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A B S T R AC T

Operator Precedence Languages (OPLs) were introduced in the 1960s by Robert

Floyd to support deterministic and efficient parsing of context-free languages. Re-

cently, interest in this class of languages has been renewed thanks to a few distinguish-

ing properties that make them attractive for exploiting various modern technologies

in two main contexts: automatic software verification techniques, as model checking,

and parallel and incremental parsing of programming and data-description languages.

This thesis provides a complete theory of OPLs and investigates the properties that

allow for their application in these different fields.

Along a first line of research, we complement the results on this class of languages

that have been proved in the last half a century, which characterized them in terms of

equivalent classes of grammars, recognizing automata and a Monadic second-order

logic; the study of their algebraic properties, furthermore, has qualified them as the

largest class of deterministic context-free languages enjoying closure under all main

language operations (Boolean ones, concatenation, Kleene * and others), strictly in-

cluding renowned families of formalisms as parentheses languages and Visibly Push-

down Languages (VPLs). In this dissertation we extend research on OPLs to the

field of ω-languages, i.e., languages consisting of strings of infinite length, which

can model the behavior of systems with never-ending computations (such as operat-

ing systems, control systems, web services). We introduce an automata and Monadic

second-order logic-based characterization for this class of languages and we prove

their closure properties and the decidability of the emptiness problem, showing that

they admit a decidable model checking problem. Furthermore, we study logic for-

malisms simpler than Monadic second-order logic to define suitable subclasses of

OPLs.

On a second line of investigation, this dissertation deals with a further property

enjoyed by OPLs that is not exhibited by other families of deterministic context-free

languages such as LR and LL, namely their local parsability. Local parsability means
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that parsing of any substring of a string according to a grammar depends only on in-

formation that can be obtained from a local analysis of the portion of the substring

under processing and hence is not influenced by parsing of other substrings. The lack

of this property implies that parsing algorithms for, e.g., LR and LL languages are

inherently sequential and cannot exploit the speedup achievable by a parallel execu-

tion on modern multi-core computing platforms: in fact, if an input string is split

into several parts, analyzed in parallel by different processing nodes, the parsing ac-

tions may require communication among the different processors, with considerable

additional overhead. This thesis studies and exploits the local parsability property

of OPLs to enable efficient parallel parsing of data description languages (such as,

e.g., the JSON standard data format) and programming languages (as, e.g., Lua and

JavaScript) and presents a schema for parallelizing also the lexical analysis phase.

The algorithms for parallel parsing and lexing have been implemented in a prototype

tool (PAPAGENO), which we validated with an extensive experimental campaign,

showing that they achieve significant, near-linear speedups on modern multicore ar-

chitectures, overcoming state of the art sequential parsers and lexers generated by,

e.g., Bison and Flex. We exploit the local parsability property enjoyed by OPLs also

for efficient parallel querying of large structured and semistructured documents: we

examine, as a case study, an extension of the parallel OP parsing algorithm allowing

parallel XPath querying of XML documents on multicore machines.
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S O M M A R I O

I linguaggi Operator Precedence (OPL) furono introdotti da Robert Floyd nel 1963

con l’obiettivo di definire algoritmi deterministici ed efficienti per il parsing di lin-

guaggi di programmazione, ma furono abbandonati pochi anni dopo in seguito all’in-

troduzione di tecniche più generali di parsing, basate sulla classe dei linguaggi LR,

che consentono l’analisi dell’intera famiglia dei linguaggi deterministici context-free.

L’interesse nella classe dei linguaggi Operator Precedence è ripreso solo di recente

con la scoperta di alcune interessanti proprietà di cui essi godono, che rendono pos-

sibile l’applicazione di questo formalismo in due principali contesti, naturalmente di-

stanti fra loro: per la specifica e verifica automatica di sistemi software tramite model-

checking e per l’elaborazione in parallelo (parsing e interrogazione) di linguaggi di

programmazione e descrizione di dati.

Questa tesi studia i fondamenti teorici degli OPL ed in particolare le proprietà che

li rendono un formalismo promettente in questi campi applicativi.

In primo luogo, viene proseguita l’attività di ricerca su questa classe di linguaggi

risalente agli ultimi decenni, che ha sviluppato una caratterizzazione degli OPL in

termini di classi di grammatiche, automi e una logica monadica del secondo ordine.

Lo studio delle proprietà algebriche degli OPL, inoltre, ha dimostrato che essi rap-

presentano la più ampia classe di linguaggi deterministici context-free che gode delle

proprietà di chiusura rispetto alle principali operazioni su linguaggi (Booleane, con-

catenazione, stella di Kleene e altre), includendo strettamente famiglie di linguaggi

come linguaggi a parentesi o i linguaggi Visibly Pushdown (VPL). In questa tesi viene

presentata una teoria completa degli OPL, estendendo lo stato dell’arte della ricerca

su questo formalismo al campo dei linguaggi omega, i.e., linguaggi che consistono

di stringhe infinite di simboli e che rappresentano un modello adatto a descrivere il

comportamento di sistemi che eseguono le loro computazioni ininterrottamente, co-

me nell’ambito di sistemi operativi, sistemi di controllo, web service. Viene introdotta

una caratterizzazione per la classe degli OPL di stringhe infinite basata sulla defini-
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zione di opportune famiglie di automi e una logica monadica del secondo ordine, che

estende la logica definita per le classi di OPL di parole di lunghezza finita. Inoltre,

si dimostra la validità delle proprietà di chiusura e la decidibilità del problema della

emptiness per questa classe di linguaggi, mostrando che essi ammettono un problema

di model checking decidibile. Vengono quindi analizzate logiche più semplici della

logica monadica del secondo ordine per definire opportune sottoclassi degli OPL.

Questa tesi affronta inoltre una seconda linea di ricerca, che si fonda sullo studio

della proprietà di local parsability degli OPL. La proprietà di local parsability implica

che, nel parsing di una stringa di un linguaggio Operator Precedence, le azioni di shift

o di riduzione da eseguire dipendono solo da una analisi locale della posizione corren-

te della stringa da elaborare e non sono influenzate dal parsing di altri fattori distanti

della parola stessa. Le azioni di parsing possono essere quindi compiute con la cer-

tezza che non saranno mai condizionate nè invalidate da operazioni di backtracking

dovute all’elaborazione di altre porzioni dell’intera stringa. Questa proprietà rende i

linguaggi Operator Precedence ideali per il parsing parallelo su architetture multicore,

a differenza dei più generali, classici, linguaggi LR per i quali la proprietà di parsabi-

lità locale invece non sussiste. Una stringa di un linguaggio Operator Precedence può

essere infatti suddivisa in diversi segmenti, ciascuno dei quali può essere elaborato in

parallelo da un diverso processore. La divisione in segmenti può essere completamen-

te arbitraria perchè le azioni di parsing di una stringa sono locali e non dipendono dal

contesto precedente. La possibilità di scegliere in modo arbitrario i punti di suddivi-

sione della stringa è una differenza fondamentale che distingue questo approccio di

parsing parallelo dai tentativi proposti storicamente in letteratura come per i parser

LR, che sono inerentemente sequenziali: suddividendo arbitrariamente la stringa in di-

versi segmenti, il parsing LR di un segmento da parte di un processore può dipendere

da informazioni deducibili solo dall’analisi di altri fattori della parola e che non sono

quindi disponibili. Nel parsing parallelo si rende di conseguenza necessaria o una co-

municazione tra i processori, con una aggravio sulle performance, o l’assunzione di

ipotesi sulle azioni di parsing da compiere con conseguente successivo invalidamento

dell’elaborazione compiuta in caso si renda necessario backtracking. Gli approcci al

parsing parallelo proposti storicamente in letteratura richiedono quindi, per motivi di

performance, che le sottostringhe elaborate dai diversi processori corrispondano ad
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opportune e ben definite unità sintattiche del linguaggio: ad esempio blocchi di istru-

zioni o cicli while per una stringa di codice di un linguaggio di programmazione di

cui eseguire il parsing in parallelo. Il vincolo di non poter suddividere il testo in modo

arbitrario ha però il significativo svantaggio rispetto al parsing Operator Precedence

di rendere la suddivisione dipendente dal particolare linguaggio e soprattutto di impe-

dire una distribuzione equa dei segmenti di stringa da processare, e quindi del carico,

sui diversi processori.

Questa tesi studia la proprietà di local parsability degli OPL e ne analizza l’appli-

cazione per il parsing efficiente in parallelo di linguaggi di descrizione di dati, come

JSON, e di linguaggi di programmazione, come Lua e JavaScript; inoltre presenta

uno schema per parallelizzare anche la fase di analisi lessicale. Gli algoritmi per l’a-

nalisi parallela sintattica e lessicale sono stati implementati in un prototipo (chiamato

PAPAGENO), e sono stati validati con un’estesa campagna sperimentale, che ha mo-

strato come essi siano in grado di raggiungere speedup notevoli, quasi lineari, sulle

moderne architetture multicore, ottenendo prestazioni significativamente migliori ri-

spetto ai parser LR o ai lexer sequenziali generati da strumenti classici quali Bison e

Flex.

Inoltre, questa tesi analizza l’applicazione della proprietà di local parsability di cui

godono gli OPL per consentire l’interrogazione efficiente in parallelo di documenti

strutturati o semistrutturati di grandi dimensioni: si presenta, come caso di studio,

un’estensione dell’algoritmo di parsing in parallelo per gli OPL per l’elaborazione in

parallelo di query XPath su documenti XML su architetture multiprocessore.
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1
I N T RO D U C T I O N

Nowadays computing systems have reached an impressive level of complexity.

Software systems are expected to perform increasingly complex and interdepen-

dent tasks and pervade every aspect of human life in several contexts. Furthermore,

computing systems in numerous application domains (ranging from genomics and

medical research to financial data processing, web services and network monitoring)

are required to parse, search and analyze impressively huge volumes of structured

and unstructured data.

To deal with these dimensions of complexity, on the one side, it is necessary to in-

troduce formalisms apt to model complex (often non finite-state) systems, along with

tractable verification procedures to check adequate safety or correctness requirements

on their behavior, so that dire consequences due to malfunctions can be prevented. On

the other side, there is an urgent and pressing need for models and technologies that

can process massive datasets fast and efficiently.

In this thesis we address these two facets of complexity of software systems at

the application and data level in a unifying framework: we study the old, and for

long almost forgotten, formalism of Operator Precedence Languages (OPLs) and we

investigate the theoretical properties that allow for its application in such diverse and

challenging fields.

Operator precedence languages and their class of generating grammars (Operator

Precedence Grammars or OPGs) were introduced half a century ago by Robert Floyd

[47] with the major motivation of enabling efficient, deterministic parsing of program-

ming languages. Floyd defined this new family of grammars by taking inspiration

from the structure of arithmetic expressions, which is determined either by explicit

parentheses or by the conventional, “hidden” precedence of multiplicative operators

over additive ones. By generalizing this observation, Floyd defined three basic rela-

tions between terminal symbols, namely yields and takes precedence and equal in

3
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precedence (respectively denoted by symbols ⋖, ⋗, �), in such a way that the right

hand side (r.h.s.) of an operator precedence grammar rule is enclosed within a pair ⋖,

⋗, and � holds between consecutive terminal symbols thereof.

Subsequently, under the main motivation of grammar inference, it was shown that,

once an operator precedence matrix (OPM) is given such that at most one relation

holds between any two terminal characters, the family of OPLs sharing the given

OPM is a Boolean algebra [35]. This result somewhat generalizes closure properties

enjoyed by regular languages and by context-free languages whose structure, i.e., the

syntax tree, is immediately visible in the terminal sentences, such as parenthesis lan-

guages [75] and tree-automata languages [22]. Such interesting algebraic properties

enabled original inference algorithms, such as those proposed in [36]. After these

initial results, however, the theoretical investigation of OPLs was almost abandoned

because of the advent of more general grammars, mainly the LR ones [62], which sup-

port parsing algorithms for the whole class of deterministic context-free languages

(whereas OPLs are a strict subclass thereof). Nevertheless OPG-based parsing re-

mains of some interest thanks to its simplicity and efficiency and is still used, at least

partially, in many practical cases [54].

Oblivion for OPLs continued only until decades later, when new branches of re-

search began to flourish to deal with the two stated challenges in software verification

and data analysis. Novel interest for parentheses-like classes of languages arose in

fact from research on mark-up languages, such as XML and HTML, which were used

to specify structured and semistructured documents; investigation of such classes was

further motivated by the wish to extend to families of languages, larger than finite-

state ones, the properties that enable model checking that were typically enjoyed by

regular languages, i.e., the closure properties for Boolean operations and the decid-

ability of the emptiness problem.

Among the results of this research activity, Visibly Pushdown Languages (VPLs)

[11], previously known as Input-Driven Languages (IDLs) [98] certainly deserve a

major role. In a nutshell IDLs alias VPLs are based on and extend original parenthe-

sis languages [75], e.g., by allowing for unmatched closed and open parentheses at

the beginning and end of a sentence, respectively. VPLs provide a simple and natural

model for software verification, as they may represent the control flow of sequen-
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tial computations in typical programming languages with nested, and even recursive,

invocations of program modules, where parentheses symbols model occurrences of

matching opening and closing scopes, as for calls and returns of procedures and meth-

ods. The parenthesis structure can model as well the matching of open and close-tag

constructs in XML documents. However, being essentially a generalization of paren-

thesis languages, VPLs have some limits in expressive power: the structure of their

strings is immediately transparent at the “surface sentence”, unlike more general

context-free languages; arithmetic expressions, e.g., which are found in practically

every programming language, do not reflect in the sequence of the leaves of the syn-

tax tree the internal structure of the tree, which can be built only by knowing that

multiplication operators take precedence over the additive ones.

VPLs have been characterized both in terms of a subclass of context-free gram-

mars and a particular class of automata, named Visibly Pushdown Automata (VPAs),

which resemble classical pushdown automata but differ from them in that operations

on the stack are input-driven. For every VPL, the input alphabet is partitioned into

call, return and internal symbols, and the letters of the input word determine the

corresponding transitions of the automaton, i.e. respectively push, pop and neutral

moves (which leave the stack unchanged). Furthermore, they are closed w.r.t. to all

fundamental language operations (Boolean, concatenation, Kleene *,. . . ), like regu-

lar languages and unlike more general context-free families, and admit a decidable

emptiness problem.

Along the field of research marked by VPLs, interest in OPLs has been renewed

thanks to two unexpected properties thereof, that appear to be crucial for their appli-

cation in the fields of verification and efficient data processing.

The OPL family strictly includes VPLs and other related classes such as balanced

languages [16], and it was shown that OPLs are the largest known class of languages

that enjoys all major closure properties that are typical of regular languages [34]1.

Herewith the first goal of this thesis is to apply to OPLs the same successful verifi-

1 Other language families falling in between input-driven and context-free languages, such as the height-

deterministic family [79] or the synchronized pushdown languages [26], enjoy some but not all of the

basic closure properties; furthermore such families are in general nondeterministic.
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cation techniques formerly developed for regular languages, VPLs, and other –input

driven– language families.

The second main property enjoyed by OPLs is their local parsability, which con-

sists in the fact that the typical shift-reduce parsing algorithm associated with these

languages can determine the replacing of a rule r.h.s. by the corresponding left hand

side (l.h.s) exclusively on the basis of the embracing ⋖ and ⋗ relations, i.e., inde-

pendently on parts of the string that may be arbitrarily far from the considered r.h.s.

This property is not enjoyed by more powerful grammars such as LR ones and allows

for efficiently exploiting parallelism on modern computing platforms to parse large

strings that formalize complex systems and their behavior. It is, in fact, possible to dis-

tribute the execution of the parsing algorithm among different independent machines

and to recombine their results afterwards with efficient transformations. The inherent

left-to-right sequential nature of parsing algorithms for LR or LL languages, instead,

prevents them from exploiting the potential speedup deriving by the use of a data-

parallel approach on multicore machines; as a consequence, in the last years almost

none of the other attempts that have been made to parallelize the classical parsing al-

gorithms for deterministic context-free languages has been successful. Moreover, the

local parsability property makes OPLs amenable also for efficient parallel processing

(searching or querying) of large structured and semistructured documents.

The exploitation of this property is the target of a recent and –so far– independent

branch of research whose first results, as regards simple parsing, are documented in

[14] and [12], and that in this thesis we further deepen and explore.

1.1 contribution

In this thesis we study the theory of OPLs as regards these fundamental properties

and their application to infinite-state verification and parallel data processing. The

main contributions of this work are summarized in the following.

• Along the path begun with [35] and resumed with [34, 70, 71], OPLs have

been characterized by a class of grammars (OPGs), a new family of pushdown

automata with the same recognizing power as the generative power of their



1.1 contribution 7

grammars (Operator Precedence Automata, or OPAs), and a suitable monadic

second-order (MSO) logic, following a now classic approach of the literature

rooted in the work by Büchi [23].

In this thesis we revise the model of operator precedence automaton, yield-

ing a more elegant and simplified definition w.r.t. the original formulation pro-

posed in [70], and we further investigate the class of OPLs extending them to

ω-languages (i.e., languages of strings of infinite length) and defining the fam-

ily of ωOPLs: ω-languages are, in fact, becoming more and more relevant in

the literature due to the need of modeling systems whose behavior proceeds

indefinitely, such as operating systems, control systems, etc. In this work, af-

ter introducing and comparing various forms of acceptance of infinite words

for the model of OPAs, by paralleling classic literature of ω-regular languages,

we study their main properties by pointing out which of them are preserved

from the finite length case and which are lost. We then characterize the class

of ωOPLs in terms of a MSO logic. The availability of a MSO logic formula-

tion (for finite-length as well for infinite-length OPLs) allows, at least poten-

tially, the definition of model-checking algorithms able to prove properties of

languages defined either by means of generating grammars or by means of rec-

ognizing automata on finite or infinite words. Given the prohibitive complexity

of decision algorithms based on MSO logic, however, it is common practice

in the literature to resort to model-checking algorithms based on less powerful

but simpler logics. Furthermore, we study a subclass of OPGs, namely Free

Grammars (FrGs), which was originally introduced in 1970s for grammatical

inference of programming languages, and we prove that their languages (FrLs)

can be defined by formulae written in a first-order logic that restricts the MSO

one defined for general OPLs. We show that FrLs suffer from some generative

power limits; however, they enjoy some distinguishing properties that make it

possible to define a system of interest by stepwise refinements, by inferring a

“skeleton language” (notably, FrGs can be easily inferred on the basis of posi-

tive samples only of strings of the user’s desired language) which can be further

specified by stating additional required properties –in first-order logic– on its
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behavior.

The results of these investigations have been presented in [69, 81, 68].

• On a complementary line of investigation, we studied and exploited the local

parsability property of OPLs to enable efficient parallel parsing of program-

ming languages, such as Lua and JavaScript, and data description languages,

such as the JSON standard data format. Their minor lack of power w.r.t. deter-

ministic context-free languages, in fact, does not prevent them from including

most programming languages of practical interest.

This thesis proposes a schema for parallelizing the lexical analysis phase in ad-

dition to the syntactic (parsing) one. Furthermore, it integrates the lexical anal-

ysis stage with a further processing step which is beneficial to the subsequent

phase of syntactic analysis: the lexer is used to generate (and transform) a string

of symbols in a form amenable for analysis by an OP parser, hence allowing

for dealing also with languages whose grammar is not directly expressible as

an OPG. We implemented a parallel lexer for languages as Lua and JSON and

we validated the performance of the parallel lexing and parsing algorithms with

an extensive experimental campaign. On the basis of the benchmark we consid-

ered so far, we showed significant, near-linear speedups on modern multi-core

architectures (server and mobile).

The results of this study have been presented in [12, 13].

Finally, we exploited the local parsability property in contexts other than the

parallelization of the initial compilation phases of lexical and syntactic analy-

sis, analyzing its application to support a semantic analysis phase. As a conse-

quence, we extended the efficient parallel parsing algorithm for OPLs to deal

also with queries on (streaming or offline) data documents, which can be speci-

fied by rich data formats as JSON or domain specific languages that cannot be

otherwise described by formalisms that are less expressive than OPLs.

1.2 thesis structure

The thesis is structured in two main parts.
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In the first part we present a complete characterization of OPLs of finite and infinite-

length words. More precisely, Chapter 2 provides all basic definitions and reminds

the fundamental results on OPLs of finite words, presenting a complete grammar,

automata and logic-based characterization thereof. Chapter 3 introduces ωOPLs, i.e.,

OPLs whose words have infinite length, a now classic extension of most language

families due to the need of modeling never-ending computations, and we characterize

them in terms of suitable classes of automata and a MSO logic. Chapter 4 deals with

FrLs and presents a first-order logic definition for this class of languages.

The second part of this thesis outlines the basic theory on local parsability of OPLs:

after describing the classical operator precedence parsing algorithm and its recent

generalization to a parallel setting [14], Chapter 5 proposes a methodology for parallel

lexical analysis and discusses the results of the experimental campaign we performed.

Chapter 6, instead, illustrates an approach based on operator precedence parsing to

parallelize query processing on structured and semistructured documents.

Finally, Chapter 7 draws some conclusions and hints at some future research direc-

tions.
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Theory of OPLs and ωOPLs
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2
G R A M M A R , AU T O M ATA A N D L O G I C - BA S E D

C H A R AC T E R I Z AT I O N O F O P L S

This chapter presents a complete characterization of finite length OPLs, which was

introduced in [70, 71]. Besides the original formalization in terms of the class of

operator precedence grammars (OPGs) proposed by R. Floyd in 1960s, it is shown

that OPLs can be characterized by a family of pushdown automata, which perfectly

matches the generative power of OPGs, and by a MSO logic. We also recall the basic

properties of OPLs: most notably, they represent the largest known family of lan-

guages closed w.r.t. to all classical language operations and that admits a decidable

emptiness problem.

The chapter is structured as follows. Section 2.1 introduces the basic terminology

and the definitions and properties of OPGs. Then, Section 2.2 presents a class of push-

down automata explicitly tailored at OPLs, providing some examples to show their

usefulness in modeling various cases of practical interest. Section 2.2.2, in particu-

lar, shows the equivalence between deterministic and nondeterministic versions of

these automata, which leads to an increase in state space size given by an exponen-

tial function with quadratic exponent. In Section 2.3 we illustrate, in a constructive

way, the equivalence between OPGs and the new class of automata. We also report

the complexity of decision problems for OPLs. Finally, Section 2.4 presents a char-

acterization of OPLs in terms of an “equivalent” MSO logic: the starting point is the

classic result by Büchi given for regular languages; however, its extension to OPLs re-

quired facing non-trivial technical problems even w.r.t. to previous similar extensions

to other subclasses of context-free languages, such as VPLs [11].

13
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2.1 operator precedence grammars and languages

We recall some basic definitions and notations on formal languages and grammars;

for terms not defined here, we refer to any classical textbook on formal language

theory (e.g., [55]).

A context-free (CF) grammar is a 4-tuple G = (N, Σ, P, S ), where N is the nonter-

minal alphabet, Σ is the terminal alphabet, P the rule (or production) set, and S ⊆ N

the set of axioms2.

The following naming convention will be adopted, unless otherwise specified: low-

ercase Latin letters a, b, . . . denote terminal characters; uppercase Latin letters A, B, . . .

denote nonterminal characters; letters u, v, . . . denote terminal strings; and Greek let-

ters α, β, . . . denote strings over Σ∪ N. The strings may be empty, unless stated other-

wise. The empty string is denoted ε. Given a string x, its length is denoted as |x| and

the i-th character in x, for 1 ≤ i ≤ |x|, is denoted as x[i].

A rule in P is denoted by A → α, where A ∈ N, α ∈ V∗, where V = Σ ∪ N is the

set of grammar symbols; A is called the left hand side (l.h.s.) of the production and α

the right hand side (r.h.s.). An empty rule has ε as the r.h.s. A renaming rule has one

nonterminal as r.h.s.

The symbol ⇒ denotes the direct derivation relation between two strings in V∗:

givenα, β ∈ V∗, α is said to directly derive β, written α⇒ β if there exist α1,α2,α′, β′ ∈

V∗ such that α = α1α
′α2 and β = α1β

′α2 and α′ → β′ is in P. The transitive closure

of⇒ is denoted by
+
⇒, and its reflexive transitive closure, the derivation relation, is

denoted by
∗
⇒. If α

∗
⇒ β in h steps, we write α

h
⇒ β.

Also, we distinguish between the terminal strings u derived by the grammar, i.e.,

such that A
∗
⇒ u (for an A ∈ S ), and sentential forms, i.e., those α ∈ V∗ such that

A
∗
⇒ α (for an A ∈ S ). L(G) denotes the language (of terminal strings) generated by

G.

A grammar is reduced if every rule can be used to generate some string in Σ
∗. It is

invertible if no two rules have identical r.h.s.

2 This less usual but equivalent definition of axioms as a set has been adopted for parenthesis languages [75]

and other input-driven languages; we chose it to simplify some notations and constructions.
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In this initial chapter we will use arithmetic expressions, which are a small fraction

of practically all programming languages, as a running example to introduce and

explain the basic definitions, properties and constructions referring to OPLs.

Example 2.1. We consider arithmetic expressions with two operators, an additive

one and a multiplicative one that takes precedence over the former, in the sense that,

during the interpretation of the expression, multiplications must be executed before

sums; as usual parentheses are used to specify a different precedence hierarchy be-

tween the two operations. Parentheses are denoted by the special symbols L and M to

avoid overloading with the use of the same symbol in all other formulae of this thesis.

Figure 1 presents a grammar and the derivation tree of expression n + n × Ln + nM

generated thereby; all nonterminals are also axioms.

Notice that the structure of the syntax tree (uniquely) corresponding to the input ex-

pression reflects the precedence order which drives computing the value attributed to

the expression. This structure, however, is not immediately visible in the expression:

in fact Figure 2 proposes a different grammar that generates the same expressions as

the grammar of Figure 1 but would associate to the same sentence the syntax tree dis-

played in the right part of the figure. Yet another (ambiguous) grammar could gener-

ate both. If instead we used a parenthesis grammar to generate arithmetic expressions,

it would produce the string Ln + Ln × Ln + nMMM instead of the previous one and the

structure of the corresponding tree would be immediately visible in the expression.

For this reason we say that such general grammars “hide” the structure associated

with a sentence –even when they are unambiguous– whereas parenthesis grammars

and other input-driven ones make the structure explicit in the sentences they generate.

A string on V∗ is in Operator Form (OF) if it has no adjacent nonterminals. In

an OF string α we say that two terminals are consecutive if they are at positions

α[ j],α[ j + 1]; or at positions α[ j],α[ j + 2] and α[ j + 1] ∈ N. A rule is in operator

form if its r.h.s. has no adjacent nonterminals (i.e., is in OF); an operator grammar

(OG) contains just such rules. Notice that both grammars of Figure 1 and Figure 2 are

OGs.
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E → E + T | T

T → T × F | F

F → n | LEM

E

E

T

F

n

+ T

T

F

n

× F

L E

E

T

F

n

+ T

F

n

M

Figure 1.: A grammar generating arithmetic expressions with parentheses.

A→ B× A | B

B→ B +C | C

C → n | LAM

A

B

B

C

n

+ C

n

× A

B

C

L A

B

B

C

n

+ C

n

M

Figure 2.: A grammar generating the same arithmetic expression as that of Figure 1

and the corresponding tree where, instead, + takes precedence over ×.
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Every CF grammar G = (N, Σ, P, S ) admits an equivalent OG G′ = (N′, Σ, P′, S ),

where the size of N′ is O(|Σ| · (|Σ|+ k · |P|)) and that of P′ is O(|Σ| · (|N|+ k · |Σ| · |P|)),

k being the maximum length of P’s r.h.s.s [55, 88].

The coming definitions for operator precedence grammars (OPGs) [47] are from

[35] and [34], where they are also called Floyd Grammars or FGs.

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A
∗
⇒ Baα} RG(A) = {a ∈ Σ | A

∗
⇒ αaB}

where B ∈ N ∪ {ε}. The grammar name G will be omitted unless necessary to prevent

confusion.

For instance, for the grammar of Figure 1 the left and right terminal sets of nonter-

minals E, T and F are, respectively:

L(E) = {+,×, n, L} R(E) = {+,×, n, M}

L(T ) = {×, n, L} R(T ) = {×, n, M}

L(F) = {n, L} R(F) = {n, M}

For an OG G, let α, β range over (N ∪ Σ)∗ and a, b ∈ Σ. Three binary operator

precedence (OP) relations are defined:

equal in precedence: a � b ⇐⇒ ∃ A→ αaBbβ, B ∈ N ∪ {ε}

takes precedence: a⋗ b ⇐⇒ ∃ A→ αDbβ, D ∈ N and a ∈ RG(D)

yields precedence: a⋖ b ⇐⇒ ∃ A→ αaDβ, D ∈ N and b ∈ LG(D)

Notice that, unlike the usual arithmetic relations denoted by similar symbols, the

above precedence relations do not enjoy any of transitive, symmetric, reflexive prop-

erties.

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a |Σ| × |Σ|

array that, for each ordered pair (a, b), stores the set Mab of OP relations holding

between a and b.
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+ × L M n

+ ⋗ ⋖ ⋖ ⋗ ⋖

× ⋗ ⋗ ⋖ ⋗ ⋖

L ⋖ ⋖ ⋖ � ⋖

M ⋗ ⋗ ⋗

n ⋗ ⋗ ⋗

Figure 3.: The OPM of the grammar in Figure 1.

A→ aAa | aBa

B→ b

a b

a {⋖,�,⋗} ⋖

b ⋗

Figure 4.: A grammar generating the language {anban | n ≥ 1} and its OPM.

Figure 3 displays the OPM associated with the grammar of Figure 1 where, for an

ordered pair (a, b), a is one of the symbols shown in the first column of the matrix

and b one of those occurring in its first line.

As a further example, Figure 4 shows a CF grammar that generates the language

{anban | n ≥ 1} and its associated OPM. Note that |Maa| > 1.

Given two OPMs M1 and M2, we define set inclusion and union:

M1 ⊆ M2 if ∀a, b : (M1)ab ⊆ (M2)ab,

M = M1 ∪M2 if ∀a, b : Mab = (M1)ab ∪ (M2)ab

Definition 2.1 (Operator precedence grammar and language). An OG G is an op-

erator precedence or Floyd grammar (OPG) if, and only if, M = OPM(G) is a

conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1. An operator precedence language (OPL) is

a language generated by an OPG.

From the above definition it is immediate to verify that both grammars of Figure 1

and Figure 2 are OPGs (with different OPMs).

Two matrices are compatible if their union is conflict-free. A matrix is total (or

complete) if it contains no empty case.
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The following definition of Fischer Normal Form is adapted from the original

one [46] to take into account that in our basic definition of CF grammar S is a set

rather than a singleton.

Definition 2.2 (Fischer Normal Form). An OPG is in Fischer normal form (FNF) iff

it is invertible, has no empty rule except possibly A → ε, where A is an axiom not

used elsewhere, and no renaming rules.

Let G = (N, Σ, P, S ) be an OPG; then an equivalent OPG G̃ = (Ñ, Σ, P̃, S̃ ) in

FNF, can be built such that Ñ is ℘(N) and |P̃| is O(|P| · 2|N |·⌈
k
2 ⌉)), where k is the

maximum length of P’s r.h.s.s [55].

A FNF (manually) derived from the grammar of Figure 1 is given below (Figure 5).

Notice that in this case the size of the nonterminal alphabet and of the productions is

much smaller than the worst case upper bound provided by the general construction.

E → E + T | E + F | T + T | F + F | F + T | T + F

T → T × F | F × F

F → n | LEM | LT M | LFM

Figure 5.: OPG of arithmetic expressions of Figure 1 in FNF.

It is well-known that OPLs are a proper subfamily of deterministic context-free lan-

guages: for instance, it is impossible to generate the language {anban}without produc-

ing a precedence conflict, since matching n requires (at least) the conflicting prece-

dences a⋖a and a⋗a. Despite this theoretical limitation OPLs have been successfully

used to formalize many programming languages and to support their compilers, but

there are several other examples of potential application of this model in different

fields.

OPMs play a fundamental role in deterministic parsing of OPLs (the classical algo-

rithm for parsing operator precedence languages is presented in detail in [54] and will

be described in Chapter 5). In the view of defining automata to recognize/parse OPLs

(Operator Precedence Automata or OPAs) we define OPMs on an extended alphabet:

we use a special symbol # not in Σ to mark the beginning and the end of any string;

this is consistent with the typical operator parsing technique which requires the look-
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back and lookahead of one character to determine the precedence relation between

the symbols. The precedence relations in the OPM are implicitly extended to include

#: the initial # can only yield precedence, and other symbols can only take precedence

over the ending #.

Definition 2.3 (Operator precedence alphabet). An operator precedence (OP) al-

phabet is a pair (Σ, M) where Σ is an alphabet and M is a conflict-free operator

precedence matrix, i.e., a |Σ ∪ {#}|2 array that associates at most one of the operator

precedence relations: �, ⋖ or ⋗ with each ordered pair (a, b).

If Mab = {◦}, with ◦ ∈ {⋖,�,⋗} ,we write a ◦ b. For u, v ∈ Σ
∗ we write u ◦ v if

u = xa and v = by with a ◦ b. The relations involving the # delimiter are constrained

as stated above.

The notion of chain introduced by the following definitions provides a formal de-

scription of the intuitive concept of “invisible or hidden structure” discussed in Ex-

ample 2.1.

Definition 2.4 (Chains). Let (Σ, M) be an operator precedence alphabet.

• A simple chain is a word a0a1a2 . . . anan+1, written as a0 [a1a2 . . . an]an+1 , such

that: a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1
, ∅, and

a0 ⋖ a1 � a2 . . . an−1 � an ⋗ an+1.

• A composed chain is a word a0x0a1x1a2 . . . anxnan+1, with xi ∈ Σ
∗, where

a0 [a1a2 . . . an]an+1 is a simple chain, and either xi = ε or ai [xi]ai+1 is a chain

(simple or composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be

written as a0 [x0a1x1a2 . . . anxn]an+1 .

• The body of a chain a[x]b, simple or composed, is the word x.

Example 2.2. The “hidden” structure induced by the operator precedence alphabet

of Example 2.1 for the expression #n+ n× Ln+ nM# is represented in Figure 6, where

#[x0 + x1]#, +[y0 × y1]#, ×[Lw0M]#, L[z0 + z1]M are composed chains and #[n]+, +[n]×,
L[n]+, +[n]M are simple chains.
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#
x0

n

+ x1

y0

n

× y1

L w0

z0

n

+ z1

n

M

#

Figure 6.: Structure of the chains in the expression #n+ n× Ln + nM# of Example 2.2

.

Definition 2.5 (Depth of a chain). Given a chain a[x]b the depth d(x) of its body x

is defined recursively: d(x) = 1 if the chain is simple, whereas d(x0a1x1 . . .anxn) =

1 + maxi d(xi). The depth of a chain is the depth of its body.

For instance, the composed chain #[x0 + x1]# in Example 2.2 has depth 5.

Thus, if for an OPG G it is OPM(G) = M, the depth of a chain body x is the

height of the syntax tree, if any, whose frontier is x.

Definition 2.6 (Compatible word). A word w over (Σ, M) is compatible with M iff

the two following conditions hold:

• for each pair of letters c, d, consecutive in w, Mcd , ∅

• for each factor (substring) x of #w# such that x = a0x0a1x1a2 . . . anxnan+1, if

a0 ⋖ a1 � a2 . . .an−1 � an ⋗ an+1 and, for every 0 ≤ i ≤ n, either xi = ε or
ai [xi]ai+1 is a chain (simple or composed), then Ma0an+1

, ∅.

For instance, the word n + n× Ln + nM is compatible with the operator precedence

alphabet of Example 2.1, whereas n + n × Ln + nMLn + nM is not.

The chains fully determine the structure of the words; in particular, given an OP

alphabet, each word in Σ
∗ compatible with M is assigned a tree-structure by the OPM

M. If M is complete, then each word is compatible with M and the OPM M assigns a
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structure to any word in Σ
∗. For this reason we say that OPLs somewhat generalize the

notion of Input-driven languages, since their parsing is driven by the OPM which is

defined on the terminal alphabet, but they also allow for generating sentences whose

structure is “invisible” before parsing.

The equal in precedence relations of an OP alphabet are connected with an impor-

tant parameter of the grammar, namely the length of the right hand sides of the rules.

Clearly, a rule A→ A1a1 . . . AtatAt+1, where each Ai is a possibly missing nontermi-

nal, is associated with relations a1 � a2 � . . . � at. If the � relation is cyclic, i.e.,

there exist a1, a2, . . . , an ∈ Σ (n ≥ 1) such that a1 � a2 � . . . � an � a1, there is a

priori no finite bound on the length of the r.h.s. of a production. Otherwise the length

is bounded by 2 · c + 1, where c ≥ 1 is the length of the longest �-chain.

Most literature [34, 70] assumed that all precedence matrices of OPLs are �-cycle

free. In the case of OPGs this prevents the risk of r.h.s. of unbounded length [35], but

could be replaced by the weaker restriction of production’s r.h.s. of bounded length, or

could be removed at all by allowing such unbounded forms of grammars –e.g. with

regular expressions as r.h.s. In our experience, such assumption helps to simplify

notations and some technicalities of proofs; moreover we found that its impact in

practical examples is minimal. Hence we accept a minimal loss of generation3 power

and we assume the simplifying assumption of �-acyclicity: this hypothesis has an

impact only on constructions involving grammars but is irrelevant for the definition

of OP automata.

2.1.1 Closure properties of OPLs

Herein we present some basic properties of OPLs stated in [35, 34]. Preliminarily,

notice that, since the union of two acyclic OPMs might be cyclic, when we consider,

in the sequel, the union M = M1 ∪M2 of two OPMs M1 and M2 we always assume

that M too is acyclic.

3 An example language that cannot be generated with an �-acyclic OPM is the following: L = {an(bc)n
|

n ≥ 0} ∪ {bn(ca)n
| n ≥ 0} ∪ {cn(ab)n | n ≥ 0}
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Statement 2.1. [35] OPLs are closed with respect to Boolean operations. Precisely,

given two OPLs L1, L2 with compatible OPMs M1 and M2, L1 ∩ L2 and L1 ∪ L2 are

OPLs whose OPM is contained in M1 ∪M2; furthermore, let Lmax
1

be the OPL of all

strings compatible with M1, then Lmax
1
\ L1 is an OPL whose OPM is contained in

M1. In particular, if M1 is a complete OPM, Lmax
1

is Σ
∗ (where each sentence has a

structure determined by M1); then Σ
∗ \ L1 is an OPL whose OPM is contained in M1.

Statement 2.2. [34] OPLs are closed with respect to concatenation and Kleene ∗

operation. Precisely, given two OPLs L1, L2 with compatible OPMs M1 and M2,

L1.L2 and L∗
1

are OPLs whose OPM is compatible with M1 ∪M2 (resp. M1). Notice

that in this case the construction of the new grammars may introduce new precedence

relations not existing in the original matrices. Furthermore, OPLs are closed under

alphabetical homomorphisms that preserve conflict-freedom.

2.1.2 Language family relationships

[34] compares the generative power and the structural adequacy of OPGs versus other

well-known grammar or automata families: in particular, besides strictly including

the classes of regular and balanced languages [17], the following fundamental results

holds.

Statement 2.3. [34] OPLs strictly include the family of VPLs. Precisely, VPLs are the

subfamily of OPLs whose OPM is a partitioned matrix, i.e., a matrix whose structure

is depicted in Figure 7.

2.2 operator precedence automata

In this section we introduce a family of pushdown automata that recognize exactly

OPLs. OPLs being naturally oriented towards bottom-up parsing, their accepting au-

tomata exhibit a typical shift-reduce attitude; they are considerably simpler, however,

than other classical automata of this type such as LR ones.



24 grammar , automata and logic-based characterization of opls

Σc Σr Σi

Σc ⋖ � ⋖

Σr ⋗ ⋗ ⋗

Σi ⋗ ⋗ ⋗

Legend

Σc denotes “calls”

i.e. a generalized version of open parentheses;

Σr denotes “returns”

i.e. a generalized version of closed parentheses;

Σi denotes internal characters

i.e., characters that are not pushed onto the stack and

are managed exclusively by finite state control.

Figure 7.: A partitioned matrix, where Σc, Σr and Σi are set of terminal characters. A

precedence relation in position Σα, Σβ means that relation holds between

all symbols of Σα and all those of Σβ.

Definition 2.7 (Operator precedence automaton). A nondeterministic operator prece-

dence automaton (OPA) is given by a tuple:A = 〈Σ, M, Q, I, F, δ〉 where:

• (Σ, M) is an operator precedence alphabet,

• Q is a set of states (disjoint from Σ),

• I ⊆ Q is a set of initial states,

• F ⊆ Q is a set of final states,

• δ : Q × (Σ ∪ Q) → ℘(Q) is the transition function, which is the union of three

functions:

δshift : Q × Σ → ℘(Q) δpush : Q × Σ → ℘(Q) δpop : Q ×Q → ℘(Q)

We represent a nondeterministic OPA by a graph with Q as the set of vertices and

Σ ∪ Q as the set of edge labelings. The edges of the graph are denoted by different

shapes of arrows to distinguish the three types of transitions: there is an edge from

state q to state p labeled by a ∈ Σ denoted by a dashed (respectively, normal) arrow

if and only if p ∈ δshift(q, a) (respectively, p ∈ δpush(q, a)) and there is an edge from

state q to state p labeled by r ∈ Q and denoted by a double arrow if and only if

p ∈ δpop(q, r).
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To define the semantics of the automaton, we introduce some notations.

We use letters p, q, pi, qi, . . . to denote states in Q. Let Γ be Σ × Q and let Γ
′

be Γ ∪ {⊥}; we denote symbols in Γ
′ as [a, q] or ⊥. We set symbol([a, q]) = a,

symbol(⊥) = #, and state([a, q]) = q. Given a string Π = ⊥π1π2 . . . πn, with

πi ∈ Γ , n ≥ 0, we set symbol(Π) = symbol(πn), including the particular case

symbol(⊥) = #.

A configuration of an OPA is a triple C = 〈Π, q, w〉, where Π ∈ ⊥Γ
∗, q ∈ Q

and w ∈ Σ
∗#. The first component represents the contents of the stack, the second

component represents the current state of the automaton, while the third component

is the part of input still to be read.

A computation or run of the automaton is a finite sequence of moves or transi-

tions C1 ⊢ C2; there are three kinds of moves, depending on the precedence relation

between the symbol on top of the stack and the next symbol to read:

push move: if symbol(Π) ⋖ a then 〈Π, p, ax〉 ⊢ 〈Π[a, p], q, x〉, with q ∈

δpush(p, a);

shift move: if a � b then 〈Π[a, p], q, bx〉 ⊢ 〈Π[b, p], r, x〉, with r ∈ δshift(q, b);

pop move: if a ⋗ b then 〈Π[a, p], q, bx〉 ⊢ 〈Π, r, bx〉, with r ∈ δpop(q, p).

Notice that shift and pop moves are never performed when the stack contains only

⊥.

Push and shift moves update the current state of the automaton according to the

transition function δpush and δshift, respectively: push moves put a new element on

the top of the stack consisting of the input symbol together with the current state of

the automaton, whereas shift moves update the top element of the stack by changing

its input symbol only. The pop move removes the symbol on the top of the stack,

and the state of the automaton is updated by δpop on the basis of the pair of states

consisting of the current state of the automaton and the state of the removed stack

symbol; notice that in this move the input symbol is used only to establish the ⋗

relation and it remains available for the following move.
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We say that a configuration 〈⊥, qI , x#〉 is initial if qI ∈ I and a configuration

〈⊥, qF , #〉 is accepting if qF ∈ F. The language accepted by the automaton is defined

as:

L(A) =
{
x | 〈⊥, qI , x#〉

∗
⊢ 〈⊥, qF , #〉, qI ∈ I, qF ∈ F

}
.

Example 2.3. The OPA depicted in Figure 8 accepts the language of arithmetic ex-

pressions generated by the OPG of Example 2.1. The same figure also shows an

accepting computation on input n + n × Ln + nM.

Therefore, an OPA selects an appropriate subset within the “universe” of strings in

Σ
∗ compatible with M. This property somewhat resembles the fundamental Chomsky-

Shützenberger Theorem, in that a universe of nested structures –a Dyck language– is

restricted by means of an “intersection” with a finite state mechanism. For instance,

the automaton of Figure 8 recognizes well-nested parenthesized arithmetic expres-

sions and could be modified in such a way that parentheses are used only when needed

to give the expression the desired meaning, i.e., a pair of parentheses containing a +

is necessary only if it is adjacent to a ×; parentheses enclosing only × should be

avoided.

In the sequel we use the following notation to characterize OPA behavior: we use

arrows −→ , −→ and =⇒ to denote push, shift and pop transitions, respectively.

Definition 2.8. LetA be an OPA. A support for a simple chain a0 [a1a2 . . .an]an+1 is

any path inA of the form

q0

a1
−→ q1 −→ . . . −→ qn−1

an
−→ qn

q0
=⇒ qn+1 (1)

Notice that the label of the last (and only) pop is exactly q0, i.e. the first state of the

path; this pop is executed because of relations a0 ⋖ a1 and an ⋗ an+1.

A support for the composed chain a0 [x0a1x1a2 . . .anxn]an+1 is any path in A of the

form

q0

x0
{ q′0

a1
−→ q1

x1
{ q′1

a2
−→ . . .

an
−→ qn

xn
{ q′n

q′
0

=⇒ qn+1 (2)

where for every i : 0 ≤ i ≤ n:

• if xi , ε, then qi
xi
{ q′

i
is a support for the (simple or composed) chain ai [xi]ai+1
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q0 q1

q2 q3

n

L

q0, q1
+,×

n
L

q0, q1, q2, q3
+,×

M

stack state current input

⊥ q0 n + n × Ln + nM#
⊥[n, q0] q1 +n × Ln + nM#
⊥ q1 +n × Ln + nM#
⊥[+, q1] q0 n × Ln + nM#
⊥[+, q1][n, q0] q1 ×Ln + nM#
⊥[+, q1] q1 ×Ln + nM#
⊥[+, q1][×, q1] q0 Ln + nM#
⊥[+, q1][×, q1][L, q0] q2 n + nM#
⊥[+, q1][×, q1][L, q0][n, q2] q3 +nM#
⊥[+, q1][×, q1][L, q0] q3 +nM#
⊥[+, q1][×, q1][L, q0][+, q3] q2 nM#
⊥[+, q1][×, q1][L, q0][+, q3][n, q2] q3 M#
⊥[+, q1][×, q1][L, q0][+, q3] q3 M#
⊥[+, q1][×, q1][L, q0] q3 M#
⊥[+, q1][×, q1][M, q0] q3 #

⊥[+, q1][×, q1] q3 #

⊥[+, q1] q3 #

⊥ q3 #

Figure 8.: Automaton and example of computation for the language of Example 2.3.

Recall that shift, push and pop transitions are denoted by dashed, normal

and double arrows, respectively.

