, a training
set and an evaluation process.
Firstly we create a Markov chain that describes the process.
A Markov chain is a stochastic process with the Markov property: given
a present state, the future state depends only to the present state. The
term "Markov chain" refers to the sequence of random variables defining a
process, with the Markov property defining serial dependence only between
adjacent periods (as in a "chain"). The changes of state of the system are
called transitions. Moreover, the probabilities associated with various state
changes are called transition probabilities, and are equal to akl = P (πi =

8



l|πi−1 = k) where, at the time step i, a is the probability of a transition
from state k to l, and π represents a path (sequence of states) through the
model. The process is characterized by a state space, a transition matrix
describing the probabilities of particular transitions, and an initial state (or
initial distribution) across the state space.
For each state, there are an hidden part and an observed part. In our case
the hidden part is the driver intent while the observed part are the values
measured, for instance, by the GPS device: the position, the speed and the
acceleration of the vehicle. The probabilities associated with the emission of
a certain observed value in a specific state are called emission probabilities,
and are equal to ek(b) = P (xi = b|πi = k) where, in the time step i, e is
the probability of emitting value b in state k, while xi represents the i-th
emitted value, and πi the i-th state. A state without any information to
emit is called silent state.
In order to describe a trajectory, we use a discrete-time Markov chain with
nine states plus two silent ones: one in the beginning and another in the
end of the model that represent the start and the end of the trajectory.
In particular, each state describes the dynamic of the vehicle in a specific
instant of time. In fact, the nine states describe the evolution of the driver
trajectory along the intersection. As suggested in [1], we use only nine states,
since they are enough to describe the process and allow us to create a fast
algorithm in the calculation phase.
Considering that we have only a single path to follow (see Figure 2.5), the
transition probabilities are set to be equal to 1.
In order to simplify the model, we use the acceleration as the unique observed
value. We decide to split the acceleration in 4 levels:

1. if a < −0.5m/s2 the state emits F

2. if a > −0.5m/s2 ∧ a ≤ 0m/s2 the state emits B

3. if a > 0m/s2 ∧ a < 0.5m/s2 the state emits C

4. if a > 0.5m/s2 the state emits A

In this way, each state will emit a value in order to create a string of letters.
This sequence x of letters describes the acceleration profile of the trajectory.
For the HMM method we have different phases:

• Training

• Calculation of the probability

9



Begin ... End

π1 π2 π9

a12 a23 a89
e1(F ) = 0.1
e1(B) = 0.4
e1(C) = 0.4
e1(A) = 0.1

e2(F ) = 0.2
e2(B) = 0.4
e2(C) = 0.3
e2(A) = 0.1

e9(F ) = 0.1
e9(B) = 0.3
e9(C) = 0.3
e9(A) = 0.3

Figure 2.5: Timed Markov Chain with nine states

The phase of training is the preliminary part of the method. For each
hypothesis Hi, associated to an intent I, we choose as observations O a set
of trajectories with similar behaviour to Hi. We classify the acceleration
of all the trajectories as a set of sequences x of letters (as we have seen
above). Then, we use the Baum-Welch algorithm. This algorithm, also said
Forward-Backward, is an algorithm that uses the observable data of the
states to identify the values of the matrices of transition and emission of
each hypotheses, that we call HMM parameters. In particular, the values of
the matrices are estimated by counting the number of times each observable
data is used across the training set of sequences.

In the calculation of the probability phase, the Forward algorithm com-
putes in real time P (O|Hi), i.e., the probability of a sequence x of observed
values calculated through the matrices of transition and emission associ-
ated to the hypothesis Hi. The algorithm computes the probability for each
intent I:

P (IT ) =
P (O|HT ) 1

NHT

P (O|HT ) 1
NHT

+ P (O|HS) 1
NHS

(2.12)

P (IS) =
P (O|HS) 1

NHS

P (O|HT ) 1
NHT

+ P (O|HS) 1
NHS

(2.13)

where NHT and NHS are the number of hypothesis for the turning and
straight intent, P (IT ) and P (IS) are the probability of the turning and
straight intent, while P (O|HT ) and P (O|HS) are the probabilities to have a
sequence x conditioned to the occurrence of one of the HT or HS hypotheses:

P (O|HT ) =
∑
i∈HT

P (O|Hi) (2.14)

P (O|HS) =
∑
i∈HS

P (O|Hi) (2.15)

10



In the sequel, we present in detail the mentioned algorithms.

Forward algorithm

The Forward algorithm is defined as follows. The value fk(i) is the prob-
ability of being in state k having observed the first i characters of x. We
want to compute fN (L), the probability of being in the end state N , having
observed all of x := x1, ..., xL.
The probability that we are in the beginning state and have observed 0
characters from the sequence is:

f0(0) = 1 (2.16)

while for k states that are not silent we have:

fk(0) = 0 (2.17)

The recursion for emitting states (i = 1, . . . , N) is equal to:

fl(i) = el(i)
∑
k

fk(i− 1)akl, (2.18)

where el(i) is the probability of emitting character i in the state l, and akl
is the transition probability from state k to l. Instead, the recursion for the
silent states is give as:

fl(i) =
∑
k

fk(i)akl. (2.19)

The algorithm ends with this final equation:

P (O|Hi) = P (x) = P (x1, ..., xL) = fN (L) =
∑
k

fk(L)akN (2.20)

where P (x) is the probability of having observed the entire sequence once
we reach the final state.

Baum-Welch algorithm

This algorithm works as follow. Firstly, it compute the probability of gen-
erating a sequence x with the i-th symbol produced by the state k (for all
x, i and k). The Forward algorithm gives us fk(i), the probability of being
in state k having observed the first i values of x. The Backward algorithm
gives us bk(i), the probability of observing the rest of x, given that we’re in
state k after i values.
The Backward algorithm is really similar to the Forward algorithm. The

11



initial value is bk(L) = akN for the states with a transition to the last
state. The recursion is equal to bk(i) =

∑
l aklbl(i) if l is a silent state,

otherwise bk(i) =
∑
l aklel(xi+1)bl(i + 1). At last, to end the algorithm, we

have P (x1 · · ·xL) = b0(0) =
∑
l a0lbl(0) if the state is a silent, otherwise

P (x1 · · ·xL) = b0(0) =
∑
l a0lel(x1)bl(1).

