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�The best thing about being a statistician is that you get to play in

everyone's backward�

John Wilder Tukey



Ringraziamenti

In primis, vorrei ringraziare il prof. Simone Vantini per avermi dato la possibilità

di lavorare a questa tesi. Sono molto riconoscente anche verso Alessia Pini che mi

ha su(o)pportato e mi ha dedicato molto tempo. Ringrazio Aymeric Stamm per

avermi fornito informazioni utili in materia di dottorati. Penso che l'aver svolto una

tesi in ambito prettamente statistico abbia completato in maniera soddisfacente la

mia formazione universitaria e possa costituire una buona base per il mio futuro

lavorativo. Ringrazio anche a tutte le persone che hanno ideato e che mantengono

la didattica del corso di studi in Ingegneria Matematica.

Sono profondamente grato nei confronti dei miei genitori che hanno creduto in

me. Non mi avete mai fatto mancare nulla. Ancora più importante è stato il vostro

costante supporto senza il quale non sarei mai riuscito a raggiungere questo tra-

guardo.

Un grazie speciale è rivolto a Cristina. Forse senza di te non sarei nemmeno

riuscito ad accedere in Magistrale, �guriamoci a concluderla. Grazie per essermi

stata vicina anche nei momenti più improbabili.

Non posso non ringraziare i miei compagni del liceo Vale, Edo ed Ago che sono

sempre stati al mio �anco e penso che lo saranno sempre. Un sentito ringraziamento

va alla mia amica storica Ceci che per me è una certezza. Ringrazio Albi e Jorio che ho

avuto modo di conoscere durante gli anni universitari e con cui ho stretto amicizia

�n dal principio. Mi ricorderò delle giornate di studio con il magister Albi nella

campagna veneta e delle discussioni con Jorio intorno all'Analisi che terminavano ad

orari inverosimili. Spero di continuare a rimanere in contatto con voi nonostante la

texanizzazione in atto e l'ovvia conseguente distanza geogra�ca. Volevo ringraziare

anche Mauro che per qualche anno avevo perso di vista. Sei ricomparso all'improvviso

per puro caso e sempre per puro caso è nata un'amicizia imprevedibile. Thanks

Ramin for your sincere friendship and for introducing me to a culture di�erent from

mine. one-way is still possible. In�ne, volevo ringraziare tutte le persone incluse

le vecchie guardie del Politecnico Open unix Labs per la qualità del loro operato di

di�usione dell'open source e del software libero di primaria importanza per la mia

formazione. In particolare, sono debitore nei confronti di Andrea Gussoni per avermi

recuperato dei dati sensibili. Scusate per il passaggio da macrocosmo a microcosmo.



È doveroso ringraziare il bomber Mila che attualmente rischia di diventare il

barista di �ducia e che è sempre fonte di grandi emozioni e risate. Ringrazio il mitico

Morse che con il suo senso dell'umorismo e con il suo argot mi ha sempre fatto morire

dal ridere (grintoso benessere!). Volevo ringraziare Valenta che ha sempre garantito

serate senza tempo per cui mi scordavo di tornare a casa ed ha sempre o�erto un

buon ca�é. Grazie anche al compare Guarna. Grazie a Paru che mi tiene aggiornato

su startup, sharing economy, bitcoin e management stu� che al momento, da come

mi esprimo, evidentemente non è pane per i miei denti. Ma come è possibile che

per mesi ci siamo incontrati svariate volte in quattro biblioteche diverse? Ringrazio

Mario per la sua cucina sicula che è stata fondamentale per il conseguimento della

laurea ma anche per il suo indubbio spessore umano. In�ne, ringrazio Marisa di cui

apprezzo la schiettezza calorosa e la capacità di farti sentire come se fossi a casa tua.



Abstract

This work focuses on inferential methods for functional data. An overview about

inferential methods able to select the statistically signi�cant intervals of the domain is

provided, especially focusing on permutation solutions. The Interval Testing Proce-

dure properties are explored through simulations. The investigation of the Smooth-

ing e�ects on the inferential analysis is all-important. A simulation study is con-

ducted where the Interval Testing Procedure is compared with Benjamini-Hochberg,

Bonferroni-Holm and Bonferroni multiple testing procedures. The chosen metrics

are the Family Wise Error Rate, the Rejection Rate of the False null hypotheses, the

Rejection Rate of the True null hypotheses and the Power. The hypothesis testing

problem is the two-sided distributional comparison between two independent popula-

tions of functions. The di�erences between populations in terms of mean are localized

in an interval located in the center of the domain. The B -spline basis expansion is

used throughout the simulations. Both the Regression and Smoothing splines meth-

ods are considered. The parameters of interest related to Smoothing are the order

of the basis elements, the number of basis elements and the smoothing parameter.

The parameters of interest determining the data set are the number of evaluations,

the standard deviation of the additive Normal noise and the number of statistical

units. It is of relevant interest to explore the di�erences in terms of the ability to

make true discoveries between the Interval Testing Procedure and the Benjamini-

Hochberg procedure, knowing that the former procedure controls the Family Wise

Error Rate on intervals and the latter procedure ensures only a weak control of the

Family Wise Error Rate. Best practices can be deduced from the simulation results

such as the optimality of the cubic splines with a su�ciently high number of basis

elements for the Interval Testing Procedure in the case of discontinuos functional

data. In these scenarios, the performances of the Interval Testing Procedure and

the Benjamini-Hochberg procedure are equivalent in terms of the Rejection Rate of

the False null hypotheses. The Rejection Rate of the False null hypotheses is a more

precise measure of the ability to make true discoveries than the Power. Finally, in

general for Interval Testing Procedure it is better to choose the number of basis ele-

ments relatively high. The code for the simulations has been implemented in R. The

fdatest R package has been used modifying the source code. The most important



update is the implementation in C of the combining matrix construction which is

the most computationally expensive task in the Interval Testing Procedure algorithm

for the Two-population framework. The used implementation of the Interval Test-

ing Procedure directly works on an object of the functional data class. Hence, the

Smoothing is entrusted to the user avoiding subjective choices which had to be taken

automatically in the original version of fdatest. These features involve a signi�cant

gain in terms of execution time and a simpli�cation of the interface.

Keywords: Functional Data Analysis, Inference, Interval Testing Procedure,

Permutation Tests, Domain Selection, B -splines, fdatest R package



Sommario

Questo lavoro si focalizza sui metodi inferenziali per dati funzionali. Viene data

una visione d'insieme riguardo ai metodi inferenziali in grado di selezionare gli in-

tervalli del dominio statisticamente signi�cativi, in particolare concentrandosi su

soluzioni permutazionali. Le proprietà dell'Interval Testing Procedure vengono es-

plorate per via simulativa. Lo studio degli e�etti dello Smoothing sull'analisi in-

ferenziale è di primaria importanza. Uno studio di simulazione viene e�ettuato

dove l'Interval Testing Procedure viene confrontata con le correzioni di molteplic-

ità Benjamini-Hochberg, Bonferroni-Holm e Bonferroni. Le metriche scelte sono il

Family Wise Error Rate, il Tasso di Ri�uto delle ipotesi nulle False, il Tasso di Ri�uto

delle ipotesi nulle Vere e la Potenza. Il test di ipotesi è il confronto distribuzionale

bilatero tra due popolazioni indipendenti di funzioni. Le di�erenze tra le popolazioni

in termini di media sono localizzate in un intervallo situato nel centro del dominio.

L'espansione in base B -spline è usata in tutte le simulazioni. Vengono considerati

entrambi i metodi Regression splines e Smoothing splines. I parametri di interesse

legati allo Smoothing sono l'ordine degli elementi della base, il numero degli elementi

della base e lo smoothing parameter. I parametri di interesse che determinano il data

set sono il numero di valutazioni, la deviazione standard del rumore Normale addi-

tivo ed il numero di unità statistiche. È di rilevante interesse esplorare le di�erenze

in termini dell'abilità di e�ettuare vere scoperte tra l'Interval Testing Procedure e la

procedura Benjamini-Hochberg, sapendo che la prima procedura controlla il Family

Wise Error Rate per intervalli e la seconda procedura garantisce solo un controllo

debole del Family Wise Error Rate. Dai risultati delle simulazioni si possono dedurre

best practices come l'ottimalità delle spline cubiche con un numero su�cientemente

elevato di elementi della base per l'Interval Testing Procedure nel caso di dati fun-

zionali discontinui. In questi scenari, le prestazioni dell'Interval Testing Procedure e

della procedura Benjamini-Hochberg sono equivalenti in termini del Tasso di Ri�uto

delle ipotesi nulle False. Il Tasso di Ri�uto delle ipotesi nulle False costituisce una

misura più precisa dell'abilità di e�ettuare vere scoperte rispetto alla Potenza. In-

�ne, in generale per l'Interval Testing Procedure è meglio scegliere il numero degli

elementi della base su�cientemente elevato. Il codice per le simulazioni è stato imple-

mentato in R. Il pacchetto R fdatest è stato usato modi�candone il codice sorgente.



L'aggiornamento più importante è l'implementazione in C della costruzione della

combining matrix che è l'operazione più costosa nell'algoritmo per l'Interval Test-

ing Procedure nel caso del confronto distribuzionale tra due popolazioni di funzioni.

L'implementazione usata dell'Interval Testing Procedure opera direttamente su un

oggetto della classe functional data. Pertanto, lo Smoothing è a�dato all'utente

evitando scelte soggettive che dovevano essere prese in automatico nella versione

originale di fdatest. Queste caratteristiche comportano un signi�cativo guadagno in

termini di tempo d'esecuzione ed una sempli�cazione dell'interfaccia.

Parole chiave: Analisi Dati Funzionali, Inferenza, Interval Testing Procedure,

Test di Permutazione, Domain Selection, B -splines, pacchetto R fdatest
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Introduction

The statistical analysis of functions is a noteworthy research area commonly

called Functional Data Analysis (Ramsay and Silverman, 2002; Silverman and Ram-

say, 2005; Cuevas, 2013). The observed functions are conceived as elements of a

functional space which is typically Hilbert separable. A well-known example is given

by the space of the square integrable functions L2. Other types of spaces have

been also considered such as the metric spaces (Ferraty and Vieu, 2006; Ferraty

and Romain, 2011). Several results have been obtained as far as concerns the data

description (e.g., Smoothing methods) and the data exploration (e.g., Functional

Principal Component Analysis). Many techniques are available and well-established

(De Boor, 2001; Silverman and Ramsay, 2005; Schumaker, 2007).

On the contrary, Inference is a recent and challenging topic in Functional Data

Analysis. Inferential methods have been proposed speci�cally for the Functional

Analysis of Variance problem in Zhang (2013) and under parametric and/or asymp-

totic assumptions in Horváth and Kokoszka (2012). In the case of functional data,

the classical parametric assumptions (e.g., homoscedasticity, normality) can be un-

realistic or assumed for mere convenience. Moreover, the normality assumption is

not veri�able in the Functional Data Analysis framework. In fact, it implies that

the projections of the functional data over every element of the functional space is

normally distributed (Tarpey and Kinateder, 2003). Alternatively, we can opt for

nonparametric methods. The nonparametric inference is generally based on permu-

tation tests (Corain et al., 2014) or on bootstrap techniques (Hall and Tajvidi, 2002;

Hall and Keilegom, 2007).

The overwhelming majority of nonparametric and parametric available methods

for hypothesis testing in Functional Data Analysis are global and, hence, if the null

hypothesis is rejected, they are not able to impute such a rejection on a particular

part of the domain. The selection of the intervals where the null hypothesis is false is

a desired property (domain selection), especially in applications. The methodologies

proposed in Pini and Vantini (2013) (Interval Testing Procedure) and in Pini and

Vantini (2015a) (Interval-wise test) guarantee the selection of the signi�cant domain

intervals. The same holds for the test proposed in Vsevolozhskaya et al. (2014) for a

set of a priori selected sub-intervals.
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Introduction

From a methodological point of view, we focus on the study of inferential meth-

ods provided with the domain selection property in the Functional Data Analysis

framework. Additionally, we want to explore the Interval Testing Procedure proper-

ties through a simulation study. Therefore, in this work we use the permutation tests

since in the Interval Testing procedure the Nonparametric Combination methodol-

ogy is applied; the Nonparametric Combination is a fundamental theoretical tool for

multiple testing in the permutation approach (Pesarin and Salmaso, 2010).

The Interval Testing Procedure, as a �rst step, requires the discretization of the

data through an appropriate basis expansion. The univariate permutation tests are

expressed in terms of the basis coe�cients. Then, from the univariate p-values,

the multivariate tests, expressed in terms of the coe�cients and associated with the

family of all possible consecutive hypotheses, are performed using the Nonparametric

Combination methodology. Finally, with a maximization operation on the p-values

obtained from the previous step, the univariate p-values are adjusted. The Interval

Testing Procedure is characterized by an interval-wise control of the Family Wise

Error Rate (i.e., the control of the Family Wise Error Rate is guaranteed for every

set of consecutive true null hypotheses). Such a control is intermediate between the

strong control (i.e., the control of the Family Wise Error Rate is guaranteed for all

possible sets of true null hypotheses) and the weak control (i.e., the control of the

Family Wise Error Rate is guaranteed only when the set of the true null hypotheses

is composed by all null hypotheses).

A permutation test is essentially based on a family of transformations which

preserve the likelihood under the null hypothesis (admissible permutations) and on

a suitable test statistic which is stochastically larger under the alternative hypothesis

than under the null hypothesis. The p-value of the test is given by the proportion

of permuted scenarios in which the test statistic evaluated on the permutations is

greater than or equal to the value of the test statistic applied on the observed data.

Since the set of all possible permutations is often too large to be explored in its

entirety, only a subset of the permutations is explored through a Conditional Monte

Carlo algorithm. The permutation tests are conditional procedures of inference. The

conditioning is on a set of su�cient statistics under the null hypothesis. This kind of

conditioning and the assumed existence of likelihood-invariant transformations under

the null hypothesis (exchangeability condition under the null hypothesis) imply the

independence of the permutation tests from the likelihood model associated with the

population distribution. A fundamental property implied by these conditions is the

exactness of the permutation tests (Pesarin and Salmaso, 2010).

The purpose of the simulation study is the evaluation of the Interval Testing

Procedure performances with particular interest in Smoothing e�ects on the inferen-

tial analysis. The Interval Testing Procedure is compared with the multiple testing

procedures Benjamini-Hochberg (Benjamini and Hochberg, 1995), Bonferroni-Holm
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(Holm, 1979) and Bonferroni based on the coe�cients of the same basis expansion.

The selected metrics are the Family Wise Error Rate (i.e., the probability of reject-

ing at least one null hypothesis among the hypotheses to be accepted), the Rejection

Rate False null hypotheses (i.e., the expected rate of rejected null hypotheses among

the hypotheses to be rejected), the Rejection Rate True null hypotheses (i.e., the

expected rate of rejected null hypotheses among the hypotheses to be accepted) and

the Power (i.e., the probability of rejecting at least one null hypothesis among the

hypotheses to be rejected).

It is of relevant interest to explore the di�erences in terms of the ability to make

true discoveries between the Interval Testing Procedure and the Benjamini-Hochberg

procedure, knowing that the former procedure controls the Family Wise Error Rate

on intervals and the latter procedure ensures only a weak control of the Family Wise

Error Rate.

The hypothesis testing problem chosen for the simulations is the two-sided dis-

tributional comparison between two independent populations of functions (unpaired

case). The tested types of synthetic data set are populations of constant and step

functions (data set const-step) and populations of constant and tricube functions

(data set const-tricube). For each data type, the di�erences of the two populations

in terms of mean (�xed deterministic e�ect) are localized in an interval located in

the center of the domain. We have chosen these types of data set for the totally

di�erent degree of regularity that distinguishes them; the data set const-step is not

regular since it exhibits discontinuities and, instead, the data set const-tricube is

rather regular since the tricube kernel belongs to C9. In order to avoid �ctitious

di�erences in terms of true discovery rate, we have imposed that the L2 distance

between the means of the �rst population composed by constant functions and of

the second population is the same for the data sets const-step and const-tricube.

The B -spline basis expansion is used throughout the simulations. Both the Re-

gression and Smoothing splines methods are considered. The parameters of interest

related to Smoothing are the order m of the B -spline basis elements, the number

of basis elements p and the smoothing parameter λ (Smoothing parameters). The

parameters determining the data set are the number of evaluations neval, the stan-

dard deviation σnoise of the additive Normal noise and the number of statistical units

nunits (Data parameters).
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In brief, the purpose of the simulation study is the evaluation of the Inter-

val Testing Procedure performances compared with the multiple testing procedures

Benjamini-Hochberg, Bonferroni-Holm and Bonferroni ones by varying:

• The data set type (const-step or const-tricube)

• The parameters m and p, λ (Smoothing parameters), neval and σnoise, nunits
(Data parameters)

• The Smoothing method: Regression or Smoothing splines using the B -spline

basis expansion

The performances of the methods are evaluated by means of the metrics Family Wise

Error Rate, Rejection Rate False null hypotheses, Rejection Rate True null hypotheses

and Power.

The code for the simulations has been implemented in R 3.2.0 using fdatest 2.1

and fda 2.4.4 packages (Team, 2015; Pini and Vantini, 2015b; Ramsay et al., 2014).

Smoothing has been performed using fda package. fdatest package has been used for

applying the Interval Testing Procedure in the Two-population framework using the

B-spline basis expansion.

The p-values obtained with the Interval Testing Procedure are stored in p × p
matrix called combining matrix which is the input of the p-values adjustement phase.

p is the number of the univariate p-values and it coincides with the number of basis

elements. The construction of the combining matrix is the most computationally

expensive task in the Interval Testing Procedure algorithm for the Two-population

framework. It costs p2.

Hence, the fdatest source code has been conveniently modi�ed. In order to im-

prove the execution times, the construction of the combining matrix has been imple-

mented in C. It has been used the .C interface to R. The new implementation has

provided a speedup over the original implementantion equal to around 60x. This

result is useful both for simulations, where the Interval Testing Procedure must be

applied several times for each value of the parameter under analysis, and for scenarios

where it is reasonable to choose a high number of basis elements p.

Finally, the used implementation of the Interval Testing Procedure directly works

on an object of the functional data class. Therefore, the Smoothing is performed by

the user avoiding subjective choices which had to be taken automatically in the

original version of fdatest.

Chapter 1 provides an overview about Inference in the Functional Data Analysis

Framework focusing on methods characterized by the domain selection property.

The Interval-wise test (Pini and Vantini, 2015) and the Vsevolozhskaya-Greenwood-

Holodov test (Vsevolozhskaya et al., 2014) are explained.
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In Chapter 2 the adopted methodologies in the simulation study are illustrated.

The multiple testing procedures Bonferroni, Bonferroni-Holm and Benjamini-Hochberg

are brie�y described. Then, the working principle of the Interval Testing Procedure

is explained for the Two-Population, Multi-Population, One-Population frameworks.

Finally, a brief discussion about the Smoothing splines method is reported.

Chapter 3 describes the simulation setting. More details are provided about the

tested data sets and the evaluation metrics.

In Chapter 4 the simulation results are reported and discussed. The presentation

of the simulation results is divided in two parts determined by the Smoothing pa-

rameters (m and p for Regression splines, λ for Smoothing splines) and by the Data

parameters (neval and σnoise, nunits). m and p are the order and the number of the

B -spline basis elements, respectively. λ is the smoothing parameter. neval and σnoise
are the number of evaluations and the standard deviation of the additive Normal

noise, respectively. nunits is the number of statistical units.

Finally, a discussion about the main simulation study results is reported and

possible future developments are suggested.
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Chapter 1

State of the Art

1.1 Introduction

In recent decades great progress has been made in the Functional Data Analysis

(FDA) framework, i.e., the statistical analysis of functions (Silverman and Ramsay,

2005; Ferraty and Vieu, 2006; Ferraty and Romain, 2011; Cuevas, 2013). Several

methods have been developed for Smoothing (i.e., the conversion from observed data

to functional data) and dimensionality reduction (e.g., functional principal compo-

nents analysis) or more in general for exploratory analysis (Ramsay and Silverman,

2002; Silverman and Ramsay, 2005). In FDA, the statistical units belong to a func-

tional space which is typically a Hilbert separable space. For instance, the well-known

L2 space is Hilbert separable and it constitutes the natural extension of Euclidean

Geometry. So far, the methods mentioned are essentially used for the description of

the data.

Nowadays one challenging area is the inference in FDA. Inference in the FDA

framework poses several methodological problems. For instance, it can be shown that

a probability density function does not exist for a generic functional space (Delaigle

and Hall, 2010). On the contrary, it is possible to de�ne a cumulative distribution

function for random functions but this notion is scarcely useful, especially from a

practical point of view.

Moreover, it is often common that the inferential tools of the Multivariate Anal-

ysis are not straightforwardly generalizable in the FDA framework since the number

of features is by far bigger than the number of statistical units. A representative ex-

ample is the Hotelling's theorem. This theorem holds only if the number of features

is lower than the number of units which is obviously not the case in FDA (Hotelling,

1931). The Hotelling's theorem is the most used tool for testing the mean of normal

populations in the multivariate framework.

One way to deal with these issues is the use of methods based on parametric as-

sumptions and/or asymptotic results (Horváth and Kokoszka, 2012). This approach,
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however, implies assumptions (e.g., homoscedasticity, normality and random sam-

pling) that could be di�cult to justify or unrealistic. Furthermore, the normality

assumption implies that the projections of the functional data over every element

of the functional space must be normally distributed (Tarpey and Kinateder, 2003),

condition practically impossible to verify even if a basis expansion is used. For these

reasons, it could be more convenient to take into account nonparametric methods

such as permutation tests (Corain et al., 2014; Hall and Keilegom, 2007).

A permutation test is essentially based on a family of transformations which

preserve the likelihood under the null hypothesis H0 (i.e., it is satis�ed the so called

exchangeability condition under the null hypothesis) and on a suitable test statistic

T which is stochastically larger under the alternative hypothesis H1 than under H0.

The family of transformations depends on the assumptions of independence in the

model.