• if xi = ε, then q′
i
= qi.
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q0

q1

q1 q0

q1

q1 q0

q2

q3

q3 q2

q3

q3

q3 q3

q3

q3

q3

t0
x0

n

q0

+ x1

y0

n

q0

×

L

y1

w0

z0

n

q2

+ z1

n q2

q3

M q0

q1

q1

# #

Figure 9.: Structure of chains and supports for the expression of Example 2.4.

Notice that the label of the last pop is exactly q′
0
.

The support of a chain with body x will be denoted by q0
x
{ qn+1.

Example 2.4. Figure 9 illustrates the supports of the chains that, for the OPA de-

scribed in Example 2.3, compose the structure of the expression n + n× Ln + nM.

The chains fully determine the structure of the computation of any automaton on a

word compatible with M. Indeed, let Π ∈ ⊥Γ
∗ with symbol(Π) = a⋖ x ⋗ b: an OPA

A performs the computation 〈Π, q, xb〉 ⊢ 〈Π, p, b〉 without changing the portion Π

of the stack, if and only if a[x]b is a chain over (Σ, M) with a support q
x
{ p in A.

The depth of x corresponds to the maximum number of push/pop pairs nested in the

computation, i.e., the maximum height reached by the stack in one of the traversed

configurations, minus the height of the stack in the starting configuration.

Notice that the context a, b of a chain is used by the automaton to build its support

only because a⋖ x and x⋗b; thus, the chain’s body contains all information needed by

the automaton to build the subtree whose frontier is that string, once it is understood

that its first move is a push and its last one is pop. This is a distinguishing feature of

OPLs, not shared by other deterministic languages: it is called the locality principle

of OPLs, which is exploited, e.g., to build parallel (see Chapter 5) and/or incremental

OP parsers.

With reference to Example 2.3 and Figure 9, the parsing of substring n + n within

the context L, M is given by the computation

〈Π, q2, n + n M#〉
∗
⊢ 〈Π, q3, M#〉 with Π = ⊥[+, q1][×, q1][L, q0]
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which corresponds to support q2
n
{ q3

+
−→ q2

n
{ q3

q3
=⇒ q3 of the composed chain

L[n + n]M, where q2
n
{ q3 is the support q2

n
−→ q3

q2
=⇒ q3 of the simple chains L[n]+

and +[n]M.

2.2.1 Examples

In this section we illustrate an example of application of OPLs, which cannot be mod-

eled by traditional classes of languages with an “explicit” structure such as parenthe-

sis languages and VPLs. We shall present in Chapter 3 examples in other interesting

contexts (such as operating systems) which can be naturally modeled by OPAs rec-

ognizing ω-languages, and are not recognizable by VPAs as well. Other examples of

application of OPLs to model systems in various application fields outside the tradi-

tional one of programming languages are given in [82].

Indeed, the most distinguishable feature of the structure of VPLs is that in their

OPMs the � relation occurs always and only between open and closed parentheses

(Σc and Σr elements in [10] notation, respectively). Unlike traditional parenthesis

languages, however, in VPLs parentheses can remain unmatched, but only at the be-

ginning (Σr elements) and end (Σc elements) of the input string, respectively. This

initial extension, however, is not sufficiently general to cover several interesting cases

where an “event” of special type, e.g. a rollback or an exception, should force flushing

the stack of many pending elements, say write operations or procedure calls.

Example 2.5. OPAs can be used to model the run-time behavior of database systems,

e.g., for modeling sequences of users’ transactions with possible rollbacks. Other sys-

tems that exhibit an analogous behavior are revision control (or versioning) systems

(such as subversion or git). As an example, consider a system for version manage-

ment of files where a user can perform the following operations on documents: save

them, access and modify them, undo one (or more) previous changes, restoring the

previously saved version.

The following alphabet represents the user’s actions: sv (for save), wr (for write,

i.e. the document is opened and modified), ud (for a single undo operation), rb (for a
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rollback operation, where all the changes occurred since the previously saved version

are discarded).

An OPA that models the traces of possible actions of the user on a given document

is a single-state automaton 〈Σ, M, {q}, {q}, {q}, δ〉, where Σ = {sv, rb, wr, ud}, M is:

M =

sv rb wr ud #

sv ⋖ � ⋖ ⋗

rb ⋗ ⋗ ⋗ ⋗ ⋗

wr ⋖ ⋗ ⋖ � ⋗

ud ⋗ ⋗ ⋗ ⋗ ⋗

# ⋖ ⋖ �

and δpush(q, a) = q,∀a ∈ {sv, wr}, δshift(q, a) = q,∀a ∈ {rb, ud} and δpop(q, q) = q.

The precedence relations between the symbols are defined such that sv and rb repre-

sent a pair of matching open/closed parenthesis symbols, enforcing their occurrences

in a word to be properly nested: for instance a computation such as sv sv rb rb rb is

forbidden; analogous precedence relations hold also for the pair wr and ud. After a

sv operation, a subsequent wr is recorded on the stack (sv⋖wr) and a wr is discarded

and removed from the stack if an ud operation is performed (wr � ud, ud ⋗ a for all

a ∈ Σ). A user can save a document multiple times, possibly after writing it (sv ⋖ sv,

wr ⋖ sv). A rb operation forces flushing the stack of all pending changes (wr, ud) un-

til the last sv included (wr ⋗ rb, ud ⋗ rb, sv � rb, rb ⋗ a for all a ∈ Σ). A user can

perform an ud operation only if preceded by a wr (Ma,ud ∩ {⋖,�} = ∅ for all a , wr),

which occurred after the last sv not discarded by a rb.

A more specialized model of this system might impose that the user regularly backs

her work up, so that no more than N changes that are not undone (denoted wr as

before) can occur between any two consecutive checkpoints sv (without any rollback

rb between them). Figure 10 shows the corresponding OPA with N = 2, with the

same OPM M.

States 0, 1 and 2 denote respectively the presence of zero, one and two unmatched

changes between two symbols sv.
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q0 0 1 2

q1

q4

q0, 0, 1

sv
wr

q0, 0, 1, 2
rb

w
r

sv wr

sv

0
wr

w
r

sv

1

wr ud

q4

0 1 2

0

1

2

q0

Figure 10.: OPA of Example 2.5, with N = 2.

An example of computation on the string sv wr ud rb sv wr wr ud sv wr rb wr sv

is shown in Figure 11.

2.2.2 Determinism vs nondeterminism

An important property of OPAs is the equivalence between the deterministic and the

nondeterministic version thereof. This result also implies the closure of OPLs un-

der complementation, yielding an alternative proof to the traditional one presented

in [35].

The deterministic version of OPAs is defined along the usual lines:

Definition 2.9 (Deterministic OPA). An OPA is deterministic if I is a singleton, and

the ranges of δpush, δshift and δpop are Q rather than ℘(Q).

It is well-known that the equivalence between nondeterministic and deterministic

machines usually does not extend from finite state to pushdown ones. VPAs are how-

ever a noticeable exception. The construction described in [11] can be extended to
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stack state current input

⊥ q0 sv wr ud rb sv wr wr ud sv wr rb wr sv #

⊥[sv, q0] 0 wr ud rb sv wr wr ud sv wr rb wr sv #

⊥[sv, q0][wr, 0] q4 ud rb sv wr wr ud sv wr rb wr sv #

⊥[sv, q0][ud, 0] q4 rb sv wr wr ud sv wr rb wr sv #

⊥[sv, q0] 0 rb sv wr wr ud sv wr rb wr sv #

⊥[rb, q0] q1 sv wr wr ud sv wr rb wr sv #

⊥ q0 sv wr wr ud sv wr rb wr sv #

⊥[sv, q0] 0 wr wr ud sv wr rb wr sv #

⊥[sv, q0][wr, 0] 1 wr ud sv wr rb wr sv #

⊥[sv, q0][wr, 0][wr, 1] q4 ud sv wr rb wr sv #

⊥[sv, q0][wr, 0][ud, 1] q4 sv wr rb wr sv #

⊥[sv, q0][wr, 0] 1 sv wr rb wr sv #

⊥[sv, q0][wr, 0][sv, 1] 0 wr rb wr sv #

⊥[sv, q0][wr, 0][sv, 1][wr, 0] 1 rb wr sv #

⊥[sv, q0][wr, 0][sv, 1] 0 rb wr sv #

⊥[sv, q0][wr, 0][rb, 1] q1 wr sv #

⊥[sv, q0][wr, 0] 1 wr sv #

⊥[sv, q0][wr, 0][wr, 1] 2 sv #

⊥[sv, q0][wr, 0][wr, 1][sv, 2] 0 #

⊥[sv, q0][wr, 0][wr, 1] q0 #

⊥[sv, q0][wr, 0] q0 #

⊥[sv, q0] q0 #

⊥ q0 #

Figure 11.: Example of computation for the specialized system of Example 2.5

cover OPAs too. The construction for OPAs ensures that two different pop moves of

two different runs of the nondeterministic automaton never “mix up” their initial and

final states in the deterministic one by keeping track of the path of the automaton

since the push move that marks the origin of the chain to be reduced by the next pop

move. Precisely, the states of the deterministic automaton Ã are sets of pairs of states,

instead of sets of single states, of the nondeterministic automatonA: Ã simulatesA

along the first component of the pair, whereas the second component stores the state

that gave origin to a push transition and it is propagated through shift moves. The de-



2.2 operator precedence automata 33

terministic pop operations will simulate only the nondeterministic ones defined on the

states corresponding to the first component of the current state and the state reached

before the last push move, which corresponds to the state on the top of the stack in an

actual run of the nondeterministic automaton.

The following theorem formalizes the above informal reasoning.

Theorem 2.1 ([69]). Given a nondeterministic OPA A with s states, an equivalent

deterministic OPA Ã can effectively be built with 2O(s2) states.

Proof. LetA be 〈Σ, M, Q, I, F, δ〉; Ã = 〈Σ, M, Q̃, Ĩ, F̃, δ̃〉 is defined as follows:

• Q̃ = ℘(Q × (Q∪ {⊤})), where Q ∩ {⊤} = ∅ and ⊤ is a symbol that stands for

the baseline of the computations; we will use K, Ki, K̄, K′, . . . to denote states

in Q̃,

• Ĩ = I × {⊤} is the initial state of Ã,

• F̃ = {K | K ∩ (F × {⊤}) , ∅},

• δ̃ : Q̃ × (Σ ∪ Q̃) → Q̃ is the transition function defined as follows.

The push transition δ̃push : Q̃ × Σ → Q̃ is defined by

δ̃push(K, a) =
⋃

(q,p)∈K

{
(h, q) | h ∈ δpush(q, a)

}

The shift transition δ̃shift : Q̃ × Σ → Q̃ is defined by

δ̃shift(K, a) =
⋃

(q,p)∈K

{
(h, p) | h ∈ δshift(q, a)

}

The pop transition δ̃pop : Q̃ × Q̃ → Q̃ is defined as follows:

δ̃pop(K1, K2) =
⋃

(r,q)∈K1,(q,p)∈K2

{
(h, p) | h ∈ δpop(r, q)

}
.

Notice that, if |Q| = s is the number of states of the nondeterministic OPA A, the

deterministic OPA Ã that is obtained in this way has a set of states whose size is expo-
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nential in s2, i.e. |Q̃| = 2|Q|·|Q∪{⊥}| which is 2O(s2). Also, this bound is asymptotically

optimal (the reasoning to prove succinctness of nondeterminism for VPAs discussed

in [11] can be applied also to OPAs).

The proof of equivalence between the two automata is by induction and is based

on lemmata 2.1 and 2.2.

Lemma 2.1. Let y be the body of a chain with support q
y
{ q′ in A. Then, for

every p ∈ Q and K ∈ Q̃, if K ∋ (q, p), there exists a support K
y
{ K′ in Ã with

K′ ∋ (q′, p).

Proof. We argue by induction on the depth h of y. If h = 1 then y = a1a2 . . . an and

the support can be rewritten as in (1) with q0 = q and qn+1 = q′. Set K0 = K and

K1 = δ̃push(K0, a1)

Ki = δ̃shift(Ki−1, ai), for every i = 2, . . . , n

K′ = δ̃pop(Kn, K)

Then

K
a1
−→ K1

a2
−→ . . .

an−1
−→ Kn−1

an
−→ Kn

K
=⇒ K′ (3)

is a support for C in Ã. Moreover, since K ∋ (q, p), by the definition of δ̃ we have:

K1 ∋ (q1, q) since δpush(q, a1) ∋ q1,

Ki ∋ (qi, q) since δshift(qi−1, ai) ∋ qi,

K′ ∋ (q′, p) since δpop(qn, q) ∋ q′.

Now assume that the statement holds for supports with depth lower than h and

let y = x0a1x1a2 . . . anxn have depth h. The support can be rewritten as in (2) with

q0 = q and qn+1 = q′, where q′
i
= qi whenever xi is the empty word, and every

non-empty xi has depth lower than h.

Then, by the inductive hypothesis and the definition of δ̃, we can build a support

K
x0
{ K′0

a1
−→ K1

x1
{ K′1

a2
−→ . . .

an
−→ Kn

xn
{ K′n

K′
0

=⇒ K′ (4)
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where, (q, p) being in K, we have:

K′
0
∋ (q′

0
, p) by inductive hypothesis on the support q = q0

x0
{ q′

0
,

K1 ∋ (q1, q′
0
) since δpush(q

′
0
, a1) ∋ q1,

K′
1
∋ (q′

1
, q′

0
) by inductive hypothesis on the support q1

x1
{ q′

1
,

Ki ∋ (qi, q′
0
) since δshift(q

′
i−1

, ai) ∋ qi, for every i = 2, . . . , n,

K′
i
∋ (q′

i
, q′

0
) by inductive hypothesis on the support qi

xi
{ q′

i
,

K′ ∋ (q′, p) since δpop(qn, q′
0
) ∋ q′,

and this concludes the proof. �

Lemma 2.2. Let y be the body of a chain with support K
y
{ K′ in Ã. Then, for every

p, q′ ∈ Q, if K′ ∋ (q′, p) there exists a support q
y
{ q′ inA with (q, p) ∈ K.

Proof. First we present some remarks we will use in the proof.

i) By the definition of δpush, if K̄
a
−→ K in Ã, (q̄, q) ∈ K, (q, p) ∈ K̄, then q

a
−→ q̄

inA.

ii) By the definition of δshift, if K̄
a
−→ K in Ã, (r, q) ∈ K, then there exists a state

q̄ ∈ Q such that q̄
a
−→ r inA and (q̄, q) ∈ K̄.

iii) By the definition of δpop, if K̄
K

=⇒ K′ in Ã and (q′, p) ∈ K′, then there exists a

pair (r, q) ∈ K̄ such that (q, p) ∈ K and r
q

=⇒ q′ inA.

We argue by induction on the depth h of y. If h = 1, then y = a1a2 . . .an and

the support can be rewritten as in (3). Let K′ ∋ (q′, p); then, by Remark (iii) there

exists a pair (qn, q) ∈ Kn such that (q, p) ∈ K and qn

q
=⇒ q′ in Ã. Moreover,

(qn, q) ∈ Kn and Kn−1
an
−→ Kn imply by Remark (ii) the existence of a state qn−1 ∈ Q

such that (qn−1, q) ∈ Kn−1 and qn−1
an
−→ qn. Similarly one can verify that for every

i = n − 2, . . .1 there exists qi ∈ Q such that (qi, q) ∈ Ki and qi

ai+1
−→ qi+1. Finally,

K
a1
−→ K1, (q1, q) ∈ K1 and (q, p) ∈ K imply by Remark (i) that q

a1
−→ q1 in A.

Thus, we built backward a path as in (1) with q0 = q, qn+1 = q′, (q, p) ∈ K, and this

concludes the proof of induction basis.
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Now assume that the statement holds for chains with depth lower than h. Let

y = x0a1x1a2 . . . anxn have depth h and consider a support as in (4) where K′
i
= Ki

whenever xi is the empty word, and every non-empty xi has depth lower than h. Let

(q′, p) ∈ K′. Since K′n

K′
0

=⇒ K′, by Remark (iii) there exists a pair (q′n, q′
0
) ∈ K′n

with (q′
0
, p) ∈ K′

0
and q′n

q′
0

=⇒ q′ in Ã. If xn , ε, by the inductive hypothesis, since

(q′n, q′
0
) ∈ K′n there exists a support qn

xn
{ q′n with (qn, q′

0
) ∈ Kn.

Similarly one can see that, for all i = n − 1, . . .2, 1, there exist q′
i

and qi (q′
i
= qi

whenever xi is empty) such that

qi
xi
{ q′i

ai+1
−→ qi+1

with (q′
i
, q′

0
) ∈ K′

i
by Remark (ii) (since K′

i

ai+1
−→ Ki+1 in Ã and (qi+1, q′

0
) ∈ Ki+1),

and (qi, q′
0
) ∈ Ki by the inductive hypothesis (since Ki

xi
{ K′

i
in Ã and (q′

i
, q′

0
) ∈ K′

i
).

In particular q1

x1
{ q′

1
with (q1, q′

0
) ∈ K1. Then, since also K′

0

a1
−→ K1 and (q′

0
, p) ∈

K′
0
, by Remark (i) we get q′

0

a1
−→ q1. Finally, since (q′

0
, p) ∈ K′

0
and K

x0
{ K′

0
, if

x0 , ε the inductive hypothesis implies the existence of a state q ∈ Q such that

q
x0
{ q′

0
in Ã with (q, p) ∈ K. Hence we built a support as in (2) with q0 = q,

qn+1 = q′ and (q, p) ∈ K, and this concludes the proof. �

To complete the proof of Theorem 2.1, we prove that there exists an accepting

computation for y in A if and only if there exists an accepting computation for y in

Ã.

Let y be in L(A). Then it admits a support q
y
{ q′ with q ∈ I and q′ ∈ F. Then for

K = I × {⊤} ∋ (q0,⊤), Lemma 2.1 implies the existence of a support K
y
{ K′ in Ã

with K′ ∋ (q′,⊤). q′ ∈ F implies K′ ∈ F̃, hence y is accepted by Ã.

Conversely, let y be in L(Ã). Then y admits a support K̃
y
{ K′ in Ã, with K′ ∈ F̃.

This means that there exists q′ ∈ F such that (q′,⊤) ∈ K′. Hence, by Lemma 2.2,

there exists a support q
y
{ q′ inA with (q′,⊤) ∈ K̃, and this implies q ∈ I. Thus the

support q
y
{ q′ defines an accepting computation for y inA. �
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2.2.3 Complexity of OPL decision problems

The basic decision problems for OPLs have the same order of complexity as those for

VPLs; precisely:

• the emptiness problem is in PTIME, OPLs and VPLs being a subclass of context-

free languages;

• the containment problem for deterministic OPAs is in PTIME too since it is

reduced to the intersection, complement and emptiness problems which are all

in PTIME in the deterministic case;

• the containment problem in the nondeterministic case is instead EXPTIME-

complete: the same arguments used in [11] for VPLs apply identically for

OPLs.

2.3 equivalence between operator precedence grammars and

automata

The next results show the equivalence between OPGs and OPAs.

2.3.1 From OPGs to OPAs

Theorem 2.2. Let G = 〈N, Σ, P, S 〉 be an OPG; then an OPAA such that L(A) =

L(G) can effectively be built. Furthermore, let m be the sum of the lengths of the

r.h.s.s of G; thenA has O(m2) states.

Proof. First, we describe a procedure to build a nondeterministic OPAA = 〈Σ, M, Q, I,

F, δ〉 from a given OPG G with the same precedence matrix M as G. Then we prove

the equivalence betweenA and G.

The construction sharply differs from the traditional one involving CF grammars

and general pushdown automata, which is instead quite straightforward. This is due

to the remarkable peculiarities of OPAs –among them the locality principle– which
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make them, in turn, significantly different from the more powerful general pushdown

automata and from the less powerful VPAs. To keep the construction as simple as

possible, we avoid introducing any optimization. Also, without loss of generality, we

assume that the grammar G has no empty nor renaming rules.

A is built in such a way that a successful computation thereof corresponds to build-

ing bottom-up a derivation tree in G: the automaton performs a push transition when

it reads the first terminal of a new r.h.s. It performs a shift transition when it reads a

terminal symbol inside a r.h.s., i.e., a leaf with some left sibling leaf. It performs a pop

transition when it completes the recognition of a r.h.s., then guesses (nondeterminis-

tically) the nonterminal at the l.h.s. Each state contains two pieces of information:

the first component represents the prefix of the r.h.s. under construction, whereas the

second component is used to recover the r.h.s. previously under construction (see

Figure 12) whenever all r.h.s.s nested below have been completed.

. . .

β
B

. . .

A

α

. . .

β
A

α

Figure 12.: When parsing α, the prefix previously under construction is β.

Precisely, the construction ofA is defined as follows. Let

P = {α ∈ (N ∪ Σ)∗Σ | ∃A→ αβ ∈ P}

be the set of prefixes, ending with a terminal symbol, of r.h.s. of G; define Q =

{ε} ∪P ∪ N, Q = Q × ({ε} ∪P), I = {〈ε, ε〉}, and F = S × {ε} ∪ {〈ε, ε〉 | ε ∈ L(G)}.

Note that |Q| = 1 + |P|+ |N| is O(m); therefore |Q| is O(m2).
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The transition functions are defined as follows, for a ∈ Σ and α,α1,α2 ∈ Q,

β, β1, β2 ∈ {ε} ∪P:

• δshift(〈α, β〉, a) ∋


〈αa, β〉 if α < N

〈βαa, β〉 if α ∈ N

• δpush(〈α, β〉, a) ∋


〈a,α〉 if α < N

〈αa, β〉 if α ∈ N

• δpop(〈α1, β1〉, 〈α2, β2〉) ∋ 〈A, γ〉 for every A such that


A→ α1 ∈ P, if α1 < N

A→ β1α1 ∈ P, if α1 ∈ N

and γ =


α2, if α2 < N

β2, if α2 ∈ N.

Notice that the result of δshift and δpush is a singleton, whereas δpop may produce

several states, in case of repeated r.h.s.s.

The states reached by push and shift transitions have the first component in P. If

state 〈α, β〉 is reached after a push transition, then α is the prefix of the r.h.s. that

is currently under construction and β is the prefix previously under construction; in

this case α is either a terminal symbol or a nonterminal followed by a terminal one.

If the state is reached after a shift transition, then α is the concatenation of the first

component of the previous state with the read character, and β is not changed from

the previous state. The states reached by a pop transition have the first component

in N: if 〈A, γ〉 is such a state, then A is the corresponding l.h.s, and γ is the prefix

previously under construction.

The equivalence between G and A derives from the following Lemmata 2.3 and

2.4, when β = γ = ε, Π = ⊥ and A is an axiom. �
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Example 2.6. Let G be the grammar introduced in Example 2.1. To apply the con-

struction of Theorem 2.2 first we need to transform G in such a way that there are no

renaming rules. The new grammar has the following productions

E → E + T | T × F | n | LEM

T → T × F | n | LEM

F → n | LEM

where E, T , and F are axioms.

Figure 13 shows an accepting computation of the equivalent automaton, together

with the corresponding derivation tree. Notice that the computation shown in Fig-

ure 13 is equal to that of Figure 8 up to a renaming of the states; in fact the shape

of syntax trees and consequently the sequence of push, shift and pop moves in OPLs

depends only on the OPM, not on the visited states.

Lemma 2.3. Let x be the body of a chain and β, γ ∈ P ∪ {ε}. Then, for all h ≥ 1,

〈β, γ〉
x
{ q implies the existence of A ∈ N such that A

∗
⇒ x in G and q = 〈A, β〉.

Proof. We reason by induction on the depth h of x.

If h = 1, then x = a1a2 . . . an is the body of a simple chain, and the support is

as in (1) with q0 = 〈β, γ〉 and qn+1 = q. Then by the definition of push and shift

transition functions we have qi = 〈a1 . . . ai, β〉 for every i = 1, 2, . . .n, and by the

definition of pop transition function (recall that β < N by hypothesis) it is q = 〈A, β〉

for some A such that A → a1 . . . an = x is in P. Hence A
∗
⇒ x and the statement is

proved.

If h > 1, then as usual let x = x0a1x1 . . . anxn and let its support be decomposed

as in (2) with q0 = 〈β, γ〉 and qn+1 = q. Also set qi = 〈βi, γi〉 for i = 0, 1, . . . , n (in

particular β0 = β and γ0 = γ). Each non empty xi being the body of a chain with
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depth lower than h, the inductive hypothesis implies that there exists Xi ∈ N such that

Xi

∗
⇒ xi in G, and qi = 〈Xi, βi〉. Thus, the support can be rewritten as

〈β, γ〉
x0
{ q′0

a1
−→ 〈β1, γ1〉

x1
{ q′1

a2
−→ . . .

an
−→ 〈βn, γn〉

xn
{ q′n

q′
0

=⇒ q

stack state current input

⊥ 〈ε, ε〉 n + n × Ln + nM#

⊥[n, 〈ε, ε〉] 〈n, ε〉 +n× Ln + nM#

⊥ 〈E, ε〉 +n× Ln + nM#

⊥[+, 〈E, ε〉] 〈E+, ε〉 n × Ln + nM#

⊥[+, 〈E, ε〉][n, 〈E+, ε〉] 〈n, ε〉 ×Ln + nM#

⊥[+, 〈E, ε〉] 〈T , E+〉 ×Ln + nM#

⊥[+, 〈E, ε〉][×, 〈T , E+〉] 〈T×, E+〉 Ln + nM#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉] 〈L, E+〉 n + nM#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉][n, 〈L, E+〉] 〈n, E+〉 +nM#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉] 〈E, L〉 +nM#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉][+, 〈E, L〉] 〈E+, L〉 nM#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉][+, 〈E, L〉][n, 〈E+, L〉] 〈n, L〉 M#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉][+, 〈E, L〉] 〈T , E+〉 M#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][L, 〈T×, E+〉] 〈E, L〉 M#

⊥[+, 〈E, ε〉][×, 〈T , E+〉][M, 〈T×, E+〉] 〈LEM, L〉 #

⊥[+, 〈E, ε〉][×, 〈T , E+〉] 〈F, T×〉 #

⊥[+, 〈E, ε〉] 〈T , E+〉 #

⊥ 〈E, ε〉 #

E

E

n

+ T

T

n

× F

L E

E

n

+ T

n

M

Figure 13.: Accepting computation of the automaton built in Theorem 2.2.
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where

q′i =


〈βi, γi〉 if xi = ε

〈Xi, βi〉 otherwise

for every i. Now, by the definition of push and shift transition functions, one can

see that, for i , 0, βi = X0a1 . . . Xi−1ai holds regardless of whether xi is empty or

not (setting Xi = ε if xi = ε). Thus, to compute the state q reached with the final

pop transition δpop(q′n, q′
0
), we have to consider four cases depending on whether x0

and xn are empty or not, which are exactly the four combinations considered in the

definition of δpop. In any case, q has the form 〈A, β〉, where A is a nonterminal of G

such that A→ X0a1X1 . . .Xn1
anXn. �

Lemma 2.4. Let x be the body of a chain and A ∈ N. Then, A
∗
⇒ x in G implies

〈β, γ〉
x
{ 〈A, β〉 for every β, γ ∈ P ∪ {ε}.

Proof. We reason by induction on the depth h of the chain. If h = 1, then x is the

body of a simple chain, hence A
∗
⇒ x means that A→ x is a production. Thus, by the

definition of δ (recall that β < N by hypothesis), we obtain a support as in (1) with

q0 = 〈β, γ〉, qn+1 = q, and qi = 〈a1 . . . ai, β〉 for every i = 1, 2, . . .n.

If h > 1, then x is the body of a composed chain with x = x0a1x1 . . .anxn. Hence

A
∗
⇒ x in G implies that there exist X0, X1, . . . , Xn ∈ {ε}∪N (more precisely: Xi = ε if

xi = ε) such that A→ X0a1X1 . . .anXn and Xi

∗
⇒ xi. The first step of the computation

is different depending on whether x0 is empty or not. In any case, we have

〈β, γ〉
x0
{ q′0

a1
−→ 〈X0a1, β〉, where q′0 =


〈β, γ〉 if x0 = ε

〈X0, β〉 otherwise

The computation goes on differently depending on whether x1, x2, . . . , xn−1 are empty

or not. However, by the inductive hypothesis and the definition of δshift, after reading
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ai the automaton reaches state 〈X0a1 . . . Xi−1ai, β〉 for every i = 1, . . . , n, i.e., we have

the path

〈β, γ〉
x0
{ q′0

a1
−→ 〈X0a1, β〉

x1
{ q′1

a2
−→ 〈X0a1X1a2, β〉

x2
{ q′2

a3
−→ . . .

an
−→ 〈X0a1 . . . Xn−1an, β〉.

If xn , ε, the computation proceeds with the last inductive step

〈X0a1 . . . Xn−1an , βn〉
xn
{ 〈Xn , X0a1 . . . Xn−1an〉.

Finally, the computation ends with a pop transition. There are four cases depending

on whether x0 and xn are empty or not, which are exactly the four combinations

considered in the definition of δpop. In any case, we build a support ending with state

〈A, β〉, and this concludes the proof. �

Corollary 2.1. If the source grammar is in FNF, then the corresponding automaton

is deterministic.

The thesis follows immediately by observing that the construction defined in Theo-

rem 2.2 is such that the values defined by δpush and δshift are always singleton, whereas

δpop produces as many states as many l.h.s.s have the same r.h.s. Thus, since the ini-

tial state is a singleton and grammars in FNF have no repeated r.h.s.s, the automaton

resulting from the construction is already deterministic. This corollary has an inter-

esting effect in terms of size of the produced automata as pointed out below.

Remark 2.1. Given a grammar G with |N| nonterminals the construction of The-

orem 2.2 produces an automaton with O(m2) states, where m is defined as Theo-

rem 2.2; thus, if we build a deterministic OPA from a generic OPG G by first build-

ing a nondeterministic automaton and then transforming it in deterministic version,

we obtain an automaton with 2O(m4) states; instead, if we first transform the origi-

nal G in FNF we obtain an equivalent grammar G̃ with O(2|N |) nonterminals and

m̃ = O(2m|N |2); then, by applying the construction of Theorem 2.2 we directly obtain

a deterministic automaton with O(m̃2) = O(22m|N |2) states.
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The size of the complete automaton is clearly hardly manageable by human execu-

tion, but a prototype (non-optimized) tool is available to perform the construction4.

2.3.2 From OPAs to OPGs

The construction of an OPG equivalent to a given OPA is far simpler than the converse

one, thanks to the explicit structure associated to words by the precedence matrix.

Theorem 2.3 ([70]). LetA be an OPA; then an OPG G such that L(G) = L(A) can

effectively be built.

Proof. Given an OPA A = 〈Σ, M, Q, I, F, δ〉, an equivalent OPG G having operator

precedence matrix M can be built as follows.

G’s nonterminals are the 4-tuples (a, q, p, b) ∈ Σ × Q × Q × Σ, written as 〈a p, qb〉.

G’s rules are built as follows:

• for every support of type (1) of a simple chain, the rule

〈a0q0, qn+1
an+1〉 −→ a1a2 . . . an ;

is in P; furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then

〈#q0, qn+1
#〉 is in S ;

• for every support of type (2) of a composed chain, add the rule

〈a0q0, qn+1
an+1〉 −→ Λ0a1Λ1a2 . . . anΛn ;

where, for every i = 0, 1, . . . , n, Λi = 〈aiqi, q′
i
ai+1〉 if xi , ε and Λi = ε

otherwise; furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then

add 〈#q0, qn+1
#〉 to S , and, if ε is accepted by A, add A → ε, A being a new

axiom not otherwise occurring in any other rule.

4 The tool is called Flup, available at [1].
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Notice that the above construction is effective thanks to the hypothesis of �-acyclic-

ity of the OPM (remind that, as discussed in Section 2.1, this hypothesis could be

replaced by weaker ones). This implies that the length of the r.h.s. is bounded; on

the other hand, the cardinality of the nonterminal alphabet is finite (precisely it is

O(|Σ|2 · |Q|2). Hence there is only a finite number of possible productions for G and

only a limited number of chains to be considered. �

2.4 monadic second-order logic characterization of opls

In his seminal paper [24] Büchi provided a logic characterization of regular lan-

guages: he defined a MSO syntax on the integers representing the position of char-

acters within a string and he gave algorithms to build a finite state machine (FSM)

recognizing exactly the strings satisfying a given formula and, conversely, to build a

formula satisfied by all and only the strings accepted by a given FSM. Subsequently,

a rich literature considerably extended his work to more powerful language families

–typically, context-free [25]– and different logic formalisms, e.g., first-order or tree

logics [5, 20, 29]. To the best of our knowledge, however, MSO logic characteriza-

tions of CF languages refer to “visible structure languages”, i.e., to languages whose

strings make their syntactic structure immediately visible in their external appearance,

such as “tree-languages” [92]5 and Visibly Pushdown Languages [10] which explic-

itly refer to this peculiar property in their name. In this section we report a result of

[71] that provides a complete MSO logic characterization of OPLs, which, instead,

include also invisible-structure languages, whose syntax trees associated with exter-

nal strings must be built by means of suitable parsing algorithms, in which the OPM

plays a major role.

The MSO logic characterization of OPLs shows some similarities with the ap-

proach followed for VPLs, which has been presented in [11]. In this work they in-

troduce a MSO logic, which exactly defines the class of VPLs, whose syntax consists

of unary predicates over positions, first and second order quantifiers, the successor

relation and a further, suitable binary predicate on string positions. Given an al-

5 It is not coincidence if tree automata [92] have been defined by extending the original finite state ones.
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phabet Σ (partitioned into call, return and internal symbols), a countable set FV of

first-order variables, a countable set S V of monadic second-order (set) variables and

denoting by x, y, x′, . . . elements in FV and by X, Y, X′, . . . elements of S V , the MSO

logic syntax is:

ϕ := c(x) | X(x) | call(x) | ret(x) | x = y + 1 | x y | ¬ϕ | ϕ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where c is a symbol in Σ, x, y ∈ FV and X ∈ S V . The semantics is defined over

a word so that the first-order variables are interpreted over positions of the string,

while set variables are interpreted over sets of positions. The unary predicate c(x)

holds if the symbol at the position interpreted for x is c, and the two other unary

predicates call(x) and ret(x) hold if the position interpreted for x is respectively a

call or return symbol of the alphabet. x = y + 1 holds true as usual if x and y are

interpreted as successive positions. As regards the binary predicate , intuitively, if

one interprets call and return symbols of the alphabet as respectively open and closed

parentheses, the relation holds true on two positions either if they correspond to a

pair of matching open and closed parentheses, or if the first position corresponds to an

open parenthesis that is never matched in the string by a corresponding closed one and

the second one is conventionally denoted by∞, or if the second position corresponds

to a closed parenthesis that was not preceded by a corresponding matching open one

and the first position is conventionally denoted by ∞. As an example, the formula

∀x.(call(x) ⇒ ∃x.x y), where the quantifier ∀ and the implication⇒ are defined

in the usual way in terms of the other basic syntax elements, holds in a word iff it has

no unmatched calls symbols.

Analogously to VPLs, which in fact are a subclass of OPLs, the MSO logic char-

acterization of OPLs is based on the definition of a suitable binary predicate on the

string positions. The original definition of the relation in [11], however, cannot be

naturally extended to the more general case of OPL strings. In fact the relation

between two matching parentheses, which are extremes of the frontier of a sub-tree,

is typically one-to-one (with the exclusion of the particular case of unmatched paren-

theses) whereas in general the relation between leftmost and rightmost leaves of an

OPL sub-tree can be many-to-one or one-to-many or both. A further consequence
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of the more general structure of OPL trees is that, unlike FSMs, tree automata, and

Visibly Pushdown Automata (for which every input symbol induces exactly a move,

that is push, pop or neutral, depending on the class of the symbol itself ), OPAs are

not real-time automata as they may have to perform a series of pop moves without

advancing their running head; this in turn produces the effect that, whereas in regu-

lar and VPLs each position is associated with a unique state visited by the machine

during its behavior, for OPLs the same position may refer to several states –i.e., to

several subsets of positions according to Büchi’s approach.

Consequently, the approach to characterize OPLs departs from previous ones along

two main directions:

• The binary relations between positions referring to a pop operation are attached

to the look-back and look-ahead positions which in OP parsing embrace the

r.h.s. to be reduced; thus, the formal definition of the relation will be based on

the notion of chain.

• The sets of positions associated with the different automaton states are sub-

divided into three, not necessarily disjoint, subsets: one describing the state

reached after a push or shift operation, and two to delimit the positions corre-

sponding to each pop operation; in such a way a unique identification thereof

is obtained.

2.4.1 A Monadic Second-Order Logic over Operator Precedence Alphabets

Let (Σ,M) be an OP alphabet. Consider a countable infinite set of first-order variables

x, y, . . . and a countable infinite set of monadic second-order (set) variables X, Y, . . . .

As a convention, first and second-order variables will be denoted in boldface italic

font.

Definition 2.10 (Monadic Second-order Logic over (Σ, M) [71]). LetV1 be a set of

first-order variables, andV2 be a set of second-order (or set) variables. The MSOΣ,M
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(monadic second-order logic over (Σ, M)) is defined by the following syntax (sym-

bols Σ, M will be omitted unless necessary to prevent confusion):

ϕ := c(x) | x ∈ X | x ≤ y | xy y | ¬ϕ | ϕ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where c ∈ Σ ∪ {#}, x, y ∈ V1, and X ∈ V2.6

A MSO formula is interpreted over a (Σ, M) string w, with respect to assignments

ν1 : V1 → {0, 1, . . . |w|+ 1} and ν2 : V2 → ℘({0, 1, . . . |w|+ 1}), in the following

way.

• #w#, M, ν1, ν2 |= c(x) iff #w# = w1cw2 and |w1| = ν1(x).

• #w#, M, ν1, ν2 |= x ∈ X iff ν1(x) ∈ ν2(X).

• #w#, M, ν1, ν2 |= x ≤ y iff ν1(x) ≤ ν1(y).

• #w#, M, ν1, ν2 |= xy y iff #w# = w1aw2bw3, |w1| = ν1(x), |w1aw2| = ν1(y),

and aw2b is a chain a[w2]b.

• #w#, M, ν1, ν2 |= ¬ϕ iff #w#, M, ν1, ν2 6|= ϕ.

• #w#, M, ν1, ν2 |= ϕ1 ∨ ϕ2 iff #w#, M, ν1, ν2 |= ϕ1 or #w#, M, ν1, ν2 |= ϕ2.

• #w#, M, ν1, ν2 |= ∃x.ϕ iff #w#, M, ν′
1
, ν2 |= ϕ, for some ν′

1
with ν′

1
(y) = ν1(y)

for all y ∈ V1 \ {x}.

• #w#, M, ν1, ν2 |= ∃X.ϕ iff #w#, M, ν1, ν′
2
|= ϕ, for some ν′

2
with ν′

2
(Y) = ν2(Y)

for all Y ∈ V2 \ {X}.

To improve readability, M, ν1, ν2 and the delimiters # are dropped from the notation

whenever there is no risk of ambiguity; furthermore some standard abbreviations such

as x + 1, x − 1, x = y, x , y, x < y, are used in formulae.

A sentence is a formula without free variables. The language of all strings w ∈ Σ
∗

such that w |= ϕ is denoted by L(ϕ):

L(ϕ) = {w ∈ Σ
∗ | w |= ϕ}.

6 This is the usual MSO over strings, augmented with they predicate.
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# n + n × L n + n M #

0 1 2 3 4 5 6 7 8 9 10

Figure 14.: The string of Figure 1, with positions and relationy.

Figure 14 illustrates the meaning of they relation with reference to the string of

Figure 1: we have 0 y 2, 2 y 4, 5 y 7, 7 y 9, 5 y 9, 4 y 10, 2 y 10,

and 0y 10. Such pairs correspond to contexts where a reduce operation is executed

during the parsing of the string (they are listed according to their execution order).

In general xy y implies y > x+ 1, and a position x may be in such a relation with

more than one position and vice versa. Moreover, if w is compatible with M, then

0y |w|+ 1.

Example 2.7. Consider the language of Example 2.1. The following sentence states

that all parentheses are well-matched:

∀x∀y


xy y⇒


L(x + 1)⇒

M(y − 1)∧

¬∃z(z < y∧ xy z)∧

¬∃v(x < v∧ vy y)




.

Note that this property is guaranteed a priori by the structure of the OPM.

The following sentence instead defines the language where parentheses are used

only when they are needed (i.e. to give precedence of + over ×).

∀x∀y



xy y∧

L(x + 1)∧M(y− 1)
⇒(×(x) ∨ ×(y)) ∧ ∃z



x + 1 < z < y − 1 ∧+(z) ∧

¬∃u∃v



x + 1 < u < z ∧ L(u)∧

z < v < y − 1 ∧ M(v)∧

u− 1y v + 1







The following main result holds.
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Theorem 2.4 ([71]). A language L over (Σ, M) is an OPL if and only if there exists

a MSO sentence ϕ such that L = L(ϕ).

We report here the proof of the theorem presented in [71], which will provide

the basis for the MSO logic characterization of ωOPLs in Chapter 3. The proof is

constructive and structured in the following two subsections.

2.4.2 From MSO to OPAs

Statement 2.4 ([71]). Let (Σ, M) be an operator precedence alphabet and ϕ be a

MSO sentence. Then L(ϕ) can be recognized by an OPA over (Σ, M).

Proof. The proof follows the one by Thomas [96] and is composed of two steps: first

the formula is rewritten so that no predicate symbols nor first order variables are used;

then an equivalent OPA is built inductively.

Let Σ be {a1, a2, . . . , an}. For each predicate symbol ai, a fresh set variable Xi is

introduced; therefore formula ai(x) will be translated into x ∈ Xi. Following the stan-

dard construction of [96], every first order variable is translated into a fresh second

order variable with the additional constraint that the set it represents contains exactly

one position. The only difference is that formulae like x y y will be translated into

formulae Xi y X j, where Xi, X j are singleton sets. In this case, the semantics ofy

is naturally extended to second order variables that are singletons.

Let ϕ′ be the formula obtained from ϕ by such a translation, and consider any

subformulaψ of ϕ′: let m(ψ) be the number of (second order) free variables appearing

in ψ different from X1, X2, . . . , Xn, and denote them by Xn+1, . . .Xn+m(ψ). Recall that

X1, . . . , Xn represent symbols in Σ, hence they are never quantified.

As usual formulae are interpreted over strings; in this case the alphabet is:

Λ(ψ) =
{
α ∈ {0, 1}n+m(ψ) | ∃!i s.t. 1 ≤ i ≤ n, αi = 1

}

A string w ∈ Λ(ψ)∗, with |w| = ℓ, is used to interpret ψ in the following way: the

projection over the j-th component of Λ(ψ) gives a valuation {1, 2, . . . , ℓ} → {0, 1} of

X j, for every 1 ≤ j ≤ n + m(ψ).
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q0 q1 q2

q

q3 qF

[X̄]

[X̄] q2

[Xi]

[Xi]

q1

[X̄]

[X̄]

q0 [X̄]

[X̄]

[X̄]

q

[X j]

[X j]
q0 [X̄]

[X̄]

q0, qF

Figure 15.: OPA for atomic formula ψ = Xi y X j

For any α ∈ Λ(ψ), the projection of α over the first n components encodes a symbol

in Σ, denoted as symb(α). The matrix M over Σ can be naturally extended to the OPM

M(ψ) over Λ(ψ) by defining M(ψ)α,β = Msymb(α),symb(β) for any α, β ∈ Λ(ψ).

Now one can build an OPA A equivalent to ϕ′. The construction is inductive on

the structure of the formula: first one can define the OPA for all atomic formulae. We

give here only the construction for y, since for the other ones the construction is

standard and is the same as in [96].

Figure 15 represents the OPA for atomic formula ψ = Xi y X j (notice that

i, j > n, and that both Xi and X j are singleton sets). For the sake of brevity, notation

[Xi] is used to represent the set of all tuples Λ(ψ) having the i-th component equal

to 1; notation [X̄] represents the set of all tuples in Λ(ψ) having both i-th and j-th

components equal to 0.

The semantics ofy requires for Xi y X j that there must be a chain a[w2]b in the

input word, where a is the symbol at the only position in Xi, and b is the symbol at the

only position in X j. By definition of chain, this means that a must be read, hence in

the position represented by Xi the automaton performs either a push or a shift move

(see Figure 15, from state q0 to q1), as pop moves do not consume input. After that,

the automaton must read w2. In order to process the chain a[w2]b, reading w2 must
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start with a push move (from state q1 to state q2), and it must end with one or more

pop moves, before reading b (i.e. the only position in X j – going from state q3 to qF).

This means that the automaton, after a generic sequence of moves corresponding

to visiting an irrelevant (for Xi y X j) portion of the syntax tree, when reading the

symbol at position Xi performs either a push or a shift move, depending on whether

Xi is the position of a leftmost leaf of the tree or not. Then it visits the subsequent

subtree ending with a pop labeled q1; at this point, if it reads the symbol at position

X j, it accepts anything else that follows the examined fragment.

Then, a natural inductive path leads to the construction of the automaton associated

with a generic MSO logic formula: the disjunction of two subformulae can be ob-

tained by building the union automaton of the two corresponding automata; similarly

for negation. The existential quantification of Xi is obtained by projection erasing the

i-th component; since OPLs are closed under alphabetical homomorphisms preserv-

ing the OPM (see Statement 2.2), and since the OPM is determined only by the first n

components of the alphabet’s elements which are never erased by quantification such

a projection produces a well defined automaton for any ψ. Finally, the alphabet of the

automaton equivalent to ϕ′ is Λ(ϕ′) = {0, 1}n, which is in bijection with Σ. �

2.4.3 From OPAs to MSO

When considering a chain a[w]b, assume that w = w0a1w1 . . . aℓwℓ, with a[a1a2 . . . aℓ]b

is a simple chain (any wg may be empty). Also, denote by sg the position of symbol

ag, for g = 1, 2, . . . , ℓ and set a0 = a, s0 = 0, aℓ+1 = b, and sℓ+1 = |w|+ 1. The

following shortcut notations is defined in [71]:

x ◦ y :=
∨

Ma,b=◦

a(x) ∧ b(y), for ◦ ∈ {⋖,�,⋗}

Tree(x, z, v, y) := xy y∧



(x + 1 = z ∨ xy z) ∧ ¬∃t(z < t < y∧ xy t)

∧

(v + 1 = y ∨ vy y) ∧¬∃t(x < t < v∧ ty y)


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If xy y then there exist (unique) z and v such that Tree(x, z, v, y) is satisfied. In partic-

ular, if w is the body of a simple chain, then 0y ℓ+ 1 and Tree(0, 1, ℓ, ℓ+ 1) are sat-

isfied; if it is the body of a composed chain, then 0y |w|+ 1 and Tree(0, s1, sℓ, sℓ+1)

are satisfied. If w0 = ε then s1 = 1, and if wℓ = ε then sℓ = |w|. In the example of

Figure 14 relations Tree(2, 3, 3, 4), Tree(2, 4, 4, 10), Tree(4, 5, 9, 10), Tree(5, 7, 7, 9)

are satisfied, among others.

