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Sommario

Negli ultimi anni sono stati fatti grandi miglioramenti nel campo della Computer Vision

grazie a nuove e potenti architetture parallele in grado di processare grandi quantitativi

di dati in poco tempo, permettendo di sviluppare e studiare nuove soluzioni altrimenti

non analizzabili.

Uno dei problemi più tipici che in tale ambito si deve affrontare è rappresentato dalla

cosiddetta Object Detection, ossia dalla necessità di identificare, nella maniera più ro-

busta possibile, posizionamento e dimensione di oggetti interessanti all’interno di im-

magini o video.

Tale problema, benchè oggetto di moltissimi studi durante il corso degli anni, risulta

ancora oggi essere soltanto parzialmente risolto a causa delle molteplici difficoltà e prob-

lematiche che esso presenta. Esempi tipici in tal senso sono dati da:

• Le molteplici condizioni ambientali in cui il sistema può dover operare, che afflig-

gono aspetto e colore dei target.

• Le molteplici forme o strutture che istanze di una medesima classe di oggetti

possono presentare.

• Le possibili occlusioni totali o parziali a cui i target possono essere sottoposti.
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Allo stato dell’arte sono disponibili moltissime soluzioni per far fronte a questa situ-

azione. In special modo, architetture basate su Deep Neural Network stanno suscitando

grande interesse per i risultati che permettono di raggiungere. Queste reti neurali pro-

fonde infatti, grazie alla loro struttura vasta e complessa, sono in grado non soltanto di far

fronte a tutte le problematiche appena esposte, ma anche di riconoscere adeguatamente

molteplici classi di oggetti. Esse rappresentano in tal modo una soluzione flessibile, ro-

busta ed unificata al problema presentato, anche se computazionalmente pesante a causa

delle loro dimensioni.

Obiettivo di questo lavoro è quindi quello di realizzare una architettura di questo tipo

basata su Deep Neural Network e mirata ad estenderne il funzionamento ad un contesto

real-time, dove oltre all’accuratezza dei risultati prodotti anche la velocità delle soluzioni

proposte gioca un ruolo fondamentale.



Abstract

In the last years a lot of improvements have been achieved in the Computer Vision field

thanks to new and powerful parallel architectures, which can process huge amounts of

data in short times, giving the possibility to develop and study new solutions otherwise

not achievable.

One of the typical problems that must be solved in this research area is the so called

Object Detection Problem, i.e. the need to identify, in the most robust way, position

and size of objects in images and videos.

Despite the great efforts made by a lot of researchers to solve the detection problem,

today, we still cannot consider it as completely solved because of the multiple issues and

different conditions that may arise for each different image. Typical examples in this

sense are:

• The various environmental conditions where the systems can work, which affect

aspects and colors of the targets

• The different appearances that can be shown by distinct objects of the same class

• The possible occlusions that a target can suffer
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At the state of the art a lot of different solutions are available that try to solve this

problem. In particular, solutions based on Deep Neural Networks are arousing nowadays

great interest for the results that they are able to achieve. These networks, thanks to

their structure and complexity, are in fact not only able to face all the issues previously

mentioned but also to carefully detect objects belonging to different classes, representing

in this way a flexible, robust and unified solution to the detection problem. However,

due to their wide and deep structure, these solutions typically show high computational

loads, presenting in this way a reduced appeal for what can concern any real time

application.

The goal of this thesis is the realization of a systems based on this kind of architectures

and aimed at extending their typical offline application to real-time scenarios, where in

addition to the accuracy of the information extracted also the speed of the implemented

solutions plays an important role.
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Introduction

In the field of Computer Vision, object detection is a problem that has been faced by

a lot of researchers in the years due to the complexity and variability this kind of task

presents. Multiple solutions are so available in the literature that can be distinguished

for both the accuracy and speed they are able to achieve.

However, whenever there is the need to deal with complex situations as can be the

detection of pedestrians from moving cars, due to the reduced quality the acquired

images can present, fast detector may turn out to be inaccurate and so much stronger

and unfortunately slower detectors need to be implemented.

Giving a deeper look at the object detection problem, it turns out that several approaches

have been presented in the last decade that are capable of facing a lot of different con-

ditions, which can preclude the quality of the produced results.

Detectors based on Haar features and Boosted Decision Tree (as the Viola&Jones detec-

tor [1]) or on Histograms of Oriented Gradients and Support Vector Machines (HOG+SVM

[2]) have been the reference detectors for several years thanks to the simple and powerful

structures they implement.

Unfortunately, despite the good capabilities of these detectors to identify simple objects

of a particular class in good environmental conditions (good light conditions, no oc-

clusions...), this kind of solutions turns out to be inefficient if applied to more difficult

situations where a lot of distortions are involved.

In order to face these more complicated tasks, other solutions based on multiple feature

channels that present higher representational power have so been implemented.

In particular, the so-called ACF (Aggregated Channel Features Detector [3]) and its ex-

tension LDCF (Local Decorrelated Channel Features [4]) represent nowadays powerful

solutions that deserve to be analyzed for the innovations they introduce.

These two detectors in fact, thanks to the approximation of features they apply, achieve

14
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good multi-scale detection capabilities with sufficiently reduced computational times,

representing a valid and cheap solution for several applications.

Anyway, the detection problem not necessarily concerns every time the identifications

of objects belonging to a single class of interest. In a lot of different situations multiple

types of objects may in fact be involved.

Think for example to surveillance systems, it could be of interest to identify if a car or

a person is violating a fixed security policy.

In such situations single class detectors, as the ones presented so far, would not be

capable at realizing an effective detection, simply because they cannot distinguish the

different classes where the objects belong to. Therefore, more powerful and complex

solutions need to be taken into account for facing such complicated scenarios.

In this sense, a solution that appears promising at present is provided by the so-called

DNNs (i.e. Deep Neural Networks), which achieved in the last years incredibly high

performances in image classification and detection tasks, outperforming the previous

state of the art even in single-class detection processes [5].

This kind of networks, thanks to their really wide and large structure, can in fact extract

reduced and representative sets of features that allow to identify in a very robust way the

class each single object belongs to, simply recurring to linear Support Vector Machine

(SVM) [6]. However, this comes at a cost of a high computational burden, which hinders

the application of this kind of solutions to real time applications.

Following this considerations, the present work is aimed at illustrating a possible way

to realize robust and efficient DNN detectors, introducing:

• A refined learning process for training and exploiting such strong and complex

classifiers.

• A possible architecture capable at combining multiple detection solutions recurring

to a suitable tracking system, in order to produce accurate results at more than

10 fps over the selected HW architecture.

Chapter 1 provides a presentation of the pedestrian detection problem that will be the

reference task of this work, the main measures exploited to compare different solutions

and the available datasets that can be used to generate good and robust detectors.

Chapter 2 recaps the state of the art, outlining pros&cons of each analyzed solution and

the associated computational loads.
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Chapter 3 presents the learning method explored to train a Deep Neural Network capable

at achieving high-level performance.

Chapter 4 presents the proposed architecture, highlighting the innovations introduced

and the results achieved.

Finally, in chapter 5 some conclusions are drawn and possible extensions plus further

works are presented.



Chapter 1

Introductive Steps

1.1 Problem Introduction

As already introduced in the previous Chapter, object detection is a really large and

challenging task which can present really different drawbacks depending on the context

in which it may be applied.

Objects in fact may radically change both in term of colors, shapes, scales and in general

appearances; imposing the necessity to have strong and robust solutions capable at

dealing with all the different aspects and dimensions the targets may present.

In order to deal with these particular situations, researchers looked in the years for more

and more accurate ways for recognizing the presence and locations of desired objects in

a given image.

Multiple solutions have so been presented in this sense but all based on a common

approach of 3 steps:

1. Promising regions extraction (where a set of regions that can potentially contain

objects of interest are retrieved).

2. Features extraction (where a set of features, capable at representing in a similar

way object belonging to the same class, are fetched from all the regions identified).

3. Regions Classification (where a suitable trained classifier is applied for discrimi-

nating regions of interest from background ones).

17
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The main idea is to extract a set of possible regions that can contain objects of interest,

retrieve a simple and compact high level representation of such patches and finally apply

a suitable classifier capable at differentiating background regions from desired ones.

Among all the possible scenarios however, one of the most interesting and difficult con-

text that have been faced in the literature is represented by the so-called Pedestrian

Detection task.

Detecting pedestrians, in fact, can be a really though challenge due to:

• The multiple aspects and poses people can assume while walking.

• The bad conditions in which the acquisition process can be realized (think for

example to images acquired from a moving car)

Various detectors have been realized in the years that allows to achieve appreciable

results also in this context, however, the pedestrian detection task appears so various

and heterogeneous that even nowadays it still remains an open research area, which

deserves to be analyzed.

For the difficulties this scenario presents and the amount of researches available in the

literature, we decided to focus our attention over this particular problem.

All the considerations that will be realized in the following, however, should not be

considered as strictly related to the selected class of targets, but can be easily extended

to any other possible scenario simply retraining the implemented classifiers.

1.2 Reference Measures

Independently of the algorithm that one may decide to implement and the context

of application, in order to check and compare the performance produced by different

detectors, suitable measures capable at representing the detection capabilities of the

selected solutions need to be taken into account. A common and well-defined option,

which is widely used in the literature, is represented in this case by the so-called Receiver

Operating Characteristic (ROC).

The ROC basically illustrates the performance of a detection system, plotting the miss

rates (i.e. the fractions of missed pedestrians) produced at different confidence levels

against the associated false positives per image (fppi).
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In order to discriminate interesting objects from background in fact, detectors assign to

every analyzed region a score that is proportional to the probability that something of

interest is situated in that particular location.

Thresholding at different levels these scores and checking the obtained results, the per-

formance produced by the selected detectors can then be compared, highlighting how

each single solution is capable at discriminating background regions from desired targets

with scores of different magnitude (e.g. figure 1.1).

Taking a Deeper Look at Pedestrians

Jan Hosang Mohamed Omran Rodrigo Benenson Bernt Schiele

Max Planck Institute for Informatics
Saarbrücken, Germany

firstname.lastname@mpi-inf.mpg.de

Abstract

In this paper we study the use of convolutional neural
networks (convnets) for the task of pedestrian detection.
Despite their recent diverse successes, convnets historically
underperform compared to other pedestrian detectors. We
deliberately omit explicitly modelling the problem into the
network (e.g. parts or occlusion modelling) and show that
we can reach competitive performance without bells and
whistles. In a wide range of experiments we analyse small
and big convnets, their architectural choices, parameters,
and the influence of different training data, including pre-
training on surrogate tasks.

We present the best convnet detectors on the Caltech and
KITTI dataset. On Caltech our convnets reach top perform-
ance both for the Caltech1x and Caltech10x training setup.
Using additional data at training time our strongest convnet
model is competitive even to detectors that use additional
data (optical flow) at test time.

1. Introduction
In recent years the field of computer vision has seen an

explosion of success stories involving convolutional neural
networks (convnets). Such architectures currently provide
top results for general object classification [25, 36], general
object detection [40], feature matching [16], stereo match-
ing [45], scene recognition [48, 8], pose estimation [41, 7],
action recognition [23, 38] and many other tasks [35, 3].
Pedestrian detection is a canonical case of object detection
with relevant applications in car safety, surveillance, and
robotics. A diverse set of ideas has been explored for this
problem [13, 18, 12, 5] and established benchmark datasets
are available [12, 17]. We would like to know if the success
of convnets is transferable to the pedestrian detection task.

Previous work on neural networks for pedestrian de-
tection has relied on special-purpose designs, e.g. hand-
crafted features, part and occlusion modelling. Although
these proposed methods perform ably, current top meth-
ods are all based on decision trees learned via Adaboost
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Figure 1: Comparison of convnet methods on the Caltech
test set (see section 7). Our CifarNet and AlexNet results
significantly improve over previous convnets, and matches
the best reported results (SpatialPooling+, which ad-
ditionally uses optical flow).

[5, 47, 34, 28, 44]. In this work we revisit the question,
and show that both small and large vanilla convnets can
reach top performance on the challenging Caltech pedes-
trians dataset. We provide extensive experiments regard-
ing the details of training, network parameters, and different
proposal methods.

1.1. Related work

Despite the popularity of the task of pedestrian detection,
only few works have applied deep neural networks to this
task: we are aware of only six.

The first paper using convnets for pedestrian detection
[37] focuses on how to handle the limited training data (they
use the INRIA dataset, which provides 614 positives and
1218 negative images for training). First, each layer is ini-
tialized using a form of convolutional sparse coding, and the
entire network is subsequently fine-tuned for the detection
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Figure 1.1: ROC for various algorithms and associated LAMRs.

Curves, however, do not represent immediate and clear indications of the performance

presented by different solutions. Therefore, in order to compare in a really direct and

simple way the detection capabilities produced by different architectures, valuable scalar

values are also typically introduced.

Following this reasoning, the Receiver Operating Characteristic is usually coupled with

another suitable measure, the so-called Log Average Miss Rate (LAMR, eq. 1.1).

LAMR = e
∑N
i=1 log(miss ratei) (1.1)

where miss ratesi is the i-th miss rate extracted from the associated ROC at the i-th
fppi.
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The main idea of the LAMR is to represent the mean capability to detect all the existing

pedestrians in every analyzed frame basically sampling the ROC at various fppi and aver-

aging the returned miss rates (figure 1.2). The measure produced in this way represents

a compact indication of the performance produced by the selected detectors, giving the

possibility to discriminate the various architectures in a very simple and straightforward

way.

Typical fppi from which the required miss rates can be extracted are:

fppi = [0.0100 0.0178 0.0316 0.0562 0.1000 0.1778 0.3162 0.5623 1.0000] (1.2)

fppi
10-2 10-1 100 101

m
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s 
ra
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0.05

0.1

0.2

0.5

1
ROC sampling for LAMR computations

Figure 1.2: Extraction of the miss rates required for computing the LAMR from the
associated ROC.
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1.3 The Considered Datasets

Any solution that can be introduced for identifying the location of any objects of interest

needs a reference dataset over which learn the aspects of the desired targets.

Therefore, before introducing any kind of state of the art solution that allows detecting

pedestrians, a dedicated section related to the dataset available in the literature, which

give the possibility to build and test the selected detectors, needs to be realized.

A lot of possibilities are available in this sense thanks to the numerous challenges that

every year take place.

Typical examples are the famous ImageNet Dataset and Caltech Pedestrian Dataset,

which are particularly suitable to train large and complex structures thanks to the huge

and various content they present.

In particular, the ImageNet Dataset represents up-to-now one of the reference dataset

for what concerns multi-class object detection and image classification. It is built by

two main subset:

• The Object Detection Dataset.

• The Image Classification Dataset

Which respectively contain sets of images that have been carefully annotated for giving

a solid ground truth for both the detection and classification tasks.

In the Object Detection Dataset, 200 different fully-annotated object categories have

been carefully chosen (figure 1.3) considering a set of different factors. Such as:

• Object scale

• Level of image clutterness

• Average number of object instances

• . . .

While in the Image Classification Dataset, 15 million high-resolution images belonging

to roughly 22,000 categories have been collected and labeled recurring to the Amazon’s

Mechanical Turk crowd-sourcing tool.
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Figure 1.3: Examples of bounding boxes and associated classes in the ImageNet
Dataset.

Independently by the particular subset in which one may be interested into, thanks to

the variability and the amount of information available in the ImageNet dataset, up-

to-now it represents one of the reference dataset for both Object Detection and Image

Classification tasks.

However, as we have presented few sections ago, the main focus of this work concerns

pedestrian detection. One of the most famous and exploited dataset in this sense is the

so-called Caltech Pedestrian Dataset.

This particular set of images basically consists of approximately 10 hours of 30Hz video (

∼106 frames) taken from a vehicle driven through regular traffic in an urban environment.

The video resolution is 640 × 480, and, not unexpectedly, the overall image quality is

lower than that of other images of comparable resolution.

The driver was independent from the authors of the dataset and had instructions to

drive normally through neighbourhoods in the Los Angeles metropolitan area, which

was chosen for its relatively high concentration of pedestrians.

250,000 frames (in 137 approximately minute long segments extracted from the 10 hours

of video) have been collected and annotated for a total of 350,000 bounding boxes around

2,300 unique pedestrians.

In order to make “the movement” of the bounding boxes (BBs) smooth frame by frame,

a cubic interpolation of the coordinates has been applied.
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For every frame in which a given pedestrian is visible, annotators mark two different

BBs:

• A BB that indicates the full extent of the entire pedestrian (for occluded pedes-

trians this involves estimating the location of hidden parts).

• A BB that delineates only the visible region.

During an occlusion event, the estimated full BB stays relatively constant while the

visible BB may change rapidly (see figure 1.4).

Pedestrian Detection: A Benchmark
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Abstract

Pedestrian detection is a key problem in computer vision,
with several applications including robotics, surveillance
and automotive safety. Much of the progress of the past
few years has been driven by the availability of challeng-
ing public datasets. To continue the rapid rate of innova-
tion, we introduce the Caltech Pedestrian Dataset, which
is two orders of magnitude larger than existing datasets.
The dataset contains richly annotated video, recorded from
a moving vehicle, with challenging images of low resolu-
tion and frequently occluded people. We propose improved
evaluation metrics, demonstrating that commonly used per-
window measures are flawed and can fail to predict perfor-
mance on full images. We also benchmark several promis-
ing detection systems, providing an overview of state-of-the-
art performance and a direct, unbiased comparison of ex-
isting methods. Finally, by analyzing common failure cases,
we help identify future research directions for the field.

1. Introduction
Detecting people in images is a problem with a long his-

tory [37, 13, 35, 27, 16, 41, 23, 5]; in the past two years
there has been a surge of interest in pedestrian detection
[6, 9, 11, 18, 20, 21, 25, 30, 32, 33, 36, 38, 42]. Accurate
pedestrian detection would have immediate and far reaching
impact to applications such as surveillance, robotics, assis-
tive technology for the visually impaired, content based in-
dexing (e.g. Flickr, Google, movies), advanced human ma-
chine interfaces and automotive safety, among others. Auto-
motive applications [12, 14, 34] are particularly compelling
as they have the potential to save numerous lives [39].

Publicly available benchmarks, the most popular of
which is the INRIA dataset [5], have contributed to spurring
interest and progress in this area of machine vision. How-
ever, as algorithm performance improves, more challenging
datasets are necessary to continue the rapid pace of progress
and to inspire novel ideas. Existing pedestrian datasets of-
ten contain a limited range of scale, occlusion and pose vari-
ation, and are fairly small, making it difficult to assess real

Figure 1. Example images (cropped) and annotations. The solid green
boxes denote the full pedestrian extent while the dashed yellow boxes de-
note the visible regions. The Caltech Pedestrian Database, collected from
a vehicle driving through regular traffic in an urban environment, consists
of 350,000 labeled pedestrian bounding boxes in 250,000 frames.

world performance (see Sec. 2.4). As we will demonstrate,
the established methodology of evaluating pedestrian detec-
tors, which uses per-window measures of performance, is
flawed and can fail to predict actual per-image performance.

Our contribution is fourfold. (1) We introduce the Cal-
tech Pedestrian Dataset1, which is two orders of magni-
tude larger than any existing dataset. The pedestrians vary
widely in appearance, pose and scale; furthermore, occlu-
sion information is annotated (see Fig. 1). These statistics
are more representative of real world applications and allow
for in depth analysis of existing algorithms. (2) We propose
improved performance metrics. (3) We benchmark seven
algorithms [40, 5, 7, 30, 11, 42, 21], either obtained directly
from the original authors or reimplemented in-house. (4)
We highlight situations of practical interest under which ex-
isting methods fail and identify future research directions.

We introduce the Caltech Pedestrian Dataset and de-
scribe its statistics in Sec. 2. In Sec. 3, we discuss the
pitfalls of per-window metrics and describe our evaluation
methodology, based on the PASCAL criteria [28]. In Sec.
4 we report a detailed performance evaluation for seven
promising methods for pedestrian detection. We summarize
our findings and discuss open problems in Sec. 5.