Putting the Forward and Backward algorithms together, we can calculate
the probability of the i-th symbol being produced by state k, given a se-
quence x:

P (πi = k|x) = P (πi = k, x)
P (x) = fk(i)bk(i)

P (x) = fk(i)bk(i)
fN (L) . (2.21)

We can calculate the expected number of times the value c is emitted by
state k

nk,c =
∑
xj

 1
f jN (L)

∑
i|xji=c

f jk(i)bjk(i)

 , (2.22)

where j is the j-th sequence in the training set. We can also compute the
expected number of times that the transition from k to l occurs:

nk→l =
∑
xj

∑
i f

j
k(i) akl el(xi+1) bjl (i+ 1)

f jN (L)
. (2.23)

Finally, we can estimate the new emission and transition parameters as:

ek(c) = nk,c∑
c nk,c

(2.24)

akl = nk→l∑
m nk→m

(2.25)

where nk,c is the expected number of emissions of c from state k for the
training set, and nk→l is the expected number of transitions from state k to
state l. The new emission and transition parameters are the values that we
will use in equations (2.18) and (2.19) for the intent identification.

2.5 Interacting Multiple Model

The last method analysed in this work is the Interacting Multiple Model
and, in this case, we adopt the approach presented in [6]. The main idea of
multiple model filtering is to run several filters in parallel, each one repre-
senting a different model of the system. Let xk and Pk denote the system
state’s mean value and covariance matrix at time k, respectively, and Zk rep-
resents all the observations up to k. Thus, the expected probability density
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x1k|k−1

x2k|k−1

y1k|k−1
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π11

π22

π21 π12

Figure 2.6: A Hidden Markov Model describing a system with two possible modes
which are producing system state predictions and predicted observations by stochastic
processes.

p(xk|Zk) can be approximated as a Gaussian composition of the different
model matched filters:

p(xk|Zk) ≈
N∑
i=1

ωikN (xk, xik, P ik) (2.26)

where the sum of the weights wik is equal to 1. Depending on the real pro-
cedure used for determining the weights, it is possible to define different
multiple model (MM) estimators. The static MM estimators assume that
the system is constantly following one model, which is unknown to the es-
timator. Instead, dynamic MM estimators explicitly take into account the
possibility that the system may change its model over time. Under this
category, it is possible to add and remove mixture components in each esti-
mation step.
The most popular implementation of the last approach is the Interacting
Multiple Model filter (IMM). The system considers a unique state xik−1.
For each time step k, the system updates the value of state with the proba-
bility to pass from a model to another. The system uses then the transition
matrix of the Hidden Markov Model (HMM) considering N states, as the
number of model chosen (see Figure 2.6). The model is hidden because the
model states can’t be directly observed. Instead, every mode is producing an
uncertain system state prediction xik|k−1 by a stochastic process (described
by the system model itself). In addition, every system state produces pre-
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dicted observations yik|k−1 by another stochastic process (described by the
observation model). The purpose is to derive the state of the Markov model
starting from the observations. Since the Kalman Filter is able to estimate
the system state by looking at the observations, the task is reduced to de-
termining the model from the system state vector and its covariance.
The transition probabilities of the Markov model are described by the Marko-
vian matrix Π:

Π =


π11 · · · π1N
... . . . ...

πN1 · · · πNN

 . (2.27)

In the Interacting Multiple Model (IMM) framework, a separate filter is
running for each of the N models with a prior probability µjk=0 := P (mk=0 =
Hj), with j = 1...N is the j-th model and k the time step. Every time, before
applying the Kalman filter equations ,the probability µjk is updated using
the transition probabilities defined in matrix (2.27):

µ
i|j
k−1 := P (mk = Hi|mk−1 = Hj) =

πijµ
i
k−1∑N

l=1 πljµ
l
k−1

(2.28)

where k is the time step, while i, l and j are the index of the Markovian
matrix and also the specific model m of the algorithm, respectively.
In the iterative process, the probabilities are used to update the state vectors
of the filters and their covariance. Thus, even if the filters are running in
parallel, the probabilities (2.28) are not independent from each other. The
result of the interaction process is calculated as follows:

xjk−1 =
N∑
i=1

µ
i|j
k−1x

i
k−1, (2.29)

Cjk−1 =
N∑
i=1

µ
i|j
k−1(Cik−1 + (xik−1 − x

j
k−1)(xik−1 − x

j
k−1)T ), (2.30)

where xj is the state vector related to the j-th model and Cj its covariance.
In the next step, we apply the standard Kalman filter equations to the
system models in order to update the probabilities after the correction step.
After this, we calculate the normalized Mahalanobis distance ηj between
the predicted observation yjk|k−1 and the real measurement yk:

ηj := 1√
(2π)n|Sjk|

e−
1
2 ((υj

k
)T (Sj

k
)−1(υj

k
)) (2.31)
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where υj and Sj denote the model-specific innovation and its covariance.
The Mahalanobis distance is able to determine the similarity of an unknown
sample space compared to a known one.
Under a Gaussian assumption, the model probability µjk := P (mk = Hj |O),
that is the probability of each hypothesis H, can be calculated as follows:

µjk =
µjk|k−1η

j∑N
i=1 µ

i
k|k−1η

i
(2.32)

where µjk|k−1 := P (mk−1 = Hj |O) is the probability to have the j-th hy-
pothesis at time step k − 1.
In order to compute the probability of the driver intent I we use the equa-
tions seen in the previous section: the equation (2.12) for the turning intent
and the equation (2.13) for the straight intent.
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Chapter 3

Numerical validation

In this chapter we will analyse the behaviour of the methods previously
described. The methods will evaluate an arbitrary trajectory produced by
a simulator and compute the probability of the driver intent. Firstly, we
present the simulator and the algorithms seen in Chapter 2. Secondly, we
provide the results of the classifier. Finally, we present a discussion, listing
the strong and week points of each method.
We will consider just one hypothesis for intent, even if all the methods
can work with different hypotheses per intent. Note that we implemented
all the analysis, simulations and algorithms included in this section with
Matlab R2014b.

3.1 Simulator

The purpose of the simulator is to create an arbitrary trajectory and a real-
time testing routine for each method given in Chapter 2. As an output, we
retrieve the probability of each intent.
In order to always have a different trajectory, we change the initial param-
eters (see Table 3.1) and randomly add a new values for each test. For
a turning trajectory, we create a motion model s̈ = f(s, ṡ, u) (neglecting

Parameters vmax vin vcurve vafter Tmax s1 s2 cost stop
Values 20 m

s 12 m
s 2.5 m

s 15 m
s 6 s 20 m 35 m 0.5 37 m

Table 3.1: Table of parameters used for the simulator: vmax is the maximum speed, vin
is the initial speed, vcurve is the speed when turning, vafter is the desired speed after
the braking, Tmax is the time limit of ours test, s1 and s2 are the position of braking,
cost is the constant acceleration after the braking and, finally, stop is the position where
the stop indicator is located.



the air drag and other fiction effects), where s and u are the position and
the acceleration of the vehicle, respectively. We assume that the vehicle,
approaching an intersection with a turning intent, keeps a constant speed,
then brakes before the intersection, to finally accelerate and resume a con-
stant speed after the intersection. For the straight trajectory, instead, we
assume zero acceleration and constant speed. We generate the simulated
trajectories using Algorithms 9 and 10 in Appendix A.