Statement 2.5 ([71]). Let (Σ, M) be an operator precedence alphabet andA be an

OPA over (Σ, M). Then there exists an MSO sentence ϕ such that L(A) = L(ϕ).

Proof. Let A = 〈Σ, M, Q, q0, F, δ〉 be deterministic (this simplifying assumption

does not cause loss of generality, since nondeterministic OPAs are equivalent to de-

terministic ones by Theorem 2.1). W.l.o.g. assume also that the transition function of

A is total. One can build a MSO sentence ϕ such that L(A) = L(ϕ). The main idea

for encoding the behavior of the OPA is based on assigning the states visited during its

run to positions along the same lines stated by Büchi [96] and extended for VPLs [11].

Unlike finite state automata and VPAs, however, OPAs do not work on-line. Hence, it

is not possible to assign a single state to every position. Let Q = {q0, q1, . . . , qN} be

the states of A with q0 initial; as usual, they are encoded by second-order variables.

Three different sets of second-order variables will be used, namely A0, A1, . . . , AN ,

B0, B1, . . . , BN and C0, C1, . . . , CN . Set Ai contains those positions of word w where

state qi may be assumed after a shift or push transition, i.e., after a transition that

“consumes” an input symbol. Sets Bi and Ci encode a pop transition concluding the

reading of the body w0a1w1 . . . alwl of a chain whose support ends in a state qi: set Bi

contains the position of symbol a that precedes the corresponding push, whereas Ci

contains the position of al, which is the symbol on top of the stack when the automa-

ton performs the pop move. Figure 16 presents such sets for the example automaton

of Figure 8, with the same input as in Figure 14. Notice that each position, except the

last one, belongs to exactly one Ai, whereas it may belong to several Bi and at most

one Ci.
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B3 C3

B3 C3

B3 C3 B3 C3

B1 C1 B1 C1 B3 C3 B3 C3

A0 A1 A0 A1 A0 A2 A3 A2 A3 A3

# n + n × L n + n M #

0 1 2 3 4 5 6 7 8 9 10

Figure 16.: The string of Figure 1 with Bi, Ai, and Ci evidenced for the automaton of

Figure 8. Pop moves of the automaton are represented by linked pairs Bi,

Ci.

Then, sentence ϕ is defined as follows

ϕ := ∃e

∃A0, A1, . . . , AN

∃B0, B1, . . . , BN

∃C0, C1, . . . , CN

Start0 ∧ ϕδ ∧
∨

q f ∈F

End f

 , (5)

where the first and last subformulae encode the initial and final states of the run,

respectively; formula ϕδ is defined as ϕδpush
∧ϕδshift

∧ ϕδpop and encodes the three tran-

sition functions of the automaton, which are expressed as the conjunction of forward

and backward formulae. Variable e is used to refer to the end of a string.

To complete the definition of ϕ, the following additional notations are introduced.

Succk(x, y) := x + 1 = y∧ x ∈ Ak

Nextk(x, y) := xy y∧ x ∈ Bk ∧ ∃z, v (Tree(x, z, v, y) ∧ v ∈ Ck)

Qi(x, y) := Succi(x, y) ∨Nexti(x, y)

The shortcut Qi(x, y) is used to represent thatA is in state qi when at position x and

the next position to read, possibly after scanning a chain, is y. Since the automaton

is not real time, it is necessary to distinguish between push and shift moves (case
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Succi(x, y)), and pop moves (case Nexti(x, y)). For instance, with reference to Figures

14 and 16; Succ2(5, 6), Next3(5, 9), and Next3(5, 7) hold.

The shortcuts representing the initial and final states are defined as follows.

Starti := 0 ∈ Ai ∧¬
∨

j,i

(0 ∈ A j)

End f := ¬∃y(e + 1 < y) ∧ Next f (0, e + 1) ∧ ¬
∨

j, f

(Next j(0, e + 1)).

ϕδpush
is the conjunction of the following two formulae. The former one states the

sufficient condition for a position to be in a set Ai, when performing a push move.

ϕpush f w := ∀x, y

N∧

i=0

N∧

k=0

(
x ⋖ y∧ c(y) ∧Qi(x, y) ∧ δpush(qi, c) = qk ⇒ y ∈ Ak

)

The latter formula states the symmetric necessary condition

ϕpush bw := ∀x, y

N∧

k=0



x⋖ y ∧ c(y) ∧ y ∈ Ak

∧

(x + 1 = y ∨ xy y)

⇒

N∨

i=0

(
Qi(x, y) ∧ δpush(qi, c) = qk

)


ϕδshift
is defined analogously, with respect to shift moves instead of push moves.

ϕshi f t f w := ∀x, y

N∧

i=0

N∧

k=0

( x � y ∧ c(y) ∧Qi(x, y) ∧ δshift(qi, c) = qk ⇒ y ∈ Ak)

ϕshi f t bw := ∀x, y

N∧

k=0



x � y ∧ c(y) ∧ y ∈ Ak

∧

(x + 1 = y ∨ xy y)

⇒

N∨

i=0

(Qi(x, y) ∧ δshift(qi, c) = qk)



Finally, to define ϕδpop , introduce the shortcut Treei, j(x, z, v, y), which represents the

fact that A is ready to perform a pop transition from state qi having on top of the
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stack state q j; such pop transition corresponds to the reduction of the portion of string

between positions x and y (excluded).

Treei, j(x, z, v, y) := Tree(x, z, v, y) ∧Qi(v, y) ∧Q j(x, z).

Formula ϕδpop is thus defined as the conjunction of three formulae. As before, the

forward formula gives the sufficient conditions for two positions to be in the sets Bk

and Ck, when performing a pop move, and the backward formulae state symmetric

necessary conditions.

ϕpop f w := ∀x, z, v, y

N∧

i=0

N∧

j=0

N∧

k=0



Treei, j(x, z, v, y)

∧

δpop(qi, q j) = qk

⇒ x ∈ Bk ∧ v ∈ Ck



ϕpop bwB := ∀x

N∧

k=0

x ∈ Bk ⇒ ∃y, z, v

N∨

i=0

N∨

j=0

Treei, j(x, z, v, y) ∧ δpop(qi, q j) = qk



ϕpop bwC := ∀v

N∧

k=0

v ∈ Ck ⇒ ∃x, y, z

N∨

i=0

N∨

j=0

Treei, j(x, z, v, y) ∧ δpop(qi, q j) = qk



Now notice that ϕ =
∨

q f ∈F

ψ0, f , where

ψi,k := ∃e

∃A0, A1, . . . , AN

∃B0, B1, . . . , BN

∃C0, C1, . . . , CN

(Starti ∧ ϕδ ∧ Endk)

Hence, the proof that L(A) = L(ϕ) is direct consequence of the following Lem-

mata 2.5 and 2.6, stating that w |= ψi,k if and only if qi
w
{ qk inA, for every word w

compatible with (Σ, M). �

Lemma 2.5 ([71]). Let w be the body of a chain #[w]#. If qi
w
{ qk inA, then w |= ψi,k.
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Proof. The proof of the lemma is by induction on the depth of chains. Note that, even

ifA is deterministic, some chains could have different supports; however, it is shown

that every support produces exactly one assignment that satisfies ψi,k.

Let w be the body of a simple chain with support

qi = qt0

a1
−→ qt1

a2
−→ . . .

aℓ
−→ qtℓ

qt0
=⇒ qk (6)

One can prove that w |= ψi,k for e, A0, A1, . . . , AN , B0, . . . , BN , C0, . . . , CN defined

as follows. First-order variable e equals |w|, Bh is empty except for Bk = {0}; Ch

is empty except for Ck = {ℓ}; for every 0 ≤ x ≤ ℓ, let Ah contain x iff tx = h

(i.e., x ∈ Atx), and this also implies Qtx(x, x + 1). Then Starti and Endk are satisfied

trivially since Tree(0, 1, ℓ, ℓ+ 1) holds. One can now prove that also ϕδpush
, ϕδshi f t

,

and ϕδpop are satisfied; we omit to consider all cases where the antecedents are false.

• ϕpush is satisfied for x = 0 and y = 1 since we have a1(1), # ⋖ a1, Qi(0, 1),

1 ∈ At1 , and δpush(qi, a1) = qt1 .

• ϕshi f t is satisfied ∀1 ≤ x < ℓ and y = x + 1 since we have ay(y), ax � ay,

Qtx(x, y), y ∈ Aty , and δshift(qtx , ay) = qty .

• ϕpop is satisfied for x = 0 and y = |w|+ 1 = ℓ+ 1 since we have Treetℓ,i(0, 1, ℓ,

ℓ+ 1), 0 ∈ Bk, ℓ ∈ Ck, and δpop(qtℓ , qi) = qk.

Let now w be the body of a composed chain with support

qi = qt0

w0
{ q f0

a1
−→ qt1

w1
{ q f1

a2
−→ . . .

ag

−→ qtg

wg

{ q fg . . .
aℓ
−→ qtℓ

wℓ
{ q fℓ

q f0
=⇒ qk

(7)

One can prove that w |= ψi,k for a suitable assignment. By the inductive hypothesis,

for every g = 0, 1, . . . , ℓ such that wg , εwe have wg |= ψtg, fg . Let A0
g, . . . , AN

g, B0
g,

. . . , BN
g, C0

g, . . ., CN
g be (the naturally shifted versions of) an assignment that sat-

isfies ψtg, fg . In particular this implies sg ∈ Atg , Next fg(sg, sg+1), and sg ∈ Atg ∪ B fg ,

for each g such that wg , ε. Then define Ah, Bh, Ch as follows. Let Ah include all Ah
g,

Bh include all Bh
g, Ch include all Ch

g. Also let Bk contain s0, Ck contain sℓ, and Atg
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contain sg whenever wg is empty; in particular this implies Q fg (sg, sg+1) for every

0 ≤ g < ℓ. Finally, e is defined as the length of w.

Then one can show that ψi,k is satisfied by checking every subformula. Starti and

Endk are satisfied trivially since Tree(0, s1, sℓ, |w|+ 1) holds. By the inductive hy-

pothesis, all other axioms are satisfied within every wg. Thus, one has only to prove

that they are satisfied in positions sg, for 0 ≤ g ≤ ℓ. We omit to consider all cases

where the antecedents are false.

• ϕpush is satisfied for x = 0 and y = s1 since we have a1(s1), #⋖ a1 Q f0(0, s1),

s1 ∈ At1 , and δpush(q f0 , a1) = qt1 .

• ϕshi f t is satisfied for all x = sg and y = sg+1 with 1 ≤ g < ℓ since we have

ag(sg), asg � asg+1
, Q fg(sg, sg+1), sg ∈ Atg , and δshift(q fg , ag) = qtg .

• ϕpop is satisfied for x = 0 and y = |w| + 1 since we have Tree fℓ , f0(0, s1,

sℓ, |w|+ 1), 0 ∈ Bk, ℓ ∈ Ck, and δpop(qtℓ , qi) = qk.

Hence w |= ψi,k for every w with a suitable support, and this concludes the proof. �

Lemma 2.6 ([71]). Let w be the body of a chain #[w]#. If w |= ψi,k then qi
w
{ qk in

A.

Proof. Let e = |w|, A0, . . . , AN , B0, . . . , BN , C0, . . . , CN be an assignment that satis-

fies ψi,k. In particular this implies 0 ∈ Ai ∧Nextk(0, |w|+ 1), and such i, k are unique

by definition of Starti and Endk. Then the following properties hold.

(i) For each 0 ≤ x ≤ |w|, there exists a unique index i such that Succi(x, x + 1)

holds true. This can be proved by induction on x by applying the formulae for

δpush and δshift.

(ii) For each x, y such that xy y, let z, v such that Tree(x, z, v, y) holds, then there

exists a unique pair of indices i, j such that Treei, j(x, z, v, y) holds, and there

exists a unique index k such that Nextk(x, y). This can be proved by induction

on the depth of the chain between positions x and y, by applying the formulae

for δpop and property (i).

Moreover, if Treei, j(x, z, v, y) holds, then Nextk(x, y) holds if and only if δpop(qi,

q j) = qk.
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Hence, by properties (i) and (ii), for each x, y such that x + 1 = y or x y y, there

exists a unique i such that Qi(x, y) holds true.

Now, for every g let tg be the index such that g ∈ Atg . tg is unique by property (i)

and in particular t0 = i.

The proof proceeds by induction on the depth h of w. Let h = 1 and w = a1a2 . . .aℓ

be the body of a simple chain. In this case tg is the unique index such that Succtg(g, g+

1). Then, by ϕpush bw with y = 1, we have δ(qt0, a1) = qt1 ; and by ϕshi f t bw with

1 ≤ g < ℓ, we have δshift(qtg , ag+1) = qtg+1
. Moreover, since Treetℓ,t0(0, 1, ℓ, ℓ+

1) ∧Nextk(0, ℓ+ 1), we get δ(qtℓ , qt0) = qk by property (ii). Hence we have built a

support of the type (6).

Let now be h > 1 and w = w0a1w1 . . .aℓwℓ. For 0 ≤ g ≤ ℓ, since sg y sg+1 ∨

sg+1 = sg + 1, by properties (i) and (ii) above there exists a unique index fg such that

Q fg (sg, sg+1) holds. Notice that wg = ε implies fg = tg, otherwise we have wg |=

ψtg, fg and, by the inductive hypothesis, there exists a support qtg

sg

{ q fg in A. Thus,

for every 0 ≤ g < ℓ, by applying ϕpush bw with y = sg+1 we get δ(q fg , ag+1) = qtg+1
.

Moreover, since Tree fℓ , f0(0, s1, sℓ, |w|+ 1)∧Nextk(0, |w|+ 1), by property (ii) above

we get δ(qtℓ , qi) = qk. Hence a support of type (7) has been built and this concludes

the proof. �





3
AU T O M ATA A N D L O G I C - BA S E D C H A R AC T E R I Z AT I O N O F

ωOPL S

Languages of infinite-length strings, called ω-languages, have been introduced to

model nonterminating processes; thus they are becoming more and more relevant

nowadays when most applications are “ever-running”, often in a distributed environ-

ment. The foundations of the theory ofω-languages are due to the pioneering work by

Büchi [24] and others [78, 74, 86, 19]. Büchi, in particular, investigated their main al-

gebraic properties in the context of finite state machines, pointing out commonalities

and differences w.r.t. the finite length counterpart [24, 96]. His work has then been

extended to larger classes of languages, among them, noticeably, the class of VPLs,

for which both an automata and logic-based characterization has been provided.

In this chapter we follow the same path for the class of OPLs. OPLs, in fact, are

not only useful to model programs, which are typically of finite length, but are also

well-suited to formalize possibly never-ending sequences of events for systems in

various contexts (operating systems, databases,. . . ). Herein, we introduce the basic

definitions of OPLs of infinite length strings and we characterize them in terms of a

class of automata and a MSO logic.

More precisely, this chapter is organized as follows. In Section 3.1 we first extend

to ω-languages a few basic notions given in Chapter 2 for finite-length languages and

generalize to OPAs the classical accepting criteria for ω-languages; then we show by

means of an example the usefulness of ωOPAs to model and analyze various system

types. Section 3.2 shows the relations between the various classes of ωOPLs classi-

fied according to the acceptance criteria defined in the previous section; Section 3.3

shows which closure properties are preserved and which ones are lost when moving

from finite length languages to the various classes of ω-languages; finally, Section 3.4

extends to ω-languages the characterization in terms of MSO logic that has been pre-

sented for OPLs in Chapter 2.

61
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3.1 basic definitions of ω-languages

We introduce some definitions that tailor the model of OPLs to its extension to ω-

languages. Preliminarily we state some properties related to chains that are relevant

when they occur within infinite words.

Definition 3.1. Let (Σ, M) be a precedence alphabet and w a word on Σ compatible

with M:

• A chain in w is maximal if it does not belong to a larger composed chain. In a

finite word w preceded and ended by #, only the outmost chain #[w]# is maxi-

mal.

• An open chain is a sequence of symbols b0 ⋖ a1 � a2 � . . . � an, for n ≥ 1.

• A letter a ∈ Σ in a word #w with w ∈ Σ
∗ compatible with M, is pending if it

does not belong to the body of a chain. In a word w preceded and ended by #,

there are no pending letters.

Furthermore, we generalize in a natural way to the infinite case the notion of string

compatible with an OPM: given a precedence alphabet (Σ, M), we say that an ω-word

w is compatible with the OPM M if every prefix of w is compatible with M. We denote

by LM ⊆ Σ
ω the ω-language comprising all infinite words x ∈ Σ

ω compatible with

M.

We adopt for OPAs operating on infinite strings the same acceptance criteria that

have been adopted in the literature for regular and other classes of languages.

Definition 3.2 (Büchi operator precedence ω-automaton). A nondeterministic Büchi

operator precedence ω-automaton (ωOPBA) is given by a tupleA = 〈Σ, M, Q, I, F,

δ〉, where Σ, Q, I, F, δ are defined as for OPAs; the operator precedence matrix M

is restricted to be a |Σ ∪ {#}| × |Σ| array, since ω-words are not terminated by the

delimiter #.

Configurations and (infinite) runs are defined as for operator precedence automata

on finite-length words. Let “∃ωi” be a shorthand for “there exist infinitely many i”
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and let ρ be a run of the automaton on a given word x ∈ Σ
ω. Define In f (ρ) =

{q ∈ Q | ∃ωi 〈βi, qi, xi〉 ∈ ρ , qi = q} as the set of states that occur infinitely

often in configurations in ρ. A run ρ of an ωOPBA on an infinite word x ∈ Σ
ω is

successful iff there exists a state q f ∈ F such that q f ∈ In f (ρ). A accepts x ∈ Σ
ω

iff there is a successful run of A on x. The ω-language recognized by A is L(A) =
{
x ∈ Σ

ω | A accepts x
}
.

The classical notion of acceptance for Muller automata can be likewise defined

for OPAs.

Definition 3.3 (Muller operator precedenceω-automaton). A nondeterministic Muller

operator precedence automaton (ωOPMA) is a tuple 〈Σ, M, Q, I,T , δ〉 where Σ, M,

Q, I, δ are defined as for ωOPBAs and T is a collection of subsets of Q, T ⊆ ℘(Q),

called the table of the automaton.

A run ρ of an ωOPMA on an infinite word x ∈ Σ
ω is successful iff In f (ρ) ∈ T , i.e.

the set of states occurring infinitely often in the configurations of ρ is a set in the table

T .

Definition 3.4. A nondeterministic Büchi operator precedence automaton accepting

with empty stack (ωOPBEA) is a variant of ωOPBA where a run ρ is successful iff

there exists a state q f ∈ F such that configurations with stack ⊥ and state q f occur

infinitely often in ρ.

Thus, a run of an ωOPBEA is successful iff the automaton traverses final states

with an empty stack infinitely often. We will use the following simple normal form

for ωOPBEA.

Definition 3.5. An ωOPBEA is in normal form if the set of states is partitioned into

states that are always visited with empty stack and states that are never visited with

empty stack.

For all above classes of automata, say, ω-XXX, their deterministic counterpart ω-

DXXX is defined as usual.

Example 3.1 (Managing interrupts). Consider as an example a software system that

is designed to work forever and must serve requests issued by different users but
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subject to interrupts. Precisely, assume that the system manages two types of “normal

operations” a and b, and two types of interrupts, with different levels of priority.

We model its behavior by introducing an alphabet with two pairs of calls and re-

turns, calla, callb, reta, retb, for operations a and b and symbols int1, serve1 denot-

ing the lower level interrupt and its serving, respectively, and int2, serve2 denoting

the higher level ones. Not only both interrupts discard possible pending calls not

already matched by corresponding returns, but also the serving of a higher priority

interrupt erases possible pending requests for lower priority ones, but not those that

occurred before the higher priority interrupt just served: thus, a sequence such as

int1int2 int1 int1 serve2 should produce popping the second and third int1 without

matching them, to match immediately int2 with serve2, but would leave the first oc-

currence of int1 still pending; the next serve1, if any, would match it, whereas possi-

ble further serve1 would remain unmatched. Furthermore neither calls to, nor returns

from, operations a and b can occur while any interrupt is pending.

Figure 17 shows an OPM that assigns to sequences on the above alphabet a struc-

ture compatible with the described priorities. Then, a suitable ω-automaton can spec-

ify further constraints on such sequences; for instance the ωOPBA of Figure 18 re-

stricts the set of ω-sequences compatible with the matrix by imposing that all int2 are

eventually served by a corresponding serve2; furthermore lower priority interrupts are

not just discarded when a higher priority one is pending but they are simply disabled,

i.e. they are not accepted as a correct system behavior.

For instance, the ω-word calla int1 int2 int1 . . . is not accepted by the ωOPBA be-

cause int1 is not accepted from state q2 reached after reading int2; similarly, calla int1

int2 serve2 calla is rejected since, after serving int2 the automaton would be back in

state q1 with int1 pending (the prefix calla int1 int2 serve2 is compatible with the OPM

and int1 is pending therein) but no calla is admitted in q1 since there is no precedence

relation between int1 and calla. On the contrary the ω-word calla int1(int2 serve2

serve1 calla calla reta)ω is accepted: in fact the automaton reaches q1 after reading

calla (and popping it) followed by int1; then, after receiving and serving the higher

priority interrupt, it would serve the pending instance of int1 returning to q0; from this

point on it would enter an infinite loop during which it would process the input string
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(calla calla reta int2 serve2 serve1)
ω traversing the states q0

calla
−→ q0

calla
−→ q0

reta
−→ q0

q0
=⇒ q0

int2
−→ q2

serve2
−−→ q2

q2
=⇒ q0

q0
=⇒ q0

serve1
−→ q1

q0
=⇒ q0 leaving the first calla

and serve1 unmatched. Notice that all finite prefixes calla int1(int2 serve2 serve1

calla calla reta)n int2 serve2 serve1 calla calla, with n > 0, end with the open chain

calla ⋖ calla. Finally, observe that the automaton would accept some strings beginning

with serve1 which might appear somewhat counterintuitive but is consistent with the

general philosophy of admitting unmatched elements; it would be easy, however, to

forbid such a string beginning.

We call Linterrupt the language recognized by this ωOPBA.

calla reta callb retb int1 int2 serve1 serve2

calla ⋖ � ⋖ ⋗ ⋗ ⋗ ⋗

reta ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗

callb ⋖ ⋖ � ⋗ ⋗ ⋗ ⋗

retb ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗

int1 ⋖ ⋖ � ⋗

int2 ⋖ ⋖ ⋖ �

serve1 ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗

serve2 ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗

# ⋖ ⋖ ⋖ ⋖ ⋖

Figure 17.

A more sophisticated policy that could easily be formalized by means of a suitable

ω-automaton is a “weak fairness requirement” imposing that, after a first calla not

matched by reta but interrupted by a int1 or int2, a second calla cannot be interrupted

by a new lower priority interrupt int1 (but can still be interrupted at any time by higher

priority ones).

This example too retains some typical features of VPLs, namely the possibility of

having unmatched calls or returns, but it strongly generalizes them in that unmatched

elements can occur in various places of the whole string, e.g., due to the occurrence

of interrupts or other exceptional events.
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q0

q1 q2

calla, callb

reta, retb

q0

int1, serve1 int2

int1

serve1

q1

int2

q0

int2

serve1

serve2

q2

q0

q1

Figure 18.: ωOPBA recognizing the language of Example 3.1.

Further examples illustrating the modeling capabilities of OPLs both on finite and

infinite strings are reported in [82].

3.2 relationships among classes of ωopls

In this section we describe the relationships among languages recognized by the dif-

ferent classes of operator precedence ω-automata and visibly pushdown ω-automata

(with Büchi acceptance criterion), denoted asωBVPA. Such relations are summarized

by the diagram in Figure 19, where solid lines denote strict inclusion and dashed lines

link classes that are not comparable.

In the following, we first present the proofs of the weak containment relations

holding among the various classes: most of them follow trivially from the definitions,

except for the equality between L(ωOPBA) and L(ωOPMA). Then we will prove

strict inclusions and incomparability relations by means of a suitable set of examples

that separate the various classes.
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L(ωOPBA) ≡ L(ωOPMA)

L(ωOPBEA)

L(ωDOPBEA)

L(ωDOPMA)

L(ωDOPBA)

L(ωBVPA)

L(ωDBVPA)

+

Figure 19.: Containment relations for ωOPLs. Solid lines denote strict inclusion of

the lower class in the upper one; dashed lines link classes which are not

comparable. It is still open whetherL(ωOPBEA) ⊆ L(ωDOPMA) or not.

3.2.1 Weak inclusion results

Theorem 3.1. The following inclusion relations hold:

L(ωBVPA) ⊆ L(ωOPBA), L(ωDBVPA) ⊆ L(ωDOPBA).

Proof. LetA = 〈QA, IA, ΓA, δA, FA〉 be an ωBVPA7 over a partitioned alphabet Σ =

(Σc, Σr, Σi). An ωOPBA B that recognizes the same language as A is defined in a

straightforward way as follows: B = 〈Σ, M, QB, IB, δB, FB〉 where

• QB = QA × ΓA,

• IB = IA × {⊤},

• FB = FA × ΓA,

7 Among the many equivalent definitions for VPAs we adopt here the original one in [10].
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• M is the precedence matrix induced by the partition on Σ:

Σc Σr Σi

Σc ⋖ � ⋖

Σr ⋗ ⋗ ⋗

Σi ⋗ ⋗ ⋗

# ⋖ ⋖ ⋖

• the transition function δ : QB × (Σ ∪ QB) → ℘(QB) is defined as follows,

where q1, q2 ∈ QA.

The push transition δBpush : QB × Σ→ ℘(QB) is defined by:

– for a ∈ Σc, δBpush(〈q1, γ1〉, a) = {〈q2, γ2〉 | (q1, a, q2, γ2) ∈ δA}

– for a ∈ Σi, δBpush(〈q1, γ〉, a) = {〈q2, γ〉 | (q1, a, q2) ∈ δA}

– for a ∈ Σr , δBpush(〈q1,⊤〉, a) = {〈q2,⊤〉 | (q1, a,⊤, q2) ∈ δA}.

The shift transition δBshift : QB × Σ → ℘(QB) is defined by

– for a ∈ Σr, δBshift(〈q1, γ〉, a) = {〈q2, γ〉 | (q1, a, γ, q2) ∈ δA}, i.e., the

ωOPBA simulates the pop move of the ωBVPA by setting, as state q2, a

state reached by the ωBVPA while reading the return symbol a.

The pop transition δpop : QB × QB → ℘(QB) is defined as follows:

– δBpop(〈q1, γ1〉, 〈q2, γ2〉) = {〈q1, γ2〉}, i.e., restores the state reached by

the ωBVPA after its pop move.

If the original ωBVPA is deterministic, so is the ωOPBA obtained with the above

construction, and this yields the second relation. �

Proposition 3.1. The following inclusion relations hold:

L(ωOPBEA) ⊆ L(ωOPBA),

L(ωDOPBEA) ⊆ L(ωDOPBA) ⊆ L(ωDOPMA) ⊆ L(ωOPMA).
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Proof. The first inclusion follows from the definition of ωOPBA and ωOPBEA in

normal form: given an ωOPBEA whose set of states is partitioned into states that are

always visited with empty stack and states that are never visited with empty stack,

we can define an equivalent ωOPBA that has as final states the final states of the

ωOPBEA that are always visited with empty stack.

The inclusion follows similarly for the deterministic counterparts of these classes

of ωOPAs, since this ωOPBA is deterministic if the ωOPBEA is deterministic.

About the relations involving Muller automata, L(ωDOPBA) ⊆ L(ωDOPMA) de-

rives form the fact that any ωDOPBA B = 〈Σ, M, Q, q0, F, δ〉 is equivalent to an

ωDOPMA A = 〈Σ, M, Q, q0, T , δ〉 whose acceptance component T consists of all

subsets of Q including some final state of B, namely T = {P ⊆ Q | P∩ F , ∅}; the

last relation is obvious. �

In the case of classical finite-state automata on infinite words, nondeterministic

Büchi automata and nondeterministic Muller automata are equivalent and define the

class of ω-regular languages. Traditionally, Muller automata have been introduced

to provide an adequate acceptance mode for deterministic automata on ω-words. In

fact, deterministic Büchi automata cannot recognize all ω-regular languages, whereas

deterministic Muller automata are equivalent to nondeterministic Büchi ones [96].

For VPAs on infinite words, instead, the paper [11] showed that the classical de-

terminization algorithm of Büchi automata into deterministic Muller automata is no

longer valid, and deterministic Muller ωVPAs are strictly less powerful than nonde-

terministic Büchi ωVPAs. A similar relationship holds for ωOPAs too.

Theorem 3.2. L(ωOPBA) = L(ωOPMA).

Proof. Each ωOPBA is equivalent to an ωOPMA having the same underlying OPA

and acceptance component T consisting of all subsets of states including some final

state of B (as for their deterministic counterpart, see proof of Proposition 3.1).

Conversely, anyω-language recognized by an ωOPMAA = 〈Σ, M, Q, I,T , δ〉 can

be recognized by an ωOPBA B with the same precedence matrix and with O(s2s)
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states, where s is the number of states of A. We can assume that T is a singleton.

Indeed, L(A) can be expressed as

L(A) =
⋃

T∈T

L(AT ), whereAT = 〈Σ, M, Q, I, {T }, δ〉.

Since L(ωOPBA) is closed under union (a property that will be proved later, with

Theorem 3.4), if each language L(AT ) is accepted by an ωOPBA, then L(A) too is

accepted by an ωOPBA.

Thus, let T be the singleton {T }. Let us build an ωOPBA B = 〈Σ, M, Q̃, I, F, δ̃〉

that accepts the same language as A as follows. Q̃ includes elements of two types:

states ofA, and states (q, R) where q ∈ Q and R ⊆ Q is a set (that we informally call

“box”), which will be used to test whether the run ofA is successful.

Intuitively, the automaton B simulates A, reading the input string x, along a se-

quence of states q, and then guesses nondeterministically the point after which a

successful run ρ of A on x stops visiting the states that occur only finitely often in

the run, and ρ begins to visit all and only the states in the set T . After this point B

switches to the states of the form (q, R) and collects in R the states visited byA dur-

ing the run, “emptying the box” as soon as it contains exactly the set T . Every time

it empties the box, B resumes collecting the states that A will visit from that point

onwards. If the final states of B are defined as those ones when it collects exactly the

set T , then B will visit infinitely often these final states iff A visits all and only the

states in T infinitely often.

More formally, B is defined by:

• Q̃ = Q ∪ (Q × ℘(Q)),

• F = {(q, T ) | q ∈ T },

• δ̃ : Q̃ × (Σ ∪ Q̃) → ℘(Q̃), where the push function is defined by:

– δ̃push(q, a) = δpush(q, a)∪ {〈p, {p}〉 | p ∈ δpush(q, a)} ∀q ∈ Q, a ∈ Σ

– δ̃push(〈q, R〉, a) =



{
〈p, R∪ {p}〉 | p ∈ δpush(q, a)

}
if R , T{

〈p, {p}〉 | p ∈ δpush(q, a)
}

if R = T

∀q ∈ Q, R ⊆ Q, a ∈ Σ.
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The shift function is defined analogously.

The pop function δ̃pop : Q̃ × Q̃ → ℘(Q̃) is defined by:

– δ̃pop(q1, q2) = δpop(q1, q2) ∪ {〈p, {p}〉 | p ∈ δpop(q1, q2)},

∀q1, q2 ∈ Q

– δ̃pop(〈q1, R〉, q2) =



{
〈p, R∪ {p}〉 | p ∈ δpop(q1, q2)

}
if R , T{

〈p, {p}〉 | p ∈ δpop(q1, q2)
}

if R = T

– δ̃pop(〈q1, R1〉, 〈q2, R2〉) =



{
〈p, R1 ∪ {p}〉 | p ∈ δpop(q1, q2)

}
if R1 , T{

〈p, {p}〉 | p ∈ δpop(q1, q2)
}

if R1 = T

∀q1, q2 ∈ Q, R, R1, R2 ⊆ Q.

First, we show that L(A) ⊆ L(B). Let x ∈ L(A), and let ρ be a successful run

on x. There exists a finite prefix v ∈ Σ
∗ of x = vu1u2 . . . such that the infinite path

followed by A after reading v (i.e., on the infinite word u1u2 . . . ) visits all and only

states in T infinitely often. Thus, the run ρ can be written as:

ρ = 〈α0 = ⊥, q0, x = vu1u2 . . .〉
∗
⊢ 〈α|v|, q|v|, u1u2 . . .〉

+
⊢ . . .

+
⊢ 〈αi, qi, ui . . .〉

+
⊢ . . .

where {qi | i > |v|} = T and q0 ∈ I. Then, there is a successful run ρ̃ of B on the same

word, which follows singleton states ofA while it reads v

ρ̃ = 〈β0 = α0 = ⊥, q0, x = vu1u2 . . .〉
∗
⊢ 〈β|v| = α|v|, q|v|, u1u2 . . .〉

and then switches to states augmented with a box: 〈β|v| = α|v|, q|v|, u1u2 . . .〉 ⊢

〈β|v|+1 = α|v|+1, 〈p, {p}〉 , ũ1u2 . . .〉, where 〈α|v|, q|v|, u1u2 . . .〉 ⊢ 〈α|v|+1, p, ũ1u2 . . .〉

and u1 = aũ1.

Since after this pointA visits each state in T and only these states infinitely often,

Bwill reach infinitely often final states (q, T ) ∈ F, emptying infinitely often its box as

soon as it gets full, and resuming the collection of states therein with the subsequent

state in the run.

Conversely, we show that L(B) ⊆ L(A). Let x ∈ Σ
ω be an infinite word in L(B).

Define the projection π : Q∪ (Q × ℘(Q))→ Q as π(q) = q and π(〈q, R〉) = q,∀q ∈
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Q, R ⊆ Q. Given a run ρ̃ of the automatonB, let π(ρ̃) be the natural extension of π on

a run.

By construction, if ρ̃ is a run of B on an ω-word, then π(ρ̃) = ρ is a run forA on

the same word.

Now, let ρ̃ be a successful run forB on x; ρ = π(ρ̃) is a run forA on x. Since only the

states augmented with a box are final states, then after a sequence (possibly empty)

of singleton states initially traversed by B, the automaton will definitively visit only

states of the form (q, R) (in fact, no singleton state is reachable again from these

states).

By induction on the number of final states reached by B along its run, it can be

proved that, for each pair of final states consecutively reached by B, say (qFi , Ri) and

(qFi+1
, Ri+1), the portion of the run visited between them, say ρ̃i, is such that the

set of states reached along π(ρ̃i) equals exactly T . Finally, since final states in ρ̃ are

visited infinitely often, the run π(ρ̃) is successful forA. �

3.2.2 Strict inclusion and incomparability results

To prove the strict inclusion and incomparability relations summarized in Figure 19,

we introduce some simple examples of ω-languages, whose membership properties

are summarized in Table 1.

1. For Σ = {a, b}, La∞ = {x ∈ Σ
ω : x contains an infinite number of occurrences of

letter a} is recognized by the ωDOPBEA depicted in Figure 20.

a b

a ⋗ ⋗

b ⋗ ⋗

# ⋖ ⋖

q0 q1

a

b

q0, q1

b

a

q0, q1

Figure 20.: ωDOPBEA, with its OPM, for La∞.
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La−finite < ∈ < ∈ < ∈

La∞ ∈ ∈

LωDyck-pr(c,r) ∈ ∈ ∈

Lrepbsd < < < ∈ ∈

La2abseq < < ∈ ∈ ∈

Lω
abseq

∈

Linterrupt ∈ ∈ ∈ ∈ ∈ < <

Table 1.: Membership properties of some ω-languages, proved in Section 3.2.2 or

consequences of inclusion relations proved in previous sections. The table

displays only the relations needed to prove the results in this and the follow-

ing section.

2. La−finite = {x ∈ Σ
ω : x contains a finite number of occurrences of a}, i.e.,

the complement of La∞, is clearly recognized by an ωDOPMA and by an

ωOPBEA, but cannot be recognized by any ωDOPBA. The proof of this latter

fact resembles the classical proof (see [96]) that deterministic Büchi automata

are strictly weaker than nondeterministic Büchi ones.

3. For Σ = {c, r}, let LωDyck-pr(c,r) be the language of ω-words composed by an

infinite sequence of finite-length words belonging to the Dyck language with

pair c, r with possibly pending returns, i.e. letters r not matched by any previous

corresponding letter c. LωDyck-pr(c,r) is recognized by the ωDOPMA and the

ωDOPBEA whose state graph is depicted in Figure 21 and with acceptance

component defined, respectively, by the table T = {{q0}, {q0, q1}} and the set

of final states F = {q0}.

4. For Σ = {c, r}, let Lrepbsd be the language (studied in [11]) consisting of ω-

words x on Σ such that x has only finitely many pending calls, i.e. occurrences

of letter c not matched by any subsequent corresponding letter r (repbsd stands
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c r

c ⋖ �

r ⋗ ⋗

# ⋖ ⋖

q0 q1

r

q0

c

q0

c

r

q1

Figure 21.: ωDOPMA and ωDOPBEA recognizing LωDyck-pr(c,r).

for repeatedly bounded stack depth). Lrepbsd is accepted by an ωOPBA, but

cannot be accepted by any ωOPBEA.

Intuitively, an ωOPBEA accepts a word iff it reaches infinitely often a final con-

figuration with empty stack reading the input string; however, the automaton is

never able to remove all the input symbols piled on the stack since it cannot pop

the pending calls interspersed among the correctly nested letters c, otherwise it

would either introduce conflicts in the OPM or it would not be able to verify

that they are in finite number.

More formally, assume by contradiction that there is an ωOPBEAA = 〈Σ, M,

Q, I, F, δ〉 recognizing Lrepbsd. M must satisfy the following constraints: since

• rω ∈ Lrepbsd, then M#r = {⋖} and Mrr = {⋗},

• crω ∈ Lrepbsd, then M#c = {⋖}, and either Mcr = {⋗} or Mcr = {�},

• r(cr)ω ∈ Lrepbsd, thus if c � r, Mrc = {⋗},

• c(cr)ω ∈ Lrepbsd, thus if c � r, Mcc , {⋖}

Hence, M must comply with one of the matrices M1 or M2 shown in Figure 22.

Let w = crc2r2c3r3 . . . cnrn . . . ∈ Lrepbsd and let ρ be an accepting run ofA on

w starting from a state q0 ∈ I. The proof that Lrepbsd < L(ωOPBEA) is based

on the two straightforward remarks:
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M1 c r

c ⋗ �

r ⋗ ⋗

# ⋖ ⋖

M2 c r

c ◦ ⋗

r ◦ ⋗

# ⋖ ⋖

Figure 22.: Matrices for Lrepbsd, where ◦ ∈ {⋖,⋗,�}.

• If, along a run, an ωOPA (or also an OPA) reaches a state with an empty

stack, the subsequent suffix of the run does not depend on the transitions

performed until that state.

• Since Q is finite, there exist p, q ∈ Q, and an infinite set of indexes E ⊆

N \ {0, 1, 2} such that, for each i ∈ E, ρ has a prefix: q0
vi
{ p

wi
{ q, where

vi = c1r1 . . . ci−2ri−2ci−1ri−2 and wi = rcir and, given the precedence

relations in M1 and M2, both p and q are reached with an empty stack,

just before performing a push move while reading the letter r in w that

follows, respectively, vi and wi. For each i ∈ E, let ρi be the finite factor

of ρ given by p
wi
{ q.

Let J ⊆ E be the set of indexes in E such that, ∀i ∈ J, ρi visits a final state with

empty stack. We can build a run ρ′, which differs from ρ in that

• for every i ∈ E \ J, the factor ρi is replaced by a ρ j for some j ∈ E, with

j > i,

• for every i ∈ J, the factor ρi is replaced by a ρ j with i < j ∈ J if |J| = ∞,

or i < j ∈ E if |J| < ∞.

ρ′ is an accepting run in A, along which the automaton reads a word with

infinitely many pending calls, which does not belong to Lrepbsd, and this is a

contradiction.

Furthermore, Lrepbsd is not recognizable by any ωDOPMA. The proof of this

fact resembles the analogous proof in [11]; indeed, that proof is essentially

based on topological properties of the state-graph of the automata and it is

general enough to adapt to both ωVPAs and ωOPAs.
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5. For Σ = {a, b}, let Labseq = {akbk | k ≥ 1} and La2abseq = {x ∈ Σ
ω | x =

a2Lω
abseq
}. Language La2abseq is recognized by an ωDOPBA, but it is not recog-

nized by any ωOPBEA (nor a fortiori by any ωDOPBEA).

Indeed, words in Labseq can be recognized only with the OPM M depicted in

Figure 23: any other OPM will prevent verifying that the number of as equals

that of bs in subwords belonging to Labseq. Since a ⋖ a, an ωOPBEA piles up

on the stack the first sequence a2 of a word and cannot remove it afterwards;

hence it cannot empty the stack infinitely often to accept a string in La2abseq.

There is, however, an ωDOPBA (and thus an ωDOPMA) that recognizes such

a language: it is shown in Figure 23. Notice also that Lω
abseq

can be recognized

by an ωOPBEA, with OPM M and with state graph depicted in Figure 23 but

with state q2 instead of q0 as initial state.

a b

a ⋖ �

b ⋗ ⋗

# ⋖

q0 q1 q2 q3

q4

a a a

a

b

b

q3

q0

Figure 23.: An ωDOPBA recognizing language La2abseq.

3.3 closure properties

Table 2 displays the closure properties of the various families ofω-languages. In order

to prove them, we first introduce some preliminary constructions in Section 3.3.1.

Then in Section 3.3.2 we present the proofs for L(ωOPBA); in particular closure

under complement and concatenation are the cases that require novel investigation
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techniques w.r.t. previous literature. In Section 3.3.3 we prove the closure properties

for other classes of ωOPA.
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Intersection Yes Yes Yes Yes Yes Yes

Union Yes Yes Yes Yes Yes Yes

Complement No No No Yes Yes Yes

L1 · L2 No No No No Yes Yes

Table 2.: Closure properties of families of ω-languages. (L1 · L2 denotes the concate-

nation of a language of finite-length words L1 with an ω-language L2).

3.3.1 Preliminary properties and constructions

The following constructions will be exploited to prove several closure properties. In-

deed, they would be useful even to provide alternative proofs of the same properties in

the case of finite length languages w.r.t. those that have been introduced in literature

[34, 35] by referring to OPGs rather than OPAs.

We begin by introducing the deterministic product of transition functions, defined

by extending the usual construction for finite state automata. Such a definition is

meaningful when applied to automata that share the same precedence matrix, because

they perform the same type of move (push/shift/pop) while reading the input word.

Definition 3.6. Let Q1 and Q2 be two disjoint sets of states of two deterministic

automata sharing the same OP alphabet and let δ1 and δ2 be their transition functions.
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Their product state Q is defined as Q = Q1 ×Q2 and their product transition function

δ : Q × (Σ ∪ Q)→ Q is defined as follows, where q1, q2, p1, p2 ∈ Q, a ∈ Σ:

δpush((q1, q2), a) = (δ1push(q1, a), δ2push(q2, a))

δshift((q1, q2), a) = (δ1shift(q1, a), δ2shift(q2, a))

δpop((q1, q2), (p1, p2)) = (δ1pop(q1, p1), δ2pop(q2, p2))

Clearly |Q| = |Q1| · |Q2|.

Next, we introduce the definition of OP Büchi ω-transducers, which will be needed

in some technical steps; other types of ω-transducers could be defined similarly.

Definition 3.7 (Operator precedence (Büchi) ω-transducer). An operator precedence

ω-transducer is defined in the usual way as a tuple T = 〈Σ, M, Q, I, F, O, δ, η〉where

Σ, M, Q, I, F are defined as in Definition 2.7, O is a finite set of output symbols, the

transition function δ and the output function η are defined by 〈δ, η〉 : Q × (Σ ∪Q) →

℘F(Q×O∗), where ℘F(Q×O∗) denotes the set of finite subsets of Q×O∗, and 〈δ, η〉

can be seen as the union of three functions, 〈δshift, ηshift〉 : Q × Σ → ℘F(Q × O∗),

〈δpush, ηpush〉 : Q × Σ→ ℘F(Q ×O∗) and 〈δpop, ηpop〉 : Q × Q→ ℘F(Q ×O∗).

A configuration of the ω-transducer is denoted 〈β, q, w〉 ↓ z, where C = 〈β, q, w〉

is the configuration of the underlying ωOPBA and the string after ↓ represents the

output of the automaton in the configuration. The transition relation ⊢ is naturally

extended fromωOPBAs, by concatenating the output symbols produced at each move

with those generated in the previous moves. Runs and acceptance by the transducer

are defined as in the corresponding ωOPBA.

The transduction τ(x), x ∈ Σ
ω, generated by T is the set of ω-strings produced

during its nondeterministic successful runs over x.

The next statement is propaedeutic to many constructive proofs of closure prop-

erties, where the operands are in general OPAs with compatible but not identical

matrices, and the result’s matrix must often be the union of the two original ones. If

A is an OPA with precedence matrix M and M′ ⊇ M, then clearlyA works also over

M′ but the language recognized by A over M′ is not necessarily the same, since the

presence of precedence relations in M′ that are not included in M may allow for suc-
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cessful runs on some words that are, instead, not successful in the original OPA. The

next statement proves, however, that the precedence matrix of an OPA can always

be extended (up to completion), provided that conflict-freedom is preserved, without

affecting the recognized language.

Statement 3.1 (Extended matrix normal form). Let A = 〈Σ, M, Q, I, F, δ〉 be an

OPA (over finite-length or omega words) with |Q| = s. For any conflict-free OPM

M′ ⊇ M, there exists an OPA with OPM M′ that recognizes the same language asA

and has O(|Σ|2s) states.

Proof. First consider finite-length words. The new OPA A′ = 〈Σ, M′, Q′, I′, F′, δ′〉

is derived fromA in the following way:

• Q′ = Σ̂ × Q × Σ̂, where Σ̂ = (Σ ∪ {#}), i.e. the first component of a state

is the lookback symbol, the second component is a state of A and the third

component is the lookahead symbol,

• I′ = {#} × I × {a ∈ Σ̂ | M#a , ∅},

• F′ = {#} × F × {#},

• δ′ : Q′ × (Σ ∪Q′)→ ℘(Q′) is the transition function defined as follows.

Let a ∈ Σ̂, b ∈ Σ, q ∈ Q. The push transition δ′
push

: Q′ ×Σ → ℘(Q′) is defined

by:

δ′push(〈a, q, b〉, b) = {〈b, p, c〉 | p ∈ δpush(q, b)∧Mab = {⋖} ∧Mbc , ∅},

The shift transition δ′
shift

: Q′ × Σ → ℘(Q′) is defined analogously:

δ′shift(〈a, q, b〉, b) = {〈b, p, c〉 | p ∈ δshift(q, b)∧Mab = {�} ∧Mbc , ∅},

The pop transition δ′pop : Q′ ×Q′ → ℘(Q′) is defined by:

δ′pop(〈a1, q1, a2〉, 〈b1, q2, b2〉) =

〈b1, q3, a2〉

∣∣∣∣∣∣∣
q3 ∈ δpop(q1, q2)∧

Ma1a2
= {⋗} ∧Mb1a2

, ∅

 ,
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where a1, b2 ∈ Σ, a2, b1 ∈ Σ̂, q1, q2 ∈ Q.