1www.vision.caltech.edu/Image Datasets/CaltechPedestrians/

1

Figure 1.4: Examples of full bounding boxes and visible bounding boxes in the Caltech
Dataset.

For each sequence of BBs belonging to a single object:

• Individual pedestrians were labelled as ’Person’ ( ∼1,900 instances).

• Large groups for which it would have been tedious or impossible to label individuals

were delineated using a single BB and labelled as ’People’ ( ∼300).

• Ambiguous or easily mistaken instances were labelled as ’Person?’ ( ∼110).

This classification is of fundamental importance for the realization of any kind of de-

tector, since it allows to discard samples that may alter the final results due to their

strange classification nature (i.e. the ’Person?’ ones).
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The Caltech Pedestrian Dataset plays a fundamental role in the literature for the number

of solutions that have been tested and compared over these sets of images and for this,

it will represent the reference dataset also in this particular work.



Chapter 2

Object Detectors: a Review

2.1 Introduction

Once we have introduced the fundamental datasets and indices available in the literature

(i.e. LAMR and ROC), the following step of our analysis concerns a revision of the main

state of art detectors that could be applied in our situation.

Since it’s not possible to analyze every single available architecture presented in the

literature, in the following, only a description of the main available detectors that have

excelled in the years for accuracy or efficiency will be carried on.

Our revision starts with the famous Viola&Jones algorithm, which is useful to introduce

how the pedestrian detection problem has been initially faced, reviewing the concepts of

feature representation and of Boosted-classifier (which is a fundamental part for many

new state of the art detectors).

It proceeds with the HOG+SVM detector, which allows to introduce the multiple pose

and aspect problem that may jeopardize the detection performance if not suitably man-

aged.

Then, two of the main state of the art detectors (ACF and LDCF) will be presented,

reviewing how they allow to solve the problems presented by HOG+SVM recurring to

feature approximation and Boosted-classifier.

Finally, an illustration of the main part of this work will be realized, reviewing some of

the most famous DNN architectures currently available in the literature and explaining

the rationale behind them.

25
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2.2 Viola&Jones Detector

One of the most famous detectors available in the literature is the so-called Viola&Jones

detector [1]. This detector, proposed in 2001 by Paul Viola and Michael Jones, has

been the first object detection framework to provide competitive object detection rates

in real-time, introducing a new and easy way to approach this kind of task (which rep-

resents nowadays a consolidated baseline for any new possible proposal).

The main idea of the Viola&Jones detector is to apply a boosted binary classifier, made

by a cascade of simple binary classifiers, over a set of features that represents the overall

image behavior.

A feature is a mathematical compact representation of a particular image behavior that

can be exploited to correctly classify regions’ proposal, even if subjected to particular

variations (e.g. magnitude of the gradients or histogram of oriented gradients are inde-

pendent by changes in the average luminance). The choice of the best features to use,

is strictly problem dependent.

There are many motivations for using features rather than the pixel values directly.

The most common reason is that features can encode ad-hoc domain knowledge that is

difficult to learn using a finite quantity of training data. In the Viola&Jones framework

there is also a second critical motivation for features: a feature-based system operates

much faster than a pixel-based one.

The cascade structure of the overall classifier is meant to realize a complex and pow-

erful classifier recurring to a combination of simple binary classifiers (aka weak/stump

classifier), which are slightly better then a toss of coin.

The application of simple classifiers in different layers allows in fact to check different

properties of the input image at different levels, producing a much more robust and

accurate classifier than the one which could be realized with only one stage.

In particular, the cascaded architecture has interesting implications for the performance

of the overall classifier. Analyzing in fact the false positive rate (i.e. the rate with which

we classify a negative sample as positive), it turns out that, since the activation of each

simple classifier depends entirely on the behavior of its predecessor, the false positive

rate for an entire cascade is:
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F =
K∏
i=1

fi (2.1)

where F is the overall false positive rate, fi is the false positive rate of the i-th classifier
and K is the overall number of stage in the cascade.

and similarly the detection rate (i.e. the rate with which we classify a positive sample

as positive) for a cascaded architecture can be computed as:

D =
K∏
i=1

di (2.2)

where D is the overall detection rate, di is the detection rate of the i-th classifier and
K is the overall number of stage in the cascade.

Thus, to match the false positive rates typically achieved by other detectors, each classi-

fier can get away with having surprisingly poor performance. As example, for a 32-stage

cascade to achieve a false positive rate of 10−6, each classifier needs only to achieve a

false positive rate of about 65%.

At the same time however, each elementary classifier needs to have a very high recall1

in order to produce an overall detector capable at achieving satisfactory detection rates.

For example, to produce a global detection rate of about 90%, each classifier in the

aforementioned cascade needs to present a detection rate of approximately 99.7%.

Ideally, each stump classifier should discard only a reduced set of samples that clearly

do not belong to the desired regions, producing in this way a high detection rate and

leaving to the subsequent detectors the due to discard any other possible negative region

remaining in the set.

Anyway, in order to build the cascade of simple detectors here presented, a suitable

learning algorithm requires to be exploited. To efficiently solve this particular require-

ment, a new solution based on a variation of the AdaBoost meta-algorithm has been

introduced by Viola and Jones in [1] .

AdaBoost [7], short for “Adaptive Boosting”, is a machine learning meta-algorithm

formulated by Yoav Freund and Robert Schapire, which can be used in conjunction

with many other types of learning algorithms to improve their performance. The main

1Recall (also known as sensitivity or true positive rate) is the fraction of all relevant instances re-
trieved.
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idea is that several weak classifiers trained with different learning algorithms can be

combined into a weighted sum that represents the final output of the boosted classifier.

As long as the individual classifiers are slightly better than random guessing (i.e., their

error rate is smaller than 0.5 for binary classification), the final model can be proven to

converge to a strong learner.

Figure 2.1: Example of two features selected by the Viola&Jones learning algorithm

Following this idea, the variation introduced by Viola&Jones constructs a “strong” clas-

sifier as a linear combination of specific weighted simple “weak” classifiers (eq. 2.3),

aimed at checking only some particular features which are selected during the training

process (see figure 2.1).

h(x) = sign(
M∑
j=1

αihj(x)) (2.3)

where x is the input patch, h(x) is the final output of the strong-classifier, hj(x) is
the output of the j-th weak classifier and αi its associated weight (which determines its

relevance).

Each weak classifier is a threshold function based on the feature fj (eq. 2.4), where the

threshold value θj and the polarity sj ∈ {1,−1} are determined in the training, as well

as the coefficients αj .

hj(x) =

{
−sj if fj < θj

sj otherwise
(2.4)

where fj is the j-th feature extracted from the input patch x, θj is a threshold applied
over the value of the feature in order to establish the value of the the output (equal in

absolute value to the polarity sj).
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To simplify the explanation, a simplified version of the learning algorithm is here pre-

sented.

Given a Set of N positive and negative training images with their labels (xi, yi), for each

stage of the cascade that we want to produce the following procedure is applied:

1. A weight wi1 = 1
N is initially assigned to each image i.

2. For each required feature j with j = 1..M (where M is the overall number of

features we want to test in a stage):

(a) The images weights wij are renormalized such that they sum to one.

(b) For each possible feature k, the optimal threshold and polarity θk, sk of the

related weak classifier are computed2 and a weighted error Ek, representing

the goodness of this latter, determined:

Ek =
N∑
i=1

wijε
i
k (2.5)

εik =

0 if yi = hk(x
i, θk, sk)

1 otherwise

where εik is the classification error produced by the weak classifier k over image i.

(c) The classifier that produces the minimum value of E is chosen and a weight

αj that is inversely proportional to the error rate is assigned.

Since each classifier is related to a specific feature, a selection of the feature

to test is basically accomplished at this step.

(d) The weights for the next iteration (i.e. wij+1) are finally reduced for the

images that were correctly classified3 and the algorithm returned to point 2a.

3. The strong classifier of the current stage is set equal to:

h(x) = sign(
M∑
j=1

αjhj(x)) (2.6)

2The computation of the classifier’s parameters depends only on the training algorithm that has been
selected.

3Images with wrong classifications must appear more important in the following steps, in order to
improve the discriminability the overall strong-classifier.
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4. A new training set is constructed containing only the samples that passed the

previous steps and the overall learning procedure repeated over this new set.

Analyzing the proposed algorithm however, it turns out that a large portion of compu-

tational effort is not spent in the classification phase, but instead in the computation

of the features that represents the image behavior. In order to achieve real-time perfor-

mance therefore, a suitable set of features, fast to compute, must then be considered.

In order to face this problem, Viola&Jones introduced in their work the so-called Haar-

Like features.

Haar features are simple local representations that consider adjacent rectangular regions

in a detection window, summing up the pixel intensities in each region and calculating

the differences between these sums.

Despite their simplicity, the amount of features that may be required to be computed in a

given region can be really large. So, in order to speed-up the overall process, Viola&Jones

introduced in their work a further improvement characterized by the so-called Integral

Images.

Integral images can be defined as two-dimensional lookup tables in the form of matrices

with the same size of the original images, where each element contains the sum of all

pixels located on the top-left part of the figures themself.

Thanks to this alternative representation, the sum of rectangular areas in the image can

now be computed only recurring to four lookups (see figure 2.2), exponentially reducing

the cost of the overall feature extraction.

Despite the goodness and simplicity of this solution, the Viola&Jones detector presents

some crucial disadvantages, which make it hardly applicable in the detection of complex

and heterogeneous objects.

In fact, while it is extremely fast, scale invariant and rotation invariant, it is mostly

effective only with frontal images and can hardly cope with 45◦ rotation both around

the vertical and horizontal axis. It is moreover sensitive to lighting and environmental

conditions, making the detection harder every time there are changes in the operative

conditions.

In order to achieve a robust detection even in more difficult situations, more powerful

and complex solutions have been introduced in the literature.
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Figure 2.2: Example of integral image, where s(x, y) represents the sum of the pre-
vious column-pixel and ii(x, y) represents the sum of the all the pixels situated among

the origin and the point (x, y)

2.3 HOG+SVM

Continuing with our illustration of the most famous and powerful detectors available in

the literature, one of the solutions that for sure deserves to be reviewed in our anal-

ysis is the so-called HOG+SVM detector [2] (i.e. Histogram of Oriented Gradients +

Support Vector Machine), introduced in 2005 by Navneet Dalal and Bill Triggs for the

identification of pedestrians in static images.

In detail, the rationale behind the histogram of oriented gradients descriptor is that

local object appearances and shapes can be described by the distribution of intensity

gradients (i.e. edge directions).

Basically, dividing a promising region into small connected regions (i.e. cells) and com-

puting an histogram of gradient directions for each of them (see figure 2.3), a global

descriptor of a proposed region can be obtained simply concatenating the bins extracted

from each retrieved local representation and vectorizing the overall representation.

The feature vector produced in this way gives a compact representation of the overall

region content that can be exploited for detecting the presence or absence of interesting

objects, simply applying a suitable classifier as a SVM.

To give a better understanding of the behavior the detector presents, an example of

pedestrian detection is here considered, which explains the typical pipeline applied with

the HOG+SVM detector.
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Digital Image Processing

Feature descriptors

SIFT

! SIFT – Scale Invariant Feature Transform [Lowe, 2004]

! Keypoint detector: DoG detector (see previous slides)

! For each keypoint
1. From the blurred image at scale σ, compute the gradient magnitude 

and orientation in a region around keypoint location (weighted using a 
Gaussian window)

2. Compute accumulated histograms summarizing the content over 4x4 
windows (the length of each arrow corresponds to the sum of the 
gradient magnitudes near that direction within the region)

3

[Lowe, 2004]

Figure 2.3: Example of gradient histograms extracted from 4 subregions

Given an input image where to detect the occurrences of possible pedestrians, all the

available 64× 128 subregions are extracted in a sliding window manner (see figure 2.4).

Each proposal is divided in subsequent 8× 8 cells and for each cell a local histogram of

oriented gradients with 9 possible orientations is computed (see figure 2.5).

Figure 2.4: Example of one of the possible 8x8 cells that can be extracted from one of
the 64×128 windows extracted from the image (luckily, one that contains a pedestrian).

For each gradient vector, its contribution to the histogram is given by the magnitude

of the vector (stronger gradients have a bigger impact on the histogram) and is split
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Figure 2.5: Example of a possible orientations histogram extracted from an 8 × 8
cell. Dalal and Triggs used “unsigned gradients” in their original version, such that the

orientations only ranged from 0 to 180 degrees instead of 0 to 360.

between the two closest bins.

So for example, if a gradient vector has an angle of 85 degrees, then 1/4 of the magnitude

is added to the bin centered at 70 degrees, and 3/4 to the bin centered at 90.

The various extracted histograms are then normalized in-group, in order to make the

description more robust to possible variations (such as multiplicative noise).

The cells are in fact aggregated in blocks of 2× 2 cells, with 50% of overlaps (see figure

2.6), concatenated in a unique vector of 9× 4 = 36 bins and then normalized, dividing

this overall vector by its magnitude.

Thanks to the block overlapping, each cell appears multiple times in the final descriptor

and is normalized by different sets of neighboring cells. This allows to take into account

all the multiple variations that may affect the proposed region in a neighborhood of the

analyzed point.

Figure 2.6: Example of cells aggregation
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The overall description of a proposal is finally produced and built by a set of subsets of

histograms. Each subset represents the local histogram of an overlapping block extracted

from the image.

Therefore, for a 64× 128 image, 7× 15 overlapping 8× 8 blocks are extracted, each one

built by 2×2 cells and described by 4 local histograms, for a total of: 7×15×4×9 = 3780

bins.

A SVM is finally applied on these data to obtain the predicted class of the analyzed

proposal.

The HOG+SVM detector shows sufficiently good results for pedestrian detection in

good quality images, reducing false positive rates by more than one order of magnitude

compared to the best Haar wavelet based detector.

For this reason, this solution became really popular in time, spurring many developers to

produce highly optimized implementations of this algorithm, such as the one proposed

in the OpenCV library, which can process an image at different scales (applying different

image resizing) in 80 ms on a compact and embedded board such as the Nvidia Jetson

TK1.

Despite the power of the HOG descriptor, the presented detector exposes some limita-

tions that reduce the overall performance of the detection task, especially in low quality

images.

A single bounding box of a pedestrian for example, can vary its aspect considerably wrt

to the pose that a person can present, reproducing a considerable variation of the HOG

descriptor that makes the application of the classifier less accurate.

For this reason, different and more powerful detectors based on a set of multiple features

have been studied during the years.

2.4 ACF

The Aggregated Channel Features detector (aka ACF [3]) is one of the most famous

detectors available nowadays. It combines good single-class object detection and con-

tained computational times, recurring to approximations of the features values at mul-

tiple scales.

This type of detector, thanks to the utilization of multiple features channels (i.e. mul-

tiple representations of the input image), is capable of outperforming the performance
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of HOG+SVM, even distinguishing pedestrians in multiple poses and aspects without

incurring in high computational loads.

The main idea behind ACF is to compute a rich representation of an image made by a

set of 10 features channels:

• Normalized Gradient Magnitudes (1 channel).

• Histogram of Oriented Gradients (6 channels).

• LUV Color Channels4 (3 channels).

paying at the same time only a reduced computational price.

The key insight is that natural images have fractal statistics [3] (each part of the image

has the same statistical properties as the whole image). Therefore, it’s possible to

reliably predict the image structure across different scales.

Dollar et al. demonstrates in [3] that the behavior of shift-invariant features (features

that present the same behavior even if the image is shifted) at multiple scales is governed

by a power law.

Basically, letting φ(I) denoting an arbitrary (scalar) image statistic and E[·] the expected

value over an ensemble of natural images, Ruderman and Bialek made the fundamental

discovery that the ratio of E[φ(Is1)] to E[φ(Is2)], computed over two sets of natural

images at scales s1 and s2, is equal to:

E[φ(Is1)]/E[φ(Is2)] = (
s1

s2
)−λφ (2.7)

Where every statistic has its own corresponding λφ.

The presented equation gives unfortunately only the behavior of a statistic at different

scales computed over an ensemble of images, but does not define the value of features

computed for a single image at multiple scales.

However, since a single image can be decomposed into a set of K single patches (i.e. sub-

images) such that I = [I1 . . . IK ] and since we are considering shift-invariant features,

then the value of features computed in a single region, ignoring boundary effects, is

approximately independent from the value of pixels in another region.

4For reference see the CIE 1976 (L*, u*, v*) color space.
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A features map Ω (i.e. a set of channels representing the output of a shift-invariant

transformation applied over the original image), from which a final shift-invariant feature

fΩ can be computed, can in fact be approximated as:

Ω(I) = Ω([I1 . . . IK ]) ≈ [Ω(I1)...Ω(IK)] (2.8)

exactly as if we had K different images instead of only one.

Considering then that a single global feature (or a local feature determined in the same

way but only on a subregion of the overall image) defined as:

fΩ(Is) ≡
1

hswsk

∑
i,j,k

Cs(i, j, k) where Cs = Ω(Is) (2.9)

where Is the image I at the scale s, hs and ws its height and width, k the number of
layers of the channel map.

can be computed as:

fΩ(I) ≈ 1

K

K∑
k=1

fΩ(Ik) (2.10)

where the approximation is due to the boundary effects introduced in the the channel
maps.

if all the K regions have similar size. It is possible to write a relation among features

extracted at multiple scales of a same image combining eq. 2.10 and 2.7:

fΩ(Is1)

fΩ(Is2)
= (

s1

s2
)−λΩ + Σ (2.11)

where we use Σ to denote the deviation from the power law for a given image.

However, in order to apply such equation, the value of the parameter λ needs first to be

determined.
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Since λ changes from feature channel to feature channel (but not from class of objects

to class of objects5), its value can be calculated using a simple measure µs defined as:

µs =
1

K

K∑
i=1

fΩ(Iis)

fΩ(Ii1)
(2.12)

that according to equation 2.11, must be equal to:

µs = s−λΩ + E[Σ] (2.13)

Putting therefore together eq. 2.13 and 2.12 the value of λ can be easily computed

simply reversing the formulae.

Once the value of λ is determined, the last step that remains to be faced is how to apply

in practice what we have theoretically explored so far.

Typically, in order to compute features maps at different scales, the standard approach

requires to compute:

Cs = Ω(R(I, s)) (2.14)

where R(I, s) is the resizing of the image to scale s.

ignoring the information contained in C = Ω(I).

What Dollar et al. propose instead is to apply the following approximation:

Cs ≈ R(C, s) · s−λΩ (2.15)

and aggregate the values of different pixels smoothing and downsampling the estimated

feature space, in order to improve the robustness of the overall representation.

This approximation allows to build a features pyramid of an input image (which is a

multi-scale representation where channels Cs = Ω(Is) are computed at every scale s)

determining the value of features at one scale per octave through image resizing (an

5Analyzing in fact the values of µs computed at different scales (s = 2−1/8, ..., 2−24/8 ) for both
pedestrian and natural images, it is possible to observe as the value of λ is basically the same for
pedestrian objects and also natural images.
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octave is an interval between one scale and another with half or double its value) and

approximating all the other feature channels in the middle.

Since the cost of approximating Cs is typically 1/3 of computing Cs at the original scale,

the computational burden of the overall process is in this way incredibly reduced.

In order to robustly detect the presence or absence of pedestrians in the given regions,

Dollar et al. finally suggest to apply a cascade classifier made of 2048 depth-2 boosted

decision trees over the features pyramid determined as just explained.

Due to the simplicity of such classification process however, the presented detector

doesn’t exploit all the power of the available extracted features set, since it applies

only orthogonal splits over a set of features virtually correlated one to each other.

2.5 LDCF

The locally decorrelated channel features detector (aka LDCF [4]) is an extension of the

ACF-detector introduced by Dollar et al. in 2014 to solve the limits exposed by their

previous solution.

Analyzing the behavior of the boosted decision tree applied by ACF over the feature

channels in fact, it is possible to observe as the split applied by each stump classifier

(each node of a depth-2 decision tree) does not follow necessarily the data distribution,

but is orthogonal to the channels extracted (figure 2.7).

