
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

The exaFPGA base-system
A streaming multi-FPGA system for High Performance Computing

Relatore: Prof. Marco Domenico SANTAMBROGIO

Correlatore: Dott. Ing. Riccardo CATTANEO

Tesi di Laurea di:

Pietro Giuseppe Bressana

Matricola n. 804793

Anno Accademico 2014–2015

This page intentionally left blank

Contents

1 Introduction 1

1.1 Context . 1

1.2 The Challenges of High Performance Computing 3

1.2.1 The Power Challenge . 3

1.2.2 The Scalability Challenge . 4

1.2.3 The Memory Challenge . 5

1.2.4 The Programmability Challenge 5

1.3 Innovations in High Performance Computing 6

1.4 Heterogeneous Systems . 7

1.5 FPGA-based Systems . 15

1.6 Iterative Stencil Loops . 17

1.7 Thesis Contributions and Outline . 20

2 State of the Art 22

2.1 Heterogeneous Systems . 22

2.1.1 GPU-based Systems . 23

2.1.2 CPU-based Systems . 29

2.1.3 FPGA-centric Systems . 41

2.1.4 Custom Systems . 45

2.2 Multi-FPGA architectures . 52

2.3 Maxeler Architecture . 58

3 Proposed Architecture 64

3.1 The Basic Block . 64

iii

CONTENTS iv

3.1.1 The Starting Point: a Single-Board Accelerator 65

3.1.2 The first design: Aurora with AXI Chip2Chip 67

3.1.3 The second design: A fully-streaming Serial Link 70

3.1.4 The third design: PCIe host-board Connection 74

3.1.5 The final version: A multi-board Pipeline 79

3.2 The Cluster Node . 83

3.3 Power Efficiency Considerations . 84

3.3.1 Hypotheses . 84

3.3.2 Building the System . 86

3.3.3 Power Efficiency Trend . 88

3.3.4 A different Assumption . 90

4 Experimental Evaluations 91

4.1 Experimental Setup . 91

4.2 Test Cases . 93

4.2.1 jacobi-2D . 94

4.2.2 seidel-2D . 94

4.2.3 game-of-life-2D . 94

4.2.4 jacobi-3D . 94

4.2.5 heat-3D . 94

4.3 Experimental Results . 95

4.3.1 jacobi-2D . 97

4.3.2 seidel-2D . 100

4.3.3 game-of-life-2D . 102

4.3.4 jacobi-3D . 104

4.3.5 heat-3D . 107

4.4 A Quantitative Model for the Power Efficiency 109

4.4.1 Building the Model . 109

4.4.2 Power Efficiency Trends . 110

4.4.3 Model Validation . 113

CONTENTS v

5 Conclusions and Future Work 117

5.1 Conclusions . 117

5.2 Future Work . 118

Bibliography 120

List of Figures

1.1 Processor power, density and performance trends over the last

forty years. 4

1.2 Block diagram of an heterogeneous architecture. 8

1.3 Block diagram of a GPGPU. 9

1.4 Block diagram of a FPGA. 11

1.5 A Configurable Logic Block. 12

1.6 Four-neighbour stencil in a 2D array. 17

2.1 Tesla microarchitecture. 24

2.2 Fermi microarchitecture. 26

2.3 Kepler microarchitecture. 28

2.4 Power8 Processor Die with description. 30

2.5 CAPI Hardware Ecosystem. 31

2.6 Intel Xeon Phi Coprocessor Block Diagram. 33

2.7 Intel Stellarton architecture. 36

2.8 Zynq 7000 block diagram. 38

2.9 Zynq Ultrascale block diagram. 40

2.10 Convey Hybrid-core architecture and design flow. 43

2.11 Anton1 architecture. 46

2.12 Anton1 HTIS tile detail. 47

2.13 Anton1 flex tile detail. 48

2.14 Anton2 architecture. 50

2.15 Anton2 HTIS tile detail. 50

2.16 Anton2 flex tile detail. 51

vi

LIST OF FIGURES vii

2.17 Block diagram of the Catapult FPGA architecture. 54

2.18 NetFPGA SUME board architecture. 56

2.19 Maxeler Data Flow Architecture. 59

2.20 Network sharing configuration. 61

2.21 Low latency configuration. 61

2.22 High data transfer configuration. 62

3.1 Single-board accelerator . 65

3.2 Virtex-7 floor plan of the Single-board accelerator 66

3.3 Board-board interconnection with Aurora and Chip2Chip 67

3.4 Virtex-7 floor plan of one of the two boards of the first design . . . 69

3.5 Board-board interconnection with Aurora streaming 71

3.6 Virtex-7 floor plan of one of the two boards of the second design . . 73

3.7 Host-board PCIe interconnection . 74

3.8 QuickPCIe Block Diagram . 75

3.9 Virtex-7 floor plan of the design with QuickPCIe only 78

3.10 The multi-board Pipeline . 79

3.11 Virtex-7 floor plan of the design including Aurora only 81

3.12 Virtex-7 floor plan of the design including QuickPCIe and Aurora . 81

3.13 A Cluster Node . 83

3.14 A computing device featuring both a Peripheral Component Inter-

connect Express (PCIe) interface and a Aurora interface. 85

3.15 A computing device featuring a Aurora input interface and a Au-

rora output interface. 86

3.16 The first configuration: a single computing device featuring a PCIe

interface. 87

3.17 The second configuration: two computing devices featuring a PCIe

interface and connected through a Aurora link. 87

3.18 The third configuration: a queue of computing devices connected

through a Aurora link. The two devices at the extremes feature

also a PCIe interface . 88

LIST OF FIGURES viii

4.1 A block diagram of the experimental setup. 92

4.2 The experimental setup for the test session. 92

4.3 The close-ups of the two VC707 boards. 92

4.4 jacobi-2D: Throughput (expressed in GFLOPS) 98

4.5 jacobi-2D: Power Efficiency (expressed in GFLOPS/W) 98

4.6 jacobi-2D: Resource Utilization (expressed as the percentage of the

available resources) . 99

4.7 seidel-2D: Throughput (expressed in GFLOPS) 100

4.8 seidel-2D: Power Efficiency (expressed in GFLOPS/W) 101

4.9 seidel-2D: Resource Utilization (expressed as the percentage of the

available resources) . 101

4.10 game-of-life-2D: Frame Rate (expressed in frame per seconds) . . . 103

4.11 game-of-life-2D: Resource Utilization (expressed as the percentage

of the available resources) . 103

4.12 jacobi-3D: Throughput (expressed in GFLOPS) 105

4.13 jacobi-3D: Power Efficiency (expressed in GFLOPS/W) 105

4.14 jacobi-3D:Resource Utilization (expressed as the percentage of the

available resources) . 106

4.15 heat-3D: Throughput (expressed in GFLOPS) 107

4.16 heat-3D: Power Efficiency (expressed in GFLOPS/W) 107

4.17 heat-3D: Resource Utilization (expressed as the percentage of the

available resources) . 108

4.18 Power Efficiency trend of a two-boards system when increasing

the Streaming Stencil Time-steps (SSTs) queue length 111

4.19 Power Efficiency trend of a system with a single SST on each board

when increasing the number of intermediate FPGA boards 112

4.20 Power Efficiency trend when increasing the number of intermedi-

ate FPGA boards for different SSTs queue lengths 113

4.21 Comparison between the experimental results (red X marks) and

the predicted values (blue line) when considering Jacobi2D SSTs . . 115

LIST OF FIGURES ix

4.22 Comparison between the experimental results (red X marks) and

the predicted values (blue line) when considering Heat3D SSTs . . 116

List of Tables

4.1 jacobi-2D . 99

4.2 seidel-2D . 102

4.3 game-of-life-2D . 104

4.4 jacobi-3D . 106

4.5 heat-3D . 108

x

List of Abbreviations

AE Application Engine

AEH Application Engine Hub

AFU Accelerator Function Unit

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BB Basic Block

BRAM Block RAM

CAPI Coherent Accelerator Processor Interface

CAPP Coherent Accelerator Processor Proxy

CDC Clock Domain Crossing

CLB Configurable Logic Block

CN Cluster Node

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DDR3 Double Data Rate Type Three

xi

LIST OF ABBREVIATIONS xii

DFE DataFlow Engine

DMA Direct Memory Access

DSP Digital Signal Processing

ECC Error-Correcting Code

eDRAM embedded Dynamic Random-Access Memory

FF Flip Flop

FIFO First In First Out

Flex Flexible Subsystem

FLOP Floating Point Operation

FLOPS Floating Point Operations Per Second

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

FSM Finite State Machine

FW Firmware

GC Geometry Core

GCC GNU Compiler Collection

GPGPU General Purpose Graphic Processing Unit

GPU Graphic Processing Unit

GRAPHITE GIMPLE Represented As Polyhedra with Interchangeable

Envelopes

HCMI Hybrid-Core Memory Interconnect

HDD Hard Disk Drive

LIST OF ABBREVIATIONS xiii

HDL Hardware Description Language

HTIS High-Throughput Interaction Subsystem

HLS High Level Synthesis

HMC Hybrid Memory Cube

HPC High Performance Computing

HW Hardware

ICB Interaction Control Block

IDE Integrated Development Environment

ILP Instruction-level parallelism

IOB Input-Output Block

IP Intellectual Property

IR Intermediate Representation

ISA Instruction Set Architecture

ISL Iterative Stencil Loop

ICT Information and Communications Technology

IVR Integrated Voltage Regulator

JTAG Joint Test Action Group

LUT Look-Up Table

MC Memory Controller

MCU Micro Controller Unit

MIC Many Integrated Core

MIG Memory Interface Generator

LIST OF ABBREVIATIONS xiv

MUX Multiplexer

OS Operating System

PC Personal Computer

PCB Printed circuit board

PCIe Peripheral Component Interconnect Express

PL Programmable Logic

PoCC Polyhedral Compiler Collection

PPIM Pairwise Point Interaction Module

PS Processor System

PSL Power Service Layer

RAM Random Access Memory

RAU Remote Access Unit

RTL Register-Transfer Level

RX Receiving

SDRAM Synchronous Dynamic Random-access Memory

SFU Special Functions Unit

SIMD Single Instruction Multiple Data

SLI Scalable Link Interconnect

SM Streaming Multiprocessor

SoC System on a Chip

SP Streaming Processor

SSD Solid State Drive

LIST OF ABBREVIATIONS xv

SST Streaming Stencil Time-step

SW Software

TDP Thermal Design Power

TPC Texture/Processor Cluster

TX Transmitting

USB Universal Serial Bus

VPU Vector Processing Unit

x8 Eight-Lane

Summary

The energy demand of the overall ICT industry amounts to about the 5% of

the world’s total energy consumption and it is still growing considerably[55].

High Performance Computing (HPC) systems are responsible for a large portion

of the energy resources demanded by ICT. Indeed, today’s HPC heterogeneous

architectures provide a great computing power, at the cost of an enormous energy

consumption, which is due both to the Hardware (HW) accelerators i.e. Graphic

Processing Units (GPUs) and co-processors and to other devices that are not in

charge of performing heavy computations, such as the cooling infrastructure, the

memory subsystem and the interconnections [43].

Next generation supercomputing platforms will be required to deliver exas-

cale performances, thus increasing the number of performed computations and

the overall power consumption. However, the 20MW power budged set by the

U.S. Department of Energy to the future HPC platforms [43] in order to limit the

total cost of the systems, forces a reduction of at least an order of magnitude to

the power consumption of the currently available computing technologies.

The work proposed in this thesis project addresses the aforementioned is-

sues by employing Field Programmable Gate Arrays (FPGAs) as the comput-

ing elements for the next generation HPC systems, thus exploiting their intrinsic

power efficiency. Moreover, it provides the specifications of a Cluster Node (CN)

prototype for the exaFPGA Infrastructure, by implementing a high-throughput

multi-FPGA pipeline. The performances of the proposed architecture scale lin-

early with the length of the pipeline and with the number of computing elements

implemented on each FPGA.

xvi

SUMMARY xvii

Moreover, this work enables the use of the Peripheral Component Intercon-

nect Express (PCIe) interface and of the Aurora serial link on the 7-series FPGAs

provided by Xilinx, thus simplifying the development of a working multi-FPGA

HPC system.

A first experimental version of the proposed architecture has been imple-

mented with two Xilinx VC707 boards and five benchmarks have been run by

employing various types of Streaming Stencil Time-steps (SSTs). Results show

how the high scalability of the architecture is guaranteed by the pseudo-linear in-

crease of the throughput and of the power efficiency. Moreover, the low resource

utilization allows to reserve a considerable amount of area for the computing

logic, thus implementing long SSTs queues, that ensure a pseudo-linear increase

in throughput while remaining with constant bandwidth.

Sommario

La richiesta di energia da parte del settore informatico ammonta complessiva-

mente al 5% di tutta l’energia consumata nel mondo ed è in continua crescita[55].

I sistemi High Performance Computing (HPC) sono i responsabili del consumo

di una buona parte delle risorse energetiche utilizzate dal settore informatico.

Infatti, le odierne architetture per il supercalcolo forniscono una grande potenza

di calcolo, al costo di un enorme dispendio di energia, dovuto sia agli accelera-

tori Hardware (HW) inclusi nei moderni sistemi HPC, ovvero Graphic Proces-

sing Unit (GPU) e coprocessori, sia a altri dispositivi che non eseguono compu-

tazioni intensive, come l’impianto di raffreddamento, il sistema di memoria e le

interconnessioni [43].

La prossima generazione di piattaforme per il supercalcolo sarà chiamata

a fornire prestazioni dell’ordine del miliardo di miliardi di operazioni floating

point eseguite in un secondo. Si assisterà quindi ad un aumento del numero di

calcoli eseguiti e della potenza utilizzata. Tuttavia, il limite di 20MW imposto dal

Dipartimento dell’Energia degli Stati Uniti alla potenza consumata dai sistemi

di supercalcolo del prossimo futuro [43], richiede una riduzione di almeno un

ordine di grandezza della potenza consumata dalle tecnologie attuali.

Il lavoro proposto in questo progetto di tesi affronta i problemi appena cita-

ti impiegando le Field Programmable Gate Array (FPGA) come elementi com-

putazionali per i futuri sistemi di supercalcolo, avvalendosi della loro intrin-

seca efficienza energetica. Inoltre fornisce la specifica di un Cluster Node (CN)

per l’infrastruttura del progetto exaFPGA, realizzando una pipeline multi-FPGA

ad alte prestazioni. Le prestazioni dell’architettura proposta scalano linearmen-

xviii

SOMMARIO xix

te con la lunghezza della pipeline e con il numero di elementi computazionali

implementati su ogni FPGA.

Inoltre, questo lavoro permette l’uso dell’interfaccia Peripheral Component

Interconnect Express (PCIe) e della connessione seriale con Aurora sugli FPGA

della serie 7 prodotti da Xilinx, semplificando notevolmente lo sviluppo di un

sistema HPC multi-FPGA.

Una prima versione sperimentale dell’architettura proposta è stata realizzata

con due schede Xilinx VC707 e sono state eseguite cinque sessioni di test utiliz-

zando diversi tipi di Streaming Stencil Time-step (SST). I risultati ottenuti mo-

strano come la notevole scalabilità dell’architettura sia garantita dall’aumento

pseudo-lineare del throughput e dell’efficienza energetica. Inoltre, il ridotto uti-

lizzo delle risorse permette di dedicare una considerevole quantità di area agli

elementi computazionali, consentendo quindi di realizzare lunghe catene di SST,

che comportano un aumento del throughput, pur mantenendo la banda costante.

1

Introduction

This chapter introduces the context in which the work done in this thesis

project has been carried on. Section 1.1 describes this context, namely the High

Performance Computing (HPC) field and its applications. The main challenges

that the future architectures will be called upon to address while moving towards

the exascale era are analysed in section 1.2. Section 1.3 describes the most promis-

ing technological advancements that allow to address the presented challenges.

Then, section 1.4 presents an overview of the most common heterogeneous tech-

nologies, as they will be crucial for the development of the future exascale sys-

tems, while section 1.5 focuses on the use of FPGA-based devices in the HPC

field, since this seems to be a promising approach in order to meet the presented

challenges. Section 1.6 presents the iterative stencil loops, that are commonly

found in HPC applications, and the polyhedral model, which will be exploited in

the future supercomputing systems, since it enables a number of code transfor-

mations and optimizations. Finally, section 1.7 provides the contributions made

by the proposed work and an overview of the remaining of this thesis.

1.1 Context

HPC is the branch of computer science which develops new hardware and

software technologies in order to achieve substantially higher computing per-

formance with respect to the standard general-purpose computers. In modern

1

1. INTRODUCTION 2

societies HPC is regarded as a key asset for a variety of commercial and research

activities and a enabling technology for new discoveries[44]. Scientific research

employs HPC to perform simulations of complex molecular systems that are use-

ful to develop new chemical structures and new materials [51]; physicists need

to solve compute-intensive problems to discover the behaviour of the primary

components of the matter and to improve their knowledge of the universe [54].

Moreover, they can develop innovative energy plants, that exploit renewable en-

ergy sources to provide a better efficiency and a reduced pollution; HPC is used

for DNA sequencing and for DNA micro array analyses, thus allowing to find the

cause of several diseases and to produce new drugs for them [61]. Moreover, the

execution of some clinical tests can be accelerated and improved, hence provid-

ing detailed results in a shorter time. HPC is currently used also to simulate the

human brain at the neural level [8], thus allowing to understand its behaviour;

fast climate changes can be simulated with supercomputers to forecast short term

events and long term trends; the major oil and gas companies carry out complex

computations to detect the presence of hydrocarbons reserves within the layers

of the earth’s crust [49]; several financial institutes employ HPC systems to per-

form financial calculations on huge data sets, in order to foresee the trends of the

markets [67]; many research centres and companies all over the world perform

complex simulations and analyses on their prototypes using supercomputers in-

stead of building expensive samples of their products; finally, governments em-

ploy HPC in defence, communications, aerospace and other strategic fields [45].

Thanks to its unmatchable computing capability, HPC technology not only re-

duces the time taken by complex computations, but also allows to develop new

algorithms and to meet a number of previously unfeasible challenges.

Future HPC systems will be required to deliver exascale performance, thus

providing more than 1018 Floating Point Operations Per Second (FLOPS). There-

fore a great performance improvement is needed, since today’s best HPC systems[28]

can achieve only peta-scale performance, thus providing more than 1015 FLOPS.

In order to achieve this performance improvement, a number of technological

challenges arisen within the HPC field must be addressed properly.

1. INTRODUCTION 3

1.2 The Challenges of High Performance Computing

This section describes the main challenges that must be addressed in order

to achieve the performance improvement required by the future exascale HPC

systems. They deal with power consumption, scalability, memory performance

and programming paradigm.

1.2.1 The Power Challenge

About the 5% of the total energy consumed in the world is spent by the ICT

sector [55]. Data centres account for a third of the ICT total and this value will

increase in the next years. Indeed, current HPC systems can achieve petascale

performance at the cost of about ten Mega-Watts of power consumption, thus

providing a very low power efficiency. Only a fraction of the consumed power

is required by computation, a large amount of power is spent to move the data

throughout the infrastructure and for the cooling systems [43].

The power required by the interconnection infrastructure increases with the

size of the infrastructure itself, because it has a quadratic dependency to the

length of the links. Moreover, by increasing the rate at which the data is trans-

mitted, the power consumption increases as well.

A high power consumption involves both financial and technical problems.

Indeed, the cost of the energy has become the main expense when considering

HPC systems, as it has overcome the cost of the system itself. Moreover, a enor-

mous quantity of energy flowing through the infrastructure requires a powerful

cooling system, which in turn needs a lot of energy to be operated, thus increas-

ing the operational cost of the overall system. For these reasons the U.S. Depart-

ment of Energy has set a 20MW limit to the power consumption of the future

exascale supercomputing systems [43].

A more efficient HPC technology would allow to decrease the overall costs

by reducing the amount of energy required to perform computations and by re-

quiring a smaller cooling system, since a reduced amount of heat would need to

be dissipated. Power efficiency is the main concern when considering HPC tech-

1. INTRODUCTION 4

nology, since it hampers the development of more powerful systems based on

the currently available architectures.

Figure 1.1: Processor power, density and performance trends over the last forty years.

1.2.2 The Scalability Challenge

Scalability is an important aspect of the HPC technology, since it enables

the performance increase of the systems. In the past years supercomputers have

scaled their performance by improving the clock frequency and the Instruction-

level parallelism (ILP) of each of their computing nodes, following the Moore’s

law, which states that the number of transistors on a chip doubles every 18/24

months. However, this growth in transistor density no longer corresponds to the

doubling of the overall performance, due to power consumption and memory

performance, and the growth in computing performance can no longer rely on

the increase of the single-compute node performance, see figure 1.1.

The maximum power that can be supplied to a single computing device is

limited by the maximum heat that the device can dissipate, this limit has already

been reached and the clock frequencies of the computing devices has remained

flat at some Gigahertz. This power limitation causes also the phenomenon known

as dark silicon [63]: transistor scaling and voltage scaling are no longer in line

1. INTRODUCTION 5

with each other, hence the amount of power that can be supplied to a chip is not

enough to operate all the computing units at the same time. Therefore, only a

fraction of the entire die can be powered up at a time, causing large idle or heav-

ily underclocked portions of silicon area, hence the term dark silicon. Moreover,

computing performance can no longer be increased by adding more nodes to the

system, because a bigger system would require an enormous amount of energy.

Therefore HPC systems can not be scaled both by increasing the single device

performance and by adding more devices to their infrastructure.

1.2.3 The Memory Challenge

Another important challenge is brought by the performance gap between the

memory and the computing logic. Indeed, in the past years, memory technology

has been optimized to offer the maximum possible density, in order to maximize

the amount of data available for the computing devices. However, the high la-

tency provided by the memory has decreased slowly with respect to the comput-

ing logic cycle time, therefore the gap between the number of instructions that

a processors can execute and the number of memory transfers that can be per-

formed in the same amount of time forces the computing devices to waste time

and resources while waiting for data stored in memory.

