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Abstract

NOWADAYS, the complicated oscillations of suspension bridges are
still not completely understood. In this thesis, we suggest several
new reasonable mathematical models which may help to describe

the oscillation behavior appearing in the actual suspension bridges.

First, in Introduction we survey several historical events on suspen-
sion bridges and we recall some existing mathematical models in literature.
Most of these models fail to describe the static or dynamic behavior of the
suspension bridges. Also in this part, we list the new mathematical models
we suggested for describing the behavior of the bridges.

Chapter 2 is devoted to a kind of beam model for suspension bridge.
The bridge is viewed as an elastic beam which is suspended to a sustain-
ing cable, where the beam and the cable are connected by a large number
of hangers. We analyze the energies in the system (the suspension bridge)
after the deformation from the rest position to a new position due to a live
load. The Euler-Lagrange equation is obtained by taking the critical points
of the total energy. Together with the hinged boundary conditions, we de-
duce a nonlinear nonlocal problem and we prove that it admits at least one
weak solution.

In Chapter 3, we view the suspension bridge as a long-narrow thin rect-
angular plate, which is suspended to two sustaining cables. We first recall
the plate model suggested by Ferrero-Gazzola [27] for dynamical suspen-
sion bridge. Then we consider a non-coercive problem corresponding to
the plate model and we analyze the asymptotic behavior of the unique lo-
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cal solution of the problem for different initial conditions. Finally, in order
to describe the boundary behavior of the plate, we set up a problem with
dynamical boundary conditions that reflect the physical constraints on the
boundaries. Assume that the restoring force due to the hangers is in a lin-
ear regime, we obtain a linear evolution problem with dynamical boundary
conditions. We prove that the evolution problem admits a unique explicit
solution.

In Chapter 4, the roadway of the suspension bridge is also considered as
a thin rectangular plate. We suggest a quasilinear plate model based on the
von Kármán plate equations when large deformations appear in the plate.
In this case, the interaction with the stretching behavior of the plate should
be analyzed. Then two fourth order differential equations are deduced by
applying variational principles to the energy functional, where we introduce
the so-called Airy stress function. By adding the restoring force due to the
hangers to the equations, we obtain a system coupled by two fourth order
differential equations. We prove existence and multiplicity results of the
system with suitable boundary conditions.

The last chapter contains the conclusions on our mathematical models
for suspension bridges. We do not claim that these models are perfect. This
is just the beginning for reaching more challenging results in this field and
much more work (both mathematical and engineering) is needed. We also
list several open problems corresponding to our new models.
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Notations

Dku = ∂ku
∂x
α1
1 ∂x

α2
2 ···∂x

αn
n

, k ≥ 0,
∑n

i=1 αi = k with αi ∈ N, 0 ≤ αi ≤ k.

C l(Ω) = {u : Ω→ R; u has continuous derivatives up to order l on Ω}.
C l
c(Ω) =

{
u ∈ C l(Ω) : supp(u) is compact in Ω

}
, 0 ≤ l ≤ ∞.

Lp(Ω) =
{
u : Ω→ R;

∫
Ω
|u|p <∞

}
, 1 ≤ p <∞.

L∞(Ω) = {u : Ω→ R; supΩ |u| <∞}.
Hm(Ω) =

{
u : Ω→ R;

∑m
i=0

∫
Ω
|Diu|2 <∞

}
, m ≥ 1.

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.
H(Ω) = the dual space of H2 ∩H1

0 (Ω).
Hm−j−1/2(∂Ω) = γj[H

m(Ω)] with γju = ∂ju
∂jν

for j = 0, 1, · · · ,m− 1.
[u, v] = uxxvyy + uyyvxx − 2uxyvxy, the Monge-Ampère operator.
C0([0, T ];X) = space of functions u = u(t) ∈ C0([0, T ]) with respect

to the X-norm in space; u ∈ C0([0, T ];X) iff ‖u(t)− u(t0)‖X → 0
as t→ t0. Similarly, for the spaces C1([0, T ];X) and C2([0, T ];X).

TNB = Tacoma Narrows Bridge.
(GP) = General Principle of classical mechanics.

When Ω = (0, π)× (−`, `) ⊂ R2.
H2
∗ (Ω) = {u ∈ H2(Ω) : u = 0 on {0, π} × (−`, `)}.
H∗(Ω) = the dual space of H2

∗ (Ω).
H2
∗∗(Ω) = {u ∈ H2

∗ (Ω) : u = uy = 0 on (0, π)× {±`}}.
H∗∗(Ω) = the dual space of H2

∗∗(Ω).
H4
∗ (Ω) = {u ∈ H4(Ω) : u = uxx = 0 on {0, π} × (−`, `)}.
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CHAPTER1
Introduction

A modern suspension bridge is a type of bridge where the deck (the road-
way) is hung below the suspension cables by a large number of hangers,
see Figure 1.1 for a simple sketch of the modern suspension bridge.

Figure 1.1: Sketch of modern suspension bridge.

1.1 Historical events and existing mathematical models

1.1.1 Historical events

Although the first design of a modern suspension bridge is made around the
year 1595 by the Italian engineer Fausto Veranzio, see [77] and [62, p.7]
or [43, p.16], only about two centuries later, the first bridge (Jacob’s Creek
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Chapter 1. Introduction

Bridge, 1801) was built in Pennsylvania by the Irish judge and engineer
James Finley1. Finley patented his design in 1808, and published it in the
Philadelphia journal, The Port Folio, in 1810, see [15].

In the about 200 years’ history of suspension bridges, there are many
dramatic events, such as the uncontrolled oscillations which, in some cases,
led to collapses. Only in several decades between 1818 and 1889, ten sus-
pension bridges suffered major damages or collapsed in windstorms, see
[24, Table 1, p.13]. Furthermore, according to [42], around 400 recorded
bridges (suspended or not) failed for different reasons (such as the wind,
the traffic loads or mistakes in the project) and the ones who collapsed after
the year 2000 are more than 70.

The Broughton Suspension Bridge (built in 1826) collapsed in 1831 due
to the mechanical resonance caused by the marching soldiers matching over
the bridge in step. Hence, from then on, the British Army issued an order
that the troops should “break step” when crossing a bridge.

This kind of failures occurred due to an external response according to
the classification by Gazzola [30] and this phenomenon is not the scope of
this thesis. We next list several events due to some unexpected oscillations.

The Brighton Chain Pier (built in 1823) collapsed a first time in 1833
due to a violent windstorm. Then it was rebuilt and partially destroyed once
again in 1836. For the collapse happened in 1836, a witness, William Reid
[70, p.99], reported some valuable observations and sketched two pictures
illustrating the destruction, see Figure 1.2, which is taken from [71].

Figure 1.2: Destruction of the Brighton Chain Pier.

The Menai Straits Bridge, which was built in 1826, failed in 1839 due to
a hurricane. In this occasion, unexpected oscillations appeared and Provis
[69] provided the following description:

...the character of the motion of the platform was not that of a
simple undulation, as had been anticipated, but the movement of
the undulatory wave was oblique, both with respect to the lines
of the bearers, and to the general direction of the bridge.

1Iron-Chain Suspension Bridge, https://en.wikipedia.org/wiki/Jacob%27s_Creek_Bridge_(Pennsylvania)
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1.1. Historical events and existing mathematical models

The Tacoma Narrows Bridge (TNB) collapse, occurred in November,
1940 just a few months after its opening, is the most celebrated bridge fail-
ure both because of the impressive video2 and because of the large number
of studies that it has inspired starting from the reports [4, 24–26, 73, 79].

It is not our purpose to give a detailed list of all the collapses for which
we refer to [13, Section 1.1], to [71, Chapter IV], to [19,24,41,84], to recent
monographs [2, 30, 43], and also to [42] for a complete database.

1.1.2 Existing mathematical models

The French engineer and mathematician Claude-Louis Navier in 1823 pub-
lished a report [62], which has been the only mathematical treatise of sus-
pension bridges for several decades. In the celebrated report, Navier mainly
focused on the static of the cables and their interaction with the towers, and
then several second order ordinary differential equations are derived and
solved. At that time, no stiffening trusses had yet appeared and the models
suggested by Navier are oversimplified in some aspects.

The monograph [59] published by the Austrian engineer Joseph Melan
is another milestone contribution to suspension bridges. In his monograph,
Melan viewed the suspension bridge as an elastic beam which is suspended
to a sustaining cable by hangers. He made a detailed study of the static ca-
bles and beams through a careful analysis of different kinds of suspension
bridges. By using the Castigliano Theorem repeatedly, in particular for the
computation of the deflection [59, p.69], he suggested a fourth order ordi-
nary differential equation to describe the behavior appearing in the actual
suspension bridge

EIw′′′′(x)− (H + h(w))w′′(x) + h(w)y′′(x) = p, x ∈ (0, L), (1.1)

where L is the length of the beam which represents the roadway between
the towers, w = w(x) denotes the displacement of the beam, y(x) is the
position of the cable at rest, E and I are, respectively, the elastic modulus
of the material and the moment of inertia of the cross section so that EI
is called the flexural rigidity, H is the horizontal tension in the cable when
subject to the dead load q, h(w) represents the additional tension in the
cable produced by the live load p = p(x).

An excellent source to derive the equation of vertical oscillations in dy-
namical suspension bridges is [71, Chapter IV], where all the details are
well explained. The equation derived in [71, p.132] reads

wtt + EIwxxxx − (H + h(w))wxx +
q

H
h(w) = p, x ∈ (0, L), t > 0.

2Tacoma Narrows Bridge collapse, http://www.youtube.com-watch?v=3mclp9QmCGs.
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Chapter 1. Introduction

The function p here is in dependence of the time t.
After the TNB collapse, the engineering communities felt that it was

necessary to find accurate equations in order to attempt explanations of
what had occurred. Then some more mathematical models trying to de-
scribe the vertical-torsional oscillation appeared.

Assume that y(x, t) is the vertical deflection of the bridge and θ(x, t)
is the angle of torsion of the cross section, then the following system is
derived in [20, (1)-(2)] for the linearized equations of the elastic combined
vertical-torsional oscillation motion: for x ∈ (0, L), t > 0,

ytt + EIyxxxx −Hyxx +
q2EA

H2L

∫ L

0

y(z, t)dz = f(x, t),

I0θtt + C1θxxxx − (C2 +H`2)θxx +
`2q2EA

H2L

∫ L

0

θ(z, t)dz = g(x, t),

where q,H are as in (1.1), EI,C1, C2, EA are respectively the flexural,
warping, torsional, extensional stiffness of the girder, I0 is the polar mo-
ment of inertia of the girder section, 2` is the roadway width, f(x, t) and
g(x, t) are the lift and the moment for unit girder length of the self-excited
forces.

Another source describing the vertical-torsional oscillations appearing
in the suspension bridges is Pittel-Yakubovich [67], where a kind of fish-
bone beam model is suggested: for x ∈ (0, L), t > 0,

mytt − ρIyxxtt + EIyxxxx −Hyxx + W
2

(x(L− x)θ)xx = 0,

m`2

3
θtt − γ1θxxtt + W

2
(x(L− x))θxx + γ2θxxxx − µθxx −W`θ = 0,

y(0, t) = y(L, t) = yxx(0, t) = yxx(L, t) = 0,

θ(0, t) = θ(L, t) = θxx(0, t) = θxx(L, t) = 0,

where L is the length of the roadway while 2` is its width, m is the mass
per unit length in the x-direction, ρ is the density of the material, W is the
uniformly distributed horizontal wind load, γ1 and γ2 are two geometric
parameters of the cross section, µ = GJ +H`2 (with G = shear modulus,
J = moment of inertia of the pure torsion), I, EI,H as in (1.1). All these
constants are positive.

McKenna claimed that the model for suspension bridges should be non-
linear and then a fourth order differential equation was suggested in [51,57,
58] as a one dimensional model for a suspension bridge:

utt + uxxxx + γu+ = W, x ∈ (0, L), t > 0,

4



1.1. Historical events and existing mathematical models

where u = u(x, t) denotes the vertical displacement of the bridge, u+ =
max{u, 0} and γu+ is the restoring force due to the hangers and cables
which are considered as a linear spring with a one-sided restoring force,
W = W (x, t) represents the forcing term acting on the bridge.

McKenna-Tuama [56] numerically showed that a purely vertical forcing
may create a torsional response and then they suggested a slightly different
model coupled by two second order differential equations:{

my′′ = − (f(y − ` sin θ) + f(y + ` sin θ)) ,

m`2

3
θ′′ = ` cos θ (f(y − ` sin θ) + f(y + ` sin θ)) ,

where y represents the vertical displacement of the barycenter B of the
cross section of the roadway and θ is the deflection from horizontal, see
Figure 1.3. Here, 2` is the width of the roadway whereas C1 and C2 de-

Figure 1.3: Vertical and torsional displacements of the cross section of the roadway.

note the two lateral hangers which have opposite extension behaviors. This
model was revisited and complemented with multiple cross-sections in [6].

It is not the scope of this thesis to list all the existing mathematical mod-
els for suspension bridges, for which we refer to [29,30] and the references
therein. However, most of these models fail to satisfy the general principle
(GP) of classical mechanics by Goldstein-Poole-Safko [36, Section 11.7]:

neither linear differential equations nor systems of less than three
first order equations can exhibit chaos.

This principle suggests that any model aiming to describe oscillating
bridges should be nonlinear and with enough (mathematical) degrees
of freedom, which is also the opinion of Gazzola [29]. By “(mathematical)
degrees of freedom” we mean here the order of a partial differential equa-
tion, or the number of initial conditions for an ordinary differential equation
or a system of ordinary differential equations. Hence, the previous models,
in our opinion, must be modified.
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Chapter 1. Introduction

Some of the existing mathematical models which followed the TNB col-
lapse are usually derived by approximating factors, by linearizing equations
or by neglecting higher order terms. This leaves several doubts [30]:

Are these so obtained equations reliable?
Do these equations give satisfactory response?

On the other hand, the nonlinear behavior of suspension bridges is by
now well established, see [16,29,48,68]. Therefore, the necessity of dealing
with nonlinear models for suspension bridges is by now quite clear.

1.2 The new models

Quite recently, some attempts to improve suspension bridges performances
can be found in [39] where, in particular, a careful analysis of the role
played by the hangers is made. While from [39, p.1624], we quote that

Research on the robustness of suspension bridges is at the very
beginning.

The main scope of the present dissertation is to suggest and discuss several
new mathematical models for suspension bridges.

Let us describe in detail the models considered in the sequel.

1.2.1 A beam model

As in [59, 81], the suspension bridge is viewed as an elastic beam which
is suspended to a sustaining cable, where the beam and the cable are con-
nected by a large number of hangers. Although this point of view rules out
(GP), it appears to be a reasonable approximation since the width of the
roadway is much smaller than its length.

In this case, we suggest a kind of beam model for suspension bridge. By
analyzing the energies of the suspension bridge for displacement from the
equilibrium position to a new position under a live load, one gets the total
energy in the system. Then the corresponding Euler-Lagrange equation
of the system is obtained by taking the critical points of the total energy.
Combing with the hinged boundary condition, we obtain a fourth order
ordinary differential problem:

EIw′′′′(x)−H
(

w′(x)
1+(y′(x))2

)′
− w′′(x)+y′′(x)

(1+(w′(x)+y′(x))2)3/2
h(w) = p, x ∈ (0, L)

w(0) = w(L) = w′′(0) = w′′(L) = 0,

(1.2)
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1.2. The new models

where L is the length of the roadway between the two towers, w = w(x)
denotes the displacement of the beam, y = y(x) is the position of the cable
at rest, E and I are, respectively, the elastic modulus of the material and
the moment of inertia of the cross section so that EI is called the flexural
rigidity, H is the horizontal tension in the cable when subject to the dead
load q = q(x), h(w) represents the additional tension in the cable produced
by the live load p = p(x).

The additional tension h(w) needs a special attention for solving the
problem (1.2) due to the fact that it is a nonlinear nonlocal term. In litera-
ture, there are several different ways to approximate h(w), see [32, 74, 75,
81]. Note that if one omits the higher order terms with respect to w′ and y′,
then the problem (1.2) is the Melan problem (1.1), see [59].

Concerning this nonlinear nonlocal problem (1.2), we show that there
exists at least one equilibrium position of the bridge. Moreover, the prob-
lem (1.2) admits a unique solution under suitable assumptions on the live
load and the coefficients in the equation, see Theorem 2.1.

1.2.2 A plate model with small deformations

The most natural way is to view the roadway of the bridge as a thin rectan-
gular plate Ω. This is also the opinion of Rocard [71, p.150]:

The plate as a model is perfectly correct and corresponds me-
chanically to a vibrating suspension bridges.

In this case, Ferrero-Gazzola [27] suggested a plate model for dynamical
suspension bridge based on the classical Kirchhoff-Love theory [44, 54].
The two short edges of the plate are assumed to be hinged whereas the two
long edges are assumed to be free. They discussed the material nonlineari-
ties, such as the behavior of the restoring force due to the hangers and the
sustaining cables and analyzed the energies, such as the kinetic energy and
the potential energy, appearing in the bridge. Then the evolution problem
corresponding to the plate model reads: for t > 0

utt + µut + ∆2u+ h(x, y, u) = f (x, y) ∈ Ω,

u(0, y, t) = uxx(0, y, t) = 0 y ∈ (−`, `),
u(π, y, t) = uxx(π, y, t) = 0 y ∈ (−`, `),
uyy(x,±`, t) + σuxx(x,±`, t) = 0 x ∈ (0, π),

uyyy(x,±`, t) + (2− σ)uxxy(x,±`, t) = 0 x ∈ (0, π),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y) (x, y) ∈ Ω,

(1.3)

7



Chapter 1. Introduction

where Ω = (0, π) × (−`, `) (2` � π) represents the plate, u = u(x, y, t)
(downwards positive) is the vertical displacement of the plate, µut with
µ > 0 is the damping term due to the internal friction, σ > 0 denotes
the Poisson ratio depends on the material, f is an external forcing term,
h(x, y, u) is the restoring force due to the hangers, u0(x, y) is the initial
position of the plate and u1(x, y) is the initial vertical velocity of the plate.