Clearly, the OPAA′ has OPM M′ and accepts the same language asA.

This construction can be naturally extended to ωOPAs: in particular, for ωOPBA

the set of final states ofA′ is F′ = Σ̂ × F ×Σ, i.e. a run ofA′ is accepting iff it visits

infinitely often final states of A, independently of the lookback and the lookahead

symbols considered for these states. For ωOPBEA this acceptance component may

be further refined as F′ = {#} × F × Σ. For ωOPMA, T ′ = {t | t = A1 × S × A2,

S ∈ T , A1 ⊆ Σ̂, A2 ⊆ Σ} where T ⊆ ℘(Q) is the table of A. Furthermore, the

transformation preserves determinism. �

OPA’s version without # as lookahead

In this section we illustrate a new version of OPAs that do not rely on the end-marker

# for the recognition of a finite length word.

The new model is defined by slightly modifying the semantics of the transition

relation and of the acceptance condition of original OPAs, in such a way that a string

is accepted by an automaton if it reaches a final state right at the end of the parsing

of the whole word, and does not perform any pop move determined by the ending

delimiter # to empty the stack; thus the automaton stops just after having pushed on

the stack (or updated the top of the stack symbol with) the last symbol of the string.

In this alternative characterization of OPAs, the semantics of the transition relation

differs from the classical definition in that, once a configuration with the end-marker

as lookahead is reached, the computation cannot evolve in any subsequent configura-

tion, i.e., a pop move C1 ⊢❈#
C2 with C1 = 〈Π[a, p], q, x#〉 is performed only if

x , ε (where symbol ⊢
❈#

denotes a move according to this variation of the semantics

of the transition relation). The language accepted by the automaton according to this

new semantics (denoted as L
❈#
) is the set of words:

L
❈#
(A) = {x | 〈⊥, qI, x#〉

∗
⊢
❈#
〈⊥γ, qF , #〉, qI ∈ I, qF ∈ F, γ ∈ Γ

∗}

This new version of the automaton, called no-#-look-aheadOPA (❆#OPA) is closer to

the traditional acceptance criterion of general pushdown automata; we emphasize,
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however, that, unlike normal acceptance by final state of a pushdown automaton,

which can perform a number of ε-moves after reaching the end of a string and ac-

cepts it if just one of the visited states is final, this type of automaton cannot perform

any (pop, i.e., ε-) move when it reaches the end of the input string. The following

lemmata (Lemma 3.1 and Lemma 3.2) prove the equivalence between the original

version of OPAs and the new one.8

Lemma 3.1. Let A1 be a nondeterministic OPA defined on an OP alphabet (Σ, M)

with s states. Then there exists a nondeterministic ❆#OPA A2 on (Σ, M) and O(s2)

states such that L(A1) = L
❈#
(A2).

We first explain informally the rationale of the simulation ofA1 byA2, with the aid

of an example; then we formally define its construction and prove their equivalence.

Consider a word of finite length w compatible with M: the string #w can be factored

in a unique way as a sequence of bodies of chains and pending letters as

# w = # w1a1w2a2 . . .wnan

where ai−1 [wi]ai are maximal chains and each wi can be possibly missing, with a0 = #

and ∀i : 1 ≤ i ≤ n − 1 ai ⋖ ai+1 or ai � ai+1. Let i j ∈ {1, 2, . . . , n}, 1 ≤ j ≤ k, k ≥ 1

be indexes such that

#⋖ai1 = a1 � . . . � ai2−1⋖ai2 � . . . � ai3−1 ⋖ai3 � . . . � aik−1 ⋖aik � aik+1 . . . � an

(8)

When reading w, the symbols of the string are progressively put on the stack, either by

a push move or by a shift move, and, whenever a chain wi is recognized, the symbol

on the top of the stack is popped. Hence, after reading w the stack contains only the

symbols # ai2−1 ai3−1 . . . an that are the ending symbols of the open chains in the

sequence (8).

When w is read by a standard OPA, the automaton performs a series of pop moves

at the end of the string due to the presence of the end delimiter #. These moves

progressively empty the stack. The run is accepting if it leads to a final state after all

pop moves.

8 Only Lemma 3.1 will be used in Section 3.3.2 but we include both of them for completeness.
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A nondeterministic automaton that, unlike standard OPAs, does not resort to the

end delimiter # for the recognition of a string must guess nondeterministically the

ending point of each open chain and guess how, in an accepting run, the states in

these points would be updated if the final pop moves were progressively performed.

The automaton must behave as if, at the same time, it simulates two snapshots of

the accepting run of a standard OPA: a move during the reading of the input, and a

step during the final pop transitions which will later on empty the stack, leading to a

final state. To this aim, the states of a standard OPA are augmented with an additional

component.

A ❆#OPA A2 equivalent to a given OPA A1 thus may be defined so that, after

reading each prefix of a word, it reaches a final state whenever, if the word were

completed in that point with #,A1 could reach an accepting state with a sequence of

pop moves. In this way,A2 can guess in advance which words may eventually lead to

an accepting state of A1, without having to wait until reading the delimiter # and to

perform final pop moves. In other words, it simulates the possible look-ahead of the

# delimiter. Before going into the details of the construction, the following example

illustrates the above intuitive description.

Example 3.2. We refer to the computation of the OPA in Example 2.3. Consider the

input word of this computation without the end-marker #. The sequence of pending

letters in the input word corresponds to three open chains, according to sequence (8),

with starting symbols +, ×, L, respectively.

Figure 24 shows the configuration just before looking ahead at the symbol #. The

states depicted within a box are those placeholders that an equivalent ❆#OPA should

fill up to guess in advance the last pop moves q3 = q3

q0
=⇒ q3

q1
=⇒ q3

q1
=⇒

q3 ∈ F1 of the accepting run.

〈 ⊥ [+, q1] [×, q1] [M, q0] , q3 , #〉

q3 ∈ F1 q3 q3 q3

Figure 24.: Configuration of the OPA of Example 2.3 just before looking ahead at #.
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The corresponding configuration of the ❆#OPA is depicted in Figure 25.

〈 ⊥ [+, 〈q1, q3 〉] [×, 〈q1, q3 〉] [M, 〈q0, q3 〉] , 〈q3, q3 〉 , #〉

Figure 25.: Configuration of the ❆#OPA described in Example 3.2.

We now proceed with the construction of A2 and the proof of its equivalence with

A1.

Proof. of Lemma 3.1

LetA1 be 〈Σ, M, Q1, I1, F1, δ1〉 and defineA2 = 〈Σ, M, Q2, I2, F2, δ2〉 as follows.

• Q2 = {B, Z, U} × Q1 ×Q1.

Hence, a state 〈x, q, p〉 of A2 is a tuple whose first component denotes a non-

deterministic guess for the next input symbol to be read, i.e., whether it is a

pending letter which is the initial symbol of an open chain (Z), or a pending

letter within an open chain other than the first one (U), or a symbol within

a maximal chain (B). The second component of a state represents the current

state q in A1. To illustrate the meaning of the last component, consider an ac-

cepting run of A1 and let q be its current state just before a push move to be

performed when reading the first symbol of an open chain; also, let r be the

state reached by such push move and s be the state of the automaton when

the stack element pushed by this move (possibly updated by subsequent shifts)

is going to be popped leading to a state p. Then, in the same position of the

corresponding run of A2, the current state would be 〈Z, q, p〉 ∈ Q2 and state

〈x, r, s〉 ∈ Q2 will be reached byA2 (x being nondeterministically anyone of B,

Z, U); in other words, the last component p represents a guess about the state

that will be reached inA1 when the stack element pushed by this move will be

popped. Hence we can consider only states 〈Z, q, p〉 ∈ Q2 such that s
q

=⇒ p

in A1 for some s ∈ Q1. In all the other positions the last component is simply

propagated.

For instance, Figure 26 shows an accepting run on the word n + n× Ln + nM of

a ❆#OPA that is equivalent to the OPA of Example 2.3. Note that before reading
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stack state current input

⊥ 〈B, q0 , q3〉 n + n × Ln + nM#

⊥[n, 〈B, q0, q3〉] 〈B, q1 , q3〉 + n × Ln + nM#

⊥ 〈Z, q1 , q3〉 + n × Ln + nM#

⊥[+, 〈Z, q1, q3〉] 〈B, q0 , q3〉 n × Ln + nM#

⊥[+, 〈Z, q1, q3〉][n, 〈B, q0, q3〉] 〈B, q1 , q3〉 × Ln + nM#

⊥[+, 〈Z, q1, q3〉] 〈Z, q1 , q3〉 × Ln + nM#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉] 〈Z, q0 , q3〉 Ln + nM#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉] 〈B, q2 , q3〉 n + nM#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉][n, 〈B, q2, q3〉] 〈B, q3 , q3〉 + nM#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉] 〈B, q3 , q3〉 + nM#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉][+, 〈B, q3, q3〉] 〈B, q2 , q3〉 nM#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉][+, 〈B, q3, q3〉][n, 〈B, q2, q3〉] 〈B, q3 , q3〉 M#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉][+, 〈B, q3, q3〉] 〈B, q3 , q3〉 M#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][L, 〈Z, q0 , q3〉] 〈U , q3 , q3〉 M#

⊥[+, 〈Z, q1, q3〉][×, 〈Z, q1, q3〉][M, 〈Z, q0 , q3〉] 〈Z, q3 , q3〉 #

Figure 26.: Example of an accepting computation for the word n + n × Ln + nM of a

❆#OPA that is equivalent to the OPA of Example 2.3.

the L, which is the beginning of an open chain, the automaton is in the state

〈Z, q0, q3〉 and then moves to 〈B, q2, q3〉 guessing the state that is reached by

the pop move that occurs in the corresponding run of the OPA after reading the

M. Before reading the second n, which is the body of a maximal chain, instead,

the automaton is in state 〈B, q0, q3〉 and, after popping n from the stack, moves

to 〈Z, q1, q3〉 since the following × is the beginning of an open chain.

• I2 = {〈x, q, qF〉 | x ∈ {Z, B}, q ∈ I1, qF ∈ F1}

• F2 = {〈Z, q, q〉 | q ∈ Q1}

• The transition function is defined as the union of three functions.

The push transition function δ2push : Q2 × Σ → ℘(Q2) is defined as follows,

where p, q, r, s ∈ Q1, a ∈ Σ.

– Pending letter at the beginning of an open chain.

δ2push (〈Z, q, p〉, a) =
{
〈x, r, s〉 | x ∈ {B, Z, U}, r ∈ δ1push(q, a), s

q
=⇒ p inA1

}
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– Symbol of a maximal chain.

δ2push (〈B, q, p〉, a) =
{
〈B, r, p〉 | r ∈ δ1push(q, a)

}

The shift transition function δ2shift : Q2 × Σ→ ℘(Q2) is defined as follows:

– Pending letter within an open chain.

δ2shift (〈U, q, p〉, a) =
{
〈x, r, p〉 | x ∈ {B, Z, U}, r ∈ δ1shift(q, a)

}

– Symbol of a maximal chain.

δ2shift (〈B, q, p〉, a) =
{
〈B, r, p〉 | r ∈ δ1shift(q, a)

}

Notice that the second component of the states computed by δ2push and δ2shift

is independent of the first component of the starting state.

The pop transition function δ2pop : Q2 × Q2 → ℘(Q2) can be executed only

within a maximal chain since there is no pop determined by the ending delim-

iter:

δ2pop (〈B, q, s〉, 〈B, p, s〉) =
{
〈x, r, s〉 | x ∈ {B, Z, U}, q

p
=⇒ r inA1

}

All other moves lead to an error state.

Let us prove first L(A1) ⊆ L
❈#
(A2). Consider a word w ∈ L(A1). Then there exists

a support q
w
{ q′ in A1 with q ∈ I1 and q′ ∈ F1. If w = w1a1w2a2 . . .wnan where

ai are pending letters and wi are maximal chains, let k be the number of open chains

determined by the sequence of pending letters in w according to the structure (8), and

let ai1 = a1, ai2, . . . , aik be their initial symbols. Also, for every i = 2, . . . , n, let t(i)

be the greatest index t such that it < i, i.e., ai is within the t(i)-th open chain beginning

with ait(i)
. In particular, for i = n, if an−1 ⋖ an then ik = n, otherwise t(n) = k. As a

notational convention, denote by 7−→ a move that can be either a push or a shift.
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Then the above support for w can be decomposed as

q = q̃0

w1
{ q1

a1
−→ q̃1

w2
{ q2

a2
7−→ . . .

wn
{ qn

an
7−→ q̃n = pk (9)

q̃n = pk

qik
=⇒ pk−1

qik−1
=⇒ pk−2 =⇒ . . . =⇒ p2

qi2
=⇒ p1

qi1
=q1

=⇒ p0 = q′

where qi = q̃i−1 if wi = ε for i = 1, 2, . . . , n. Notice that, for every t, qit is the state

reached in this path before the push move that pushes symbol ait on the stack; more-

over, when the last symbol in the open chain beginning with ait is to be popped, the

current state is pt and then the symbol on the top of the stack (whose state component

is qit ) is removed andA1 moves to state pt−1.

Starting with state 〈Z, q1, p0〉 if w1 = ε or with 〈B, q̃0, p0〉
w1
{ 〈Z, q1, p0〉 if w1 , ε,

an accepting computation ofA2 can be built on the basis of the following facts:

• Since A1 performs q1

a1
−→ q̃1 and p1

q1
=⇒ p0, then δ2push(〈Z, q1, p0〉, a1) ∋

〈x, q̃1, p1〉 in A2 for x ∈ {B, Z, U}. This is a push move that can be applied at

the beginning of the first open chain, a1, where p1 is the guess about the state

that will be reached before the stack symbol pushed on the stack by this move

will be popped.

• In general, for every t, sinceA1 executes qit

ait
−→ q̃it and pt

qit
=⇒ pt−1, then

δ2(〈Z, qit , pt−1〉, ait) ∋ 〈x, q̃it , pt〉 for x ∈ {B, Z, U}. This is a push move that can

be applied at the beginning of the t-th open chain, i.e. when reading ait , where

pt is the guess about the state that will be reached before the stack symbol with

the last letter of the chain will be popped. In particular, if ik = n, we can reach

state 〈Z, q̃n, pk〉 which is final inA2 since qn = pk.

• For every maximal chain wi of w (with i ≥ 2) consider its support q̃i−1
wi
{ qi

in the sequence (9). Then in A2 we have a sequence of moves starting from a

state 〈B, q̃i−1, pt(i)〉 and reading wi, that ends in 〈x, qi, pt(i)〉, where x ∈ {U, Z}.

Notice that the last component of the states does not change because we are

within a maximal chain. During the reading of wi, the last component is equal

to pt(i), as guessed by the push move at the beginning of the current open chain.
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• For every i < {i1, i2, . . . , ik}, since δ1shift(qi, ai) ∋ q̃i, then δ2shift(〈U, qi, pt(i)〉, ai)

contains 〈x, q̃i, pt(i)〉, for x ∈ {B, Z, U}. In particular, if n , ik, then t(n) = k

and for i = n we can reach state 〈Z, q̃n, pk〉 which is final inA2, since q̃n = pk.

Thus, by composing in the right order the previous moves, one can obtain an accepting

computation for w inA2.

Conversely, to prove that L
❈#
(A2) ⊆ L(A1), consider a word w ∈ L

❈#
(A2). This

means that there exists a successful run of A2 on w. Let w be factorized as above;

then the accepting run for w can be decomposed as

π0

w1
{ ρ1

a1
−→ π1

w2
{ ρ2 . . . ρi

ai
7−→ πi

wi+1
{ . . .

wn
{ ρn

an
7−→ πn

where πi, ρi ∈ Q2, ρi = πi−1 if wi = ε, π0 ∈ I2 and πn ∈ F2. By projecting this path

on the second component of states πi and ρi (let them respectively be pi and ri ∈ Q1),

we obtain a path in A1 labelled by w. This path is not accepting because there are

symbols left on the stack that need to be popped, but we can complete this path

arguing by induction on the structure of maximal chains according to the definition

of δ2. Precisely, one can verify that Q1 contains suitable states pi (for 0 ≤ i ≤ n), ri

(for 1 ≤ i ≤ n), st (for 1 ≤ t ≤ k), with ri = pi−1 whenever wi = ε, such that the

following facts hold.

• π0 ∈ I2, hence π0 = 〈x0, p0, s0〉, with p0 ∈ I1 and s0 ∈ F1; x0 is B if w1 , ε,

otherwise x0 = Z.

• π0

w1
{ ρ1 inA2 implies that the last component of state π0 is propagated through

chain w1 without change; hence ρ1 = 〈Z, r1, s0〉 with p0
w1
{ r1 inA1.

• ρ1

a1
−→ π1 is a push move of A2 at the beginning of an open chain, and this

implies that the last component of π1 is a guess on the state from which A1

would perform the corresponding pop, so that π1 = 〈x1, p1, s1〉 with r1

a1
−→ p1

and s1

r1
=⇒ s0 in A1; the first component is x1 = B if w2 , ε otherwise x1

equals Z or U according to whether a2 starts an open chains or not, respectively,

• The pop moves within πi

wi+1
{ ρi+1 for 1 ≤ i < i2, and the shift moves within

an open chain ρi

ai
−→ πi for 1 < i < i2 propagate with no change the last
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component. Hence ρi = 〈U, ri, s1〉 and πi = 〈xi, pi, s1〉 with pi−1

wi
{ ri

ai
−→ pi

inA1. The first component is xi = B if wi , ε, otherwise xi = Z for i = i2 − 1,

and xi = U in the other cases.

• ρi2

ai2
−→ πi2 is a push move of A2 at the beginning of an open chain, and this

implies that the last component of πi2 is a guess on the state from which A1

would perform the corresponding pop, so that πi2 = 〈xi2 , pi2 , s2〉 with ri2

ai2
−→

pi2 and s2

ri2
=⇒ s1 in A1. The first component is xi2 = B if wi2 , ε otherwise

x1 equals Z or U according to whether ai2 + 1 begins an open chains or not,

respectively.

• Similarly for the following moves in the run.

In general, we get

ρi = 〈yi, ri, st(i)〉 for every i = 1, 2, . . . , n,

πi = 〈xi, pi, st(i)〉 for every i < {i1, i2, . . . , ik},

πit = 〈xit , pit , st〉 for every t = 1, 2, . . . , k,

with ri

ai
7−→ pi, st

rit
=⇒ st−1, pi−1

wi
{ ri inA1

and yi ∈ {Z, U}, xi ∈ {B, Z, U} for every i and t.

For i = n we have n = ik or t(n) = k, hence πn = 〈xn, pn, sk〉, and pn = sk and

xn = Z since πn ∈ F2. Thus, inA1 there is an accepting run

I1 ∋ p0
w1
{ r1

a1
−→ p1

w2
{ r2 . . . ri

ai
7−→ pi

wi+1
{ . . .

wn
{ rn

an
7−→ pn = sk

pn = sk

rik
=⇒ sk−1

rik−1
=⇒ sk−2 =⇒ . . . =⇒ s2

ri2
=⇒ s1

ri1
=r1

=⇒ s0 ∈ F1.

�

The next lemma completes the proof of equivalence between OPAs and ❆#OPAs.
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Lemma 3.2. LetA2 be a nondeterministic ❆#OPA defined on an OP alphabet (Σ, M)

with s states. Then there exists a nondeterministic OPA A1 on (Σ, M) and O(|Σ|s)

states, such that L(A1) = L
❈#
(A2).

Proof. Let A2 be 〈Σ, M, Q, I, F, δ〉 and consider, first, an equivalent form of A2,

where all states are enriched with a lookahead symbol and no final state is reached by

a pop edge: Ã2 = 〈Σ, M, Q2, I2, F2, δ2〉, where

• Q2 = Q × Σ̂, where Σ̂ = (Σ ∪ {#}), i.e. the first component of a state is a state

ofA2 and the second component of the state is the lookahead symbol,

• I2 = I × {a ∈ Σ̂ | M#a , ∅} is the set of initial states of Ã2,

• F2 = F × {#}

• the transition function δ2 : Q2 × (Σ∪Q2)→ ℘(Q2) is defined in the following

natural way, where a, b ∈ Σ, p, q, r ∈ Q:

– δ2push(〈p, a〉, a) = {〈q, b〉 | q ∈ δpush(p, a)∧Mab , ∅},

– δ2shift(〈p, a〉, a) = {〈q, b〉 | q ∈ δshift(p, a)∧Mab , ∅},

– δ2pop(〈p, a〉, 〈q, b〉) = {〈r, a〉 | r ∈ δpop(p, q)} \ F2.

It is easy too see that L
❈#
(A2) = L

❈#
(Ã2). Furthermore, the final states of Ã2 cannot

be reached by pop edges: in fact, these pop transitions cannot be performed by a ❆#OPA

according to the semantics of the transition relation ⊢
❈#
, since it stops a computation

right before reading the delimiter #, when the parsing of the word ends.

Thus, we build, without loss of generality, an OPAA1 equivalent to the ❆#OPA Ã2.

A1 = 〈Σ, M, Q1, I1, F1, δ1〉 has only one final state, reachable through a pop edge by

all final states of Ã2. Its role is to letA1 empty the stack after reading a word that is

accepted by Ã2.

• Q1 = Q2 ∪ {qaccept}

• I1 = I2 ∪ {qaccept} if I2 ∩ F2 , ∅; I1 = I2 otherwise
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• F1 = {qaccept}

• The transition function δ1 equals δ2 on all states in Q2; in addition A1 has

departing pop edges from the final states in F2 to qaccept and qaccept has no out-

going push/shift edge but only self-loops pop edges.

The push transition function δ1push : Q1×Σ→ ℘(Q1) is defined as δ1push(q, c) =

δ2push(q, c),∀q ∈ Q2, c ∈ Σ. The shift function is defined analogously.

The pop transition δ1pop : Q1 × Q1 → ℘(Q1) is defined by:

δ1pop(q, p) = δ2pop(q, p),∀q, p ∈ Q2

δ1pop(q, p) = qaccept,∀q ∈ (F2 ∪ {qaccept}), p ∈ Q2,

We now show that L(A1) = L
❈#
(Ã2).

L(A1) ⊆ L
❈#
(Ã2): in fact, if the OPA A1 recognizes a word, then it is either the

empty word and thus qaccept ∈ I1 and also Ã2 has a successful run on it, or A1

recognizes a word w , ε and there exists a run σ ofA1 which ends in the final state

qaccept with empty stack. Notice that qaccept is reached by a pop move from a state in

F2, say q f ∈ F2:

σ : q0 ∈ I2
w
{ q f =⇒ qaccept(

p∈Q1
=⇒ qaccept)

∗

and q f itself is reached exactly when the reading of w is finished, since, as said be-

fore, a state in F2 cannot be reached by pop moves. This condition is necessary to

avoid the presence of sequences of pop moves from non-accepting states toward final

states. Then the path from q0 to q f , which traverses the same states and edges as σ,

represents a run of Ã2 which ends in a final state q f right after the reading of the

whole word, thus accepting w. Conversely, the relation L(A1) ⊇ L
❈#
(Ã2) derives eas-

ily from the fact that, if Ã2 accepts a word along a successful run, thenA1 recognizes

the word along the same run, possibly emptying the stack in the final state qaccept. �

Remark 3.1. With some further effort –and a further exponential leap in the automa-

ton’s size– a deterministic version of this ❆#OPA could also be built. We did not include

it here, however, since the ❆#OPA construction will be applied only in this chapter to
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prove the closure w.r.t. concatenation with finite length languages of ωOPLs: we will

see that such a closure holds only for nondeterministic automata.

3.3.2 Closure properties and emptiness problem for class L(ωOPBA)

L(ωOPBA) enjoys all closure and decidability properties suitable for model checking.

Precisely, the emptiness problem is decidable for OPAs in polynomial time because

they can be interpreted as pushdown automata on infinite-length words: e.g., [25]

shows an algorithm that decides the alternation-free modal µ-calculus for context-

free processes, with linear complexity in the size of the system’s representation.

The following theorems state that L(ωOPBA) is a Boolean algebra closed under

concatenation.

Theorem 3.3 (L(ωOPBA) is closed under intersection). Let L1 and L2 beω-languages

recognized by two ωOPBA defined over the same alphabet Σ, with compatible prece-

dence matrices M1 and M2 and with s1 and s2 states respectively. Then L = L1 ∩ L2

is recognizable by an ωOPBA with OPM M = M1 ∩M2 and O(s1s2) states.

Proof. Let A1 = 〈Σ, M1, Q1, I1, F1, δ1〉 and A2 = 〈Σ, M2, Q2, I2, F2, δ2〉 be two

ωOPBA with L(A1) = L1 and L(A2) = L2 and with compatible precedence matri-

ces M1 and M2. Suppose, without loss of generality, that Q1 and Q2 are disjoint and

do not contain {0, 1, 2}.

First, observe that, the two OPMs being compatible, at each move either the two

automata perform the same type of move (push/shift/pop), or at least one of them

stops without accepting since its transition function is not defined.

An ωOPBA that recognizes L1 ∩ L2 is defined in a similar way as for classical

finite-state Büchi automata; precisely,A = 〈Σ, M = M1 ∩M2, Q, I, F, δ〉 where:

• Q = Q1 × Q2 × {0, 1, 2},

• I = I1 × I2 × {0},

• F = Q1 × Q2 × {2}
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• the transition function δ : Q × (Σ ∪ Q) → ℘(Q) is defined as follows, where

p1, q1, p2, q2 ∈ Q, a ∈ Σ:

– δpush(〈p1, p2, x〉, a) = {〈r1, r2, y〉 | r1 ∈ δ1push(p1, a)∧ r2 ∈ δ2push(p2, a)}

– δshift(〈p1, p2, x〉, a) = {〈r1, r2, y〉 | r1 ∈ δ1shift(p1, a) ∧ r2 ∈ δ2shift(p2, a)}

– δpop(〈p1, p2, x〉, 〈q1, q2, z〉) = {〈r1, r2, y〉 | r1 ∈ δ1pop(p1, q1) ∧ r2 ∈

δ2pop(p2, q2)}

and the third component of the states is computed as follows:

– if x = 0 and r1 ∈ F1 then y = 1

– if x = 1 and r2 ∈ F2 then y = 2

– if x = 2 then y = 0

– y = x otherwise.

Reading an input string, the automaton A simulates A1 and A2 respectively on

the first two components of the states, whereas the third component keeps track of

the succession of visits of the two automata to their final states: in particular its value

is 0 at the beginning, then switches from 0 to 1, from 1 to 2 and then back to 0,

whenever the first automaton reaches a final state and the other one visits a final state

afterwards. This cycle is repeated infinitely often whenever both the automata reach

their final states infinitely many times along their run.

Conversely, if an ω-word x does not belong to L1 ∩ L2, then at least one of the runs

of A1 and A2 must either stop because the transition function of the automaton is

undefined for the given input or it does not visit infinitely often final states. Hence,A

cannot have a successful run on x and the word is rejected byA too. �

Theorem 3.4 (L(ωOPBA) is closed under union). Let L1 and L2 be ω-languages

recognized by two ωOPBA defined over the same alphabet Σ, with compatible prece-

dence matrices M1 and M2 and with s1 and s2 states respectively. Then L = L1 ∪ L2

is recognizable by an ωOPBA with OPM M = M1 ∪M2 and O(|Σ|2(s1 + s2)) states.

Proof. Let A1 and A2 be ωOPBAs accepting L1 and L2 over OPMs M1 and M2,

respectively. Without loss of generality we may assume M = M1 = M2 (otherwise
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one can apply Statement 3.1 increasing the number of states by a factor |Σ|2). For i =

1, 2, let Ai = 〈Σ, M, Qi, Ii, Fi, δi〉. Then the ω-language L = L1 ∪ L2 is recognized

by the ωOPBA A = 〈Σ, M, Q = Q1 ∪ Q2, I = I1 ∪ I2, F = F1 ∪ F2, δ〉 whose

transition function δ : Q × (Σ ∪ Q) → ℘(Q) is the nondeterministic union of δ1 and

δ2, defined by setting ∀p, q ∈ Q, a ∈ Σ:

δpush(q, a) =


δ1push(q, a) if q ∈ Q1

δ2push(q, a) if q ∈ Q2

, δshift(q, a) =


δ1shift(q, a) if q ∈ Q1

δ2shift(q, a) if q ∈ Q2

,

δpop(p, q) =


δ1pop(p, q) if p, q ∈ Q1

δ2pop(p, q) if p, q ∈ Q2

.

The above definition is well-posed since it applies to automata that share the same

precedence matrix, because they perform the same type of move (push/shift/pop)

while reading the input word.

Since the sets of states of the two automata are disjoint and Q is their union, then

for every x ∈ Σ
ω there exists a successful run inA iff there exists a successful run of

A1 on x or a successful run ofA2 on x.

Clearly, the number of states of A is |Q| = |Q1|+ |Q2| and this concludes the proof,

recalling the possible factor |Σ|2 implied by Statement 3.1. �

Theorem 3.5 (Closure of L(ωOPBA) under complementation). Let M be a conflict-

free precedence matrix on an alphabet Σ. Let L be an ω-language on Σ that is recog-

nized by a nondeterministicωOPBA with precedence matrix M and s states. Then the

complement of L w.r.t. LM (the language of all the words x ∈ Σ
ω compatible with M)

is recognized by an ωOPBA with the same precedence matrix M and 2O(s2+|Σ|s log|Σ|s)

states.

Proof. The proof follows to some extent the structure of the corresponding proof

for L(ωBVPA) [11], but it exhibits some relevant technical aspects which distinctly

characterize it; in particular, we need to introduce an ad-hoc factorization of ω-words

due to the more complex management of the stack performed by OPAs.
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Let A = 〈Σ, M, Q, I, F, δ〉 be a nondeterministic ωOPBA with |Q| = s. Without

loss of generalityA can be considered complete with respect to the transition function

δ, i.e. there is a run ofA on every ω-word on Σ compatible with M.

An ω-word w ∈ Σ
ω compatible with M can be factored as a sequence of chains

and pending letters w = w1w2w3 . . . where either wi = ai ∈ Σ is a pending letter

or wi = ai1ai2 . . . ain is the body of the chain li [wi] f irsti+1 , where li denotes the last

pending letter preceding wi in the word and f irsti+1 denotes the first letter of word

wi+1. Let also, by convention, a0 = # be the first pending letter.

Such factorization is not unique, since a string wi can be nested into a larger chain

having the same preceding pending letter. The factorization is unique, however, if

we additionally require that the body wi has no prefix (including itself) uib such that
li [ui]b is a chain; in fact, in this case, as soon as a chain body with its context is

identified after a pending letter, it becomes part of the factorization and what follows

is either the beginning of a new body or a new pending letter.

For instance, for the word w = ⋖a⋖ c ⋗︸    ︷︷    ︸b ⋖a⋗︸︷︷︸ d⋗︸︷︷︸b . . ., with precedence rela-

tions in the OPM a ⋗ b and b ⋖ d, two possible factorizations are w = w1bw3b . . .

and w = w1bw3w4b . . ., where b is a pending letter and #[w1]b = #[w1]b = #[ac]b,
b[w3]

b = b[w3d]b, b[w3]
d = b[a]d and b[w4]

b = b[d]b are chains. The second factor-

ization is the unique one where each word wi has no prefix uib such that li [ui]b is a

chain.

Let x ∈ Σ
∗ be the body of some chain a[x]b and let T (x) be the set of all triples

(q, p, f ) ∈ Q × Q × {0, 1} such that there exists a support q
x
{ p in A, and f = 1

iff the support contains a state in F. Also let T be the set of all such T (x), i.e., T

contains sets of triples identifying all supports for some chain, and set PR to be the

finite alphabet Σ ∪ T . A pseudorun for the word w in A’s uniquely factorized as

w1w2w3 . . . as stated above, is the ω-word w′ = y1y2y3 . . . ∈ PRω where yi = ai if wi

is a pending letter, otherwise yi = T (wi).

For the unique factorization in the example above, w′ = T (ac) b T (a) T (d) b . . .

The automaton recognizing the complement of L = L(A) w.r.t. LM can be built

as an “online composition” of a transducer ωOPBA B that computes the pseudorun

corresponding to an input word w, and a Büchi finite-state automaton BR that recog-

nizes all the pseudoruns of ω-words not accepted by A: while reading w, B outputs
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the pseudorun w′ of w online, and the states of BR are updated accordingly. The au-

tomaton accepts if both B and BR reach infinitely often final states.

In order to defineBR we first define a nondeterministic Büchi finite-state automaton

AR = 〈PR, QAR , IAR , FAR , δAR〉 over the alphabet PR whose language includes all

pseudoruns w′ of any words w ∈ L(A).

The states of AR correspond to the states of A, but are extended with a lookback

symbol that, in a correct pseudorun, represents the last pending letter of the input

word read so far.AR has all transitions corresponding toA’s push and shift transitions

but is devoid of pop edges (in fact it is a finite state automaton). In addition, for every

S ∈ T it is endowed with arcs labeled S which link, for each triple (q, p, f ) in S and

a ∈ Σ̂ = Σ ∪ {#}, either the pair of states 〈a, q〉, 〈a, p〉 if f = 0, or 〈a, q〉, 〈a, p′〉 if

f = 1, where 〈a, p′〉 is a new final state which takes into account the states in F met

along the support q{ p and which has the same outgoing edges as 〈a, p〉.

Formally, QAR = Σ̂ × (Q ∪ Q′), where Q′ = {q′ | q ∈ Q}, IAR = {#} × I, FAR =

Σ̂ × (F ∪ Q′). The transition function of AR is defined as follows, where a ∈ Σ̂, q ∈

Q, q′ ∈ Q′, S ∈ T (δpush and δshift are the transition functions ofA):

• δ(〈a, q〉, b) =


〈b, δpush(q, b)〉 if a ⋖ b

〈b, δshift(q, b)〉 if a � b

• δ(〈a, q〉, S ) = {〈a, p〉 | 〈q, p, 0〉 ∈ S } ∪ {〈a, p′〉 | 〈q, p, 1〉 ∈ S }

• δ(〈a, q′〉, X) = δ(〈a, q〉, X), ∀X ∈ PR.

Notice that, given a set S ∈ T , the existence of an edge S between the pairs of

states q, p in the triples in S can be decided in an effective way.

The automaton AR built so far is able to parse all pseudoruns and recognizes all

pseudoruns of ω-words recognized by A. However, since its moves are no longer

completely determined by the OPM M, it can also accept input words along the edges

of the graph of A that are not pseudoruns since they do not correspond to a correct

factorization on PR. This is irrelevant, however, since the aim of the proof is to devise

an automaton recognizing the complement of L(A), and all the words in LM \ L(A)

are parsed along pseudoruns, which are not accepted by AR. If one gives as input

words only pseudoruns (and not generic words on PR), then they will be accepted by
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PR�

L(❆R)

PA

PSM

Figure 27.: Containment relations for languages, where PS M = {w′ ∈ PRω | w′ is the

pseudorun in A for w ∈ LM} and PA = {w′ ∈ PRω | w′ is the pseudorun

inA for w ∈ L(A)}.

AR if the corresponding words on Σ belong to L(A), and they will be rejected if the

corresponding words do not belong to L(A) (see Figure 27). Then we can construct

a deterministic Büchi automaton BR that accepts the complement of L(AR), on the

alphabet PR [84]. If BR receives only input words on PR that are pseudoruns, then it

will accept only words in LM \ L(A).

Now we define a nondeterministic transducerωOPBA Bwhich on reading w gener-

ates online the pseudorun w′. The transducerB nondeterministically guesses whether

the next input symbol is a pending letter, the beginning of a chain appearing in the

factorization of w, or a symbol within such a chain, and uses stack symbols Z, B, or

elements in T , respectively, to distinguish these three cases.

Whenever the automaton reads a pending letter it outputs the same letter, whereas

when it completes the recognition of a chain of the factorization, performing a pop

move that removes from the stack an element with state B, it outputs the set of all the

pairs of states which define a support for the chain. Thus, the output w′ produced by

B is unique, despite the nondeterminism of the translator.

Formally, the transducer ωOPBA B = 〈Σ, M, QB, IB, FB, PR, δB, ηB〉 is defined as

follows:



3.3 closure properties 97

• QB = {Z, B} ∪ T , i.e., a state in QB represents the guess whether the next

symbol to be read is a pending letter (Z), the beginning of a chain (B), or a letter

within such a chain wi (T ∈ T ). In the third case, T contains all information

necessary to correctly simulate the moves ofA during the parsing of the chain

wi of w, and compute the corresponding symbol yi of w′. In particular, T is a set

comprising all triples (r, q, ν) where r represents the state reached before the

last push move, q represents the current state reached by A, and ν is a bit that

reminds whether, while reading the chain, a state in F has been encountered

(as in the construction of a deterministic OPA on words of finite length, it is

necessary to keep track of the state from which the parsing of a chain started,

to avoid erroneous merges of runs on pop moves).

• IB = FB = {B, Z}.

• The transition function and the output function are defined as the union of three

pairs of functions. Let a ∈ Σ, T , S ∈ T .

The push pair 〈δBpush, ηBpush〉 : QB ×Σ→ ℘F(QB × PR∗) is defined as follows,

where the symbols after ↓ denote the output.

– Push of a pending letter.

〈δBpush, ηBpush〉 (Z, a) = {B ↓ a, Z ↓ a}

– Push at the beginning of a chain of the factorization.

〈δBpush, ηBpush〉 (B, a) = {T ↓ ε}

where T =
{
〈q, p, ν〉 | q ∈ Q, p ∈ δpush(q, a), ν = 1 iff p ∈ F

}

– Push within a chain of the factorization.

〈δBpush, ηBpush〉 (T , a) = {S ↓ ε} where
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S =

{
〈q, p, ν〉 | ∃〈r, q, ξ〉 ∈ T s.t. ν =


ξ if p < F

1 if p ∈ F
, p ∈ δpush(q, a)

}

The shift pair 〈δBshift, ηBshift〉 : QB ×Σ → ℘F(QB × PR∗) is defined as follows:

– Pending letter.

〈δBshift, ηBshift〉 (Z, a) = {B ↓ a, Z ↓ a}

– Shift move within a chain of the factorization.

〈δBshift, ηBshift〉 (T , a) = {S ↓ ε} where

S =

{
〈r, p, ν〉 | ∃〈r, q, ξ〉 ∈ T s.t. ν =


ξ if p < F

1 if p ∈ F
, p ∈ δshift(q, a)

}

The pop pair 〈δBpop, ηBpop〉 : QB × QB → ℘F(QB × PR∗) is defined as follows.

– Pop at the end of a chain of the factorization.

〈δBpop, ηBpop〉(T , B〉) = {B ↓ R, Z ↓ R} where

R =

〈r, p, ν〉 | ∃〈r, q, ξ〉 ∈ T s.t. p ∈ δpop(q, r), ν =


ξ if p < F

1 if p ∈ F



– Pop within a chain of the factorization9.

〈δBpop, ηBpop〉(T , S 〉) = {R ↓ ε} where

9 Remember that we consider only chains having no prefixes that are chains.
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R =

{
〈t, p, ν〉 | ∃〈r, q, ξ〉 ∈ T ,∃〈t, r, ζ〉 ∈ S s.t. p ∈ δpop(q, r),

ν =


ξ if p < F

1 if p ∈ F

}

An error state is reached in any other case.

We conclude the construction by computing the size of the resulting automaton,

which is an “online composition” of B and BR. The Büchi finite-state automatonAR

has O(|Σ|s) states and hence the automatonBR has 2O(|Σ|s log|Σ|s) states [96, 84]; while

the transducer B has |QB| = 2O(s2) states. Thus the ωOPBA has 2O(s2+|Σ|s log|Σ|s)

states.

To prove that B produces all A’s pseudoruns –whether accepting or not– observe,

first, that its guess about reading a pending letter or the beginning of a chain belonging

to the unique factorization defined above, or reading a symbol within such a chain,

is essentially the same as the one described in the proof of Lemma 3.1, where the

recognition of a maximal chain is replaced by the recognition of a chain with no

prefixes that are chains; thus, wrong guesses are resolved at the time of a pop move

(e.g., a pop move is not defined on a first state of type Z). Furthermore, pending letters,

when correctly guessed as such, are output as soon as they are read (the incorrectly

guessed ones belong to runs that will be aborted); elements of T are output only

when a chain of the factorization is recognized, i.e., the transition is defined on a

pair of states whose second component is B, which separates these moves from the

pop ones occurring within a chain of the factorization; the set T output during the

move records all pairs of states that can be the beginning and the end of a support

of the recognized chain. Finally the input string is accepted iff infinitely many times

either pending letters are read or chains of the factorization are recognized, or both

facts occur, i.e., the string is compatible with the OPM, and the produced output is

the pseudorun associated with the input by definition, independently on whether the

original A’s run was accepting, i.e., infinitely many times sets of triples with ν = 1

have been output, or not. �
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Let us finally consider the case of concatenation between a finite length OPL and

a language in L(ωOPBA). For classical families of automata (on finite or infinite

length words) the closure with respect to concatenation is traditionally proved by

building an automaton which simulates the moves of the first automaton while read-

ing the first word of the concatenation and –whether deterministically or not– once it

reaches some final state, it switches to the initial states of the second one. This natu-

ral approach has already been proved ineffective for OPLs in the case of finite-length

words since the structure of two concatenated strings is not necessarily the concate-

nation of the two structures, so that the actions of the second automaton cannot be

independent from those of the previous one ([34] provides a constructive proof of the

closure of finite-length OPLs w.r.t. concatenation in terms of generating grammars);

in fact the lack of the # delimiter between the two strings prevents the typical look-

ahead mechanisms which drives the operator-based parsing; thus, the stack cannot be

emptied by the normal sequence of pop moves before beginning the parse of the new

string. In the case of ω-languages the difficulty is further exacerbated by the fact the

automaton might never be able to empty the stack, as e.g., in the case of a language

L1 ⊆ {a, b}∗ with a ⋖ a, b ⋖ a, concatenated with L2 = {aω}. Notice also that, after

reading the first finite word in the concatenation, it would not be possible to determine

whether this word might be accepted by –possibly nondeterministically– guessing the

position of a potential delimiter #, since this check would require to know the states

already reached and piled on the stack, which are not visible without emptying the

stack itself.

To overcome the above difficulties we follow this approach:

• We give up deterministic parsing. In fact the different computational power be-

tween deterministic and nondeterministic automata is a distinguishing property

when moving from finite to infinite length languages. Thus, we nondeterminis-

tically guess the point of separation between the first finite word and the second

infinite one.

• To afford the second major problem, i.e., the lack of enough knowledge to

decide whether the guessed first word would be accepted by the corresponding

automaton, we use ❆#OPAs introduced in Section 3.3.1.
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The following theorem exploits the above approach. Its proof differs significantly

from the non-trivial proof of closure under concatenation of OPLs of finite-length

words [34], which, instead, can be recognized deterministically.

Theorem 3.6 (L(ωOPBA) is closed under concatenation). Let L1 ⊆ Σ
∗ be a language

of finite words recognized by an OPA with OPM M1 and s1 states. Let L2 ⊆ Σ
ω be

an ω-language recognized by a nondeterministic ωOPBA with OPM M2 compatible

with M1 and s2 states. Then the concatenation L1 · L2 is also recognized by anωOPBA

with OPM M ⊇ M1 ∪M2 and O(s2
1
+ s2

2
) states.

Proof. Let A1 be a nondeterministic OPA on (Σ, M1) that recognizes L1 and let

A2 = 〈Σ, M2, Q2, I2, F2, δ2〉 be a nondeterministic ωOPBA with OPM M2 compati-

ble with M1 that accepts L2. Suppose, without loss of generality, that the sets of states

ofA1 andA2 are disjoint.

To define an automaton ωOPBA A that accepts L1 · L2, we first build a ❆#OPA

A′
1
= 〈Σ, M1, Q1, I1, F1, δ1〉 such that L

❈#
(A′

1
) = L(A1).

The automatonA can recognize the first finite words in the concatenation L1 · L2

by simulating A′
1
: reading the input string, if A′

1
reaches a final state at the end of

a finite-length prefix, then it belongs to L1 and A immediately starts the recognition

of the second infinite string without the need to perform any pop move to empty the

stack. From this point onwards, then,A checks that the remaining infinite portion of

the input belongs to L2, behaving as the ωOPBA A2.

The strings belonging to the concatenation of two OPLs, however, may contain

new chains that span over the two concatenated words. Consider, for instance, the

concatenation of L1 = {ambn | m ≥ n ≥ 1} with L2 = {c+bω}; notice that any

OPA recognizing L1 must be defined on an OPM such that a ⋖ a, a � b, b ⋗ b to

be able to compare the occurrences of a with those of b; assume also the further

precedence relations a ⋖ c, c ⋖ c, c ⋗ b (such relations could be mandated, e.g., by

other components of either language not included here for simplicity). An automaton

recognizing L1 · L2 can deterministically find the borderline between words x ∈ L1,

and y ∈ L2; after finishing reading x it will have on its stack m − n remaining a’s;

however, since a ⋖ c it cannot empty the stack and must push all c’s on top of the

a’s. Only when receiving the first b, it will pop all c’s until the top of the stack will
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store an a. Since a � b, and b ⋗ b the next action must consist in shifting the b by

replacing the topmost a and then popping it, thus consuming part of the stack left by

the analysis of x; in other words, it must produce the support of a chain a[ab]b, whose

left part belongs to L1 and whose right part belongs to L2.

Therefore, A cannot merely read the second infinite word performing the same

transitions as A2, but it can still simulate this ωOPBA by keeping in the states some

summary information about its runs. In this way, while reading the second word in the

concatenation, whenever A has to reduce a chain that extends to the previous word

in L1 and, therefore, must perform a pop move of a symbol in the portion of the stack

piled up during the parsing of the first word, it can restore the state that A2 would

instead have reached, resuming therefrom as in a run ofA2.

Precisely,A is defined as the tuple 〈Σ, M, Q, I, F, δ〉 where:

• M ⊇ M1 ∪ M2 and may be supposed to be a complete matrix, for instance

assigning arbitrary precedence relations to the empty entries, so that the strings

in the concatenation of languages L1 and L2 are compatible with M.

• Q = Q1 ∪ Q2 ∪ Q2 × (Q2 ∪ {−}), i.e. the set of states of A includes the states

ofA′
1

andA2, along with the states ofA2 extended with a second component.

The first component is the state of Q2 that A2 would reach in its correspond-

ing computation on the second word of the concatenation, and the second one

represents the state of the symbol that is on the top of the stack when the cur-

rent input letter is read in this run of A2. Storing this component is necessary

to guarantee that, whenever the automaton A has to perform a pop move that

removes symbols that have been piled on the stack during the recognition of

the first word in the concatenation, it is still possible to compute the state that

A2 would have reached instead.

This second component is denoted ′−′ if all the preceding symbols in the stack

have been piled up during the parsing of the first word of the concatenation

(thus the stack ofA2 is empty).

