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Summary

A Introduction

Atrial fibrillation (AF) is a very common heart arrhythmia: this condi-
tion causes a pathological atrial function, with a rapid, uncoordinated heart
rate. AF can lead to many collateral effects, such as fatigue, dizziness and
chest pain and increase the risk of myocardial infarction [32], heart fail-
ure [6] and stroke [39]. Furthermore, if untreated, the arrhythmia roots its
mechanism into the subject’s heart, becoming increasingly persistent [38],
therefore an early diagnosis is fundamental to counteract its impact.

One of the main problems with AF identification is that this arrhythmia
can be paroxysmal, meaning it can occur episodically and terminate spon-
taneously; in such cases it is very hard to identify the pathology, because
clinical analyses carried out in a normal sinus rhythm (NSR) period don’t
show the presence of AF [22]. Furthermore, there are many undiagnosed
subjects who present asymptomatic AF, often diagnosed by chance during
electrocardiograph control for other clinical reasons; these subjects show a
possibly large under-representation of the effective prevalence of AF. Un-
diagnosed AF patients are an important bulk of patients with high risk of
cardioembolic stroke or other complications associated with AF that could
lead to a potential loss of lives and higher costs related to health care re-
sources utilization.

A screening of the general population would answer the issue of the
paroxysmal and asymptomatic nature of AF. A monitoring device able to
oversee the patient’s condition such as a wristband for blood volume pulse
(BVP) recording could be useful and answer the developing trust in m-
Health. Therefore there is a pressing need to develop methods for accurate
AF detection and monitoring in order to improve patient care and reduce
healthcare costs associated with complications from AF. Such method would
have important clinical and research applications for AF screening as well
as in assessing treatment response.
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The aim of this thesis is the development of a decision-making system
trained on AF detection in the BVP signal, acquired through non-invasive
instrumentation.

B Methods

The starting point of this work was to recover biosignals through the
Empatica E4 wristband [40]. For all subjects, we acquired 10 minutes long
BVP signals, measured while the patient laid relaxed in a steady state. This
kind of acquisition, recorded by a photoplethysmographic system, answers
the non-invasivity requirement for a screening device used 24/7 in a non
hospital contest and exploits the spreading of smart devices able to embed
such systems.

B.1 Study population

We recorded the BVP signals of subjects of known health state to extract
features able to discriminate between three target classes: AF patients, NSR
subjects and patients suffering from other arrhythmias.

We acquired a total of 70 BVP signals from distinct subjects, recruited
among hospitalized patients at Ospedale Maggiore Policlinico in Milan,
Italy; after the acquisition, every subject was classified into one of the three
target classes by expert cardiologists: 30 of the recorded patients were af-
fected by atrial fibrillation, 31 were healthy subjects and 9 suffered from
other arrhythmias. As for the gender of the subjects, 36 recorded patients
were male and 34 were female; the age of recorded patients ranged from 21
to 93 years.

B.2 BVP preprocessing

The signal was preprocessed to remove noise distortions and to high-
light important features. In order to cancel noise interference, which is
mainly caused by movement artifacts, accelerometric data collected by the
Empatica E4 wristband were analyzed, synchronously with the BVP signal
acquisition; it was decided that, when the accelerometers recorded a differ-
ential acceleration higher that an empirically set threshold, that is 0.07g,
the signal interval was labeled as noisy and not considered for successive
analysis.

In a following phase, the signal was searched in order to automatically
identify characteristic features, such as diastolic minima and systolic max-
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ima, which represent significant point in time of the cardiac cycle; by study-
ing the timing and the values at those instants, it was possible to obtain
a surrogate of the pulse pressure of each beat and to calculate the inter-
systolic and inter-diastolic intervals, thus deriving the heart rate; all such
parameters were later used to study the regularity of the sequence of the
heart cycles.

B.3 Diagnostic indexes

We computed 16 diagnostic indexes out of the preprocessed BVP signal,
in order to be used by a decision making system to classify the patient’s
health status.

B.3.1 Spectral analysis

Two indexes represented the spectral behavior of both the BVP signal
and the inter-diastolic intervals.

The first index, called peak density (PD), expressed the concentration
of the BVP power spectrum and was calculated as the integral of the BVP
power spectral density (PSD) in a 12 mHz region around the heart rate,
divided by the integral of the PSD between 0 Hz and the sampling frequency;
the PD was higher for healthy subjects and lowest for AF patients, because
their BVP was more chaotic and therefore bore a wider power spectrum,
less concentrated around the main heart rate.

The power spectral density of the inter-diastolic intervals (PSDsum) pro-
vided an evaluation of the variance of the series, distributed along the fre-
quency spectrum. After calculating the PSD of the intervals sequence, the
integral sum of it (i.e. the total power) was computed; this quantity was
bigger for arrhythmic subjects, in particular AF patients, and lesser for NSR
subjects.

B.3.2 Time domain indexes

Six diagnostic indexes were used to assess heart rate variability during
the 10 minutes of the acquisition, because the presence of arrhythmia is
correlated to a more chaotic organization of the heart rhythm.

All time domain indexes were calculated on the series of inter-diastolic
intervals: we computed the standard deviation (SD), the root mean square
of successive differences (RMSSD), the normalized RMSSD (nRMSSD) and
the coefficient of variation (CV) of the intervals; we also evaluated the per-
centage of successive interval differences greater than 50 ms (pNN50).
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Finally we computed the AF evidence index. This diagnostic index was
originally proposed by Sarkar et al. [30] and exploits the Lorenz plot dis-
tribution of subsequent interval deltas to assess the presence of AF. The
version we employed was slightly different from the original, mainly because
we needed to adapt this index, originally conceived for ECG analysis, to the
BVP signal; the working principle, however, is the same; this index assumed
higher values for AF patients and low, generally negative values for NSR
subjects, while subjects with other arrhythmias had values in between.

B.3.3 Nonlinear indexes

In the category of nonlinear indexes we included the sample entropy and
normalized Shannon entropy.

Sample entropy (SampEn) [29] is a modified version of approximate en-
tropy. Our analysis evaluated the sample entropy of the intervals, as an
index of the complexity of their distribution. The values of this index were
lowest for the other arrhythmia class and higher for the AF and NSR classes.

Shannon entropy (ShEn) [24] characterizes the uncertainty of a statisti-
cal distribution and increases proportionally to the presence of randomness
sources, therefore it is a good indicator of the chaotic nature of the statisti-
cal distribution of the intervals. The Shannon entropy index was normalized
(nShEn) by dividing it by the logarithm of the number of intervals detected;
this was performed since Shannon entropy tends to increase with the dimen-
sion of the the dataset of variables. As can be expected, values were lowest
for healthy subjects and higher for all the classes of arrhythmic patients.

B.3.4 Shape analysis

Other than the indexes focused on the variability of time intervals, we
also evaluated a category of indexes based on the morphology of the BVP:
the normalized wave deviation, the detection of multi-peak waves and two-
peak waves and the shape similarity index.

The wave deviation (WD) was calculated as the median absolute devi-
ation of the excursions between the values of the systolic peak and of the
diastolic minimum. Since the overall signal amplitude can change during
different acquisition, even for the same subject, we provided a normalized
index of wave excursion (nWD), obtained as the WD divided by the median
excursion of the signal. The normalized wave deviation assumed slightly
higher values for arrhythmic subjects in comparison with NSR subjects.

The multi-peak waves and two-peak waves represented two peculiar wave
shapes which were noticed during the analysis of the BVP of AF subjects
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(Figure 1); since their manifestation was observed more frequently for this
class of patients, it was decided to implement an algorithm for their detec-
tion, which allowed us to quantify the percentage of such waves on the total
number of waves. This percentage constituted the final index of multi-peak
waves (MPW) and two-peak waves (TPW). It was observed that both MPW
and TPW percentages were higher in AF subjects and in subjects affected
by other arrhythmias with respect to NSR subjects.
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Figure 1: Multi-peak wave and two-peak wave shapes. The shape of a typical
multi-peak wave (left) and of a two-peak wave (right).

The last shape analysis index was the shape similarity [14]; this index
measured the similitude of all the BVP waves by comparing them with one
another; the similarity was expected to be higher for subjects with normal
sinus rhythm, since their cardiac output is physiologically more regular. The
shape similarity calculation was obtained by performing the dot product
between the arrays of the t values composing each wave in the acquisition.
The dot product between t-dimensional vectors is proportional to the moduli
of the vectors and to the cosine of the angle between them; in this calculation
each wave vector was normalized by dividing it by its norm, therefore this
calculation provided higher values for similar wave shapes, thus quantifying
their respective resemblance. The final shape similarity was obtained as
the percentage of waves in the acquisition which were more similar than
an empirical threshold, which was established to maximize index differences
between target classes. The values obtained for this index were, as expected,
higher for NSR subjects, lower for subjects affected by other arrhythmias and
lowest for AF patients. To obtain a more comprehensive examination from
this analysis, two more indexes were computed: the median (MedianArc)

V



and the mode (ModeArc) of the angle of the dot product, calculated for all
waves. This values were instead higher for patients suffering from AF and
lower for subjects with normal sinus rhythm.

B.4 Analysis

We performed a preliminary univariate analysis by observing the values
assumed by each index in the three different target classes: in every case
an overlap was present, precluding the possibility of using only one index to
accurately separate the subjects.

We then decided to carry out a multivariate analysis by training a sup-
port vector machine (SVM) and evaluating its performance through a leave
one out cross-validation method. To decrease the dataset dimension, a re-
duction in the number of indexes was performed, simplifying the analysis and
potentially improving the final separation accuracy. Two different methods
were used: principal components analysis (PCA) and wrapper method.

C Results

C.1 PCA

The PCA was performed on the full dataset of subjects and indexes.
The performance of the classifier was evaluated for different numbers of
principal components, from 1 to 16. In Table 1 the classification accuracy
obtained for different numbers of principal components taken into account is
displayed, together with the relative percentage of explained variance. The
best accuracy was 90% and occurred when the first 12 principal components
were considered, for an explained variance of 99.91%.
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# PCs 1 2 3 4 5 6 7 8
Acc [%] 50 48.57 75.71 84.29 87.14 82.86 81.43 81.43
Iq[%] 50.61 76.36 82.71 87.72 91.37 94.52 96.72 98.21

# PCs 9 10 11 12 13 14 15 16
Acc [%] 85.71 87.14 85.71 90 84.29 85.71 82.86 81.43
Iq[%] 98.80 99.34 99.71 99.91 99.98 99.99 100 100

Table 1: Classification accuracy for number of principal components included.
The classification accuracy obtained through a leave one out procedure is displayed for
an increasing number of principal components considered and their relative percentage
of explained variance.

C.2 Wrapper method

A selection of the most relevant indexes was performed through the wrap-
per method. We tested all the possible sets of indexes, thus, for 16 indexes,
216 − 1 combinations.

The distribution of SVM classification performance for all the combina-
tions of indexes is shown in Figure 2.
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Figure 2: Distribution of SVM classification accuracy. The hystogram displays the
classification accuracies obtained using different combinations of indexes.

As can be seen, the results of the SVM could vary greatly depending on
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the indexes it was trained on, going from a minimum accuracy of 32.86%
of one case to the maximum of 95.71% obtained by 22 combinations; as for
the statistical distribution of the accuracy, the median was equal to 81.43%,
with a mean of 77.65% and a mode of 90%. Out of the 22 combinations
providing the best accuracy, we selected 16 cases that also provided the best
value of sensitivity to the AF class, 96.67%.

The sets of indexes that achieved the best performance are reported in
Table 2.

% Ind
SD 1 1 1 1 1 1 1 1 1 56.25

RMSSD 1 1 1 1 1 1 1 1 1 1 62.5
nRMMSD 1 1 1 1 1 1 1 1 1 1 1 1 75

pNN50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
CV 1 1 1 1 1 1 1 1 50

SampEn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
nShEn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100

ShapeSim 1 6.25
MedianArc 1 1 1 1 1 1 1 1 1 1 62.5
ModeArc 1 1 1 1 1 31.25

AF evidence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
PD 0

nWD 1 1 1 1 25
MPW 1 1 1 1 25
TPW 0

PSDsum 1 1 1 1 1 1 1 1 1 56.25
Tot Ind 7 8 6 6 6 9 10 9 7 7 9 10 10 11 10 11

Table 2: Sets of indexes with best classification accuracy and sensitivity. This table shows
the best 16 combinations of indexes (columns). For each combination, the indexes (rows) taken into
account are marked with 1 in the correspondent box. At the end of each column the number of indexes
considered for each combination is specified. At the end of each row the frequency of appearance for
each index in all the 16 combinations is indicated.

These 16 combinations used from 6 to 11 different indexes simultane-
ously. Four indexes appeared in all the 16 combinations: the percentage of
differences of successive intervals greater than 50 ms (pNN50), the sample
entropy (SampEn), the normalized Shannon entropy (nShEn) and the AF
evidence, constituting an essential set of indexes for a good classification
performance. Aside from these always present indexes, every combination

VIII



featured a morphology based parameter and another index of heart variabil-
ity in the time domain.

For each combination, we analyzed the confusion matrix obtained at the
end of the leave one out method. The columns of the matrix indicate the
true health status of every subject, while the rows indicate the category in
which the patient is classified by the SVM; therefore, the diagonal elements
represent correct classifications. For the 16 best combinations, two typolo-
gies of confusion matrix were obtained multiple times, displayed in Table 3
and Table 4.

NSR Other AF
NSR 31 1 0
Other 0 7 1

AF 0 1 29

Table 3: Confusion matrix A. Confusion matrix obtained in 10 of the 16 best com-
binations of indexes. NSR=normal sinus rhythm, AF=atrial fibrillation and “other”
stands for other typologies of arrhythmia. The columns of the matrix indicate the true
health status of every subject, while the rows indicate the category in which the patient
is classified by the SVM.

NSR Other AF
NSR 30 1 0
Other 1 8 1

AF 0 0 29

Table 4: Confusion matrix B. Confusion matrix obtained in 6 of the 16 best combina-
tions of indexes. NSR=normal sinus rhythm, AF=atrial fibrillation and “other” stands
for other typologies of arrhythmia. The columns of the matrix indicate the true health
status of every subject, while the rows indicate the category in which the patient is
classified by the SVM.

In all the matrices the sensitivity, that is the ratio between the number of
AF identified by the SVM and the total number of AF subjects, was 96.67%,
while the specificity to NSR class was 100% in ten cases and 96.77% in the
other combinations; specificity to “other arrhythmia” class was 77.78% in
ten cases and 88.89% for the remaining six combinations.
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Sommario

A Introduzione

La fibrillazione atriale (atrial fibrillation, AF) è un’aritmia cardiaca piut-
tosto diffusa: questa condizione causa un’attività atriale patologica, carat-
terizzata da una frequenza cardiaca elevata e caotica. La AF può causare
molti effetti collaterali come affaticamento, vertigini e dolori al petto, ed
aumenta il rischio di infarto cardiaco [32], arresto cardiaco [6] e ictus [39].
Inoltre, se non trattata, l’aritmia consolida il proprio meccanismo nel cuo-
re del soggetto, diventando progressivamente persistente [38], dunque una
diagnosi tempestiva è fondamentale per fermarne l’avanzamento.

Uno dei motivi per i quali è complicato diagnosticare la AF è che questa
aritmia può essere parossistica, ossia può manifestarsi occasionalmente e
terminare spontaneamente; in queste condizioni essa diviene molto difficile
da identificare poiché, se durante le analisi cliniche il soggetto è in un periodo
di ritmo sinusale (normal sinus rhythm, NSR), le tecniche diagnostiche non
sono in grado di rilevare in alcun modo la presenza della AF. Inoltre, ci
sono alcuni soggetti in cui la malattia si presenta in forma asintomatica, che
sfuggono alla diagnosi e che sono spesso individuati solo per caso durante
controlli cardiaci per altri problemi; ciò mostra una possibile sottostima
della prevalenza effettiva della AF. Pazienti non diagnosticati presentano,
inoltre, un alto rischio di cardioembolia o di altre complicanze associate alla
fibrillazione atriale che possono comportare perdite di vite e costi elevati per
la sanità.

Uno screening della popolazione risponderebbe al problema della natura
a volte parossistica o asintomatica della AF. Un dispositivo di monitoraggio
capace di supervisionare la condizione del paziente, come un braccialetto
per la registrazione del blood volume pulse (BVP), può essere utile in questo
contesto e risponderebbe alla fiducia crescente verso la “mobile health” (m-
Health). C’è quindi una notevole richiesta di sviluppare metodi per un
accurato riconoscimento di episodi di AF e per il monitoraggio cardiaco,
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nel tentativo di migliorare la cura dei pazienti e ridurre i costi della sanità
associate alle complicanze dovute ad AF. Tali metodi avrebbero importanti
applicazioni cliniche e di ricerca, favorendo sia lo screening che la valutazione
della risposta clinica al trattamento.

L’obiettivo di questa tesi è lo sviluppo di un sistema di decision-making
addestrato per il riconoscimento di AF in segnali BVP acquisiti tramite
dispositivi non invasivi.

B Metodi

Il punto iniziale di questa tesi è stato il recupero di biosegnali attraverso
il braccialetto Empatica E4. Per tutti i soggetti abbiamo acquisito segnali
BVP di 10 minuti registrati con il paziente supino e rilassato. Questo tipo di
segnale, registrato da un sistema fotoplestismografico, risponde all’esigenza
di non invasività richiesta da un dispositivo di screening usato 24/7 in un
contesto non ospedaliero e sfrutta la crescente diffusione di dispositivi smart
capaci di integrare tali sistemi.