Moreover, while the number of processing units included into each device in-

creases, the amount of memory ratio with respect to the available computational

capacity decreases. This trend is caused by the higher cost of the memory with

respect to the computing resources. Indeed, memory density has not increased at

the same rate of the computing logic, which in turn has followed the Moore’s law.

Therefore HPC systems are equipped only with the essential amount of memory,

hence restricting the overall performance improvements.

1.2.4 The Programmability Challenge

Programming a today’s HPC system is a hard task, as it becomes more and

more difficult to efficiently run a sequential code on a thousands node machine.

Indeed, in order to extract the adequate amount of parallelism from a code, it has

1. INTRODUCTION 6

to be changed or completely rewritten.

Usually, today’s developers and HPC users are not trained on parallel pro-

gramming, therefore they are not able to exploit all the computing power offered

by the machines. Moreover, high level programming languages, which fit well

for sequential programming, are not suited for the supercomputing field, as they

do not allow to write parallel code natively. Finally, some classes of problems

require too much effort to be accelerated within the currently adopted paradigm.

1.3 Innovations in High Performance Computing

In the last years a number of new techniques in the supercomputing field

have arisen. They span all the aspects of the HPC technology, such as memo-

ries, interconnections, cooling, programming paradigms and computing archi-

tectures, in order to address the challenges provided by today’s technologies.

The designers of HPC systems try to hide the performance gap between the

memory and the computing logic by inserting a increasingly longer memory

hierarchy composed of different cache levels. Moreover, one of the solutions

adopted to reduce the power consumption of the communication infrastructure

consists of replacing the entire infrastructure with fiber-optic links, that provide

high speed and low power consumption. When considering the heat dissipation

problem, innovative cooling systems that exploit renewable energy instead of

the traditional power sources have been constructed. Moreover, new data centres

arise within suitable environments providing natural cooling capabilities, such as

cool water availability or cold weather. One of the most important trends, which

is presented in sections 1.4 and 1.5, concerns computing architectures, as it sug-

gests to build heterogeneous systems by exploiting different kinds of processing

elements instead of the general purpose processors only. Although this solution

will require a huge effort in order to be fully implemented, it seems to be promis-

ing for the exascale approach, with respect to the power efficiency and to the

scalability. On the software side, new parallel programming languages are under

development and new approaches are being tested in order to optimize the still

1. INTRODUCTION 7

unmanageable classes of problems. In this field a great research effort has been

spent on the iterative stencil loops, since they find application in many HPC algo-

rithms, and on the polyhedral model, which enables a number of optimizations,

that can be easily applied also to ISL-based codes. They are both presented in

section 1.6.

1.4 Heterogeneous Systems

As of June 2015, the two best HPC systems [28] where based on heteroge-

neous architectures. In the near future, many other supercomputers will be built

by employing different kinds of accelerators. This approach offers to the develop-

ers the more appropriate processing elements for each of the computational tasks

in which an application can be divided. Indeed, each computing device compos-

ing a heterogeneous system features an optimized architecture, which allows to

execute a suitable task in the most efficient way. Moreover, HPC developers can

exploit a greater flexibility, both on the software side and on the hardware side.

Next heterogeneous HPC systems will provide a higher computing perfor-

mance with a lower power consumption with respect to the currently available

homogeneous machines. The introduction of heterogeneous computing architec-

tures is due to the inability to solve the aforementioned issues simply by improv-

ing the already available homogeneous supercomputers. Indeed, homogeneous

architectures are not able to satisfy all the different computational requirements

of an application with the same level of efficiency. Therefore, today’s HPC sys-

tems generally achieve only a fraction of their peak performance during their uti-

lization. The maximum performance provided by the processors can be reached

only when particular suitable tasks are executed.

1. INTRODUCTION 8

Figure 1.2: Block diagram of an heterogeneous architecture.

The architecture of a heterogeneous computing system, shown in figure 1.2,

consists of a number of different processing elements connected to a computing

machine, which in turn is composed of one or more general purpose processors

and a main memory unit. The accelerators, the processors and the memory are

connected through a high-performance link. The whole system can fit into a stan-

dard cluster node unit and hundreds or thousands units can be interconnected

to build a complex supercomputer.

In order to better exploit all the computing power offered by the system, the

movement of the data and the execution of general purpose tasks, such as the

Operating System (OS), is performed by the Central Processing Units (CPUs),

since they can manage complex control flows more efficiently than the other

computing architectures. On the contrary, the most compute-intensive tasks are

processed by the dedicated accelerators.

The accelerator units can be of different nature, depending on the character-

istics of the application that has to be processed. The heterogeneous components

used to build today’s HPC accelerators are General Purpose Graphic Processing

Units (GPGPUs), Field Programmable Gate Arrays (FPGAs) and Custom Proces-

sors.

GPGPUs are high performance parallel computing devices based on Graphic

Processing Units (GPUs), that feature an optimized Single Instruction Multiple

Data (SIMD) architecture. They can achieve a high floating-point performance, a

1. INTRODUCTION 9

high memory bandwidth and a high power efficiency, therefore they outperform

general purpose units when processing huge sets of of floating-point data with

modest need of control flow and data caching.

Figure 1.3: Block diagram of a GPGPU.

The block diagram shown in figure 1.3 illustrates the main components of a

GPGPU device. The architecture includes a number of identical units, each one

featuring a processing element, a cache memory and a control unit.

Each processing element comprises a pipeline of dedicated processing units

that allows to compute basic floating-point arithmetic operations with a very

high throughput. The cache memory provides a intermediate high-speed mem-

ory level between the external Random Access Memory (RAM) and the process-

ing element. The control unit manages the movement of the data throughout the

architecture and, in modern GPGPUs, it can also schedule the execution of the

threads, thus enabling a better exploitation of the processing units.

These elements are replicated several times into the architecture in order to

perform simultaneous computations on large amounts of data. GPGPU devices

are usually coupled with a off-chip dedicated high performance Double Data

Rate (DDR) memory, that allows to temporarily store the data to be processed.

Today’s GPGPU devices offer new hardware features that make them more

suitable for HPC, for instance:

1. INTRODUCTION 10

• IEEE-compliant Fast Double-Precision and Single-Precision Floating-Point

Arithmetic, providing standard floating-point arithmetic operations at roughly

the double of the speed with respect to the general purpose processors;

• Memory Hierarchy, consisting of a L1 cache coupled to each processing

element, a common L2 cache and a off-chip large amount of dedicated DDR

memory;

• 64-Bit Addressing and Unified Address Space, making easier for the devel-

opers to use the different types of memory included into the system and to

manage the pointers for input and output data;

• Error-Correcting Codes (ECCs), providing a more robust platform, in par-

ticular for critical HPC applications;

• Fast Context Switching, which allows to manage different contexts and to

quickly switch from one to another using dedicated hardware units.

GPGPU accelerators can be programmed using a number of standard lan-

guages that provide special parallel libraries. By exploiting this feature, HPC de-

velopers can accelerate the most compute-intensive tasks of an application di-

rectly by modifying the source code of the application itself in order to exploit

the dedicated parallel functions provided by the GPGPU units.

In the last years GPGPUs have been greatly improved, thanks to the available

GPU technology and to the significant need for programmable high performance

accelerators. The most innovative devices, designed by Nvidia and AMD, belong

to the Tesla family and to the FirePro series respectively. In particular, Nvidia

provides a broad range of accelerators based on the Testla[53], Fermi[18] and Ke-

pler [19] microarchitecture, that can be programmed with a dedicated language

named CUDA[17]. The solutions provided by Nvidia are described in chapter 2.

Although GPGPUs offer high parallel computing capabilities and a good power

efficiency, they are based on a fixed architecture. Therefore if an algorithm is un-

able to fully exploit the GPGPU architecture, the efficiency of the system is greatly

reduced, due to the bad utilization of its resources.

1. INTRODUCTION 11

FPGAs are integrated circuits that can be electrically programmed after man-

ufacturing, by providing a software specification of the digital circuit that they

have to implement. FPGAs can be configured several times, thus allowing to

change their functionality. Some devices can be reconfigured while operating,

by programming a portion of their resources in order to implement a different

function.

These devices represent a cheaper solution with respect to Application-Specific

Integrated Circuits (ASICs), since they cost around a few tens to a few thousand

dollars and they take less than a second to be configured, while ASICs require a

long development time and a great amount of money to be produced. However,

FPGAs become a convenient option when medium volumes of devices have to be

produced. Moreover, the great flexibility of the FPGAs makes them slower and

more power consuming than their ASIC counterparts.

Figure 1.4: Block diagram of a FPGA.

A standard FPGA device, depicted in figure 1.4, is composed of an array of

Configurable Logic Blocks (CLBs) linked by a programmable interconnection,

which occupies most of the area, and a number of Input-Output Blocks (IOBs),

that provide the off-chip connections.

Each CLB, which features a variety of input and output ports, provides a

customizable logic function and can be connected with other CLBs in order to

1. INTRODUCTION 12

implement a full computing unit. The architecture of a CLB, shown in figure1.5,

is composed of a Look-Up Table (LUT) connected to a Flip Flop (FF) and to a

Multiplexer (MUX). A LUT can be configured and reconfigured in order to im-

plement on the output pin any function of its input pins. The MUX allows to

select the data to be forwarded to the output pin of the CLB unit, since it receives

at its input pins both the data computed by the LUT and the data stored into the

FF. The flexibility offered by the LUTs provides a good compromise between a

fine-grained and a coarse-grained architecture. Indeed, each LUT-based CLB can

implement a logic function, therefore more complex functions can be obtained by

connecting multiple CLBs and simpler functions can be provided without wast-

ing too many resources.

Figure 1.5: A Configurable Logic Block.

The IOBs are connected to all the input/output pins of a FPGA chip. They

allow to interface the on-chip digital circuit with many other off-chip devices

and complete computing systems. Moreover, they provide the external clock and

reset signals, and the power source to the device. Finally, some dedicated IOBs

can be used to program the FPGA and to perform debug functions.

CLBs and IOBs are connected to each other through the programmable rout-

ing architecture, which is composed of a number of long and short wires and

programmable switches. The network presents a hierarchical and flexible struc-

ture, that allows to implement different digital circuits, keeping the design per-

formance as high as possible. Moreover, a variety of dedicated paths uniformly

1. INTRODUCTION 13

distributes the clock and reset signals through the entire area of the FPGA, thus

maximizing the synchronization between the signals. Today’s FPGAs combine

IOBs with high performance transceivers that provide high throughput inter-

connections for special applications, such as Peripheral Component Interconnect

Express (PCIe) interfacing, serial board-board transmission and Ethernet com-

munication.

FPGAs feature also a number of ASIC units, implemented on the same silicon

die on which the basic flexible components are placed. These hardware units

provide standard high performance functions, such as digital signal processing

and floating-point computing and implement common interconnection protocols

like PCIe. ASIC technology is also used to include high speed RAM units on the

device.

Typically, FPGA-based HPC accelerators feature a large amount of DDR mem-

ory, which is used to store the data to be processed by the FPGA, a flash memory,

that stores the configuration file for the device and a variety of high speed inter-

faces linked to the on-chip transceivers, such as PCIe, Ethernet and serial links.

This configuration allows to exploits the I/O bandwidth that the FPGA device

can achieve, also by employing more I/O interfaces as a single high performance

unit.

Recently, FPGA-based accelerators have become of great interest for the HPC

developers, since they offer a great flexibility both on the hardware side and on

the interconnection side. Thanks to their flexibility, FPGAs can be much more

power efficient with respect to GPUs, in particular when special functions have

to be accelerated and when the executed function is not able to achieve the full

utilization of the hardware accelerator. Indeed, the most of the power consump-

tion of an FPGA is due to the digital circuit implemented on the device. The un-

used logic receives no clock signal, therefore it consumes very little power, thus

increasing the overall power efficiency.

Although the architecture of an FPGA is flexible, it is also complex to manage

and to program. Indeed, as opposed to GPUs, FPGAs need dedicated low-level

Hardware Description Languages (HDLs) to be programmed, that are unfamiliar

1. INTRODUCTION 14

to the most of the software developers, since they are trained with common high-

level programming languages. Therefore, to be efficiently employed, FPGAs re-

quire both hardware and software skills and the ability to manage them simulta-

neously, the so called hardware/software co-design.

In order to make the FPGA development easier, recent devices can be pro-

grammed also using high-level languages, such as C and C++, by exploiting High

Level Synthesis (HLS) tools. Moreover, some devices support OpenCL specifica-

tions, by programming a suitable hardware architecture on the FPGA, that in-

cludes also the hardware implementation of the software kernels provided by

the developers.

Today, a number of companies provide FPGA-based HPC accelerators and

supercomputers. The devices developed by two of the main manufacturers, Pico

Computing[21] and Convey Computer[4], are described in chapter 2.

Custom processors are ASIC units designed to process fixed computational

workloads. They can be used in the HPC field to speed-up compute-intensive

tasks, by providing higher performance and power efficiency with respect to

GPGPUs and FPGAs, since they are optimized to implement only the function

that they have to execute. However, due to the employed ASIC technology, cus-

tom processors are very expensive and are not flexible at all. Therefore, they

are used only to accelerate extremely critical applications, that require custom

highly-optimized supercomputers instead of huge GPGPU-based or FPGA-based

standard HPC systems.

The machines based on custom processors are usually composed of a single

CPU-based unit that manages the computation running on a number of cluster

nodes, each one including a few tens of custom processors. Some devices feature

a limited amount of on-chip programmable SIMD units and simple general pur-

pose processors, that provide a little of flexibility to the architecture, by allowing

the system to adapt to the changes made to the algorithms.

Custom accelerators require a great effort in order to be programmed, be-

cause they are composed of non-standard processing units that need a variety of

programming languages and techniques to be operated.

1. INTRODUCTION 15

Chapter 2 illustrates in detail the architecture of the Anton[51][52] supercom-

puter, a custom HPC system optimized for high-performance molecular dynam-

ics simulation.

Next section focuses on the use of FPGA-based accelerators in the HPC field,

that can be connected together in order to build multi-FPGA supercomputers, by

exploiting the high power efficiency, scalability and flexibility provided by the

FPGA technology.

1.5 FPGA-based Systems

In past years, FPGAs have achieved a very little utilization in the HPC field,

mainly due to the programming effort that they required to be efficiently em-

ployed. Recently, the manufacturers of programmable logic devices have facili-

tated the development of complex FPGA-based systems, by raising the program-

ming level from basic digital components to entire processing units and by pro-

viding standard interfaces, that allow to connect the FPGAs with a broad range

of off-the shelf devices. Therefore, today’s FPGAs can be programmed with usual

programming languages and, thanks to their inherent scalability, they can be con-

nected together to implement complex multi-FPGA systems.

FPGA-based HPC architectures can be quickly changed in order to imple-

ment completely different functions, by exploiting the great flexibility offered

by the programmable logic. Moreover, they can achieve a high power efficiency,

which will be a significant capability of the future supercomputing systems. The

high-bandwidth provided by the FPGAs is a crucial feature, which is essential

when processing enormous amounts of data and when moving the data through

complex interconnections. Finally, dynamic reconfiguration is a unique asset of

the FPGA technology, which allows to implement a variety of functions on the

same computing device, by dynamically switching from one to another while the

system is running.

These advancements have convinced many manufacturers to develop new

supercomputing solutions based on FPGAs. Currently, the range of available

1. INTRODUCTION 16

FPGA-based HPC products includes accelerators, chassis and complete super-

computing platforms.

FPGA-based accelerators are usually implemented as standard Personal Com-

puter (PC) cards, that provide one or more high-end FPGAs coupled with a PCIe

interface, a on-board DDR memory, one or more network connectors, such as

Ethernet, and some other proprietary links. These devices can be customized by

adding more on-board memory or, in some cases, by changing the employed

FPGA chip.

Due to their features, the accelerators can be used both in workstations, to

accelerate limited computations, and in supercomputing systems, to boost the

overall performance. Moreover, thanks to the available interfaces, FPGA acceler-

ators can be connected together to build complex HPC platforms.

Chassis are complete HPC machines featuring one or more server-class gen-

eral purpose processors strictly coupled with a number of FPGA accelerators.

Although they are usually based on standard rack units and PCIe accelerator

boards, in some cases they include custom boards that carry both the processors

and the FPGAs. Chassis can be used both as stand-alone supercomputers and as

high-performance cluster nodes in complex HPC systems.

A FPGA-based HPC platform offers a complete environment that provides

both a supercomputing infrastructure and a dedicated programming framework.

It also includes additional tools, that allow to manage the system and to detect

and to fix hardware and software faults. Currently, FPGA-based platforms are

not widely used in the supercomputing field, since they are usually developed

by academic research centres or by big companies that employ them for their

own needs, without making them commercially available.

The best known exception is Maxeler [14], which offers a commercial data-

flow FPGA-based platform for financial, oil and gas and scientific computing.

Chapter 2 also describes in detail NetFPGA [16], a academic research plat-

form for rapid prototyping of computer network devices, based on single-board

FPGA accelerators and Catapult [15], a server-based HPC architecture developed

by Microsoft in order to accelerate Bing’s search engine, by coupling standard

1. INTRODUCTION 17

cluster nodes with custom FPGA accelerators.

1.6 Iterative Stencil Loops

Iterative Stencil Loops are iterative kernels that repeatedly perform a sequence

of sweeps, called time-steps, through a given array, whose elements are updated

in each time-step using neighbouring elements in a fixed pattern, called stencil,

see figure 1.6. The shape of the neighbourhood used during the updates depends

on the application itself.

Figure 1.6: Four-neighbour stencil in a 2D array.

Iterative Stencil Loops (ISLs) belong to the class of the static affine codes, that

can be optimized using the polyhedral model and are commonly found in sci-

entific and engineering HPC applications, such as particle interaction simulation

and differential equations solving. If an ISL has no true data dependencies be-

tween the points of the array in the same time-step, then every element can be in-

dependently computed from each other. Therefore the updating of the elements

is easily parallelizable, thus allowing a variety of optimizations. After being op-

timized, the code can be implemented in hardware by exploiting HLS tools, that

allow to generate a hardware implementation of a C code without writing HDL

code manually.

1. INTRODUCTION 18

Polyhedral Model

The polyhedral model [47], also known as polytope model, is a mathemati-

cal framework that provides automatic loop nest restructuring, optimization and

parallelization by treating each loop iteration within nested loops as lattice points

inside mathematical objects called polytopes. It then performs affine transforma-

tions or more general non-affine transformations and converts the transformed

polytopes into equivalent, but optimized, loop nests.

Under certain regularity conditions, the performance of the optimized code

can be greatly enhanced in terms of throughput, execution time, communication

channels and memory requirements.

The polyhedral model is based on algebraic representation of programs, there-

fore it allows to execute complex sequences of optimizations by performing a

number of polyhedral transformations, that modify the original order of the op-

erations. An overview of a few loop transformations is provided.

• Loop Reversal: it reverses the direction in which the loop traverses its iter-

ation range, thus allowing the execution of further optimizations;

• Loop Interchange: it exchanges the position of two loops in a loop nest. It

is used to improve the accesses to arrays and to interchange parallel loops

with non parallel ones;

• Loop Fusion: it combines two loops body, in order to enhance data reuse,

to reduce loop overhead and to remove synchronization between parallel

loops;

• Loop Distribution: it is the inverse of the Loop Fusion transformation. In-

deed, it breaks a single loop into multiple loops, iterating over the same

index range. This transformation can be used to enable further transforma-

tions and to allow partial parallelization.

Polyhedral transformations, including the aforementioned ones, are provided

by a wide variety of tools, that follow different approaches. Although they pro-

1. INTRODUCTION 19

vide source code optimizations, some of them implement also a complete com-

piler.

Polyhedral Compiler Collection (PoCC)[24] is a flexible and model-driven

compiler, that embeds a number of tools for polyhedral compilation. It can gen-

erate an optimized C code starting from a C source code and it can compile the

optimized code in order to generate an executable binary.

PoCC comprises a variety of free software dedicated to polyhedral compila-

tion, including:

• CLAN [3], a software tool that generates a polyhedral Intermediate Repre-

sentation (IR) of a program, starting from its source code, which is written

using one of the common high level programming languages, such as C,

C++, C# or Java. The IR can be manipulated by other tools in order to per-

form complex analyses, restructurations and optimizations;

• CANDL [24], a software tool that computes the set of statement instances in

dependence relation, starting from the polyhedral representation of a static

control part of a program. The output generated by CANDL can be pro-

vided to other tools in order to build program transformations respecting

the original program semantics;

• PLUTO [23], an automatic parallelizer and locality optimizer for affine loop

nests, that performs source to source transformations on C programs, by

improving coarse-grained parallelism and data locality simultaneously.

GIMPLE Represented As Polyhedra with Interchangeable Envelopes (GRAPHITE)

[59] is a framework for high-level memory optimizations using the polyhedral

model. Coupled with GNU Compiler Collection (GCC), it implements a general-

purpose compiler to build on full-scale polyhedral compilation techniques. Its

main goal is to bring more high-level loop optimizations to GCC, based on poly-

hedral representations of loop nests.

1. INTRODUCTION 20

1.7 Thesis Contributions and Outline

Within the HPC field, this thesis project focuses on the acceleration of ISL-

based computations using FPGA technology. In particular, it aims to develop a

multi-FPGA architecture, which is able to exploit the Streaming Stencil Time-

step (SST) units [7] designed as part of the exaFPGA project [6] in order to pro-

vide a high-throughput programmable HPC system, that features a high power

efficiency and an explicit scalability mechanism.

The proposed work addresses the aforementioned problem by providing a

dedicated multi-FPGA architecture based on the Xilinx VC707 [29] evaluation

board. The system has been designed, constructed and tested using a variety

of SSTs, that implement common HPC algorithms in hardware. It consists of a

chain of boards hosted by a cluster node, that allows to move the data through

the computing cores implemented on the FPGA boards. The implemented archi-

tecture allows to use the SSTs in the form of hardware Intellectual Property (IP)

cores that can be queued and added to the multi-FPGA infrastructure.