• I = I1 ∪ {〈q0,−〉 | q0 ∈ I2} if ε ∈ L1; I = I1 otherwise

• F = F2 ∪ F2 × (Q2 ∪ {−})
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• The transition function δ : Q× (Σ∪Q)→ ℘(Q) is δ = δ1 ∪ δ2 ∪ δjoin and is

defined as the union of three functions: the transition functions of A′
1

and A2

by which it simulates the first automaton on the first word of the concatenation

and the second automaton on the second one, and a function δjoin that handles

the nondeterministic transition from the simulation of the first automaton to

the second one and the parsing of the suffix (within the second word of the

concatenation) of the chains that span over the two words.

Function δjoin is defined as follows: let c ∈ Σ, p ∈ Q1, q, q1, q2, q3 ∈ Q2, r ∈

(Q2 ∪ {−}).

The push transition function δ
join

push
: Q × Σ→ ℘(Q) is defined by:

– δ
join

push
(p, c) = {〈q0,−〉 | q0 ∈ I2, if ∃p f ∈ F1 s.t. δ1push(p, c) ∋ p f },

i.e.,A nondeterministically enters the initial states ofA2 after the recog-

nition of a word in L1

– δ
join

push
(〈q, r〉, c) = δ2push(q, c),

i.e.,A simulates a push move ofA2, reaching a state in Q2, whenever it

starts to recognize a chain in the second word of the concatenation (which

thus does not extend to the first word).

The shift transition function δ
join

shift
: Q × Σ→ ℘(Q) is defined by:

– δ
join

shift
(p, c) = {〈q0,−〉 | q0 ∈ I2, if ∃p f ∈ F1 s.t. δ1shift(p, c) ∋ p f },

i.e.,A nondeterministically enters the initial states ofA2 after the recog-

nition of a word in L1

– δ
join

shift
(〈q1,−〉, c) = {〈q2, q1〉 | q2 ∈ δ2push(q1, c)},

i.e.,A simulates the push move induced by the precedence relation # ⋖ c

that, in the corresponding run ofA2, starts the recognition of a chain that

is a prefix of the second word of the concatenation

– δ
join

shift
(〈q1, q2〉, c) = {〈q3, q2〉 | q3 ∈ δ2shift(q1, c)},
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i.e.,A performs a shift move within a chain that spans over the two words

of the concatenation.

The pop transition function δ
join
pop : Q × Q → ℘(Q) is defined by:

– δ
join
pop(〈q,−〉, p) = 〈q,−〉,

i.e, A concludes to recognize a chain, at the end of the first word of the

concatenation, induced by the precedence relations with the letters of the

second string, and consumes the corresponding stack symbols piled while

reading the first word

– δ
join
pop(〈q1, q2〉, p) = {〈q3,−〉 | q3 ∈ δ2pop(q1, q2)},

i.e., whenever the precedence relations induce a merge of the chains of

the words of the concatenation,A restores the state q3 ofA2 from which

a run ofA2 will continue

– δ
join
pop(q1, 〈q2, r〉) = {〈q3, r〉 | q3 ∈ δ2pop(q1, q2)},

i.e., A completes the recognition of a chain that belongs to a composed

chain spanning over the two words of the concatenation.

One can verify that, after having simulated A′
1

and nondeterministically guessed

the end of a word in L1, A proceeds with the simulation of A2 and accepts the re-

maining ω-string iff it belongs to L2. In fact, the projection on the first component of

the states visited alongA’s run on the second word of the concatenation identifies a

successful run ofA2 on the same word. �

To summarize, Table 3 displays the complexities (upper bounds) of the various

constructions to obtain the closure w.r.t. Boolean operations and concatenation; it

also compares them with the corresponding complexities for VPLs showing that the

only main difference occurs in the case of concatenation. We leave as a future work

the study of the optimality of these bounds.
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L(ωOPBA) L(ωBVPA)

L1 ∩ L2 O(s1s2) O(s1s2)
L1 ∪ L2 O(|Σ|2(s1 + s2)) s1 + s2

¬L1 2O(s2
1
+|Σ|s1 log|Σ|s1) 2O(s2

1
)

L3 · L1 O(s2
1
+ s2

3
) s1 + s3

Table 3.: Size of state sets of languages recognizing L1 ∩ L2, L1 ∪ L2, ¬L1 and L3 · L1.

The results on ωOPBAs have been proved, respectively, in Theorem 3.3,

Theorem 3.4, Theorem 3.5 and Theorem 3.6. The complexity results on

ωBVPAs derive from the constructions and proofs of their closure properties

shown in [11].

3.3.3 Closure properties of the other classes of ωOPLs

The class of languages recognized by ωDOPMAs is a Boolean algebra. The other

classes are closed only under union and intersection.

Theorem 3.7 (L(ωDOPMA) is a Boolean algebra). Let L1 and L2 be ω-languages

that are recognized by twoωDOPMAs defined over the same alphabet Σ, with compat-

ible precedence matrices M1 and M2 and s1 and s2 states respectively. Then L1 ∩ L2

(resp. the complement of L1 w.r.t. LM , or L1 ∪ L2) is recognized by an ωDOPMA with

OPM M = M1 ∩M2 and s1s2 (resp. s1, or |Σ|4s1s2) states.

Proof. Let A1 = 〈Σ, M1, Q1, q01,T1, δ1〉 and A2 = 〈Σ, M2, Q2, q02,T2, δ2〉 be

ωDOPMAs recognizing languages L1 and L2. Assume without loss of generality that

their transition function is total (otherwise, it can be naturally completed once the set

of states is extended with an “error” state).

An ωDOPMA A with OPM M = M1 ∩ M2 recognizing L = L1 ∩ L2 may be

defined adopting the usual product construction for ω-regular automata, requiring

that a successful path in A corresponds to paths that visit infinitely often sets in the

table T1 and T2. More precisely letA = 〈Σ, M, Q, q0,T , δ〉 where

• Q = Q1 × Q2,

• q0 = (q01, q02),
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• Define πi (i = 1, 2) as the projection from Q1 × Q2 on Qi, that can also be

naturally extended to define projections on paths of the automata, and let

T = {P ⊆ Q1 × Q2 | π1(P) ∈ T1 ∧ π2(P) ∈ T2},

• The transition function δ is the product of δ1 and δ2 (see Definition 3.6).

Let ρ be a successful path of A, starting in the initial state q0 = (q01, q02): since

it is accepting, the set In f (ρ) = P ∈ T . By definition of T , the paths ρ1 and ρ2

that are the projection of ρ on the set of states of A1 and A2, respectively, have

In f (ρ1) = π1(P) ∈ T1 and In f (ρ2) = π2(P) ∈ T2: hence ρ1 and ρ2 are successful

paths for the two automata, and x belongs to L(A1) ∩ L(A2).

Let now x ∈ L(A1) ∩ L(A2); thus, x labels two successful paths ρ1 and ρ2 of

the two automata, i.e., In f (ρ1) ∈ T1 and In f (ρ2) ∈ T2. The path ρ of A which

visits the pairs of states of the two automata, performing the same type of move they

perform for each input symbol, is defined so as π1(In f (ρ)) = In f (ρ1) ∈ T1 and

π2(In(ρ)) = In f (ρ2) ∈ T2. Therefore, by definition of T , ρ is a successful path for

A.

To recognize the complement of L1, given thatA is deterministic and its transition

function is total, it is clearly sufficient to build the ωDOPMA A′ = 〈Σ, M1, Q1, q01,

℘(Q1) \ T1, δ〉 whose table is the complement of T1 w.r.t. ℘(Q1).

To obtain the closure w.r.t. union, we can assume that M1 = M2 w.l.o.g. (otherwise

one can apply Statement 3.1, increasing the number of states of each automaton of a

factor |Σ|2) and apply De Morgan’s law. The number of states of the resulting automa-

ton is |Q1| · |Q2| and this concludes the proof, recalling the factor |Σ|2 · |Σ|2 implied by

the possible application of Statement 3.1. Notice that, if one considers automata with

compatible but not equal matrices, De Morgan’s law could not be applied: in fact, the

equality

L1 ∪ L2 = LM1∩M2
\ [(LM1

\ L1) ∩ (LM2
\ L2)]

does not hold, unless M1 = M2. �

Proposition 3.2. Let L1 and L2 be ω-languages recognized by two ωOPBEA (resp.

ωDOPBA, ωDOPBEA) defined over the same alphabet Σ, with compatible prece-

dence matrices M1 and M2 and with s1 and s2 states respectively. Then L = L1 ∩ L2
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is recognized by anωOPBEA (resp.ωDOPBA,ωDOPBEA) with OPM M = M1∩M2

and O(s1s2) states.

Proof. For ωOPBEA, we can assume without loss of generality that the the automa-

ton is in normal form with partitioned sets of states, (see Definition 3.5), and apply

the same construction as for ωOPBA (see Theorem 3.3). The use of automata with

partitioned sets of states guarantees that a run of A on an ω-word reaches infinitely

often a final state with empty stack iff bothA1 andA2 have a run for the word which

traverses infinitely often a final state with empty stack.

For ωDOPBA and ωDOPBEA, the proof derives from the fact that, if A1 andA2

are deterministic, then the resulting intersection automaton is deterministic too. �

Proposition 3.3. Let L1 and L2 be ω-languages recognized by two ωOPBEA (resp.

ωDOPBA, ωDOPBEA) defined over the same alphabet Σ, with compatible prece-

dence matrices M1 and M2 and s1 and s2 states respectively. Then L = L1 ∪ L2 is

recognized by an ωOPBEA (resp. ωDOPBA, ωDOPBEA) with OPM M = M1 ∪M2

and O(|Σ|2s1s2)) (resp. O(|Σ|4s1s2)) states.

Proof. The proof for ωOPBEA is analogous to the proof of closure under union for

ωOPBA(see Theorem 3.3).

For the determistic models, the construction must be refined. Let A1 and A2 be

ωDOPBA accepting L1 and L2 over OPMs M1 and M2, respectively. As usual, we

assume that that both transition functions are complete and M1 = M2 (otherwise

one can apply Statement 3.1, increasing the number of states of a factor |Σ|2). Let

Ai = 〈Σ, M, Qi, q0i, Fi, δi〉, for i = 1, 2. An ωDOPBA (resp. ωDOPBEA) A3 which

recognizes L1 ∪ L2 is then defined by adopting the usual product construction for

regular automata:A3 = 〈Σ, M, Q3, q03, F3, δ3〉 where:

• Q3 = Q1 × Q2,

• q03 = (q01, q02),

• F3 = F1 × Q2 ∪Q1 × F2

• and the transition function is the product of δ1 and δ2.
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The number of states ofA3 is given by the product |Q1| · |Q2| and this concludes the

proof, recalling the factor |Σ|2 · |Σ|2 implied by Statement 3.1. �

Theorem 3.8 (ωDOPBA, ωOPBEA, ωDOPBEA are not closed under complement).

Let L be an ω-language accepted by an ωDOPBA (resp. ωOPBEA, or ωDOPBEA)

with OPM M on alphabet Σ. There does not necessarily exist an ωOPBEA (resp.

ωOPBEA, or ωDOPBEA) recognizing the complement of L w.r.t. LM .

Proof. Language La∞ can be recognized by an ωDOPBA with an OPM M (shown,

for instance, in Figure 20), but there’s no ωDOPBA that can recognize the com-

plement of this language w.r.t. LM , i.e. the language La−finite, as mentioned in Sec-

tion 3.2.2. The same argument on La∞ holds also for ωDOPBEAs.

Finally, as regardsωOPBEAs, Lω
abseq

is recognized by the ωOPBEA with OPM M

and state graph presented in Section 3.2.2. However, no ωOPBEA can recognize the

complement of this language w.r.t. LM . Such an ωOPBEA, in fact, should have OPM

M so that no word in Lω
abseq

can be accepted. The precedence relation Maa = {⋖}

(which is necessary to verify that in a sequence of type (akbh)ω there is at least one

substring with k , h ), however, prevents an ωOPBEA from accepting the word

aω, which belongs to the complement of Lω
abseq

w.r.t. LM , since it implies that, while

reading the word, the ωOPBEA can never reach a state with empty stack. �

Theorem 3.9 (ωDOPBA,ωOPBEA,ωDOPBEA, andωDOPMA are not closed under

concatenation). Let L2 be an ω-language accepted by an ωOPBEA (resp. ωDOPBA,

ωDOPBEA, orωDOPMA) with OPM M on alphabet Σ and let L1 ⊆ Σ
∗ be a language

(of finite words) recognized by an OPA with a compatible precedence matrix. The ω-

language defined by the concatenation L1 · L2 is not necessarily recognizable by an

ωOPBEA (resp. ωDOPBA, ωDOPBEA, or ωDOPMA).

Proof. For ωDOPBAs, let Σ = {a, b} and consider the language La−finite, which

can be seen as the concatenation La−finite = L1 · L2 of a language of finite words

L1 = {a, b}∗, which can be clearly recognized by an OPA, and an ω-language L2 =

{bω}, which can be recognized by an ωDOPBA, with compatible precedence matri-

ces. Since language La−finite cannot be recognized by an ωDOPBA, then the class of

languages L(ωDOPBA) is not closed w.r.t. concatenation.
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Given Σ = {c, r}, the language Lrepbsd cannot be recognized by an ωOPBEA (re-

spectively ωDOPBEA, or ωDOPMA), as shown in Section 3.2.2. Consider the OPA

that accepts the language L1 = Σ
∗ of words of finite length whose OPM is the same

as the precedence matrix depicted in Figure 21. These words have necessarily a fi-

nite number of pending calls, since they have finite length. Moreover, let A2 be an

ωOPBEA (respectively ωDOPBEA, or ωDOPMA) that recognizes the ω-language

LωDyck-pr(c,r) and which is depicted in Figure 21. The concatenation ω-language

L1 · LωDyck-pr(c,r) is exactly the set of ω-words with a finite number of pending calls,

i.e. Lrepbsd. Hence, the class of languagesL(ωOPBEA) (respectivelyL(ωDOPBEA),

or L(ωDOPMA)) is not closed w.r.t. concatenation. �

3.4 monadic second-order logic characterization of ωopls

We now provide a characterization of ωOPLs in terms of a MSO logic that is inter-

preted over infinite words. As usual, we focus our attention on L(ωOPBA), the most

general class of ωOPLs.

The same approach has been followed for VPLs in [11], where the class of lan-

guages accepted by VPAs with Büchi acceptance condition is characterized using the

MSO logic recalled in Section 2.4, which is interpreted over infinite words.

Herein we adopt the same conventions and notations as in Section 2.4, and extend

the formula evaluation over ω-strings in the natural way. To distinguish the infinite

case from the finite one, we will use symbol |=ω instead of |=. Given an OP alphabet

(Σ, M) and a MSO formula ϕ, we denote the language of all strings w ∈ Σ
ω such that

#w |=ω ϕ by Lω(ϕ) = {w ∈ Σ
ω | #w |=ω ϕ}.

Example 3.3 (Managing interrupts). Consider again the system that manages inter-

rupts described in Example 3.1. The same rules enforced by the automaton of Fig-

ure 18 are also formalized by the following sentences.

• All int2 are eventually served by a corresponding serve2:

∀x (int2(x) ⇒ ∃y(serve2(y) ∧ (y = x + 1∨ xy y))).
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• Lower priority interrupts are not accepted when a higher priority one is pend-

ing:

∀x, y (int2(x) ∧ serve2(y) ∧ xy y⇒ ∀k(x < k < y⇒ ¬int1(k))).

As another example consider the “weak fairness requirement” also mentioned in

Example 3.1, which states that after a first calla not matched by reta but interrupted by

a int1 or int2, a second calla cannot be interrupted by a new lower priority interrupt

int1 (but can still be interrupted at any time by higher priority ones): the sentence

below formalizes such a constraint.

¬∃x1, x2

(
x1 < x2 ∧ calla(x1) ∧ calla(x2)∧

∀x3(x1 ≤ x3 ≤ x2 ∧ calla(x3) ⇒ ¬∃y3(reta(y3) ∧ (y3 = x3 + 1∨ x3 y y3)))∧

∃z1, z2((int1(z1) ∨ int2(z1)) ∧ int1(z2) ∧
2∧

i=1

(zi = xi + 1 ∨ xi y zi))
)

Theorem 3.10. Let (Σ, M) be an OP alphabet. L is accepted by a nondeterministic

ωOPBA A over (Σ, M) if and only if there exists an MSO sentence ϕ such that L =

Lω(ϕ).

The construction of a nondeterministic ωOPBA equivalent to an MSO formula is

identical to the one given for finite strings.

The converse construction also follows essentially the same path as in the case

of finite-length languages; thus, we only point out the relevant differences w.r.t. the

construction of Section 2.4. Formula ϕ is defined as

ϕ :=

∃A0, A1, . . . , AN

∃B0, B1, . . . , BN

∃C0, C1, . . . , CN


∨

qi∈I

Starti ∧ ϕδ ∧ ϕunique ∧
∨

q f ∈F

Accept f

 , (10)
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where Starti si defined as in Section 2.4, and Accept f is a shortcut representing the

Büchi acceptance condition (a final state is reached infinitely often):

Accept f := ∀x∃y(x < y∧ y ∈ Q f ).

Formula ϕδ encodes the nondeterministic transition functions of the automaton and

is obtained from formula ϕδpush
∧ ϕδshift

∧ ϕδpop defined in Section 2.4, by replacing

expressions as qk = δ(. . . ) by expressions as qk ∈ δ(. . . ). Finally, formula ϕunique is

defined as the conjunction of the following formulae:

ϕuniqueA := ∀x

N∧

i=0

x ∈ Ai ⇒ ¬

N∨

j=0

( j , i∧ x ∈ A j)



ϕunique next := ∀x, y

N∧

k=0

Nextk(x, y) ⇒ ¬
∨

j,k

Next j(x, y)



Such formula was not necessary in the finite case because it was implied by the deter-

minism of the automaton.

The proof that formula ϕ is satisfied by all and only the words accepted by A

is based on Lemmata 2.5 and 2.6, but we need some more properties to cope with

infinite words.

Any ω-word w ∈ Σ
ω compatible with M can be factored, as in the proof of Theo-

rem 3.5, as a sequence w = w1w2w3 . . . where either wi ∈ Σ is a pending letter, or wi

is the body of the chain ai [wi]bi , where ai is the last pending letter before wi and bi

is the first symbol of wi+1. A similar factorization holds for a finite word #w without

end delimiter. We denote by P the set of positions in a (finite or infinite) string w that

correspond to pending letters and by E the set of positions of the right delimiter of
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the chains of the factorization. These two sets are not necessarily disjoint, and EP is

their union.

z ∈ P := ∀x, y (x < z < y∧ xy y⇒ #(y))

z ∈ E := ∃x (x ∈ P∧ xy z)

z ∈ EP := z ∈ P∨ z ∈ E

Any prefix of an infinite string w which ends in an EP position of w is called EP-prefix

of w.

Let us define

ψi,k(A0, . . . , AN , B0, . . .BN , C0, . . . , CN) := Starti ∧ ϕ
′
δ ∧ Finalk

where

Finalk := ∃y∃e ( y ∈ Qk ∧ y ≤ e ∧ e ∈ EP ∧ ∀z(y ≤ z ∧ z ∈ EP⇒ z = e))

and ϕ′
δ

is as ϕδ except for the formula ϕδpop , where the constraint ¬#(y) is conjuncted

to the antecedent of ϕδpop f w
, and ϕδpop bwB

and ϕδpop bwC
are replaced by the unique

formula

ϕpop bw := ∀x, z, v, y

N∧

k=0



x ∈ Bk ∧ v ∈ Ck

∧

¬#(y) ∧ Tree(x, z, v, y)

⇒

N∨

i=0

N∨

j=0



Treei, j(x, z, v, y)

∧

δpop(qi, q j) ∋ qk





We will interpret formula ψi,k over finite strings. More precisely, let w′ be an EP-

prefix of a string w ∈ Σ
ω. It is w |=ω ϕ if and only if there exist an initial state qi, a

final state q f , and an assignment A0, . . . , CN such that w′ |= ψi, f (A0, . . . , CN) for an

infinite number of EP-prefixes w′ of w. In this case, a position x in a prefix w′ may

start a chain that goes beyond the end of w′, hence in such cases x is in Bk in the

assigment satisfying w |=ω ϕ but w′ 6|=ω ϕpop bwB. This is the reason why we replace

the backward formulae of ϕδpop in ϕ′
δ
.
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For any assignment for A0, . . . , CN , it is w′ |= ψi,k(A0, . . . , CN) if and only if there

exists a run of A for w′ beginning from state qi that visits state qk somewhere after

the last EP position before |w′|. The run can be built reasoning as in Lemmata 2.5

and 2.6 within the chains of the factorization, and using formulae ϕδpush
and ϕδshift

for

the positions of pending letters. The properties corresponding to states qi and qk are

provided by formulae Starti and Finalk. If w′ and w′′ are EP-prefixes of w and both

satisfy ψi,k with the same assignment to A0, . . . , CN , then the corresponding runs built

with such a construction are one the prefix of the other.

Hence w |=ω ϕ if and only if there exist infinitely many (finite) runs of A on EP-

prefixes of w, each of them beginning from qi and visiting the same final state q f

somewhere after its last EP position; such runs are all prefixes of the same infinite

run ρ.

Furthermore, since there is a move in ρ that reaches q f while reading the suffix of

each of those EP-prefixes after its last EP position, then ρ traverses infinitely often q f ,

and hence ρ is accepting forA.

Symmetrically, one can prove that if there exists an accepting run ρ for an ω-string

w inA, then w |=ω ϕ.





4
A F I R S T- O R D E R L O G I C F O R F R E E L A N G UAG E S

The traditional MSO logic characterization of regular languages, which has been

extended to larger classes such as VPLs and OPLs, is in general considered of in-

tractable complexity for system verification; thus, the literature exhibits a fairly wide

variety of language subclasses that are characterized in terms of simpler logics such

as fragments of first-order logics or temporal ones. For instance the equivalence be-

tween star-free regular languages and Linear Temporal Logic (LTL) is proved in [58];

[8] characterizes classes of VPLs by means of various first-order and temporal logics.

[65], instead, presents a logical characterization of the class of context-free lan-

guages by means of a first-order logic, although extended with a quantification over

matchings.

In this chapter we move a first step towards accomplishing a similar job with OPLs.

We consider free grammars (FrGs) and languages (FrLs), which have been introduced

with the main propose of supporting grammar inference [36, 35] for programming lan-

guages. Grammatical inference (or induction) is an active and rich field of research,

where various kinds of machine learning techniques are employed to infer a formal

grammar or a variant of finite state machine from a set of observations, thus construct-

ing a model which accounts for the characteristics of the observed objects. We refer

the interested reader to the recent comprehensive works [40, 43].

FrGs suffer from large size since their nonterminal alphabet is based on the power

set of their terminal one; however they can be easily inferred on the basis of positive

samples only, and can be minimized (by losing the property of being free) by applying

classical algorithms [75, 22]. In this chapter we show that they are well suited to

describe various language types, not only in the realm of programming languages.

Furthermore, they can be used to define a sort of “superlanguage”, possibly inferred

in the limit from a set of strings of the user’s desired language, and that can be further

refined by imposing a few restricting properties in terms of first-order formulae.

115
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The main result of this chapter is that FrL strings satisfy formulae written in a first-

order logic that restricts the MSO one defined for general OPLs, and the structure

over which such formulae are interpreted is the same as the one defined for general

OPLs.

The chapter is organized as follows. In Section 4.1 we resume the basic definitions

and properties of FrGs and languages. In Section 4.2 we provide a few simple exam-

ples of FrLs with the purpose of showing their usefulness in describing several types

of languages, and we prove some of their properties. In Section 4.3 we introduce a

first-order logic that defines FrLs. Finally, in Section 4.4 we discuss some related

works.

4.1 preliminaries

We first introduce some notation that will be needed in the rest of the chapter.

Let G = (N, Σ, P, S ) be an OG. The definition of left and right terminal sets is

extended from nonterminals to generic strings α over (N ∪ Σ)∗ as follows:

L(α) =



{a ∈ Σ | A
∗
⇒ Baα} if α = A

{a} if α = aβ

L(A) ∪ {a} if α = Aaβ

R(α) =



{a ∈ Σ | A
∗
⇒ αaB} if α = A

{a} if α = βa

R(A) ∪ {a} if α = βaA

where A ∈ N, B ∈ N ∪ {ε}, a ∈ Σ, β ∈ (N ∪ Σ)∗.

The following definitions are from [35].

Definition 4.1 (Free Grammar and Language [35]). Let G be an OPG with no renam-

ing rules and no empty rule except possibly C → ε, where C is an axiom not used

elsewhere; G is a free grammar (FrG) iff the two following conditions hold

• for every production A→ α, with α , ε, L(A) = L(α) and R(A) = R(α),

i.e., for every nonterminal symbol A, all of its alternative non-empty rules have

the same pairs of left and right terminal sets;

• for every nonterminals A, B, L(A) = L(B) and R(A) = R(B) implies A = B.
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A language generated by a FrG is a free language (FrL).

Notice that, by definition, a FrG is in Fischer normal form. Also, each nontermi-

nal A is uniquely identified by the pair of sets L(A),R(A); thus N is isomorphic to

℘(Σ)×℘(Σ). Indeed, it is customary to use ℘(Σ)×℘(Σ) as the nonterminal alphabet

of a free grammar.

FrLs can also be defined in terms of a suitable automata family and extended to

ω-languages in a similar way as it has been done for general OPLs.

Definition 4.2 (Maxgrammar [35]). Given an OPM M, the maxgrammar associated

with M is the free grammar that contains all productions that are compatible with M,

i.e., the productions that induce all and only the relations in M.

Notice that the maxgrammar associated with a complete OPM (i.e., an OPM with

no empty case) generates the language Σ
∗. The maxgrammar associated with an OPM

is unique thanks to the hypothesis of �-acyclicity or, in general, if we require that the

length of the r.h.s. of the rules is a priori bounded. Also, the set of FrGs with a given

OPM is a lattice whose top element is the maxgrammar associated with the matrix

[35]. In [35] it is also shown that each free grammar is the top element of a Boolean

algebra and that the whole family of OPLs compatible with a given OPM is itself a

Boolean algebra whose top element is the language generated by the maxgrammar.

4.2 examples and first properties of free languages

In this section we investigate the generative power of free grammars: the following

examples show that they are well suited to formalize some typical programming lan-

guage features and various types of system behavior; we will also show that the class

of FrLs is not comparable with other subclasses of OPLs such as, e.g., VPLs.

Furthermore, the examples below show that FrGs are not intended to be built by

hand; being driven by the powerset of Σ, both N and P may suffer from combinato-

rial explosion. However, according to their original motivation to support grammar
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inference, they are well suited to be easily built by some automatic device: in fact the

grammars of the following examples have been automatically generated.10

Example 4.1. The FrG G depicted in Figure 28 with its OPM generates unparenthe-

sized arithmetic expressions with the usual precedences of × w.r.t. +, which cannot

instead be expressed as a VPL. This grammar is obtained from the maxgrammar as-

sociated with the OPM by taking only those nonterminals that have letter n in both

left and right sets. By this way we guarantee that all strings generated by the grammar

begin and end with an n, and are thus well formed. All nonterminals of the grammar

are axioms too.

Extending the above grammar to generate also parenthesized arithmetic expres-

sions is a conceptually easy exercise since we only need new nonterminals, and corre-

sponding rules, including L and M in their left and right terminal sets, respectively. The

corresponding FrG has 22 nonterminals and 168 rules, and it can be found among the

examples available in the Flup package [1].

〈{n}, {n}〉 → n

〈{+,×, n}, {+, n}〉 → 〈{×, n}, {×, n}〉 + 〈{n}, {n}〉
〈{+, n}, {+, n}〉 → 〈{+, n}, {+,×, n}〉 + 〈{n}, {n}〉

〈{+, n}, {+,×, n}〉 → 〈{+, n}, {+, n}〉 + 〈{×, n}, {×, n}〉

〈{+,×, n}, {+,×, n}〉 → 〈{+,×, n}, {+,×, n}〉 + 〈{×, n}, {×, n}〉

〈{×, n}, {×, n}〉 → 〈{×, n}, {×, n}〉 × 〈{n}, {n}〉

〈{+, n}, {+,×, n}〉 → 〈{+, n}, {+,×, n}〉 + 〈{×, n}, {×, n}〉

〈{+,×, n}, {+, n}〉 → 〈{+,×, n}, {+, n}〉 + 〈{n}, {n}〉
〈{+,×, n}, {+,×, n}〉 → 〈{+,×, n}, {+, n}〉 + 〈{×, n}, {×, n}〉

〈{+,×, n}, {+,×, n}〉 → 〈{×, n}, {×, n}〉 + 〈{×, n}, {×, n}〉

〈{+,×, n}, {+, n}〉 → 〈{+,×, n}, {+,×, n}〉 + 〈{n}, {n}〉
〈{+, n}, {+, n}〉 → 〈{n}, {n}〉 + 〈{n}, {n}〉

〈{+, n}, {+,×, n}〉 → 〈{n}, {n}〉 + 〈{×, n}, {×, n}〉

〈{×, n}, {×, n}〉 → 〈{n}, {n}〉 × 〈{n}, {n}〉

〈{+, n}, {+, n}〉 → 〈{+, n}, {+, n}〉 + 〈{n}, {n}〉

n + ×

n ⋗ ⋗

+ ⋖ ⋗ ⋖

× ⋖ ⋗ ⋗

Figure 28.: A FrG for unparenthesized arithmetic expressions and its OPM.

10 The grammars presented here have been produced by the Flup tool (the whole package, which includes

various utilities for the general class of OPLs, is available at [1]). In the future we plan to couple Flup with

an additional tool that minimizes the original grammar by applying the classical procedure introduced in

[75].
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Example 4.2. Consider a simplified version of the software system described in Ex-

ample 3.1, which serves requests of operations issued by various users but subject to

possible asynchronous interrupts. We consider a system that does not work forever

and we assume that there is only one type of interrupt.

We model the behavior of the system by introducing an alphabet with a pair of

symbols call, ret, to describe the request and completion of a user’s operation, and

symbol int, denoting the occurrence of the interrupt. Under normal behavior calls

and rets must be matched according to the normal LIFO policy; however, if an inter-

rupt occurs when some calls are pending, they are reset without waiting for the cor-

responding rets; possible subsequent rets remain therefore unmatched. Unmatched

returns can occur only if previously some interrupt flushed away all unmatched calls.

A FrG that generates sequences of operations and occurrences of interrupts con-

sistent with the above informal description has the OPM displayed in Figure 29. The

same Figure shows a sample of productions of the FrG, which counts 21 nonterminals

and 174 rules overall. It has been built starting from the maxgrammar associated with

the OPM by taking as nonterminals only 〈{ret}, {ret}〉 and those that do not contain ret

in their left set. The axioms are all nonterminals A ∈ (℘(Σ) × ℘(Σ)) \ {〈{ret}, {ret}〉}.

Nonterminal 〈{ret}, {ret}〉 is necessary to generate sequences of unmatched returns;

the constraint on the other nonterminals guarantees that a sequence of rets is either

matched by corresponding previous calls or is unmatched but preceded by an inter-

rupt. This FrG too can be found in the examples in the Flup package.

The resulting grammar can be easily modified to deal with more complex policies,

e.g., different levels of interrupt, but with a possible consequent size increase.

All the FrGs in the above examples have been built by applying a top-down ap-

proach, starting from the maxgrammar associated with the OPM and “pruning” non-

terminals and productions that would generate undesired strings. This approach com-

plements the bottom up technique of traditional grammar inference, which builds a

FrG generating a desired language by abstracting away from a given sample of lan-

guage strings (it exploits the distinguishing property of FrGs that they can be inferred

in the limit on the basis of a positive sample only [36]).



120 a first-order logic for free languages

〈{int}, {int}〉 → int

〈{ret}, {ret}〉 → ret

〈{call}, {call}〉 → call

〈{call}, {ret}〉 → call ret

〈{int, call}, {int}〉 → 〈{call}, {call, ret}〉 int |

〈{call, int}, {call, ret}〉 int

〈{call, int}, {call}〉 → 〈{int}, {int, ret}〉 call |

〈{int, call}, {int, ret}〉 call

〈{call, int}, {ret}〉 → 〈{int}, {int}〉 call ret |

〈{int, call}, {int}〉 call ret |

〈{call, int}, {ret}〉 call ret |

〈{int}, {int, ret}〉 call ret

〈{call, int}, {call, ret}〉 → 〈{int}, {int}〉 call 〈{call}, {ret}〉

〈{int, call}, {int, ret}〉 → 〈{call}, {call}〉 int 〈{ret}, {ret}〉 |

〈{call, int}, {call, ret}〉 int 〈{int}, {int, ret}〉

call ret int

call ⋖ � ⋗

ret ⋗ ⋗ ⋗

int ⋗ ⋖ ⋖

Figure 29.: A sample of rules of the FrG for the language of Example 4.2 and its

OPM.

The typical canonical form of FrGs makes also easy the application of the classical

minimization procedure that extends to structure grammars the minimization of finite

state machines [75, 22].

The above examples also help comparing the generative power of FrLs with other

subclasses of OPLs.

Proposition 4.1. The class of FrLs is incomparable with the classes of regular lan-

guages and VPLs.

Proof. The language described in Example 4.2 is a FrL but is not regular, due to

the necessity to match corresponding call and ret symbols, nor a VPL: although, in

fact, it retains the rationale of VPLs in that it allows for unmatched “parenthesis-

like” symbols (calls and returns in this case), it generalizes this VPLs feature in that

such unmatched symbols can occur even inside a matching pair, which is impossi-

ble in VPLs. On the other hand, it is known that FrGs generate only non-counting

languages [33], whereas regular languages and VPLs, which strictly contain regular

ones, can be counting [76]. �
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Proposition 4.2. FrLs (with a fixed OPM) are closed w.r.t. intersection [33] but not

w.r.t. concatenation, complement, union and Kleene *.

Proof. Closure under intersection has been already stated in [33], and follows from

the fact that, given an OPM, the parsing of any string w is the same for any FrG

(all FrG’s nonterminal alphabets are pairs of subsets of Σ); it follows that L(G1) ∩

L(G2) = L(G1 ∩G2) where G1 ∩G2 denotes the grammar whose production set is

the intersection of the production sets of G1 and G2 (possibly “cleaned up” of the

useless productions) and is a FrG.

To prove that FrLs are not closed w.r.t. concatenation, consider language L = {a}

with a ⋖ a. L is a FrL but L · L is not: to generate # ⋖ a ⋖ a ⋗ # a FrG needs the

productions 〈{a}, {a}〉 → a and 〈{a}, {a}〉 → a〈{a}, {a}〉 which generate a+. For the

same reason ¬L = {an | n > 1 ∨ n = 0} is not a FrL; thus FrLs are not closed w.r.t.

complement.

Consider the FrGs G1 and G2 below (both grammars have axiom 〈{a, b}, {b}〉):

G1 :

〈{a, b}, {b}〉 → 〈{a, b}, {b}〉 b | 〈{a}, {a}〉 b

〈{a}, {a}〉 → a

G2 :

〈{a, b}, {b}〉 → 〈{a}, {a}〉 b

〈{a}, {a}〉 → a | 〈{a}, {a}〉 a

which generate, respectively, L1 = ab+ and L2 = a+b: all productions of G1 and G2

are necessary to generate all strings of L1 ∪ L2 but the union of (productions of) G1

and G2 generates strings a+b+, which do not belong to L1 ∪ L2.

Finally, consider the FrG G:

〈{a, b}, {b}〉 → 〈{a, b}, {a}〉 b

〈{a, b}, {a}〉 → 〈{a, b}, {b}〉 a | 〈{b}, {b}〉 a

〈{b}, {b}〉 → b

with axiom 〈{a, b}, {b}〉, which generates L = (ba)+b (with a ⋗ b, b ⋗ b and b ⋗ a).

To generate a string in L∗ we need to generate two consecutive b, corresponding

respectively to the last and the first character of two consecutive words of L; this can

be obtained only by means of a new rule for a nonterminal with right terminal set {b},

such as 〈{a, b}, {b}〉 → 〈{a, b}, {b}〉b or the rule 〈{b}, {b}〉 → 〈{b}, {b}〉b, which however
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imply the generation also of strings containing any number of consecutive b, which

do not belong to L∗. �

Ultimately, the above examples show that on the one hand FrGs can model the

essential features of various systems but, on the other hand, they exhibit some unex-

pected limits in generative power which are not suffered even by regular languages.

These limits must be ascribed to their distinguishing property of being inferrable

in the limit by using only a set of positive strings (in fact the class of FrLs is not

closed under complement). Thus they are better suited to define a sort of “skeleton

language” to be refined by superimposing further constraints specified by means of

some complementary formalism. A natural way to pursue such an approach is, e.g.,

to “intersect” them with some finite state machine. Herein, instead, we will exploit

the fact that FrLs can be defined in terms of first-order logic sentences, but first-order

logic can also be used to define further, even more sophisticated, constraints on these

languages.

4.3 first-order logic definability of free languages

In this section we show that FrLs can be defined in terms of a FO logic rather than a

MSO one. The converse property however does not hold: by Proposition 4.2, in fact,

the class of FrLs is not closed under complement; hence, there are languages that can

be defined in terms of FO logic but are not FrLs. On the other hand FO formulae can

be used to refine FrLs by superimposing further properties.

The key difference between the traditional MSO language formulation and the new

FO one is that in the MSO formulation each position in the string (over which the

MSO logic formula is interpreted) may be associated with several states of an automa-

ton recognizing the language defined by the MSO formula, i.e., to several second-

order variables denoting subsets of positions according to Büchi’s approach; in our

FO formulation instead, we associate positions with the left and right terminal sets of

the nonterminal of a FrG that is the root of the subtree whose leftmost and rightmost

leaves are in the given positions. Thanks to the fact that in FrGs the number of pos-

sible nonterminals is a priori bounded and they are univocally identified by their left
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and right terminal sets, we can express such association by means of first-order for-

mulae, without the need to resort to second-order variables denoting sets of positions.

We now introduce the syntax of our FO logic and we then prove that, for every FrG,

a FO sentence can be automatically built that is satisfied by all and only the strings

generated by the grammar.

Definition 4.3 (First-order Logic over (Σ, M)). Let (Σ,M) be an OP alphabet, and let

V be a countable infinite set of first-order variables (denoted by x, y, . . . ). The FOΣ,M

(first-order logic over (Σ, M)) is defined by the following syntax:

ϕ := c(x) | x ≤ y | xy y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where c ∈ Σ ∪ {#}, x, y ∈ V.

A FOΣ,M formula is interpreted over a (Σ, M) string w, with respect to assignments

ν : V → {0, 1, . . . , |w|+ 1} analogously to MSOΣ,M formulae (Definition 2.10) with

V2 = ∅.

Example 4.3. Consider the OP alphabet given in Figure 30. In all strings compatible

with M, such that #[w]# is a chain, all parentheses are well-matched.

The sentence in Figure 31 restricts the set of strings compatible with the OPM to

the language where parentheses are used only when they are needed (i.e., to invert the

natural precedence between × and +).

+ × L M n #

+ ⋗ ⋖ ⋖ ⋗ ⋖ ⋗

× ⋗ ⋗ ⋖ ⋗ ⋖ ⋗

L ⋖ ⋖ ⋖ � ⋖

M ⋗ ⋗ ⋗ ⋗

n ⋗ ⋗ ⋗ ⋗

# ⋖ ⋖ ⋖ ⋖ �

Figure 30.: An OP alphabet (Σ, M) for arithmetic expressions.

We now state our main result of this chapter.
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∀x∀y



xy y ∧

L(x + 1) ∧
M(y − 1)

⇒

(×(x) ∨×(y))
∧

∃z



x + 1 < z < y − 1∧+(z) ∧

¬∃u∃v



x + 1 < u < z∧ L(u)∧
z < v < y − 1 ∧ M(v)∧

u− 1y v + 1







Figure 31.: A FOΣ,M sentence on the OP alphabet (Σ, M) of Figure 30.

Theorem 4.1. Let G = 〈N, Σ, P, S 〉 be a FrG: then a FOΣ,M formula ψ can be

effectively built such that w ∈ L(G) iff w |= ψ.

Proof. We first introduce some shortcut notation to make formulae more compact

and understandable.

As in Section 2.4.3, when considering a chain a[w]b, assume w = w0a1w1 . . . aℓwℓ,

with a[a1a2 . . . aℓ]b being a simple chain (any wi may be empty). We denote by si the

position of symbol ai, for i = 1, 2, . . . , ℓ and set a0 = a, s0 = 0, aℓ+1 = b, and

sℓ+1 = |w|+ 1.

Notation TreeC is defined as follows (n > 1):

TreeC(x0, x1, . . . , xn, xn+1) := x0 y xn+1∧
∧

0≤i≤n



xi + 1 = xi+1

∨

xi y xi+1

∧
∧

i+1< j≤n

¬(xi y x j)



If x0 y xn+1, there exist (unique) x0, x1, . . . , xn, xn+1 such that TreeC(x0, x1, . . . , xn,

xn+1) holds: in particular, x0 ⋖ x1, xi � xi+1 for 1 ≤ i ≤ n − 1, and xn ⋗ xn+1.

Let w be a chain body w = w0a1w1a2 . . .aℓwℓ: if every wi is empty (the chain is

simple), then 0 y ℓ + 1 and TreeC(0, 1, 2, . . . , ℓ, ℓ+ 1) holds; if w is the body of

a composed chain, then 0 y |w| + 1 and TreeC(s0, s1, s2, . . . , sℓ, sℓ+1) holds (see

Figure 32).
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a0 w0 a1 w1 a2 . . . aℓ−1 wℓ−1 aℓ wℓ aℓ+1

s0 s1 s2 sℓ−1 sℓ sℓ+1

Figure 32.: Chain
a0 [w0a1w1a2 . . . aℓwℓ]aℓ+1,

for which

TreeC(s0, s1, s2, . . . , sℓ, sℓ+1)
holds.

A

a

x

B

C

D

E

d F

. . .

b

e

d

c

y

. . .

Figure 33.: Pair of positions x, y for

which L{d,e}(x, y) holds.

We consider notation Tree as it has been defined in Section 2.4.3, and it is reported

here again for convenience.

Tree(x, u, v, y) := xy y∧



(x + 1 = u ∨ xy u) ∧ ¬∃t(u < t < y∧ xy t)

∧

(v + 1 = y ∨ vy y) ∧¬∃t(x < t < v∧ ty y)



This notation represents a “projection” of TreeC over positions x0, x1, xn and xn+1

(here corresponding to x, u, v, y), and is used when we do not need to refer to positions

x2, . . . , xn−1 within a chain.

Also, for every A ⊆ Σ, we define notations:

LA(x, y) :=



∀u, v, z

u ≤ v < z ≤ y∧ Tree(x, u, v, z) ⇒
∨

a∈A

a(u)



∧∧

a∈A

∃ u, v, z (u ≤ v < z ≤ y∧ Tree(x, u, v, z) ∧ a(u))


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RA(x, y) :=



∀u, v, z

x ≤ u < v ≤ z∧ Tree(u, v, z, y) ⇒
∨

a∈A

a(z)



∧∧

a∈A

∃ u, v, z (x ≤ u < v ≤ z ∧ Tree(u, v, z, y) ∧ a(z))



For instance, with reference to Figure 33, for positions x, y, L{d,e}(x, y) holds. Notice

that for each pair of positions x, y there exists a unique pair of sets A, B such that

LA(x, y) and RB(x, y) hold true.

Furthermore, for every 〈L, R〉 ∈ Γ, we add notation P〈L,R〉(x, y), which represents

the terminal profile of the chain, if any, between positions x and y:

P〈L,R〉(x, y) := xy y∧LL(x, y) ∧RR(x, y)

Intuitively, P〈L,R〉(x, y) holds iff, in the syntax tree, the chain between positions x and

y is the frontier of a subtree that has as root nonterminal 〈L, R〉.

Finally, for every 〈L, R〉 ∈ Γ, set

ψ〈L,R〉 := ∀x, y



P〈L,R〉(x, y)

⇒

∨

〈L,R〉→〈L0,R0〉c1〈L1,R1〉c2...ck〈Lk ,Rk〉

∃x1 . . . xk



TreeC(x, x1, . . . , xk, y) ∧∧

1≤i≤k

ci(xi) ∧

∧

1≤i≤k−1:
〈Li,Ri〉,ε

P〈Li,Ri〉(xi, xi+1) ∧

x + 1 , x1 ⇒ P〈L0,R0〉(x, x1) ∧

xk + 1 , y⇒ P〈Lk,Rk〉(xk, y)





where the disjunction is considered over the rules of G:

ρ = 〈L, R〉 → 〈L0, R0〉c1〈L1, R1〉c2 . . . ck〈Lk, Rk〉,

with 〈Li, Ri〉 ∈ N ∪ {ε}, 0 ≤ i ≤ k, and L = L0 ∪ {c1}, R = Rk ∪ {ck}.
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To complete the construction and the proof of Theorem 4.1 we define:

ψ :=
∧

〈A,B〉

ψ〈A,B〉 ∧ ∃e

#(e + 1) ∧¬∃y(e + 1 < y) ∧
∨

〈L,R〉∈S

P〈L,R〉(0, e + 1)



The proof of the theorem is a direct consequence of the following Lemma 4.1 when

〈L, R〉 is an axiom of G. �

Lemma 4.1. For every 〈L, R〉 ∈ N and for every body w of a chain, we have 〈L, R〉
∗
⇒

w iff w |= P〈L,R〉(0, |w|+ 1) ∧
∧

〈A,B〉

ψ〈A,B〉.

Proof. Consider first the direction from left to right of the lemma. The proof is by

induction on the length h of a derivation.

If h = 1, then 〈L, R〉
∗
⇒ w implies that ρ = 〈L, R〉 → a1a2 . . . al is a production of

G, and w = a1a2 . . . al is the body of a simple chain. G being a FrG, it is L = {a1}

and R = {al}. Since 0 y l + 1 and w |= L{a1}(0, l + 1) ∧ R{al}(0, l + 1), then

w |= P〈L,R〉(0, l+ 1).

For every 〈A, B〉 ∈ Γ and positions x, y, w |= P〈A,B〉(x, y) holds true only if

〈A, B〉 = 〈L, R〉 and x = 0, y = l+ 1. Furthermore, there exist (unique) x1 = 1, x2 =

2, . . . , xl = l such that TreeC(0, 1, . . . , l, l + 1) holds, and for every j = 1, . . . , l,

a j(x j) holds true. Thus, w |= ψ〈A,B〉 for every 〈A, B〉 ∈ Γ, and w |= P〈L,R〉(0, |w|+

1) ∧
∧
〈A,B〉ψ〈A,B〉.

Assume that this direction of the lemma holds for every derivation of length ≤ h.

Let 〈L, R〉
h+1
⇒ w, with 〈L, R〉 ⇒ 〈L0, R0〉a1〈L1, R1〉a2 . . . al〈Ll, Rl〉 and, for each

i = 0, 1, . . . , l, 〈Li, Ri〉
hi
⇒ wi such that hi ≤ h and w = w0a1w1 . . .alwl is the body of

a composed chain (wi = ε if 〈Li, Ri〉 = ε).