Under the null hypothesis H0, the information content provided by an admis-

sible (i.e, likelihood-invariant) permutation coincides with the information content

provided by the observed data. Hence, if the null hypothesis H0 is true, the di�er-

ence between the test statistic applied on the observed data T0 and the test statistic

applied on a permutation of the observed data T ∗ is small. In theory under the null

hypothesis H0, we can compute the discrete distribution of the test statistic applied

on the permuted data T ∗ exploring in toto the set of all possible permutations of the

observed data. The p-value of the test is given by the proportion of permuted sce-

narios in which the test statistic evaluated on the permutations T ∗ is greater than or

equal to the value of the test statistic applied on the observed data T0 . In practice,

the set of all possible permutations is often too large to be explored in its entirety.

Hence, only a subset of the permutations is explored through a Conditional Monte

Carlo (CMC) algorithm whose function is to simulate, under the null hypothesis H0,

the distribution of the test statistic applied on the permuted data T ∗. The CMC

algorithm is reported in 2.2.1.4.

In general, the permutation tests are conditional procedures of inference. The

conditioning is on a set of su�cient statistics under the null hypothesis. In most prac-

tical situations, the conditioning is on the observed data set which is often the unique

su�cient and minimal function of the sample in a nonparametric framework. This

kind of conditioning and the assumed exchangeability with respect to groups under

the null hypothesis (i.e., in general there exist likelihood-invariant transformations

under the null hypothesis) imply the independence of the permutation tests from

the likelihood model associated with the population distribution. A fundamental

property implied by these conditions is the exactness of the permutation tests. If the

exchangeability condition under the null hypothesis is violated, then the permutation

tests are not exact. If it is di�cult to obtain approximate permutation solutions,

an alternative solution is the use of nonparametric bootstrap techniques which re-
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quire less assumptions but at the same time they are provided with less theoretical

properties such as, for instance, the exactness (Pesarin and Salmaso, 2010).

From a review on the literature, it has been found that the overwhelming majority

of nonparametric and parametric methods for hypothesis testing in FDA are global

in the sense that they test a null hypothesis globally on the whole domain of the

functions. If the null hypothesis is rejected, they are not able to impute such a

rejection on a particular part of the domain. An example of such kind of tests is

illustrated in Corain et al. (2014), where the global distributional comparison between

two populations of functions is performed basing inference on the Nonparametric

Combination (NPC). NPC is a fundamental theoretical tool for multiple testing in

the permutation framework and it constitutes an important part of the Interval

Testing Procedure (Pini and Vantini, 2013). Moreover, with this methodology it is

possible to solve hypothesis testing problems where the number of statistical units are

smaller than the number of features and the univariate tests are possibly dependent.

These features are fundamental in the FDA framework.

The NPC methodology is applied in the following procedures:

• The permutation and combination based time-to-time method (time-to-time

analysis).

• The permutation and combination by derived variable approach (the derived

variables are the coe�cients of a basis expansion).

In the time-to-time method, the global hypothesis is decomposed in a number of sub-

hypotheses equal to the number of measurements. It is assumed that the statistical

units share a common domain where the evaluations are uniformly distributed. In the

derived variable approach the rationale is the same. Thanks to the NPC, the global

hypothesis is decomposed in a number of sub-hypotheses equal to the dimension of

the basis expansion used. With the NPC, a global test that combines the information

given by the univariate tests associated with the sub-hypotheses is obtained.

Another example of global test model-based is given by the functional Hotelling's

theorem (Pini et al., 2015). The �nite-dimensional approximation of the functional

Hotelling's T 2 coincides with the high-dimensional p-asymptotic counterpart pro-

posed in Secchi et al. (2013) where p is the number of features; this approximation

is computable in closed form; it does not require the resolution of an optimization

problem.

The use of a global test could be scarcely useful from a practitioner point of

view. For instance, suppose to have two sets of functions. The aim is to test if the

populations di�er in distribution. Hence, the null hypothesis is the equality between

the population distributions. If a global test is applied and the null hypothesis is

rejected, it is not possible to localize the intervals of the domain which are sources of

distributional di�erence. The selection of the intervals where the null hypothesis is
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false is a desired property for practitioners. If with a procedure it is possible to select

the signi�cant intervals of the domain, the procedure used is said to be endowed with

the domain selection property which can be seen as the functional counterpart of the

feature selection.

The methodologies proposed in Pini and Vantini (2013) (Interval Testing Proce-

dure) and in Pini and Vantini (2015a) (Interval-wise test) guarantee the selection of

the signi�cant domain intervals. The same applies for the test proposed in Vsevolozh-

skaya et al. (2014) for a set of a priori selected sub-intervals (discretization of the

domain).

The ITP, as a �rst step, requires the discretization of the data through a suitable

basis expansion. The univariate permutation tests are expressed in terms of the basis

coe�cients. From the univariate p-values, the multivariate tests, expressed in terms

of the coe�cients and pertaining the family of all possible consecutive hypotheses,

are performed using the NPC methodology. Finally, with a maximization operation

on the p-values obtained from the previous step, the univariate p-values are adjusted.

The ITP is characterized by a control on intervals of the Family Wise Error Rate

FWER (i.e., the probability of rejecting at least one null hypothesis belonging to the

set of the true null hypotheses). Controlling the FWER on intervals means that the

control of the FWER is guaranteed for every set of consecutive true null hypotheses.

Such a control is intermediate between the strong control (i.e., the control of the

FWER is guaranteed for all possible sets of true null hypotheses) and the weak

control (i.e., the control of the FWER is guaranteed only when the set of the true

null hypotheses is composed by all null hypotheses). The ITP is explained in Chapter

2 and its properties are explored through simulations. The simulation setting and

the simulations results are reported in Chapter 3 and Chapter 4, respectively.

In the next sections the Interval-wise test and the Vsevolozhskaya-Greenwood-

Holodov test are described in more detail.

1.2 Interval-wise Testing for Functional Data

1.2.1 Introduction

The Interval-wise test is a nonparametric procedure able to select the signi�cant

intervals of the domain, i.e., the intervals where the null hypothesis is rejected (Pini

and Vantini, 2015a). Unlike the Interval Testing Procedure (ITP) (Pini and Vantini,

2013) and the Vsevolozhskaya-Greenwood-Holodov test (VGH test) (Vsevolozhskaya

et al., 2014), this procedure does not require the discretization of the data by means

of a basis expansion as required by the ITP and the discretization of the domain by

specifying a priori a partition of the domain as required by the VGH test. Therefore,

the Interval-wise test is a totally data-driven inferential procedure.
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We assume that the functional data belong to the Hilbert space L2. The hallmark

of the Interval-wise test is the introduction of the unadjusted p (t) and adjusted

p̃ (t) p-value functions, where t is a generic time instant (it can be a position or a

frequency or more in general a continuos independent variable). A point-wise p-value

function is not trivially de�ned in L2 since in this functional space each function is an

equivalence class de�ned on the equivalence relation in�nitely often with respect to

the Lebesgue measure. By thresholding the unadjusted p-value function p (t) with a

�xed signi�cance level α, we select the signi�cant intervals of the domain controlling

the point-wise error rate, i.e., given any point of the domain where the null hypothesis

is not violated, the probability of wrongly selecting it as signi�cant is controlled. By

thresholding the adjusted p-value function p̃ (t) with a �xed signi�cance level α, we

select the signi�cant intervals of the domain controlling the interval-wise error rate,

i.e., given any interval of the domain where the null hypothesis is not violated, the

probability of wrongly selecting it as signi�cant is controlled. Moreover, the p-value

functions p (t) and p̃ (t) are consistent. In detail, the unadjusted p-value function p (t)

is point-wise consistent, i.e., given any point of the domain where the null hypothesis

is violated, the probability of selecting it as signi�cant goes to one as the sample size

goes to in�nity and the adjusted p-value function p̃ (t) is interval-wise consistent,

i.e., given any interval of the domain where the null hypothesis is almost everywhere

violated the probability of selecting it as signi�cant goes to one as the sample size

goes to in�nity.

In the following, in order to clarify how the Interval-wise test works, we detail

its basic steps in the Two-Population framework. The Interval-wise test procedure

can be easily extended to more general frameworks such as the Multi-Population

framework.

1.2.2 Interval-wise test in the Two-Population framework

We want to test the di�erence in terms of mean between two functional popu-

lations. We observe the functional data yij ∈ L2 (D) where j = 1, 2 (population

index), i = 1, . . . , nj (unit index) and D = (a, b) ⊂ R. The hypotheses of the global
test are:

H0 : µ1 = µ2 against H1 : µ1 6= µ2 (1.1)

where the equality µ1 = µ2 is intended in the L2 sense, i.e.,

µ1 = µ2 ⇐⇒
ˆ
D

(µ1 (t)− µ2 (t))2 dt = 0
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Interval-wise testing

Let I ⊆ D = (a, b) ⊂ R be any interval of the domain. The hypotheses of the

partial test on I are:

HI
0 : µI1 = µI2 against H

I
1 : µI1 6= µI2 (1.2)

We denote with pI the p-value of the functional test (1.2). The restriction on I of

the chosen test statistic T is used to evaluate pI . The choice of the test statistic for

(1.2) is not unique and it is not necessary to opt for a permutation solution. In the

permutation framework, a natural choice is the test statistic proposed in Hall and

Tajvidi (2002) given by

T I =

´
I (y1 (t)− y2 (t))2 dt

|I|
=
||y1 − y2||2L2(I)

|I|

where yj (t) =
∑nj
i=1 yji(t)
nj

for j = 1, 2.

An exact permutation test for the test on I can be obtained by evaluating the

test statistic T I over all possible permutations of the observed data over the sample

units. It is implictly assumed that the two populations are independent (unpaired

case). If this assumption is not satis�ed, then the permutations of the observed data

over the sample units are not likelihood-invariant transformations under the null

hypothesis HI
0 and, hence, the exchangeability condition under the null hypothesis

HI
0 , which is necessary for the exactness of the partial test, is violated. If the two

populations are dependent (paired case), we have to restrict the set of the permu-

tations over the sample units. Under HI
0 , the exchangeability is just between and

within couples. In both cases, the p-value pI of the test (1.2) is the proportion of

the test statistics evaluated on the permuted data T I∗ greater than or equal to the

test statistic evaluated on the observed data T I0 .

The multiplicity correction would involve a family of in�nite tests whose cardi-

nality is the cardinality of the continuum. Despite this, in practice the number of

tests is limited by the number of functional evaluations neval at disposal. For sake

of simplicity, we assume that the statistical units are evaluated on the same grid. In

detail, denote with {tk}nevalk=1 ∈ D the common set of points where the observed data

{yji}
nj
i=1 ∈ L2 (D) with j = 1, 2 (population index) are sampled. We suppose that,

the generic unit yij assume the same value yij (tk) in the interval [tk, tk+1). In the

particular case k = neval, we have the degenerate interval coincident with the point

tneval. We perform a permutation test for every interval of the form [tk, tk+1) and

also for all possible their unions constituted by consecutive intervals (interval-wise

testing) using the sum of the related univariate tests statistics (direct combination

approach; Pesarin and Salmaso, 2010). The number of possible unions of consecutive
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intervals are limited by the number of evaluations neval. However, the number of

tests remains high excluding the scenarios with very low number of evaluations neval.

Therefore, it does not generally make sense to use classical multiple testing proce-

dures such as Bonferroni-Holm (Holm, 1979) or Benjamini-Hochberg (Benjamini and

Hochberg, 1995) since the adjusted p-values obtained with these procedures tend to

be unitary due to the high number of tests.

De�nition of the p-value functions

From the results of the previous step, we de�ne the unadjusted p-value function

p (t) and the adjusted p-value function p̃ (t) and we report in detail their theoretical

properties.

The unadjusted p-value function p (t) is given by

p (t) = limsup
I→t

pI

where the notation I → t means that the extremes of the intervals I converge to t.

The adjusted p-value function p̃ (t) is given by

p̃ (t) = sup
t3I

pI

The unadjusted p-value function p (t) is provided with a control of the point-wise

error rate, i.e, �xed the signi�cance level α, for every t ∈ D such that it exists an

interval I ⊆ D that includes t and with associated null hypothesis HI
0 true, we have

P ({p (t) ≤ α}) ≤ α

The adjusted p-value function p̃ (t) is provided with a control of the interval-wise

error rate, i.e, �xed the signi�cance level α, we have

∀I ⊆ D : HI
0 is true⇒ P ({∀t ∈ I, p̃ (t) ≤ α}) ≤ α

It can be proved (Pini and Vantini, 2015a) that, for almost every t ∈ D (i.e., in-

�nitely often with respect to the Lebesgue measure), the unadjusted p-value function

p (t) coincides with the p-value of the univariate permutation test given by lim
I→t

pI

where I → t means that the extremes of the interval I converge to t. Consequently,

since each univariate permutation test is assumed to be exact, �xed the signi�cance

level α, for almost every t ∈ D such that it exists an interval I ⊆ D that includes t

and with associated null hypothesis HI
0 true, we have

P ({p (t) ≤ α}) = α

12
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Furthermore, both the unadjusted p-value p (t) and the adjusted p-value p̃ (t)

functions are consistent. In detail, the unadjusted p-value function p (t) is point-

wise consistent, i.e., �xed the signi�cance level α, we have

∀t ∈ D subject to @I ⊆ D : t ∈ I and HI
0 is true ⇒ P ({p (t) ≤ α}) n→∞→ 1

where n = n1 + n2.

The adjusted p-value function p̃ (t) is interval-wise consistent, i.e., �xed the sig-

ni�cance level α, we have

∀I ⊆ D subject to @J ⊆ I : HJ
0 is true ⇒ P ({∀t ∈ I, p̃ (t) ≤ α}) n→∞→ 1

It is worth noticing that such theoretical properties hold in general, and not

only in the Two-population framework. In general, the assumptions required for the

validity of the theoretical properties of the p-value functions are:

• The test statistic T is real-valued.

• The test of HI
0 against H

I
1 is exact, i.e.,

∀I ⊆ D : HI
0 is true =⇒ P

({
pI ≤ α

})
= α

• The test of HI
0 against H

I
1 is consistent, i.e.,

∀I ⊆ D : HI
0 is false =⇒ P

({
pI ≤ α

}) n→∞→ 1

where n = n1 + n2 is the sample size.

Domain Selection

The intervals of the domain presenting a signi�cant mean di�erence between

the two populations are selected by thresholding the p-value functions computed

in the previous step. In detail, the signi�cant intervals of the domain obtained by

controlling the point-wise (interval-wise) error rate are selected by thresholding the

p-value function p (t) (p̃ (t)) with the chosen signi�cance level α.

It is worth mentioning that, in the same way as the Interval Testing Procedure,

the adjustement is such that the control of the interval-wise error rate proper of p̃ (t)

is guaranteed for every interval and for the complementary set of the interval itself

(recycled version of the p-values adjustement implementation; for details refer to

Pini and Vantini, 2013).
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1. State of the Art

1.3 Vsevolozhskaya-Greenwood-Holodov test

1.3.1 Introduction

The Vsevolozhskaya-Greenwood-Holodov test (VGH test) is an inferential pro-

cedure for pairwise comparison of population means in the Functional Analysis of

Variance framework (Vsevolozhskaya et al., 2014)

The VGH test is divided in two parts: �rstly, the signi�cant intervals are selected

from a a priori speci�ed partition of the domain; then, pairwise comparisons between

population means are performed for the signi�cant intervals previously identi�ed. In

order to control the Family Wise Error Rate FWER, the closure multiple testing

procedure is applied (Marcus et al., 1976).

1.3.2 Methodological aspects

Functional Analysis of Variance model

The Functional Analysis of Variance (FANOVA) model is described by the equa-

tion:

yji (t) = µj (t) + εji (t) (1.3)

where µj (t) is the functional mean of group j at time t with j = 1, . . . , k (population

index), i = 1, . . . , n (unit index), t ∈ D = [a, b] and εji (t) is the additive noise

function. Each εji (t) has null mean and it is an independent Normal stochastic

process. The hypotheses of the FANOVA model (1.3) are:

H0 : µ1 (t) = . . . = µk (t) against H1 : ∃i, j ∈ {1, . . . , k} and ∃t ∈ D : µi (t) 6= µj (t)

(1.4)

Selection signi�cant intervals

Firstly, the common domain D = [a, b] is a priori divided in m mutually ex-

clusive sub-intervals of the form [ai, bi], such that [a, b] = ∪mi=1 [ai, bi]. Then, the

null hypothesis H0 is tested on every sub-interval. The test statistic used Ti is the

numerator of the test statistic of the global (i.e, the di�erences are detected for the

entire domain D and not for speci�c intervals) test proposed in Shen (2004), which

is for the i-th interval:

Fi =

´ bi
ai

∑k
j=1 nj (µ̂j (t)− µ̂ (t))2 dt´ bi

ai

∑k
j=1

∑n
s=1 (yjs (t)− µ̂j (t))2 dt

· (n− k)

(k − 1)
, i = 1, . . . , m (1.5)

where k is the number of groups and, for sake of simplicity, the experiment is assumed

to be balanced, i.e., n1 = . . . = nk = n. In the same way as the Snedecor F

test statistic in the classical analysis of variance framework, the numerator and the

14



1.3. Vsevolozhskaya-Greenwood-Holodov test

denominator of the test statistic (1.5) are measures of the variability between groups

and within groups, respectively. The test statistic (1.5) is the functional counterpart

of the Snedecor F test statistic.

The combining function chosen is the sum of the univariate test statistics:

T =
m∑
i=1

Ti

A p-value for the global null hypothesis H0 (all marginal null hypotheses are true;

the i-th marginal null hypothesis H [ai, bi]
0 is the equality between the means of the

populations in the interval [ai, bi]) can be based on parametric assumptions (i.e., it is

known the distribution of T under the global null hypothesisH0) or on a permutation

approach.

Afterwards, the closure multiple testing procedure is applied (Marcus et al.,

1976), i.e., the null hypothesis is tested on every possible union of sub-intervals.

The null hypothesis H [ai, bi]
0 is rejected if all tested hypotheses implying H [ai, bi]

0 are

rejected. This procedure guarantees a strong control of the Family Wise Error Rate

FWER on the intervals a priori selected and on their unions.

The closure multiple testing procedure is computationally intensive if the number

of sub-intervals m is high, since it implies the execution of 2m − 1 tests. If the

computational cost is too high, a possible solution consists in the use of shortcut

versions of the closure procedure. In Vsevolozhskaya et al. (2014) several shortcut

versions of the closure procedure are proposed: adjustement based on the ordered test

statistics shortcut, adjustement based on the ordered unadjusted p-values shortcut

and adjustement obtained combining the �rst two shortcuts. For details refer to

Vsevolozhskaya et al. (2014).

Via a simulation study, a comparison has been made between these shortcuts and

the closure procedure without modi�cations. It has been performed a permutation

test based on the test statistics {Ti}mi=1, where m = 5 intervals have been chosen.

In each interval, 1000 permutations have been sampled. The experiment has been

repeated 1000 times. It has been observed that the third shortcut (combination of

the adjustement based on the ordered test statistics shorcut and of the adjustement

based on the ordered unadjusted p-values shortcut) is the best one in terms of the

ratio between the adjusted p-values underestimated (i.e., not adjusted enough) and

the total number of p-values (all null hypotheses were true). Moreover, the type I

error rates under the shortcut with best performances and the closure procedure are

coincident.

Another issue is the fact that the VGH procedure and all associated shortcuts

become very conservative if m is high.
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Pairwise comparisons in the signi�cant intervals

At this stage, the aim is to identify the pairs of functional means that are di�erent

in the signi�cant intervals previously selected. The steps are:

• For the generic signi�cant interval [ai, bi], where there is statistical evidence

to a�rm that the means of the populations di�er, the (unadjusted) p-value

associated with the null hypothesis of no di�erence among the generic pair of

population means is initialized to the adjusted p-value associated with the test

on the interval [ai, bi].

• For every pair of populations, compute the pairwise statistics

U
(h, g)
i =

ˆ bi

ai

∑
j∈{h, g}

nj (µ̂j (t)− µ̂ (t))2 dt

where h and g are the identi�ers of the populations to be compared (h, g ∈
{1, . . . , k}), µ̂j (t) =

∑nj
i=1 yji(t)
nj

and µ̂ (t) =
∑
j∈{h, g} µ̂j(t)

2 .

• For every pair of populations, perform the standard permutation test, i.e., the

p-value associated with test comparison between the populations with identi�er

h and g, is given by

p
(h, g)
i =

I
({
U

(h, g)∗
i ≥ U (h, g)

i

})
|χ|Y |

where U (h, g)∗
i is the statistic applied on the generic likelihood-invariant under

the null hypothesis permutation and |χ|Y | is the cardinality of the set of all

likelihood-invariant under the null hypothesis permutations. Finally, the family

of p-values obtained for every pair-wise comparison are adjusted by means of

the closure multiple testing procedure applied to every possible set of groups.
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Chapter 2

Methodology

2.1 Introduction

Inference is one of the most challenging research topic in Functional Data Anal-

ysis (FDA). In particular, we are interested in inferential methods provided with

the domain selection property, i.e., the ability to select the statistically signi�cant

intervals of the domain. The domain selection property can be seen as the func-

tional counterpart of the feature selection property. At the same time, we require a

control on false positives. More precisely, both the Interval Testing Procedure (Pini

and Vantini, 2013) and the Interval-wise test (Pini and Vantini, 2015a) control the

Family Wise Error Rate FWER (i.e., the probability of rejecting at least one null

hypothesis belonging to the set of the true null hypotheses) on intervals(i.e., the con-

trol of the FWER is guaranteed for every set of consecutive true null hypotheses).

The Vsevolozhskaya-Greenwood-Holodov test (Vsevolozhskaya et al., 2014) controls

the FWER on the intervals a priori chosen and on their unions. The Interval-wise

test and Vsevolozhskaya-Greenwood-Holodov test are explained in Chapter 1.

In order to deal with inferential problems in the FDA framework, several paramet-

ric and/or asymptotic solutions have been proposed (Horváth and Kokoszka, 2012).

Alternatively nonparametric methods can be used. Nonparametric methods require

less assumptions (for example, normality and homoscedasticity). For instance, it is

possible to adopt permutation solutions (Corain et al., 2014).

We have opted for the nonparametric permutation approach since the Interval

Testing Procedure, whose performances are explored in simulations (refer to Chapter

3 and Chapter 4), is based on the Nonparametric Combination (NPC), a methodology

for multiple testing in the permutation framework (Pesarin and Salmaso (2010)).