Due to this sub-optimal classification, the quality of the final detections is therefore

limited and more complex solutions needs to be explored, in order to further improve

the performance achieved.

Figure 1: A comparison of boosting of orthogonal and oblique trees on highly correlated data while
varying the number (T ) and depth (D) of the trees. Observe that orthogonal trees generalize poorly
as the topology of the decision boundary is not well aligned to the natural topology of the data.

We evaluate boosted decision tree learning with decorrelated features in the context of pedestrian
detection. As our baseline we utilize the aggregated channel features (ACF) detector [7], a popular,
top-performing detector for which source code is available online. Coupled with use of deeper trees
and a denser sampling of the data, the improvement obtained using our locally decorrelated channel

features (LDCF) is substantial. While in the past year the use of deep learning [25], motion features
[27], and multi-resolution models [36] has brought down log-average miss rate (MR) to under 40%
on the Caltech Pedestrian Dataset [10], LDCF reduces MR to under 25%. This translates to a nearly
tenfold reduction in false positives over the (very recent) state-of-the-art.

The paper is organized as follows. In §2 we review orthogonal and oblique trees and demonstrate
that orthogonal trees trained on decorrelated data may be equally or more effective as oblique trees
trained on the original data. We introduce the baseline in §3 and in §4 show that use of oblique
trees improves results but at considerable computational expense. Next, in §5, we demonstrate that
orthogonal trees trained with locally decorrelated features are efficient and effective. Experiments
and results are presented in §6. We begin by briefly reviewing related work next.

1.1 Related Work

Pedestrian Detection: Recent work in pedestrian detection includes use of deformable part models
and their extensions [11, 36, 26], convolutional nets and deep learning [33, 37, 25], and approaches
that focus on optimization and learning [20, 18, 34]. Boosted detectors are also widely used. In
particular, the channel features detectors [9, 1, 2, 7] are a family of conceptually straightforward and
efficient detectors based on boosted decision trees computed over multiple feature channels such as
color, gradient magnitude, gradient orientation and others. Current top results on the INRIA [6] and
Caltech [10] Pedestrian Datasets include instances of the channel features detector with additional
mid-level edge features [19] and motion features [27], respectively.

Oblique Decision Trees: Typically, decision trees are trained with orthogonal (single feature) splits;
however, the extension to oblique (multiple feature) splits is fairly intuitive and well known, see
e.g. [24]. In fact, Breiman’s foundational work on random forests [5] experimented with oblique
trees. Recently there has been renewed interest in random forests with oblique splits [23, 30] and
Marin et al. [20] even applied such a technique to pedestrian detection. Likewise, while typically
orthogonal trees are used with boosting [12], oblique trees can easily be used instead. The contri-
bution of this work is not the straightforward coupling of oblique trees with boosting, rather, we
propose a local decorrelation transform that eliminates the necessity of oblique splits altogether.

Decorrelation: Decorrelation is a common pre-processing step for classification [17, 15]. In recent
work, Hariharan et al. [15] proposed an efficient scheme for estimating covariances between HOG
features [6] with the goal of replacing linear SVMs with LDA and thus allowing for fast training.
Hariharan et al. demonstrated that the global covariance matrix for a detection window can be esti-
mated efficiently as the covariance between two features should depend only on their relative offset.
Inspired by [15], we likewise exploit the stationarity of natural image statistics, but instead propose
to estimate a local covariance matrix shared across all image patches. Next, rather than applying
global decorrelation, which would be computationally prohibitive for sliding window detection with
a nonlinear classifier1, we instead propose to apply an efficient local decorrelation transform. The
result is an overcomplete representation well suited for use with orthogonal trees.

1Global decorrelation coupled with a linear classifier is efficient as the two linear operations can be merged.

2

Figure 2.7: Comparison of orthogonal vs oblique boosted decision tree at variations
of the number of trees in each stage (T) and depth of the overall boosted tree(D).
Regions with different intensities represents areas assigned to different classes (e.g. the
lighter the area, the stronger the assignment to the blue class). As it is possible to see,
even with a small amount of decision trees in a stage, the oblique boosted decision tree

outperforms all the boosted orthogonal decision trees here presented.
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A possible solution in this sense could be the realization of a tree where the various

splits are not realized only on a single feature, but over a linear combination of them,

improving the performance of the overall process but increasing at the same time the

associated computational burden.

However, due to the large load and high complexity in the training procedure such kind

of classifiers presents, Dollar et al. decided to avoid the application of oblique decision

trees, introducing in their new detector a local decorrelation of the feature channels

extracted from each proposal (which gave the opportunity to apply the well-known

orthogonal decision trees in a much powerful way).

Basically, after the computation of the feature pyramid associated to an acquired image,

a m ×m correlation matrix Σ (representing the correlation of all the features situated

in a generic m×m patch p) is computed.

From the Σ matrix, a Singular Value Decomposition (SVD) is applied, obtaining the

matrices Q and Λ:

Σ = QΛQT (2.16)

and a final decorrelation achieved, simply multiplying each single patch p to the extracted

Q matrix:

p̄ = QT p (2.17)

where p̄ is the decorrelated patch p.

Unfortunately this kind of approach, despite its correctness and validity, produces in the

end an overcomplete representation of the initial image, since for each feature channel

m×m sub-features are extracted by the presented decorrelation.

In order to reduce the computational burden introduced by this operation, two opti-

mizations are so proposed by Dollar:

• First, the authors suggests to apply an approximation of Q, taking only the first

k eigenvectors associated to the highest eigenvalues.

This allows to cut the original set of m×m× 10 features to a more contained set

of k × 10.
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To further reduce the dimension of the final representation and improve the ro-

bustness of the overall process, a final downsampling over the features extracted

is also recomended at this step.

• Second, instead of decorrelating the extracted patches with a matrix multiplication

(i.e. QT p ), an application of k convolutional filters over the feature channels6 is

advised in [4].

This gives in fact the possibility to reduce the overall computational load simply

recurring to highly optimized convolutional functions, which can be applied (if

necessary) in the Fourier Domain.

Experimental evidence finally showed how good values for an application of this decom-

position are k = 4 and m = 5, which produce sufficiently good local representation of

the image, without incurring in excessive computational burdens.

Thanks to the innovations introduced, the LDCF detector outperforms many other state

of the art solutions, achieving an accurate and robust multi-scale single-class object

detection with sufficiently contained computational burdens.

2.6 AlexNet

Up to now a lof of different approaches have been presented, which concern the appli-

cation of a suitable classifier over a set of feature channels that are defined and fixed a

priori (as a result of multiple attempts and decades of human research).

In the last years however, thanks to the innovations introduced by new powerful parallel

architectures, massive black box approaches came back in fashion, giving the possibility

to apply such particular kind of solutions even in situations previously not affordable.

In the Computer Vision field this return to the past has been materialized into the

so-called Deep Neural Networks (aka DNNs) and especially into their subclass named:

Deep Convolutional Neural Networks (aka CNNs).

CNNs are basically very large and deep neural networks (i.e. made by a lot of layers)

where each neuron is applied over set of features coming from the previous layer in a

convolutional way, replicating typical image processing operations.

6Which is equivalent to the previous multiplication since the multiplication of QT per p is basically
the convolution of each column vector of Q per p
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The main idea in this case is to try to learn the best possible features (which are strictly

related to the case that must be faced) and then apply a simple linear classifier over

the final feature set. The power of this kind of models is so concentrated in the overall

structure responsible of extracting good representations of the given input image.

Despite the multitude of models presented that could be applied in a lot of different

situations and with different goals (e.g. CIFAR10, MNIST, GoogleNet, NIN . . . ), one of

the solutions that has shown really good performance, both in generic image classification

and object detection tasks, is the so-called AlexNet [6].

AlexNet is a 7-layers convolutional neural network, which takes in input a 224× 224× 3

(then extended in a later version to 227×227×3) proposal and produces as output 4096

features representing the content of the given region (see figure 2.8).

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Figure 2.8: An illustration that represents the AlexNet structure.

In order to analyze its particular architecture however, two main components, which are

the basic blocks of this kind of network, need to be previously explained. Namely: the

ReLU Layer and the Pooling Layer.

Typically, in every Neural Network (NN) each node applies a linear transformation

over a set of input data and then a non-linear activation function, in order to decide if

activating the neuron or not.

Good examples of activation functions are in this case: binary activation functions,

linear activation functions, hyperbolic tangent or sigmoidal activation functions.

It turns out however, that saturating non-linearities (non-linearities which are asymp-

totically limited by a fixed value) are much slower in terms of training times than the

non-saturating ones.

A good example of non-saturating non-linearity is illustrated in eq. 2.18 (introduced by

Nair and Hinton in [8]), which allows to achieve same training results wrt other saturat-

ing activation functions, but with much less iterations over the training set (fig. 2.9).
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Any neuron that implements this activation function is typically referred to as: Rectified

Linear Unit (ReLU).

This particular function plays a fundamental role in our revision, since it corresponds

to the only activation function, which has been exploited in AlexNet for costructing the

overall model.

f(x) = max(0, x) (2.18)

3.1 ReLU Nonlinearity

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

The standard way to model a neuron’s output f as
a function of its input x is with f(x) = tanh(x)

or f(x) = (1 + e

�x

)

�1. In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(x) = max(0, x). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
tional neuron models in CNNs. For example, Jarrett
et al. [11] claim that the nonlinearity f(x) = |tanh(x)|
works particularly well with their type of contrast nor-
malization followed by local average pooling on the
Caltech-101 dataset. However, on this dataset the pri-
mary concern is preventing overfitting, so the effect
they are observing is different from the accelerated
ability to fit the training set which we report when us-
ing ReLUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size of the networks
that can be trained on it. It turns out that 1.2 million training examples are enough to train networks
which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs
are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to
one another’s memory directly, without going through host machine memory. The parallelization
scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kernels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the pattern of
connectivity is a problem for cross-validation, but this allows us to precisely tune the amount of
communication until it is an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Cireşan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each convolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net2.

2The one-GPU net actually has the same number of kernels as the two-GPU net in the final convolutional
layer. This is because most of the net’s parameters are in the first fully-connected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced layers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.
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Figure 2.9: Comparison of training errors at various epochs over the training set,
produced applying the Cifar Net with ReLU (the solid line) and tanh layer(the dashed
one). The ReLU implementations reaches a 25% training error rate six times faster

than its equivalent with tanh neurons.

As previously explained however, the architecture that is here considered concerns the

application of a multitude of convolutional neurons over the feature space generated by

the previous layer. In this case due to the large size of these architectures, if neurons are

free to learn independently one by each other the relative kernels they should implement,

the overall NN may overfit in the end the training data, reducing the performance

produced at test time.

In order to improve robustness and generalization of the proposed solution, the various

neurons available in this large and depth NN are typically split in different sets (named

kernel maps), which implement different functions one to each other.



Chapter 2. Object Detectors: a Review 43

Thanks to this grouping in fact, the number of degrees of freedom presented by the net

can be strictly reduced and so the possibility to overfit the data.

Unfortunately, even applying the illustrated solutions, the overall network may present

a poor generalization if not trained with really large amounts of data, so, in order

to increase robustness and performance of the trained model, a pooling layer aimed at

reducing the amount of data that flows from one layer to another is typically introduced.

The main idea is to generalize the local behavior of an image, extracting every s points

the maximum response produced by all the neurons situated in a z × z neighborhood.

This allows to reduce the amount of features retrieved at each layer, since only the

strongest behaviors are actually retrieved step by step.

If s = z a traditional local pooling is obtained, if instead s < z an overlapping pooling

is produced.

This last case is the one implemented by Alex et al. in their architecture, where a 3× 3

overlapping pooling is applied with stride s equal to 2 (z = 3 and s = 2).

Now that all the required basic blocks have been introduced, the main structure of

AlexNet can finally be illustrated.

7 main layers in the following order build this architecture:

• A convolutional layer made by 96 kernels of dimensions 11× 11× 3, applied with

a stride of 4 pixels over the initial input image and followed by a suitable ReLU

layer plus a max-pool layer with z = 3 and s = 2.

• A convolutional layer made by 256 kernels of dimensions 5×5×48, applied without

any stride over the initial input image and followed by a suitable ReLU layer plus

a max-pool layer with z = 3 and s = 2.

• A convolutional layer made by 384 kernels of dimensions 3× 3× 256 and followed

by its ReLU layer, applied without any stride or max-pooling layer.

• A convolutional layer made by 384 kernels of dimensions 3× 3× 192 and followed

by its ReLU layer, applied without any stride or max-pooling layer.

• A convolutional layer made by 256 kernels of dimensions 3× 3× 192 and followed

by its ReLU layer, applied without any stride or max-pooling layer.

• Two fully connected layer (producing each one 4096 features in output) directly

connected one to each other, without any other layer in the middle.
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Each layer is aimed at extracting a higher level representation of the input image, which

could be used to properly classify any patch taken into account.

At the top of the net a SOFTMAX classifier is typically applied, in order to retrieve the

strength of the various predicted classes associated to the current analyzed proposal.

Thanks to the flexibility this particular network presents, AlexNet has become one of the

most famous CNN available in the literature, spurring frameworks, such as the Barke-

ley Caffe framework (http://caffe.berkeleyvision.org/), to propose their ILSVRC

trained version7 as the reference net for many classification and detection tasks.

It turns out in fact that an already trained version of AlexNet can be easily finetuned

(i.e. trained) for recognizing not only objects contained in the original training set, but

also targets it has never seen, simply recurring to a set of stochastic gradient iterations

applied over the new training data.

The main idea is to exploit the detection capabilities already learnt by the network

(which could be significant, given the multitude of objects already processed) and adapt

them to a complete different situation, guiding in some way the training process towards

good configuration points, which otherwise could be hardly achievable with any training

from scratch.

One of the main contributions of this work is a study aimed at finding a reasonable and

valid training process for finetuning this kind of networks to pedestrian detection tasks,

highlighting suggestions and best practices that can be followed, in order to produce

satisfactory results.

2.7 R-CNN

One of the latest solutions available in the literature that concerns the object detection

with CNN is the so-called: Regions with Convolutional Neural Network Features (aka

R-CNN [9]). One of the main strengths of this detector wrt the previous ones is the

capability to recognize with accuracy objects belonging to different classes, giving the

possibility to extract much more information from a single image, without the necessity

to apply multiple detectors.

The main idea of R-CNN is to extract all the possible regions (which may contain

interesting objects) independently of their scale, stretch them in order to fit a fixed

7Over which the original model has been trained by Alex et al.

http://caffe.berkeleyvision.org/
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dimension (a process usually referred to as warping) and finally apply a complex CNN,

in order to retrieve the classes the various objects belong to (fig. 2.10).

3 main algorithms have so been selected for facing the 3 main tasks involved, namely:

• Selective Search for the extraction of promising regions (an algorithm capable

at retrieving hierarchies of regions, applying continuously regional aggregations

guided by local similarity measures, see 2.7.1.)

• AlexNet for feature extraction

• Linear SVM for object classification

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
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Figure 2.10: RCNN pipeline

Using this kind of approach and finetuning the initial AlexNet model trained on the

ILSVRC-2013 dataset with the PASCAL VOC dataset, Girshick et al. achieved in their

work state of the art results, outperforming all the competitors that participated at the

ILSVRC-2013 (fig. 2.11).

Following these results, the R-CNN detector has been analyzed in this work and com-

pared with other state of the art object detectors, highlighting weaknesses and limits of

the presented approach, which make this kind of solution hardly applicable in particular

situations as the one here considered.

2.7.1 Selective Search

Selective Search [10] is a hierarchical segmentation algorithm aimed at extracting all the

possible regions situated at all the available scales in a given image.

The main idea behind Selective Search is to apply an initial segmentation of the image

recurring to a graph-based algorithm and then aggregate, in multiple iterations, the

various regions that are the most similar among the extracted ones.

The algorithms proceed exactly in this way:
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VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [20]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [39] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [41] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [18]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per
method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table 8 and also included in the tech report source uploaded to arXiv.org; see R-CNN-ILSVRC2013-APs.txt). The red
line marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoom).
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Figure 4: Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

5

Figure 2.11: Results obtained by R-CNN over the ILSVRC-2013 datasets. The results
of R-CNN and Overfeat are highlighted in red since they have been realized and tested
only after the competition has taken place. Algorithms marked with an * use data

outside the ILSVRC-2013 competition.

1. First, an Efficient Graph-Based Image Segmentation [11] is applied over the input

image, in order to produce a good set of initial regions:

(a) An undirected graph G = (V,E) is created 8.

(b) An initial segmentation S0 is fixed equal to V , according to the result pro-

duced at the previous step.

(c) All the edges contained in E are sorted in a non-decreasing order wrt their

weights.

(d) Iterating over the arcs of the ordered set E (for q = 1 . . . |E|) and denoting

with:

• vi and vj the vertices connected by the q-th edge (i.e. oq = (vi, vj)).

• w(oq) the weight of the edge oq.

• Cq−1
i the component of Sq−1 containing vi.

• Cq−1
j the component of Sq−1 containing vj .

• MInt(C1, C2) the minimum internal difference of C1 ∪ C2 (eq. 2.19).

8Where the set of vertices V represents all the available pixels and the set of edge E represents the
dissimilarities situated between each couple of neighbors (e.g. the difference in intensity or color)



Chapter 2. Object Detectors: a Review 47

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (2.19)

Int(C) = max
e∈MST (C,E)

w(e) (2.20)

τ(C) =
k

|C|
(2.21)

where MST (C,E) is the Minimum Spanning Tree that connects all the element of C.

the segmentation Sq is constructed from the segmentation Sq−1 considering

that:

• If Cq−1
i 6= Cq−1

j and w(oq) 6 MInt(Cq−1
i , Cq−1

j ), Sq is obtained from

Sq−1 by merging Cq−1
i and Cq−1

j .

• Otherwise Sq = Sq−1.

The parameter k is of fundamental importance in the presented approach,

since it tunes the grain of the aggregation process.

Small values of k produce in fact a lot of regions, while large values of k bring

the algorithm to aggregate a lot of different components.

2. After the segmentation is realized and the initial regions R = {r1, . . . , rn} are

obtained, the Hierarchical Grouping responsible of creating the desired hierarchy

of regions is finally applied (Algorithm 1).

As it is possible to see, the algorithm:

• requires the computation of a similarity among each region and all the others

available in the same set.

• assignes a priority to each region, representing the likelihood to actually have

something of interest in that particular location.

Priorities are established in a reverse order wrt the step in which the two regions

that compose the final location are aggregated9.

The main idea is that, if two regions are aggregated in the last iterations of the

algorithm, they probably represent distinct objects with really different behaviors.

Therefore, they should be processed first wrt the other proposals.

9Plus a certain randomness, in order to avoid pushing only large regions wrt smaller but more
promising ones.
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Algorithm 1: Hierarchical Grouping Algorithm

Initialize the similarity set S = ∅;
Initialize the priority set P = ∅;
foreach Neighboring region pair (ri, rj) do

Calculate similarity s(ri, rj);
S = S

⋃
s(ri, rj)

i = 1;
while S 6= ∅ do

Get highest similarity s(ri, rj) = max(S);
Merge corresponding regions rt = ri

⋃
rj ;

Remove similarities regarding ri : S = S s(ri, r∗);
Remove similarities regarding rj : S = S s(rj , r∗);
Calculate similarity set St between rt and its neighbours;
S = S

⋃
St;

R = R
⋃
rt;

P = P
⋃
i ∗ rnd();

i = i+ 1;

Extract object location boxes L from all regions R;
Sort the extracted boxes L in descending order wrt P ;

Similarities instead are computed recurring to the sum of 4 different normalized

measures:

s(ri, rj) = scolor(ri, rj) + stexture(ri, rj) + ssize(ri, rj) + sf ill(ri, rj) (2.22)

which represent complementary affinities that sould be considered, in order to

produce a general and meaningful result.

The 4 measures that are employed in this case are:

• scolor(ri, rj), which measures color similarity.