By the inductive hypothesis, for every i = 0, 1 . . . , l such that wi , ε, we have wi |=

P〈Li,Ri〉(0, |wi| + 1) ∧
∧
〈A,B〉 ψ〈A,B〉. Let ρ = 〈L, R〉 → 〈L0, R0〉a1〈L1, R1〉a2 . . . al

〈Ll, Rl〉: G being a FrG, we have L = L0 ∪ {a1} and R = Rk ∪ {al}; thus w |=

LL(0, |w|+ 1) ∧ RR(0, |w|+ 1), and w |= P〈L,R〉(0, |w|+ 1). Furthermore, let x, y

be positions such that w |= P〈A,B〉(x, y) for some 〈A, B〉 ∈ Γ and x, y are not both

inside the same wi, and they are not si and si+1; then necessarily x = 0, y = |w|+ 1,

and w |= P〈A,B〉(0, |w|+ 1) only if 〈A, B〉 = 〈L, R〉. Also, there exist x0 = 0, x1 = s1,
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. . . , xl = sl, xl+1 = |w|+ 1 such that TreeC(x0, x1, . . . , xl, xl+1) holds, and for every

j = 1, . . . , l, a j(x j) holds true. Hence, w |=
∧
〈A,B〉 ψ〈A,B〉.

Consider then the direction from right to left of the lemma. The proof is by induc-

tion on the depth d of the chain.

If d = 1, then w = a1a2 . . . al is the body of a simple chain. Since w |= P〈L,R〉(0, |w|

+1), then there exist ρ = 〈L, R〉 → 〈L0, R0〉c1〈L1, R1〉c2 . . . ck〈Lk, Rk〉 and x1, . . . , xk

such that TreeC(0, x1, . . . , xk, |w|+ 1) and c j(x j) for every j = 1, . . . , k hold. By def-

inition of TreeC, we have x j = j for every j = 1, . . . , k and k = l, and a j = c j for

every j. There is, thus, a production of G: ρ = 〈L, R〉 → a1a2 . . . al, and 〈L, R〉
∗
⇒ w

holds.

Let now d > 1, then w = w0a1w1 . . . alwl is the body of a composed chain and

s j (1 ≤ j ≤ l) are the unique positions such that TreeC(0, s1, . . . , sl, |w|+ 1) holds

true. Since w |= P〈L,R〉(0, |w| + 1) ∧
∧
〈A,B〉 ψ〈A,B〉, then there exists a production

ρ of G such that ρ = 〈L, R〉 → 〈L0, R0〉c1〈L1, R1〉c2 . . . ck〈Lk, Rk〉 and there exist

x j (1 ≤ j ≤ k) with TreeC(0, x1, . . . , xl, |w| + 1) and c j(x j); thus we have k = l

and c j = a j for each j. Furthermore, let x0 = 0, xl+1 = |w| + 1: for every i =

0, 1 . . . , k such that 〈Li, Ri〉 , ε, w |= P〈Li,Ri〉(xi, xi+1) holds true, and we have wi |=

P〈Li,Ri〉(0, |wi| + 1) ∧
∧
〈A,B〉 ψ〈A,B〉. By inductive hypothesis, thus there exists in G

a derivation 〈Li, Ri〉
∗
⇒ wi. Hence, 〈L, R〉 ⇒ 〈L0, R0〉a1〈L1, R1〉a2 . . . 〈Lk−1, Rk−1〉ak

〈Lk, Rk〉
∗
⇒ w. �

4.4 related work

In the last decades an independent branch of research generated a flourishing of new

results in terms of logic characterization of language families, ignited by the pio-

neering results by Büchi and others [24, 78] on the monadic second-order (MSO)

logic characterization of regular languages over finite or infinite words (ω-languages)

and motivated mainly by the breakthrough application of model-checking, which is

rooted in closure properties and decidability of the emptiness problem, besides cor-

respondence between automata-theoretic and logic language characterization. The

present state of the art exhibits plenty of language families and related characteriza-
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tion in terms of various forms of logic formalisms as, e.g., first-order, propositional

or temporal logics.

The earliest investigations on first-order logic characterizations of language classes

date back to [99, 76], which proved respectively that the first-order logic of the suc-

cessor FO[+1] characterizes the class of locally threshold testable languages and the

first-order logic of the linear order FO[<] characterizes the larger class of star-free

languages. A fundamental result by Kamp [58] showed that FO[<] is also equivalent

to Linear Temporal Logic (LTL), which has long been considered the temporal logic

of choice for program verification, because of its expressiveness, conciseness and

model checking complexity (linear time in the size of the system and PSPACE in the

size of the formula). In [95] Thomas obtained a further characterization for first-order

definable languages of infinite words as those accepted by a counter-free or aperiodic

Büchi automaton.

First-order logic with predicate x + y = z, i.e. FO[+], has been also recently in-

vestigated in [28], where they provide a characterization of the bounded languages

definable in this logic as the class of semilinear languages. A characterization of

logic FO[+] in terms of a class of generating or recognizing devices, instead, is still

an open problem.

Recently, new first-order or specialized logical formalisms have been proposed

mainly with the goal of extending model-checking techniques, i.e., decidability of

system properties, beyond the natural scope of finite state machines. E.g., [5] inves-

tigates propositional dynamic logic (PDL) on trees and studies the complexity of its

model checking problem; [20] studies the model-checking problem for the same logic

on parse trees. [8] has lately introduced some temporal logics for VPLs of finite and

infinite length words, which are natural extensions of LTL, and has proved that these

logics have the same expressive power as the first-order logic of the successor aug-

mented with the binary predicate  . This work defines a Nested Word Temporal

Logic (NWTL), which extends LTL with a future and past variant of the standard

Until operator, which is interpreted on paths of positions augmented by edges that

link pair of positions labeled by matching call and return alphabet symbols. It pro-

vides a tableaux-based model checking algorithm and studies its complexity, which

is polynomial in the size of the model and EXPTIME in the size of the formula
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(precisely, EXPTIME-complete). A less expressive temporal logic for VPLs, named

CaRet, which is instead not first-order expressively complete, has been introduced

in [9] with the main motivation of specification and verification of non-regular pro-

gram specifications. [8] also extends CaRet with variants of the classical temporal

operators, yielding logics that are also first-order expressively-complete, but with a

worse complexity for model checking.

As regards FrLs, since they are not closed under the operations of complementation

and intersection, they cannot directly allow for the classical automata-based approach

for model checking. Nevertheless, as explained in the previous sections of this chapter,

they can be naturally exploited for system specification by exploiting their property

of being inferable in the limit on the basis of a positive sample of sentences only and

further refining the inferred language by stating, e.g., user’s constraints expressed

as first-order formulae; the behavior of the resulting system might then be model-

checked with a more expressive (first-order) logic.

As future work, we plan to investigate new logic formalisms simpler than MSO

logic that characterize suitable subclasses of general OPLs and further study (variants

of) our logic, in the same vein as it has been done for regular languages, VPLs and for

various cases of tree-languages; in particular, it would be interesting to identify a class

of OPLs characterized exactly by the first-order OP logic introduced in Section 4.3.
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Parallel processing of OPLs
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5
PA R A L L E L S Y N TAC T I C A N D L E X I C A L A NA LY S I S

The renewed interest in OPLs, which has recently motivated a new flourishing of re-

search on this class of languages, is not only driven by the discovery of their closure

and decidability properties, which have been illustrated and investigated for verifica-

tion purposes in the previous chapters of this thesis.

A second fundamental property enjoyed by this class of languages consists in their

local parsability, which is crucial to support data-parallel processing.

In this chapter we illustrate the exploitation of this property for parallel parsing

and we complement and streamline this approach to parallel syntactic analysis by

parallelizing also the lexical analysis stage. Processing based on semantic analysis

–e.g., processing an input document against a user’s query– is the object of the next

chapter (Chapter 6).

5.1 introduction

When one considers the present state of the art on parsing, it is surprising to note

that the literature exhibits only a few historical proposals of parallel parsing algo-

rithms which had no follow-up, let alone application, despite the growing amount

of data which need to be processed (that has grown to such a pressing need that

hardware accelerators have been developed to tackle it [66]). The only, although ad-

hoc, exceptions to this trend are some works tackling the parsing of XML [72] and

HTML5 [102].

The most likely reason for this lack of practical parallel parsers is the intrinsically

sequential nature of the classical deterministic (LR and LL) algorithms. For instance,

assume to parse the language L = L∗
1
, where L1 is {1anbn | n ≥ 1} ∪ {0anb2n | n ≥ 1}

through a deterministic shift-reduce parallel algorithm. Intuitively, it would be natu-

ral to map the parsing of each substring candidate to belonging to L1 into a separate

133
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computation, henceforth called worker, and then to collect the partial results to de-

cide whether the global sentence belongs to L or not. However, since the substrings

belonging to L1 can be arbitrarily long, any random or fixed policy to split the input

into substrings is likely to be far from optimal; it may even be impossible to deter-

mine whether ab or abb groups are to be reduced in case a substring contains no 0s

or 1s.

To cope with these issues, two straightforward approaches were pursued in the liter-

ature: speculative computations [77] or pre-scanning [72]. The former approach non-

deterministically (speculatively) performs the parsing computation for all the possible

cases: in our example, it carries on two parsing processes depending on whether the

current substring is of type 1anbn or 0anb2n, and discards the results of the incorrect

computation as soon as possible. This approach, despite being effective, is not quite

efficient: the computational effort of the parsing can be doubled or more, depend-

ing on the degree of nondeterminism. The latter approach involves a first lightweight

scanning of the input to determine the viable splitting points: in the aforementioned

example it would look for occurrences of 0 and 1 and split the input right before them.

However, this approach introduces an overhead for the preliminary scanning which

could require a pre-scanning over the whole input string. Summing up, the first ap-

proach may require a computational overhead to cope with the nondeterminism which

is potentially more significant than the benefits provided by the parallelism, while the

latter implies an O(n) worst-case preprocessing which, in case of simple languages,

may take as much as a sequential parsing process.

A decisive point to overcome these impasses resides in the exploitation of the local

parsing properties of OPGs, which we leverage on to construct a non-speculative par-

allel parser. Intuitively, a language is locally parsable if, by inspecting a substring of

bounded length, an (e.g., bottom-up) algorithm can deterministically decide whether

the substring contains the right-hand-side of a production and can unequivocally re-

place it with the corresponding left-hand side. Local parsability is the key property

that enables data-parallel parsing of isolated parts of the input so that their partial re-

sults can be recombined in a global syntax tree without backtracking: in other words,

all the isolated partial syntax trees of a valid text are final.
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In the following, we will report a systematic approach to exploit the local parsabil-

ity of OPGs, describing a publicly available parser generator tool, and we will provide

the results of an experimental campaign highlighting the speed-ups achievable w.r.t.

popular sequential parsers, such as those generated by GNU Bison [3]. We chose as

practical test-benches for our approach the JavaScript Object Notation (JSON) data

description language, which offers a real-world validation for large input files, and the

Lua programming language, to gauge how a language far richer than a data descrip-

tion language performs with the parallel lexing and parsing. Furthermore, we show

that the minor theoretical limitations in terms of generative power of OPGs do not

significantly affect the applicability of the approach. The changes needed to adapt the

original BNF of the source language to OPG constraints are obtained in an original

way by augmenting, and parallelizing as well, the initial phase of lexical analysis (or

scanning): the lexer can be used to generate a stream of tokens where new tokens are

emitted or modified to compose a string that can be analyzed by an OP parser. These

transformations allow for naturally and effectively dealing with practical languages

whose grammar is not readily expressible in OP form.

The chapter is organized as follows: Section 5.2 recalls the definition of local

parsability property of OPGs and reports the parallel parsing algorithm. Section 5.3

provides our methodology for parallel lexical analysis, while Section 5.4 describes

how we adapted the JSON and Lua languages to OP-based parsing. Section 5.5 de-

scribes the architecture of our parser generator, and Section 5.6 presents the results

of the benchmark campaign. Section 5.7 concludes by comparing our approach to

previous research on parallel parsers and lexers.

5.2 parallelization of syntactic analysis

This section presents a theory supporting the parallel parsing of OPLs which has been

developed in [14]. After outlining the classical sequential OP parsing algorithm, we

report the proof provided in this work that OP grammars and languages enjoy the lo-

cal parsability property, which is the key to make parsing parallel. Subsequently, we

describe the sequential parsing algorithm for OPGs presented in [14], which is gener-
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alized to apply both to terminal substrings and to partially processed ones (sentential

forms). In this way it provides the basis for a parallel procedure consisting of two (or

more) passes: at first the source string is split into chunks and each one is assigned

to a separate worker, then the outputs are recombined and either a sequential or more

parallel parsing passes are applied to them, computing the final parse tree.

5.2.1 Basic operator precedence parsing algorithm

OPGs support a very efficient bottom-up sequential parsing algorithm (a detailed de-

scription of sequential OP parsing is presented, e.g., in [54]). In traditional bottom-up

parsing the input string is reduced, through a series of sentential forms, to the axiom

of the grammar. At each step, the parser identifies in the current sentential form a seg-

ment that equals the r.h.s. of a rule and reduces it to the nonterminal of the l.h.s. The

crucial issue in this process consists in finding, in an efficient way, the leftmost seg-

ment that can be reduced using a rule, so that it will create a node that is guaranteed

to be part of the parse tree.

OP parsing relies on precedence relations to decide if a substring that matches

the r.h.s. of a rule can be validly reduced to its l.h.s., and this test is very efficient.

Intuitively, precedence relations control parsing for OPGs as follows.

• The source string s is enclosed between a pair of end-marks # < Σ. Recall

that by convention, # yields precedence to every terminal character and every

terminal character takes precedence over #; furthermore, # � #.

• Consider a rule A → β, whose r.h.s. β occurs in a sentential form and is going

to be reduced to A. Then β is “enclosed” between the pair ⋖, ⋗, and relation

� holds between every two consecutive terminal symbols of β. More formally,

if there exists a derivation S 1

∗
⇒ αAγ ⇒ αβγ (S 1 ∈ S ) then it must hold that

α = α′a, γ = bγ′, β = N1c1N2c2 . . . cn−1Nn, with Ni ∈ N ∪ {ε}, ci � ci+1,

1 ≤ i < n, a ⋖ c1, cn−1 ⋗ b. Note that, as a particular case, a and/or b may be

#: hence, given the OP relations between the end-marks and the other alphabet

symbols, every r.h.s.s (including those at the border in a sentential form) will be

enclosed within a pair ⋖, ⋗. Observe that nonterminals are “transparent” in OP
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Figure 34.: A sample syntax tree for the OPG of arithmetic expressions of Figure 5.

parsing, i.e., they are not considered when evaluating the precedence relations

between consecutive11 terminals.

The basic idea of the algorithm is then straightforward. The parser uses a pushdown

stack to identify the substrings to reduce to build the parse tree: the symbols of the

input string are shifted onto the stack as long as they are read, and the stack keeps

track of the precedence relation between consecutive symbols. Whenever a ⋗ relation

holds, the parser identifies a pair of relations ⋖,⋗ on the stack, with a possible series

of � precedence relations within them, and the substring enclosed between the pair

corresponds to the segment to reduce. Hence, the stack holds only ⋖,� markers and

terminals, plus a ⋗ on the top each time a substring to be reduced is found.

Figure 34 reports the derivation tree of the string n + n × n generated by the OPG in

FNF of the language of arithmetic expressions of Figure 5. Note that the second oc-

currence of terminal n is enclosed by the relations +⋖ n and n⋗× and can be reduced

unequivocally to nonterminal F, thanks to the fact that G has no repeated r.h.s. Simi-

larly the r.h.s. F × F, in the context 〈+, #〉 with + ⋖ × and n ⋗ #, is deterministically

reduced to nonterminal T .

Although the sequential OP parsing algorithm is quite efficient, a key improvement

in performance can be obtained by tailoring the algorithm to exploit modern parallel

architectures. The crucial property of OPGs that allows for the parallelization of syn-

tactic analysis is the property of local parsability, presented next.

11 Recall that in an OF string α two terminals are consecutive if they are at positions α[ j],α[ j + 1]; or at

positions α[ j],α[ j + 2] and α[ j + 1] ∈ N.
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5.2.2 Local parsability property and its exploitation for parallel parsing

Intuitively, a language L generated by a CF grammar G is locally parsable if, for every

sentential form, the r.h.s. of a production to be reduced can be uniquely determined

through inspecting only a bounded context of the r.h.s. For instance, the language

L = {an0 bn} ∪ {an1 b2n} generated by the grammar S → A | B; A → aAb | a0b;

B → aBbb | a1bb, is locally parsable because the “separators” {0, 1} allow to decide

the r.h.s. to be reduced. By contrast, L = {0 anbn} ∪ {1 anb2n}, though being determin-

istic and generated by the LR grammar S → 0A | 1B; A→ aAb | ab; B→ aBbb | abb,

is not locally parsable since there is no way to decide whether to reduce a substring ab

to A or abb to B without inspecting the first character of the string, which may be arbi-

trarily far away. The concept of local parsability has been formalized in the literature

in similar ways; we adopt the definition of bounded-context CF grammar [48].

Definition 5.1. Let G be a CF grammar and h ≥ 1. G is a locally parsable (or bounded

context) grammar with bound h, iff for every rule A→ α of G, whenever

#hS #h ∗
⇒ ζ = βγAδη⇒ βγαδη

∗
⇒ x (11)

with |γ| = |δ| = h, any other derivation #hS #h
∗
⇒ ϑγαδφ where h, γ,α, δ are the same

as before, can be obtained exclusively by using the same rule A→ α to obtain α.

Thus, h specifies the length of the left and right neighborhood, i.e., the surrounding

context, needed to make sure that string α must be reduced to nonterminal A. Floyd

proved that, besides being decidable for any given value of h, the local parsability

property implies that G is deterministically parsable (therefore also unambiguous).

An issue with OP parsing regards the possible presence of rules in the OPG having

the same r.h.s.: when the substring corresponding to the r.h.s. of these productions is

to be reduced, it is not possible to unequivocally determine which l.h.s. should replace

the segment in a sentential form. In principle, the parser could keep all the alternative

choices open until the uncertainty can be resolved; in the sequel, however, we shall

rather avoid this form of ambiguity by considering OPGs in Fischer normal form

(FNF) (hence, the grammars are invertible). Working with an OPG in FNF will allow



5.2 parallelization of syntactic analysis 139

us to simplify the parsing algorithm, without impairing generality nor the efficiency

of the tools that implement it.

Theorem 5.1. Every OPG in FNF is locally parsable with bound 1.

Proof. Consider the step βγAδη ⇒ βγαδη of derivation (11), with |γ| = |δ| = 1.

Then, necessarily γ, δ ∈ Σ ∪ {#}, γ⋖ the first terminal of α, and the last terminal of α

⋗δ; only � occur within α. Then, whenever a string γαδ occurs in a sentential form

of G, the same precedence relations hold between its terminals since G’s OPM is

conflict-free; thus α is the r.h.s. of some rule and, since G is in FNF, no other rule can

produce α in a sentential form within the context (γ, δ). �

Although there exist contrived examples of locally parsable languages with bound

1 that cannot be generated by an OPG, such as the above language {anban | n ≥ 1},

they are of no practical relevance when taking into account real world programming

language. The following corollary establishes the basis for parallelizing the standard

OP parsing algorithm.

Corollary 5.1 ([14]). For every substring a δ b of a sentential form γ a δ b η, there

exists a unique string α, called the irreducible string, deriving δ such that S
∗
⇒

γ aα b η
∗
⇒ γ a δ b η, and the precedence relations between the consecutive termi-

nals of aαb do not contain the pattern ⋖ (�)∗ ⋗. Therefore there exists a factorization

aαb = ζθ into two possibly empty factors such that the left factor does not contain ⋖

and the right factor does not contain ⋗.

Proof. Consider the substring aδb: any r.h.s. contained therein is preceded by ⋖ and

followed by ⋗, and we reduce it to its l.h.s. Then we iterate the procedure until no pair

⋖ . . .⋗ (with possibly � in between) exist. At this point, necessarily, the condition of

the corollary has been reached. �

the parsing algorithm To allow its use in parallel parsing, [14] generalizes the

traditional OPG parsing algorithm in order to analyze strings that may include nonter-

minals: such strings must begin and end with terminals or with #, and are in OF. This

generalization is needed in the parallel setting in order to parse internal text segments,
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Algorithm 1 : Generalized-OP-parsing(α, head, end,S) [14]

1. Let X = α[head] and consider the precedence relation between the top-most

terminal Y found in S and X.

2. If Y ⋖ X, push (X,⋖); head := head + 1.

3. If Y � X, push (X,�); head := head + 1.

4. If X ∈ N, push (X,⊥); head := head + 1.

5. If Y ⋗ X, consider S:

a) If S does not contain any ⋖ then push (X,⋗); head := head + 1.

b) Else, let S be (X0, p0)(X1, p1) . . . (Xi−1, pi−1)(Xi,⋖) . . . (Xn, pn) where

∀ j, i < j ≤ n, p j , ⋖.

i. if Xi−1 ∈ N (hence pi−1 = ⊥), and there exist a rule

A → Xi−1Xi . . . Xn replace (Xi−1, pi−1)(Xi,⋖) . . . (Xn, pn) in S with

(A,⊥);

ii. if Xi−1 ∈ Σ ∪ {#}, and ∃A: A→ Xi . . . Xn ∈ R,

replace (Xi,⋖) . . . (Xn, pn) in S with (A,⊥);

iii. otherwise start an error recovery procedure.

6. If (head < end) or (head = end and S , (a,⊥)(B,⊥)), for any B ∈ VN , repeat

from step (1);

else return S.

and is reported in Algorithm 1. Algorithm 1 uses a stack S containing symbols that

are pairs of type (X, p), where X ∈ Σ ∪ N and p is one of the precedence symbols

{⋖,�,⋗} or is undefined, denoted by ⊥. The second component encodes the prece-

dence relation found between two consecutive terminals – thus, it is always p =⊥ if

X is nonterminal. The projection on the first component is denoted by (X, p)|1 = X,

and will be used to drop the precedence symbols when not needed. As a convention,

the stack grows rightwards. Also, define a handle as a candidate r.h.s., i.e. a portion of

a string in OF included within a pair ⋖, ⋗ and with � between consecutive terminals.

The algorithm takes as input the string α = α[1]α[2] . . . α[m], m ≥ 3 to be parsed:

α is in OF and has the form α ∈ (Σ ∪ {#})V∗(Σ ∪ {#}). It also receives as input pa-
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rameters two pointers, head and end, to elements of α pointing to the second and last

element of α, respectively. The last parameter taken is the parsing stack S, initialized

with α[1] on top of it.

Remarks

• Initially the algorithm will be applied to a terminal input string that is a sub-

string of the input text. Therefore it will be α = asb, with a, b ∈ (Σ ∪ {#}),

s ∈ Σ
∗ and the stack S = (a,⊥), consequentially in this case the condition in

step (4) will not be met.

• Note that Algorithm 1 behaves as a traditional sequential OP parser when α =

#s# and S = (#,⊥). In this case the input is accepted if, and only if, the

algorithm halts having read the whole input and S = (#,⊥)(S ,⊥).

• If the initial stack – disregarding precedence symbols – S|1 is irreducible (more

precisely it has the form aαb of Corollary 5.1), then the same property will hold

for S upon algorithm termination (unless an error occurs); in other words the

property of Corollary 5.1 is an invariant w.r.t. the algorithm execution. As a

particular case, this is true when the initial stack is the singleton (a,⊥). In fact,

the creation of a reduction handle at runtime can only happen if a ⋗ is going

to be pushed on the stack when a ⋖ is already in it. However, Algorithm 1 is

designed to perform a reduction in such cases thus eliminating the possibility

of an non-reduced handle sitting on the stack.

• An error is detected either whenever a handle does not match any of the valid

r.h.s., or if no precedence relation holds between two consecutive terminals. In

these cases then an appropriate error recovery strategy can be started.

We will now describe the parallel parsing strategy mapping the computation on

multiple workers and recombining their results to obtain the full parse of the input.

The term worker is used to denote the independent unit of processing in an abstract

way from the chosen architecture. In principle it could even be a virtual process

mapped into a mono-processor architecture, though in this case obviously there would

be no benefit in terms of speed-up.
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Let k be the number of available workers: the input source string is split into k sub-

strings in an arbitrary fashion. Note that, despite there is no functional constraint con-

cerning the splitting of the input token stream, this freedom is not incompatible with

profitable heuristics for choosing the substrings, e.g., based on suitable pre-processing

during lexical analysis.

Algorithm 1 is applied to each substring, obtaining a partial parse, which (thanks

to the local parsability property) is a correct portion of the complete parse tree. Since

OP parsing needs a look-ahead/look-back of one character to evaluate the precedence

relations between consecutive terminals, when the source string is split, a 1-character

overlap is left between consecutive substrings.

As an example of execution of this procedure, consider the grammar that generates

the language of arithmetic expressions of Figure 5, assume that k = 3, and segment

the source text: # n + n + n × n × n + L n × n M + n # into:

#

1︷ ︸︸ ︷
n + n +

2︷            ︸︸            ︷
n × n × n + n

3︷    ︸︸    ︷
× n + n #

where the unmarked symbols + and n are shared by the adjacent segments, and are

used for look-ahead and look-back. After each parser has processed its segment, the

partial trees and the stacks are shown in Figure 35.

Thanks to Corollary 5.1, after a sequential step the stack contentsS of each worker

can be split into two parts SL and SR, such that SL does not contain ⋖ relations, and

SR does not contain ⋗ relations (in case of several � between the last ⋗ and the first

⋖, the separation between the two parts is arbitrary). Notice either one of SL or SR

may be empty. In our example, SL
1

and SR
3

are empty, while the workers produce the

stacks:

(#,⊥) (E,⊥) (+,⋖) S1 = SR
1

SL
1︷                    ︸︸                    ︷

(+,⊥)(T ,⊥)(+,⋗)

SR
2︷︸︸︷

(L,⋖) S2

(L,⊥) (T ,⊥) (M,�) (+,⋗) (F,⊥) (#,⋗) S3 = SL
3

To prepare the input for the next pass, one could simply concatenate the outputs, i.e.,

the stack contents delivered by the workers of the first pass, erase their precedence
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tree 1 tree 2 tree 3

E

F F

n + n +

T

T

F F F

+ n × n × n + L

T

F F F

L n × n M + n

(#,⊥)(E,⊥)(+,⋖) (+,⊥)(T ,⊥)(+,⋗)(L,⋖) (L,⊥)(T ,⊥)(M,�)(+,⋗)(F,⊥)(#,⋗)

S1 S2 S3

Figure 35.: Partial trees and corresponding stacks after the first parallel pass on text

n + n + n× n × n + Ln × nM+ n

components by applying the |1 projection, iterating the same schema as in the first

pass, i.e. splitting the obtained string again into k′ ≤ k chunks to be assigned to

k′ workers. Instead, [14] proposes an heuristic approach aiming at maximizing the

chance to produce a complete sub-tree or at least to include a fairly large one as soon

as possible. Intuitively, this goal is achieved by pairing strings containing ⋖ – at the

left – with others containing ⋗ – at the right.

Figure 36 depicts the construction of the initial configuration of the stacks and

inputs for pass two. Let W and W′ be consecutive workers of the previous pass,

and let their bipartite stacks be SL SR and S′L S′R. Define the stack initialization

function as Scombine (S
L, SR) = (a,⊥) SR where a is the top symbol of SL. Note

that the precedence value listed with a, becomes undefined since in the new stack a

is not preceded by a terminal. The input string initialization function is defined as

αcombine(S′
L) := α′, where α′ is the suffix of S′L|1 without its first symbol (which is

already on the top of SR).

Note that, in case S′L (or, symmetrically, SR) is empty, SR is simply concatenated

with S′R and the output of the following worker, say S′′L S′′R is used to complete

the construction of the new pair (S, u). Another notable exception where the afore-

mentioned stack composition strategy cannot be applied as-is is the SL component of
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First Pass

Results

Second Pass

Initialization

No here

No here

No here

Figure 36.: Preparation of the initial stack and input string for the next parsing phase

of a worker: the stack is S and the input string is α′.

the leftmost worker’s output (symmetrically, the SR component of the rightmost one),

as it will always be empty. As a consequence, the initial stack of the new input for the

leftmost worker will be SR
1

(concatenated with SR
2

if SL
2

is empty).

The complete parallel parsing schema is summarized by Algorithm 2, which pro-

vides a complete schema for parallel parsing a generic string β by means of k workers.

Remark 5.1. Algorithm 2 is a “core formulation” amenable to several variations

and improvements. The most relevant one concerns the number of passes of parallel

parsing: employing many workers when the whole input size is small enough to be

assigned to a single worker may obviously incur in performance penalties due to the

worker spawning overhead. For instance, whenever the source string exhibits a fairly

balanced structure (e.g., many functions of comparable size) it is likely for the first

pass to produce fairly short stacks suitable to be concatenated into a unique string.

By contrast, the partition feeding the first pass may generate chunks which do not

correspond to large sub-trees of the complete syntax tree. In this case, the construction

of the new chunks by pairingSR sides with SL ones should increase – if not maximize

– the number of handles belonging to the same chunk, and therefore the number of

reductions performed by the second – and possible subsequent – passes. In practice,

no more than two parallel passes are usually needed to produce a small enough input

for the final pass.
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Algorithm 2 : Parallel-parsing(β, k) [14]

1. Split the input string β into k substrings: #β1β2 . . . βk#.

2. Launch k instances of Algorithm 1, where, for each 1 ≤ i ≤ k, the parameters

are S = (a,⊥), α = aβib, head = |β1β2 . . . βi−1|+ 1, end = |β1β2 . . . βi|+ 1; a

is the last symbol of βi−1, and b the first of βi+1. Conventionallyβ0 = βk+1 = #.

The result of this pass are k′ ≤ k pairs of stacks SL
i
SR

i
, as specified above.

3. Repeat:

a) For each adjacent non-empty stack pairSL
i
SR

i
andSL

i+1
SR

i+1
, launch an in-

stance of Algorithm 1, with S = Scombine(SL
i
,SR

i
), α = αcombine(SL

i+1
),

head = 1, end = |α|.

b) Until either we have a single reduced stack S′ or the computation is

aborted and some error recovery action is taken.

4. Return S′.

Algorithm Complexity

In terms of asymptotic complexity, the requirements for a positive evaluation of the

whole approach are: a best-case linear speedup w.r.tṫhe number of processors and a

worst-case complexity not exceeding the one of a fully sequential parsing.

By inspecting Algorithm 1 and Algorithm 2, it is clear that the total number of

elementary operations (shifts and reductions) is O(n) since no reduction is performed

more than once exactly like the sequential case. Indeed, some terminal symbol could

be shifted more than once during the various passes, but this occurs only for the few

of them which have not been reduced by the previous passes, and for a number of

times that does not exceed the number of passes.

To achieve a worst case parsing time not exceeding the sequential parsing, it is es-

sential that the combination of stacks Si and Si+1, inside step (3)(a) of Algorithm 2,

takes O(1) time (hence overall O(k) for k workers). A possible technique to achieve

this goal consists in storing, during the execution of Algorithm 2, a marker that keeps

track of the separation between SL and SR. Such a marker can be initialized at the

position where the first ⋖ sign is detected and then updated every time a reduction is



146 parallel syntactic and lexical analysis

applied that removes the sign and a new element is shifted on the stack as a conse-

quence of a new ⋖ relation.

For instance, in the case of S2 in Figure 35, the marker is initialized at the position

of the first + symbol and remains there after the five reductions F ⇒ n, F ⇒ n,

T ⇒ F × F, F ⇒ n, T ⇒ T × F since + ⋖ n and + ⋖ ×. When the second +

(the third of the whole string) is shifted (without removing the previous one as the ⋗

between the two + is not matched by a corresponding ⋖ at its left), it is moved to the

position of the second + as + ⋖ L, where it marks the beginning of SR
2

.

These operations require O(1) time regardless of the stacks being implemented by

means of arrays or by means of more flexible linked lists; thus, they do not affect the

overall O(n) complexity of the whole algorithm.

It is then clear that the ideal linear speed-up w.r.t. the number of processors will be

most representative of the actual one whenever most of the parsing is done during the

first pass. By contrast, the worst case occurs when either only ⋖ relations or ⋗ rela-

tions are present in the whole input; this is the case of regular languages respectively

generated, e.g., by a left-linear or by a right-linear grammar. In such cases, only one

worker (respectively the leftmost or rightmost one) performs useful parsing whereas

the others leave their input unaffected. The second pass would produce a unique string

– of length (k − 1)/k · n – which would be parsed sequentially.

5.3 parallelization of lexical analysis

Lexical analysis takes place before parsing and translation, and it is a common be-

lief that it is a fairly easy and less time consuming job compared with the following

phases. While this may be true in other settings, we report that lexical and syntax anal-

ysis for operator precedence languages often require comparable effort. Thus the gain

in performing parallel parsing alone would be small without coupling it with parallel

lexical analysis and preprocessing. Furthermore, apart from a few idiosyncrasies of

some languages – which tend to go unused by programmers – lexical analysis is even

better suited for parallel execution. However, to achieve this goal a few non-trivial

technical difficulties must be tackled.
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In this section we present a fairly general schema for parallelizing lexical analysis,

which can be applied to most programming languages. A distinguishing feature of

our lexical analysis is that it produces a stream of tokens which, rather than being

compatible with the original BNF of the source language, is ready to be parsed ac-

cording to an “OP version” of the official grammar, thus yielding an advantage from

both a performance, and an adaptation to OP parsing point of view. Typically such a

preprocessing allows for disambiguating some terminals which are overloaded in the

language and would induce conflicting relations in the operator precedence matrix:

depending on the context in which they occur, the lexer can associate them to distinct

token classes, so that the resulting string of tokens can be parsed according to the OP

version of the syntactic grammar. Note that such a disambiguation is complementary

to the usual operations performed in the lexing phase to cope with the presence of

ambiguities in the lexical grammar (as, e.g., in the presence of reserved words and

identifiers corresponding to the same lexical pattern). However, this is hidden from

the user who does not have to worry about the internal format.

We now provide the definitions required to describe lexical analysis parallelization.

The lexicon of the language is described by a lexical grammar, which assumes as

terminal alphabet the characters present in the input stream. Often, a lexical syntax

can be analyzed by means of a finite state machine (FSM) as opposed to a pushdown

one, which is reserved for parsing. In this work we will tackle both a language where

this assumption holds (JSON) and one where it does not (Lua) in Section 5.4, and

will describe the issues in generalizing the approach in Section 7.1.

We adopt the following conventions to distinguish terminal and nonterminal sym-

bols of syntactic and lexical grammars: terminals of syntactic grammars and nonter-

minals of lexical grammars are in boldface font: nnn, sss. . . , nonterminals of syntactic

grammars are denoted by capital letters: A, B. . . , and terminals of lexical grammars

are in monospace font: if, +. . . . We also introduce some basic terminology (as in,

e.g., [6]) which tailors some general terms to the scope of this section.

Definition 5.2.

• A lexeme is a sequence of characters corresponding to a valid sentence of the

lexicon grammar (e.g., a built-in identifier, a reserved keyword, an operator).
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Its form depends on the lexical part of the language definition, and it can be

typically recognized by a FSM.

• A string is a lexeme built as a sequence of characters enclosed within a pair of

delimiters, typically either single or double quotes. It cannot contain any other

delimiters of the same kind without proper escaping (e.g. prefixing them with

a \ character). Strings may contain control characters (e.g. newlines).

• A token is a pair 〈token-name, semantic value〉 resulting from the analysis of

a sequence of characters matching the form of a valid lexeme (token-name de-

notes a nonterminal of the lexical grammar, and there is a finite number thereof).

Sample token instances are 〈LPAREN, (〉, or 〈STRING, "yesterday I ate

an icecream"〉. Since the focus of this work is the lexical and syntactic anal-

ysis of a text, from now on we will identify the token with the first element of

the pair.

• A comment is a sequence of characters delimited by special symbols according

to language dependent rules, and does not correspond to a lexeme. A comment

should be matched and discarded during the lexing process. Many languages

use different markers for single-line and multi-line comments.

The goal of lexical analysis (lexer) is to recognize the lexemes in the source char-

acter stream and generate a sequence of tokens, removing the comments. The lexical

grammar, in spite of the fact that it typically defines a regular language, may be not

locally parsable in its immediate form and in most cases is ambiguous. Yet, lexical

analysis can be made suitable for parallel execution and, given the typical “flat struc-

ture” of programming language lexicon, is a more natural candidate for efficient par-

allelization than parsing, which has to deal with the nesting of syntactic structures, as

in fact it happened in practice (see the discussion in Section5.7). To achieve this goal,

however, two issues must be addressed. First of all, splitting the source text randomly

into chunks to be processed by parallel workers may split a lexeme across different

segments. Thus, the results produced by lexers working on adjacent chunks will have

to be reconciled to cope with this issue.
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The second issue concerns the occurrence of very long comment sections, possibly

longer than the chunk assigned to a single worker. It is commonplace among some

programmers to comment portions of obsolete or temporary code, effectively prevent-

ing the lexer from knowing if it is analyzing a portion of a comment or not, in the

case of lack of comment delimiters in its chunk. This is further exacerbated by the

fact that some languages adopt some exotic syntactic rules for comment and/or string

delimiters in general. For instance, in Lua strings can be delimited either by quotes

or by opening and closing symbols of unbounded number of forms.

To cope with this problem, we accept a minimum amount of nondeterminism dur-

ing the lexing phase only. We run several speculative computations for each worker,

corresponding to the different states of the lexing machine which are legitimate on

the splitting point of the input stream. If the worker is able to remove the ambiguity

during the analysis of its chunk, the incorrect computation(s) are halted and only the

correct one proceeds. We will show that the number of language dependent simulta-

neous computations, never exceeds 3 in our case.

Therefore, every worker will produce several candidate token lists for its chunk.

Any disambiguation that cannot be performed during the single worker analysis is

done when the partial token lists are joined into a single one. For instance, assume

that a worker w reaches a given state sk after analyzing completing the lexical analysis

of its input chunk. If there is a computation starting with sk among the ones performed

by the worker acting on the input chunk after the one assigned to w, the corresponding

candidate token list is merged with the output of w.

We now illustrate our approach to parallel lexical analysis in a similar way to the

path followed in the case of parsing: we first revise normal sequential lexers to make

them suitable to work on partial chunks and to produce partial outputs to be later

integrated; then we will show how a parallel lexer splits the source code into chunks,

assigns them to different workers, and reassembles their partial outputs. We will also

make use of a running example to better illustrate the various steps of our algorithms.

Example 5.1. Consider the grammar generating arithmetic expressions presented in

Figure 5, extended to allow also for operations on strings. The resulting OPG is de-

picted in Figure 37(b), whereas the lexical grammar is reported in Figure 37(a), with
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nnn denoting an identifier and sss a literal string; Figure 37(c) depicts a FSM recognizing

tokens and comments compatible with the lexical grammar; to keep its appearance

easily understandable we restricted its description to the recognition of these funda-

mental elements of the lexicon; however, its extension to cope with a whole chunk

consisting of a sequence of such elements, possibly broken at the boundaries of the

chunk, is conceptually straightforward.

The lexical grammar specifies two formats for strings: single-line ones are delim-

ited by single-quotes ’ ’, multi-line ones delimited by a pair of triple-double-quotes

""" """. The lexicon also allows for introducing both single-line and multi-line com-

ments with a C-like syntax: a multi-line comment is delimited by /* and */, while a

single-line comment begins with //.

In our running example we will refer to the sample code snippet in Figure 38.

If such a complete code snippet were supplied to the FSM of Figure 37(c), the

output produced by the lexer would be (for completeness we include also the semantic

components of the tokens):

〈nnn, var〉 〈+++ +〉 〈nnn, x〉 〈×××,×〉 〈nnn, y〉 〈+++, +〉 〈sss, a multi-line string interrupted

here × timesToConcat + 〉 〈+++, +〉 〈nnn, a〉 〈+++, +〉 〈nnn, z〉.

Our goal is to obtain the same result by splitting the job among several workers: in

our example we will use three of them.

source character stream partitioning First, the input stream is split into

segments of equal size; most likely, however, such a ”blind” split may break a lexeme,

typically an identifier which normally is not very long; thus, it is often sufficient to

consider a look-ahead/look-back of a few characters to find a lexeme separator (i.e. a

white-space): in such cases the splitting point may be conveniently set right after it

and the boundaries of the chunks are updated trying to avoid splitting any token in

the middle. For instance, in our example of Figure 38, the original ending points are

denoted by | (red); by analyzing a bounded context in the neighborhood of the split

points we identify the occurrence of two newline characters, and update the splitting

points moving them to the positions denoted by | (blue). In general it cannot be known

a priori how far is the end of lexeme from a given point; thus, the length of the search
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inputinputinput → elementelementelement | inputinputinput elementelementelement

elementelementelement → | tokentokentoken | commentcommentcomment

tokentokentoken → nnn | sss | +++ | ×××
nnn → letterletterletter (letterletterletter | digitdigitdigit)∗

sss → ’(\\.|[ˆ\\’\n])∗’ |
"""(charcharchar|"charcharchar|""charcharchar)∗"""

+++ → +

××× → ×

letterletterletter → [a–zA–Z ]
digitdigitdigit → [0–9]
charcharchar → \\.|[ˆ\\"]
commentcommentcomment → /* ([ˆ*] | *+[ˆ/*])∗*+/ |

// .∗\n

(a)

S → A

S → B

A→ A+++ B

A→ B+++ B

B→ B××× nnn

B→ B××× sss

B→ nnn

B→ sss

(b)

q0 q5
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q1
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q17
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q13

q10 q11

q14

q18 q19 q20

q21 q22

a| . . . |z|A| . . . |Z|

’

"

+

×

/

a| . . . |z|A| . . . |Z| |0 . . . |9

[ˆ\\’\n]

\

’
.

" "

[ˆ\\"\n]

\

"

"

"

. [ˆ\\"\n]

"

[ˆ\\"\n]

" "

*

/

[ˆ*]

*

[ˆ/*]

/

*

\n

.

(c)

Figure 37.: Lexical (a) and syntactic (b) grammars of arithmetic expressions without

parentheses, extended to deal also with strings, and a FSM recognizing

tokens and comments of the lexical grammar (c). In figures (a) and (c),

metasymbols used in regular expressions are in red while the terminals of

the lexical grammar in black; symbol stands for any control character

(whitespace, newline, etc.).
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var + x /* This is a multi-line comment that

contains part of an arithmetic expressi|on:|

var + ’string*/×/*’ //and this is an embedded single-line comment

+ ’6’ × */ y +| """a multi-line string interrupted here|

× timesToConcat + """+a//-(5×b)""" × id

+ z

Figure 38.: Sample string generated by the grammars of arithmetic expressions in

Figure 37.

should be stated on the basis of some, possibly language dependent, heuristic criteria

and should not exceed a few characters in any case.

Assuming that such a separator is found, the possible ambiguity of the starting state

of the lexer reduces either to the beginning of a lexeme, a position within a string, or

to a position within a comment. If the search of a separator within a bounded context

of the start of the segment is not conclusive, the initial state can also correspond

to an internal point of a non-string lexeme. In the worst case, i.e., when a non-string

lexeme is cut by the splitting, the worker will need to carry on 4 computations at once.

However, we report that no such cases took place in our experimental evaluation.

In our example the worker assigned to the first chunk is deterministic and begins

its analysis in the initial state of the FSM of Figure 37(c); The second and third

workers, instead must carry over three simultaneous computations each, starting at

the beginning of a token, or inside a multi-line string or inside a comment; thus, the

corresponding starting state of the FSM are, respectively, q0 or q7 or q18 (or q19).

parallel lexical analysis Once assigned to a given chunk, each worker car-

ries on a computation for each possible alternative initial state of the lexing machine.

Most likely, during this phase, some disambiguation among the open alternatives in

the lexical analysis may occur: this happens a) if a worker meets a character forbidden

in some of the active states, thus aborting the erroneous computations; b) if a sequence

of characters causes the recognition of a lexeme on more than one computation, thus

collapsing them into a single one. Although this collapse is quite uncommon, we will
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provide an example thereof when detailing the parallel lexing strategy for the Lua

language.

Below we give an abstract version of the algorithm executed by each worker on the

assigned chunk.

• Let M be the FSM recognizing the language generated by the lexical grammar;

let Σ denote its alphabet, Q its set of states, ∆ : Q × Σ → Q its transition

function, q0 its initial state and F its set of accepting states. We assume, as

usual, that when an accepting state is reached a lexeme in the input string is

recognized and its semantic value is output. The transition function ∆ can be

partial: we use symbol ⊥ to denote an undefined value thereof. ∆
∗ denotes the

reflexive and transitive closure of ∆.

• Let N be the number of concurrent computations of M and let s be the N-tuple

of states currently reached along each of the N computations of M: the unde-

fined state value ⊥ is used to denote that the computation has been interrupted

because of an error in the input string, while a value i (1 ≤ i ≤ N) is used to

denote that the computation has been merged with computation i.

• Let b be a N-tuple of strings where b j, for 1 ≤ j ≤ N, contains the partial

semantic value of the token currently under recognition along the j − th com-

putation of M.

• Let T be a N-tuple of lists of tokens.

Example 5.1 (continued). Going back to our running example, the worker scanning

the first chunk performs only one computation, whose initial state is the initial state

the FSM of Figure 37(c). The worker returns the tokens nnn+++ nnn and finishes in a state

specifying the presence of a non terminated comment. The choice of a newline sepa-

rator as the ending character of the chunks excludes the possibility that their initial

portion belongs to a single-line string.
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Algorithm 3 : Sequential-lexing(γ, s)

1. Initialization: head := 1; end := |γ|; X = γ[head].
The strings in b and the lists in T are set to empty and s is the N-tuple of initial

states.

2. For each state s j (1 ≤ j ≤ N) such that s j ∈ Q:

a) If s j = sk for a k such that 1 ≤ k < j then merge computations j and k,

by setting s j := k and joining the end of list T j to the end of list T k.

b) Else, let q := ∆(s j, X).

i. If q , ⊥

A. If, while in state s j, M is not reading a whitespace character

outside a string or a comment, set b j := b jX.

B. s j := q.

ii. Else

A. If s j ∈ F and b j
, ε then append b j to T j and set s j := ∆(q0, X)

and b j := X.

B. Else s j := ⊥.

3. head := head + 1.

4. If head ≤ end repeat from step 2, else return the tuple s (where each state

s j = i (1 ≤ i ≤ N is updated to s j := si) and the tuple T of lists of tokens.

The worker returns the tokens nnn +++ nnn and finishes in a state specifying the pres-

ence of a non terminated comment. The choice of a newline separator as the ending

character of the chunks excludes the possibility that their initial portion belongs to a

single-line string.

The second and third chunk are scanned along three simultaneous computations

starting at the beginning of a token or inside a multi-line string or inside a comment,

respectively. In the case of the second worker, the first of the three computations

generates a list of tokens nnn+++ sss+++ sss××× before being aborted due to the occurrence of the

unexpected end of a comment */. Along the second computation a multi-line string

is recognized, and the computation is aborted after reading the word multi-line.
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The third computation detects the end of a comment */ and produces a list of tokens

××× nnn+++. The run ends in a state denoting the presence of a non-terminated string, while

the prefix which has been read is stored to allow for a possible concatenation with

the suffix in the following chunk.