In detail in simulations, it is performed the adjustment of the univariate p-values

associated with a suitable set of permutation tests by using the Interval Testing

Procedure. For general concepts about the permutation approach refer to Chapter

1.
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2. Methodology

In this work we analyze the performances of the Interval Testing Procedure by car-

rying out a comparison with the multiple testing procedures Bonferroni, Bonferroni-

Holm (Holm, 1979) and Benjamini-Hochberg (Benjamini and Hochberg, 1995).

We denote with α the signi�cance level which is the probability of I error type,

i.e, the rejection of the null hypothesis H0 when the null hypothesis H0 is true. In

hypothesis testing, the multiple testing procedures are used in order to avoid the

in�ation of the I error type. In general if we choose the same signi�cance level α for

every univariate test, it is not guaranteed a control of the I error type with probability

α for the set of all univariate tests. In order to obtain this kind of control, we need

to apply a multiple testing procedure whose e�ect is a signi�cance level reduction

for each univariate test with respect to the starting signi�cance level α. A decrease

of the signi�cance level α involves an increase of the univariate p-values.

In the following, we describe the multiple testing procedures Bonferroni, Bonferroni-

Holm, Benjamini-Hochberg and Interval Testing Procedure. In the Bonferroni pro-

cedure, every unadjusted p-value is multiplied by the number of tests performed

n (adjusted p-values larger than 1 are set to 1). Equivalently, we reject the null

hypothesis of the univariate test with unadjusted p-value punadj if it holds

punadj ≤
α

n
(2.1)

where α is the signi�cance level and n is the number of tests. The control of the

Family Wise Error Rate FWER provided by the procedure Bonferroni is strong (i.e.,

the control of the FWER is guaranteed for all possible sets of true null hypotheses).

The Bonferroni-Holm procedure is a Bonferroni sequentially rejective multiple

testing procedure. The statistical power (i.e., the probability of rejecting at least one

null hypothesis belonging to the set of the false null hypotheses) of the Bonferroni-

Holm procedure is greater than or equal to the statistical power of the Bonferroni

procedure. At the same time in the same way as the Bonferroni procedure, the

Bonferroni-Holm procedure is provided with the strong control of the Family Wise

Error Rate FWER. n denotes the number of tests. Firstly, we perform the univariate

tests saving their p-values p1, . . . , pn. Then, we order these p-values in ascending

order and we denote them with p(1), . . . , p(n) with associated null ordered hypotheses

H
(1)
0 , . . . , H

(n)
0 . We apply to the �rst p-value p(1) in the unadjusted p-values ordering

the Bonferroni procedure for n tests (scaling factor of the signi�cance level α equal to

n in (2.1)). If the test is not signi�cant (i.e., we obtain p(1) > α
n ), we don't reject the

current null hypothesis H(1)
0 and the null hypotheses associated with the subsequent

testsH(2)
0 , . . . , H

(n)
0 , and the procedure stops. If the test is signi�cant (i.e., we obtain

p(1) ≤ α
n ), the second p-value in the unadjusted p-values ordering p(2) is adjusted

with the Bonferroni procedure for n − 1 tests and the rationale is the same as in

the previous step. In general if the null ordered hypotheses H(1)
0 , H

(2)
0 , . . . , H

(i−1)
0
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have been rejected, the i-th p-value p(i) is adjusted with the Bonferroni procedure for

n−(i− 1) tests (scaling factor of the signi�cance level α equal to n−(i− 1) in (2.1)).

If the test is not signi�cant (i.e., we obtain p(i) > α
n−(i−1)), we don't reject the current

null hypothesis H(i)
0 and the null hypotheses associated with the subsequent tests

H
(i+1)
0 , . . . , H

(n)
0 , and the procedure stops. If the test is signi�cant (i.e., we obtain

p(i) ≤ α
n−(i−1)), we reject the current i-th test and the same procedure is performed

for the next p-value in the unadjusted p-values ordering p(i+1) or the procedure stops

if p(i) is the last p-value in the ordering of the unadjusted p-values.

The Benjamini-Hochberg procedure is a sequentially rejective multiple testing

procedure. The steps of the Benjamini-Hochberg procedure are:

• Perform the univariate tests and save their corresponding p-values p1, . . . , pn.

Order these p-values in ascending order obtaining the set of p-values p(1), . . . , p(n)

with associated null ordered hypotheses H(1)
0 , . . . , H

(n)
0 .

• Set a desired value q for the False Discovery Rate FDR (i.e., the mean value

of the proportion of rejected true null hypotheses or equivalently the expected

rate of false discoveries). Denoting with V and R the random variables number

of false discoveries and number of rejections respectively, this metric is given

by

FDR = E
[
V

R

]
• Search the largest p-value p̃ in the set p(1), . . . , p(n) such that it is satis�ed the

constraint

p̃ ≤ k
( q
n

)
where k is the position of p̃ in the set p(1), . . . , p(n) .

• The p-value p̃ and the p-values smaller than it are signi�cant, i.e., we reject

the set of ordered null hypotheses H(1)
0 , . . . , H

(k)
0 .

The Benjamini-Hochberg procedure controls the FDR, i.e, FDR ≤ q for every

possible con�guration of true null hypotheses.

The Interval Testing Procedure, as a �rst step, requires the discretization of

the data through a suitable basis expansion. The univariate permutation tests are

expressed in terms of the basis coe�cients. From the unadjusted p-values, the mul-

tivariate tests, expressed in terms of the coe�cients and pertaining the family of all

possible consecutive hypotheses, are performed using the NPC methodology. Finally,

with a maximization operation on the p-values obtained from the previous step, the

univariate p-values are adjusted. The Interval Testing Procedure is characterized by

a control of the Family Wise Error Rate FWER on intervals (i.e., the control of

the FWER is guaranteed for every set of consecutive true null hypotheses). Such
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a control is intermediate between the strong control and the weak control (i.e., the

control of the FWER is guaranteed only when the set of the true null hypotheses is

composed by all null hypotheses).

The Interval Testing Procedure is explained in a more detailed fashion in the next

section. Finally, a brief discussion about the Smoothing splines method is reported.

In this work we have used both the Smoothing B -splines and the regression B -splines.

2.2 The Interval Testing Procedure

Firstly, the Interval Testing Procedure (ITP) is presented for the two populations

case, i.e. for testing di�erences in mean between two functional populations (Two-

population framework). At a later stage, its extensions to the multiple populations

and one population frameworks are described (Multi-population and One-population

frameworks). For the ITP extension to functional linear models with functional

responses and parameters and scalar covariates refer to Pini (2014).

2.2.1 The ITP in the Two-Population Framework

Let y = {y11, . . . , yn11, y12, . . . , yn22} be the data set, where n1 (n2) is the

number of elements belonging to the �rst (second) population and

yij ∈ L2 (T ) , i = 1, . . . , nj ; j = 1, 2; T = (a, b)

Denote with n = n1 + n2 the total number of statistical units. The hypotheses are:

H0 : Y1
d
= Y2 against H1 : Y1

d
6= Y2 (2.2)

where Y1 and Y2 are two random functions. The two samples are drawn from these

random functions, i.e.,

{yij}
nj
i=1

i.i.d∼ Yj , j = 1, 2

Depending on the assumptions on Y1 and Y2, we have two possible cases:

1. Unpaired case, i.e. Y1 and Y2 are independent.

2. Paired case, i.e. Y1 and Y2 are dependent.

We here describe the ITP for testing (2.2) in both cases. The steps of the ITP are:

1. Use of a basis expansion.

2. Joint permutation univariate tests (expressed in terms of the basis coe�cients).

3. Interval-wise combination and adjustment of the univariate p-values obtained

from the previous step.
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2.2.1.1 Basis Expansion

First of all, a suitable basis expansion has to be chosen. Let
{
φ(k)

}p
k=1

be the

basis, where p is the tunable �nite dimension of the functional space. Hence, we have

yij (t) =

p∑
k=1

c
(k)
ij φ

(k) (t) (2.3)

Every statistical unit yij (t) is identi�ed by the coe�cients
{
c
(k)
ij

}p
k=1

.

In the unpaired case, the model is

c
(k)
11 , . . . , c

(k)
n11

i.i.d∼ C
(k)
1 , c

(k)
12 , . . . , c

(k)
n22

i.i.d∼ C
(k)
2 , ∀k ∈ {1, . . . , p}

and C(k)
1 and C(k)

2 are independent. In the paired case we have n1 = n2, and the

model is (
c
(k)
11 , c

(k)
12

)
, . . . ,

(
c
(k)
n11
, c

(k)
n22

)
i.i.d∼

(
C

(k)
1 , C

(k)
2

)
, ∀k ∈ {1, . . . , p}

Here we use the B -spline basis expansion, and two methods are available for

Smoothing:

• Regression splines. The observed data are smoothed by means of a linear com-

bination of the form (2.3) whose coe�cients are generally computed according

to a least squares approach. In the case of the B -spline basis expansion, the

tunable parameters are the number of basis elements p and the orderm. Unlike

the method Smoothing splines, no penalty term is used.

• Smoothing splines. For a discussion about this Smoothing method refer to

Section 2.3.

2.2.1.2 Joint Permutation Univariate Tests

p univariate permutation tests for the coe�cients of the basis expansion are

performed. The hypotheses (2.2) are reformulated in terms of the basis coe�cients:

H
(k)
0 : C

(k)
1

d
= C

(k)
2 against H

(k)
1 : C

(k)
1

d
6= C

(k)
2 , ∀k ∈ {1, . . . , p} (2.4)

Hence, the global testing problem (2.2) is decomposed in p univariate sub-problems.

The k-th univariate permutation test is essentially based on a family of transforma-

tions which preserve the likelihood under the null hypothesis H(k)
0 (i.e., exchangeabil-

ity under the null hypothesis) and on a suitable test statistic which is stochastically

larger under H(k)
1 than under H(k)

0 . In general the family of transformations depends

on the assumptions of independence between the two populations. The choice of the

test statistic T is determined by the type of test and by the basis expansion used.

21



2. Methodology

In this framework it is reasonable to choose as a test statistic the modulus of the

di�erence between the population sample means for both the paired and unpaired

cases. It is implicitly assumed that, if there is a distributional di�erence between the

two populations, this di�erence is due to a �xed or random e�ect (i.e., the means of

the populations are di�erent) which is either positive or negative (not both).

In the unpaired case, the family of likelihood-invariant transformations under

H
(k)
0 is composed by any permutation over the sample units of the basis coe�cients.

Instead, in the paired scenario we have to restrict the set of the permutations over the

sample units. Under H(k)
0 , the exchangeability is just between and within couples.

If it is used a test statistic of type T (Y ) = S1 (Y1)−S2 (Y2) where Si are symmetric

functions having the same form (e.g., sample means), the permutations between

couples are ine�ective. Hence, in these cases only the permutations within couples

are considered. It is worth observing that the permutations of the coe�cients must

be jointly performed since, in general, the coe�cients
{
c
(k)
ij

}p
k=1

are dependent with

respect to index k. The underlying dependence relations are implicitly taken into

account by the permutation approach due to its nonparametric nature.

Therefore, from tests (2.4), we obtain p univariate p-values which have to be

adjusted to take into account the multiplicity. The adjustement can be made using

classical multiple testing procedures such as the Bonferroni, Bonferroni-Holm (Holm,

1979). These multiple testing are applicable since the data have been discretized by

means of a basis expansion. In the ITP, the adjustement is performed in a di�erent

way in order to take into account the structure of the functional data.

2.2.1.3 Interval-wise Combination and Correction of the Univariate Tests

At this stage, we need to construct suitable combinations of the univariate test

statistics in order to obtain an interval-wise control of the Family Wise Error Rate

FWER (i.e., the probability of rejecting at least one null hypothesis belonging to

the set of the true null hypotheses). This task is carried out combining the p uni-

variate test statistics by means of multivariate nonparametric combinations, i.e., the

Nonparametric Combination (NPC) methodology is applied (Pesarin and Salmaso,

2010). The NPC is a theoretical tool that is used to obtain multivariate permutation

tests by combining the results of possibly dependent univariate permutation tests.

The method will be described in 2.2.1.4 for the global hypothesis testing problem

H0 : ∩pk=1C
(k)
1

d
= C

(k)
2 against H1 : ∪pk=1C

(k)
1

d
6= C

(k)
2 . For a rich literature about

NPC refer to Pesarin and Salmaso (2010). In the ITP the same procedure described

in 2.2.1.4 is applied for each set of subsequent basis coe�cients obtaining a family

of tests with their associated p-values (Interval-wise Combination).

Lastly for k ∈ {1, . . . , p}, the k-th ITP adjusted p-value is obtained calculating

the maximum p-value over the p-values of the previous tests with null hypothesis
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2.2. The Interval Testing Procedure

implyingH(k)
0 (Correction of the Univariate Test). We get the signi�cant components

by applying to the adjusted p-values a threshold equal to the signi�cance level α.

The ITP is an inferential procedure provided with a control of the Family Wise

Error Rate FWER on any interval of components. As a result also the weak control

of the FWER (i.e., the control of the FWER is guaranteed only when the set of

the true null hypotheses is composed by all null hypotheses) and the control of the

Component Wise Error Rate CWER (i.e., the probability of rejecting a true null

hypothesis) are guaranteed, since these are control of the FWER on particular inter-

vals: the entire set of components (global test) and the single component (marginal

test), respectively. The procedures Bonferroni and Bonferroni-Holm (Holm, 1979)

are provided with a strong control of the FWER (i.e., it is guaranteed the control of

the FWER for all possible sets of true null hypotheses). Since the multiple testing

procedure Benjamini-Hochberg (Benjamini and Hochberg, 1995) controls the False

Discovery Rate FDR (i.e., the mean value of the proportion of rejected null hypothe-

ses that are true or equivalently the expected rate of false discoveries), this procedure

is only provided with a weak control of FWER since, if all null hypotheses are true,

then the metrics FWER and FDR coincide.

The interval-wise control of the FWER is a desired property in the FDA frame-

work since the functional basis are characterized by an ordered structure. For in-

stance, with the B -spline basis we have localization in space and the ITP can be used

to select the signi�cant intervals of the domain (intervals where there is statistical

evidence to a�rm that the population distributions are di�erent). For example, with

the Fourier basis we have localization in frequency and the ITP can be used to select

the signi�cant band of frequencies in a data-driven fashion.

It can be proved that the �interval� power (i.e, the probability of rejecting at

least one H(k)
0 when at least one of the sub-hypotheses is false) of the ITP is greater

than the �interval� power of the Closed Testing Procedure (CTP), i.e the procedure

whose tests are all possible multivariate tests which are 2p − 1 and its k-th adjusted

p-value is obtained by computing the maximum p-value over the p-values of all

tests whose null hypothesis implies H(k)
0 (Marcus et al., 1976). The CTP guarantees

the strong control of the FWER. However, its computational cost is una�ordable

in the functional framework due to the too large number of tests required. The

�interval� power of the ITP is smaller than the �interval� power of the Global Testing

Procedure (GTP), i.e., the procedure whose test is the global one; the p-value of

the global test is obtained from the formula (2.7) which constitutes the �nal step of

the NPC application described in 2.2.1.4. The GTP provides only a weak control

of the FWER and, in case of rejection unlike the ITP and CTP, it does not give

any information about how the data di�er in distribution. For details refer to Pini

and Vantini (2013) in which these theoretical properties are proved, and a simulation

study is reported.
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2.2.1.4 Details on the implementation

In applications, the set of possible permutations is often too large to be explored

in its entirety. Hence, only a subset of the permutations is explored through a

Conditional Monte Carlo (CMC) algorithm whose steps are:

Algorithm 2.1 Conditional Monte Carlo for sampling the distribution of the test
statistic T applied on permuted data under the null hypothesis H0

1. Evaluate the test statistic on the observed data T0 = T (Y ).

2. Repeat these steps B times: sample a permutation of the observed data Y ∗b
and calculate the test statistic on the permuted data T ∗b = T (Y ∗b ).

3. Compute the p-value of the test as the proportion of permuted scenarios in
which the test statistic evaluated on the simulated permutations is greater
than or equal to T0:

λ̂ =
# {T ∗b ≥ T0}

B

In the following, the working principle of the NPC is detailed for the Two-

Population framework. For ease of notation, the unit index for the second population

starts from n1 + 1 where n1 is the number of statistical units of the �rst population.

The hypotheses of the global test are:

H0 : ∩pk=1C
(k)
1

d
= C

(k)
2 against H1 : ∪pk=1C

(k)
1

d
6= C

(k)
2 (2.5)

Let T (1)
0 , . . . , T

(p)
0 be the values assumed by the test statistic T applied on the

sets of the observed coe�cients{
c
(k)
11 , . . . , c

(k)
n11
, c

(k)
n1+1,2, . . . , c

(k)
n1+n2,2

}p
k=1

Let T (1)∗
b , . . . , T

(p)∗
b be the values assumed by the test statistic T applied on the sets

of the coe�cients jointly permuted{
c
(k)∗
π
(b)
1 1

, . . . , c
(k)∗
π
(b)
n1

1
, c

(k)∗
π
(b)
n1+12

, . . . , c
(k)∗
π
(b)
n1+n2

2

}p
k=1

where
(
π
(b)
1 , . . . , π

(b)
n1 , π

(b)
n1+1, . . . , π

(b)
n1+n2

)
is a likelihood-invariant random permu-

tation of the unit indexes (1, . . . , n1, . . . , n1 + n2) and b ∈ {1, . . . , B} (B is the

number of iterations of the CMC algorithm and it coincides with the number of per-

mutations sampled). Denote with L̂(k)
l the empirical marginal survival function of

the test statistics T (k) computed in T (k)∗
l with l ∈ {0, 1, . . . , B} and k ∈ {1, . . . , p}.
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2.2. The Interval Testing Procedure

L̂
(k)
l is given by

L̂
(k)
l =

∑B
q=1 I

({
T
(k)∗
q ≥ T (k)∗

l

})
+ 1

2

B + 1
, l ∈ {0, 1, . . . , B} , k ∈ {1, . . . , p} (2.6)

Note that
{
L̂
(k)
0

}p
k=1

are the univariate p-values (empirical survival function eval-

uated in the realizations of the test statistic applied on the observed coe�cients).

Then, we calculate the quantities

T
(1,..., p)
0 = ψ

(
L̂
(1)
0 , . . . , L̂

(p)
0

)
; T

(1,..., p)∗
b = ψ

(
L̂
(1)
b , . . . , L̂

(p)
b

)
, b ∈ {1, . . . , B}

where ψ : [0, 1]p 7→ R is a combining function, i.e., a continuous non-increasing

function which is symmetric on its arguments and attains its maximum value when

at least one argument tends to zero. An example is given by the Fisher omnibus

combining function ψFisher : [0, 1]n 7→ R whose analytical expression is:

ψFisher = −2
n∑
i=1

log (xi)

Finally, we compute the p-value associated with the global test (2.5):

L̂
(1,..., p)
0 =

∑B
q=1 I

({
T
(1,..., p)∗
q ≥ T (1,..., p)

0

})
+ 1

2

B + 1
(2.7)

The formulas (2.6) and (2.7) are theoretically justi�ed by the following result:

conditioned to the observed data, every point in the space of likelihood-invariant

permutations is equally likely. Under the null hypothesis H0, a random admissi-

ble permutation and the observed data provide the same information content (ex-

changeability under H0). Therefore under H0, conditioning on the available data

is equivalent to conditioning on the set of admissible permutations. The admissible

permutations are the transformations of data which are likelihood-invariant under

H0.

The terms 1/2 and 1 added respectively to numerator and denominator of the

estimators (2.6), (2.7) involve survival function estimates in the open interval (0,1).

In this way the transformations by inverse cumulative distribution function of con-

tinuous distribution are well de�ned and continuous. But since these transformations

can be not required for the analysis and B is generally chosen su�ciently big, this

modi�cation of the classical empirical survival estimator is irrelevant in practice.
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2. Methodology

2.2.2 The ITP in more general Hypothesis Testing problems

The ITP can be extended to di�erent hypothesis testing problems. Speci�cally,

we illustrate the basic elements of the ITP in the framework of testing di�erence

between more than two populations (Multi-population framework), and in the case

of testing the center of symmetry of one population (One-population framework).

2.2.2.1 The ITP in the Multi-Population Framework

We have g > 2 sets of functions y =
{
y11, . . . , yn11, . . . , y1g, . . . , yngg

}
and we

want to perform the following test:

H0 : Y1
d
= Y2

d
= . . .

d
= Yg against H1 : ∃l, s ∈ {1, . . . , g} : Yl

d
6= Ys

where {yij}
nj
i=1

i.i.d∼ Yj , j ∈ {1, . . . , g}. Under the null hypothesis H0, the g popu-

lations share the same distribution. Under the alternative hypothesis H1, it exists

at least one couple of populations with di�erent distributions. First of all, we need

to compute for each statistical unit the p coe�cient of its basis expansion (2.3).

Consequently, we have for the k-th basis component the vector

c(k) =
(
c
(k)
11 , . . . , c

(k)
n11
, . . . , c

(k)
1g , . . . , c

(k)
ngg

)
, k ∈ {1, . . . , p}

and it holds

c
(k)
ij ∼ C

(k)
j , j ∈ {1, . . . , g} ; i ∈ {1, . . . , nj}

We denote with n the total number of statistical units. The sub-hypotheses on basis

coe�cients are:

H
(k)
0 : C

(k)
1

d
= C

(k)
2

d
= . . .

d
= C(k)

g against H
(k)
1 : ∃i, j : C

(k)
i

d
6= C

(k)
j , k ∈ {1, . . . , p}

The set of permutations likelihood-invariant under the null hypothesis is deter-

mined by the model assumptions. In the independent case (Functional Analysis of

Variance), the family of transformations are the simple permutations of units. In

the dependent case (Functional Repeated Measurements), the likelihood-invariant

transformations are the within and between permutations of the observed units.

