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Abstract

Introduction: Visualization of brain vasculature is truly helpful in many neurosur-
gical fields and it is gaining more and more importance. In fact, the vessels are of
primary importance in both the pre-operative and intra-operative phase for planning,
multimodal image registration, image-guided neurosurgery and brain shift compensa-
tion, among many other purposes. The pre-operative phase requires the tracking of
the whole vascular tree mainly for the intervention planning so as to avoid vessel hurt-
ing and subsequent haemorrhage. The pre-operative planning must be subsequently
registered to the intra-operative scenario, and in this context Cone-Beam-Computed-
Tomography (CBCT) represents a powerful facility, since it is capable to acquire images
in the operation room, shortly before surgery. In this context, the distinction between
arteries and veins within the reconstructed vascular tree is still lacking, thought it is
important both for neurosurgical planning and the detection neurological diseases such
as ArteroVenous Malformations (MAV). Even if segmentation of arteries and veins has
already been produced starting from 4D CT perfusion scans, much longer acquisition
protocols are needed with this technique, since several volumes are acquired instead of
a single volume. Moreover the radiation dose given to the patient is increased. With
4D CT scans a time profile for each voxel is available, thought with heavy limitations
in time resolution that can be tentatively encompassed by post-processing techniques.
Limits to these attempts are mainly in the need of dedicated scanners, not currently
available in the clinical and Operating Room environment. Hence, space is open to
approaches, as the one proposed in this thesis, attempting to recover the dynamic in-
formation from standard CBCT contrast enhanced scans.

Methods: A theoretical approach for the recovery of temporal information (i.e. the
4™ dimension) from standard CBCT contrast enhanced projections is introduced as
novel method, to our knowledge. The dataset employed by the method is composed
of two standard sets of CBCT projections over 360°: a first data set taken without
the employment of contrast medium and a second dataset acquired while the contrast
medium is flowing through the vascular tree from arteries to veins. Starting from those

two datasets, a vessel tree reconstruction can be achieved through Digital Subtraction
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Angiography (DSA), i.e. the volume reconstructed from the non-contrasted dataset is
subtracted from the volume reconstructed with the contrast-enhanced dataset. Once
the DSA reconstruction is available, the dynamic information must be added to each
voxel belonging to the vessel tree. Though, the CBCT dataset is by far insufficient
at this purpose. In fact, in the full 4D problem the number of 4D unknowns (i.e.,
volume changing over time, order N*) is consistently higher than the number of mea-
sures (i.e. CB projections on a 2D flat panel, times angular/temporal samples, order
N3). However, the working hypothesis is that the negligible contrast of the surrounding
background thanks to digital subtraction and the constraints furnished by a prelimi-
nary vascular segmentation reduce the unknowns to the vascular voxels. Moreover, the
predictable time course of the contrast in a vascular voxel is highly regular and charac-
terized by a wash-in and a wash-out phase (in case of bolus injection), or by a wash-in
phase only (in case of continuos contrast injection). Hence, further reduction of the
number of unknowns can be obtained by describing dynamics through a small number
of temporal basis functions. The presented approach extends a standard iterative Al-
gebraic Reconstruction Technique from the Linear Time Invariant (LTI) problem, to
a Linear Time Variant (LTV) problem, exploiting information about system dynamics
during contrast enhanced CBCT acquisitions. A LTT system has the standard form
b = A - x, where b is the experimental measures vector, A is the system matrix and
X is the vector of the unknowns. A contains, for each unknown, its contribution to
each measure. A standard image reconstruction problem can be expressed as a LTI
system, being b the vector of projections, A the system matrix containing the attenu-
ation path of each voxel to each projection ray and x the vector of voxel’s attenuation
coefficients. This LTI system can be transformed to a LTV system. In fact, during a
contrast enhanced CT acquisition, image voxels do not have static values over time,
due to the contrast medium flow. Therefore, the content of each voxel can be mod-
cled as a Time Intensity Curve (TIC). In order to reconstruct a TIC for each voxel,
dynamic information must be recovered from the projection dataset. In a standard
CBCT acquisition protocol the projections are taken on a Flat Panel Device (FPD),
which rotates together with the source, around the gantry axis. Therefore, each projec-
tion taken at a specific angle 6, strictly corresponds to a time instant ¢, and contains
a dynamic piece of information that can be exploited for the Time Intensity Curves
(TICs) reconstruction. Since two standard sets of CBCT projections (acquired with
and without contrast injection) are in use, a final dataset for TICs reconstruction was
created, containing only the contrast enhanced information. Naming the projection set
before contrast injection p® and the projection set after the contrast injection p, the

final projection set was extracted as the difference among them, p = p — p°, so that
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only the contribute of vessels was considered in projections. Moreover, a reduction
of the number of the unknowns was introduced taking into account only the vascular
voxels for the reconstruction. The TIC of each voxel was modeled as a linear combi-
nation of basis functions, whose weighing coefficients had to be estimated. The basis
functions set was chosen a priori, basing on the modeling needs and since they were
included in the a priori knowledge they were included in the system matrix. Then a
new system matrix was introduced, which combined the static weights and the samples
of the basis functions at each projection time ¢, for each projection at the angle 6y.
Once the system matrix was extended and the projection data set was adapted, the
iterative process was started leading, as a solution, to a set of basis functions coef-
ficients for each voxel. The TIC is then extracted as the linear combination of the
basis functions weighed by the coefficients. Once the TIC was reconstructed for each
voxel, the voxel was classified as belonging to “artery” or “vein” basing on his TIC. In
particular, the arterial Area Under The Curve (AUC,) was calculated as the integral
of the TIC from zero to half of the acquisition time and a threshold on this value was
imposed for arteries classification: if the value of AUC4 resulted over the threshold, the
voxel was classified as “artery” , differently it was classified as “vein”. This algorithmic
choice was due to the fact that the continue injection of contrast makes unobservable
the contrast wash-out phase. In fact, the contrast wash-out takes place only at the
end of the acquisition process, for all the vessels. Differently, the wash-in phase is
observable for each voxel, since it presents very different timing in arteries (wash-in
phase in the first few instants of the acquisition) and veins (wash-in phase in the last
instants of the acquisition). Several simulations were performed. A set of rectangu-
lar basis functions was chosen after some experimental trials, since it demonstrated
to be the most suitable. Two vessel-tree phantoms were built, with different morpho-
logical characteristics, both of them including several branches. The contrast transit
dynamics was modeled both as step dynamic and sigmoidal dynamic. The sigmoidal
dynamic modeling was introduced in order to make the simulation far more realistic
than the step dynamic simulation. Different simulations were performed varying the
dimensions of the projection dataset and the dimensions of the reconstructed 4D im-
age volume. Within the performed simulations, the Receiver Operating Characteristic
(ROC) curves were built in order to inspect the optimal threshold value on AUC 4 for
arteries classification. Once the arteries and veins were classified using the optimal
threshold value, error measures were evaluated on the reconstructed temporal profiles,
namely the Root Mean Square Error (RMSE) among the simulated and reconstructed
TICs and the ART objective function € over the iterations. Several indexes were cho-

sen for the classification evaluation, namely true positive, false positives, true negatives
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and false negatives for both arteries and veins classification. In addition, cross indexes
for the evaluation of exchange of arteries as veins classification (VA index) and vice
versa (AV index) were employed. The whole algorithm was implemented in Matlab
2015b on a Mac Book Air , 1.7 GHz Intel Core i7, 8GB DDR3 at 1600 MHz.
Results: For each experimental setup the median results was computed among all
the simulation trials. The arteries classification results can be summarized as follows:
median true positive value ranges from 0.9737 to 1 varying the experimental setup;
median true negative values range from 0.9937 to 0.9997; median false positive values
range from 0.0003 to 0.0063; median false negative values range from 0 to 0.0263. The
veins classification results can be summarized as follows: median true positive values
range from 0.8795 to 0.9885; median true negative values range from 0.9995 to 1; mean
false positive values range from 0 to 0.0005; mean false negative values range from
0.0115 to 0.1205. Therefore up to 90% of arteries and veins were correctly classified.
Those results show the suitability of the presented method for the recovery of contrast
dynamics, leading to good arteries and veins separation, even if only simple simulation
results are available.

Conclusions: In conclusion, a method for dynamic information recovery from stan-
dard contrast CBCT acquisition is introduced as a novel method, to our knowledge.
The recovered dynamic information allows the distinct classification of arteries and
veins. A standard iterative Algebraic Reconstruction Technique is extended from a
Linear Time Invariant System to a Linear Time Variant System, and a Time Intensity
Curve is reconstructed for each voxel. Several simulations were performed and good
results were obtained, even if at this stage real data could not be processed due to
very high computational times. In fact a brief study of the computational time trend
with increasing image dimensions was performed and the needed computational time
forecasted for a complete real data processing is up to a month. Several theoretical
solutions were proposed for this issue, mainly the exploitation of parallel computation
techniques. All the proposed solutions require implementation times, accurate theo-
retical studies and infrastructures that make the complete solution beyond the aim of
this thesis.



Sommario

Introduzione: La ricostruzione e la rappresentazione tridimensionale dell’albero vas-
colare risultano molto utili in molte applicazioni neuro-chirurgiche e stanno recente-
mente acquistando sempre piu rilevanza. La visualizzazione dei vasi sanguigni ¢ infatti
di primaria importanza sia nella fase pre-operatoria che nella fase intra-operatoria
in molte applicazioni quali la pianificazione chirurgica, la registrazione di immagini
multi-modali, la neurochirurgia assistita e la compensazione dello spostamento corti-
cale in seguito a resezione. La fase pre-operatoria richiede la localizzazione dell’albero
vascolare per la pianificazione dell’intervento, in modo da evitare un danneggiamento
vascolare con conseguente emorragia. Il piano pre-operatorio deve essere successiva-
mente essere integrato e registrato con la procedura intra-operatoria. A questo scopo
la Tomografia Computerizzata a Cone Beam (CBCT) rappresenta una facilitazione
consistente, poiché permette ’acquisizione di immagini direttamente nella sala opera-
toria, poco prima dell’inizio dell’intervento. In questo contesto applicativo, manca una
distinzione tra vene e arterie nell’albero vascolare ricostruito, nonostante la grande
importanza che tale distinzione avrebbe per il planning neuro-chirurgico e la diagnosi
di alcuni disturbi di origine neurologica, quali le Malformazioni Artero-Venose (MAV).
Nonstante la distinzione tra vene e arterie sia gia stata raggiunta analizzando scan-
sioni 4-dimensionali in perfusione (4D CTP), questa tipologia di acquisizione introduce
tempi di scansione molto lunghi, poiché vengono acquisiti molteplici volumi immagine
nel tempo. D’altronde, vista la molteplicita dei volumi acquisiti, questa tecnica con-
sente la costruzione di un profilo temporale per ogni voxel, anche se con consistenti
limitazioni di risoluzione temporale. Queste tecniche presentano limitazioni soprat-
tutto legate alla necessita di scanner dedicati, che non sono attualmente disponibili
nelle sale operatorie.

Questo lavoro di tesi risponde all’esigenza di introdurre una tecnica per il recupero
dell’informazione dinamica da acquisizioni CBCT standard con iniezione di mezzo di
contrasto, attualmente disponibili in sala operatoria.

Metodi: Per la nostra attuale conoscenza, questo lavoro di tesi introduce un approccio

teorico innovativo per il recupero dell’informazione temporale (i.e la quarta dimensione)
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da acquisizioni CBCT con mezzo di contrasto. Un protocollo CBCT con mezzo di con-
trasto prevede l'acquisizione di due dataset di proiezioni a raggi X: il primo senza
iniezione di mezzo di contrasto e il secondo con iniezione di mezzo di contrasto nella
carotide cerebrale. L’iniezione in carotide garantisce che il mezzo di contrasto scorra
prima nelle arterie e poi nelle vene. Da questi due dataset puo essere effettuata una
ricostruzione dell’albero vascolare tramite una Angiografia Sottrattiva Digitale (DSA).
Una volta ottenuta la DSA l'informazione dinamica deve essere ricostruita per ogni
voxel appartenente all’albero vascolare. In realta, il dataset derivante dalla CBCT &
assolutamente insufficiente per la risoluzione di un problema 4D completo che presenta
un numero di incognite dell’ordine N*, quindi consistentemente pii alto del numero
di misurazioni (ovvero di proiezioni sul Flat Panel Device (FPD) per ogni angolo di
campionamento) che risulta dell’ordine N3. Tuttavia, I'ipotesi alla base dell’approccio
¢ che le limitazioni fornite da una precedente segmentazione dell’albero vascolare e
la concentrazione trascurabile del contrasto nei tessuti circostanti riducono il numero
di incognite ai soli voxel appartenenti all’albero vascolare. Inoltre, ¢ ipotizzabile che
I’andamento temporale del contrasto in un voxel dell’albero vascolare sia molto regolare
e caratterizzato da due fasi distinte di aumento e di diminuzione del contrasto (nel caso
di iniezione di bolo) oppure da una sola fase di aumento del contrasto, con conseguente
mantenimento della concentrazione (in caso di iniezione continua). Conseguentemente,
la dinamica di ogni singolo voxel puo essere descritta da un numero finito di funzioni
base distribuite nel tempo. L’approccio qui presentato estende una soluzione iterativa
di tipo ART (Algebraic Reconstruction Technique) da un sistema Lineare Tempo In-
variante (LTI) ad un sistema Lineare Tempo Variante (LTV) sfruttando I'informazione
dinamica raccolta durante ’acquisizione CBCT con iniezione di contrasto. Un prob-
lema LTT é formulato come b = A - x, dove b ¢ il vettore delle misure sperimentali, A
é la matrice di sistema e x ¢ il vettore delle incognite. La matrice di sistema contiene il
peso di ogni incognita su ogni specifica misura sperimentale in b. Un classico problema
di ricostruzione di immagini da proiezioni puo essere ricondotto ad un sistema LTI, dove
b ¢ il vettore dei valori di proiezione, A ¢ la matrice di sistema (che contiene, per ogni
voxel, I'estensione del percorso effettuato da ogni raggio di proiezione in quel voxel) e x
é il vettore dei voxel dell'immagine da ricostruire. Il sistema LTI non é sufficiente per
la descrizione della dinamica temporale dei voxel, ma puo essere esteso in un sistema
LTV, mantenendo la linearita del problema. Infatti, durante un’acquisizione CT con
mezzo di contrasto, i voxel non hanno un valore costante durante il tempo di acqui-
sizione, proprio a causa del flusso del mezzo di contrasto. Di conseguenza, il contenuto
di ogni voxel puo essere rappresentato da un profilo temporale di intensita (TIC, Time

Intensity Curve). Per poter ricostruire un profilo temporale per ogni voxel, & neces-
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sario recuperare informazione di tipo dinamico dal dataset acquisito. Nel tradizionale
protocollo di acquisizione CBCT le proiezioni vengono acquisite su un FPD, che ruota
attorno all’asse di rotazione del gantry, in sincronia con la sorgente di raggi X. Ogni
proiezione viene acquisita ad uno specifico angolo 6, che corrisponde ad un istante di
tempo t;. Il susseguirsi delle proiezioni su FPD ad angoli diversi contiene un’ infor-
mazione di tipo dinamico che puo essere sfruttata per la ricostruzione delle Curve di
Intensita rispetto al Tempo (TIC) per ogni voxel. Ricordando che, secondo il proto-
collo di acquisizione di riferimento, vengono acquisiti due dataset, il primo, p°, senza
iniezione di mezzo contrasto, e il secondo, p® durante I'iniezione di mezzo di contrasto,
il set di proiezioni usato € stato estratto come la differenza tra i due dataset acquisiti,
in modo che nel dataset finale fosse contenuta solo I'informazione riguardante i voxel
che contengono mezzo di contrasto, ovvero i voxel appartenenti all’albero vascolare.
Avendo a disposizione tale dataset ¢ possibile operare una riduzione del numero delle
incognite, riducendole ai soli voxel appartenenti all’albero vascolare. I profili tempo-
rali dei voxel sono stati modellati attraverso una combinazione lineare di funzioni base
temporali, i cui coefficienti rappresentano il set di incognite per ogni voxel. Le funzioni
base, e le loro caratteristiche, vengono scelte a priori, e di conseguenza possono essere
inserite all'interno della matrice di sistema, come ulteriore pesatura delle incognite. E
necessario precisare che questa ulteriore pesatura introdotta dalle funzioni base € di tipo
temporale, non pit spaziale, e questa ¢ condizione imprescindibile per 1’elaborazione
dell” informazione dinamica. Ottenuta la nuova matrice di sistema e il nuovo dataset
di proiezioni, il sistema ¢é stato risolto attraverso l’algoritmo ART (Algebraic Recon-
struction Technique), una soluzione iterativa algebrica al problema di ricostruzione di
immagini da proiezioni. Al termine del processo, ad ogni voxel é stato associato un in-
sieme di coefficienti delle funzioni base e i profili temporali sono stati ottenuti tramite la
combinazione lineare delle funzioni base pesate attraverso i loro coefficienti. Una volta
ottenuti i profili temporali per tutti i voxel dell’albero vascolare, sulla base di essi i
voxel sono stati classificati come appartenenti alle arterie o alle vene. A partire da ogni
profilo temporale ¢ stata calcolata ’area sotto la curva “arteriosa” (Arterial Area Under
the Curve, AUC ) come l'integrale da 0 s alla meta del tempo di acquisizione. Su tale
valore ¢ stata imposta una soglia: se il valore di AUC4 é superiore alla soglia il voxel &
classificato come “arteria”, altrimenti come vena. Questa scelta é dettata dal fatto che
I'iniezione continua di contrasto non consente di registrare alcuna informazione sulla
fase di wash-out del contrasto, che avviene per tutti i vasi solo al termine del processo
di acquisizione. Diversamente, resta distinguibile per ogni vaso il fronte di salita, che
avviene nei primi istanti di acquisizione per le arterie, e negli ultimi istanti di acqui-

sizione per le vene. Per comprovare il corretto funzionamento dell’algoritmo sono state
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effettuate diverse simulazioni. Studi sperimentali hanno condotto alla scelta di un set
di funzioni base rettangolari, che si & dimostrato essere pitt adatto per una ottimale
convergenza alla soluzione. Sono stati computazionalmente costruiti due fantocci di
albero vascolare, che comprendessero alcune diramazioni. La dinamica del contrasto
¢ stata simulata sia a gradino che con andamento sigmoidale. La dinamica a gradino
¢ stata introdotta inizialmente per semplicita, ma ¢ successivamente stata affiancata
dalla dinamica sigmoidale, piti verosimile e pitt adatta ad una simulazione realistica
del flusso di contrasto nei vasi cerebrali. Sui risultati delle simulazioni effettuate sono
state costruite delle curve ROC (Receiver Operating Characteristic) per poter indi-
viduare il valore ottimale del parametro di soglia su AUC'4 per la classificazione delle
arterie. La valutazione della classificazione di arterie e vene é stata condotta sulla base
di diversi indici: i veri positivi , falsi positivi, falsi negativi e veri negativi per arterie
e vene; un indice di misclassificazione delle vene in arterie (indice AV); un indice di
misclassificazione delle arterie in vene (VA). Inoltre, altre misure di errore sono state
valutate sui singoli profili temporali dei voxel: in particolare sono stati valutati il Root
Mean Square Error (RMSE) e la cifra di merito minimizzata dall’algoritmo ART ad
ogni iterazione €. L’intero algoritmo € stato implementato in Matlab 2015b su un Mac
Book Air , 1.7 GHz Intel Core i7, 8GB DDR3 at 1600 MHz.