Following Micheletti-Pistoia [60,61], we assume that the restoring force
h = au− |u|p−2u with 2 < p <∞. Here a = a(x, y, t) is a sign-changing
and bounded measurable function. Then we have by supposing that f ≡ 0:
for t > 0

utt + µut + ∆2u+ au = |u|p−2u (x, y) ∈ Ω,

u(0, y, t) = uxx(0, y, t) = 0 y ∈ (−`, `),
u(π, y, t) = uxx(π, y, t) = 0 y ∈ (−`, `),
uyy(x,±`, t) + σuxx(x,±`, t) = 0 x ∈ (0, π),

uyyy(x,±`, t) + (2− σ)uxxy(x,±`, t) = 0 x ∈ (0, π),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y) (x, y) ∈ Ω.

(1.4)

This is a non-coercive problem, which admits a unique local solution. We
investigate the asymptotic behavior of the unique local solution of (1.4), see
Theorem 3.2 and Theorem 3.3.

In Section 3.3, in order to describe the boundary behavior appearing in
the actual bridges more realistically, we set up a model with dynamical
boundary conditions which depend on the energy of the system: for every
t > 0, x ∈ (0, π) and y ∈ (−`, `),

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0,

uy(x,−`, t)− uy(x, `, t) = 0,

uy(x,−`, t) + uy(x, `, t) = α,

u(x,−`, t) + u(x, `, t) = β,

ut(x,−`, t)− ut(x, `, t)− η(t)(u(x,−`, t)− u(x, `, t)) = θ(t)γ.
(1.5)

Assume that the restoring force h acts on every point of the plate and has
a linear form, i.e. h = ku with k > 0 the Hooke constant of the elastic
hangers. Then by replacing the boundary conditions in (1.3) with (1.5),
one gets a linear plate model with dynamical boundary conditions, which
admits a unique explicit solution, see Section 3.3.3.

8



1.2. The new models

1.2.3 A plate model with large deformations

For small deformations, a linear plate theory is accurate enough to describe
the behavior of the roadway. While in some cases, large deformations
maybe appear and then geometric nonlinearities arise. Hence, one should
stick to a nonlinear theory of the plate.

In 1910, the Hungarian physicist and engineer Theodore von Kármán
[80] suggested a two-dimensional system in order to describe large defor-
mations of a thin plate. This theory was considered as a breakthrough in
several scientific communities, including in the National Advisory Com-
mittee for Aeronautics, an American federal agency during the 20th cen-
tury: the purpose of this agency was to undertake, to promote, and to
institutionalize aeronautical research and the von Kármán equations were
studied for a comparison between theoretical and experimental results, see
[52, 53]. In his report, Levy [52] writes that

In the design of thin plates that bend under lateral and edge
loading, formulas based on the Kirchhoff theory which neglects
stretching and shearing in the middle surface are quite satisfac-
tory provided that the deflections are small compared with the
thickness. If deflections are of the same order as the thickness,
the Kirchhoff theory may yield results that are considerably in
error and a more rigorous theory that takes account of deforma-
tions in the middle surface should therefore be applied. The fun-
damental equations for the more exact theory have been derived
by von Kármán.

In order to describe its structural behavior, we view the roadway of the
bridge as a thin plate subject to the restoring force due to the hangers and
behaving nonlinearly: we adapt the quasilinear von Kármán [80] model
to a suspension bridge. Ciarlet [17] provided an important justification of
the von Kármán equations. He made an asymptotic expansion with respect
to the thickness of a three-dimensional class of elastic plates under suit-
able loads. He then showed that the leading term of the expansion solves
a system of equations equivalent to those of von Kármán. Davet [21] pur-
sued further and proved that the von Kármán equations may be justified by
asymptotic expansion methods starting from very general 3-dimensional
constitutive laws.

An important contribution of Berger-Fife [11] reduces the von Kármán
system to a variational problem and tackles it with critical point and bi-
furcation theories. Subsequently, Berger [10] made a full analysis of the
unloaded clamped plate problem (Dirichlet boundary conditions) which is

9



Chapter 1. Introduction

somehow the simplest one but does not model the physical situation of a
bridge. The loaded clamped plate was analyzed in [45,46] where existence
and possible nonuniqueness results were obtained. Different boundary con-
ditions for the hinged plate (named after Navier) and for free boundaries
were then analyzed with the same tools by Berger-Fife [12]. Since free
edges of the plate are considered, this last paper is of particular interest for
our purposes. As clearly stated by Ciarlet [17, p.353] the boundary condi-
tions for the Airy function are often left fairly vague in the literature; we
take them in a “dual form”, that is, more restrictions for the edges yield less
restrictions for the Airy function and viceversa.

Following the setting in [27] (see also [3,82,83]), we consider a thin rect-
angular plate where the two short edges are assumed to be hinged whereas
the two long edges are assumed to be free. The plate is subject to three
actions:
• normal dead and live loads acting orthogonally on the plate;
• edge loading, also called buckling loads, namely compressive forces along
its edges;
• the restoring force due to the hangers, which acts in a neighborhood of
the long edges.

Then the model describing the suspension bridge involves a fourth order
quasilinear elliptic system:

∆2Φ = −[u, u] in Ω

∆2u+ Υ(y)g(u) = [Φ, u] + f − λuxx in Ω

u = Φ = uxx = Φxx = 0 on {0, π} × (−`, `)
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`}
Φ = Φy = 0 on (0, π)× {±`} ,

(1.6)
where Ω = (0, π) × (−`, `) (2` � π) represents the plate, u = u(x, y, t)
(downwards positive) is the vertical displacement of the plate, Φ is the Airy
stress function, the parameter λ ≥ 0 measures the magnitude of the com-
pressive forces acting on ∂Ω, σ > 0 denotes the Poisson ratio depends on
the material, f is an external forcing term, Υ(y)g(u) is the restoring force
due to the hangers.

For the quasilinear system (1.6) modeling the suspension bridge, we
prove that there exists at least one solution. Moreover, we show the unique-
ness and multiplicity of the equilibrium positions of the bridge in suitable
situation, see Theorem 4.1.
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CHAPTER2
A nonlinear beam model for suspension

bridge

This chapter is devoted to a beam model for suspension bridge. The bridge
is viewed as an elastic beam which is suspended to a sustaining cable, where
the beam and the cable are connected by a large number of hangers. Al-
though this point of view does not follow the general principle (GP), it
appears reasonable since the width of the roadway is much smaller than its
length.

Assuming that the beam is hinged at the endpoints, we obtain a nonlin-
ear nonlocal problem by analyzing the energy in the bridge and by applying
a variational principle to the total energy. The length increment of the ca-
ble plays an important role in this model. After analyzing the behavior of
the energy functional, we show that there exists at least one equilibrium
position of the beam.

2.1 The beam model

As in [81, Section VII.5], see also [32,59], the suspension bridge is viewed
as an elastic beam which is suspended to a sustaining cable, where the beam

11



Chapter 2. A nonlinear beam model for suspension bridge

and the cable are connected by a large number of hangers, see Figure 2.1.

Figure 2.1: Beam sustained by a cable through parallel hangers.

The point O is the origin of the orthogonal coordinate system and posi-
tive displacements are oriental downwards. The pointM has the coordinate
(0, L), where L is the length of the roadway between two towers. The cable
is modeled as a perfectly flexible string and the hangers are assumed to be
inextensible.

2.1.1 The additional tension

Assume that the system (the suspension bridge) is subject to an action of
dead load q(x), including the weight of the cable, the weight of the hangers
and the dead weight of the roadway without producing a bending moment
in the beam. At this moment, the cable is in the position y(x), while the un-
loaded beam is the segment connecting O and M , see Figure 2.1. Then the
horizontal component H > 0 of the tension remains constant. Therefore,
there is an equilibrium position in the system and this deduces an equation
(see [81, (1.3), Section VII]):

Hy′′(x) = −q(x), ∀x ∈ (0, L). (2.1)

If the endpoints of the cable are at the same level η and if the dead load
q(x) is constant, i.e. q(x) = q, then the solution of (2.1) is

y(x) = η +
q

2H
x(L− x).

Hence, the cable takes the shape of a parabolic function. Since y is positive
downwards, it has a ∪-shaped graph. Moreover,

y′(x) =
q

H

(
L

2
− x
)
, y′′(x) = − q

H
, ∀x ∈ (0, L). (2.2)

12



2.1. The beam model

Then the length of the cable at this moment is

Lc =

∫ L

0

√
1 + y′(x)2dx

=
L

2

√
1 +

q2L2

4H2
+
H

q
log

(
qL

2H
+

√
1 +

q2L2

4H2

)
. (2.3)

When a live load p = p(x) is added on the roadway of the bridge, the
beam may be out of the horizontal position and it produces a displacement
w = w(x) (the positive displacement are oriental downwards). Note that
the hangers which connect the cable and the beam are assumed to be inex-
tensible, then the deflection of the cable should also be added by w, i.e. the
cable is in a new position y + w. In this case, the length of the cable is

L∗c =

∫ L

0

√
1 + (w′(x) + y′(x))2dx.

Hence, there is an increment length of the cable due to the deformation w.
We denote it by

Γ(w) :=

∫ L

0

[√
1 + (w′(x) + y′(x))2 −

√
1 + y′(x)2

]
dx.

According to (2.2) and (2.3), the exact value of Γ(w) is

Γ(w) = L∗c − Lc =

∫ L

0

√
1 +

(
w′(x) +

q

H

(
L

2
− x
))2

dx− Lc. (2.4)

If A denotes the cross-sectional area of the cable and Ec is the modulus of
elasticity of the cable, then the additional tension in the cable produced by
the live load p is given by

h(w) =
EcA

Lc
Γ(w).

2.1.2 The energies in the bridge

In this subsection, we analyze the energies of the system from the original
position to the new position as Arioli-Gazzola did in [5]. First, note that
the beam representing the bridge is assumed to be hinged at its endpoints.
Hence, the boundary conditions are

w(0) = w(L) = w′′(0) = w′′(L) = 0. (2.5)

13



Chapter 2. A nonlinear beam model for suspension bridge

• Energy produced by the live load and dead load. Under the live load
p, the system deforms from the original position to a new position. In this
case, it generates a kind of energy into the system due to the live load.
Moreover, the gravitational energy produced by the dead load q also ap-
pears. Hence, the energy due to the live and dead load is given by

EL =

∫ L

0

(p+ q)wdx.

• Bending and stretching energy of the beam. The elastic energy stored
in a deformed beam consists of terms that can be described by bending
and by stretching. The bending energy of a beam depends on its curvature,
see [81] and also [31] for a more recent approach and further references.
Assume that E is the elastic modulus of the material and Idx denotes the
moment of inertia of a cross section of length dx, then the constant quantity
EI is the flexural rigidity. The energy necessary to bend the beam is the
square of the curvature times half the flexural rigidity:

EB1 =
EI

2

∫ L

0

(w′′)2

(1 + (w′)2)3

√
1 + (w′)2dx

=
EI

2

∫ L

0

(w′′)2

(1 + (w′)2)5/2
dx.

If large deformations are involved, the strain-displacement relation is
not linear and a possible nonlinear model was suggested by Woinowsky-
Krieger [86]: he modified the classical Bernoulli-Euler beam theory by
assuming a nonlinear dependence of the axial strain on the deformation
gradient and by taking into account the stretching of the beam due to its
elongation in the longitudinal direction. In this situation there is a coupling
between bending and stretching and the stretching energy is proportional to
the elongation of the beam which results in

EB2 =
γ

2

(∫ L

0

√
1 + (w′)2 − 1dx

)2

≈ γ

8

(∫ L

0

(w′)2dx

)2

,

where γ > 0 is the elastic constant of the beam.
Assuming that w′ is small, an asymptotic expansion yields that

EB1 + EB2 ≈
EI

2

∫ L

0

(w′′)2

(
1− 5

2
(w′)2

)
dx+

γ

8

(∫ L

0

(w′)2dx

)2

≈ EI

2

∫ L

0

(w′′)2dx.
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2.1. The beam model

Therefore, from now on, we simply take the energy necessary to bend and
stretch a beam by

EB =
EI

2

∫ L

0

(w′′)2dx.

• Stretching energy of the cable. Since the cable is assumed to be per-
fectly flexible, there is no resistance to bending. Hence, the only internal
force is the tension of the cable. The tension of the cable consists of two
parts, the tension at rest

H(x) = H
√

1 + (y′(x))2

and the additional tension

h(w) =
EcA

Lc
Γ(w)

due to the increment length of the cable. The latter requires the energy

EC1(w) =
EcA

2Lc
Γ(w)2.

On the other hand, the amount of energy needed to deform the cable at
rest under the tension H(x) in the infinitesimal interval [x, x+dx] from the
original position y(x) to the new position y(x) + w(x) is the variation of
length times the tension, that is

EC2dx = H
√

1 + (y′(x))2∆Γdx,

where ∆Γ =
√

1 + (w′(x) + y′(x))2 −
√

1 + y′(x)2. Hence, the energy
necessary to deform the whole cable at rest under the tension H(x) is

EC2 = H

∫ L

0

√
1 + (y′(x))2∆Γdx

= H

∫ L

0

[
1 + (y′(x))2

](√
1 +

2w′(x)y′(x) + (w′(x))2

1 + (y′(x))2
− 1

)
dx.

Following the idea of Timoshenko [74, 75], i.e.,
√

1 + ε ≈ 1 + ε
2
, one has

EC2dx ≈ H

∫ L

0

w′(x)y′(x)dx+
H

2

∫ L

0

(w′(x))2dx.

However, this approximation is not correct due to the fact that the term(
2w′(x)y′(x)
1+(y′(x))2

)2

needs to be considered. Hence, it is suitable to adopt the
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Chapter 2. A nonlinear beam model for suspension bridge

approximation
√

1 + ε ≈ 1+ ε
2
− ε2

8
for small ε. Then we have by assuming

that o((w′(x))2) = 0

EC2 ≈ H

∫ L

0

[
1 + (y′(x))2

]( w′(x)y′(x)

1 + (y′(x))2
+

(w′(x))2

2(1 + (y′(x))2)2

)
dx

=
H

2

∫ L

0

(w′(x))2

1 + (y′(x))2
dx+H

∫ L

0

w′(x)y′(x)dx,

By integration by part, it yields that

EC2 =
H

2

∫ L

0

(w′)2

1 + (y′)2
dx+ q

∫ L

0

wdx.

Therefore, the energy necessary to stretch the cable is given by

EC = EC1 + EC2 =
H

2

∫ L

0

(w′)2

1 + (y′)2
dx+ q

∫ L

0

wdx+
EcA

2Lc
Γ(w)2.

Summarizing, the total energy in the system after the deformation w due
to the live load p is

E =EB + EC − EL

=
EI

2

∫ L

0

(w′′)2dx+
H

2

∫ L

0

(w′)2

1 + (y′)2
dx+

EcA

2Lc
Γ(w)2 −

∫ L

0

pwdx.

2.1.3 The nonlinear problem

The Euler-Lagrange equation is obtained by taking the critical points of the
energy E . Then by recalling (2.2), we have

EIw′′′′(x)−H
(

w′(x)

1 + (y′(x))2

)′
− w′′(x)− q/H

(1 + (w′(x) + y′(x))2)3/2
h(w) = p, x ∈ (0, L). (2.6)

Therefore, together with the boundary condition (2.5), the new beam model
for suspension bridges is

EIw′′′′(x)−H
(

w′(x)
1+(y′(x))2

)′
− w′′(x)−q/H

(1+(w′(x)+y′(x))2)3/2
h(w) = p, x ∈ (0, L)

w(0) = w(L) = w′′(0) = w′′(L) = 0.

(2.7)
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2.2. Existence and uniqueness results

Note that if one omits the higher order of w′(x) and y′(x), then (2.6)
reads

EIw′′′′(x)− (H + h(w))w′′(x) + h(w)y′′(x) = p,

which is the Melan equation (1.1).

2.2 Existence and uniqueness results

For simplicity, let a = EI , b = H and c = EcA
Lc

. Then we consider the
problem{
aw′′′′(x)− b

(
w′(x)

1+(y′(x))2

)′
− c w′′(x)−q/H

(1+(w′(x)+y′(x))2)3/2
Γ(w) = p, x ∈ (0, L)

w(0) = w(L) = w′′(0) = w′′(L) = 0,
(2.8)

where a, b, c > 0 and the functional Γ(w) is as in (2.4), which is nonlinear
nonlocal and of indefinite sign.

Given k ∈ [1,∞], we denote the Lk-norm by ‖u‖k for any u ∈ Lk(0, L)
and the standard H2 ∩H1

0 -norm by ‖u‖H2∩H1
0

for any u ∈ H2 ∩H1
0 (0, L).

Recalling (2.2) and a, b > 0, one may define a new scalar product on the
space H2 ∩H1

0 (0, L) by

(v, w)y := a

∫ L

0

w′′v′′dx+ b

∫ L

0

w′v′

1 + (y′)2
dx v, w ∈ H2 ∩H1

0 (0, L).

(2.9)
This scalar product induces a new norm on H2 ∩H1

0 (0, L) denoted by

‖w‖y :=

(
a

∫ L

0

(w′′)2dx+ b

∫ L

0

(w′)2

1 + (y′)2
dx

)1/2

w ∈ H2 ∩H1
0 (0, L),

(2.10)
which is equivalent to ‖w‖H2∩H1

0
due to the facts that the function y′ is

bounded and that a, b > 0. Let H be the dual space of H2 ∩H1
0 (0, L). We

denote by ‖·‖H theH-norm and by 〈·, ·〉 the corresponding duality between
H2 ∩H1

0 (0, L) andH.
Since u ∈ H2 ∩ H1

0 (0, L) ⊂ C1([0, L]), there exists x0 ∈ (0, L) such
that u′(x0) = 0. Hence, we have

u′(x) =

∫ x

x0

u′′(z)dz ≤ ‖u′′‖1 ≤
√
L‖u′′‖2,

which yields that

‖u′‖2
1 ≤ L3‖u′′‖2

2, ‖u′‖2
2 ≤ L2‖u′′‖2

2.
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Chapter 2. A nonlinear beam model for suspension bridge

Moreover,

‖u′‖2
1 ≤

∫ L

0

(1 + (y′)2)dx

∫ L

0

(u′)2

1 + (y′)2
dx

=

[
1 +

q2L2

12H2

]
L

∫ L

0

(u′)2

1 + (y′)2
dx

and

‖u′‖2
2 ≤ ‖1 + (y′)2‖∞

∫ L

0

(u′)2

1 + (y′)2
dx

=

[
1 +

q2L2

4H2

] ∫ L

0

(u′)2

1 + (y′)2
dx.