In the unpaired scenario, we can use the Fisher's test statistic for the univariate

test:

T
(
c
(k)∗
11 , . . . , c

(k)∗
n11

, . . . , c
(k)∗
1g , . . . , c(k)∗ngg

)
=

∑g
j=1 nj

(
c̄
(k)∗
j − c̄(k)∗

)2
∑g

j=1

∑nτ
i=1

(
c
(k)∗
ij − c̄(k)∗

) (n− g)

(g − 1)

(2.8)

where c̄(k)∗j is the sample mean of the permuted coe�cient belonging to the popula-
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2.2. The Interval Testing Procedure

tion j. c̄(k)∗ is the sample mean of the permuted coe�cients and it coincides with the

sample mean of the observed coe�cients c̄(k). These quantities are said to be per-

mutationally equivalent. The concept of permutational equivalence can be exploited

in order to simplify the analytical expression of the test statistic used obtaining a

gain in terms of computational cost (Pesarin and Salmaso, 2010).

In the paired scenario, we can use the Hotelling's T 2:

T 2
(
c
(k)∗
11 , . . . , c

(k)∗
n11

, . . . , c
(k)∗
1g , . . . , c(k)∗ngg

)
= n1

(
∆c̄(k)∗

)′ (
∆S∗c∆

′
)−1 (

∆c̄(k)∗
)
(2.9)

where ∆ ∈ R(g−1)×g is a contrast matrix, c̄(k)∗ is the vector of the sample means

of the k-th permuted coe�cients and S∗c is the sample variance-covariance matrix

of the permuted coe�cients. Observe that (2.8), (2.9) are the test statistics used in

the classical parametric tests. It occurs in permutation tests that the test statistic

coincides with the test statistic of the parametric counterpart. This is a sound

characteristic of the permutation tests since it permits a direct comparison between

the permutation procedures and the parametric methods.

2.2.2.2 The ITP in the One-Population Framework

Let y = {y1, . . . , yn} be the data and we have y1, . . . , yn
i.i.d∼ Y ∈ R. We want to

test the center of symmetry of the functional population Y , i.e., we want to verify if

there is statistical evidence to claim that the center of symmetry of the population

Y is equal to a function µ0. The hypotheses are:

H0 : E [Y ] = µ0 against H1 : E [Y ] 6= µ0

As a �rst step, we have to consider the basis expansions of the data y and of the

mean under the null hypothesis µ0:

yi (t) =

p∑
k=1

c
(k)
i φ(k) (t) , µ0 (t) =

p∑
k=1

c
(k)
0 φ(k) (t)

Consequently, for each unit and for µ0 we have p coe�cients. In particular, we have

c
(k)
1 , . . . , c(k)n

i.i.d∼ C(k), k ∈ {1, . . . , p}

Afterwards, the functional hypotheses are expressed in terms of the coe�cients:

H
(k)
0 : center

[
C(k)

]
= c

(k)
0 against H

(k)
1 : center

[
C(k)

]
6= c

(k)
0

In order to �nd a set of likelihood-invariant transformations under the null hypoth-

esis, the distribution from which y is sampled is assumed to be symmetric. If the

27



2. Methodology

mean of the population distribution exists, it is equal to the center of symmetry

and, hence, the previous test is also a test for the mean. In this framework, the

likelihood-invariant transformations are the re�ections of the function yi with re-

spect to µ0. These transformations, in terms of the basis coe�cients, coincide with

the simultaneous re�ections through
{
c
(k)
0

}p
k=1

of all coe�cients
{
c
(k)
i

}p
k=1

of the

same unit i ∈ {1, . . . , n}. The test statistic depends on the basis expansion used. If

the B -spline basis is used, a reasonable choice is a suitable divergence test statistic

between the sample mean of the transformed k-th coe�cients associated with the

data y and the k-th coe�cient associated with the mean under the null hypothesis

µ0:

T (k)∗ = |
∑n

s=1 c
(k)∗
s

n
− µ(k)0 |, k = 1, . . . , p

If the mean does not exist, other empirical measures of the center of symmetry

can be used such as the median or an existing trimmed mean.

2.3 Smoothing splines

A peculiar aspect of the Functional Data Analysis (FDA) is the possibility to ex-

tract information from the derivatives of the functions. Thus, the Smoothing should

be done carefully in order to obtain an accurate reconstruction of the desired deriva-

tives combining linearly the derivatives of the basis elements with the coe�cients

associated with the original functions.

This aim can be achieved with the Smoothing splines method. In this framework,

the number of the basis elements p is equal to the maximum value coinciding with

the number of evaluations neval (interpolation). A penalization is imposed in order

to avoid over�tting. The cost function chosen for the simulations is the Residual

Sum of Squares with penalization on the second derivative which is given by:

RSS (f, λ) =

neval∑
i=1

{yi − f (xi)}2 + λ

ˆ {
f” (t)

}2
dt (2.10)

where λ is the smoothing parameter, neval is the number of evaluations, {yi}nevali=1

are the observed data and f is the unknown function. The data �tting is evaluated

with the term
∑N

i=1 {yi − f (xi)}2. The term λ
´ {

f” (t)
}2
dt penalizes the second

derivative (curvature). In a Bayesian perspective the penalty term can summarize

the a priori information. If λ = 0, f is the interpolating spline. If λ =∞, the second

derivative of f must be zero and, hence, we are considering the least squares line �t.

It can be proved that the function f minimizing the Residual Sum of Squares

RSS belongs to a �nite dimensional space (in general RSS is de�ned on a functional

space with in�nite dimension), it is unique and it can be obtained in closed form.

This solution is given by the natural (null second and third derivatives at the end-
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2.3. Smoothing splines

points) cubic splines with knots in the evaluation points {xi}nevali=1 of the observed

data (Friedman et al., 2001).

Therefore, λ is the unique parameter that requires tuning. However, it could be

interesting to control if di�erent trends of the tested procedures can be observed by

violating one hypothesis of this functional minimization result.
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Chapter 3

Simulation setting

3.1 Introduction

The purpose of the simulation study is the evaluation of the Interval Testing

Procedure (ITP) performances. A comparison is carried out with the Benjamini-

Hochberg (BH) (Benjamini and Hochberg, 1995), Bonferroni-Holm (BFH) (Holm,

1979) and Bonferroni (BF) multiple testing procedures. The ITP, BH, BFH, BF

procedures are described in Chapter 2.

The evaluation metrics are:

• The Family Wise Error Rate FWER, i.e., the probability of rejecting at least

one null hypothesis among the hypotheses to be accepted.

• The Rejection Rate of the False null hypotheses ρ, i.e., the expected rate of

rejected null hypotheses among the hypotheses to be rejected,

• The Rejection Rate of the True null hypotheses γ, i.e., the expected rate of

rejected null hypotheses among the hypotheses to be accepted.

• The Power π, i.e., the probability of rejecting at least one null hypothesis

among the hypotheses to be rejected.

For a description of these metrics refer to Section 3.3.

It is of relevant interest to explore the di�erences in terms of the ability to make

true discoveries between the ITP and the BH, knowing that the former procedure

controls the FWER on intervals and the latter procedure ensures only a weak control

of the FWER, i.e., the control of the FWER is guaranteed only when the set of

the true null hypotheses is composed by all null hypotheses.

The tested types of synthetic data set are:

1. Populations of constant and step functions (data set const-step).

2. Populations of constant and tricube functions (data set const-tricube)
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3.1. Introduction

For each type of data set, the di�erences of the two populations in terms of mean

(�xed deterministic e�ect) are localized in the interval denoted by [hinf , hsup]. For

details about the data generation mechanism refer to Section 3.2.

Both the Regression and Smoothing splines methods are used. In detail, we have

used both the Smoothing B-splines and the Regression B-splines.

The parameters included in the simulation study and related to Smoothing are:

• Order m of the B -spline basis elements.

• Number of basis elements p.

• Smoothing parameter λ. In the Smoothing splines method, λ is the unique

parameter that requires tuning (for details about Smoothing splines method

refer to Section 2.3). Regarding the regression splines method, the regularity of

the Smoothing is determined by the orderm (the degree of the basis elements is

m− 1). By augmenting m, we obtain a more regular functional approximation

of the observed data.

The other selected parameters, which determine the data set, are:

• Number of evaluations neval. The statistical units share the same domain D
where the evaluations are uniformly distributed.

• Standard deviation σnoise of the additive Normal noise.

• Number of statistical units nunits.

Hence, the aim of the simulation study is the evaluation of ITP performances com-

pared with the BH, BFH and BF ones by varying:

• The data set type (const-step or const-tricube)

• The parameters of interest m and p, λ (Smoothing parameters), neval and

σnoise, nunits (Data parameters)

• The Smoothing method: Regression or Smoothing splines using the B -spline

basis expansion

The performances of the methods are evaluated by means of the metrics Family Wise

Error Rate FWER, Rejection Rate False null hypotheses ρ, Rejection Rate True null

hypotheses γ and Power π.

The hypothesis testing problem chosen for the simulations is the two-sided dis-

tributional comparison between two independent populations of functions (unpaired

case). The populations di�er in distribution in the interval [hinf , hsup] ⊂ D = [0, 2]

for a �xed e�ect (di�erence in mean) where D is the domain. With the same notation
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3. Simulation setting

of Chapter 2, yij (t) is the statistical unit i in the population j at instant t, with

j = 1, 2, i = 1, . . . , nj .

For i = 1, . . . , nj , we have

yi,1
i.i.d∼ Y1, yi,2

i.i.d∼ Y2

and Y1 and Y2 are independent random functions. The hypothesis testing problem

is:

H0 : Y1
d
= Y2 against H1 : Y1

d
6= Y2

The B -spline basis expansion is used throughout the simulations. Hence, each sta-

tistical unit yij is identi�ed by the set of the coe�cients
{
c
(k)
ij

}p
k=1

associated with

the B -spline basis elements.

The univariate p-value λk, with k = 1, ..., p, is obtained using the permutation

solution based on:

• The test statistic T = | 1n1

∑n1
i=1 ci,1 −

1
n2

∑n2
i=1 ci,2|. In this setting, it is rea-

sonable to choose the test statistic T because the means of the population

distributions are di�erent in the interval [hinf , hsup] (T is stochastically larger

under the alternative hypothesis with respect to the null hypothesis).

• The family of transformations likelihood-invariant under the null hypothesis is

composed by the permutations over the sample units of the basis coe�cients

(exchangeability condition under the null hypothesis).

The univariate p-values {λk}pk=1 are approximated through the Conditional Monte

Carlo (CMC) algorithm whose number of iterations B is set to 1000 if not speci�ed.

The CMC algorithm is described in 2.2.1.4.

Finally as far as concerns the ITP, the Interval-wise Combination and Correction

of the univariate tests are performed using the Nonparametric Combination (NPC)

methodology with Fisher combining function (Pesarin and Salmaso, 2010). The

control of the Family Wise Error Rate FWER is guaranteeed on intervals. For

details about the ITP and the NPC refer to Chapter 2.

The code for the simulations has been implemented in R 3.2.0 using fdatest 2.1

and fda 2.4.4 packages (Team, 2015; Pini and Vantini, 2015b; Ramsay et al., 2014).

Smoothing has been performed using fda package. fdatest package has been used for

applying the Interval Testing Procedure in the Two-population framework using the

B-spline basis expansion.

The p-values obtained with the Interval Testing Procedure are stored in p × p
matrix called combining matrix which is the input of the p-values adjustement phase.

p is the number of the univariate p-values and it coincides with the number of basis

elements. The construction of the combining matrix is the most computationally
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3.2. Data sets

expensive task in the Interval Testing Procedure algorithm for the Two-population

framework. It costs p2.

Hence, the fdatest source code has been conveniently modi�ed. In order to im-

prove the execution times, the construction of the combining matrix has been imple-

mented in C. It has been used the .C interface to R. The new implementation has

provided a speedup over the original implementantion equal to around 60x. This

result is useful both for simulations, where the Interval Testing Procedure must be

applied several times for each value of the parameter under analysis, and for scenarios

where it is reasonable to choose a high number of basis elements p.

Finally, the used implementation of the Interval Testing Procedure directly works

on an object of the functional data class. Therefore, the Smoothing is performed by

the user avoiding subjective choices which had to be taken automatically in the

original version of fdatest.

In the subsequent sections more details are provided about the tested types of

data set const-step and const-tricube and the adopted metrics FWER, ρ, γ, π. The

simulation results are reported in Chapter 4.

3.2 Data sets

The synthetic data sets chosen for the analysis are:

1. Population constituted by constant functions and population constituted by

step functions (data set const-step). The support of the step is [hinf , hsup]

and its value vCS is a �xed deterministic e�ect.

2. Population constituted by constant functions and population constituted by

tricube functions (data set const-tricube). The tricube functions are consti-

tuted by a symmetric tricube kernel with support [hinf , hsup]. We denote

with vCT the maximum value of the tricube kernel.

We have chosen these types of data set for the totally di�erent degree of regularity

that distinguishes them; the data set const-step is not regular since it exhibits dis-

continuities in the jump points; on the contrary, the data set const-tricube is rather

regular since the tricube kernel belongs to C9. The parameters with subscript or

superscript CS are associated with the data set const-step. The parameters with

subscript or superscript CT are associated with the data set const-tricube

The value assumed by each constant function is sampled from a Normal distri-

bution with mean µmodel = 0 and standard deviation σmodel = 0.15. Then, a local

Normal noise with mean µnoise = 0 and standard deviation σnoise is added to each

constant function. In the same way, the constant component is computed for the

elements belonging to the non-constant population where in scenarios with data set:

33



3. Simulation setting

1. const-step, for each unit the �xed e�ect vCS is added in [hinf , hsup].

2. const-tricube, for each unit the tricube symmetric kernel with maximum value

vCT is added with mid point of its support [hinf , hsup] coincident with the mid

point d of the domain D.

For sake of simplicity and without loss of generality, we assume that the interval

[hinf , hsup], where the null hypothesis H0 (populations share the same distribution)

is false, is symmetric with respect to the mid point d of the domain D and it is the

same in both scenarios with data set const-step and const-tricube. Hence, we have

that hCSinf = hCTinf = hinf and hCSsup = hCTsup = hsup. Instances of the data sets of type

const-step and const-tricube with null standard deviation of noise σnoise are reported

in Figure 3.1.
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Figure 3.1: Data sets const-step and const-tricube with σnoise = 0

In order to avoid �ctitious di�erences in terms of true discovery rate, we impose

that the L2 distance between the means of the �rst population composed by constant

functions Y1 and of the second population Y2 is the same for the data sets const-step

and const-tricube, i.e., we have to satisfy the constraint:

ˆ hsup

hinf

(
E
[
Y CS
2

]
− E

[
Y CS
1

])2
dt =

ˆ hsup

hinf

(
E
[
Y CT
2

]
− E

[
Y CT
1

])2
dt (3.1)

where E
[
Y CS
1

]
= µmodel = 0, E

[
Y CT
1

]
= µmodel = 0 (mean values of the pop-

ulations composed by constant functions associated with data sets const-step and

const-tricube, respectively), E
[
Y CS
2

]
= vCS and

E
[
Y CT
2

]
= µCT (t) = vCT

(
1− |t|3

)3 I ({|t| ≤ 1}) (3.2)
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µCT is the tricube kernel with maximum value vCT . If we center the tricube kernel

in the origin as in the expression (3.2), we have that

t =
x

d− hinf
=

x

hsup − d
, x ∈ [hinf − d, hsup − d]

where d− hinf = hsup − d since the tricube kernel has support [hinf , hsup] and it is

symmetric with respect to d. The constraint (3.1) can be expressed in the following

way:

ˆ hsup

hinf

(vCS)2 dt =

ˆ hsup−d

hinf−d
(vCS)2 dt = v2CS (hsup − hinf ) =

ˆ hsup−d

hinf−d
(µCT (x))2 dx

Finally, the parameters hinf , hsup, v2CS , v
2
CT must satisfy the following equation:

v2CS (hsup − hinf ) = v2CT

hsup−dˆ

hinf−d

((
1− | x

d− hinf
|3
)3
)2

dx (3.3)

Observe that, since E
[
Y CS
1

]
= E

[
Y CT
1

]
= µmodel = 0, the constraint (3.1) is equiv-

alent to impose that the L2 norms of the means of the data sets const-step and

const-tricube coincide.

3.3 Metrics

We here introduce the metrics that will be used in the simulation study to com-

pare the procedures ITP, BH, BFH and BF. We consider a multiple testing problem,

where the number of tests is equal to the number of basis elements p. We denote with

p0 the number of true null hypotheses. If the extremes of the interval [hinf , hsup]

(where H0 is false) and the number of basis elements p are �xed, p0 depends only on

the order m of the B-splines. The notation used for hypothesis testing is reported

in Table 3.1.

Table 3.1: Notation for Hypothesis Testing

Accept H0 Reject H0 Total

True null hypotheses U V p0

False null hypotheses T S p− p0
p−R R p

We denote with ndata the number of independent data sets generated. A seed has

been �xed to 14091990 for reproducibility of the simulated data sets. The signi�cance

level α has been always set to the standard value 0.05.

35



3. Simulation setting

The metrics and their empirical counterparts are:

• Family Wise Error Rate FWER, i.e., the probability of rejecting at least one

null hypothesis among the hypotheses to be accepted:

FWER = P ({V > 0}) ; ̂FWER =

∑ndata
i=1 I

({
∃l ∈ A : pil ≤ α

})
ndata

where A = A (m, p, hinf , hsup) is the set constituted by the identi�ers of the

basis coe�cients with null hypothesis true, pil is the p-value associated with

the coe�cient with identi�er l when the i-th data set is used.

• Rejection Rate of the False null hypotheses ρ, i.e., the expected rate of rejected

null hypotheses among the hypotheses to be rejected:

ρ =
E [S]

p− p0
; ρ̂ =

∑ndata
i=1

si
p−p0

ndata

where si is the number of true discoveries when the i-th data set is used.

• Rejection Rate of the True null hypotheses γ, i.e., the expected rate of rejected

null hypotheses among the hypotheses to be accepted:

γ =
E [V ]

p0
; γ̂ =

∑ndata
i=1

vi
p0

ndata

where vi is the number of false discoveries when the i-th data set is used.

• Power π, i.e., the probability of rejecting at least one null hypothesis among

the hypotheses to be rejected:

π = P ({S > 0}) ; π̂ =

∑ndata
i=1 I

({
∃l ∈ C : pil ≤ α

})
ndata

where C = C (m, p, hinf , hsup) is the set constituted by the identi�ers of the

basis coe�cients with null hypothesis false, pil is the p-value associated with

the coe�cient with identi�er l when the i-th data set is used.

In the explored scenarios, the populations share the same distribution in the union of

intervals [0, hinf ) ∪ (hsup, 2]. Due to the ITP p-values adjustment implementation

(recycled version of the family composed by the interval-wise tests explained in Pini

and Vantini, 2013), this set for the ITP can be considered as a single interval. Con-

sequently, since the ITP is characterized by an interval-wise control of FWER, in

[0, hinf ) ∪ (hsup, 2] this procedure controls the FWER. For a detailed explanation

of the ITP working principle refer to Section 2.2.

The selected metrics assume values in [0, 1]. Therefore, in order to quantify the

maximum variability of the estimated metric, we can use the Normal approximation
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of the con�dence interval for the Binomial proportion which is given by:

ξ̂ ± z1−α
2

√
1

ndata
ξ̂
(

1− ξ̂
)

where ξ̂ is the metric approximation, α is the signi�cance level, z1−α
2
is the(

1− α
2

)
-quantile of the standard Normal distribution. This choice is reasonable

because ndata is generally chosen su�ciently big in a simulation. If ξ is close to 0 or

1, we are not generally interested in quantifying the variability of the estimate with

greater accuracy. These scenarios are not appealing for the simulations. However if n

is not big and/or ξ tends to assume the minimum or the maximum values, di�erent

con�dence intervals can be used such as, for instance, the Wilson and Clopper-

Pearson con�dence intervals. With α = 0.05, we obtain the following upper bound

for the variability of the estimate:

z1−α
2

√
1

ndata
ξ̂
(

1− ξ̂
)
≤ 2

√
1

ndata
ξ̂
(

1− ξ̂
)
6 2

√
1

ndata

1

4
=

√
1

ndata
= σestimate

Therefore, if ndata = 100, we have σestimate = 0.1. If ndata = 1000, the upper bound

is σestimate ≈ 0.032, which is an acceptable value for the simulations.
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Chapter 4

Simulation results

4.1 Introduction

In simulations, the used procedures are:

• Interval Testing Procedure (ITP).

• Benjamini-Hochberg (BH).

• Bonferroni-Holm (BFH).

• Bonferroni (BF).

These procedures are explained in Chapter 2.

The parameters of interest related to Smoothing are:

• Order m of the B -spline basis elements.

• Number of basis elements p.

• Smoothing parameter λ.

The other selected parameters, which determine the data set, are:

• Number of evaluations neval. The statistical units share the same domain

D = [0, 2] where the evaluations are uniformly distributed.

• Standard deviation σnoise of the additive Normal noise.

• Number of statistical units nunits.

The tested types of synthetic data are:

1. Populations of constant and step functions (data set const-step).

2. Populations of constant and tricube functions (data set const-tricube)
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4.1. Introduction

Instances of the data sets of type const-step and const-tricube with null standard

deviation of noise σnoise are reported in Figure 4.1. The parameters with subscript

or superscript CS (CT ) are associated with the data set const-step (const-tricube).

The generation mechanism of these data types is described in Section 3.2.

The considered hypothesis testing problem is the two-sided distributional com-

parison between two independent populations of functions (unpaired case). The

populations di�er in distribution in the interval [hinf , hsup] ⊂ D = [0, 2] for a �xed

e�ect (di�erence in mean) where D is the domain. The hypothesis testing problem

and its solution in the permutation framework are explained in Chapter 3.

In order to evaluate the performances of the used procedures, we use the following

metrics in detail de�ned in Section 3.3:

• Family Wise Error Rate FWER, i.e., the probability of rejecting at least one

null hypothesis among the hypotheses to be accepted.

• Rejection Rate False null hypotheses ρ, i.e., the expected rate of rejected null

hypotheses among the hypotheses to be rejected.

• Rejection Rate True null hypotheses γ, i.e., the expected rate of rejected null

hypotheses among the hypotheses to be accepted.

• Power π, i.e., the probability of rejecting at least one null hypothesis among

the hypotheses to be rejected.