B.1 Popolazione in studio

Abbiamo registrato i segnali BVP di soggetti dallo stato di salute noto
per estrarne le caratteristiche in grado di discriminare fra tre classi target:
pazienti con AF, soggetti NSR e pazienti con altre aritmie.

Abbiamo acquisito 70 segnali BVP da soggetti distinti, reclutati tra i
pazienti ricoverati all’Ospedale Maggiore Policlinico di Milano, Italia; dopo
l’acquisizione, ogni soggetto è stato assegnato ad una classe target da un
cardiologo esperto: 30 dei soggetti erano affetti da AF, 31 erano sani e 9
soffrivano di altre aritmie. Per quanto riguarda il sesso dei pazienti, 36 erano
maschi e 34 femmine; l’età variava dai 21 ai 93 anni.

B.2 Preprocessing del segnale BVP

Abbiamo fatto un preprocessing del segnale per rimuovere il rumore ed
evidenziare importanti caratteristiche. Per eliminare il rumore, principal-
mente causato da artefatti di movimento, abbiamo analizzato i dati accele-
rometrici acquisiti dal braccialetto Empatica E4 in modo sincrono al BVP; è
stato deciso che, quando l’accelerometro registrava un’accelerazione differen-
ziale maggiore di una certa soglia, fissata a 0.07g, il segmento di segnale era
etichettato come rumoroso e non veniva considerato nelle successive analisi.

Successivamente, si è implementata una ricerca automatica sul segnale
per identificarne alcune caratteristiche, come i minimi diastolici e i massimi
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sistolici, che rappresentano punti significativi del ciclo cardiaco; studiando
la tempistica e i valori assunti dal segnale in questi istanti, è stato possibile
ottenere un surrogato della pressione pulsatile di ogni battito e calcolare
gli intervalli inter-sistolici e inter-diastolici, derivando la frequenza cardiaca;
tutti questi parametri sono stati in seguito usati per studiare la regolarità
della sequenza dei cicli cardiaci.

B.3 Indici diagnostici

Abbiamo calcolato 16 indici diagnostici sul segnale BVP ottenuto dopo
la fase di preprocessing, su cui basare un sistema di decision-making in grado
di classificare lo stato di salute del paziente.

B.3.1 Analisi spettrale

Due indici sono stati usati per esprimere il comportamento spettrale del
segnale BVP e degli intervalli inter-diastolici.

Il primo indice, chiamato peak density (PD), rappresentante la concen-
trazione dello spettro di potenza del BVP, è stato calcolato come l’integrale
della power spectral density (PSD) in una regione di 12 mHz intorno alla
frequenza cardiaca, diviso per l’integrale della PSD tra 0 Hz e la frequenza
di campionamento; PD è risultato più elevato per soggetti sani ed inferiore
per pazienti AF, perché il loro BVP è più caotico e quindi presenta uno
spettro di potenza più largo, meno concentrato intorno al picco principale
di frequenza cardiaca.

La PSD degli intervalli inter-diastolici (PSDsum) è servita per stimare la
varianza della serie, distribuita sulle frequenze dello spettro. Dopo il calcolo
della PSD della serie di intervalli, la sua somma integrale (ossia la potenza
totale) è stata calcolata; questo indice ha presentato valori maggiori per i
soggetti aritmici, in particolare per i pazienti AF, e minori per i soggetti
NSR.

B.3.2 Indici nel dominio del tempo

Sei indici diagnostici sono stati usati per valutare la variabilità cardia-
ca durante i 10 minuti di registrazione, in quanto la presenza di aritmia
comporta un’organizzazione più caotica del ritmo cardiaco.

Tutti gli indici nel dominio del tempo sono stati calcolati sulla serie di
intervalli inter-diastolici: abbiamo calcolato la deviazione standard (SD), la
radice quadrata della media delle differenze al quadrato di intervalli suc-
cessivi (RMSSD), la RMSSD normalizzata (nRMSSD) e il coefficiente di
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variazione (CV) degli intervalli; abbiamo anche valutato la percentuale di
differenze di intervalli successivi maggiori di 50 ms, (pNN50).

Infine abbiamo calcolato l’indice AF evidence. Questo indice diagno-
stico è stato originariamente proposto da Sarkar et al. [30] e sfrutta la
distribuzione dei delta tra intervalli successivi sul diagramma di Lorenz per
valutare la presenza di AF. La versione da noi implementata è leggermente
diversa dall’originale, soprattutto perché abbiamo avuto bisogno di adattare
quest’indice, originariamente pensato per l’analisi dell’ECG, all’analisi del
BVP; il principio operativo, comunque, è lo stesso; questo indice ha assun-
to valori più elevati per i pazienti AF ed inferiori, generalmente negativi,
per i soggetti NSR, mentre i soggetti con altre aritmie presentavano valori
intermedi.

B.3.3 Indici non lineari

Nella categoria degli indici non lineari abbiamo incluso la sample entropy
e la Shannon entropy normalizzata.

La sample entropy (SampEn) [29] è una versione modificata della ap-
proximate entropy. La nostra analisi ha stimato la sample entropy degli
intervalli come un indice della casualità della loro distribuzione. I valori di
questo indice erano molto bassi per la classe di altre aritmie e più alti per
le classi AF e NSR.

La Shannon entropy (ShEn) [24] esprime l’incertezza di una distribuzio-
ne statistica ed è un buon indicatore della natura caotica della serie tem-
porale di intervalli. L’indice della Shannon entropy è stato normalizzato
(nShEn) dividendolo per il logaritmo del numero di intervalli rilevati; que-
sta operazione è stata svolta perché la Shannon entropy tende ad aumentare
proporzionalmente alle dimensioni del dataset di variabili. Come atteso, i
valori minimi di questo indice sono stati ottenuti per i pazienti sani mentre
valori maggiori appartengono alla classe dei pazienti aritmici.

B.3.4 Analisi morfologica

Oltre agli indici della variabilità degli intervalli temporali, abbiamo anche
calcolato un’altra categoria di indici basati sulla morfologia del segnale BVP:
la wave deviation normalizzata, le percentuali di multi-peak waves e di two-
peak waves e la shape similarity.

La wave deviation (WD) è stata calcolata come la deviazione mediana
assoluta dell’escursione del BVP tra il picco sistolico ed il minimo diastoli-
co. Dal momento che l’ampiezza globale del segnale può cambiare durante
acquisizioni differenti, anche per lo stesso soggetto, abbiamo generato un
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indice dell’escursione di ogni onda (nWD) calcolato come la WD divisa per
l’escursione mediana del segnale. La wave deviation cos̀ı normalizzata as-
sume valori leggermente maggiori per i soggetti aritmici in confronto con i
soggetti NSR.

Le multi-peak waves e le two-peak waves rappresentano due peculiari
forme d’onda che sono state osservate durante l’analisi del BVP di soggetti
AF (Figura 3); dal momento che la loro apparizione è stata osservata più
frequentemente per questa classe di soggetti, è stato deciso di implementare
un algoritmo per la loro identificazione, che ci ha permesso di quantificare
la percentuale di tali onde sul numero totale di cicli cardiaci dell’acquisizio-
ne. Questa percentuale ha costituito l’indice finale delle multi-peak waves
(MPW) e delle two-peak waves (TPW). Si è osservato che sia le MPW che le
TPW presentavano una percentuale maggiore nei soggetti AF e nei soggetti
affetti da altre aritmie in confronto ai soggetti NSR.
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Figura 3: Forma di multi-peak wave e di two-peak wave. La forma tipica di una
multi-peak wave (sinistra) e di una two-peak wave (destra).

L’ultimo indice di analisi morfologica è la shape similarity [14]; questo
indice misura la somiglianza di tutte le onde del BVP paragonandole una ad
una; è stata prevista una somiglianza maggiore per i soggetti in ritmo sinu-
sale, dal momento che il loro output cardiaco è fisiologicamente più regolare.
Il calcolo della shape similarity è ottenuto svolgendo il prodotto scalare tra
gli array di t campioni che compongono ogni onda dell’acquisizione. Il pro-
dotto scalare tra due vettori t-dimensionali è proporzionale al modulo dei
due vettori e al coseno dell’angolo compreso tra di essi; in questa operazione,
il vettore dei campioni di ogni onda è stato normalizzato dividendolo per la
norma, di conseguenza questo calcolo fornisce valori più elevati per forme
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d’onda simili, quantificandone la somiglianza relativa. L’indice finale di sha-
pe similarity è stato ottenuto come la percentuale di onde in un’acquisizione
che sono più simili di una certa soglia, impostata in modo da massimizzare
le differenze di questo indice tra le classi target. I valori ottenuti dall’indice
erano, come previsto, maggiori per i soggetti NSR, inferiori per soggetti af-
fetti da altre aritmie e minimi per i soggetti AF. Per ottenere un’analisi più
comprensiva, sono stati calcolati altri due indici: la mediana (MedianArc) e
la moda (ModeArc) dell’angolo del prodotto scalare, calcolato per tutte le
onde. Questi valori risultavano invece più alti per i pazienti AF ed inferiori
per i soggetti NSR.

B.4 Analisi

Abbiamo svolto un’iniziale classificazione univariata osservando i valori
assunti da ciascun indice nelle tre classi target: in ogni caso era presente
una sovrapposizione di valori, precludendo la possibilità di utilizzare un solo
indice per separare i soggetti.

Abbiamo deciso pertanto di svolgere un’analisi multivariata addestrando
una support vector machine (SMV) e valutandone l’accuratezza attraverso
il metodo di cross-validation leave one out. Per ridurre le dimensioni del
dataset è stato diminuito il numero di indici impiegati, semplificando l’analisi
e potenzialmente migliorando l’accuratezza di classificazione finale. Due
metodi diversi sono stati impiegati: l’analisi delle componenti principali
(principal component analysis, PCA) ed il metodo wrapper.

C Risultati

C.1 PCA

Abbiamo applicato la PCA sull’intero dataset di soggetti e indici. La
performance del classificatore è stata valutata per un numero diverso di
componenti principali, da 1 a 16. Nella Tabella 5 è mostrata l’accuratezza
di classificazione ottenuta per un differente numero di componenti principali
prese in considerazione, insieme alla relativa percentuale di varianza spie-
gata. La migliore accuratezza era 90%, ottenuta considerando le prime 12
componenti principali, per una varianza spiegata del 99.91%.
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# PCs 1 2 3 4 5 6 7 8
Acc [%] 50 48.57 75.71 84.29 87.14 82.86 81.43 81.43
Iq[%] 50.61 76.36 82.71 87.72 91.37 94.52 96.72 98.21

# PCs 9 10 11 12 13 14 15 16
Acc [%] 85.71 87.14 85.71 90 84.29 85.71 82.86 81.43
Iq[%] 98.80 99.34 99.71 99.91 99.98 99.99 100 100

Tabella 5: Accuratezza di classificazione per numero di componenti principa-
li considerate. L’accuratezza di classificazione ottenuta attraverso una procedura
leave one out e la percentuale di varianza spiegata sono mostrate per un numero
progressivamente maggiore di componenti principali considerate.

C.2 Metodo wrapper

Una selezione degli indici più rilevanti è stata ottenuta attraverso il me-
todo wrapper. Abbiamo testato tutte le possibili combinazioni di indici,
quindi, per 16 indici, 216 − 1 opzioni.

La distribuzione di accuratezza di classificazione ottenuta tramite SVM
è mostrata in Figura 4.
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Figura 4: Distribuzione della accuratezza di classificazione ottenuta tramite
SVM. L’istogramma mostra le accuratezze di classificazione ottenute usando differenti
combinazioni di indici.
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Come si può vedere, i risultati della SVM cambiano notevolmente in base
agli indici su cui è stata addestrata, andando da un’accuratezza minima di
32.86% ottenuta in un caso, al valore massimo di 95.71% ottenuto per 22
diverse combinazioni; per quanto riguarda la distribuzione statistica dell’ac-
curatezza, la mediana era uguale a 81.43%, con una media di 77.65% e una
moda di 90%. Delle 22 migliori opzioni abbiamo selezionato i 16 casi che
offrivano anche il miglior valore di sensitività alla classe AF, 96.67%.

Le combinazioni di indici che offrivano la migliore performance sono
mostrati in Tabella 6.

% Ind
SD 1 1 1 1 1 1 1 1 1 56.25

RMSSD 1 1 1 1 1 1 1 1 1 1 62.5
nRMMSD 1 1 1 1 1 1 1 1 1 1 1 1 75

pNN50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
CV 1 1 1 1 1 1 1 1 50

SampEn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
nShEn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100

ShapeSim 1 6.25
MedianArc 1 1 1 1 1 1 1 1 1 1 62.5
ModeArc 1 1 1 1 1 31.25

AF evidence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
PD 0

nWD 1 1 1 1 25
MPW 1 1 1 1 25
TPW 0

PSDsum 1 1 1 1 1 1 1 1 1 56.25
Tot Ind 7 8 6 6 6 9 10 9 7 7 9 10 10 11 10 11

Tabella 6: Combinazioni di indici con migliore accuratezza di classificazione e sensitività. La
tabella mostra le 16 migliori combinazioni di indici (colonne). Per ogni combinazione, gli indici (righe)
presi in considerazioni sono indicati con un 1 nella casella corrispondente. Alla fine di ogni colonna è
indicato il numero di indici presi in considerazione in ogni caso. Alla fine di ogni riga è specificata la
percentuale di utilizzo di ogni indice in tutte le 16 combinazioni.

Queste 16 combinazioni erano costituite da un numero di indici variabile
da 6 a 11. Quattro di questi indici apparivano in tutti i 16 casi: la percentua-
le di differenze di intervalli successivi maggiori di 50 ms, (pNN50), la sample
entropy (SampEn), la Shannon entropy normalizzata (nShEn) e la AF evi-
dence, che hanno quindi costituito un sottoinsieme di indici fondamentali

XVII



per una buona classificazione. A parte questi indici sempre presenti, in ogni
combinazione comparivano un parametro morfologico e un altro indice di
variabilità cardiaca nel dominio del tempo.

Per ogni combinazione, abbiamo analizzato la matrice di confusione ot-
tenuta alla fine del metodo leave one out. Le colonne della matrice indicano
il reale stato di salute di ogni soggetto, mentre le righe indicano la categoria
nella quale il paziente è classificato dalla SVM; quindi, gli elementi sulla dia-
gonale principale indicano le classificazioni corrette. Per le 16 combinazioni
migliori, due tipologie di matrice di confusione sono state ottenute più volte,
mostrate in Tabella 7 e Tabella 8.

NSR Other AF
NSR 31 1 0
Other 0 7 1

AF 0 1 29

Tabella 7: Matrice di confusione A. Matrice di confusione ottenuta in 10 delle 16
migliori combinazioni di indici. NSR=normal sinus rhythm, AF=atrial fibrillation e
“other” indica le altre tipologie di aritmia. Le colonne della matrice indicano il reale
stato di salute di ogni soggetto, mentre le righe indicano la categoria nella quale il
paziente è classificato dalla SVM.

NSR Other AF
NSR 30 1 0
Other 1 8 1

AF 0 0 29

Tabella 8: Matrice di confusione B. Matrice di confusione ottenuta in 6 delle 16
migliori combinazioni di indici. NSR=normal sinus rhythm, AF=atrial fibrillation e
“other” indica le altre tipologie di aritmia. Le colonne della matrice indicano il reale
stato di salute di ogni soggetto, mentre le righe indicano la categoria nella quale il
paziente è classificato dalla SVM.

In tutte le matrici la sensitività, che è il rapporto tra il numero di pazienti
AF identificati dalla SVM e il numero totale di soggetti AF, era 96.67%,
mentre la specificità alla classe NSR era 100% in 10 casi e 96.77% nelle altre
combinazioni; la specificità alla classe “altre aritmie” era 77.78% in 10 casi
e 88.89% per le rimanenti 6 combinazioni.
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Chapter 1

Introduction

Atrial fibrillation (AF) is a very common heart arrhythmia: this condi-
tion causes a pathological atrial function, with a rapid, uncoordinated heart
rate.

AF is triggered by pathological activation mechanisms in the cardiac
system: the physiological impulses generated in the sinus node undergo the
interference of other rapid impulses produced in the atria and adjacent parts;
this results in the generation of abnormal activation patterns in the atria,
which in turn causes some of the pathological fronts of depolarization to
pass through the atrioventricular node, generating chaotic contractions of
the ventricles [28].

The disordered stimulation of the myocardium produces uncoordinated
contractions of the heart, thereby interfering with the physiological blood
flux pumped to the body; the circulatory inefficiency associated can cause
severe diseases, such as stroke [11].

One of the main problems with AF identification is that this arrhyth-
mia can be paroxysmal, meaning it can occur episodically and terminate
spontaneously; in such cases it is very hard to identify the pathology be-
cause clinical analyses carried out in a normal sinus rhythm period don’t
show the presence of the pathology [22]. Although two thirds of the sub-
jects affected by this arrhythmia report that it is disruptive to their lives,
the manifestation of AF can also be asymptomatic [23], yet it is important
to intervene as soon as this disease arise to affect the normal sinus rhythm,
because if untreated, the arrhythmia roots its mechanism into the subject’s
heart, becoming increasingly persistent [38].

As a consequence, it is important to provide a rapid diagnosis, and it
would be best to perform some sort of screening on the asymptomatic pop-
ulation, in order to treat this pathology from its very beginning, even when



the patient does not suffer its effects yet.
Despite AF mechanisms being caused by electric disturbances, it is pos-

sible to witness the presence of this pathology by studying the photoplethys-
mographic (PPG) signal, since AF patients experience an irregular flow in
the blood vessels; using a PPG signal instead of an ECG signal for diagnosis
brings the advantage of the non-invasivity and accessibility of this type of
measure: nowadays a PPG acquisition can be easily obtained, even by most
non-medical smart devices of common use, for example by smartphones with
dedicated apps for signal processing [20].