3.2 Presentation of the algorithms

3.2.1 Bayesian Approach

In this section, we present the algorithms used for the Simulation Based Ap-
proach (SBA) and Comparison Based Approach (CBA). The two hypotheses
describing the driver behaviour for the turning and straight intent are given
in Figure 3.1.
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Figure 3.1: Bayesian Approach: Mean trajectory chosen as hypotheses

In order to compute the probability of the driver intent with the meth-
ods mentioned in the Section 2.3, we need the position, the speed and the
acceleration of our hypotheses and those of the trajectory to be analysed.
We provide an implementation of SBA and CBA in Algorithms 1 and 2,
respectively.

18



Algorithm 1 Simulation Based Approach
Initialization of the vectors and parameters useful for the algorithm
Ts = time of simulation
i0 and iEnd = index of the beginning and the end of the simulation
x( ) and v( ) vector of position and speed measured
xh( ) and vh( ) vector of hypothesized position and speed

for i = 1 to H(=Numbers of hypothesis) do
s(1) = xh(i, i0) first value of the measured position
vel(1) = vh(i, i0) first value of the measured speed
δS = xh(i, i0) − x(i0) difference between the measured position and the hy-

pothesized position
δV = vh(i, i0)−v(i0) difference between the measured speed and the hypoth-

esized speed
for l = i0 + 1 to iEnd do

s(l − i0 + 1) = x(l) + δS
vel(l − i0 + 1) = v(l) + δV

. simulated trajectory shifted of δ
end for
e(i) =

√
s(iEnd−i0+1)−xh(i,iEnd)

σ2
S

+ vel(iEnd−i0+1)−vh(i,iEnd)
σ2
V

fAH(i) = 1
2πσSσV e

− 1
2 e(i)2

. e(i) is the discriminant that increases or decreases the final probability
end for
pHO = fAHPH∑

fAHPH

Algorithm 2 Comparison Based Approach
Initialization of the vectors and parameters useful for the algorithm
Ts = time of simulation
i0 and iEnd = index of the beginning and the end of the simulation
a is the measured acceleration and aIDM is the acceleration exit to the IDM

for i = 1 to H(=Numbers of hypothesis) do
for l = i0 to iEnd do

fAH(l − i0 + 1) = 1
σA
√

2π e
− 1

2
a(l)−aIDM(i,l)

σ2
A

end for
fAHs(k) = 1

Ts
dt

∑
fAH

end for
pHO = fAHsPH∑

fAHsPH
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3.2.2 Hidden Markov Model

As explained before, this method is composed of two parts:

• The first part, called training, simulates an high number of trajec-
tories in an intersection and, with the Baum-Welch algorithm, uses
the observable state values of each trajectory to compute the HMM
parameters.

• The second part, called calculation of the probabilities, uses the
Forward algorithm to compute the probability of the driver intent.

Training

The training trajectories are generated by simulation using Algorithms 9 and
10 in Appendix A. We simulate ten training trajectories for each hypothesis,
as shown in Figures 3.2(a) and 3.2(b).
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Figure 3.2: Training: speed profiles for: (a) the turning trajectory and (b) the straight
trajectory

Assuming that we know in advance the training trajectory generated by
the simulator and, in particular, the passed time, we can easily compute
the time fraction required to have exactly nine states describing the entire
trajectory. After the classification of the acceleration of each training trajec-
tory in a set of sequence, we can use the Baum-Welch algorithm to identify
the emission matrix.
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Calculation of the probabilities

Once the training part is complete, we can compute the probability of the
driver intent given the simulator trajectory. More precisely, we obtain the
sequence x that describe the behaviour of the acceleration for the considered
trajectory. For each hypothesis, we then compute the probability of the
sequence x using the Forward Algorithm 4 and the probability of the driver
intent with the Algorithm 5.

Algorithm 3 Baum-Welch algorithm
Initialization of the matrix and parameters useful for the algorithm
n = number of samples training
S = list of strings
nn = matrix for the calculation with psudocode

. Pseudocode equal to 1
L = number of state in the Markov Chain
e = emission matrix

for j = 1 to n do
[forw,f]=Forward(e,S,j)
[back,b]=Backward(e,S,j)
for i = 1 to L do

if S(j, i) =′ C ′ then
nn(1, i) = nn(1, i) + f(i+1,i+1)+b(i+1,i+1)

forw

end if
if S(j, i) =′ B′ then

nn(2, i) = nn(2, i) + f(i+1,i+1)+b(i+1,i+1)
forw

end if
if S(j, i) =′ A′ then

nn(3, i) = nn(3, i) + f(i+1,i+1)+b(i+1,i+1)
forw

end if
if S(j, i) =′ F ′ then

nn(4, i) = nn(4, i) + f(i+1,i+1)+b(i+1,i+1)
forw

end if
end for

end for
for j = 1 to L do

for i = 1 to 4 (maximum number of emission states) do
e(j, i) = nn(i,j)∑

i
nn(i,j)

end for
end for
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Algorithm 4 Forward algorithm
Initialization of the matrices, strings and parameters useful for the algorithm
len = length of the string S
f = square matrix of dimension 11x11 (9 states + 1 state in the beginning and
1 in the end)
f(1, 1) = 1

. The initial state start with probability equal to 1

for i = 1 to len do
if S(i) = C then

E(i) = e(i, 1)
end if
if S(i) = B then

E(i) = e(i, 2)
end if
if S(i) = A then

E(i) = e(i, 3)
end if
if S(i) = F then

E(i) = e(i, 4)
end if
. E is an emission vector with the correspondent values of the sequence S

end for
for k = 2 to (len+ 1) do

for i = 2 to (len+ 1) do
f(k, i) = E(i− 1)f(k − 1, i− 1)

. we ignore the transition matrix because exist only one path
end for

end for
f(len+ 2, len+ 2) = f(len+ 1, len+ 1)
forw = f(len+ 2, len+ 2)

Algorithm 5 HMM algorithm
Initialization of the matrix and string useful for the algorithm
eG = emission matrix of the turn right trajectory
eD = emission matrix of the straight trajectory
S = string of the simulator trajectory

[forwG,fG]=Forward(eG,S)
[forwD,fD]=Forward(eD,D)
PG = forwG

forwG+forwD
PD = forwD

forwG+forwD
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3.2.3 Interacting Multiple Model