Risultati: Per ogni set-up sperimentale considerato sono stati calcolati i valori mediani
tra le varie simulazioni effettuate. La classificazione delle arterie ha prodotto i seguenti
risultati: il valore mediano (sulle varie simulazioni) dei veri positivi va da 0.9737 a 1;
il valore mediano dei veri negativi va da 0.9937 a 0.9997; il valore mediano dei falsi
positivi va da 0.0003 a 0.0063; il valore mediano dei falsi negativi va da 0 a 0.0263. La
classificazione delle vene ha prodotto i seguenti risultati: il valore mediano (sulle varie
simulazioni) dei veri positivi va da 0.8795 a 0.9885; il valore mediano dei veri negativi
va da 0.9995 a 1; il valore mediano dei falsi positivi va da 0 a 0.0005; il valore mediano
dei falsi negativi va da 0.0115 a 0.1205. Si evince dai risultati che pita del 90% dei
vasi viene correttamente classificato. Questi risultati, benché ottenuti su semplici sim-
ulazioni, mostrano l'idoneita del metodo presentato per il recupero dell’informazione
dinamica da acquisizioni CBCT con mezzo di contrasto e per la successiva classifi-
cazione dei vasi in arterie e vene.

Conclusioni: In conclusione, per la nostra conoscenza attuale, in questo lavoro viene
introdotto un metodo innovativo per il recupero di informazione dinamica da acqui-
sizioni CBCT standard con mezzo di contrasto. Il recupero di tale informazione con-
sente la classificazione di arterie e vene all’interno dell’albero vascolare. Una soluzione
iterativa algebrica di ricostruzione da proiezioni é stata applicata ad un sistema Lin-

eare Tempo Variante e per ogni voxel & stato ricostruito un profilo temporale. Sono
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state effettuate numerose simulazioni che hanno prodotto buoni risultati che hanno
confermato il corretto funzionamento del metodo. Purtroppo il tempo previsto di cal-
colo per 'applicazione dell’algoritmo ad un dataset reale é risultato eccessivo rendendo
impraticabile (viste le infrastrutture a disposizione) un test su un dataset reale. I
stato effettuato un breve studio sull’evoluzione del tempi di calcolo all’aumentare della
dimensione del problema, che ha portato alla previsione di circa un mese di tempo nec-
essario alla computazione su un dataset reale. Sono state proposte numerose soluzioni
a questo problema: la totalitd di queste soluzioni richiede infrastrutture, tempi di

implementazione e studi teorici che esulano dallo scopo di questo lavoro di tesi.






Chapter 1

Introduction

Multimodal imaging is truly helpful in many neurosurgical fields such as tumor surgery
[20], radiosurgery [46] or functional surgery [3]. Among them, the implantation of Stere-
oElectroEncephaloGraphy (SEEG) intracerebral electrodes and Deep Brain Stimula-
tion (DBS) are fairly new procedures particularly demanding as to imaging support
to planning and navigation [9, 3, 43]. Within multimodal imaging for neurosurgery
the three-dimensional (3D) visualization of brain vasculature is gaining more and more
importance. The vessels play a significant role in both the pre-operative and intra-
operative phase, for planning, multimodal image registration, image guided neuro-
surgery and brain shift compensation, among many other purposes. In particular in
the planning scenario, neurosurgery requires the tracking of the whole vascular tree in
order to avoid vessel hurting. Namely, Cone-Beam-Computed-Tomography (CBCT)
represents a powerful facility capable to acquire images also in the operation room,
shortly before surgery. In this context, the distinction between arteries and veins
within the reconstructed vascular tree is still lacking, although it would be very im-
portant for advanced stereotactic planning, intra-operative image guidance and the de-
tection of neurological diseases such as ArteroVenousMalformations (MAV). Although
the raw projection data from contrast enhanced CBCT bring dynamic information of
the contrast medium flow in vessels (arteries, next capillaries, next veins), common
angiographic reconstructions completely overlook dynamics, since they share the same
reconstruction methods of static images, as if the contrast was steadily and homoge-
neously distributed during the scan. This approximation holds on the purely morpho-
logical side, since 360° scans are performed (compared to the theoretical minimum of
180°), during which all vascular segments are filled with contrast for a significant per-
centage of time. The objective of this thesis is to design and implement an algorithm

capable to retain the dynamic information in the contrast enhanced CBCT acquisition,
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leading to an arteries and veins distinction and representation. In the next Sections
of this chapter the importance of vessel tracking in neurosurgical applications is delin-
eated, and the vessel tree reconstruction technique exploited in this work is presented,
in order to introduce fundamental concepts. In addition, some 4D CT based arteries

and veins segmentation approaches present in literature are introduced.

1.1 Vessel Tracking in Neurosurgery

Vessel tracking is of primary importance in many neurosurgical procedures, such as
tumor resection, Deep Brain Stimulation (DBS), cortical resections, StereoElectroEn-
cephaloGraphy (SEEG) and many other procedures. Vessel tracking can benefit both
the intra-operative or pre-operative surgical phases, depending on the specific inter-
vention.

In [14] vessel tracking in intra-operative microscopic video sequences was exploited
for the cortical displacement estimation. The cortical displacement often occurs during
resection procedures, and its estimation represents a fundamental problem, especially
when dealing with spatially accurate procedures co-registered to preoperative image
studies [45]. The proposed solutions often relies on vessel localization and tracking in
many imaging techniques. Moreover the brain shift represents a source of error for the
overlap of pre-operative and intra-operative images and for this reason many vessel-
based registration techniques were developed for an accurate image-guided procedures
[47, 44].

The vessel tracking can affect also the preoperative phase. In fact, many surgical
operations require an accurate preoperative planning and a possible example is the
placement of StereoElectroEncephaloGraphy (SEEG) intra-cerebral electrodes, appli-
cation of choice in this work. The SEEG method consists of the implantation of depth
electrodes (usually 5 to 15, 11 on average) in a stereotactic orthogonal framework [19]
(Figure 1.1). SEEG allows depth electrode recordings and it is of primary impor-
tance in the treatment of drug resistant epileptic patients. In fact, with drug resistant
epilepsy, the disconnection or removal of the Epileptogenic Zone (EZ) is the only valid
alternative. Those interventions need an accurate planning, due to the complexity of
the intervention decisions. In many cases the planning is based on non-invasive clinical
investigations [27] but in about the 5% a SEEG is needed: in particular the SEEG plays
an important role when the surgical resection for treatment requires a very accurate
localization of the EZ[50, 51].

In addition, when SEEG is needed, also the placing of such electrode arrays needs a

very accurate pre-surgical investigation and planning [13]. Due to the insertion of the
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electrodes in the brain, an accurate targeting of brain structures must be performed.
Moreover it requires accurate planning in order to avoid vessel hurting and subsequent
intracranial bleeding.

The clinical interest in vessel tracking have led to a strong research interest in
reconstruction and analysis of the whole vascular tree. Many segmentation and recon-
struction techniques have been proposed until today [28], but all of them are beyond the
scope of this thesis. In this work, the Digital Subtraction Angiography is the method
of choice for the vascular tree reconstruction. In fact, the CBCT DSA acquisition pro-
tocol allows the recovery of dynamic information, which is commonly overlooked in the
other approaches. Cardinale et al. first described the clinical use of 3D Cone-Beam-
Computed-Tomography (3D CBCT) Digital-Subtraction-Angiography (DSA) obtained
processing the images scanned with the O-arm4 (]9, 10, 11]), (Medtronic, Minneapolis,
Minnesota). The DSA approach will be presented in detail in Section 1.2.

1.2 Digital Angiography

Angiography has in origin been carried on using standard contrast radiography. Since
the attenuation of the blood and soft tissue are too similar to be distinguished the
use of contrast medium is needed for the visualization of blood vessels. Conventional
angiography requires the positioning of a catheter directly into a vessel, in order to
get enough contrast. The introduction of a catheter decreases the safety of the proce-
dure and requires longer treatment lasting, including hospitalization, however in intra-
operative applications this does not constitute an issue. When the contrast medium
is non-selectively injected in the vascular tree the image contrast is not enough, since
the contrast medium is too diluted, making necessary a subtraction method. Those
methods subtract high contrast structures (i.e. bone or different tissue interfaces) to
the data set acquired during the contrast medium flow. Three main techniques can be

considered among the subtraction methods [6]:

e Energy subtraction: exploits the different attenuation of tissues as a func-
tion of X ray. K-edge subtraction is based on directing two beams with energy
respectively immediately above and below the absorption value of iodine. The
subtraction of images obtained with the two beams will lead to high contrast

structures cancellation;

e Depth subtraction: the depth information is exploited in order to eliminate the
contribution of tissue or bone structures which are superimposed to the vascular

tree;
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Figure 1.1: Multimodal scene: the multimodal 3D Slicer scene, an image set including
models of the pial surface (white, with the precentral and postcentral gyri in blue and
red, respectively), the SEEG electrodes (yellow, with brown entry site markers and
labels), and the 3D DSA cerebrovasculature (green, semitransparent).
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e Temporal Subtraction: two datasets must be acquired. The first one, called
bone mask, is acquired without the injection of contrast medium. The second one
is obtained acquiring after the injection of contrast medium. When the bone mask

is subtracted to post contrast image the high contrast structures are cancelled,

leaving only the vasculature to be visualized.

Figure 1.2: Angiographic Image: and X-ray image was acquired during contrast
medium transit and the bone was subtracted leaving almost only the vascular tree.

1.2.1 Temporal Subtraction with Digital Radiography

Temporal subtraction with digital radiography accounts many differences with respect
to conventional film subtractions. Firstly, the logarithm of the intensity is used for

subtraction instead of the intensity itself. Moreover the process becomes significantly
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faster, since the images (including the mask) can be stored in the computer memory
and a mask can be chosen for subtraction optimization, among many others . Nonethe-
less, the temporal reconstruction has motion effects limitations. In fact, several seconds
elapse amongst the bone mask acquisition and the injection of contrast with the sub-
sequent data acquisition. If in this lapse of time, patient motion occurs, the position
mismatch leads to image distortion. This type of artifact can however be compensated
and corrected through registration algorithms. A DSA based on temporal subtraction
is the vessel reconstruction of choice in this work.

The DSA considerably improves the quality of examination of the vessels and ob-
tains good images of the arteries. Moreover DSA can be obtained with intra-arterial
selective contrast injection and this particular case allows a strong enhancement and a
good contrast definition despite the use of a small quantity of contrast material. The
DSA technique addresses two CBCT acquisitions: the first one is obtained without
contrast medium injection and it detects the bone mask; the second one is obtained
scanning the images immediately afterwards the injection of contrast medium, detect-
ing the additional signal resulting from the vascular tree. Once both the datasets have
been acquired, reconstruction algorithms can be used in order to obtain the 3D recon-
structions. Since the image reconstructed starting from the contrast medium dataset
contains additional information with respect to the one constituting the bone mask,
the bone mask is subtracted from the reconstruction addressing contrast medium flow.
Figure 1.3 shows a DSA obtained subtracting two volumes acquired with the O-arm
Medtronic [36].

1.3 Arteries and Veins distinct separation

Distinct visualization of arteries and veins can be advisable both for advanced stereo-
tactic planning and intra-operative image guidance. In addition it can be very useful for
the detection of neurological diseases such as Arteriovenous malformations (MAV) [33].
An arteriovenous malformation consists in a anomalous connection between arteries and
veins, that bypasses the capillary system. Since the presence of such malformations
can lead to a serious hemorrhage, their detection is important and a distinction among
arteries and veins can facilitate the diagnosis of such neurological conditions. Several
methods for arteries and veins separation have been proposed, based on the use of both
Magnetic Resonance Angiography (MRA) or 4D CT datasets. The MRA techniques
mainly exploit correlation algorithms [5], fuzzy connected object delineation principles
[33] and many other approaches [42, 32, 31]. However MRA processing techniques are

heavily different from those based on CT, mainly due to heavily different acquisition
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Figure 1.3: A Digital Subtraction Angiography obtained subtracting the bone mask to
the contrast enhanced CBCT reconstruction, obtained with the O-arm4, Medtronic,
Minneapolis, Minnesota
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protocols, therefore a deep study of those technique is beyond the scope of this work,

and no further details are here presented.

Another imaging method exploited for arteries and veins differentiation is the 4D
computed tomography (4D CT). 4D CT acquires many image volumes while the con-
trast medium is flowing in the vessels. In this way several volumes changing with time
are acquired. In addition, 4D Computed Tomography Perfusion scans can be obtained
performing a 4D CT during contrast medium injection, and this very last imaging
method is particularly suitable for arteries and veins segmentation techniques. Here
some 4D CT based arteries and veins segmentation methods found in literature are

presented.

In [30] a method based on the unsupervised classification of the Time Intensity
Curve (TIC) is introduced, producing the Artery Input Function (AIF) and Venous
Output Function (VOF). The TIC is the image intensity variation over time for each
voxel. The AIF describes the contrast medium input to a tissue as a function of time
[8] while the VOF describes the output of the contrast medium from the tissue over
time. A 4D CT data, comprising 24 volumes, was acquired in a time window of 200
s while 40 ml of non ionic contrast were injected. The first volume was thresholded
between 10 and 100 HU, in order to mask the bone and the air outside the whole
head. Only the remaining pixels were kept for the study. The first 6 seconds were used
for the baseline computation, that was subsequently subtracted in order to exclude
the contribution of the non-vessel tissue. The obtained curves in which the baseline
was subtracted were named Time Concentration Curves (TCC). Moreover the Areas
Under the Curve (AUCs) was computed for all the voxels and the voxels showing at
least 95% of the highest AUC were kept. Then K-means clustering was applied and
three clusters were identified, namely the arteries the veins and the vessels outside the
brain. Some morphological operation were applied in order to remove tracts smaller
than 25 voxels, due to noise. The result obtained is shown in Figure 1.4. In conclusion
this work showed preliminary results in the feasibility of the K-means clustering for

the vessel detection and segmentation.

In [37] the dataset in use consists in a 4D CT perfusion (CTP) scan. Moreover a CT
angiography (CTA) is acquired for the vascular segmentation. In fact the CTP is more
noisy (due to the reduced radiation dose) and cannot enhance vessel from background.
All the 4D CTP volumes are registered using the first volume as a reference. The
bone is eliminated using the time-profiles of the CTP scans. Since the 4D CT acquires
several volumes over time, for each voxel a time-intensity temporal profile is available.
The Gaussian first derivative, very well known for edges detection, is applied to those

time profiles, showing the amount of intensity change at a specific time step. In fact,
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contrast enhanced vessels show a large amount of intensity change with respect to
the background, that remains static. When the vasculature is segmented the Time
To Peak (TTP) information is exploited for arteries and veins separation. The zero
crossing of the first temporal derivative of the time-intensity profiles, (correspondent to
the TTP), is exploited for the creation of a zero crossing image. The zero crossing image
is eroded to select only the largest vessels and the arterial peak and the venous peak
are identified as the highest peaks. Subsequently all the voxels were labeled as artery
or vein depending on their zeros crossing being similar to an arterial or a venous zero
crossing. This methods was applied on the CTP scans of 20 patients. For quantitative
evaluation two expert observers were asked to label arteries and veins. The ground
truth was based on both the observers consecutively, and they were compared to each
other. The automatic segmentation was compared to both the observers segmentations,
and accuracy, specificity, and sensitivity were computed. Sensitivity values between
0.928 and 0.958 were obtained, together with specificity values between 0.964 and 0.985
and accuracy values between 0.961 and 0.963. A separate arteriogram and venogram
was constructed.