It is possible to apply a PPG sensor on the patient by using a dedicated
wristband device, like the Empatica E4; such device can be applied on the
patient without causing discomfort even for prolonged acquisitions [40]. The
possibility to monitor the blood volume pulse (BVP) continuously for hours
or even days allows the diagnosis even for paroxysmal asymptomatic AF:
by prolonging the acquisition time, the possibility to analyze a time window
affected by AF increases. Furthermore, the spreading of smart devices can
help monitoring population with higher patient compliance and less cost for
healthcare systems.

The raw photoplethysmographic signal, however, must be analyzed by an
expert to reveal the presence of AF; this type of examination would not be
practicable for a wide analysis on the asymptomatic population, potentially
comprehensive of millions of subjects, hence the need for an automatic form
of diagnosis.

In this study, we build a decision-making system trained on AF detection
from BVP signal analysis. The aim is an automatic, algorithmic classifica-
tion of each patient into one of three target classes: healthy subject, subject
affected by atrial fibrillation or subject affected by another arrhythmia.

We recorded 70 BVP signals from distinct subjects, recruited among
hospitalized patients at Ospedale Maggiore Policlinico in Milan, Italy; after
the acquisition, every subject is classified into one of the three target classes
by expert cardiologists. All data collected in this phase are employed to
train the decision-making algorithm, which bases its analysis on several in-
dexes already present in current clinical practice, along with some new ones
proposed by us, obtained from the BVP acquisition; all the indexes’ values
are finally used by a support vector machine (SVM), which estimates their
correlation with the health status of the patient; all the information gath-
ered by the SVM during this training phase is later used in the automatic
classification of new subjects.
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Chapter 2

Contemporary view on atrial
fibrillation

2.1 Introduction

Atrial fibrillation (AF) is the most common chronic arrhythmia of clinical
significance [11].

In an AF heart, disordered or rapid electrical signals cause the upper
chambers (the atria) to contract too quickly and chaotically (fibrillate). The
normal, ordered contraction of the muscle fibers of the atria typically allows
the coordinated and complete emptying of blood from the heart’s upper
chambers into the lower ones. However, in the presence of fibrillation, flow
becomes irregular and chaotic, and that can cause blood to pool in the atria
without being pumped into the lower chambers of the heart (the ventricles).
This leads to a loss of efficiency of the heart and to various diseases [41].

In 2010 the estimated number of individuals with AF worldwide was 33.5
millions, corresponding to the 0.5 percent of the world’s population [11]. AF
has heterogeneous clinical presentations and is traditionally classified on the
basis of the temporal pattern of the arrhythmia [23] [22]:

• Paroxysmal: episodes terminate spontaneously, usually within seven
days and mostly in less than 24 hours.

• Persistent: abnormal heart rhythm continues for more than a week,
requiring treatment (pharmacological or electrical) for termination.

• Permanent: longstanding (>1 year) AF, where cardioversion is not
indicated, has failed or has not been attempted.

Permanent AF is the most frequent form of diagnosed AF (40%-50% of
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patients) [44]. Every form of AF can lead to many collateral effects, such
as fatigue, dizziness, chest pain and is reported to increase the risk of my-
ocardial infarction [32], heart failure [6] and stroke [39]: therefore an early
diagnosis is fundamental to counteract its impact.

2.2 Electrophysiology of the heart

The human heart works physiologically as a functional syncytium: the
electrical impulses propagate in every direction, so that the myocardium
functions as a single contractile unit. In this manner, the myocardial cells
respond to an electrical stimulus in a coordinated way, rapidly diffusing the
action potential and leading to an efficiently organized contraction. There
are two syncytia: the atrial and the ventricular one, connected by the atri-
oventricular node.

The cardiac conduction system of the electrical signal is depicted in Fig-
ure 2.1. The initiation of the heart contraction takes place in the right
atrium where the sinoatrial (SA) node, that is the cardiac pacemaker, spon-
taneously generates an electrical impulse. The electrical signal stimulates
the atria to contract, forcing all the blood still in the atria (up to 30%) into
the ventricles during the so called atrial kick. At the end of the contraction,
the electric signal reaches the atrioventricular (AV) node. The AV node is
located in the interatrial septum and it is the only point that electrically
connects the atria and the ventricles. After a little delay that allows the atria
to complete pumping blood, the action potential goes through the bundles
of His in the ventricular septum and through its two bundle branches, the
left and right bundles. Finally, the electrical signal reaches the Purkinje
fibers, which spread the impulse to the contractile fibers of each ventricle,
leading to their efficient and synchronized contraction.

A refractory period occurs after each depolarization, during which a suc-
cessive action potential cannot be triggered. This characteristic may lead to
complex activation patterns in the atria; if action potentials are pathologi-
cally too short, reactivation can occur too early, leading to extremely rapid
atrial rate, as in AF.
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Figure 2.1: Cardiac conduction system. The conduction pattern from the sinoatrial
node to the final part of the ventricles is depicted in the longitudinal section of the
heart (www. ceufast. com/ courses/ viewcourse. asp? id= 239 ).

2.3 Mechanisms of atrial fibrillation

Atrial fibrillation has a complex and not completely understood patho-
physiology. Many factors contribute to the initiation and maintenance of
the fibrillatory process (Figure 2.2) [28].

As reviewed by Jalife et al. [18], historically Winterberg [4] in 1907
considered AF as the effect of rapidly firing foci distributed throughout the
atria. In 1914 Mines [25] advanced the theory of reentry (circus movement):
the return of the same impulse into a zone of the heart muscle that it has re-
cently activated, sufficiently delayed so that the zone is no longer refractory,
could lead to a continuous and disorganized excitation of the atrial cells.

After the publication of the multiple wavelet hypothesis by Moe [27] AF
has been seen as the result of the propagation of multiple wavelets across
the atria. The number of wavelets depends on the atrial refractory period,
mass, and conduction velocity [4]. If the number of the wavelets is high,
the statistical probability that they will all extinguish at the same time will
be small and atrial fibrillation will persist. On the other hand, when only
a small number of wavelets are present, the chance that they will die out

5

www.ceufast.com/courses/viewcourse.asp?id=239


Figure 2.2: AF mechanism. An overview of the main causes and consequences of AF.

simultaneously is higher and atrial fibrillation will self-terminate [38].
Atrial size increasing and refractoriness shortening are likely to promote

the generation of multiple reentrant wavelets, by decreasing the atrial wave-
length of reentry. The atrial wavelength, a crucial concept in understanding
atrial fibrillation, is defined as the product of Effective Refractory Period
(ERP) and Conduction Velocity (CV) [22]. In other words, at a given con-
duction velocity, atrial wavelength represents the distance covered by a de-
polarization potential in one refractory period [12]. Short wavelength and
high atrial size allow more wavelets to coexist, leading to an increase in per-
sistence of AF. Experimental evidence of Moe’s multiple wavelet hypothesis
is provided by records of the excitation of the atria in AF through a high–
resolution electrode mapping system [5]. Allessie et al. showed multiple
wavelets wandering around natural anatomic obstacles and functional arcs
of conduction block. In some cases, the wavelets appeared to be offspring of
a single reentrant circuit [19].

Finally, Häıssaguerre et al. [16] proved that in some cases AF is triggered
by ectopic activity arising from the pulmonary vein region.

All these proposed theories are often interlinked with the history of a sin-
gle patient. Furthermore, it is known that “atrial fibrillation begets atrial
fibrillation” [38]: in a 30-year follow up study of 2007 up to 30% of patients
with paroxysmal or persistent AF developed permanent AF [2]. A possible
explanation is that AF itself causes electrophysiological and/or structural
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changes to the atria, which promote its perpetuation. Functional, electri-
cal, structural and biochemical changes occur in the atria remodeling due to
AF, such as decreased ERP, poorer ERP rate-adaptation with consequential
contractile dysfunction that leads to atrial dilation [12] in a cascade of cause
and effect in which the fibrillation interval keeps shortening. As soon as the
fibrillation interval passes a critical threshold, AF becomes more stable and
its duration increases. This in turn will further shorten the fibrillation in-
terval which will prolong the duration of AF again, etc. following a positive
feedback mechanism that will continue until a new steady state is reached
in which atrial fibrillation has become the predominant atrial rhythm (do-
mestication of atrial fibrillation) [38]. Remodeling links all the potential AF
mechanisms. When paroxysmal AF is initiated by rapid ectopic activity or
single-circuit reentry, it causes anatomic and electrical changes, which favor
spatially heterogeneous refractoriness shortening. This tends to move AF
towards multiple-circuit reentry.

Ectopic activity, as well as an increased vagal tone play a key rule in
triggering pathological conditions capable of sustaining AF: heart failure,
atrial stretch, age-related development of interstitial fibrosis all provide a
prolific substrate for reentry. However, the nature of interaction between
triggers and substrate in AF genesis is still not completely understood [12].

2.4 A clinical view

The history of atrial fibrillation in medical science dates back to the
nineteenth century; it is one of the most common serious abnormal heart
rhythms and, as a consequence, it is one of the oldest and most studied
heart diseases, with a wide clinical documentation.

2.4.1 Incidence and risk factors

Atrial fibrillation is becoming one of the most significant public health
issues and an important cause of health care costs in the world.
In the review by Zoni-Berisso at al. [44] the prevalence of AF is 0.12%-
0.16% in subjects younger than 49 years, 3.7%–4.2% in those aged 60–70
years, and 10%–17% in those aged 80 years or older. Furthermore, AF is
more frequent in males, with a male to female ratio of approximately 1.2.
The prevalence is continuously increasing, with high rates, such as 0.3% per
year in the USA among Medicare beneficiaries older than 65 years. This
trend shows an endemic dimension.
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AF is often associated with other cardiac diseases such as hyperten-
sive heart disease (present in 22%–36% of a AF patients), coronary heart
disease (14%–32%), valvular heart disease (12%–26%), and cardiomyopa-
thy (6%–10%). Furthermore, widespread AF comorbidities are hyperten-
sion (67%–76%), heart failure (22%–42%), obesity (20%–35%), diabetes
(20%–24%), chronic pulmonary disease (10%–18%), thyroid dysfunction
(8%–11%), renal failure (11%–22%), neuropsychiatric disturbances (19%)
and stroke/transient ischemic attack (9%–16%).

In particular, one third of AF patients have at least three associated
comorbidities; no comorbidity or cardiac disease is present in one fifth and
one quarter of patients, respectively. Lone AF (when AF occurs without
identifiable etiology in patients with a structurally normal heart [23]) is
present in a low proportion of cases, ranging between 2% and 15% [44] [23].

In the Framingham study [9] the impact of AF on the risk of death
was assessed in 5209 residents of Framingham, Mass, in 40 years of follow-
up. The Kaplan-Meier mortality curves are displayed in Figure 2.3 for the
subjects 55 to 74 years of age (top) and the subjects 75 to 94 years of age
(bottom).
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Figure 2.3: Kaplan-Meier mortality curves. A: Kaplan-Meier mortality curves for
subjects 55 to 74 years of age. Vertical axis shows the percent of subjects dead at
follow-up (0% to 80%); horizontal axis, up to 10 years of follow-up. Subjects included
men with AF (n=159), men without AF (n=318), women with AF (n=133), and
women without AF (n=266). B: Kaplan-Meier mortality curves for subjects 75 to 94
years of age. Vertical axis shows the percent of subjects dead at follow-up (0% to
80%); horizontal axis, up to 5 years of follow-up. Results are shown for men with AF
(n=137), men without AF (n=274), women with AF (n=192), and women without AF
(n=384) [9].

In general the mortality of men and women with AF was substantially
greater than that of the non-AF subjects (log rank test, all P<0.0001). The
study demonstrates that AF is an independent risk factor for the risk of
death, even after adjustment for coexisting cardiovascular conditions.

Atrial fibrillation is an independent risk for stroke [39] with an age-
adjusted incidence of stroke near fivefold in excess when atrial fibrillation
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is present (p<0.001), making AF responsible for a total of 15%-18% of all
strokes [22]. The Framingham study data indicates that atrial fibrillation ex-
erts a significant impact on the risk of stroke that is independent of the often
associated cardiovascular abnormalities. Furthermore, other cardiovascular
abnormalities have a decreasing influence with age, whereas the impact of
atrial fibrillation increases into the ninth decade of life. The dramatic re-
duction in the incidence of stroke in randomized clinical trials by warfarin
anticoagulation and by aspirin strengthens this consideration, because these
treatments have no reported effect on the comorbidities typically associated
with AF. Although these findings are encouraging, the use of these drugs
carries some hazard and substantial side effects.

2.4.2 Treatment of atrial fibrillation

In patients with AF there are three main therapeutic strategies:

• Reduction of thromboembolic risk.

• Restoration and maintenance of sinus rhythm (rhythm control).

• Control of ventricular rate during AF (rate control).

The thromboembolic risk increases significantly when AF duration ex-
ceeds 48 hours so anticoagulation therapy is highly recommended, regardless
of the arrhythmia pattern or the therapeutic strategy chosen [23]. The tim-
ing of anticoagulation is one of the most critical decisions and the great
incidence of asymptomatic episodes in paroxysmal AF or of asymptomatic
recurrences after cardioversion cast additional doubts on its interruption.
Most of the patients with permanent AF have to continue oral anticoagu-
lant therapy for the rest of their lives.

In rate control strategies, the arrhythmia is allowed to continue so symp-
tomatic improvement and better hemodynamic function is achieved solely
because of a better control of the ventricular rate. As the atria continue
to fibrillate, the risk of thromboembolism persists and ventricular filling oc-
curs only passively, without the active contribution of atrial contraction [23].
Drugs such as β or calcium channel blockers and digoxin are the most com-
monly applied; sometimes amidarone or AV node ablation with implantation
of a permanent pacemaker are indicated in refractory cases [22].

Rhythm control, on the other hand, aims to restore sinus rhythm and
thus synchronized atrioventricular contraction. This strategy should also
help slow or prevent the progression to permanent AF, reduce symptoms, im-
prove cardiac hemodynamics and reduce the risk of thromboembolism [23].

10



Sinus rhythm can be restored through pharmacological treatment (class IC
or III antiarrhythmic drugs) or by electrical cardioversion (biphasic shock
is 98% effective in restoring sinus rhythm [22]). For patients who have to
undergo electrical cardioversion, it is recommended a minimum of 3 weeks
of therapeutic oral anticoagulant (OAC) prior to the conversion and a mini-
mum of 4 weeks of OAC following cardioversion [28]. Likelihood of successful
cardioversion is inversely proportional to duration of AF so it is important
to restore sinus rhythm as soon as this is possible and safe [23]. In about
60% of patients with restored sinus rhythm AF recurs within 6-12 months,
thus prophylaxis of AF recurrences is an important topic, with a proposal
of various novel strategies such as administration of blockade of the renin-
angiotensin-aldosterone system or statins [22].

In the last years another strategy is emerging as one of the most promis-
ing therapeutic approaches to AF management: ablation of AF triggers
and substrates. Since the description of radiofrequency catheter ablation
by Häıssaguerre et al. in a study on the proarrhythmic role of pulmonary
vein foci in 1997 [16], multiple approaches have been developed with success
rates exceeding 80% in patients with paroxysmal AF and 50% in persistent
AF [22]. In particular, minimally invasive techniques utilizing microwave,
radiofrequency and cryoablation energy sources applied with balloon-based
ablation systems and cardiac image integration are possible surgical treat-
ments.

2.4.3 Identification and diagnosis

Atrial fibrillation is often diagnosed through its symptoms. In the ALFA
study [21] palpitations were present in 54.1% of patients with AF, dyspnea
in 44.4%, fatigue in 14.3%, syncope and dizzy spells in 10.4% and chest
pain in 10.1% of cases. In subjects with suspicious clinical setting, the
standard techniques for diagnosis are ambulatory ECG, Holter recording of
24-48 hours or event recorders (implantable or not) automatically activated
or activated by the subject when symptoms occur.

Unfortunately there are many undiagnosed subjects who present asymp-
tomatic AF. In the ALFA study 11.4% of patients were asymptomatic, with
a higher percentage considering only permanent AF (16.2% presented no
symptoms). This important share of patients often diagnosed by chance
during electrocardiograph control for other clinical reasons shows a possible
large under-representation of the effective prevalence of AF. Furthermore,
Holter is useless when paroxysmal events occur at intervals larger than 24
hours, leading to an incorrect evaluation of the subject’s condition (false neg-
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atives). Undiagnosed AF patients are an important bulk of patients with
high risk of cardioembolic stroke or other complications associated with AF.
Since AF worsens through time and the best prevention of AF or its recur-
rence is to terminate the arrhythmia as soon as possible [38], this share
of undiagnosed people will have medical complications and will raise costs
related to health care resources utilization.

The high rates of recurrence, disturbing symptoms, and clinical seque-
lae (stroke, heart failure, initiation of new antiarrhythmic drugs, drug-
related complications, interventional therapy) contribute strongly to the use
of health care resources. In Italy, AF is the cause of 1.5% of all emergency
room visits [44]; a screening of the general population would answer the issue
of paroxysmal and asymptomatic nature of AF, improving outcomes within
the screened population and reducing costs. A monitoring device able to
oversee the patient’s condition such as a wristband for BVP recording could
be useful and answer the developing trust in m-Health.