The presentation of the simulation results is divided in two parts determined by the

Smoothing parameters (m and p for Regression splines method, λ for Smoothing

splines method) and by the Data parameters (neval and σnoise, nunits). m and p

are the order and the number of basis elements of the B-splines, respectively. λ is

the smoothing parameter. neval and σnoise are the number of evaluations and the
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Figure 4.1: Data sets const-step and const-tricube with σnoise = 0
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4. Simulation results

standard deviation of the additive Normal noise, respectively. nunits is the number

of statistical units. We assume that the number of statistical units of the �rst

population n1 coincides with the number of statistical units of the second population

n2. Hence, we have n1 = n2 = nunits.

Summarizing, the main purpose of the simulation study is the evaluation of the

ITP performances compared with the BH, BFH and BF ones by varying:

• The data set type (const-step or const-tricube)

• The parameters of interest m and p, λ (Smoothing parameters), neval and

σnoise, nunits (Data parameters)

• The Smoothing method: Regression or Smoothing splines using the B -spline

basis expansion

The performances of the methods are evaluated by means of the metrics Family Wise

Error Rate FWER, Rejection Rate False null hypotheses ρ, Rejection Rate True null

hypotheses γ and Power π.

Moreover, it is of relevant interest to explore the di�erences in terms of the ability

to make true discoveries between ITP and BH, knowing that the former procedure

controls the FWER on intervals and the latter procedure ensures only a weak control

of the FWER, i.e., the control of the FWER is guaranteed only when the set of

the true null hypotheses is composed by all null hypotheses.

In all simulations, the signi�cance level α has been set to the standard value

0.05 and a seed has been set to 14091990 for reproducibility of the simulated data

sets. The selected values of the parameters hinf , hsup, vCS (height of the step) and

vCT (maximum value of the tricube kernel) guarantee that the L2 distance between

the means of the �rst population composed by constant functions and of the second

population is the same for the data sets const-step and const-tricube.

For details about the hypothesis testing problem considered, the types of data

tested, the parameters of interest, the evaluation metrics and in general the simula-

tion setting, consult Chapter 3.

Throughout the whole chapter as far as concerns the adopted metrics, the sub-

scripts ITP, BH, BFH and BF are associated with the Interval Testing Procedure,

Benjamini-Hochberg, Bonferroni-Holm, Bonferroni procedures, respectively.
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Simulations with Smoothing parameters variable

Simulations with Smothing parameters variable

In the �rst part of this simulation study we investigate the performances of ITP

depending on the Smoothing parameters. In Section 4.2, we consider Regression B-

splines, and focus on parameters order m and number of basis elements p. In Section

4.3, we consider instead Smoothing B-splines, and focus on the smoothing parameter

λ.

4.2 Regression Splines parameters variable

4.2.1 Introduction

In this exploratory analysis we want to evaluate the performances of the Interval

Testing Procedure (ITP) by varying the order of the B -splines m and the number of

basis elements p. In monographs it is possible to �nd several methods for Smoothing

(Silverman and Ramsay, 2005; Friedman et al., 2001) whereas the opposite is true

for the e�ects on performances due to Smoothing. Hence, the exploration of the

parameters m and p is interesting in itself, particularly for practitioners who are not

used to deal with basis expansions.

The ability to make true discoveries is often seen only as a function of the number

of statistical units even if there are other potentially relevant parameters such as,

for instance, m and p. Another important and unknown parameter related to the

ability to make true discoveries is the size of the e�ect to be detected.

4.2.1.1 Values of the parameters

The common parameters in both scenarios with data set const-step and const-

tricube are:

• Order B -splines: m ∈ {1, 2, . . . , 10}.

• Number basis elements: p ∈ {10, 20, . . . , 100}.

• Number statistical units: nunits = n1 = n2 = 30.

• Number evaluations: neval = 100. The evaluations are uniformly distributed

in the domain D = [0, 2].

• Standard deviation additive Normal noise: σnoise = 0

• Number generated data sets: ndata = 1000. The data sets are independent and

they are the same for each pair (m, p).
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Simulations with Smoothing parameters variable

The values of the remaining parameters are:

• hCSinf = hCTinf = hinf = 0.5

• hCSsup = hCTsup = hsup = 1.5

• Height of the step (�xed e�ect) with support [hinf , hsup]: vCS = 0.15

• Maximum value of the tricube kernel with support [hinf , hsup]: vCT = 0.22

4.2.1.2 Degenerate cases

The results for the cases with p = 10 are degenerate for high m in the sense that

we observe high and �ctious values of the Power. By increasing the order m, the

supports associated with the elements of the basis expansion B-spline expand. In the

extreme case {m = 10, p = 10}, all p supports of the basis elements have non-empty

intersection with the interval [hinf , hsup] where the null hypothesis is false. Hence,

it is correct to reject all p null hypotheses associated with the basis coe�cients.

Therefore, a test with Smoothing parametersm and p chosen in this way is similar

to a global test. At the same time, if the ITP is used with low p and high m, we

are not taking advantage of its domain selection property from which it is possible

to identify the intervals of the domain which are sources of distributional di�erence.

Consequently, by augmenting m, the Power functions π with p = 10 increase and the

unitary value is essentially reached by all procedures (see Figure 4.2). This Power π

improvement is �ctious and similar observations hold for the cases with p = 20.
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Figure 4.2: Power π as a function of the B -spline order m with number of basis
elements p = 10. The data type is populations of constant and step functions.
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4.2. Regression Splines parameters variable

In the following we report the heat maps alternated with a selection of the stan-

dard graphics (i.e., metric as a function of m with �xed p or vice versa) and general

comments about the observed patterns and the encountered problems. In the stan-

dard graphics, we do not report the cases with p = 10 since, as discussed previously,

these scenarios are degenerate for high m. For completeness, all the standard graph-

ics divided according to the type of data (const-step and const-tricube) are reported

in Appendix A.

4.2.2 Results

We have chosen to present the simulation results by means of suitable heat maps

which represent the values of a metric by varying both parameters m and p. If

need be, the heat maps are alternated with a selection of the standard graphics (i.e.,

metric as a function of m with �xed p or vice versa).

For each data type (const-step or const-tricube) and metric (Family Wise Er-

ror Rate FWER, Rejection Rate False null hypotheses ρ, Rejection Rate True null

hypotheses γ, Power π), we have a plot with four subgraphs; each subgraph is the

representation through an heat map of a metric for one of the tested procedures (In-

terval Testing Procedure (ITP), Benjamini-Hochberg (BH), Bonferroni-Holm (BFH),

Bonferroni (BF)).

When needed, contour lines are added to ease the comparison between the di�er-

ent graphics. In heat maps the bright white is associated with the maximum value 1

and the red is associated with the minimum value 0. In heat maps of FWER and γ,

the squares white opaque are associated with not available numbers, corresponding

to the cases when all null hypotheses are false; in these scenarios FWER and γ are

not de�ned. By means of the heat maps, a direct comparison between the scenarios

with data sets const-step and const-tricube can be achieved.

4.2.2.1 Family Wise Error Rate

In Figure 4.3 on page 45 we report the heat maps of FWER of ITP, BH, BFH,

BF.

Firstly, as expected, FWERBF and FWERBFH assume lower values than FWERBH

and FWERITP . The results obtained with BF and BFH are very similar in both

scenarios with data sets const-step and const-tricube.

ITP controls the FWER (net of the upper bound of the metric estimate vari-

ability σestimate (α) = σestimate = 1√
ndata

≈ 0.032; for details refer to Section 3.3).

In particular, considering the cases with data type const-step, FWERITP assumes

larger values for the set of orders {2, 3, 4} and for high p. In contrast, in scenarios

with data set const-tricube, FWERITP tends to be globally smaller and we observe

low variability of this metric.
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Simulations with Smoothing parameters variable

BH does not control the FWER with both data sets const-step and const-tricube.

In scenarios with data set const-step, FWERBH is greater than α essentially in all

extreme cases (low p and high m, low p and low m, high p and high m, high p and

low m). The di�erence FWERBH − α is maximized if the cubic splines are used

with very high p, especially with the interpolating spline (pmax = neval = 100). In

the case of data set const-tricube, we observe less variability of the FWERBH and

FWERBH > α for low p and high m and for high p and small m (in the former

region FWERBH attains its maximum).

The fact that, in scenarios with data set const-step, for ITP and BH there is more

variability of the FWER is coherent with the low degree of regularity of the data type

const-step. Since the data set const-step is discontinuous, the assumption of intrinsic

regularity of the datum typical of the Functional Data Analysis is violated. Hence,

Smoothing is a critical phase in this case as we will see in the next paragraphs. The

same observations hold for the Rejection Rate False null hypotheses ρ, particularly

for ITP.

In Figure 4.4 we report the FWER as a function of p with the most used orders

in applications m ∈ {1, 2, 3, 4} and in scenarios with data type const-step. Firstly

for m = 1, FWERITP ≤ α for every p. This relation holds for the orders m ∈
{1, 6, 7, 8, 9, 10}. For m ∈ {2, 3, 4, 5}, the ITP controls the FWER net of the

upper bound of the metric estimate variability σestimate (for details refer to Section

3.3). What it is interesting to observe is that FWERITP is maximized if the cubic

B -splines are used and the same holds for ρITP as we will see in the next paragraphs.
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4.2. Regression Splines parameters variable

Figure 4.3: Heat maps of the Family Wise Error Rate FWER as a function of p and
m for the procedures Interval Testing Procedure (ITP), Benjamini-Hochberg (BH),
Bonferroni-Holm (BFH), Bonferroni (BF) and for the data sets const-step (popula-
tions of constant and step functions) and const-tricube (populations of constant and
tricube functions). In heat maps the bright white is associated with the maximum
value 1 and the red is associated with the minimum value 0. The squares white
opaque are associated with not available numbers, corresponding to the cases when
all null hypotheses are false; in these scenarios FWER is not de�ned.
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Figure 4.4: Family Wise Error Rate FWER as a function of the number p of B -
spline basis elements with orders m = 1, 2, 3, 4. The data type is populations of
constant and step functions.

4.2.2.2 Rejection Rate False null hypotheses

In Figure 4.5 on page 49 we report the heat maps of the Rejection Rate False

null hypotheses ρ. Consider the scenarios with data set const-step. In general ρITP
assumes maximum values for the orders m ∈ {2, 3, 4, 5} and for high p. In partic-

ular for m ∈ {3, 4} and for all p, ITP is less conservative than BFH and BF (see

Figure A.3 on page 107).

From contour lines of ρITP for m ∈ {2, 3}, we see that the trend of ρITP as

a function of p is characterized by oscillations which could be due to Smoothing

approximations of the step functions near the points hinf and hsup, where the jumps

are situated (see the Figure A.3 on page 107). Since using the basis B -spline we

obtain localization in space, these approximations can in�uence in a marked way

the p-value univariate estimate. Indeed, in order to obtain the i-th adjusted p-value

(associated with the i-th test/coe�cient), the maximum is searched in the collection

of p-values (concerning sets of consecutive coe�cients) whose associated tests have

null hypothesis implying H(i)
0 , where H

(i)
0 is the null hypothesis of the test with

the i-th unadjusted p-value. For details about the ITP p-values adjustement phase
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4.2. Regression Splines parameters variable

refer to 2.2.1.3. For instance, suppose that the step functions are smoothed with

rounded up values near hinf and inside [hinf , hsup] where the null hypothesis is

false. The p-values associated with this region can be relatively high. Consequently,

due to the nature of the ITP p-values adjustment phase which takes into account the

structure of the functional data, this set of p-values might distort the adjustment of

the p-values near in space. In scenarios where the noise power σ2noise is not null, this

distortion phenomenon called �edge e�ect� could be less marked.

With the other procedures by construction, the p-values adjustment phase should

not be noticeably a�ected by overestimates or underestimates of localized sets consti-

tuted by univariate p-values. The procedures BH and BFH are sequentially rejective

multiple testing procedures characterized by the initial univariate p-values ordering

step. Hence, these procedures treat separately each unadjusted p-value without ex-

ploiting the B -spline basis ordered structure (in space) as the ITP does. Essentially

the same observation holds for the procedure BF with the di�erence that this proce-

dure operates directly on the signi�cance level with a scaling factor coincident with

the number of univariate tests performed; the univariate p-values are adjusted in the

same way independently from the properties of the data set.

The ITP reaches its optimum for m = 4 and for p relatively high. In these cases,

the results of the procedures ITP and BH are very similar (see Figures 4.6 and 4.7).

Hence, if a functional datum has discontinuities, for the ITP the best choice would

seem the use of the cubic splines with a su�ciently high number of basis elements.

It can be proved that for the Smoothing splines method the optimal splines (min-

imizer of the Residual Sum of Squares with penalization on the second derivative)

are natural (null second and third derivatives at the endpoints) and cubic with knots

coincident with the sampling points of the observed data (for details refer to Section

2.3). Therefore, even if we have used the Regression splines method in this simu-

lation, it is reasonable that the cubic splines are optimal in terms of the localized

biases that might appear in correspondence of the jump points hinf and hsup (this

phenomenon is called �edge e�ect�). We do not have biases at the endpoints since all

the statistical units are constant at the edges and the power of noise σ2noise is null.

As noted for FWER in scenarios with data set const-step, the Smoothing is

critical, particularly for ITP.
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Simulations with Smoothing parameters variable

It is interesting to observe that the unitary order is optimal for BH and it is

exactly the opposite for ITP, BFH and BF (see Figure 4.8 on page 51). BH is on the

whole the procedure with the best performances for both cases with data set const-

step and const-tricube. ρBH is increasing in p except for the scenarios with unitary

order m. In this case ρBH is approximately constant. ρBH gradually decreases by

reducing both the order m and the number of basis elements p. We observe the same

tendency in scenarios with data sets const-tricube with a slower decay.

The results obtained with BF and BFH are very similar. Furthermore, for these

procedures the scenarios with data sets const-step and const-tricube do not present

particular di�erences.

For low p and low m the performances of BF and BFH are similar to the ones

of the ITP. From the standard graphics in Figure A.4 on page 108, we note that,

for p greater than a certain value roughly equal to half of the maximum possible

value pmax = neval = 100, we have ρITP ≥ ρBFH(BF ). A similar situation occurs if

the data type is const-tricube although the di�erences between the procedures ITP,

BFH and BF are less evident (see Figure A.12 on page 117).

This latter fact can be explained in terms of the properties of the data set const-

tricube. Indeed, the tricube kernel has most part of its mass concentrated in the

middle of [hinf , hsup] (support tricube kernel and region where the null hypothesis

is false). Consequently, the false null hypotheses associated with the central part

of [hinf , hsup] are often rejected by all procedures. Therefore, regarding these null

hypotheses, it is di�cult to observe signi�cant di�erences among ITP, BF and BFH.

Moreover, the kernel tricube has few mass at the endpoints of its support. This prop-

erty constitutes a disadvantage for the ITP since this procedure tends to maximize

the true discovery rate in the middle of [hinf , hsup], minimizing it at the borders (as

already discussed in Pini and Vantini, 2013).

In scenarios with data type const-tricube, for all procedures the performances are

generally worse than in scenarios with data type const-step. Moreover, if the data

type is const-tricube, the best order m is the unitary one as can been seen in Figure

4.9 on page 51 (all graphics are reported in Figure A.11 on page 116). In particular

observe the slope change of ρ: when the order m is low the slope of ρ is roughly null;

by increasing m, the curves ρ tend to be increasing in p.
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4.2. Regression Splines parameters variable

Figure 4.5: Heat maps of the Rejection Rate False null hypotheses ρ as a function of
p and m for the procedures Interval Testing Procedure (ITP), Benjamini-Hochberg
(BH), Bonferroni-Holm (BFH), Bonferroni (BF) and for the data sets const-step
(populations of constant and step functions) and const-tricube (populations of con-
stant and tricube functions). In heat maps the bright white is associated with the
maximum value 1 and the red is associated with the minimum value 0.
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Figure 4.6: Rejection Rate False null hypotheses ρ as a function of the number p of
B -spline basis elements with cubic splines. The data type is populations of constant
and step functions.
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Figure 4.7: Rejection Rate False null hypotheses ρ as a function of the order m
B -spline basis with the interpolating spline (p = 100). The data type is populations
of constant and step functions.

50



4.2. Regression Splines parameters variable

20 40 60 80 100

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p

Metric ρ m = 1

ITP

BH

BFH

BF

Figure 4.8: Rejection Rate False null hypotheses ρ as a function of the number p
of B -spline basis elements with constant splines. The data type is populations of
constant and step functions.
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Figure 4.9: Rejection Rate False null hypotheses ρ as a function of the number p of
B -spline basis elements with orders m = 1, 4, 10. The data type is populations of
constant and tricube functions.
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4.2.2.3 Rejection Rate True null hypotheses

In Figure 4.10 on page 53 we report the heat maps of the Rejection Rate True

null hypotheses γ. Similarly to the FWER, γBF and γBFH assume lower values than

γITP and γBH . Furthermore, in most cases the approximation γBF ≈ γBFH ≈ 0 is

valid for both data sets const-step and const-tricube. γBFH(BF ) is positive only for

p = 10 and for some low values of the order m, and, however, its values are very

small.

In scenarios with data set const-step, the function γITP is maximized for values

of the order m approximately in the set {3, 4, 5} and for relatively high p coherently

with the observations pertaining the FWER. For really high orders and indepen-

dently from p, γITP is minimized. For very low orders and independently from p,

γITP assumes intermediate values. Regarding the procedure BH, by augmenting p

and by decreasing m, it can be noted that γBH tends to increase. γBH is maximized

for low p and high m; in the other cases γBH assumes lower values.

In scenarios with data type const-tricube, we have that γITP is maximized in a

greater set of orders m ∈ {2, 3, 4, 5} for every number of basis elements and for

really high m and for any reasonable values of p (p > n1 = n2 = nunits = 30). The

trend of γBH is similar to the one of γITP except for the fact that the set of orders

where γBH is maximized is constituted by more elements (roughly m ∈ {1, . . . , 6}).
In this set we also observe less variability of γBH , excluding few peaks.

However, from the heat maps of γ, it is di�cult to detect particular tendencies and

to observe di�erences among the tested procedures due to the low values assumed

by this metric. In addition, unlike the FWER, this metric is not theoretically

conserved by the inspected methods. It is only possible to detect the regions where

γ is optimized in order to have essentially a set of rules of thumb about how to choose

in principle the Smoothing parameters m and p for each procedure and for each data

type.

In scenarios with data set const-step, from the standard graphics in Figure A.5 on

page 109, we can observe that except for the quadratic and cubic splines (m = 3, 4),

the following ordering holds

γBF ≈ γBFH < γITP < γBH

and, in contrast, for m ∈ {3, 4} the performances of ITP and BH are equivalent. It

is worth to mention that at the same time ρITP is coherently maximized for m = 3, 4

and p relatively high.
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4.2. Regression Splines parameters variable

Figure 4.10: Heat maps of the Rejection Rate True null hypotheses γ as a function of
p and m for the procedures Interval Testing Procedure (ITP), Benjamini-Hochberg
(BH), Bonferroni-Holm (BFH), Bonferroni (BF) and for the data sets const-step
(populations of constant and step functions) and const-tricube (populations of con-
stant and tricube functions). In heat maps the bright white is associated with the
maximum value 1 and the red is associated with the minimum value 0. The squares
white opaque are associated with not available numbers, corresponding to the cases
when all null hypotheses are false; in these scenarios γ is not de�ned.

53



Simulations with Smoothing parameters variable

4.2.2.4 Power

In Figure 4.11 on page 55 we report the heat maps of the Power π. Considering

the scenarios with data set const-step, we observe that the BH globally provides the

best performances.

The order m = 1 is suboptimal for ITP, BF and BFH. By increasing m in the

set {1, 2, 3, 4}, the power improves for all procedures. Furthermore, with the cubic

splines πBH essentially assumes unitary values (see Figure 4.12 on page 56).

If the data type is const-tricube, the Power does not provide interesting informa-

tion about the tested procedures. Indeed, the curves π assume very high values in

all cases. The causes are multiple. The tricube kernel mass is mostly concentrated

in the middle of its support [hinf , hsup], reaching higher mean values with respect

to the ones of data set const-step. Therefore, it is reasonable that the Power can be

not particularly informative since it is likely that in many instances at least one false

null hypothesis is rejected by all procedures. Speci�cally in the simulation setting

chosen and in general by construction, the Rejection Rate False null hypotheses ρ

measures in a more precise way the rate of true discoveries.
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Figure 4.11: Heat maps of the Power π as a function of p andm for the procedures In-
terval Testing Procedure (ITP), Benjamini-Hochberg (BH), Bonferroni-Holm (BFH),
Bonferroni (BF) and for the data sets const-step (populations of constant and step
functions) and const-tricube (populations of constant and tricube functions). In
heat maps the bright white is associated with the maximum value 1 and the red is
associated with the minimum value 0.
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Figure 4.12: Power π as a function of the number p of B -spline basis elements with
orders m = 1, 2, 3, 4. The data type is populations of constant and step functions.

In all scenarios we have observed that the performances of BFH are better than

expected. Indeed, also for high p, BFH is not highly conservative. This result could

be a consequence of the fact that, by construction of the univariate permutation

tests, the set of attainable p-values estimated with the Conditional Monte Carlo

algorithm is discrete (the Conditional Monte Carlo algorithm is described in 2.1). In

particular, the probability that a p-value is estimated as 0 is greater than zero. If a

p-value is 0, the adjustment of the p-value itself is ine�ective. The same applies to

the procedure BF.

It is worth to observe that for the procedures BH and BFH, the e�ective number

of tests is less than p. In fact, being both populations constant for x /∈ [hinf , hsup],

the p-values associated with the basis elements with null intersection between their

supports and [hinf , hsup] are roughly constant. Consequently since the �rst step for

these procedures is the ordering of the univariate p-values, in practice every set of

constant or very similar p-values is considerable as a single p-value.

In conclusion, it is possible to note that for the ITP it is better to choose p

relatively high. In particular, this is true also for high m in this simulation. If few

basis elements and a low order are chosen, the procedures BF and BFH constitute
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an equivalent alternative to ITP. For that reason, if the ITP is used, it could be

convenient to choose the number of basis elements as high as possible. Moreover, we

have observed that for functional data with discontinuities the best choice for the

ITP would seem the use of the cubic splines with a su�ciently high number of basis

elements. Finally in the scenarios with data set const-tricube, it is suggested to keep

low the order and it is not necessary to choose a high number of basis elements.