In conclusion, methods presented in the literature to separate the brain arterial
and venous trees rely on enhanced 4D scans, though with heavy limitations in time
resolution, tentatively encompassed by the post-processing techniques. Limits to these
attempts are mainly in the need of dedicate scanners, not currently available in the
clinical and Operating Room (OR) environment. Hence, space is open to approaches,
as the one proposed in the present thesis work, attempting to recover the dynamic

information from standard contrast enhanced scans.
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Figure 1.4: Volume rendering of the arteries (red) and veins (blue) obtained with the
K-means clustering by Laue et. al. Image taken from [30]



Chapter 2

Methods

In this Chapter, after a brief Algebraic Reconstruction Technique explanation, the the-
oretical bases of the proposed method are presented. Moreover the problem dimension

will be analyzed, in order to verify the feasibility of the proposed approach.

2.1 Algebraic Reconstruction Technique

The Algebraic Reconstruction Technique (ART), is a Discrete-Discrete algebraic itera-
tive approach (see Appendix A). The advantages of these approaches are the possibility
to handle with uneven sampling or incomplete data and the good immunity to non ide-
alities, such as metal artifacts. This class of algorithms is especially employed in CT
reconstructions where, thanks to the high data statistics, the statistical modeling of
the acquisition process can be neglected. ART relies on the method of projections by
Kaczmarz [24]. In the general reconstruction problem, J unknown voxels must be re-
constructed. Recalling a general formulation of the projection problem (See Appendix

A), the i'" projection ray produces a projection value p;. The value p; is defined as:

pi=In (%) (2.1)

where Iy, is the initial energy of the " X-ray and I, is the energy of the i** X-ray coming
out from the sample tissue (Figure 2.1). The reconstructed image is constituted by
an attenuation coefficient value p; for each j* voxel. The projection value p; can also

been expressed as the sum of the 1; values weighted by the w; ; coefficients, as follows:

Di = sz‘,j/lj (2.2)
J
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Figure 2.1: Schema of a generic X-Ray projection

The w; ; coefficient weights the contribution of the j™ voxel to the i*" projection.
Being J the total number of image voxels, the entire image is defined by a J-dimensional
vector containing the p; values and it can be represented as a point (p) in the J-
dimensional space (i.e. the image space). Each equation of the type of Equation 2.2
corresponds to an hyperplane in the J-dimensional space and the solution (i.e the point
representing the image) is the hyperplanes intersection [25|. The iterative process is
started from an initialization point in the .J-dimensional space. Each point in the J-
dimensional space is identified by a J-dimensional vector. The initialization vector p,
is orthogonally projected on the first hyperplane, i.e the first constraint. The obtained
image p, is then orthogonally projected on the second constraint and so on (Figure
2.2). In a single iteration, all the constraints are exploited for the image update.
After a predefined number of iterations, the solution point is identified by the final J-
dimensional vector. In order to understand the mathematical formulation of the ART
update law we can consider the geometrical representation in the two-dimensional case,
with two-pixels and two projections, i.e. two equations. In the 2-dimensional space, the
hyperplanes are identified by straight lines. With reference to Figure 2.2 we graphically
derive the update equations. The iterative process is started from the initialization
point identified by the vector pg. In order to satisfy the first constraint, the vector
o must be orthogonally projected on it, i.e it must be orthogonally projected on the
line representing the first equation p - wy = p;. The projection on the first constraint

identifies the vector py. The weight vector for the first constraint is identified by the



2.1 Algebraic Reconstruction Technique 13

vector wy, which has a direction orthogonal to the equation. To get the value of p; we
must subtract the vector ﬁ , (i.e. the orthogonal distance between the initial guess
and the first constraint) to po. The direction of the vector 1@ is identified by the unit

vector:

w]

VWi - w1

The norm of the vector Jﬁ is computed as the difference between the vector @
and the 58 :

(2.3)

lw,| =

AB = 0D - OC (2.4)

The vector OB is the projection of g, on the weight vector w,, and since the projection

operation coincides with the scalar product:

)]
OD = \/ﬁg—j - Jawn | (2.5)

w1 - Wy

The vector Oi% is computed in the same way as:

W]
OC = fﬁ | (2.6)

where ;Ti W) = p1, then

OC = —2 . |w,| (2.7)

w1 - Wy
Finally, subtracting 58 to 53:
_>
ABo Howl (2.8)
wy - W wi - W
%
_ < ﬁo wy P1 > |w| (2.9)
w1 - W w1 - Wy
— -
_ (ﬁo w1 pl) . w1 (210)
wi - Wy w1 - Wy

and the p, results:

M1 = Ky + u_]_> p— Wi (211)
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Figure 2.2: Graphical illustration of the ART solution iteration. Top: the two lines
represents two problem constraints in the 2-dimensional problem. The intersection
of the two lines represents the exact problem solution. The vector p, identifies the
initialization point in the image space, the vector p, is the image vector obtained after
a first update, the vector p, is the image vector obtained after the second update. The
projection steps are qualitatively illustrated; Bottom: the steps and the vectors needed
for the update computation are illustrated.
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Generalizing for a generic u,, value at the n'" iteration and a generic projection p;,
the ART iteration updating is:
_>
(ﬁn Cw; — pi) —

- W, 2.12
Hpi1 = Hy + AT (2.12)

The convergence of ART depends on the relative position of the hyperplanes. The
more the hyperplanes are orthogonal to each other, the faster will be the convergence.
Otherwise, the more the hyperplanes are parallel to each other, the slower will be the
convergence. To increase the convergence velocity two different variations on ART has

been proposed:

1. Simultaneous Iterative Reconstruction Technique (SIRT): the value of p is changed
only after having explored all the equations. The updating term for a specific

voxel is the average of the updating terms for that voxel [48];

2. Simultaneous Algebraic Reconstruction Technique(SART): the updating terms

are simultaneously applied for all the rays in a specific projection [2].

2.2 Contrast Dynamics Recovery: the ART 3.5 D Al-

gorithm

In this Section the theoretical approach for the recovery of temporal (i.e. the 4 di-
mension) information from dynamic contrast projection is introduced as novel method,
to our knowledge. Clearly, a standard set of CBCT projection over 360°, taken while
the contrast medium is flowing through the vascular tree from arteries to veins, is by
far insufficient to solve a full 4D problem: the number of 4D unknowns (i.e. volume
changing over time, order N*) is consistently higher than the number of measures (i.e.
CB projections on a 2D flat panel times angular/temporal samples, order N?). How-
ever, the working hypothesis is that the constraints given by a preliminary vascular
segmentation and the negligible contrast of the surrounding background, thanks to
digital subtraction, reduce unknowns to the vascular voxels. Moreover, the predictable
time course of the contrast in a vascular voxel is highly regular and characterized by
a wash-in and a wash-out phase or in alternative, for continue contrast injection, by
a wash-in phase only. Hence, further reduction of the number of unknowns can be
obtained by describing dynamics through a small number of basis functions.

The presented approach extends an iterative algebraic solution from a Linear Time

Invariant (LTT) to a Linear Time Variant (LTV) System exploiting information about
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system dynamics during contrast enhanced CBCT acquisitions. The Algebraic Recon-
struction Technique was extended to the case of dynamic image reconstruction. In this
way a Time Intensity Curve (TIC) was reconstructed for each voxel, instead of a grey
value. The vessels were therefore classified as “artery” or “vein” basing on their voxels

TICs. A general LTI System is formalized as:

p=Wu (2.13)

where W is the system matrix, p is the unknowns vector and p is the measures

vector. Avoiding the matrix formulation, the system can be rewritten as :

J 241
Pi = Zwm . ,uj = |wi71...w,~7J| ... (214)
=1 125

where for the image reconstruction problem p; is a single projection element, the
terms w; ;...w; y are the elements of System Matrix W and the terms p;...p; are the
image voxel values to be reconstructed. Equation 2.14 allows to reconstruct static 3D
images (i.e. the vector u) from standard datasets obtained without contrast medium.
In a standard CBCT acquisition protocol, the projections are taken on a Flat Panel
Device (FPD), which rotates together with the source, around the gantry axis. There-
fore, each projection taken at a specific angle 0, strictly corresponds to a time instant
tx. Moreover each projection at the angle 6, leads to (N x M), projection values,
where N and M are the dimensions of the FPD in pixels. Therefore, the projection
index ¢ is defined by i = (0, an,,by,), where a,, and b, are the horizontal and verti-
cal displacements on the FPD, while 6, is the focal spot rotation angle, which is the
relevant parameter in the dynamic problem.

The projection angle 6y is discrete and the angular displacement between two FPD

projections is equal to A6:

O0p = kA0 k=12 K (2.15)

with K number of projection angles. The index k£ depends on the time instant and so

the trend of 6, orderly follows the projection timing ¢ (Figure 2.3).

0, = k(ty) A (2.16)

Exploiting this piece of information, normally not accounted for in static problems,
a Time Intensity Curve (TIC) was extracted for each voxel. The TIC of each voxel was

modeled as a linear combination of basis functions, whose weighing coefficients had
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Figure 2.3: Schema of the acquisition geometry seen from above downwards.
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to be estimated. The basis functions set was chosen a priori, basing on the modeling
need, therefore they were included in the system matrix W. A new system matrix
W, was introduced which combined the static weights w;; and the samples of the
basis functions at each projection time t;. To understand how the system matrix was
expanded, and the LTI problem can be rephrased, we can rely on some simple mathe-
matical manipulations. The term p;, which was a grey value in the static problem, was
transformed in a time function for the dynamic problem, the TIC. The TIC of each
voxel j was then expressed by p;(¢). This time curve of each voxel was then modeled

through a linear combination of basis functions, as previously introduced:

B qo(t)
pit) = dip-apt) = |djo ... dip|-| . (2.17)

b=0 a5 (t)
where the coefficients d;;, weight the basis functions. The set of weights d,; corre-
sponds to the new set of unknowns, for a number J of angiographic voxels. Substituting
the term f1;(t) (expressed in Equation 2.17) in the LTI problem formulation (Equation

2.14), the following expression is obtained:

J J B
=Y wige () =) wiye (Z djp - Qb(tk)> (2.18)
J=1 j=1 b=1

Rearranging Equation 2.18, the following expression is obtained:

B
Pi = Z Z qb(tk) . wm . dj7b (219)

j=1 b=1

Grouping all the terms known a priori a new system matrix was defined, with

elements:
B
wi; = wig - a(te) (2.20)
b=1
In vector notation:
w?,j =wij|q(ts) - gB(te) (2.21)

Rephrasing Equation 2.19

J B
pi=Y_> wi-dj (2.22)

j=1 b=1
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Figure 2.4: Graphical illustration of the integration kernel (i.e the weight w; ;) compu-
tation for the projection ray ¢ crossing the voxel j.

and in matrix notation

P =Wap (2.23)

where Wy is the new Dynamic System Matrix. Therefore the proposed method
retrieves dynamic information from a standard linear algebraic problem, which can be
solved by a reconstruction algorithm.

Since the entire problem was reduced to a linear system, based on the adhibition
of basis functions, the approach of this work is attributable to a Discrete-Discrete ap-
proach, introduced in Appendix A. In particular, within this approach, five components

must be chosen, and in this work the following choices were made:

1. A model of the physics of the measurement process: the integration
kernels w; ; implies an attenuation characteristics based on the length of the
path that a projection ray ¢ runs in a specific voxel j. The integration kernel

computation is illustrated in Figure 2.4.

2. A model of the measurement uncertainty: no hypotheses on the statistics

of measure uncertainty were made because the high CT statistics does not require
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additional hypotheses.

3. A set of basis functions: since the dynamics was introduced, temporal basis
functions were chosen (whereas normally spatial defined basis functions are used
in static 3D reconstructions, aiming at define a spatial linear combination for the
image to be reconstructed). A set of rectangular basis functions was chosen for
the simulations, as illustrated in Figure 2.5. Those basis functions proved to be
the most suitable among rectangular, triangular sigmoidal and sinusoidal basis
functions. The choice of rectangular basis functions was led from an experimental

trial, explained in Section 2.3.1.

4. An objective function: the ART objective function is the difference between
the projection data acquired scanning the patient and the simulated projection
obtained applying a mathematical projection operator & to the reconstructed
image at the considered iteration. Therefore, naming p, the image containing
the temporal profiles obtained at iteration n and the projection data p, the ART

objective function to be minimized is:

e=[p—2W (2.24)

5. A numerical algorithm: an iterative algorithm was chosen, and in particular
the Algebraic Reconstruction Technique. As previously introduced in Section 2.1
the advantage of this solution is the possibility to handle with uneven sampling or
incomplete data and to be immune to non idealities, such as the metal artifacts.
Moreover this class of algorithms is specially employed in CT reconstructions,
where thanks to the high statistics, the statistical approach can be avoided. The
ART iteration law takes the form:

(ﬁnu_)z_pz) —
— =

=pu, + W, 2.25
I’l’nJrl My, w, - w, ( )

where n is the current iteration number.

2.3 Problem Dimension Analysis

The problem dimension is defined by two factors mainly: the acquisition protocol and
the dimensionality of the dynamic modeling. Concerning the acquisition protocol,
the CBCT standard acquisition protocol of the O-ARM4 (Medtronic, Minneapolis,
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Minnesota) [36] is taken as reference, and the acquisition parameters are listed in
Table 2.1.

Table 2.1: Medtronic O-ARM4 acquisition parameters

Image dimension in voxels (NZ .., .NY . NZ ) (512,512,192)
Voxel Spacing (wyoger) 0.415 mm
Slice thickness (i) 0.833 mm
FPD dimension in pixel (N x M) 384 x 1024
FPD Pixel Size (wpizer) 0.388
Rotation Radius (R) 647.7 mm
Distance of FPD surface center from iso-center 520.7 mm
Number of Projections (/Ny) 391
Minimum Angle (6,,in) 0°
Maximum Angle (6,,4z) 360°
Acquisition time (77) 12 s

2.3.1 Basis Functions Dimensioning

A brief study on the basis functions suitability for the contrast flow modeling was
performed. Three basis functions sets composed of ten basis functions with different
shapes were tested for contrast transit modeling, namely a triangular, a rectangular
and a sigmoidal basis functions set (Figure 2.5). Several contrast flows were simulated

with a sigmoidal trend as:

I(t) = % + Lnin (2.26)

where [,,;, and I,,,, are the minimum and maximum voxel intensity, which here
were set to [, = 0 and I,,,, = 1. Moreover the parameter k is a sigmoidal slope
parameter randomly chosen between 0 and 1 for each contrast flow. The parameter ¢,
was randomly chosen as a time instant between Os and the acquisition time expressed
in seconds. Each randomly simulated contrast flow was reproduced with a linear com-
bination of basis functions ¢ = [¢1, ¢2..gp|, in order to get an estimated contrast flow

~

I(t) equal to :
B
i) =Y ds(t) (227)
i=1
where the terms d; are the basis functions coefficients and B is the number of basis

functions employed for the curve modeling. Enclosing all the time samples in a vector,

Equation 2.27 can be rewritten in the vectorial form as:
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I=d-q (2.28)

where T is a [1 x N, vector (with N, number of time samples), d is a [B x 1] vector
and q is a [Ny X B] matrix.
The basis functions coefficients were computed starting from the randomly gener-
ated contrast flow I as: .
d— —<q)_ 1 (2.29)
(@~'-q
so that the estimation of the randomly chosen contrast flow became:

j_@'-Iq (2.30)

(@)7'-q

Afterwards, for each time profile, the Root Mean Square error was computed as:

e Vi U0~ 1)

N (2.31)

This process was repeated for a set q; of triangular basis functions, a set qg of
sigmoidal basis functions and a set q, of rectangular basis functions (Figure 2.5). The

obtained median RMSE results for each basis functions set are reported in Table 2.2.

Table 2.2: Median RMSE values for TIC modeling with triangular, rectangular and
sigmoidal basis functions

Triangular Rectangular Sigmoidal

Median 0.0263 0.0263 0.0051

RMSE 25-quantile 0.0261 0.0261 0.0047
25-quantile 0.0264 0.0264 0.0058

Standard Deviation 0.0018 0.0016 0.0010

It is easy to observe that the sigmoidal basis functions are the most suitable for a
sigmoidal TIC modeling. Depending on the results of this study, the sigmoidal basis
functions seemed to be the most appropriate. However, the coefficients computation
through the matrix inversion (described in Equation 2.29) is remarkably different from
their iterative computation based on the objective function minimization. Therefore,
an additional simple trial was performed in order to test the three basis functions
sets (q¢, Qs, and q,) suitability during the iterative TIC reconstruction. The iterative

reconstruction of hundred temporal profiles was performed through the three basis



2.3 Problem Dimension Analysis 23

functions sets, and the RMSE errors were again evaluated on those profiles. The RMSE
distribution was tested for normality through the Kolmogorov-Smirnov normality test,
and the null hypothesis was rejected at the 5% significance level, meaning that the
distribution proved not to be normal. Therefore, the median of the RMSE values was
chosen as the reference index and it was computed starting from the whole set of RMSE
values. The RMSE results from the iterative TIC reconstruction are reported in Table
2.3.

