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Abstract

In recent years, virtualization is playing an increasingly important role in a cloud
environment, as it allows service providers to create an abstraction of the physical
servers, contained within the data centers. In this way services can be directly
hosted on these abstract entities, which are then called virtual machines (VM).
The direct result of service virtualization is the ability to move the service hosted
on a virtual machine, from a data center to another; hence, the virtual machines
migration. However, the migration of a virtual machine within a Wide Area Net-
work (WAN), should be carried out efficiently since it requires a considerable use
of network resources (available bandwidth, especially).

In this thesis we proposed a model for the live migration of virtual machines,
focusing our attention on the Routing and Bandwidth Assignment problem. Then,
we present four algorithms for the optimal choice of the bandwidth to be assigned
to every migration request of a virtual machine that needs to be moved from one
data center to another.Each one of the illustrated algorithms has been implemented
within an optical network discrete event based simulator, in order to evaluate its
performance: in particular we studied the behavior of both the blocking probability
and the network resource consumption.



Sommario

Negli ultimi anni la virtualizzazione sta ricoprendo un ruolo sempre piú importante
all’interno dell’ambiente Cloud, in quanto permette ai service provider di creare
un’astrazione dei server fisici, contenuti all’interno dei data center. In questo
modo i servizi possono essere ospitati direttamente su queste entitá astratte, che
prendono il nome di macchine virtuali (VM). La diretta conseguenza della virtual-
izzazione dei servizi é la possibilitá di spostare il servizio ospitato su una macchina
virtuale, da una data center all’altro: nasce cośıla migrazione di macchine vir-
tuali. Tuttavia, la migrazione di una macchina virtuale all’interno di una rete
geograficamente estesa (WAN), deve essere effettuata in maniera efficiente poiché
essa richiede un utilizzo considerevole delle risorse di rete (di banda specialmente).
Pertanto la migrazione deve essere effettuata nel rispetto dei livelli di qualitá del
servizio prestabiliti garantendo, tuttavia, un limitato consumo delle risorse di rete.

In questo lavoro di tesi abbiamo proposto un modello per la migrazione in
tempo reale di macchine virtuali, focalizzando la nostra attenzione sul problema
di Routing and Bandwidth Assignment. Vengono, quindi, presentati quattro algo-
ritmi per la scelta ottimale della banda da assegnare ad ogni richiesta di migrazione
di una macchina virtuale da un data center all’altro. Ciascuno degli algoritmi illus-
trati ato implementato all’interno di un simulatore di rete ottica ad eventi discreti
allo scopo di valutarne le prestazioni: in particolare viene studiato il comporta-
mento della probabilitá di blocco e dell’occupazione delle risorse di rete.



Chapter 1

Introduction

1.1 Cloud Computing

Nowadays, cloud computing is playing an increasing important role as cloud in-
frastructures are used to host both enterprise and public internet services. It
represents a new paradigm of computing as it provides a shared pool of config-
urable computing resources such that client requests can be served on demand. It
is able to provide both users and enterprises with high capabilities to process and
store data in a separated location (the so called data centers). This approach helps
maximize the use of computing power while reducing the overall cost of resources
by using less power to maintain the system. Besides, it allow users to access a
server to retrieve their data without purchasing licenses for several applications.
It also benefits enterprises as it allows to reduce infrastructures costs and it allows
them to get applications up and running faster. There are many other factors that
have led the growth of cloud computing in recent years, such as: the availability
of high-capacity networks, storage devices as well as the ever increasingly adop-
tion of hardware virtualization. Cloud computing providers offer their ”services”
according to three different models:

• Iaas (Infrastructure as a Service): it is about offer computers and other re-
sources (they can be both physical and virtual machines); in this way, users
are not involved into the detail of infrastructures like physical computing
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resources management, security, data back-up. They can easily deploy ap-
plications by installing operating-system images and their application soft-
ware on the cloud infrastructure. On the other hand, a cloud hypervisor
can support a large numbers of virtual machines and it is able to scale ser-
vices up and down according to customers requirements. Moreover, IaaS
cloud providers supply this great amount of resources from their large pools
of equipment installed in data centers. Usually, in this model, providers
bill services in according to the computing resources usage: cost reflects the
amount of resources allocated.

• PaaS (Platform as a Service): providers offer a development environment to
users who want to develop an application; morover the provider can develop
toolkit and standards for development and channels for distribution and
payment. Typically they deliver a computing platform, including operating
system, programming-language execution environment, database, and web
server; while clients can develop and run their software solutions on a cloud
platform without the cost of buying and managing the underlying hardware
and software layers.

• SaaS (software as a Service): users can access to application software and
databases while cloud providers manage the infrastructure and platforms
that run the applications. Providers install and operate application software
in the cloud and users access the software from cloud clients, so they do not
have to deal with infrastructure and platform where the application runs.
The pricing model is typically a monthly or yearly flat fee per user, so prices
become scalable and adjustable if users are added or removed at any point.

A cloud environment is called ’public cloud’ when the services are provisioned
over a network that is open for public use, while a ’private cloud’ is a cloud infras-
tructure operated only for a single organization. However both public cloud service
providers own and operate the infrastructure at their data center and access is gen-
erally via the Internet. Thanks to the rapid development of the cloud environment,
an ever increasing number of applications are surfacing, increasing the cloud in-
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frastructures demand. Consequently, increasing demand brings to an increasing
energy consumption, so Cloud infrastructure providers have to virtualize physical
servers to achieve a better management of resources in a multi data center environ-
ment. Services are then hosted over virtual machines (VMs) with the benefit that
a virtual machine can be migrate from a data center to another in order to achieve
cloud bursting, load balancing, fault recovery and so on. However, the migration
process consumes a large amount of energy both at source and destination loca-
tion, as well as in the network as it generate a large amount of traffic. From this
background,where Cloud resources are placed over geographically-distributed data
centers, arises the need of an underlying high-performance network, typically based
on high-speed technology, which can be able to meet the requirements of overlaid
applications, such as dynamic bandwidth allocation scheme, efficient grooming
and using a low-cost networking technology platform. Typically cloud computing
services are offered over a metropolitan network which is based on an optical net-
working paradigm. In facts, optical networks are considered as a valuable solution
to meet such requirements and implement cloud computing applications. Indeed,
optical transmission technology can achieve higher capacity connections with a
cost-effective way. This is due to its ability to transfer huge volumes of data with
very low latency. Consequently, optical networking technology is considered the
best way to connect data centers providing computing and storage services in the
cloud computing environment.

1.2 Virtualization In Cloud Environment

Operating system virtualization has attracted considerable interest in recent years,
particularly from the data center and cluster computing communities. The adop-
tion of virtualization in data centers creates the need for a new class of networking
designed to support elastic resource allocation, increasingly mobile workloads, and
maximum availability under production loads. Virtualization technologies encap-
sulate existing applications, and abstract them from the physical hardware.

Unlike physical machines, virtual machines are represented by a portable soft-
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Figure 1.1: Server with virtual machines

ware image, which can be instantiated on physical hardware in few seconds. With
virtualization comes elasticity where compute capacity can be scaled up or down,
on demand, by adjusting the number of virtual machines running on a given phys-
ical server. Cloud infrastructure providers virtualize physical servers for easy and
secure resource allocation in a multitenant data center environment: in this way
services can be hosted over these virtual machines (VMs); this technology can in-
crease hardware utilization by allowing multiple isolated Operating System (OS)
to run in the same host. Besides, there is a further benefit allowed by virtualiza-
tion: that of migrate a virtual machine. Host virtulization offers the benefit for
data centers to live migrate an entire virtual Machine from a single physical host to
another, enabling virtual machines to become portable across larger geographies.

The combination of virtualization and migration, VM migration, is increasingly
utilized in today’s multi-tenant cloud data centers. VM migration brings lots of
benefits: it facilitates load balance and consolidate servers by migrating VMs out of
overloaded or underloaded physical hosts. New multi-core processing architectures
running 10-20 or more virtual machines per server results in a significant increase
in the number of elements to be managed. Since many virtual machines can be
instantiated on a physical server, bandwidth utilization increases proportionally.
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This implies that traditional RBA (Routing and Bandwidth Assignment) schemes
and network topologies must be re-architected for virtualization and private clouds.
Migrating an entire OS and all of its applications as one unit allows us to avoid
many of the difficulties faced by process-level migration approaches. With virtual
machine migration, on the other hand, the original host may be decommissioned
once migration has completed, allowing providers to save energy, in this way. Also,
once a server requires hardware maintenance or software update, the services run-
ning on it can be migrated to others. In the multi-tenant clouds, resource can be
redistributed through live migration to allow more tenants. There are two main
methods of migrating a VM: offline migration and online/live migration. If the
offline migration is conducted, the services running on the migrated VM will ter-
minate during the whole migration process, while live migration mechanisms can
keep the services on the migrated VM alive during most of the migration process.
The main advantages of live migration are that it not only endows the benefit of
VM migration, but also imposes little interruption on the running services. An
other important aspect is that live migration of virtual machines allows a separa-
tion of concerns between the users and operator of a data center or cluster. Users
have ’carte blanche’ regarding the software and services they run within their vir-
tual machine, and need not provide the operator with any OS-level access at all
(e.g. a root login to quiesce processes or I/O prior to migration). Similarly the
operator need not be concerned with the details of what is occurring within the
virtual machine; instead, they can simply migrate the entire operating system and
its attendant processes as a single unit. Overall, live OS migration is a extremely
powerful tool for cluster administrators, allowing separation of hardware and soft-
ware considerations, and consolidating clustered hardware into a single coherent
management domain.
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Figure 1.2: Network topology with data centers

If a physical machine needs to be removed from service, an administrator may
migrate OS instances including the applications that they are running to alterna-
tive machine(s), freeing the original machine for maintenance. One of the concerns
with live VM migration is the negative impact on active services in the network.
Live VM Migration, depending on the memory sizes and running applications may
consume nearly the entire bandwidth which impacts the performance of competing
flows in the network. Therefore, it is imperative to explore the impact of wide-area
migration of virtual machines and services between data center networks. Data
center network topology and traffic dynamics can affect the performance of VM
migration, so VM migration should be conducted such that network resources can
be allocated intelligently to minimize degradation of network performance.

1.3 Work Organization

The rest of the work is organized as follows. In chapter 2 we present the migration
model adopted in our work: showing as a live pre-copy approach for virtual ma-
chine migration works and presenting its main involved parameters. We focus on
how such parameters (dirtying rate, migration bandwidth, total migration dura-
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tion, downtime) can influence the whole migration process; then we introduce the
main trade-off characterizing the virtual machines migration through the issue of
the function points curve. After describing the state of the art about VM migra-
tion, we dedicate chapter 3 to introduce basic Routing and Bandwidth Assignment
scheme. Then we illustrate our contribution to this topic: the aim of our thesis
is to propose algorithms for the Routing and Bandwidth Assignment problem in
the new scenario of the migration of virtual machines within a cloud environment.
Hence, in each section of the chapter we present one of the proposed algorithms.
In chapter 4 we report the simulative and illustrative numerical results aiming to
show how the choice of the adopted algorithm can influence the blocking probabil-
ity. Moreover, we compare the results of our proposed algorithms and we evaluated
their behavior according to the variations of simulation parameters, such as dirty-
ing rate and arrival rate. In chapter 5 we focus on a more general problem as can
be the migration of multiple virtual machines, instead of migrating a single virtual
machine per time. In particular we try to analyze two cases: the serial migration
and the parallel migration of a set of virtual machines. Finally in chapter 6, we
conclude this work with some significant observations on the performance of the
different proposed algorithms, and also possible future works are discussed.



Chapter 2

Live Virtual Machines Migration

2.1 Virtual Machines

Virtualization technologies are widely adopted by companies to manage flexible
computation environment and to run isolated virtual environments for each cus-
tomer. As virtual machines can provide desirable features like flexibility, better
protection and hardware independence, they are applied in various research areas
and have great potential, also because providers can freely migrate them from a
server to another without loss of quality of service. Standard computer systems
are hierarchically constructed from three components: hardware, operating sys-
tem, and application software. The standard architecture has many advantages,
since the interfaces are nicely defined, and the hardware and software components
can be decoupled. Nevertheless in this architecture, hardware, operating system,
and application software are fixed, and they are not interchangeable. So software
is restricted by the operating system: it cannot move freely among all computers
connected by a network, because usually these computers all vary in hardware and
operating systems. So this architecture loses flexibility, and this becomes a critical
issue when the internet becomes larger and application software becomes more
complicated. In a scenario as the one just descripted, the idea of virtualization
takes place, with the new concern of virtual machine.
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Figure 2.1: Simple Virtual Machine Scheme

A virtual machine provides an abstraction of the underlying physical system
to the guest operating system running on it. Virtual machine migration is, then,
the task of moving a virtual machine from one physical hardware entity to an-
other one. As a virtual machine provides a fully protected and isolated replica
of the underlying physical system, we need a new layer above the original bare
systems to abstract the physical resources and provide interface to operating sys-
tems running on it. This layer is called the Virtual Machine Monitor (VMM).
The VMM is the essential part of the virtual machine implementation, because it
performs the translation between the hardware and virtualized underlying plat-
form: providing virtual processors, memory, and virtualized I/O devices. Since all
the virtual machines share the same hardware component, the Virtual Machine
Monitor should also provide appropriate protection so that each virtual machine
is an isolated replica. The basic scheme of a virtual machine should be like in
Figure 1.1, where the virtual machine monitor sits between the system hardware
and operating systems.

2.2 Virtual Machines Migration

The procedure of migrating the operating system and applications from a phys-
ical machine to another physical machine is an important issue in a virtualized
environment. VMs migration consists in multiple main resource transferring: pro-
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cessor, memory, network and storage. During the migration process, the VM is
paused at the source host and is resumed on the destination host only when all
resources are already been migrated and reconfigured into the new host. The pe-
riod of time in which VM stays offline is called downtime, and it lasts from the
time instant in which the VM is paused until it is resumed at the destination. The
downtime period varies according to the resources available on the VM, to the
workload submitted to the VM, and to the migration technique: offline or online
(live) migration.