4.3 Smoothing Splines parameter variable

4.3.1 Introduction

The Smoothing B -splines are studied in the following simulations. We consider

also the Smoothing B -splines since they constitute an important tool usable for a

representation of the derivatives with speci�c constraints expressed in terms of a

penalty function. We investigate here how the smoothing parameter λ a�ects the

performances of the di�erent procedures.

The objective function chosen here is the Residual Sum of Squares RSS with

penalization on the second derivative (curvature) given by:

RSS (f, λ) =
N∑
i=1

{yi − f (xi)}2 + λ

ˆ {
f” (t)

}2
dt (4.1)

It can be proved that the minimizer fopt of (4.1) is given by the natural cubic splines

with knots coincident with the evaluation points of the observed data. For details

refer to Section 2.3. For exploratory reasons an hypothesis of this optimization

result can be on purpose violated. For instance, in simulations with non-null σnoise
the B -splines are not natural.

Firstly, two simulations with number of independent data sets generated ndata

equal to 1000 and null standard deviation of the additive Normal noise σnoise have

been performed. In the �rst simulation, the set of knots is di�erent from the grid

associated with the observed data while they coincide in the second simulation.

Secondly, since in most cases the Smoothing analysis is conceived for the reduction

of outer errors (measurement errors), we have considered also scenarios with σnoise
positive and variable where ndata is equal to 500 for each tested value of σnoise.

4.3.2 First simulation with σnoise = 0

Before the Smoothing, the observed datum is interpolated with natural splines. In

a �rst moment, the number of samples in output after interpolation has been chosen

equal to 2 · neval, where neval is the number of evaluations for each statistical unit

uniformly distributed in the domain D = [0, 2]. Then, the Smoothing is performed

using the basis B -spline. The number of basis elements p is coincident with the
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number of samples at disposal 2 · neval (Smoothing splines methods) and m is set to

4 (cubic splines). Therefore, the knots are located in the grid {x̃i}N=2·neval
i=1 composed

by uniformly distributed values in [0, 2]. This grid is di�erent from the original one

({xi}N=neval
i=1 composed by uniformly distributed values in [0, 2]). One assumption

of the result mentioned in 4.3.1 about the minimization of the cost functional RSS

is violated: the knots are placed in the starting evaluation points {xi}N=neval
i=1 . The

other hypotheses are satis�ed: the splines are natural and cubic. Since in the explored

scenarios the standard deviation of noise σnoise is zero and the statistical units are

constant at the endpoints, the interpolation preprocessing does not involve issues.

The parameters for the data set const-step are:

• hCSinf = 0.5

• hCSsup = 1.5

• Fixed e�ect (height of the step with support [hinf , hsup]): vCS = 0.15

The parameters for the data set const-tricube are:

• hCTinf = 0.5

• hCTsup = 1.5

• Maximum value of the symmetric tricube kernel with support [hinf , hsup]:

vCT = 0.22

hCSinf , h
CT
inf , h

CS
sup, h

CT
sup, vCS and vCT are chosen in the same manner in Regression

and Smoothing B -splines frameworks. The remaining parameters are:

• n1 = n2 = nunits = 30

• Number evaluations uniformly distributed in the common domain D = [0, 2]:

neval = 50

The values of the smoothing parameter are:

λ ∈
[
10−10, 1

]
with 100 uniformly distributed samples

Family Wise Error Rate

The results in terms of the Family Wise Error Rate FWER are reported in

Figure 4.13. The procedure BH does not control the FWER. Moreover, FWERBH

assumes larger values in scenarios with data set const-step.

It seems that also the procedures ITP, BFH and BF do not control the FWER.

Denote with σestimate the upper bound of the estimate variability 1√
ndata

obtained
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from the Normal approximation of the con�dence interval for the Binomial proportion

with α = 0.05 (for details refer to Section 3.3). Actually, the values of λ such that

FWERs − α >
1

√
ndata

= σestimate ≈ 3%, s ∈ {ITP, BF, BFH}

are very high and meaningless. A functional data reconstruction with λ too big

distort the estimate of the p-values and consequently also the computed metrics.

This e�ect is more marked if the regularity of data is low as in scenarios with data

set const-step which is discontinuous. Hence, we can con�rm that, for reasonable

values of the smoothing parameter λ, the procedures ITP, BF and BFH control the

FWER. It has been chosen such a wide set of values for the smoothing parameter

λ for an exploratory purpose.

−9.4 −8 −7 −5.8 −4.2 −3 −2 −0.61

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

log10(λ)

F
a
m

ily
 W

is
e
 E

rr
o
r 

R
a
te

const−step

ITP

BH

BFH

BF

−9.4 −8 −7 −5.8 −4.2 −3 −2 −0.61

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

log10(λ)

F
a
m

ily
 W

is
e
 E

rr
o
r 

R
a
te

const−tricube

Figure 4.13: Family Wise Error Rate FWER in simulations with σnoise = 0 and
ndata = 1000 doubling neval with interpolation.

Rejection Rate False null hypotheses

The Rejection Rate False null hypotheses ρ is reported in Figure 4.14. Indepen-

dently from the data set type, it holds

ρBF ≈ ρBFH , ρBH > ρs, s ∈ {ITP, BF, BFH}
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In scenarios with data set const-step, we observe:

• For λ approximately lower than 10−5, we have the following ordering:

ρBF ≈ ρBFH < ρITP < ρBH

The slope of the curves ρ is around 0 except for ρITP in the last part of the

interval
(
10−10, 10−5

)
where ρITP itself starts to decrease. Therefore, we have

low variability in this range of the smoothing parameter λ.

• For λ approximately greater than 10−5, the functions ρ are decreasing with

parabolic trend. The results of the procedures ITP and BFH (BF) are similar.

If the type of data set is const-tricube, we point out:

• The region
[
10−15, λ̃

]
(λ̃ ≈ 10−3), where the curves ρ have slope around 0

(also ITP di�erently from the scenarios with data set const-step), is longer with

respect to the scenarios with data set const-step. There is a global maximum

of ρBH near λ̂ = 10−2. For λ ≥ λ̂, the functions ρ are decreasing.

• For every value of the smoothing parameter λ, the performances obtained with

the procedures ITP and BFH (BF) are very similar.

These results are coherent with the nature of the data sets tested. With the discon-

tinuous data set const-step, it is reasonable that strong penalties (high λ) demote the

performances, particularly for the ITP. This e�ect is less evident for data set const-

tricube since this kind of data is more regular (the tricube kernel belongs to C9). In
particular, ρBH is maximized for a set of high values of the smoothing parameter λ.
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Figure 4.14: Rejection Rate False null hypotheses ρ in simulations with σnoise = 0
and ndata = 1000 doubling neval with interpolation
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Rejection Rate True null hypotheses

The results in terms of the Rejection Rate True null hypotheses γ are reported in

Figure 4.15. Consider the scenarios with data set const-step. For λ approximately

lower than λ̃ = 10−3, we observe the ordering

γBF ≈ γBFH < γITP < γBH

and the functions γ are approximately constant.

If λ ≥ λ̃, we note:

1. The curves γs with s ∈ {BF, BFH, BH} are increasing. In particular, this

trend characterizes the function γBH .

2. We have the following ordering:

γBF ≤ γBFH < γITP ≪ γBH

3. The function γITP attains its minimum values roughly for a set of high values

of λ; moreover, in this set the performances of ITP are very similar to the ones

obtained by the procedures BF and BFH.

If the data type is const-tricube, we observe:

1. It exists an interval
(

10−10, λ̃
)
in which the curves γ have zero slope. This

interval is more extended with respect to the one identi�ed in the framework

with data set const-step; this observation is valid also for ρ and π and it is

coherent with the regularity of the tested types of data set.

2. Similarly to the cases with data type const-step, we have the ordering

γBF ≤ γBFH < γITP ≪ γBH

3. For λ ≥ λ̃, the results are essentially comparable to the ones obtained with data

set const-step except for few di�erences: γBH assumes smaller values with data

set const-tricube and the set of minimum values of γITP is more pronounced.

The trend of FWER is similar to the one characterizing the Rejection Rate True null

hypotheses γ without the set of minimum values obtained for high λ, particularly in

scenarios with data type const-step.
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Figure 4.15: Rejection Rate True null hypotheses γ in simulations with σnoise = 0
and ndata = 1000 doubling neval with interpolation

Power

The Power π is reported in Figure 4.16. Firstly, we note that the results obtained

with the procedures BFH and BF are coincident.

For the data set const-step, except for really large values of λ, we have the

ordering:

πBF ≈ πBFH > πITP < πBH

For very high values of λ, we have

πBF ≈ πBFH ≈ πITP

Moreover, it exists a common λ̂ ≈ 10−2 where πBF , πBFH , πITP are locally maxi-

mized.

In scenarios with data set const-tricube, we observe that the curves π have ap-

proximately unitary values until λ ≈ 10−2. Due to the nature of the data set const-

tricube, the Power π could be an imprecise index since the mass of the tricube kernel

is mainly concentrated in the middle of the interval [hinf , hsup] where H0 is false.

Therefore, it is plausible that at least one false null hypotheses is rejected by all

procedures. For λ ≥ 10−2, the functions are decreasing and in particular

πBH > πs with s ∈ {ITP, BF, BFH}
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Figure 4.16: Power π in simulations with σnoise = 0 and ndata = 1000 doubling neval
with interpolation

4.3.3 Second simulation with σnoise = 0

For comparison and check, we performed a simulation with the same parameters

as the previous one without doubling the number of evaluations neval (neval is directly

set to 100). In this way, the grid of interpolated data with natural splines is coincident

with the grid associated with the original data. Therefore, the hypotheses of the cost

functional minimization result reported in Section 2.3 are satis�ed.

Family Wise Error Rate

The results in terms of the Family Wise Error Rate FWER are reported in Figure

4.17. Consider the scenarios with data set const-step. Contrary to the preceding

simulation, we observe:

• The procedure BH does not control the FWER also for low values of the

smoothing parameter λ; this trend is not distinctive of γ even if the control for

this metric is not guaranteed.

• Taking into account the variability of the metric estimate, it can be seen that

the ITP, BFH and BF control the FWER for almost every λ. In particular

roughly for λ ≤ 10−2 we have

FWERs (λ) ≤ α+
1

√
ndata

= α+ σestimate, s ∈ {ITP, BFH, BF}

• For all procedures, we note a set of minimum values of the FWER approxi-

mately in the interval
(
10−7, 10−3

)
. This trend is less marked for the ITP, in

particular with respect to BH.
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Figure 4.17: Family Wise Error Rate FWER in simulations with σnoise = 0 and
ndata = 1000 without doubling neval with interpolation

Rejection Rate False null hypotheses, Rejection Rate True null hypotheses

and Power

The Rejection Rate False null hypotheses ρ, Rejection Rate True null hypotheses

γ and Power π are reported in the Figure 4.18.

In scenarios with data type const-step, an important di�erence with respect to

the previous simulation is that, in terms of ρ and for low values of λ, the results of the

procedures ITP and BH are analogous. The same applies for γ and π; in particular for

the Power π the statement includes also the procedures BFH and BF. In particular,

for low λ, the power is unitary for all procedures. This outcome is reasonable since

the data set const-step is not regular, being discontinuous. Moreover, the standard

deviation of noise σnoise is zero.

The performance improvement of the ITP could be explained referring to the

result mentioned in 4.3.1 about the minimization of the cost functional (4.1). In the

previous simulation, the interpolation has been performed doubling the number of

initial evaluations neval. Hence, the grid for Smoothing was {x̃i}N=2·neval
i=1 composed

by uniformly distributed values in [0, 2]. Consequently one assumption of the pre-

viously mentioned result is violated: the knots are placed in the starting evaluation

points {xi}N=neval
i=1 composed by uniformly distributed values in [0, 2]. The ITP

seems the most in�uenced procedure by this hypothesis violation among the tested

procedures. This may be due to the fact that the ITP explores the ordered structure

in space of the B -spline basis components. Each adjusted p-value is determined by

the multivariate p-values with null hypothesis of the associated test implying the

null hypothesis related to the adjusted p-value itself. It should be remembered that

the tests are expressed in terms of the basis coe�cients. We have an univariate test

for each coe�cient. Moreover, since the B -spline basis expansion is used we have
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localization in space and, hence, there could be a strong relationship between the

functional reconstruction and the trend of the adjusted p-values. In some cases, we

have observed a parabolic shape of the ITP adjusted p-values with few of them be-

low the signi�cance level α among the p-values associated with false null hypotheses.

Thefore, in general for the ITP the Smoothing would seem crucial.

Regarding the cases with data set const-tricube, there are not important di�er-

ences compared to the previous simulation.
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Figure 4.18: Rejection Rate False null hypotheses ρ, Rejection Rate True null
hypotheses γ and Power π in simulations with σnoise = 0 and ndata = 1000 without
doubling neval with interpolation
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4.3.4 Simulations with σnoise > 0 variable

The problem of the biased functional estimates obtained with Smoothing at the

endpoints of the domain (phenomenon called �edge e�ect�) is generally solved using

the natural and cubic splines with knots coincidents with the sampling points of

the observed data assuming that the cost function is (4.1). However, since we are

interested in the comparison among the tested procedures and the statistical units

are constant at the endpoints of the domain, we have not used the natural splines for

an exploratory purpose. Hence, the Smoothing is directly performed on the discrete

data with order m = 4 (cubic splines) and the knots are placed in the original grid.

The values of the smoothing parameter λ and of the standard deviation of noise

σnoise are:

λ ∈
[
10−7, 1

]
with 25 uniformly distributed samples; σ ∈ {0.01, 0.03, 0.06, 0.09}

The other parameters are �xed in the same way as in the previous simulation.

4.3.4.1 Family Wise Error Rate

The results in terms of the Family Wise Error Rate FWER are reported in Fig-

ure 4.19. Firstly independently from the data type, we observe that the procedure

BH does not control the FWER for high λ. It is the same for low λ when σnoise
is su�ciently high (σnoise ≥ 0.06) which is reasonable since the Smoothing is funda-

mentally conceived for the reduction of measurement errors. As noted in the previous

simulations, there exists an interval where FWERBH ≤ α and, in accordance with

the regularity of the data tested, it is more extended on the right side if the data

type is const-tricube.

Taking into account the variability of the estimate, it can be stated that ITP, BF

and BFH control the FWER in scenarios with data set const-step (excluding high

values of λ) and const-tricube (for all λ).

In general, the FWER is higher in scenarios with data set const-step, in partic-

ular for FWERBH .
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Figure 4.19: Family Wise Error Rate FWER in simulations with σnoise > 0 variable
and ndata = 500 for each tested value of σnoise
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4.3.4.2 Rejection Rate False null hypotheses

The Rejection Rate False null hypotheses ρ is reported in Figure 4.20. Consider

the cases with data set const-step. BH is the procedure with the best performances.

By increasing σnoise, the curve ρBH tends to be characterized by a parabolic trend

with maximum values for intermediate λ. On the contrary, ρITP is always maximized

for low λ and it is decreasing in λ. By increasing σnoise, ρITP decays in λ more slowly.

In general, the following ordering holds:

ρBF ≈ ρBFH ≤ ρITP ≤ ρBH

Di�erently from the previous simulation, for low λ the performances of ITP and

BH are not equivalent, probably because the splines are not natural. Furthermore,

we note the same trend of ρBH for the curves ρBFH and ρBF .

As far as concerns the scenarios with data set const-tricube, in the �rst place we

observe that the results of the procedures ITP, BF and BFH are similar; the unique

cases in which some di�erences can be observed are for low λ and high σnoise. The

tendency of the functions ρITP , ρBFH , ρBF is characterized by a �rst region where

the slope is approximately zero (except for low λ and high σnoise) followed by a

last part (high λ and hence strong penalties) where it can be observed a decay. The

same basically holds for the procedure BH except that there exists a set of maximum

values of ρBH for very high λ independently from the power of noise σ2noise.
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Figure 4.20: Rejection Rate False null hypotheses ρ in simulations with σnoise > 0
variable and ndata = 500 for each tested value of σnoise

69



Simulations with Smoothing parameters variable

4.3.4.3 Rejection Rate True null hypotheses

The results in terms of the Rejection Rate True null hypotheses γ are reported

in Figure 4.21. We observe that:

• By increasing σnoise and for small and intermediate λ, the curves γ decrease.

This result is reasonable since the univariate p-values generally increase by

augmenting the standard deviation of noise σnoise.

• The following ordering holds:

γBF ≈ γBFH ≤ γITP ≤ γBH

• γITP is minimized for high λ with performances comparable to the BFH and

BF procedures. The set of the minimum values is more pronounced in scenarios

with data set const-tricube.

• The functions γBH , γBFH , γBF are increasing and they tend to assume larger

values if the data type is const-step. In particular, the maximum values as-

sumed by the function γBH are markedly larger in scenarios with data set

const-step. Except for really high λ, the curves γBFH , γBF assume null values.
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Figure 4.21: Rejection Rate True null hypotheses γ in simulations with σnoise > 0
variable and ndata = 500 for each tested value of σnoise
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4.3.4.4 Power

The Power π is reported in �gure Figure 4.22. Despite the data type, we have

πBF ≈ πBFH ≈ πITP .

In scenarios with data set const-step, the functions πITP , πBFH , πBF are decreas-

ing and this is less evident increasing σnoise. On the contrary, πBH is decreasing only

for really high λ. In the other cases BH is constant independently from σnoise. Fur-

thermore, BH is the most powerful procedure.

For the data type const-tricube, the functions π are constant with unitary value

except for very high λ. For very high λ (independently from the power of noise

σ2noise), the functions π are decreasing with πBH > πs with s ∈ {ITP, BF, BFH}.
Varying the standard deviation of noise σnoise, does not lead to particular trend

di�erences.
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Figure 4.22: Power π in simulations with σnoise > 0 variable and ndata = 500 for
each tested value of σnoise.

73



Simulations with Data parameters variable

In general it is possible to note that, in terms of ρ, the ITP is the procedure

most prone to degradation of the performances due to violations of the assumptions

of the cost functional minimization result brie�y mentioned in 4.3.1. In detail, the

violated assumptions are the placing of the knots in the evaluation points of the

observed data (�rst simulation with σnoise = 0) and the use of the natural splines

(simulations with σnoise > 0 variable). This result should not be interpreted as a

negative fact. Instead, it is an useful result regarding the use of the ITP. If we know

a theoretical result such as the one reported in Section 2.3 for Smoothing splines

method or guidelines tailored for a particular Smoothing method, for ITP it would

seem strongly recommended the application of these results.

On the other hand, in the simulation with parameters m and p (respectively

the order and the number of the B -spline basis elements), we have observed that

the tuning of the parameters m and p is critical. In fact, for functional data with

discontinuities the best choice in terms ρ for the ITP would seem the use of the cubic

splines with a su�ciently high number of basis elements. This result was not easily

predictable a priori because we expected that the unitary order would have been

the best one for the functional reconstruction of a step, as it has been for the BH

method.

Finally based on the obtained results, the learned message is that for the ITP it is

highly recommended to apply, if available, theoretical results or best practices for the

used Smoothing method. Alternatively, it is possible to use the purely nonparametric

inferential procedure Interval-wise test (Pini and Vantini, 2015a) which does not

require the use of a basis expansion (for details refer to Section 1.2).

Simulations with Data parameters variable

In the second part of this simulation study we investigate the performances of

ITP depending on the Data parameters. In Section 4.4, we focus on parameters

number of evaluations neval and standard deviation of the additive Normal σnoise.

In Section 4.5, we focus on parameter number of statistical units nunits.

4.4 Number of evaluations neval and standard deviation

of noise σnoise variable

4.4.1 Introduction

In the previous simulations, we have analyzed the performances of the tested

procedures by varying the Smoothing parameters which are arbitrarily tunable in

applications. However, we are also interested in exploring how the performances

depend on Data parameters, even if they could not be controllable in real situations.
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4.4. Number of evaluations neval and standard deviation of noise σnoise variable

In this simulation, the variable parameters are the number of functional evaluations

neval and the standard deviation of the additive Normal noise σnoise.

For each value of neval, ndata independent data sets are generated from the const-

step and const-tricube models, where for each statistical unit neval evaluations are

uniformly distributed in the domain D = [0, 2]. Then, for each value of σnoise and

for each data set, a local Normal noise with zero mean and standard deviation σnoise
is added independently to each point.

4.4.1.1 Values of the parameters

The common parameters in both scenarios with data set const-step and const-

tricube are:

• Number functional evaluations: neval = {50, 100, . . . , 500}.

• Standard deviation additive Normal noise: σnoise = {0, 0.022, . . . , 0.2}.

• Number statistical units: nunits = n1 = n2 = 30.

• B -spline order: m = 4.

• Number basis elements: p = 50.

• Number data sets generated: ndata = 1000.

In scenarios with data set const-step, the parameters are:

• hCSinf = 0.5

• hCSsup = 1.5

• vCS = 0.15

In scenarios with data set const-tricube, the parameters are:

• hCTinf = 0.5

• hCTsup = 1.5

• vCT = 0.22

In the following we report the heat maps that, if need be, are alternated with a

selection of the standard graphics (i.e., metric as a function of σnoise with �xed neval
or vice versa) and general comments about the observed trends. For completeness,

all the standard graphics divided according to the type of data (const-step and const-

tricube) are reported in Appendix B.
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4.4.2 Results

The simulation results are presented by means of suitable heat maps which repre-

sent the values of a metric by varying both parameters σnoise and neval. In this way a

direct comparison between the scenarios with data sets const-step and const-tricube

can be achieved.

For each data type (const-step or const-tricube) and metric (Family Wise Error

Rate FWER, Rejection Rate False null hypotheses ρ, Rejection Rate True null hy-

potheses γ, Power π), we have a plot with four subgraphs. Each subgraph is the

representation through an heat map of a metric for one of the tested procedures (In-

terval Testing Procedure (ITP), Benjamini-Hochberg (BH), Bonferroni-Holm (BFH),

Bonferroni (BF)). In heat maps the bright white is associated with the maximum

value 1 and the red is associated with the minimum value 0. When needed, contour

lines are added to ease the comparison between the di�erent graphics.