Since significant shares of global healthcare cost are related to cardiac
arrhythmias and incidence of atrial fibrillation is destined to raise, m-Health
could really meet the needs of governments, private insurers and individuals
to prevent and timely treat such debilitating conditions while supporting
cost-effective and interoperable ways of delivering health care. According
to a global end-user research commissioned by GSMA between March-June
2012 about the perception of m-Health, 89% of caregivers, 75% of patients
and 73% of consumers believe that m-Health solutions can convey significant
benefits [12].

This work is intended to be a contribution on the path of a more efficient
worldwide healthcare in AF identification.

12



Chapter 3

Signals and algorithms for
AF detection

This chapter is divided into two sections: the first section overviews the
typologies of signal employed in AF detection, while the second part focuses
on the algorithms used to aid the clinicians in AF diagnosis.

3.1 Signals

There are numerous signal techniques for atrial activity analysis, each
with different advantages and disadvantages for AF diagnosis and treatment.
There are three main aspects to consider when choosing the signal employed
to detect and study AF:

• Accuracy of the recording, such as spatial and temporal definition,
amplitude and signal-to-noise ratio.

• Invasivity.

• Monitoring capability.

The ideal device would feature a high recording accuracy with 24/7 mon-
itoring time and non-invasivity of the measurement. Unfortunately such
device doesn’t exist and a trade-off between these characteristics is needed.
In this section, four of the most widespread heart signals and their main
features are depicted.

3.1.1 Electrocardiogram

The standard 12-lead ECG is the most commonly used non-invasive tool
for diagnosing electrical abnormalities like AF. The ECG shows the overall
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electrical activity of the heart. During AF the ventricular heart rate results
more irregular than in NSR, but less irregular than atrial activity because the
atrioventricular node regulates the electrical trigger from atrial to ventricu-
lar tissue. The atrial activity is the most interesting for AF study and its
waveforms are superimposed on the ventricular signals. Unfortunately, the
atrial signals are much smaller (10 times lower in amplitude) than those re-
lated to ventricles (QRS complexes), thus the diagnostic applications based
on P waves’ analysis are compromised and computationally expensive. Fur-
thermore, relying on body surface potential, the electrical image on the
body surface is blurred with a low spatial definition in comparison to the
potentials recorded inside the atria in an endocardial electrogram [22]. The
main disadvantage of the ECG is the low suitability for continuous long-term
monitoring. The traditional monitoring and detection of AF relies on inter-
mittent ECG examination during clinical visit, 24-48 h Holter monitoring,
several days of monitoring triggered by patients’ symptoms or mobile car-
diac outpatient telemetry capable of monitoring patient for up to 30 days.
Considering the possible paroxysmal behavior of AF, sometimes also asymp-
tomatic, many AF episodes may not be detected. In a study by Ziegler et
al. [43] symptom-based and intermittent external monitoring methods were
shown to have significantly lower sensitivity (31%-71%) for identification
of patient with AT/AF and to significantly underestimate AT/AF burden
compared to continuous monitoring. Moreover such external devices can
interfere with daily activities like showering and can cause skin irritation
over prolonged usage. Consequently, patient compliance with these systems
can be quite low [35].

3.1.2 Intracardiac electrogram

Intracardiac electrogram (EGM) is recorded from two electrodes, at least
one of which is implanted in the heart. EGMs allow clinicians to record the
atrial activity directly in situ usually by passing catheter-guided electrodes
through one of the major veins into the atria (endocardial signals). While
ECG shows the electrical activity of all the heart, EGM records the local
wavefronts of depolarization and repolarization that pass below the elec-
trode at the tip of the lead. The amplitude of the recorded electrical signal
is 10 times greater than the amplitude of an ECG signal. The amplitude,
frequency content and morphology of EGMs depend on the location of the
electrodes, the cardiac rhythm, posture, respiration and drugs. The am-
plitude of the atrial EGM tends to be smaller and/or more spatially and
temporally variable during AF than in NSR. Furthermore, the spectral co-
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herence of EGMs from two separate atrial sites is highly reduced during AF
in comparison to other atrial rhythms. The analysis of EGMs is used in
diagnostic procedures as well as for guiding therapeutic interventions [22].
New systems such as the basket catheter or the non-contact catheter provide
high-density mapping of the atria in a dramatically reduced time, thanks to
the possibility to record from many sites simultaneously. The non-contact
system records 64 unipolar floating signals and mathematically reconstructs
up to 3360 unipolar endocardial signals [7]. The high level of accuracy, tem-
poral and spatial detail is paid with the elevated invasivity of the recording
system.

3.1.3 Implanted loop recorders

Devices like Implanted Loop Recorders (ILRs) are typically inserted sub-
cutaneously for ECG recording through closely spaced electrodes on their
surface. ILRs can automatically record asymptomatic brady- and tach-
yarrhythmia events and patients can manually signal symptomatic events
using a handheld activator. ILRs cannot detect AT/AF using P waves be-
cause their amplitude tends to be too small, but rely only on the analysis of
RR intervals. For space, power and battery constraints algorithms should
be computationally simple and the recorded information must be condensed
and summarized due to memory size restrictions. Furthermore, a big amount
of repetitive or unimportant data can overwhelm the physician and hinder
his analysis. Thus this kind of device typically stores extremely detailed
information only for a small subset of meaningful episodes, while general in-
formation is tabulated across all the episodes. In most implantable devices
data is extracted during follow-up visits so the clinician can become aware
of the presence of a new onset of AT/AF after potentially 6 months from
the time of the first AT/AF occurrence. Some newer devices have wireless
alert capabilities which automatically send an alarm to clinicians when an
AT/AF burden threshold is exceeded. This can dramatically improve anti-
coagulation therapy, reducing the risk of stroke in asymptomatic patients.
ILR ECG is different from a near-field signal recorded by bipolar electrodes
within the heart. The frequency content is lower as is the amplitude of R
waves and this, with the higher possibility of noise and artifacts, makes R
wave sensing more challenging than with intracardiac signals. On the other
hand a subcutaneous device is less invasive than an intracardiac electrogram
and causes less discomfort during everyday life compared to constant ECG
monitoring [22].
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3.1.4 Photoplethysmography

In recent years, a new way of monitoring AF patients is being developed,
based on photoplethysmography. A photoplethysmographic system allows
the recording of the blood volume pulse (BVP) signal, which is the variation
of volume of arterial blood under the skin resulting from the heart cycle. A
BVP signal can be obtained from the measurement of the variation of the
light absorbed by the skin due to arterial pulse.

Light travelling through the human body can be absorbed by different
substances, including bones, tissues and venous and arterial blood (Fig-
ure 3.1). The majority of absorption is due to the continuous component,
which is the constant absorption due to tissues and venous blood; the al-
ternate component, instead, is caused by the absorption due to the arterial
blood vessels that contain more blood volume during the systolic phase of
the cardiac cycle than during the diastolic phase.

Figure 3.1: Absorption in PPG signal. In a transmission system, the majority of
the light from the LEDs is absorbed by the intermediate layer before reaching the
photodetector. The absorption is divided in constant absorption of bones, tissues,
venous blood and variable absorption of arterial blood. Thus the cardiac cycle induces
a PPG signal which is variable in time [1].

Photoplethysmographic (PPG) systems optically detect changes in the
blood flow volume (i.e., changes in the detected light intensity due to dif-
ferent concentration of oxygenated hemoglobin). There are two types of
system, depicted in Figure 3.2: the transmission system and the reflectance
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system. In a transmission system, the light transmitted through the medium
is detected by a photodetector (PD) opposite to the LED source, while in a
reflectance system, the PD detects light that is back-scattered or reflected
from tissue, bone and/or blood vessels [33].

Figure 3.2: PPG systems. There are two typologies of PPG system: the transmission
system and the reflectance system. In a transmission system (left figure), the light
transmitted through the medium is detected by a PD opposite to the LED source,
while in a reflectance system (right figure), the PD detects light that is back-scattered
or reflected from the tissues, bones and/or blood vessels [33].

In contrast with ECG, EGM and ILP, that record the electrical activity
of the heart, a PPG systems records the mechanical outcome of the ven-
tricular ejection, similarly to a blood pressure signal. Despite the different
nature of the signal in comparison with the gold standard in AF detection
(ECG) and in spite of being the less spatially and temporally definite sig-
nal between the four proposed, due to the distance between the record site
and the AF events, a PPG signal allows AF detection studying the waves’
morphology and the pulse series extractable from the record. Moreover,
the BVP signal is totally non-invasive, because it is recorded on the body
surface, typically on the tip of the fingers or on the wrist. Lee et al. [20]
proposed a method to detect AF using the camera of an iPhone 4S. They
developed an application for the collection of a pulsatile time series followed
by real-time detection of AF using the following three statistical methods:
RMSSD, Shannon entropy (ShEn) and sample entropy (SampEn). AF de-
tection performance was tested on 25 AF subjects undergoing electrical car-
dioversion. The beat-by-beat accuracy for each algorithm was 0.9844, 0.8494
and 0.9552, for RMSSD, ShEn and SampEn respectively, and 0.9951 with
the three methods combined. Furthermore, considering the clinical objective
of detecting the presence of AF episodes from a given dataset, the accuracy
was 100% for all three methods. A smartphone based application has the
potential to be widely accepted and widespread, thus more easily reach-
ing asymptomatic subjects and providing clinicians with an opportunity to
better treat and prevent AF complications.

Given the ever-growing popularity of smartphones, smartwatches and
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smart wristbands, similar applications can provide patients and their care-
givers with access to an inexpensive and easy-to-use monitor for AF detec-
tion outside of the traditional health care establishment.

3.1.5 Comparison

In Table 3.1 the non-invasivity, the accuracy and the monitoring ability
of the four illustrated signals are evaluated and compared. Each type of
signal (in the rows) has a mark (0=worst, 3=best) for each feature (in the
columns). The color highlights the performance of each typology of signal
under each aspect.

Non-invasivity Accuracy Monitoring
ECG 2 2 1
EGM 0 3 2
ILR 1 2 3
PPG 3 1 3

Table 3.1: Comparison between heart signals for AF diagnosis. In the columns
the three main aspects to consider in the choice of the signals are evaluated. Each
type of signal (in the rows) has a mark (0=worst, 3=best) for each feature. The color
highlights the performance of each typology of signal under each aspect. The acronyms
stand for: ECG=electrocardiogram, EGM=intracardiac electrogram, ILR= Implanted
Loop Recorder, PPG=photoplethysmography.

3.2 Algorithms

In literature, there are many algorithms for the detection and analysis
of AF. They are divided into two major classes:

• Methods based on atrial activity analysis.

• Methods based on ventricular response analysis.

The source of atrial fibrillation is in the atrial cells and heart conduction
pathway, consequently, methods based on atrial activity can convey signifi-
cant diagnostic information. However, in many recorded cardiac signals, the
atrial activity can be disturbed by the presence of the ventricular activity,
which has a much larger amplitude, and the presence of potential noise and
artifacts superimposed. Standard 12-lead ECG may not be enough to study
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atrial activity, because the number of electrodes is too small and their loca-
tion is not ideal for AF detection. For atrial analysis a stable, high quality
signal is required, difficult to obtain in real-time long-term recordings. To
conclude, although highly effective, atrial activity analysis is not the most
suitable approach for an automatic screening application, since simplicity
of use, global acceptance and robustness to noisy tracings are important
requirements [12].

Methods based on the ventricular response, instead, are intended to cap-
ture the irregular, rapid nature of AF by exploiting the most prominent
feature of cardiac signals, such as QRS peaks for ECG and systolic peaks
for blood pressure signals. The ventricular response can be easily detected
by non-invasive devices applied on the skin, making it a useful tool for long-
term monitoring and automatic screening. The present section summarizes
the state-of-art in ventricular response analysis during AF. The proposed
techniques are: Lorenz plot, time domain heart rate parameters, nonlinear
analysis and morphology-based analysis.

3.2.1 The Lorenz plot

The Lorenz plot (also known as Poincaré plot) is a scatter plot in which
each RR interval is plotted versus the preceding one. It can distinguish AF
from other atrial tachyarrhythmias such as atrial flutter where ventricular
response is not as irregular as in AF [22].

Sometimes the Lorenz plot is used as a δRR scatter plot. In this case, the
differences of RR intervals are plotted against the previous differences. The
advantage of this scatter plot is the independence from heart rate changes.
Moreover, this scatter plot takes into account three RR intervals simultane-
ously [17]. The δRR interval, defined as δRR(i)=RR(i)-RR(i-1) is a measure
of irregularity and the Lorenz plot encodes the uncorrelated nature of RR
intervals in the direction of change of three consecutive RR intervals [30].
Each point (δRR(i), δRR(i-1)) has magnitude and phase where the mag-
nitude expresses the irregularity and where magnitude and phase together
encode the incoherence of changes in RR intervals. Figure 3.3 shows the
method to populate the Lorenz plot starting from an ECG signal. The δRR
intervals are obtained from the RR intervals derived from the ECG and
placed as an appropriate point in the diagram [22].
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Figure 3.3: Lorenz diagram. Illustration showing how δRR intervals are calculated
and placed on the Lorenz diagram. Each point has magnitude and phase. The axes of
the diagram extend from -600 to +600 ms [22].

The clusters of points in a Lorenz plot are characteristic signatures of
ventricular rhythms. Examples of ECG signals during AF and AT and the
respective Lorenz plot are depicted in Figure 3.4 [22, 30].

Figure 3.4: Examples of Lorenz plot in AT/AF patients. Two ECG examples during
AF/AT and the corresponding Lorenz plot of δRR intervals. The first signal shows AF
behavior in a 2-minutes segment, the second one the behavior of atrial flutter [30].

In Figure 3.5(a) the Lorenz plot is illustrated as a two-dimensional his-
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Figure 3.5: Lorenz plot. (a) The 2-D histogram, a numeric representation of the
Lorenz plot of δRR intervals. 13 segments are marked on the plot, denoting regions
that would be populated by points for different sequences of RR intervals as tabulated
in (b). S, M, L stand for Short, Medium and Long respectively. NSRmask is the radius
of segment 0 and has a nominal value of 80 ms [30].

togram. The histogram is divided in 13 segments, populated as shown in
Figure 3.5(b). For example, segments 1 and 9 have a RR sequence of a short
interval followed by a long interval followed by a short interval (S–L–S).
Segment 1 is populated when |δRR(i)| 6= |δRR(i − 1)| whereas segment 9
is populated when |δRR(i)| ≈ |δRR(i − 1)| [22, 30]. The width of segment
9, equal to the width of segment 0 defined by the parameter NSRmask,
accounts for the variation due to autonomic modulation of the AV-node.

In NSR subjects, the majority of points are within segment 0, as depicted
in Figure 3.6(a). During AF, instead, the points are randomly distributed
across all the segments (Figure 3.6(f)) given the lack of correlation between
the current RR interval and the next one. Other rhythms, neither NSR nor
AF, exhibit specific signatures in the Lorenz plot as shown in Figure 3.6(b-
e). Figure 3.6(b) shows the distribution during a series of premature atrial
contractions leading to irregular RR intervals but with a different behavior
compared to the AF/AT one. Figure 3.6(c-e) shows different degrees of
organization of ventricular response during AT with the most regular in (c),
“group beating” in (d), and irregular like AF in (e). During AT, segments
0, 6, 7, 9, and 11 are most often populated [30].
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Figure 3.6: Cardiac rhythm and Lorenz plot. Lorenz plot of δRR intervals overlaid
on the segmented 2-D histogram for 2 minutes of data during (a) normal sinus rhythm,
(b) series of premature atrial contractions, (c) atrial tachycardia (AT) with regular
ventricular response, (d) AT “group beating”, (e) AT with irregular ventricular response,
and (f) atrial fibrillation. The plots exhibit various forms of irregularity in ventricular
response. The Lorenz plot axes extend from -600 ms to +600 ms and the NSRmask
value is 80 ms [30].

The AF/AT detector proposed by Sarkar et al. [30] uses a number of
metrics to encode the information regarding patterns in the distribution of
(δRR(i), δRR(i-1)) in a Lorenz plot over a period of 2 minutes.

Irregularity evidence (denoted LIE) measures the sparseness of the dis-
tribution of (δRR(i), δRR(i-1)) and is defined as

LIE =
12∑

k=1
Bk (3.1)

where Bk denotes the number of histogram bins in segment k of the Lorenz
histogram that are populated by at least one point. This metric has higher
values during AF (Figure 3.6(f)) and lower values during NSR (Figure 3.6(a)).

Regularity evidence (LRE) is the number of 6-beat and 12-beat RR medi-
ans that are not different by more than 10 ms from the RR interval median
of the previous 2-minutes period.

Density evidence (LDE) measures the density of (δRR(i), δRR(i-1)) in
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a cluster as

LDE =
12∑

k=5
(Pk −Bk) (3.2)

where Pk denotes the number of points that populate segment k. This metric
has higher values when multiple points populate the same bin in segments
5-12 as in the case of AT with ventricular “group beating” (Figure 3.6(d)).

Anisotropy evidence (LAE) measures the orientation of the distribution
(δRR(i), δRR(i-1)) as

LAE =
∣∣∣∣∣ ∑

k=9,11
Pk −

∑
k=10,12

Pk

∣∣∣∣∣+
∣∣∣∣∣ ∑

k=6,7
Pk −

∑
k=5,8

Pk

∣∣∣∣∣ (3.3)

This metric has higher values if the points densely populate segments 6, 7, 9
and 11 as in case of AT with irregular ventricular response (Figure 3.6(d-e)).