Table 2.3: Mean RMSE values for TIC modeling with triangular, rectangular and
sigmoidal basis functions. TICs are computed with the iterative approach

Triangular Rectangular Sigmoidal

Median 0.1139 0.0220 0.0328

RMSE 25-quantile 0.0939 0.0206 0.0287
75-quantile 0.1252 0.0229 0.0362

Standard Deviation 0.0409 0.0059 0.0059

It easy to observe that the rectangular basis functions set is far more appropriate
when dealing with the iterative TIC reconstruction. Therefore, basing on the combi-
nation of the two results the set of rectangular basis functions was chosen for the time
profile modeling.

Once the shape of the basis functions had been chosen, the number of basis functions
to be employed was investigated. Hundred randomly generated TICs were modeled
using rectangular basis functions sets, containing a number of basis functions varying
from 1 to 50. The RMSE trend among the TICs and the basis functions modeling
was computed for each set and the RMSE trend with respect to the number of basis
functions employed was inspected. The RMSE trend over the basis functions number
(B) is shown in Figure 2.6. With reference to the obtained results a value of B = 10
was chosen. In fact, from B=10 to B=17 the RMSE value oscillates, therefore there is
no need of choosing a B higher than 10 and smaller than 17. On the other hand, being
B=17 the first value of B that guarantees a stable lower RMSE, choosing it would
almost double the computational complexity with respect to B=10. Moreover a RMSE
value of 0.02 was evaluated low enough for our purpose, and the first RMSE value under
0.02 is obtained with B=10. Therefore a basis functions set with 10 basis functions
represents a good compromise between TIC modeling accuracy and low computational
complexity. Moreover, as will be explained in Section 3.2, the criterium for arteries
and veins separation is based on the computation of the TIC’s Arterial Area Under the
Curve (AUC}), which is defined as the integral in time of the TIC curve from 0 to the
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Figure 2.5: Basis Functions evaluated for the temporal profiles modeling. Top: Sig-
moidal Basis Functions; Middle: Rectangular Basis Functions; Bottom: Triangular
Basis Functions.
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Figure 2.6: The trend of the median RMSE among the randomly generated TICs and
their modeling through a rectangular set of B basis functions with a number B varying
from 1 to 50.

first half of the Acquisition Time T, /2. A threshold on the AUC4 with respect to total
AUC of the TIC is imposed for arteries classification. It is highly probable that errors
on TIC modeling would be made uniformly over the time samples, and therefore, being
the AUC, compared with the total AUC of the TIC, a small error in TIC modeling

would not affect much the AUC 4 thresholding for arteries classification.

2.3.2 LTV System Dimension Analysis

Here the LTV system dimension are analyzed for a hypothetic Medtronic O-arm real
dataset, in order to investigate the feasibility of this methods on real patient datasets.
Therefore the parameters listed in Table 2.1 are used to dimension the system. Some
hypotheses must be firstly introduced. Since the complete dataset to be processed
includes both a projection set before (p°) and after (p<) the contrast injection, the

final projection set (p) containing only the vessels contribution can be extracted as the
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difference among them:

p=p" =7 (2.32)

This leads to three hypothesis of this work.

Hypothesis 2.3.1.
A projection data p;, at the angle 0y, can be considered as the sum, along a projection
line, of the contribution of all and only the voxels including contrast medium at time

t.

Hypothesis 2.3.2.
All and only the vozels belonging to the vascular tree reconstruction are needed for the

TIC reconstruction.

Hypothesis 2.3.3.
The vozels belonging to the vascular tree reconstruction represents approximately the

1% of the total number of voxels.

The confirmation of all the above hypothesis would lead to an important com-
putational aid. In fact, an analysis limited to the segmented voxels shows a dramatic
dimension reduction. In order to include only the needed voxels in the computation, the
Digital Subtraction Angiography (See Section 1.2) reconstruction must be exploited.
In fact, within the method of this thesis, only the voxels belonging to the DSA vas-
cular tree reconstruction were considered. This dimensionality reduction allowed to
expand the LTI System to the time dimension. The above hypotheses, if numerically
confirmed, would assure that the dimensionality of the problem could be reduced at
least of a factor p/100, where p is the percentage of voxels occupied by vessels. In order
to have enough constraints for a good problem conditioning, the number of constraints
I must be at least equal to the number of coefficients to be reconstructed J x B, where
J is the number of voxels and B is the number of coefficients to be estimated for each

voxel. The number of available constraints is equal to

N, =N x M x Ny (2.33)

where N and M are the dimensions of the FPD in pixels, and Ny is the number of
acquired angular projections. N, is then of an order N3. Choosing a number of basis

functions B, the number of unknowns N, becomes:
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N,=JxB (2.34)

where J is the number of voxels contained in the whole image cube. Therefore N, is
of an order N* and N, > N,,, which makes the problem ill-conditioned. Nonetheless,
since Hypothesis 2.3.2 implies that it is possible to take into consideration only vascular
voxels, N, becomes: .

N,=JxBx—— 2.35
x B x <o (2.35)

Moreover the third hypothesis (Hypothesis 2.3.3) on the percentage of vessel voxel with
respect to the total number of voxels .J, implies a dimension reduction of at least 100
times with respect to J, and this would bring down the order of N, to N3, making the
problem well conditioned.

Considering the clinical acquisition parameters listed in Table 2.1, here the prob-
lem dimension is numerically verified. Therefore, for a Medtronic O-arm system, the

number of projection results:

N, =N x M x Ny =384 x 1024 x 391 ~ 153 x 10° (2.36)

and the number of unknowns is equal to:

N, =J x B = (512 x 512 x 192) x 10 ~ 503 x 10° (2.37)

Exploiting the hypotheses 2.3.2 and 2.3.3 a forecasted reduced unknowns dimension

is obtained:

P 1
Nu:Jme:(512><512><192)><1O><mwi’)xl()6 (2.38)

which is hundred times less then the initial number of constraints. Therefore, if
the hypothesis would be verified, the problem would become well-conditioned. The
hypothesis was verified on a real dataset. A vessel segmentation and reconstruction
was obtained through a DSA in 3D Slicer 4.3.1 (Figure 2.7). The vessel reconstruction
was analyzed and the voxels belonging to the vessel mask were counted resulting in an
overall number of vessel voxels equals to 962573, which is approximately the 0,1 % of
the total number of image voxels. Then, Hypothesis 2.3.3 is widely respected, proving

the problem to be well-conditioned.
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Figure 2.7: A 3D Slicer DSA vessel reconstruction.



Chapter 3

Simulation Protocol

The developed simulation protocol includes two main steps, namely the simulation
design and the implementation of the ART 3.5 D Algorithm. The simulation design
consist in the creation of a vessel tree phantom and in the simulation of the contrast
flow in the phantom. Moreover, it includes the CBCT dataset creation through a
simulated projection on the vessel tree phantom. The implementation of the ART 3.5D
algorithm includes all the algorithmic steps presented in Section 2.2. However, due to
computational and data storage issues some additional implementation optimizations
were performed. Moreover the storage and computational issues were investigated and

analyzed, leading in the end at several proposes for implementation improvements.

3.1 Simulation Design

A good simulation design is of primary importance in order to guarantee a good re-
producibility passing from simulation to reality. Since the problem was verified to be
well-conditioned all the parameters and computational quantities have to be simulated
and reproduced proportionally to the real problem dimensions. Parameters can be

divided in two classes:

e Geometric parameters: are all the geometric quantities linked with the O-arm
NY N?* N, M, Wyogel, Wpigel, ts and R;

] . x
geometric structure: NV, vorel> WVuozels

voxel’

e Acquisition parameters: are the parameters strictly linked with the simula-
tion of the contrast injection in the 3D vessel structures: T,, Ng, Omin, Omaz, DO

and § (the delay in contrast injection with to the instant of acquisition beginning).

All the letter notations were already listed in Table 2.1. In particular the geometric

parameters must be chosen in order to guarantee an adequate sampling. The dimen-
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sions were chosen respecting the relationships among the real O-arm parameters. The
FPD have to be large enough to cover all the image volume and moreover it must have
enough detectors to sample the image volume adequately. It is easy to verify that,
in the real acquisition protocol, the number of FPD pixels in one generic direction is

exactly twice the number of image voxel in the same direction.

Ny Ny, 1024
pizel _ szel _ -9 (31)
Ngomel Nvoxel 512
N 384
pizel
L _ 7 9 3.2
NZ 192 (3:2)

voxel

Therefore, the number of FPD pixels in each dimension must be chosen as twice

the number of voxels in that direction.

Similarly, the ratio among the widths of FPD pixel (wpize) and image voxel (wyoger)

size 1is:
Wpigel 0.388

Woorey 0415

0.93 (3.3)

therefore the FPD pixel size must be chosen as the wpizer = 0.93 - Wyozer. The slice

thickness (¢s)can be compared to the width of the voxel:

ts 0833
Wyoger 0415

(3.4)

therefore ¢, must be chosen in order to have t, = 2 - Wyogel

Also the rotation radius must be chosen appropriately and it can be compared
to the length, expressed in millimeters, of the image cube along the radius direction.
Therefore, is we consider that in the O-arm acquisition geometry the rotation radius

R is equal to 647,7 mm, the ratio with the (x,y)-dimension of the image is

R R 647, Tmm 647, 7mm
Limage B nyy * Wyoxel a 512 -0.415 - 212mm

voxel

= 3.05 (3.5)

The geometric proportion among image volume and FPD obtained respecting this

guidelines is qualitatively represented in Figure 3.1.

The chosen geometric and acquisition parameters are listed in Table 3.1 and 3.2
respectively. Cubic image volumes with several image dimensions were considered, with

Nz X NY . x NZ

e f = wer SPanning from 10 x 10 x 10 volumes to 30 x 30 x 30 and several

FPD dimensions were considered according to the image volume dimension, spanning
from 20 x 20 up to 60 x 60. Several Rotation Radius values were set depending on the

image volume in order to guarantee a radius value equal to R = 3 X N2¥ | X Wyppe; mm
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FPD

Image Volume

Source

Figure 3.1: Proportionate schema of the O-arm acquisition geometry.

Another aspect that has been considered within the simulation protocol is the
transit of the contrast medium bolus. Since the real acquisition protocol requires the
continue injection of contrast medium in order to obtain enough contrast and visibility
for the vessels, a continue injection was simulated, using an high Transit Time (7})
value (up to 10 s), with 2 seconds delay ¢ in time injection. The contrast flow was
simulated with two different dynamics. The dynamics represents the local contrast
concentration change vs. time and was uniformly propagated along the length of the
vessels considering a constant flow velocity, with no attempt of simulating low fluid-

dynamics, which was out of our scope.

Firstly a simulation was performed using a simulated contrast flow with step dy-
namics. This choice was due to an initial simplification, for a first verification of the
proper functioning of the method. Afterwards, the contrast flow was simulated as a
sigmoidal trend (Figure 3.2), in order to simulate a real contrast transit dynamics. The
sigmoidal slope was chosen through some experimental evaluations, in order to simu-
lated a contrast flow as much realistic as possible. The sigmoidal and step minimum
and maximum values were set to 0 and 1, in order to express contrast concentration

and image intensity as a normalized value.

At last, the vessel 3D reconstruction was simulated. The vascular tree can be
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Table 3.1: Simulated Geometric Parameters

Image dimension in voxels (NZ ., ,NY .. NZ _.) spanning from (10,10, 10) to (30,30, 30)
Voxel Size (Wyoger) lmm x Imm
Slice thickness (t5) 1 mm
FPD Pixel Size (wpiger) 0.93 mm
FPD dimension in pixel (N x M) (2NZ,..)) X (2NZ 1)
Rotation Radius (R) R=3xN2Y | X Wyoge, Mmm

Table 3.2: Simulated Acquisition Parameters

Number of Projections (Ny) 120

Minimum Angle (6,.:,) 0°
Maximum Angle (6,,42) 360°
Angular Resolution (A#) 3°
Acquisition time (7y) 12s

Transit Contrast Time (7;) 10 s

composed as the sum of different vessel tracts, all with the same diameter. The initial
and final points of all the tracts must be specified, and all the tracts are then linked one
another, giving the birth to the simulated vascular tree (further details in Appendix B).
Two simple vascular tree shapes were simulated: one with five branches, and another
one with seven, in order to be interpretable and simply verifiable to the human eye.
The vessel tree shapes are shown in Figure 3.3. The vessel tree shown in Figure 3.3(a)
is composed of a common artery branching in five vessels and subsequently gathering
in a common vein again: this vessel tree will be named Vessel Tree A, for convenience.
The vessel tree shown in Figure 3.3(b) differs from the previous one since two tracts
crossing from one side to the other (shunts) are added: it will be called Vessel Tree
B, for convenience. Due to obvious practical reasons, the simulation of a realistic tree
with arterioles, capillaries, and venules was not attempted. Indeed, the shown branches
may resemble artero-venous shunts, which exist only in artero-venous malformations.
Nonetheless, this pattern, and the relevant dynamics of contrast transport within, was
suited to our purposes and even more challenging than the physiological condition
where a consistent delay separates the venous from the arterial compartment due to
capillaries. Figure 3.4 shows some instants of the contrast flow inside the Vessel Tree
A, during the whole acquisition time.

The simulated dynamic phantom was afterwards exploited for projection simulation,
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(b) The contrast medium flow simulated with a sigmoidal dynamic

Figure 3.2: The dynamic of the contrast flow was simulated with two different dynamic
behaviours
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in order to obtain the desired projection dataset. The projection values were normal-
ized as well, obtaining projection values spanning from 0 to 1. It has to be noticed that,
since the simulated projections are already performed on the simulated dynamic DSA
reconstruction (the dynamic phantom), the projection data already contain only ves-
sel’s information. Therefore, the subtraction among two datasets (contrast-enhanced
and non contrast-enhanced) is not necessary in simulations.

Four simulation setups were taken into account:

Vessel tree A with Step contrast medium dynamic

Vessel tree A with Sigmoidal contrast medium dynamic

Vessel tree B with Step contrast medium dynamic

Vessel tree B with Sigmoidal contrast medium dynamic

Each simulation condition was repeated for images with different dimensions. In
particular image volumes with dimensions (in voxels) spanning from 10 x 10 x 10
voxels to 30 x 30 x 30 voxels were considered, and the FPD dimensions were varied
accordingly. The dimensions of voxels and FPD pixels (expressed in mm) were kept
constant. Moreover, the diameter of the vessels tracts was kept constant too. Therefore,
over the different image volumes, the ratio among the vessels diameter and the vessel

tree length varies. For each volume the iterative algorithm performed 10 iterations.

3.2 ART 3.5 D Implementation

In Figure 3.5 the implementation structure is illustrated. Once all the parameters have
been chosen in order to respect the limitations listed in Section 3.1 the simulation can
start, leading to the creation of the simulated DSA reconstruction and to a se-
quence of volumes representing the fraction of the vascular tree containing the contrast
medium for each time sample. Subsequently a simulation of the projection raw
data is obtained projecting, at each time sample, on the volume correspondent to that
time sample. Once all the needed quantities have been simulated the algorithm can
start processing. Since the ART needs the whole set of coefficients w;; that weight
each unknown j for a specific projection 7, the System Matrix must be computed and
stored. The System Matrix computation needs the geometric parameters as input
and computes the system matrix in the static LTI case. However, in this case the
dynamic system matrix is needed. The dynamic system matrix coincide to a system

matrix in which the basis functions (known a priori) are inserted, leading to a matrix
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(b) Vessel Tree B: The artery branches in seven tracts, two of them crossing the vascular tree to
one side to the other. All the vessels gathers again in a vein.

Figure 3.3: Two simulated vascular tree phantoms used for simulation.
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Figure 3.4: Sequence of images showing the simulated contrast flow in the vascular tree
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Figure 3.5: Block diagram showing the ART 3.5D algorithm structure. All the quan-
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from each block are green colored.
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expansion. Figure 3.6 outlines the System Matrix expansion procedure. Firstly, the
basis functions must be computed. Afterwards, the vector of the basis functions
samples at the time instant ¢, is multiplied to each voxel’s static weight for the pro-
jection 0. The basis functions bring dynamic information inside the matrix, making
it suitable for the dynamic reconstruction. Subsequently, data must be structured
and organized in order to make them suitable for the ART. In fact, only the pixels
belonging to the vascular tree must be considered for reconstruction and all the pro-
jection data must be orderly stored in a Projection Vector. Once the Dynamic System
Matrix and the Projection Vector are ready the number of iteration must be specified
and the ART algorithm can be launched. The result of the ART is a vector con-
taining, for each voxel, a number B of basis functions coefficients, being B the number
of basis functions available. Those coefficients are multiplied to the basis functions,
obtaining a TIC for each voxel. Once the voxel TICs are reconstructed the segmen-
tation of arteries and veins block is entered. The voxels are classified depending
on their temporal profile. Since the TICs reconstructed through the rectangular basis
functions present a step like trend, a interpolation was introduced in order to make the
TICs smoother. In particular, the medium point of the upper side of the rectangles
were used as the reference data for interpolation (Figure 3.7(a)). Then, a number B
of data were interpolated over the entire acquisition time 7, leading to a complete
smoother TIC. An example of the comparison among the reconstructed TIC and the

interpolated TIC is shown in Figure 3.7.