2.2.1 Offline Virtual Machines Migration

Offline migration technique allows to transfer the VM to the destination physical
host while the VM is off. The offline migration introduces a great delay for the
application running on the virtual machine, but it is the easiest to accomplish
because it does not require the VM preservation. As the VM is off, there is no
need to preserve network connections, and it is neither necessary to transfer the
processor state nor the RAM content. The offline migration procedure just com-
prises shutting down the virtual machines and restarting it into another location.
The storage migration, or disk migration, is performed by standard data transfer
tools and is the only network traffic generated. It takes a long time and it needs
great amount of network bandwidth to transfer a whole disk.

2.2.2 Live Virtual Machines Migration

On the other hand, live migration technique transfers the virtual machine while it
still runs. The live migration should not cause a perceptible downtime to the VM
user. Online migration technique allows administrators to move running virtual
machines (VMs) among different physical hosts without service interruptions. This
is a very useful tool for service providers hosting a high number of applications. The
quality of service that a service provider can guarantee when hosting and running
an application is described by a Service Level Agreement (SLA) and is typically
expressed in terms of application availability. The majority of policies permits
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very low value of downtime (in order of seconds); so routine activities such as
restarting a machine for hardware maintenance are extremely difficult under these
conditions. Live migration mitigates this problem by allowing administrators to
move VMs with little interruption, and avoiding them to invest considerable re-
sources in fault-tolerant systems. This new approach permits regular maintenance
of the physical hardware, supports dynamic reconfiguration and shifts workload to
another host to better manage the allocation of resources. However, short inter-
ruptions of service are still unavoidable during live migration due to the overheads
of moving the running virtual machine. Recent studies have demonstrated that
service interruption duration can vary considerably depending on which applica-
tion is running on the machine, due to the different memory usage requirements.
Migrating an entire virtual machine as a single entity, means that active memory
and execution state are transferred from the source to the destination. This al-
lows seamless movement of online services without requiring clients to reconnect
or login. On migration completion, virtual I/O devices are disconnected form the
source and re-connected on the destination physical host, so migration means to
copy in-memory state and CPU registers.

There are more than one technique for live migrate a virtual machine, but all of
them have to take into account the importance of two parameters: total migration
time and downtime. Total migration time refers to the total time required to move
the machine from the source host to the destination host; while downtime is the
period of time in which the virtual machine is not running (it is shut down). The
first migration approach plans to halt the original virtual machine at the source
and copy its entire memory to the destination. This technique minimizes total mi-
gration time but incurs high values of downtime because the machine is suspended
during the entire transfer process. A second procedure operates by stopping the
VM to copy only the necessary information and data to the destination while the
rest of the memory can be transferred when it is accessed at the destination. This
second technique has a very short downtime, but it suffers from high total migra-
tion time. It has previously been shown that both presented migration approaches
have poor performance.
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Figure 2.2: Virtual Machine Migration Timeline

The former may lead to significant service interruption especially if lots of
applications are running on the virtual machine, while the latter incurs a longer
total migration time. The better strategy to address the problems associate with
both the previous proposed procedures can be the pre-copy migration, because it
try to combine an iterative step approach with a final and typically very short
stop-and-copy phase. The basic idea is to perform multiple iterative rounds of
copying: in each round the VM memory pages that have been modified since the
previous iteration are resent to the destination until a stopping condition is met.
This can be a situation in which the number of remaining modified pages will be
small enough (less than a prefixed threshold) to halt the VM for a short period
of time, in which these remaining pages are copied and the virtual machine is
restarted on the destination host. A migration scheme like this one, is able to
minimize both total migration time and downtime. Pre-copy migration can be
divided into multiple stages (as shown in Figure 1.2), namely:

• Initialization: a host is pre-selected as the target of the migration.
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• Reservation: resources at the destination host are reserved.

• Iterative pre-copy phase: the entire memory is sent in the first iteration, and
in each subsequent iteration pages modified during the previous iteration are
transferred to the destination.

• Stop-and-copy phase: the virtual machine is halted at the source host for a
final transfer round.

• Activation: the virtual machine is resumed at the destination host.

The iterative pre-copy phase may continue indefinitely, thus, it is imperative
to define a stop condition; usually the condition can be defined depending on the
downtime or the number of iteration of the iterative pre-copy phase of the migra-
tion process. We can evaluate the migration performance by monitoring already
presented metrics: total migration time and total downtime. We can consider the
migration duration as the period in which both virtual machines are active while
during the downtime the virtual machine is suspended and so, customers see it as
out of service. Adopting the pre-copy approach, total migration duration may be
defined as the sum of the time spent on all migration stages, from the initialization
phase at the source host to the activation stage at the destination host. However,
downtime is the time required for the last two stages: stop-and-copy phase and
activation. We expect that iterative pre-copy stage will be the dominant factor
in the migration process, but we found that, also other stages may require a sig-
nificant amount of time, so we classify the initialization and reservation phases as
pre-migration phase and activation as post-migration phase. In order to describe
a realistic and accurate model for the migration, we have to take into account two
important factor that affect the entire process: migration bandwidth and dirtying
rate. Bandwidth assigned to the migration is strictly related to link capacity (more
precisely to residual bandwidth on links) and it is inversely proportional to total
migration time and downtime. Higher values of bandwidth allow faster transfers
and thus it requires less time to complete the migration. Dirty rate (or page dirty
rate) is the rate at which virtual machine memory pages are modified, thus, it
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directly affect affects the number of pages that are transferred in each iteration of
the pre-copy phase. Higher values of dirtying rates result in more data being sent
per iteration which leads to longer total migration time. Furthermore, higher page
dirty rates may result in longer downtime because there are more pages that need
to be sent in the final transfer round, in which the virtual machine is suspended.
The relationship between dirtying rate and migration performance is not linear
because of the stop conditions. If the dirtying rate is lower than link capacity, the
migration process is able to transfer all modified pages in a very quickly way, result-
ing in a low total migration time and downtime. On the other hand, if the dirtying
rate takes values very close to the link capacity, migration performance degrades
significantly. At lower dirtying rates downtime can be considered a quite constant
value, because network links have enough capacity to transfer dirty memory pages
in subsequent iterations leading to a very short stop-and-copy phase. However
when dirtying rate increases to the point that a stop condition is reached (when a
prefixed number of iteration is reached or when the number of memory pages to
be transferred is greater than a predetermined threshold value), migration process
is forced to enter the final stage with a large number of dirty pages yet to be sent.
Therefore, downtime starts to increase proportionally to the growth of the number
of modified memory pages that need to be transferred in the stop-and-copy stage.
Total migration time also increases with an increasing dirtying rate, due to the fact
that more pages have to be transferred in each pre-copy round and then you need
more iterations to achieve a short final stop-and-copy round. In the first pre-copy
iteration the entire allocated memory of the virtual machine is copied to the desti-
nation host.The duration of this first iteration is thus directly proportional to the
virtual machine memory size and, obviously, it impacts total migration time. On
average, total migration time can be assumed linearly increasing with memory size
of the virtual machine. On the other hand, for low dirtying rates downtime is al-
most the same regardless of the memory size as the migration procedure copies all
dirtied pages in the successive iterations resulting in a short stop-and-copy phase.
If free capacity of network link is unable to support the dirtying rate, then larger
VMs suffer longer downtime (linearly proportional to the VM size) because there
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are more physical pages that require copying in the stop-and-copy stage. Also pre
and post migration can generate overheads, such as required time for operations
that are not part of the transfer process. These operations are related to the ini-
tialization phase on the destination host, maintaining free resources and resume
the virtual machine. As these procedures require constant amount of time, they
are significant especially with higher link speeds.

2.3 Live Migration Model

Figure 2.3: Virtual Machine migration between two data center

A virtual migration over a Wide Area Network is carried out by first establish-
ing a network connection between source and destination locations, then transfer-
ring the memory and disk storage states, and finally by re-configuring the virtual
machine and resuming the service at the destination location. In our study we
consider the iterative pre-copy-based live migration approach of virtual machines.
In Figure 2.4 there is an example timing diagram of this process. In the first
iteration, the entire virtual machine memory is copied to the destination host.
In subsequent iterations is copy only modified or ’dirtied’ memory from previous
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iteration. We, then, consider a small delay inter-iteration τ , given by end-to-end
network delay (also known as Round-Trip Time), processing delay at both source
and destination location, or a combination of both. The duration of each iteration,
therefore, can be evaluated as the sum of memory transmission time and the inter-
iteration delay. The iterative copy phase is stopped when a predefined number
of iterations has been performed or the amount of dirtied memory is low enough
to achieve a downtime constraint. A final stop-and-copy phase is then started, in
which, the virtual machine is suspended at its source, dirtied memory is copied to
the destination, and the network is reconfigured before resuming the virtual ma-
chine at the destination location. Obviously, this last stop-and-copy phase causes
virtual machines and hosted applications/services to be unavailable. The amount
of dirtied memory transferred in each iteration is related to the characteristics of
the virtual machine and its hosted applications. While this amount of data can
vary for different iterations, an average dirtying rate can be assumed for a partic-
ular VM type. Thus, we can assume dirtying rate constant and indicate it by D;
we also denote the number of iterations in the pre-copy phase by n, the amount of
memory transferred in each iteration i by Vi, and its duration (in seconds) by Ti.
Remember that Ti consists both of the memory transmission time and the inter-
iteration delay, τ . Memory copied during the first iteration, V1, is equal to the size
of the memory of the virtual machine, denoted V M . As bandwidth provisioned for
migration is R, the amount of data transmitted in round i can be represented as:

Vi =


V M , if i = 1

D ∗ Ti−1, otherwise
(2.1)

The duration of the iteration i can be calculated as:

Ti =Vi

R
+ τ =


V M

R
+ τ, if i = 1

(D∗T i−1)
R

+ τ, otherwise

=V M

R
λi−1 + τ

1 − λi

1 − λ

(2.2)
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Figure 2.4: Timing diagram of iterative pre-copy-based VM migration technique

In these formulas we note the presence of the parameter λ: it is the ratio be-
tween the dirtying rate and the provisioned bandwidth for the migration (λ =
D/R). We can easily say that λ has a key role in the virtual machine migration
process because it is used to determine a reasonable value for the bandwidth as-
signed to the migration request. We can easily note that this is a closed form
representation of the iteration time ti but it is valid for any value if i from 1 to
the maximum number of iteration n. Once we have defined the duration of each
iteration of the iterative phase, we can define the total migration time (Tmig) as:

Tmig =
n∑

i=i

Ti + tdown

= V M

R
∗ 1 − λn+1

1 − λ
+ τ

n(1 − λ) − λ(1 − λn+1)
(1 − λ)2 + tdown,

(2.3)

where tdown represents the duration of the stop-and-copy phase, in which the virtual
machine is suspended, and then, users see it as unavailable. Knowing that the
iterative phase performs n iterations, the amount of data (dirtied memory phase)
to be transferred after the virtual machine is stopped, is given by V S:

V S = Tn ∗ D

= V Mλn + τ
1 − λi

1 − λ
D

(2.4)

Remembering that downtime includes both final memory copy and network re-
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configuration time, the duration for which the VM is down is given by tdown, as:

tdown = V S

R
+ tg

= V M

R
λn + λτ

1 − λi

1 − λ
+ tg

(2.5)

where tg is the network re-configuration time. In conclusion, we can say that the
total time required to migrate a virtual machine and the total amount of data to
be transferred depend on the memory modification (or dirtying) rate, provisioned
network bandwidth, and inter-iteration delay (which contributes to the duration
of a single iteration). In the next session we will try to explain how these factors
can influence the entire process of the live migration of a virtual machine and why
a further investigation on their behavior can help in discovering and proposing
new bandwidth allocation methods to reduce network resource consumption for
virtual machine migration.

2.4 Migration Parameters

After having presented a model for live migration of virtual machines, we use
Figure 2.5 and Figure 2.6 [6] to show an example of the behavior of total migration
time and downtime in function of different values of dirtying rate for a virtual
machine with memory size equal to 4 GB (inter-iteration delay, τ , and network
reconfiguration time, tg, are on the order of few hundred milliseconds). In Figure
2.5 the y-axes represent migration duration (in seconds) while in Figure 2.6 they
represent migration downtime (in seconds); the x-axis, in both graphs, represents
range of λ; remembering that λ is the ratio between dirtying rate and bandwidth,
it is easy to understand that the x-axis can represents a range of values for the
bandwidth provisioned for the migration.

From model equations we can assume that there are two parameter we can use
to monitor the migration process and its performance: provisioned bandwidth R
and number of iteration n of the iterative phase. Even though provisioning band-
width is important, we note that the ratio between dirtying rate and bandwidth
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Figure 2.5: Total migration duration for different D

can be more important, how you can see from model equation. We make an exam-
ple to clarify this assumption. If λ is greater than one (it means that dirtying rate
is greater than bandwidth), then the migration bandwidth will be not sufficient
because the VM’s memory will be modified (or dirtied) faster than it can be trans-
mitted, and so the iterative phase can be very long and the whole memory has to be
transmitted in the last stop-and-copy phase, but in this way you get a high down-
time. On the other hand, if λ is lower than one (it means that bandwidth is greater
than dirtying rate), you can transmit memory faster than it can be modified, and
thus it is possible to achieve reasonable values of downtime and total migration
duration. Assuming λ ≤ 1, we know that assign higher bandwidth means lower
migration duration, but we want a value of provisioned bandwidth such that it
is possible to ensure sufficient bandwidth for all the migration requests we have
to manage. So, identifying an optimum value for the parameter λ is a challenge.
Once we have discovered the importance of the λ parameter and, consequently,
the provisioned bandwidth, we can focus our attention on the other parameter
used to derive this ratio: the dirtying rate. Depending on the workload running
on the migrated virtual machine, which it cannot be changed, dirtying rate has a
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Figure 2.6: Migration downtime for different D

key role in determine how to allocate a reasonable value for the provisioned band-
width to improve the performance of the live migration model. For example, in
multi-tenant clouds, it could happen that a virtual machine allocated to a tenant
(data center) needs to be migrated to another data center to make a better use of
physical and hardware resources. If the total migration duration is large it means
the waiting time of a new tenant becomes too long; but also a large downtime can
create problems as it can violate the Service Level Agreement of the service. In
addition, the required bandwidth for the transmission can change in each iteration
on the pre-copy approach. Therefore, to address all these drawbacks, the dirtying
rate should be taken into account to determine a constant bandwidth value during
the pre-copy phase. The goal of optimizing total migration duration, downtime
together with network resource consumption is a complex problem. In fact, high
bandwidth will reduce migration duration, but at the same time it may increase
network resource utilization. By the other side, low bandwidth can reduce resource
consumption, but it also increase total migration time as well as downtime. Same
considerations can be made for the number of iterations in the pre-copy stage.