For this method, we follow the equations already seen in Section 2.5. We
choose one model with straight trajectory and one with a turning trajectory.
If we neglect air rag and other friction effects, we can generally describe the
trajectory of a car as a linear model given as:{ ˙x(t+ dT ) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(3.1)

where x =
(s
v

)
is the state vector (s and v are the position and the speed

of the vehicle), u = a is the input of our model (a is the acceleration of the
car) and y = v is the output. For a curving trajectory, the matrices are
given as:

A =
[
1 dT

0 1

]
, B =

[
1
2dT

2

dT

]
, C =

[
0 1

]
, D =

[
0
]
, (3.2)

while for a straight trajectory:

A =
[
1 dT

0 1

]
, B =

[
0
]
, C =

[
0 1

]
, D =

[
0
]
. (3.3)

where dT is the intersection step. We initialize the parameters of the first
measured value of the trajectory (state x and covariance C), the initial prob-
ability of each model µjk=0 := P (mk=0 = Hj) and the transition matrices of
the Markov states Π.
To compute the probability of each model, we use the following algorithm.
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Algorithm 6 Interacting Multiple Model algorithm
Initialization of the parameters, matrices and strings useful for the algorithm
x = [x1, x2] = initial mean vectors of speed and position
P = [co1, co2] = initial matrices of covariance
vel = speed of the simulated trajectory
a = acceleration of the simulated trajectory and input in our Kalman filters
E = transition matrix
m = output probability
H = number of models

for i = 1 to H do
for j = 1 to H do

mij(i, j) = E(i,j)m(i)∑H

i
E(i,j)m(i)

end for
end for
for j = 1 to H do

xJ(j) =
∑H
i=1 mij(i, j)x(i, j)

end for
for j = 1 to H do

PJ(j) =
∑H
i=1 mij(i, j)(P (i, j) + (x(i, j)− xJ(j))(x(i, j)− xJ(j))′)

end for
[xJ(1),PJ(1),e(1),Cy(1)]=Kalman1(PJ(1),xJ(1),co1,T,vel,a)
[xJ(2),PJ(2),e(2),Cy(2)]=Kalman2(PJ(2),xJ(2),co2,T,vel,a)

. The output of function Kalman is the mean and covariance prediction (xJ
and PJ), and the error of the Kalman filter and its covariance (e and Cy)
for j = 1 to H do

η(j) = 1√
2π|Cy(j)|

e−
1
2 e(j)(Cy(j))−1e(j)′

. We use the error and its covariance in order to calculate η which is the value
that we use to calculate the driver intent probability
end for
for j = 1 to H do

m(j) = m(j)η(j)∑H

j=1
m(j)η(j)

end for
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3.3 Simulation result

In order to evaluate the efficiency of the algorithms, we will test the different
methods on a generated trajectory. In order to compare the performance of
each algorithm, we define here the considered criteria.
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Figure 3.3: Illustration of the performance values for a probability profile

Tc is the time instant when the vehicle reaches the middle of the inter-
section (illustrated as a blue vertical line in all figures), while P (TC) is the
intent probability returned by an identification method at time Tc. We can
define now the set P ∗ := [P (Tc)± 0.1], while the prediction time T ∗ will be
considered such that:

T ∗ := min(τ : P (t) ∈ [P (Tc)± 0.1],∀t ∈ [τ, Tc]), (3.4)

Finally, we define, as main criterion, the prediction horizon P (Tc)− P (T ∗).

3.3.1 Turning trajectory result

Consider the trajectory presented in Figure 3.4, to be validated by the dif-
ferent algorithms.

In this simulated turning trajectory, we have Tc = 3.7s. As shown in
Figure 3.5, a classifier based on the SBA method presents a stable, non-
oscillating probability profile. We can see that the prediction horizon is 1.7
seconds, T ∗ = 2s and P (T ∗) = 0.94. Note that the time axis in Figure 3.5
starts at time t = 1s. This is because the Bayesian methods need to collect
data for a period of 1 second (TS = 1s) before producing a first estimation.
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Figure 3.4: Turn: Speed profile generated by our simulator

Even if SBA and CBA are both based on the Bayesian method, the
CBA presents a worse behaviour with respect to the SBA, as we can see in
Figure 3.5. In particular, the prediction horizon is 0 seconds, with T ∗ = 3.7s
and P (T ∗) = 0.75. One reason can be that the hypothesis speed profile is
very similar to the simulated speed profile, while the hypothesis acceleration
profile is more different from the simulated acceleration profile (Figure 3.6).
As a consequence, it’s more difficult for the CBA algorithm to recognize the
correct intent.

Consider the results for the classifier based on the HMM method, as
shown in Figure 3.7. We can see that this method predicts the correct driver
intent with prediction horizon equal to 0.9 seconds, with T ∗ = 2.8s and
probability P (T ∗) = 0.96. The efficiency of this method is highly dependent
on the training part, where we identify the HMM parameters of the training
trajectories.

Finally, consider the results for the classifier based on the IMM method,
as shown in Figure 3.8. We have a prediction horizon equal to 1.9 s, with
probability P (T ∗) = 0.99 and T ∗ = 1.9s. We can see that the models of
the IMM are identical except for the acceleration of the vehicle. If the ac-
celeration is low, then the state prediction is similar for the two models and
it’s difficult to understand which hypothesis is correct. This little differ-
ence between these two motion models explains the noisy behaviour (see
Figure 3.8(b)).
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Figure 3.5: Simulation turning results - Probabilities of the two intents using: (a) the
Comparison Based Approach and (b) the Simulation Based Approach
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Figure 3.6: Comparison of the speed and acceleration profiles in the Bayesian Approach
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Figure 3.7: Simulation turning results - Probabilities of the two intents using the Hidden
Markov Model
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Figure 3.8: Simulation turning results - Probabilities of the two intents using the Inter-
acting Multiple Model, and comparison of the predicted speeds with the speed of the
simulated trajectory
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3.3.2 Straight trajectory result

In this case, the simulator generates a straight trajectory, as seen in Fig-
ure 3.9.
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Figure 3.9: Straight: Speed profile generated by our simulator

The overall performances are very similar to the previous ones. In this
case, however, all the methods recognize the correct driver intent later if
compared with the results of the turning trajectory.
In this simulated straight trajectory, we have Tc = 2.7s. As we see in Fig-
ure 3.10(a), the SBA method predicts the driver intent with a prediction
horizon of 0.3 seconds, with T ∗ = 2.4s and the correspondent probability
P (T ∗) = 0.94. The CBA, instead, has a worse result when compared to
the SBA, as we can see in Figure 3.10(a). This method predicts the correct
intent with a prediction horizon of 0.3 seconds, but with T ∗ = 2.4 and low
probability P (T ∗) = 0.72.
The HMM method predicts the driver behaviour with a prediction horizon
of 0.6 seconds, with T ∗ = 2.1s and probability P (T ∗) = 0.73 (see Fig-
ure 3.10(c)).
Finally, the IMM method has a better result with respect to the others. It
predicts the correct intent with a prediction horizon of 1.6 seconds, with
T ∗ = 1.1s and the probability P (T ∗) = 0.97 (see Figure 3.10(d)).
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Figure 3.10: Simulation straight results - Probabilities of the two intents using: (a)
the Comparison Based Approach, (b) the Simulation Based Approach, (c) the Hidden
Markov Model and (d) the Interacting Multiple Model
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3.4 Discussion