Therefore,
‖u′‖2

1 ≤ α2‖u‖2
y, ‖u′‖2

2 ≤ β2‖u‖2
y (2.11)

with α, β > 0 and

α2 =
(12H2 + q2L2)L3

(12H2 + q2L2)a+ 12H2L2b
, β2 =

(4H2 + q2L2)L2

(4H2 + q2L2)a+ 4H2L2b
.

In addition, the simple inequality∣∣∣√1 + (λ+ µ)2 −
√

1 + µ2

∣∣∣ ≤ |λ| ∀λ, µ ∈ R (2.12)

implies that for any u, v ∈ H2 ∩H1
0 (0, L)

|Γ(u)| ≤ ‖u′‖1, |Γ(u)− Γ(v)| ≤ ‖u′ − v′‖1. (2.13)

Assume that p ∈ H, we say that w ∈ H2 ∩H1
0 (0, L) is a weak solution

of (2.8) if for any v ∈ H2 ∩H1
0 (0, L), we have

(w, v)y + Γ(w)

∫ L

0

(w′ + y′)v′√
1 + (w′ + y′)2

dx = 〈p, v〉, (2.14)

where (·, ·)y is the scalar product (2.9) and the function y′ is as in (2.2).
Then we prove

Theorem 2.1. For all p ∈ H, there exists a weak solution of the problem
(2.8). Moreover, assume that

0 < c <
1

α2
. (2.15)
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Then for any p ∈ H satisfying

‖p‖H <
(1− cα2)2

2cαβ2
, (2.16)

the problem (2.8) admits a unique weak solution w ∈ H2 ∩H1
0 (0, L).

Proof. We divide several steps to prove Theorem 2.1. The first step is to
introduce an equivalent definition of the weak solution of (2.8). To this
aim we need to check the continuity and differentiability of the functional
Γ2(w).

Lemma 2.1. Let Γ(w) be as in (2.4). Then Γ(w)2 is weakly continuous and
differentiable on H2 ∩H1

0 (0, L).

Proof. Let the sequence {wn} weakly converge to w in H2 ∩ H1
0 (0, L).

Then by the compact embedding we have

|Γ(wn)2 − Γ(w)2| = |Γ(wn) + Γ(w)||Γ(wn)− Γ(w)|
≤ C‖w′n − w′‖1 → 0,

which proves Γ(w)2 is weakly continuous.
Now we show that it is differentiable. For any w, v ∈ H2 ∩ H1

0 (0, L),
we obtain

〈(Γ(w)2)′, v〉 = lim
t→0

1

t

(
Γ(w + tv)2 − Γ(w)2

)
= lim

t→0

1

t

∫ L

0

(Γ(w + tv) + Γ(w))(2w′ + 2y′ + tv′)tv′√
1 + (w′ + tv′ + y′)2 +

√
1 + (w′ + y′)2

dx

= 2Γ(w)

∫ L

0

(w′ + y′)v′√
1 + (w′ + y′)2

dx

= −2Γ(w)

∫ L

0

(w′′ − q/H)v

(1 + (w′ + y′)2)3/2
dx.

Then for any w ∈ H2∩H1
0 (0, L) and for v ∈ H2∩H1

0 (0, L) with ‖v‖y = 1,
we have

lim
t→0

Γ(w + tv)2 − Γ(w)2 + 2tΓ(w)
∫ L

0
(w′′−q/H)v

(1+(w′+y′)2)3/2
dx

t
= 0,

which finishes the proof of Lemma 2.1.
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Chapter 2. A nonlinear beam model for suspension bridge

Then the energy functional corresponding to the problem (2.8) is given
by

Jp = Jp(w) =
1

2
‖w‖2

y +
1

2
Γ(w)2 − 〈p, w〉, for any w ∈ H2 ∩H1

0 (0, L).

According to Lemma 2.1, one has a one-to-one correspondence between
the weak solutions of (2.8) and the critical points of the functional Jp:

Definition 2.1. Let p ∈ H. The function w ∈ H2 ∩ H1
0 (0, L) is a weak

solution of (2.8) if and only if w is a critical point of Jp.

The next step is to prove the geometrical properties (coercivity) and
compactness properties (Palais-Smale (PS) condition) of Jp.

Lemma 2.2. For any p ∈ H, the functional Jp is coercive and bounded
below in H2 ∩H1

0 (0, L). Moreover, it satisfies the (PS) condition.

Proof. Since p ∈ H, we have for any w ∈ H2 ∩H1
0 (0, L)

Jp ≥
1

2
‖w‖2

y − 〈p, w〉 ≥
1

2
‖w‖2

y − ‖p‖H‖w‖y ≥ −
‖p‖2

H
2

,

which implies that the functional Jp is coercive and bounded below.
Next we prove Jp satisfies the (PS) condition. Let {wn} be a sequence

such that Jp(wn) is bounded and J ′p(wn) → 0. Then there exists M > 0
such that

M ≥ 1

2
‖wn‖2

y +
1

2
Γ(wn)2 − 〈p, wn〉 ≥

1

2
‖wn‖2

y − ‖p‖H‖wn‖y.

Hence, ‖wn‖y is bounded and there exists some w ∈ H2 ∩ H1
0 (0, L) such

that wn weakly converges to w in H2 ∩H1
0 (0, L).

We claim that J ′p(w) = 0. In fact, by Lemma 2.1, it is easy to verify
that the functional Jp is weakly continuous and differentiable. Therefore,
for any v ∈ H2 ∩H1

0 (0, L) there results that

〈J ′p(wn), v〉 → 〈J ′p(w), v〉.

Hence, 〈J ′p(w), v〉 = 0 for any v ∈ H2 ∩H1
0 (0, L), i.e. J ′p(w) = 0.

To complete the proof of Lemma 2.2, we need to prove that wn → w
strongly inH2∩H1

0 (0, L). Thanks to J ′p(w) = 0, it follows that by denoting
(Γ(w)2)′ = 2Γ(w)〈Γ′(w), w〉 for any w ∈ H2 ∩H1

0 (0, L)

〈J ′p(wn), wn〉 = ‖wn‖2
y + cΓ(wn)〈Γ′(wn), wn〉 − 〈p, wn〉

→ 0 = 〈J ′p(w), w〉 = ‖w‖2
y + cΓ(w)〈Γ′(w), w〉 − 〈p, w〉.
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Now we estimate

|Γ(wn)〈Γ′(wn), wn〉 − Γ(w)〈Γ′(w), w〉|
= |(Γ(wn)− Γ(w))〈Γ′(w), w〉+ Γ(w)(〈Γ′(wn), wn〉 − 〈Γ′(w), w〉)|
≤ |(Γ(wn)− Γ(w))〈Γ′(w), w〉|+ |Γ(w)(〈Γ′(wn), wn〉 − 〈Γ′(w), w〉)|
:= I1 + I2.

Since ‖wn‖y and ‖w‖y are bounded, by recalling Lemma 2.1 and (2.12)-
(2.13) we have

I1 ≤ |Γ(wn)− Γ(w)|

∣∣∣∣∣
∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx

∣∣∣∣∣
≤ ‖w′‖1‖w′n − w′‖1 ≤ C‖w′n − w′‖1.

and

I2 =

∣∣∣∣∣Γ(w)

∫ L

0

(
(w′n + y′)w′n√
1 + (w′n + y′)2

− (w′ + y′)w′√
1 + (w′ + y′)2

)
dx

∣∣∣∣∣
≤

∣∣∣∣∣Γ(w)

∫ L

0

[(w′n + y′)w′n − (w′ + y′)w′]
√

1 + (w′ + y′)2√
1 + (w′n + y′)2

√
1 + (w′ + y′)2

dx

∣∣∣∣∣
+

∣∣∣∣∣Γ(w)

∫ L

0

(w′ + y′)w′[
√

1 + (w′ + y′)2 −
√

1 + (w′n + y′)2]√
1 + (w′n + y′)2

√
1 + (w′ + y′)2

dx

∣∣∣∣∣
≤‖w′‖1

(∫ L

0

|w′n + w′ + y′| · |w′n − w′|dx+

∫ L

0

|w′| · |w′n − w′|dx
)

≤C‖w′n − w′‖2.

Then it yields that by compact embedding

|Γ(wn)〈Γ′(wn), wn〉 − Γ(w)〈Γ′(w), w〉| → 0,

which together with 〈p, wn〉 → 〈p, w〉 by the compact embedding leads to
‖wn‖y → ‖w‖y. By the weakly convergence wn ⇀ w in H2 ∩H1

0 (0, L), it
holds that

wn → w in H2 ∩H1
0 (0, L).

And then the proof of Lemma 2.2 is finished.

Step 3. By Lemma 2.2, the functional Jp admits a global minimum in
H2∩H1

0 (0, L) for any p ∈ H. This minimum point is a critical point for Jp
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Chapter 2. A nonlinear beam model for suspension bridge

and hence, by Definition 2.1, it gives a weak solution of (2.8). This proves
the first part of Theorem 2.1.

Step 4. This step is to prove the uniqueness result. We first show that
for any c > 0 and any p ∈ H, the weak solutions of (2.8) are bounded in
H2 ∩H1

0 (0, L).
Let w be a weak solution of (2.8), then by (2.14) we have

‖w‖2
y + cΓ(w)

∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx = 〈p, w〉 ≤ ‖p‖H‖w‖y. (2.17)

Denote Υ = Γ(w)
∫ L

0
(w′+y′)w′√
1+(w′+y′)2

dx, then we have by recalling the defini-

tion of Γ(w)

Υ =

∫ L

0

√
1 + (w′ + y′)2dx

∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx

− Lc
∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx

≥
∫ L

0

√
1 + (w′ + y′)2dx

∫ L

0

w′y′√
1 + (w′ + y′)2

dx

− Lc
∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx

=Γ(w)

∫ L

0

(w′ + y′)y′√
1 + (w′ + y′)2

dx− Γ(w)

∫ L

0

(y′)2√
1 + (w′ + y′)2

dx

+ Lc

∫ L

0

w′y′√
1 + (w′ + y′)2

dx− Lc
∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx

≥− ‖w′‖1‖y′‖1 − ‖w′‖1‖y′‖2
2 −

qLLc
2H
‖w′‖1 − Lc‖w′‖1

≥−
(
qL2

4H
+
q2L3

12H2
+
qL+ 2H

2H
Lc

)
α‖w‖y.

Therefore, it yields that

‖w‖y ≤
(
qL2

4H
+
q2L3

12H2
+
qL+ 2H

2H
Lc

)
cα + ‖p‖H. (2.18)

Now we prove the uniqueness. If 0 < c < α−2, we are able to show that
(2.18) has a different bound, which is helpful to the proof in the sequel. By
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2.2. Existence and uniqueness results

(2.11) and (2.13), it deduces that

|Γ(w)|

∣∣∣∣∣
∫ L

0

(w′ + y′)w′√
1 + (w′ + y′)2

dx

∣∣∣∣∣ ≤ ‖w′‖2
1 ≤ α2‖w‖2

y.

Since 0 < c < α−2, we obtain from (2.17)

‖w‖y ≤ (1− cα2)−1‖p‖H. (2.19)

For any fixed p ∈ H, we denote

R = (1− cα2)−1‖p‖H. (2.20)

Then one can define the closed ball by

BR := {w ∈ H2 ∩H1
0 (0, L); ‖w‖y ≤ R}

and (2.19) shows that all the solutions of (2.8) with 0 < c < α−2 are in BR.
Next we consider the linear problem for any v ∈ H2 ∩H1

0 (0, L),{
aw′′′′(x)− b

(
w′(x)

1+(y′(x))2

)′
= c v′′(x)−q/H

(1+(v′(x)+y′(x))2)3/2
Γ(v) + p, x ∈ (0, L)

w(0) = w(L) = w′′(0) = w′′(L) = 0,
(2.21)

where 0 < c < α−2.
It is easy to see that v′′(x)−q/H

(1+(v′(x)+y′(x))2)3/2
Γ(v)+p ∈ H. Hence, there exists

a unique solution of (2.21) due to the Lax-Milgram theorem. This allows
us to define a map by

Φ : BR → H2 ∩H1
0 (0, L); Φ(v) = w

with w being the unique solution of (2.21).

Lemma 2.3. Φ(BR) ⊆ BR.

Proof. For any fixed v ∈ BR, the solution w = Φ(v) of (2.21) satisfies

‖w‖2
y = cΓ(v)

∫ L

0

(v′′ − q/H)w

(1 + (v′ + y′)2)3/2
dx+ 〈p, w〉

≤ −cΓ(v)

∫ L

0

(v′ + y′)w′√
1 + (v′ + y′)2

dx+ ‖p‖H‖w‖y

by (2.13) ≤ c‖v′‖1‖w′‖1 + ‖p‖H‖w‖y
by (2.11) ≤

(
cα2‖v‖y + ‖p‖H

)
‖w‖y ≤

(
cα2R + ‖p‖H

)
‖w‖y

= R‖w‖y.

Hence, ‖w‖y ≤ R, which shows that Φ(BR) ⊆ BR.
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Chapter 2. A nonlinear beam model for suspension bridge

Lemma 2.4. Φ is a contractive map.

Proof. Take v1, v2 ∈ BR and let w1 = Φ(v1), w2 = Φ(v2), then we have
for all u ∈ H2 ∩H1

0 (0, L)

(wi, u)y = cΓ(vi)

∫ L

0

(v′′i − q/H)u

(1 + (v′i + y′)2)3/2
dx+ 〈p, u〉 i = 1, 2.

Subtracting these two equations, taking u = w = w1 − w2 and recalling
(2.2), we obtain that by applying integration by part

‖w‖2
y =cΓ(v2)

∫ L

0

(v′2 + y′)w′√
1 + (v′2 + y′)2

dx− cΓ(v1)

∫ L

0

(v′1 + y′)w′√
1 + (v′1 + y′)2

dx

=cΓ(v2)

(∫ L

0

(v′2 + y′)w′√
1 + (v′2 + y′)2

dx−
∫ L

0

(v′1 + y′)w′√
1 + (v′1 + y′)2

dx

)

+ c (Γ(v2)− Γ(v1))

∫ L

0

(v′1 + y′)w′√
1 + (v′1 + y′)2

dx

:=Λ1 + Λ2,

where w = w1 − w2. Now we estimate Λ1,Λ2. By (2.11)-(2.13), one has

Λ1 =cΓ(v2)

∫ L

0

(v′2 + y′)
√

1 + (v′1 + y′)2√
1 + (v′1 + y′)2

√
1 + (v′2 + y′)2

w′dx

− cΓ(v2)

∫ L

0

(v′1 + y′)
√

1 + (v′2 + y′)2√
1 + (v′1 + y′)2

√
1 + (v′2 + y′)2

w′dx

=cΓ(v2)

∫ L

0

(v′2 + y′)
[√

1 + (v′1 + y′)2 −
√

1 + (v′2 + y′)2
]

√
1 + (v′1 + y′)2

√
1 + (v′2 + y′)2

w′dx

+ cΓ(v2)

∫ L

0

(v′2 − v′1)√
1 + (v′1 + y′)2

w′dx

≤2c‖v′2‖1

∫ L

0

|v′1 − v′2||w′|dx ≤ 2c‖v′2‖1‖v′1 − v′2‖2‖w′‖2

≤2cαβ2R‖v1 − v2‖y‖w‖y.

For Λ2, we have by (2.11) and (2.13)

Λ2 ≤ c‖v′1 − v′2‖1‖w′‖1 ≤ cα2‖v1 − v2‖y‖w‖y.
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2.2. Existence and uniqueness results

Hence, by (2.20)

‖Φ(v1)− Φ(v2)‖y ≤ cα
(
α + 2β2R

)
‖v1 − v2‖y

= cα

(
α +

2β2‖p‖H
(1− cα2)

)
‖v1 − v2‖y := ρ‖v1 − v2‖y.

Note that the condition (2.16) yields that 0 < ρ < 1. Then

‖Φ(v1)− Φ(v2)‖y = ‖w‖y ≤ ρ‖v1 − v2‖y with 0 < ρ < 1

and we prove the Lemma 2.4.

Then by the Banach Contraction principle (see [37, Section 1, Theorem
1.1]), there exists a unique fixed point in BR, which is the unique solution
to (2.8) with 0 < c < α−2 if p ∈ H satisfies (2.16) and we finish the proof
of Theorem 2.1.

As a complement to Theorem 2.1, let us discuss what happens in the
opposite “limit” case, i.e. c→ +∞. The problem (2.8) degenerates to:{

w′′−q/H
(1+(w′+y′)2)3/2

Γ(w) = 0, x ∈ (0, L)

w(0) = w(L) = 0,
(2.22)

which admits infinitely many solutions in H2 ∩ H1
0 (0, L). Clearly, w = 0

and w = − q
2H

(L− x)x ∈ H2 ∩H1
0 (0, L) are two solutions.

Figure 2.2: Qualitative shape of the graphs of the action functionals w 7→ c
2Γ2(w) (left)

and w 7→ Jp(w)− c
2Γ2(w) (right).

Now we show that problem (2.22) has more solutions in H2∩H1
0 (0, L).

If w belongs to H2 ∩H1
0 (0, L) such that Γ(w) = 0, then it is a solution to

(2.22). Then we consider the functional Γ(w).
We shift it by Y (x) := q

2H
x(L − x) (so that Y ∈ H2 ∩ H1

0 (0, L) and
Y ′ = y′) and, for all 0 6≡ w ∈ H2 ∩H1

0 (0, L), we define the real function

γw(t) := Γ(tw − Y ) =

∫ L

0

[√
1 + (tw′)2 −

√
1 + (y′)2

]
dx, t ∈ R.
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Chapter 2. A nonlinear beam model for suspension bridge

Clearly, γw(±∞) = +∞ and γw is strictly convex in R. Since γw(0) < 0,
there exist T−w < 0 < T+

w such that γw(T±w ) = 0. Hence, for any w 6= 0
we have Γ(T±w w−Y ) = 0, that is, T±w w−Y solves (2.22); therefore, (2.22)
admits infinitely many solutions.