Analyzing an other time equations for the calculation of migration duration and
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Figure 2.7: Migration duration for different iteration

downtime of the migration model, it is easy to observe that exist a relationship
between migration time and number of iteration. In Figure 2.7 [6] the y-coordinate
represents total migration time (in seconds) while in the x-coordinate there is the
number of iterations. You immediately notice that total migration duration regu-
larly decreases with decreasing number of iterations, for each one of the considered
λ values. Even if it is simple to understand that this behavior can be explained
thinking that more iterations require longer duration, it allow us to formulate an
important observation: if the goal of a migration is to reduce total migration time,
it is desirable to perform as few iterations as possible, and provision as high band-
width (thus lower λ) as possible. In fact, higher values of λ parameter involve
bandwidth values very close to the dirtying rate: it means that in each iteration
transferred amount of data (memory pages) is low and and it requires more time
to complete the transmission. In addition, more iteration are needed, so total mi-
gration duration is larger and network resources utilization increases as they are
allocated for longer time.
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2.5 Function Points Curves

In the most of the live migration techniques, performance is usually measured
in terms of total migration time and system downtime. All existing systems try
to control migration time by limiting the rate at which memory pages can be
transferred while downtime is determined by evaluating for how much time the
service (the application running on the virtual machine that has to be migrated)
is found unavailable from users. Minimizing both of these metrics is the key to
obtain optimal performance for a live virtual machine migration system and it
is usually achieved using a control system as the following. The virtual machines
administrator sets configuration parameters for the migration process, hoping that
these conditions can be met. These input parameters are a limit to the network
bandwidth for the migration procedure and an acceptable downtime for the last
iteration of the pre-copy phase of the migration. But imposing a limit for the
bandwidth that can be assigned to a migration request, without taking into account
the important role played the dirtying rate, can bring some troubles: such as it
can result in a backlog of pages to migrate or in a greater total migration duration.
A first widely used idea can be to set a high bandwidth limit, but it can affect the
performance of running applications. Another kind of solution is to determine a
limit on the number of iteration that can be performed or to increase the allowed
downtime; but both these idea can make live migration equivalent to pure stop-
and-copy migration.

So we are looking for a method that allow to assign a reasonable bandwidth
value for the migration. We want a model that take into account the trade-off ex-
isting between bandwidth, migration time and resource occupation: higher band-
width involves shorter total migration duration but it consumes more resources
(even if for a short period), while lower bandwidth means longer time required
to perform migration but it consumes resources for a longer period (even if the
amount of allocated resources is not a great value). In addition to this, also the
dirtying rate has to be considered in the estimation of the correct value of band-
width: in this way we want our model to provide a reasonable bandwidth for each
virtual machine that needs to be migrated. To reach this purpose, we can use the
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equations from the model proposed in the previous sections to provide a relation-
ship between total migration duration and provisioned bandwidth. In particular,
we can determine the value of the metric Tmig for several bandwidth values. These
bandwidth values were derived from the definition of the λ parameter in the fol-
lowing manner: once we’we fixed the virtual machine’s dirtying rate, we evaluate
the bandwidth by varying the value of λ (obviously it must be less than 1 otherwise
memory is dirtied faster than it can be transferred to the destination data center).
In this way, we are able to establish the sought relationship by building a curve
from the points just calculated. Moreover we have to specify all the other involved
input parameters, such as:

• V M : virtual machine memory size

• R: provisioned bandwidth

• D: virtual machine dirtying rate

• λ: ratio between dirtying rate and bandwidth

• n: number of iteration of the iterative pre-copy phase

• τ : inter-iteration delay

• tg: network reconfiguration time

In order to take correct values for these parameters we have made an exhaustive
research in the literature to better understand how they are involved in a multi
data center cloud environment (and which values they assume). In particular, we
took inspiration from the study of Uttam Mandal and its research group in the
essay ‘Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy
and Application’. Thus, in our calculations, we have considered the following
assumptions:

• we have considered three different values for the dirtying rate: 50 Mb/s, 100
Mb/s and 500 Mb/s
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• for each dirtying rate we have examined three different virtual machine mem-
ory size: 100 MB, 1 GB, 10 GB

• we have imposed n=20 as maximum number of iteration for the iterative
pre-copy phase

• network reconfiguration time tg is equal to 1 second

• inter-iteration time τ is equal to 100 ms

• λ takes values in the range (0,1)

As you can note by the figures below, there exists an inverse proportionality
relation between migration duration and bandwidth. In particular, you can observe
that, it is not convenient to choose too high bandwidth values to perform migration
because it non brings benefits in terms of total migration time. So it is useful to
choose a bandwidth value such that select a higher bandwidth does not perform
a significant reduction of the migration duration. Such a value is named ’function
point’ (hence the name of ’function points curve’ for the just build graph). In
conclusion, the function point curve represent a set of possible bandwidth value
to assign to a migration request together with the correspondent total migration
duration for each one of the considered bandwidth values. In the next pages we
show the function points curves for each one of the virtual machine topologies
examined in this study.
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Figure 2.8: Function points for D=50Mb/s and V M=100MB

Figure 2.9: Function points for D=50Mb/s and V M=1GB

Figure 2.10: Function points for D=50Mb/s and V M=10GB
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Figure 2.11: Function points for D=100Mb/s and V M=100MB

Figure 2.12: Function points for D=100Mb/s and V M=1GB

Figure 2.13: Function points for D=100Mb/s and V M=10GB
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Figure 2.14: Function points for D=500Mb/s and V M=100MB

Figure 2.15: Function points for D=500Mb/s and V M=1GB

Figure 2.16: Function points for D=500Mb/s and V M=10GB



Chapter 3

Routing and Bandwidth
Assignment Algorithms For Live
Virtual Machine Migration

In recent years cloud computing is covering a fundamental role in developing and
running virtualized applications and Internet services. Cloud infrastructures usu-
ally consist of geographically-distributed public data centers, connected together
by wide area networks by means of high-capacity optical channels. As a conse-
quence, the optical network has to support increasing traffic demands, due to users
requiring cloud service, as well as the one generated by the communication between
data centers. Hence, it is necessary to look for an efficient bandwidth provisioning
scheme, for a better resource allocation in the network. As in a cloud environment
physical servers, placed into data centers, are virtualized, you can expect that
migrating virtual machines over the network can give an important contribution
to the growth of network traffic. In addition, virtual machines migration requires
a significant amount of bandwidth between the source and destination data cen-
ters. This scenario tell us that it can be very useful to study new techniques that
allow to assign enough bandwidth to migration request while avoiding a waste of
resource. Indeed, even if assigning high bandwidth is important to achieve good
performance, the network may not be able to support future capacity requirements
due to high network utilization and capacity exhaustion.
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Figure 3.1: Virtual Machine Migration over a WAN

By the other side, assign lower bandwidth is useful to avoid high level of network
utilization but it can result in worse performance. Hence, you have to take care of
this tradeoff among performance and network resource utilization in evaluating the
bandwidth required to migrate a virtual machine. These are the reasons that led us
to investigate new algorithms for the Routing and Bandwidth Allocation problem
for live migration of virtual machines. In this chapter,after presenting some works
related to these topics, we first give a general description of the general problem
of allocating bandwidth in a wide-area network and then, we present some RBA
algorithms that can be adopted in case of virtual machines migration.

3.1 State of the Art

Numerous publications in recent years have proposed solutions for virtual machines
migrations in a Cloud environment. We present in this section some of the most
interesting works on this subject, in order to present the problem in all its aspects.
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From reading [1] we can learn how, in this last few years, Cloud Computing
(CC) services are increasing; as a consequence, also the the energy consumption of
the network and of the computing resources supporting cloud systems is growing,
causing the emission of enormous quantities of CO2. As a solution new routing
algorithms are presented, in order to route user requests from data centers pow-
ered by renewable energy sources (RES). However, due to its intermittency and
volatility, renewable energy cannot be used to its full potential. In facts, in [2]
a new solution is proposed to address the problem of high energy consumption
in a cloud environment: virtual machines migration can be used to relocate en-
ergy demands and to achieve a better network resources utilization. Results show
that implementing migration techniques in the US cloud network scenario can
bring to a significant reduction of non-renewable energy consumption (up to 30
percent) while consuming a small amount of extra resources. Nevertheless signif-
icant bandwidth is consumed during this process. Even if VM migration over a
local-area network (LAN), within a single data center, causes not relevant per-
formance degradation and downtime, migration over a wide-area network (WAN)
with significant end-to-end delay may cause undesirable performance effects. High
network bandwidth can reduce these impacts. In [6] authors propose quantita-
tive models for migration duration and downtime over a WAN. Based on these
models, they devise a strategy to determine appropriate migration bandwidth.
In [5] there is a study demonstrating that heterogeneous bandwidth (instead of
homogeneous bandwidth) for migration reduces significant resource consumption
in SDN-enabled optical networks. In [8] is presented a model for migrating Op-
erative Systems running services with liveness constraints, achieving impressive
performance with minimal service downtime. In [9] a cloud computing platforms
linked with a virtual private network (VPN)-based network infrastructure is pre-
sented, aiming to provide connectivity between enterprise and cloud data center
sites. As ICT constitutes a significant portion of the worldwide energy consump-
tion, reduction in operating energy expenditures is a high priority for cloud-service
providers. Authors in [7] analyze the key parameters that affect the migration cost
by implementing a model for the cost prediction by using learned knowledge about
the workloads at the hypervisor level. It is the first kind of work to estimate VM
live migration cost in terms of both performance and energy in a quantitative ap-
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proach. Another approach is to exploit live VM migration for moving virtualized
workloads towards those data centers with cheaper energy price: [4] illustrates how
a cost-efficient VM migration based on varying electricity prices, significantly re-
duces the energy cost to operate cloud services. In [11] authors explore the security
issues involved in live migration of VMs and demonstrate the importance of secu-
rity during the migration process. A model which demonstrates the cost incurred
in reconfiguring a cloud-based environment in response to the workload variations
is then studied. Live VM Migration can consume nearly the entire bandwidth
which impacts the performance of competing flows in the network so data center
administrators are looking to intelligently reserve minimum bandwidth required
to ensure a network-aware VM migration. In [10] are evaluated the performances
of Remedy, a cost estimation model to calculate total traffic generated by the
migration of virtual machines.

As we found out by analyzing the literature, many studies have been conducted
concerning the migration of virtual machines; in particular they show what the
benefits it brings (load balancing, fault recovery, cloud bursting and so on). How-
ever we must also analyze any problems that may arise migrating a virtual machine.
The aspect that seems to require further studies is the very high level of resources
consumption, that migration requires, bandwidth requirements in particular. In [3]
researchers formulate the bandwidth and routing assignment problem for virtual
machines migration with duration and downtime constraints in photonic cloud
networks, showing that optimal bandwidth and routing assignment can reduce
network resource utilization. However,there is still not a solution to the problem
of bandwidth allocation for a network scenario that involves migrations of virtual
machines among data centers. Therefore, in this work, we propose Routing and
Bandwidth Assignment algorithms for a network scenario where the offered traffic
is e one generated by the migrations of virtual machines between data centers.
Hence, we aim to propose a solution to the RBA problem so that migrations can
be carried out efficiently while ensuring an intelligent use of network resources.
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3.2 Routing and Bandwidth Assignment Prob-
lem

Unlike in simple file transfers, virtual machine total migration duration does not
depend linearly on data size (memory pages) and assigned bandwidth.

Figure 3.2: Cloud architecture network with different connections

It also depends on virtual machine’s features and on application characteris-
tics as well as stop condition of the iterative pre-copy phase in a live migration
approach. In fact, usually, migration requests have to achieve latency and down-
time requirements: in other words, there is a maximum threshold value for the
total migration time until which migration has to be performed, guaranteeing that
downtime is less of equal a prefixed value. Therefore, enough bandwidth must
be allocated to the migration request to respect these constraints while aiming
to an intelligent allocation of network resources in order to reduce the degrada-
tion of network performance. For this purpose, we took care of propose some
algorithms for the Routing and Bandwidth Allocation problem for this new sce-
nario: a network topology in which some nodes represent the location of data
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centers, and the offered traffic is the one generated by the migration of virtual
machines (i.e. large amount of data to be transferred and routed between data
centers geographically-distributed in a wide-area network). Figure 3.2 [3] shows
an example cloud architecture connected via an IP-over-WDM photonic network,
where you can see both user and VM migration traffic. Routing and Bandwidth
Assignment problem involves looking for an algorithm that allow to calculate a
path between the source and the destination nodes (data centers, in this case) of
the connection and to assign it enough bandwidth such that all requests can be
provisioned. Such an algorithm takes as input the set of connection requests; in
our case each connection is a virtual machine’s migration request. In particular a
request is characterized by several parameters:

• source node: the data center from which the virtual machine has to be mi-
grated,

• destination node: the data center where the virtual machine has to be mi-
grated,

• virtual machine memory size: the amount of data (memory pages) to trans-
fer,

• dirtying rate: rate at which data is modified during the iterative pre-copy
phase while the application hosted on the virtual machine is still running.