For each region, a color histogram of 25 bins is computed for each channel

and a global histogram is retrieved vectorizing and normalizing10 the various

computed bins.

The similarity is measured recurring to an histogram intersection:

scolor(ri, rj) =

n∑
k=1

min(cki , c
k
j ) (2.23)

where cki is the k-th bin of the color histogram of image i and the same states also for
ckj .

10The normalization process is accomplished recurring to the L1-norm of the entire histogram.
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• stexture(ri, rj), which measures texture similarity.

For each region, 8 gaussian derivatives are computed in 8 different orientations

for each color channels and an histogram made by 10 bins per orientation is

finally computed. As in the previous case, a global histogram is obtained

vectorizing and normalizing10 the retrieved bins.

The similarity measure is computed recurring again to an histogram intersec-

tion:

stexture(ri, rj) =
n∑
k=1

min(tki , t
k
j ) (2.24)

where tki is the k-th bin of the texture histogram of image i and the same states also
for tkj .

• ssize(ri, rj), which encourages regions to have similar size throughout the

grouping.

This is a desirable property since avoids to create few large regions that glob

all the others, ensuring to have object locations at all scales in every part of

the input image.

It is computed as:

ssize(ri, rj) = 1− size(ri) + size(rj)

size(I)
(2.25)

where size(I) is the size of the overall image and size(ri), size(rj) the corresponding
ones of regions ri and rj .

• sfill(ri, rj), which measures how well region ri and rj fit into each other.

It retrieves the fraction of image not belonging to neither the two components,

but contained in the tight bounding box that globs both. The main idea is

to fill gaps produced during the grouping.

If region ri is contained in region rj in fact, it is reasonable to merge them.

On the other hand, if the two regions are really far one from each other, the

two components do not represent good candidates and so, they should not be

merged together.
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The similarity measure is computed as:

sfill(ri, rj) = 1− size(BBi,j) + size(ri) + size(rj)

size(I)
(2.26)

where size(BBi,j) is the size of the tight bounding box that contains both region i and
region j. size(ri), size(rj), size(I) are instead defined as in ssize(ri, rj).

Thanks to the multiple considered conditions and the good segmentation initially pro-

duced by the graph-based algorithm, Selective Search showed really high performance

over the PASCAL VOC 2007 test set, outperforming all the other competitors selected

by the authors (figure 2.12).

The algorithm also achieved a recall equal to 0.99 if around the top-10,000 retrieved

locations are considered for classification, appearing in this way as a suitable candidate

whenever multi-class object detections need to be realized.
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(a) Trade-off between number of object locations and the Pascal Recall criterion.
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(b) Trade-off between number of object locations and the MABO score.

Figure 4: Trade-off between quality and quantity of the object hypotheses in terms of bounding boxes on the Pascal 2007 TEST set. The
dashed lines are for those methods whose quantity is expressed is the number of boxes per class. In terms of recall “Fast” selective
search has the best trade-off. In terms of Mean Average Best Overlap the “Quality” selective search is comparable with [4, 9] yet is
much faster to compute and goes on longer resulting in a higher final MABO of 0.879.

(a) Bike: 0.863 (b) Cow: 0.874 (c) Chair: 0.884 (d) Person: 0.882 (e) Plant: 0.873

Figure 5: Examples of locations for objects whose Best Overlap score is around our Mean Average Best Overlap of 0.879. The green
boxes are the ground truth. The red boxes are created using the “Quality” selective search.

9

Figure 2.12: Trade-off between the number of objects retrieved and the Pascal Recall
criterion (i.e. the recall is the percentage of objects in the given image for which there

is a proposed region with an overlap larger than 50% of the object size)
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2.8 ACF+AlexNet

As presented in the previous section, the pipeline proposed by Girshick et al. in [9] rep-

resents nowadays a good baseline for object detection tasks, since gives the opportunity

to apply CNNs in a really flexible and powerful way.

Inspired by these results, Hosang et al. further explored the presented approach, intro-

ducing a new solution capable at outperforming the performance of the best previous

convnet pedestrian detector by more than 10% over the Caltech Pedestrian Dataset,

representing at publication time one of the strongest solutions ever evaluated.

The structure of the architecture is basically the same of the R-CNN proposal and is

composed by 3 main blocks:

1. A region proposal method.

2. A convolutional neural network.

3. A linear classifier.

The main innovation introduced is given in this case by the change applied in the region

proposal algorithm.

Rather than using the Selective Search method, the authors suggest in their publication

to use a simple and sufficiently accurate detector, which produces a reduced set of regions

that are then analyzed by a more complex and powerful classifier as a CNN+SVM.

The idea is to use a baseline detector with a high true positive rate and let the CNN to

decide which region is of interest and which not.

The proposal architecture is built in this case by:

1. An ACF detector.

2. A finetuned AlexNet.

3. A suitable Linear SVM.

The strongest net trained by the authors with the method they present achieves a Log

Average Miss Rate equal to 23.3% on the Caltech test set, outperforming in this way the

performance produced by all the state of the art detectors here illustrated (fig. 2.13).
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KITTI Pedestrians, moderate difficulty
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Figure 5: AlexNet over on KITTI test set.

side. Table 10 shows performance on the Caltech test set for
models that have been trained only on Caltech1x and Cal-
tech10x. With less training data the CifarNet reaches 30.7%
MR, performing 2 percent points better than the AlexNet.
On Caltech10x, we find the CifarNet performance improved
to 28.4%, while the AlexNet improves to 27.1% MR. The
trend confirms the intuition that models with lower capacity
saturate earlier when increasing the amount of training data
than models with higher capacity. We can also conclude that
the AlexNet would profit from better regularisation when
training on Caltech1x.

Timing The runtime during detection is about 3ms per
proposal window. This is too slow for sliding window de-
tection, but given a fast proposal method that has high recall
with less than 100 windows per image, scoring takes about
300ms per image. In our experience SquaresChnFtrs
runs in 2s per image, so proposing detections takes most of
the detection time.

7. Takeaways
Previous work suggests that convnets for pedestrian de-

tection underperform, despite having involved architectures
(see [5] for a survey of pedestrian detection). In this pa-
per we showed that neither has to be the case. We present
a wide range of experiments with two off-the-shelf models
that reach competitive performance: the small CifarNet and
the big AlexNet.

We present two networks that are trained on Caltech
only, which outperform all previously published convnets
on Caltech. The CifarNet shows better performance than
related work, even when using the same training data as
the respective methods (section 4.2). Despite its size, the
AlexNet also improves over all convnets even when it is
trained on Caltech only (section 5.2).

We push the state of the art for pedestrian detectors that
have been trained on Caltech1x and Caltech10x. The Ci-
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Figure 6: Comparison of our key results (thick lines) with
published methods on Caltech test set. Methods using op-
tical flow are dashed.

farNet is the best single-frame pedestrian detector that has
been trained on Caltech1x (section 4.2), while AlexNet is
the best single-frame pedestrian detector trained on Cal-
tech10x (section 5.2).

In figure 6, we include include all published methods on
Caltech into the comparison, which also adds methods that
use additional information at test time. The AlexNet that
has been pre-trained on ImageNet reaches competitive res-
ults to the best published methods, but without using addi-
tional information at test time (section 5.1).

We report first results for convnets on the KITTI ped-
estrian detection benchmark. The AlexNet improves over
the proposal method alone, delivering encouraging results
to further push KITTI performance with convnets.

8. Conclusion
We have presented extensive and systematic experi-

mental evidence on the effectiveness of convnets for pedes-
trian detection. Compared to previous convnets applied to
pedestrian detection our approach avoids custom designs.
When using the exact same proposals and training data
as previous approaches our “vanilla” networks outperform
previous results.

We have shown that with pre-training on surrogate tasks,
convnets can reach top performance on this task. Interest-
ingly we have shown that even without pre-training compet-
itive results can be achieved, and this result is quite insens-
itive to the model size (from 105 to 107 parameters). Our
experiments also detail which parameters are most critical
to achieve top performance. We report the best known res-

Figure 2.13: Results obtained applying various detector over the Caltech test set

In order to achieve these results, however, a suitable finetuning of AlexNet must be

applied.

In their publication Hosang et al. provided some general guidelines, which may be useful

for achieving state of the art performance.

First of all, they highlighted the necessity to have a huge amount of data to train the

selected CNN.

Assuming to use in fact a very huge and deep network, a large dataset helps to prevent

overfitting at training time, improving the quality of the final predictions retrieved.

An extension of the Caltech training set has so been introduced in [5], namely: the

Caltech10x dataset.

The main idea in this case was to augment the amount of data available, simply taking

1 frame over 3 instead of 1 over 30 (which is the typical choice made in the construction

of the Caltech dataset, fig. 2.14).

A second main contribution introduced by Hosang et al. concerns instead how actually

building the training set that should be used to finetune the selected NN.

The finetuning of a large architecture is in fact a really difficult process, due to the high

probability to produce models which overfit the training samples.
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Figure 2.14: Typical extraction applied over the Caltech dataset, where only one
frame per second (1 every 30, since the video is recorded at 30 FPS) is taken.

In order to adapt the already trained AlexNet over this new situation, a specific study

aimed at finding a suitable procedure to apply for producing the best possible results

has been realized by the authors.

After various training attempts, Hosang et al. found out that the following operations

significantly improve the performance of the finetuned model over the Caltech Dataset:

1. Train originally the net over the ImageNet dataset and only then proceed with the

finetuning operation.

2. Use positive regions that are produced by the ground truth (GT) annotations and

not by the proposal detector (i.e. we extract from each image the patches that

contain perfectly the pedestrians we want to detect, instead of the best regions

produced by the region proposal algorithm).

3. Use a fixed positive to negative ratio in the training samples equal to 1:5 (i.e. for

every positive sample, 5 negative samples are taken).

The results obtained following these steps are shown in tables 2.1, 2.2 and 2.3. 11

11Note that the results obtained in tables 2.1 and 2.2 have been extracted training the lighter CifarNet
network over the Caltech training set and have been then extended to AlexNet. This allowed to test
multiple configurations in a reduced amount of time, still producing good performance in the end.
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Positives Negatives MR

GT Random 83.1%
GT IoU<0.5 37.1%
GT IoU<0.3 37.2%

GT, IoU>0.5 IoU<0.5 42.1%
GT, IoU>0.5 IoU<0.3 41.3%
GT,IoU>0.75 IoU<0.5 39.9%

Table 2.1: Effects of different positive-negative selections over the final log-average
miss rate (MR). Best performance appears for positive samples taken from the ground
truth annotations (GT) and negative samples with an Intersection over Union (IoU)

smaller than 0.5 wrt any available pedestrian.

Ratio MR

None 41.4%
1:10 40.6%
1:5 39.9%
1:1 39.8%

Table 2.2: Effects of different positive:negative ratios over the final log-average miss
rate (MR).

AlexNet initial training Finetuning SVM training Test MR

Random none Caltech1x 86.7%
ImageNet none Caltech1x 39.8%

P+Imagenet
Caltech1x Caltech1x

30.1%
P:Places 27.0%
ImageNet 25.9%

ImageNet
Positives10x Positives10x 23.8%
Caltech10x Caltech10x 23.3%

Caltech1x
- Caltech1x 32.4%
- Caltech10x 32.2%

Caltech10x
- Caltech1x 27.4%
- Caltech10x 27.5%

Table 2.3: Results obtained executing multiple training and computing the log-
average miss rate of the final model over the Caltech test set (set05-set10). Best
performances are obtained pre-training AlexNet with the ImageNet dataset and fi-
nally finetuning the proposal over the Caltech10x dataset. Training the SVM over
the Caltech10x instead of Caltech1x improves the performance, even not significantly

(∼ 0.2%).

However, as in any learning procedure, a set of parameters need to be fixed in order to

obtain satisfactory results.

The values imposed in this case for the training process are the following ones and
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corresponds to the same applied by Girshick et al. in [9] for training their best model

for the ILSVRC-2013 12:

• test iter: 100

• test interval: 1000

• base lr: 0.001

• gamma: 0.1

• stepsize: 20000

• display: 20

• max iter: 100000

• momentum: 0.9

• weight decay: 0.0005

• snapshot: 10000

Anyway, as the CNN requires a suitable training procedure, also the SVM calls for a

specific analysis aimed at establishing the best parameter setup that should be applied.

In order to achieve the best possible performance, Hosang et al. proposed in their

paper to apply a simple grid search aimed at checking the results produced by multiple

combinations of the SVM regularization factor C and the maximum IoU (Intersection

over Union, see eq. 2.27) associated to a negative sample.

IoUi,j =
Overlap(i, j)

areai + areaj
(2.27)

Intersection over union among BB i and j.

The C regularization factor controls in fact the trade-off between maximizing the margin

of the separating hyperplane and minimizing the amount of slack required to accept all

the training samples in non-separable cases (which is a typical situation), determining

for this the quality of the final retrieved hyperplane.

The maximum IoU controls instead the trade-off between which extracted subregions

12For a specific explaination of the meanings, refer to section 3.2.
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should be considered as negatives and which as positives, affecting the content of the

final training dataset and so the performance of the overall architecture.

Following this procedure the authors showed that good parameters for training the SVM

are:

• C = 10−3

• IoU = 0.5

which, by the way, correspond to the parameters we will use in our experiments.



Chapter 3

Finetuning of a Deep Neural

Network and Region Proposal

Analysis

3.1 Introduction

As reviewed in Chapter 1, in order to exploit at best the power of any kind of classifiers

one wants to implement, multiple solutions based on a common pipeline of 3 main steps

(see figure 3.1) have been introduced in the literature.

Region'
classifica-on'

•  Sliding'window'
•  Selec-ve'search'
•  …'

•  HOG'
•  LDCF'
•  Deep'learning'
•  …'

Feature'
extrac-on'

•  AdaBoost'
•  SVM'
•  …'

Region''
proposals'

Figure 1: A common pipeline for pedestrian detection.

of regions, possibly having heterogeneous dimensions and ra-
tios. The sliding window approach is the simplest instance of
region proposal algorithms, and can be adapted so as to extract
regions at multiple scales and aspect ratios. More complex ap-
proaches analyze the visual content to filter out regions that are
believed not to contain objects or salient content, so as to re-
duce the number of candidate regions to be processed at the
next stages. Objectness [1], Selective Search [27], category-
independent object proposals [8] are instances of such class
of algorithms. Such algorithms are general-purpose and thus
not tailored to pedestrian detection. Instead, this stage can be
substituted with lightweight and e�cient algorithms tailored to
pedestrian detection, that aim at discarding a high number of
negative regions, i.e. the ones not containing a pedestrian, while
preserving as many positive regions as possible [12]. In this
case, the region proposal algorithm acts as a coarse filter that
significantly reduces the number of region to be analyzed and
thus the computational burden.

As for the feature extraction stage, a number of di↵erent
methods have been proposed, as mentioned in Section 1. Such
methods process the data very di↵erently and exploits disparate
visual characteristics, such as local intensity contrast, pooled
gradients and multiple non-linear transformations of the input
data, in the case of Viola-Jones [28], Histogram of Gradients [3]
and Integral Channel Features [6], respectively. The input of
such stage is a set of candidate regions, i.e. portions of the in-
put image potentially containing a pedestrian, whereas the out-
put is a feature vector, i.e. a set of real-valued or binary values,
for each input region. The feature vector is a compact represen-
tation of the visual characteristics of the candidate region.

Finally, the classification stage aims at identifying which re-
gions within the set of candidates correspond to a human shape.
The classifier is fed with a feature vector relative to a given re-
gion and typically provides a binary label indicating whether
such region is positive, i.e. it contains a pedestrian. Early meth-
ods such as the one proposed by Viola and Jones [28] exploits
AdaBoost, whereas more recent approaches use Support Vec-
tor Machines [3]. In some cases, considering methods based
on Convolutional Neural Networks, the classifier is based on
hinge or cross-entropy loss functions, resembling support vec-
tor machines or logistic regression, respectively, learning both
the classifier and the features at once.

2.2. Background on Convolutional Neural Networks
Convolutional Neural Networks recorded amazingly good

performance in several tasks, including digit recognition, im-
age classification and face recognition. The key idea behind
CNNs is to automatically learn a complex model that is able to
extract visual features from the pixel-level content, exploiting
a sequence of simple operations such as filtering, local contrast
normalization, non-linear activation, local pooling. Traditional
methods use handcrafted features, that is, the feature extraction
pipeline is the result of human intuitions and understanding of
the raw data. For instance, the Viola-Jones [28] features come
from the observation that the shape of a pedestrian is character-
ized by abrupt changes of pixel intensity in the regions corre-
sponding to the contour of the body.

Conversely, Convolutional Neural Networks do not exploit
human intuitions but only rely on large training datasets and a
training procedure based on backpropagation, coupled with an
optimization algorithm such as gradient descent. The training
procedure aims at automatically learning both the weights of
the filters, so that they are able to extract visual concepts from
the raw image content, and a suitable classifier. The first lay-
ers of the network typically identify low-level concepts such
as edges and details, whereas the final layers are able to com-
bine low-level features so as to identify complex visual con-
cepts. Convolutional Neural Networks are typically trained re-
sorting to a supervised procedure that, besides learning ad-hoc
features, defines a classifier as the last layer of the network, as
shown in Figure 2. Despite being powerful and e↵ective, the in-
terpretability of such models is limited. Moreover, being very
complex model consisting of up to hundreds of millions of pa-
rameters, CNNs need large annotated training datasets to yield
accurate results.

In the context of pedestrian detection, the last layer typically
consists of just one neuron, and acts as a binary classifier that
determines whether an input region depicts a pedestrian. The
higher the output of such neuron, the higher the probability of
the corresponding region containing a pedestrian. Binary clas-
sification is obtained by properly thresholding the output score
of such neuron.

3. Optimizing deep convolutional networks for pedestrian
detection

The use of Convolutional Neural Networks in the context
of pedestrian detection is recent, and the potential of such ap-

3

Figure 3.1: A common pipeline for pedestrians detection.

In particular, Hosang et al. presented in [5] a valid analysis that explains how applying

ACF as region proposal algorithm and then classifying the retrieved regions with a

finetuned AlexNet it is possible to obtain state of the art results for pedestrian detection,

outperforming the performance presented by many other proposals.

Multiple suggestions on how achieve a satisfactory finetuning have also been illustrated.

57
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Despite the quality of this work, the authors unfortunately decided to not publicly release

neither the code capable at achieving the performance illustrated, nor the finetuned

model.

Therefore, in order to realize one of the most advanced DNN detector available at the

state of the art, a suitable study of the architecture presented by Hosang in [5] will be

here illustrated, highlighting which solutions could be suitable as proposal algorithms

over the Caltech Pedestrian Dataset and introducing a set of further suggestions on how

producing a valid finetuning of the original AlexNet.

To carry on a satisfying analysis, this chapter will be divided in several sections, each

one concerning every single possible problem that must be faced or tool that can be

exploited for realizing the selected architecture:

1. First, an introduction of the main framework employed for finetuning the initial

model and the reference toolbox exploited for retrieving the final results, will be

presented.

2. Then, the main proposal algorithms that can be used for realizing the architecture

illustrated in [5] will be discussed, further highlighting which solutions could be

suitable for embedded prototypes.

3. Finally, a deeper revision of the guidelines defined by Hosang will be illustrated,

introducing a set of new tips and suggestions, which could be followed in order to

produce better results.

3.2 The CAFFE framework

One of the most popular deep learning framework available over the web for realizing

training and finetuning of DNN is represented nowadays by the so-called Berkley Caffe.

Caffe is a deep learning framework realized with speed and modularity in mind. It

is developed by the Berkeley Vision and Learning Center (BVLC) and by community

contributors.

It operates in a Linux or OS X console and requires a bit of familiarity with typical shell

commands to be mastered.

Special wrappers are also defined in order to allow an easy development of applications

in MATLAB and Python based on this underlying framework.
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The main idea behind Caffe is to give a simple and textual layer-oriented description of

the network that one would like to train. Each layer is defined with one of the multiple

types the framework provides and connected in a cascade fashion with the other layers

only with a simple named reference.