The qualitative graph of the functional c
2
Γ2 is depicted in Figure 2.2;

since the functional Jp − c
2
Γ2 is convex (see again Figure 2.2), if c is large

then the behavior of the functional Jp is not clear; in this situation, the
uniqueness and/or multiplicity for (2.8) is an open problem.
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CHAPTER3
A plate model for suspension bridge with

small deformations

In this chapter, we focus our attention on the fourth order partial differ-
ential equation modeling the dynamical suspension bridges, suggested by
Ferrero-Gazzola [27]. This model is based on the linear Kirchhoff-Love
plate theory, see [44,54]. Ferrero-Gazzola [27] analyzed the energies, such
as the kinetic energy and the potential energy, appearing in the bridge, and
obtained the equation by applying variational principles (see [22]) to the
difference between the kinetic energy and the total potential energy.

Assume that the external force vanishes and the restoring force due to
the hangers is in a special nonlinear case. Then we have a non-coercive
evolution problem, which admits a unique local solution. The asymptotic
behavior of the unique local solution is investigated for different initial con-
ditions, see Section 3.2.

In Section 3.3, in order to describe the boundary behavior of the roadway
more likely, we introduce dynamical boundary conditions which depend on
the energy of the bridge. Then we obtain a linear evolution problem with
dynamical boundary conditions modeling the suspension bridge by assum-
ing that the restoring force due to the hangers is in a linear case. By trans-
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Chapter 3. A plate model for suspension bridge with small deformations

ferring this linear evolution problem to a simplified variational problem,
we prove that there exists a unique explicit solution of the original linear
problem.

3.1 The plate model

In this section, we recall the plate model for dynamical suspension bridges
suggested by Ferrero-Gazzola [27]. There they discussed the material non-
linearity, such as the restoring force due to the hangers and the sustaining
cables.

3.1.1 The energy for a plate modeling bridge

Let Ω = (0, L) × (−`, `) ⊂ R2 represent the roadway of the suspension
bridge, where L is the length of the roadway and 2` is its width. For sim-
plicity, we take L = π, then the plate Ω = (0, π)× (−`, `), see Figure 3.1.
In this case, a realistic assumption is that 2`� π.

Figure 3.1: The rectangular plate Ω.

It is well known that the bending energy of a plate involves the cur-
vatures of the surface. Let κ1 and κ2 denote the principal curvatures of
the graph of a smooth function u = u(x, y), which represents the verti-
cal displacement of the plate in the downwards direction, then according
to [28, 44] (see also [31, Section 1.1.2]), a simple model for the bending
energy of the deformed plate Ω due to an external force f is

EB =
Ed3

12(1− σ2)

∫
Ω

(
κ2

1

2
+
κ2

2

2
+ σκ1κ2 − fu

)
dxdy,

where d denotes the thickness of the plate, σ is the Poisson ratio defined by
σ = λ/(2(λ+ µ)) and E is the Young modulus defined by E = 2µ(1 + σ)
with the so-called Lamé constants λ, µ that depend on the material. For
physical reasons it holds that µ > 0 and usually λ > 0 so that

0 < σ <
1

2
. (3.1)
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3.1. The plate model

For small deformations u, one has the approximations

(κ1 + κ2)2 ≈ (∆u)2, κ1κ2 ≈ det(D2u) = uxxuyy − u2
xy

and then
κ2

1

2
+
κ2

2

2
+ σκ1κ2 ≈

1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy).

Therefore, from now on we denote the bending energy by

EB =
Ed3

12(1− σ2)

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy)− fu
)
dxdy.

(3.2)
Since the roadway is suspended to the hangers, there exists an action,

which is concentrated in the union of two thin strips parallel to the two
horizontal edges of the plate Ω, i.e. in a set of the type (see Figure 3.1):

ω := (0, π)× [(−`,−`+ ε) ∪ (`− ε, `)] with ε > 0 small.

In order to describe the action of the hangers, Ferrero-Gazzola [27] intro-
duced a continuous function g : R→ R satisfying

g(s) = 0 for any s ≤ 0, g′(0+) > 0, g′(s) > 0 for any s > 0

and the restoring force due to the hangers is suggested to take the form

h(x, y, u) = Υ(y)g(u+ γx(π − x)), (3.3)

where Υ is the characteristic function of (−`,−`+ε)∪(`−ε, `) and γ > 0.
More generally, one can consider a force h satisfying the following:

h : Ω× R→ R is a Carathéodory function, (3.4)
s 7→ h(·, ·, s) is nondecreasing in R, ∃s ∈ R, h(·, ·, s) = 0. (3.5)

The restoring force h admits an elastic potential energy given by

EH =

∫
Ω

H(x, y, u)dxdy, H(x, y, s) =

∫ s

s

h(x, y, t)dt for any s ∈ R.

Let f denote the external force vertical load acting on the plate Ω, then
the total potential energy of the bridge is

EP =EB + EH

=
Ed3

12(1− σ2)

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy)
)
dxdy

+

∫
Ω

H(x, y, u)dxdy − Ed3

12(1− σ2)

∫
Ω

fudxdy.
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Chapter 3. A plate model for suspension bridge with small deformations

If the external force f also depends on time t, i.e. f = f(x, y, t), then
the corresponding deformation u has a kinetic energy given by the integral

EK =
m

2|Ω|

∫
Ω

u2
tdxdy,

where m is the mass of the plate.
Therefore, the total energy for the plate modeling the dynamical suspen-

sion bridge is

ET =EK + EP

=
m

2|Ω|

∫
Ω

u2
tdxdy +

∫
Ω

H(x, y, u)dxdy − Ed3

12(1− σ2)

∫
Ω

fudxdy

+
Ed3

12(1− σ2)

∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy)
)
dxdy.

3.1.2 Boundary conditions

In this subsection, we introduce the suitable boundary conditions represent-
ing the physical situation of a plate modeling the suspension bridge.

Due to the connection with the ground, the plate Ω is assumed to be
hinged on its short edges and hence

u(x, y, t) = uxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−`, `), t > 0. (3.6)

On the other two edges y = ±`, they are assumed to be free without any
physical constraints on them and then the boundary conditions there be-
come (see e.g. [76, (2.40)]){

uyy(x,±`, t) + σuxx(x,±`, t) = 0, x ∈ (0, π), t > 0

uyyy(x,±`, t) + (2− σ)uxxy(x,±`, t) = 0, x ∈ (0, π), t > 0.
(3.7)

3.1.3 The semilinear problem

The natural functional space where to set up the problem is

H2
∗ (Ω) :=

{
u ∈ H2(Ω); u = 0 on {0, π} × (−`, `)

}
.

Clearly, H2
∗ (Ω) satisfies H2

0 (Ω) ⊂ H2
∗ (Ω) ⊂ H2(Ω). Since we are in the

plane, H2(Ω) ⊂ C0(Ω) (see [1]) so that the condition on {0, π} × (−`, `)
introduced in the definition of H2

∗ (Ω) makes sense.
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3.2. The asymptotic behavior of the solution

As for the action, one has to take the difference between the kinetic
energy EK and the total potential energy EP . By several suitable scaling
and integrating the difference on an interval (0, T ) with T > 0, we have:

A =
1

2

∫ T

0

[∫
Ω

u2
tdxdy

]
dt+

∫ T

0

[∫
Ω

fudxdy

]
dt

−
∫ T

0

[∫
Ω

(
1

2
(∆u)2 + (1− σ)(u2

xy − uxxuyy) +H(x, y, u)

)
dxdy

]
dt.

Then the equation modeling the bridge is obtained by taking the critical
points of the functional A:

utt + ∆2u+ h(x, y, u) = f in Ω× (0, T ). (3.8)

Due to the internal friction in the plate, one needs to add a damping term
µut with µ > 0 in (3.8) and then

utt + µut + ∆2u+ h(x, y, u) = f in Ω× (0, T ). (3.9)

Assume that u0(x, y) is the initial position of the plate and u1(x, y) is
the initial vertical velocity of the plate. Then by combing the equation (3.9)
with the boundary conditions (3.6)-(3.7), one has: for t > 0,

utt + µut + ∆2u+ h(x, y, u) = f (x, y) ∈ Ω,

u(0, y, t) = uxx(0, y, t) = 0 y ∈ (−`, `),
u(π, y, t) = uxx(π, y, t) = 0 y ∈ (−`, `),
uyy(x,±`, t) + σuxx(x,±`, t) = 0 x ∈ (0, π),

uyyy(x,±`, t) + (2− σ)uxxy(x,±`, t) = 0 x ∈ (0, π),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y) (x, y) ∈ Ω,

(3.10)

which admits a unique solution, see [27, Theorem 3.6].

3.2 The asymptotic behavior of the solution

This section is devoted to a non-coercive problem, which admits a unique
local solution. We discuss the asymptotic behavior of the unique solution
for different suitable initial data. This part comes from [82].

Motivated by the works of Micheletti-Pistoia [60, 61] where they con-
sidered some biharmonic problems with Navier boundary conditions, we
take the restoring force h due to the hangers in the form

h = au− |u|p−2 with 2 < p <∞,
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Chapter 3. A plate model for suspension bridge with small deformations

where a = a(x, y, t) is a sigh-changing and bounded measurable function
and so h is of indefinite sign. Clearly, h satisfies the assumptions (3.4)-
(3.5). If the external force f ≡ 0, then from (3.10) we deduce the following
non-coercive problem: for t > 0,

utt + µut + ∆2u+ au = |u|p−2u (x, y) ∈ Ω,

u(0, y, t) = uxx(0, y, t) = 0 y ∈ (−`, `),
u(π, y, t) = uxx(π, y, t) = 0 y ∈ (−`, `),
uyy(x,±`, t) + σuxx(x,±`, t) = 0 x ∈ (0, π),

uyyy(x,±`, t) + (2− σ)uxxy(x,±`, t) = 0 x ∈ (0, π),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y) (x, y) ∈ Ω.

(3.11)

3.2.1 Preliminaries

Let Ω = (0, π)× (−`, `) ⊂ R2. Denote the standard Lq(Ω) norm by ‖ · ‖q
for 1 ≤ q ≤ ∞ and the standard H2(Ω) norm by

‖u‖H2 =

(∫
Ω

[
|u|2 +

∣∣D2u
∣∣2]dxdy)1/2

, u ∈ H2(Ω).

Recall the space H2
∗ (Ω) defined in the previous section,

H2
∗ (Ω) :=

{
u ∈ H2(Ω) : u = 0 on {0, π} × (−`, `)

}
,

which is a Hilbert space when endowed with the following scalar product
for any u, v ∈ H2

∗ (Ω)

(u, v)H2
∗ =

∫
Ω

∆u∆vdxdy

+ (1− σ)

∫
Ω

(2uxyvxy − uxxvyy − uyyvxx)dxdy. (3.12)

This scalar product induces a new norm on H2
∗ (Ω) by recalling (3.1)

‖u‖H2
∗

=

(∫
Ω

|∆u|2 + 2(1− σ)

∫
Ω

u2
xy − uxxuyydxdy

)1/2

, (3.13)

which is equivalent to u 7→ ‖D2u‖2 for 0 < σ < 1/2, see [27, Lemma 4.1].
We define

H∗(Ω) := the dual space of H2
∗ (Ω)

and we denote by 〈·, ·〉 the corresponding duality.
For this case, there is a Sobolev embedding inequality:

32



3.2. The asymptotic behavior of the solution

Lemma 3.1. Let 1 ≤ q <∞. Then for any u ∈ H2
∗ (Ω), the inequality

‖u‖q ≤ Sq‖u‖H2
∗

holds, where Sq =
(
π
2`

+
√

2
2

)
(2π`)(q+2)/2q ( 1

1−σ

)1/2
.

Proof. Take any u ∈ H2
∗ (Ω) ⊂ C0(Ω), then we have

|u(x, y)| =
∣∣∣∣∫ x

0

ux(t, y)dt

∣∣∣∣ ≤ ∫ π

0

|ux(x, y)| dx

≤
√
π

(∫ π

0

(ux(x, y))2 dx

)1/2

=
√
π

(∫ π

0

−uxx(x, y)u(x, y)dx

)1/2

≤
√
π

(∫ π

0

|uxx(x, y)|2 dx
)1/4(∫ π

0

|u(x, y)|2 dx
)1/4

,

which yields that∫ π

0

|u(x, y)|2 dx ≤ π4

∫ π

0

|uxx(x, y)|2 dx.

Then

|u(x, y)| ≤ π3/2

(∫ π

0

|uxx(x, y)|2 dx
)1/2

. (3.14)

Furthermore, for any u ∈ H2
∗ (Ω) ⊂ C0(Ω), one has uy(·, y) ⊂ C0([0, π])

for any fixed y ∈ (−`, `). Hence,

|uy(x, y)| =
∣∣∣∣∫ x

0

uyx(t, y)dt

∣∣∣∣ ≤ ∫ π

0

|uyx(x, y)| dx, (3.15)

and for any z ∈ (−`, `)

|u(x, y)| =
∣∣∣∣u(x, z) +

∫ y

z

uy(x, s)ds

∣∣∣∣
≤ |u(x, z)|+

∫ `

−`
|uy(x, y)| dy. (3.16)

Integrating the inequality (3.16) about z on (−`, `), we get

2` |u(x, y)| ≤
∫ `

−`
|u(x, z)| dz + 2`

∫ `

−`
|uy(x, y)| dy,

33



Chapter 3. A plate model for suspension bridge with small deformations

which together with (3.14) and (3.15) yields that

|u(x, y)| ≤ 1

2`
π3/2

∫ `

−`

(∫ π

0

|uxx(x, z)|2 dx
)1/2

dz

+

∫ `

−`

∫ π

0

|uyx(x, y)| dxdy

≤ π3/2

(2`)1/2

(∫ `

−`

∫ π

0

|uxx(x, y)|2 dxdy
)1/2

+ (π`)1/2

(∫ `

−`

∫ π

0

2 |uyx(x, y)|2 dxdy
)1/2

≤

(
π

2`
+

√
2

2

)
(2π`)1/2

(∫
Ω

∣∣D2u
∣∣2 dxdy)1/2

.

From [27, Lemma 4.1], we know that

(1− σ)‖D2u‖2
2 ≤ ‖u‖2

H2
∗
.

Therefore,

|u(x, y)| ≤

(
π

2`
+

√
2

2

)
(2π`)1/2

(
1

1− σ

)1/2

‖u‖H2
∗ ,

which implies that for 1 ≤ q <∞,

‖u‖q ≤

(
π

2`
+

√
2

2

)
(2π`)(q+2)/2q

(
1

1− σ

)1/2

‖u‖H2
∗ ,

which completes the proof.

Assume that {Λi}∞i=1 is the eigenvalue sequence of the following linear
problem

∆2u = Λu (x, y) ∈ Ω,

u(0, y, t) = uxx(0, y, t) = 0 y ∈ (−`, `),
u(π, y, t) = uxx(π, y, t) = 0 y ∈ (−`, `),
uyy(x,±`, t) + σuxx(x,±`, t) = 0 x ∈ (0, π),

uyyy(x,±`, t) + (2− σ)uxxy(x,±`, t) = 0 x ∈ (0, π),

which has been solved in [27]. Particularly, Λ1 < 1 and we have an ele-
mentary result.
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Lemma 3.2. Assume that −Λ1 < a1 ≤ a ≤ a2 with a1, a2 ∈ R. Then for
any u ∈ H2

∗ (Ω), there holds

A1‖u‖2
H2
∗
≤ ‖u‖2

H2
∗

+ (au, u)2 ≤ A2‖u‖2
H2
∗
,

where (·, ·)2 is the L2 inner product and A1, A2 are given by

A1 =

{
1 + a1

Λ1
, a1 < 0,

1, a1 ≥ 0.
A2 =

{
1, a2 < 0,

1 + a2
Λ1
, a2 ≥ 0.

3.2.2 Local existence

In this subsection we are concerned with the existence and uniqueness re-
sults of the problem (3.11).

Definition 3.1. The function u ∈ C([0, T ], H2
∗ (Ω)) ∩ C1([0, T ], L2(Ω)) ∩

C2([0, T ],H∗(Ω)) with ut ∈ L2([0, T ], L2(Ω)) is said a weak solution to
(3.11), if u(0) = u0, ut(0) = u1 and for all η ∈ H2

∗ (Ω) and a.e. t ∈ [0, T ]

〈utt, η〉+ (u, η)H2
∗ + µ(ut, η)2 + (au, η)2 =

(
|u|p−2 u, η

)
2
,

where (·, ·)2 is the L2 scalar product.

Then we prove

Theorem 3.1. Assume that (3.1). Let µ > 0, 2 < p <∞ and −Λ1 < a1 ≤
a ≤ a2. Then for any u0 ∈ H2

∗ (Ω), u1 ∈ L2(Ω), there exists T > 0 such
that (3.11) has a unique local weak solution u on [0, T ]. Moreover, if

Tmax = sup{T > 0 : u(t) = u(·, t) exists on [0, T ]} <∞,

then

lim
t→Tmax

‖u(t)‖q =∞, for q ≥ 1 such that q > (p− 2)/2.

Proof. We start with several definitions. For every T > 0, define the space
by

H := C([0, T ], H2
∗ (Ω)) ∩ C1([0, T ], L2(Ω))

with the norm

‖u‖H =

(
max
t∈[0,T ]

(
A1 ‖u(t)‖2

H2
∗

+ ‖ut(t)‖2
2

))1/2

,

where A1 is given in Lemma 3.2. For u0 ∈ H2
∗ (Ω), u1 ∈ L2(Ω), denote

MT =
{
u ∈ H : u(0) = u0, ut(0) = u1 and ‖u‖2

H ≤ R2
}
,
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Chapter 3. A plate model for suspension bridge with small deformations

where R2 ≥ 2
(
A2‖u0‖2

H2
∗

+ ‖u1‖2
2

)
with A2 being given in Lemma 3.2.