Our goal is not only to develop these algorithms but we also want to evalu-
ating their performances both in terms of blocking probability and in respect to
migration metrics such as total migration duration, downtime and number of iter-
ation of the iterative phase. In this chapter we will present four algorithms: Min
and Max provide bandwidth in a static manner, than, with the third algorithm,
Congestion-Aware, we try to calculate bandwidth taking into account the network
state and finally, we propose a more intelligent algorithm that took inspiration
from previous results. Analyzing the whole problem, we can say that we focus
on a scenario of migration request only, taking as input the network topology,
the traffic (migration requests) distribution and its arrival rate. Then we proceed
going through the Routing and Bandwidth Assignment problem (choosing one of
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the proposed algorithms), after which a connection can be provisioned or dropped.
In a final phase resources are released and performance of algorithms evaluated.
Going into detail of the RBA problem, we can say that each algorithm presents
the same scheme and it can be divded in three phases:

• Routing phase: k shortest path calculation

• Provisioning phase: Bandwidth Assignment problem and resource allocation

• Deprovisioning phase: release resources

Figure 3.3: Flow chart of Routing and Bandwidth Assignment algorithm

In figure 3.3 there is a flow chart that clarifies how is the general scheme of each
one of our algorithms and how it works. For each migration request the source and
destination data centers are extracted and the Yen algorithm is applied for each
one of these couple of nodes, in order to calculate k shortest path for the migration
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request. Starting from the first, for each one of the paths, the available bandwidth
(Bav) on the path is evaluated, then there is a first control: we check if the free
bandwidth Bav is greater than the dirtying rate (D). If yes, it proceeds with the
calculation of the migration bandwidth B using one of the proposed algorithms; if
free bandwidth is grater than B, than the migration request is routed, resources
are allocated and migration is performed. If B is less than Bav, then, next path is
analyzed and the same procedure is applied for all the k shortest paths, unless a
path with enough free bandwidth to perform migration is found. If such a path is
not found, the migration request is dropped. In the next sections we will explain
in details how the four algorithms work.

3.3 RBA Algorithm - Min

As we are considering a live pre-copy based model for virtual machines migration,
we have to take into account the key role played by the dirtying rate within this
process when we have to decide the bandwidth value to assign to a migration
request. We have to remind that assigning to a request a bandwidth lower than
the dirtying rate implies that virtual machines memory is transferred, from source
to destination data centers, less quickly than it can be dirtied and it will be a
problem. Therefore we have to find an algorithm that allow to select a bandwidth
greater than dirtying rate for each migration request in order to provide enough
bandwidth to complete all migration requests. For this reason, we named our first
algorithm ’Min’, as it try to provide a bandwidth value that is the lowest possible
such that migration can be performed: i.e. it assigns a bandwidth slightly higher
than the dirtying rate. In particular, we can calculate the bandwidth as:

B = D ∗ (1 + α) a ∈ (0, 1) (3.1)

where D is the dirtying rate of the virtual machine and α is a positive parameter
in (0,1) that allow us to evaluate the bandwidth to allocate to the migration
request, such that it is greater that the dirtying rate itself. By definition, α can
assume any value greater than 0 and less than 1, so it is important to establish
which is the best choice for this parameter. In order to achieve this purpose, we
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did some simulations (obviously, selecting Min as the algorithm chosen for the
bandwidth calculation) aiming to observe how the blocking probability changes in
relation to the arrival rate Ar (in particular we did simulations for different value
of arrival rate, i.e. Ar ∈ [0, 001 − 1]). We repeat simulations for several values of
α, obtaining the following curves:

Figure 3.4: Blocking probability curves for algorithm Min

In figure 3.4 we can easily observe that blocking probability increases as an
higher value is chosen for the parameter α. This can be explained thinking that
having higher values of α means assigning higher bandwidths, then more network
resources are used and consequently blocking probability increases. Now the chal-
lenge is to choose which value of parameter α allow to provide a bandwidth than
provides that migration is performed successfully without requiring too much time
to complete it. To address this new problem we did other simulations to monitor
how blocking probability behaves by varying the parameter α. As we’re mainly
interested on the relationship between blocking probability and α we use a fixed
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value for the arrival rate for all these simulation, in particular it is equal to 0,1.
Plotting results obtained in this way, we have:

Figure 3.5: Blocking probability curves for algorithm Min with fixed α

In figure 3.5 we immediately note that there exists an inverse proportionality
relation between blocking probability Pblock and the parameter α. It means that
blocking probability decreases for growing values of α. But we further observe that
for high value of α blocking probability does not decrease in a significant way, so
we can select a fixed value for α such that choosing a value greater than it, it will
have not considerable benefits in reducing probability. In order to find out which
can be the more appropriated value, we decided to adopt an analytical approach
looking at the incremental ratio of the curve. We, then, choose the value of α for
which the incremental ratio is less than a percentage:

∆Pblock

∆α
≤ ϵ1 (3.2)

where we have chosen ϵ1 = 0.01 as it is the most significant value for the
considered ratio. In facts, as the blocking probability curve is a decreasing one, also
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the incremental ratio decreases. In particular, for higher value of α, it decreases
very slowly and it take values that are lower than 0.01 but always greater than
0.001: so the value ϵ1 = 0.01 can be seen as an upper bound.

In this work, the better choice for the α parameter is α=0,2 as it provides this
ratio equal to 0.08.

Until now, we have provided a description of how bandwidth is selected. Now
we want to focus on the general procedure of how algorithm Min works, step by
step, for each incoming migration request:

Input: Topology network graph G = (N, E), migration request R, dirtying
rate D.
Output: The path with the minimum value of available bandwidth. The band-
width value chosen to provision the migration of the virtual machine.

1. K shortest path calculation between the source s and destination d nodes of
the migration request through the Yen algorithm.

2. For each one of the k shortest path the available bandwidth Bp,av is evaluated
as:

Bp,av = min
e

Be,av ∀ e ∈ L

where L is the set (subset of E) of the links belonging to the considered path.

3. For each one of the k shortest path:

a. If Bp,av > D: calculate B in according to the algorithm’s formula.

• If Bp,av ≥ B the migration request is provisioned with bandwidth
B.

• If Bp,av < B check the next path.

b. If Bp,av ≤ D: the current path is dropped and the next one is analyzed.

4. If, after having analyzed all the k paths, a path with enough bandwidth is
not found, migration request is dropped.
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5. If a valid path is found, resources are allocated, migration is performed and
it takes note of the provided bandwidth value to estimate total migration
duration and downtime metrics in order to evaluate performance of the al-
gorithm.

6. Once migration is completed, allocated resources are released.

3.4 RBA Algorithm - Max

As in min we provided a kind of lower bound for the bandwidth to assign to a
migration request such that it can be preformed, we now want to inspect how
can be estimated an upper bound for the same process. In particular, we want to
assign to a migration request a high value of bandwidth, but, at the same time, we
have to avoid that it reaches too large values as it can results in a useless waste of
resource. So, we can use the function point curves defined in the previous chapter,
in order to find a maximum value of bandwidth for each virtual machine type. In
formulas we can express the issue of finding this ’maximum’ bandwidth as:

B = min(Bav, Bmax) (3.3)

In equation 3.3 Bav represents the available bandwidth on the selected path
while Bmax is the maximum bandwidth provided by the function points curve
of the virtual machine to be migrated. We know that Bmax, by definition, is
the value of bandwidth such that choosing a value greater it will not provides a
significant reduction of the total migration duration Tmig. So, by choosing the
minimum between Bav and Bmax means to allocate a bandwidth that is equal to
that available on the path if it is lower than the one indicated by the function
point curve or, in the other case, allocate exactly the function point bandwidth.

After having decided the criteria used to assign the bandwidth to an input
migration request, we have to specify which are the function points bandwidth
values for each one of the virtual machines analyzed in this study. As we consider
three value both for the dirtying rate and the virtual machine’s memory size, we
have to work with nine different types of virtual machines. To find out which can
be the best choice for the maximum value of bandwidth that allow to complete
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migration in respect of the function point purpose (selecting a bandwidth that
guarantees a total migration time not too large without wasting network resources),
we adopt an analytical strategy for each virtual machine. More in details, for each
virtual machine type, we choose the bandwidth such that the incremental ratio
of the function points curve is more ϵ2 (this method is similar to the one used to
choice the better value of α for the algorithm Min):

∆Tmig

∆B
≥ ϵ2 (3.4)

As stated in the last equation, we select the first value of bandwidth that
provide this ratio greater than ϵ2 (when considering bandwidth values from the
lowest to the greatest). In particular we chosen ϵ2 = 0.001 as selecting higher
value of bandwidth doesn’t imply any benefit in total migration time reduction.
In the table below, values of Bmax are reported, for each type of virtual machines
considered in this work:

Dirtying rate V M size Bmax

50 Mb/s 100 Mb/s 200 Mb/s
50 Mb/s 1 Gb/s 333 Mb/s
50 Mb/s 10 Gb/s 500 Mb/s
100 Mb/s 100 Mb/s 286 Mb/s
100 Mb/s 1 Gb/s 400 Mb/s
100 Mb/s 10 Gb/s 667 Mb/s
500 Mb/s 100 Mb/s 1666 Mb/s
500 Mb/s 1 Gb/s 2000 Mb/s
500 Mb/s 10 Gb/s 2500 Mb/s

Table 3.1: Bmax values for different virtual machines

Now we want to focus on how algorithm Max works, step by step, for each
incoming migration request:

Input: Topology network graph G = (N, E), migration request R, dirtying
rate D.
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Output: The path with the minimum value of available bandwidth. The band-
width value chosen to provision the migration of the virtual machine.

1. K shortest path calculation between the source s and destination d nodes of
the migration request through the Yen algorithm.

2. For each one of the k shortest path the available bandwidth Bp,av is evaluated
as:

Bp,av = min
e

Be,av ∀ e ∈ L

where L is the set (subset of E) of the links belonging to the considered path.

3. For each one of the k shortest path:

a. If Bp,av > D: calculate B in according to the algorithm’s formula.

• If Bp,av ≥ B the migration request is provisioned with bandwidth
B.

• If Bp,av < B check the next path.

b. If Bp,av ≤ D: the current path is dropped and the next one is analyzed.

4. If, after having analyzed all the k paths, a path with enough bandwidth is
not found, migration request is dropped.

5. If a valid path is found, resources are allocated, migration is performed and
it takes note of the provided bandwidth value to estimate total migration
duration and downtime metrics in order to evaluate performance of the al-
gorithm.

6. Once migration is completed, allocated resources are released.

3.5 RBA Algorithm - Congestion Aware

As shown in previous paragraphs, in algorithms Min and Max the value of band-
width to assign to a migration is chosen in a static way, such that, once the path is
selected, then bandwidth is given by a formula ((2.1) for Min and (2.3) for Max)
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that not involves parameters that can tell us something about the network con-
gestion level. So, with this third algorithm, Congestion-Aware, we want to take
into account the network state while provisioning bandwidth for the migration. As
migrations are performed, resources are allocated: a portion of bandwidth over a
link is reserved and it cannot be used for other requests until it is released; more-
over more than one link are used to route each request from its source data center
to its destination data center. Relying on these considerations, we can say that
network resources usage can be represented through two parameters: the assigned
bandwidth for the migration (Bav) and the number of hops belonging to the path
used to route the migration request (H). For this reason, in this algorithm the
routing phase is slightly different from the one seen in Min and Max, as we want to
select the less loaded path, and not only the shortest one as the route along which
perform migration. For the bandwidth assignment problem, however, we decided
to assign a bandwidth value equal to the one suggested by the function points
curve of the considered virtual machine. Below there is the a detailed overview
of all the step of the algorithm Congestion-Aware (for each incoming migration
request):

Input: Topology network graph G = (N, E), migration request R, dirtying
rate D.
Output: The path with the minimum value of available bandwidth. The band-
width value chosen to provision the migration of the virtual machine.

1. K shortest path calculation between the source s and destination d nodes of
the migration request through the Yen algorithm.

2. For each one of the k shortest path two parameters are evaluated: the avail-
able bandwidth Bp,av and the number of hops H belonging to the path (it is
the path length):

Bp,av = min
e

Be,av ∀ e ∈ L

where L is the set (subset of E) of the links belonging to the considered path.



3.6 RBA Algorithm - Range 43

3. For each path the following product is computed:

Bp,av · H

4. Paths are sorted in decreasing order of this product.

5. The path with the minimum value of the product Bav · H is selected, then:

a. if Bp,av > D: a bandwidth value B equal to the one suggested by the
function points curve is assigned to the migration request.

• If Bp,av ≥ B the migration request is provisioned with bandwidth
B.

• If Bp,av < B check the next path.

b. If Bp,av ≤ D: the current path is dropped and the next one is analyzed.

6. If, after having analyzed all the k paths, a path with enough bandwidth is
not found, migration request is dropped.

7. If a valid path is found, resources are allocated, migration is performed and
it takes note of the provided bandwidth value to estimate total migration
duration and downtime metrics in order to evaluate performance of the al-
gorithm.

8. Once migration is completed, allocated resources are released.

3.6 RBA Algorithm - Range

As will be explained in the next chapter, analyzing the results obtained from the
simulations for the algorithms Min and Max we found that the number of hop
of the path, on which the migration request is routed, can have great impact on
resources occupation. But, influencing resources occupation means that path’s
length (measured in hops) can be a key factor also in evaluating blocking proba-
bility. In fact, if the chosen path presents a high number of hops, it means that
on network’s links the load is high and free bandwidth is low, therefore, in order
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to serve a request you must assign less bandwidth. Hence, we tried to develop
an algorithm which can be able to provide bandwidth in according to the path’s
length. So the general idea of this algorithm, called Range, is to build a kind of
correspondence between the number of hops of the selected path and the band-
width required to complete a virtual machine migration. Let’s, then, introduce
the equation that allows us to achieve this goal:

B = BMAX − (BMAX − Bmin) ∗ h − Hmin

HMAX − Hmin
(3.5)

It is easy to recognize that 3.5 is a straight-line equation where h is the inde-
pendent variable and it takes values in the range (Hmin, Hmax) while the dependent
variable B represents the provisioned bandwidth for migration and it takes val-
ues in the range (Bmin, Bmax). More in details, the involved parameters are the
following:

• h: it is number of hops of the current path we’re analyzing;

• Hmin: minimum value of hop number, it is equal to the length of the first
shortest path;

• Hmax: maximum value of hop number, it is equal to the topology network
diameter;

• Bmin: minimum value of bandwidth required to perform migration, it is
calculated through the same formula used in algorithm Min;

• Bmax: maximum bandwidth that can be allocated to perform a migration,
it is given by the function point value of the considered virtual machine.