4.4.2.1 Family Wise Error Rate

In Figure 4.23 on page 78 we report the heat maps of the Family Wise Error

Rate FWER. Independently from the data type, the functions FWERBF and

FWERBFH globally assume lower values than FWERITP and FWERBH . More-

over, the results provides by BFH and BF are basically coincident and FWERBFH(BF )

assumes higher values in noisy scenarios.

In general for each procedure, the trend of the FWER is independent from the

data type.

BF, BFH and ITP control the FWER in all cases (net of the upper bound of

the estimate variability σestimate (α) = σestimate = 1√
ndata

≈ 0.032; for details refer

to Section 3.3). The control of the FWER provided by the ITP is on intervals. This

kind of control of the FWER is intermediate between the strong (typical of the BF

and BFH) and the weak ones. By construction of the ITP adjustment p-values phase

(recycled version of the family composed by all possible interval-wise tests explained

in Pini and Vantini, 2013), the union of intervals [0, hinf )∪ (hsup, 2], where the null

hypothesis is true, can be considered as a unique interval.

As expected, BH does not control the FWER (it controls the False Discovery

Rate, implying only a weak control of the FWER). The trend of FWERBH as a

function of σnoise is parabolic, and by augmenting neval, the points where FWERBH

is maximized increase.
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4.4. Number of evaluations neval and standard deviation of noise σnoise variable

From Figures 4.24, 4.25, we note that it exists a value of the standard deviation

of noise σ̃noise above which the FWER of the ITP is lower than the one of BF

and BFH procedures. By augmenting neval, it can be observed that σ̃noise increases.

FWERITP is non-increasing in σnoise and, on the contrary, FWERBFH , FWERBH

are non-decreasing in σnoise.

In the simulation study in Pini and Vantini, 2013 regarding the Component Wise

Probability of Rejection (i.e, the Component Wise Error Rate for components with

true null hypothesis and the Component Wise Power for components with false null

hypothesis), it has been observed that, if it is identi�ed a signi�cant interval with

the procedure BH, no distinction is generally made among the di�erent components.

Instead, the ITP maximizes the true discoveries in the middle of a signi�cant interval

and it presents a true discovery rate decays at the borders of the signi�cant interval

itself. This property is due to the capability of the ITP to explore the ordered

structure of the basis expansion used.

We noted that, by augmenting σnoise, the univariate p-values and consequently

also the adjusted p-values increase. Due to the ability of the ITP to exploit the

ordered structure in space of the B -spline basis expansion, this trend of the p-values

can involve the decreasing of the FWERITP when the power of noise σ2noise is aug-

mented. On the contrary for BH, for comparable values of neval and σnoise, there

could be di�culties in its ability to detect uniformly a signi�cant interval and, conse-

quently, we observe a parabolic trend of the curve FWERBH as a function of σnoise
with maximum value increasing in neval.

When σnoise is high, it is better to have few evaluations neval for BH in terms of

FWER. In contrast, by increasing σnoise, the curve FWERITP is non-increasing

for every neval.
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Figure 4.23: Heat maps of the Family Wise Error Rate FWER as a function of σnoise
and neval for the procedures Interval Testing Procedure (ITP), Benjamini-Hochberg
(BH), Bonferroni-Holm (BFH), Bonferroni (BF) and for the data sets const-step
(populations of constant and step functions) and const-tricube (populations of con-
stant and tricube functions). In heat maps the bright white is associated with the
maximum value 1 and the red is associated with the minimum value 0.
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Figure 4.24: Family Wise Error Rate FWER as a function of the standard deviation
of noise σnoise with number of evaluations neval = 50, 150, 250, 500. The data type
is populations of constant and step functions.
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Figure 4.25: Family Wise Error Rate FWER as a function of the standard deviation
of noise σnoise with number of evaluations neval = 50, 150, 250, 500. The data type
is populations of constant and tricube functions.
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4.4.2.2 Rejection Rate False null hypotheses

In Figure 4.26 on page 81 we report the heat maps of the Rejection Rate False null

hypotheses ρ. In general for each procedure and for each data type, ρ is characterized

by constant values for low σnoise, and by a decay fo intermediate and high σnoise.

By increasing neval the region presenting constant values of ρ tends to be enlarged.

Consider the scenarios with data set const-step. From the countour lines (more

clearly from Figure 4.27 on page 82), it is possible to observe the following ordering:

ρBF < ρBFH < ρITP ≤ ρBH

For very high values of σnoise, the performances of all procedures are comparable.

For high σnoise, we have ρITP ≈ ρBH > ρs, s ∈ {BFH, BF}. By increasing neval,

the interval of the form [0, σ̃noise], where the di�erence ρBH−ρITP is positive, tends

to expand.

The ITP has good performances for low neval and low σnoise. In particular for

σnoise ∈ (0, 0.04), the point where ρITP is maximized is neval = 100 (see Figure B.4

on page 126). In these scenarios, we have that the performances of ITP and BH

are equivalent and in general the slope of the curves ρ are roughly null. Instead by

augmenting σnoise, the curves ρ tend to be more and more increasing in neval. For

high σnoise, the procedures with the best performances are ITP and BH, and the

results obtained with these procedures are equivalent.

In scenarios with data set const-tricube, for low σnoise, di�erently from the sce-

narios with data set const-step, BFH provides higher values of ρ than ITP. However,

for high σnoise the procedures with the best performances are still ITP and BH. The

results obtained with these procedures are comparable, in particular for very high

σnoise. Finally, in general the BH procedure provides the best results.

The quantity
n2
eval

σ2
noise

can be interpreted as the ratio between the Power of Signal

and the Power of Noise (Sound to Noise Ratio SNR). When σnoise is low, the SNR

is high also for low neval and all procedures are characterized by good performances.

On the contrary, starting from a certain value of σnoise, the SNR is increasing in

neval and all procedures provide better performances by augmenting the number of

evaluations neval. Interpreting the results in terms of SNR is an equivalent way to

look at the slope changes of the curves ρ by varying the parameters of interest neval
and σnoise; for low values of σnoise, independently from neval, the slope of the curves

ρ is roughly zero and ρ assumes high values; for intermediate and high σnoise, the

curves ρ are non-decreasing in neval and they generally assume lower values.
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Figure 4.26: Heat maps of the Rejection Rate False null hypotheses ρ as a function
of σnoise and neval for the procedures Interval Testing Procedure (ITP), Benjamini-
Hochberg (BH), Bonferroni-Holm (BFH), Bonferroni (BF) and for the data sets
const-step (populations of constant and step functions) and const-tricube (popula-
tions of constant and tricube functions). In heat maps the bright white is associated
with the maximum value 1 and the red is associated with the minimum value 0.
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Figure 4.27: Rejection Rate False null hypotheses ρ as a function of the standard
deviation of noise σnoise with number of evaluations neval �xed. The data type is
populations of constant and step functions.
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Figure 4.28: Rejection Rate False null hypotheses ρ as a function of the standard
deviation of noise σnoise with number of evaluations neval = 50, 150, 250, 500. The
data type is populations of constant and tricube functions.
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4.4.2.3 Rejection Rate True null hypotheses

In Figure 4.29 on page 84 we report the heat maps of the Rejection Rate True

null hypotheses γ. For both data types const-step and const-tricube, γBFH and γBF
assume very low values around 0 and, for every neval, γITP and γBH are decreasing

in σnoise. The decay of the curves γITP and γBH observable by increasing σnoise is

slower by augmenting neval, trend coherent with the high values of ρ obtained for

low and intermediate σnoise and for su�ciently high neval. Moreover, the functions

γITP and γBH decrease by diminishing both neval and σnoise.

In scenarios with data set const-step from Figure 4.30 on page 85 it can be

observed that it exists a value of the standard deviation of noise σ̃noise dependent

from neval beyond which the ITP outperforms BH. By increasing neval, in the same

way as ρ, σ̃noise tends to increase. For all graphics see Figure B.6 on page 128.

We observe the same tendencies in scenarios with data set const-tricube. From

the graphics in Figure 4.31 on page 85 by increasing the power of noise σ2noise, the

improvement - absolute and with respect to BH - of the ITP performances is dis-

cernible. In particular, for high σnoise, we have γITP ≈ γBF ≈ γBFH ≈ 0. This

trend is interesting for ITP since, in the same cases, the performances in terms of ρ

of the ITP and BH are comparable. By increasing neval, γITP as a function of σnoise
decreases more slowly. For all graphics refer to Figure B.14 on page 137.
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Figure 4.29: Heat maps of the Rejection Rate True null hypotheses γ as a function
of σnoise and neval for the procedures Interval Testing Procedure (ITP), Benjamini-
Hochberg (BH), Bonferroni-Holm (BFH), Bonferroni (BF) and for the data sets
const-step (populations of constant and step functions) and const-tricube (popula-
tions of constant and tricube functions). In heat maps the bright white is associated
with the maximum value 1 and the red is associated with the minimum value 0.
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Figure 4.30: Rejection Rate True null hypotheses γ as a function of the standard
deviation of noise σnoise with number of evaluations neval = 50, 250, 450, 500. The
data type is populations of constant and step functions.
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Figure 4.31: Rejection Rate True null hypotheses γ as a function of the number of
evaluations neval with �xed standard deviation of noise σnoise = 0, 0.04, 0.09, 0.013.
The data type is populations of constant and tricube functions.
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4.4.2.4 Power

In Figure 4.32 on page 87 we report the heat maps of the Power π. Firstly, we

observe that the general tendencies of the curves πBF and πBFH are very similar for

both data types const-step and const-tricube.

Consider the scenarios with data set const-step. For neval ∈ (50, 100), from the

countour lines we observe the ordering πITP < πBF ≈ πBFH ≈ πBH . The trend of

curves π, similarly to ρ, is characterized by constant values for low σnoise (region 1),

and by a decay for intermediate and high σnoise (region 2).

For neval > 100 except for πBH whose trend remains unchanged, the functions

πITP , πBFH and πBF are parabolas with maximum values obtained for intermediate

σnoise. Additionally, it holds πITP < πBF ≈ πBFH ≤ πBH and, in particular,

πBFH(BF ) < πBH for low σnoise.

From the simulation results concerning the parameters order m and number p

of the B -spline basis elements (consult Section 4.2), we expect that the positive

di�erence πBFH(BF )−πITP vanishes for p su�ciently high. Indeed in the simulation

with parameters m and p, we observed that for the ITP it is better to choose the

number of basis elements p su�ciently high and the cubic splines (m = 4). In this

simulation we have used the cubic splines and p has been always chosen equal to 50

which is rather low considering that the minimum and the maximum tested values

of neval are nmineval = 50 and nmaxeval = 500.

Finally, the results of all procedures are comparable when σnoise is very high.

When neval is very high, the curves π are parabola with small curvature; hence, π

have slope roughly null. For all graphics see Figures B.7, B.8.

In scenarios with data type const-tricube, independently from neval and for low

σnoise, the values of the Power are essentially unitary. The trend of π for all proce-

dures is characterized by constant values for low σnoise (region 1) and by a decay for

intermediate and high σnoise where we have the ordering πITP < πBF ≈ πBFH ≤
πBH (region 2). By augmenting neval, it can be observed an enlargement of region

1, π tends to decrease more slowly in region 2 and the results of all procedures are

more and more similar. For all graphics see Figures B.15, B.16.

In several simulations we observed that, by construction of the simulation setting

with data type const-tricube and by de�nition of the Rejection Rate False null hy-

potheses ρ and of the Power π, π is less precise in evaluating the true discoveries rate

and interesting than ρ. Finally, in the same way as ρ, we observe that the results of

π can be interpreted in terms of the Sound to Noise Ratio SNR given by
n2
eval

σ2
noise

.
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4.4. Number of evaluations neval and standard deviation of noise σnoise variable

Figure 4.32: Heat maps of the Power π as a function of σnoise and neval for the proce-
dures Interval Testing Procedure (ITP), Benjamini-Hochberg (BH), Bonferroni-Holm
(BFH), Bonferroni (BF) and for the data sets const-step (populations of constant and
step functions) and const-tricube (populations of constant and tricube functions). In
heat maps the bright white is associated with the maximum value 1 and the red is
associated with the minimum value 0.
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4.5 Number of statistical units nunits variable

4.5.1 Introduction

In this study the Data parameter of interest is the number of statistical units

nunits. We assume that the the number of statistical units is the same for the two

populations which could be of type const-step (populations of constant and step

functions) or const-tricube (populations of constant and tricube functions).

ndata independent data sets are generated with maximum number of statistical

units nmaxunits among the tested values of nunits. For each tested value of nunits and for

each generated data set, the �rst nunits functions of the current data set are selected.

4.5.2 Results

The common parameters in both scenarios with data sets const-step and const-

tricube are:

• Number statistical units: nunits = n1 = n2 ∈ {10, . . . , 100}.

• Order B -spline basis: m = 4.

• Number basis elements : p = 40.

• Number functional evaluations: neval = 150. The functional evaluations are

uniformly distributed in the domain D = [0, 2].

• Standard deviation additive Normal noise: σnoise = 0.05

• Number data sets generated: ndata = 1000.

In scenarios with data set const-step, the parameters are:

• hCSinf = 0.6

• hCSsup = 1.4

• vCS = 0.13

In scenarios with data set const-tricube, the parameters are:

• hCTinf = 0.6

• hCTsup = 1.4

• vCT = 0.19
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Family Wise Error Rate

The results in terms of the Family Wise Error Rate FWER are reported in Figure

4.33. In the �rst place, we observe that BH does not control the FWER. In scenarios

with data set const-step and for all values of nunits, we have FWERBH > α = 0.05;

FWERBH is markedly non-decreasing; the same trend can be observed in scenarios

with data set const-tricube even if it is less marked. Coherently with the theory, the

contrary holds for ITP, BF and BFH.

For both data types const-step and const-tricube, we have the ordering

FWERBF ≤ FWERBFH < FWERITP < FWERBH

If the data set is const-step, we note:

1. The di�erence FWERBFH − FWERBF ≥ 0 is negligible.

2. FWERBFH , FWERBF are essentially non-decreasing. However, FWERBFH

and FWERBF assume low values.

If the data set is const-tricube, we observe:

1. FWERBFH ≈ FWERBF and the di�erence FWERITP −FWERBFH(BF ) is

greater with respect to the scenarios with data set const-step.

2. FWERBFH and FWERBF have null slope and assume values near 0.
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Figure 4.33: Family Wise Error Rate FWER tuning the number of statistical units
nunits in the �rst simulation
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Rejection Rate False null hypotheses

The Rejection Rate False null hypotheses ρ is reported in Figure 4.34. Firstly,

the results obtained with the procedures BFH and BF are coincident.

For all procedures the performances are worse with data set const-tricube, espe-

cially for ITP. The tricube kernel has the most part of the mass concentrated in the

middle of its support [hinf , hsup] where the null hypotheses is false. Therefore, it

turns out that the ITP is disadvantaged since it tends to maximize the true discov-

eries in the middle of [hinf , hsup] and the contrary holds at the edges of the same

interval (consult the simulation study in Pini and Vantini, 2013). However, for nunits
su�ciently big, the performances of ITP and BFH (BF) are equivalent. Furthermore,

we observe that BH provides the best performances:

ρBH > ρs, s ∈ {ITP, BFH, BF}

In scenarios with data type const-step, it exists a value of nunits beyond which

the ITP outperforms the BF and BFH. Moreover, the performances of ITP and BH

are comparable in the set nunits ∈ (50, 70).
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Figure 4.34: Rejection Rate False null hypotheses ρ tuning the number of statistical
units nunits in the �rst simulation

Rejection Rate True null hypotheses

The results in terms of the Rejection Rate True null hypotheses γ are reported

in Figure 4.35. In scenarios with data set const-step, the following ordering holds:

0 ≈ γBF ≈ γBFH < γITP < γBH

When the data set type is const-tricube, unlike the cases with data set const-step,

the results of the procedures ITP and BH are very similar.
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In general γITP and γBH tend to be non-decreasing with minimum assumed for

nunits = 20. The ITP performances are better in scenarios with data set const-step.
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Figure 4.35: Rejection Rate True null hypotheses γ tuning the number of statistical
units nunits in the �rst simulation

Power

The Power π is reported in Figure 4.36. There are no particular di�erences

between the cases with data set const-step and const-tricube.

For all procedures, by increasing nunits, this metric rapidly reaches the unitary

value, especially if the data type is const-tricube. The results obtained with the

procedures BH, BFH and BF are essentially coincident and they are better than the

ones of the ITP.
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Figure 4.36: Power π tuning the number of statistical units nunits in the �rst simu-
lation
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In conclusion, we observe that the number of statistical units is not a critical

parameter in the sense that good performances in terms of Rejection Rate False Null

hypotheses and especially Power are achieved by all methods with moderate values

of this parameter. Particularly signi�cant patterns of the evaluation metrics have

not been observed.
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Conclusions

The general research interest of this thesis has been the Inference in the Func-

tional Data Analysis framework. In detail, the attention has been focused on infer-

ential methods provided with the domain selection property, i.e., methods able to

select the statistically signi�cant intervals of the domain.

The contribution of this thesis has been the exploration of the Interval Testing

Procedure properties through a suitable simulation study. In short, the aim of the

simulation study was the evaluation of the Interval Testing Procedure performances

compared with the Benjamini-Hochberg, Bonferroni-Holm and Bonferroni ones by

varying:

• The data set type: populations of constant and step functions (data set const-

step) and populations of constant and tricube functions (data set const-tricube).

• The parameters of interest: the order m and the number p of B -spline basis

elements, and the smoothing parameter λ (Smoothing parameters); the number

of functional evaluation neval and the standard deviation of the additive Normal

noise σnoise, and the number of statistical units nunits (Data parameters).

• The Smoothing method: Regression or Smoothing splines using the B -spline

basis expansion

The performances of the methods have been evaluated by means of the metrics

Family Wise Error Rate, Rejection Rate False null hypotheses, Rejection Rate True

null hypotheses and Power. The fundamental matter was the measure of the ability to

make true discoveries between Interval Testing Procedure and Benjamini-Hochberg,

knowing that the former procedure controls the Family Wise Error Rate on intervals

and the latter procedure ensures only a weak control of the Family Wise Error Rate.

We have adopted a simulation approach because we wanted to gain insights into the

use of the B -spline basis expansion considering both the Regression and Smoothing

splines methods in quite di�erent scenarios with data type const-step and const-

tricube. We have chosen these types of data set for the totally di�erent degree of

regularity that distinguishes them.
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Conclusions

The code for the simulations has been implemented in R using fdatest and fda

packages. The construction of the combining matrix is the most computationally

expensive task in the Interval Testing Procedure algorithm for the Two-population

framework. In order to improve the execution times, the construction of the com-

bining matrix has been implemented in C, and this result has been integrated in the

fdatest source code. In this way a speedup over the original implementantion equal

to around 60x has been obtained. This result is useful both for simulations, where

the Interval Testing Procedure must be applied several times for each value of the

parameter under analysis, and for scenarios where it is reasonable to choose a high

number of basis elements p. Finally, the used implementation of the Interval Testing

Procedure directly works on an object of the functional data class. Therefore, the

Smoothing is entrusted to the user avoiding subjective choices which had to be taken

automatically in the original version of fdatest.

We have observed that for functional data with discontinuities, for Interval Test-

ing Procedure the best choice would seem the use of the cubic splines with a su�-

ciently high number of basis elements. In these scenarios, the performances of Inter-

val Testing Procedure and Benjamini-Hochberg are equivalent in terms of Rejection

Rate False null hypotheses. This result shows that for Interval Testing Procedure

the choice of the order and of the number of basis elements can be a critical and

manageable problem. Indeed, the optimality of the cubic splines for Interval Testing

Procedure was not easily predictable a priori because we expected that the unitary

order would have been the best one for the functional reconstruction of a step, as

it has been for the Benjamini-Hochberg procedure. However, in several simulations

we observed that the Rejection Rate False null hypotheses is, essentially due to its

de�nition and to the simulation setting, a more precise measure of the ability to

make true discoveries than the Power. In general we have also noted that for Inter-

val Testing Procedure it is better to choose the number of basis elements relatively

high, to avoid losing information a priori.

If we consider the more regular data set const-tricube, the performances in terms

of Rejection Rate False null hypotheses of all tested procedures are generally worse

than in the cases with data set const-step. This result has been observed in all types

of simulations and it is probably due to the non-uniform distribution of the tricube

kernel mass which is mostly concentrated in the center of the support of the tricube

kernel itself (the null hypothesis is false in the support of the tricube kernel). The

best order is the unitary one (constant splines) for all procedures. In general with

data set const-tricube, it is suggested to keep low the order and it is not necessary to

choose a high number of basis elements in order to achieve optimality in terms of the

ability to make true discoveries (metrics Rejection Rate False null hypotheses and

Power). Also this result was di�cult to predict a priori. We expected that higher

orders would have been optimal due to the regularity of the tricube kernel.
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Conclusions

In general for Interval Testing Procedure, we have noted that the Smoothing

must be performed carefully. At the same time, we have seen that suitably chosing

the order and the number of basis elements, it is possible to achieve performances

equivalent to the ones obtained with Benjamini-Hochberg procedure in terms of

ability to make true discoveries. For instance in scenarios with data set const-step,

chosing the cubic splines and the number of basis elements su�ciently high the

performances of Interval Testing Procedure and of Benjamini-Hochberg procedure

are equivalent in terms of Rejection Rate False null hypotheses.

The evaluation of the Smoothing e�ects on the inferential analysis is an open

issue. Indeed, analytic expression of functional data is rarely directly available.

More often, we only observe possibly noisy point-wise evaluations of data. Hence, a

Smoothing method has to be applied, even if a basis expansion is not theoretically

required by the adopted inferential procedure such as, for instance, the Interval-wise

test proposed in Pini and Vantini (2015a). In Functional Data Analysis, the ap-

proach called in Zhang and Chen (2007) �Smoothing �rst, then estimation� is widely

adopted. The data used for the analysis are reconstructions of the underlying func-

tional data obtained with a Smoothing method. In the work of Zhang and Chen

(2007), the authors report mild conditions under which the information loss, due to

substitution of the underlying functional data with their reconstructions obtained

with the Local Polynomial Kernel Smoothing method, is negligible. In Vsevolozh-

skaya et al. (2014), authors a�rm that a low quality approximation of the observed

data with smooth functions can entail a loss of statistical power and they report

general Smoothing guidelines which are contributions from other works (Rice and

Wu, 2001; Griswold and Gomulkiewicz, 2008). In Corain et al. (2014), it is claimed

that understanding how the application of the Smoothing method a�ects the perfor-

mances of the testing procedures is an open and challenging issue about which little

is known. In Melas et al. (2014) the unique adressed topic is the optimal choice of

the number of empirical Fourier coe�cients for comparison of regression curves.