Then we consider an initial-boundary value problem: for t ∈ (0, T ],

vtt + ∆2v + µvt + av = |u|p−2u, (x, y, t) ∈ Ω,

v(0, y, t) = vxx(0, y, t) = 0, y ∈ (−`, `),
v(π, y, t) = vxx(π, y, t) = 0, y ∈ (−`, `),
vyy(x,±`, t) + σvxx(x,±`, t) = 0, x ∈ (0, π),

vyyy(x,±`, t) + (2− σ)vxxy(x,±`, t) = 0, x ∈ (0, π),

v(x, y, 0) = u0(x, y), vt(x, y, 0) = u1(x, y), (x, y) ∈ Ω.

(3.17)

Following the procedure of [27, Section 8], by several estimates we have
known that there exists a unique solution v ∈ H ∩ C2([0, T ],H∗(Ω)) with
vt ∈ L2([0, T ], L2(Ω)) to (3.17), see for details [82].

For any fixed u ∈MT , one can introduce a map Φ : H → H defined by
v = Φ(u), here v is the unique solution to (3.17).

Claim. Φ is a contractive map satisfying Φ(MT ) ⊆MT for small T > 0.

In fact, for any u ∈MT , the corresponding solution v = Φ(u) satisfies

‖vt‖2
2 + A1 ‖v‖2

H2
∗
≤ ‖u1‖2

2 + A2 ‖u0‖2
H2
∗

+ CR2p−2T

≤ R2

2
+ CR2p−2T.

If T is small enough, then ‖v‖H ≤ R, which implies that Φ(MT ) ⊆MT .
Let v1 = Φ(w1), v2 = Φ(w2) with w1, w2 ∈ MT . Putting v1, v2 in the

equation (3.17), subtracting the two equations and setting v = v1 − v2, we
obtain for all η ∈ H2

∗ (Ω) and a.e. t ∈ [0, T ],

〈vtt, η〉+ (v, η)H2
∗ + (µvt + av, η)2 =

(
|w1|p−2w1 − |w2|p−2w2, η

)
2

=

∫
Ω

γ(t) (w1 − w2) ηdxdy,

where γ(t) ≤ C(p)(|w1|+ |w2|)p−2.
Taking η = vt and arguing similarly as above, we have

‖Φ(w1)− Φ(w2)‖2
H = ‖v‖2

H ≤ CR2p−4T‖w1 − w2‖2
H .

If T is small enough, then there exists a constant 0 < δ < 1 such that

‖Φ(w1)− Φ(w2)‖2
H ≤ δ‖w1 − w2‖2

H .
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3.2. The asymptotic behavior of the solution

Therefore, Φ is a contract map, and the claim is proved.
By the Contracting Mapping Principle (see [37]), there exists a unique

function u ∈ MT such that u = Φ(u), which is the unique solution of the
problem (3.11). Moreover, u ∈ C2([0, T ],H∗(Ω)). This proves the first
part of Theorem 3.1.

To complete the proof, we define an energy functional by

E : H2
∗ (Ω)× L2(Ω)→ R

E(v, w) =
1

2
‖v(t)‖2

H2
∗

+
1

2
(av(t), v(t))2 −

1

p
‖v(t)‖pp +

1

2
‖w‖2

2.

Then the Lyapunov function defined for the solution u(t) of the problem
(3.11) is

E(t) = E(u(t), ut(t))

=
1

2
‖u(t)‖2

H2
∗

+
1

2
‖ut(t)‖2

2 +
1

2
(au(t), u(t))2 −

1

p
‖u(t)‖pp .

According to the continuation principle (see [40]), if ‖u(t)‖H < ∞,
then the solution u(t) should be continued, see also [65, p.158] for a similar
argument. Hence, if Tmax <∞, then it follows

lim
t→Tmax

(
A1 ‖u(t)‖2

H2
∗

+ ‖ut(t)‖2
2

)
= lim

t→Tmax

‖u(t)‖2
H =∞. (3.18)

Since the Lyapunov function E(t) satisfies

E(t) + µ

∫ t

s

‖ut(τ)‖2
2 dτ = E(s), for every 0 ≤ s ≤ t < Tmax, (3.19)

we have for all t ∈ [0, Tmax)

1

2
‖u(t)‖2

H2
∗

+
1

2
‖ut(t)‖2

2 +
1

2
(au(t), u(t))2 ≤

1

p
‖u(t)‖pp + E(0).

By Lemma 3.2, there holds for all t ∈ [0, Tmax)

A1

2
‖u(t)‖2

H2
∗

+
1

2
‖ut(t)‖2

2 ≤
1

p
‖u(t)‖pp + E(0). (3.20)

From (3.18), we have
lim

t→Tmax

‖u(t)‖p =∞

and then by Lemma 3.1

lim
t→Tmax

‖u(t)‖H2
∗

=∞. (3.21)
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Moreover, by (3.20)

A1

2
‖u(t)‖2

H2
∗
≤ 1

p
‖u(t)‖pp + E(0),

which combined with Gagliardo-Nirenberg inequality yields that

C‖u(t)‖2
H2
∗
− C ≤ ‖u(t)‖pp ≤ C‖u(t)‖p(1−α)

q ‖u(t)‖pαH2
∗

(3.22)

with α = 2(p− q)/p(q + 2).
If α ∈ (0, 1) such that pα < 2, i.e. (p− 2)/2 < q < p , then (3.21) and

(3.22) immediately yield

lim
t→Tmax

‖u(t)‖q =∞, for q ≥ 1 such that q > (p− 2)/2.

This finally completes the proof.

3.2.3 Global existence

In this subsection we will show that the unique local solution of (3.11) is
global for some suitable initial data.

First we list several notations and lemmas. Define the Nehari functional
I and the energy functional J by

I(u) = ‖u‖2
H2
∗

+ (au, u)2 − ‖u‖pp, for every u ∈ H2
∗ (Ω),

J(u) =
1

2
‖u‖2

H2
∗

+
1

2
(au, u)2 −

1

p
‖u‖pp, for every u ∈ H2

∗ (Ω).

We consider a real value function defined for any 0 6≡ u ∈ H2
∗ (Ω) by

j(λ) = J(λu), λ ≥ 0.

Then

j′(λ) = λ‖u‖2
H2
∗

+ λ(au, u)2 − λp−1‖u‖pp,
j′′(λ) = ‖u‖2

H2
∗

+ (au, u)2 − (p− 1)λp−2‖u‖pp.

Clearly, j(0) = j′(0) = 0 and j′′(0) = ‖u‖2
H2
∗

+ (au, u)2 > 0 for a > −Λ1.
Hence, for any 0 6= u ∈ H2

∗ (Ω), j(λ) is a convex function for small λ > 0
and has the following behaviors:

Lemma 3.3. Assume that −Λ1 < a1 ≤ a ≤ a2. Then for any nontrivial
u ∈ H2

∗ (Ω), one has
i). lim

λ→∞
j(λ) = −∞;

ii). there exists a unique λ̄ = λ̄(u) > 0 such that j′(λ̄) = 0;
iii). j′′(λ̄) < 0.
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3.2. The asymptotic behavior of the solution

Proof. The proof is almost similar to that of [66, Lemma 2.2], the only dif-
ference is to deal with the term (au, u)2, which can be treated by applying
Lemma 3.2, so we omit it.

Then one may define the potential well depth of the functional J (also
known as mountain pass level) by

d = inf
u∈H2

∗(Ω)\{0}
max
λ>0

J(λu). (3.23)

Denote the set of all nontrivial stationary solutions of (3.11) by

N = {u ∈ H2
∗ (Ω) \ {0} : I(u) = 0},

which is the so-called Nehari manifold, see [64,85]. By considering a map
s 7→ I(su) for all u such that ‖u‖2

H2
∗

= 1 and Lemma 3.3, it is easy to
check that each half line starting from the origin of H2

∗ (Ω) intersects only
once the manifold N and N separates the two open sets

N+ = {u ∈ H2
∗ (Ω) : I(u) > 0} ∪ {0}, N− = {u ∈ H2

∗ (Ω) : I(u) < 0}.

Then the stable set W and unstable set U may be defined by

W = {u ∈ N+ : J(u) < d}, U = {u ∈ N− : J(u) < d},

which have the following properties:

Lemma 3.4. i). W is a neighborhood of the origin of H2
∗ (Ω);

ii). 0 6∈ U (closure in H2
∗ (Ω)).

As Payne and Sattinger did in [66], the potential well depth d defined in
(3.23) can be also characterized as

d = inf
u∈N

J(u). (3.24)

Then we prove

Theorem 3.2. Assume that (3.1). Let u(t) = u(x, y, t) be the unique local
weak solution of (3.11). Assume that u0 ∈ H2

∗ (Ω), u1 ∈ L2(Ω). Then u(t)
is a global solution and

lim
t→∞

(
‖u(t)‖H2

∗
+ ‖ut(t)‖2

)
= 0

if and only if there exists a real number t0 ∈ [0, Tmax) such that

u(t0) ∈ W and E(t0) < D

with D = min

{
d, p−2

2p
A

p
p−2

1 S
− 2p
p−2

p

}
.
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Proof. First we prove that Tmax =∞ and lim
t→∞

(
‖u(t)‖H2

∗
+ ‖ut(t)‖2

)
= 0.

Without loss of generality, assume that t0 = 0. If u(0) ∈ W , E(0) < D,
then we claim that

u(t) ∈ W and E(t) < D, for every t ∈ [0, Tmax).

In fact, since E(t) is a nonincreasing function, E(t) ≤ E(0) < D for
all t ∈ [0, Tmax). Suppose that there exists t̄ > 0 such that u(t̄) ∈ N . By
(3.24), it follows that

d ≤ J(u(t̄)) ≤ E(t̄) < D,

which is impossible. Thus, u(t) ∈ W for all t ∈ [0, Tmax).
For all t ∈ [0, Tmax), one has by recalling the functionals I and J

J(u(t)) =
p− 2

2p

(
‖u(t)‖2

H2
∗

+ (au(t), u(t))2

)
+
I(u(t))

p

≥ p− 2

2p

(
‖u(t)‖2

H2
∗

+ (au(t), u(t))2

)
. (3.25)

By (3.19), we have

1

2
‖ut(t)‖2

2 + J(u(t)) + µ

∫ t

0

‖ut(τ)‖2
2dτ = E(0) < D.

Hence,
1

2
‖ut(t)‖2

2 +
p− 2

2p

(
‖u(t)‖2

H2
∗

+ (au(t), u(t))2

)
≤ C, (3.26)

which implies that Tmax =∞ by the continue principle. Moreover,∫ t

0

‖ut(τ)‖2
2dτ ≤

C

µ
, for every t ∈ [0,∞). (3.27)

Note that the following trivial inequality holds
d

dt
((1 + t)E(t)) ≤ E(t). (3.28)

Integrating (3.28) on [0, t], we get for any t ∈ [0,∞)

(1 + t)E(t) ≤E(0) +

∫ t

0

J(u(τ))dτ +
1

2

∫ t

0

‖ut(τ)‖2
2dτ

=E(0) +
1

p

∫ t

0

I(u(τ))dτ +
1

2

∫ t

0

‖ut(τ)‖2
2dτ

+
p− 2

2p

∫ t

0

(
‖u(τ)‖2

H2
∗

+ (au(τ), u(τ))2

)
dτ , (3.29)
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3.2. The asymptotic behavior of the solution

where we use J(u(t)) = p−2
2p

(
‖u(t)‖2

H2
∗

+ (au(t), u(t))2

)
+ 1

p
I(u(t)).

A simple computation induces that

〈utt(t), u(t)〉 =
d

dt

∫
Ω

ut(t)u(t)− ‖ut(t)‖2
2, for a.e. t ∈ [0,∞).

Testing the equation in (3.11) with u(t), we have for a.e. t ∈ [0,∞)

〈utt(t), u(t)〉+ ‖u(t)‖2
H2
∗

+ µ(ut(t), u(t))2 + (au(t), u(t))2 = ‖u(t)‖pp. (3.30)

Thus,

d

dt

(∫
Ω

ut(t)u(t) +
µ

2
‖u(t)‖2

2

)
= ‖ut(t)‖2

2 − I(u(t)). (3.31)

Integrating (3.31) on [0, t], by (3.25)-(3.26) and Lemmas 3.1 and 3.2, we
obtain for any t ∈ [0,∞)∫ t

0

I(u(τ))dτ =

∫ t

0

‖ut(τ)‖2
2dτ +

∫
Ω

u0u1 +
µ

2
‖u0‖2

2 −
∫

Ω

ut(t)u(t)

− µ

2
‖u(t)‖2

2

≤
∫ t

0

‖ut(τ)‖2
2dτ + ‖u0‖2‖u1‖2 +

µ

2
‖u0‖2

2 +
1

2
‖ut(t)‖2

2

+
1

2
‖u(t)‖2

2

≤C(µ). (3.32)

By Lemmas 3.1, 3.2 and (3.25)

‖u‖pp ≤ Spp‖u‖
p
H2
∗
≤ SppA

−p/2
1

(
‖u‖2

H2
∗

+ (au, u)2

)p/2
= SppA

−p/2
1

(
‖u‖2

H2
∗

+ (au, u)2

)(p−2)/2 (
‖u‖2

H2
∗

+ (au, u)2

)
≤ SppA

−p/2
1

(
2p

p− 2
J(u(t))

)(p−2)/2 (
‖u‖2

H2
∗

+ (au, u)2

)
≤ SppA

−p/2
1

(
2p

p− 2

)(p−2)/2

E(0)(p−2)/2
(
‖u‖2

H2
∗

+ (au, u)2

)
,

which implies that by the definition of I(u)

γ
(
‖u(t)‖2

H2
∗

+ (au(t), u(t))2

)
≤ I(u(t)), (3.33)
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where γ = 1− SppA
−p/2
1

(
2p
p−2

)(p−2)/2

E(0)(p−2)/2 > 0.
Combining (3.27), (3.29), (3.32) and (3.33), we get

E(t) ≤ C

t
, for every t ∈ [0,∞).

Consequently, by (3.25) we immediately have

‖u(t)‖2
H2
∗

+ (au(t), u(t))2 + ‖ut(t)‖2
2 ≤

C

t
, for every t ∈ [0,∞),

which combining with Lemma 3.2 tells us that

lim
t→∞

(
‖u(t)‖H2

∗
+ ‖ut(t)‖2

)
= 0.

Conversely, if Tmax =∞ and ‖u(t)‖2
H2
∗

+ ‖ut(t)‖2
2 → 0 as t→∞, then

it follows that by Lemmas 3.1, 3.2

lim
t→∞
‖u(t)‖p = 0 and lim

t→∞

(
‖u(t)‖H2

∗
+ (au(t), u(t))2 + ‖ut(t)‖2

)
= 0,

which imply that
lim
t→∞

E(t) = 0.

Therefore, by Lemma 3.4 and the above mentioned results, there must exist
some t0 > 0 such that E(t0) < D and u(t0) ∈ W .

3.2.4 Finite time blow-up

This subsection is devoted to the blow-up behavior of the unique local so-
lution of (3.11).

Theorem 3.3. Assume that (3.1). Let u(t) = u(x, y, t) be the unique local
weak solution of (3.11). Assume that u0 ∈ H2

∗ (Ω), u1 ∈ L2(Ω). Then u(t)
blows up in finite time, that is,

Tmax <∞

if and only if there exists a real number t0 ∈ [0, Tmax) such that

u(t0) ∈ U, E(t0) < D.

Proof. Firstly, we assume that there exists t0 ≥ 0 such that u(t0) ∈ U and
E(t0) < D. Without loss of generality, let t0 = 0, then we claim that

u(t) ∈ U, E(t) < D, for every t ∈ [0, Tmax).
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Indeed, (3.19) implies that

E(t) ≤ E(0) < d, for all t ∈ [0, Tmax). (3.34)

Suppose that there exists t̄ > 0 such that u(t̄) ∈ N , then by (3.24) we have

d ≤ J(u(t̄)) ≤ E(t̄) < D,

which is contradict to (3.34), and therefore u(t) ∈ U for all t ∈ [0, Tmax).
From (3.23), we obtain that

d = inf
u∈H2

∗\{0}

p− 2

2p

(
‖u‖2

H2
∗

+ (au, u)2

)p/(p−2)

(
‖u‖pp

)2/(p−2)

and then

2pd

p− 2
≤

(
‖u‖2

H2
∗

+ (au, u)2

)p/(p−2)

(
‖u‖pp

)2/(p−2)
.

Since u(t) ∈ U for all t ∈ [0, Tmax), we have I(u(t)) < 0 and then

2pd

p− 2
< ‖u(t)‖2

H2
∗

+ (au(t), u(t))2, for every t ∈ [0, Tmax).

Now we prove Tmax <∞ by following the proof of [33, Theorem 3.11].
Assume by contradiction that Tmax = ∞. For any T > 0, we define a
continuous positive function for t ∈ [0, T ] by

θ(t) = ‖u(t)‖2
2 + µ

∫ t

0

‖u(τ)‖2
2 dτ + µ(T − t) ‖u0‖2

2 .

With the same spirit (but it needs to be careful for the computations since
the presence of the term au) as in [33], we have

θ(t)θ′′(t)− p+ 2

4
θ′(t)2 ≥ C > 0, for a.e. t ∈ [0, T ].

Let y(t) = θ(t)−(p−2)/4, then the above differential inequality becomes

y′′(t) ≤ −p− 2

4
Cy(t), for a.e. t ∈ [0, T ],

which together with y′(t) = −p−2
4
θ(t)−(p+2)/4 < 0 proves that y(t) = 0 at

some time, say as t = T ∗ (independent of T ). This tells us that

lim
t→T ∗

θ(t) =∞.
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Hence,

lim
t→T ∗

‖u(t)‖2
2 =∞ or lim

t→T ∗

∫ t

0

‖u(τ)‖2
2 dτ =∞.