Premature atrial contraction evidence (LP E) measures the presence of a
dense distribution in segments 1-4 which is a characteristic of compensatory
pauses,

LP E =
4∑

k=1
(Pk −Bk) +

∑
k=5,6,10

(Pk −Bk)−
∑

k=7,8,12
(Pk −Bk) (3.4)

This behavior is illustrated in (Figure 3.6(b)).
AF evidence (LAF E) and AT evidence (LAT E) quantify the degree to

which the Lorenz plot suggests the presence of AF and AT, respectively,
computed as

LAF E = LIE −O − 2LP E (3.5)
LAT E = LIE + LAE + LDE + LRE − 4LP E (3.6)

where O denotes the number of points in the bin containing the origin.
Organization index (LOI) quantifies the degree of organization in an

atrial arrhythmia by evaluating the degree of organization in the ventricular
response,

LOI = O + LRE + LAE + LDE − 2LIE (3.7)

The detector uses these metrics to assess the presence of AT, AF or NSR
each 2 minutes. Two modalities are present: “AT/AF mode” which detects
AF and AT based on irregular ventricular response by comparing LAF E to
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Figure 3.7: Logic of the Lorenz plot detector. The logic used to assess the state of
the detector over a 2-minutes period in AT/AF mode (a) and supplemental AT detector
(b) [22].

a previously set threshold (Figure 3.7(a)) and the “supplemental AT mode”,
in which AT and AF are detected with a series of different comparisons with
various thresholds (Figure 3.7(b)). This mode allows the detection of AT
with “group beating” and regular ventricular response [30, 22].

Sarkar demonstrated that the detector had good performances in AT/AF
mode and that it was able to compute AF/AT burden (hours per day) ac-
curacy within 20% of true burden in 96% of patients. The AF/AT detector
underestimated AT burden, thus degrading performance, in patients with
significant amounts of AT with more regular ventricular response. To im-
prove performance, the supplementary AT detector was introduced, reducing
the underestimation of AT while overestimating burden.

This type of detector is computationally simple enough to be easily im-

24



plemented in an implantable monitoring device for accurate long-term AF
monitoring. This allows the continuous evaluation of “rhythm control” strat-
egy, particularly in patients with asymptomatic and paroxysmal AF/AT.
Furthermore, efficacy of “rate control” therapies can be measured accurately
by evaluating the ventricular rate for the entire duration of AF.

3.2.2 Time domain parameters

Time domain analysis of AF usually includes the standard deviation
of RR intervals (SD), the root mean square differences of successive RR
intervals (RMSSD), the coefficient of variation (CV) and the percentage of
differences of successive RR intervals greater than 50ms (pNN50).

For a RR time series made of N intervals, the standard deviation is
defined as:

SD =

√√√√ 1
N − 1

N∑
i=1
|RRi − µ|2 (3.8)

where µ is the mean of the RR series.
SD and RMSSD are time-domain tools used to assess heart rate vari-

ability. The root mean square of the successive differences is defined as:

RMSSD =

√√√√ 1
N − 1

N∑
i=2
|RRi −RRi−1|2 (3.9)

As subjects have different mean heart rates, RMSSD is usually normalized
by the mean value of the RR time series (nRMSSD).

The coefficient of variation (CV), also known as relative standard devi-
ation (RSD), is a standardized measure of dispersion. It is defined as the
ratio of the standard deviation divided by the mean µ (or its absolute value,
|µ|):

CV = SD

µ
(3.10)

SD, nRMSSD, CV and pNN50 are used to quantify beat-to-beat vari-
ability. Since AF exhibits higher variability than NSR, these metrics can be
used to detect AF when higher than a previously fixed threshold [20].

3.2.3 Entropy

Approximate entropy, ApEn, is a measure of signal randomness. It repre-
sents the likelihood that similar patterns of observations will not be followed
by other similar observations. When there are many similar values in a time
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series ApEn will be small; a less predictable and more complex process has
a greater ApEn. Given N points, the ApEn(m, r, N) is approximately equal
to the negative average natural logarithm of the conditional probability that
two sequences that are similar for m points remain similar, that is, within
a tolerance r, at the next point [29]. ApEn is defined as

ApEn(m, r,N) = ln
[
Cm

N (r)
Cm+1

N (r)

]
(3.11)

where Cm
N expresses the prevalence of repetitive patterns of length m in the

series.
ApEn algorithm counts each sequence as matching itself to avoid the

occurrence of ln(0) in the calculations. This step has led to the discussion
of the bias of ApEn [29]. Therefore a new family of statistics, called sample
entropy (SampEn) has been developed. Theoretically, SampEn reduces the
bias of ApEn by avoiding counting self-matches, it can be used on shorter
series and it is more consistent than ApEn. Additionally, SampEn is easier
to compute [3].

Given N points, SampEn(m, r, N) is the negative natural logarithm of
the conditional probability that two sequences similar for m points remain
similar at the next point within a tolerance r, where self-matches are not
included in calculating the probability. Therefore a lower value of SampEn
also indicates more self-similarity in the time series [29].

Formally, givenN data points from a time series {x(n)} = x(1), x(2), ..., x(n),
SampEn can be computed as follows [29] [3]:

1. Vector sequences of size m, Xm(1), ...,Xm(N − m − 1) are formed,
defined by Xm(i) = {x(i), x(i + 1), ..., x(i + m − 1)}, for 1 ≤ i ≤
N −m + 1. These vectors represent m consecutive x values, starting
with the i-th point.

2. The distance between vectors Xm(i) and Xm(j), d[Xm(i),Xm(j)] is
defined as the absolute maximum difference between their scalar com-
ponents:

d[Xm(i),Xm(j)] = maxk=0,...,m−1(|x(i+ k)− x(j + k)|)

3. For a given Xm(i), the number of j(1 ≤ j ≤ N −m, j 6= i) is counted
and denoted as Bi, such that the distance between Xm(i) and Xm(j)
is less than or equal to r. Then, for 1 ≤ i ≤ N −m:
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Bm
i (r) = 1

N −m− 1Bi

4. Bm(r) is defined as

Bm(r) = 1
N −m

N−m∑
i=1

Bm
i (r)

5. The dimension is increased to m+1 and Ai is calculated as the number
of Xm+1(i) within r of Xm+1(j) where j ranges from 1 to N −m (j 6=
1). Then, Am

i (r) is defined as

Am
i (r) = 1

N −m− 1Ai

6. Am(r) is set as

Am(r) = 1
N −m

N−m∑
i=1

Am
i (r)

Thus, Bm(r) is the probability that two sequences will match for m
points, whereas Am(r) is the probability that two sequences will match
for m+1 points. Finally, SampEn can be defined as

SampEn(m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
(3.12)

which is estimated by the statistic

SampEn(m, r,N) = − ln
[
Am(r)
Bm(r)

]
(3.13)

SampEn or ApEn analysis on the RR interval series could be useful to
assess randomness of RR time series. AF presents an apparent total irreg-
ularity of ventricular rhythm so higher values of entropy could be used to
detect AF [20]. Furthermore, a reduction in ApEn [29] or SampEn [34],
indicating a decreased heart rate complexity, is considered a sign of altered
heart rate dynamics useful to predict AF episodes: a significant decreasing
trend in RR interval entropy over time towards the onset of AF has been ob-
served by Tuzcu et al. [34]. Also ApEn has been found to have a prognostic
value in patients with chronic AF, with lower values of ventricular irregular
response predicting an adverse prognosis for cardiac death, but not fatal
stroke [42].
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3.2.4 Shannon entropy

Shannon entropy (ShEn) is widely used as a measure of dispersion and
structure complexity of a series [31]. ShEn is formally defined as the average
value of the logarithms of the probability density function:

ShEn = −
M∑

i=1
p(i) ln p(i) (3.14)

where M is the number of discrete values the considered variable can assume
and p(i) is the probability of assuming the i-th value.

Shannon entropy is conceptually different from measures of variability
(as variance) that quantify the magnitude of deviation from a mean value,
since it quantifies the intrinsic unpredictability of an event series [24]. ShEn
has been used to quantify the synchronization of fibrillation signals recorded
by a basket catheter in the right atrium [24]. Gokana at al. [15] proposed
an AF detection method based on ECG signals composed by three steps:
firstly they computed the RMSSD of the RR intervals extracted from a 24
hours ECG recording to find whether an arrhythmia had occurred; secondly
they applied the autocorrelation of the squared signal to precisely determine
the start time and stop time of the arrhythmic episode; finally, they com-
puted the Shannon entropy from the start to the stop time extracted at the
previous step to discern AF from other types of arrhythmia. Since an ECG
segment containing AF episodes is expected to have a higher value of ShEn,
due to the uncertainty to predict the patterns of the signal, they compared
the ShEn with a previously fixed threshold, detecting AF with up to 99.5%
accuracy in time resolution. A similar method has been implemented by
Lee et al. [20] using a photoplethysmographic signal.

3.2.5 Morphology-based analysis

Morphological analysis of heart activity during AF could supply signif-
icant information about AF organization and the mechanisms behind it.
During AF, refractoriness, conduction velocity and atrial tissue heterogene-
ity cause different kinds of electrical activation that determine variations
in the observed morphology. Nevertheless, the majority of the methods do
not perform direct analysis of morphologic feature of cardiac activation sig-
nal, or perform it after significant manipulation of the signal [22]. The first
morphological study of an endocardial recording was performed by Wells
et al. [37], and provided qualitative criteria to classify different episodes
of arrhythmia through visual electrogram scoring from right atria bipolar
electrograms recorded after open-heart surgery. The manual classification
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of AF episodes according to Wells’ criteria is widely used, in spite of its lim-
itations: it is time consuming and can lead to results neither objective nor
reproducible [22]. Barbaro et al. [8] developed an automatic classification
scheme in accordance with Well’s criteria to obtain more quantitative and
objective measures.

Another possible approach to the morphological analysis was provided
by Faes et al. [14] evaluating AF organization based on the analysis of the
variations in morphology of the atrial activation waves. Faes proposes an
algorithm that compares pairs of local activation waves (LAWs) on bipolar
electrograms recorded in human atria during AF to compute a regularity in-
dex ρ which measures the extent of repetitiveness over time of its consecutive
activation waves.

For an atrial recording in which N atrial activations are detected, LAWs
are defined as signal windows of p samples centered on the atrial activation
instants. To prevent the amplitude of the LAWs from affecting the regularity
index, the normalized LAWs are computed and used.

si = xi

||xi||
(3.15)

Thus the new LAWs {si, ..., sN} can be seen as points belonging to the p-
dimensional unitary sphere. The morphological dissimilarity between two
normalized LAWs can be evaluated by using the standard metric of the
sphere to compute their distance:

d(si, sj) = arccos(sT
i · sj) (3.16)

The regularity index, ρ(r), is then defined by calculating the relative
number of similar pairs of LAWs in the endocardial recording as:

ρ(r) = 2
N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(r − d(si, sj)) (3.17)

where N is the number of LAWs, Θ the Heaviside function and r a threshold
below which two analyzed LAWs are considered similar.

The index proposed by Faes et al. shows maximum regularity (ρ =
1) for all atrial flutter episodes and decreases significantly with increasing
AF complexity as defined by Wells. The ability to characterize different
AF episodes was assessed by designing a classification scheme based on a
minimum distance analysis, obtaining an accuracy of 85.5%.

A measure of organization of AF electrograms highly sensitive to changes
in wave morphology could help investigate disturbances in the conduction
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pattern and, in case of a multi-site evaluation of the spatial distribution of
AF organization, it could constitute an effective support to the treatment
of AF. Indeed, the real-time evaluation of the spatial distribution of AF
regularity may guide the definition of the optimal ablative pathway [14, 22].
Moreover, the ability of the proposed index to evaluate beat-by-beat changes
in AF complexity indicates the possibility to follow dynamic changes of AF
pattern and to study the atrial remodeling. Such information should be
useful to determine the optimal moment for the treatment of AF.

Faes applied this method on bipolar electrograms recorded in human
atria, but this kind of evaluation can be implemented also for other typolo-
gies of signals, such as ECG (superficial and subcutaneous) or PPG. This
because an alteration in wave morphology due to AF can also be witnessed
in electrical signals recorded far from the heart and in blood volume pulse
signals.
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Chapter 4

Experimental protocol and
signal preprocessing

4.1 Study population

We recorded 70 subjects, recruited from hospitalized patients at Os-
pedale Maggiore Policlinico in Milan, Italy. Among the recorded patients,
30 are affected by atrial fibrillation, 31 are healthy subjects and 9 suffer
from other arrhythmias; the measurement protocol and classification for all
patients has been performed by cardiologists at Ospedale Maggiore Policlin-
ico; all data were recorded between March and November 2015. As for the
gender of the subjects, 36 recorded patients are male and 34 are female.
The gender distribution for the three classes of patients can be seen in the
following bar graph (Figure 4.1).

The age of recorded patients ranges from 21 to 93 years, the statistical
distribution is displayed in the following boxplots (Figure 4.2).
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Figure 4.1: Population gender. Statistical distribution of the subjects’ gender between
the AF, NSR and “other arrhythmia” categories.
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Figure 4.2: Population age. Statistical distribution of the subjects’ age between the
AF, NSR and “other arrhythmia” categories.

Among recorded patients, one of them displayed a BVP signal with a
behavior that changes alternatively between AF and NSR: such patient is
said to be in paroxysmal AF, a condition in which AF occurs occasionally
and then stops, with episodes that can last from minutes to days before
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returning to normal sinus rhythm. Such patient was discarded from our
analysis because the acquired signal, along with its statistical indexes, is
not representative neither of the NSR category nor of the AF class.

4.2 Data acquisition protocol

A standard protocol for data recording was defined; the setting of a
uniform acquisition procedure allows us to control the use of the device,
ensuring that it is applied in the optimal way to enhance signal quality.

The patient is supposed to remain in steady state for the whole process,
in order to reduce motion artifacts as far as possible; to simplify this task,
the subject has to lie down on his back during the acquisition, while the
physician takes care of the measurements. While the patient lays in a relaxed
position, the Empatica E4 wristband is applied on the wrist of the non-
dominant arm, with the main part of the device facing upward, in a similar
way to a regular wrist watch (Figure 4.3); then, the device is activated, and
after a short time required for initialization, it starts collecting data from
the patient.

Figure 4.3: E4 wristband applied. E4 wristband on the patient’s wrist during acqui-
sition.

Ten minutes after activation, the device is turned off and later removed
from the patient; we therefore acquired 10 minute segments for all patients.
It was decided to maintain a standard duration for all our measurements,
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because some of the indexes evaluated from the signal can vary in relation
to this parameter.

Though relatively simple, the correct execution of this protocol, both by
the physician and the patient, is a strongly determinant factor for signal
quality and, as a consequence, for a correct employment of diagnostic algo-
rithms: an excessive movement of the patient or other procedural errors can
induce significant artifacts and distortions in the signal.

4.2.1 Empatica wristband

The Empatica E4 wristband, used to record the BVP signals of the
patients, is a wearable wireless device designed for continuous, real-time
data acquisition in daily life.

The device is equipped with sensors for the registration of different sig-
nals, including bio-signals: an Electrodermal Activity Sensor (EDA), an
infrared thermopile, a 3-axis accelerometer and, fundamental to this study,
a photoplethysmographyc (PPG) sensor which measures the blood volume
pulse (BVP) signal. The BVP is sampled at 64 Hz, with 12-bit resolution.
The device is not an invasive instrument, and is worn like a regular wrist
watch, without causing discomfort to the patient, not even after prolonged
acquisitions [40].

Figure 4.4: E4 wristband. The Empatica E4 device
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4.3 Signal preprocessing

The raw photoplethysmographic signal must be preprocessed before it is
analyzed by diagnostic algorithms.

The preprocessing of the signal can be divided in two phases: noise
detection and peak detection.

Figure 4.5: Phases of signal preprocessing. The preprocessing is divided in noise
detection and peak detection; the two phases are sequential. In the end a clean signal
and the peaks extracted from it are obtained.

The first preprocessing phase is the detection and removal of noise: the
raw PPG is often disturbed , mainly due to movement artifacts, which are
caused by the patient rapidly moving the device during the measurement;
therefore, it is necessary to isolate the intervals disturbed by noise, and then
to eliminate them.

The second phase in signal preprocessing is about the detection of im-
portant points in the signal: an algorithm is used to recognize the distinct
heart cycles of the BVP, then significant features in each cycle are identi-
fied, like specific maxima and minima; data about the time instants of the
maxima and minima are later used in the classification of the patient.

4.3.1 Noise detection

As mentioned earlier, it is fundamental to suppress the interference
caused by movement artifacts; any significant movement of the device on
the patient’s wrist can critically distort the acquisition (Figure 4.6); in order
to counter that, accelerometric data collected by the device are analyzed.
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Figure 4.6: Disturbed signal. Example of significant signal distortion due to movement
noise in a healthy subject.

The Empatica E4 wristband features a tri-axial accelerometer, which
operates synchronously with the photoplethysmograph employed for blood
volume pulse recording. Since signal distortion is proportional to the mo-
bility of the device (Figure 4.7), data from the accelerometer are used to
decide which signal portions have to be discarded.
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Figure 4.7: Disturbed signal and accelerometric data. The noise distortion in the
signal (above) is plotted together with accelerometer data (below), each colored line
shows the acceleration on one of the three axes of the accelerometer, while the black
line shows the norm of the acceleration; it can be seen that the distortion in the BVP
signal happens right after a significant acceleration has been recorded.
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To operate an automatic cleansing of the acquisition it is established
that, when acceleration is too high, the signal interval is classified as dis-
turbed and then cleared.