The power efficiency of the system is ensured by design, as it is based on

FPGA technology, which requires very low power to perform computations. The

use of FPGA-based accelerators delivers also good flexibility to the system and

allows to implement different algorithms without changing the multi-FPGA in-

frastructure. Moreover, the system can be easily scaled both by adding more SSTs

to each board and by adding more boards to the chain.

A quantitative model has been designed in order to analyse the power effi-

ciency trend of a multi-FPGA system. This model has been validated against the

experimental results.

The computation and the movement of the data through the infrastructure are

completely managed by a custom application running on the host system. Users

only need to modify the input data for the application, simply by changing few

lines in the source code, which is written using C language. Therefore, no further

firmware, driver or custom software has to be developed.

The remaining of this thesis is organized as follows. Chapter 2 offers a de-

tailed description of the state of the art technologies employed in the HPC field.

1. INTRODUCTION 21

The background knowledge provided by this chapter is necessary to compre-

hend the work proposed in this thesis project. In chapter 3 a detailed description

of the proposed architecture is presented. The evaluation of the proposed design

is provided in chapter 4, alongside the description of a quantitative model for

the power efficiency and its validation against the experimental results. Finally,

chapter 5 provides the conclusions of this thesis project and some considerations

on possible future works.

2

State of the Art

This chapter offers a detailed description of the state of the art technologies

employed in the High Performance Computing (HPC) field. The background

knowledge provided by this chapter is necessary to comprehend the challenges

mentioned in chapter 1, the current trends in HPC and the already developed

solutions. Moreover, it allows to understand how the proposed work takes part

to the journey towards exascale computing.

In particular, section 2.1 presents the most advanced heterogeneous comput-

ing architectures, dealing with Graphic Processing Units (GPUs), Central Pro-

cessing Units (CPUs), Field Programmable Gate Arrays (FPGAs) and custom pro-

cessors. In section 2.2 multi-FPGA architectures are treated, as they allow to per-

form complex computations over huge sets of data. This thesis project proposes

a multi-FPGAs architecture as well. Finally, Maxeler Architecture is described in

detail in section 2.3, as a widely-used HPC platform, that implements a multi-

FPGA streaming system, like the design proposed in this thesis project.

2.1 Heterogeneous Systems

This section provides a detailed overview of the state of the art heterogeneous

HPC systems, grouped based on the component that best characterizes their ar-

chitecture. Some of the systems could be included under different categories at

the same time, due to their strong heterogeneous nature, in that case the pro-

22

2. STATE OF THE ART 23

posed arrangement is purely subjective.

2.1.1 GPU-based Systems

GPU-based systems focus on the key role of the GPU devices, used as mas-

sively parallel accelerators. The general purpose CPU is not directly involved in

the computation, since it only takes care of the movement of the data.

NVIDIA GPGPU

In the GPGPU computing field, the state of the art coincides with the solutions

provided by NVIDIA. Indeed, NVIDIA Tesla has been the first GPU developed

both for graphics, both for HPC, as it has been paired with Compute Unified

Device Architecture (CUDA). Tesla has been followed by Fermi and by Kepler,

that has been adopted by many Top500 [28] HPC systems. As of June 2015, the

second most powerful supercomputer exploits Kepler GPGPU architecture. Af-

ter Kepler, NVIDIA has released Maxwell GPU architecture, which is designed

primarily for fast graphics performance and single precision consumer compute

tasks, therefore it is not suited for HPC.

Tesla [53], released by NVIDIA in 2006, has been the first high-level pro-

grammable GPU architecture that can perform general purpose calculations along-

side graphic computations. Moreover, it has been the first unified shading archi-

tecture developed by NVIDIA. Indeed, all the computational units have been

designed to handle any type of shading tasks, thus enabling dynamic load bal-

ancing of the workload on the available computing units. This generality has

opened the door to a completely new GPU parallel-computing capability, lever-

aged by the introduction of CUDA parallel programming language.

2. STATE OF THE ART 24

Figure 2.1: Tesla microarchitecture.

Figure 2.1 shows the structure of Tesla microarchitecture.

The work flows from the top to bottom, starting at the host interface with

the system PCIe bus, traversing the computing units and reaching the bus that

connects the GPU to the external memory. The main unit of this architecture is

the Texture/Processor Cluster (TPC), that contains a number of computing ele-

ments, an interconnection network, a cache memory and a shared memory. Each

TPC includes two Streaming Multiprocessors (SMs), unified graphics and com-

puting multiprocessors that execute graphics shader thread programs and GPU

computing programs.

The unified SMs concurrently execute different thread programs. Their multi-

threaded architecture can create, manage, schedule and execute threads in groups

of 32 threads called warps. Each SM manages a pool of 24 warps, with a total of

768 independent threads. SM architecture is similar to Single Instruction Mul-

tiple Data (SIMD) design, which applies one instruction to multiple data lines.

The difference is that this architecture applies one instruction to multiple inde-

pendent threads in parallel, not just multiple data lines. A thread in a warp can

take conditional branches, when all paths complete, the threads reconverge to

the original execution path.

Each SM contains eight Streaming Processors (SPs) cores, two Special Func-

tions Units (SFUs), a multithreaded instruction fetch and issue unit, a cache, a

shared memory and a low-latency network that interconnects the SPs and the

shared memory banks. The SP is the primary thread processor in the SM. It per-

2. STATE OF THE ART 25

forms the fundamental floating-point operations. Each SP unit can perform fully-

pipelined multiply-add operations. The SFUs units can compute transcendental

functions. They also contain four floating-point multipliers.

Tesla microarchitecture has been designed for scalability, as it can be config-

ured with a different number of units for different market segments. Moreover

it features Scalable Link Interconnect (SLI), that enables multiple GPUs to act

together as one, providing further scalability.

CUDA [17] is a minimal exetension of the C and C++ programming lan-

guages released by NVIDIA in 2006. It features a parallel computing platform

and programming model that exploits the GPU to increase the computing per-

formance.

A CUDA program executes serial code on the CPU and executes parallel

kernel across a set of parallel threads on the GPU. The threads are organized

in blocks and grids of thread blocks. Each thread within a thread block exe-

cutes an instance of the kernel. A thread block is a set of concurrently executing

threads that can cooperate among themselves through barrier synchronization

and shared memory. A grid is an array of thread blocks that execute the same

kernel, read inputs from global memory, write results to global memory, and

synchronize between dependent kernel calls. This hierarchy maps to the NVIDIA

architecture by assigning one or more grids to a GPU. Each SM executes one or

more thread blocks and SPs execute single instructions.

CUDA platform is accessible to software developers through dedicated li-

braries, compiler directives and extensions to common programming languages.

Moreover, it supports OpenCL, OpenGL and a number of other programming lan-

guages through third party wrappers. CUDA is currently used in HPC field to

accelerate encryption, decryption and compression, to process bioinformatics al-

gorithms, to perform medical analysis simulations, to speed-up physical compu-

tations and to perform other compute-intensive tasks.

2. STATE OF THE ART 26

Figure 2.2: Fermi microarchitecture.

Fermi [18] [56] [58] is a GPU microarchitecture developed by NVIDIA as the

successor to the Tesla microarchitecture.

As shown in figure 2.2, Fermi architecture features an increased number of

SMs, each including 32 single precision SPs, named CUDA cores, four SFUs, a

shared memory and a cache.

The SFUs execute transcendental instructions at a rate of one instruction per

thread, per clock. Therefore a warp executes over eight clocks. Each CUDA core

features an integer ALU, capable of 32-bit operations. Moreover, it includes a

floating point unit, that performs fused multiply-add instruction for both single

and double precision arithmetic. Fused multiply-add computes multiplication

and addition with a single final rounding step, with no loss of precision in the

addition.

Fermi architecture provides a number of innovations with respect to the pre-

vious designs. They make Fermi more suited to HPC:

2. STATE OF THE ART 27

• Floating point computations in double precision take half the speed of sin-

gle precision ones, versus a tenth of the speed as it is in the previous archi-

tectures;

• Error correcting codes on main memory and caches allow to detect and

correct soft memory errors;

• 64-bit virtual address space allows the GPU to overcome the 4GB memory

limit of the previous architecture;

• A better utilization of the hardware can be achieved thanks to fast context

switching. This feature allows independent kernels to overlap their execu-

tion;

• Unified address space solves the problem of managing separate memories

by placing them into a single 64-bit address space, thereby making it easier

to compile and run programs on Fermi;

• Bidirectional PCIe link to the host allows to achieve a bandwidth that is

four time the bandwidth of the preceding architecture.

Kepler [19] [42] is NVIDIA’s first microarchitecture to focus on energy effi-

ciency. Indeed, each Kepler core consumes less power with respect to the previ-

ous architecture. Overall performance has been increased as well by introducing

a new SM design called SMX, that features an increased number of SPs and warp

schedulers in each SM.

2. STATE OF THE ART 28

Figure 2.3: Kepler microarchitecture.

Kepler is also the first NVIDIA architecture designed mainly for HPC, there-

fore it introduces new capabilities with respect to the previous designs:

• Dynamic parallelism allows the GPU to generate work for itself and to con-

trol the scheduling of that work via dedicated hardware paths, without in-

volving the CPU;

• Hyper-Q enables multiple CPU cores to launch work on a single GPU si-

multaneously, thus increasing the overall GPU utilization. Indeed, it in-

creases the total number of work queues by allowing 32 connections to be

established;

• The grid management unit manages and prioritizes grids to be executed on

the GPU. This unit can suspend grids until they are ready to execute, thus

providing the flexibility to enable dynamic parallelism;

• GPU direct enables GPUs within a single computer, or GPUs in different

servers on the same network to directly exchange data without needing to

go to CPU and system memory. Moreover, it allows third party devices to

directly access memory on multiple GPUs within the system, thus freeing

2. STATE OF THE ART 29

the GPU DMA engines for use by other tasks.

NVIDIA has developed a family of GPU accelerators for HPC called TESLA.

It features Kepler architecture combined with CUDA parallel computing model.

This solution provides a new power-efficient hardware accelerator for data ana-

lytics and scientific computing applications.

The GPGPU solutions provided by Nvidia can achieve very good perfor-

mances when executing intensive floating-point computations, especially those

in single-precision. However, the rigid structure of the GPU-based devices causes

a performance degradation and a reduction in the power efficiency of the com-

puting system in case of low utilization. On the contrary, the solution proposed

in this thesis project provides a flexible architecture, which can be configured and

re-configured in order to execute each computing task in the most efficient way.

2.1.2 CPU-based Systems

The subset of the CPU-based heterogeneous systems includes a wide range

of different architectures. Their common feature is the key role of the general

purpose CPU, both at the architectural level and at the programming level.

IBM Power 8

IBM Power8 [62] is a family of superscalar processors based on IBM power

architecture. It has been released in 2013 and it can be implemented with a 22nm

lithography. Figure 2.4 shows the structure of a Power8 silicon die.

This CPU can be equipped with up-to twelve cores, each one featuring a com-

plex pipeline that allows eight threads to be processed simultaneously. Two or

more Power8 CPUs can be connected by exploiting the integrated multi-processor

link.

The multi-core chip includes a number of special accelerators i.e. for cryptog-

raphy, virtualization and data movement, a PCIe gen 3 controller and a embedded

Dynamic Random-Access Memory (eDRAM) L3 cache.

2. STATE OF THE ART 30

Figure 2.4: Power8 Processor Die with description.

The power consumed by the system and its temperature are managed by a

dedicated micro controller, which also dynamically changes the frequency of the

CPU. This controller is implemented on the same silicon die of the CPU and

runs a special firmware, that manages more than a thousand Integrated Voltage

Regulators (IVRs).

Power8 interfaces with the external memory through on-chip generic mem-

ory controllers paired with external components named Centaur. Centaur is a

dedicated chip that acts as a memory buffer and a memory controller, moreover

all the available Centaur chips can be aggregated to be used as a shared L4 cache.

This solution allows to pair a Power8 CPU with different types of memory with-

out changing its structure, only the Centaur chip needs to be changed.

Power8 has been designed for HPC industry, indeed it supports Coherent

Accelerator Processor Interface (CAPI), a protocol for heterogeneous computing.

CAPI [65] allows to connect an hardware accelerator to the Power8 processor via

PCIe gen 3 link. The protocol is encapsulated in PCIe and takes care of the co-

herence between the processor and the accelerator. CAPI removes any overhead

due to the OS and to the device driver and allows the accelerator to work with

2. STATE OF THE ART 31

the same memory addresses that the processor uses.

This hybrid solution has a simple programming paradigm while delivering

high computing performance.

Figure 2.5: CAPI Hardware Ecosystem.

As shown in figure 2.5, the algorithm that has to be accelerated is contained

in a special unit on the FPGA called Accelerator Function Unit (AFU). AFU pro-

vides applications with a high computational unit density for customized func-

tions. Client’s AFU is treated as a coherent peer by the Power8 processor, there-

fore data intensive programs can easily be offloaded to the FPGA, freeing the

Power8 to run standard programs. On the CPU side, Coherent Accelerator Pro-

cessor Proxy (CAPP), a dedicated silicon area, enables the accelerator to act as a

peer to the processors on the chip.

CAPP unit maintains a directory of all cache lines held by the off-chip accel-

erator, therefore it acts as the proxy that maintains architectural coherence for the

accelerator across its virtual memory space. Power Service Layer (PSL), a core

2. STATE OF THE ART 32

that resides on the FPGA alongside the AFU, works in concert with the CAPP

unit across the PCIe connection.

The accelerator uses the same virtual memory space as the core application

that enables it, therefore CAPP and PSL are in charge to manage all the virtual-

to-physical translations, thus simplifying the programming model.

On the software side, CAPI reduces development time for algorithm imple-

mentation and allows the processor to communicate with the accelerator by elim-

inating all the intermediaries. Moreover, it offloads the computation-heavy func-

tions to the accelerator, while the application executes on the host processor.

Operating System (OS) kernel extensions and library functions that initialize the

CAPI device and maintain the communication functions are provided with each

Power8 system.

Power8 architecture and CAPI protocol deliver a high performance hetero-

geneous technology for HPC industry, while providing a simple programming

paradigm. However this solution needs special hardware to be implemented, in-

deed it requires a dedicated system with one or more Power8 CPUs and at least

a FPGA PCIe board compliant with CAPI protocol.

Finally only one CAPP unit is implemented on each Power8 CPU, therefore

only one CAPI accelerator can be connected to a Power8 processor. IBM plans to

add more CAPP units to their Power architectures in the next future.

The solution provided by IBM addresses the same challenges on which the

proposed work focuses. Both the works greatly simplify the communication be-

tween the host processor and the accelerator. However, the solution provided in

this thesis project allows to implement a multi-FPGA system, while IBM CAPI

can manage a single accelerator only.

Intel Xeon Phi

Intel Xeon Phi[13][48], released in 2012, is the brand name for the intel Many

Integrated Core (MIC) architecture that incorporates all the previous researches

on many-core processors. It is a PCIe form factor add-in card that can be added to

a Intel Xeon-based system in order to improve its performance for parallel code.

2. STATE OF THE ART 33

It features 61 low-speed individual cores that can execute 244 threads simul-

taneously, a 512-bit SIMD instruction set with wide vector units, 16GB on-board

GDDR5. Up-to eight Xeon Phi boards can be included into a host server, each

adding a maximum speed-up of 1.2 TFLOPS to the system.

As of June 2015, Tianhe-2, a HPC system based on Xeon Phi coprocessor, is

the TOP500[28] fastest supercomputer, achieving a theoretical peak performance

of about 55000 TFLOPS.

An Intel Xeon Phi-based system can be programmed using the same lan-

guages, models and tools used also with Intel Xeon processors. An application,

to take full advantage of Xeon Phi, must scale over 100 threads , make extensive

use of vectors and be able to exploit the high local memory bandwidth provided

by the coprocessor. Each coprocessor runs a full-service Linux OS.

Xeon Phi can operate in multiple execution modes.

• Symmetric: the workload is shared between the host processor and the co-

processor;

• Native: workload resides entirely on the coprocessor;

• Offload: workload resides on the host processor and parts of the workload

are sent out to the coprocessor as needed.

Figure 2.6: Intel Xeon Phi Coprocessor Block Diagram.

2. STATE OF THE ART 34

In a HPC system each Intel Phi coprocessor is connected to an host Intel Xeon

processor through a PCIe bus. Since the coprocessor runs a Linux OS, it acts as

an autonomous accelerator node, which can also share the execution of the appli-

cations with the host CPU. Multiple Xeon Phi coprocessors, installed in a single

host system, can communicate with each other through PCIe interconnect, with-

out any intervention of the host. Moreover, they can communicate also through

a network card such as infiniband and ethernet.

As shown in figure 2.6, Xeon Phi coprocessor is primarily composed of pro-

cessing cores, caches, memory controllers, PCIe client logic and bidirectional ring

interconnect.

The cores in the coprocessor provide high throughput for highly parallel

workloads, while featuring a high power efficiency. Moreover, they use a short

in-order pipeline and support four threads in hardware. Each core includes a

Vector Processing Unit (VPU) that features a 512-bit SIMD instruction set. There-

fore it can execute 16 single-precision or 8 double-precision operations per cycle.

Moreover, the VPU supports fused multiply-add instructions that can execute 32

single-precision or 16 double-precision floating point operations per cycle.

The VPU also features an extended math unit that can execute transcendental

operations, thereby allowing these operations to be executed in a vector fashion

with high bandwidth. The extended math unit operates by calculating the poly-

nomial approximations of the transcendental functions.

Each core has a L2 cache that is kept coherent by a global-distributed tag di-

rectory (TD). When an L2 cache miss occurs on a core, the core generates an ad-

dress request on the address ring and queries the global-distributed tag directory.

If the data is not found in the tag directory, the core generates another address

request and queries the on-board memory for the data. Once the memory con-

troller retrieves the data block from memory, it is returned back to the core over

the data ring.

The on-chip ring interconnect, which is implemented as a bidirectional link,

links all the components with the interface to the on-board GDDR5 memory and

with the PCIe client logic. Each direction of the link is composed of three inde-

2. STATE OF THE ART 35

pendent rings: a 64 bytes-wide data block ring which supports the high band-

width requirement due to the large number of cores, a smaller address ring used

to send read/write commands and memory addresses and an even smaller ac-

knowledgement ring, which sends flow control and coherence messages.

Xeon Phi coprocessor can be put in a power-saving mode when is not being

used. As soon as all the four threads on a core are halted, the clock to the core

is gated. After a programmable time, the core power gates itself. When all the

cores of the device are power gated, the tag directory, the interconnect, the L2

caches and the memory controllers are clock gated. At this point, the host system

puts the coprocessor in an idle state, wherein all the cores are power gated, the

GDDR5 is kept into a self-refresh mode and the PCIe logic is put in a wait state.

These power management techniques make Xeon Phi coprocessor suitable for

HPC data centres.

Both the work proposed in this thesis project and the Intel Xeon Phi architec-

ture provide a high-performance power-efficient supercomputing system com-

posed of a chain of PCIe accelerator boards. However, they address the need for

flexibility by providing two different solutions: Xeon Phi is based on a number

of interconnected general purpose processors, while the proposed architecture

exploits FPGA technology.

Intel Stellarton

Intel Stellarton [10] [40] [41] is a System on a Chip (SoC) architecture com-

posed of a general purpose processor paired with a FPGA. Stellarton has been

released in 2011 by Intel as the Atom E600C series, which is the first configurable

Intel Atom-based processor, featuring a 45nm lithography process and a Thermal

Design Power (TDP) of 7W.

2. STATE OF THE ART 36

Figure 2.7: Intel Stellarton architecture.

As shown in figure 2.7, Intel Stellarton includes a Atom E600-based proces-

sor paired with an Altera FPGA in a single package, multi-chip device suited to

integrated solutions.

On the CPU side, the SoC provides a Intel Atom x86 processor featuring In-

tel Hyper Threading technology and integrated hardware-assisted Intel Virtual-

ization technology for 32-bit Intel architecture. The processing system includes

also a Intel graphics media accelerator, a memory controller for up to 2GB DDR2

memory, an audio controller and a PCIe interface.

The included FPGA is an Altera high-performance, power-optimized device,

that features 6 high-speed transceivers, a number of Digital Signal Processing

(DSP) blocks and a PCIe hard IP. The FPGA is compliant with Altera Quartus II

software, that allows to design custom Intellectual Properties (IPs) and to pur-

chase third party soft IPs from Altera partners.

Although the CPU and the FPGA belong to the same chip, they act as they

were separated devices. Indeed, they are built on two different silicon dies, con-

nected only through a PCIe x1 gen1 link. This solution is the weak point of the

Stellarton architecture for two main reasons. First, the one-lane PCIe link is a bot-

tleneck for the entire system, because it is the only interconnection between the

FPGA and the CPU and it does not allow to achieve a sufficient throughput. The

PCIe link was already too slow in the 2010, when Stellarton has been designed.

Moreover, the adopted solution needs two PCIe interfaces to be implemented:

one on the CPU side and the other on the FPGA side. On the CPU side, there is

only a PCIe interface, therefore no external PCIe peripherals can be connected to

2. STATE OF THE ART 37

the CPU. On the FPGA side, there is only a PCIe hard-IP, therefore, in order to

connect extra PCIe peripherals to the FPGA and to the system, additional third-

party soft IPs must be purchased.

However, Intel Stellarton provides a number of capabilities, mainly focused

on the flexibility of the architecture and on the reduction of the design effort: the

single package combining multiple functions allows to reduce the footprint of

the designs and the cost of the materials. Moreover, multiple I/O configurations

can be implemented with the same device. The configurable FPGA allows to in-

tegrate proprietary features into the the SoC package and to change the platform

details later in the design cycle, thus saving resources and money.

Intel Stellarton supports Microsoft embedded Windows versions, Meego Linux

and VxWORKS OSs.It is suitable for a variety of embedded applications, such as

industrial machines, portable medical equipment, communication gear and vi-

sion systems.