As an example, the definition of AlexNet used in this work is reported in the Appendix:

3.14 of this chapter.

Every layer has a name, receives as input a specific named object coming from the pre-

vious one, produces as output a specific named object for the next one and is annotated

with parameters that define:

• Its structure.

• The initialization process

• The training process.

For initializing the net, Caffe requires in fact a set of parameters for each layer that are

grouped in a section named “weight filler”, which is of fundamental importance when-

ever a particular layer is not found in the initialization model given in input to the

framework.

Indeed, at initialization time each layer of the network is initialized with the correspond-

ing weights contained in the input .caffemodel file (a file that contains the pre-trained

model) and associated to a layer with the same structure and name. If a particular layer

is not found, the missing weights are randomly initialized exploiting the parameter setup

contained in the “weight filler” section (which contains a set of mandatory parameters

required for setting a related p.d.f.).

As for the initialization process, also for training Caffe needs the definition of a set of

parameters that guides the learning process. All the information required for completing

this task are in this case collected in the so-called “param” section.

Before analyzing this section however, an introduction to the learning process the frame-

work realizes is strictly necessary to understand its content.

In order to train a network in Caffe, a fundamental step is the definition of a solver in an

apposite file (as reference we report here in the appendix 3.15 an example of the solver

used to train our models).
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The solver orchestrates model optimization by coordinating the network’s forward in-

ference and backward gradients to form parameter updates, which attempt to improve

the loss.

The responsibilities of learning are so divided between the solver itself (for overseeing

the optimization and generating parameter updates) and the Net (for yielding loss and

gradients).

Three are the main types of solvers that can be used in Caffe in order to realize the

training of a network:

• Stochastic Gradient Descent (SGD).

• Adaptive Gradient (ADAGRAD).

• Nesterov’s Accelerated Gradient (NESTEROV).

In the following, any kind of training that will be explained should be considered executed

with SGD, which is typically the most common choice.

At each iteration of the learning method Caffe computes the outputs of a set of samples

(called batch), compute the gradients in a stochastic way and determine the updating

factor for each layer wrt:

• Its gradients.

• A general learning rate defined in the solver.

• A specific learning rate defined in the net for that specific layer.

In particular, the global loss function L(W ) defined for the overall set of weights W (eq.

3.1) is approximated during the training by its corresponding stochastic function (eq.

3.2) over which the final gradients are computed.

Differently from a typical stochastic gradient descent approach, the approximation of

the global loss is not given by the loss realized by a single sample but by a set of samples,

which improves stability and convergence.

In order to reduce the overfitting of the network, a weight-decay approach based on a

specific regularization parameter λ is applied. The main idea is to avoid overfitting, in-

creasing the loss if the values of the weights explode (which is exactly a typical overfitting

situation).
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L(W ) =
1

|D|

|D|∑
i

fW (Xi) + λr(W ) (3.1)

Where:

• D is the set of sample

• W is the set of net weights

• Xi is the i− th sample of the set D

• fW (·) is a loss function computed over a given input sample

• r(W ) is a measure that summarizes the weights (such as an Euclidean Norm of
the vector of weights W)

L(W ) ≈ 1

N

N∑
i

fW (X(i)) + λr(W ) (3.2)

Stochastic approximation of the loss function introduced in Caffe over a subset of N
samples.

To further increase the performance, a second regularization factor is typically intro-

duced in the learning process, the so-called momentum µ.

The momentum is basically an interpolation factor that allows to consider the value of

the previous updating factor in the computation of the current one, as in eq. 3.3.

Vt+1 = µVt − α∆L(Wt) (3.3)

Wt+1 = Wt + Vt+1

The learning rate α is given by the product of the base learning rate (defined in the

solver) and the learning rate multiplier (defined in the net definition). The same states

also for the values of the weight decays factor (i.e. each weight has its own λ, which is

computed as the product between a base weight decay and the one exposed in the net

definition).

The param section, previously introduced, groups in a single piece of code the multipliers

needed to apply this flexible and layer dependent approach.

Finally, since in some cases a continuous decreasing of the learning rate improves the

stability of the final result (increasing the converge to a local minima), a dedicated factor

γ is defined in Caffe, which is multiplied every s iterations (with s equal to the stepsize)



Chapter 3. Finetuning of a Deep Neural Network and Region Proposal Analysis 62

to the base learning. This reduction helps to avoid jumping effects and consolidate the

final result.

Good values for momentum and weight decay for AlexNet are typically: 0.9 for the first

and 0.0005 for the seconds; which corresponds the ones suggested by the authors of

R-CNN to finetune their models and so the ones applied during the following tests.

3.2.1 Quality Measures

Up to now we have presented how the framework operates for instructing the selected

NN, however, no indications have been defined about how the validation of the extracted

models is actually handled at training time.

As for any other training in fact, the final goal of the presented learning procedure is

to return a sufficiently robust model capable at obtaining good performance even over

unseen conditions.

Two different measures are returned by Caffe for achieving satisfactory results in this

case:

1. The Accuracy of the DNN, which is a measure that defines the fraction of correctly

classified samples. It is defined as:

accuracy =
TP + TN

TP + TN + FP + FN
(3.4)

where:

• TP (true positives) is the number of correctly classified positive samples.

• TN (true negatives) is the number of correctly classified negative samples.

• FP (false positives) is the number of misclassified negative samples.

• FN (false negatives) is the number of misclassified positive samples.

2. The Loss of the DNN, which corresponds to the negative logarithmic average of

the probabilities to have correctly classified an analyzed region (eq. 3.5).

Both the presented indications are obtained exploiting a suitable SOFTMAX classifier

(which is introduced by Caffe at the end of the net during the training), in order to

allow an easy instruction of the selected NN with a bench of SGD iterations.
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E =
−1

N

N∑
n=1

log(p̂n,ln) (3.5)

p̂n,k =
ewk·xn∑
k′ e

wk′ ·xn

where E is the error function we want to minimize, p̂n,ln is the predicted probability to
assign sample n to its right class ln, p̂n,k is the probability to assign sample n to class
k, w′

k is the vector of coefficient associated to a generic class k′ and xn is the feature
vector extracted from sample n.

3.3 Piotr Toolbox

In order to allow an easy and powerful processing of the obtained results in MATLAB,

in the following, a comparison of the detections retrieved from the tested detectors, with

the set of annotations produced by the Caltech researchers, will be required.

To avoid a complete rewriting of all the code needed to read, convert and compare

the annotations with the extracted BBs, a suitable toolbox capable at solving all these

operations has been exploited in this work, the so-called Piotr Toolbox.

The Piotr Toolbox is meant to integrate the MATLAB image-processing toolbox, facil-

itating the manipulation of images and videos with easy and efficient scripts.

In order to reduce the computational load, a set of MEX files is distributed in this

toolbox together with a set of suitable wrappers, which can be used to allow an easy

integration of the implemented functionalities with the prepared MATLAB scripts.

The reference to the Piotr Toolbox is of fundamental importance in the present work,

for all the guidelines contained in the implemented functions, which allows to achieve

comparable results with the ones presented in the literature.

First of all, a typical problem that needs to be solved in detection tasks concerns in fact,

how to realize the best possible matching between the realized detections (aka DTs) and

the annotated ground truths (aka GTs).

In order to obtain satisfying results for this problem, the Piotr Toolbox suggests to use

a modified version of the Pascal Criterion.

The Pascal Criterion states that a ground truth and a detection match if their Intersec-

tion Over Union (IoU) is over a given threshold (typically 0.5), eq. 3.6. Which makes the

overall process of distinguishing true positives (matched detections) and false positives

(unmatched detections) really easy and straightforward.
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match =

{
1 if IoU > threshold

0 otherwise
(3.6)

However, the presented criterion doesn’t consider how to process regions that we marked

as to ignore, because containing occluded pedestrians or made by groups of people. In

this situation, a suitable adjustment must then be taken into account.

The modification that Dollar et al. suggest in their toolbox basically consists into a

suitable filtering of the realized matches. Namely, any possible match that occurs with

any GT marked as “to ignore” is suitably discarded (i.e. it is not considered neither as

false positive nor as false negative).

This modification allows to discard all the strange situations that we highlighted in

Chapter 1, giving a powerful tool to check the performance of any proposal algorithm.

Besides the criterion introduced for efficiently match the retrieved BBs however, another

fundamental aspect that should be considered during the matching concerns the GTs

normalization process.

Observing in fact the content of the ground truths annotated in the Caltech Dataset, it

is possible to observe how a lot of annotated BBs are really small (i.e. with an height

smaller then 50px) or have different aspect ratios (i.e. width/height).

So, in order to efficiently compare the BBs produced by any detector that is only able

to scan the images using a fixed-size sliding window, a normalization of the underlying

GTs appears strictly necessary for accomplishing a satisfying match of the retrieved

detections.

If this aspect is neglected, a lot of unmatched detections, caused by the different sizes of

the retrieved bounding boxes and the ones extracted from the annotations, may in fact

be produced, compromising the quality of the final measure retrieved.

Dollar et al. faced this problem and showed in [12] how the average GT aspect ratio

basically corresponds to 0.41.

Consequently, fixing the sliding window with this aspect ratio and normalizing the ones

of the selected ground truths with the functions provided in the toolbox, an increasing

in the DT-GT match probability can be easily realized.

As we have just mentioned however, the Caltech Pedestrian Dataset is full of little GTs,

representing faraway pedestrians.

Therefore, in order to produce the most valuable and comparable results with the ones
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presented in the literature, a suitable configuration is typically applied during the gen-

eration of the GTs annotations, the so-called: reasonable setting ([12]).

In this particular setting, only well-visible pedestrians taller than 50 px are considered

for matching, while all the others are marked as “to ignore”.

Asking in fact to a detector to properly recognize regions with a dimension smaller then

50× 20 pixels, which can also be occluded, appears as useless and unreasonable for the

most of the detection tasks.

For this reason, the “reasonable settings” of Dollar et al. appears in the literature as a

typical configuration applied for comparing different solutions trained over the Caltech

Pedestrian Dataset and so, also the one applied in the present work.

3.4 Choice of the Region Proposal Algorithm

After the introduction of the main tools exploited in our study, the analysis we realized

for producing our solution can finally be presented.

The first applied step concerned in this case the choice of a suitable region proposal

algorithm capable at retrieving a reduced amount of regions, which contain all the

possible pedestrians available over the selected Caltech Dataset.

As illustrated in section 2.7, in order to avoid an application of AlexNet in sliding window

(which will be very expensive over each single image), an algorithm capable at extracting

a set of regions that really likely contains all the possible interesting objects is strictly

necessary.

The proposer that should be selected however must satisfy some desirable properties

such as:

• Reduced complexity. It must be fast.

• Precision. It must extract with accuracy position and dimension of the various

bounding boxes that could contain interesting objects, in order to give to the NN

the possibility to recognize in a very robust way every possible target.

• Recall. It must return a set of proposals which really likely contains all the available

targets situated in the analyzed image.

In order to compare the performance of different proposers and select the best available

option, a suitable measure that allows to summarize at least the two last mentioned
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properties must so be selected. The measure we selected in this case is the so-called

Average Best Overlap (aka ABO).

The ABO (defined in eq. 3.7) expresses the mean optimal overlap (defined as IoU)

between each ground truth and the best region extracted, representing a consolidated

measure in the Computer Vision field for validating the performance produced by such

kind of algorithms (utilized for example by Uijlings et al. in [10] to prove the goodness

of the Selective Search method, figure 3.2).

ABO =
1

Gc

∑
gci∈Gc

max
lj∈L

Overlap(gci , lj) (3.7)

where Gc is the set of ground truths of class c, gci ∈ Gc is the current analyzed ground
truth, L is the set of bounding boxes proposed by the algorithm and lj ∈ L a single

region.

Differently from the ROC and the LAMR introduced in 1.1, the ABO is particularly

suited for comparing proposal algorithms, since gives not only an idea of the capability

to detect a single pedestrian in an image, but also a measure of how good the best

retrieved regions are on average (i.e. to what extent they contain all and only the target

pedestrians).

Following this idea, 4 main different solutions have been compared in this study that

seem to be the most promising in view of what we have seen in Chapter 2.

The selected algorithms are:

1. ACF

2. LDCF

3. HOG+SVM

4. Selective Search

Taking as reference the set06 of the Caltech Pedestrian Dataset, in order to prove in

multiple operative conditions the power of all the selected solutions, 3 main compar-

isons aimed at highlighting the different capabilities to propose good regions have been

realized.

Basically, fixed a minimum height of the GTs that should be considered (e.g. 20, 50, 90

px), the following approach has been applied for every algorithm:
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(a) Trade-off between number of object locations and the Pascal Recall criterion.
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(b) Trade-off between number of object locations and the MABO score.

Figure 4: Trade-off between quality and quantity of the object hypotheses in terms of bounding boxes on the Pascal 2007 TEST set. The
dashed lines are for those methods whose quantity is expressed is the number of boxes per class. In terms of recall “Fast” selective
search has the best trade-off. In terms of Mean Average Best Overlap the “Quality” selective search is comparable with [4, 9] yet is
much faster to compute and goes on longer resulting in a higher final MABO of 0.879.

(a) Bike: 0.863 (b) Cow: 0.874 (c) Chair: 0.884 (d) Person: 0.882 (e) Plant: 0.873

Figure 5: Examples of locations for objects whose Best Overlap score is around our Mean Average Best Overlap of 0.879. The green
boxes are the ground truth. The red boxes are created using the “Quality” selective search.

9

Figure 3.2: Trade-off between number of objects retrieved and the Mean Average Best
Overlap produced by various algorithms (i.e. the mean ABO computed over multiple

classes of objects), reported by Uijlings in [10].

1. A collection of regions retrieved from the set06 has been initially realized.

2. The extracted proposals have been order by score of relevance (or estimated pri-

ority for Selective Search), in order to have the most promising boxes at the top

of the collection and the less promising at the bottom.

3. For every image of the test set06, the detections have been decomposed in groups

which include: the first proposal of each image, the first two proposals of each

image and so on.

4. For each group of proposals the ABO has been computed, giving the possibility to

draw a plot (ABO - number of considered proposals) that compares the capabilities

of the different algorithms to retrieve a small number of good regions, containing

all the pedestrians available in an input image.

The obtained results are illustrated in figure 3.3.

As it is possible to see, ACF appears as the best possible proposal algorithm that we

can apply if we consider pedestrian taller then 50 px, slightly outperforming LDCF.

HOG+SVM and Selective Search appear instead in 3rd and 4th position, showing espe-

cially this latter poor performance over the Caltech Pedestrian Dataset.

This result mainly comes from the fact that Selective Search aggregates a set of initial



Chapter 3. Finetuning of a Deep Neural Network and Region Proposal Analysis 68

Number of Pedestrian Boxes
0 5 10 15

A
ve

ra
ge

 B
es

t O
ve

rla
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ABO/Number of Pedestrian Boxes (min height: 20 px)

HOG+SVM
Selective Search
LDCF
ACF

Number of Pedestrian Boxes
0 5 10 15

A
ve

ra
ge

 B
es

t O
ve

rla
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ABO/Number of Pedestrian Boxes (min height: 50 px)

HOG+SVM
Selective Search
LDCF
ACF

Number of Pedestrian Boxes
0 5 10 15

A
ve

ra
ge

 B
es

t O
ve

rla
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ABO/Number of Pedestrian Boxes (min height: 90 px)

HOG+SVM
Selective Search
LDCF
ACF

Figure 3.3: Comparison of ACF,LDCF,HOG+SVM and Selective Search over the
Caltech Dataset set06 with various minimum pedestrians’ height.

regions extracted from the images, recurring to similarity measures that are computed

step by step. If these regions are initially too big or pedestrians are not so evident in

the image, Selective Search fails aggregating regions that instead should be disjointed,

producing in this way really poor sets of proposals.

Following these results, it appears clear that R-CNN with Selective Search simply repre-

sents an unfeasible solution over this dataset, for the inaccuracy of the proposal algorithm

as well as the excessive computational cost it presents.

Indeed, this particular solution runs in the order of seconds over an Intel i7, showing a

computational cost absolutely too expensive for any real time situation.
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Due to the results here exposed, the detector that will be here illustrated has been

constructed considering only ACF or LDCF for promising regions extraction.

In particular, due to the similarity these two solutions presents, a further analysis of the

performance produced by both these algorithms has been realized in this work (section

3.11), showing how in the end LDCF, despite the slightly lower proposal capabilities we

have here illustrated, turns out as a better choice wrt ACF in the final pipeline, thanks

to the higher discriminative properties it presents.

3.5 Embedded Prototype

ACF and LDCF are publicly released with Matlab + MEX code, which makes this kind

of detectors available but hardly portable to an architecture different from an x86/x64.

For this reason, if an embedded prototype of the following work should be realized and

the conditions are a bit less stringent then the ones presented in the Caltech Dataset,

a solution based on HOG+SVM could be taken into account. This kind of detectors,

in fact, appears available in a lot of different open source libraries such as the famous

OpenCVs, which could be easily applied over multiple platforms thanks to the high

portability they present.

In order to check the availability of the presented solution even on this kind of architec-

tures, an embedded prototype based on HOG+SVM and a finetuned AlexNet over the

Pascal VOC dataset has been realized in this work.

The architecture selected in this case is the Nvidia Jetson TK1, which is the first mobile

processor to have the same advanced features of a modern desktop GPU, while still

using the low power draw of a mobile chip.

It mounts a Tegra TK1 SoC (i.e. CPU+GPU on the same chip) with a quad-core

2.3GHz ARM Cortex-A15 CPU and a Tegra K1 GPU with 192 CUDA cores. It shows

a computational power up to 326 GFLOPS and CUDA capability equals to 3.2.

Thanks to this configuration, an implementation of the CAFFE framework, which uses

optimized OpenCV libraries, can be installed and a C++ prototype can be easily realized

recurring to a set of CUDA parallel functions already available.

The dataset selected for our test in this case is the Performance Evaluation of Tracking

and Surveillance 2009 (aka PETS 2009), which displays better environmental conditions

compared to the Caltech Dataset, with well visible pedestrians and a resolution equal

to 768× 576.
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Applying the presented solution over this simpler dataset, the results obtained have been

quite impressive.

A frame rate equal to 2.5 fps has been reached, ensuring restricted computational times

and good quality detections.

Figure 3.4: Screenshot of the realized embedded prototype which runs over the Jetson
TK1 at 400 ms with HOG+SVM as preselector and AlexNet as CNN.

Since an analysis of the performance produced over this dataset is out the scope of this

work, no related measures have been computed in this case.

However, in order to analyze possible future implementations of the final prototype, a

computational analysis of the implemented solution has been carried on.

Two distinct DNNs (AlexNet and NIN) have been tested over the Jetson TK1 with our

C++ prototype, collecting 50 times the amounts of time required to process different

batches of images and averaging the data. The obtained results are expressed in figure

3.5.

As it possible to see, thanks to the reduced dimension of the Network In Network

architecture, which is 10 times lighter than AlexNet, NIN outperforms its competitor in

the profiling just presented, requiring less than an half of the time needed by AlexNet

to complete the processing.

However, thanks to its higher complexity, AlexNet may produce better performance in
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Figure 3.5: Mean time required to process batches of different size (i.e. containing a
different amount of regions) over the Jetson TK1.

the end both in term of accuracy and robustness. A careful analysis aimed at establishing

the model to use over this dataset should therefore be further considered.
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3.6 Finetuning According to Hosang et al.

After the selection of a valid proposal algorithm, the next block that needs to be realized

in our architecture is a suitable classifier capable at differentiating in the most robust

way, all the retrieved positive samples from the negative ones.

Following the work presented by Hosang et al. in [5], we decided to focus our attention

over the already presented AlexNet model.

Independently by the selected network however, if the original model is not already

trained for detecting the exact class of objects one may be interested into, a specific

finetuning operation needs to be applied for achieving satisfactory results.