In order to evaluate the global movement in a three-dimensional space,
the norm of the accelerations on the three axes is computed (the black line
in Figure 4.7, below), and the deviation from the acceleration of gravity
g is calculated. The absolute value of the deviation is then compared to
a threshold, and when it is exceeded, the algorithm classifies the signal as
disturbed by noise; the signal interval identified is then zero padded, in
this way the acquisition disturbed by noise is substituted with flat signal
segments.

The absolute value of the deviation from g above which the signal is
considered distorted is set empirically, choosing a value low enough to trigger
the detection of significant distortions, and also high enough to ignore the
intervals which are only slightly affected by noise. The threshold is set to
0.07g.

4.3.2 Peak detection

The second step of signal processing is the detection of systolic peaks
and diastolic minima in the blood volume pulse recording.

The BVP is a deterministic quasi-periodic signal, which means it has a
generally recognizable shape that is repeated from the beginning to the end,
in a similar way as the typical ECG signal; for each cycle, we can identify
significant points in time, which represent different moments of the cardiac
cycle (Figure 4.8).

An algorithm was developed in order to automatically identify such char-
acteristic points of the signal. The diastolic minima can be classified as the
local minima which are found at the ends of a complete cycle, while the sys-
tolic peaks are identified as the first and generally highest maxima of each
cardiac cycle.

The first step of the algorithm is the detection of the diastolic minima;
to find them, a 1-D convolution is performed between the BVP signal and
a kernel; the kernel is a mono dimensional vector which extends in time for
0.3594 seconds and has the same function as an averaging filter, thus acting
on the signal as a low-pass filter.

After the convolution, a smoothed version of the original BVP is obtained
(Figure 4.9, below), the shape of which shows distinct waves for each cardiac
cycle in the original signal. Cutting the high frequency content allows a
better discrimination of the end of every cycle: each wave is limited by
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Figure 4.8: Peak detection. The BVP signal is shown with highlighted peaks and
minima, labeled after their equivalent in the pulse pressure signal; the systolic peak is
associated to the contraction phase of the cardiac cycle, while the diastolic minimum
is linked to the refill of the heart; they represent opposite phases of the cycle.

two low regions at both sides, so in order to locate them the algorithm
searches for local minima; after this process, the algorithm searches for the
lowest minimum in the original signal in a 0.2 seconds neighborhood of every
minimum previously detected in the filtered signal; the new time instants
that are found represent the diastolic minima (Figure 4.9, above).
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Figure 4.9: Diastolic minima detection. The bottom figure shows the low-pass signal
in which minima can be better identified; the true diastolic minima are found later in
the original signal above, by searching the lowest point in a short time interval centered
in the minimum of the filtered signal.

To automatically locate the systolic peaks, first the algorithm searches
and saves every local maximum in the BVP signal, then, using the informa-
tion of all the diastolic minima previously found, it identifies as a systolic
peak the first local maximum after each diastolic minimum, with the restric-
tion that there can be only one peak for every cycle (Figure 4.9, above); all
the other local maxima previously found are discarded.

4.3.2.1 Inter-systolic intervals

An important information which is obtained from knowing the time in-
stants of each systolic peak is the inter-systolic interval (ISI). This value
represents the time interval between one systolic peak and the previous one,
and it can be compared to the better known RR interval, which is obtained
in the electrocardiogram; this interval gives us information about the heart
rate of the subject from beat to beat.

By knowing the ISIs, it is possible to study their progression in time and
relative statistical features, such as the variance, and correlate them to a
pathological heart function; many of the diagnostic indexes in literature are
based solely on the ISI or on other data derived from it.
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4.3.2.2 Inter-diastolic intervals

The inter-systolic intervals are not always a robust method to quantify
the heart rate [13]: the automatic recognition of the systolic peak can be
erratic when wave morphology is not very clear (Figure 4.10), as a conse-
quence the ISI series obtained becomes unreliable, making it necessary to
use other approaches for heart rate estimation.
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Figure 4.10: Variability of the sistolic peak. With certain acquisitions, the shape of
every heart cycle is not definite, making identification of the systolic peak unclear; from
wave to wave, the BVP peak is shifted in time.

Another possible marker of each heart cycle is the diastolic minimum:
it indicates the beginning of every period, is more stable than the systolic
peak and it is easily recognizable even when BVP waves are distorted (Fig-
ure 4.10).

From the diastolic minima, it is possible to calculate the inter-diastolic
intervals, in the same way as the ISIs are obtained; the inter-diastolic inter-
vals, from now on simply referred to as intervals (I), can be used to evaluate
the heart rate exactly like the ISIs series, with the advantage of being a more
stable measure; as a consequence, in this study it was decided to employ the
I, instead of the ISIs as a mean of heart rate estimation.

4.3.2.3 Additional information

Other information is also calculated and memorized for each heart cy-
cle: along with the time of the systolic peak and diastolic minimum and
the inter-systolic and inter-diastolic interval with respect to the previous
beat, the algorithm also saves the BVP values of the systolic peak and dias-
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tolic minimum and calculates the delta between the two, which in the pulse
pressure signal would represent the pulse pressure of the beat (Figure 4.11).
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Figure 4.11: BVP Characteristics. In the blood pressure signal, pulse pressure for a
certain beat is calculated as the delta between systolic and diastolic pressure.

41



Chapter 5

Measures and results

This chapter describes the calculation of diagnostic indexes, which are
later used by a decision making system to classify the patient’s health status.

5.1 Spectral analysis

Spectral analysis has not been consistently performed in clinical AF as-
sessment because of the difficulty to interpret the huge number of spectral
peaks [22]. In this study, instead, the very absence of clear peaks in the
pathological signal is used to discriminate between NSR and AF patients.
The spectral analysis is performed on both the BVP signal and the intervals
series.

5.1.1 BVP spectral analysis

The analysis of the power spectrum yields many information about the
BVP signal. The operation uses the matlab function plomb, which produces
the Lomb-Scargle power spectral density (PSD) estimate of a signal; the
choice to use the Lomb-Scargle PSD estimate is due to the fact that this
method can handle a signal in which interruptions are present, such as the
BVP we are analyzing, in which there are missing samples after the previous
elimination of noisy periods (Figure 5.1).
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Figure 5.1: Signal example. The BVP signal is zero padded in the periods disturbed by
movement noise, such regions are empty and do not contain any information, therefore
the PSD estimation must be performed with a method that can analyze discontinuous
data, such as the Lomb-Scargle PSD estimate.

The BVP of a healthy individual generally is a predictable and repetitive
signal, thus the expected signal for a healthy subject is quasi-periodic and,
consequently, has a frequency content concentrated in a few frequencies,
mainly around the heart rate and its harmonic; instead, the signal from an
AF patient is expected to be much more irregular, with a power spectrum
spreading on many different frequencies.

An example is shown in Figure 5.2: the subject affected by atrial fibril-
lation (Figure 5.2, left) has a much broader frequency distribution than the
healthy subject (Figure 5.2, right).
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Figure 5.2: Power spectra comparison. The PSD of BVP signal in a subject with
normal sinus rhythm (right) is mainly focused around the heart rate, while the typical
AF patient (left) has a wider PSD distribution.

In order to quantify this information from the PSD graphs into a single
diagnostic index, we calculate the peak density (PD) parameter.

The peak density is computed as the ratio between the integral of the
PSD in a band around the dominant frequency peak (fD) and the overall
PSD of the signal:

PD =

∫ fD+∆f

fD−∆f
SBV P (ω) dω∫ fS

0
SBV P (ω) dω

(5.1)

where SBV P (ω) is the PSD of the BVP signal, ∆f= 6.1 mHz and fS is the
sampling frequency.

This parameter is a rather simple way to understand whether the spec-
trum is broad or narrow around the dominant peak. The distribution of this
index in our population is shown in Figure 5.3; higher values are observed
for healthy subjects; this happens because their spectra are generally highly
focused around the heart rate, while the power spectrum for AF subjects is
much wider due to the signal irregularity.
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Figure 5.3: Spectral analysis boxplot. Distribution of the peak density index for the
three classes of subjects.

Although this index shows correlation to the health status of the patient,
it is rather influenced by the presence of white noise in the signal: the effect
of such disturbance causes the same effect on the PSD as the presence of
AF phenomena, broadening the frequency content of the signal.

For subjects affected by other arrhythmias, the PD index shows inter-
mediate values.

5.1.2 Intervals spectral analysis

The power spectral density (PSD) of the RR intervals is a widely known
technique of analysis in the study of the ECG signal: the power spectrum
of the RR-time sequence, or tachogram, is characterized by spectral peaks
in different frequency bands, each one correlated to the influence of the
autonomic nervous system.

This work is based on BVP recordings so the PSD of the inter-diastolic
intervals is studied, rather than that of the RR-time sequence; the genera-
tion of the interval series is computed in the aforementioned peak detection
section (paragraph 4.3.2).

Before spectral estimation, the time sequence of the intervals is interpo-
lated with a 4 Hz time resolution (Figure 5.4).
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Figure 5.4: Original intervals sequence and interpolation. Comparison between the
original intervals time sequence, and the spline interpolation with 4 Hz frequency; the
interpolation is performed because it improves the classification capability of the index.

After obtaining the interpolated version of the series, the algorithm cal-
culates the PSD through the matlab function plomb, using the time sequence
with 4 Hz resolution. For BVP spectral analysis, the choice to use the
Lomb-Scargle PSD estimate is requested to handle missing samples during
the previously zero padded noisy periods (Figure 5.5).
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Figure 5.5: Interval series with empty periods. The interval series and its interpo-
lated version include empty periods, those are the previously zero-padded zones cor-
rupted by movement noise; the PSD must be therefore calcolated with a method capable
of PSD estimation of discontinuous data, in our case we employed the Lomb-Scargle
PSD estimate.

After performing the Lomb spectral estimate, the integral of the PSD
for all frequencies is evaluated (i.e. the total power), this index is called
PSDsum:

PSDsum =
∫ fS

0
Sseries(ω) dω (5.2)

where SI(ω) is the PSD of the interval sequence and fS is the sampling
frequency.

By comparing the results for healthy subjects and for people affected by
atrial fibrillation, one observes that the former tend to have lower values
(Figure 5.6).
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Figure 5.6: Intervals spectral analysis boxplot. Distribution of the intervals PSD
sum for the three classes of subjects.

Those results can be explained considering the related concept of vari-
ance: since the PSD describes how the signal variance is distributed along
the frequency spectrum, it is reasonable to expect higher values for patients
affected by atrial fibrillation, since the distribution of the intervals is much
more irregular than that of a physiological subject.

5.2 Time domain indexes

Time domain parameters allow the study of intervals’ variability. In
clinical practice, it is possible to support AF diagnosis by calculating sta-
tistical parameters on the RR series, such as the standard deviation (SD),
root mean square of successive differences (RMSSD), coefficient of variation
(CV), percentage of successive differences greater than 50 ms (pNN50) and
the AF evidence by Sarkar et al. [30] [22].

5.2.1 Standard deviation

The standard deviation (SD) of the intervals is a straightforward index
to quantify the variation of the heart rate, therefore it provides a simple
way to determine whether the patient’s heart has a regular or irregular
(arrhythmic) behavior. The SD is computed as in equation (3.8).

This index shows low values for healthy subjects and higher values for AF
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subjects, with intermediate values for subjects affected by other arrhythmias
(Figure 5.7).
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Figure 5.7: SD boxplot. Distribution of the SD for the three classes of subjects.

5.2.2 Root mean square of successive differences

Another index used to evaluate heart variability is the root mean square
of successive differences (RMSSD) of the intervals; this quantity is defined
as the square root of the mean of the squares of the differences between
adjacent intervals.

The RMSSD is well known in clinical practice, and is generally applied
to ECG recordings, where it is calculated for the RR intervals, as shown in
equation (3.9).

One issue with the use of the RMSSD is that it is inversely proportional
to the heart rate, which is not a constant value for every patient. In order to
remove this bias, another index is computed, called normalized root mean
square of successive differences (nRMSSD), equal to the RMSSD divided by
the mean of the interval series.

nRMSSD = RMSSD

I
(5.3)

The boxplots of the RMSSD and nRMSSD are depicted respectively in
Figure 5.8 and Figure 5.9.
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Figure 5.8: RMSSD boxplot. Distribution of the RMSSD for the three classes of
subjects.
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Figure 5.9: nRMSSD boxplot. Distribution of the nRMSSD for the three classes of
subjects.

5.2.3 Coefficient of variation

The coefficient of variation (CV) is derived from the standard deviation,
and is calculated by dividing SD by the absolute value of the mean, as in
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equation (3.10).
The CV is calculated on the distribution of the intervals, as a normal-

ization of the SD, in the same way as the nRMSSD is a normalized version
of the RMSSD.

The CV boxplots depicted in Figure 5.10 show similar values between the
classes of AF patients and subjects affected by other arrhythmias, meaning
this index does not discriminate these conditions very well, while the values
for healthy subjects are generally lower.
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Figure 5.10: CV boxplot. Distribution of the CV index for the three classes of subjects.

5.2.4 pNN50

pNN50 is calculated as the percentage of differences of successive inter-
vals (I) greater than 50 ms:

pNN50 = #[successive δI > 50 ms]
#successive δI (5.4)

Higher values of pNN50 show high variability between intervals, a typical
condition of AF plethysmographic signals.

The pNN50 boxplots for the three different classes show little overlapping
between NSR and AF patients, while the values obtained for the class of
patients suffering from other arrhythmias are pretty much superimposed
to the other two, meaning this index alone cannot accurately classify this
condition (Figure 5.11).
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Figure 5.11: pNN50 boxplot. Distribution of the pNN50 index for the three classes
of subjects.

5.2.5 AF evidence

The AF evidence is an index specialized in the detection of atrial fibril-
lation phenomena; it was originally developed by Sarkar at al. [30] and in
this work has been adapted to the analysis of the PPG signal.

The original AF evidence was computed on signals which were 2 minutes
long, while the BVP signals analyzed in this study are usually longer, even
after the subtraction of signal periods disturbed by noise; thus it was decided
to evaluate the AF evidence on a portion of 2 minutes out of the whole
acquisition.

In order to isolate this period, an algorithm searches the whole BVP
signal for a section with no noise at least 2 minutes long; if it exists, then
the index is calculated on such period, otherwise several noiseless portions
of the signal are attached together, starting from the longest, until we reach
a total duration of 2 minutes.

The index is based on the distribution of the deltas of the intervals (I), i.e.
the time difference between subsequent I; for every interval, two deltas are
calculated: one with respect to the following interval (DeltaIi = Ii+1 − Ii),
and the other with respect to the previous interval (DeltaIi−1 = Ii − Ii−1),
therefore we obtain two deltas for every interval.

The obtained deltas are then represented in a Lorenz plot, with DeltaIi

value on the X axis and DeltaIi−1 value on the Y axis, for every I (Fig-
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ure 5.12).
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Figure 5.12: Lorenz plot distribution. Every couple of I deltas [DeltaIi, DeltaIi−1]
is represented on the Lorenz plot, the lines represent separate regions used to classify
different heart beats.

The circumference at the center of the graph represents the NSRmask,
that is the circle inside which every pair of [DeltaIi;DeltaIi−1] is considered
physiological; the radius of the NSRmask is set at 140 ms.

If one dot on the graph falls outside the NSRmask boundaries, then it
is pathological; there are 12 segments outside the NSRmask, delimited by
straight lines (Figure 5.12); every segment includes a particular type of delta
I. Every dot, or pair of deltas, that falls inside the NSRmask lowers the AF
evidence index, while every dot belonging to one of the 12 outside segments
is correlated to heart arrhythmia.

To compute the AF evidence, the first step is the automatic classification
of each dot on the graph into one of the 12 segments, or inside the NSRmask;
if one point falls inside two segments simultaneously (for example if it is
located at the intersection between 7 and 11, near the NSRmask), then it
is assigned to the segment with highest priority (segments 6, 7, 9, 11 have
higher priority than segments 5, 8, 10, 12, and diagonal segments have higher
priority than horizontal and vertical segments).

After this assignment, the B array is calculated: B is a 12 by one vector,
where Bn indicates the number of different points included in segment n of
the Lorenz plot, therefore if more points are identical, they are counted only
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once in B; the probability to have two identical points is not null, since we
have a limited time resolution of 15.625 milliseconds.

After obtaining B, the algorithm calculates vector P ; P is also 12 cells
long and Pn indicates how many points are found in segment n of the Lorentz
plot, including repetitions (unlike Bn which only counts distinct points).

Before calculating the AF evidence, there are some intermediate indexes
to be evaluated: the premature atrial contraction evidence (LP E) and the
irregularity evidence (LIE); their calculation is identical to the original ver-
sion, and is explained in equations (3.4) and (3.1).

The last index prior to AF evidence calculation is NSR count, which
increases proportionally to the regularity of the patient’s heart beat; the
original version of this index, developed by Sarkar, is calculated as the total
sum of points located in the histogram bin identified in the origin of the
axes, that is the total of [DeltaIi;DeltaIi−1] with a distance from the origin
inferior to 40 ms.

In this analysis, it was found that very few points would fit into this small
zone around the origin, even for healthy patients with regular heart rate; this
is because the noise in the BVP signal introduces small distortions, even in
the signal periods less affected by movement artifacts, and because it is much
harder to have closely similar subsequent intervals than in an ECG signal.
Consequently, it would be more representative to count the points located
into the NSRmask, which is a slightly wider area (NSRmask radius=140
ms), and includes all the subsequent intervals that are sufficiently alike.