Finally, the third worker carries on three simultaneous computations: the first and

second one end in a final state, generating as a list of tokens respectively ××× nnn+++ sss×××

nnn +++ nnn and sss +++ nnn+++ nnn. The third one does not collect any token and ends in a state

which signals the presence of a non-terminated comment.

list joining phase Once the various workers have processed their chunks in

parallel their partial outputs must be integrated into a unique sequence of tokens to

be supplied (after further partitioning) to the parallel parsing phase. This job can be

done in a similar way to the case of parsing, with two important differences:

• Whereas each worker in the parsing phase delivers just one output, in general

parallel lexers will produce several candidate outputs among which the integra-

tion phase will choose the right one.

• Whereas after a first parsing pass further parsing is applied, possibly in more

than one pass, the partial outputs of the parallel lexical analysis need only to be

selected and integrated without further analysis.

The integration of the partial outputs is carried over sequentially. Since the leftmost

worker W1 performs a deterministic computation, its final state is the correct initial

one for the following worker W2. The correct list among the ones produced by its

right neighbor is thus selected by matching the final state of the first worker against

one of the members of s2. In case no match occurs, an error is signaled and error

recovery strategies are enacted. The output of the following workers is handled simi-

larly during the whole list joining phase, which has linear complexity in the number

of workers h. If the lexical grammar of the language is not regular, some additional

actions may be required. From our experience this case is quite uncommon in prac-

tical programming languages, and does not affect significantly the efficiency of the

whole process; nevertheless we will deal with the noticeable exception of Lua.
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Algorithm Parallel-lexing summarizes the coordination of the activities of the var-

ious sequential lexers.

Algorithm 4 : Parallel-lexing(δ, h)

1. Split the input string δ into h substrings of equal length.

2. Scan a fixed length context of the ending points of the substrings to check

whether any lexeme is broken. If a bounded look-ahead/look-back does not

suffice to determine whether the boundaries of a substring are inside a lexeme,

move the substring boundary so as to reduce as much as possible the ambiguity

on the starting state for its analysis. (The bound for the look-ahead/look-back

and the special character to seek in this search are heuristically chosen in a

language-dependent way).

3. Let δ1δ2 . . . δh be the resulting substrings and, for each 1 ≤ i ≤ h, let si be a

tuple of states of M, such that from each state s
j

i
(1 ≤ j ≤ |si|) the scanning of

substring δi can start.

4. Launch h instances of Algorithm 3 (sequential lexing), where, for each 1 ≤

i ≤ h, the parameters are γ = δi, s = si. The results of this pass are h tu-

ples q1, q2 . . . qh of states of M such that, for each 1 ≤ i ≤ h, 1 ≤ j ≤ |qi|,

q
j

i
= ∆

∗(s
j

i
, δi), and h tuples T1, T2 . . .Th of lists of tokens built along the

corresponding computations, where, for each 1 ≤ i ≤ h, |Ti| = |si|.

5. Build a unique list T of tokens by choosing exactly one list from each tuple Ti

(1 ≤ i ≤ h) and concatenating them. The selection is performed sequentially,

starting from the result of the instance that processed the leftmost substring, as

its computation is unambiguous (in fact, |s1| = 1).

6. Return the list T of tokens.

Thus, the overall complexity of the parallel lexing phase is O(n/h) +O(h).

Example 5.1 (continued). In the case of our running example, after each worker has

completed the scanning of its character stream segment, the last step of the algorithm

builds a single list of tokens from those generated for each chunk, eliminating the

initial ambiguity on the start state of the lexical analysis. The partial list of the first

worker is concatenated with the token list generated by the second worker along the

computation starting from inside a comment. The resulting list is then concatenated
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with the one produced by the last worker along its second computation, updating also

the semantic value of the string split across the second and third chunks.

The complete list of tokens returned to be processed by the parsing workers, to-

gether with their semantic values provided for clarity, is the same as it would have

been produced by a single sequential lexer, i.e., 〈nnn, var〉 〈+++, +〉 〈nnn, x〉 〈×××,×〉 〈nnn, y〉

〈+++, +〉 〈sss, a multi-line string interrupted here × timesToConcat + 〉

〈+++, +〉 〈nnn, a〉 〈+++, +〉 〈nnn, z〉.

We now detail how we tailored the above general schema to JSON and Lua.

5.3.1 The case of JSON

JSON (JavaScript Object Notation) is a data description language, described in the

Internet Engineering Task Force document RFC4627 [37], and based on a subset of

JavaScript. JSON is widely employed in web applications, where it is progressively

superseding XML as a more efficient and compact format for serializing and exchang-

ing structured data.

JSON source code is not intended to be written or read by humans, but rather to be

processed by machines. Consequently the JSON grammar lacks some of the typical

lexical features of programming languages such as comments and does not mandate a

code indentation style as some programming languages do, e.g. Python. Our purpose

in selecting JSON as our first case study is to prove the practicality of parallel parsing,

providing a realistic benchmark for speedups. In particular, with JSON representing

a valid data description language alternative to XML in an ever increasing amount

of scenarios, the average size of the JSON files to be processed is already sizeable

and increasing. We now detail the steps of the algorithmic schema Parallel-lexing,

tailoring it to the lexical features of JSON.

source character stream partitioning The lexemes in the input stream are

separated by white-space characters, i.e. spaces, tabulator characters and newlines.

Thus, we split the input stream on white-space characters, which occur reasonably

frequently. This choice has a drawback since spaces and tabulators are also allowed
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within strings, so that a string could be split across two chunks. An alternative choice

is to break chunks only in correspondence of newline characters, since JSON strings

are constrained to be single-line. However, automatically generated JSON code may

lack newline characters, making this alternative choice unpractical. Thus, we choose

to use white-spaces as chunk separators and accept the consequent limited ambiguity

of the lexing. Since the JSON grammar includes only strings as arbitrary length lex-

emes, the ambiguity for each chunk reduces to two possible initial states only: outside

a token or within a single-line string.

parallel lexical analysis Each worker carries on at most two

computations for a chunk, corresponding to the two possible starting states of the

analysis. To reduce the level of ambiguity during the lexing action, we exploit the

fact that the set of characters composing the non-string lexemes is a proper subset of

the ones allowed to appear within a string. Thus if one of the characters which can

only appear inside a string is met, the lexing action assuming to be outside a string

lexeme can be stopped. To perform the token list recombination, each worker counts

the number of string delimiters symbols (double quotes) occurring in the chunk.

list joining phase The last phase of the algorithm, which merges the token

lists generated by the lexing workers solving the initial ambiguity, i.e., determining

whether or not the chunk started within a string. This is done by checking the parity

of the number of quotes read by all the workers preceding the one in need of disam-

biguation.

5.3.2 The case of Lua

Lua is a lightweight multi-paradigm programming language widely used as a domain

specific language support engine, with a widespread use in video game development.

Currently, Lua is the leading scripting language in this application area (as reported

in [42] and in [49] which declares Lua the winner of the 2011 Game Developer Mag-

azine Front Line Award). In particular, it has been adopted by prominent industrial
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game developers such as LucasArts (Grim Fandango, Escape from Monkey Island)

and BioWare. Besides the video games programming application area, Lua has been

used in various projects (such as Celestia [27]) and since February-March 2013 has

been adopted as a template scripting language on Wikipedia [94].

Lua is a full fledged programming language and exhibits some of the syntactic

“liberalities” that are fairly typical in various modern programming languages. We

stress that the point of employing Lua as benchmark is to show that a richer grammar

does not adversely impact on the performance gains obtainable through parsing it

in parallel. In particular, the one of its key peculiarities is that the lexical grammar

of Lua, unlike most programming languages, is not a regular one. This is due to a

non regular syntax for strings and comments, which requires ad-hoc solutions when

tailoring the schema for parallel lexical analysis.

In Lua, strings may be delimited by the so called long brackets, in addition to the

usual single and double quotes. An opening long bracket is defined by the character

pattern [=n[, with the corresponding closing long bracket being ]=n]. The pair of

long brackets must have the same number n ≥ 0 of = characters to be recognized as a

syntactically valid pair. Opening and closing long brackets can be nested, but a valid

pair of long brackets cannot contain a closing long bracket of the same type.

Similarly, comments can be single-line or multi-line. Single-line comments start

with a double hyphen (--) and extend until the end of the line. Multi-line comments

have a syntax similar to strings, as they begin with an opening long bracket, preceded

by a double hyphen, and end at the corresponding closing long bracket. Strings and

comments can be arbitrarily nested, except that they cannot properly contain other

comments or strings delimited by brackets with the same number of = symbols, lest

an ambiguity on closing long brackets should arise.

Lua’s complex syntax for multi-line strings and comments may lead to an intol-

erable source of ambiguity when different chunks of the input character stream are

scanned in parallel. In particular, the arbitrary length marker defined as a delimiter for

multi-line strings and comments results in an infinite number of possible delimiters

for these constructs. Since there is no way to discern via a fixed look-ahead/look-

back analysis which of these delimiters, if any, is enclosing the stream chunk to be

analyzed by a lexer, the possible number of starting states and token lists generated
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along the corresponding computations on the segment could potentially be infinite. A

lexing worker, thus, cannot carry on distinct runs for all the possible alternatives for

the starting point of the analysis.

To deal with multi-line strings and comments in Lua, we introduce a few con-

straints on the source programs that can be processed by the schema. To bound the

possible degrees of ambiguity in the lexical analysis, we forbid the non-regular syntax

for string delimiters: we require that opening and closing long brackets that delimit

multi-line strings has n = 0 characters = in the patterns [=n[ and ]=n], i.e., we admit

only the [[ and ]] as string delimiters. Instead, we do not restrict the syntax to specify

comments, so that they can be delimited by long brackets with an arbitrary number of

= signs between the brackets, retaining also the non regular constraint on the number

of = characters. This choice is consistent with the common use for multi-line com-

ments, as a container of legacy code, which in turn mandates the need to specify a

different comment delimiter from the ones already in use in the enclosed portion of

text. Furthermore, to limit the complexity deriving from the possible arbitrary nesting

of strings and comments, we assume that multi-line comments are always ended by a

newline, so that they cannot end inside a single-line string or comment.

Given these constraints on the lexical grammar of Lua, which we have verified

to match widely employed programming practices, we now detail the steps in the

algorithm Parallel-lexing left open in the general schema.

source character stream partitioning The partitioning of the source char-

acter stream for Lua has been operated by employing the newline characters as effec-

tive splitting points. This choice is justified by Lua being a programming language

which is expected to be written and read by humans, and thus endowed with proper

indentation. Given the hypotheses made on the source form, the possible open am-

biguities concern whether the lexing worker is acting on characters belonging to a

non-string lexeme, a string, or a comment.

parallel lexical analysis Each worker, save for the first one,

starts with the initial ambiguity of being either at the beginning of a proper lexeme, or

within a multi-line comment, or within a multi-line string. The worker carries on two
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computations: one of them handles simultaneously the first two possibilities, while

the other deals with the third one.

The workers starting as if they are at the beginning of a lexeme, or in a multi-line

comment, process their chunk along a single computation both matching the lexemes

and keeping track of all the comment marker positions it encounters in a list. When-

ever they find a closing multi-line comment symbol, they go back to the state where

the beginning of a lexeme should be matched, keeping track of the comment-closing

point. The position of the delimiters of multi-line comments is used in the last phase,

to find which portions of the token stream should be kept and which ones should be

discarded. The workers must deal with two possible causes of ambiguity:

I) Closing a multi-line comment within a string. The closing symbol of a multi-

line comment may occur within a multi-line string beginning in the same chunk. In

this case it is not possible to determine whether the closing symbol ends a construct

started in a previous chunk or belongs to the contents of the current string. To solve

this, the worker keeps tokenizing the character stream, until a closing string symbol

is met. The worker memorizes the position of the closing string token, allowing for

the identification of the string end during recombination.

II) Closing a multi-line string within a comment. A second ambiguity may ap-

pear, conversely, when the ending symbol of a multi-line string which began in the

same chunk occurs within a single-line comment or a single-line string (delimited

by quotes) and the worker cannot ascertain whether the closing delimiter represents

the end of a previously interrupted string. The worker has to start two simultaneous

computations, collecting the following tokens into two corresponding lists. The two

computations can be possibly merged again into a single one when –and if– the am-

biguity can be solved.

The workers can also reduce the two initial computations to a single one, eliminat-

ing the ambiguity, either when an error occurs in one of the two runs and the corre-

sponding execution is aborted or when the worker reads a symbol with an overloaded

semantics (as, e.g., ]]). In particular, a sequence of two closing square brackets ]]

may represent either the end of a multi-line comment, or the end of a multi-line string

or two lexemes used to index a table (e.g., the two closed brackets in a[b[i]]). If

this sequence occurs, the worker may continue the scanning along the first computa-



162 parallel syntactic and lexical analysis

tion only, since the following characters of the chunk lie necessarily outside of such

comments or strings, and may only start a new lexeme or belong to another type of

multi-line comment; thus, the two possibilities are handled by a single computation,

as stated above.

list joining phase Starting from the first chunk, the list of delimiters produced

by each worker is scanned, matching open and closed markers of multi-line strings or

comments. The actual starting state of the analysis for each chunk is thus identified

by checking the presence of possible open delimiters in previous segments, and the

final token list is built by concatenating the portions of token lists generated along the

correct computations on the chunks.

Example 5.2. Consider again the grammar of arithmetic expressions in Figure 37,

extended with the possibility of employing the multi-line string and comment defini-

tions of Lua, including the restrictions required to apply our parallel lexing schema.

Consider the following source code chunk, which gets assigned to a worker for lex-

ing:

x + [[a string]] × [[this

string may end here ]=]

y + [[another string]] + z

The worker scans the chunk along two computations, Ctoken and Cstring, correspond-

ing to the hypotheses of starting at the beginning of a token or inside a multi-line

string respectively. Ctoken generates deterministically the partial list of tokens nnn+++ sss×××.

Subsequently, while it’s matching the contents of a multi-line string beginning upon

the [[ delimiter, it detects the closing comment symbol ]=] and memorizes its po-

sition for recombination. Upon the recognition of ]=], the worker needs to manage

the possibility of the ]=] symbol being an actual end of a comment which began on

a previous chunk. To this end, Ctoken computation diverges on two paths: Ctoken−1 re-

sumes the computation from the state corresponding to the beginning of a token and

moves on, while Ctoken−2 scans the segment following the closing comment symbol

as if contained the interior of the string. Upon matching the ]] delimiter, Ctoken−1
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has recognized the tokens nnn+++ sss and annotates the presence of the matched ]] sym-

bol, while Ctoken−2 completes the string recognition and merges back with Ctoken−1

yielding the initial computation Ctoken. Ctoken then recognizes the last tokens +++nnn.

The second computation Cstring, on the other hand, scans the segment until the

first ]] (on the first line of the chunk) is encountered, collecting the characters as

they were a portion of a string token, and is merged with the ongoing computation

Ctoken−1 from that point on.

After analyzing the code chunk, information from the previous chunks is employed

to determine whether Ctoken or Cstring has performed the correct computation, and

discard the incorrectly lexed tokens accordingly.

5.4 adapting grammars to parallel analysis

Almost no grammar in its original user-oriented BNF is immediately ready to be

used as an input for a general-purpose deterministic parser generator. For instance, to

be suitable for a classical top-down parser such as LL ones, a grammar must avoid

left-recursive derivations such as A
∗
⇒ Aα, which must be automatically transformed

into right-recursive ones. Typically, official technical language definitions do not even

comply with the requirements of an LR(k) grammar, as their syntax specification ex-

hibits shift/reduce or reduce/reduce conflicts that require a refactoring of the grammar

so that it can be properly handled by parser generation tools. Even worse, most mod-

ern programming languages tend to be highly – perhaps too much – liberal towards

the users and allow for overloading some symbols, e.g. parentheses, and/or using dif-

ferent symbols as aliases, e.g. ‘;’ and newline. Among those, it is also well known the

extreme case of Perl whose parsing has been proved undecidable [60]. Thus, it is com-

mon practice and need, before building a compiler front-end for any new language,

to carefully redesign its grammar to make it well-suited for the chosen deterministic

parsing algorithm.

Such a preliminary work is needed as well to exploit an algorithm based on operator

precedence. In our experience, the effort required to transform the official language

specification of a technical language in OP form exceeds, but is comparable with,
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S→ OBJECT

OBJECT→ { } | {MEMBERS }

MEMBERS→ PAIR | PAIR, MEMBERS

PAIR→ STRING : VALUE

VALUE→ STRING | number | OBJECT | ARRAY | bool

STRING→ “ ” | “ CHARS ”

ARRAY→ [ ] | [ ELEMENTS ]

ELEMENTS→ VALUE | VALUE, ELEMENTS

CHARS→ CHAR | CHAR CHARS CHARS→ char | char CHARS

CHAR→ char

Figure 39.: Official JSON grammar. The productions for nonterminals CHARS and

CHAR (highlighted in red) are replaced by the one highlighted in green

to transform the grammar in OP form.

the one necessary to apply a standard LR or LALR-based parsing algorithm such as

those used by Bison. We do not believe that such an increased difficulty hides a real

impossibility due to the lesser theoretical generative power of OPGs w.r.t. LR ones:

so far we did not find in real programming languages features preventing a language

from being generated by an OPG, such as the ones reported in Section 5.2.

A drawback of the proposed approach is that the readability of the OP compliant

grammar is lower than the one of the LL and LR ones. However, the programmer

employing the language targeted by the syntax analyzer will not need to be aware

of the employed parsing strategy, and thus of the actual grammar employed by the

syntactic analyzer.

In this section we show how we managed the two languages we employed as case

studies, i.e., JSON and Lua. Both have been treated with ad-hoc techniques and it

turned out that the adaptation to OP form was trivial in the case of JSON, while it

required more effort (a few man-days) in the case of Lua; other attempts – e.g., with

JavaScript – generated more problems and suggested to resort to a more systematic

and fully automated approach. We note that OPGs are already available in the litera-

ture for other programming languages, with considerable syntactic richness, such as

ALGOL 68 and Prolog [47, 39].
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5.4.1 The case of JSON

The official JSON syntactic grammar, reported in Figure 39, can be trivially trans-

formed into operator precedence form. The only required modification is the one

replacing the productions of the CHARS and CHAR nonterminals, to generate a se-

quence of printable alphanumeric characters, with a plain right-recursive rule.

5.4.2 The case of Lua

Tackling the transformation of the Lua grammar in OP form has proven more chal-

lenging than with JSON. As it happens for other standard technical definitions of

classical programming languages, Lua’s syntactic grammar (defined in the official

reference manual [85] is not expressed in LR form. Concerning its transformation in

OP form, the significant issues to be dealt with are the following ones:

1. The language statement terminator ; is optional and can be replaced by either

a white-space and/or a newline character.

2. Function definitions and calls allow one or more newline characters to appear

between the function name and the parameter list. For instance:

a = b + c

(print or io.write)("done")

is to be interpreted as

a = b + c(print or io.write)("done")

3. Functions are first-class citizens in Lua, thus they can be returned as the result

of a call to another function. This feature, in combination with the possibil-

ity of employing an in-place defined table as the single parameter passed to a

function, allows to write the following code snippet:

i = SecOrderFunct{A=3,B=25}

("hazelnut","strawberry")
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where SecOrderFunct is a call to a second order function. The resulting first

order function is subsequently invoked with the hazelnut and strawberry

strings as parameters.

To deal with the above issues, we imposed the following constraints on the sources to

be parsed (besides the lexicon restrictions described in Section 5.3.2), following what

we have observed to be the best programming practices in Lua.

1. Multiple statements on the same line must be separated by a ; character.

2. Comments between statements must be preceded and/or followed by a newline.

3. Multi-line comments are always followed by a newline.

4. We forbid the presence of newline characters between the in-place table dec-

laration of a function parameter, and the parameter lists of the possible lower-

order functions returned as the result. This prevents the programmer from using

the same code indentation of the example at point 3. Possible ways to reformat

are:

i = SecOrderFunct{A=3,B=25}("hazelnut","strawberry")

and

i = SecOrderFunct{A=3,B=25}("hazelnut",

"strawberry")

We emphasize that, in the whole set of real world code-bases examined for regres-

sion testing purposes, no violation of these constraints has been found. Moreover, the

aforementioned constraints stand well within the common best practices in program-

ming, allowing a better readability of the source code.

Provided the aforementioned constraints are respected by the source code, it is pos-

sible to solve all the remaining issues to allow OP parsing of Lua by means of a proper

token relabelling done during the lexing phase. The transformations applied by our
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Parallel-lexing algorithm are:

Token Disambiguation. The overloading of various tokens is disambiguated by emit-

ting specialized tokens during the lexing phase. For instance, separate tokens are emit-

ted for:

1. ; used as a separator between statements or as a separator between fields in a

table

2. = within assignment statements or in the initialization of table fields

3. The round parentheses enclosing a function parameter list and all the others

4. The classical ambiguity between unary and binary minus

It is easy to verify that translations (3) and (4) can be performed by a finite state au-

tomaton. Transformations (1) and (2), instead, need a stack to distinguish whether the

innermost context where the symbols occur is a statement or a table; such an ad-hoc

stack managing is fully integrated with our Parallel-lexing algorithm, and does not

incur in a significant performance penalty as the lexical grammar of Lua is not regular

anyways.

Semicolon Insertion When a newline is employed as a separator between a token that

ends a statement, i.e, an element of the set S =
{
nil, false, true, a number, a string,

..., }, ), ], name, end} and (, name or any other initial keyword for a statement,

(i.e. break, if, do, while, local, for, function, repeat, ::, goto) we replace the

newline with a semicolon: in this way all statements are separated by a semicolon.

Note that this substitution does not add a semicolon between the closing parenthesis

of a function parameter list and the beginning of the function body. We also insert a

semicolon between the elements of these two sets whenever they are separated by a

comment.

Thanks to these transformations, the output produced by our enriched Parallel-

lexing algorithm is fully compatible with the operator precedence constraints. We

were thus able to define an OPG which matches the Lua programs with the above re-

strictions (for completeness the OPG of Lua is reported in the Appendix). One more
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step is necessary, however, to enable the parallel parsing algorithm described in Sec-

tion 5.2: the grammar must be not only an OPG but must also be in Fischer normal

form. This last step is performed by the well-known algorithms to eliminate renaming

rules and repeated r.h.s. While the previous transformations did not affect significantly

the size of the original Lua grammar, in this case the total number of nonterminals and

productions increased, respectively, from 38 nonterminals and 144 rules to 49 nonter-

minals and 8547 rules. However, this increase in the size of the grammar is perfectly

tolerable from the point of view of the memory fingerprint of a modern system and

does not affect at all neither the run-time efficiency nor the end programmer (since she

can fully ignore the new syntax grammar). This last transformation does not signifi-

cantly alter the shape of the abstract syntax tree (AST) corresponding to a language

sentence, save for the compression caused by the elimination of the renaming rules.

As a summary of the actions taken to obtain OPG grammars for both Lua and

JSON we can state that performing this step for JSON was trivial, as only one rule

modification was required (see Figure 39). Lua, on the other hand, proved to be in

need of intervention not only to obtain an OPG description, but also to have an LR(1)

one that could be provided as an input to Bison. The developer effort required to

transform the reference Lua grammar in LR(1) form was comparable, if a bit smaller,

than the one required to obtain its OPG. We note that the actual LR(1) Lua grammar,

ready to be employed in Bison, is constituted of 143 productions, with the resulting

LALR pilot automaton being 243 states wide, which is in itself quite a sizable one.

5.5 papageno toolchain structure

In this section we describe the general architecture of the PArallel PArser GENeratOr

(PAPAGENO) toolchain for parallel operator precedence language analysis, in which

we implemented the algorithms described in previous sections. PAPAGENO is an

open source project available under GNU General Public License and it is written in

ANSI/ISO C and Python: the codebase can be downloaded at [83].

The PAPAGENO toolchain provides an automatic parallel parser generator that

converts a specification of a syntactic grammar into an implementation of the oper-
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Figure 40.: Typical usage of the PAPAGENO toolchain. The human operator stages

are marked in green, while the PAPAGENO automated staged are marked

in blue.

ator precedence parallel parsing algorithm described in Section 5.2. The generator

has been already implemented and described in [15]. The contribution of this thesis

to the architecture of PAPAGENO consists in the design and implementation of par-

allel scanners, which complement the parallel parsers generated by the tool, hence

obtaining a complete parallel lexer and parser library. The programming language of

choice for the library is C, as it provides strict control over the computation process

and memory management. For the sake of portability, all the C code generated by

PAPAGENO employs fixed-size types standardized in the C99 standard; furthermore,

it relies exclusively on the standard C runtime and a POSIX-compliant thread library,

thus avoiding any architecture-specific optimization. The generated lexers and parsers

have been run successfully on x86, x86 64, ARMv5 and ARMv7 based-platforms

with no code modifications.

In the following, we will first detail the stages of PAPAGENO’s workflow for par-

allel source analysis from the end-user standpoint. Second, we describe the design

choices and optimization techniques which proved crucial in exploiting the paral-

lelism exposed by the lexing and parsing algorithms.
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5.5.1 Architecture of PAPAGENO toolchain

The architecture of the PAPAGENO toolchain is depicted in Figure 40. The input of

the process contains the specifications of the lexical and syntactic grammars of the tar-

get language. If the syntactic grammar of the language is not in operator precedence

form, the tool notifies the inconsistency in the input specification and the user is given

proper diagnostics pointing out the rules where precedence conflicts or adjacent non-

terminals occur. The user has thus to modify the grammar: a convenient approach to

eliminate precedence consists in enriching the lexical analysis stage with proper trans-

formations, as insertions or renaming of tokens. In Section 5.4 we described how to

adapt into a form suitable for parallel parsing the two case study grammars of JSON

and Lua.

Then PAPAGENO automatically eliminates from the OPG both the repeated r.h.s.

rules and the renaming rules. At last, the C code of a parallel parser is generated.

The parallel parser generator in PAPAGENO has been designed as a replacement

for the classical GNU Bison generator and adopts the same basic syntax conventions,

allowing an easy porting of the grammar descriptions available in Bison-compliant

format. The generated parallel parser is logically split into two parts, as shown in Fig-

ure 40: a language independent support library, and a language dependent parser code

portion. This choice was made to allow for easy extensions and possibly further archi-

tecture dependent optimizations of the language independent portion, while retaining

the automated code generation feature.

The parsing process is invoked by means of a function call, where the developer

may specify at runtime the input stream to be analyzed and the number of workers

to be employed to perform the analysis. Each worker is mapped to a single POSIX

thread, belonging to a thread pool initialized at the beginning of the parsing process.

The developer can choose between two parallel parsing strategies in the generated

code. In the first strategy, after a first execution of the parallel parsing algorithm, the

recombination of the partial stacks is assigned to a single worker which operates in

sequential mode. In the second strategy, instead, the first parallel pass of the parsing

algorithm is followed by parallel recombination of the partially parsed substrings

along the lines described in the general Algorithm 2: the number of initial workers
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is reduced by at least two, and each of the remaining workers has to recombine two

partial parsing stacks generated in the first pass (the number of threads can be reduced

even further if the part SL or SR of some partial stacks is empty). This recombination

process is iterated until a single thread is left to complete the parsing. The second

strategy aims at exploiting the parallelism offered by particularly deep parsing trees.

We anticipate that in our case studies the input exhibits a regular or shallow tree

structure, causing the difference in parsing time between the two strategies to be small.

As stated in Section 5.2, we feel that quite seldom more than two recombination

passes will be advantageous.

The PAPAGENO generated parsers can be naturally combined with either a sequen-

tial Flex generated scanner, or a parallel scanner resulting from the implementation

of our algorithmic schema described in Section 5.3. Unlike the generation of a par-

allel parser, which is fully automatic, the phase of parallel lexer generation currently

requires some interaction with the user.

In particular, the programmer is expected to provide the specification of the gram-

mar in the Flex input format for reentrant lexers, write the code managing the input

character stream splitting, and the one handling the token list recombinations. The

input splitting code performs the actual chunking, possibly employing a fixed-width

search window as described in Section 5.3, and inputs the data into the Flex-generated

scanners. The multiple working states of the scanner are mapped onto the multi-state

lexer features offered by Flex, requiring from the programmer the definition of the

language-specific transitions from one state to the other. At the end of the parallel

lexing process, the information on the multiple lexer is exploited by the code writ-

ten by the programmer to perform the constant-time recombination of the token lists

produced by the parallel lexers.

Finally, once the parallel scanner is obtained, as a combination of the output of Flex

and the user’s lexer-parser interface, it is possible to compile all the sources generated

by the toolchain, resulting in a complete binary lexing and parsing library.
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5.5.2 Optimization Techniques

The internal architecture of PAPAGENO relies on carefully designed implementation

strategies and data structures, which play a fundamental role to obtain high perfor-

mances of parallel lexers and parsers. In this section we recall the well-known bot-

tlenecks preventing efficient parallelization and present the solutions adopted in our

tool to cope with them.

Two commonplace issues in achieving practical parallelism are 1) the data repre-

sentation and handling geared towards efficient memory use, and 2) a proper man-

agement of the synchronization issues, typically minimizing the use of locks. Thanks

to the computationally lightweight parsing algorithm devised for OP grammars, and

the minimal requirement for synchronization actions, issue 2) is less important for us,

and memory management and memory allocation locality was found to be the crucial

issue. Therefore, we start from a discussion of issue 1) and conclude with the synchro-

nization requirements and thread orchestration performed by PAPAGENO generated

parsers.

We describe several simple yet effective memory optimizations.

• First, we encoded terminal and nonterminal symbols as word-sized integers,

taking care of employing one bit of the encoding to distinguish terminal from

non-. By default, the most significant bit is used; however PAPAGENO allows

to choose its position at parser generation time to allow room for further infor-

mation packing. Such information packing does not prevent the definition of

large target languages, as the architecture word length in modern devices is at

least 32 bit, and 64 bit for most of them. Adopting this technique, we can do

without a look-up table to check whether a symbol on the parsing stack is a

terminal or non-.

• A second optimization towards improved data locality comes from the obser-

vation that the precedence relation between may take one out of four values

(⋖,�,⋗,⊥). Using a bit-packed representation of the precedence matrix, we

obtain significant savings for large matrices (which occur in large languages),
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and, moreover, we manage to fit entirely the matrix in the highest level caches,

thus significantly improving the average memory access latency.

• Furthermore, in order to avoid serialization among the workers upon the system

calls for dynamic memory allocation, we adopt a memory pooling strategy for

each thread, wrapping every call to the malloc function. This strategy has also

the advantage of reducing memory fragmentation, since the memory allocation

is done in large contiguous segments. To evaluate the memory needed for pre-

allocation during parsing, we estimate the number of nodes of the parsing tree

by computing the average branching factor of the AST as the average length

of the r.h.s. of the productions. Then, the parallel parser generator initially pre-

allocates half of the guessed size of the AST and augments the memory pool

of a worker by one fifth of this quantity, every time the thread requires more

memory. A similar memory pooling strategy is employed in the lexing phase,

in order to avoid serialization among the lexing threads in need for memory to

allocate the token lists.

• One of the most computationally intensive parts of OP parsers is the matching

of a production r.h.s against the ones present in the grammar. By representing

the r.h.s.’s as a prefix tree (trie), it becomes possible to find the corresponding

left-hand side in linear time with respect to the length of the longest r.h.s. of

the grammar. Furthermore, to optimize the size and the access time to the trie,

we followed the technique described in [50], that represents the structure as an

array, storing the pointers to the elements of the trie within the same vector.

To take advantage of the trie compression provided by this technique, we as-

sume an upper bound of 216 for the total number of terminal and nonterminal

symbols, which clearly does not affect applicability for any common language.

The vectorized trie is fully precomputed by PAPAGENO, and is included in the

generated parser as a constant vector.

For the synchronization and locking issues in OP-based parallel parsing, we used

rather straightforward techniques.
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• Since each parallel worker performs the parsing action on separate tokenized

input chunks, it is completely independent from the other workers, and there

is no need for any synchronization or communication between them. This in

turn allows the proposed strategy to scale easily even in the cases where the

inter-worker communication has a high cost, e.g. whenever the input is so large

that they have to be run on different hosts.

• Similarly, all the lexers act independently on the input, without need of com-

munication or synchronization while performing the lexing actions.

• The requirement for enforced synchronizations is only present in the following

two cases: i) a single barrier-type synchronization point is required between

the end of the lexing phase, and the beginning of the parsing one whenever

the lexical grammar requires a constant-time chunk combination action to be

performed by the lexer; ii) synchronizations are required to enforce data con-

sistency if the user desires to perform multiple parallel parsing recombination

passes, instead of a single one.

• While the first barrier synchronization cannot be subject to optimizations, the

synchronizations between multiple parallel parsing recombination passes can

be fruitfully organized hierarchically. In particular, a parsing worker from the

n-th pass will only need to wait for the completion of the n − 1 pass workers

producing its own input, effectively avoiding the need of a global barrier syn-

chronization between passes. Such a strategy allows to effectively exploit the

advantages of multiple parallel passes whenever the parse tree is very high.

5.6 experimental results

In this section, we present and discuss the experimental results of our parallel lexing

and parsing system on both JSON and Lua languages.

the benchmarks We chose real world JSON and Lua inputs of various sizes, on

which we performed the parsing and the construction of the abstract syntax tree (AST)
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Table 4.: Total text analysis times of the JSON test-bench files, for both the server and

mobile platform.

Elapsed Time [ms]

Input Size Server Mobile

Lexing Parsing Total Lexing Parsing Total

2.7 kiB 0.6 1.8 2.4 0.8 1.8 2.6

30 kiB 2.7 5.1 7.8 2.8 5.6 8.4

80 kiB 7.7 15.4 23.1 8.3 18.0 26.3

150 kiB 15.0 37.4 52.4 24.8 69.0 93.8

1.6 MiB 98.4 255.0 353.4 153.1 431.1 584.2

10 MiB 588.1 1584.7 2172.8 1033.6 2665.3 3698.9

75 MiB 3462.6 8892.2 12354.8 - - -

in memory. This is the only semantic action associated to the parsing process. The

rational is to evaluate the computational load of the parsing process, regardless of any

subsequent use of the parsed data. Since in typical compilers the semantic actions are

more computationally demanding than AST construction, it follows that even greater

performance benefits can be achieved if they can be parallelized. In other words, our

results evidence the speed-up that is achieved by parallelizing syntax analysis and

nothing else.

For JSON, the set of inputs includes a shopping list from an online shop (30kiB),

the configuration file of AdBlocker, a common browser plugin (80 kiB), the Gospel

of John (150kiB), a statistic data-bank (1.6MiB) on food consumption (source Italian

Institute of Statistics), a file containing statistics on n-grams present in English in

Google Books (10MiB), and the index of all the documents available on the UK

Comprehensive Knowledge Archive Network (75MiB).

For Lua, benchmarks were derived, instead, from the codebase of Lucasarts’s Grim

Fandango, which is available together with the game. This code-base size amounts to

2.5MiB, and, to obtain benchmarks of different sizes, a suitable number of compila-

tion units have been concatenated together. To explore the scalability of the parallel

parsing approach we tested the PAPAGENO generated analyzer with files ranging
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from 7 kiB to 35 MiB, with the ones larger than the whole code-base being generated

by concatenating all the files from the code-base more than once.

hardware platforms To evaluate the practical speedups obtained, we used two

platforms:

1. A quad-Opteron 8378 host, thus amounting to 16 physical cores (4 cores per

socket): the Opteron 8378 CPUs are endowed with independent, per CPU, L1

and L2 caches, and a chip-wide shared L3 cache. The host runs Ubuntu Linux

14.04 (x86 64 architecture) server and is endowed with enough RAM to con-

tain the whole AST materialized during the parsing process and token list. The

purpose of the evaluation on this platform is to highlight the scalability of our

approach, even in the context of a multi-socket system with a non uniform

memory access.

2. An Odroid-XU Lite board, endowed with a Exynos 5 Octa SoC, which is driven

by four Cortex-A15 and four Cortex-A7 CPUs, in big.LITTLE configuration,

clocked at 1.4GHz, and 2GB of DDR3 DRAM. The platform runs a Debian

7.6 Linux (armv7l architecture), and the main choice is to use the four Cortex-

A15 CPUs, as the architectural constraint do not allow to employ all the 8 cores

simultaneously. The benchmarks run on this platform are representative of the

actual performance benefits obtainable on a high-end embedded system, such

as the ones which are increasingly more common in mobile phones and tablets.

Such platforms are typically characterized by a uniform memory access, and

limited main memory resources with respect to desktop machines.

All the executable binaries have been produced through gcc 4.9.1, employing stan-

dard release grade optimizations to obtain an efficient binary (-O3 -march=native

optimization options). All the timing results presented have been collected employing

Linux real-time clock primitives, and are the average of 50 runs to reduce measure-

ment noise.

purely sequential execution Tables 4 and 5 report the absolute processing

times respectively obtained for JSON and Lua, using a purely sequential PAPAGENO
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Table 5.: Total text analysis times of the Lua test-bench files, for both the server and

mobile platform.

Elapsed Time [ms]

Input Size Server Mobile

Lexing Parsing Total Lexing Parsing Total

7 kiB 0.9 2.2 3.1 1.0 2.3 3.3

70 kiB 5.8 9.7 15.5 7.2 12.0 19.2

700 kiB 24.6 41.7 66.3 63.5 98.2 161.7

3.5 MiB 105.8 161.0 266.8 212.8 314.5 527.3

7 MiB 203.4 313.4 516.8 424.4 602.4 1026.8

35 MiB 998.9 1559.3 2558.2 - - -

lexer-parser pair: they establish a practical baseline for comparison. Notice that the

absolute times for the larger files are quite important, especially on the mobile plat-

form. Moreover, the latter is not endowed with enough memory to materialize the

whole AST for the largest test cases; as a consequence the two largest benchmarks

cannot be run on it. A point worth noting is that, both in the case of JSON, and in

that of Lua, the time spent in the lexical analysis of the input is non negligible: more

specifically, it is around 30% for JSON and 40% for Lua. This result substantiates

our claim that, for OP-based parsing, the lexical analysis accounts for a non trivial

amount of the text processing time.

parallel execution Figure 41 shows the speedup obtained by the parallel lexer

versus a sequential run of a Flex generated lexer, while Figure 42 reports the speedups

of the parsing phase of the computation, computed against a sequential run of a PA-

PAGENO generated parser.

Consider the results for the JSON lexing phase reported in Figure 41a: for all file

sizes ≥ 80kiB, parallel lexing achieves a significant speedup over the plain sequential

Flex generated lexer. This is more evident when the file size allows all the workers to

perform a significant amount of computation.
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(b) Lua: Lexing phase

Figure 41.: Speedups achieved on the lexing for JSON and Lua, taken against a se-

quential lexer, depicted as a function of the number of workers and the

input size expressed in bytes.

A point worth discussing is the relatively low speedup achieved when only a few

workers are employed: in this case, the lightweight computation required by JSON

lexing, together with the possible thread migration from one CPU to the other in

the NUMA machine employed, negatively affect the performances. More in detail, a

thread migration from one CPU to another implies a significant drop in the effective-

ness of the caches, as the computation is moved to a processor where the working-set

is not pre-heated in cache. By contrast, a higher load on all the available CPUs will

prevent the scheduler from moving the tasks in an attempt to equalize the load. Al-

though this issue can be solved pinning the threads to a specific CPU through proces-

sor affinity settings, we chose not to perform the measurements with such a technique

as it may yield overly optimistic results with respect to running environment where

CPU pinning is forbidden (e.g. large data-centers where the computation is taking

place inside virtual machines). To finish, we note that the maximum achieved speedup

is 7× in the case of a 75 MiB JSON file, cutting down its lexing time from 12 sec. to

less than two.

The lexing phase results for Lua (Figure 41b) confirm the speedups achievable

through the parallelization of the lexing stage, even in the case of a lexical grammar

much more complex than JSON one. We know Lua parallel lexer needs to perform
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(a) JSON: Parsing with sequential lexer
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(b) JSON: Parsing with parallel lexer
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(c) Lua: Parsing with sequential lexer
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(d) Lua: Parsing with parallel lexer

Figure 42.: Comparison of speedups achieved on the lexing and parsing phase for

JSON and Lua employing either a sequential or a parallel lexer, taken

against a sequential PAPAGENO parser. The speedups are represented as

a function of the number of employed workers, and the input size in bytes

a non-trivial recombination at the end of lexing, and the results show that the recom-

bination phase does not impact adversely performances. The reduced performance

gained on the 150kiB input file is to be ascribed to low level cache contention, as the

file exceeds by a small amount the least level cache size for the involved CPUs.

The JSON parsing phase (Figures 42a and 42b) also benefits from significant

speedups (up to 5.3×) for large files, and show how a parallel parsing approach is

advantageous even in the case of small files. In particular, Figures 42a and 42b report

the speedups achieved during the parsing phase only, for an implementation with a
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Flex-generated sequential lexer (Figure 42a), and a parallel lexer (Figure 42b). Com-

paring two situations, we get an interesting insight on the use of a parallel lexer. As

it can be seen, combining the parallel parser with the parallel lexer, has a positive

synergistic effect, even in the case of small files, yielding effective speedups already

for the 30kiB file. This effect is to be ascribed to the L2 and L1 cache pre-heating

effect caused by having the text lexically analyzed by different independent workers.

In fact, such an approach is more likely to be fetching the data which will be parsed

by a worker into the dedicated L1 and L2 caches of the corresponding core, effec-

tively reducing the memory pressure for the parsing action, and thus increasing the

performances. As a further confirmation of this fact, we note that the performance

boost does not take place in the case of the parsing of the 150kiB file, which is a good

cache fit already with a sequential lexing process.

Concerning the Lua parsing phase, Figures 42c and 42d show how this can be

effectively parallelized, notwithstanding the much richer structure of the language.

On the other hand, the synergistic effect between parallel lexing and parsing in Lua is

less evident than in JSON; we ascribe this fact to the higher memory requirements for

the Lua parsing process, which in turn add extra pressure on the caches, preventing

the pre-heating from having a significant impact.

comparison with flex and bison Since the lexers and parsers produced by

Flex and Bison are the current state-of-the-art for tool generated language processors,

it is interesting to compare in Figure 43 the performance of the parallel lexer/parser

library generated with PAPAGENO, against a text analysis library produced by Flex

and Bison, selecting the LALR(1) parser generation algorithm. The results evidence,

in both the server and mobile platform, a significant speedup with respect to the state-

of-the-art of tool generated parsers, for all but the smallest test-bench files; and a good

scalability of the approach. We discuss two aspects in particular:

• The ability to exploit per-die caches in JSON parsing leads to significant ben-

efits for small texts, whenever the parsing action is contained within a single

multicore CPU on the server platform, i.e., up to 4 simultaneous workers.
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Figure 43.: Speedups obtained against a sequential Flex-Bison generated text ana-

lyzer on both the server and mobile platforms. Darker lines indicate

smaller input files.

• The simplicity of the OP parsing algorithm represents an effective advantage

on RISC architectures, such as the one of the ARM platform, where it is able

to obtain a speedup of up to 5.5×, as a combination of the parallel processing

technique on multiple cores and the lesser computational requirements with

respect to a classic LALR(1) parser.

amount of parallel code We maintain that performing the lexing actions in

parallel gives a substantial advantage in terms of the actual amount of code which
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(a) Lua - Sequential Lexing
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(b) JSON - Sequential Lexing
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(c) Lua - Parallel Lexing
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(d) JSON - Parallel Lexing

Figure 44.: Parallel code portion in both the JSON and Lua lexing/parsing process

obtained as the complement to the sequential code portion obtained via

Karp-Flatt metric, plotted as a function of the number of workers, and the

size of the input expressed in bytes.

is executed in parallel. To substantiate this claim, we computed the sequentially ex-

ecuted code portion e from our obtained speedups according to the Karp-Flatt met-

ric [59] as
1/s−1/p

1−1/p
, with s the achieved speedup, and p the number of involved pro-

cessors. We chose to employ the Karp-Flatt metric as it is designed to provide a

concrete counterpart to Amdahl’s law, as the latter only states the maximum achiev-

able speedup, while assuming no interference by the operating system and runtime on

which the processes are run. Figure 44 depicts the portion of code which is executed

in parallel, obtained as 1 − e, for both JSON and Lua parsing on the server platform,



5.7 related work 183

with Figures 44a and 44b reporting the serial-lexer implementation while Figures 44c

and 44d report the parallel-lexer one. It is evident that, eliminating the parallelization

of the lexing action, has the effect to significantly reduce the parallel code portion,

namely around 20%-25% for JSON and 40% for Lua for all the input sizes/number

of workers combinations, where the operating system overhead is not dominating the

computation. Moreover, the parallel portion analysis additionally shows how an input

size increase determines a larger portion of the code being executed in parallel, in

turn implying that the scaling of our approach on the input size does not introduce

significant system overhead, thus allowing the user to fully reap its benefits.

Finally, it can be noticed that, for sufficiently large inputs, the overhead of spawn-

ing more workers is negligible: this is a consequence of the absence of communica-

tion between the workers, which only need to synchronize at the end of their com-

putation. This in turn translates into a high efficiency in scaling to high amounts of

parallel threads.

5.7 related work

The literature on parallel parsing and lexing is vast and extends over half a century.

5.7.1 Parallel parsing

As regards parsing, the valuable survey and bibliography [7] lists some two hundred

publications in the period 1970 - 1994, and research has continued since, though per-

haps less intensively. It is worth contrasting this quantitative aspect with the paucity

of existing realizations and, even more so, of tools for producing parallel parsers.

We omit, as less relevant to our objectives, some categories: the work on grammar

types not belonging to the context-free family, the studies based on connectionistic

or neural models of parallel computations, and the large amount of work on natural

language processing.

We are left, roughly speaking, with the following categories:
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1. Theoretical analysis of algorithmic complexity of parallel context-free language

recognition and parsing, in the setting of abstract models of parallel computa-

tion, such as P-RAM.

2. Parallel-parser design and performance analysis for specific programming/web

languages, sometimes combined with experimentation, or, more often, simply

with demonstration, on real parallel machines.

Category 1. is mainly concerned with the asymptotic complexity of recognition/-

parsing algorithms on abstract parallel machines. The algorithms proposed for un-

restricted CF grammars require an unrealistic number of processors: for instance Ryt-

ter’s [87] recognizer has asymptotic worst-case time complexity O(log n), with n

the input length, and requires O(n6) processors; the numbers of processors grows to

O(n8) if parsing, i.e., syntax-tree construction, is required. Several researchers have

shown that such complexity bounds can be lowered, by restricting the language class,

sometimes so much that it loses practical interest. We mention some cases, from the

simplest to the more general ones, for the recognition problem. For the input-driven

(also known as visibly pushdown) languages, the time complexity is O(log n) and

“only” O(n/ log n) processors are used [52]. The deterministic CF languages are rec-

ognized in time O(log n) on a P-RAM machine usingO(n3) processors [61]. A series

of papers (e.g., [30]) have gradually refined the complexity bounds for the case of un-

ambiguous CF languages.