In addition to the two cases discussed here, we tested several other trajec-
tories in order to have a more complete understanding of the potential of
each method. Overall, the results obtained are satisfying and accurate.
The CBA is the worst method analysed. In fact, it predicts the driver intent
with small prediction horizon and low probabilities. Despite this, CBA has a
robust behaviour. In all the tests it predicts the correct intent with positive
result.
The SBA, instead, predicts the driver intent with larger prediction horizon
with respect to CBA, and also with high probabilities and robustness.
The HMM, has the same performances of SBA. It predicts the driver intent
with large prediction horizon, high probabilities and robustness.
The IMM has often an oscillating behaviour. In the tests we made off line,
the method often makes mistakes in the prediction of the driver intent. How-
ever, when the prediction is correct, it is the best method analysed, with
high probabilities and large prediction horizon.
Considering all the results, we understand the importance of a well made
training setup and data processing, in order to have always correct results.
However, our aim is to find the most accurate method that is able to predict
a real driver behaviour. In the next section, we will then analyse a real
trajectory using a set of sensor measured data.
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Chapter 4

Real data validation

In this chapter, we test the algorithms using real trajectories (retrieved
from a full scale car) instead of the simulated ones. We make use of a real
trajectory measured with high precision GPS device.

4.1 Real data

In this analysis, we will exploit a set of real data provided by Chalmers Uni-
versity of Technology, where a team of researchers studied collision avoidance
techniques for traffic intersections.
The data set includes several trajectories in a urban environment. The vehi-
cle does not perform trajectories on purpose but acts, instead, like a normal
car in an ordinary journey in a city road: entering a parking lot, turning at a
curve, stopping at the beginning of a crossroad or turning at a round-about.
For our work, we select a subset of data related to a suitable turning or a
straight behaviour. As mentioned before, all the data of the vehicle trajec-
tory has been measured by a GPS device installed inside the car. Moreover,
we make use of a video recorded from the interior of the car. In particular,
this video file help us to understand when the vehicle is entering the inter-
section.
The data set provides a huge amount of data, among which the latitude,
longitude and altitude, the angle of pitch, roll and heading, the angle of
slip, track, curvature and many others. We select the data related to the
dynamic of the vehicle: the time, position, speed and acceleration.
In order to normalize all the trajectories, it is necessary to choose a common
reference point. We consider as initial configuration the state of the vehi-
cle when positioned 37 meters from the intersection. In particular, using
the recorded video and the trajectory data, we identify the time and the



position when the car was in the middle of the intersection. Once defined
that position, we subtract 37 meters in order to get the initial position of
the trajectory and, by consequence, the initial time. Once found the initial
position and time, we can easily define the trajectory from the starting point
until the end of the data or, if necessary, until the vehicle reaches the middle
of the intersection.
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Figure 4.1: Construction of the speed and position profile of a real trajectory

In Figure 4.1(a) and 4.1(b), we can see the speed and the position pro-
files of one of the real trajectories extracted from the original one as we can
see in Figure 4.1(c).
Note that the data we have available was not uniformly sampled in time. In
order to obtain a trajectory vector with uniform time sampling, we interpo-
late linearly the original data with a time step of 0.1s, as shown in Figure
4.1(d).
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4.2 Improvement of the methods

In order to improve the performance of the algorithms, we decide to consider
the information learned from the numerical tests in Chapter 3 to change,
when possible, the properties of each method.

4.2.1 Bayesian approach
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Figure 4.2: Illustration of the ten hypotheses of the Bayesian approach: nine for the
turn case and only one for the straight case

As mentioned before, the outcomes of the simulation was already sat-
isfactory for both methods (SBA and CBA). But, in order to improve the
accuracy of the classifier, we decide to create more hypotheses for the turn-
ing case with different breaking times (Figure 4.2).
By adjusting the initial algorithm in such a way, we expect to increase the
accuracy on the driver intent estimation, which should in practise increase
the ahead-time prediction.

4.2.2 Hidden Markov Model

One possible improvement for this algorithm concerns the training phase. In
our case, we don’t have enough real trajectories for the training phase. For
this reason, we train the HMM with simulated trajectories. This is, however,
an handicap since the real trajectories have a more noisy behaviour when
compared to the simulated ones. Bearing that in mind, we try to create the
simulated trajectories as similar as possible to the real ones.
In order to have a more specific behaviour of the trajectories and a more
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accurate emission matrix with asymptotic values, we also decide to increase
the number of the training trajectories to 20 (rather than the previous ten)
in the preliminary settings of training, as we said in the Section 3.2.2.
The most important improvement is related to the number of states in the
Markov chain. If nine states are used to define the complete trajectory
(before and after the intersection), it is then really hard to estimate accu-
rately the driver intent before the vehicle reaches the intersection. In fact,
in the Section 3.3, we showed that for each trajectory sample approximately
3 states are necessary to describe the trajectory after the crossroad, even if
it is irrelevant for our analysis. For this reason, we decide to use all the 9
states to describe the behaviour of the car before it reaches the crossroad.

4.2.3 Interacting Multiple Model

In the simulation validation part, the IMM method revealed many issues in
the prediction of the driver intent. In order to improve its behaviour, we
decide to change two important settings.
Firstly, as done for the Bayesian approach, we increase the number of the
hypotheses for turning intent in order to predict more accurately and with
a higher anticipation the behaviour of the driver.
Secondly, we modify the general model used for describing the trajectory of
a vehicle seen in Section 3.1. Rather than considering the acceleration as an
input of each model (equal to the observed acceleration), we now consider
it as a time-dependent parameter (equal to the acceleration of the relative
hypothesis). With this improvement, we expect to obtain a bigger difference
between the state predictions in output from the filters.

4.3 Results

From the original data set, we extract eight useful turning trajectories and
five straight trajectories. For the sake of brevity, however, we will only
analyse in this chapter a sub-set of these trajectories. We will compare the
performance of the different methods by comparing the prediction horizon
P (Tc)− P (T ∗) and the overall behaviour of the classifier.