Reviewing what already presented in Chapter 2 and giving a stronger theoretical back-

ground extracted from the experience gained during this work, what the authors suggest

in [5] is to:

1. Finetune an already trained model generated from a very large and various dataset

instead of training from scratch.

The main idea is to carry the detection capabilities acquired in a generic situation

to a specific one, correcting as much as possible the initial weights with a set of

stochastic gradient descent iterations.

The number of iterations, the learning rate and any other regularization factor

must be defined during this phase, in order to let the net converging to the best

possible model.

2. Recur to a very large training dataset.

Due to the large and deep structure of AlexNet it is easy to overfit the training set

during the finetuning operation, compromising the final performance produced at

testing time.

Increasing the dimension and variability of the dataset helps in this case to avoid

this situation.

Positive and negative samples coming from a lot of different situations help, in

fact, at generalizing to unseen conditions, producing in the end more robust and

useful models.

All the finetuning procedures that should be realized over the Caltech Dataset are

so suggested to be accomplished with the following configuration:

• Training set: set00, set01, set02, set03, set04, set05 of the Caltech10x Dataset
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• Testing set: set06, set07, set08, set09, set10 of the Caltech Dataset (i.e. where

we take one frame every 30).

3. Use positive samples that are extracted from the ground truths and not those

produced by the proposal algorithm.

Typically, whenever there is the need to train a generic black box model, it is

common practice to provide the learning procedure with the typical data that the

model will observe during its real utilization.

This good practice however doesn’t hold in this case, or better, it must be adapted.

If we would like to train a model that must recognize pedestrians in fact, regions

extracted by the proposal algorithm may produce training datasets distorted both

in dimensions and positions.

In order to avoid this situation and let the net learn what exactly a pedestrian is,

well-visible targets extracted at all the possible scales from the GTs must then be

used.

4. Use a fixed positive:negative ratio.

Analyzing the context where the Caltech Dataset has been acquired (i.e. a moving

car that goes around the Californian streets), it appears evident how, in this par-

ticular set of data, a great deficit among positive and negative samples is present.

For a lot of time a car may in fact meet no pedestrians on its way.

Therefore, in order to avoid the net converging to a solution that will discard

all the possible regions, a fixed ratio among the number of positive and negative

patches, which should be used at training time, must then be established.

Hosang et al. suggested in [5] to use a positive:negative ratio equal to 1:5 (one

positive sample for every 5 negative samples) to reduce the effect of this situation.

5. Use a linear SVM as final classifier.

In order to produce the best possible model capable at recognizing in the right

way all the regions proposed by ACF or LDCF, Hosang et al. suggested in their

work to apply a linear SVM as a final classifier over the 4096 features extracted

by AlexNet. This operation, however, cannot be realized directly in Caffe but

requires a small “net surgery” over the final model extracted.

As already presented in fact, the framework recurs only to SOFTMAX classifiers

during the training of the network.

Discarding the classifier realized during this procedure appears so as a mandatory
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step, in order to directly retrieve the features extracted and apply the desired

SVM.

Despite the quality of the indications here presented, the 5 illustrated points do not

cover all the possible sub-problems that emerge whenever a complete finetuning of a

DNN needs to be realized.

So, in order to give a better understanding on how these large and deep NNs can be

finetuned, in the following sections a set of different tips that may help during all the

learning procedure will be highlighted and explained.

3.7 Random Cropping

The first step that should be taken into account, in any finetuning procedure, concerns

how to build a suitable training set capable at producing good performance in the final

model.

As it is possible to see from the previous section, among all the indicated suggestions, no

indications have been defined about the dimensions of the regions that should be used

during the training phase.

AlexNet accepts in input patches of 227×227 pixels, however, generating larger regions,

from which randomly extract different training samples at each learning iteration, rep-

resents a valid option often applied in the Computer Vision field (figure 3.6) for not

overfitting the generated training dataset (which represents a likely situation in this

case due to the dimensions of the selected model).

Before presenting how to produce such enlarged training samples however, another con-

sideration needs to be done.

Enlarging the proposed BBs is not a common practice just at training time for avoiding

overfitting, but represents a fundamental aspect even at testing time, in order to adjust

potential errors in the position and dimension the proposer may produce.

ACF and LDCF are not perfect and they can retrieve detections that are a bit translated

or resized wrt the correct BBs indicated in the ground truth.

Augmenting the dimensions of the BBs extracted by the proposal algorithm can then be

possible to include excluded part of the detected pedestrians that have been discarded

during the proposing phase, increasing the probability to achieve a satisfactory classifi-

cation and good quality performance in the end (figure 3.7).
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227 px

227 px

256 px

256 px

Figure 3.6: Example of a possible random-crop, where 3 regions of 227 × 227 are
extracted from a larger region of 256× 256

A procedure that unfortunately comes at the cost of an unnecessary background context

in the regions retrieved.

Computing the average amount of padding to add becomes in this way of fundamental

importance for achieving satisfactory results, since it influences not only the BBs re-

trieved at testing time, but also the ones that should be employed during the training

for replicating similar operative conditions.

The following approach has so been applied:

1. First of all, we decided the dimensions of the final resized regions from which

randomly extract the training samples. We chose to realize patches equal to 256×
256 pixels, which is the typical size exploited by Caffe for training AlexNet.

2. Then, the average amount of padding per side, which is required by the proposed

regions to entirely include the pedestrians has been computed.
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Figure 3.7: Effect of context padding.

Since the amount of padding to add is strictly related to the dimensions of the pro-

posed regions (the padding required by a 50×20 patch is not the same required by

a 200×81 patch, but typically smaller), a normalized measure has been extracted.

We opted in this case to resize every patch retrieved by the proposal algorithm to

a 227× 227 region and compute the value of the padding in this final space.

A procedure that has been done simply considering that:

pinix : w̄ = pfinx : 227 (3.8)

piniy : h̄ = pfiny : 227 (3.9)

where pinix is the amount of padding to add on each side along the x axis in the original
region to contain all the detected pedestrian, w̄ is the enlarged width of the retrieved
proposal (i.e. the original width plus the amount of padding to add in the original
space), pfinx is the amount of padding in the final space and the same states for the y

axis (where h̄ corresponds to the enlarged height).

and reversing the formulas.

The results we obtained in this way are illustrated in figure 3.8, where as it is



Chapter 3. Finetuning of a Deep Neural Network and Region Proposal Analysis 77

possible to see, the padding distribution1 assumes a typical poissonian trend with

mean equal to 17 px, which represents our desired amount of padding.
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Figure 3.8: Probability distribution of the amount of padding to add in order to have
a detection that contains entirely its best associated ground truth

pregion = max(pleft, pright, ptop, pbottom) (3.10)

3. Computed the amount of padding that should be exploited at testing time, the

last step that remained to be done concerned the determination of the amount of

context δ, which should be included in the enlarged 256× 256 regions around the

associated GTs (fig. 3.10).

The main idea was in this case to find a suitable value of this measure, such that,

the mean amount of background introduced per side at training time corresponds

to one produced on average per side at testing time (fig. 3.9).

This allowed in fact to instruct NNs capable at dealing with typical operative

conditions, where various amounts of context can be placed near the borders of

1Distribution obtained taking only one padding per region, that is, the maximum one which contains
also all the other 3, eq. 3.10
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the retrieved BBs, due to imperfections in the proposal algorithm or misleading

padding operation (e.g. a padding operation applied on a perfect BB retrieved by

ACF/LDCF).
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Figure 3.9: Distribution of the amount of context per side introduced in the resized
227× 227 region after the padding operation at testing time. Negative values indicate

borders inside the pedestrian region.

Checked therefore how the reference framework operates during the cropping

phase, it turned out that Caffe exploits a uniform pdf for extracting the vari-

ous training samples from the enlarged ones, consequently imposing an average

amount of context per side p equal to the mean of uniform distribution (eq. 3.13),

whose maximum and minimum directly depend on the value of δ (eq. 3.11, 3.12).

pmax = δ (3.11)

pmin = δ − (256− 227) (3.12)

where pmax and pmin are respectively the maximum and minimum possible padding
achievable, cropping randomly a 227× 227 path in a 256× 256.

Substituted in this way eq. 3.11, 3.12 in 3.13 and fixed p = 15 px (which corre-

sponds to the average amount of background produced per side by the proposal
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Figure 3.10: Illustration of our considered situation, in red it is indicated the perfect
pedestrian detected by the proposer, in blue its relative padded version and in black
the overall 256 × 256 region, where all the possible 227 × 227 training samples can be

extracted.

p =
pmax + pmin

2
(3.13)

where pmax and pmin are respectively the maximum and minimum possible padding
achievable, randomly cropping a 227× 227 patch in a 256× 256.

algorithm), the only possible value of our desired parameter has easily been ob-

tained:

p =
pmax + pmin

2
=
δ + δ − 256 + 227

2
= δ +

227− 256

2
= 15

δ = 15− 227− 256

2
= 29.5
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All the procedure here presented has been realized recurring to information extracted

from BBs retrieved by LDCF and thanks to the same nature of the two proposal algo-

rithms we selected in section 3.4, it has also been considered true for ACF.

In general however, this kind of analysis should be replicated for every different detector

and for every different dataset that one may be interested into.

3.8 Sampling of the Negative Regions

In order to generate a suitable training dataset that allows to achieve satisfactory results,

another fundamental step that should be taken into account concerns the selection of

negative and positive samples aimed at identifying a sufficient vary bench of samples.

As already introduced, for the positive samples this is not a problem since all the unoc-

cluded GTs need to be exploited for producing the largest possible set of data.

However, the same situation doesn’t state also for negative regions due to the the large

number of samples the detector retrieves in this case. A suitable selection of negative

regions must then be applied, in order to respect the fixed positive:negative ratio we

presented in section 3.6.

Before starting to introduce the approach we suggest in this case however, a further

clarification deserves to be made.

The amount of data we need to handle in this case is extremely large, in the Caltech10x

training set we are talking about a final dataset of 1.7 GB of JPG images, even more if

we prefer to encode them as PNG in order to avoid any kind of compression lost.

So, whenever we need to find a suitable selection approach, we have to consider that

efficient or greedy algorithms will turn out to be preferable than exhaustive ones, due

to the reduced computational burdens and processing times they present.

In order to guarantee the most possible various dataset, suitable solutions aimed at

maximizing global quality measures that determines the goodness of our final training

set (e.g. the minimum distance among the Histograms of Colors of the selected samples,

see figure 3.11) could be taken in account.

However, this kind of approaches requires time and does not necessarily produce good

results in presence of regions with reduced dimensions (since it would be really hard to

discriminate correctly different small regions).

Possible studies aimed at extending feature representations of the regions extracted with

spatial and temporal information (i.e. locations of the regions extracted and source
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frames) may then be applied to improve the final results, but they are out the scope of

this work.

Chapter 5. Ldcf-CNN 64

Calling the greedy selection function with corr mat = �D, the result is a set of indices

of the mostly decorrelated regions. By considering a small subset of images belonging to

the dataset (for a computational reason), the resulting decorrelation after applying the

greedy algorithm is visible in Figure 5.13. This is the plot of the distance matrix where

• dark means correlated (large value)

• bright mean decorrelated (small value)
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Figure 5.13: (A) Distance matrix computed over all the regions of the first subset of
the train set: average L2 distance between feature vectors 3.67; (B) Distance matrix
computed by taking from A only the selected regions: average L2 distance between

feature vectors 4.71.

As expected, all the elements on the diagonal are zero and the plot shows the e↵ect of

the defined algorithm.

Due to the computational e↵ort required by this method, a di↵erent and simpler ap-

proach is used: random selection of the desired number of regions. Even if this algorithm

has not been used, it still remains a very good alternative, that could lead to better re-

sults.

5.5 Results

By using all the previously defined methods (padding, cropping and and random se-

lection) the finetuning process has produced the log file whose loss values are plot in

Figure 3.11: Distance matrix computed applying an L2 norm over the Histograms of
Colors extracted from the training dataset.

For the sake of simplicity and flexibility, a random selection of the negative regions has

been applied in this work.

First of all, all the positive samples from all the training sets have been extracted and

saved in suitable folders as PNG images, in order to reduce any possible compression

loss.

Once all the positive data for each independent set has been collected and enumerated,

the number of negative samples has been extracted and a draft of the negatives regions

has been applied.

In order to diversify the final set of regions, the negative samples have not be drawn

image by image, but a collection of all the extracted negative regions has initially realized

and only then the draft has been applied.

Obviously, the presented solution is not perfect and doesn’t guarantee that two identical

regions are not present in the final set of regions extracted. However, if the set of negative

samples is sufficiently large, the probability to have two identical regions is enough low

that the presence of duplications can be easily neglected.
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On the Caltech10x dataset, our random selection turns out to be sufficiently good to

approach and outperform the previous state of the art.

3.9 Network Surgery and Multiple Initializations

Built the training set, the next step required to adapt the initial AlexNet model, towards

the identification of only pedestrians, concerns the alteration of the structure of the net.

Checking in fact the original AlexNet model, it’s possible to observe as the final SOFT-

MAX classifier returns 1000 values instead of only 2 (i.e. pedestrian and no pedestrian),

which corresponds to the 1000 probabilities of associating an analyzed sample to each

of the 1000 classes available in the ILSVRC dataset2.

In order to finetune the initial model, a substitution of the final fully connected layer

responsible to compute the values required by the classifier needs so to be applied.

Basically, instead of reading the 4096 × 1000 weights contained in the model file, a

random initialization of 4096 × 2 weights responsible to detect only the presence or

absence of pedestrians has been realized in this work.

Unfortunately, the random initialization can radically change the initial starting point of

the loss function, potentially leading to really different local minima after the completion

of the finetuning operation (figure 3.12).

Multiple initializations are so an option that could be taken into account in order to

face this situation and achieve the best possible performance from the finetuning of the

modified AlexNet over the selected dataset.

2Corresponding to the set of images over which the original AlexNet has been initially trained by
Alex et al.
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Figure 3.12: LAMR obtained executing two different trainings on the same training
set but with two different random initializations.

3.10 Validation Procedure

Once we have presented how to build the underlying training dataset and the surgery re-

quired for adapting the net to the identification of pedestrians over the Caltech Dataset,

the next step involved concerns the so-called validation procedure.

As in any other black box approach, whenever there is the need to learn a new model

there is always the risk of overfitting the training data (unless the selected model has

a really poor and simple structure). To avoid this, multiple validation approaches have

been suggested in the years, such as:

• Hold-out cross validation, where the training set is split in two parts of different

dimensions. One (the largest) used for training while the other (the smallest) for

returning a quality measure (as our loss function), which guides the selection of

the best model to avoid overfitting.

It is probably the most common and simple validation process that can be applied,

but it has the disadvantage of not using all the training data for learning the overall

best model.
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• K-folds cross validation. It represents an extension of the Hold-out approach where,

in order to exploit the whole training set, instead of splitting the training data

in two parts and use only one for training and only one for validating, what is

suggested is to split the overall dataset in K parts (aka folds), train with K-1 of

them and validate over the remaining. The procedure is then replicated selecting

a different validation fold.

Differently from the Hold-out procedure, at the end of the K-folds cross validation,

K different validating measures are returned instead of just one.

In order to give a clear idea of which model should be selected, an aggregation

process must then be suitably applied to obtain a unique validating function from

the K ones.

A simple option in this case is the one that recurs to an arithmetic average of all

the extracted quality measures, eq. 3.14

L =
1

N

N∑
i=1

li (3.14)

where L is the average loss function and li is the validating function extracted from the
i-th fold.

• Leave-p-out validation. It is the degenerate case of K-Fold Cross Validation, where

K is chosen in order to produce folds of exactly p samples.

Instead of splitting the training set in K group, in the Leave-p-out approach what

is suggested is to take exactly p samples for validating and all the other for training.

The overall final validation measure is obtained as in the K-folds case, averaging

the different measures in a unique quality measure.

Analyzing these 3 approaches, it is quite evident that any application of the Leave-p-out

approach will be misleading.

Considering in fact that for training we have 6 different sets (set00, ..., set05) of different

dimensions (as illustrated in table 3.1) and recorded in different conditions, if only p-

samples are taken at a time for validation and the others for training, similar regions

coming from the same set of data will necessarily be considered for both the two phases,

reducing the quality of the final retrieved measures.

Discarded the Leave-p-out approach, the remaining approaches that can be applied are

the Holdout and K-folds cross validations.
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Set #Images

set00 8559
set01 3619
set02 7410
set03 7976
set04 7328
set05 7890

Set #Images

set06 1155
set07 746
set08 657
set09 738
set10 728

Table 3.1: Number of images situated in each subset of the Caltech training and
testing dataset. Different numbers of images with different contents result in different

number of pedestrians for each set and so, in different amounts of training samples.

Thanks to the simplicity the Holdout approach presents, one may be tempted to train its

own model using this kind of solution, where for example the first 5 sets are considered

for training and only the last for validation.

However, this procedure, despite its higher quality wrt the Leave-one-out approach,

would produce worse results then the K-folds method over our particular models.

It must be considered in fact that due to the depth and width of the NNs we are here

considering, having the largest possible training dataset represents a mandatory feature

to avoid overfitting.

For this reason, the best cross validation procedure, which can be applied over such

complex and large models, is represented by the remaining K-folds cross validation.

Typically, a good rule of thumb consists into the splitting of the training set in folds

of the same size to produce in every case training procedures with the same amount of

data. However, this kind of approach is not applicable over the Caltech Dataset.

As illustrated for the Leave-p-out approach, in our training set 6 different sets of dif-

ferent size are available, containing videos recorded in different times and with different

conditions. So, applying a regular division of the training set in K folds of the same

size necessarily brings to split one set between validation and training data, which, as

already explained, is a situation that must be avoided for obtaining good results.

In order to check the net every time on different pedestrians and in different operative

conditions (different lights, different places etc.), a 6-fold cross validation where each fold

corresponds exactly to one set of the training dataset (i.e. fold0 = set0, fold1=set1,...)

has been applied in this work.

In particular, two main K-folds approaches have been compared to check which one

could be better for selecting the best model to test. We wondered in fact if it would

be better to average values obtained at multiple iterations (which is independent by the
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size of the training set) or at multiple epochs (which instead depends by the training set

size).
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Figure 3.13: Losses obtained over the 6 possible validation sets and final average loss.
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Figure 3.14: Losses obtained over the 6 possible validation sets and final average loss.

Taking the loss at multiple iterations and averaging the values extracted from the various

validations set, as illustrated by eq. 3.14, the suggested model appears to be the one at

3500 iterations (see figure 3.13).

However, looking at the plot it is possible to observe as the loss function starts a plateau

around iteration 3000 which goes up till iteration 5000.

This behavior is of fundamental importance in this particular kind of analysis since

shows a continuos change of the net’s weights, which however doesn’t return a payoff in
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term of loss reduction. Basically, the model is overfitting.

In order to avoid a performance degradation, a typical choice that may be applied

consists in this case to take not simply the best recomended model, but the one at the

beginning of the plateau.

Following this procedure and training the final SVM over the overall training set, it is

in fact possible to see how in the end the model at 3000 iterations represents a better

option since produces a LAMR equal to 25.43% instead of 26.18% for the one at 3500

iterations.

Unfortunately despite all our considerations, such result appears to be quite similar to

the one proposed by LDCF and not enough to justify an application of AlexNet+SVM

in the overall architecture.

Checking instead the loss produced by the K-folds approach, which averages the loss

values at multiple epochs (figure 3.14), it is possible to see that the model suggested is

radically different and corresponds to one at 4200 iterations (of the overall training set).

However, also in this case it’s evident that the loss function reaches a plateau around

epoch 10 (∼3800 iterations) and then slightly improves until iteration 4200. Applying

the same procedure as before and checking the model produced at iteration 3800, it

turns out that this particular choice is even worse than the one obtained at iteration

3000. For this reason, we preferred to apply as our cross validation approach the one

explained at the previous point.

A comparison of the net selected by the 3 approaches is illustrated in figure 3.15.
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Figure 3.15: ROC obtained with the Hold-out, K-folds averaged on multiple iterations
and K-folds averaged on multiple epochs approaches.