As in this study we are analyzing migration of several types of virtual machines,
we have to define these parameters presented above, for each one of the considered
dirtying rate and for each one of the VM memory size. So we have to specify the
bounds of intervals in which the variables may take values: we show them in the
following table:
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Dirtying rate V M memory size Hmin Hmax Bmin Bmax

50 Mb/s 100 MB 2 8 60 Mb/s 500 Mb/s
50 Mb/s 1 GB 2 8 60 Mb/s 500 Mb/s
50 Mb/s 10 GB 2 8 60 Mb/s 500 Mb/s
100 Mb/s 100 MB 2 8 120 Mb/s 667 Mb/s
100 Mb/s 1 GB 2 8 120 Mb/s 667 Mb/s
100 Mb/s 10 GB 2 8 120 Mb/s 667 Mb/s
500 Mb/s 100 MB 2 8 600 Mb/s 2500 Mb/s
500 Mb/s 1 GB 2 8 600 Mb/s 2500 Mb/s
500 Mb/s 10 GB 2 8 600 Mb/s 2500 Mb/s

Table 3.2: Used parameters for algorithm Range

In table 3.2, we used the following equation to evaluate the value of Hmax:

d = 2 ∗ (
√

n − 1) (3.6)

For a graph with n nodes and m edges, the diameter is the length of the longest
shortest-path between any two vertices. There exist two main variations on the
diameter, depending on the metric used to construct and evaluate the shortest
paths. The hop-diameter is the length of the longest shortest-path between any
two vertices, where the shortest paths are computed and evaluated using hop count
as the metric, while in the length-diameter, the shortest paths are computed and
evaluated using Euclidean length (i.e. physical path length) as the metric. We
consider the hop-diameter in our formulation. In equation 3.6 d represents the
network topology diameter while n is the number of nodes in the network. As
we are considering the NSFNet with 24 nodes, from the calculations the network
diameter d results to be 7.79, but it should be rounded up so we consider it equal
to 8.

Now we want to focus on how algorithm Range works, step by step, for each
incoming migration request:

Input: Topology network graph G = (N, E), migration request R, dirtying
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rate D.
Output: The path with the minimum value of available bandwidth. The band-
width value chosen to provision the migration of the virtual machine.

1. K shortest path calculation between the source s and destination d nodes of
the migration request through the Yen algorithm.

2. For each one of the k shortest path two parameters are evaluated: the avail-
able bandwidth Bp,av and the number of hops h belonging to the path (it is
the path length):

Bp,av = min
e

Be,av ∀ e ∈ L

where L is the set (subset of E) of the links belonging to the considered path.

3. For each one of the k shortest path:

a. if Bp,av > D: a bandwidth value B is calculated according to equation
3.5:

• If Bp,av ≥ B the migration request is provisioned with bandwidth
B.

• If Bp,av < B check the next path.

b. If Bp,av ≤ D: the current path is dropped and the next one is analyzed.

4. If, after having analyzed all the k paths, a path with enough bandwidth is
not found, migration request is dropped.

5. If a valid path is found, resources are allocated, migration is performed and
it takes note of the provided bandwidth value to estimate total migration
duration and downtime metrics in order to evaluate performance of the al-
gorithm.

6. Once migration is completed, allocated resources are released.

In the following graphs we plotted the behavior of equation 3.5 for the three
values of dirtying rate:
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Figure 3.6: Range algorithm’s scheme for dirtying rate equal to 50Mb/s

Figure 3.7: Range algorithm’s scheme for dirtying rate equal to 100Mb/s
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Figure 3.8: Range algorithm’s scheme for dirtying rate equal to 500Mb/s



Chapter 4

Simulative Results

To evaluate the performance of the proposed Routing and Bandwidth Assignment
algorithms, we have developed a C++ discrete-events simulator, which is able to
simulate the behavior of an Wide Area Network with a distributed Cloud system
on top of it. Connections are originated from a set of data centers, which repre-
sent the source and destination nodes of each request. Offered traffic is uniformly
distributed from all the couples of data centers; in particular it consists of con-
nection requests with Poissonian inter-arrival time, which arrive with frequency
(arrival rate) λ. Our goal is to evaluate the performances of some algorithms for
the Routing and Bandwidth Assignment problem for a virtual machines migration
scenario, so there isn’t an a priori fixed value for the connection duration as each
connection request represent a migration request. Then, the duration of each re-
quest depends of all the parameters involved in the migration process and it can’t
be known in advance. Another consequence of solving the Routing and Bandwidth
Allocation problem is that we can’t adopt the typical wavelength-based approach
of a wavelength-division-multiplexing optical network. In facts, as the problem
expected to choose the best value of bandwidth to provision to each migration, we
can’t consider use channels of fixed bandwidth. Consequently, we only consider
each link provisioned with a maximum valued of capacity and we then, add a con-
straint which assures that the overall sum of assigned bandwidths on a link not
exceeds the link capacity.

In this chapter, we first show some simulation settings, then we pass to illus-
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trate results obtained from simulations for each one of the previously proposed
algorithms.

4.1 Simulation Settings

Before showing the graphs relating to the results, we have to explain which are
the metrics and the parameters used to compare of our algorithms. In particular
we can first present the input parameters used in the simulator:

• Arrival rate: it is the arrival frequency of migration requests and it takes
values in (0,001 – 10) because migration requests are not so frequent as
user’s connections requiring internet services; number of migrations is not
very large but each migration carry a great amount of data. We refer to
this parameter as Ar. It is an input parameter of this simulator, hence we
did many simulations for several different values of arrival rate (typically it
compares in the x–axis of graphs).

• Dirtying rate: is the rate at which memory pages are modified while the
virtual machine (and the application hosted on it) is till running. We refer
to this metric with D in all the graphs of this work.

• VM size: it is the size of the virtual machine memory, i.e. the amount of
data that needs to be transferred in the first round of the iterative pre-copy
phase. We refer to this metric with V M in all the graphs of this work.

Now we list all the metrics used to evaluate the performances of the just pre-
sented Routing and Bandwidth Assignment algorithms:

• Blocking probability: it is the metric used to evaluate the performance of
algorithms and it is measured as the ratio between provisioned byte (i.e.
amount of bytes transferred by migration requests successfully provisioned)
and total offered bytes (i.e. amount of data of both provisioned and blocked
migration requests, in byte). We refer to this metric with Pblock in all the
graphs of this work.
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• Resource Occupation: it measures the amount of network resources allocated
to provisioned migration requests and it is measured in [byte*hop]; we refer
to resource occupation as RO in graphs.

• Carried Load: it represents the level of network resources utilization and it is
the ratio between allocated resources for provisioned requests and the total
resources of the network; obviously it is a pure number, we refer to carried
load as CL.

• Total Migration Time: it is the average total time required to migrate a
virtual machine; it is used to evaluate the resource occupation metric and it
is measure in seconds; we refer to migration duration as Tmig.

• Bandwidth: it is the average bandwidth assigned by an algorithm to migrate
a virtual machine; it is used to evaluate the resource occupation metric and
it is measure in [Mb/s]; we refer to migration duration as B.

• Hop it is the average number of hops belonging the a path over which a
virtual machine is migrated; it is used to evaluate the resource occupation
metric and it is measured in [hop]; we refer to migration duration as H.

The network topology adopted in the simulator is shown in figure 5.1. This is
the network topology called USA24 and it consists of 24 nodes and 43 bidirectional
links. Each link has a capacity equal to 100 Gb/s. In the network were placed
eight data centers, which constitute the only possible sources and destinations for
each migration request.

In this study are considered several types of virtual machines: they differ in
dirtying rate D and memory size V M . In particular V M can assume three values:
100 MB, 1GB and 10GB as in [2], [3], [17] and [8]. Moreover, each migration
request is generated with an uniform distribution of memory size.

Another important parameter need a better description from a numerical point
of view: the dirtying rate. In literature, usually, you can find the page dirty rate
(also named dirty frequency) which represents the rate at which memory pages
are dirtied (modified) during the iterative pre-copy phase of the live migration
process. As we know that memory page size is equal to 4 kB, we can easily found
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Figure 4.1: Network topology USANet24

the correspondent values for the dirtying rate expressed in [Mb/s]. In the following
table some typical values are reported.

In our simulations we assumed three possible values for the dirtying rate: 50
Mb/s, 100 Mb/s and 500 Mb/s.

4.2 Illustrative Numerical Results

The first algorithms we have analyzed are Min and Max. We did some simulations
for several different values of arrival rate in order to evaluate the blocking proba-
bility for both algorithms. The following pictures report the blocking probability
curves for both algorithms Min and Max. In particular:

• figure 4.2 shows blocking probability curves for dirtying rate equal to 50
Mb/s;

• figure 4.3 shows blocking probability curves for dirtying rate equal to 100
Mb/s;
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Dirty Frequency Page Size DirtyingRate

500 pages/s 16 Mb/s
1000 pages/s 32 Mb/s
2000 pages/s 64 Mb/s
3000 pages/s 4 kB 96 Mb/s
4000 pages/s 128 Mb/s
5000 pages/s 160 Mb/s
10000 pages/s 320 Mb/s

Table 4.1: Dirtying rates values for different dirty frequencies

• figure 4.4 shows blocking probability curves for dirtying rate equal to 500
Mb/s.

Figure 4.2: Blocking Probability for algorithms Min and Max for D=50Mb/s
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Figure 4.3: Blocking Probability for algorithms Min and Max for D=100Mb/s

Figure 4.4: Blocking Probability for algorithms Min and Max for D=500Mb/s
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From a first look at the previous graphs, you can immediately notice that there
are very low values of blocking probability for very small Arrival Rate (less than
unity), while for Arrival Rate of some order of magnitude higher (1-10) blocking
probability strongly grows (it arrives almost to the total block). Also from the
results obtained, we note the existence of an intersection point between the two
curves of probability, which can be attributed to a change in behavior of the two
algorithms depending on the assumed value by the arrival rate. In particular we
observe that Min behaves better than Max for high arrival rate while for arrival
rate very low, less than unity, we have the opposite situation (namely Max shows
blocking probability values lower than those of Min) So, for high values of arrival
rate (Ar > 1) we see that Min behaves better than Max (i.e. Min presents lower
blocking probability than Max): this behavior can be understood if we think that
an incoming connection is blocked if it doesn’t find sufficient resources (e.g. if
there is not enough bandwidth available on any of the k shortest path previously
calculated). Therefore, if more migration requests are served simultaneously, the
probability that the resources to allocate for a possible incoming connection are
few can be very high: thus, an algorithm which assigns high values of bandwidth
(such as Max) leads to a higher blocking probability, compared to an algorithm
that allocates lower values of bandwidth.

However, For small values of the arrival rate (Ar < 1), the most influential
factor in determining blocking probability is no longer the arrival rate because,
now, the arrival time instants of the migration request are not so close in time.
Nevertheless you can easily notice that the scarcity of available resources needed to
route a new connection may depend on the time taken to transfer the memory of
the virtual machine. Migration requests of different virtual machines may require
different total migration times, therefore resources can be employed for different
time periods, whose overlap can determine the absence of available resources for an
arriving migration request. So it can happen that, when a new migration request
arrives, there are no resources available because already assigned to the transfer of
other virtual machines, whose migration requests were accepted earlier. Therefore,
an algorithm which assigns low values of bandwidth (such as Min), implies high
values of total migration time (Tmig) and, consequently, higher blocking probabil-
ity compared to an algorithm that assigns upper values of bandwidth (as Max).
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Moreover, in each graph you observe that the intersection point between the two
curves moves to the right for increasing values of dirtying rate. In order to under-
stand the reason of this behavior, we decided to analyze another parameter: the
Resource Occupation, calculated as:

RO = B · Tmig · H (4.1)

In equation 4.1 B is the average provisioned bandwidth for the migration, Tmig

is the average total migration time and H is the average number of hops (i.e. the
average path’s length on which migrations are performed). Below we report the
trend of Resource Occupation in function of the arrival rate for the two algorithms
Min and Max for each value of dirtying rate. Besides, are also reported the trends
of the components of the Resource Occupation such as: average total migration
time, average provisioned bandwidth and average path’s length (for each valued of
dirtying rate). You immediately note that the curves of Resource Occupation of
the two algorithms follow the same trend as those of blocking probability: namely,
for high arrival rates Min behaves better than Max and viceversa for low arrival
rates. You can observe that B and Tmig have a slightly constant trend by varying
the arrival rate, due to the fact that they are averages values for provisioned
bandwidth and total migration time. But H shows a very interesting behavior: it
results to have an increasing trend for both algorithms, however Max grows faster
than Min. Indeed, as Max assigns higher bandwidth values than Min, in Min links
capacity may expire in shorter times than in Max and so, as a consequence, Max
shows an average path’s length higher than Min.
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Figure 4.5: Resource Occupation for Min and Max for D=50Mb/s

Figure 4.6: Hop Count for Min and Max for D=50Mb/s

Figure 4.7: Migration Duration for Min and Max for D=50Mb/s
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Figure 4.8: Provisioned bandwidth for Min and Max for D=50Mb/s

Figure 4.9: Resource Occupation for Min and Max for D=100Mb/s

Figure 4.10: Hop Count for algorithms Min and Max for D=100Mb/s
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Figure 4.11: Migration Duration for Min and Max for D=100Mb/s

Figure 4.12: Provisioned Bandwidth for Min and Max for D=100Mb/s

Figure 4.13: Resource Occupation for algorithms Min and Max for
D=500Mb/s
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Figure 4.14: Hop Count for Min and Max for D=500Mb/s

Figure 4.15: Migration Duration for Min and Max for D=500Mb/s

Figure 4.16: Provisioned Bandwidth for algorithms Min and Max for
D=500Mb/s
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Looking at the previous graphs, we can say that Resource Occupation presents
two min factors: the product Tmig · H which influences its amplitude and the H

parameter which determines its trend (as we have already said, for high arrival
rate in Max path’s length grows faster than in Min resulting in larger blocking
probability while for low arrival rate there is the opposite situation).