4.3.1 Turn trajectory results

Turn 1

The first example considers a simple turn in a crossroad, with a speed profile
shown in Figure 4.3.
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Figure 4.3: Turn 1 - Speed profile of a turning trajectory

The results of the first test are really good when compared to the simu-
lated ones, as we can see in Figure 4.4. For all the methods we have a good
reaction with respect to the braking of the vehicle.
In this turning trajectory we have Tc = 5s. For the SBA we have a pre-
diction horizon of 2.2 seconds (T ∗ = 2.8s) with P (T ∗) = 0.91. For the
CBA we obtain a prediction horizon of 2.6 seconds, with T ∗ = 2.4s and
P (T ∗) = 0.82. While for the HMM we have a prediction horizon of 2.8
seconds, with T ∗ = 2.2s and P (T ∗) = 0.96. In the end, the IMM predicts
the correct intent with 3.5 seconds of prediction horizon, T ∗ = 1.5s and
P (T ∗) = 0.91.
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Figure 4.4: Turn 1 - Probability profile with: (a) Comparison Based Approach,(b)
Simulation Based Approach, (c) Hidden Markov Model and (d) Interacting Multiple
Model
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Turn 2

The second example considers a speed profile as shown in Figure 4.5. In
this case, we have a turning trajectory with a smooth braking when com-
pare to Turn 1. Naturally, this means that the vehicle will exhibit a lower
deceleration, which allows us to expect that the methods where the acceler-
ation is a decision parameter will fail or struggle to identify the driver intent.
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Figure 4.5: Turn 2 - Speed profile of a turning trajectory

As we expected, the SBA, HMM and IMM methods struggle to find
the correct intent. As a result, we have an oscillating behaviour for the
probability profiles. In this turning trajectory we have Tc = 4.8s. The
SBA predicts the correct intent with 1.2 seconds of prediction horizon, with
T ∗ = 3.6s and P (T ∗) = 0.91. Instead, the CBA predicts the intent with 1
second of prediction horizon, with T ∗ = 3.8s and probability P (T ∗) = 0.9.
The HMM with 1.6 seconds of prediction horizon, with T ∗ = 3.2s and the
probability P (T ∗) = 0.9. Finally, the IMM with 1.4 seconds of prediction
horizon, with T ∗ = 3.4s and P (T ∗) = 0.95.
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Figure 4.6: Turn 2 - Probability profile with: (a) Comparison Based Approach, (b)
Simulation Based Approach, (c) Hidden Markov Model and (d) Interacting Multiple
Model
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Turn 3

In this case, we have a turning trajectory with a lower initial speed and a
smooth deceleration, as we can see in Figure 4.7.
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Figure 4.7: Turn 3 - Speed profile of a turning trajectory

Considering a smooth braking, then a low deceleration, the CBA, HMM
and IMM have the same problem as the case before, struggling to find the
correct driver intent.
In this turning trajectory we have Tc = 6.4s. As we can see in Figure
4.8(a), the CBA does not predict the correct intent stably. It has, in fact,
an oscillating behaviour. This is due to the low similarity between the
acceleration profiles of the hypotheses and the acceleration profile of this
case.The HMM also shows bad performances in this case. In fact, it predicts
the wrong intent for all the states, except the last two. The method predicts
the correct driver intent with prediction horizon of 0.6 seconds, with T ∗ =
5.8s and probability P (T ∗) = 0.96.
The IMM and the SBA, instead, provide a decent prediction for this kind
of trajectory. The IMM forecasts the driver intent thanks to the Kalman
predictor that guesses the trajectory in the next state despite the low speed
or the braking time. It predicts the correct intent with prediction horizon
of 1.9 seconds, with T ∗ = 4.5s and probability P (T ∗) = 0.95.
The SBA predicts the driver intent extremely well with a prediction horizon
of 4.1 seconds, with T ∗ = 2.3 and probability P (T ∗) = 0.9. Unfortunately,
the behaviour of the SBA is acceptable only for low speeds. In fact, in case
we want to go straight with a low speed, the SBA will predict the turn intent
in any case.
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Figure 4.8: Turn 3 - Probability profile with: (a) Comparison Based Approach, (b)
Simulation Based Approach, (c) Hidden Markov Model and (d) Interacting Multiple
Model
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Turn 4

The final example consider a speed profile as shown in Figure 4.9. This case
is the most complicated one: the car reaches the crossroad without braking
and with low speed. Without considering the braking phase, the methods
don’t have useful data to compute the probability.
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Figure 4.9: Turn 4 - Speed profile of a turning trajectory

As expected, all the algorithms that use the acceleration to compute
the driver intent always obtained the wrong classification. Only the SBA
predicts the correct intent in advance and with a high probability, for the
same reason we explained in the case Turn 3. We also underline that the
IMM method stops after 6 seconds since the covariance matrix becomes
singular.
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Figure 4.10: Turn 4 - Probability profile with: (a) Comparison Based Approach, (b)
Simulation Based Approach, (c) Hidden Markov Model and (d) Interacting Multiple
Model. The values of T ∗ and P (T ∗) are not reported since the methods don’t predict
the correct intent
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4.3.2 Straight trajectory results

Straight 1

In this case, we have a simple straight trajectory where the vehicle reaches
the intersection with a stable speed (Figure 4.11).
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Figure 4.11: Straight 1 - Speed profile of a straight trajectory

The results of this first straight case are satisfying for all the approaches,
as we can see in Figure 4.12. In this straight trajectory we have Tc = 3.6s.
The SBA predicts the correct intent with prediction horizon of 1.2 seconds,
with T ∗ = 2.4s and probability P (T ∗) = 0.92.
The CBA, instead, has a prediction horizon of 0.9 seconds, wih T ∗ = 2.7s
and P (T ∗) = 0.91.
The HMM has a prediction horizon of 1 second, with T ∗ = 2.6s and P (T ∗) =
0.98.
In particular, the best performance is given by the IMM, that predicts the
straight intent with prediction horizon of 2.2 seconds, with T ∗ = 1.4s and
probability P (T ∗) = 0.97.