Then, starting from TICs the Area Under the Curve (AUC) was computed as the

integral of the TIC on the whole acquisition time 7T},.

AUC = / "o (3.6)

Since the reconstructed curve was a discretization of a continuous profile, the AUC

was actually computed a discrete integral, according to the rectangle method:

Nt
AUC =) TIC;At (3.7)

=1

where V; is the number of temporal instants and At is the sampling period. More-
over partial AUCs were computed as well: the AUC in the first half of Acquisition Time
T, was named arterial AUC (AUC,) and the AUC in the second half of Acquisition
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Figure 3.6: Computational process for the Dynamic extension of the System Matrix:
block (A) represents the basis functions matrix, where the angular samples vary on
the rows, while the values of different basis functions vary on columns; block (B)
represents the static system matrix W; the block (C) represents the static matrix
reduced eliminating all the voxels that do not belong to the vascular tree, leaving a
number Ny .1 0f voxels; block (D) represents the Dynamic System Matrix, in which
the basis functions have been inserted.
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Figure 3.7: Example of an interpolation process from a voxel’s stairstep TIC to a
smoother sigmoidal trend.
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Figure 3.8: Graphical representation of the arterial AUC (AUC},) and venous AUC
(AUCY)

Time T, was referred to as the venous AUC (AUCY) as shown in Figure 3.8.

Ny

AUC, =) TIC:At (3.8)
=1
Ni

AUCy = > TIC;At (3.9)

=3

Depending on the values of AUC, AUC4 and AUCY, the voxels were classified as

artery or vein, as explained below:

it AUCy > EAUC — Artery

) (3.10)
else — Vein

The value of k defines a threshold for arteries and veins classification and its optimal

value was established through the use of Receiver Operating Characteristic (ROC)
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curves. This classification strategy, which proved to work well in simulation, would
probably need some improvements when dealing with real data. In fact, dealing with
real cerebral vessel trees, including hundreds of vascular branches, a higher classification
error has to be expected. Nonetheless, in future developments several improvements
can be exploited, which were not introduced so far. In fact, the arterial and venous
phase have deeply different dynamic properties and this can make suitable the insertion
of regularizations within the modeling of the TICs. Moreover the capillary phase,
which is intermediate among arteries and veins, can be detected and exploited for a
most reliable separation of the dynamic behavior of arteries and veins. Capillaries
can be detected as they present much lower intensity than arteries and veins during
the contrast flow, due to blood and contrast dispersion in tissues which lowers the
contrast medium concentration. Figure 3.9 shows three X-ray angiography images
evincing the arterial, capillary and venous phase. These images visually prove by eye
the possibility of arterial, capillary or venous phases distinction. Considering those
experimental observation, if the capillary phase is detected, the voxels can be classified
as arteries if their wash-in phase is positioned before the capillary phase, and as veins
if their wash-in phase is positioned after the capillary phase. Moreover venous phase
is as well much less intense than arterial phase, since much contrast medium has been
lost during capillary phase, with a decrease in concentration, and this detail can be
exploited for veins detection. In addition some spatial constraints can be introduced,
in order to guarantee spatial continuity and avoid errors on isolated groups of voxels.
For the interested reader, the implementation details are presented and examined in
depth in Appendix B. The entire algorithm was implemented in Matlab 2015b on a
Mac Book Air , 1.7 GHz Intel Core i7, 8GB DDR3 at 1600 MHz.

3.2.1 Memory Issues

Referring to the acquisition parameters listed in Table 2.1, and recalling that the system
matrix stores for each voxel the amount of contribution to a specific projection value,
we can compute the dimension of the static matrix for real data processing. Being Ny
the number of projection angles, N x M the number of sensors on a FPD, the number

of rows of the system matrix ry is:

rw = Ny x N x M =391 x (1024 x 384) (3.11)

In the same way, being J the number of voxels in a reconstructed image, the number

of columns of the system matrix coincides with the number of voxels:
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(a) Arterial phase (b) Capillary phase

(¢) Venous phase

Figure 3.9: Comparison among arterial, capillary and venous phase in angiographic
images
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cw=J=N%_, x N’ xNZ ., =512x512x 192 (3.12)

v voxel —

Moreover, recalling that due to the dynamic extension of the Algebraic Reconstruc-
tion Technique the basis functions are included in the system matrix, the dimensionality
of the new dynamic system matrix is augmented of a factor B, with B being the num-
ber of chosen basis functions. Since a number B = 10 of basis functions was chosen,

the number of columns ¢y of the Dynamic System Matrix W is equal to:

cw = J X B =512 x 512 x 192 x 10 (3.13)

However we can hypothesize that only a small percentage of the image voxel is
occupied by vessels and, since the algorithm will be applied to only the vessel voxels,
the dimension of the dynamic matrix is reduced. Here the conservative hypothesis of
a 1% vessel volume is made, therefore the number of columns of the Dynamic System

Matrix becomes:
cw =J x B x0,01 =512 x 512 x 192 x 0.01 =5033164.8 (3.14)

Therefore the final size of the Dynamic System Matrix is:

[W] =[Ny x N x M, J x B = [391 x (1024 x 384) ;512 x 512 x 192]  (3.15)

= [153 747456 :5033164.8] (3.16)

Since each element of the matrix is a represented in the computer memory as a
double data type, each element fills 8 bytes. The total number of bytes (#Bytes)

allocated for the dynamic system matrix is:

#Bytes = 153 747456 x 5033164.8 x 8 = 6.19 x 10" (3.17)

that equals

#GigaBytes = 153 747456 x 50331648 x 8 = 6190 690G B (3.18)

In order to solve this huge memory problem, the algorithm was adapted: only one
line of the system matrix is computed at a time. In this way the total memory needed

for a line is
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#Bytes = 50.331.648 x 8 = 402653 184 (3.19)

that expressed in MegaBytes is

#MegaBytes = 402.65 (3.20)

Using this strategy the memory issue is solved but the computational time increases
dramatically, since each line of the system matrix has to be computed for each update.

This issue will be explained in Section 3.3.

3.3 ART 3.5 D Optimized Implementation

As anticipated in Section 3.2.1 the algorithm adopted in simulation is unsuitable for real
data processing, due to heavy memory problems. Since the Dynamic System Matrix is
to large, a new strategy must be adopted to make the algorithm suitable for a general
computer. Recalling the general update law of ART:
%
n Wi = Pj
(e B op) (3:21)

/J’n—l—l = l’l‘n +

it is clear that just one constraint at once is employed for the update. Therefore just
one line of the system matrix is needed at a time. The simplest strategy consists then in
the computation of the needed line of the system matrix at every update. The obtained
algorithm structure is shown in Figure 3.10. As can be observed in the Figure 3.10, here
the geometric and acquisition parameters are known a priori, depending on the O-arm
characteristics. Moreover also the DSA vascular tree reconstruction and the projected
data are available. The projection data can be extracted as the difference among the
contrast enhanced projection dataset and the non-contrast enhanced dataset acquired
with the O-arm. The vascular tree reconstruction is obtained through the subtraction
of the bone mask to the image volume reconstructed from the contrast enhanced scan.
Then, the computation of a number B of basis function is needed. The iterative
process starts without computing the static and dynamic matrix in advance. The
process is executed for NV times, being N;; the number of ART iterations. Inside each
iteration, for Ny x N x M times an update is computed (being Ny x N x M the number
of projection data available). Each projection data constitutes a constraint. For each
constraint, the correspondent line of the static system matrix is computed and
the voxel that do not belong to the vascular tree are eliminated. Subsequently, the

static system matrix line is expanded to the 4, dimension, becoming a dynamic
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system vector. Thereafter, the update term is computed and the vector of the
unknowns is adjourned, with the well known ART law. At the end of the process,
a temporal image function is obtained and the TIC of each voxel is analyzed for the

arteries and veins segmentation as explained in Section 3.2.

3.3.1 Computational Issues

Exploiting this new approach the computational time is heavily increased, due to the
fact that the system vector is computed in real time with the ART update term. If
the static matrix could be stored, the time employed for its computation would result
outsize as well, but it could be computed just once and also, parallel computation
would be a feasible solution, since each line would be computed independently from
the others. Differently, with this new approach it must be computed line by line, for N;
times, where Nj; is the iteration number. A brief study on the computational times was
performed. The trend of computational time versus image dimension was studied. For
uniformity, the overall computational time within one ART iteration was considered
as the studied time quantity. The image dimensions were varied from 10 voxels to 30
voxels, with a step of one voxel among the trials. The obtained data were fit, through
the curve fitting tool, (CFT) Matlab, in order to obtain the computational time for one
iteration as a function of the image and FPD dimensions. Subsequently this function
was exploited in order to forecast the computational time for one iteration on real data,

with their specified dimensions. The obtained fitting curve is a power relation:

T. = ax’ (3.22)

were a = 0.003626 and b = 3.275, with 95% confidence bounds for a [0.001498,
0.005753] and b [3.096, 3.453]. The goodness of fit was evaluated through several

indexes:

e SSE (The sum of squares due to error ): is measures the error through the sum
of the square errors. Having n data samples, and being t.; the i*" data sample

and f(D;) (D; is the image dimension in voxels) the SSE is expressed as:
SSE = (ta — f(D:)) (3.23)
i=1

For the evaluated fit ti has a value of SSE = 665.9

e R-square : it is the ration among the data variability and the correctness of the
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Figure 3.10: Block diagram showing the ART 3.5D algorithm optimized structure for
real data processing. All the quantities in input at each block are orange colored,
whereas all the quantities in output from each block are green colored.




48 Simulation Protocol

proposed model. It is computed as

ESS RSS

H2 =755 =1~ 755

(3.24)
where ESS = >"" (y; — y)* is the Explained Sum of Squares, T'SS = > " (y; —
y)? is the Total Sum of Squares and the RSS = >"" | (y; — ;)? is the Residual
Sum of Squares. In all the expression y; are the observed data, y is the mean
value of data and 7; are the estimated data. A R? value equal to 0.9942 was

obtained.

e RMSE (Root Mean Square Error), computed as :

n A

i1 (Wi — i)
n

RMSE = Vo

(3.25)

represents the mean sample standard deviation. A RMSE value of 5.92 was

obtained.

The obtained fit is illustrated in Figure 3.11.
The obtained model was used to produce an estimate of the computational time
needed for processing a real patient dataset. It was obtained a real data iteration time

T,q; equal to:

Tyq; = 0.003626 x 512%™ = 2.705745357471414 - 10°s = 31.31days (3.26)

3.4 Further Proposed Improvements for the ART 3.5

Optimized Algorithm

As reported in Section 3.3.1 the time needed for running the algorithm is very high.
Nonetheless, in case the static matrix was computed just once before the running, the
issue could be solved with parallel computing techniques. In fact, the computation
of each system matrix line is independent from the computation of other lines and
therefore it lends itself to a parallel computing approach. Then, the computational
time T" would be decreased proportionally with the number of cores used for parallel
computing. Having a number of computational cores N,,.. the overall time becomes:

T
T

parallel —
Ncores

(3.27)
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Figure 3.11: Fitting curve of computational time data. On the y-axis the computational
time values in seconds for a single ART iteration. On the x-axis the image dimension
expressed in voxels.

Differently, if the computation of the matrix line is embedded in the ART iteration
(as it is in the real data adapted algorithm) standard parallel solutions are unsuitable,
since each iteration depends on the previous iteration. Nonetheless, a certain number
of approaches are available for the speeding up of iterative algorithms, many of them
aiming at making the iterative process suitable for parallel computing techniques. Here
some approaches will be briefly introduced. For interested readers, some reference are
available in [1]. The use of subset is firstly presented, followed by a data dependency

analysis approach.

Creating and using subsets

One possibility for parallel computation within iterative algorithms is the use of subsets.
For subset it is intended a set of constraints, grouped together. Considering the ART
algorithm, normally a correction term corresponds to one satisfied constraint, i.e. the

algorithm satisfies one constraint at a time. It is common practice to organize the
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constraints in subsets. The first introduction of the subset concept within the ART
algorithm has lead to an approach called SIRT (Simultaneous Iterative Reconstruction
Technique, [48]). Within this approach the voxel value is changed only after having
explored all the equations and the final correction term is the average of the correction
terms for that voxel. Therefore, the correction terms could be computed in parallel
and then mediated. Of course many variations can be introduced: subsets can be
smaller than the whole set of equations, and the dimension and composition of subsets
can be richly varied depending on the needs. It is common practice to create the
subsets in order to make them as much orthogonal as possible. In fact, the more
the constraints are orthogonal to each other, the faster is the algorithm convergence.
The introduction of subsets, although common practice, must be carefully evaluated,
since the only introduction of subsets, tends to make the convergence slower than
the standard iteration process. Nonetheless, within this work it might improve the
performances, since it allows to compute in parallel a number I if correction, where I
is the dimensionality of the subset. Only after the computation of all the I correction
terms, they are mediated and the voxels are updated. Therefore the computational time
can be reduced of a factor I. One disadvantage lies in the approximation introduced
averaging the correction terms instead of applying them one by one. In order to repair

to this disadvantage, an exact technique is proposed in the following section.

Data Dependencies analysis

In order to answer to the needs described above, an exact mathematical procedure
can be exploited, in order to obtain a description of the data dependencies. The
dependency analysis is a powerful technique that originates from advanced hardware
acceleration techniques. In this work, the dependency analysis relies on a mathematical
formal analysis of the iterative algorithm law, aiming at extracting a dependency law
among data at different iterations [39]. Therefore, within a standard iterative algorithm
starting from a general signal f, after the first iteration we obtain f; = ¢(f) where ¢ is
the specific algorithm operation on the f signal. After the second iteration an f5 signal

is obtained as f» = t(f1) and so on. Generalizing on a casual iteration number n:

fo =t(fu1) =T(f) (3.28)

where the operator 1" encloses all the repetitions of the operator . Within this frame-
work a mathematical analysis can be applied in order to extract the operator 7. Once
the operator T is extracted, the iteration formula can be applied only once every n

iterations, reducing the computational time of a factor n. In the specific case of ART,



3.4 Further Proposed Improvements for the ART 3.5 Optimized Algorithi

the standard iteration p,, ; is expressed as a function of the result of previous iteration

o

which can be rewritten as:

1 = iy + - == (3.30)

In the same way the term p,, ,, can be written as:

Pi+1
Bz = 2ty — s (3.32)
Wit+1

Recalling the Equation 3.31, immediately above we can substitute in Equation 3.32

the term p,,.1 expressed as a function of u,, getting:

Di Pit1
=212 — 3.33
| L) ( Ky — wz> ﬁ ( )
Stepping again once:
yZi
Hpi3 = 2y’n+2 - :+2 (334)
Wiy2
2 (2un+1 -2 i“,) - 2 (3.35)
Wit1 W2
Di Pit1 Di+t2
=212\ 2pm, — ) — ] — 5 3.36
[ ( wi Wi W2 ( )

Generalizing the above expression for u, ., = f(u,) and optimizing it, an exact

appropriate transformation 7' can be extracted.
DPi+j—1
= 2F k= = 3.37
l’l’n—l-k Ky — Z wz+] L ( )
J=1

This dependency among data can be exploited for making the algorithm suitable

for parallel computation.
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3.5 Evaluation Protocol

The experimental evaluation of the complete approach includes three evaluation steps:

e Evaluation of the TIC reconstruction
e ROC Curves Analysis and Evaluation

e Fvaluation of the arteries and veins classification

Here the experimental conditions already introduced in Section 3.1 are recalled. In
particular, two contrast flow dynamics were considered, namely a step dynamic and
a sigmoidal dynamic. Moreover, two vessel tree phantoms were built and exploited
for simulations. The contrast flow simulation and the vessel tree simulation were then

combined in order to obtain six simulation setups, summarized in Table 3.3.

Table 3.3: Simulation setups summarized. For each of the two vessel tree shapes (A and
B), two different contrast transit dynamics were simulated, namely a step dynamics
and a sigmoidal dynamics.

Vessel Tree A B
Contrast Dynamics Al B1

Sigmoidal dynamics A2 B2

For each simulation setup, several image volumes with different dimensions in terms
of voxels were simulated, in order to introduce some variability in the data. Varying
the image dimensions in terms of voxels means to vary the ratio among the simulated
vessels diameter and the total length of the vessel tree. The number of ART iterations
performed (N;;) was set to 10. The classification was performed at each iteration step,

in order to obtain informations on the convergence of the reconstruction algorithm.

3.5.1 Ewvaluation of the TIC reconstruction

The quality of the TIC reconstruction was evaluated through two error measures:

e ART Error Measure (¢) : it is the objective function ¢ minimized during the algo-
rithm iterations. It is the difference (in terms of projection intensity) among the
actual projection value p , and the projection value obtained with the simulated
projection operator (), i.e. & (u,), where p is the reconstructed image at the

nth iteration.
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€= |lp — 2 (un)l| (3.38)

e The Root Mean Square Error (RMSE) was computed for each reconstructed TIC
(TIC;) with respect to the simulated TIC (71C;), for each image volume, at each

iteration, as follows:

VX, (TIC; — TTC))
N

where N is the number of reconstructed TICs. In order to verify the distribution

RMSE = (3.39)

of the RMSE data, a normality test was performed on image volumes for each
simulation setup. The Kolmogorov-Smirnov test was employed and the null hy-
pothesis was rejected at the 5% significance level, meaning that the distribution
proved not to be normal. Therefore, the median of the RMSE values was chosen
as the reference index and it was computed starting from the whole set of RMSE
values. Once a median RMSE value was obtained for each image volume the
median value on the RMSE values on image volumes with different volume di-
mensions was computed, so that a median value for each iteration was obtained,

and the convergence could be observed.