Although it is not intended for the HPC field, Intel Stellarton provides an

interesting coupling between a general purpose processor and a FPGA device.

As in the architecture proposed in this thesis project, the CPU and the FPGA

communicate through PCIe connection.

Xilinx Zynq

Xilinx Zynq is a family of SoCs developed for high-end embedded-systems

applications, such as video surveillance, automotive-driver assistance, next gen-

eration wireless and factory automation. These devices combine a ARM process-

ing system, which is capable of running a variety of OSs, with a Xilinx FPGA,

that interfaces with the processing system.

Vivado Design Suite allows to design a system including both the ARM CPU,

both the custom hardware programmed on the FPGA. Moreover, using Vivado

HLS, developers can implement custom hardware accelerators starting from their

C language specification.

2. STATE OF THE ART 38

Figure 2.8: Zynq 7000 block diagram.

Zynq-7000[46][38], released in 2012, is the first version of the Zynq family.

It consists of a fully programmable platform: custom Software (SW) can be exe-

cuted on its ARM CPUs, hardware accelerators can be implemented on the FPGA

and all its interfaces can be programmed. This capability can be achieved thanks

to the thigh integration between CPUs, FPGA, DSP and mixed signal functional-

ity.

As shown in the upper part of figure 2.8, Zynq-7000 features a complex Processor

System (PS) composed of a 1GHz dual core hardened ARM Cortex A9 CPU, on-

chip memory, Random Access Memory (RAM), flash memory controllers and

AXI peripheral blocks. The fast memory controller supports 1333MHz and 1866MHz

Synchronous Dynamic Random-access Memories (SDRAMs) with or without Error-

Correcting Code (ECC). More memory controllers can be placed in the Programmable

Logic (PL) as soft IPs.

2. STATE OF THE ART 39

The PL, which is painted in yellow, is connected to the PS through nine AXI

interfaces that allow to exploit all the available bandwidth between the PS and

the PL. Therefore, several separate hardware accelerators, implemented in the

PL, can be simultaneously connected to the PS. Zynq-7000 PL is based on Kintex-7

and Artix-7 FPGA technology, that allows the designers to port Register-Transfer

Level (RTL) code and IP blocks from Kintex-7 and Artix-7 FPGAs without modi-

fications or optimizations.

Thanks to the ARM Cortex CPU, the Zynq platform can run a wide range

of OSs, spanning a number of applications. Moreover, custom C code can be ex-

ecuted directly in the ARM CPU. If the implementation is not fast enough, the

designers can implement a Hardware (HW) version of the algorithm using Vi-

vado HLS and then program it on the PL.

Zynq-7000 can be configured to perform a security procedure at startup. In-

deed, the CPU, which boots before the FPGA, can perform a boot sequence sup-

porting user authentication, encryption and data authentication. After the boot

sequence, the authenticated and decrypted code is placed into the on-chip mem-

ory, where it executes. Moreover, each Zynq device can monitor its environment

by exploiting external analog sensors connected to its interfaces in order to detect

fails and intrusions. If the device detects an intrusion, it can clean its memory and

its PL, thus avoiding reverse-engineering and manumissions.

Zynq UltraScale+[39], released in 2015, is the new version of the Zynq family.

It provides five times more performance per Watt with respect to the Zynq-7000

family.

2. STATE OF THE ART 40

Figure 2.9: Zynq Ultrascale block diagram.

As shown in figure 2.9, the architecture is composed of four 64-bit ARM Cor-

tex A53 cores, running at 1.3GHz, two 32-bit ARM Cortex R5 real-time Micro

Controller Unit (MCU) cores, running at 600MHz, a ARM Mali-400MP GPU and

an Ultrascale FPGA fabric manufactured with a 16nm FinFet process. This device

supports both DDR3 and DDR4 memories, and allows to use the ECC capability.

Zynq Ultrascale+ provides a number of high-speed interfaces, such as Universal

Serial Bus (USB) 3m Peripheral Component Interconnect Express (PCIe) gen4,

gen3 and gen2, interlaken, ethernet and serial transceivers.

The overall power efficiency is ensured by multiple power domains and power

gated islands. Moreover, the designers can use each core for the task that best fits

its capabilities: an OS can execute on the quad-core CPU while assigning its real-

time tasks to the dual-core CPU. The graphic workload can be managed by the

dedicated GPU and all the other tasks can be accelerated in-hardware on the PL.

2. STATE OF THE ART 41

This approach increases the flexibility of the platform, while leveraging its per-

formance and its power efficiency.

Although Zynq platform is primarily intended for embedded applications, it

provides an innovative approach to the use of programmable logic paired with

general purpose processors. Indeed, a FPGA device and a multi-core CPU are

coupled on the same silicon die. This technique could be a promising solution

for the future HPC systems.

2.1.3 FPGA-centric Systems

FPGA-centric systems include a number of flexible and efficient architectures

for the HPC field, in which the FPGAs play a key role. Indeed, these architec-

ture feature a great number of FPGA-based accelerators included into a single

server-class computing device. The accelerators ensure all the processing power

required by the applications, while the CPU manages the whole architecture.

Pico Computing

Pico Computing[21] provides a broad range of HPC solutions both for data-

center and desktop applications.

Pico Computing’s scalable architecture exploits FPGA technology to enable

high performance compute density, energy efficiency and simplified application

design by packing many large-scale FPGAs per PCIe slot and providing direct

FPGA-to-FPGA communication and data passage without host involvement.

The building blocks of the architecture are the modules: business card-sized

computing elements composed of a high-performance FPGA logic, a local mem-

ory subsystem and a fully-switched PCIe Eight-Lane (x8) communication struc-

ture. The various modules provide options in FPGA choice, memory configura-

tion, I/O and other features. Several modules can be used in standalone embed-

ded applications, as they are fully integrated with embedded Linux OS. The lat-

est module features a Xilinx Kintex Ultrascale FPGA coupled with a 4GB Hybrid

Memory Cube (HMC). Moreover, it provides a PCIe x8 gen3 interface for back-

plane connectivity and OPENCL support for software development.

2. STATE OF THE ART 42

Pico Computing provides a variety of PCIe backplanes that can host up to six

modules on a full-length PCIe card. Each module can be exchanged or upgraded

by snapping it to the backplane in a plug-and-play fashion. Each backplane is

based on a fully-switched PCIe x16 gen3 bus from the host computer and pro-

vides independent PCIe x8 gen3 buses to each module. This allows the host to

directly address up to 6 FPGAs per board and up to 48 FPGAs in a single 4U

chassis.

A chassis unit is a compute, standalone server class rack mount system that

features a dual quad-core Intel Xeon CPU, up to 192GB DDR3 RAM memory,

eight PCIe x16 gen3 interfaces and two 10Gbps ethernet ports. The host system,

which runs Linux OS, exploits Pico computing’s software framework to control

the applications running on the FPGA modules within a chassis.

The Pico Computing framework is a Linux-based design utility that provides

the link between the application software running on the host computer and the

HW algorithm implemented in the FPGA. It manages the board-level implemen-

tation of FPGA designs, data flow, memory, system communication, monitor and

debug. The framework frees the designers to focus only on the details of the ap-

plication to be developed and occupies about the 1% of the overall FPGA area.

Moreover, it allows to load the configuration bitfiles to the modules, to move the

data from software into the FPGAs and to configure the FPGA communication in

a number of different ways. At the software level, the framework allows to man-

age the communication within a 48-FPGAs architecture and to monitor FPGA’s

temperature, current and voltage to ensure the proper behaviour of the system.

Pico Computing provides also a full-heigh, GPU-length, PCIe board featur-

ing up to eight HMC devices and a single high-performance Xilinx Ultrascale

FPGA, called Single-board Supercomputer. The on-board HMCs can be config-

ured as one x16 lane with up to four HMCs chained or as two x8 lane with two

HMCs accessed independently or chained. The Single-board Supercomputer al-

lows to implement high-bandwidth accelerated applications, thanks to the on-

board HMC memory. Moreover, it can be scaled by configuring a single chassis

with up to eight boards.

2. STATE OF THE ART 43

The architecture illustrated in this thesis project is similar to the one provided

by Pico Computing, as both are based on a multi-FPGA technology. Pico Com-

puting exploits the high performance PCIe host bus to implement the board-

board communication and to manage the FPGA devices carried by each board.

On the contrary, the proposed architecture exploits a dedicated high-performance

board-board link, while using the PCIe bus for host-board communication only.

Convey Computer

Convey Hybrid-core computers[4][64] tightly integrate an FPGA-based, recon-

figurable coprocessor with an Intel processor in a standard rack-mountable en-

closure. This solution offers enhanced performance without sacrificing the flexi-

bility and ease of use of a general-purpose machine.

The host system runs industry-standard Linux and supports standard net-

working and interconnect fabrics. The coprocessor’s FPGA executes specific op-

erations, called personalities, that represent a large component of application’s

runtime. Convey provides a set of personalities for key application areas in in-

dustries like life sciences, governmental programs and big data analytics.

An application executable contains both Intel and coprocessor instructions,

that execute in a common, coherent address space. Therefore, coprocessor in-

structions can be thought of as extensions to the x86 instruction set. The per-

sonalities include a base set of instructions that are common to all personalities.

Moreover, they also include a set of extended instructions that are designed for a

particular workload.

Figure 2.10: Convey Hybrid-core architecture and design flow.

2. STATE OF THE ART 44

As shown in figure 2.10, the coprocessor comprises a Application Engine Hub

(AEH), a set of Application Engines (AEs) and Memory Controllers (MCs).

The AEH acts as a control hub for the coprocessor. It provides the Hybrid-

Core Memory Interconnect (HCMI) to the host processors, fetches and decodes

instructions and executes Convey base instructions, while passing extended in-

structions to the AEs for execution. Eight MCs support a total of 16 memory

channels, that provide a highly parallel and high bandwidth connection between

the AEs and the coprocessor memory. The AEs implement the extended instruc-

tions that deliver performance for a personality. They are connected to the AEH

by a command bus that transfers instructions and scalar operands and linked via

a network to each of the MCs.

The host system runs a customized CentOS Linux OS that supports Convey

architecture. Applications can access the coprocessor either by linking in Convey

math libraries with coprocessor versions of common algorithms or by recom-

piling with Convey compilers, that can generate both Intel64 and coprocessor

instructions form C/C++ or Fortran.

A personality is the custom logic that resides on the coprocessor and imple-

ments the extended instruction set designed to accelerate a given algorithm. Each

personality includes a pre-compiled FPGA bit file, a description of the machine

state model that allows the compiler to generate and schedule instructions and

an ID used by the application to load the correct image at runtime. A system

can contain multiple personalities that can be dynamically loaded, but only one

personality is loaded at any one time.

Convey offers also a family of PCIe form factor coprocessors featuring the

latest high-density Xilinx FPGAs, that can be installed in standard x86 servers as

hardware accelerators for key algorithms. The PCIe coprocessors support all the

capabilities provided by Convey to its Hybrid-core computers, such as dynamic

reconfiguration, personalities and the common address space. Moreover, they

can be managed, configured and customized using the Convey tool set. Each ac-

celerator occupies a full-length, double-height PCIe slot and can be configured

with FPGAs of different densities and multiple power and cooling solutions.

2. STATE OF THE ART 45

Moreover, it can operate as a memory-free accelerator with no local storage or

with up to 64GB on-board DDR3 memory.

Convey Hybrid-core computers provide a multi-FPGA computing system

hosted by a standard rack module. This solution is similar to the one provided

by this thesis project. However, Convey implements a fully-custom hardware ar-

chitecture, while the proposed design is composed of a standard Personal Com-

puter (PC) and a number of commercially-available FPGA boards.

Maxeler

Maxeler Architecture [14] employs one or more FPGA boards, called DataFlow

Engines (DFEs), to accelerate compute-intensive algorithms. A single DFE acts a

FPGA-based accelerator, that works jointly with the host processor. Maxeler Ar-

chitecture will be discussed in detail in section 2.3.

2.1.4 Custom Systems

Custom HPC systems can achieve extremely high performance when pro-

cessing the small set of algorithms for which they have been designed. These

systems are based on custom Application-Specific Integrated Circuit (ASIC) pro-

cessing units, that provide a huge efficiency at the cost of a limited flexibility.

Anton Machine

Anton Machine is a special purpose, massively parallel supercomputer for

biomolecular simulation, designed and constructed by D. E. Research. Its main

purpose is to increase the speed of molecular dynamics simulations, compared

with the previous state of the art.

An Anton machine consists of a substantial number of ASICs, interconnected

by a specialized high-speed, three dimensional torus network. Two Anton ma-

chines have been designed and constructed, both as 512 nodes supercomputers:

Anton1 and its successor, Anton2.

2. STATE OF THE ART 46

Figure 2.11: Anton1 architecture.

Anton1[51], designed in 2008, is the first version of the Anton machine family.

The machine is based on a number of identical specific ASICs that interact in a

tightly coupled manner using a three dimensional torus network. Each torus link

provides 5.3GB/s full-duplex communication with a hop latency of 50ns.

A block diagram of the network is depicted in figure 2.11, which also shows

the structure of an Anton1 ASIC. The building block of the system is a node,

that comprises an Anton1 ASIC, attached DRAM and six ports to the system-

wide interconnection network. Four nodes are implemented on the same Printed

circuit board (PCB), thus constituting a node board, which fits in a rack.

The main components of the Anton1 ASIC are the HTIS and the Flex. High-

Throughput Interaction Subsystem (HTIS) is a highly specialized, largely hard-

wired unit that takes care of most of the computing workload.

2. STATE OF THE ART 47

Figure 2.12: Anton1 HTIS tile detail.

As figure 2.12 shows, each HTIS contains 32 deeply-pipelined Pairwise Point

Interaction Modules (PPIMs), organized as four chains of eight PPIMs each and

an Interaction Control Block (ICB).

Each PPIM includes a 26-stage pipeline running at 800MHz, featuring a data

path with variable numerical precision. This solution allows to save time and

resources, still producing a 32-bit fixed point result. The PPIM is the most hard-

wired component of the architecture, however some of its features can be cus-

tomize by programming special SRAM Look-Up Tables (LUTs), whose contents

are determined at runtime.

The ICB is composed of two communication ring interfaces, a large buffer

area and an embedded processor core, which controls the flow of data through

the HTIS and acts as a buffering, prefetching, synchronization and writeback con-

troller.

2. STATE OF THE ART 48

Figure 2.13: Anton1 flex tile detail.

Flexible Subsystem (Flex) is a programmable, but still specialized unit run-

ning at 400MHz, which executes the computations that can not be performed

on the HTIS unit, therefore it allows the entire system to adapt to the changes

made to the algorithms. Flex unit handles a variety of tasks, some involving cal-

culation and others involving system management and maintenance functions.

It also performs boot, diagnostics, self-test, loading simulations, switching con-

texts, logging, checkpointing and error reporting.

Referring to figure 2.13, each Flex unit is composed of four identical process-

ing slices. A slice comprises a general purpose core with its caches, a Remote

Access Unit (RAU) and two Geometry Cores (GCs).

The general purpose cores manage the data transfers and perform critical syn-

chronizations. Each core also connects to a 32KB scratchpad memory in the core’s

attached RAU. The scratchpad memory is used to stage the simulation data for

2. STATE OF THE ART 49

background transfer by the RAU. The general purpose cores also handle all the

maintenance tasks.

The RAU is a programmable data transfer engine, that includes a scratchpad

memory and an array of transfer descriptors. Once the general purpose core has

initialized a transfer descriptor, the RAU takes over and performs the transfer

itself, freeing the general purpose core to perform other tasks. The RAU imple-

ments 128 transfer descriptors, allowing multiple concurrent transfers.

GCs perform most of the Flex’s computation. Each GC is a dual-issue, stat-

ically scheduled SIMD processor with pipelined multiply-accumulate support.

The GC’s Instruction Set Architecture (ISA) includes vector operations and scalar

operations performed by accessing the SIMD register file as a large scalar register

file.

The communication subsystem provides high-speed, low latency communi-

cation bith between ASICs and among the subsystems between an ASIC. Within

a chip, two 256-bit communication rings link all subsystems and the six inter-

chip torus ports. Routing is performed using a global 48-bit address space, with

16 bits of node identifier and 32 bits of address per node. The communication

subsystem also allows access to an external host computer system for input and

output of simulation data.

A working Anton1 machine segment, composed of 128 boards, allows to

achieve a speed-up of 100x with respect to a supercomputer implemented with

general purpose processors, when processing molecular dynamics algorithms.

Each board comprises 4 ASIC nodes and their dedicated DDR2 RAM memory.

Therefore, the segment features 512 ASIC nodes, 2560 Tensilica general purpose

processors, 4096 GCs and 16896 PPIMs for special-purpose computing. Each ASIC

consumes 75W and the total power consumption of the system, also including

memory, power supply and cooling is about 116,5KW.

2. STATE OF THE ART 50

Figure 2.14: Anton2 architecture.

Anton2[52], designed in 2014, is the second version of the Anton family. It

is the successor of the Anton1 machine. Like its predecessor, Anton2 comprises

a number of identical ASIC nodes that are directly connected to form a three

dimensional torus topology. Figure 2.14 shows the structure of the network and

the block diagram of a node. Inter-node connections consist of two bidirectional

channels, providing a total bandwidth of 28GB/s.

Almost all the area of each ASIC node has been dedicated to the computation,

indeed the number of Flex units has increased from one to sixteen with respect

to Anton1 ASIC and the number of HTIS tiles has been doubled.

Figure 2.15: Anton2 HTIS tile detail.

As shown in figure 2.15, the Anton2 HTIS tile is similar to the correspond-

ing unit of the preceding machine, except for the mini-Flex tile included in the

2. STATE OF THE ART 51

design, which is a scaled-down version of the Flex unit. This solution increases

the flexibility of the entire system. Indeed, thanks to the mini-Flex tile, the hard-

wired HTIS unit can be adapted to the changes made to the algorithms during

the life of the machine. Moreover, by controlling the ICB with a mini-flex tile,

the programmers can use the same tool chain for all embedded software and the

code can be shared between the Flex tile and the HTIS tile software.

The Flex unit has been completely re-designed and its structure ha been sim-

plified. Indeed, it comprises four GCs embedded processors, a dispatch unit that

provides hardware support for fine-grained event-driven computation, 256KB of

SRAM and a network interface. Its structure is illustrated in figure 2.16.

Figure 2.16: Anton2 flex tile detail.

The Anton2 ASIC architecture is clocked at 1.65GHz and the on-chip mesh

network is compose of 40GB/s bidirectional links. An external host processor

can be connected to the system over a PCIe link.

Anton2 features a number of improvements over Anton1 machine. The three

main changes deal with the architecture of the system and with its programming

model.

Anton1 has a coarse grained architecture: all data must arrive at a tile before

the computation begins and all computations must be completed before the out-

put data is sent. Therefore, there is no overlap between the different phases. On

the contrary, Anton2’s fine-grained event-driven implementation communicates

2. STATE OF THE ART 52

the results as soon as they have been computed, and individual computations

begin as soon as their data is available. This enables significant overlap between

the phases.

Anton1’s PPIM is composed of two separated pipelines that perform differ-

ent computations on the same cycle. Anton2’s PPIM replaces the heterogeneous

pipelines with two identical pipelines that can operate independently on differ-

ent data.

Anton1 features three distinct types of embedded processors, which are pro-

grammed using a mix of C and assembly language and must be carefully coor-

dinated with synchronization protocols. Anton2 has a single type of embedded

processor, which is programmed in C++.

A working prototype of the Anton2 machine, which comprises 512 ASIC

nodes, is 180 time faster than any other comparable platform with respect to the

peak performances.

On large chemical systems Anton2 has a performance gain of about ten times

over a Anton1 machine with the same number of nodes. Additional performance

could be obtained on larger Anton2 machines. Indeed, the architecture scales-up

to 4096 nodes.

Although Anton Machine has been implemented by following a completely

different approach with respect to the one proposed in this thesis project, it pro-

vides an example of a fully-customized HPC architecture, which achieves a huge

performance, at the cost of a extremely low flexibility.

2.2 Multi-FPGA architectures

This section deals with multi-FPGA architectures, composed of a huge num-

ber of FPGA-based processing nodes linked with a network infrastructure. These

complex systems have been implemented by exploiting the scalability of the ar-

chitecture, which is ensured by the high power efficiency provided by the FPGA

technology.

2. STATE OF THE ART 53

Microsoft Catapult

Catapult[15][60] is a Microsoft Research project that aims to exploit FPGAs to

improve the performance, reduce power consumption and add new capabilities

to the datacenters.

A Catapult architecture, which comprises a custom FPGA board, has been im-

plemented and used to improve the performance of Bing’s search engine. How-

ever, thanks to the flexibility of the architecture, many other applications and

services can be accelerated as well.

Catapult infrastructure is based on a Microsoft datacenter, that is composed

of more than 1600 half-rack machines. A server features two Xeon CPUs, 64GB

DRAM, two Solid State Drives (SSDs), four Hard Disk Drives (HDDs) and a 10Gb

network card. Catapult fabric is embedded into each cluster node in the form of

a small FPGA daughter card connected to the server via PCIe interface. All the

48 FPGA boards in a rack are directly connected through a low latency dedi-

cated link, that is configured as a 6x8 2D torus network. This distributed solution

has been adopted to allow the SW services running on the datacenter to allo-

cate groups of FPGAs to provide the necessary area to implement the desired

functionalities. Moreover, the reconfigurable fabric of the Catapult architecture

allows the SW services to dynamically change the allocation of the resources in

the datacenter.

On top of the architecture, Catapult incorporates a complex managing sys-

tem, which takes care of the correct functioning of the infrastructure, recovers

from failures and collects debug information.