Finally, with all the previously collected indexes, the algorithm can pro-
ceed to the calculation of the AF evidence (LAF E), as in equation (3.5) with
the difference that, in our case, O is not the number of points in the bin
containing the origin, but is substituted by the NSR count.

The AF evidence is computed in a much different way with respect to
other indexes, meaning the information content it carries is complementary
to the other analyses. Higher values are observed for AF patients, lower
values for healthy subjects and intermediate values for patients suffering
from other arrhythmias; there is no overlapping between values of NSR and
AF classes (Figure 5.13).
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Figure 5.13: AF evidence boxplot. Distribution of the AF evidence for the three
classes of subjects.

5.3 Nonlinear indexes

Nonlinear indexes are the result of algebraic equations in which the
output values are not directly proportional to the input, but are obtained
through nonlinear transformation. The indexes include the sample entropy
and normalized Shannon entropy.

5.3.1 Sample entropy

Sample entropy (SampEn) is a modified version of approximate entropy.
For a given embedding dimension m, tolerance r and number of data points
N , SampEn is defined as the negative logarithm of the probability that, if
two sets of simultaneous data points of length m have distance < r, then
two sets of simultaneous data points of length m+ 1 also have distance < r.

Our analysis evaluated the sample entropy of the intervals, as an index
of the complexity of their distribution; we set a tolerance value of 0.15 times
the standard deviation of the series and an embedding dimension of 2.

The SampEn index assumes diverse values for the separate classes of
healthy and AF patients: SampEn is lower for subjects with a normal sinus
rhythm and higher for subjects affected by AF; as for patients affected by
other arrhythmias, their SampEn indexes appear to be even lower than those
of healthy subjects (Figure 5.14).
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Figure 5.14: SampEn boxplot. Distribution of the SampEn for the three classes of
subjects.

5.3.2 Normalized Shannon entropy

Shannon entropy (ShEn) characterizes the uncertainty of a statistical dis-
tribution and increases proportionally to the presence of randomness sources.
It can be calculated through equation (3.14).

In this analysis, we calculate the Shannon entropy of the statistical dis-
tribution of the intervals, which are sampled with a time resolution of 1/64
seconds, and therefore represent a finite number of variables, even though
they serve as numerical measurements.

The Shannon entropy index is then normalized by dividing it by the
logarithm of the number of intervals (I) detected; this is performed since
ShEn tends to increase with the dimension of the the dataset of variables.

Normalized ShEn = ShEn

log(#I) (5.5)

Normalized Shannon entropy (nShEn) values for the different classes of
patients show a definite overlapping between all three types of subjects,
therefore this index alone is not sufficient to operate a good classification
(Figure 5.15).
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Figure 5.15: nShEn boxplot. Distribution of the normalized Shannon entropy for the
three classes of subjects.

5.4 Shape analysis

The majority of indexes introduced up to this point are focused on the
variability of time intervals between subsequent heart beats. In this section,
instead, a new category of indexes based on the morphology of BVP is pro-
posed. This category includes the normalized wave deviation, the detection
of multi-peak waves and two-peak waves and the shape similarity index.

5.4.1 Normalized wave deviation

The difference between the systolic peak and diastolic minimum (Fig-
ure 5.16), from now on referred to as R, is an intuitive descriptor of the
shape of every heart cycle; in order to evaluate the variation of this mor-
phological feature, the median absolute deviation (MAD) of its distribution
was computed; the index obtained was named wave deviation (WD):

WD = MAD(R) = median(
N∑

n=1
|Rn − median(R)|) (5.6)
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Figure 5.16: The R value. Variability in wave shapes can not be noticed by indexes
based on the intervals, which only consider the timing of the signal; if AF or other
arrhythmias influence the excursion of R, the WD will be sensitive to this change.

It is worth noting that R and the overall signal amplitude can change
even for the same subject, depending on how the wristband is located dur-
ing the measurement protocol: the looseness of the device on the patient’s
arm, together with the position where it is applied along the wrist, can
significantly change the signal intensity during the acquisition.

In order to take this variation into account, the WD is normalized by
dividing it for the median R:

nWD = WD

median(R) (5.7)

As an index of morphological variability, the normalized WD gives us in-
formation not correlated to other indexes of time variability, like the RMSSD
or AF evidence; by comparing the results obtained in different classes of pa-
tients however, this index does not seem to operate a very good distinction
between them: the values for AF and healthy subjects are superimposed,
and the range for the other arrhythmias is very wide (Figure 5.17).
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Figure 5.17: Normalized WD boxplot. Distribution of the normalized WD for the
three classes of subjects.

5.4.2 Multi-peak waves

By observing several BVP measurements of AF patients, an occasional
morphological pattern was noticed. This pattern seems to be more rare
in healthy subjects: after one beat, the signal experiences a certain offset,
and the subsequent heart cycles show a much smaller excursion between the
maximum and minimum of each wave; this shape lasts for about three cycles,
then the signal comes back to normality (Figure 5.18); this phenomenon was
labeled as a multi-peak wave (MPW).

59



Time [# samples] ×104

3.515 3.52 3.525 3.53 3.535 3.54 3.545 3.55 3.555

B
V

P
 [a

.u
.]

-200

-150

-100

-50

0

50

100

150

Figure 5.18: Multi-peak waves’ identification. A multi-peak wave is composed of
a series of waves where from the second to the last the signal experiences a certain
offset, and wave amplitude becomes smaller.

A simple algorithm was developed in order to identify this pattern au-
tomatically; the software detects the event when the maximum-minimum
range for one wave is much broader than in the subsequent one, and the
diastolic minimum of the next wave is offset higher than half the excursion
of the current wave. If those conditions are satisfied, the event is labeled as
a MPW if at least one of the following cases occurs: either the second next
wave has its diastolic minimum on a high offset too, or the inter-diastolic
intervals between the three waves are similar enough.

After identifying all the MPWs, the percentage of MPWs over the total
number of waves is computed:

MPW [%] = # MPWs detected

# waves
(5.8)

The results confirm the higher concentration of MPWs for AF patients,
while this pattern is observed very occasionally in healthy patients and the
median number of MPWs detected in healthy patients is zero (Figure 5.19);
despite this, the index is not able to discriminate values for all the three
classes, since even for AF patients the total count of MPWs is sometimes as
low as that of healthy subjects; this could be either due to the infrequent
presence of the MPWs phenomenon, even in people affected by atrial fib-
rillation, or to the imprecision of the algorithm used for MPWs detection.
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Patients affected by other arrhythmias show a wide range of values for this
index, with a median value in between those of the other two categories.

1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
MPW NSR

1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
MPW Other

1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
MPW AF

Figure 5.19: MPW boxplot. Distribution of the MPW index for the three classes of
subjects.

5.4.3 Two-peak waves

Another typical shape is often recognized in AF patients: on certain
occasions, at end of a heart cycle, the new one starts before the completion
of the previous one, therefore the diastolic minimum of the next wave is on
a higher offset, but unlike multi-peak waves, it lasts for one cycle only, then
the signal proceeds normally (Figure 5.20).
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Figure 5.20: TPW shape. This feature of the BVP signal is labeled as a two-peak
wave (TPW), it consists of two subsequent waves where the second one starts before
the completion of the first.

This phenomenon, observed frequently in arrhythmic patients, was named
two-peak waves (TPWs), since it appears like two waves from two separate
heart cycles are merged into a single one.

An algorithm was developed to automatically detect this pattern in the
signal; for every heart cycle, a TPW is identified when the following con-
ditions are verified: the starting minimum of the current wave (A) and the
ending minimum of the next wave (C) must be on a similar level and the
alpha angle, obtained by linking minima A, B and C (Figure 5.21), has to
be smaller than an empirical threshold set to 90.72 degrees (meaning that
the first wave is ascending and the second wave is descending, creating a
sharp corner in the middle).
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Figure 5.21: TPW shape and alpha angle. The algorithm automatically identifies a
TPW when the alpha angle, obtained by linking minima A, B and C, is smaller than
90.72 degrees.

If the previous conditions are met, the current cycle is identified as the
start of a TPW; the total number of TPWs is then counted, in order to
obtain an index from this procedure, then the total count is normalized, as
for the MPWs, dividing it by the sum of waves analyzed in the process.

TPW [%] = # TPWs detected

# waves
(5.9)

The distribution of the TPWs index (Figure 5.22) shows common values
between the three classes: even though AF patients tend to have more
TPWs, on some occasions those phenomena occur only a few times during
the whole acquisition; some healthy subjects also show a TPWs count higher
than zero, this is likely due to the signal distortion caused by interfering
noise. With such distribution, the TPWs index alone cannot be used as a
discriminant for the patients’ health condition.
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Figure 5.22: TPWs boxplot. Distribution of the TPW index for the three classes of
subjects.

5.4.4 Shape similarity

In addition to the previously described morphological analyses, an inves-
tigation is conducted to evaluate the variability of the BVP waves of every
heart cycle, by studying their entire shape, not only the values of minima
and maxima as considered, for instance, in the MPW and TPW indexes.
The index proposed by Faes et al. [14] for quantifying the organization of
single bipolar electrograms recorded in human atria during AF, based on
wave morphology similarity, was implemented and adjusted for a BVP sig-
nal. The algorithm compares each pair of waves in the signal and finds an
index of their similarity, by using the dot product between the two waves.

Each wave can be considered as a 1-D array of BVP values in a time
window, extending from the diastolic minimum at the beginning of the heart
cycle for a fixed length; such length is calculated as the mean duration of
the inter-diastolic intervals t. To compare all waves with one another, the
algorithm performs a dot product between the arrays.

The dot product is an operation that, when performed on two different
n-dimensional vectors, returns a 1-dimensional value proportional to the
modules of the two vectors and to the cosine of the angle between them.

Since the t-samples long arrays of BVP wave values can be considered
as t-dimensional vectors, the dot product between the two is indicative of
the cosine of the angle between the vectors. Before performing the dot
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Figure 5.23: Comparison between different thresholds. Average values of the shape
similarity for each of the three target classes calculated as a function of the threshold.
The best discrimination between the average values was obtained for a threshold of
0.55, as indicated by the vertical line.

product, each array is divided by its norm as in equation (3.15), therefore
the output of the dot product is independent from the moduli and depends
only on the cosine of the angle. Consequently, the dot product values are
higher for similar waves, because the angle between them is closer to zero;
this property allows us to consider the dot product as an index of waves’
similarity. After performing the dot product, the arccosine operand is used
to convert the dot product into angle, which will be smaller for more similar
waves (equation (3.16)).

The aforementioned operation is iterated to calculate the similarity be-
tween each pair of waves, thus for a signal with N heart cycles, N(N − 1)/2
comparisons are performed. At such point, all the wave similarities are com-
pared to a threshold, which was set to 0.55 radians: all waves with a smaller
cosine angle are considered similar, while all angles above such threshold
classify the waves as different. An index called shape similarity is computed
out of this comparison, as the fraction of waves in the signal which have an
angle of difference inferior to the threshold of 0.55 radians, as in equation
(3.17). The threshold was chosen comparing the average value of the shape
similarity index for each target class in function of the threshold and select-
ing the value that provided a greater discrimination between the classes, as
depicted in Figure 5.23.
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The shape similarity index has a range of values between 0 and 1, with
generally lower values for AF patients and higher for normal subjects (Fig-
ure 5.24); this can be explained because heart cycles present a much more
variable behavior in AF patients, and the respective BVP waves follow the
same irregularity.
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Figure 5.24: Shape similarity boxplot. Distribution of the shape similarity index for
the three classes of subjects.

To obtain a more comprehensive examination from this analysis, two
more indexes are computed: the median (MedianArc) and the mode (Mod-
eArc) of the angle of the dot product, calculated for all waves. This values
are instead higher for patients suffering from AF, while lower for subjects
with normal sinus rhythm (Figure 5.25 and Figure 5.26).
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Figure 5.25: Boxplot of the median of the dot product angle. Distribution of the
median of the dot product angle for the three classes of subjects.
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Figure 5.26: Boxplot of the mode of dot product angle. Distribution of the mode
of the dot product angle for the three classes of subjects.
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Chapter 6

Classification and results

In the previous chapter several diagnostic indexes have been analyzed
and their classification capability was illustrated. Unfortunately, univari-
ate analysis can not discriminate very well between the categories of NSR,
AF and other arrhythmias, because the values of single variables overlap.
Therefore a multivariate analysis could be a more appropriate solution to
this problem. This chapter is divided in two sections: the first section an-
alyzes the correlation between different indexes and their information con-
tent, while the second one focuses on the implementation of an automatic
classification method based on a support vector machine.

6.1 Correlation between indexes

For an optimal outcome of multivariate analysis, it is fundamental to
know the existing relationships between different indexes: for instance, if
two or more indexes are correlated, using them simultaneously is a redun-
dant operation which can negatively affect the efficiency of the classification
process.

There is a strong correlation between many indexes, this is especially
evident for those based on the study of the intervals. From a theoretical
point of view, the standard deviation (SD) is correlated to the PSD power
(parameter PSDsum) since the latter is a descriptor of the variance of the
intervals distributed over the frequency spectrum. The correlation between
the two indexes is not linear, mainly due to the fact that the PSD is linked
to the variance, which is equal to the standard deviation squared, therefore a
quadratic relationship can be expected (Figure 6.1). Given this correlation,
the PSDsum index does not add significant information to the standard
deviation in our analysis.
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Figure 6.1: Correlation between SD and PSDsum.

The RMSSD index also shows a strong linear correlation to the standard
deviation (Figure 6.2), meaning they are in fact two representations of the
same variance: RMSSD is the square root of the mean of the squares of
the successive differences between adjacent intervals, while SD is the square
root of the mean of the squared deviations of the intervals from their average
value, so their formula only differs in the type of the deviations, that are in
one case between successive intervals and in the other between each interval
and the average one.

69



SD
0 0.05 0.1 0.15 0.2 0.25

R
M

S
S

D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SD vs RMSSD

Scatterplot
Linear interpolation

Figure 6.2: Correlation between SD and RMSSD.

A strong correlation can also be expected between the nRMSSD and the
CV (Figure 6.3), in the exact same way as the RMSSD and SD are correlated:
in fact the nRMSSD and CV are both divided by the same mean value.

CV
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

nR
M

S
S

D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
CV vs nRMSSD

Scatterplot
Linear interpolation

Figure 6.3: Comparison between nRMSSD and CV.

When we compare intervals based indexes with other families of indexes
instead, the correlation is very weak, meaning they are not a redundant
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representation of the same features.
The SampEn index expresses a measure of heart rate variability, and

generally it increases proportionally to the complexity of a physiological
time-series signal, yet there is little correlation between SampEn and, for
instance, the nRMSSD (Figure 6.4); consequently, the SampEn index adds
different information to the classification algorithm, helping the categoriza-
tion into target classes.
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Figure 6.4: nRMSSD and SampEn comparison.

Indexes falling in the category of shape analysis can be expected to have
little correlation to other categories of indexes, since their calculation is
based on BVP signal shapes instead of on the intervals. However, it can be
shown that, by comparing the shape analysis indexes with the nRMSSD, a
strong linear correlation appears. The linear correlation coefficient between
the nRMSSD and the shape similarity index is equal to −0.9290 (Figure 6.5),
while for the derived indexes of the median and mode of the dot product
angle (introduced in section 5.4.4) the coefficients of linear correlation to the
nRMSSD are 0.9250 and 0.7099 respectively.
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Figure 6.5: nRMSSD versus shape similarity. The linear correlation coefficient is
equal to -0.9290.

There are lower linear correlation coefficients between the nRMSSD and
other shape analysis indexes: values are equal to 0.6621 for the nRMSSD
and the normalized wave deviation (nWD), 0.6280 between nRMSSD and
the multi-peak waves (MPW) and 0.4948 between nRMSSD and two-peak
waves (TPW).

6.2 Support vector machine

A support vector machine (SVM) is a decision-making method which
takes into account multiple indexes to operate an automatic classification
into several target classes, and is capable of solving problems of great dimen-
sions [36]; SVMs perform the identification of archetypal examples, called
support vectors, which are representative of target classes, and are used to
classify observations into one or more categories.

In a multivariate analysis based on a number n of indexes, every obser-
vation, or patient in our case, is represented as a n-dimensional vector; each
vector can be seen as the coordinates of a point in n-dimensional space,
therefore the classification of every subject is computed by the SVM as a
problem of spatial separation between n-dimensional points. The algorithm
operates a partition between those points through the use of a hyperplane
of separation, that is an item used to separate the observations of different
classes; for example, if we have to distinguish between two categories on
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the basis of two indexes, the hyperplane of separation can be visualized as
a straight line delimiting two separated regions, each representative of one
category (Figure 6.6).
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Figure 6.6: SVM classification in 2D space. The classification between two categories
is calculated by the SVM as a problem of space separation, in this case the distinction
between x and o classes is seen as the separation of dots in the 2D plane using a straight
line.

For a correct use of the SVM, a preliminary operation is the normal-
ization of the indexes: each vector is composed by many parameters, with
heterogeneous origin and different ranges of values; parameters with greater
excursions tend to have a bigger weight in the decision process; thus, in order
to ensure that every parameter has the same relevance in the classification,
each index is assigned a normalized value between zero and one, where zero
is assigned to the lowest value measured for the index, and one is assigned
to the maximum, with intermediate values in between; exceptionally high
or low values, also called outliers, are given normalized values that are lower
than zero or higher than one.

The SVM is an example of supervised learning, thus the algorithm goes
through a training phase prior to its use in classification problems: the
SVM is trained on a collection of data from several patients, each one al-
ready labeled as NSR, AF or suffering from other arrhythmias; this prior
categorization is performed by an expert operator, in our case a cardiologist.