3.5.2 ROC Curves Analysis and Evaluation

The ROC curves were built in each simulation setup in order to investigate the value
of k that, multiplied to the total AUC, defines the threshold of AUC4 for arteries
classification. All the multiple values to 0.01 from 0 to 1 were considered among the
possible thresholds. The classification on the image volume with dimensions 30 x 30 x 30
was performed employing all the threshold values. For each classification the Sensitivity
and the Specificity values were computed for both arteries and veins classification. The

sensitivity is defined as:

TP
E=_—" 4
S TP +FN (3.40)
The specificity is defined as:
TN
P=_——"_ 41
S TN+ FP (3-41)

Then, the ROC curve is defined as the SE values over the (1 — SP) values. The ROC
curve is built for both the arteries and veins classifications. The best parameter k for
each simulation setup was then extracted as the k£ maximizing the SE and SP for both

arteries and veins ROC curves. The k value that optimizes both SE and SP values for a
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Arterial ROC

Venous ROC

.
1-SP

Figure 3.12: The maximum sum of the maximum distances between the arterial and
venous ROC curves points and the random guess diagonal line points defines the best
threshold parameters for arteries and veins classification. The red ROC curve is the
arterial ROC; the blue ROC curve is the Venous ROC.

generical classification is identified by the ROC point that is orthogonally the furthest
from the random guess diagonal line (i.e the diagonal passing from the points (0,0)
and (1,1)). Here, the parameter that maximizes this distance for both the arterial and
venous ROC curve is investigated. Therefore the parameter that maximizes the sum
of the distance in the arterial ROC curve (D, in Figure 3.12) and in the venous ROC

curve (D, in Figure 3.12) is chosen for the classification.

k = argmax(D, + D,) (3.42)
k
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3.5.3 Evaluation of the Arteries and Veins Classification

The easiest way to evaluate the segmentation was to compute the percentage of voxels
correctly classified. For both arteries and veins classifications the several indexes were
computed. The value of those indexed spans from 0 to 1, where 1 means that the whole
set of voxel falls in the evaluated condition and 0 means that not any voxel falls in the

evaluated condition.
e True Positive (TP): the number of vessels correctly classified, expressed as

_cns

TP
S

(3.43)

where C are the classified vessels and S are the simulated vessels.

e False Negative (FN): the number of vessel incorrectly not classified as arteries or
veln.

FN=1-TP (3.44)

e True Negative (TN): the number of vessel correctly not classified as arteries or

veln.

(1-C)n(1—S)

N = (1—59)

x 100 (3.45)
e False Positive (FP): the number of vessel classified as artery or vein incorrectly

FP=1-TN (3.46)

In addition, the sensitivity and specificity indexes were computed for each simula-
tion setup, and the results were compared with results found in literature. Moreover,
two additional indexes were evaluated, namely the fraction of arteries voxel incorrectly
classified as veins (AV'), the fraction of veins voxels incorrectly classified as arteries
(VA). These very last indexes can correspond to the veins and arteries false negatives

respectively. They have been investigated for information completeness.
e Arteries voxels incorrectly classified as veins, AV

(Ca—Sa)N Sy "
Sa

where Cy are the classified arteries, S, are the simulated arteries, and Sy are

AV =

100 (3.47)

the simulated veins. The voxels incorrectly classified as arteries are compared
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with the simulated veins mask. The intersection among those two quantities is
the percentage of classified arteries that should have been classified as veins, with

respect to the whole number of voxels classified as arteries.

e Veins voxels incorrectly classified as arteries, V' A

Cv = Sy)NSa
Sy

where (', are the classified veins, Sy are the simulated veins and S, are the

va=!

100 (3.48)

simulated arteries. The voxels incorrectly classified as veins are compared with
the simulated arteries mask. The intersection among those two quantities is the
percentage of classified veins that should have been classified as arteries, with

respect to the whole number of voxels classified as veins.

Those indexes were computed for each reconstructed image volume in each experi-
mental setup, and in each experimental set up the median value among all the images

was investigated.
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Results

Here the obtained results are presented, namely the results on TIC reconstruction, the

ROC curves results and the arteries and veins classification results.

4.1 TIC Reconstruction

The median values of the RMSE among the simulated and reconstructed TICs are listed
in Table 4.1, together with quantiles values and the standard deviation. The values are
quite homogeneous in the different experimental cases. In addition both the € and the
RMSE error trend with respect to the iteration number were investigated. Since € is the
ART minimized objective function, its monotonic decrease with an increasing number
of iterations was expected. This results is verified (Figure 4.1). Moreover, the RMSE
trends in Figure 4.2 shows that the RMSE decreases as well with increasing iteration
numbers, notwithstanding it is not minimized by the iterative algorithm. This is a very
positive results, since it confirms that the error on TIC reconstruction is minimized
from the ART algorithm. Therefore, we can conclude that the ART 3.5D is a very
suitable algorithm for TIC reconstruction. As can be seen in Figures, in the most
of the TIC reconstruction improvements are achieved in the first iteration. However,
inspecting the numerical values, after the first iteration some small oscillations on the
RMSE values were noticed. This result was quite unexpected, since increasing the
number of iterations, the solution should converge to a more stable result. However,
the corrections during the iterative process are made on the ART error €. Therefore the
hypothesis is that the adjustments on the ART error € induce continuos adjustments
on coefficients and this cause some coeflicients oscillations, that have repercussions on
the TICs trend. This hypothesis is verified looking at the trend of the error index e

(Figure 4.1) with increasing iterations in comparison with trend of the RMSE error. In
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fact, the ART error computed for the update during the iterative process monotonically

decreases at each step, being almost constant after the second or third iteration.

Table 4.1: Statistical values of RMSE among the simulated and reconstructed TICs
for each simulation setup. Al, A2, B1 and B2 are the simulation setups names listed
in Table 3.3.

RMSE Statistical Measures Simulation Setup
Al A2 B1 B2
Median 0.0376 0.0367 0.0366 0.0368
25-quantile 0.0373 0.0367 0.0364 0.0366
75-quantile 0.0378 0.0368 0.0369 0.0369
Standard Deviation 5.1530 -10™* 1.1698-10~* 2.7876 -10~* 2.6550-1074

4.2 ROC Curves Analysis and Evaluation

The Receiver Operating Characteristic (ROC) curve was built for each simulation
setup in order to inspect the right threshold parameter k for the Arterial Area Under
the Curve (AUC}y) computation for the classification. The ROC curves are shown in
Figure 4.3. The coefficients that, multiplied to the total Area Under the Curve, give
the threshold values for the AUC} in each experimental condition are listed in Table

4.2. Those values were used for the segmentation.

Table 4.2: Value of the threshold parameter k£ (multiplied to the total AUC for arteries
classification) for each simulation setup.

Simulation Setup k

Al 0.1900
B1 0.2600
A2 0.1600
B2 0.1500

4.3 Arteries and Veins Classification

The results of the segmentation were inspected. The trend of the arteries and veins
TP, the AV index and the VA index with an increasing number of iterations for all

the simulation setup is shown in Figures 4.4, 4.5, 4.6 and 4.7. As it is possible to see,
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Table 4.3: True positive, false positive, true negative and false negatives for arteries
classification are shown for each simulation setup.

Arteries Classification Simulated
| P | N
Al P | 1.0000 | 0.0035
N |0 ]0.9965
A9 p | 1.0000 | 0.0003
N |0 ]0.9997
B1 p | 0.9737 | 0.0063
N | 0.0263 | 0.9937
B9 p | 0.9950 | 0.0036
N | 0.0050 | 0.9964

the most of the classification improvements are achieved in the first iteration, while
in the subsequent iterations some oscillations occurs. This is in agreement with the
hypotheses presented above, since the best classification results are obtained at the
second or third iteration as well. Moreover it has to be noticed that the oscillations

are small enough to be neglected, being up to 0.01 maximum.

Arteries and veins median classification results are shown in Tables 4.3, 4.4, 4.5.
Table 4.3 shows true positive, false positive, true negative and false negatives for ar-
teries classification. In the same way Table 4.4 shows true positive, false positive, true
negative and false negatives for veins classification. The simulation setups including
sigmoidal contrast dynamics show better results. This can be considered a good result,
meaning that the sigmoidal contrast dynamics profiles, that are the most realistic ones,
are reconstructed with better accuracy. Therefore, this reconstruction method seems

suitable for voxels TIC reconstruction.

In addition, Sensitivity and Specificity values for each simulation setup are listed in
Table 4.6. Those results can be compared to results found in literature: in fact, Mendrik
et al. [37] presented sensitivity and specificity values for their automatic arteries and
veins segmentation procedures on real patient data. Their ground truth was based
on the labeling of two expert observers. They presented sensitivity values equals to
0.928 and 0.958 (depending on the observer used as ground truth) and specificity values
equal to 0.985 and 0.964. Their results confirmed that the method was more accurate
that the observers theirselfs. The sensitivity and specificity results obtained in this

thesis seem to be comparable to those obtained in literature, thought with better
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Table 4.4: True positive, false positive, true negative and false negatives for veins
classification are shown for each simulation setup.

Veins Classification Simulated
| P | N
Al p | 0.8795 | 0
N | 0.1205 | 1
A2 p | 0.9885 | 0
N | 0.0115 | 1.0000
B1 p | 0.8893 | 0.0005
N | 0.1107 | 0.9995
- p | 0.9216 | 0.0001
N

| 0.0784 | 0.9999

Table 4.5: Arteries correctly classified, veins incorrectly classified as arteries, arteries
incorrectly classified as veins and correctly classified veins are shown for each simulation

setup.

Arteries and Veins Classification Simulated
A |V
A1 A 1 ] 0
\Y | 0.1205 | 0.8795
A9 A | 1.0000 | 0
\Y | 0.0115 | 0.9885
B1 A | 0.9737 | 0.0263
\Y | 0.1107 | 0.8893
BY A | 0.9950 | 0.0050
\Y

| 0.0784 | 0.9216




4.3 Arteries and Veins Classification 63

Table 4.6: Sensitivity and Specificity values for each simulation setup.

Arteries and Veins SE and SP ‘ SE ‘ SP
Al Arteries ‘ 1 ‘ 0.9965
Veins | 0.8795 | 1
A9 Arteries | 1 | 0.9997
Veins | 0.9885 | 1
B1 Arteries | 0.9737 | 0.9937
Veins | 0.8893 | 0.9995
B9 Arteries | 0.9950 | 0.9964

Veins | 0.9216 | 0.9999

performances in sensitivity than in specificity, differently from the results presented
in [37]. Nonetheless, a real comparison is not possible, since the presented results are
extracted from extremely simple simulations, not pretending to be realistic enough to
make possible any precise comparison and result evaluation. However, there are many
elements in support of possible reliable classifications on real data-sets through the
ART 3.5D algorithm. One of them consists in the wide temporal gap represented by
the capillary phase of contrast transit. Since the contrast medium is rapidly washed
in through the arteries, virtually disappearing and expanding in the huge network
of unresolved capillaries, and next reappearing in veins for the final rapid wash out,
the arterial and venous phase cane be easily distinguished investigating the capillary
phase. These considerations, not yet exploited in our algorithm, would be precious
when dealing with real data, when an higher classification error is expected. Future
work, will be performed in order to apply the algorithm on a real dataset, as explained
in Section 3.4 and Chapter 5.

Figure 4.8 qualitatively shows the reconstructed arterial tree in comparison with
the phantom arterial tree. Figure 4.9 qualitatively shows the reconstructed venous tree

in comparison with the phantom venous tree.
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Chapter 5

Conclusions and Future Work

The presented work aimed at the classification of arteries and veins, starting from Cone
Beam Computed Tomography (CBCT) data. Voxel’s Time Intensity Curves (TICs)
were reconstructed exploiting the implicit and usually overlooked dynamic information
contained in the CBCT acquired data due to the transit of the contrast bolus. Nor-
mally, contrast information is exploited only for the segmentation of the vascular tree,
yielding an unclassified angiography. Though limited to theoretical analyses and gross
digital simulations, the present work was able to demonstrate the feasibility of the pro-
posed principles. Once the TICs were reconstructed the voxels were classified as artery
or vein depending on the distribution of the Area Under the Curve (AUC) in time.
An iterative algebraic technique, namely the Kaczmarz ART algorithm was exploited
for the TICs reconstruction. Obviously, the basic condition for a solution existence
and next for algorithm convergence is the availability of a number of projection values
I superior higher than the number of unknowns J. Since the faced problem extends
the unknown system to 4D by adding the time dimension, the number of available
projections values I, furnished by a standard contrast CBCT, would not be enough.
Consequently, the problem dimension had to be reduced, in some way. This objec-
tive was accomplished considering for TIC reconstruction only the voxels belonging to
vessel structures. In fact, by doing that, the problem dimension was reduced up to a
hundred times, allowing a problem expansion in the time dimension. Further reduction
was obtained by describing TICs by a set of basis functions, suitably shifted over time,
describing the wash-in, wash-out contrast transit at an unknown temporal shift. The
linear combination of the basis functions produced a TIC, so that each voxel was char-
acterized by a set of basis functions coefficient, still maintaining the equations within
the class of linear algebraic problems. Therefore, if a standard image reconstruction

process is based on the reconstruction of the attenuation value of the voxel, here the
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unknown for each voxels coincides with a set of basis functions coefficients. The algo-
rithm was developed in Matlab 2015 and evaluated in the simulation framework only,
for a first feasibility assessment and due to computational times, which grew exces-
sively, given the available HW and a SW development at its first stage. The precision
in TIC reconstruction was evaluated by the Root Mean Square Error computation on
all the TICs. The reconstructed TICs presented low RMSE values (median value be-
tween 0.0366 and 0.0376). The classification was evaluated computing the percentage
of correctly classified voxels and incorrectly classified voxels, obtained from the compar-
ison among the computed classification and the simulation a priori information. The
classification showed good results, up to more than 90% of correctly classified arteries
and veins. This outcome, yet limited to highly simplified angiographic simulations, is
promising as to feasibility and deserves some discussion in the perspective of real data
analyses. In the latter, including hundreds of vascular branches, a higher classification
error has to be expected. Nonetheless, in future developments several improvements

can be exploited, which were not introduced so far:

e Time regularization: It was limited here to a coarse separation of TICs into
time shifted basis functions, but no constraint relevant to wash-in sequence was
imposed and also no insertion or temporal smoothing within the iteration cycles

was attempted.

e Spatial continuity: Classification after the reconstruction of TICs was performed
on a voxelwise basis. However, region growing techniques could be easily get rid

of isolated misclassified voxel on the hypothesis of the continuity of vessels.

A further element in favor of reliable classifications on real data-sets is represented
by the wide temporal gap represented by the capillary phase of contrast transit. The
contrast medium is rapidly washed in through the arteries, next it virtually disappears
expanding in the huge network of unresolved capillaries, and next reappears in veins for
the final rapid wash out. This is easily seen by observing the sequence of projections
through time and not yet exploited in our algorithm. Further work would be needed
in order to make the algorithm suitable for real images processing. In particular, com-
putational time limits might be brightly solved adopting an appropriate computation
framework, relying on a more powerful hardware and exploiting parallel computation
techniques. Moreover, once the algorithm steps are reliably tested in a general purpose
language like Matlab, a translation in a computationally efficient language (e.g. C+-+)
would greatly enhance the processing speed. A core element concerning speed is the
tradeoff between memory occupation and computational load. The huge dimension of

the algebraic problem matrix of coefficients W (system matrix, in generalized sense)
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imposed the repeated computation of the active matrix blocks during the run. Proba-
bly, by suitably exploiting the problem symmetries and/or by some simplification this

could be avoided, at least in part, thus greatly reducing the computational time.