The Catapult daughter board features a Altera Stratix V FPGA paired with a

8GB DDR3 memory with enabled ECC support. A 32MB on-board flash memory

holds the FPGA configurations. The card interfaces with the server mainboard

using PCIe gen3 x8 protocol via a mezzanine connector, which also powers the

device. Moreover, a mini-SAS network connection allows the FPGA board to

communicate with the other boards of the same rack. Microsoft has developed

a custom PCIe interface for the Catapult FPGA device, that allows to achieve

very low latency transfers between the host server and the FPGA board. More-

2. STATE OF THE ART 54

over, it features Direct Memory Access (DMA) support and is safe for multi-

threading. Multi-threading support is achieved also by dividing the input and

output buffers of the Catapult device into slots with status bits and by assigning

each thread to a slot.

Figure 2.17: Block diagram of the Catapult FPGA architecture.

As shown in figure 2.17, the programmable logic on the FPGA is divided into

two parts: the shell and the role. The shell is the reusable portion of the pro-

grammable logic, common across applications. It handles all the I/O and man-

agement tasks and exposes simple FIFOs to the role unit.

The shell unit is composed of a variety of HW cores:

• two DRAM controllers, which can be operated independently or as a uni-

fied interface;

2. STATE OF THE ART 55

• four high-speed SLIII links that provide a lightweight protocol for commu-

nicating with neighbouring FPGAs;

• a inter-FPGA router, which manages the traffic arriving from the PCIe in-

terface, the role unit or the SLIII cores;

• a reconfiguration logic to read/write the configuration flash memory;

• a PCIe core with DMA support.

The shell consumes about one-fourth of each FPGA resources, although extra

capacity can be obtained by discarding unused functions.

The role unit contains the application logic itself, restricted to a large fixed re-

gion of the FPGA chip. The role can access the interfaces and the capabilities pro-

vided by the shell. Moreover, it supports partial reconfiguration, which allows

for dynamic switching between different roles while the shell remains active.

At the software level, the correct operation of the system is ensured by a vari-

ety of techniques developed within the Catapult project. They mainly controls the

reconfiguration phase, that can cause instability to the system. In order to prevent

the system to be destabilized, the driver that manages the reconfiguration of the

FPGA disables the non-maskable interrupts for the PCIe device during reconfig-

uration. Moreover, each device sends a "TX HALT" message to its neighbouring

devices to avoid the corruption of the other FPGAs. When a FPGA comes out of

reconfiguration, it transmits a "RX HALT" message to its neighbours and throws

away all the messages coming from them. Then, the software that manages the

infrastructure tells each server to release the "RX HALT" message once all the

FPGAs have been reconfigured.

Catapult infrastructure keeps monitoring several parameters of the architec-

ture in order to detect both SW and HW errors. If a failure is detected, the SW

manager can automatically reconfigure the FPGAs on the failing nodes. When

the reconfiguration does not help in solving the problem, the manager reboots

the system and asks for manual service if needed.

Although the architecture proposed in this thesis project provides a multi-

FPGA system to be included into a single computing node, it is similar to Cata-

2. STATE OF THE ART 56

pult as it is intended to be scaled up to a complete datacenter by connecting more

FPGA-accelerated nodes together.

NetFPGA SUME

The NetFPGA Project[16] is an effort to develop open source hardware and

software for rapid prototyping of computer network devices started in 2007 as a

research project at Stanford university. The work is based on a FPGA networking

platform, which allows to develop custom HW in an open source environment.

From 2007, different versions of the platform have been released.

The current version, called NetFPGA SUME[68], is a low-cost FPGA-based

PCIe board with I/O capabilities for 100Gbps operation as a network interface

card, multiport switch or test and measurement environment that enables rapid

prototyping of 10Gbps and 40Gbps applications and allows to carry on projects

focusing on 100Gbps applications.

Figure 2.18: NetFPGA SUME board architecture.

The NetFPGA SUME board, which is outlined in figure 2.18, features a large

Xilinx Virtex7 FPGA that supports high-speed serial interfaces, a large extensible

quantity of high-speed DRAM and a high-throughput SRAM. The FPGA pro-

vides 30 serial links connected to GTH transceivers, that run at up to 13.1Gbps.

These links connect four standard 10Gbps SFP+ ethernet interfaces, two expan-

sion connectors and a PCIe connector directly to the FPGA. Although the NetF-

2. STATE OF THE ART 57

PGA SUME does not allow to achieve a 100Gbps bandwidth through the avail-

able SFP+ interfaces, a typical 100Gbps application can achieve the required band-

width by assembling a FPGA Mezzanine Card (FMC) daughter board providing

additional network interfaces.

The memory subsystem comprises a DRAM memory, a flash memory, a mi-

croSD card slot and two SATA interfaces. NetFPGA SUME card is equipped with

two on-board SODIMMS DRAM modules supporting up to 16GB. The board

is supplied with two 4GB Double Data Rate Type Three (DDR3) modules of-

ficially supported by Xilinx Memory Interface Generator (MIG) cores. The on-

board flash memory is intended to primarily store the FPGA’s programming file.

It can also store a initial bootup image loaded upon powering up. The microSD

card provides a nonvolatile memory that can serve to supply a file system or as

a location for debugging information.

NetFPGA SUME board is implemented as a dual-slot, full-size PCIe adapter

which can be programmed both via the Joint Test Action Group (JTAG) connec-

tion and the PCIe interface. Moreover, it features a number of push-buttons and

LEDs that can help in debugging the developed HW applications.

As a network prototyping device, the NetFPGA SUME board has been de-

signed to operate in a variety of configurations. For instance, it can be used as a

stand-alone unit outside of a PCIe host when equipped with a soft CPU IP core

running a OS or a Firmware (FW). The computing system can be improved with

a complete memory hierarchy by using the on-chip local memory as a cache for

the CPU and by exploiting the on-board DDR3 modules. Moreover, up to two

SATA HDDs can be used as storage devices. In the PCIe host interface configura-

tion, the board acts as a network interface for a host PC and allows to prototype

a 100Gbps physical network. Finally, as a 100Gbps switch, the board can be con-

nected to other cards in order to implement a multi-FPGA computing system,

which allows each node to achieve a overall 300Gbps bandwidth.

Although it is primarily intended for network application prototyping, NetF-

PGA SUME provides a multi-FPGA architecture which is similar to the one im-

plemented in this thesis project. While both the solutions exploit PCIe inter-

2. STATE OF THE ART 58

face for host-board communication, NetFPGA achieves board-board transmis-

sion through a standard ethernet interface instead of a Aurora serial link.

MaxRing

Maxeler Architecture [14] works as a multi-FPGA system when it is com-

posed by two or more DFE cards linked by a dedicated interconnection, called

MaxRing. Moreover, a number of host systems comprising Maxeler DFEs can

be connected by a standard network infrastructure. Maxeler Architecture will be

discussed in detail in section 2.3.

2.3 Maxeler Architecture

Maxeler [14][57] is a family of FPGA-based HPC systems, provided by Max-

eler Technologies, that exploit the dataflow model to accelerate the execution of

complex computations. Currently, a variety of research centres and companies all

over the world employ Maxeler systems in a broad range of applications, such as

seismic datasets, financial risk and physics simulations.

Dataflow computers focus on optimizing the movement of data in an applica-

tion and utilize massive parallelism between thousands of tiny dataflow cores. In

the dataflow paradigm an application is considered as a dataflow graph of the ex-

ecutable actions, which is obtained from the source code. As soon as the operands

for an action are valid, the action is executed and the result is forwarded to the

next action in the graph. In most cases the constructed dataflow graph is static,

therefore it can be compiled into a synchronous dataflow machine, suitable to

be implemented in hardware. A node of the graph is a Multiplexer (MUX) or a

buffer or an arithmetic operation, which takes a single clock cycle to be executed.

In order to manage multiple data sets simultaneously, a dataflow machine can be

replicated by exploiting the available HW resources.

2. STATE OF THE ART 59

Figure 2.19: Maxeler Data Flow Architecture.

A Maxeler hardware accelerator system, as shown in figure 2.19, equips one

or more FPGA boards, called DataFlow Engines (DFEs), connected to a host CPU

via PCIe or Infiniband channels. Moreover, two or more DFEs can be linked

through a high bandwidth board-board communication channel called MaxRing

interconnection. Each FPGA accelerator can access two types of local memory:

a on-chip memory which can store several megabits of data accessible with a

high-bandwidth and a large on-board memory which can store many Gigabytes

of data.

Maxeler provides several DFE architectures equipped with up to 48GB on-

board RAM memory, featuring different FPGA devices from Xilinx and Altera.

The architecture can be configured using the the tools developed by Maxeler, that

comprise an Eclipse-based Integrated Development Environment (IDE) called

MaxIDE, a custom compiler called MaxCompiler and MaxelerOS, an extension

to Linux.

A general application to be accelerated in HW needs to be rewritten to fit the

dataflow architecture. This process consists of writing three different program

parts:

• the kernels, which implement the computational components of the appli-

2. STATE OF THE ART 60

cation in hardware;

• the manager configuration, which connects the kernels to CPUs, DFE mem-

ory, other kernels and other DFEs via the MaxRing interconnection;

• the software running on the CPU, where the DFEs are integrated into the

original application using a simple Application Programming Interface (API)

for transferring data to and from the DFEs directly and into and out of the

RAM of the DFEs.

The software application for the CPU can be developed using C or Fortran

language with the standard IDEs, while the kernels and the manager have to

be written in MaxJ language, a Java-based programming language supported by

MaxIDE. When all the parts are ready to be implemented, MaxCompiler merges

the source code with the MaxelerOS APIs in order to generate the DFEs configu-

ration files, that describe the operations, layout and connections of the dataflow

engines. In a DFE configuration file a kernel is a streaming core with a dataflow

described by a unidirectional graph, which comprises the arithmetic datapaths

for the computations. A manager is implemented as a module orchestrating the

data I/O for the kernels. The compiler inserts synchronization HW to ensure the

correct timing for each DFE architecture, which features a manager and one or

more kernels.

When the computation starts, data is streamed from the memory into the DFE

chip where operations are performed and is forwarded directly from one com-

putational unit to another, without being written to the off-chip memory until

the chain of processing is complete. Once a program has finished running, the

dataflow engine can be reconfigured for a new application in less than a second.

Maxeler provides a family of computing nodes suitable for data centers. A

node can implement the Maxeler architecture as one of three different configu-

rations: network sharing configuration, low latency configuration and high data

transfer configuration.

2. STATE OF THE ART 61

Figure 2.20: Network sharing configuration.

In Network sharing configuration, shown in figure 2.20, the Maxeler clus-

ter node comprises multiple DFEs as shared resources on the network, allowing

them to be used by the applications running anywhere in the cluster. The DFEs

can be accessed by a remote CPU client machine via infiniband network, while

multiple engines within the same node can communicate directly through the

MaxRing interconnect. Remote CPU nodes can utilize as many DFEs as required

for a particular application and release the DFEs for use by other nodes when

not running computations. Client CPU nodes run standard Linux with Maxeler

software, that automatically manages the resources within the nodes.

Figure 2.21: Low latency configuration.

2. STATE OF THE ART 62

Low latency configuration, depicted in figure 2.21, features a low latency

network interface connected to both the CPUs and the DFEs on the same clus-

ter node. This solution allows to accelerate the most timing-critical applications

while exploiting two DFE units at the same time. Each cluster node can be con-

nected to the infrastructure via ethernet link, while the DFEs can be directly con-

nected to the other nodes using SFP transceivers. The CPUs on each node run

a production-standard Linux distribution, with the DFE management software

installed as a standard Linux package.

Figure 2.22: High data transfer configuration.

Figure 2.22 shows the high data transfer configuration, which couples the

CPU units with up to four DFE engines connected through a MaxRing. This solu-

tion stands in the middle between the two preceding configurations. Indeed, the

CPUs and the DFEs are included in the same cluster node as in the low latency

configuration without sacrificing the high computing power provided by the net-

work sharing configuration. However this solution is not suitable for extreme

low latency requirements. Each node is connected to the infrastructure through

infiniband or ethernet interconnection.

Although Maxeler offers a FPGA hardware platform coupled with a rich de-

velopment environment, it requires the user to provide a complete description

of the architecture that will be implemented in Hardware Description Language

(HDL) code by the MaxCompiler tool. Moreover, the developer has to write the

2. STATE OF THE ART 63

hardware specification using MaxJ language, without having the option to use a

more common language, such as C. Therefore, Maxeler requires the developer to

have some knowledge in hardware design, without which the acceleration of a

compute-intensive algorithm remains unachievable.

The solution provided by Maxeler is similar to the one proposed in this thesis

project, as both are based on a multi-FPGA system composed of a host com-

puter and a number of PCIe accelerators connected through a board-board high-

performance link, each one hosting a chain of hardware accelerators.

3

Proposed Architecture

This chapter provides a description of the proposed design and a few qualita-

tive power efficiency considerations. All the steps that led to the implementation

of the architecture of a basic block are illustrated in section 3.1, by gradually

presenting the achieved advancements, in order to highlight the components of

the system and its features. The included subsections show how the final multi-

FPGA system have been designed by adding new interfacing capabilities to the

initial single-board accelerator. Section 3.2 illustrates the structure of a cluster

node. The power efficiency considerations are presented in section 3.3.

3.1 The Basic Block

The Basic Block (BB) is the basic component of the exaFPGA [6] project. It is an

FPGA-based hardware accelerator that stands at the lower level of the infrastruc-

ture. When two or more basic blocks are connected together and installed into a

host computer, they constitute a Cluster Node (CN).

The following subsections explain how the basic block architecture has been

designed with a step-by-step process, starting from a simple single-board accel-

erator.

64

3. PROPOSED ARCHITECTURE 65

3.1.1 The Starting Point: a Single-Board Accelerator

At the beginning of this thesis work the only available architecture for the

exFPGA [6] project was the single-board hardware accelerator designed by Natale

and Sicignano [7] to test the performance of their Streaming Stencil Time-steps

(SSTs). The single-board accelerator had been developed as a block design with

Vivado design suite [30] by exploiting its IP Integrator feature. The design was

implemented and tested with a Xilinx VC707 [29] board.

Figure 3.1: Single-board accelerator

As shown by figure 3.1, the accelerator is a complete computing system, in-

cluding a Memory Interface Generator (MIG) [35] that allows the communication

with the on-board DDR3 RAM memory and a DMA [34] that moves the data to

and from the SSTs queue. All the computation is managed by a Firmware (FW)

running on the Microblaze Central Processing Unit (CPU) [36] that instantiates

the input data and controls the DMA [34] through its AXI4 lite interface. The data,

loaded into the on board DDR3 memory, flow into the chain of SSTs through a

DMA-managed AXI4 streaming bus. After being processed by the SSTs, they are

stored again into the on-board memory.

3. PROPOSED ARCHITECTURE 66

Figure 3.2: Virtex-7 floor plan of the Single-board accelerator

Figure 3.2 shows how the design has been implemented on a Virtex-7 FPGA.

Most of the used area is occupied by the MIG [35], which is painted in ma-

genta, and by the interconnection crossbar, which is painted in green. The DMA

[34],which is highlighted in yellow, and the Microblaze CPU [36], which is high-

lighted in red, require only a fraction of the overall used resources.

This architecture is useful to test the SSTs, but it is clearly unfit for a HPC

system aiming to achieve exascale performance, since it lacks the necessary in-

terconnections to be scaled-up to a multi-FPGA system. Next sections show how

high-performance board-board and host-board connections have been added to

the architecture.

3. PROPOSED ARCHITECTURE 67

3.1.2 The first design: Aurora with AXI Chip2Chip

In order to build a working multi-FPGA system, a board-board interconnec-

tion is the obvious improvement to the previous architecture. Current FPGA

boards feature a variety of protocols and interfaces that allow to connect a board

to another.

Nowadays most HPC systems use ethernet or other custom technologies to

connect their accelerator modules. Usually these interconnections are managed

by an additional network infrastructure. This solution allows to implement a

scalable infrastructure, by exploiting well-known reliable technologies. However

these packet-based technologies are becoming more and more unfit for the mod-

ern HPC systems because they add an additional overhead to the payload. More-

over they need a special network infrastructure which reduces the performance

and increases the cost of the system.

In this work a new solution for the board-board interconnection is presented.

It exploits the high-speed serial link provided by Xilinx Field Programmable

Gate Arrays (FPGAs) and uses coaxial cables to physically connect two or more

boards.

Figure 3.3: Board-board interconnection with Aurora and Chip2Chip

In figure 3.3 the first design is depicted. It consists of two VC707 [29] boards

3. PROPOSED ARCHITECTURE 68

connected through a serial Aurora link.

The architecture is similar to the single-board accelerator explained above,

except for two additional IP cores:

• Xilinx Aurora 64B/66B [32] is a free IP core included into Vivado [30] IP li-

brary. It exploits 7-series transceivers to provide a high data rate protocol

for high-speed serial communication. The general purpose data channel

achieves a throughput ranging from about 60MB/s to about 32GB/s, de-

pending upon the number of lanes used and upon the clock frequency.

This feature can be customized by changing the operating frequency of

the GT transceivers through a suitable external clock generator and by in-

creasing the number of lanes up to a maximum of 16. The core features

an AXI4 streaming interface, that can be customized in order to work as a

simplex/duplex framing or streaming interface. The data are transmitted

with the 64B/66B encoding and the clock signal is embedded into the data

stream. This IP core is suitable for board-board interconnection.

• Xilinx Axi Chip2Chip [33] is a free soft IP provided with Vivado Design Suite

[30]. This core can be used to transparently bridge various AXI systems. It

features an AXI Memory Map interface that can be customized in order to

work either in master or in slave mode. Aurora IP can be easily managed

by integrating it with an AXI Chip2Chip core.

The first design has been obtained by adding the serial link capability to the

single-board accelerator. However, in order to implement a working board-board

connection through Aurora, Axi Chip2Chip IP core has been used. Indeed, no

technical paper providing useful hints for properly instantiating Aurora IP core

without Axi Chip2Chip has been found.

Unfortunately Axi Chip2Chip exposes a single Axi Memory Map interface,

therefore is can not work as a master and as a slave simultaneously. This feature

forces the multi-board system to transmit the data in one direction only: from a

board to the other and not the vice-versa. On the Transmitting (TX) board data

are loaded into the DDR3 memory by a custom FW running on the Microblaze

3. PROPOSED ARCHITECTURE 69

CPU [36]. Then the on-board DMA [34] moves the data into the SSTs queue,

where the computation takes place. At the end of the computation, the DMA [34]

transfers the data to the slave Axi Chip2Chip IP core that interfaces with Aurora

core and exploits its high-speed link to move the data to the second board. On

the Receiving (RX) side, after the data have reached the master Axi Chip2Chip

IP core through Aurora, they are stored into the on-board DDR3 memory. This

is a mandatory step, because the DMA IP core [34] provided by Vivado IP library

exposes a master Axi memory map interface, therefore it can not be mapped into

the memory space of the Axi Chip2Chip that features a master interface too. The

FW running on the on-board Microblaze CPU [36] is kept into a wait state until

all the data have been stored into the memory. Then it starts a transfer from the

DDR3 to the SSTs queue by managing the DMA [34]. After the data have been

processed, they are stored again into the on-board memory.

Figure 3.4: Virtex-7 floor plan of one of the two boards of the first design

3. PROPOSED ARCHITECTURE 70

Figure 3.4 shows the floor plan of one of the two FPGAs composing the im-

plemented design. As in the previous section, the MIG [35], which is painted in

magenta, is the IP that requires the largest amount of area. Also the intercon-

nection crossbar, which is painted in green, is a resource-consuming core. The

Microblaze CPU [36] is painted in yellow and the DMA [34] is painted in white.

Aurora IP core, which is painted in blue, requires only a fraction of the total used

resources. Axi Chip2Chip, which is painted in red, is similar to Aurora with re-

spect to the area utilization.

The proposed solution allows to easily implement a multi-board system through

a high-speed serial link, unfortunately it has various drawbacks. First, it requires

a complete computing system to be implemented on both boards, this requires

a number of Intellectual Properties (IPs), thus increasing the resource utilization.

Moreover the system is managed by the two special FWs running on the on-

board Microblaze CPUs [36], therefore the overall performances are seriously re-

duced. Another drawback is due to the presence of the Axi Chip2Chip IP core: it

forces the data to be stored two times on the RX board because it can not be di-

rectly linked to the DMA [34], moreover it integrates the Aurora core by exposing

a memory map interface instead of the streaming interface provided by Aurora.

These features cause serious limitations to the performance of the system.

3.1.3 The second design: A fully-streaming Serial Link

As clearly explained in the previous subsection, various limitations made the

first design unfit for a scalable HPC system. Therefore a new architecture has

been designed, featuring a fully-streaming board-board link.

3. PROPOSED ARCHITECTURE 71

Figure 3.5: Board-board interconnection with Aurora streaming

The second design is illustrated by figure 3.5. The architecture derived from

the first design has been modified by connecting the Aurora IP core to the stream-

ing interface of the DMA [34], without the Axi Chip2Chip.

This considerable improvement has been achieved by carefully analysing the

signal waveforms included into the Aurora Product Guide [66] in order to under-

stand the initialization of the link and the management of the clock and reset

signals. Therefore, Axi Chip2Chip IP core has been replaced by two custom cores

that allow to properly manage the Aurora IP core without overriding its AXI4

streaming interface.

The first custom core is a Verilog module designed with Vivado [30]. It includes

a Finite State Machine (FSM) that takes care of the initialization phase of the

Aurora IP core. Moreover it manages the recovery phase when the serial link

undergoes a failure. The second custom core has been implemented with Vivado

HLS [31], starting from its C-language specification. It is in charge to generate a

reset signal for the IPs connected to the streaming interface of the Aurora IP core.

Indeed, Aurora IP provides a clock signal associated to its streaming interface,

however it lacks of a reset signal.

Furthermore, two asynchronous First In First Out (FIFO) IP cores must be

3. PROPOSED ARCHITECTURE 72

placed before the AXI4 streaming interfaces of each Aurora IP core in order to

achieve the timing closure of the entire architecture. This step is mandatory, be-

cause two different clock domains coexist in the same circuit: the first is provided

by Aurora IP core through its streaming interfaces, the second is enforced by the

MIG IP core [35], that is in charge to generate the clock signal for the system.