3.11 ACF/LDCF Thresholding

As expressed so far, despite the realized analysis, the performance produced by our final

architecture is quite poor and doesn’t justify the application of the finetuned DNN after

the selected region proposal algorithms.

However, up to this point the architecture we have presented applied the proposal algo-

rithm as only a tool aimed at retrieving sets of interesting regions, without discriminating

any of them wrt the score assigned (exactly as it is realized in the standard R-CNN ap-

proach).

In our particular situation, ACF and LDCF are, to all intents and purposes, real detec-

tors that return scores proportional to the confidence levels with which they identify the

presence or absence of pedestrians.

Therefore, taking inspiration from the cascaded architecture that we have presented in

Chapter 2 (where each stage of the cascade is meant to discard regions that most likely

do not contain any targets), a double thresholding approach has been replicated in this

work.

Basically, instead of letting the DNN to analyze every single region returned by the
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proposer, a thresholding has been applied on the returned scores for discarding patches

that can be considered with high confidence as “no-pedestrian”.

It must be considered in fact that a region, to be classified as a positive sample, needs in

this modification to be “approved” not only by the final DNN, but also by the proposal

algorithm itself, reducing in this way the probability to have a misclassification wrt the

basic approach (eq. 3.15).

P (misclassification) = P (ACF/LDCF misclassifies) ∗ P (DNN misclassifies) (3.15)

Probability to misclassify an input sample.

In order to apply such kind of approach however, a suitable value of the ACF/LDCF

threshold should be determined for cutting enough wrong patches at the first stage,

without discarding too many positive patches.

To determine therefore the right value of this measure, the LAMR at multiple ACF/LDCF

thresholds has been computed over the validation set 05, showing how a good value for

both LDCF and ACF appears to be around 85 (figure 3.16).
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Figure 3.16: LAMR obtained over the set05 applying different thresholding on the
scores returned by LDCF. The minimum LAMR is obtained with a threshold equal to

85.

Thanks to the application of this thresholding, the best finetuned AlexNet we selected

during the validation procedure appears now to present a LAMR equal to 22.49% instead
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of the original 25.43% (figure 3.17), significantly outperforming the best previous result

introduced by Hosang et al. and achieving the 2nd position among all the detectors

compared in [5] (the 1st considering only single frame detectors3).
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Original ACF+ALEXNET - 27.35%
Thresholded ACF+ALEXNET - 24.59%
Thresholded LDCF+ALEXNET - 22.49%

Figure 3.17: ROC obtained thresholding the BBs returned by ACF or LDCF and
classifying only the approved proposals with our best validated AlexNet.

As it is possible to see, despite the better capability of ACF to retrieve good regions wrt

LDCF, thanks to the higher discriminative capability of the latter, LDCF turns out to

be the best proposal algorithm we may apply to obtain the best possible results.

However, due to the computational effort required by LDCF for computing the final

results, in applications where the time is important (as the one presented in the next

Chapter), ACF could still represent a better choice that deserves to be taken into account

for the high process frame rates it presents.

3Detectors that do not use information coming from previous frames.
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3.12 Overall Finetuning Process: a Tutorial

Summarizing what we have introduced in this section, starting from a network already

trained on a very huge and vary dataset (such as ImageNet), our presented approach

for building a DNN detector basically requires to:

1. Select the best proposal algorithm wrt the considered application (e.g. ACF,

LDCF, Selective Search . . . ).

2. Select the best DNN wrt the operative conditions that must be faced (accuracy

and speed represent interesting point to take into account).

3. Detect which is the best amount of padding to add to the proposed regions, in order

to obtain patches that will likely contain all the targets that should be identified.

4. Build the largest possible training dataset in order to prevent overfitting:

(a) Fix a positive:negative ratio to prevent the net converging to a model that

discards all the input samples.

(b) Use all the accepted GT annotations (e.g. height > 50 px over the Caltech

Dataset) for extracting positive samples.

(c) Apply a random cropping approach for reducing the probability to overfit the

data.

(d) Determine the amount of context to introduce in the training samples to

replicate typical operative conditions.

(e) Randomly select the negative samples from the overall training set, for im-

proving the variety of the final dataset.

5. Apply K-folds cross validation and average the various losses obtained at multiple

iterations.

6. Finetune over the overall training dataset up to the amount of iterations suggested.

7. Optionally: apply multiple initializations and repeat the training to obtain the

best possible result.

Following this procedure step by step and determining on a validation dataset the best

threshold to apply over the proposer algorithm, we demonstrated how a final solution

that not only approaches state of the art detectors, but also outperforms them, can
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finally be obtained.

DNNs appear therefore as really useful tools for properly detecting and recognizing

objects even in low quality images, as the ones situated in the considered dataset.

A real time application of this model with a suitably realized tracking system will be

explored in the next chapter, showing how these models can be applied even in harder

and different situations, highlighting the relative difficulties and strengths that show up

in these particular contexts.

3.13 Appendix: NIN vs ALEXNET

In order to make things faster and try to give an alternative solution to the application

of AlexNet over the Caltech Dataset, a solution based on a NIN architecture has also

been investingated in this work.

The NIN architecture, differently from AlexNet, has a number of weights 10 times smaller

thanks to the application of only a reduced number of fully connected layer wrt the

multiple convolutive layers presented by AlexNet.

We decided to focus our attention also to this kind of networks for the comparable

performance it achieved over the ILSVRC dataset, where it appeared as a valid and

lighter alternative to the larger AlexNet.

Unfortunately, the operative conditions of the Caltech Dataset are so bad that any

learning of the NIN network we realized turned out to be ineffective, producing a LAMR

of around 50% over the Caltech test set.

No thresholding has been applied over the ACF/LDCF proposer in this case, due to

the real high value returned by this reference measure, which pushed us to immediately

discard this network for its low discriminability.

Despite this result, the main idea to look for lighter models capable at producing com-

parable results to the one realized with AlexNet is still valid. Future research could so

be realized for finding other solutions capable at producing comparable results, but with

lower computational efforts.
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3.14 Appendix: Alexnet in Caffe

name: "AlexNet"

layer {

name: "data"

type: "Data"

top: "data"

top: "label"

include {

phase: TRAIN

}

transform_param {

mirror: true

crop_size: 227

mean_file: "ADDRESS OF THE MEAN FILE TO USE"

}

data_param {

source: "ADDRESS OF THE TRAINING DATASET"

batch_size: 256

backend: LMDB

}

}

layer {

name: "data"

type: "Data"

top: "data"

top: "label"

include {

phase: TEST

}

transform_param {

mirror: false

crop_size: 227

mean_file: " ADDRESS OF THE MEAN FILE TO USE "

}

data_param {
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source: " ADDRESS OF THE VALIDATION DATASET "

batch_size: 50

backend: LMDB

}

}

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 96

kernel_size: 11

stride: 4

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "relu1"

type: "ReLU"

bottom: "conv1"
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top: "conv1"

}

layer {

name: "pool1"

type: "Pooling"

bottom: "conv1"

top: "pool1"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "norm1"

type: "LRN"

bottom: "pool1"

top: "norm1"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}

}

layer {

name: "conv2"

type: "Convolution"

bottom: "norm1"

top: "conv2"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0
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}

convolution_param {

num_output: 256

pad: 2

kernel_size: 5

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu2"

type: "ReLU"

bottom: "conv2"

top: "conv2"

}

layer {

name: "pool2"

type: "Pooling"

bottom: "conv2"

top: "pool2"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "norm2"

type: "LRN"
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bottom: "pool2"

top: "norm2"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}

}

layer {

name: "conv3"

type: "Convolution"

bottom: "norm2"

top: "conv3"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 384

pad: 1

kernel_size: 3

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {
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name: "relu3"

type: "ReLU"

bottom: "conv3"

top: "conv3"

}

layer {

name: "conv4"

type: "Convolution"

bottom: "conv3"

top: "conv4"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 384

pad: 1

kernel_size: 3

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu4"

type: "ReLU"
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bottom: "conv4"

top: "conv4"

}

layer {

name: "conv5"

type: "Convolution"

bottom: "conv4"

top: "conv5"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 256

pad: 1

kernel_size: 3

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu5"

type: "ReLU"

bottom: "conv5"

top: "conv5"
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}

layer {

name: "pool5"

type: "Pooling"

bottom: "conv5"

top: "pool5"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "fc6"

type: "InnerProduct"

bottom: "pool5"

top: "fc6"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

inner_product_param {

num_output: 4096

weight_filler {

type: "gaussian"

std: 0.005

}

bias_filler {

type: "constant"

value: 1

}

}
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}

layer {

name: "relu6"

type: "ReLU"

bottom: "fc6"

top: "fc6"

}

layer {

name: "drop6"

type: "Dropout"

bottom: "fc6"

top: "fc6"

dropout_param {

dropout_ratio: 0.5

}

}

layer {

name: "fc7"

type: "InnerProduct"

bottom: "fc6"

top: "fc7"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

inner_product_param {

num_output: 4096

weight_filler {

type: "gaussian"

std: 0.005

}

bias_filler {
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type: "constant"

value: 1

}

}

}

layer {

name: "relu7"

type: "ReLU"

bottom: "fc7"

top: "fc7"

}

layer {

name: "drop7"

type: "Dropout"

bottom: "fc7"

top: "fc7"

dropout_param {

dropout_ratio: 0.5

}

}

layer {

name: "fc8 "

type: "InnerProduct"

bottom: "fc7"

top: "fc8 "

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

inner_product_param {

num_output: 2

weight_filler {
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type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "accuracy"

type: "Accuracy"

bottom: "fc8 "

bottom: "label"

top: "accuracy"

include {

phase: TEST

}

}

layer {

name: "loss"

type: "SoftmaxWithLoss"

bottom: "fc8 "

bottom: "label"

top: "loss"

}
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3.15 Appendix: Solvers in Caffe

test iter: 167 #number of batches that make the validation set

test interval: 50000 #number of iterations to do before validate the

networkover the #validation set

max iter: 6000 #overall number of iterations to apply in the

training phase

base lr: 0.001 #base learning rate utilized during the finetuning

momentum: 0.9 #momentum value

weight decay: 0.0005 #weight-decay factor value

gamma: 0.1 #lr drop factor

lr policy: “step” #type of solver to use (step means SGD)

stepsize: 20000 #number of iterations to do before drop the

learning rate

display: 50 #number of iterations to do before display some

result in the #console

snapshot: 50 #number of iterations to do before take a snapshot

of the current #model

snapshot prefix: “PREFIX” #prefix that will be applied to each model snapshot

solver mode: GPU #defines where to run the solver, if in the CPU or

in the GPU



Chapter 4

Detector Time Profiling Analysis

and Proposed Real-time

Architecture

4.1 Introduction

Up to now we have presented how the detection problem can be faced in order to

retrieve the pedestrians located in an analyzed frame and which are the strongest and

most powerful detectors we can use in order to accomplish this task.

However, despite the power and quality of the detector we trained so far, one of the main

defects associated to DNN solutions is related to their speed. Due to their dimensions

in fact, this kind of models appears typically slow in a lot of different HW architectures

currently available in the market, requiring processing times which make these solutions

hardly applicable to real-time scenarios.

Think for example to image-based car safety systems: in order to guarantee a good

protection level to both people in the car and pedestrians, car safety systems need to

acquire and process images in a really fast way, due to the high speed the vehicle may

present. Unfortunately, images acquired in these conditions often present distortions,

artifacts and a low quality in general, precluding the application of simple and fast

detectors.

For this reason, a solution able to combine in a proper way, both the high speed of low

quality detectors and the accuracy of stronger classifiers, may be demandable in this

105
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kind of situations in order to extract good quality information, while keeping at the

same time sufficiently high processing frame rates.

The solution we are going to illustrate in this chapter proceeds exactly in this way.

Applying a tracking-by-detection approach and exploiting the particular structure of the

realized DNN detector, a suitable system capable at extracting good detections, while

running at more than 10 fps1, has been realized in the present work.

4.2 Selected HW Architecture

The first step in our analysis concerns in this case the definition of the underlying

hardware architecture that we are going to use.

For simplicity, in view of the requirement that the prototype should combine multiple

solutions mainly available in MATLAB (which does not work on ARM-based architec-

ture), we decided to select as reference system a MacBook Pro (Retina, 15-inch, Mid

2014) with the following characteristic:

• CPU: Intel Core i7 2,8 GHz

• RAM: 16 GB 1600 MHz DDR3

• GPU: NVIDIA GeForce GT 750M 2048 MB (CUDA compatibility 3.0)

Which represents a good configuration for exploiting both the intrinsic parallelism avail-

able in DNN solutions (which fit well on modern GPU architecture) and the available

ACF/LDCF implementations (which do not run on ARM configurations due to the large

use of x86/x64 SIMD instructions they do).

Moreover, since in the literature also other algorithms are tested on configurations similar

to the one exploited in this work (e.g. [14]), we believe that our indications could be of

interest even in different situations from the one here considered.

1Which appears as a demandable property for automotive configurations as illustrated in [13]
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4.3 Time Profiling Analysis of the Detectors

Defined the HW architecture, the next step involved in our analysis requires an estima-

tion of the average frame rates produced by the various detectors.

Running on different images the available implementations and averaging the results,

it turns out that the only algorithm capable at running with a frame rate larger than

10 fps is the simple ACF detector (thanks to the various approximations and reduced

number of operations it applies).

All the other strong solutions run instead in the order of decades of frames, which is

totally unacceptable for any real time application (see figure 4.1).
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Figure 4.1: Processing frame rate extracted from the various algorithm over the
reference HW architecture with the original configuration.

However, it must be considered that in order to exploit at best the massive parallelism

available in modern GPUs, the original AlexNet model, if not suitably modified, collects

all the regions extracted in batches made by 256 patches each one and only then proceeds

with the extraction of the interested features. If the number of regions retrieved is not

a multiple of 256, blank patches are added up to that limit.
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Despite this particular optimization can be really useful whenever there is a large amount

of data to analyze, in our situation is basically impossible to have 256 pedestrians in a

single image. So, realize large batches filled only with a restricted number of patches is

nothing more than a waste of time.

In order to estimate the optimal size our batches should present, an analysis aimed

at identifying how many regions should be considered from the ones retrieved by the

proposal algorithm, must then be carried on. The main idea is to avoid processing an

excessive amount of regions, limiting to a fixed upper bound the number of patches that

must be analyzed.

Considering in fact batches of only k regions, filled with the top-k ones retrieved by the

proposal algorithm, the computational burden exposed by our NN over a single image

can be significantly reduced.

Since LDCF appears already too slow to reach in the final architecture a processing

frame rate at least equal to 10 fps, we decided in this case to consider as proposal

algorithm in our case the lighter but still useful ACF.

Running this latter over all the training set and considering for each iteration only the

top-k detections retrieved (sorted by score), a comparison of the miss rates produced by

ACF and the NN processing time has been realized. The results obtained are presented

in figure 4.2.

As it is possible to see the execution time appears almost linear wrt the dimension of

the batches (jumps are due to the different number of warps the GPU will produce

for different amounts of data), while the miss rate appears to decrease exponentially,

reaching the minimum around 25 regions per image.

Since we are looking for a good configuration that allows to achieve a valid trade-off

between the miss rate produced by the selected region proposal algorithm and the NN

execution time, we decided to consider in this work only the top-15 BBs retrieved by

ACF. Such configuration presents in fact:

• A miss rate equal to 16.2%, far from the minimum only 0.5%

• A contained NN execution time equal to 177.5 ms

Running again the ACF+AlexNet and LDCF+AlexNet detectors over the images of the

Caltech Dataset, the new optimized configuration has been finally tested (figure 4.3).
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Figure 4.2: Miss rate produced by ACF considering only the top-k detections retrieved
(with score larger than 80) vs the AlexNet execution time required to complete the

analysis of the extracted patches.

As it is possible to see, LDCF+AlexNet is still requiring a considerable amount of time

to complete a detection wrt the other solutions, due to the two strong classifiers that

run one after the other. On the other hand, our ACF+AlexNet implementation not only

increases its initial frame rate of almost 9 times but even outperforms the one presented

by LDCF, representing for this reason a promising solution for both the speed of the

selected proposal algorithm and the final accuracy it is able to achieve.
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Figure 4.3: Processing frame rate extracted from the various algorithm over the
reference HW architecture with our restricted batches.

4.4 Exploiting Intra-frame Information

In the previous chapter we introduced the problem of detecting pedestrians considering

that each acquired frame is completely independent one to each other, which is a typical

solution for single-frame detectors.

However, in any real-time application where there is a single camera recording images

from the world, the information contained in any single frame is not uncorrelated to the

one present in the following or previous ones.

Think for example to our pedestrians, if a person appears in the camera FOV of a given

frame, it is really unlikely that he will disappear exactly in the next one, thanks to the

high frame rate the acquisition system presents.

Information extracted in the past and associated to a particular pedestrian, which en-

dures in the camera FOV for different frames, is so valuable not just for a single instant

but for the entire life period of the pedestrian itself.

Such information can so be exploited to improve both speed and accuracy of any de-

tection solution we decide to take into account, avoiding to repeat complex feature
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extractions for every single acquired frame.

The solution we implemented in this work proceeds exactly in this way.

As illustrated in the previous section in fact, despite our optimization, any application of

a strong detector (e.g. LDCF, ACF+AlexNet or LDCF+AlexNet) does not satisfy the

target processing frame rate we would like to achieve, due to the related computational

complexities these solutions present.

However, looking at the presented NN-based detectors it is possible to see that, differ-

ently from other solutions like ACF or LDCF, our NN detectors are not built by a single

unique block but by a cascade of two: a complete stand alone detector and the NN itself.

Hence, running these different components in parallel at their respective operating fre-

quencies and merging in a proper way the different information extracted, we could

potentially be able to exploit at the same time both the high speed of ACF and the

good accuracy produced by our finetuned DNN.

In any case, solving this problem is not easy. All the information extracted should in

fact be maintained along the time and associated to the correct pedestrians, avoiding to

mix information associated to different targets, which could lead in the end to erroneous

results.

To avoid this kind of problems and exploit at best the information extracted, a tracking

system aimed at maintaining and coupling all the information extracted in the previous

frames with the last available one, has been implemented.

Due to the complexity that such system presents, before proceeding with the presenta-

tion of our real-time architecture, in the following sections an introduction of the main

algorithms implemented is presented, highlighting their main functionalities and the

various problems they solve.

4.5 Hungarian Algorithm

Whenever we need to track objects frame by frame, a typical problem that arises concerns

how to identify if a detected object is already tracked by the system and how to couple

the extracted BBs with the already tracked ones.

In order to deal with this situation, the so-called Assignment Problem (i.e. the problem

to identify a suitable assignment that couples tracks and detections one to each other,

minimizing an overall cost function) needs so to be solved.
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It appears clear that every full grid search, which tries to couple in a suitable way

detections and tracks associated to a given frame, should be immediately discarded due

to the excessive amount of computations it will require.

Fortunately in the 50s, Munkres et al. introduced an algorithm capable at solving

the assignment problem with a polynomial complexity equal to O(n3) (where n is the

number of elements in both the coupling sets), significantly reducing the cost of the

overall assignment and making this kind of task available even for real-time applications.

We are talking about the so-called Hungarian Algorithm [15].

In order to solve the Assignment Problem and determine which track is coupled with

which detection, the Hungarian Algorithm requires the definition of a matrix that con-

tains the costs needed to realize each possible assignment. A suitable measure aimed at

identifying in a robust way which elements should be coupled with which one, needs so

to be defined.

The measure we introduced in this case is presented in eq. 4.1 and simply represents

the fraction of area not overlapped between a given track i and a detection j associated

to the last acquired frame.

Since the higher this area, the smaller the probability that the match between track i

and detection j is true, this measure represents a valid option that allows to match not

just BBs which are closer, but also that have similar size.

costi,j = 1− IoUi,j (4.1)

Where IoUi,j is the intersection over union among track i and detection j.

The definition of this measure alone, however, may not be sufficient to realize a satisfying

tracks-detections matching. Think for example if a tracked pedestrian disappears from

the camera FOV, it is clear in this case that the associated track should not match any

of the retrieved detections and that any other result will be misleading and erroneous.