For both cases, we always have

lim
t→T ∗

‖u(t)‖2
H2
∗

=∞

Therefore, u(t) cannot be a global solution. That is

Tmax <∞.

Conversely, assume that there exists no t ≥ 0 such that u(t) ∈ U or
E(t) < D, we must have either u(t) ∈ W andE(t) < D (this is impossible
by Theorem 3.2) or E(t) ≥ D for all t ≥ 0. Then from (3.19),

µ

∫ t

0

‖ut(τ)‖2
2 dτ ≤ E(0)−D.

By Jensen’s inequality, for any t ≥ 0 there holds

t

∫ t

0

‖ut(τ)‖2
2 dτ ≥

∫
Ω

(∫ t

0

ut(τ)dτ

)2

≥ ‖u(t)‖2
2 − ‖u0‖2

2,

hence, for any finite T > 0 we have

‖u(t)‖2
2 ≤ CT , for all t ∈ [0, T ). (3.35)

Assume that Tmax <∞, we know that from Theorem 3.1

lim
t→Tmax

‖u(t)‖p =∞.

Hence, by Lemmas 3.1, 3.2, for every M > E(0), there exists some 0 <
t̄ < Tmax such that

M <
p− 2

2p

(
‖u(t)‖H2

∗ + (au(t), u(t))2

)
, for every t ≥ t̄. (3.36)

Denote

V(t) = M − E(t), for every t ≥ t̄, (3.37)

and then from (3.19)

V(t) = V0 + µ

∫ t

0

‖ut(τ)‖2
2dτ, (3.38)
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where V0 = M − E(0). Therefore, by (3.36)-(3.38)

0 < V(t) ≤M − J(u(t)) ≤M − p

p− 2
M +

1

p
‖u(t)‖pp,

then

‖u(t)‖pp ≥ p

(
2M

p− 2
+ V(t)

)
> pV(t). (3.39)

Since p > 2, by Hölder, Young inequalities and (3.38)-(3.39), we have

|µ(u(t), ut(t))2| ≤ Cµ‖u(t)‖1−k
p ‖u(t)‖kp‖ut(t)‖2

≤ C‖u(t)‖1−k
p

(
µν‖u(t)‖2k

p + C(ν)−1‖ut(t)‖2
2

)
< CV(1−k)/p(t)

(
µν‖u(t)‖2k

p + C(ν)−1V ′(t)
)

≤ CνV(1−k)/p
0 ‖u(t)‖pp + C(ν)−1

(
V1/κ(t)

)′
, (3.40)

where ν > 0, k ∈ (1, p/2) and κ = (1 + (1− k)/p)−1 ∈ (1, 2p/(p+ 2)).
Next, we estimate I(u(t)). Since V0 < M , then from (3.38)-(3.39)

(V0 −M)‖u(t)‖pp ≤ (V0 −M)p

(
2M + (p− 2)V0

p− 2

)
,

that is,

2(V0 −M) ≥ p− 2

p

2(V0 −M)

2M + (p− 2)V0

‖u(t)‖pp. (3.41)

Hence, by (3.37) and (3.41)

−I(u(t)) = −2J(u(t)) +
p− 2

p
‖u(t)‖pp ≥ −2E(t) +

p− 2

p
‖u(t)‖pp

≥ 2(V(t)−M) +
p− 2

p
‖u(t)‖pp ≥ 2(V0 −M) +

p− 2

p
‖u(t)‖pp

≥ p− 2

p

pV0

2M + (p− 2)V0

‖u(t)‖pp. (3.42)

Now we consider a function defined by

F(t) ≡ V(t)1/κ + ε(u(t), ut(t))2, for every t ≥ t̄.
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Chapter 3. A plate model for suspension bridge with small deformations

By (3.40) and (3.42), taking ν > 0 sufficiently small, from (3.31) we have

d

dt
(u(t), ut(t))2 =‖ut(t)‖2

2 − I(u(t))− µ(u(t), ut(t))2

≥‖ut(t)‖2
2 +

(
C − CνV(1−k)/p

0

)
‖u(t)‖pp

− C(ν)−1
(
V1/κ(t)

)′
≥‖ut(t)‖2

2 + C‖u(t)‖pp − C(ν)−1
(
V1/κ(t)

)′
.

Therefore, if ε > 0 is small enough,

F ′(t) ≥ C
(
‖ut(t)‖2

2 + ‖u(t)‖pp
)
> 0. (3.43)

Then choosing ε > 0 even smaller if needed, we get

F(t) ≥ F0 ≡ V1/κ
0 + ε(u(0), ut(0))2 > 0.

Utilizing (3.39) and Hölder, Young inequalities, we have

Fκ(t) ≤ 2κ−1 (V(t) + εκ|(u(t), ut(t))2|κ)
≤ C

(
‖u(t)‖pp + ‖ut(t)‖2

2

)
,

which together (3.43) yields that

F ′(t) ≥ CFκ(t),

then by [23, Lemma 2.10], F(t) blows up at T ∗ > t̄ and we have

F(t) ≥ C

(T ∗ − t)1/(κ−1)
, (3.44)

By (3.40), (3.42) and since E(t) ≥ D, V(t) ≤M −D,

‖u(t)‖2
2 =‖u(t̄)‖2

2 +
2

ε

∫ t

t̄

(
F(τ)− V1/κ(τ)

)
dτ

≥‖u(t̄)‖2
2 +

2

ε

∫ t

t̄

(
C

(T ∗ − τ)1/(κ−1)
− (M − d)1/κ

)
dτ

≥‖u(t̄)‖2
2 − C

+ C

((
1

T ∗ − t

)(2−κ)/(κ−1)

−
(

1

T ∗ − t̄

)(2−κ)/(κ−1)
)

Consequently,
lim
t→T ∗

‖u(t)‖2
2 =∞,

which contradicts (3.35). The proof is complete.
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3.3. A linear model with dynamical boundary conditions

3.3 A linear model with dynamical boundary conditions

In this section, we consider a linear plate model with dynamical boundary
conditions for a dynamical suspension bridge. For describing the boundary
behavior of the bridge, we set up dynamical boundary conditions which are
dependent on the energy of the system. This part comes from [83].

3.3.1 The linear model

Since the plate is very narrow (compared to its length), we may assume that
the restoring elastic force due to the hangers acts on every point of the plate
and has the linear form, i.e. h = ku with an elasticity constant k > 0, then
the equation in problem (3.10) reads

utt + µut + ∆2u+ ku = f.

Hence, we have a linear initial value problem:
utt + µut + ∆2u+ ku = f (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω,

ut(x, y, 0) = u1(x, y) (x, y) ∈ Ω,

(3.45)

where Ω = (0, π)×(−`, `), u0 = u0(x, y) is the initial position of the plate,
u1 = u1(x, y) is the initial vertical velocity of the plate.

Now we seek the boundary conditions which describe the physical sit-
uation appearing in the actual suspension bridges. On the two short edges
x = 0 and x = π, which are connected with the ground, we assume that
they are hinged and then

u(x, y, t) = uxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−`, `), t > 0, (3.46)

which is the same as any other model we met.
While on the other two sides y = ±`, due to the continuous impact from

the external forces occurring on them, it is necessary to choose a kind of
dynamical boundary conditions. The external force f acting on the bridge
inserts an energy into the structure. We denote it by

E(t) =

∫
Ω

f 2dxdy.

Let Eµ > 0 be the critical energy threshold (see Arioli-Gazzola [6]) above
which the bridge displays self-excited oscillations and it increasingly de-
pends on the damping parameter µ: for instance, Eµ = E0 + cµ for some
c > 0 and E0 > 0 being the threshold of the undamped problem.
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Chapter 3. A plate model for suspension bridge with small deformations

Since the assumption 2` � π, it is natural to assume that the cross
section of the plate tends to remain straight. While due to the appearance of
the torsional oscillation, the cross section cannot always be in a horizontal
position. Therefore, these two boundaries satisfy{

uy(x,−`, t)− uy(x, `, t) = 0, x ∈ (0, π), t > 0,

uy(x,−`, t) + uy(x, `, t) = α, x ∈ (0, π), t > 0,
(3.47)

where α = α(x, t) depends on f and u0 for y = ±`. Furthermore, for
any cross section of the bridge, the vertical displacements at the two end-
points also depend on the initial position and the external forces acting on
these two points. Thus, it is reasonable to assume that the sum of the two
displacements fulfills

u(x,−`, t) + u(x, `, t) = β, for x ∈ (0, π), t > 0, (3.48)

where β = β(x, t) depends on f(x, t) and u0(x) with

f(x, t) =
f(x, `, t) + f(x,−`, t)

2
, u0(x) =

u0(x, `) + u0(x,−`)
2

.

Moreover, the vibration of the cross section will switch to some different
kind of oscillations, such as the torsional oscillation, when the inserted en-
ergy E(t) exceeds Eµ. Therefore, as long as E(t) ≤ Eµ, we assume that
there is only vertical vibration appearing in the motion, then the difference
between the two displacements should be zero, that is,

u(x,−`, t)− u(x, `, t) = 0, for x ∈ (0, π). (3.49)

While if E(t) > Eµ, the torsional oscillation begins to arise and its ampli-
tude increases as the energy E(t) → ∞, which means that the difference
between the two displacements is related to the energy E(t). Concretely, if
E(t) ↓ Eµ, then the motion tends to vertical-type so that

u(x,−`, t)− u(x, `, t)→ 0,

while if E(t) → ∞, then the difference also increases. But it cannot in-
crease to infinity because the bridge will collapse earlier. Therefore, as
long as E(t) > Eµ, the boundaries are assumed to satisfy the equation for
x ∈ (0, π)

d

dt

{
[u(x,−`, t)−u(x, `, t)]

E(0)− Eµ

E(t)− Eµ

exp
(E(0)

Eµ

− E(t)

Eµ

)}
= γ, (3.50)
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3.3. A linear model with dynamical boundary conditions

here we assume E(0) > Eµ and γ = γ(x, t) is a real function satisfying

γ has the same sign as (u0(x,−`)− u0(x, `)).

In this case, the conditions (3.49)-(3.50) can be combined into

ut(x,−`, t)− ut(x, `, t)− η(t)(u(x,−`, t)− u(x, `, t)) = θ(t)γ, (3.51)

where

θ(t) =
(E(t)− Eµ)+

E(0)− Eµ

exp
(E(t)

Eµ

− E(0)

Eµ

)
, (3.52)

η(t) = E ′(t)E(t)
( 1

Eµ

+
1

(E(t)− Eµ)+

)
(3.53)

with (E(t)− Eµ)+ = max{E(t)− Eµ, 0}, E ′(t) = d
dt
E(t) and

E(t) =

{
−1, E(t) ≤ Eµ,

1, E(t) > Eµ.
(3.54)

Therefore, the boundary conditions for a rectangular plate Ω modeling
dynamical suspension bridges are (3.46)-(3.48) and (3.51). Then together
with (3.45), we deduce an evolution problem

utt + ∆2u+ µut + ku = f, (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0, (x, y) ∈ Ω,

ut(x, y, 0) = u1, (x, y) ∈ Ω,

(3.55)

with dynamical boundary conditions: for t > 0, x ∈ (0, π) and y ∈ (−`, `),

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0,

uy(x,−`, t)− uy(x, `, t) = 0,

uy(x,−`, t) + uy(x, `, t) = α,

u(x,−`, t) + u(x, `, t) = β,

ut(x,−`, t)− ut(x, `, t)− η(t)(u(x,−`, t)− u(x, `, t)) = θ(t)γ.
(3.56)

3.3.2 An auxiliary problem

In this section we consider an auxiliary problem which plays a crucial role
in solving the original problem (3.55)-(3.56). We first introduce a subspace
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Chapter 3. A plate model for suspension bridge with small deformations

of H2
∗ (Ω) denoted by

H2
∗∗(Ω) := {u ∈ H2

∗ (Ω) : u = uy = 0 on (0, π)× {±`}}.

Clearly, H2
0 (Ω) ⊂ H2

∗∗(Ω) ⊂ H1
0 (Ω) ∩ H2(Ω). Hence, one may define a

scalar product on the space H2
∗∗(Ω) by

(u, v)H2
∗∗ =

∫
Ω

∆u∆v dx dy, for any u, v ∈ H2
∗∗(Ω),

which induces the norm

‖u‖H2
∗∗ =

(∫
Ω

|∆u|2 dx dy
)1/2

, for all u ∈ H2
∗∗(Ω).

Now we consider a nonhomogeneous linear problem: for t > 0,

vtt + ∆2v + µvt + kv = ϕ, (x, y) ∈ Ω,

v(x, y, t) = vxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−`, `),
v(x, y, t) = vy(x, y, t) = 0, (x, y) ∈ (0, π)× {±`},
v(x, y, 0) = v0, (x, y) ∈ Ω,

vt(x, y, 0) = v1, (x, y) ∈ Ω,

(3.57)

where ϕ = ϕ(x, y, t) ∈ C0([0,∞);L2(Ω)), v0 = v0(x, y) ∈ H2
∗∗(Ω) and

v1 = v1(x, y) ∈ L2(Ω).
Claim. The problem (3.57) admits a unique weak solution

v ∈ C0([0,∞);H2
∗∗(Ω)) ∩ C1([0,∞);L2(Ω)).

Actually, the variational problem (3.57) is similar to [27, problem (22)]
if we take the nonlinear term h = kv. The only difference lies in the
boundary conditions on (0, π) × {±`}, but this has no influence when we
solve it by following the procedure in [27]. Hence, we only list the key
steps, for details see [27, Section 8].
Step 1. Consider the approximated problems for m ≥ 1{

v′′m + Lvm + µv′m + Pm(kvm) = Pm(ϕ), t ∈ [0, τm)

v(0) = vm0 , v′(0) = vm1
(3.58)

where L is defined by 〈Lu, v〉 := (u, v)H2
∗∗ for any u, v ∈ H2

∗∗(Ω), Pm :
H2
∗∗(Ω)→ Wm is the orthogonal projection onto Wm, which is spanned by
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3.3. A linear model with dynamical boundary conditions

the eigenfunctions {wm}m≥1 of the problem
∆2w = λw, (x, y) ∈ Ω,

w(x, y) = wxx(x, y) = 0, (x, y) ∈ {0, π} × (−`, `),
w(x, y) = wy(x, y) = 0, (x, y) ∈ (0, π)× {−`, `}.

By Galerkin-type procedure, we obtain that problem (3.58) has a unique
local solution vm ∈ C2([0, τm);H2

∗∗(Ω)), where [0, τm) is the maximal in-
terval of the continuation of vm.
Step 2. The solution sequence {vm} is uniform bounded.

Testing (3.58) with v′m and integrating over (0, t), we have by several
estimates

‖vm‖2
H2
∗∗

+ ‖v′m‖2
L2 ≤ C, for any t ∈ [0, τm) and m ≥ 1,

where C is independent of m and t. Hence, the solution vm is globally
defined and {vm} is bounded in C0([0,∞);H2

∗∗(Ω))∩C1([0,∞);L2(Ω)).
Step 3. {vm} admits a strongly convergent subsequence in the function
space C0([0,∞);H2

∗∗(Ω)) ∩ C1([0,∞);L2(Ω)).
By Ascoli-Arzelà Theorem, we deduce that, up to subsequences, there

exists v ∈ C0([0,∞);L2(Ω)) such that vm → v in C0([0,∞);L2(Ω)).
On the other hand, the sequence {vm} is a Cauchy sequence in the space

C0([0,∞);H2
∗∗(Ω)) ∩ C1([0,∞);L2(Ω)). Hence, up to subsequences,

vm → v in C0([0,∞);H2
∗∗(Ω)) ∩ C1([0,∞);L2(Ω)) as m→∞.

Step 4. Take the limit in (3.58) and then we prove the existence of solution
to (3.57).
Step 5. The solution to (3.57) is unique.

Assume that v1, v2 are two solutions of (3.57), denote v = v1−v2. Then
using v′ as a test function, we obtain after integration over (0, t)

‖v′‖2
L2 + ‖v‖2

H2
∗∗

= −2µ

∫ t

0

‖v′(s)‖2
L2ds ≤ 0,

from which it immediately follows that v = 0. Hence, the problem (3.57)
admits a unique solution v ∈ C0([0,∞);H2

∗∗(Ω)) ∩ C1([0,∞);L2(Ω)).

3.3.3 Existence and uniqueness result

Due to the dynamical boundary conditions (3.56), it is not straightforward
to solve the original problem (3.55)-(3.56) directly. Hence, we first trans-
fer it to a simpler case, which uses the auxiliary problem. Recalling the
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boundary conditions (3.47), one has

uy(x, `, t) = uy(x,−`, t) = α/2, for any x ∈ (0, π), t > 0.

Moreover, let β be a C1 function in t, then we obtain by (3.48) and (3.51)
for any x ∈ (0, π){

ut(x, `, t)− η(t)u(x, `, t) = g1(x, t), t > 0,

u(x, `, 0) = u0(x, `)

and {
ut(x,−`, t)− η(t)u(x,−`, t) = g2(x, t), t > 0,

u(x,−`, 0) = u0(x,−`),

where {
g1(x, t) = 1

2
(βt(x, t)− η(t)β(x, t))− 1

2
θ(t)γ(x, t),

g2(x, t) = 1
2
(βt(x, t)− η(t)β(x, t)) + 1

2
θ(t)γ(x, t).

For any fixed x ∈ (0, π), they are first order ordinary differential prob-
lems in t. Hence, one can get the explicit representation of the values of u
on (0, π) × {±`}, which we denote by (h1, h2) = (u(x, `, t), u(x,−`, t)).
Then the problem (3.55)-(3.56) reduces to an evolution linear problem

utt + ∆2u+ µut + ku = f, (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0, (x, y) ∈ Ω,

ut(x, y, 0) = u1, (x, y) ∈ Ω

(3.59)

with nonhomogeneous boundary conditions: for t > 0
u(x, y, t) = uxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−`, `),
u(x, y, t) = h1, uy(x, y, t) = α/2, (x, y) ∈ (0, π)× {`},
u(x, y, t) = h2, uy(x, y, t) = α/2, (x, y) ∈ (0, π)× {−`}.