By adding a asynchronous FIFO at the boundary of the two clock domains, the

timing closure is met. Indeed, first the stream of data enters the FIFO at a rate

provided by the input clock signal, then it exits the FIFO synchronously with

the output clock signal, this provides a clear separation between the two clock

domains.

As in the previous design, the data are loaded into the DDR3 memory of the

first board of the system. Then they are moved to the streaming SSTs queue by

the DMA [34]. After the computation, the data reach Aurora IP core, that transmit

them to the other board where they are processed by another SSTs queue. Finally,

they are stored into the DDR3 memory of the second board. Thanks to the full-

duplex interconnections, the data can be moved from the second to the first board

by traversing two additional SSTs queues.

3. PROPOSED ARCHITECTURE 73

Figure 3.6: Virtex-7 floor plan of one of the two boards of the second design

The Virtex-7 floor plan of the second architecture is depicted in figure 3.6. The

Microblaze CPU [36] is painted in red, the DMA [34] is painted in white. Most

of the used area is occupied by the interconnection crossbar, which is painted in

green, and by the MIG [35], which is painted in magenta. Aurora IP core is the

yellow area shown in the bottom-right corner of the picture. Notice that the area

occupied by the Axi Chip2Chip in the previous design is now free.

This design allows to implement a basic multi-FPGA system, moreover the

number of interconnected boards can be increased by adding more accelerators.

Therefore this is a scalable solution.

An important capability is the fully-streamed bus that allows the data to be

moved without any bottleneck through the SSTs queue. This permits to achieve

a high throughput during the processing phase and it also simplifies the archi-

tecture. Moreover the link can be crossed in both directions, thus increasing the

3. PROPOSED ARCHITECTURE 74

flexibility of the system.

The implemented design increases also the efficiency of the architecture by

reducing the number of accesses to the on-board memory. Indeed, the data are

moved directly from a board to another without any intermediate access to the

DDR3 memory. However the proposed design still needs to be managed by a FW

running on a Microblaze CPU [36], therefore the resource utilization increases

and the overall performances do not increase as well.

Finally the system is unable to interface with a host PC through a high speed

link, hence the data need to be pre-loaded into the on-board DDR3 memory be-

fore the beginning of the computation, thus breaking down the overall perfor-

mances. Next section shows how a PCIe interface has been added to the imple-

mented architecture.

3.1.4 The third design: PCIe host-board Connection

The architecture illustrated in the preceding subsection can be scaled-up to a

complex multi-board system, however it lacks a high-speed link to interface with

a host system. This section shows how a PCIe interface has been developed, by

exploiting a commercial IP core.

Figure 3.7: Host-board PCIe interconnection

Figure 3.7 illustrates the implemented architecture. It is a self loop composed

3. PROPOSED ARCHITECTURE 75

of a PCIe interface IP core and of a queue of SSTs, connected on a AXI4 streaming

bus. QuickPCIe [25], the core used in this design, is a commercial IP provided by

PLDA [22], an international company that delivers various PCIe solutions. This

soft IP integrates Xilinx hard PCIe IP core and provides DMA capability and

AXI4 streaming compliance.

Figure 3.8: QuickPCIe Block Diagram

As depicted by figure 3.8, the core is composed of three layers.

• The lower level includes the PCIe hard IP provided by Xilinx. It implements

the basic features of the protocol and exposes a suitable interface to the

upper layer.

• The higher layer implements the AXI capability. It provides various AXI4

interfaces to the custom logic connected to QuickPCIe IP core.

• The layer in the middle acts as a bridge between the other two levels. There-

fore it interconnects the hard PCIe IP with the AXI interfaces. Moreover it

includes a number of DMA engines, thus adding the DMA capability to the

basic PCIe interface. Finally, it provides the Clock Domain Crossing (CDC)

capability, that allows to safely instantiate QuickPCIe IP core into a design

with multiple clock domains.

QuickPCIe is compliant with the PCIe Eight-Lane (x8) second generation in-

3. PROPOSED ARCHITECTURE 76

terface and it can be customized in order to exploit the GTX transceivers of a

Virtex-7 FPGA. Before QuickPCIe has been chosen for this work, several free

PCIe IP cores had been tested:

• Xillybus [37], a commercial IP developed by the company of the same name;

• Riffa 2.0 [26], provided by the University of California, San Diego;

• EPEE Library [5], designed by the Chinese Center for Energy-efficient Com-

puting and applications;

• AXI Bridge for PCI Express (PCIe) Gen3 Subsystem [2] and 7 Series Gen2 In-

tegrated Block for PCI Express (PCIe) [1], provided by Xilinx through the Vi-

vado IP library.

These IP cores implement the PCIe interface by providing different solutions,

some of which are very interesting. However, they were discarded because in

the most cases they lack some basic feature i.e. they provide custom interfaces

instead of the AXI4 ones, they do not have a working driver, they do not support

the architectures with multiple clock domains. Furthermore, some of them do

not work as expected and some others do not work at all. In particular, the two

IP cores provided by Xilinx are not suitable to be used alone, because they need

to be integrated by additional custom logic. Moreover a clear explanation on how

to instantiate them into a Vivado block design has not been found.

Unlike the other IPs, QuickPCIe includes a working reference design, a work-

ing demo application, a clear documentation, a driver for a variety of Operating

Systems (OSs) and a easy-to-use set of Application Programming Interfaces (APIs).

Unfortunately, QuickPCIe is not ready to be instantiated into a Vivado block de-

sign, therefore it needs to be customized in order to be wrapped into a Vivado IP

core.

In order to achieve a working PCIe IP core, the reference design provided

with QuickPCIe has been chosen as a starting point for additional improvements,

because it has proven to be already well-integrated with the software driver.

3. PROPOSED ARCHITECTURE 77

Therefore, all the Verilog modules composing the reference design have been

imported into a new Vivado project and the correct hierarchy has been rebuilt.

Then two important changes to the Verilog specification have been made:

• two AXI4 streaming interfaces have been added to the wrapper of the core.

They act as exeternal input/output interfaces when the core is instantiated

into a Vivado block design;

• additional logic has been included into the interface layer, it is in charge to

manage the new AXI4 streaming interfaces.

Then the project has been wrapped and a Vivado IP core has been generated.

Finally, the new IP core has been instantiated into a blank Vivado IP integrator

project and a queue of SSTs has been connected as a self-loop to the AXI4 stream-

ing interfaces.

The design is managed by a custom application running on the host system.

It has been developed from scratch by exploiting the APIs provided with Quick-

PCIe IP core. First, the application initializes the core and the driver, then it in-

stantiates a buffer on the host RAM memory and fills it with the input data for

the SSTs queue. After that, it starts a DMA transfer from the buffer to the AXI4

streaming interface of the PCIe IP core. At the end of the computation the ap-

plication starts a DMA transfer from the board to the host system and stores the

processed data into the RAM memory of the PC.

3. PROPOSED ARCHITECTURE 78

Figure 3.9: Virtex-7 floor plan of the design with QuickPCIe only

Figure 3.9 shows the floor plan of the third design. The red-painted area is

occupied by the Xilinx PCIe hard IP core. QuickPCIe IP core, which is painted

in green, requires a considerable amount of resources to be implemented. How-

ever the reference design provided with the evaluation version, which has been

used for this thesis project, includes a number of demo features. Therefore, when

using the purchased version of the IP in spite of the evaluation one, only the nec-

essary features are included into the core, hence the required amount of area is

significantly reduced.

The implemented design allows to interface a single-board accelerator with a

host PC. This architecture features a fully-streaming bus and does not require any

custom FW to be developed. Moreover it achieves a good resource utilization,

because the design requires no CPU, no DMA [34], no MIG [35] and, obviously,

no crossbar.

3. PROPOSED ARCHITECTURE 79

3.1.5 The final version: A multi-board Pipeline

This section describes the final version of the proposed design. As explained

in the previous sections, it is the result of an incremental process, that has led to

the second and to the third design.

Figure 3.10: The multi-board Pipeline

3. PROPOSED ARCHITECTURE 80

Figure 3.10 illustrates the final architecture. It has been implemented by merg-

ing the second and the third design, in order to exploit their most important fea-

tures: the host-board interconnection and the board-board link.

The overall system is composed of a queue of FPGA boards, interconnected

with coaxial cables. Notice that only the first board and the last board include a

PCIe interface. The other boards feature only a serial link, because the exchange

of data with the host system is performed only at the ends of the queue. The only

resources needed by the proposed design are those required by the communi-

cation interfaces, the remaining resources are available for the computing logic.

Indeed, no CPU is implemented into the design and no MIG [35] is needed. Fur-

thermore no FW needs to be developed. A SSTs queue is implemented on each

FPGA board.

The system is managed by a custom application running on the host PC. First,

the data are initialized on the host PC, then they are moved to the first board of

the queue by exploiting the PCIe x8 interface (red arrow) where they are pro-

cessed by the SSTs queue. At the end of the computation, the data reach the

Aurora IP core, that moves them to the second board of the system. The data

traverse all the boards composing the queue through the coaxial cables (magenta

arrows). Each time the stream of data reaches a board, it passes through the SSTs

queue connected to the AXI4 streaming interfaces of the Aurora IP core. Then the

computed data are moved to the next board. Finally, the data are moved to the

last board, where they pass through the on-board SSTs queue and reach the PCIe

IP core, that transfers them to the RAM memory of the host PC (green arrow).

Notice that no asynchronous FIFO is required. Indeed, the CDC feature of

QuickPCIe IP core is enough for the design to achieve the timing-closure, because

it splits the clock domain of the host PCIe infrastructure and the clock domain

provided by Aurora.

3. PROPOSED ARCHITECTURE 81

Figure 3.11: Virtex-7 floor plan of the design including Aurora only

Figure 3.12: Virtex-7 floor plan of the design including QuickPCIe and Aurora

3. PROPOSED ARCHITECTURE 82

Figure 3.11 shows the floor plan of one of the middle boards of the system.

The only implemented core is Aurora, located into the bottom-right side of the

picture. As can be clearly noticed, the great majority of the area of the FPGA is

free, hence it is available for the SSTs.

Figure 3.12 illustrates the floor plan of one of the two FPGAs connected with

the host PC. Nearly all the used area is occupied by QuickPCIe, which is painted

in green, and by Aurora, which is painted in blue. However, most of the area is

free and can be used for the computing logic.

The proposed architecture has various capabilities:

• It can be scaled both by increasing the length of the on-board SSTs queues,

both by adding more boards to the system. This is an important feature with

respect to HPC field for which the proposed design has been developed;

• The resource utilization is efficient and most of the area on each FPGA is

available for the SSTs, hence it is reserved for computation;

• The power efficiency increases with the number of the boards included into

the system, because the most demanding components are the PCIe inter-

faces at the ends of the queue;

• The achievable bandwidth varies upon the used FPGA boards, upon the

clock source and upon the width of the interconnection links.The PCIe in-

terface can reach a theoretical bandwidth of 7.88 GB/s if a generation 3

x8 PCIe IP core is used. Moreover the Aurora serial link can be operated

with at a 32 GB/s theoretical bandwidth when in 16-lanes configuration

and GTH transceivers are used.

• The frequency at which the SSTs queue processes the data stream is limited

by the maximum frequency at which the AXI4 streaming bus can operate.

This, in turn, depends upon the configuration of the two interface IP cores.

• The overall design is a pipeline composed of pipelines, therefore it can pro-

cess a continuous stream of data without any interruption, thus providing

a high-throughput HPC system.

3. PROPOSED ARCHITECTURE 83

The proposed architecture meets all the features required by a supercomput-

ing system, therefore it can be added to a High Performance Computing (HPC)

cluster node.

3.2 The Cluster Node

Figure 3.13: A Cluster Node

Figure 3.13 depicts the basic structure of a cluster node. It is composed of a

host PC providing a server-class CPU and several PCIe slots. The architecture

described in the previous section is integrated with the host system by connect-

ing the FPGA boards into the PCIe slots. Notice that, even if all the boards are

connected into the PCIe slots, only the two at the ends feature a PCIe interface.

The cluster node is managed by a special application running on its CPU,

the input data and the computed data are stored into the local DDR3 memory.

The DMA of the host system is exploited to move the data from the local DDR3

memory to the queue of FPGA boards and vice versa.

The cluster node can be connected to other cluster nodes to implement a more

3. PROPOSED ARCHITECTURE 84

complex HPC system. This can be achieved by connecting each cluster node to a

suitable interconnection network. However, this goes beyond the purpose of this

thesis project.

3.3 Power Efficiency Considerations

This section presents some considerations on the power efficiency of a generic

multi-FPGA architecture when increasing the number of used FPGA devices and

the number of accelerators instantiated on each device. These considerations are

useful to understand, from a qualitative point of view, the power efficiency trend

of the presented architecture.

A more detailed quantitative analysis of the power efficiency trend of a multi-

FPGA system is provided in chapter 4.

3.3.1 Hypotheses

Before illustrating the considered architecture, it is necessary to explain the

hypotheses that have been made and the base components of the architecture

itself.

• The first hypothesis states that there is a direct proportionality between

the number of executed computations and the amount of resources used

for each configuration of the system. Indeed, in a multi-FPGA architecture

the computations are performed by the hardware accelerators instantiated

on each FPGA device, therefore, to perform more computations, more re-

sources must be used to host a greater number of accelerators.

• The second hypothesis is similar to the first one as it states that there is a

direct proportionality between the amount of dissipated dynamic power

and the number of executed computations for each configuration of the

system. Indeed, in order to increase the number of executed computations,

a greater number of accelerators needs to be instantiated, thus increasing

the power required to perform the computations.

3. PROPOSED ARCHITECTURE 85

• Each computing device that constitutes the system features a FPGA that

allows to instantiate a large amount of computing resources, in the form

of hardware accelerators. Moreover, each device can be equipped with a

PCIe interface and with up-to two Aurora interfaces. In the first part of

the presentation it is assumed that the power consumption of the Aurora

device-to-device link is much greater than the power consumption of the

PCIe interface (PwAUR >> PwPCIe). Therefore, the power consumption of

the PCIe interface is negligible. This assumption will be discussed later.

Figure 3.14 shows a computing device that features both the Peripheral Com-

ponent Interconnect Express (PCIe) and the Aurora interface, while figure 3.15

presents a device equipped with two Aurora interfaces: one for the input link

and the other for the output link. These are the basic components of the consid-

ered system.

Notice that all the logic that is available on both devices can be exploited to

perform the computations.

Figure 3.14: A computing device featuring both a PCIe interface and a Aurora interface.

3. PROPOSED ARCHITECTURE 86

Figure 3.15: A computing device featuring a Aurora input interface and a Aurora output interface.

The assumptions that have been made previously are broad and they do not

depend on numerical parameters. Although they are not valid for every type of

workload, they are valid for the workloads used for this thesis project.

3.3.2 Building the System

In order to understand the overall power efficiency trend of a multi-FPGA

system it is necessary to focus on a few simple configurations of the system itself.

Therefore, three configurations have been analysed: a single computing device,

a couple of devices linked together and a complete architecture, composed of a

number of interconnected devices.

The first configuration, depicted in figure 3.16, comprises only a computing

device, which features a PCIe interface. All the available resources can be used to

instantiate the hardware accelerators. Notice that a Aurora link is not required,

since the system does not need to interface with other computing devices.

In this case the main source of power consumption is the computing logic,

which executes all the computations provided by the system.

3. PROPOSED ARCHITECTURE 87

Figure 3.16: The first configuration: a single computing device featuring a PCIe interface.

The second configuration, shown in figure 3.17, is composed of two com-

puting devices, both featuring a PCIe interface. The two devices are connected

through a Aurora link, therefore a Aurora interface must be instantiated on each

device, on the first as an output interface, on the second as an input interface. The

available logic is slightly less with respect to the single device case, since a small

amount of resources on each device are used by the Aurora interface.

Also in this case the main source of power consumption is the computing

logic. However, a fraction of the total dissipated power is consumed to transfer

the data through the Aurora link.

Figure 3.17: The second configuration: two computing devices featuring a PCIe interface and con-
nected through a Aurora link.

3. PROPOSED ARCHITECTURE 88

The third configuration, shown in figure 3.18, comprises a variable number of

computing devices, connected together as a queue. The first and the last device

in the queue feature a PCIe interface and a Aurora link. The other devices are

equipped with two Aurora interfaces, one for the input data and the other for the

output data. They do not need a PCIe interface.

The length of the queue can be increased by adding more intermediate de-

vices, each one featuring two Aurora interfaces.

Figure 3.18: The third configuration: a queue of computing devices connected through a Aurora
link. The two devices at the extremes feature also a PCIe interface

3.3.3 Power Efficiency Trend

The power efficiency trend of the considered multi-FPGA system follows the

general equation of the power efficiency:

PowerEfficiency =
Throughput

PowerConsumption
=
PerformedComputations

ExecutionTime

PowerConsumption
(3.1)

The equation 3.1 states that the power efficiency of a computing system is de-

termined both by the number of computations performed during the execution

time and by the power consumption of the system. When considering the pre-

sented multi-FPGA architecture, the number of performed computations is pro-

vided by the accelerators instantiated on the computing devices and the power

is consumed mainly by the accelerators and by the inter-device link.

3. PROPOSED ARCHITECTURE 89

Therefore, the three configurations can be individually examined.

• The first configuration is also the most power efficient, since all the power

dissipated by the device is spent to perform the required computations.

Starting from a single device with no accelerators and increasing the num-

ber of accelerators, the power efficiency of the device quickly grows up-to

a limit, which is also the upper-bound for the whole system.

• The second configuration is obtained by coupling the device used in the

first configuration with another identical device. Therefore, a device-to-

device connection is required. At the beginning the efficiency of the system

is significantly reduced, since the newly added device hosts no accelerator.

The overall power efficiency grows while the number of accelerators in-

stantiated on the second device increases, until no more accelerator can be

hosted by the two devices. At this point the second configuration provides

the double of executed computations with respect to the first configuration.

However it requires also the double of power, with the addition of a signif-

icant contribution brought by the Aurora link. Indeed, the two interfaces

require some power to the devices in order to move the data through the

link. Therefore, the power efficiency of the second configuration is less than

the power efficiency of the first configuration.

• The third configuration is based on the second configuration with the addi-

tion of a variable number of intermediate devices. As in the previous case,

the newly added intermediate devices host no accelerators, therefore the

overall power efficiency is reduced. However, while increasing the num-

ber of hosted accelerators, the overall power efficiency tends to limit value,

which is the power efficiency of a single intermediate device featuring two

Aurora interfaces, and the contribution of the two devices at the extremes

becomes more and more negligible. The limit value reached by this config-

uration is slightly less than the one achieved by the second configuration,

since the intermediate boards, that feature two Aurora interfaces, consume

more power than the two boards at the extremes, that are equipped with a

3. PROPOSED ARCHITECTURE 90

single Aurora interface.

3.3.4 A different Assumption

At the beginning of this section, it has been assumed that the power con-

sumption of the Aurora device-to-device link was much greater than the power

consumption of the PCIe interface (PwAUR >> PwPCIe). Therefore, the power

consumption of the PCIe interface has been neglected.

From here on, the opposite assumption is taken, in order to analyse the power

efficiency trend of the same multi-FPGA system when the power consumption

of the PCIe interface is much greater than the power consumption of the Au-

rora device-to-device link (PwPCIe >> PwAUR). All the other hypotheses made

previously are still valid.

The power efficiency of a single computing device follows the same trend

shown under the previous assumption. However, in this case the maximum value

reached by the single-device configuration does not set a upper bound to the en-

tire system. After the local maximum has been reached, the power efficiency de-

creases due to the addition of the second device. The maximum power efficiency

level that can be achieved with a two-device configuration is slightly less than

the maximum value reached by the single-device configuration. The third por-

tion of the curve is different with respect to the previous case, since the power

efficiency of the complete multi-FPGA architecture is improved by the addition

of the intermediate devices, that provide a greater power efficiency with respect

to the single device equipped with the PCIe interface. As the number of hosted

accelerators increases, the power efficiency tends to a upper bound, which is the

power efficiency of a single intermediate device featuring two Aurora interfaces.

Indeed, when considering long queues of devices, the power efficiency of the sys-

tem is bounded only by the power efficiency of the single intermediate devices,

since the contribution of the PCIe interface of the two devices at the extremes is

negligible.

4

Experimental Evaluations

In this chapter the experimental evaluations for the proposed architecture are

presented. The results are described in section 4.3, preceded by the experimental

setup in section 4.1 and by the used benchmarks in section 4.2. Finally, section 4.4

presents a quantitative model for the power efficiency and its validation against

the experimental results.

4.1 Experimental Setup

The proposed architecture has been tested with Vivado Design Suite [30]. Vi-

vado HLS (v2015.2) [31] has been used to generate the Register-Transfer Level

(RTL) and the Vivado’s Intellectual Property (IP) core for each Streaming Stencil

Time-step (SST) module, starting from its C language specification.

Both the generation of the bitstream and the programming phase have been

performed using Vivado (v2015.2) [30]. Synthesis and implementation have been

executed with an AMD Athlon II X4 640, featuring an 8GB DDR3 RAM. Due to

the strict requirements for synthesis and implementation, less than half of the

available resources on the FPGA could be exploited.

All the tests have been performed with two VC707[29] boards and with a host

PC running Ubuntu 14.04 x64, the same used for synthesis and for implementa-

tion. One of the two boards has been connected to the host PC through the PCIe

interface, the other one has been connected to the first with four coaxial cables,

91

4. EXPERIMENTAL EVALUATIONS 92

two for the Transmitting (TX) channel and two for the Receiving (RX) channel.

Figure 4.1: A block diagram of the experimental setup.

Figure 4.2: The experimental setup for the test session.

Figure 4.3: The close-ups of the two VC707 boards.

All the tests have been carried on by transmitting a fixed amount of data to

the first FPGA and by receiving the computed data, both via the PCIe interface

of the host PC. The tests have been executed with an increasing number of SSTs.