45



Time [s]
1 2 3 4 5 6 7 8

S
pe

ed
 [m

/s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability profile with CBA

Turn
Straight

P(T*)

T*

(a) CBA

Time [s]
1 2 3 4 5 6 7 8

S
pe

ed
 [m

/s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability profile with SBA

Turn
Straight

P(T*)

T*

(b) SBA

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4

S
pe

ed
 [m

/s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability profile with HMM

Turn
Straight

T*

P(T*)

(c) HMM

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
pe

ed
 [m

/s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability profile with IMM

Turn
Straight

P(T*)

T*

(d) IMM

Figure 4.12: Straight 1 - Probability profile with: (a) Comparison Based Approach, (b)
Simulation Based Approach, (c) Hidden Markov Model and (d) Interacting Multiple
Model
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Straight 2

The behaviour of the straight trajectories included in our data set is always
identical: the vehicle passes the intersection with a stable and constant speed
and continues his initial path. In order to validate the results obtained in
the previous case, we decide to select another trajectory (with speed profile
as shown in Figure 4.13), similar to the previous one.
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Figure 4.13: Straight 2 - Speed profile of a straight trajectory

As expected, the results are very similar to the previous one: all the
methods provide a good performance in terms of ahead-time and probabili-
ties levels.
In this straight trajectory we have Tc = 3.6s. The SBA predicts the cor-
rect intent with prediction horizon of 1.2 seconds, with T ∗ = 2.4s and
P (T ∗) = 0.91.
The CBA, instead, has a prediction horizon of 0.9 seconds, with T ∗ = 2.7s
and P (T ∗) = 0.91. The HMM has a prediction horizon of 1 second, with
T ∗ = 2.6s and P (T ∗) = 0.98.
Again, the best performance is given by the IMM, that predicts the straight
trajectory with a prediction horizon of 2.3 seconds, with T ∗ = 1.3s and
P (T ∗) = 0.93.
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Figure 4.14: Straight 2 - Probability profile with: (a) Comparison Based Approach, (b)
Simulation Based Approach, (c) Hidden Markov Model and (d) Interacting Multiple
Model

48



4.4 Global results

In order to have a better comprehension of the methods’ performance, we
provide in this section an efficiency comparison.
The trajectories available were not enough to create meaningful charts of
efficiency and, for this reason, we create and use fictitious trajectories. In
particular, we add 8 fictitious trajectories for the turn intent and 13 for the
straight one. In order to generate these fictitious trajectories, we considered
the speed profile of measured real trajectories (as for the previous section),
to which we add a random value to generate distinct trajectories.
In order to analyse the performance of the different methods, we decided to
plot the probability profiles with the position of the vehicle instead of the
time. As an example, we can see in Figure 4.15 the new layout of the case
Turn 1, with a position interval of one meter.
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Figure 4.15: Turn 1 - Probability profiles plotted with the position of the vehicle
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In the sequel, we analyse the behaviour of the methods for four different
positions: at 15 meters, at 20 meters, at 25 meters and 30 meters from the
starting point. The probability associated to each case is presented in Figure
4.16. Looking at these bar charts we can see the probability evolution at
the chosen positions. For example, for the case Turn 1, we can see that the
SBA and CBA struggle to find the correct intent with high probability at 15
and 20 meters from the starting point. Instead, the HMM and IMM predict
the correct intent for each selected point with high probability level.
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Figure 4.16: Turn 1 - Probabilities of the selected positions

These results let us think that IMM and HMM are the best methods for
the prediction of the driver intent. In order to confirm or reject this first
impression, we now present the result of the efficiency analysis. We will use
the statistical measures of sensitivity and specificity, also known in statistics
as classification functions:

• Sensitivity (also called true positive rate) measures the proportion of
positives that are correctly identified;

• Specificity (also called true negative rate) measures the proportion of
negatives that are correctly identified.

In our case, we compute the sensitivity as the number of true positive TP
(turning trajectories correctly identified) over the number of turning trajec-
tories P . Instead, we compute the specificity as the number of true negative
TN (straight trajectories correctly identified) over the number of straight
trajectories N .
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Figure 4.17: Sensitivity of each method varying the position and the threshold

We calculate all those values varying the threshold of probability 1. Con-
sidering Algorithm 7, we obtain the following charts.

In Figure 4.17 we can see the efficiency results for the turning trajectories.
In order to consider a performance as good, we want high sensitivity for all
thresholds greater than 0.5, that represents a random decision.
We can see in Figure 4.17(d) that only at 7 meters from the intersection we
obtain high sensitivity values, while in the other cases we can not predict
with confidence the correct intent, unless using a low threshold value. The
two methods with the highest sensitivity are the IMM and the HMM. Also

1If we test a turn trajectory and we set a threshold of 0.6, if the algorithm predicts
that the probability of turning intent is greater than 0.6 we have a true positive, otherwise
we have a false positive. Instead, if we have a straight trajectory and we set the same
threshold of 0.6, if the algorithm predicts that the probability of turning intent is smaller
than 0.6 we have a true negative, otherwise we have a false negative
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Figure 4.18: Specificity of each method varying the position and the threshold

the SBA has good performance, while the CBA presents a bad sensitivity
ratio in almost all the cases.

In Figure 4.18 we can see the efficiency results for the straight trajecto-
ries. In order to consider a performance as good, we want high specificity
for all thresholds lower than 0.5.
In this case we have higher efficiency for all the methods. In fact, they suc-
ceed to predict the correct intent already at 12 meters from the intersection.
The Bayesian Approach, in particular the SBA, predicts better the straight
trajectories, obtaining a specificity equal to 1 for almost all the thresholds,
as shown in Figure 4.18(d). The CBA has also high specificity, but only
with higher thresholds.
The HMM and IMM have a similar behaviour. In fact, they both have high
specificity with lower thresholds, if compared with the CBA.

The charts in Figure 4.19 show a combination of the sensitivity and
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Figure 4.19: Efficiency of the methods varying the position and the threshold

specificity curves, thus the combination of Figure 4.17 and Figure 4.18. In
particular, the left side of the charts presents the efficiency of the method
to predict a straight trajectory, while the right side presents the efficiency
to predict the turning one. A result is considered good if an high value of
efficiency is observed for all thresholds.
We notice immediately that the SBA is the most performant method, with
the highest efficiency for almost all the cases, and is the best method for the
prediction of a straight trajectory. We can also notice in Figure 4.19(d) that
the HMM and IMM methods have an high efficiency for all thresholds, both
for the turning trajectory and for the straight trajectory. The Comparison
Based Approach is the worst method in terms of efficiency, providing useful
performance only when the vehicle is at 7 meters from the intersection, as
shown in Figure 4.19(d).