In order to identify this particular situation and check if an assignment is valid or

not, instead of coupling only the available tracks with the various extracted detections,

we decided to extend the generated cost matrix with some mock columns and rows,

producing an associated extended version of (n + m) × (n + m) cells (where n is the

number of tracks and m the number of detections).

Imposing a zero cost to all the cells of the added mock rows/columns where the associated

tracks/detections does not present any detection/track with IoU larger than a given
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threshold, it has finally been possible to force the Hungarian Algorithm at realizing an

assignment where every unmatched element appears coupled with a fake one.

Analyzing in this way the produced result and checking the presence of any mock element

in any retrieved couple, the identification of which elements do not match with any other

one has finally been achieved.

In order to guarantee a sufficiently scale-invariant but at the same time robust algo-

rithm, a relaxed version of the Pascal Criterion has been introduced, fixing the matching

threshold for the Hungarian Algorithm at 0.8.

4.6 Kalman Filter

One of the major problem that may arise during the detection and tracking process is

how to correctly assign detections identified in the past to information retrieved from

the last available frame.

As we have presented in the previous section, a typical solution to solve the assignment

problem and couple tracks with new detections retrieved from the last acquired frame,

is given by the Hungarian Algorithm.

In order to realize correct and valid assignments, however, the BBs associated to the

various tracks available in the system need to overlap as much as possible with the ones

identified by the the detector and associated to the same targets, or low IoUs will be

produced and no match will be realized.

While this problem can be negligible if our overall system is capable at processing really

fast the received input frames, it becomes of fundamental importance whenever the

targets present fast motions or the system suffer lacks in the processing frame rate.

In order to overcome this situations and produce stronger results, a solution based on

Kalman Filters (aka KFs) has been introduced in this work.

Kalman Filters are a particular form of optimal estimators that infers measures of in-

terest from indirect, inaccurate and uncertain observations, recursively updating the

current state estimation of the target with the new noisy information that is progres-

sively collected (i.e. the new observations).

They are defined as optimal estimators since if all the noises involved are gaussian (i.e.

distributed according to a guassian pdf) and white (i.e. each noise assumes values over

the time completely uncorrelated to the previous ones) Kalman Filters minimize the
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mean square error of the estimated parameters. A property that makes this kind of

solutions a really common choice nowadays for multiple applications where there is the

need to:

• Estimate unmeasurable measures related to accessible observations.

• Predict the values of a stochastic process that we may be interested into.

• Clean collected observations from the noise they may contain.

Among the presented features, the one that is particularly interesting for us is for sure

the prediction capability.

Exploiting the equations of the Uniform Accelerated Motion and considering that both

the accelerations over the x and y axis change only according to an underlying white

noise (that represents all the unknown dynamics associated to the car and pedestrians

motions), the filter presented in eq. 4.2 has been realized. As it possible to see, no

external information from the one that can be extracted from the various input frames

is required to describe and predict the positions of our interested tracks.

x(t+ 1) = x(t) + vx(t) + ex(0, λ)

vx(t+ 1) = vx(t) + ax(t) + evx(0, λ)

ax(t+ 1) = ax(t) + eax(0, λ)

y(t+ 1) = y(t) + vy(t) + ey(0, λ)

vy(t+ 1) = vy(t) + ay(t) + evy(0, λ)

ay(t+ 1) = ay(t) + eay(0, λ)

xout(t) = x(t) + exout(0, η)

yout(t) = y(t) + eyout(0, η)

(4.2)

Where x(t), vx(t), ax(t), y(t), vy(t), ay(t) are position, velocity and acceleration along
both the x-axis and y-axis of the target’s center. Any e involved is a gaussian white noise
with zero mean and variance equal to λ for state variable and η for output variables.

Exploiting this structure and building the related optimal predictor, better matches

between detected BBs and the tracked pedestrians have been realized, predicting the

various positions that the tracks may present in the last analyzed frames.

However, to obtain satisfactory results, an estimation of the λ and η variances of eq. 4.2

needs to be realized. A wrong configuration of this parameter may in fact produce poor

results in the end (if not even harmful), since influences the importance of the extracted

observations wrt the estimated states, changing the way we do predictions.
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In order to estimate such variances, a simple approach based on a grid search has been

applied in this work, extending the information contained in the Caltech Dataset and

identifying a good set of values able to minimize the MSPE (i.e. Mean Square Prediction

Error) produced by the filter (see section 4.8).

4.7 Proposed Architecture

After we have presented how to solve the assignment problem and how to predict the

location of an identified pedestrian in the future, the next step of our analysis finally

concerns the structure of the realized real-time architecture.

As already presented in section 4.4, exploiting a DNN based detector in real-time sce-

narios is not an available option due to the high latency these detectors present. In order

to apply such strong solutions even in this kind of situations, the capability to merge

in a suitable way the information coming from two different threads, which run the two

distinct part of our detector in parallel, could be a demandable feature to produce high

speed and accuracy.

So, in order to check which kind of results the presented proposal may achieve, a system

implementing the following pipeline has been realized:

1. Whenever a new frame is available:

(a) The finetuned AlexNet is checked in order to identify if it has completed the

processing of BBs already extracted from previous frames.

(b) If it has finished, the BBs with a score larger than a given threshold are

retrieved with their relative positions and dimensions.

(c) All the tracks available in the system and associated to these BBs are marked

as pedestrians while all the others are suppressed.

2. Then, the system proceeds at extracting new information from the last received

frame applying ACF over all the input image:

(a) All the boxes with a score larger than a detection threshold are directly

considered as pedestrians.

(b) All the boxes with a score smaller than the detection threshold but larger

than a tracking one are instead considered as valid, iff matched with a track

already marked as pedestrian by the NN.
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(c) Tracks which are not matched with any BB are finally suppressed.

All the match realized at this step are produced predicting the positions of the

already detected pedestrians and applying the Hungarian Algorithm of section 4.5.

3. Finally, if the NN is free (i.e. it is not processing any other BB), all the BBs

retrieved in the last frame and with a score larger than the tracking threshold are

sent for further analysis to this stronger classifier and start new tracks.

Among all the unmatched BBs, all the boxes with a score larger than the tracking

threshold, but not the detection one, are considered as “to be validated” and not

marked as pedestrians till the NN returns its final response.

The main idea is to consider in each frame as pedestrians all the BBs which present

an ACF score really large or have in the recent past been validated by the finetuned

NN.

4. After all these steps, the system returns to point 1 and the overall process starts

again, skipping all the frames received from the instant in which the analysis has

started.

(See the activity diagram of figure 4.4 for a high level representation).

Despite all the algorithms implemented in this architecture are all very fast and do

not require a lot of computational power. The necessity to have two threads that runs

in parallel, the overhead required to handle the parallel processing and the time spent

in memory transfers (needed to transfer the extracted BBs from the main memory to

the GPU memory) weigh over the overall pipeline, reducing the processing frame rate

produced by ACF from 11.3 fps to 8.3 fps.

In order to increase again the processing frame rate and reach at least the demandable

10 fps, some modifications over one of the two running components need to be applied.

Since the NN runs in background over the GPU and does not influence for this the CPU

processing (if not with memory transfers and initial preprocessing), our choice fell in

this case over ACF.

Two different possibilities are available in this case:

• We can try to restrict the amount of pixels analyzed recurring to estimations of

the regions where pedestrians can be situated (using for example the Stixel World

introduced by Rodrigo et al. in [16]).

• We can try to speed up the classification process involved in our detector.
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Figure 4.4: Activity diagram of the proposed architecture
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In order to produce the more general results that can be easily extended even to differ-

ent situations from the well known pedestrian detection task, we decided to focus our

attention in this case over the analysis of the classification process.

Analyzing this process, it turns out that in order to retrieve with good accuracy all the

available pedestrians situated in the received input frames, in their last ACF version, Pi-

otr et al. decided to introduce as their final pedestrian classifier a soft-cascaded classifier

[17] instead of a simply cascaded one.

In a soft-cascade classifier instead of having multiple distinct cascade stages (each one

with its related thresholding process), a single long boosted classifier is trained and

multiple thresholdings are applied over the partial cumulative scores returned by the

various single weak classifiers. Namely, given a boosted classifier HK with K weak

classifiers defined as in eq. 4.3.

HK(x) =

K∑
i=1

αihi(x) (4.3)

Where hi ∈ {−1, 1} is the score returned by the i-th weak classifier and αi its associated
weight.

An input BB is considered as a pedestrian only if:

Hk(x) > θ + φ ∗ k/K ∀k ∈ {1, ...,K} (4.4)

Where Hk(x) =
∑k
i=1 αihi(x) and θ and φ are the so-called rejection threshold and the

recalibrating parameter.

The combination of the rejection threshold θ and recalibrating parameter φ allows to

discard BBs that present small partial cumulative scores in early stages, applying at the

same time a more and more strict filtering as the cumulative score becomes determined

by more classifiers.

Tuning the values of θ and φ is possible in this way to adjust the trade off between

accuracy and speed, determining the amount of BBs that should be discarded in early

stages wrt the ones that instead will be retrieved in the end by the algorithm. Obviously

the larger the amount of BBs we decide to retrieve in end, the higher the computational

burden of the overall classifier.

Following these theoretical considerations, multiple combinations of θ and φ have been

tested in our work over the Caltech Set 05, producing the results presented in figure 4.5.
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In order to guarantee a minimum amount of margin over the processing frame rate, which

is strictly image-content dependent, only the configurations that produce a processing

frame rate around 15 fps (i.e. fps > 14) have been considered.

As it is possible to see, the most promising configuration appears to be the one with:

• θ = −0.75

• φ = 0.010

since produces the minimum LAMR while keeping at the same time a reduced compu-

tational burden.

Running our architecture with this new selected configuration and checking the opera-

tive frequency, it turns out that our system is now capable at running at 14.96 fps over

the Caltech test set, which is satisfactory for our requirements.

Since the different configuration applied in the ACF soft-cascaded classifier produces in

the end different detections wrt the original ones that may be extracted, in the following,

in order to realize a meaningful comparison capable at showing the real improvements

introduced by our solution, all the architectures that will be tested must be considered

as implemented with this optimized values of θ and φ.

We will refer in the following to this particular version of ACF as “fast ACF”.
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Figure 4.5: ROCs of the top-10 configurations tested that present a processing frame
rate around 15 fps. For comparison, also the ROC of the original ACF tested over the

Caltech set 05 has been presented.

4.8 Caltech Dataset Extension and KF Variances estima-

tion

As we have illustrated in section 4.6, the estimation of the parameters λ and η involved

in our implemented KFs is of fundamental importance to produce appreciable results.

So, in order to find a good estimate of variances able to produce satisfactory results

with the implemented architecture, a grid search aimed at checking the performance of

multiple combinations of variances has been realized in this work.

However, in order to realize such estimate, an extension of the already presented Caltech

Dataset needs first to be realized.

It must be considered in fact that, while this particular dataset is suitable for detection
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tasks due to the multiple annotations introduced over every frame, it misses every pos-

sible tracking information. For example, we know if there are pedestrians in an image,

but we do not know if taken two images the same pedestrian is situated in both of them

and where.

To overcome this situation and introduce tracking information over the Caltech Dataset,

a solution based on the already presented Hungarian Algorithm has been applied.

All the GTs situated in two consecutive frames, which have a sufficiently large IoU, have

in fact been considered as a unique pedestrian and matched by a unique ID.

The dataset obtained in this way is not anymore a simple representation of detections,

but contains also tracking information associated to the movements that each singular

pedestrian applies frame by frame (which is of fundamental importance in our case).

Thanks to the extension here introduced, the following procedure has been finally ap-

plied:

1. First of all, the fast ACF computed in the previous section has been applied over

all the images of the Caltech Set 05 used as reference for this estimation.

2. Acquired all the detections retrieved by ACF, all the extracted BBs have been

matched with the underlying GTs, following as usual the well-known Pascal Cri-

terion.

3. Once all the GTs available in the Caltech Set 05 have been coupled with the various

detected BBs, all the 190 pedestrians situated in such set have been extrapolated.

4. For each of them a suitable KF has been initialized with the BB associated to the

first time where the pedestrian appears, considering as initial state estimate null

velocities and null accelerations.

5. Finally, a set of predictions and corrections have been carried on with different

values of λ and η in order to estimate the quality of each configuration.

For each prediction the associated prediction error (i.e. the euclidean distance

between the predicted center of the analyzed BB and the associated GT center)

has been computed and an overall Root Mean Square Prediction Error (RMSPE)

has been evaluated (eq. 4.5). The results obtained are illustrated in figure 4.6.
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RMSPE =

√√√√ 1

N

P∑
p=1

Np∑
n=1

d2
p,n (4.5)

Where P is the overall number of available pedestrians, Np is the overall number of
frames the p-th pedestrian appears, N is the overall number of predictions computed
and dp,n is the distance between the predicted center of pedestrian p at its n-th occur-

rence and its associated GT.

As it is possible to see, the RMSPE reaches its minimum for:

• λ = 102

• η = 105

appearing for this as a good estimate of our desired variances.

All the estimates have been computed considering the covariance matrix of the initial-

ization equal to:

P1 = I ∗ α (4.6)

Where P1 is the covariance matrix of the initialization and I the identity matrix

Where α has been fixed to a high value (i.e. 105) in order to quickly loose the wrong

initialization of velocities and accelerations imposed in the filter.

Experimental results has shown that even changing the value of α, the minimum reached

by the best λ and η basically presents the same value of the one produced by our selected

configuration.
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Figure 4.6: Root Mean Square Prediction Error extracted from set 05.

4.9 Performance Evaluation

Presented our architectural proposal and estimated all the parameters involved in the

various implemented algorithms, the last step that remains to be faced is the performance

evaluation of our solution.

Differently from the one implemented in the previous chapter, the evaluation we need to

implement in our case is slightly different wrt the one presented for the simple detection

task. It must be considered in fact that, applying our proposed architecture as exactly

presented in the previous section:

• Two different scores are involved instead of only one, due to the two different

classifiers involved in the detection process.

• Different sets of detections may be retrieved if the proposed solution is applied mul-

tiple times over the same set of images, due to fluctuations in the performance of

the underlying HW architecture, which bring the system to skip different amounts

of frames time by time.
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In order to give a well defined evaluation of the performance produced by our proposal,

more information needs so to be extracted from the presented architecture, to handle

both the multiple scores retrieved by the system and the different performance produced

at multiple runs. In particular what we need is to:

• Identify which are the average operative frequencies of both the main thread and

the underlying NN, in order to realize a unique set of detections representative of

the average performance produced by the system.

• Check the detection performance at variations of all the thresholds involved in our

system, in order to extract the real power of our system at all the configurations

it may be configured.

Proceeding in this way, the frame rates associated to the main thread and to the under-

lying AlexNet have been collected. The results are presented in table 4.1.

Frame Rate

main thread 14.96 fps
AlexNet 4.21 fps

Table 4.1: Main thread and of our underlying AlexNet processing frame rate.

As it is possible to see, while the main thread is actually able to efficiently process 1

frame over 3, the NN does not.

Therefore, in order to realize a set of detections that represents the performance of

the realized system at the computed average frame rates, all the BBs extracted in our

analysis have been collected analyzing exactly one frame over 3 with our fast ACF, while

considering a NN detection only every 9 frames (see figure 4.7).
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Figure 4.7: Detections realized by our architecture if applied in real-time.

Collected the detections and recorded all the scores returned by ACF and the NN,

the overall realized system appears now just as a complex detector that returns scores
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of multiple natures over the retrieved BBs. In order to evaluate the performance of

such system the already presented ROC can now be computed simply varying all the 3

thresholds involved in our architecture (i.e. the ACF detection threshold, ACF tracking

threshold and NN detection threshold) and extracting the related fppi and miss rates

produced.

The results obtained in this way are presented in figure 4.8.
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Figure 4.8: ROC of our fast ACF compared with the one of our architecture and with
the one of our stronger classifier applied over the Caltech10x Test Set .

As expected, the results produced by our architecture are placed in the middle between

the one produced by the plain ACF and the stronger ACF+AlexNet, representing a

good trade-off between the accuracy and speed generated by the two presented solutions,

especially near typical operative point (e.g. ∼ 10−2 fppi).

However, we could wonder why the presented architecture does not approach better the

performance produced by the stronger ACF+AlexNet.

Despite our finetuned AlexNet plays an important role in the overall system, it must be

considered that the amount of BBs it can influence is limited and strictly dependent by:

• The capability of the system to match a detection with a track already available.

• The number of frames a single pedestrian appears in the camera FOV.
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In fact:

• If a pedestrian appears for few frames, the system simply has not the time for

proceeding with a strong classification and the implemented NN could appear as

useless.

• If a pedestrian moves too fast, it could happen to produce inaccurate predictions,

reducing the capability to match the available tracks to the last retrieved BBs and

loosing the possibility to exploit all the information extracted from the underlying

NN.

Following this reasoning and looking at the percentage of matched detections that are

also evaluated by the NN, it appears in fact that only the 60% of the retrieved BBs are

also evaluated by the NN, while all the others are analyzed only by the presented fast

ACF.

The speed presented by the selected fast detector and the underlying stronger classifier

is so matter of interest, which should be properly considered in order to produce good

results in every context the presented architecture could be taken into account.

Analyzing in our case the performance produced over the Caltech Dataset, the ROC

produced by our solution appears to outperform in every single operative point the one

produced by ACF, while working at the same time at a near operative frame rate.

The architecture realized in this chapter appears for this as a promising solution to take

into account whenever not just the accuracy is relevant, but also the time required to

compute the results plays a fundamental role.



Chapter 5

Conclusions and future works

In the presented work a refined and precise way to train DNN classifiers for accurate

pedestrians detections has been presented.

Thanks to the illustrated method, the finetuned AlexNet has been capable at achieving

really good performance over the Caltech test set, outperforming the previous state of the

art and giving the possibility to realize an interesting solution for real-time applications.

Multiple aspects have been evaluated during the training procedure, highlighting the

importance to:

• Augment the amount of data available in the training phase.

• Select with accuracy the negative regions proposed by the proposal algorithm.

• Apply suitable validation procedures aimed at exploiting at best all the available

training set.

• Exploit as much as possible not just the information retrieved by the final strong

classifier, but also the one extracted by the selected proposal algorithm.

A set of useful guidelines has been presented in this way, which we hope can help during

the training of such complex and deep classifiers, even in different contexts from the one

here considered.

Besides the training procedure, a suitable system capable at running at more than 10

fps and exploiting the network trained with our procedure has also been presented.

Recurring to the well-known tracking-by-detection approach, a combination of a lightweight

127
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detector and a strong classifier has been illustrated, showing how fast and accurate so-

lutions can be realized simply maintaining along the time information already extracted

from preceding processed frames.

The selected HW architecture played a fundamental role in our system, since the possi-

bility to execute multiple elaborations in parallel, without affecting the latency of each

single component (i.e. ACF and AlexNet), represented the key for increasing the amount

of information extracted without affecting the operative frame rate.

Due to the magnitude of the problem here presented however, the proposed solutions

should not be considered as the end of this work, but further studies aimed at improving

both the accuracy and the frame rate produced by the overall system should be explored.

In particular:

• Solutions based on cascades of DNN might be of interest for the good detection

performance and the contained computational burdens they may present.

Thanks to the reduced amount of computations these solutions dedicate in fact to

clear background regions, good accuracies and good execution times are generally

achieved, representing in this way valid solutions for fast and accurate detections.

• Studies aimed at checking the applicability of DNN classifiers over feature space

different from the initial RGB channels may be realized.

An enhancement in the quality of the final solution could in fact be achieved

applying such complex classifiers not simply over the acquired RGB channels, but

over a set of feature channels a priori computed (which represent a much stronger

starting point over whom instruct and apply the selected network).

Other researches could so be devoted in this sense to an analysis of these and other solu-

tions, looking for different and maybe more powerful NNs capable at further improving

the performance we have here presented.
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