Both the transfer of the data and the measurement of the performances have

been managed by a custom application based on the Application Programming

4. EXPERIMENTAL EVALUATIONS 93

Interfaces (APIs) provided by QuickPCIe IP [25] core. First, the application initial-

izes the driver for the PCIe interface and scans the host system to discover all the

FPGA boards connected on the PCIe bus. Then it locks the available VC707 board

and initializes the data to be transferred. When the data are ready, the application

starts a DMA transfer from the host memory to the VC707 board. It waits until

the entire receive buffer is filled with the data computed by the architecture and

then it releases all the locked resources. The overall execution time is measured

by exploiting the gettimeofday() function. The application computes the through-

put of the system and generates a detailed report.

4.2 Test Cases

The architecture has been validated against five benchmarks:

• jacobi-2D;

• seidel-2D;

• game-of-life-2D;

• jacobi-3D;

• heat-3D.

These benchmarks are based on Iterative Stencil Loops (ISLs), therefore they

are suitable for polyhedral-based optimisation. Moreover their hardware imple-

mentation allows to easily perform queuing. They represent a small subset of the

algorithms used for High Performance Computing (HPC) and they are widely

employed in literature.

All the benchmarks have been tested with single precision floating point data

types, except for game-of-life-2D, which has been run with integer data. The 2D

benchmarks have been fed with a 1000x1000 matrix, while the 3D ones have been

fed with a 100x100x100 matrix.

4. EXPERIMENTAL EVALUATIONS 94

4.2.1 jacobi-2D

The Jacobi method is a popular algorithm for solving Laplace’s differential

equation on a square domain, regularly discretized. Each array update involves

5 floating point operations. The input matrix used for the test has 1000x1000 ele-

ments, therefore for every iteration of the algorithm 4980020 floating-point oper-

ations need to be executed.

4.2.2 seidel-2D

The Gauss-Seidel method is an iterative method used to solve a linear system

of equations. Each array update involves 9 floating point operations. The input

matrix used for the test has 1000x1000 elements, therefore for every iteration of

the algorithm 8964036 floating-point operations need to be executed.

4.2.3 game-of-life-2D

John Conway’s Game of Life is a well known cellular automaton that models

the evolution of two-dimensional universe constituted by a grid of interacting

cells. This algorithm has been tested with integer data, therefore no floating-point

operations have been performed.

4.2.4 jacobi-3D

This is the three-dimensional version of the Jacobi method, already presented

in its two-dimensional case. Each array update involves 7 floating point oper-

ations. The input matrix used for the test has 100x100x100 elements, therefore

for every iteration of the algorithm 6588344 floating-point operations need to be

executed.

4.2.5 heat-3D

This method is used to solve the differential equations that model heat con-

duction into a three-dimensional body. Each array update involves 9 floating

point operations. The input matrix used for the test has 100x100x100 elements,

4. EXPERIMENTAL EVALUATIONS 95

therefore for every iteration of the algorithm 8470728 need to floating-point op-

erations be executed.

4.3 Experimental Results

In this section the experimental results of the previously described bench-

marks will be presented. The results must be preceded by an important premise.

The tested architecture is similar to a complex pipeline traversed by a stream

of data. The width of its datapath changes across the pipeline from 32bit to 128bit

and also the frequency at which the components of the pipeline operate changes

from 49Mhz to 125Mhz. Moreover the serial board-to-board interface can be op-

erated only with a single-lane connection and only two boards can be linked

together. Hence only a fraction of the maximum available bandwidth can be ex-

ploited. Most of the system has a bandwidth of 400MB/s, but there is a bottleneck

due to Aurora IP core, which achieves only a bandwidth of 200MB/s on its AXI4

streaming interfaces. The main cause of this behaviour is the impossibility to cus-

tomize QuickPCIe IP core and Aurora IP core: the first one has been used only

as a low-performance evaluation version, the second one needs an external clock

generator to achieve higher operating frequencies.

The obtained results however are still valid because the main purposes when

performing the tests were:

• to show the scalability of the architecture with the length of the SSTs queue,

ensured by the pseudo-linear increase in throughput, in power efficiency

and in resource utilization, while remaining with constant bandwidth;

• to show how this approach can outperform the classical HPC systems, con-

cerning power efficiency.

All the results have been compared with their Central Processing Unit (CPU)

version, carried on three Intel processors:

• Core i7 2675QM[9]: four cores, eight threads, 22nm lithography, 45W TDP,

2.4GHz;

4. EXPERIMENTAL EVALUATIONS 96

• Xeon E5-1410[11]: four cores, eight threads, 32nm lithography, 80W TDP,

2.8GHz.

• Xeon E5520[12]: four cores, eight threads, 45nm lithography, 80W TDP,

2.26GHz.

The first processor is a high-end CPU designed with a recent lithography, the

second and the third are server class CPUs designed for heavy computations.

The CPU version of each test have been executed with PLUTO [23], by ap-

plying the Diamond Tiling [50] optimization. OpenMP[20] has been used in order

to exploit all the eight available threads. Moreover the results obtained by Natale

and Sicignano [7] are included. Their tests have been executed on a single-board

architecture running at a 200Mhz frequency and using a 1080x1920 Full-HD ma-

trix. Due to the absence of fast a host-board connection i.e. PCIe, all the input

data have been pre-loaded into the on-board DDR3 RAM memory and no power

has been required by the FPGA transceivers. The time needed to load the data on

the board has been neglected while computing the execution time. These results

have been chosen not to perform a direct comparison, but to show the perfor-

mance of the proposed solution when implemented on a working multi-FPGA

architecture.

By considering the previously described bandwidth issue, the comparisons

can be performed using these metrics:

• Throughput computed as the ratio of the executed Floating Point Opera-

tions (FLOPs) to the execution time;

• Power efficiency computed as the ratio of the throughput to the power

consumption. Power consumption is estimated by Vivado Design Suite [30]

when considering the FPGA, while it is the TDP when considering the CPU;

• Resource utilization, for Field Programmable Gate Array (FPGA) only, it is

the percentage of the resources used by the considered architecture.

• Frame Rate, computed as the ratio of the length of the SSTs queue to the ex-

ecution time when considering the FPGA, while it is computed as the ratio

4. EXPERIMENTAL EVALUATIONS 97

of the number of executed iterations to the execution time when consider-

ing the CPU;

All the analysed works do not provide comparable results because they usu-

ally do not offer a clear description of the experimental setup and of the exe-

cuted benchmark. Moreover, the explanation of the results often lacks of some

important data, such as the workload and the power consumption. Finally the

proposed designs are implemented on custom multi-FPGA systems that are not

directly comparable with a real multi-FPGA architecture.

4.3.1 jacobi-2D

The following figures show the performance of the architecture with jacobi-

2D SSTs. Jacobi-2D is the simplest of the five benchmarks and it is well suited to

perform queuing. Therefore, in spite of the limited computational resources, a

queue length of 72 has been achieved. In this case the pseudo-linear increase in

throughput is clear. Also the power efficiency has a pseudo-linear behaviour and

it reaches a value greater than 4.5 GFLOPS/W.

This result is comparable with the efficiency of the fifth green500 system [27],

although the tests have been executed with single-precision data, in spite of the

double-precision data used by the green500 systems. The overall performance can

be linearly increased beyond the achieved value by adding more SSTs and more

FPGA boards to the architecture.

4. EXPERIMENTAL EVALUATIONS 98

8 32 48 72

3.7

14.4

21.4

31.2

G
FL

O
PS

SSTs Queue Length

Throughput Jacobi 2D 1000x1000

Figure 4.4: jacobi-2D: Throughput (expressed in GFLOPS)

8 32 48 72

0.6

2.3

3.3

4.6

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency Jacobi 2D 1000x1000

Figure 4.5: jacobi-2D: Power Efficiency (expressed in GFLOPS/W)

4. EXPERIMENTAL EVALUATIONS 99

8 32 48 72

5

10

15

20

25

%
 U

til
iz

at
io

n

SSTs Queue Length

FLIPFLOP
LUT
BRAM
DSP

Resource Utilization Jacobi 2D 1000x1000

Figure 4.6: jacobi-2D: Resource Utilization (expressed as the percentage of the available resources)

Table 4.1 summarizes the results of all the tests performed with jacobi-2D,

and reports also the results achieved by the CPUs and by the design tested by

Natale and Sicignano [7].

Table 4.1: jacobi-2D

Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

Intel Core i7 2675QM 20.458 0.455 - - - -
Intel Xeon E5-1410 19.450 0.243 - - - -
Intel Xeon E5520 12.356 0.154 - - - -
[7] 48 SSTs 23.596 5.775 48.71 39.55 21.50 32.57
8 SSTs 3.674 0.636 4.70 8.31 5.44 2.71
32 SSTs 14.345 2.299 9.81 15.48 10.34 10.86
48 SSTs 21.343 3.319 13.22 20.29 13.69 16.29
72 SSTs 31.204 4.649 18.33 27.48 18.72 24.43

Notice that the proposed architecture outperforms all the three CPUs with

respect to the throughput. The design proposed by Natale and Sicignano[7] is

more power-efficient, because it does not include the PCIe interface and the serial

board-board connection.

When considering the power consumption, the CPU version is extremely less

efficient than both the FPGA versions. Finally, the proposed design needs less

4. EXPERIMENTAL EVALUATIONS 100

resources than the one proposed by Natale and Sicignano[7].

4.3.2 seidel-2D

The following figures show the performance of the architecture with seidel-

2D SSTs. Seidel-2D contains spatial dependencies between grid points updates,

hence it has no parallelization opportunities. In this case a queue length of 24

SSTs has been achieved, however the system has poor performances.

The throughput shown in figure 4.7 is lower than 1 GFLOPS and the power

efficiency, as depicted in figure 4.8, is lower than 0.12 GFLOPS/W. The resource

utilization is higher with respect to jacobi-2d.

8 12 16 24

0.275

0.411

0.546

0.813

G
FL

O
PS

SSTs Queue Length

Throughput Seidel 2D 1000x1000

Figure 4.7: seidel-2D: Throughput (expressed in GFLOPS)

4. EXPERIMENTAL EVALUATIONS 101

8 12 16 24

0.045

0.065

0.083

0.117

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency Seidel 2D 1000x1000

Figure 4.8: seidel-2D: Power Efficiency (expressed in GFLOPS/W)

8 12 16 24

10

20

30

40

50

60

%
 U

til
iz

at
io

n

SSTs Queue Length

FLIPFLOP
LUT
BRAM
DSP

Resource Utilization Seidel 2D 1000x1000

Figure 4.9: seidel-2D: Resource Utilization (expressed as the percentage of the available resources)

Table 4.2 summarizes the results of all the tests performed with seidel-2D,

and reports also the results achieved by the CPUs and by the design tested by

Natale and Sicignano [7].

4. EXPERIMENTAL EVALUATIONS 102

Table 4.2: seidel-2D

Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

Intel Core i7 2675QM 0.910 0.020 - - - -
Intel Xeon E5-1410 0.889 0.011 - - - -
Intel Xeon E5520 0.701 0.009 - - - -
[7] 10 SSTs 0.525 0.113 61.60 54.48 8.69 17.14
8 SSTs 0.275 0.045 11.17 22.46 6.22 6.86
12 SSTs 0.411 0.065 15.25 30.71 7.38 10.29
16 SSTs 0.546 0.083 19.34 38.97 8.67 13.71
24 SSTs 0.813 0.117 27.52 55.47 11.24 20.57

Notice that both FPGA architectures outperform the CPU versions of the

benckmark with respect to the power efficiency. The proposed design employs

less resources than the one proposed by Natale and Sicignano[7] and, with a fixed

number of boards, allows to achieve a longer SSTs queue.

4.3.3 game-of-life-2D

The following figures show the performance of the architecture with game-

of-life-2D SSTs. Game-of-life-2D has been tested with integer input data, hence the

throughput and the power efficiency could not be computed. To allow the com-

parison with the other architectures, frame rate has been computed. However

this metric does not consider power consumption.

In this case a queue length of 48 SSTs has been achieved, while exploiting only

a fraction of the total available resources. The frame rate grows linearly with the

length of the queue.

4. EXPERIMENTAL EVALUATIONS 103

8 16 32 48

739

1473

2887

4246

Fr
am

e
R

at
e

(fp
s)

SSTs Queue Length

Frame Rate Game of Life 2D 1000x1000

Figure 4.10: game-of-life-2D: Frame Rate (expressed in frame per seconds)

8 16 32 48
0

5

10

15

%
 U

til
iz

at
io

n

SSTs Queue Length

FLIPFLOP
LUT
BRAM
DSP

Resource Utilization Game of Life 2D 1000x1000

Figure 4.11: game-of-life-2D: Resource Utilization (expressed as the percentage of the available
resources)

Table 4.3 summarizes the results of all the tests performed with game-of-life-

2D, and reports also the results achieved by the CPUs and by the design tested

by Natale and Sicignano [7].

4. EXPERIMENTAL EVALUATIONS 104

Table 4.3: game-of-life-2D

Frame Rate FF LUT BRAM DSP

(fps) (%) (%) (%) (%)

Intel Core i7 2675QM 372.10 - - - -
Intel Xeon E5-1410 391.35 - - - -
Intel Xeon E5520 216.28 - - - -
[7] 32 SSTs 1502.86 32.51 26.16 15.29 0.00
8 SSTs 738.69 4.20 7.56 5.44 0.00
16 SSTs 1472.89 5.41 9.17 7.29 0.00
32 SSTs 2887.30 7.81 12.45 10.76 0.00
48 SSTs 4246.28 10.22 15.74 14.35 0.00

Notice that the proposed design outperforms all the considered architectures

with respect to the frame rate. The resource utilization is, in general, low and no

Digital Signal Processing (DSP) unit has been used.

4.3.4 jacobi-3D

The following figures show the performance of the architecture with jacobi-

3D SSTs. Jacobi-3D, as well as its two-dimensional version, is well suited to per-

form queuing. Therefore a queue length of 48 has been achieved. As in the pre-

vious cases, throughput and power efficiency increase linearly with the length of

the queue. Throughput reaches a value greater than 5.5 GFLOPS, while power

efficiency never exceeds 0.9 GFLOPS/W. The resources utilization is higher with

respect to jacobi-2d.

4. EXPERIMENTAL EVALUATIONS 105

4 6 8 16 32 48

0.7
1.0
1.3

2.4

4.3

5.7

G
FL

O
PS

SSTs Queue Length

Throughput Jacobi 3D 100x100x100

Figure 4.12: jacobi-3D: Throughput (expressed in GFLOPS)

4 6 8 16 32 48

0.12
0.17
0.23

0.40

0.65

0.82

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency Jacobi 3D 100x100x100

Figure 4.13: jacobi-3D: Power Efficiency (expressed in GFLOPS/W)

4. EXPERIMENTAL EVALUATIONS 106

4 6 8 16 32 48
0

10

20

30

40

50

60

70

80
%

 U
til

iz
at

io
n

SSTs Queue Length

FLIPFLOP
LUT
BRAM
DSP

Resource Utilization Jacobi 3D 100x100x100

Figure 4.14: jacobi-3D:Resource Utilization (expressed as the percentage of the available resources)

Table 4.4 summarizes the results of all the tests performed with jacobi-3D,

and reports also the results achieved by the CPUs and by the design tested by

Natale and Sicignano [7].

Table 4.4: jacobi-3D

Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

Intel Core i7 2675QM 18.982 0.422 - - - -
Intel Xeon E5-1410 16.666 0.208 - - - -
Intel Xeon E5520 12.150 0.152 - - - -
[7] 8 SSTs 2.625 0.802 20.63 16.79 26.94 3.43
4 SSTs 0.679 0.119 4.87 8.12 9.91 0.85
6 SSTs 0.998 0.173 5.81 9.22 12.92 1.28
8 SSTs 1.318 0.226 6.74 10.31 15.93 1.71
16 SSTs 2.429 0.400 10.48 14.69 27.96 3.43
32 SSTs 4.260 0.654 17.95 23.44 52.04 6.86
48 SSTs 5.695 0.823 25.42 32.18 76.12 10.29

Notice that the throughput achieved by the proposed architecture is less than

one-third of the throughput obtained with the Core i7 CPU. The FPGA imple-

mentations double the best of the three CPU versions with respects to the power

efficiency. Finally, the proposed design needs less resources than the correspond-

ing one proposed by Natale and Sicignano[7].

4. EXPERIMENTAL EVALUATIONS 107

4.3.5 heat-3D

The following figures show the performance of the architecture with heat-3D

SSTs. In this case a queue length of 32 has been achieved. As for the previous

three-dimensional case, throughput and power efficiency increase linearly with

the length of the queue. The obtained results are similar to jacobi-3D, although

the resources utilization is slightly lower.

4 8 16 32

0.9

1.7

3.1

5.4

G
FL

O
PS

SSTs Queue Length

Throughput Heat 3D 100x100x100

Figure 4.15: heat-3D: Throughput (expressed in GFLOPS)

4 8 16 32

0.15

0.27

0.46

0.69

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency Heat 3D 100x100x100

Figure 4.16: heat-3D: Power Efficiency (expressed in GFLOPS/W)

4. EXPERIMENTAL EVALUATIONS 108

4 8 16 32
0

10

20

30

40

50

%
 U

til
iz

at
io

n

SSTs Queue Length

FLIPFLOP
LUT
BRAM
DSP

Resource Utilization Heat 3D 100x100x100

Figure 4.17: heat-3D: Resource Utilization (expressed as the percentage of the available resources)

Table 4.5 summarizes the results of all the tests performed with heat-3D, and

reports also the results achieved by the CPUs and by the design tested by Natale

and Sicignano [7].

Table 4.5: heat-3D

Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

Intel Core i7 2675QM 22.988 0.511 - - - -
Intel Xeon E5-1410 16.753 0.209 - - - -
Intel Xeon E5520 12.216 0.153 - - - -
[7] 8 SSTs 3.341 0.946 30.63 24.45 26.94 6.86
4 SSTs 0.869 0.146 6.97 10.06 9.91 1.72
8 SSTs 1.665 0.268 10.93 14.39 15.93 3.43
16 SSTs 3.094 0.458 18.85 23.02 27.96 6.86
32 SSTs 5.421 0.691 34.71 40.32 52.28 13.72

Notice that the throughput achieved by the proposed architecture is less than

one-fourth of the throughput obtained with the Core i7 CPU. With respect to the

power efficiency, the proposed design reaches a value of 0.69 GFLOPS/W, which

is slightly higher than the value obtained by the best of the three CPUs.

4. EXPERIMENTAL EVALUATIONS 109

4.4 A Quantitative Model for the Power Efficiency

This section presents a quantitative model that shows how the power effi-

ciency of the proposed architecture increases with the number of used FPGA

boards and with the length of the SSTs queue. Indeed, it provides an approxi-

mated value of the power efficiency for each configuration of the proposed archi-

tecture. The model has been built in order to validate the obtained experimental

results and to predict their trend for systems larger than the implemented two-

board architecture.

4.4.1 Building the Model

Before illustrating the model, it is necessary to explain which variables and

which parameters have been used to build the model and how they have been

computed.

The model is expressed by an equation, that is a function of two variables:

• "n" : number of SSTs included into the considered architecture configura-

tion;

• "N" : number of intermediate boards of the considered architecture config-

uration. It does not include the first and the last boards of the queue;

The model includes also five parameters, that depend on the considered ar-

chitecture:

• "ω" [FLOP] : number of FLOPs computed by each SST instantiated into the

considered architecture configuration;

• "τ" [s] : execution time of the considered architecture configuration. It is

computed as the average execution time of the tested configurations;

• "π" [W] : power consumption of each host-board PCIe interface included

into the considered architecture configuration;

• "α" [W] : power consumption of each board-board Aurora interface in-

cluded into the considered architecture configuration;

4. EXPERIMENTAL EVALUATIONS 110

• "σ" [W] : power consumption of each SST included into the considered ar-

chitecture configuration.

In order to obtain the equation of the model it is necessary to recall the general

equation of the power efficiency:

PowerEfficiency =
Throughput

PowerConsumption
=
PerformedComputations

ExecutionTime

PowerConsumption
(4.1)

When considering the proposed architecture, we have:

• PerformedComputations = n * ω, because the data are processed by the

SSTs only;

• ExecutionTime = τ;

• PowerConsumption = 2*(π+α)+N*α+n*σ. The first contribution is due to

the first and to the last board of the queue, the second one accounts for the

intermediate boards, the last contribution is due to SSTs instantiated into

the architecture.

Finally, by substituting into the equation of the power efficiency, the general

equation for the model can be obtained:

PE(n,N) =
n∗ω
τ

2 ∗ (π+ α) +N ∗ α+ n ∗ σ
(4.2)

4.4.2 Power Efficiency Trends

The obtained equation is a function of two variables, therefore two cases have

been analysed in order to show the trend followed by the power efficiency:

4. EXPERIMENTAL EVALUATIONS 111

• in the first case a system with no intermediate boards has been considered.

The length of the SSTs queue can be increased;

• in the second case each board of the system can host only a SST. The num-

ber of intermediate boards can be increased.

In both cases the values assigned to the parameters and the values obtained

from the experimental results are of the same order of magnitude.

In the first case it is N=0, therefore the equation of the model is:

PE(n) =
n∗ω
τ

2 ∗ (π+ α) + n ∗ σ
(4.3)

0 5×103 10×103 15×103 20×103 25×103
0

10

20

30

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency N=0

Figure 4.18: Power Efficiency trend of a two-boards system when increasing the SSTs queue length

As shown in figure 4.18, the power efficiency grows quickly with the length

of the SSTs queue, up to a theoretical limit, that can be computed by considering

n->∞:

PElimit =
ω
τ

σ
=

ω

τ ∗ σ
(4.4)

4. EXPERIMENTAL EVALUATIONS 112

In the second case it is n=2+N, because the first board and the last board host

one SST each and one SST is instantiated on each intermediate board.