(3.60)
Now we want to reduce the boundary conditions (3.60) to the homoge-

neous case. To this end, it is necessary to construct a suitable inverse trace
operator. Note that Ω ⊂ R2 is a rectangular domain. Let us define the space

H4
∗ (Ω) := {u ∈ H4(Ω) : u = uxx = 0 on {0, π} × (−`, `)}
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and a continuous map

T : H4
∗ (Ω)→

2∏
i=1

(
H7/2(Σi)×H5/2(Σi)×H3/2(Σi)×H1/2(Σi)

)
φ 7→

2∏
i=1

(
φ|Σi , (φy)|Σi , (φyy)|Σi , (φyyy)|Σi

)
where Σ1 := (0, π)× {`}, Σ2 := (0, π)× {−`}. For more details, see [63,
Section 2.5] or [38, Chapter 1].

Denote the range of T by R(T ) := T (H4
∗ (Ω)) and define the following

norm on R(T ) by

‖v‖R := inf{‖w‖H4(Ω) : w ∈ H4
∗ (Ω), T (w) = v} for any v ∈ R(T ),

thenR(T ) is a Banach space with the norm ‖·‖R. Therefore, the restriction
of the previous map T to (ker(T ))⊥, i.e, T|(ker(T ))⊥ : (ker(T ))⊥ → R(T ) is
an isometric isomorphism.

Since R(T ) ⊂
∏2

i=1

(
H7/2(Σi)×H5/2(Σi)×H3/2(Σi)×H1/2(Σi)

)
,

one may represent T as (T1, T2, T3, T4) with

T1 : H4
∗ (Ω)→

2∏
i=1

H7/2(Σi), T2 : H4
∗ (Ω)→

2∏
i=1

H5/2(Σi),

T3 : H4
∗ (Ω)→

2∏
i=1

H3/2(Σi), T4 : H4
∗ (Ω)→

2∏
i=1

H1/2(Σi),

which are continuous from H4
∗ (Ω) to the respective spaces each of them

endowed with its normal norm. Then one may define four subspaces

V1 := {v ∈ R(T ) : v = (T1(w), 0, 0, 0), w ∈ H4
∗ (Ω)},

V2 := {v ∈ R(T ) : v = (0, T2(w), 0, 0), w ∈ H4
∗ (Ω)},

V3 := {v ∈ R(T ) : v = (0, 0, T3(w), 0), w ∈ H4
∗ (Ω)},

V4 := {v ∈ R(T ) : v = (0, 0, 0, T4(w)), w ∈ H4
∗ (Ω)}.

Concerning the fact that T|(ker(T ))⊥ is an isometric isomorphism and the
continuity of the map T , one can show that Vi (i = 1, 2, 3, 4) are closed in
R(T ) endowed with ‖ · ‖R.

Now, let α ∈ C2([0,∞);V2), β ∈ C1([0,∞);V1), γ ∈ C0([0,∞);V1)
and h1, h2 be in C2([0,∞);V1). Then one may define the map

w := T−1
|(kerT )⊥

((h1, α/2, 0, 0)× (h2, α/2, 0, 0))
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Chapter 3. A plate model for suspension bridge with small deformations

with w = hi, wy = α/2, wyy = 0 and wyyy = 0 on the boundary Σi. In this
way we have that w ∈ C2([0,∞);H4

∗ (Ω)). Then putting u = v + w (v to
be fixed) into the problem (3.59)-(3.60), we obtain the following variational
problem

vtt + ∆2v + µvt + kv = f̃ , (x, y) ∈ Ω,

v(x, y, t) = vxx(x, y, t) = 0, (x, y) ∈ {0, π} × (−`, `),
v(x, y, t) = vy(x, y, t) = 0, (x, y) ∈ (0, π)× {±`},
v(x, y, 0) = v0, (x, y) ∈ Ω,

vt(x, y, 0) = v1, (x, y) ∈ Ω,

(3.61)

where f̃ = f − wtt − ∆2w − µwt − kw, v0 = u0(x, y) − w(x, y, 0) and
v1 = u1(x, y)− wt(x, y, 0).

Recalling the function space

H2
∗ (Ω) := {u ∈ H2(Ω) : u = 0 on {0, π} × (−`, `)},

which is defined in Section 3.1.3, we have the uniqueness result.

Theorem 3.4. Assume that f ∈ C0([0,∞);L2(Ω)), u0 ∈ H2
∗ (Ω) and u1 ∈

L2(Ω). Then there exists a unique solution to the problem (3.55)-(3.56).

Proof. It is easy to see that the functions f̃ , v0 and v1 satisfy

f̃ ∈ C0([0,∞);L2(Ω)), v0 ∈ H2
∗∗(Ω), v1 ∈ L2(Ω).

Hence, we obtain from Section 3.3.2 that (3.61) has a unique solution

v ∈ C0([0,∞);H2
∗∗(Ω)) ∩ C1([0,∞);L2(Ω)).

Then, according to the arguments above,

u = v + w ∈ C0([0,∞);H2
∗ (Ω)) ∩ C1([0,∞);L2(Ω))

is the unique solution of the original problem (3.55)-(3.56) with the initial
conditions u(x, y, 0) = u0, ut(x, y, 0) = u1 and the boundary conditions
(3.46), (3.47), (3.48), (3.51).

Since the equation in (3.55) is linear, it is possible to find an explicit
form of the unique solution. We first consider an initial value problem for
S = S(t) {

S ′′ + µS ′ + aS = g(t), t > 0,

S(0) = A, S ′(0) = B
(3.62)
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3.3. A linear model with dynamical boundary conditions

where g(t) is a given function, µ and a are positive constants, A,B are
constants.

We know that (3.62) is a second-order ordinary differential problem.
According to the theory of ordinary differential equations, we have the fol-
lowing cases if we denote δ = µ2 − 4a:
Case 1. If δ 6= 0, then the two eigenvalues are λ1 6= λ2. Hence, we have

S(t) =
B − Aλ2

λ1 − λ2

exp(λ1t) +
exp(λ1t)

λ1 − λ2

∫ t

0

exp(−λ1s)g(s)ds

+
Aλ1 −B
λ1 − λ2

exp(λ2t) +
exp(λ2t)

λ1 − λ2

∫ t

0

exp(−λ2s)g(s)ds;

Case 2. If δ = 0, then the two eigenvalues are λ1 = λ2. Therefore,

S(t) = (A+ (B − λ1A) t) exp(λ1t)

− exp(λ1t)

∫ t

0

(s− t) exp(−λ1s)g(s)ds;

To obtain a Fourier series type of the unique solution, we introduce the
following

u0m(y) =
2

π

∫ π

0

u0 sin(mx)dx, u1m(y) =
2

π

∫ π

0

u1 sin(mx)dx,

αm(t) =
2

π

∫ π

0

α sin(mx)dx, βm(t) =
2

π

∫ π

0

β sin(mx)dx

γm(t) =
2

π

∫ π

0

γ sin(mx)dx, fm(y, t) =
2

π

∫ π

0

f sin(mx)dx

(3.63)
and define a function by

Rm(t) = θ(t)
(u0m(`)− u0m(−`)

2`
−
∫ t

0

γm(s)

2`
ds
)
, t > 0, (3.64)

here θ(t) is as in (3.52).
Then the unique solution to the original problem (3.55)-(3.56) can be

explicitly represented.

Theorem 3.5. Assume that f ∈ C0([0,∞);L2(Ω)), u0 ∈ H2
∗ (Ω) and u1 ∈

L2(Ω). Then the unique solution to (3.55)-(3.56) is given by

u(x, y, t) =
∞∑
m=1

Um(y, t) sin(mx) (3.65)
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with

Um(y, t) =
∞∑
n=1

(Tm)n(t) sin
(nπ
`
y
)

+
∞∑
n=1

(Sm)n(t) cos
(nπ
`
y
)

+ Cm(t)y +Dm(t), (3.66)

where (Tm)n(t), (Sm)n(t) and Dm(t) are in the form of S(t), the solution
of (3.62), Cm(t) is as in (3.64).

Proof. According to the boundary conditions for x = 0 and x = π, we seek
the solution u of the problem (3.55)-(3.56) in the form

u(x, y, t) =
∞∑
m=1

Um(y, t) sin(mx). (3.67)

Inserting (3.67) in (3.55)-(3.56) and recalling (3.63), we have for every
m ≥ 1

(Um)tt + (Um)yyyy − 2m2(Um)yy + (m4 + k)Um + µ(Um)t = fm(y, t),

Um(y, 0) = u0m(y),

(Um)t(y, 0) = u1m(y),
(3.68)

with the boundary conditions: for t > 0
(Um)y(−`, t)− (Um)y(`, t) = 0,

(Um)y(−`, t) + (Um)y(`, t) = αm(t),

Um(−`, t) + Um(`, t) = βm(t),

(Um)t(−`, t)− (Um)t(`, t)− η(t)(Um(−`, t)− Um(`, t)) = γm(t)θ(t).
(3.69)

Now, we look for the solution to (3.68)-(3.69) in the form of (3.66).
Putting (3.66) into the equation in (3.68), we obtain

∞∑
n=1

(
(Tm)′′n(t) + µ(Tm)′n(t) + δ(Tm)n(t)

)
sin
(nπ
`
y
)

+
∞∑
n=1

(
(Sm)′′n(t) + µ(Sm)′n(t) + δ(Sm)n(t)

)
cos
(nπ
`
y
)

+ C ′′m(t)y

+ µC ′m(t)y + σCm(t)y +D′′m(t) + µD′m(t) + σDm(t) = fm(y, t)

with δ =
(
m2 +

(
nπ
l

)2
)2

+ k and σ = m4 + k.
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For Cm(t) being as in the form in (3.64), we define the function

φm(y, t) = C ′′m(t)y + (m4 + k + µη(t))Cm(t)y − µγm(t)θ(t)

2`
y

and let fm(y, t) = fm(y, t)− φm(y, t) + φm(y, t), then it follows that

C ′m(t)− η(t)Cm(t) = −γm(t)θ(t)

2`
,

and
∞∑
n=1

(
(Tm)′′n(t) + µ(Tm)′n(t) + δ(Tm)n(t)

)
sin
(nπ
`
y
)

+
∞∑
n=1

((Sm)′′n(t) + µ(Sm)′n(t) + δ(Sm)n(t)) cos
(nπ
`
y
)

+D′′m(t) + µD′m(t) + σDm(t)

=
∞∑
n=1

(ϕ1m)n (t) sin
(nπ
`
y
)

+
∞∑
n=1

(ϕ2m)n (t) cos
(nπ
`
y
)

+ fm(t),

where

fm(t) =
1

2`

∫ `

−`
fm(y, t)dy,

(f1m)n (t) =
1

`

∫ `

−`
(fm(y, t)− φm(y, t)) sin

(nπ
`
y
)
dy,

(f2m)n (t) =
1

`

∫ `

−`
(fm(y, t)− φm(y, t)) cos

(nπ
`
y
)
dy.

The initial conditions yield, for y ∈ (−`, `),
∞∑
n=1

(Tm)n(0) sin
(nπ
`
y
)

+
∞∑
n=1

(Sm)n(0) cos
(nπ
`
y
)

+Dm(0)

=
∞∑
n=1

(A1m)n sin
(nπ
`
y
)

+
∞∑
n=1

(A2m)n cos
(nπ
`
y
)

+ Am,

∞∑
n=1

(Tm)′n(0) sin
(nπ
`
y
)

+
∞∑
n=1

(Sm)′n(0) cos
(nπ
`
y
)

+D′m(0)

=
∞∑
n=1

(B1m)n sin
(nπ
`
y
)

+
∞∑
n=1

(B2m)n cos
(nπ
`
y
)

+Bm,
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where

(A1m)n =
1

`

∫ `

−`
(u0m(y)− Cm(0)y) sin

(nπ
`
y
)
dy,

(A2m)n =
1

`

∫ `

−`
(u0m(y)) cos

(nπ
`
y
)
dy,

(B1m)n =
1

`

∫ `

−`
(u1m(y)− C ′m(0)y) sin

(nπ
`
y
)
dy,

(B2m)n =
1

`

∫ `

−`
(u1m(y)) cos

(nπ
`
y
)
dy,

Am =
1

2`

∫ `

−`
u0m(y)dy, Bm =

1

2`

∫ `

−`
u1m(y)dy.

Assume that the functions αm(t), βm(t) and γm(t) are given by

αm(t) = 2
∞∑
n=1

nπ

`
(Tm)n(t) cos(nπ), t > 0,

βm(t) = 2
∞∑
n=1

(Sm)n(t) cos(nπ) + 2Dm(t), t > 0,

γm(t) = −2`(C ′m(t)− η(t)Cm(t))/θ(t), t > 0,

then the boundary conditions (3.56) are satisfied. Moreover, we are led to
several ordinary differential problems{

C ′m(t)− η(t)Cm(t) = −γm(t)θ(t)
2`

, t > 0,

Cm(t) = u0m(`)−u0m(−`)
2`

, t = 0 ;
(3.70)

{
D′′m(t) + µD′m(t) + σDm(t) = fm(t), t > 0,

Dm(t) = Am, D′m(t) = Bm, t = 0 ;
(3.71)

{
(Tm)′′n(t) + µ(Tm)′n(t) + δ(Tm)n(t) = (f1m)n (t), t > 0,

(Tm)n(t) = (A1m)n, (Tm)′n(t) = (B1m)n, t = 0 ;
(3.72)

{
(Sm)′′n(t) + µ(Sm)′n(t) + δ(Sm)n(t) = (f2m)n (t), t > 0,

(Sm)n(t) = (A2m)n, (Sm)′n(t) = (B2m)n, t = 0.
(3.73)
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To complete the proof, we need to check that problem (3.70) admits a
solution in the form Rm(t) and that the problems (3.71)-(3.73) have solu-
tions in the form of S(t). Since the last three problems depend on Cm(t),
we first consider the problem (3.70). In fact, this is a first order ordinary
differential problem and we know that the solution is

Cm(t) = Cm(0) exp
(∫ t

0

η(s)ds
)

− exp
(∫ t

0

η(s)ds
)∫ t

0

γm(s)θ(s)

2`
exp

(
−
∫ s

0

η(τ)dτ

)
ds.

Since η(t) is not a continuous function, see (3.53), to compute conve-
niently, we denote E(t) given in (3.54) here by

E(t) =


−1, E(t) ≤ Eµ − ε,
1
ε

(
E(t)− Eµ

)
, Eµ − ε < E(t) ≤ Eµ + ε,

1, E(t) > Eµ + ε.

Then we consider the exponential function ξ(t) = exp
( ∫ t

0
η(s)ds

)
. There

are three cases:

(1) If E(t) > Eµ + ε, then

ξ(t) = exp
(E(t)

Eµ

− E(0)

Eµ

+ ln
E(t)− Eµ

E(0)− Eµ

)
;

(2) If Eµ < E(t) ≤ Eµ + ε, then

ξ(t) = exp
(E2(t)− (Eµ)2

2εEµ

+
ε− 2E(0)

2Eµ

+ ln
ε

E(0)− Eµ

)
;

(3) If E(t) ≤ Eµ, then

ξ(t) = exp
(ε− 2E(0)

2Eµ

+ ln
ε

E(0)− Eµ

+

∫ t

tµ

η(s)ds
)
,

where tµ satisfies E(tµ) = Eµ.

Let ε→ 0, we have

ξ(t) =

0, E(t) ≤ Eµ,

E(t)−Eµ
E(0)−Eµ

exp
(
E(t)

Eµ
− E(0)

Eµ

)
, E(t) > Eµ.
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Therefore,

Cm(t) =

0, E(t) ≤ Eµ,

θ(t)
(
u0m(`)−u0m(−`)

2`
−
∫ t

0
γm(s)

2`
ds
)
, E(t) > Eµ,

which is as in (3.64) if one recalls that (3.52).
Next, for every n ≥ 1 and m ≥ 1, we solve the other three ordi-

nary differential problems (3.71), (3.72) and (3.73). Recalling the initial
value problem (3.62) and let a = σ for (3.71), a = δ for (3.72) and
(3.73), we obtain that there exists a unique solution for (3.71), (3.72) and
(3.73) separately in the form of S(t) with the constants A,B replaced by
Am, Bm, (A1m)n, (B1m)n, (A2m)n, (B2m)n.

Therefore, the unique solution to (3.55)-(3.56) has the form of (3.65)
with Um(y, t) being given in (3.66). And then the proof is finished.

By using the explicit form of the solution to (3.55)-(3.56), we are able to
analyze the amplitude of the torsional oscillation appearing in suspension
bridges.

Corollary 3.1. Assume that u is the unique solution to the original problem
(3.55)-(3.56). Then the amplitude of the torsional oscillation on the two
sides y = ±` reads

|u(x,−`, t)− u(x, `, t)| = θ(t)
∣∣u0(x,−`)− u0(x, `) + 2`

∫ t

0

γ(x, s)ds
∣∣,

where θ(t) is given in (3.52).

By (3.52), if E(t) ≤ Eµ, then θ(t) = 0, which yields that from Corollary
3.1

|u(x, `, t)− u(x,−`, t)| = 0.

That is, when E(t) ≤ Eµ, there is no torsional oscillation appearing in the
bridge structure.

However, once the energy E(t) exceeds Eµ, then θ(t) > 0 and

|u(x, `, t)− u(x,−`, t)| 6= 0,

which show that the torsional oscillation appears. Since θ(t) is an increas-
ing function with respect to E(t) and by Corollary 3.1, if the energy E(t)
(E(t) > Eµ) increases, then the amplitude of the torsional oscillation will
go up till the bridges collapse.
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CHAPTER4
A plate model for suspension bridge with

large deformations

This chapter is devoted to a system (composed by two coupled fourth order
partial differential equations) modeling the suspension bridge. This model
is based on the von Kármán plate equations and this part is from [34].

In the previous chapter, we considered the plate model by assuming that
the deflection of the plate is small. There the material nonlinearities of the
restoring force due to the hangers and the cables were discussed. While in
some cases a kind of wide oscillations may appear in the roadway of sus-
pension bridge due to some reasons, such as the strong wind. In this case,
the linear Kirchhoff-Love plate theory (see [44, 54]) cannot describe the
behavior of the oscillations and hence, one needs to consider the geometric
nonlinearities of the plate due to the wide oscillations.