Until now, all the presented graphs in this chapter show the arrival rate (Ar)
on the x-axis, both for blocking probability and resource occupation. But arrival
rate is an input parameter in the discrete-events based simulator, so it is not an
adaptive metric. In other words, it can not say anything about the actual behavior
of the network, nor the offered load or the served traffic. For this reason, in order to
better understand the real behavior of the network, another metric is evaluated:
the Carried Load. It represents the amount of served traffic in relation to the
offered one. In particular, it is evaluated as shown in the formula below.

CL = RO · Ar

Htot · C
(4.2)

As you can note from equation 4.2, the Carried Load is a pure number both
numerator and denominator are expressed in [hop · bit

s
]: the former (product be-

tween resource occupation RO and arrival rate Ar) represents the total amount of
resources allocate for the provisioned migration requests while the latter (product
between the total number of hop in the network Htot and the capacity of each link
C) represents the total amount of resources available on the network. So this ratio
evaluates the relative amount of resources used for migration provisioning. In the
following figures are reported the blocking probability curves of the two algorithms
Min and Max, for each one of the considered values of dirtying rate.
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Figure 4.17: Blocking Probability - Carried Load for D=50Mb/s

Figure 4.18: Blocking Probability - Carried Load for D=100Mb/s
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Figure 4.19: Blocking Probability - Carried Load for D=500Mb/s

Analyzing the results obtained from the simulations performed so far, we find
out a change in behavior for both the considered algorithms. Furthermore, Min
and Max assign bandwidth in a static way: by means of a simple formula or of
a priori fixed values. Therefore we decided to introduce a third algorithm that
chooses the bandwidth to be allocated to migration requests in a dynamic way,
i.e., taking into account the actual network state. It is the Congestion-Aware
algorithm, already described in the previous chapter. So now we want to present
and analyze results obtained from its simulations.
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Figure 4.20: Blocking Probability for algorithm Cong for D=50Mb/s

Figure 4.21: Blocking Probability for algorithm Cong for D=100Mb/s
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Figure 4.22: Blocking Probability for algorithm Cong for D=500Mb/s

Figures 4.20, 4.21 and 4.22 show the blocking probability for all the three
algorithms Min, Max and Congestion-Aware for each value of dirtying rate. You
can observe that Congestion-Aware presents a similar trend to other algorithms,
but in particular its blocking probability curve is comprised between those of Min
and Max. Despite being an adaptive algorithm, we can see how the blocking
probability has a trend similar to that of the algorithms that assign the band in a
static manner. In facts, Congestion-Aware presents a double behavior depending
on the number of incoming migration requests. For high arrival rates it is better
than Max but worse than Min while for low arrival rates it is better than Min but
worse than Max.

Given the progress achieved, we are now trying to think of an algorithm that
is able to grasp this double behavior: the trend of Max for small arrival rate and
the one of Min for high arrival rate. However, it is not easy, as in the first case
the most influential factor in determining blocking probability is the total dura-
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tion of the migration while in the second case it is the number of simultaneously
served migration requests. Therefore we want to find a common factor that affects
both algorithms to emulate (Max for lower arrival rates and Min for higher arrival
rates). So we can take inspiration from the study previously conducted on the Re-
source Occupation. We know that it is evaluated as the product of three factors:
(average) total migration time, (average) provisioned bandwidth and (average)
path’s length. In particular we note that the latter is a very influential factor
in both algorithms in order to determine the trend of the curve of the Resource
Occupation. Then we can choose to use the number of hops as a parameter ac-
cording to which assign the provisioned bandwidth for migration. But, influencing
resources occupation means that path’s length (measured in hops) can be a key
factor also in evaluating blocking probability. In fact, if the chosen path presents
a high number of hops, it means that on network’s links the load is high and
free bandwidth is low, therefore, in order to serve a request you must assign less
bandwidth. So the general idea of the fourth algorithm, called Range, is to build
a kind of correspondence between the number of hop of the selected path (h) and
the bandwidth required to complete a virtual machine migration (B). In particu-
lar this relationship is given by a straight-line equation in which the independent
variable represents the (average) number of hops belonging to the selected path
for the migration. In this way the algorithm is able to provide a bandwidth to
each migration request having a path’s length h. In according to our consideration
we expect that for higher values of h lower bandwidth are assigned while, in the
opposite situation, higher bandwidths are associated to lower number of hops. In
facts, equation (3.5) represents a straight-line with a negative angular coefficient,
which means that higher bandwidths are assigned to shorter paths and viceversa.
After having explained the reasons that led us to develop algorithm Range, we are
now interested in some results. In next figures are presented the blocking proba-
bility curves of all four proposed algorithms in function of the arrival rate, for each
one of the considered values of dirtying rates.
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Figure 4.23: Blocking Probability for algorithm Range for D=50Mb/s

Figure 4.24: Blocking Probability for algorithm Range for D=100Mb/s
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Figure 4.25: Blocking Probability for algorithm Range for D=500Mb/s

Looking at figures 4.23, 4.24 and 4.25, you can observe a very interesting trend
for the blocking probability of algorithm Range (it is represented by the yellow
curve). It reaches values of probability both less than those of algorithm Min for
high arrival rates and less than those of algorithm Max for low arrival rates. Hence
data from simulations have proved what we formulated as a hypothesis earlier:
namely path’s length is a good metric for provisioning bandwidth for migrations
and, consequently, it is a key factor in determining blocking probability.



Chapter 5

Multiple Virtual Machines
Migration

As it can be easily found in literature, many live migration methods are pro-
posed to improve the migration performance and efficiency. But, due to the high
power consumption, the idea of increasing the data center processing power may
not always be the optimal solution to the issue of the increasing growth of ICT
energy consumption. Since live migration technology is widely used in modern
cloud computing data centers, live migration of multiple virtual machines is be-
coming even more frequent. For these reasons, the new idea of federated cloud
computing model is arising. It is based on an intelligent sharing of the workloads
across the DC resources of multiple cloud providers. Obviously several issues may
be solved, such as the design of inter-data center connection network, building
suitable communication infrastructure to achieve the required quality of service.
One of the fundamental ideas that makes this new model possible, is the use of
virtual machines, as they make the decoupling of services and applications from
the underlying hardware environment possible. Moreover, in a cloud federation,
virtual machines can be easily moved from a data center to another one while
maintaining the network state consistency. This feature can be very useful when
considering sets of correlated virtual machines that must be migrated together, in
a live way, while maintaining their interconnections. In facts, many applications
are often executed over multiple virtual machines and, then relative services are
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available to users only if all the VMs are active and interconnected.

Figure 5.1: Data centers network example

Different from the single virtual machine migration, the live migration of multi-
ple virtual machines is able to face many new problems, such as: migration failures
due to the insufficient resources in target machine, conflicts due to the concurrent
migrations, and troubles due to the dynamic changes of virtual machine workloads.
All the above issues should be overcome to maximize the migration efficiency in
virtualized cloud data center environments. Hence, new methods of multiple vir-
tual machines migration need to be developed. While the issue of single VM live
migration has been extensively studied, the case of multiple VM migration is still
to be investigated in details. In this chapter, we will present two methodologies
for the migration of a set of multiple virtual machines: serial migration and par-
allel migration. After that, we will try to build a model for this new topic: an
integer linear programming formulation for the serial/parallel migration. In this
thesis work, we have proposed and evaluated new algorithms for the routing and
bandwidth assignment problem for virtual machines migration, aiming to solve
the trade-off between migration performance and resource utilization. Hence, in
this chapter we would like to understand how the migration of multiple virtual
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machines can affect the network resources consumption.

5.1 Model Parameters

The problem of migrating a set of correlated virtual machines is more complex than
the one of migration a single machine per time. For this reason, the metrics used
to evaluate performance of the migration will depend on the migration of several
machines and not just one as well as the way in which migrations are performed.
So, we can use the model earlier adopted in the simulative section, to model the
migration process, but is has to be expanded because we are now considering a set
of virtual machines, and it is not trivial. Hence, a new definition of downtime and
migration duration is required. We consider the general case of a set of M virtual
machines with the following parameters:

• V M
j is the memory size of the j-th virtual machine;

• Dj is the page dirtying rate of the j-th virtual machine;

• Pj is the memory page size of the j-th virtual machine.

According to the pre-copy based migration approach, when the j-th VM memory
copy begins at time t0,j, the entire memory V M

j is copied to the destination loca-
tion, while the virtual machine is still running at the source location. Then the
iterative phase can start: modified memory pages are transferred in each iteration,
which starts at times t1,j, . . . , tnj ,j. The iterative phase goes on until the amount
of dirty memory is below a predefined threshold Vth or a maximum number nmax

of iterations is performed. If Rj is the bandwidth value selected for migrate the
virtual machine j, we can assume that both Rj and Dj are constant rates during
the entire migration process (this assumption is reasonable as the memory page
dirtying rate depends on the application running on the machine). Moreover we
assume that the memory allocated to each one of the M virtual machines is the
same. Based on these considerations, we have:

Dj = D, V M
j = V M , Pj = P, ∀ j ∈ M
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So the duration of the i-th iteration of memory transfer of virtual machine j is:

Ti,j = V M (P · D)i

Ri+1
j

i = 0, . . . , nj (5.1)

As explained in previous chapters, the migration process of the j-th virtual ma-
chines can reach good performance if the average dirtying rate is smaller than the
transfer rate, which means:

λj = (P · D)
Rj

< 1 (5.2)

The last round (the stop-and-copy phase) can start either for the smaller iteration
index i such that:

Vi,j = λi
j · V M ≤ Vth (5.3)

or when nmax iterations are reached. Therefore the number of iterations required
to migrate the virtual machine j is:

Nj = min
(⌈

logλj

Vth

V M

⌉
, nmax

)
(5.4)

The total time required to migrate the j-th VM is given by:

Tmig,j =
nj∑

i=0
Ti,j = V M

Rj

1 − λ
nj+1
j

1 − λj

(5.5)

However the total time required to migrate a set of virtual machines (and so also
the total downtime) is strictly relate on how the VM are migrated. In particular
it is a very important issue the order in which they are moved, i.e. when they are
scheduled to be migrated. Here we adopt two procedures: the case in which the
M virtual machines are migrated one by one (i.e. one at time) and the case when
they are all migrated at the same time. We call the former case ”‘serial migration”’
and the latter ”‘parallel migration”’.
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5.2 Serial Migration of Virtual Machines

Serial migration means that virtual machines have to be migrated one by one, one
at time and that each migration is performed at full transmission rate. This means
that, among the links of the selected path for the migration, the whole capacity
is used to migrate the VM. Moreover, as we are considering a set of M virtual
machines, the transmission rate is equal for all the migration requests: i.e.

Rj = R, Dj = D

where Dj is the dirtying rate and it is constant for all the virtual machines. Hence,
we can define the ratio:

λ = P · D

R

Besides, we need to introduce another parameter which is the number of iterations
needed to migrate a VM in the pre-copy approach, that has been already defined
by nj, but from now on we will refer to it as n(s). Therefore the total time required
for migrating M virtual machines in a serial manner is:

T
(s)
mig =

M∑
j=1

Tmig,j = M · V M

R

1 − λn(s)+1

1 − λ
(5.6)

While total migration time can be evaluated as the sum of the migration time of
the single virtual machine for all the machines belonging to the set, the downtime
calculation needs some more considerations. In particular, the downtime of the
entire set of VM starts when the first virtual machine is stopped at the source host
(which means when the last iteration, the stop-and-copy phase, of the first VM
begins) and it ends when the last machine is resumed at the destination location.
We call Tres, the time required to restart a virtual machine at the destination host.
So the downtime for the serial migration can be defined as:

T
(s)
down = V M

R
λn(s) + (M − 1)V M

R

1 − λn(s)+1

1 − λ
+ Tres

(5.7)
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5.3 Parallel Migration of Virtual Machines

Figure 5.2: Parallel virtual machines migration example

When the M virtual machines are migrated in a parallel way (it means, simultane-
ously), each machine is transferred at a rate which is lower than the link capacity.
In fact, being migrated at the same time the whole available bandwidth is shared
among the served connections. Here, we assume that all the M virtual machine of
the set have the same memory size, which means that the same amount of band-
width is assigned to each of them. Besides, all the virtual machines start, and also
end, the migration at the same time. Hence, we can assume that there are always
M machines migrated at the same time and each transfer occurs at rate:

Rj = R

M
∀ j

But if Rj is calculated in this way, it means that:

λj = Mλ
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While the number of iterations needed to complete the migration of each virtual
machines is:

nj = n(p)

The total migration time required to perform the parallel migration of the whole
set of virtual machines is equivalent to the total migration time of any single virtual
machines; so it is calculated as:

T
(p)
mig = Tmig,j = M

V M

R

1 − (Mλ)n(p)+1

1 − Mλ
(5.8)

The total downtime of the parallel migration if a set of M virtual machines corre-
sponds to the last iteration of any single virtual machines (i.e. the stop-and-copy
phase), and it can be evaluated as:

T
(p)
down = M

V M

R
(Mλ)n(p) + Tres (5.9)

5.4 Comparison of the two methods

Observing the reported formulas in the previous sections, we can draw some con-
clusions about the two presented methods, by evaluating the two metrics, total
migration time and downtime. We first focus on the total time required to migrate
a set of M virtual machines. From equations (5.6) and (5.8) we immediately note
that the rate at which migrations are performed is not the same. For the serial
case it is the same for all the machines of the set and it is equal to the full trans-
fer rate while in the parallel one each machine is migrated at a rate which is a
portion of the full rate as bandwidth is shared among several migration requests.
As a consequence migrating a sequence of M VMs at rate R does not require the
same amount of time as migrating M VMs in parallel (i.e. each one at rate R/M).
This occurs because in the iterative phase the fixed memory page dirtying rate
generates different amounts of data to be transferred in the two cases. As in the
parallel case migrations are performed at a lower rate than in the serial case, it
can be proved that the parallel total migration time is always greater than the
serial total migration time. In particular we can prove this result by showing some
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calculation. If we subtract equation (5.6) from the (5.8), we have:

T
(p)
mig − T

(s)
mig = Mλ(M − 1)(V M − Vth)

R(1 − λ)(1 − Mλ)
(5.10)

we note that, under assumption earlier declared, this quantity is always non neg-
ative. We can repeat a similar evaluation also for the downtime, by considering
the equations (5.7) and (5.9), which represent the downtime for serial and parallel
migration, respectively.