Therefore the equation of the model is:

PE(N) =
(2+N)∗ω

τ

2(π+ α) +Nα+ (2 +N)σ
=

N∗ω
τ + 2∗ω

τ

N(α+ σ) + 2(π+ α+ σ)
(4.5)

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0.15

0.25

0.35

0.45

G
FL

O
PS

 /
W

Number of Intermediate FPGA Boards

Power Efficiency n=2+N

Figure 4.19: Power Efficiency trend of a system with a single SST on each board when increasing
the number of intermediate FPGA boards

As shown in figure 4.19, the power efficiency grows quickly with the queue

of FPGA boards, up to a theoretical limit, that can be computed by considering

N->∞:

PElimit =
ω
τ

α+ σ
=

ω

τ ∗ (α+ σ)
(4.6)

Figure 4.20 shows that the implemented architecture can be scaled up to a

theoretical limit both by increasing the length of the SSTs queue and by grow-

ing the queue of FPGA boards. Notice that no constraint has been posed to the

4. EXPERIMENTAL EVALUATIONS 113

maximum number of boards that can be plugged into a cluster node and to the

maximum number of SSTs that can fit into an FPGA.

0 2 4 6
0

1

2

3

4

5

6

G
FL

O
PS

 /
W

Number of Intermediate FPGA Boards

n = 2 + N
n = 8 + 4N
n = 32 + 16N
n = 72 + 36N

Power Efficiency

Figure 4.20: Power Efficiency trend when increasing the number of intermediate FPGA boards for
different SSTs queue lengths

4.4.3 Model Validation

In this section the quantitative model is compared with the experimental re-

sults obtained with two benchmarks: Jacobi2D and Heat3D. In order to perform a

proper comparison, the equation of the model must be slightly modified, because

only one of the two FPGA boards features a PCIe interface.

Starting from the general equation of the model,

PE(n,N) =
n∗ω
τ

2 ∗ (π+ α) +N ∗ α+ n ∗ σ
(4.7)

and considering a two-boards system, with only one board connected on the

PCIe bus, we have:

• no intermediate boards, hence N=0;

• one PCIe interface only, hence PowerConsumption = π+2*α+n*σ.

Therefore the following equation can be obtained:

4. EXPERIMENTAL EVALUATIONS 114

PE(n) =
n∗ω
τ

π+ 2 ∗ α+ n ∗ σ
(4.8)

The tests have been performed with two VC707 boards, by employing Quick-

PCIe and Aurora IP cores. Therefore the power consumed by the PCIe interface

and by the board-board serial link is known, hence:

• π = 4.5 W;

• α = 0.977 W.

Jacobi 2D SSTs

When considering Jacobi 2D SST, the following values are assigned to the

parameters:

• ω = 5 ∗ 106 FLOPs;

• τ = 0.011 s;

• σ = 0.015 W.

Therefore the equation in this case is:

PE(n)Jac2D =
n ∗ 4.55 ∗ 108

6.45 + n ∗ 0.015
(4.9)

The comparison with the experimental results is depicted in figure 4.21.

4. EXPERIMENTAL EVALUATIONS 115

0 8 32 48 72
0

0.64

2.30

3.32

4.65

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency Jacobi 2D 1000x1000 N=0

Figure 4.21: Comparison between the experimental results (red X marks) and the predicted values
(blue line) when considering Jacobi2D SSTs

Heat 3D SSTs

When considering Heat 3D SST, the following values are assigned to the pa-

rameters:

• ω = 8.5 ∗ 106 FLOPs;

• τ = 0.043 s;

• σ = 0.067 W.

Therefore the equation in this case is:

PE(n)Heat3D =
n ∗ 1.98 ∗ 108

6.45 + n ∗ 0.067
(4.10)

The comparison with the experimental results is depicted in figure 4.22.

4. EXPERIMENTAL EVALUATIONS 116

0 4 8 16 32
0

0.15

0.27

0.46

0.70

G
FL

O
PS

 /
W

SSTs Queue Length

Power Efficiency Heat 3D 100x100x100 N=0

Figure 4.22: Comparison between the experimental results (red X marks) and the predicted values
(blue line) when considering Heat3D SSTs

Notice that the proposed model fits well both the analysed benchmarks. How-

ever, the power efficiency trend is predicted more precisely for the Jacobi2D

benchmark than for the Heat3D benchmark. This behaviour can be explained

by considering the values assigned to the parameters:

• in the case of Jacobi2D the execution time does not increase clearly when

the SSTs queue grows from 8 to 72, therefore the average execution time as-

signed to "τ" coincides with the execution time for each experimental value;

• when Heat3D is considered, the execution time changes significantly when

the SSTs queue grows from 4 to 32, therefore the average execution time as-

signed to "τ" only estimates the execution time for each experimental value.

Moreover, some minor contributions to the power consumptions have be ne-

glected, due to inability to evaluate them accurately.

Finally, the provided comparisons prove the high scalability of the architec-

ture. They also show how the practical limitation posed by the technology to the

maximum length of the SSTs queue does not allow to reach the theoretical lim-

itation predicted by the model. Therefore the power efficiency of the proposed

architecture always grows along the pseudo-linear portion of the trend predicted

by the model.

5

Conclusions and Future Work

5.1 Conclusions

In this work a cluster node architecture for the exaFPGA project [6] has been

presented. The proposed design enables the use of the PCIe interface and of the

Aurora serial link on the VC707 board. It allows to easily interface a FPGA board

with a host PC and with more FPGA boards in order to build a working multi-

FPGA HPC system.

The implemented design consists of a complex full-streaming pipeline span-

ning over all the boards included into the system. No on-board DDR3 RAM and

no CPU IP core is present in this design and no firmware is run on the boards.

Data can be transferred at a high speed thanks to the use of the FPGA transceivers

both for the PCIe connection and for the serial link. The computation is managed

by a custom application running on the host PC, no further software needs to be

developed. The SSTs proposed by Natale and Sicignano [7] can easily be queued

and included into the pipeline.

Due to its features, the proposed architecture can be scaled by adding more

FPGA boards and by increasing the SST queue length, as explained in chapter

3 and in chapter 4. A quantitative model has been built in order to predict the

power efficiency trend followed by a multi-FPGA system. This model has been

validated against the experimental results, showing a good compliance to the

observed power efficiency trends.

117

5. CONCLUSIONS AND FUTURE WORK 118

Experimental results show that the resources utilization grows linearly with

the length of the SST queue, only a fraction of the total available resources is re-

served for non-computing logic i.e. host-board and board-board communication.

Throughput can be linearly increased without any strong limitation except for the

maximum achievable SSTs queue length and for the maximum number of FPGA

boards that can fit into a cluster node. The fast serial board-board communica-

tion allows to add more boards and more SSTs without adding any bottleneck

to the system. Power efficiency grows linearly with the SSTs queue and it is also

expected to increase with the number of boards included into the system, due to

the high power consumption of the transceivers used only for the PCIe interface

of the first and of the last board of the architecture. The performed comparisons

show how the proposed architecture allows to reach the performance of the most

power efficient HPC systems[27].

5.2 Future Work

There are a number of possible developments of the proposed work.

The first is to improve the overall performance in order to push the system

to its limit. This can be achieved by increasing the available resources for the

design phase and for the test phase i.e. by employing a professional worksta-

tion, by purchasing commercial Intellectual Property (IP) cores in spite of their

evaluation versions and by exploiting an external generator for the board-board

serial connection. These improvements would allow to balance all the pipeline

steps and to increase the overall throughput. Furthermore, all the resources on

the FPGA could be used and a system with more than two boards could be built,

thus increasing the achievable throughput and the power efficiency.

Another future work consists in switching from a single precision to a double

precision data type. This would allow a better exploitation and a better balance

of the datapath, thus increasing the overall performances. Moreover it would be

easier to compare the experimental results of the proposed architecture with the

ones presented in the literature.

5. CONCLUSIONS AND FUTURE WORK 119

Currently, only single-input SSTs are supported, so another further develop-

ment is the support for multi-input SSTs. This could be achieved by implement-

ing a custom protocol to transmit the multiple data for the SST over the single

path traversing the pipeline. Obviously the structure of the SST must be modi-

fied in order to expose a single input stream and a single output stream. A fea-

sible solution could be to add a demultiplexing and a multiplexing stage to the

input and to the output of each SST, respectively. This solution would allow to

manage multi-input SSTs without any change to the overall architecture. How-

ever this enhancement could cause a serious performance degradation due to the

demultiplexing/multiplexing stages and to the reduction of the payload.

The VC707 board permits to use only an Aurora IP core in single lane config-

uration. Therefore the proposed design could also be implemented by employing

an high-end FPGA board which provides a wider serial board-board link. More-

over an increasing number of Aurora IP cores could be instantiated on a FPGA,

thus allowing the use of multiple serial channels. This could be an important

enhancement if considering the design of a more complex pipeline featuring par-

allel paths in place of the single one already implemented.

The proposed work has been carried on within the exaFPGA project [6], there-

fore a future development is the integration of the architecture with the already

implemented software tool, which automatically generates a SST starting from

the C language specification of an algorithm. This could be achieved by wrap-

ping the architecture into multiple IPs cores, one for each board included into the

system. The tool would automatically connect the SSTs queue to the generated

IP cores, by exploiting the exposed AXI4 streaming interfaces.

Finally, there are two more future enhancements: the first is the employment

of partial reconfiguration in order to make the system more flexible and to better

the management of the resources. The second is the reinforcement of the system

i.e. the use of redundant parts, the adoption of Error-Correcting Codes (ECCs),

in order to improve the dependability of the proposed solution and to lower the

error probability.

Bibliography

[1] 7 Series Gen2 Integrated Block for PCI Express (PCIe) .

http://www.xilinx.com/products/intellectual-property/

axi_pcie_gen3.html.

[2] AXI Bridge for PCI Express (PCIe) Gen3 Subsystem.

http://www.xilinx.com/products/intellectual-property/

7_series_pci_express_block.html.

[3] Clan - a polyhedral representation extractor for high level programs.

http://icps.u-strasbg.fr/~bastoul/development/clan/docs/

clan.html.

[4] Convey Computer.

http://www.conveycomputer.com/.

[5] EPEE Library.

http://cecaraw.pku.edu.cn/Eng_EPEE.html.

[6] exaFPGA Project.

http://exafpga.necst.it/.

[7] Giuseppe Natale, Carlo Sicignano. On how to Accelerate Iterative Stencil Loops: A

Scalable Streaming-based Approach.

https://www.politesi.polimi.it/handle/10589/106951.

[8] Human Brain Project.

https://www.humanbrainproject.eu.

[9] Intel Core i7 2675QM.

http://ark.intel.com/it/products/53470/Intel-Core-i7-2675QM-

Processor-6M-Cache-up-to-3_10-GHz.

[10] Intel Introduces Configurable Intel Atom-based Processor.

http://newsroom.intel.com/docs/DOC-1512.

120

http://www.xilinx.com/products/intellectual-property/axi_pcie_gen3.html
http://www.xilinx.com/products/intellectual-property/axi_pcie_gen3.html
http://www.xilinx.com/products/intellectual-property/7_series_pci_express_block.html
http://www.xilinx.com/products/intellectual-property/7_series_pci_express_block.html
http://icps.u-strasbg.fr/~bastoul/development/clan/docs/clan.html
http://icps.u-strasbg.fr/~bastoul/development/clan/docs/clan.html
http://www.conveycomputer.com/
http://cecaraw.pku.edu.cn/Eng_EPEE.html
http://exafpga.necst.it/
https://www.politesi.polimi.it/handle/10589/106951
https://www.humanbrainproject.eu
http://ark.intel.com/it/products/53470/Intel-Core-i7-2675QM-Processor-6M-Cache-up-to-3_10-GHz
http://ark.intel.com/it/products/53470/Intel-Core-i7-2675QM-Processor-6M-Cache-up-to-3_10-GHz
http://newsroom.intel.com/docs/DOC-1512

BIBLIOGRAPHY 121

[11] Intel Xeon E5-1410.

http://ark.intel.com/products/67417/Intel-Xeon-Processor-E5-

1410-10M-Cache-2_8-GHz.

[12] Intel Xeon E5520.

http://ark.intel.com/it/products/40200/Intel-Xeon-Processor-

E5520-8M-Cache-2_26-GHz-5_86-GTs-Intel-QPI.

[13] Intel Xeon Phi Product Family.

http://www.intel.com/content/www/us/en/processors/xeon/xeon-

phi-detail.html.

[14] Maxeler Technologies.

https://www.maxeler.com.

[15] Microsoft Catapult project.

http://research.microsoft.com/en-us/projects/catapult.

[16] NetFPGA Project.

http://netfpga.org/.

[17] NVIDIA CUDA.

http://www.nvidia.com/object/cuda_home_new.html.

[18] NVIDIA Fermi.

http://www.nvidia.it/object/fermi_architecture_it.html.

[19] NVIDIA Kepler.

http://www.nvidia.com/object/nvidia-kepler.html.

[20] OpenMP.

http://openmp.org/wp/.

[21] Pico Computing.

http://picocomputing.com/.

[22] PLDA.

https://www.plda.com/.

[23] PLUTO.

http://pluto-compiler.sourceforge.net/.

[24] POCC the Polyhedral Compiler Collection.

pocc.sourceforge.net/.

http://ark.intel.com/products/67417/Intel-Xeon-Processor-E5-1410-10M-Cache-2_8-GHz
http://ark.intel.com/products/67417/Intel-Xeon-Processor-E5-1410-10M-Cache-2_8-GHz
http://ark.intel.com/it/products/40200/Intel-Xeon-Processor-E5520-8M-Cache-2_26-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/it/products/40200/Intel-Xeon-Processor-E5520-8M-Cache-2_26-GHz-5_86-GTs-Intel-QPI
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://www.maxeler.com
http://research.microsoft.com/en-us/projects/catapult
http://netfpga.org/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.it/object/fermi_architecture_it.html
http://www.nvidia.com/object/nvidia-kepler.html
http://openmp.org/wp/
http://picocomputing.com/
https://www.plda.com/
http://pluto-compiler.sourceforge.net/
pocc.sourceforge.net/

BIBLIOGRAPHY 122

[25] QuickPCIe.

https://www.plda.com/products/fpga-ip/xilinx/fpga-ip-pcie/

quickpcie-ep-expert-xilinx.

[26] Riffa 2.0.

https://sites.google.com/a/eng.ucsd.edu/matt-jacobsen/about/

publications.

[27] The Green 500 List.

http://www.green500.org/.

[28] The Top 500 List.

http://www.top500.org/.

[29] VC707 board.

http://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-

g.html.

[30] Vivado Design Suite.

http://www.xilinx.com/products/design-tools/vivado.html.

[31] Vivado HLS.

http://www.xilinx.com/products/design-tools/vivado/

integration/esl-design.html.

[32] Xilinx Aurora 64b/66B.

http://www.xilinx.com/products/design_resources/

conn_central/grouping/aurora.htm.

[33] Xilinx AXI Chip2Chip.

http://www.xilinx.com/products/intellectual-property/axi-

chip2chip.html.

[34] Xilinx AXI DMA Controller.

http://www.xilinx.com/products/intellectual-property/

axi_dma.html#overview.

[35] Xilinx Memory Interface Generator (MIG).

http://www.xilinx.com/products/intellectual-property/

mig.html.

[36] Xilinx MicroBlaze Soft Processor Core.

http://www.xilinx.com/tools/microblaze.htm.

https://www.plda.com/products/fpga-ip/xilinx/fpga-ip-pcie/quickpcie-ep-expert-xilinx
https://www.plda.com/products/fpga-ip/xilinx/fpga-ip-pcie/quickpcie-ep-expert-xilinx
https://sites.google.com/a/eng.ucsd.edu/matt-jacobsen/about/publications
https://sites.google.com/a/eng.ucsd.edu/matt-jacobsen/about/publications
http://www.green500.org/
http://www.top500.org/
http://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
http://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/intellectual-property/axi-chip2chip.html
http://www.xilinx.com/products/intellectual-property/axi-chip2chip.html
http://www.xilinx.com/products/intellectual-property/axi_dma.html#overview
http://www.xilinx.com/products/intellectual-property/axi_dma.html#overview
http://www.xilinx.com/products/intellectual-property/mig.html
http://www.xilinx.com/products/intellectual-property/mig.html
http://www.xilinx.com/tools/microblaze.htm

BIBLIOGRAPHY 123

[37] Xillybus.

http://xillybus.com/.

[38] Zynq-7000 All Programmable SoC.

http://www.xilinx.com/products/silicon-devices/soc/zynq-

7000.html.

[39] Zynq UltraScale+ MPSoC.

http://www.xilinx.com/products/silicon-devices/soc/zynq-

ultrascale-mpsoc.html.

[40] Intel Atom Processor E6x5C Series-Based Platform for Embedded Computing. Intel

Corporation, 2010.

[41] Rethink Flexibility with a Configurable Intel Atom Processor. Intel Corporation,

2010.

[42] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110/210.

NVIDIA Corporation, 2014.

[43] Top ten exascale research challenges. U.S. Department of Energy, Office of Science,

2014.

[44] High performance computing in the eu: Progress on the implementation of the eu-

ropean hpc strategy. European Union, 2015.

[45] High performance computing strategic plan 2015-2020. National Oceanic and At-

mosferic Administration. U.S. Department of Commerce, 2015.

[46] Zynq-7000 All Programmable SoC Technical Reference Manual. Xilinx Inc., 2015.

[47] M. Benabderrahmane, L. Pouchet, A. Cohen, and C. Bastoul. The polyhedral model

is more widely applicable than you think. CC’10/ETAPS’10 Proceedings of the

19th joint European conference on Theory and Practice of Software, international

conference on Compiler Construction, 2010.

[48] George Chrysos. Intel Xeon Phi Coprocessor-the Architecture. Intel Corporation,

2012.

[49] S. Embid Droz and R. Rodriguez Torrado. High performance computing oil and gas

industry. the way to open new opportunities. Repsol Upstream Technology Unit.

[50] Bandishti et al. Tiling Stencil Computations to Maximize Parallelism. In Proceedings

of the International Conference on High Performance Computing, Networking, Storage and

http://xillybus.com/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

BIBLIOGRAPHY 124

Analysis, SC ’12, pages 40:1–40:11, Los Alamitos, CA, USA, 2012. IEEE Computer

Society Press.

[51] D. E. Shaw et al. Anton, a Special-Purpose Machine for Molecular Dynamics Simu-

lation. D. E. Shaw Research, New York, USA, 2007.

[52] D. E. Shaw et al. Anton 2: Raising the bar for performance and programmability in

a special-purpose molecular dynamics supercomputer. D. E. Shaw Research, New

York, USA, 2014.

[53] Lindholm et al. NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING AR-

CHITECTURE. IEEE Computer Society, 2008.

[54] R. Pordes et al. New science on the open science grid. IOP Publishing Ltd, 2008.

[55] Erol Gelenbe and Yves Caseau. The impact of information technology on energy

consumption and carbon emissions. ACM, 2015.

[56] Peter N. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing Archi-

tecture. 2009.

[57] Oliver Pell Michael J Flynn and Oskar Mencer. Dataflow Supercomputing. IEEE

Computer Society, 2012.

[58] David Patterson. The Top 10 Innovations in the New NVIDIA Fermi Architecture,

and the Top 3 Next Challenges. 2009.

[59] S. Pop, A. Cohen, C. Bastoul, G. Silber, N. Vasilache, and S. Girbal. Graphite: Poly-

hedral analyses and optimizations for gcc. GCC Developers’ Summit, 2006.

[60] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constan-

tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal,

Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young

Kim, Sitaram Lanka, Jim Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason

Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating

large-scale datacenter services. In 41st Annual International Symposium on Computer

Architecture (ISCA), June 2014.

[61] M. C. Schatz. High performance computing for dna sequence alignment and as-

sembly. University of Maryland, 2010.

[62] Jeff Stuecheli. POWER8. IBM Power Systems, 2013.

[63] Michael B. Taylor. Is dark silicon useful? harnessing the four horsemen of the com-

ing dark silicon apocalypse. ACM, 2012.

BIBLIOGRAPHY 125

[64] Wim Vanderbauwhede and Khaled Benkrid. High-performance computing using

fpgas. Springer Science+Business Media, 2014.

[65] Bruce Wile. Coherent Accelerator Processor Interface (CAPI) for POWER8 Systems.

IBM Systems and Technology Group, 2014.

[66] Xilinx. Aurora 64B/66B v10.0 - LogiCORE IP Product Guide, 2015.

[67] S. A. Zenios. High-performance computing in finance: The last 10 years and the

next. Elsevier Science B.V, 1999.

[68] Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W. Moore.

Netfpga sume: toward 100 gbps as research commodity. IEEE Computer Society,

2014.

December 2, 2015

Document typeset with LATEX

	Introduction
	Context
	The Challenges of High Performance Computing
	The Power Challenge
	The Scalability Challenge
	The Memory Challenge
	The Programmability Challenge

	Innovations in High Performance Computing
	Heterogeneous Systems
	FPGA-based Systems
	Iterative Stencil Loops
	Thesis Contributions and Outline

	State of the Art
	Heterogeneous Systems
	GPU-based Systems
	CPU-based Systems
	FPGA-centric Systems
	Custom Systems

	Multi-FPGA architectures
	Maxeler Architecture

	Proposed Architecture
	The Basic Block
	The Starting Point: a Single-Board Accelerator
	The first design: Aurora with AXI Chip2Chip
	The second design: A fully-streaming Serial Link
	The third design: PCIe host-board Connection
	The final version: A multi-board Pipeline

	The Cluster Node
	Power Efficiency Considerations
	Hypotheses
	Building the System
	Power Efficiency Trend
	A different Assumption

	Experimental Evaluations
	Experimental Setup
	Test Cases
	jacobi-2D
	seidel-2D
	game-of-life-2D
	jacobi-3D
	heat-3D

	Experimental Results
	jacobi-2D
	seidel-2D
	game-of-life-2D
	jacobi-3D
	heat-3D

	A Quantitative Model for the Power Efficiency
	Building the Model
	Power Efficiency Trends
	Model Validation

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