Appendix A

Tomography

A.1 Computed Tomography

According to Webster’s Dictionary [16], tomography is derived from the Greek word
tomos. Tomography can be defined as a “technique of X-ray photography by which a
single plane is photographed, with the outline of structures eliminated”. The computed
tomography (CT) has been developed to overcome the limitations of conventional ra-
diography. Among them the most heavy limitation consists in the reduction of visibility
of the object of interest due to the superimposition of all the anatomic structure in the
image. In fact, in conventional radiography all the contribution of the structures along
the X-ray direction is summed up and consequently superimposed. The resulting im-
age value (I) can be accordingly defined as the integral value of the attenuation values

p(x)of all the anatomic structures along the considered ray direction (z) (Eq. A.1).
[ = Jyelo @) (A.1)

where [j is the initial X-ray intensity and L is the length of the distance traveled.
This expression is commonly called the Lambert-Beer Law. Obviously, the term p is
a function of the X-ray energy. Usually X-ray with energy of about 70 keV are used.
Differently computed tomography aims at representing axial slices of the human body,
starting from a set of lateral digital radiographies. The two-dimensional image obtained
is a compression along a plane of a three-dimensional slice volume of human body. The
thickness of the 3D slice depends on the slice sensitivity profile which measures the axial
resolution. The smaller the thickness the greater the resolution. The value obtained

for each pixel is measured in a scale relative to water absorption, through units called
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Hounsfield units (HU), defined as:

w(HU) = B HH0 1000 (A.2)
/‘LHQO

Therefore low values of HU, close to the 0 of water, are obtained for soft tissues while
values up to 1000 and more imply the presence of hard tissue, as the compact bone,
and -1000 the air. The tomography approach emerged as early as 1940, when modern
computer technology lacked. The basic idea was firstly introduced by Gabriel Frank
[49]: he designed the sinogram representation and the optical back-projection tech-
niques. The sinogram is intended as the collection of lines representing the projection
values along the X-ray direction. The names comes from the fact that if a point in
space is imaged over 180 degrees projections it designs a sinusoidal wave over the lines.
Back-projection algorithms consists is the uniform distribution of the sample, along
the path that contributed to the sample formation. After twenty years an American
Neurologist from Las Vegas tried to perform a series of experiments in order to put in
evidence anatomical structures contained in more dense structures. He was William
H. Oldendorf, and he built a plastic and iron phantom in order to mimic the desired
anatomical geometry [21]. Moreover the radioisotopy-based transverse tomography
was introduced in 1963 from David E. Kuhl and Roy O. Edwards [29]. This lead
to the modern Emission Computed Tomography (ECT). Two opposite detectors were
used and the emission radiation was sampled uniformly in terms of angular sampling.
Nonetheless, a precise reconstruction technique was still missing at that time, although
in 1917 Radon had already anticipated the mathematical formulation for image recon-
struction. Radon introduced the Radon transform, proving that an object could be
exactly reconstructed from an infinite set of projections [23|. Around 1956 the inverse
Radon transform was introduced as the solution of the image reconstruction problem.
In the same years Allan M. Cormack understood how important it was to know the
attenuation coefficient distribution of the anatomical part being imaged [12]. He used
one of the first CT scanners at that time to prove his mathematical theory for image
reconstruction. In 1967 at the Central Research Laboratories of EMI, in England,
Godfrey N. Hounsfield lead to the advent of the first clinical scanner and preliminar-
ily estimated that the attenuation coefficients could be estimated with 0.5% accuracy
[22]. Since this first scanner many advancements have been achieved and four scan-
ner generations have been designed (Figure A.1). The scanner built in 1971 with the
Hounsfield model is called the first-generation CT: the system was composed of the
X-ray source and a single detector. Both had to translate in order to acquire a single

projection, while they have to rotate in order to change the projection angle. Since two
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movements were necessary for the complete read out, the acquisition time was as long
as about 5 minutes for a single slice. The need for shorter acquisition times led to the
development of the second-generation scanner at EMI in 1975 [17]. In this system n
detectors were aligned on a straight line and the X-ray source was collimated in order
to produce a fan beam projection. Within this system two movements (translation and
rotation) were still required but the acquisition time was reduced of a factor n, leading
for an overall time of one minute approximately.

Successively the third-generation scanner was introduced, becoming the most pop-
ular scanner geometry. An array of detectors was introduced: the sensor elements are
aligned over an arch and the entire array can rotate together with the source. Doing so
the translation movement is eliminated and the slice acquisition time is now reduced
down to 1/3, 1/4 of a second. Immediately thereafter the fourth-generation scanner
was introduced: the detectors were fixed, organized in a ring shape and the source
is rotating along the ring; however, this geometry was soon abandoned, almost com-
pletely. To guarantee the correct functioning of continuously rotating scanners (3"¢
and 4" generation) slip ring technology was introduced, leading to the removal of the
connection cables . Further evolution was provided by the development of the spiral
CT, that in the 90’s became predominant. The spiral CT combines the slip ring tech-
nology to a translation of the patient table: this allows to image large body regions
through a single scan. Furthermore, several detector arches (up to 256) were set in

parallel thus contemporaneously scanning many slices in Multi Slice Spiral CT.

A.2 Image Reconstruction

Tomographic methods require solving the reconstruction from projection problem.
Starting from the projections data, a slice of the object being imaged is modeled as a
2D function in the (x, y) space. The mathematical theory for reconstruction was intro-
duced by Radon in 1917. As it was already introduced in Section A.1 the projection
image consists in a value representing the attenuation coefficients summation on a line
integral along a particular x-ray direction. According to the Lambert Beer Law, if the
attenuation coefficient i is constant in space, the intensity value of the X-ray coming

out from the imaged object is equal to :

I(x,y) = Ipe " (A.3)

where [ is the initial X-ray intensity and L is the X-ray path length inside the

object. In general, the attenuation coefficient is not constant, and in this case the
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Figure A.1: The four generations of CT scanners



A.2 Image Reconstruction 79

projection ray can be subdivided in smaller paths [; with uniform attenuation coefficient

1;, and the intensity of the X-ray becomes:

I, y) = Toe~ Siamts (A4)

When [; approaches zero the summation becomes an integral and the above de-

scription becomes :

I(z,y) = Lye™ Ja nevd s

where A and B are the source and the detector position in the plane (x,y) i.e. the
X-ray path is the segment AB (Figure A.2). Using the logarithmic transformation, the

following expression is obtained:

In (%) = /A ’ (. y, 2)dl (A.6)

B=Detector

Figure A.2: Generic illustration of a X-Ray path in an object from the point A to the
point B.
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In CT the projection measurement is defined as the quantity p computed as:

() a7

Equation A.7 means that the ratio among the input and output X-ray intensity (in
the logarithmic scale) represents the attenuation coefficients summation on along the
x-ray direction.

When dealing with the computational problem we have to refer to Equation A.4.
Switching to the more general 3D problem, if the imaged object is subdivided in volume
elements (vozels) small enough to have a constant attenuation coefficient i, the value
1 ., should be estimated for each voxel, 7, j, k being the indexes on the space directions
(x,y,z). If a general number H of projection rays has been considered, the measure set

is composed of H projection values p, and Equation A.4 can be rewritten as :

Ph = Z Wi, Wi Je b (A.8)
ivj,k

The w; ;1 values represent the weights for each voxel i.e. they represent how much
the voxel attenuation coefficient y; ; , has influenced the projection value p,. Normally,
the weights values are computed as the fractional volume of the voxel covered by the
x-ray passing through. Taking as an example a two-dimensional image, the weights are

representable as the pixel area covered by the x-ray, as illustrated in Fig. A.3
Many approaches can be taken into account for the resolution of the image recon-
struction problem. All of them start from the modeling of the process of data collection.
Taking as a reference the Lewitt review [34] we can define the process of data acquisi-
tion as a discrete-continuous (D-C) model that couples the projection (discrete) data
to the function of continuous spatial variables, which corresponds to the image to be
reconstructed, denoted here by u(z,y,z). Moreover we assume a Linearly Spatially
Variant model between the projection data and the function pu(z,y, z). The DC LSV

model can be written as:
Dh = /// p(x,y, 2)hi(z,y, z)dedydz  h=1,2,...H (A.9)
Q

where ) is the spatial domain and h;(z,y, z) is the integration kernel function over
space, which is the weight function. Once the DC model is developed the reconstruction

algorithms can proceed in three different ways:

1. Image Reconstruction based on Continuous Continuous model
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Figure A.3: Graphical representation of the computation of weights. In the specific 2D
example the weight wy 14 is computed as the area of the pixel [4, 1] and represents the
contribution of the pixel [4, 1] to the projection py,
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2. Image Reconstruction based on Discrete Continuous model

3. Image Reconstruction based on Discrete Discrete model

A.2.1 Image Reconstruction based on CC model

This approach considers the measure set as a sample of a continuous function in the
space of measurements. In this way not further approximation due to discretization is
introduced. However, an acquisition model simplification is needed in order to derive
an analytic solution. This approach leads to a non-optimal solution, but to a short
computational time. Let’s take, for example, a parallel ray geometry. We consider a
particular projection direction, identified by the a line rotated by an angle ® about
the z-axis and rotated by an angle 6 about the z-axis. This rotation transform the
general coordinates (z,y, z) to the coordinates (z',y’, z’). Let’s take for simplicity the
projection line as parallel to the 3 axis. In addition, the measurement model must be
simplified, and in particular the 3D integration region is shrunk to a non-volumetric
thin line, so that the 3D-integral must be reduced to a 1D-integral along the line. Now

the C-C model can be written as:

mwaa@z/pw%aw (A.10)

L

where L is the whole projection line. In this equation, p(z’, 2,0, ®) is the function in
the measurement space, and the measure set is the sampling of this function. For this
type of formulation, the Fourier Central Section Theorem (Figure A.4) establishes that
the 2-D Fourier transform of each parallel ray projection corresponds to a plane of the

3-D Fourier transform of the function u(x,y, z). Defining the 3D Fourier transform of

/L(.Z', Y, Z) as:

itonipio) = [ [ [ ey et dodyd: (A11)
Q

and we select, in the transform, the plane w, = 0 we obtain

jtons0.0) = [ [ [ g2yt dadyas (A12)
Q

Moreover the 2D Fourier transform of the projection pys(2', 2') = p(2/, 2/, 0, @) is

Pow (W, wer) = //p%(m’,z')e_i(%’””urwzwl)dx’dz’ (A.13)
Q
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Figure A.4: Graphical illustration of the Central Section Theorem. (x,y) are the space
variables while (u,v) are the frequencies variables. The angle w here represents the
direction of the projection ray.
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We can identify in Equation A.12 the term [ pu(z,y,z)dy = p(a’,2',6 = 0, = 0)

obtaining in conclusion:

filws, 0,w,) = //pezo,q,:o(:v',z’)ei(“’z”“zz)dxdydz = Po—0,0=0(Wa', W) (A.14)

which is the 2-D Fourier transform of the projection. Inverting this relationship the
function fi(w,,wy,w,) can be expressed in terms of pye(w,, w,s) and hereafter p(z,y, 2)
can be derived from fi(w,, wy, w,) by the inverse Fourier transform, obtaining the needed

image reconstruction.

A.2.2 Image Reconstruction based on DC model

This approach does not introduce any further discretization and approximation. Since
a function of continuous variables can not be estimated starting from a finite set of
measures, further conditions must be introduced. In particular the Moore-Penrose gen-
eralized solution can minimize the difference || &?(u) — p||, denoting as p the projection
operator. If another vector ¢, with I elements i.e. ¢ = (¢, ¢qq,...q;) is introduced, it

can be proved [40, 41] that the Moore Penrose solution can be written as:

I
p,y, 2)up = Y gihi(z,y, 2) (A.15)

i=1

If we substitute this expression into Equation A.9 we obtain

J
Dy = /// quhj(x,y,z)hi(x,y, 2)dxdydz h=1,2,..H (A.16)
Q=
We can define the Gram Matrix elements [4] as

Hi7j:///hi(x,y, 2)h;(x,y, z)dedydz (A.17)
Q

in order to reduce the system as a classical linear system:

p = Hq (A.18)

This solution actually requires the construction of a large, non sparse system and
the computation of the matrix H can be not trivial and computationally heavy. In

fact the matrix H tends to be very dense due to the fact that the H; functions are
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not confined. In several methods the basis functions are chosen to be coincident to
the integration kernels and in this case we call them natural pixels [7]. Another type
of basis functions is the ridge functions and they are used when, at each angle, the
projection value is a continuous variables function in the perpendicular direction to the

projection lines 35, 26].

A.2.3 Image Reconstruction based on DD model

The DD model approach, alias numerical approach, introduces a further approximation.
In fact, the image function p(z,y, z) is approximated with the linear combination of a

finite number J of discretized basis functions.

fi(z,y, 2 Zu] Y, 2 (A.19)

If, once again, we substitute the term 7(x,y, z) to the term u(x,y, z) in Equation A.9

we obtain:

ph—/// z,y, 2)hi(z,y, 2)dedydz  h=1,2,...H (A.20)

and if we model the contribution of the ;" basis functions to the i*" data measurements

s = [ [ [ oo oz (A.21)

J

Di = Zaz’,jﬂj (A.22)

=1

as a term a; ; where :

we finally obtain:

Having an equation for each projection value, the system can also be expressed in

matrix form:

p=Anu (A.23)

The matrix A, formed by the elements a;; is called System Matriz. Within this
model, the reconstruction algorithm has to compute the vector ji in order to get a vector
p similar to the measurement data p. The DD model includes several approaches that

consists in five general components:

1. A model of the physics of the measurement process: the characteristics of
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attenuation must be taken into consideration in order to design the appropriate
integration kernels h;. In CT, kernels are commonly simplified to uniform thick
rays, thus approximating the sensitivity function of sensors to an on-off, the width
of which is given by the FWHM of the sensor bell-shaped sensitivity.

. A model of the measurement uncertainty: a probability distribution of the

measurements can help in avoiding errors due to acquisition inaccuracies. This
is particularly valuable in PET and SPECT techniques, due to their Poissonian
statistics. Conversely, at common exposure levels CT noise can be considered

Gaussian and statistics is not explicitly considered..

. A set of basis functions: the basis functions can be global or localized. A

global basis function influences the whole image spatial region while a localized
one only influences one single voxel or a finite set of voxels. The latter is the
common approach in CT and will be kept here; nonetheless, our approach is

passible of improvements if basis functions targeting vessel segments were used.

. An objective function: it consists in a mathematical quantity to be minimized

by the algorithm. It must be chosen in order to optimize some specified param-
eters, depending on the objective of the algorithm. When statistics is taken into
account maximum likelihood is the most appropriate objective function. Con-
versely, if not, as in CT, the least squares of errors is considered, either implicitly

or explicitly.

. A numerical algorithm: given the measure set and the all the conditions

chosen through the categories above the appropriate algorithm must be chosen.
For example a non iterative algorithm might be a good choice when the analytic
solution is not too heavy or complicated, i.e when the dataset is not too big
and the objective function is quite simple. Most frequently iterations are needed
which implement a simple update operation based on optimizing the objective
function towards the entire set, or a sub-set of projections or even a single one.
The algorithm repeatedly iterates through the whole data set until a stopping

rule is satisfied.

A.3 Filtered Backprojection

One of the most diffuse operator in image reconstruction is the back-projection (BP)

operator. Once the projection data are obtained, back-projecting means to give the

projection value to all the points belonging to the line t = xcosw + ysinw. Summing
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all the contribution of the back projection at different angles, the following expression

is obtained:

5/ Pw(TCosw + ysinw) (A.24)
0

In Figure A.6 the concept of back-projection is illustrated. The Filtered Back-
projection is a back projection in which the projection data are previously filtered,
since the reconstructed image is blurred by a simple BP, as shown in Figure A.7. In
fact the BP from many directions results in a star and, if the number of considered
directions tends to infinite the obtained image equals to the image function convoluted
to the Point Spread Function (Figure A.5):

Figure A.5: Star artifact on a point reconstruction. On the left the artifact for a finite
number of back projection angles. On the right, the star artifact when the number of
considered directions of projection tends to infinite

N 1
Pw(zcosw + ysinw) = p(x,y, z) @ ———— (A.25)
/o V& + Y

where 1/ \/m = 1/p is the PSF. Due to the linear property, the Fourier
Transform of a star is a star in the frequencies domain with density decreasing as
1/\/w?+ w2 = 1/Q and tends to 1/ as the number of direction tends to infinite. This
is called Modulation Transfer Function (MTF). Multiplying by MTF~! = Q in the

Fourier space the correction of the back-projection blurring is obtained.
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Figure A.6: Graphical illustration of the back-projection result: all the points on a line
obtain a value equal to the value p,(t) of projection along that line.
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(a) Shepp-Logan Phantom

(b) Shepp-Logan Phantom reconstructed with backprojection.
Blurring artifact is noticeable

Figure A.7: Comparison among Shepp-Logan Phantom and its backprojected version.
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A.4 Feldkamp-Davis-Kress (FDK) Algorithm

The Feldkamp-Davis-Kress Algorithm is an approximated filtered backprojection for
the Cone Beam CT (CBCT) with circular trajectory. It introduces a correction for
the in-plane angle aperture and another correction for the elevation angle aperture. In
fact, as shown in Figure A.8, the rays are representable as many inclined fans and the

whole reconstructed volume coincide to a cylinder plus two cones.

z b

detector

inclined
fan

Saorgente

Figure A.8: The Cone Beam Geometry is illustrated. The reconstructed volume is
composed of a cylinder plus two cones. The set of projection rays can be represented
by several inclined fan.