The charts in Figure 4.20 are the sensitivity-specificity graphs, also called
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Figure 4.20: ROC curves of each method, the dashed line rapresents the behaviour of
a fictitious method with random decision

the Receiver Operating Characteristic (ROC) curves. In order to have good
results, the ROC curves must be far from the dashed line: more the curves
are distant from the dashed line and more the method will be efficient. From
Figure 4.20, it is immediately possible to notice that the SBA is the most ef-
ficient method. This result is due to the great performance in the prediction
of straight trajectories. The HMM and IMM show good performances with
high efficiency for distances less then 12 m from the intersection as shown in
Figure 4.20(c). Instead, the CBA obtains high efficiency only at 7 m from
the intersection, as shown in Figure 4.20(d).
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Algorithm 7 Algorithm create to find TP/P, TN/N and TP+TN/Total
Initialization of the vectors
p[ ] = vector of probability of a specific method
NT = number of turn trajectories (P)
NS = number of straight trajectories (N)
k = counter for true positive
q = counter for true negative
n[ ] = vector of threshold
l = number of threshold in the vector n[ ]

for j = 1 to l do
for i = 1 to NC do

if p(i) >= n(j) then
k = k + 1

end if
end for
for i = NT + 1 to NT +NS do

if p(i) <= n(j) then
q = q + 1

end if
end for
a(j) = k/NT

. a(j) is the j-th element of true positive over the total number of turn
trajectories, and thus the sensitivity

b(j) = q/NS

. b(j) is the j-th element of true negative over the total number of straight
trajectories, and thus the specificity

c(j) = (k + q)/(NT +NS)
. c(j) is the j-th element of the sum of true positive and true negative over the
total number of samples trajectories

k = 0
q = 0

end for
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Chapter 5

Conclusion

In this work, we considered different methods for calculating the driver in-
tent probability when the vehicle approaches a generic intersection. Our
goal was to identify and analyse the most performant methods. For the
sake of simplicity, we considered only two possible trajectories: go straight
or turning at the intersection. We considered the data related to the dy-
namics of the vehicle (position, speed and acceleration). Since we consider
as input of the classifier solely the longitudinal dynamics of the car, all the
algorithms must recognize the two intents based only on the braking pattern
of the vehicle. In all the cases, if the car approaches the intersection with
a stable, low speed and without a clear deceleration, almost all the meth-
ods fail to recognize the real driver intent. Furthermore, another weakness
of the considered methods is that they are designed to work in a specific
intersection. Also, the available set of real data at our disposal was rather
limited. By consequence, we worked with a very small number of trajec-
tories. In order to have better results we should increase the number of
hypotheses and, in the case of HMM, train the algorithm with real data at
the considered specific intersection. The following conclusion holds for the
different methods.

• The Simulation Based Approach is the most appropriate method to
predict a straight trajectory. It predicts the driver intent with large
prediction horizon and high probability. However, in the cases when
turning with low speed, the calculated probability is unreliable. As al-
ready underlined before, having low speeds makes SBA unable to dis-
tinguish the difference between a turning trajectory with a low speed
and a straight trajectory with the same low speed profile. In order to
improve this method we suggest to add additional hypotheses to the
scenario.
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• The Comparison Based Approach is less efficient when compared to
SBA. In our opinion, the main problem lies in the complexity of mod-
elling the acceleration of a real vehicle in the preliminary settings. In
all the cases, in fact, we have large differences between the acceleration
profile of our hypotheses and the acceleration measured from the GPS
device. These differences produce small prediction horizons and low
probabilities.
This method can also be improved. As SBA, we can increase the
number of hypotheses in order to have a more accurate prediction.
Moreover, if we consider a scenario with more than a single vehicle,
we can use the IDM equation to model the acceleration profile, con-
sidering also the relative distance between two following vehicles.

• The Hidden Markov Model predicts with high probabilities and high
efficiency both the turning and the straight trajectory. This method
can be largely improved, since in the training phase the method is able
to integrate all the characteristics of a trajectory, and including them
in the final emission matrix. For example, we can add other states in
the Markov chain or add other emission values in the description of
the trajectory, instead of only using four levels of acceleration.

• At last, the Interacting Multiple Model, as the HMM, predicts with
high probability levels and high efficiency both the turning and straight
trajectories. Thanks to the Kalman filter, it’s possible to predict the
chosen trajectory anticipating the driver behaviour. From our point of
view, the best improvement is to create a more sensitive and accurate
models for the Kalman filters, and adding different hypotheses that
are able to describe all the driver behaviours when approaching an
intersection.

To conclude, it’s not possible to identify, in a objective way, one method
that outperforms the others in every situation. Each method has its own
advantages and drawbacks.
SBA is the method with the highest efficiency, but without a large predic-
tion horizon. CBA is the worst method analysed in this thesis, but it has
a good potential if we consider a scenario with more than a single vehicle.
HMM has good performances in terms of probability levels and prediction
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horizon, and can be largely improved in the training phase. IMM does not
have good efficiency with respect to SBA, but it is the method with the
largest prediction horizon.
We therefore suggest to use more than one method, focusing in the pre-
liminary settings and in the training phase so to have the most accurate
hypothesis model possible.
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Appendix A

Trajectory’s algorithms

Algorithm 8 Algorithm used to create a random set of initial parameters
n = numbers of iterations
rand = Random value between 0 to 1
for i = 1 to n do

vmaxq(i) = vmax+ 5rand
vinq(i) = vin+ 3rand
vcurveq(i) = vcurve+ 3rand
vafterq(i) = vafter + 5rand
costq(i) = cost+ rand

s1q(i) = s1 + 5rand
s2q(i) = s2 + 5rand

. We add a random value for each parameter
end for



64 Appendix A. Trajectory’s algorithms

Algorithm 9 Algorithm to create a turning trajectory
Initialization of the vectors
x[ ] = vector of space
v[ ] = vector of speed
a[ ] = vector of acceleration
wn = white noise
dt = minimum time step
Tmax = maximum time used to compute the trajectory
s1q = position where the vehicle starts to braking
s2q = position where the vehicle stops to braking

v[1] = vinq + wn

s[1] = a[1] = 0
. Initialization of the first element in the vectors

for i = 2 to Tmax do
x(i) = x(i− 1) + v(i− 1)dt+ 1

2a(i− 1)dt2
v(i) = vinq + wn

. First constant part of the trajectory
if x(i) > s1q then

v(i) = vinq − vinq−vcurveq
s2q−s1q (x(i)− s1q) + wn

. Braking part of the trajectory
end if
if x(i) > s2q then

v(i) = v(i− 1) + costq(vafterq − v(i− 1))dt+ wn

. Acceleration part of the trajectory
end if
if v(i) > vdopo then

v(i) = vafterq + wn

. Reach the regime speed
end if
a(i) = v(i)−v(i−1)

dt

end for
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Algorithm 10 Algorithm for create a straight trajectory
Initialization of the vectors
x[ ] = vector of space
v[ ] = vector of speed
a[ ] = vector of acceleration
wn = white noise
dt = minimum time step
Tmax = maximum time used to compute the trajectory

v[1] = vinq + wn

s[1] = a[1] = 0
. Initialization of the first element in the vectors

for i = 2 to Tmax do
x(i) = x(i− 1) + v(i− 1)dt+ 1

2a(i− 1)dt2
v(i) = vinq + wn

a(i) = v(i)−v(i−1)
dt

. In this trajectory we consider the acceleration equal to 0 then, as
consequence, we have a constant speed
end for
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