T
(s)
down − T

(p)
down = (M − 1)(V M − Vth)

R(1 − λ)
(5.11)

in this way we proved that the serial migration downtime is larger than the parallel
migration downtime.

From the above presented results it isn’t possible to select one of the two
proposed multiple virtual machines migration method as the best one in any case.
On the other hand, they suggest that choosing the best solution may depends
on the service you want to provide. More in details, parallel migration offers
better performance in terms of quality of service since it guarantees a smaller
downtime. The serial migration, instead, presenting a lower total migration time,
can achieve better results in terms of total network resources consumption and
transmission overhead. So in the next section, we propose a mathematical model
for the multiple virtual machines migration process, in which the model has to
decide whether perform parallel or serial migration in according to several linear
constraints.
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5.5 Integer Linear Programming Model

In this section, we present the Integer Linear Programming (ILP) model built to
solve the live migration problem of a set of virtual machines.

5.5.1 Model description

The optimization problem we are dealing with consists of minimizing the amount
of network resource used for the migration of multiple virtual machines. The
model gives as output the sum of the resource occupation on each link of the
network for both the serial and parallel migration. The goal of our problem is
to decide, for all the requests, whether a migration has to be provisioned in a
serial or parallel way while selecting a function point (i.e. the couple of bandwidth
provided for the migration and the corresponding migration time) for each virtual
machine that needs to be migrated. The total resource occupation is composed of
the network resources used for the serial migration and the resources used for the
parallel migration (the resource consumption is evaluated as the product between
provisioned bandwidth for the migration, total migration time and number of hops
of the path selected for the routing of the migration request). The ILP problem
is stated as follows. Given a physical fixed network topology and a set of virtual
machines, we decide the optimal function point selection as well as the migration
method (serial or parallel) in order to minimize the overall network resources
consumption. In this optimization problem we want to minimize the amount of
used resource in the network in order to satisfy all the migration requests, i.e.,
to migrate each virtual machines from a source data center to a destination one.
We assume that all the links in the network can be utilized for the routing of the
requests while only a set of nodes can be the destination of the migration requests.

5.5.2 Sets and parameters

• G = (N, E) is the graph used to model the physical network topology, where
N represents the set of nodes and E the set of bidirectional links.
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• D is a subset of the set N and it is the set of the data centers, the only nodes
that can be source and destination of the migration requests.

• V is the set of the virtual machines to be migrated.

• F represents the set of the function points: each pair (together with a virtual
machine v ∈ V ) has a bandwidth and a total migration time as parameters.

• Ci,j is the link capacity, for each link (i, j) in the set E.

• Bp,v is a bandwidth value of the function point p of the virtual machines v.

• T p,v is a total migration time of the function point p of the virtual machines
v.

• V v is the memory size of the virtual machine v.

• M f,v
d represents the migration request of virtual machine v from a node d of

the network to a destination data center node f .

5.5.3 Decision variables

• xi,j (binary) is used to indicate if the link (i, j) is used (xi,j=1) or not (xi,j=0).

• yd,f,v
i,j (binary) is used to indicate if the link (i, j) is used to migrate the virtual

machine v (xi,j=1) from node d to node f or not (xi,j=0).

• zi,j (integer) represents the total amount of resources utilized on link (i, j).

• df,d,v
i,j (integer) represents the amount of data transported on link (i, j) from

a node f to destination node d for the virtual machine v.

• wv,p
d,e (binary) is used to indicate if the bandwidth of the function point p is

used to migrate the virtual machine v from node d to destination node e

(wv,p
d,e=1) or not (wv,p

d,e=0).

• uv,p
d,e (binary) is used to indicate if the migration time of the function point p

is used to migrate the virtual machine v from node d to destination node e

(uv,p
d,e=1) or not (uv,p

d,e=0).
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• pd,f
i,j (binary) is used to indicate if a request from node f to the destination

node d is migrated parallel on link (i, j) (pd,f
i,j =1) or not (pd,f

i,j =0).

• pvd,f,v
i,j (binary) is used to indicate if the virtual machine v is migrated from

a node f to the destination node d in a parallel way (pvd,f,v
i,j =1) or not

(pvd,f,v
i,j =0).

• sd,f
i,j (binary) is used to indicate if a request from node f to the destination

node d is migrated serial on link (i, j) (pd,f
i,j =1) or not (pd,f

i,j =0).

• svd,f,v
i,j (binary) is used to indicate if the virtual machine v is migrated from a

node f to the destination node d in a serial way (pvd,f,v
i,j =1) or not (pvd,f,v

i,j =0).

• rpd,f
i,j (integer) represents the total amount of resources consumed on link

(i, j) for a parallel migration from a node f the destination node d (rpd,f
i,j =1)

or not (rpd,f
i,j =0).

• rsd,f
i,j (integer) represents the total amount of resources consumed on link (i, j)

for a serial migration from a node f to the destination node d (rsd,f
i,j =1) or

not (rsd,f
i,j =0).

• rsvd,f,v
i,j (integer) represents the amount of resources consumed on link (i, j)

for the serial migration of the virtual machine v from a node f to the desti-
nation node d (rsvd,f

i,j =1) or not (rsvd,f
i,j =0).

5.5.4 Objective function

Minimize : ∑
(i,j)∈E

∑
d∈N

∑
f∈D

(
rpd,f

i,j + rsd,f
i,j

)
(5.12)

The first contribution of the objective function accounts for the overall resource
consumption due to the parallel migrated virtual machines while the second con-
tribution represents the one due to the serial migrated virtual machines. The
objective of the optimization is to minimize the overall network resources con-
sumption. Note that the summations are evaluated for each destination node, for
each node and for each link of the network.
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5.5.5 Constraints∑
(i,d)∈E

∑
e∈N

de,f,v
i,d + M f,v

d · V v =
∑

(d,j)∈E

∑
e∈N

de,f,v
d,j ∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V

(5.13)

∑
(i,d)∈E

∑
e∈N

de,f,v
i,d =

∑
e∈N

Md,v
e · V v ∀ d ∈ D, ∀ v ∈ V (5.14)

∑
v∈V

∑
d∈N

∑
f∈D

∑
p∈P

wv,p
d,f · yd,f,v

i,j ≤ Ci,j ∀ (i, j) ∈ E (5.15)

dd,f,v
i,j ≤ yd,f,v

i,j · Ci,j ∀ (i, j) ∈ E, ∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V (5.16)

xi,j = yd,f,v
i,j ∀ (i, j) ∈ E, ∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V (5.17)

∑
p∈F

wv,p
d,e ≥ yd,e,v

i,j · M e,v
d ∀ (i, j) ∈ E, ∀ d ∈ N , ∀ e ∈ D, ∀ v ∈ V (5.18)

∑
p∈F

uv,p
d,e ≥ yd,e,v

i,j · M e,v
d ∀ (i, j) ∈ E, ∀ d ∈ N , ∀ e ∈ D, ∀ v ∈ V (5.19)

wv,p
d,e ≤ uv,p

d,e · M e,v
d ∀ d ∈ N , ∀ e ∈ D, ∀ v ∈ V , ∀ p ∈ F (5.20)

zi,j ≥
∑
d∈N

∑
e∈D

∑
v∈V

∑
p∈F

wv,p
d,e · Bp,v · T p,v ∀ (i, j) ∈ E (5.21)

pd,f
i,j + sd,f

i,j = M f,v
d · yd,f,v

i,j ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V (5.22)
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pvd,f,v
i,j ≤ pd,f

i,j · yd,f,v
i,j ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V (5.23)

svd,f,v
i,j ≤ sd,f

i,j · yd,f,v
i,j ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V (5.24)

pvd,f,v
i,j + svd,f,v

i,j = M f,v
d · yd,f,v

i,j ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V (5.25)

rpd,f
i,j ≥

∑
v∈V

∑
p∈F

yd,f,v
i,j · wv,p

d,f · Bp,v · T p,v ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D (5.26)

rsvd,f,v
i,j ≥

∑
p∈F

V v · svd,f,v
i,j · Bp,v · T p,v ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D, ∀ v ∈ V

(5.27)

rsd,f
i,j ≥

∑
v∈V

rsvd,f,v
i,j ∀ (i, j) ∈ E,∀ d ∈ N , ∀ f ∈ D (5.28)

Equations (5.13) and (5.14) are the balance constraints for each node and for
each virtual machine. In particular the latter is referred to each destination node
while the former is referred to each other node in the network topology. (5.15) is the
link capacity constraint and it is evaluated for each link of the network. (5.16) and
(5.17) are the link consistency constraints: the total amount of data transferred in
each link must not exceed the link capacity. The next three relation are consistency
constraints due to the function points: (5.18) implies that a bandwidth should be
chosen if there is a migration request, while (5.19) implies that a total migration
time has to be selected if there is a migration request. (5.20) guarantees that each
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virtual machine is migrated using the values of bandwidth and migration time of
the same function point. (5.21) calculates the total resources used on each link
for all the requests that pass through it. (5.22) states that the request has to be
migrated in only one of the two method: parallel or serial. (5.23) states that if the
request from source node d to destination node f is parallel migrated, then all the
virtual machines from source d to destination f are parallel migrated. (5.24) states
that if the request from source node d to destination node f is serial migrated, then
all the virtual machines from source d to destination f are serial migrated. (5.25)
states that the migration of the virtual machine v from node d to destination f

can be either serial or parallel. (5.26) evaluates the total amount of resources used
of link (i, j) for the parallel migrations. (5.27) evaluate the consumed resources
on link (i, j) for each virtual machine serial migrated while (5.28) calculate the
overall resource used,on link (i, j) for serial migration.



Chapter 6

Conclusions

In recent years there has been an evolution of the network traffic from a mostly
static paradigm to a more dynamic one. New opportunities are then arising,
aiming to efficiently employ the large capacity of transport networks, provided by
the fiber optics and their great reliability. Among all the new services that are
rapidly evolving, Cloud Computing assumes considerable importance. It appears
as a new hybrid model of resource exploitation, where resources can be represented
by computer networks or more in general the Internet. In this new architecture, the
basic idea is that services and applications should reside mainly on web servers (the
so called ”‘Cloud”’) instead of on personal computers interconnected by a network.
In this way, each user having a device, can access the ”‘Cloud”’, which is then able
to deliver the services and the data that the user is requesting. As these web servers
are increasingly used, also their energy consumption level is growing. Among the
various solutions that the sector ICT is developing to address this issue, we have
focused our attention on the benefits offered by host virtualization. In particular
it allows data center providers to make an abstraction of their services over these
virtual machines. The main advantage of creating virtual machines is that you
can migrate them from a data center to another one, in order to perform load
balancing, cloud bursting, fault recovery, energy consumption reduction. In this
thesis, we first proposed a model for the live virtual machines migration giving a
full explanation of all the involved parameters. Then we discussed about the trade
off between network resource consumption and migration performance and, for this
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reason, we decided to focus our attention on the bandwidth provisioning scheme.
In particular, we proposed four algorithms to solve the Routing and bandwidth
Assignment problem for a network scenario in which the traffic is only represented
by the migration requests from a source data center to a destination one. The
virtual machines migration topic is widely discussed in the literature, but there
are still no studies on the bandwidth assignment in a network of data centers. So
this thesis work is devoted to the study and implementation of algorithms on a
discrete event-based C++ simulator in order to evaluate their performances, in
terms of blocking probability.

From the study of the results obtained for the first two implemented algorithms,
Min and Max, we found out that assigning always a minimum (or maximum) value
of bandwidth can achieve different performances, depending on the arrival rates
of the migration requests. In particular we observed that allocating lower band-
width allows to achieve good performance only for high arrival rate while assigning
greater bandwidth results in lower blocking probability for lower arrival rates. So
we note a double behavior for these two algorithms as the most influential factor in
determining the blocking probability changes from low arrival rates (migration re-
quests duration) to high rate (number of simultaneous served request). After these
first remarks, we asked ourselves what results could lead assigning the bandwidth
in a more adaptive way. As algorithms Min and Max evaluate the provisioned
bandwidth for the migration in a static manner, the new algorithm, Congestion-
Aware, takes into account the network state in this calculation. From results, for
this third algorithm, we observed a blocking probability behavior similar to that
of the previous ones. In particular, the probability curve of Congestion-Aware is
placed between the curves of Min and Max, which means that: for high arrival
rates it behaves better than Max but worse than Min while for small arrival rate
it achieves lower probability than Min but greater than Max.

As a further study, we investigate also the Resource Occupation, in order to
better understand the behavior of these algorithms. We found out that the path’s
length (i.e. the number of links belonging to the chosen path for the routing of
the input migration request, measured in hop) plays a key role in determining
both network resource consumption and blocking probability. This discovery con-
stitutes the basis on which build the fourth algorithm, Range. The main idea is to
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assign bandwidth to a migration request depending on the length of the selected
path. After some simulations, results have confirmed our assumptions showing
that a relationship can be established between the number of hops of the path and
the blocking probability. Moreover, Range is able to capture both the behaviors
presented by previous algorithms: it achieves values of blocking probability lower
than Min for high arrival rates and lower than Max for small arrival rates.