Such idealized results are, of course, not really comparable with experimental find-

ings, as already asserted by [7], yet they offer some interesting indications. In par-

ticular, all the subfamilies of deterministic CF languages for which the theoretical

complexity analysis reports a close to linear use of processors, are included in the

family of OP languages we use.

Such abstract complexity studies had little or no impact on practical developments,

for several reasons. First, it is known that the abstract parallel machines, such as

P-RAM, poorly represent the features of real computers, which are responsible for

performance improvements or losses. Second, asymptotic algorithmic time complexi-

ties disregard constant factors and mainly focus on worst cases, with the consequence

that they are poorly correlated with experimental rankings of different algorithms.
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Last, most theoretical papers do not address the whole parsing task but just string

recognition. In the following years 1995-2013 the interest for research on the abstract

complexity of parsing algorithms has diminished, with research taking more practical

directions.

The classical tabular recognition algorithms (CKY, Earley) for unrestricted CF

languages have attracted much attention, and a number of papers address their par-

allelization. It is known that such parsers use a table of configurations instead of

a pushdown stack, and that their time complexity is related to the one for matrix

multiplication, for which parallel algorithms have been developed in many settings.

Parallel algorithms derived from CKY or from Earley sequential parsers (s-parsers

for brevity) may be pertinent to natural language processing, but have little promise

for programming/data description languages. As tabular s-parsers are significantly

slower than LR or OPG s-parsers (up to some orders of magnitude), it is extremely

unlikely that the parallelization of such a heavy computational load would result in

an implementation faster than a deterministic parallel parser. Moreover, as we are not

aware of existing tabular parallel-parser generation tools, confirmation by experiment

is not possible at present.

The comparison with previous work in category 2. is more relevant and reveals the

precursors of several ideas we use in our generator. We only report on work dealing,

as our own, with deterministic CF languages.

bottom-up parsing Some early influential efforts, in particular [45] (described

in [32]) and [77], introduced data-parallelism for LR parsers, according to the follow-

ing scheme: a number of LR s-parsers are run on different text segments. Clearly, each

s-parser (except the leftmost one) does not know in which parser state to start, and the

algorithm must spawn as many deterministic LR s-parsers as the potential states for

the given grammar; each parser works on a private stack. When a parser terminates,

either because it has completed the syntax tree of the text segment or because the lack

of information on the neighboring segments blocks further processing, the stack is

merged with the neighboring left or right stack, and the s-parser process terminates;

similar ideas occur in other papers too. However, the idea of activating multiple deter-

ministic bottom-up s-parsers is often counterproductive: the processes, associated to
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the numerous parser states of a typical LR grammar, proliferate and reduce or nullify

the speedup over sequential parsing.

Two ways of reducing process proliferation have been proposed: by controlling

the points of segmentation, and by restricting the family of languages considered. An

example of the first is in [89], so explained: “The given input string . . . is divided

into approximately q equal parts. The i-th processor starting at token . . . scans to the

right for the next synchronizing token (e.g., semicolon, end, etc.) and initiates parsing

from the next token”. If synchronizing tokens are cleverly chosen, the number of un-

successful parsing attempts is reduced, but there are drawbacks to this approach: the

parser is not just driven by the language grammar, but needs other language-specific

indications, to be provided by the parser designer; thus, [89] chooses the synchroniz-

ing tokens for a Pascal-like language. Furthermore, to implement this technique, the

lexer too must be customized, to recognize the synchronizing tokens.

Similar language-dependent text segmentation policies have been later adopted by

other projects, notably by several developments for XML parsers; such projects have

the important practical goal to speed-up web page browsing, and investigate the spe-

cial complexities associated to parallel HTML parsing. Although they do not qualify

as general purpose parsers, their practical importance deserves some words. The re-

cent [102] paper surveys previous related research, and describes an efficient parallel

parser, Hpar, for web pages encoded in HTML5. HTML5 has a poorly formalized

BNF grammar and tolerates many syntax errors. A HTML5 source file may include

a script (in JavaScript), which in turn can modify the source file; this feature would

require costly synchronization between lexing and parsing threads, which make a

pipelining scheme inconvenient. Hpar splits the source file into units of comparable

length, taking care not to cut an XML tag. Each unit is parsed by an independent

thread, producing a partial DOM tree; at last, the DOM trees are merged. A compli-

cation comes from the impossibility to know whether a unit, obtained by splitting, is

part of a script, a DATA section, or a comment. The parser uses heuristics to spec-

ulates that the unit is, say, part of a DATA section, and rolls-back if the speculation

fails (in Section 5.3 we have described a similar approach to parallel lexing.) More

speculation is needed for another reason: when a unit parser finds a closing tag, say

< /Table >, it does not know if the corresponding opening tag occurred before in
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the preceding unit, or if it was missing by error. The best speedup achieved (2.5×

using five threads) does not scale for the current web page sizes.

Returning to parsers purely driven by the grammar, in view of the popularity of

(sequential) LR parser generation tools like Bison, the fact that no parallel-parser

generators exists is perhaps an argument against the feasibility of efficient parallel

parsers for LR grammars. This opinion is strengthened by the fact that several au-

thors have developed parallel parsers for language families smaller than the deter-

ministic CF one, but it would be too long to cover all of them, and one example

suffices. The grammars that are LR and RL (right to left) deterministic enjoy some

(not quantified) reduction in the number of initial parser states to be considered by

each unit parser. Such grammars are symmetrical with respect to scanning direction:

rightwards/leftwards processing, respectively, uses look-ahead/look-back into the text

to choose legal moves. By combining the two types of move into a bidirectional al-

gorithm, dead-ended choices are detected at an earlier time. We observe that Floyd’s

OPGs too have the property of reversibility with respect to the parsing direction and

benefit from it for making local parsing decisions, which are unique and guaranteed

to succeed if the input text is grammatically legal.

Indeed, thanks to the local parsability property, OP languages do not incur in the

penalties that affect LR parsers; the latter, as said, need to activate multiple computa-

tions for each deterministic unit parser, since many starting states are possible. For OP

parsers, in fact, all the actions can be deterministically taken by inspecting a bounded

context (two lexemes) around the current position, and do not depend on information

coming from the neighboring unit parsers: thus, each text unit can be processed by

an OP parser instance along a single computation, without incurring on the risk of

backtrack.

To complete the topic of restricted CF language families suitable for local parsabil-

ity, we mention two papers not surpassing the preliminary proposal stage. A list of

requirements for local parsability is in [63]. The work we consider to be closest to

our choice of OPGs is [73], that uses bounded-context grammars, a grammar model

[48] generalizing OPGs, which however has been rarely considered for s-parsing.
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top-down parsing Less effort has been spent on top-down deterministic LL

parsers, possibly because, at first glance, their being goal-oriented makes them less

suitable for parsing arbitrarily segmented text. The article [97] surveys the state-of-

the art for such parsers and reports in detail a parallel (non-experimented) algorithm

that works for a subclass of LL grammars, named LLP. Imagine that the text is seg-

mented into substrings and on each segment a classical LL(k) s-parser is applied.

Similar to the LR case, each s-parser does not know the result (i.e., a stack represent-

ing the prefix of a leftmost derivation) for parsing the substring to its left: therefore

each s-parser has to spawn as many s-parsers working on the same segment, as there

are possible initial stacks, too many to be practical. Therefore it is proposed to limit

the number of possible initial stacks by imposing a restrictive condition on LL(k)

grammars. The subfamily thus obtained is named LLP(q, k) and is based on the idea

of inspecting a look-back of length q tokens as well as the classical look-ahead of k

tokens. Although not compared in the paper, LLP(q, k) grammars look quite similar

to the already mentioned bounded-context grammars. This and earlier studies on par-

allel LL parsers may be theoretically interesting but do not offer any hint on practical

usability and performances.

5.7.2 Parallel lexing

The problem of breaking up a long string into lexemes is a classical one for data par-

allel algorithms, well described in [56]. They assume, as such studies invariably do,

that each lexeme class is a regular language, therefore the sequential lexer is a deter-

ministic finite automaton (DFA) that makes a state transition reading a character. For

a string x, the chain of state transitions define a lexing function that maps a state p to

another state q; moreover the function for the string x · y obtained by concatenation is

obtained by function composition. The data-parallel algorithm is conceptually similar

to the one for computing all partial sums of a sequence of numbers, also known in

computer arithmetic as the parallel sum prefix algorithm. In essence, the source text is

split into pieces, and the DFA transition function is applied to each piece, taking each

DFA state as a possible starting state. Then the functions obtained for neighboring
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pieces are composed and the cases of mismatch are discarded. Such processing can

be formulated by means of associative matrix operations. This parallel algorithm is

reported to be optimal from a purely theoretical viewpoint, but early simulation on

fine-grained architectures with very many processing units is not conclusive. More

recently, various experiments of similar algorithms on GPGPU and on multi-core

architectures have been reported. A criticism is that such algorithms are very specula-

tive, performing a significant amount of computation which may be later on discarded,

thus yielding fairly poor energy efficiency. Some authors have considered the regular

expression matching problem, instead of the lexing problem, and, although regular

expressions and DFA models are equivalent, the parameters that dominate the experi-

ments may widely differ in the two cases. An example suffices: [90] presents a notable

new version of the mentioned [56] approach. They claim that for certain practical reg-

ular expressions that are used in network intrusion/detection systems, the size of the

parallel lexer remains manageable and not bigger than the square of the minimal DFA.

Then, they are able to construct the parallel scanner on-the-fly, i.e. delaying as much

as possible the construction of the states. Clearly, algorithm [90] is not intended as a

lexer to be invoked by a parallel parser, but as a self-standing processor for matching

regular expressions – yet partially so, since it does not address the central issue of am-

biguous regular expression parsing, which fortunately does not concern our intended

applications.

Recently, [91] has experimented on the Cell Processor a parallel version of the

Aho-Korasick string matching algorithm. This work was motivated by the good per-

formance of that algorithm on multi-core machines for string search against large

dictionaries. But a downside of that approach is that it apparently assumes that the

input file can be unambiguously divided into text segments; therefore it does not ap-

ply to the case of general programming- or data-representation languages, since, for

such languages, scanning cannot avoid an initial degree of nondeterminism caused by

the absence of a separator between tokens (as a newline) that could be identified by

inspecting a bounded portion of the segments.

Compared with the mentioned studies, our approach to parallel lexing in Sec-

tion 5.3 addresses further critical issues. First, the approach is suitable for more gen-

eral lexical grammars that involve pushdown stacks and cannot be recognized by a
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DFA (as the lexical grammar of Lua). Second, our approach integrates some pre-

processing steps that enhance the performance of the following parsing stage. Fur-

thermore, we address a complexity that made previous approaches such as [56, 77]

unpractical: splitting the input file into segments may cause ambiguity, in the sense

that the lexing function associated to a segment may return multiple values (states),

depending on the assumed input state. To compute such function, several workers are

needed, but in our design their number does not equal the number of states of the

automaton, but is limited to two or three, and does not critically affects performance,

as attested by the experimental results achieved by PAPAGENO.

5.7.3 Local parsability property

Besides parallel parsing, the local parsability property of OPLs has been exploited in

another research direction, to support incremental parsing of software artifacts.

It is in fact universally acknowledged that, thanks to its malleability, software is

subject to continuous evolution, whether for corrective or evolutionary maintenance.

Most often the changes applied to a large program are local, as they affect only a

small fraction of its syntax tree. This asks naturally for incremental parsing, i.e., to

modify the existing parse only in the affected part without redoing much identical

work. Starting from the early work [51] a fairly rich literature on incremental parsing

has been developed (see, e.g., [41, 64]) which, unlike the case for parallel parsing, has

also produced several practical tools. Such results, however, normally concern more

widely adopted families of deterministic languages, which do not enjoy the local

parsability property; OPLs instead, can add to the techniques adopted for the more

general family, more specific ones directly based on the local parsability property,

which may produce simpler and more efficient algorithms. If a change is applied to

an input string that has been already parsed, in fact, an algorithm based on operator

precedence relations can restart parsing from the factor of the string affected by the

transformation and rebuild the part of the syntactic tree for the outermost handle in

the string involved by the change. The remaining part of the tree, instead, cannot
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change and thus does not need to be processed again. A preliminary algorithm for

incremental parsing is sketched in [18].





6
PA R A L L E L S E M A N T I C A NA LY S I S

Lexing and parsing are normally preliminary to a subsequent semantic phase. In the

case of programming languages such semantic analysis consists typically in code

interpretation or compilation and is often based on some attribute schema. If we as-

sume, as it is sometimes the case in bottom-up compilation, that the attribute schema

is of synthesized type, then, we can automatically integrate parallelism (and incre-

mentality) for semantic analysis with parallel (and incremental) lexical and syntactic

analysis. The benefits of such exploitation can be enormously extended beyond the

realm of programming language compilation since most “structured” design activi-

ties can be formalized in terms of a tree-shaped syntax paired with an attribute-based

semantic evaluation; furthermore, in many cases the semantic algorithms exhibit a

high computational complexity so that the efficiency gained by means of parallelism

(and incrementality) can become really impressive.

A preliminary description of an approach for incremental syntax-semantic analysis

for software artifacts, which exploits the local parsability of OPLs, is presented, as

mentioned in the previous chapter, in the recent work [18].

In this chapter we follow a complementary approach, aimed at parallel syntax-

semantic processing of structured and semistructured documents, which pairs the

actions of the OP parsing algorithm with a parallel evaluation of users’ queries. In

the sequel of this chapter we illustrate a case study of application of the approach: we

adapt the OP parsing algorithm to process XPath expressions on (streaming or offline)

XML documents in parallel on multicore machines. The technique can be naturally

extended to deal with more complex data description languages as, e.g., JSON or

domain specific languages, or more complex queries.

193
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6.1 introduction

Applications in several domains (e.g., financial data processing, web analytics, net-

work monitoring) must process huge datasets or continuous high-rate streams of XML

data to provide answers to queries posed by the users. Furthermore, the answers usu-

ally must be computed satisfying specific efficiency criteria.

An effective way to cope with the continuously increasing amount of information

that needs to be analyzed consists in leveraging the power of modern multicore com-

puting platforms to process large volumes of data in parallel.

OPLs provide a natural approach to address this issue, since the OP parallel pars-

ing algorithm can be quite easily adapted to support semantic processing of an XML

document, besides the mere reconstruction of its syntactic structure. The approach re-

lies on the fact that the syntax of an XML document, specified by a DTD (Document

Type Definition), can be formalized with an OPG, for which an OP parallel parser can

be automatically built. Given an XPath expression that a user wants to query against

a document, the OP parsing algorithm can be augmented with semantic actions that,

upon reduction of sentential forms with the rules of the OPG, progressively check

the segments of the path expression until a positive answer can be provided or no

corresponding match is found. The parsing (and associated semantic) actions are per-

formed in parallel by independent processors on different chunks of the XML doc-

ument. The partial parsing trees generated by the different processors are, as usual,

pairwise combined and reduced into the final tree, and the semantic actions for the

reductions involved in these transformations are performed likewise.

The extension of the parallel OP parsing algorithm to execute XPath queries on

XML documents is illustrated in Section 6.3 of this chapter, after the basic definitions

and notation on DTDs and XPath are recalled in Section 6.2. Some related works on

parallel XML processing are then discussed in Section 6.4.

6.2 preliminaries

In this section we remind preliminary notation on DTDs and XPath expressions.
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6.2.1 DTD

A DTD [101] describes the structure of a class of XML documents and is composed

by a list of declarations of the elements and attributes that are allowed within the doc-

uments. An element type declaration defines an element and its content. An element’s

content can be:

• EMPTY: the element has no content, i.e., it cannot have children elements nor

text elements;

• ANY: the element has any content, i.e., it may have any number (even none)

and type of children elements (including text elements). As a simplifying re-

striction, we forbid this type of content.

• an expression, which specifies the elements allowed as direct children. It can

be:

1. an element content, meaning that there cannot be text elements as children.

The element content consists of a content particle, which can be either the

name of an element declared in the DTD, or a sequence list or choice list.

– a sequence list is an ordered list of one or more content particles

(specified between parentheses and separated by a “,” character) that

appear successively as direct children in the content of the defined

element;

– a choice list is a mutually exclusive list of two or more content parti-

cles (specified between parentheses and separated by a “|” character).

The element content may be followed by a quantifier (+, ∗ or ?), which

specifies the number of successive occurrences of an item at the given

position in the content of the element.

2. a mixed content, meaning that the content may include at least one text el-

ement and zero or more declared elements; differently than in an element

content, their order and number of occurrences are not restricted:
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– (#PCDATA): the content consists exactly of one text element (PC-

DATA means parsed character data);

– (#PCDATA | element name | . . .)∗: the content consists of a choice

(in an exclusive list between parentheses and separated by “|” char-

acters and terminated by the “*” quantifier) of two or more child

elements (including only text elements or also the specified declared

elements).

Example 6.1. The following list is an example of element type declarations:

〈!ELEMENT note (to, f rom, heading, body)〉

〈!ELEMENT to (#PCDAT A)〉

〈!ELEMENT f rom (#PCDAT A)〉

〈!ELEMENT heading (#PCDAT A)〉

〈!ELEMENT body (#PCDAT A)〉

An attribute list declaration defines the set of legal attributes for a given element,

and for each attribute specifies its name, its type (or an enumeration of its possible

values) and its default value.

Example 6.2. For example, an attribute list declaration for the element note is:

〈!ATT LIS T note

priority CDAT A #REQUIRED

id ID #IMPLIED

f orward (yes | no) “yes′′〉

Finally, the root element of an XML document complying with a DTD is specified

by a DOCTYPE definition (e.g., 〈!DOCTYPE e〉).

The element declaration part of a DTD can be expressed as an OPG in a straight-

forward way. The terminal alphabet of the grammar includes the textual content

S TRING and symbols 〈a〉, 〈/a〉, 〈\a〉 for every element a of the DTD ( 〈a〉 and 〈/a〉

are matching open and closed tags respectively; 〈\a〉 denotes an element with empty

content). Nonterminals represent the elements and their contents; the axiom is defined
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as the root element specified by the DOCTYPE definition; the productions comply

with one of the following structures:

M → S TRING

M → 〈a〉 R 〈/a〉

M → 〈\a〉

M → T S TRING

M → T 〈a〉 R 〈/a〉

M → T 〈\a〉

where M, R, T are nonterminals, a denotes a DTD element.

6.2.2 XPath

XPath (the XML Path Language) is a query language defined by the World Wide Web

Consortium (W3C) [100]. The XPath language is based on a tree representation of the

elements of an XML document, and provides the ability to select nodes (elements or

attributes) of the document by specifying the way to navigate the tree to reach them.

A basic XPath query (or expression) is syntactically represented as a sequence of

location steps (a path) and is evaluated with respect to a context node. Each step

consists of three components: an axis, a node test and zero or more predicates. The

axis specifier (such as “child” or “descendant”) denotes the direction along which the

tree must be traversed from the context node. The node test and the predicates filter

the nodes denoted by the axis specifier: the node test prescribes which is the label

that all nodes navigated to must have, while a predicate consists of XPath expressions

themselves that state some properties on these nodes.

Formally, we consider XPath expressions, P, specified by the following grammar:

P ::=/N | //N | PP

N ::=E | @A | ∗ | text() | text() = S
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where E and A denote elements and attributes respectively and S is a string constant.

/ denotes the child axis, // denotes the descendant axis, ∗ is the wild card (∗matches

any element node and @∗ matches any attribute node).

As in e.g. [80], we transform XPath queries with predicates into a set of subqueries

without predicates, one for each element referenced in the predicate and the parent

element. As an example, the query /a[b]/c is rewritten into the subqueries: /a, /a/b

and /a/c: the answers corresponding to the subqueries must be therefore aggregated

to obtain the matches satisfying the initial predicate.

6.3 parallelization of semantic analysis

The OP parsing algorithm described in Chapter 5 can be naturally adapted to support

parallel processing of XPath expressions against an XML document.

The algorithm is extended so that, during the OP parsing of the document, each

time a reduction is performed it checks whether the tokens that have been reduced

correspond to nodes that might satisfy the pattern of the XPath expression. Since the

semantic processing is paired with the bottom-up OP parsing algorithm, the pattern

matching against the expression is performed bottom-up too; thus initially it checks

whether the reduced tokens correspond to the location step at the end of the path of

the expression. If this is the case, it computes which is the rest of the path that the

upper part of the parsing tree must satisfy so that the reduced tokens are actually a

correct match for the query. This information is propagated to the nonterminal that is

the l.h.s. of the rule used in the reduction, which will replace the r.h.s. on the stack of

the parser, and the pattern matching continues thereon.

Each nonterminal that is pushed on the stack is thus associated with a set of patterns

of paths, with a corresponding set of pointers to the element node or the attribute

value that will be returned as output answer to the query. Note also that each (open or

empty) token representing an XML tag has an associated set of attribute values.

The extension of the OP parallel parsing Algorithm 2 for XML semantic processing

is presented in Algorithm 5, which illustrates the semantic actions to evaluate when-

ever a reduction of Algorithm 2 is performed. In the description of the algorithm, as a
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notational convention, let G = (N, Σ, P, S ) be the OPG derived from the DTD after

it has been put in Fischer normal form, and let exp be the XPath expression to query.

Although we have not yet evaluated our approach for parallel semantic processing

through an experimental campaign, we reasonably expect to achieve performances

on throughput and speedup comparable to those obtained for parallel syntactic and

lexical analysis.

In the following, we detail the main phases of the algorithm.

check location step at the end of path (phase 2 and 3) Initially the

procedure checks whether the current reduction includes an XML element corre-

sponding to the end of the path expression. If this is the case, it propagates the re-

maining path that need to be checked to the nonterminal that represents the l.h.s. of

the rule used in the reduction (the path is conventionally ended by // if the location

step has a “descendant” axis specifier). Otherwise, no new path is propagated.

check internal location steps (phase 4) Each time the r.h.s. of a rule is

reduced, the procedure examines the paths that have been propagated up to the non-

terminals of this r.h.s, so that it can verify if their descendants in the parsing tree

correctly match the full path of the query. For each nonterminal X in the r.h.s the new

path that will be associated to the l.h.s. is computed as follows. If the path is empty,

a match for the whole XPath expression has been found. If the previous location step

was specified by a “child” axis or was the end of the Xpath expression exp (cases 4b

and 4e), then if the nonterminal X denotes an XML element b corresponding to the

current location step, the path is obtained from the current one by removing this last

location step; if instead the nonterminal is not surrounded by a pair of matching tags

(and thus it correspond to the contents of an XML element that is still unknown at

this point of the parsing), the path is propagated unchanged; otherwise this part of the

tree does not match the query and no path is propagated. If the previous location step

was specified by a “descendant” axis, and thus the current path by convention ends

with a // symbol (cases 4c and 4d), the algorithm must take care of the fact that the

current node that represents the contents of a b element may not have ancestors in the

tree that match the remaining path of the query, but one of its ancestors also corre-
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sponding to a b element can satisfy it. Thus, we associate to the nonterminal at the

l.h.s. the path with the last step removed and the path unchanged (the unchanged path

is still terminated by // to remind that the same check must be done for the ancestor

nodes). Note that in cases 4b and 4e, it is not necessary to propagate two paths, since

we are sure that the suffix of the XPath expression exp from the current location step

labeled b onward is satisfied.

Finally, note that, in every step 2 and 4 of the algorithm, if the path exp or P starts

with axis /, we check also whether the current node is the root of the document. Also,

we can check predicates specifying conditions on attributes: e.g., q/b[@attribute θ

value] (or q//b[@attribute θ value], resp.), where θ is a comparison operator, is

handled as q/b (or q//b, resp.), where the algorithm also checks that the comparison

attribute θ value holds true.

Remark 6.1. Algorithm 5 can be slightly optimized. Note that if we can store the

children/descendants of an element, then if the last segment of the XPath query is

(/∗)+, we might consider the query without this suffix and return as output the chil-

dren/descendants of the matching elements found for this reduced expression. The

same can be done if the last segment is //∗ or //text(). Furthermore, we might also

possibly reduce the number of failed computations along the parsing tree by checking

beforehand, given just the OPG and the XPath expression, which are the r.h.s.s of the

rules that are reachable (top-down) along the path defined by the expression.

Example 6.3. As an example, consider the following DTD:

〈!DOCTYPE a〉

〈!ELEMENT a (b | c)+〉

〈!ELEMENT b (c | d)+〉

〈!ELEMENT c (#PCDAT A)〉

〈!ELEMENT d (a)+〉
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A corresponding OPG is:

S → 〈a〉 A 〈/a〉

A→ A 〈b〉 B 〈/b〉 | A〈c〉 C 〈/c〉 | 〈b〉 B 〈/b〉 | 〈c〉 C 〈/c〉

B→ B 〈c〉 C 〈/c〉 | B〈d〉 D 〈/d〉 | 〈c〉 C 〈/c〉 | 〈d〉 D 〈/d〉

C → S TRING

D→ D 〈a〉 A 〈/a〉 | 〈a〉 A 〈/a〉

An equivalent OPG in Fischer normal form has rules:

NDS → 〈a〉 A 〈/a〉 |

〈a〉 NAB 〈/a〉

A → 〈a〉 A 〈/a〉 |

A 〈b〉 NAB 〈/b〉 |

NAB 〈b〉 NAB 〈/b〉 |

〈b〉 B 〈/b〉 |

A 〈b〉 B 〈/b〉 |

NAB 〈b〉 B 〈/b〉 |

A 〈c〉 C 〈/c〉

B → B 〈c〉 C 〈/c〉 |

〈d〉 D 〈/d〉 |

NAB 〈d〉 D 〈/d〉 |

B 〈d〉 D 〈/d〉 |

〈d〉 〈/d〉 |

〈d〉 NDS 〈/d〉 |

NAB 〈d〉 NDS 〈/d〉 |

B 〈d〉 NDS 〈/d〉
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NAB → 〈c〉 C 〈/c〉 |

NAB 〈c〉 C 〈/c〉

C → S TRING

D → D 〈a〉 A 〈/a〉 |

NDS 〈a〉 A 〈/a〉 |

D 〈a〉 NAB 〈/a〉 |

NDS 〈a〉 NAB 〈/a〉

Consider now the following XML document and the XPath expression //a/b/c:

<?xml v e r s i o n = ‘ ‘1 .0 ’ ’ en co d in g = ‘ ‘UTF−8 ’ ’ ?>

<a>

<b>

<d> < / d>

< / b>

<b>

<c> t e x t< / c>

<d>

<a>

<b>

<c> t e x t< / c>

<c> t e x t< / c>

< / b>

< / a>

< / d>

< / b>

<c> t e x t< / c>

< / a>

By applying the extended OP parsing algorithm, we obtain that the nodes that

match the path of the query are the first, second and third element c.
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6.4 related work

XML parallel processing has been the object of various research works: a quite de-

tailed bibliography on related works on XML parallel parsing and querying is pre-

sented, e.g., in [80].

A key property of the parallel OP parsing algorithm consists in the possibility of

arbitrarily splitting an input string into equal-sized chunks, avoiding to cause load im-

balance on CPU cores in the presence of documents with an irregular structure. Most

of the early literature on XML parallel processing, instead, relies on the availability

of well-formed fragments of the XML document, which are queried in parallel. E.g.,

[67] proposes a parallel structured join algorithm for evaluating XPath expressions,

which partitions the elements of the XML document into buckets and examines each

bucket in parallel, joining the results afterwards. A downside of the approach, how-

ever, is that, although the evaluation is parallelizable, the partition must be obtained

through a sequential preprocessing step, which introduces a bottleneck in the execu-

tion. [44] exploits data parallelism for query processing using the map-reduce model,

but assumes well-formed XML fragments as input to the map operation, leading to a

sequential bottleneck likewise.

The same drawback affects some other techniques, which parallelize the evaluation

of an XPath expression after building a parse tree in memory. A simple approach is

presented in [21], where the expression is rewritten into several, easier to process, sub-

queries that are evaluated in parallel. To exploit data parallelism efficiently, the parse

tree must be partitioned, again with a sequential preprocessing step. Since all these

approaches assume that the parse tree is represented in memory, they are furthermore

unfeasible to support processing of streaming XML data.

A different approach w.r.t. these early works is presented in [80]. They introduce

a data-parallel approach for processing streaming XPath expressions where the exe-

cution of the query is modeled by a Visibly Pushdown Automaton (VPA): the XML

document to be examined can be split into arbitrarily-sized chunks, with each chunk

being processed by a VPA in parallel. To cope with the possible presence of not neces-

sarily well-formed chunks, the automata consider all possible starting states for XML

elements and construct corresponding mappings from starting to ending states. The
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state mappings for each chunk are built in parallel on independent CPU cores, thanks

to the fact that the mappings do not depend on the state preceding the starting one;

the mappings constructed for the chunks are then unified. The approach presented in

[80] is thus analogous, in this respect, with processing based on OPLs: they can both

operate on arbitrarily framed XML chunks, thus avoiding the cost of a sequential pre-

processing phase to split the data into well formed units. We have not yet validated our

approach with an experimental campaign; thus, we cannot compare the performance

of the two approaches, although we reasonably expect to achieve results analogous

to those showed in Chapter 5 for simple parsing and lexing. However, we note that

the automata-based XML processing of [80] shows some redundancy by considering

complete VPAs and taking into account unnecessary computations while building the

state mapping. Furthermore, XML processing based on OPLs naturally allows for

both the evaluation of the XPath expression and schema validation on the XML doc-

ument. We also emphasize that the approach in [80] is supported by a C++ prototype

implementation that, as the authors claim, is able to achieve near linear scaling up

to 64 CPU cores while processing XPath queries taken from standard benchmarks on

XML stream data. However, the implementation is not available, whereas our tool PA-

PAGENO is an open source project available under GNU General Public License and

we plan to make available likewise also the extension for XML parallel processing.

Moreover, being based on the model of VPAs, it presents some limitations as regards

the syntax of the data representation languages it can deal with; we plan, instead, to

define algorithms for efficient parallel query processing that exploit the properties of

OPLs to support more complex standard data format to represent data (e.g., besides

XML and JSON, also YAML [2] or domain specific languages).
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Algorithm 5 : pathMatching(rule, exp)

1. Let M → γ be the production rule used in the current reduction, with γ ∈ V∗.

2. If γ = α〈b〉X〈/b〉 or γ = α〈\b〉 with α ∈ N ∪ {ε}, X ∈ N

• If exp = q/b (or q/∗ or q//∗) where q is any path, possibly empty, then

associate with nonterminal M on the stack the path q

• If exp = q//b where q is any path, possibly empty, then associate with

nonterminal M on the stack the path q//

• If exp = q/b/@attribute (or exp = q//b/@attribute, resp.) where q

is any path, possibly empty, and the tag b on the stack has an attribute

attribute, then associate with nonterminal M on the stack the path q (or

q//, resp.).

3. Else if γ = α S TRING with α ∈ N ∪ {ε}

• If exp = q/text() (or exp = q//text() resp.) where q is any path, then

associate with nonterminal M on the stack the path q (or q//, resp.). If

exp = q/text(S ) or exp = q//text(S ), check also that S TRING = S .

4. For each nonterminal X occurring in γ do

• For each path pattern P associated with X do

a) If P = ε or P = ε//, then return as output that the nodes matched

the full path of exp. Furthermore remove, from all other path patterns

of X, the node pointers already in the set associated with P (note that,

if a path pattern has an empty set of pointers, it is removed too).

b) If P = q/b (or P = q//b, resp.) where q is any path

– If γ = α〈b〉X〈/b〉 then associate with nonterminal M on the

stack the path q (or q//, resp.)

– else if γ = Xβ with β ∈ V∗, i.e., X is not surrounded by a pair of

matching tags 〈b〉〈/b〉 nor by a pair of matching tags 〈c〉X〈/c〉

with c , b, then associate with M the path q/b (or q//b, resp.).

Thus, if γ = α〈c〉X〈/c〉 with c , b, no path is propagated to M.

c) If P = q/b//

– If γ = α〈b〉X〈/b〉 then associate with nonterminal M on the

stack both the path q and the path q/b//

– otherwise, associate with M the path q/b//

d) If P = q//b//

– If γ = α〈b〉X〈/b〉 then associate with nonterminal M on the

stack the path q//

– otherwise, associate with M the path q//b//

e) If P = q/b/@attribute (or q//b/@attribute) idem as in case 4b,

but we also check that the tag b has an attribute attribute

f) If P = q/∗ (or q//∗, resp.) If γ = α〈b〉X〈/b〉 for a tag b in Σ then

associate with nonterminal M on the stack the path q (q//, resp.)

otherwise, associate with M the path q/∗ (q//∗, resp.)
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7
C O N C L U S I O N S

7.1 conclusions and future research

This thesis has investigated the formalism of Operator Precedence Languages (OPLs),

which has been introduced in the 1960s by Robert Floyd and soon abandoned due to

the advent of other language families well suited for deterministic parsing and with

greater expressive power. Study on OPLs has been recently resumed with novel mo-

tivation with the discovery of some distinguishing properties they enjoy, which nat-

urally foster their application in contexts as automatic verification (model-checking)

and efficient parallel and incremental analysis.

The first part of this dissertation follows this renewed path of investigation with the

aim of providing a “general theory of OPLs”, which completes the results on this class

of languages that have been proved in the last half a century, concerning their charac-

terization by logical formalisms or by families of generating or recognizing devices

and their algebraic properties, which qualify them as the largest class of deterministic

context-free languages enjoying closure under all main language operations (Boolean

ones, concatenation, Kleene * and others). Herein we extended research on OPLs to

the field of ω-languages, i.e., languages consisting of infinite-length strings: we intro-

duced a corresponding automata and logic-based characterization and we proved that

all the above properties continue to hold, with the noticeable and typical exception of

the lack of equivalence between deterministic and nondeterministic automata – under

the Büchi acceptance condition.

As a result, OPLs are now completely characterized in terms of their algebraic

properties, their recognizing automata, both on finite and infinite strings, and the log-

ical expression of their properties in terms of a suitable MSO logic. In particular,

the closure properties and the decidability of the emptiness problem for this class of

languages enable the definition of model-checking algorithms outside the traditional

209
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scope of finite-state machines, allowing thus for more expressiveness in the specifica-

tion of a system of interest (with finite or infinite computations) or in stating require-

ments on its behavior w.r.t. renowned classes of formalisms as, e.g., VPLs, which

represent a strict subclass of OPLs. Furthermore, we investigated logic formalisms

simpler than MSO logic to characterize suitable subclasses of general OPLs; a first

result on this respect is that free languages, a subclass of OPLs originally motivated

by grammar inference [35, 36] can be defined in terms of a first-order (FO) logic

rather than a second-order one.

This fairly complete foundational characterization of OPLs can ignite further re-

search along various directions: for instance, a subject for future work is the def-

inition of a new subclass of OPLs that perfectly matches the FO logic formulation;

also, moving from traditional FO or MSO logics to temporal logics that avoid explicit

quantification –a widely adopted approach in various model-checking-based applica-

tions [31, 8]– and the study of corresponding model-checking algorithms are topics

that belong to future research.

The second part of this dissertation deals with a further relevant property exhibited

by OPLs, namely their local parsability. Local parsability means that parsing of any

substring of a string according to a grammar depends only on information that can be

obtained from a local analysis of the portion of the substring under processing and is

thus not influenced by parsing of other substrings.

Local parsability is the key property to exploit effectively non-speculative paral-

lelism in parsing, which was up to now a considerable exception to the present ten-

dency to exploit parallelism in practically any application [14]. The classical parsing

algorithms used for deterministic context-free (DCF) languages such as LR and LL,

in fact, do not enjoy this property and, although they can be efficiently implemented

(in linear-time) on sequential machines, do not achieve speedups on multicore archi-

tectures due to their inherent sequential nature: if an input string is split into several

parts, handled by different processors, the parsing actions may require communica-

tion among the different processing nodes, with considerable additional overhead.

This thesis resumes the approach for OP parallel parsing, which has been intro-

duced in [14] by exploiting the local parsability property, and it complements this

approach with a schema for parallelizing also the lexical analysis phase. The algo-
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rithms for parallel parsing [15] and lexing have been implemented in a prototype

tool (PAPAGENO), which we show, through an extensive experimental campaign, to

achieve significant speed-up compared with state of the art sequential parsers and

lexers generated by, e.g., Bison and Flex, as regards the analysis of both general

programming languages and standard data representation languages. Notably, PA-

PAGENO is available for free downloading (under GNU GPL license) for further

application, experimentation, and possible extensions. To validate the approach we

chose practical test-benches spanning from the JavaScript Object Notation (JSON)

data description language to the Lua programming language, showing how the minor

theoretical limitations in terms of generative power of OPGs (w.r.t. DCF languages)

do not significantly affect their applicability; also, the changes needed to adapt the

original BNF of the source language to OPG constraints are obtained in an original

way by augmenting the parallel initial phase of lexical analysis.

This dissertation exploits the local parsability property enjoyed by OPLs also for

efficient parallel querying of large structured and semistructured documents. As a

case study, we augmented the parallel OP parsing algorithm to allow for processing

of XPath queries on XML documents in parallel on multicore machines. As a future

research, we plan to validate the approach by considering, besides JSON, more com-

plex data description languages as, e.g., YAML or domain specific languages that can

be expressed as an OPL. We also plan to extend the algorithm to deal with more gen-

eral users’ expressions, which require to specify additional record-selection criteria

or to transform the result set.

In the following, we mention various research directions to fully exploit the local

parsability property; we first give a couple of hints to make our tool PAPAGENO

even more efficient and more widely applicable to a larger set of languages. Then, we

outline other research directions aimed at exploiting local parsability, both of theoret-

ical nature and with the purpose of applying it in other application fields than “pure”

compilation.
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7.1.1 Optimizing performances and effectiveness of the present tool

The general parallel parsing algorithmic schema defined in Section 5.2 is conceived

in such a way that it can be iterated through several passes until the obtained result

is short enough to make it convenient to apply a final sequential parsing. As a matter

of fact, our present tool obtained quite satisfactory performances even with one only

parallel pass immediately followed by a final sequential one. As we already noticed,

however, there could be cases where splitting the input in chunks of equal length

does not correspond to the overall structure of the source, e.g., if the chunks consist

of the frontiers of two adjacent and large sub-trees. In such cases the further passes

described in the general Algorithm 2 may produce substantial benefits. Some further

experiments are planned to validate our conjecture that in most cases two passes are

all that is needed to exploit at best parallel parsing.

Deterministic parsing based on OPGs has been applied to many programming lan-

guages in the past [47, 39] and we added a couple of more recent ones used in our

benchmark; purposely, JSON and Lua have been selected with sharply different fea-

tures and, not surprisingly, adapting Lua to our OP-based approach was a consider-

ably tougher job than the former one. Our further investigations, e.g., on JavaScript,

seems to hint at some more difficulties with other modern languages: in general, in

fact, as pointed out in Section 5.4, many modern languages offer (too?) much free-

dom to programmers which generates overloading of various symbols and hampers

deterministic analysis, what often results into precedence conflicts. We are confident

that such difficulties can be overcome but some more work is needed to make our

approach applicable to most practical languages in a generalized way. As a first step

we plan to widen the heuristic techniques developed in the case of Lua so as to apply

them to other widely used languages. To be useful in practice, such techniques must

be supported by automatic tools to obtain an OPG grammar equivalent to the original

one and/or to produce an intermediate text –after parallel lexical analysis– that can be

supplied to an OP parallel parser. In the longer term we wish to investigate also the

theoretical aspects of this issue as hinted in the following subsection.

On the other hand we notice that recent recommended best practices tend to limit

the excessive freedom allowed by the grammars of modern languages. For instance
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[38] proposes a series of disciplined ways to write cleaner and more understandable

JavaScript programs; we verified that, if applied rigorously, they produce a subset lan-

guage almost ready for OP-parsing with no need for a heavy preprocessing. Another

case of well disciplined, and easily analyzable source is provided by modern compiler

back-ends, which target a restriction of the JavaScript language as their assembly out-

put such as Emscripten [4] and asm.js [93]. In both cases, the language to be analyzed

has all the features to be efficiently parsed in parallel: it is characterized by very large

compilation units, and has a grammar free from unusual quirks.

7.1.2 Research directions on the local parsability property

The local parsability property proposes several intriguing questions which further

widen the spectrum of potential applications both within and beyond parallelism.

From a theoretical point of view, OPLs are just an example of locally parsable

languages with bound 1 but many more could be worth investigating: as mentioned

in Section 5.7, Floyd himself proposed a generalization of the family by adopting

larger bounds of the context necessary to disambiguate the r.h.s. to be reduced. At

the time it was concluded that the approach was unpractical for complexity reasons,

but the computational power available nowadays could question that early decision.

Given that most parsability properties of CF languages are in general undecidable (see

e.g. [62, 53] for a summary of such results) and that it is even undecidable whether

the language generated by a CF grammar is OPL [57], a few natural questions arise.

• To which languages is it possible to apply a preprocessing in the same style as

we did for Lua in Section 5.4, so that the obtained intermediate text is an OPL?

• Furthermore, is it possible and useful to extend our proposed approach to lo-

cally parsable languages beyond the OPLs?

The local parsability property can be exploited also in further ways besides parallel

parsing.

As stated in Section 5.7, a promising field of study is represented by incremental

parsing, to deal with continuous changes and evolution of software artifacts. The
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local parsability property can be exploited in conjunction for incremental and parallel

parsing in the non-infrequent case of multiple, scattered changes to large pieces of

software.

Finally, (syntactic) error management can also take advantage of the local parsabil-

ity property. In many cases, in fact, a syntax error may affect an unpredictable portion

of code, and it is often the case that, at their early occurrence, parsing is stopped or be-

comes meaningless (e.g., the standard parsers generated by Bison stop their process-

ing at the first error). The local parsability property instead, allowing for (re)starting

parsing at any position, may produce, possibly by acting in parallel, large portions of

syntax tree associated with correct code, even if such code is preceded by serious er-

rors. Thus, breaking the code into many chunks can help not only to locate the source

of the problem but also to fix it without redoing much useless work, by exploiting

both parallelism and incrementality. Similar, though less relevant, benefits could be

obtained by exploiting parallel lexical analysis.
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A P P E N D I X

Herein we report Lua’s syntactic grammar in operator precedence form.

chunk → block | ENDFILE

block → statList |

retStat |

statList RETURN SEMI |

statList RETURN exprList SEMI |

statList RETURN |

statList RETURN exprList

statList → stat |

SEMI |

stat SEMI |

statList SEMI stat |

statList SEMI

retStat → RETURN SEMI |

RETURN exprList SEMI |

RETURN |

RETURN exprList

stat → varList XEQ exprList |

functionCall |

label |

BREAK |

GOTO NAME |

DO block END |

DO END |

WHILE expr DO block END |

WHILE expr DO END |

225
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REPEAT block UNTIL expr |

REPEAT UNTIL expr |

IF exprThen END |

IF exprThen ELSE block END |

IF exprThen ELSE END |

IF exprThenElseIfB END |

IF exprThenElseIfB ELSE block END |

IF exprThenElseIfB ELSE END |

FOR name XEQ eCe DO block END |

FOR name XEQ eCeCe DO block END |

FOR nameList IN exprList DO block END |

FUNCTION funcName LPARENFUNC parList RPARENFUNC block END |

FUNCTION funcName LPARENFUNC RPARENFUNC block END |

FOR name XEQ eCe DO END |

FOR name XEQ eCeCe DO END |

FOR nameList IN exprList DO END |

FUNCTION funcName LPARENFUNC parList RPARENFUNC END |

FUNCTION funcName LPARENFUNC RPARENFUNC END |

LOCAL FUNCTION name LPARENFUNC parList RPARENFUNC block END |

LOCAL FUNCTION name LPARENFUNC RPARENFUNC block END |

LOCAL FUNCTION name LPARENFUNC parList RPARENFUNC END |

LOCAL FUNCTION name LPARENFUNC RPARENFUNC END |

LOCAL nameList |

LOCAL nameList XEQ exprList
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elseIfBlock → block ELSEIF expr THEN block |

block ELSEIF expr THEN elseIfBlock |

ELSEIF expr THEN block |

block ELSEIF expr THEN |

ELSEIF expr THEN |

ELSEIF expr THEN elseIfBlock

exprThenElseIfB → expr THEN elseIfBlock

exprThen → expr THEN block |

expr THEN

name → NAME

eCe → expr COMMA expr

eCeCe → eCe COMMA expr

dot3 → DOT3

label → COLON2 NAME COLON2

funcName → nameDotList |

nameDotList COLON name

nameDotList → NAME |

nameDotList DOT NAME

varList → var |

varList COMMA var

var → NAME |

prefixExp LBRACK expr RBRACK |

prefixExp DOT NAME

nameList → NAME |

nameList COMMA name

exprList → expr |

exprList COMMA expr

expr → logicalOrExp

logicalOrExp → logicalAndExp |

logicalOrExp OR logicalAndExp
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logicalAndExp → relationalExp |

logicalAndExp AND relationalExp

relationalExp → concatExp |

relationalExp LT concatExp |

relationalExp GT concatExp |

relationalExp LTEQ concatExp |

relationalExp GTEQ concatExp |

relationalExp NEQ concatExp |

relationalExp EQ2 concatExp

concatExp → additiveExp |

additiveExp DOT2 concatExp

additiveExp → multiplicativeExp |

additiveExp PLUS multiplicativeExp |

additiveExp MINUS multiplicativeExp

multiplicativeExp → unaryExp |

multiplicativeExp ASTERISK unaryExp |

multiplicativeExp DIVIDE unaryExp |

multiplicativeExp PERCENT unaryExp

unaryExp → caretExp |

NOT unaryExp |

SHARP unaryExp |

UMINUS unaryExp

caretExp → baseExp |

baseExp CARET caretExp

baseExp → NIL | FALSE | TRUE | NUMBER |

STRING |

DOT3 |

functionDef |

prefixExp |

tableConstructor

prefixExp → var |

functionCall |

LPAREN expr RPAREN
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functionCall → prefixExp LPAREN exprList RPAREN |

prefixExp LPAREN RPAREN |

prefixExp LBRACE fieldList RBRACE |

prefixExp LBRACE RBRACE |

prefixExp STRING |

prefixExp COLON name LPAREN exprList RPAREN |

prefixExp COLON name LPAREN RPAREN |

prefixExp COLON name LBRACE fieldList RBRACE |

prefixExp COLON name LBRACE RBRACE |

prefixExp COLON name STRING

functionDef → FUNCTION LPARENFUNC parList RPARENFUNC block END |

FUNCTION LPARENFUNC RPARENFUNC block END |

FUNCTION LPARENFUNC parList RPARENFUNC END |

FUNCTION LPARENFUNC RPARENFUNC END

parList → nameList | nameList COMMA dot3 | DOT3

tableConstructor → LBRACE fieldList RBRACE |

LBRACE RBRACE

fieldList → fieldListBody | fieldListBody COMMA | fieldListBody SEMIFIELD

fieldListBody → field | fieldListBody COMMA field | fieldListBody SEMIFIELD field

field → bracketedExp EQ expr | name EQ expr | expr

bracketedExp → LBRACK expr RBRACK