The main problem of the Smoothing is that general aspects are di�cult to argue

since there is always a certain degree of subjectivity. For example, the results pre-

sented in Zhang and Chen (2007) are general only in the Local Polynomial Kernel

Smoothing framework. The usual approach is to follow best practices tailored for

a speci�c Smoothing method. The best practices can be obtained via an analytical

study or by a simulation study.

A possible future development is the study of the Interval Testing Procedure

properties by means of an analytical study in the B -spline basis expansion frame-

work, or of an another simulation study in a new Smoothing framework such as

a Kernel Smoothing method. Another future development could be the design of

purely inferential methods such as the Interval-wise test (Pini and Vantini, 2015a)

which does not require the discretization of the data by means of a basis expansion.
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Finally, it could be interesting to compare the Interval Testing Procedure us-

ing the B -spline basis expansion with the Vsevolozhskaya-Greenwood-Holodov test

(Vsevolozhskaya et al., 2014). The Vsevolozhskaya-Greenwood-Holodov test does

not require the discretization of the data by means of a basis expansion. Hence in

order to have a fair comparison, the supports of the basis elements for the Interval

Testing Procedure must be similar to the intervals selected a priori in Vsevolozhskaya-

Greenwood-Holodov test. In most cases this task is not straightforward, except for

constant B -splines. In this case, the supports of the basis elements can be eas-

ily chosen coincident with an arbitrary set of equal-sized intervals selected a priori.

Moreover the number of basis elements must be carefully tuned. If it is too high,

the Vsevolozhskaya-Greenwood-Holodov test is disadvantaged in terms of the ability

to make true discoveries since it is based on the closure multiple testing procedure

(Marcus et al., 1976). At the same time if it is too low, the Interval Testing Procedure

is disavantaged since from simulations we have observed that it is generally better

to choose the number of basis elements relatively high for this method. However,

these extreme cases can be considered for exploratory reasons. The Interval-wise test

and the Vsevolozhskaya-Greenwood-Holodov test are compared in Pini and Vantini

(2015a).

As far as concerns the simulations with smoothing parameter (Smoothing splines

method) based on the obtained results, the learned message is that for the Interval

Testing Procedure it is highly recommended to apply, if available, theoretical results

or best practices for the used Smoothing method. Alternatively in order to bypass

partially the handling of the Smoothing, it is possible to apply the purely nonpara-

metric inferential procedure Interval-wise test (Pini and Vantini, 2015a), which does

not require the use of a basis expansion.

Regarding the simulations with parameters the standard deviation of noise and

the number of evaluations, in general for each procedure the trend of the Family Wise

Error Rate is independent from the data type. As expected, Benjamini-Hochberg

method does not control the Family Wise Error Rate. In particular, we have observed

a parabolic trend of the Family Wise Error Rate as a function of the standard

deviation of noise and, by augmenting the number of evaluations, the points where

this metric is maximized increase. Bonferroni, Bonferroni-Holm and Interval Testing

Procedure methods control the Family Wise Error Rate in all cases (in few cases net

of the upper bound of the estimate variability which has been obtained using the

Normal approximation of the con�dence interval for a Binomial proportion with the

standard signi�cance level α = 0.05). It exists a value of the standard deviation of

noise above which the Family Wise Error Rate of Interval Testing Procedure is lower

than the one of Bonferroni and Bonferroni-Holm procedures. The Family Wise Error

Rate of Interval Testing Procedure is non-increasing in the standard deviation of noise

and the contrary holds for Bonferroni and Bonferroni-Holm procedures. However,
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the values of the Family Wise Error Rate of Bonferroni and Bonferroni-Holm are

generally lower than the Family Wise Error Rate of Interval Testing Procedure and

of Benjamini-Hochberg. When the standard deviation of noise is high, it is better to

have few evaluations for Benjamini-Hochberg. In contrast, by increasing the standard

deviation of noise, the Family Wise Error Rate of Interval Testing Procedure is non-

increasing for every value of the number of evaluations.

In general for each procedure and for each data type, the Rejection Rate False

null hypotheses is characterized by constant values for low standard deviations of

noise, and by a decay for intermediate and high standard deviations of noise. By

increasing the number of evaluations, the region presenting constant values tends to

be enlarged. This predictable trend can be interpreted in terms of the quantity
n2
eval

σ2
noise

which can be seen as the ratio between the Power of Signal and the Power of Noise

(Sound to Noise Ratio SNR). When the standard deviation of noise is low, the SNR is

high also for low number of evaluations, and all procedures are characterized by good

performances in terms of the number of true discoveries. On the contrary, starting

from a certain value of the standard deviation of noise, the SNR is increasing in the

number of evaluations, and all procedures provide better performances in terms of the

number of true discoveries by augmenting the number of evaluations. Interpreting

the results in terms of SNR is an equivalent way to look at the slope changes of

the Rejection Rate False null hypotheses by varying the standard deviation of noise

and the number of evaluations. For low values of the standard deviation of noise,

independently from the number of evaluations, the slope of the Rejection Rate False

null hypotheses is roughly zero and this metric assumes high values; for intermediate

and high standard deviations of noise, the Rejection Rate False null hypotheses is

non-decreasing in the number of evaluations, and this metric assumes lower values.

Also the parabolic trend of the Family Wise Error Rate of Benjamini-Hochberg as a

function of the number of evaluations can be interpreted in terms of the ratio
n2
eval

σ2
noise

.

In scenarios with data set const-step, the Rejection Rate False null hypotheses

of Bonferroni-Holm is higher than the Rejection Rate False null hypotheses of Bon-

ferroni. In simulations with parameters the order and the number of B -spline basis

elements, the performances of these procedures were generally very similar probably

for the null standard deviation of noise. Bonferroni-Holm and Bonferroni are more

conservative than Interval Testing Procedure and Benjamini-Hochberg. The inter-

val Testing Procedure provides good performances in terms of Rejection Rate False

null hypotheses with respect to Benjamini-Hochberg for high values of the standard

deviation of noise. The Interval Testing Procedure has good performances in terms

Rejection Rate False null hypotheses also for low values of the standard deviation of

noise and of the number of evaluations. In scenarios with data set const-tricube, for

low standard deviations of noise, di�erently from scenarios with data set const-step,

Bonferroni-Holm provides higher values of the Rejection Rate False null hypotheses
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than Interval Testing Procedure. However, for high standard deviations of noise

the procedures with the best performances in terms of Rejection Rate False null hy-

potheses are still Interval Testing Procedure and Benjamini-Hochberg. The results

obtained with these procedures are comparable, in particular for very high values of

the standard deviation of noise.

Benjamini-Hochberg generally provides the best results in terms of Rejection

Rate False null hypotheses. However in terms of this metric, the di�erence between

Interval Testing Procedure and Benjamini-Hochberg is not very marked, especially in

scenarios with high values of the standard deviation of noise. Furthermore, contrarily

to Interval Testing Procedure, Benjamini-Hochberg does not control the Family Wise

Error Rate on intervals.

Finally, in general in scenarios with high standard deviations of noise, the Interval

Testing Procedure is characterized by good performances as far as concerns both the

Family Wise Error Rate and the Rejection Rate False null hypotheses.

For both data types const-step and const-tricube, the Rejection Rate True null

hypotheses of Bonferroni-Holm and Bonferroni are essentially null as expected for

their conservative nature. Independently from the number of evaluations, for Interval

Testing Procedure and Benjamini-Hochberg the Rejection Rate True null hypotheses

is decreasing in the standard deviation of noise. The decay of the Rejection Rate

True null hypotheses for Interval Testing Procedure and for Benjamini-Hochberg,

observable by increasing the standard deviation of noise, is slower by augmenting the

number of evaluations. This trend is coherent with the high values of the Rejection

Rate False null hypotheses obtained for low and intermediate standard deviations of

noise and for su�ciently high values of the number of evaluations.

In scenarios with data set const-step similarly to the Family Wise Error Rate, it

exists a value of the standard deviation of noise beyond which the Interval Testing

Procedure outperforms Benjamini-Hochberg in terms of Rejection Rate True null

hypotheses. We have observed the same tendencies in scenarios with data set const-

tricube. By increasing the power of noise, the improvement - absolute and with

respect to Benjamini-Hochberg - of Interval Testing Procedure performances in terms

of Rejection Rate True null hypotheses is discernible. In particular it is worth to note

that, for high standard deviations of noise, the Rejection Rate True null hypotheses is

essentially null for Interval Testing Procedure, and, as expected, also for Bonferroni

and Bonferroni-Holm. This trend is interesting for Interval Testing Procedure since,

in the same cases, the performances in terms of Rejection Rate False null hypotheses

of this procedure and of Benjamini-Hochberg are comparable.

In terms of Power, the general tendencies of Bonferroni and Bonferroni-Holm

are very similar for both data types const-step and const-tricube. In scenarios with

data set const-step, the characteristic patterns of Power and of Rejection Rate False

null hypotheses are essentially similar. Moreover, the Interval Testing Procedure is
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generally outperformed by the other procedures. However from simulations with

parameters the order and the number of B -spline basis elements, we expect that the

performances in terms of Power of Interval Testing Procedure and Bonferroni-Holm

(Bonferroni) would have been similar chosing an higher number of basis elements.

Indeed based on the simulation results with parameters the order and the number

of basis elements, for Interval Testing Procedure it is better to choose the cubic

splines and the number of basis elements rather high. In this simulation we have

used the cubic splines and the number of basis elements has been always chosen equal

to 50 which is rather low considering that the minimum and the maximum tested

values of the numbers of evaluations are 50 and 500. Finally, the results in terms of

Power of all procedures are comparable for high values of the standard deviation of

noise. In scenarios with data type const-tricube, independently from the number of

evaluations and for low standard deviation of noise, for all procedures the Power is

essentially unitary except for a decay of this metric for very high standard deviations

of noise. Finally contrarily to the simulations with parameters order and number

of the B -spline basis elements, we have observed that the data type has not been

relevant.

As far as concerns the simulation with parameter the number of statistical units,

particular patterns of the Family Wise Error Rate have not been observed. The

Benjamini-Hochberg procedure does not control the Family Wise Error Rate in both

scenarios with data const-step and const-tricube. The contrary holds for the other

tested procedures.

In scenarios with data type const-step, it exists a value of the number of sta-

tistical units beyond which the Interval Testing Procedure outperforms Bonferroni

and Bonferroni-Holm in terms of Rejection Rate False null hypotheses. In terms of

this metric, the results obtained with Bonferroni-Holm and Bonferroni are very sim-

ilar. Moreover, the performances in terms of Rejection Rate False null hypotheses of

Interval Testing Procedure and Benjamini-Hochberg are very similar for relatively

high values of the number of statistical units. For all procedures the performances in

terms of Rejection Rate False null hypotheses are worse with data set const-tricube,

especially for Interval Testing Procedure. The tricube kernel has the most part of

the mass concentrated in the middle of its support where the null hypotheses is false.

Therefore, it turns out that the Interval Testing Procedure is disadvantaged since it

tends to maximize the true discoveries in the middle of this support and the con-

trary holds at the edges of the same interval (simulation study in Pini and Vantini

2013). However, for su�ciently high numbers of statistical units, the performances

in terms of Rejection Rate False null hypotheses of Interval Testing Procedure and

of Bonferroni-Holm (Bonferroni) are equivalent. Benjamini-Hochberg provides the

best performances in terms Rejection Rate False null hypotheses.

In scenarios with data set const-step, for Bonferroni-Holm and Bonferroni the Re-
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jection Rate True null hypotheses is essentially null. The Interval Testing Procedure

is more conservative than Benjamini-Hochberg. Instead in scenarios with data type

const-tricube, the results of Interval Testing Procedure and Benjamini-Hochberg are

similar in terms of Rejection Rate True null hypotheses.

In general for Interval Testing Procedure and Benjamini-Hochberg, the Rejection

Rate True null hypotheses tends to be non-decreasing. In terms of this metric, the

Interval Testing Procedure performances are better in scenarios with data set const-

step.

In terms of Power, there are no particular di�erences between the scenarios with

data type const-step and const-tricube. For all procedures, by increasing the number

of statistical units, this metric rapidly reaches the unitary value, especially if the

data type is const-tricube.

In conclusion, we observe that the number of statistical units is not a critical

parameter in the sense that good performances in terms of Rejection Rate False Null

hypotheses and especially Power are achieved by all methods with moderate values

of this parameter. Particularly signi�cant patterns of the evaluation metrics have

not been observed.
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Appendix A

Graphics of the evaluation metrics

as a function of the Regression

Smoothing parameters

Since the explored parameters are m and p, the number of possible dimensions

is two. In order to identify typical trends, it is interesting to observe a metric as a

function of p by maintaining m �xed and vice versa.

In the following for completeness we report all the standard graphics (i.e., metric

as a function of p with �xed m or vice versa) divided according to the data type

(populations of constant and step functions const-step or populations of constant

and tricube functions const-tricube).

A.1 Graphical results data set const-step

In Figures A.1, A.2 it is reported the FWER as a function of p with m �xed and

as a function of m with p �xed, respectively.

In Figures A.3, A.4 it is reported the Rejection Rate False null hypotheses ρ as

a function of p with m �xed and as a function of m with p �xed, respectively.

In Figures A.5, A.6 it is reported the Rejection Rate True null hypotheses γ as

a function of p with m �xed and as a function of m with p �xed, respectively.

In Figures A.7, A.8 it is reported the Power π as a function of p with m �xed

and as a function of m with p �xed, respectively.
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A.1. Graphical results data set const-step
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Figure A.1: Family Wise Error Rate FWER as a function of the number p of B-
spline basis elements with order m �xed. The data type is populations of constant
and step functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.2: Family Wise Error Rate FWER as a function of the order m B-spline
basis with number basis elements p �xed. The data type is populations of constant
and step functions.
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A.1. Graphical results data set const-step
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Figure A.3: Rejection Rate False null hypotheses ρ as a function of the number p of
B-spline basis elements with order m �xed. The data type is populations of constant
and step functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.4: Rejection Rate False null hypotheses ρ as a function of the order m
B-spline basis with number basis elements p �xed. The data type is populations of
constant and step functions.
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A.1. Graphical results data set const-step
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Figure A.5: Rejection Rate True null hypotheses γ as a function of the number p of
B-spline basis elements with order m �xed. The data type is populations of constant
and step functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.6: Rejection Rate True null hypotheses γ as a function of the order m
B-spline basis with number basis elements p �xed. The data type is populations of
constant and step functions.
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A.1. Graphical results data set const-step
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Figure A.7: Power π as a function of the number p of B-spline basis elements with
order m �xed. The data type is populations of constant and step functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.8: Power π as a function of the order m B-spline basis with number basis
elements p �xed. The data type is populations of constant and step functions.
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A.2. Graphical results data set const-tricube

A.2 Graphical results data set const-tricube

In Figures A.9, A.10 it is reported the FWER as a function of p with m �xed

and as a function of m with p �xed, respectively.

In Figures A.11, A.12 it is reported the Rejection Rate False null hypotheses ρ

as a function of p with m �xed and as a function of m with p �xed, respectively.

In Figures A.13, A.14 it is reported the Rejection Rate True null hypotheses γ

as a function of p with m �xed and as a function of m with p �xed, respectively.

In Figures A.15, A.16 it is reported the Power π as a function of p with m �xed

and as a function of m with p �xed, respectively.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.9: Family Wise Error Rate FWER as a function of the number p of B-
spline basis elements with order m �xed. The data type is populations of constant
and tricube functions.
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A.2. Graphical results data set const-tricube
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Figure A.10: Family Wise Error Rate FWER as a function of the order m B-spline
basis with number basis elements p �xed. The data type is populations of constant
and tricube functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.11: Rejection Rate False null hypotheses ρ as a function of the number
p of B-spline basis elements with order m �xed. The data type is populations of
constant and tricube functions.
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A.2. Graphical results data set const-tricube
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Figure A.12: Rejection Rate False null hypotheses ρ as a function of the order m
B-spline basis with number basis elements p �xed. The data type is populations of
constant and tricube functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.13: Rejection Rate True null hypotheses γ as a function of the number p of
B-spline basis elements with order m �xed. The data type is populations of constant
and tricube functions.
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A.2. Graphical results data set const-tricube
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Figure A.14: Rejection Rate True null hypotheses γ as a function of the order m
B-spline basis with number basis elements p �xed. The data type is populations of
constant and tricube functions.
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A. Graphics of the evaluation metrics as a function of the Regression Smoothing

parameters
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Figure A.15: Power π as a function of the number p of B-spline basis elements with
order m �xed. The data type is populations of constant and tricube functions.
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A.2. Graphical results data set const-tricube
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Figure A.16: Power π as a function of the order m B-spline basis with number basis
elements p �xed. The data type is populations of constant and tricube functions.
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Appendix B

Graphics of the evaluation metrics

as a function of σnoise and neval

Since the explored parameters are σnoise and neval, the number of possible di-

mensions is two. In order to identify typical trends, it is interesting to observe a

metric as a function of σnoise by maintaining �xed neval and vice versa.

In the following for completeness we report all the standard graphics (i.e., met-

ric as a function of σnoise with �xed neval or vice versa) divided according to the

data type (populations of constant and step functions const-step or populations of

constant and tricube functions const-tricube).

B.1 Graphical results data set const-step

In Figures B.1, B.2 it is reported the FWER as a function of σnoise with neval
�xed and as a function of neval with σnoise �xed, respectively.

In Figures B.3, B.4 it is reported the Rejection Rate False null hypotheses ρ

as a function of σnoise with neval �xed and as a function of neval with σnoise �xed,

respectively.

In Figures B.5, B.6 it is reported the Rejection Rate True null hypotheses γ as

a function of σnoise with neval �xed and as a function of neval with σnoise �xed,

respectively.

In Figures B.7, B.8 it is reported the Power π as a function of σnoise with neval
�xed and as a function of neval with σnoise �xed, respectively.
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B.1. Graphical results data set const-step
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Figure B.1: Family Wise Error Rate FWER as a function of the standard deviation
of noise σnoise with number of evaluations neval �xed. The data type is populations
of constant and step functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.2: Family Wise Error Rate FWER as a function of the number of evalua-
tions nevalwith �xed standard deviation of noise σnoise. The data type is populations
of constant and step functions.
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B.1. Graphical results data set const-step
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Figure B.3: Rejection Rate False null hypotheses ρ as a function of the standard
deviation of noise σnoise with number of evaluations neval �xed. The data type is
populations of constant and step functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.4: Rejection Rate False null hypotheses ρ as a function of the number
of evaluations nevalwith �xed standard deviation of noise σnoise. The data type is
populations of constant and step functions.

126



B.1. Graphical results data set const-step
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Figure B.5: Rejection Rate True null hypotheses γ as a function of the standard
deviation of noise σnoise with number of evaluations neval �xed. The data type is
populations of constant and step functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.6: Rejection Rate True null hypotheses γ as a function of the number
of evaluations nevalwith �xed standard deviation of noise σnoise. The data type is
populations of constant and step functions.
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B.1. Graphical results data set const-step
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Figure B.7: Power π as a function of the standard deviation of noise σnoise with
number of evaluations neval �xed. The data type is populations of constant and step
functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.8: Power π as a function of the number of evaluations nevalwith �xed
standard deviation of noise σnoise. The data type is populations of constant and
step functions.
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B.2. Graphical results data set const-tricube

B.2 Graphical results data set const-tricube

In Figures B.9, B.10 it is reported the FWER as a function of σnoise with neval
�xed and as a function of neval with σnoise �xed, respectively.

In Figures B.11, B.12 it is reported the Rejection Rate False null hypotheses ρ

as a function of σnoise with neval �xed and as a function of neval with σnoise �xed,

respectively.

In Figures B.13, B.14 it is reported the Rejection Rate True null hypotheses γ

as a function of σnoise with neval �xed and as a function of neval with σnoise �xed,

respectively.

In Figures B.15, B.16 it is reported the Power π as a function of σnoise with neval
�xed and as a function of neval with σnoise �xed, respectively.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.9: Family Wise Error Rate FWER as a function of the standard deviation
of noise σnoise with number of evaluations neval �xed. The data type is populations
of constant and tricube functions.
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B.2. Graphical results data set const-tricube
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Figure B.10: Family Wise Error Rate FWER as a function of the number of evalua-
tions nevalwith �xed standard deviation of noise σnoise. The data type is populations
of constant and tricube functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.11: Rejection Rate False null hypotheses ρ as a function of the standard
deviation of noise σnoise with number of evaluations neval �xed. The data type is
populations of constant and tricube functions.

134



B.2. Graphical results data set const-tricube

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0

ITP

BH

BFH

BF

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.02

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.04

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.07

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.09

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.11

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.13

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.16

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.18

50 150 250 350 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

neval

Metric ρ σnoise = 0.2

Figure B.12: Rejection Rate False null hypotheses ρ as a function of the number
of evaluations nevalwith �xed standard deviation of noise σnoise. The data type is
populations of constant and tricube functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval
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Figure B.13: Rejection Rate True null hypotheses γ as a function of the standard
deviation of noise σnoise with number of evaluations neval �xed. The data type is
populations of constant and tricube functions.
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B.2. Graphical results data set const-tricube
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Figure B.14: Rejection Rate True null hypotheses γ as a function of the number
of evaluations neval with �xed standard deviation of noise σnoise. The data type is
populations of constant and tricube functions.
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B. Graphics of the evaluation metrics as a function of σnoise and neval

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 50

ITP

BH

BFH

BF

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 100

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 150

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 200

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 250

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 300

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 350

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 400

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 450

0 0.04 0.09 0.13 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σnoise

Power neval = 500

Figure B.15: Power π as a function of the standard deviation of noise σnoise with
number of evaluations neval �xed. The data type is populations of constant and
tricube functions.
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B.2. Graphical results data set const-tricube
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Figure B.16: Power π as a function of the number of evaluations neval with �xed
standard deviation of noise σnoise. The data type is populations of constant and
tricube functions.
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