After illustrating the results obtained from a study carried out in a purely
simulative way, we focused our attention on the issue of migrating multiple virtual
machines. In chapter 5, we aim to observe our main topic by a different point of
view, presenting two model for the migration of a set of virtual machines: one for
the serial and one for the parallel migration. Besides, is proposed an integer linear
programming formulation whose objective function tries to minimize the network
resource utilization while deciding when to perform the serial migration or the
parallel one.

In conclusion, the goal of this thesis is to formulate a new analytical approach
that is able to get many different results from the ones you can find in the literature.
The work we have proposed can form the basis for a new approach to the trade-
off that the Cloud technology has resulted in the ICT sector: achieve optimal
performance while guaranteeing a network resource consumption as low as possible.
Despite the good results, we think that the performance and the accuracy of these
algorithms can still be improved. In particular we identified several issues that
can be implemented in a future study:

• separation of intra data center traffic and inter data center one;

• introduction of a high number of data centers in the network;

• usage of a different network topology in the simulation tool;

• introduction of traffic grooming;

• dirtying rate daily variation;

• daily variation of traffic distribution;

• consider a higher number of different types of virtual machines;
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• introduce the multiple virtual machines migration model into the simulation
tool: both the serial and the parallel migration;

• usage of a Wavelength-Division-Multiplexing based scheme for the band-
width provisioning;



List of Figures

1.1 Server with virtual machines . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Network topology with data centers . . . . . . . . . . . . . . . . . . 6

2.1 Simple Virtual Machine Scheme . . . . . . . . . . . . . . . . . . . . 9
2.2 Virtual Machine Migration Timeline . . . . . . . . . . . . . . . . . 12
2.3 Virtual Machine migration between two data center . . . . . . . . . 15
2.4 Timing diagram of iterative pre-copy-based VM migration technique 17
2.5 Total migration duration for different D . . . . . . . . . . . . . . . 19
2.6 Migration downtime for different D . . . . . . . . . . . . . . . . . . 20
2.7 Migration duration for different iteration . . . . . . . . . . . . . . . 21
2.8 Function points for D=50Mb/s and V M=100MB . . . . . . . . . . 25
2.9 Function points for D=50Mb/s and V M=1GB . . . . . . . . . . . . 25
2.10 Function points for D=50Mb/s and V M=10GB . . . . . . . . . . . 25
2.11 Function points for D=100Mb/s and V M=100MB . . . . . . . . . . 26
2.12 Function points for D=100Mb/s and V M=1GB . . . . . . . . . . . 26
2.13 Function points for D=100Mb/s and V M=10GB . . . . . . . . . . . 26
2.14 Function points for D=500Mb/s and V M=100MB . . . . . . . . . . 27
2.15 Function points for D=500Mb/s and V M=1GB . . . . . . . . . . . 27
2.16 Function points for D=500Mb/s and V M=10GB . . . . . . . . . . . 27

3.1 Virtual Machine Migration over a WAN . . . . . . . . . . . . . . . 29
3.2 Cloud architecture network with different connections . . . . . . . . 32
3.3 Flow chart of Routing and Bandwidth Assignment algorithm . . . . 34
3.4 Blocking probability curves for algorithm Min . . . . . . . . . . . . 36
3.5 Blocking probability curves for algorithm Min with fixed α . . . . . 37



LIST OF FIGURES 88

3.6 Range algorithm’s scheme for dirtying rate equal to 50Mb/s . . . . 47
3.7 Range algorithm’s scheme for dirtying rate equal to 100Mb/s . . . . 47
3.8 Range algorithm’s scheme for dirtying rate equal to 500Mb/s . . . . 48

4.1 Network topology USANet24 . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Blocking Probability for algorithms Min and Max for D=50Mb/s . 53
4.3 Blocking Probability for algorithms Min and Max for D=100Mb/s . 54
4.4 Blocking Probability for algorithms Min and Max for D=500Mb/s . 54
4.5 Resource Occupation for Min and Max for D=50Mb/s . . . . . . . 57
4.6 Hop Count for Min and Max for D=50Mb/s . . . . . . . . . . . . . 57
4.7 Migration Duration for Min and Max for D=50Mb/s . . . . . . . . 57
4.8 Provisioned bandwidth for Min and Max for D=50Mb/s . . . . . . 58
4.9 Resource Occupation for Min and Max for D=100Mb/s . . . . . . . 58
4.10 Hop Count for algorithms Min and Max for D=100Mb/s . . . . . . 58
4.11 Migration Duration for Min and Max for D=100Mb/s . . . . . . . . 59
4.12 Provisioned Bandwidth for Min and Max for D=100Mb/s . . . . . . 59
4.13 Resource Occupation for algorithms Min and Max for D=500Mb/s . 59
4.14 Hop Count for Min and Max for D=500Mb/s . . . . . . . . . . . . 60
4.15 Migration Duration for Min and Max for D=500Mb/s . . . . . . . . 60
4.16 Provisioned Bandwidth for algorithms Min and Max for D=500Mb/s 60
4.17 Blocking Probability - Carried Load for D=50Mb/s . . . . . . . . . 62
4.18 Blocking Probability - Carried Load for D=100Mb/s . . . . . . . . 62
4.19 Blocking Probability - Carried Load for D=500Mb/s . . . . . . . . 63
4.20 Blocking Probability for algorithm Cong for D=50Mb/s . . . . . . . 64
4.21 Blocking Probability for algorithm Cong for D=100Mb/s . . . . . . 64
4.22 Blocking Probability for algorithm Cong for D=500Mb/s . . . . . . 65
4.23 Blocking Probability for algorithm Range for D=50Mb/s . . . . . . 67
4.24 Blocking Probability for algorithm Range for D=100Mb/s . . . . . 67
4.25 Blocking Probability for algorithm Range for D=500Mb/s . . . . . 68

5.1 Data centers network example . . . . . . . . . . . . . . . . . . . . . 70
5.2 Parallel virtual machines migration example . . . . . . . . . . . . . 74



List of Tables

3.1 Bmax values for different virtual machines . . . . . . . . . . . . 40
3.2 Used parameters for algorithm Range . . . . . . . . . . . . . . . 45

4.1 Dirtying rates values for different dirty frequencies . . . . . . 53



Bibliography

[1] Low-Emissions Routing for Cloud Computing in IP-over-WDM Networks with
Data Centers
Mirko Gattulli, Massimo Tornatore, Riccardo Fiandra, and Achille Pattavina
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL.
32, NO. 1, JANUARY 2014

[2] Greening the Cloud Using Renewable-Energy-Aware Service Migration
Uttam Mandal, M. Farhan Habib, Shuqiang Zhang, and Biswanath Mukher-
jee, University of California, Davis Massimo Tornatore, University of Califor-
nia, Davis and Politecnico di Milano
IEEE Network November/December 2013

[3] Bandwidth and Routing Assignment for Virtual Machine Migration in Pho-
tonic Cloud Networks
Uttam Mandal, M. Farhan Habib, Shuqiang Zhang, Massimo Torna-
tore,Biswanath Mukherjee

[4] Cost-Efficient Live VM Migration Based on Varying Electricity Cost in Op-
tical Cloud Networks
Abhishek Gupta, Uttam Mandal, Pulak Chowdhury, Massimo Tornatore and
Biswanath Mukherjee University of California, Davis, USA Politecnico di Mi-
lano, Italy
This work was funded under NSF award number 1217978

[5] Heterogeneous Bandwidth Provisioning for Virtual Machine Migration over
SDN-Enabled Optical Networks



BIBLIOGRAPHY 91

Uttam Mandal, M. Farhan Habib, Shuqiang Zhang, Pulak Chowdhury, Mas-
simo Tornatore, and Biswanath Mukherjee

[6] Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy
and Application
Uttam Mandal, Pulak Chowdhury, Massimo Tornatore, Charles U. Martel,
and Biswanath Mukherjee University of California, Davis; Also with Politec-
nico di Milano, Italy
This work has been supported by NSF Grant No. CNS-1217978

[7] Performance and Energy Modeling for Live Migration of Virtual Machines
Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, Xiaofei Liao
This work is supported by National 973 Basic Research Program of China
under grant No. 2007CB310900, the MoE-Intel Information Technology Spe-
cial Research Foundation under grant No. MOE-INTEL-10-05, and U.S. NSF
under grants CRI-0708232, CNS-0702488, CNS-0914330, CCF-1016966

[8] Live Migration of Virtual Machines
Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, Andrew Warfield
USENIX Association NSDI ’05: 2nd Symposium on Networked Systems De-
sign and Implementation pages 273-286

[9] CloudNet: Dynamic Pooling of Cloud Resources by Live WAN Migration of
Virtual Machines
Timothy Wood, K. K. Ramakrishnan, Fellow, IEEE, Prashant Shenoy, Fellow,
IEEE, Senior Member, ACM, Jacobus Van der Merwe, Jinho Hwang, Guyue
Liu, and Lucas Chaufournier
IEEE/ACM TRANSACTIONS ON NETWORKING

[10] Towards a Network Aware VM Migration: Evaluating the Cost of VM Migra-
tion in Cloud Data Centers
Hellen Maziku and Sachin Shetty College of Engineering Tennessee State Uni-
versity, Nashville, TN, USA
2014 IEEE 3rd International Conference on Cloud Networking (CloudNet)



BIBLIOGRAPHY 92

[11] Resource Allocation using Virtual Machine Migration: A Survey
Ts’epo Mofolo, R. Suchithra, N. Rajkumar MS (IT) Department Jain Univer-
sity, Bangalore, India
Poster Paper Proc. of Int. Conf. on Advances in Information Technology and
Mobile Communication 2013

[12] Live Virtual Machine Migration Techniques in Cloud Computing: A Survey
Pradip D. Patel, Miren Karamta, M. D. Bhavsar, M. B. Potdar
International Journal of Computer Applications (0975 - 8887) Volume 86 -
No 16, January 2014

[13] Energy-efficient Management of Virtual Machines in Eucalyptus
Pablo Graubner, Matthias Schmidt, Bernd Freisleben Department of Mathe-
matics and Computer Science, University of Marburg Hans-Meerwein-Str. 3,
D-35032 Marburg, Germany
2011 IEEE 4th International Conference on Cloud Computing

[14] Power Consumption of Virtual Machine Live Migration in Clouds
Qiang Huang, Fengqian Gao, Rui Wang, Zhengwei Qi School of Software,
Shanghai Jiaotong University, Shanghai, China 200240
2011 Third International Conference on Communications and Mobile Com-
puting

[15] Does Live Migration of Virtual Machines cost Energy?
Anja Strunk and Waltenegus Dargie Chair of Computer Networks Faculty of
Computer Science Technical University of Dresden 01062 Dresden, Germany
2013 IEEE 27th International Conference on Advanced Information Network-
ing and Applications

[16] On the Efficiency of Dynamic Routing of Connections with Known Duration
Diego Lucerna, Andrea Baruffaldi, Massimo Tornatore, Achille Pattavina

[17] Delay Guaranteed Live Migration of Virtual Machines
Jiao Zhang, Fengyuan Ren and Chuang Lin Dept. of Computer Science and
Technology, Tsinghua University, Beijing, China Tsinghua National Labora-



BIBLIOGRAPHY 93

tory for Information Science and Technology, Beijing, China
IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

[18] Efficient Pre-Copy Live Migration with Memory Compaction and Adaptive
VM Downtime Control
Guangyong Piao, Youngsup Oh, Baegjae Sung, and Chanik Park Department
of Computer Science and Engineering Pohang University of Science and En-
gineering (POSTECH) Pohang, South Korea
2014 IEEE Fourth International Conference on Big Data and Cloud Comput-
ing

[19] Predicting the Performance of Virtual Machine Migration
Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore and Andy
Hopper University of Cambridge Computer Laboratory

[20] Dynamic Bandwidth Allocation Schemes to Improve Utilization under Non-
Uniform Traf?c in Ethernet Passive Optical Networks
Kyuho Son, Hyungkeun Ryu, Song Chong and Taewhan Yoo
IEEE Communications Society 0-7803-8533-0/04/20.00 (c) 2004IEEE

[21] Traffic Aware Cross-Site Virtual Machine Migration in Future Mobile Cloud
Computing
Jiaqiang Liu, Yong Li, Depeng Jin, Li Su, Lieguang Zeng
Published online: 27 September 2014 Springer Science+Business Media New
York 2014

[22] Optimizing Live Migration of Virtual Machines with Context Based Prediction
Algorithm
Yong Cui, Yusong Lin, Yi Guo, Runzhi Li, Zongmin Wang
International Workshop on Cloud Computing and Information Security (CCIS
2013)

[23] Network Aware VM Migration in Cloud Data Centers
Hellen Maziku and Sachin Shetty College of Engineering Tennessee State Uni-
versity, Nashville, TN, USA
2014 Third GENI Research and Educational Experiment Workshop



BIBLIOGRAPHY 94

[24] A Network-aware Virtual Machine Placement and Migration Approach in
Cloud Computing
Jing Tai Piao, Jun Yan
2010 Ninth International Conference on Grid and Cloud Computing

[25] Live Migration of Multiple Virtual Machines with Resource Reservation in
Cloud Computing Environments
Kejiang Ye, Xiaohong Jiang, Dawei Huang, Jianhai Chen, Bei Wang
2011 IEEE 4th International Conference on Cloud Computing

[26] Optimized Pre-Copy Live Migration for Memory Intensive Applications
Khaled Z. Ibrahim, Steven Hofmeyr, Costin Iancu, Eric Roman

[27] A Review of Routing and Wavelength Assignment Approaches for Wavelength-
Routed Optical WDM-Networks
Hui Zang, Jason P. Jue and Biswanath Mukherjee

[28] Renewable Energy-Aware Grooming in IP-over-WDM Networks
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