If we consider each projection ray, it will produce on the panel a projection value
that is a function of the panel coordinate a, the other panel coordinate b, and the panel
rotation angle 5 around the gantry axis, as illustrated in Figure A.9. The coordinates

a and b are computed as :
a = Rtan(y) (A.26)

b=+VR?+ a’tan(k) (A.27)

where v is the ray’s in-plane angle, s is the elevation angle, and R the rotation

radius. The FDK algorithm is composed of three main steps:

1. A correction for the cone beam geometry is produced on the projection values
depending on which ray produced the projection value. A first correction term is
represented by cos(7y), being v the ray’s in-plane angle, as represented in Figure
A.9. This correction solves the fan-beam inaccuracy due to the different lengths
of the rays path inside the object. A second correction term cos(k), being k

the elevation angle, solves the same issue of the fan-beam problem but in the
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third dimension. The corrected projection p®(a, b, #) is obtained from the initial

projection value p(a, b, 5) as:

p°(a,b, B) = p(a,b, B) cos(v) cos(k) (A.28)

2. The ramp filter is applied to every projection row. The ramp filter is defined as:

1 [~ :
#@) = Fij {loly = 5= [ lol e (229
™ — 0o
The filtering operation can be written as:
p°(a;b, ) = p*(a,b, 8) ® g"(a) (A.30)

3. The last step is composed of a simple back-projection after a weighing for a factor

R2
U(z,y,8)%"
2 R2
plx,y) = /0 W?C(aa b, B)dj (A.31)
with:
_ —csin() +ysin(8)
ale,y, ) = RR+:L‘COS(B) + ysin(5) (A.32)
R
b(z,y,2,5) = ‘R + x cos(B) + ysin(p) (A.33)
U(z,y,8) = R+ xcos(B) + ysin(f) (A.34)

In conclusion the FDK algorithm is an approximate extension of the fan-beam
correction, for the 3D CBCT. It produces some artifacts, know as FDK artifact, mainly
consisting in a blurring along the z-axis at the highest elevation angles. However good
reconstructions has been demonstrated to be achievable at much higher elevation angles
(40° — 50°) than the ones commonly used in clinic (+£10°).



92 Tomography

Figure A.9: Geometric schema of elevation (k) and in-plane () angles in a 3D Cone
Beam projection



Appendix B

Implementation Details

In this section a more detailed explanation of the implementation of the algorithm
explained in the previous Sections will be presented. Here only the mathematical
manipulations are reported. The appendix is divided in categories: Simulation, System
Matrix, Dynamic System Matrix, Basis Functions and Segmentation. Each category
contains the mathematical explanation of the main functions used for the algorithm

implementation. Where needed, some code resources are reported.

B.1 Simulation

The simulation functions compute the simulated Digital Subtraction Angiography
(DSA) reconstruction and simulate the contrast transit in the simulated vessels. The
structure of the vascular tree is charged to the user. The vascular tree structure can be
set through an array, the Vessel Array (VA) containing the extreme of the vessel tracts.
Linking those extremes the whole vessel is obtained. The vessel array is composed in

the following way

VA = [p1,p2,P3..-Dn+1] (B.1)

where 7 is the number of tracts composing the vessel, and the points pi, ps...pp11
are the extremes of the tracts composing the vessel. More than one vessel can be
constructed and many vessel can be overlapped, in order to get a vascular tree. The
function in charge for the simulation of a single vessel takes as input the dynamic
parameters (acquisition time T, [s|, Delay § [s|, contrast transit time 7; [s| , and the
coordinates of the vessel tracts to be ), the vessel diameter, d, and the Vessel Array

(VA). It gives as output the simulated DSA reconstruction and two time-map images
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, containing for each voxel the values of the wash-in and wash-out of the contrast
respectively . In general, if n vessels are built, the image volumes V;' are summed one

another, in order to get the vascular tree volume V.
n
Ve = Z Vi (B.2)
i=1

With this method, two vessels can overlap, meaning that a voxel belongs to two different
vessels, each having his own dynamics. In this case, two possible t,, are associated
to the voxel, one for each simulated vessel. In order to manage those shunts , the
t,, for each voxel is chosen as the earlier instant of time among the several t,, values
associated to this voxel. This means that we are classifying the vessel basing on the
first instant of contrast arrival. Differently in order to get the wash-out map image
I,¢¢, the I,¢; values are chosen among the maximum value on ¢,5¢ different from zero,
favoring the vein with respect to the artery. With this method, if an artery overlaps
to a vein the voxel will be modeled with a longer transit time than the other vessels,

representing the combined effect of the artery-vein spatial superposition.

Within the function, firstly the radius of the vessel is computed as the half of the

vessel diameter:

d
Ty = ?v (B.3)
A parameter A, being the maximum displacement for any segment is set a priori.
The number of segments in the radius is computed as
T’U

Prat = | | (B.4)

and the angular increment exploited to build disks of vessel cross-section is defined

as

d¢ = atan2(n,qa, ) (B.5)

Once all this variables are computed the length of each tract of the vessel is computed
using the euclidean distance among one extreme of the vessel p; and the previous

extreme p;_i.

Ly = \/(pi =P )+ (), — Py )+ (L — ) (B.6)

and the total vessel length is computed as the sum of all tracts lengths.
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Ly =) Ly (B.7)
=1

Once the total length is computed the contrast flow speed can be calculated as the

ratio between the vessel total length and the acquisition time:
L,
Vem = — B.8
T, (B:8)

%
Then for each vessel tract t*, the unit vector directed as the vessel tract is computed

as:

S 7
= B.9
"= oo (B.9)

— .
where t; = |t, t, t.| is the tract vector.

Since many segments are contained in a tract, the number of segments is computed

and the steps for vessel growing are computed in the three cartesian directions x,y, and

Z.
i L
ng = Zt (B.10)
dri=A -t
dy; = A1,

The increment vector having as components |dz! dyi dyi| is computed easily as dt' =
A - ¢! At this point the vector orthogonal to tlﬁ vessel direction must be defined. It
is approximated Wi_t>h the cross product among t!, and either the x, y or z unit vector,

depending on the #!, orientation.

X 2 if (ij?) > 0.1
x Y if (t_g‘fx?) > 0.1 (B.12)
x Zif (Efx?) >0.1

Ll

SELSELSE]

The first diameter center is set in C', where C = E) and the distance traveled by
contrast D, (which the first time has been initialized to zero D, = 0). The contrast

arrival time is computed as:

(B.13)
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and for the contrast leaving time the transit time 7} is added to the contrast arrival

time.

torr =ton + T (B.14)

Then, the cylinder is filled by the contrast proceeding with angular steps A¢. For each
angle ¢ the radius is rotated by ¢ from f exploiting the Rodriguez formula:

7=

ry = (70 - ) - cos(¢) + Ly x (74 - ) -sin(¢) + b - (£, - (70 - 7)) - (1 — cos(¢)) (B.15)

u

where 7 is the vector orthogonal to the vessel direction, as defined before, and ¢, is the

unit vector in the vessel direction. The increment in the radial direction is computed

as:
Ao (B.16)
Nrad
and for all the radial steps the coordinates of the point to fill are computed as:
Py =P, + Ary
P,=P,+ Ar, (B.17)
P, =P, + Ar,

The voxel to be filled by contrast is approximated starting from the point coordinates:

Ve = round(P,)
V, = round(P,) (B.18)
V., = round(P,)

and subsequently, if the voxel is not yet filled by contrast it is filled
Image(Vx,Vy,Vz)=1; (B.19)

and the images of arrival and leaving times are filled in the correspondent voxel position

with the values t,, and t,s.

Ion V 7V 7V = ton
{ (Va, Vi, V) (B.20)

[Off(VQZ, Vy, VZ) = toff

In order to obtained a stored 4D image, containing a temporal profile for each voxel,
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or ideally being a 3D volume changing in time (the fourth dimension), the information
stored in the t,, and t,f; images is exploited, and data are reordered. With in the
simulation functions the projection functions are of great importance. In fact, after the
simulation of the image volume, the projection data must be obtained. The projection
computation is based on the Lambert Beer law. Since the system matrix il computed
for the algorithm running, and it contains the values of the x-ray paths along all voxels,
it can be exploited to compute the attenuation of the voxels to a specific projection
ray. So, for each projection ray 4, initializing the x-ray intensity to Iy = 1, the x-ray

intensity I obtained after overpassing all the voxels is:

I, = IyeXi=1 il (B.21)

where J is the number of voxels and a; ; is a weight that expresses how much the voxel

j attenuates the x-ray i in terms of path length.

B.2 System Matrix

The system matrix is composed of coefficients weighing the contribute of each voxel j
to each projection . Within this work the weights are computed as the length of the
path of a thin non volumetric ray inside a cubic voxel, as shown in Figure 2.4 in Section
2.2. In order to compute those distances all the projection rays must be computed,
along with all the intersection points with the voxel edges. This has been implemented
through a cycle on all the projection rays. Each projection ray corresponds to a specific
projection angle 6 and to a specific position on the FPD (z’,x’), so that a projection
value is a function p(f, 2’, z"), where z” and x’ are the axis along the FPD dimensions.
The reference system has been chosen with the z-axis coincident to the gantry axis.
The reference system is illustrated in Figure B.1.

The FPD points position has been initialized in 6 = 0, every time the projection
angle is changed from 6 to 8 + A# the FPD points are rotated of Af. The rotation is
obtained multiplying a rotation matrix R to the FPD points coordinate at the angle 6.

cos(Af) —sin(Af) 0
R = |sin(Af) cos(Af) 0 (B.22)
0 0 1

Within each projection angle, each projection ray impressing a FPD sensor is con-
sidered separately. The projection ray is identified with the straight line connecting

the source (which rotates together with the panel) and the FPD sensor under exam.
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Figure B.1: Reference system for the acquisition set up

Its position in space is identified by an angular coefficient on each plane mg,, m,., m..,

plus an intercept value for each plane gy, ., ¢.o. Those coefficients are computed as

follows: ) ( :
_ (Sz—D=x
May = (sy—py)
O (B.23)
— (Sz*pz)
\mzx o (Sz_pz)

p
Qey = Sz — MgySy

Qyz = Sy — MyzS2 <B24)

2z = Sz — MyeSy

Then, in order to compute all the paths across the voxels, the projection lines
have been intercepted with all the planes delimiting the voxels. Figure B.2 shows a
representation of only three planes delimiting a voxel.

Therefore, in order to compute the ray intersection with all the planes of the whole
set of voxels, the whole set of planes orthogonal to the z, y, and z axis is considered,

1.e.:

N*Z N? .
e Each xy plane between z = —=22<b .1, and z = —25%<L -, ) stepping from one
to another of wypge;. The N?

2 +e 18 the number of voxels along the z dimension,



B.2 System Matrix

99

Figure B.2: Three planes delimiting a voxel
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while W,z i the width of the voxel along the z dimension.

N<T NZ .
e BEach yz plane between r = — =222k -q0,, 50 and x = =222 -0, SteppIng from one

to another of wyyge. The N*

2 e 18 the number of voxels along the = dimension,

while wyeze; is the width of the voxel along the  dimension.

NY NY .
e BEach zx plane between y = — =282 -w,p5¢ and y = —452<L w0, stepping from one

to another of wypge;. The Ngoa:e

while W,z is the width of the voxel along the y dimension.

, is the number of voxels along the y dimension,

So for each plane value explored, that will be generically called k, the planes x = k,
y = k, z = k are considered at the same time. The intercept values are computed as

follows. For the planes x = k the intercept point (x;, y;, z7) is:

i = MeylYi + qzy

For the planes y = k the intercept point (x;,y;, 2;) is:

Ty = MgylY; + Qzy
i = k (B.26)

Zi = Myz®i + Qg
For the planes z = k the intercept point (z;, y;, 2;) is:

Yi = MyaX; + Qyx (B27)
Zi = k

For each possible value of k, —% Waorel < k < % “Wyozel, the intercept points

are exploited to compute the euclidean distance from the x-ray source. Therefore, for

each intercept point (z;,y;, z;) the distance from the x-ray source is.

Dy = (= 2P+ (s = ) + (2 = 5:)? (B.28)

Once the three distances to the source from the three planes * = k, y = k and
z = k have been calculated, the plane value k is updated to k = k 4+ wyoeer and
the process is repeated for * = k = k + Wyogel, Y = k = k + Wyopey and z = k =

k + Wyoger- All the I Dyg; distances (with I number of interceptions) are saved in
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three separate arrays: one for interception with z = k (DistanceVectory,), one for
interception with y = & (DistanceVector,,) and the last one for interception with
z = k (DistanceVectory,). All these arrays are composed as follows: the distance
term has been saved in the first row. The second, third and fourth rows of the vector
contain the values x;, y; and z;, so that each intercept point remains associated with
the computed distance from the source. Subsequently, the three arrays are merged
together in an unique DistanceVector array and this last one is sorted in order to
have the smallest distance in the first array element. Subsequently, starting from the
second-last array element, the ray paths in the voxels are computed as the difference
among the source-intercept distances. Those value are saved in the first row of another

array, WeightsVector:

Weight Vector(1,i) = DistanceVector(1,i+ 1) — DistanceVector(1,i) (B.29)

For each column the coordinates x.;, y.; and z.; of the center of the voxel associated
to the weight in that column are assigned to the second, third and fourth row of the
WeightVector. The coordinated x., y. and z., are approximated as the medium

point between [x; y; 2] and [T;41 Yiy1 Ziv1]

To = 35¢+2xi+1

_ Yit¥Yit1
yCi - . 21 (BBO)
Zci — ZiTZi+1

2

The elements of Weight Vector are the weights of the Static System Matrix. Subse-
quently they have to be assigned to the matrix in the correct position. The numeration
given to the voxels in order to put them in a line within the Static System Matrix is
the following: the voxels are taken row by row, and slice by slice, starting from the
slice parallel to the plane zz, at ¥ = —NyozeiWyorel- A voxels numeration example is
shown in Figure B.3(b).

Taking as reference the numeration adopted, the indexing for the weights is com-

puted starting from the voxel center data, in the following way:

Tindex = Cil(Yoi + Ny - “252eL)
Yindew = Ce1l(T¢; + Ny - Hugeel ) (B.31)
)

where Tindger, Yinder and Zijpger correspond to the indexing illustrated in Figure

Rindex = Ceﬂ(‘ZCi — sz . %

B.3(a). Afrterwards, the unique index I, is computed as :
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1,1,3(1,2,3(1,3,3

1,1.2]11,2.2]1,3,2 43,3

1,1,1{1,2,1({1,3,1| ;3,2| /3,3 Slice 3
-y
25111 27211 25311 /3’2 Slice 2

"~

3,1,113,2,1|3,3,1 Slice 1

a) Numeration using an index for each space dimension z, y and
z (xideewa Yindex Zindex)

19 | 20 | 21

10 1 11 | 12| 24

1 2 3 15| |27 Slice 3
e
4 5 6 18 Slice 2

"

7 8 9 / Slice 1

(b) Numeration using a single unique index I,

Figure B.3: Example, on a 3 x 3 matrix, of the voxel numeration adopted for the system
matrix ordering
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Iv = (yindex - 1)va + (Zindez - 1)sz + Lindex (B32)

Once the I, is computed, the weight element associated to that index is placed in
the System Matrix W in the row associated with the projection ray considered, and
on the column associated with the index I,. This overall process is repeated for each

projection ray, until all the lines of the System Matrix are filled.

B.3 Dynamic System Matrix

In order to make the System Matrix suitable for the dynamic extension of the ART
algorithm, the basis function samples must be inserted in the System Matrix, and only
the needed voxels must be kept. In order to do this, the voxels to be kept are identified
as the voxels with a non-zero value within the vascular three reconstruction obtained
with the DSA. This comes straightforward from the Matlab function find. Giving as
input the volumetric DSA reconstruction DSA, the indexes of the voxels of interest

are obtained as

[i,j] = find(DSA) (B.33)

for each image slice.

A global index (instead of the [i,j] indexing) is obtained as in Equation B.32 already
illustrated in the above section. Once the voxels of interest are defined, the static
System Matrix is extended as dynamic. For each row i, and for each column j, the
element W (i, j) is replaced by a vector of length B, with B equal to the number of
basis functions used: the vector is composed of the coefficient W (i, j) multiplied by the
vector of the basis function values at the time instant correspondent to the projection
i, b(i).

Wa(i, j) = W (i, j) - b(i) = W(i, j) - [bibiz .. bip] (B.34)

For further explanation see Section 3.2.

B.4 Basis Functions

The basis functions chosen for this algorithm are the rectangular ones. This is due to
the fact that they are suitable for modeling long transit times of the contrast medium,
as normally is in clinic acquisition protocols. The number of basis functions must

be decided a priori, depending on the contrast transit time and on the accuracy level
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claimed. Once the number of basis functions has been chosen, the temporal acquisition
period must be uniformly sampled with the basis functions. In order to guarantee an

adequate sampling the width of the B rectangular basis functions is computed as:

1,

where T, is the acquisition time. The term wys is expressed in seconds, and it must
be converted in samples. Therefore, defining the quantity At as the sampling period

expressed in seconds, the width of the basis functions expressed in samples is:

s _ Wy
wiy = E{ (B.36)

Then starting from the generic b** basis function g, its rise time is set as:

Each basis function signal is set to 1 between the rise time ¢, and ¢, 4 wyy.

B.5 Segmentation

The segmentation process starts from the voxels reconstructed TICs. The area under

the curve for arteries and veins is computed as:

Ne

AUC, =Y TIC;At (B.38)
i=1
N¢

AUC, = Y TICAt (B.39)
Ny

=73

and the total AUC is the sum of the expressions above:

AUC = AUC, + AUC, (B.40)

For each voxel the AUC, and AUC, are evaluated leading to the classification of
arteries and veins. An artery and a vein mask are created, and each voxel j of the
mask is set to one with the following criterion: if the AUC, is greater then the 10%
of the total AUC the voxel is classified as artery while if the voxel is not yet classified
as an artery and has an AUC, smaller then the 10% of the totale AUC the voxel is
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classified as a vein.
if AUC, > 0.1AUC — ArteriesMask(j) =1 (B.41)

else if ArteriesMask(j) =0 — VeinsMask(j) =1 (B.42)
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