To evaluate the performance of the SVM, the leave one out cross-validation
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method was employed: the SVM is trained on all the patients from the full
dataset, except for one; the remaining subject has to be classified into AF,
NSR or “other arrhythmia” class. The procedure is repeated for every pa-
tient of the full dataset, then the classification accuracy is computed as
the ratio between the correct categorizations and the total number of the
subjects.

There are several typologies of SVM that can be employed, in this anal-
ysis the multisvm function [26] for multiclass support vector machine was
used: an algorithm inspired to the original Matlab SVM function which,
unlike its original counterpart, can also operate multiclass categorization.

6.2.1 Indexes reduction

In the previous chapters, 16 different indexes have been described; some
of those share similar information, enlarging the dimension of the dataset
without adding new knowledge. Thus, a reduction in the number of indexes
(attributes) could lead to a better efficiency of the classification algorithm,
a simplification of the analysis and a potential improvement of the final
separation accuracy. In this thesis two methods for indexes reduction have
been tested: PCA and wrapper method.

6.2.1.1 PCA

The principal component analysis (PCA) is a method to simplify data,
widely used in multivariate analysis; the aim of PCA is to reduce the initial
number of variables into a smaller number of variables obtained as a lin-
ear combination of the original ones, without losing information. Being X
the data matrix after standardization, and V=X′X the covariance matrix
of the attributes, the PCA derives n orthogonal vectors (principal compo-
nents) from the n original attributes. The strength of the PCA is that a
subset of q principal components, with q < n, has an equivalent information
content of the original dataset. Thus the n original attributes are projected
in a lower dimensional space with the same explicative capacity [36]. The
principal components are calculated in an iterative process. The first com-
ponent is obtained by solving an optimization problem and is the component
that explains the maximum percentage of variance of the data. The first
component is computed as:

p1 = Xu1 (6.1)

where u1 is the eigenvector associated with the maximum eigenvalue λ1 of V.
The other principal components are calculated solving similar optimization
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problems, adding the orthogonality condition between every component.
At the end of the iterative process, n principal components are computed
from the n eigenvectors sorted for non increasing eignevalues λ1 ≥ λ2 ≥
... ≥ λn. Thus the principal components are n orthogonal (and therefore
non-correlated) vectors, sorted for a relevance indicator expressed by the
correspondent eigenvalue. The variance of the principal component pj is
Var(pj)=λj so an index Iq measuring the percentage of variance expressed
by the first q components can be computed as:

Iq = λ1 + λ2 + ...+ λq

λ1 + λ2 + ...+ λn
(6.2)

The PCA was performed on the full dataset of patients and indexes. The
new dataset obtained projecting the original dataset in the new dimensional
space was used to train the SVM and to classify all the subjects through a
leave one out method. The performance of the classifier was evaluated for
different numbers of principal components, from 1 to 16. In Table 6.1 the
classification accuracy obtained for different numbers of principal compo-
nents taken into account is displayed, together with the relative percentage
of explained variance. The best accuracy is 90% and occurs when the first 12
principal components are considered, for an explained variance of 99.91%.

# PCs 1 2 3 4 5 6 7 8
Acc [%] 50 48.57 75.71 84.29 87.14 82.86 81.43 81.43
Iq[%] 50.61 76.36 82.71 87.72 91.37 94.52 96.72 98.21

# PCs 9 10 11 12 13 14 15 16
Acc [%] 85.71 87.14 85.71 90 84.29 85.71 82.86 81.43
Iq[%] 98.80 99.34 99.71 99.91 99.98 99.99 100 100

Table 6.1: Classification accuracy for number of principal components included.
The classification accuracy obtained through a leave one out procedure is displayed for
an increasing number of principal components considered and their relative percentage
of explained variance.

6.2.1.2 Wrapper method

The choice of the most relevant indexes is performed through the wrap-
per method, a process often used in feature selection problems [36]: the
decision-making algorithm is repeated, every time using a different subset
of attributes; at every iteration, the classification accuracy is calculated and

75



finally, when all the combinations have been tested, the ones providing the
best results are selected.

In this analysis, the SVM was given all the possible sets of indexes,
thus, for 16 indexes, 216 − 1 combinations were tested; to calculate the
classification accuracy of each combination, a leave one out procedure has
been performed.

The distribution of the classification performance for all the combina-
tions of indexes is shown in Figure 6.7.
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Figure 6.7: Distribution of SVM classification accuracy. The hystogram displays
the classification accuracies obtained using different combinations of indexes.

As shown, the results of the SVM can vary greatly depending on the in-
dexes it is trained on, going from a minimum accuracy of 32.86% of one case
to a maximum of 95.71% obtained by 22 combinations; as for the statistical
distribution of the accuracy, the median is equal to 81.43%, with a mean
of 77.65% and a mode of 90%. The accuracy obtained by the SVM trained
on all indexes is equal to 88.57%, greatly inferior to the accuracy of the
best cases. Out of the optimum 22 combinations, 16 produce also the best
sensitivity to the AF class, 96.67%, making them the preferred ones. The
sets of indexes that achieved the best performance are reported in Table 6.2.
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% Ind
SD 1 1 1 1 1 1 1 1 1 56.25

RMSSD 1 1 1 1 1 1 1 1 1 1 62.5
nRMMSD 1 1 1 1 1 1 1 1 1 1 1 1 75

pNN50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
CV 1 1 1 1 1 1 1 1 50

SampEn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
nShEn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100

ShapeSim 1 6.25
MedianArc 1 1 1 1 1 1 1 1 1 1 62.5
ModeArc 1 1 1 1 1 31.25

AF evidence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
PD 0

nWD 1 1 1 1 25
MPW 1 1 1 1 25
TPW 0

PSDsum 1 1 1 1 1 1 1 1 1 56.25
Tot Ind 7 8 6 6 6 9 10 9 7 7 9 10 10 11 10 11

Table 6.2: Sets of indexes with best classification accuracy and sensitivity. This table shows
the best 16 combinations of indexes (columns). For each combination, the indexes (rows) taken into
account are marked with 1 in the correspondent box. At the end of each column the number of indexes
considered for each combination is specified. At the end of each row the frequency of appearance for
each index in all the 16 combinations is indicated.

Four indexes have been used in all the 16 best cases: pNN50, SampEn,
AF evidence and nShEn, constituting an essential set of indexes for a good
classification performance. Instead, the peak density (PD) and the TPW are
never used, while the ShapeSim index appears only in one case: thus these
indexes don’t exhibit any additional information for the algorithm or even
confuse the classification procedure.

For each combination, we analyzed the confusion matrix obtained at the
end of the leave one out method. The columns of the matrix indicate the
true health status of every subject, while the rows indicate the category
in which the patient is classified by the SVM; therefore, the diagonal ele-
ments represent the correct classifications. For the 16 best combinations,
two typologies of confusion matrix were obtained multiple times, displayed
in Table 6.3 and Table 6.4.
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NSR Other AF
NSR 31 1 0
Other 0 7 1

AF 0 1 29

Table 6.3: Confusion matrix A. Confusion matrix obtained in 10 of the 16 best
combinations of indexes. NSR=normal sinus rhythm, AF=atrial fibrillation and “other”
stands for other typologies of arrhythmia. The columns of the matrix indicate the true
health status of every subject, while the rows indicate the category in which the patient
is classified by the SVM.

NSR Other AF
NSR 30 1 0
Other 1 8 1

AF 0 0 29

Table 6.4: Confusion matrix B. Confusion matrix obtained in 6 of the 16 best com-
binations od indexes. NSR=normal sinus rhythm, AF=atrial fibrillation and “other”
stands for other typologies of arrhythmia. The columns of the matrix indicate the true
health status of every subject, while the rows indicate the category in which the patient
is classified by the SVM.

In both A and B matrices the sensitivity, that is the ratio between the
number of AF identified by the SVM and the total number of AF subjects,
is 96.67%, while the specificity to NSR class was 100% in ten cases and
96.77% in the other combinations; specificity to “other arrhythmia” class
was 77.78% in ten cases and 88.89% for the remaining six combinations.
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Chapter 7

Discussion

The photopletismographic BVP signal can hold valuable information
about the patient’s health condition; in this thesis, it was attested that the
impact of AF or other arrhythmias on blood pressure is evident, and such
information content can be extracted through the use of specific algorithms.
Many diagnostic indexes employed in this analysis are based on algorithms
which assess the inter-beat variability, such as the nRMSSD, AF evidence
or the Sample entropy, which are used for diagnostic evaluation on the ECG
signal; the reason why those methods, originally conceived for ECG analysis,
are equivalently applied to the BVP signal, is that the BVP signal is the
result of the mechanical contraction of the heart, which in turn is due to
the electrical activity recorded by a ECG system. Thus, BVP and ECG are
directly related and some main features of the ECG have an equivalent in
the BVP, for instance the RR sequence can be compared to the intervals
sequence obtained from the BVP signal. One of the main differences in
extracting inter-beat series between the ECG and BVP signal is the type of
noise which influences the measure: the BVP signal can experience serious
distortions due to the movement of the patient, compromising the signal to
noise ratio up to rendering the acquisition useless; since the sensor employed
is placed on the patient’s wrist, a lot of disturbance can be expected, and
the quality of the measurement can be highly influenced by the steadiness
and cooperation of the subject.

In this thesis, the capability of the diagnostic indexes to estimate the
wellness of the subject is shown, in both cases of univariate and multivariate
analysis. In the following sections, the main results are discussed.
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7.1 Univariate classification

Univariate SVM classification can, in some cases, roughly discriminate
between healthy and arrhythmic subjects, however the results for single
indexes alone do not achieve good classification performances.
A good indicator of the classification capability of each index is the degree
of overlap among the distribution of the parameters’ values among classes,
which can be observed in the respective boxplots (chapter 5). Unfortunately,
even the best indexes can assume similar values between different target
classes, especially if patients with other arrhythmias are taken into account:
in this class of patients, the values of many indexes are overlapped with
both those of AF and NSR subjects, therefore it is impossible to clearly
discriminate between them.

In univariate analysis, nRMMSSD, RMSSD and CV offer the best ac-
curacy, respectively 82.85%, 81.43% and 80%. By observing the confusion
matrices (Table 7.1, Table 7.2 and Table 7.3), however, it is obvious that the
high level of accuracy is obtained exclusively due to to their good separation
between AF and NSR values, while the “other” class is often assigned to the
wrong category; the overall accuracy is still high (around 80%) because of
the limited number of “other” patients.

NSR Other AF
NSR 30 3 1
Other 0 1 2

AF 1 5 27

Table 7.1: nRMSSD confusion matrix. Confusion matrix obtained for the univari-
ate analysis based on nRMSSD. NSR=normal sinus rhythm, AF=atrial fibrillation and
“other” stands for other typologies of arrhythmia. The columns of the matrix indicate
the true health status of every subject, while the rows indicate the category in which
the patient is classified by the SVM.
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NSR Other AF
NSR 30 4 2
Other 0 1 2

AF 1 4 26

Table 7.2: RMSSD confusion matrix. Confusion matrix obtained for the univari-
ate analysis based on RMSSD. NSR=normal sinus rhythm, AF=atrial fibrillation and
“other” stands for other typologies of arrhythmia. The columns of the matrix indicate
the true health status of every subject, while the rows indicate the category in which
the patient is classified by the SVM.

NSR Other AF
NSR 30 3 3
Other 0 1 2

AF 1 5 25

Table 7.3: CV confusion matrix. Confusion matrix obtained for the univariate analysis
based on CV. NSR=normal sinus rhythm, AF=atrial fibrillation and “other” stands for
other typologies of arrhythmia. The columns of the matrix indicate the true health
status of every subject, while the rows indicate the category in which the patient is
classified by the SVM.

Instead, by looking at the best specificity to the “other” class, the most
efficient indexes are ShapeSim ad AF evidence, which recognize 6 “other”
patients out of 9, followed by PD, MedianArc, nWD and SampEn. These
indexes don’t allow a good identification of AF patients (AF sensitivity goes
from 0% to 20% for these 4 indexes), but are decent detectors for other
arrhythmias only. In conclusion, no single index can reach an accurate
classification for all the target classes, but together they can complete the
classifier’s capability; thus, multivariate classification was carried out.

7.2 Multivariate classification

In multivariate analysis, the SVM considers many variables simultane-
ously in the decision making process. Using more indexes together allows
the SVM to combine their classification ability, obtaining potentially better
results. On the other side, using more indexes than necessary can lead to an
inefficient complexity that could even confuse the algorithm, worsening the
accuracy. Indeed, in section 6.2 we saw that using many indexes combined

81



improves the accuracy (95.71% for the best combinations achieved by the
wrapper method versus 82.85% obtained in the best case of univariate anal-
ysis), however using all of them is counterproductive (88.57% of accuracy
using all 16 indexes).

The best accuracy of 95.71%, together with the best AF sensitivity of
96.67%, was obtained in 16 combinations, shown in Table 6.2. Four in-
dexes appeared in all the 16 combinations: pNN50, SampEn, nShEn and
AF evidence. SampEn and AF evidence are two indexes that presented a
good specificity to the other arrhythmia class in univariate analysis, while
nShEn is a quantitative measure of uncertainty, thus able to underline the
unpredictable behavior of the intervals series during AF; indeed nShEn had
a 75.71% accuracy in univariate analysis, with 90% AF sensitivity. pNN50
is a measure of variability with low values of accuracy (54.28%) and AF
sensitivity (30%) in univariate analysis, still, used with other indexes, helps
significantly the classification. Three combinations out of 16 used a mini-
mum number of 6 indexes. In addition to the 4 already described, ModeArc,
that is a morphology based index, was included in all these 3 combinations,
together with another time variability parameter: either SD, nRMSSD or
CV. This trend is present in each of the 16 combinations: aside from the 4
always present indexes, at least one parameter is morphology based and one
is an index of heart variability in the time domain.
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Chapter 8

Limitations and future work

The final SVM for AF detection has an optimal value of accuracy (95.71%)
for the dataset acquired in this analysis. As we previously considered, the
main difficulty of this classification is the discrimination of the patients suf-
fering from other arrhythmias from the AF and NSR classes; there are many
possible strategies in which we could improve the diagnostic capability of
our system, in this section we will discuss some of our proposals.

The creation of specific indexes for the detection of other arrhythmias
should be considered: every one of such indexes should be used for the
detection of a specific heart arrhythmia, and a good starting point for the
creation of this detectors could be the Lorenz plot of the interval deltas,
which is employed in the AF evidence index: the Lorenz plot of the deltas
of arrhythmic patients shows generally distinct distributions (as depicted in
Figure 3.6), and a dedicated algorithm could identify those distributions,
associating each case to a specific arrhythmia.

Concerning the impact of the low number of cases in the other arrhyth-
mias class on the global results, it is worth noting that it may lead to a bias in
the overall accuracy: out of all the 70 subjects composing our dataset, only
9 of them are affected by other arrhythmias; in fact, if the SVM maximizes
the discrimination between AF and NSR, but completely fails to recognize
the other arrhythmia category, an overall good accuracy of 70−9

70 = 87% is
still obtained; therefore, a dataset in which subjects are equally distributed
between the three categories could bring results that equally weight the im-
portance of each target class. In addition to that, a comparable number of
subjects between target classes could prevent the training procedure of the
SVM from being biased towards the most frequent AF and NSR categories.

Furthermore, even though the best SVM combinations actually manage
to correctly classify between 78% and 89% of the other arrhythmias (as
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shown in Table 6.3 and Table 6.4), this results are possibly achieved mainly
thanks to the SampEn index, which assumes much lower values for this class
in comparison with the other two (as depicted in Figure 5.14); however,
due to our limited number of acquisitions for this category, this efficient
discrimination could be occasional, either because those few values are all
influenced from external causes or because the arrhythmias we recorded are
all quite similar, with a comparable effect on the SampEn. Again, only
a more extended dataset could help us understand the true classification
capability of the SVM for this class.

A current limitation of our dataset is that age is not uniform among
target classes. In this study, the mean age of healthy patients (33.83 years)
is inferior than the mean age of patients suffering from other arrhythmias
(67.33 years) and even more inferior than the mean age of AF patients (76.25
years). Also, the subjects’ gender is unequally distributed among classes:
all subjects in the other arhythmias class are male.

Another possible enhancement is in the method used to assess the clas-
sification performance of the SVM: in our work, we evaluate the SVM accu-
racy through a leave one out approach, which was employed because of the
limited number of recorded signals, especially for the number of patients
suffering from other arrhythmias; however, it would be better to instruct
the classifier on a definite training set of patients, and then to assess the
classification accuracy with a different test set.

A different aspect which could benefit from some improvement is a reg-
ulation in the noise affecting our signal: our signals were often disturbed
by movement noise, which in some cases obliged us to discard even more
than 20% of the whole acquisition; for a better quality of the signal, it could
be useful to implement different measurement protocols, for example by ac-
quiring data while the subject is asleep and immobile, and also to require a
new acquisition if the current one is too disturbed.

Finally, as for a possible application of our work, it could be practical to
employ the final decision-making software as part of an application embed-
ded in a wristband for physiological signals monitoring; by providing such
device with the diagnostic capability of the software, it would be possible
to identify AF occurrences in paroxysmal subjects. The implementation of
this software would also allow a preliminary screening on the asymptomatic
population, without the need to employ medical personnel on a vast scale; in
addition to that, a real-time version of the diagnostic software would be able
to alert the user, for instance by triggering an alarm, whenever the manifes-
tation of AF is detected, so that the subject could seek medical treatment
before his/her conditions worsen.
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