4.1 The plate model

4.1.1 The energy in the plate

As in Chapter 3, assume that Ω = (0, π) × (−`, `) ⊂ R2 represents the
roadway of the suspension bridge. π is the length of the roadway and 2` is
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Chapter 4. A plate model for suspension bridge with large deformations

its width. The realistic assumption is that 2`� π.
In Section 3.1.1, we have seen that the bending energy of a deformed

plate Ω due to an external force f is EB, see (3.2). While if large de-
formations in the plate are involved, one does not have a linear strain-
displacement relation. For a plate of uniform thickness d > 0, one as-
sumes that the plate has a middle surface midway between its two parallel
faces that, in equilibrium, occupies the region Ω in the plane z = 0. Let
w = w(x, y), v = v(x, y), u = u(x, y) denote the components (respec-
tively in the x, y, z directions) of the displacement vector of the particle
of the middle surface which, when the plate is in equilibrium, occupies the
position (x, y) ∈ Ω: u is the component in the vertical z-direction which is
related to bending while w and v are the in-plane stretching components.

For large deformations of the plate Ω there is a coupling between u and
(w, v). In order to describe it, we compute the stretching in the x and y
directions (see e.g. [76, (7.80)]):{

εx =
√

1 + 2wx + u2
x − 1 ≈ wx + u2x

2
,

εy =
√

1 + 2vy + u2
y − 1 ≈ vy +

u2y
2
,

(4.1)

where the approximation is due to the fact that, compared to unity, all the
components are small in the horizontal directions x and y. One can also
compute the shear strain (see e.g. [76, (7.81)]):

γxy ≈ wy + vx + uxuy . (4.2)

Moreover, it is convenient to introduce the so-called stress resultants which
are the integrals of suitable components of the strain tensor (see e.g. [49,
(1.22)]), namely,

Nx = Ed
1−σ2

(
wx + σvy + 1

2
u2
x + σ

2
u2
y

)
,

Ny = Ed
1−σ2

(
vy + σwx + 1

2
u2
y + σ

2
u2
x

)
,

Nxy = Ed
2(1+σ)

(wy + vx + uxuy) ,

(4.3)

so that

εx =
Nx − σNy

Ed
, εy =

Ny − σNx

Ed
, γxy =

2(1 + σ)

Ed
Nxy .

We are now in a position to define the energy functional. The first term
of the energy is due to pure bending and to the external load f and is given
by EB, see (3.2). For large deformations, one needs to consider also the
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interaction with the stretching components v and w and the total energy
reads (see [50, (1.7)]):

J(u, v, w) = EB(u)

+
E d

2(1− σ2)

∫
Ω

(
ε2x + ε2y + 2σ εxεy +

1− σ
2

γ2
xy

)
dxdy, (4.4)

which has to be compared with (3.2). In view of (4.1)-(4.3), the additional
term I := J − EB may also be written as

I(u, v, w) =
E d

4(1+σ)

∫
Ω

(wy+vx+uxuy)
2dxdy

+Λ

∫
Ω

{(
wx+

u2
x

2

)2

+

(
vy+

u2
y

2

)2

+2σ

(
wx+

u2
x

2

)(
vy+

u2
y

2

)}
dxdy

with Λ = E d
2(1−σ2)

.

4.1.2 The Euler-Lagrange equations

Assume that the plate Ω = (0, π) × (−`, `) ⊂ R2 with ` � π. Recall the
Hilbert space

H2
∗ (Ω) :=

{
w ∈ H2(Ω); w = 0 on {0, π} × (−`, `)

}
and the dual spaceH∗. We also denote by 〈·, ·〉 the corresponding duality.

On the space H2(Ω), we define the Monge-Ampère operator

[φ, ψ] := φxxψyy + φyyψxx − 2φxyψxy, ∀φ, ψ ∈ H2(Ω), (4.5)

so that, in particular, [φ, φ] = 2det(D2φ) where D2φ is the Hessian matrix
of φ. Then the scalar product (3.12) and the corresponding norm (3.13)
read

(u, v)H2
∗ =

∫
Ω

(
∆u∆v − (1− σ)[u, v]

)
dxdy, ∀u, v ∈ H2

∗ (Ω) (4.6)

and

‖u‖H2
∗ =

(∫
Ω

(
|∆u|2 − (1− σ)[u, u]

)
dxdy

)1/2

, ∀u ∈ H2
∗ (Ω) .

(4.7)
Therefore, the unique minimiser u of the convex functional EB in (3.2)

over the space H2
∗ (Ω) satisfies the Euler-Lagrange equation

E d3

12(1− σ2)
∆2u = f(x, y) in Ω .
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On the other hand, the Euler-Lagrange equation for the energy J in (4.4)
characterises the critical points of J : we need to compute the variation δJ
of J and to find triples (u, v, w) such that for any φ, ψ, ξ ∈ C∞c (Ω)

〈δJ, (φ, ψ, ξ)〉 = lim
t→0

J(u+ tφ, v + tψ, w + tξ)− J(u, v, w)

t
= 0 .

Replacing Nx, Ny, Nxy, see (4.3), we have for any φ, ψ, ξ ∈ C∞c (Ω)

E d3

12(1−σ2)

∫
Ω

(
∆u∆φ+ (σ − 1)[u, φ]

)
dxdy

+
∫

Ω

(
(Nxux +Nxyuy)φx + (Nyuy +Nxyux)φy

)
dxdy =

∫
Ω
fφ ,∫

Ω

(
Nyψy +Nxyψx

)
dxdy = 0,∫

Ω

(
Nxξx +Nxyξy

)
dxdy = 0.

Thanks to some integration by parts and by arbitrariness of the test func-
tions, we may rewrite the above identities in strong form{

E d3

12(1−σ2)
∆2u− (Nxux +Nxyuy)x − (Nyuy +Nxyux)y = f in Ω ,

Ny
y +Nxy

x = 0 , Nx
x +Nxy

y = 0 in Ω .
(4.8)

The last two equations in (4.8) show that there exists a function Φ (called
Airy stress function, see [72, p.363]), unique up to an affine function, such
that

Φyy = Nx, Φxx = Ny, Φxy = −Nxy . (4.9)
Then, after some tedious computations, by using the Monge-Ampère op-
erator (4.5) and by normalizing the coefficients, the system (4.8) may be
written as {

∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f in Ω .
(4.10)

In a plate subjected to compressive forces along its edges, one should
consider a prestressing constraint which may lead to buckling. Then the
system (4.10) becomes{

∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f + λ[F, u] in Ω .
(4.11)

The term λ[F, u] in the right hand side of (4.11) represents the boundary
stress, where the parameter λ ≥ 0 measures the magnitude of the compres-
sive forces acting on ∂Ω while the smooth function F satisfies

F ∈ C4(Ω) , ∆2F = 0 in Ω , Fxx = Fxy = 0 on (0, π)× {±`} ,
(4.12)
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see [11, pp.228-229]: the term λF represents the stress function in the
plate resulting from the applied force if the plate were artificially prevented
from deflecting and the boundary constraints in (4.12) physically mean that
no external stresses are applied on the free edges of the plate. Following
Knightly-Sather [47], we take

F (x, y) =
`2 − y2

2
so that [F, u] = −uxx .

Therefore, (4.11) becomes{
∆2Φ = −[u, u] in Ω

∆2u = [Φ, u] + f − λuxx in Ω .
(4.13)

4.1.3 Boundary conditions

The purpose of this subsection is to determine the boundary conditions for
a plate modeling the roadway of suspension bridge.

In literature the system (4.13) is usually considered under the Dirichlet
boundary conditions, see [18, § 1.5] and [78, p.514]. But since we aim
to model a suspension bridge, these conditions (Dirichlet boundary condi-
tions) are not the correct ones. Following [27] (see also [3,82]) we view the
deck of a suspension bridge as a long narrow rectangular thin plate hinged
at its two opposite short edges and free on the remaining two long edges.

Let us first consider the two short edges {0, π} × (−`, `). Due to the
connection with the ground, u is assumed to be hinged there and hence it
satisfies the Navier boundary conditions:

u = uxx = 0 on {0, π} × (−`, `) . (4.14)

In this case, Ventsel-Krauthammer [76, Example 7.4] suggest that Nx =
v = 0 on {0, π}×(−`, `). In view of (4.3) this yields that on {0, π}×(−`, `)

0 = wx + σvy +
1

2
u2
x +

σ

2
u2
y = wx +

1

2
u2
x =

Ed

(1− σ2)σ
Ny,

where the condition uy = 0 comes from the first of (4.14). In turn, by (4.9)
this implies that

Φxx = 0 on {0, π} × (−`, `).
For the second boundary condition we recall that Nx = 0 so that, by (4.9),
also Φyy = 0: since the Airy function Φ is defined up to the addition of an
affine function, we may take Φ = 0. Summarising, we have

Φ = Φxx = 0 on {0, π} × (−`, `) . (4.15)
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On the long edges (0, π)× {±`} the plate is assumed to be free, which
results in

uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`} , (4.16)

see e.g. [76, (2.40)] or [27]. Note that here the boundary conditions (4.16)
do not depend on the parameter λ. For the Airy stress function Φ, we follow
the usual Dirichlet boundary conditions on (0, π)×{±`}, see e.g. [11,12].
Then

Φ = Φy = 0 on (0, π)× {±`} . (4.17)

These boundary conditions suggest to introduce the following subspace
of H2

∗ (Ω)

H2
∗∗(Ω) := {u ∈ H2

∗ (Ω) : u = uy = 0 on (0, π)× {±`}},

which is also a Hilbert space when endowed with the scalar product

(u, v)H2
∗∗ :=

∫
Ω

∆u∆vdxdy .

This scalar product introduces the norm denoted by

‖u‖H2
∗∗ :=

(∫
Ω

|∆u|2dxdy
)1/2

.

We denote the dual space of H2
∗∗(Ω) byH∗∗(Ω).

4.1.4 The model for suspension bridge

In a plate modeling a suspension bridge, one should also add the nonlinear
restoring action due to the hangers and the cables.

The Official Report [4, p.11] states that the region of interaction of the
hangers with the plate was of approximately 2 ft on each side: this means
that ε ≈ π

1500
, see Fighre 3.1. Augusti-Sepe [8] (see also [7]) view the

restoring force at the endpoints of a cross-section of the deck as composed
by two connected springs, see Figure 4.1. The top one represents the ac-
tion of the sustaining cables and the bottom one (connected with the deck)
represents the hangers. The action of the cables is considered by Bartoli-
Spinelli [9, p.180] the main cause of the nonlinearity of the restoring force:
they suggest quadratic and cubic perturbations of a linear behavior. Assum-
ing that the vertical axis is oriented downwards, the restoring force acts
in those parts of the deck which are below the equilibrium position (where
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Figure 4.1: The restoring force on a cross-section.

u > 0) while it exerts no action where the deck is above the equilibrium
position (u < 0).

Taking into account all these facts, for the explicit action of the restoring
force, we take

g(u) = ku+ + δ(u+)3 = (ku+ δu3)+, k, δ > 0,

which is a compromise between the nonlinearities suggested by McKenna-
Walter [57] and Plaut-Davis [68] and follows the idea of Ferrero-Gazzola
[27]. Here k > 0 denotes the Hooke constant of elasticity of steel (hang-
ers) while δ > 0 is a small parameter reflecting the nonlinear behavior of
the sustaining cables. Only the positive part is taken into account due to
possible slackening, see [4, V-12]: the hangers behave as a restoring force
if extended (when u > 0) and give no contribution when they lose tension
(when u ≤ 0). Let Υ be the characteristic function of (−`,−`+ε)∪(`−ε, `)
for some small ε > 0. In Section 3.1.1, we have known that the restoring
force due to the hangers is concentrated in two tiny parallel strips adjacent
to the long edges (the free part of the boundary), see Figure 3.1. The the
restoring force is

h = Υ(y)g(u). (4.18)

Assume that (4.18), then together with the boundary conditions (4.14)-
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Chapter 4. A plate model for suspension bridge with large deformations

(4.17), we obtain the system modeling the suspension bridges:

∆2Φ = −[u, u] in Ω

∆2u+ Υ(y)g(u) = [Φ, u] + f − λuxx in Ω

u = Φ = uxx = Φxx = 0 on {0, π} × (−`, `)
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`}
Φ = Φy = 0 on (0, π)× {±`} .

(4.19)
Finally, we go back to the original unknowns u, v, w. After that a solu-

tion (u,Φ) of (4.19) is found, (4.1)-(4.3) and (4.9) yield

wx + σvy =
1− σ2

E d
Φyy −

1

2
u2
x −

σ

2
u2
y ,

σwx + vy =
1− σ2

E d
Φxx −

1

2
u2
y −

σ

2
u2
x

which immediately gives wx and vy.
Upon integration, it gives w = w(x, y) up to the addition of a function

only depending on y and v = v(x, y) up to the addition of a function de-
pending only on x. These two additive functions are determined by solving
the last constraint given by (4.1)-(4.9), that is,

wy + vx = −2(1 + σ)

E d
Φxy − ux − uy .

4.2 Preliminaries

4.2.1 Some useful operators and functionals

For any v, w ∈ H2
∗ (Ω), consider the linear problem
∆2Φ = −[v, w] in Ω

Φ = Φxx = 0 on {0, π} × (−`, `)
Φ = Φy = 0 on (0, π)× {±`} .

(4.20)

We claim that (4.20) has a unique solution Φ = Φ(v, w) and Φ ∈ H2
∗∗(Ω).

In fact, since Ω ⊂ R2, we have H1+ε(Ω) b L∞(Ω) = (L1(Ω))′, for all
ε > 0. On the other hand, L1(Ω) ⊂ (L∞(Ω))′ b H−(1+ε)(Ω). If v, w ∈
H2
∗ (Ω) ⊂ H2(Ω), then [v, w] ∈ L1(Ω). Therefore,

[v, w] ∈ H−(1+ε)(Ω) ∀ε > 0 .
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Then by the Lax-Milgram Theorem and the regularity theory of elliptic
equations, there exists a unique solution of (4.20) and Φ ∈ H3−ε(Ω) for all
ε > 0. An embedding and the boundary conditions show that Φ ∈ H2

∗∗(Ω),
which completes the proof of the claim.

This result enables us to define a bilinear form

B = B(v, w) = −Φ,

where Φ is the unique solution of (4.20); this form is implicitly character-
ized for any v, w ∈ H2

∗ (Ω) and any ϕ ∈ H2
∗∗(Ω) by

B : (H2
∗ (Ω))2 → H2

∗∗(Ω) , (B(v, w), ϕ)H2
∗∗ =

∫
Ω

[v, w]ϕ .

Similarly, one can prove that for any v ∈ H2
∗ (Ω) and any ϕ ∈ H2

∗∗(Ω)
there exists a unique solution Ψ ∈ H2

∗ (Ω) of the problem
∆2Ψ = −[v, ϕ] in Ω

Ψ = Ψxx = 0 on {0, π} × (−`, `)
Ψyy + σΨxx = Ψyyy + (2− σ)Ψxxy = 0 on (0, π)× {±`} .

This defines another bilinear form

C = C(v, ϕ) = −Ψ,

which is implicitly characterized for any v, w ∈ H2
∗ (Ω) and any ϕ ∈

H2
∗∗(Ω) by

C : H2
∗ (Ω)×H2

∗∗(Ω)→ H2
∗ (Ω) , (C(v, ϕ), w)H2

∗ =

∫
Ω

[v, ϕ]w .

Then we prove

Lemma 4.1. The trilinear form

(H2
∗ (Ω))3 3 (v, w, ϕ) 7→

∫
Ω

[v, w]ϕ (4.21)

is independent of the order of v, w, ϕ if at least one of them is in H2
∗∗(Ω).

Moreover, if ϕ ∈ H2
∗∗(Ω), v, w ∈ H2

∗ (Ω), then

(B(v, w), ϕ)H2
∗∗ = (B(w, v), ϕ)H2

∗∗

= (C(v, ϕ), w)H2
∗ = (C(w,ϕ), v)H2

∗ . (4.22)

Finally, the operators B and C are compact.
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Proof. By a density argument and by continuity it suffices to prove all the
identities for smooth functions v, w, ϕ, in such a way that third interior
derivatives and second boundary derivatives are well defined and integra-
tion by parts is allowed. In the trilinear form (4.21) one can exchange the
order of v and w by exploiting the symmetry of the Monge-Ampère op-
erator, that is, [v, w] = [w, v] for all v and w. So, we may assume that
one among w,ϕ is in H2

∗∗(Ω): note that this function also has vanishing
x-derivative on (0, π) × {±`}. Then some integration by parts enable to
switch the position of w and ϕ.

From the just proved symmetry of the trilinear form (4.21) we immedi-
ately infer (4.22).

If ϕ ∈ H2
∗∗(Ω), then ϕxx = ϕxy = 0 on (0, π)×{±`} and an integration

by parts yields

(B(v, w), ϕ)H2
∗∗ =

∫
Ω

[v, w]ϕ =

∫
Ω

[ϕ,w]v

=

∫
Ω

ϕxy(wxvy + wyvx)−
∫

Ω

(ϕxxwyvy + ϕyywxvx).

In turn, this shows that for any v, w ∈ H2
∗ (Ω) and ϕ ∈ H2

∗∗(Ω)

|(B(v, w), ϕ)H2
∗∗| ≤ c‖ϕ‖H2

∗∗‖v‖W 1,4‖w‖W 1,4 .

Therefore,

‖B(v, w)‖H2
∗∗ = sup

0 6=ϕ∈H2
∗∗(Ω)

(B(v, w), ϕ)H2
∗∗

‖ϕ‖H2
∗∗

≤ c‖v‖W 1,4‖w‖W 1,4 . (4.23)

Assume that the sequence {(vn, wn)} ⊂ H2
∗ (Ω)×H2

∗ (Ω) weakly converges
to (v, w) ∈ H2

∗ (Ω) × H2
∗ (Ω). Then the triangle inequality and the just

proved estimate yield

‖B(vn, wn)−B(v, w)‖H2
∗∗

≤ ‖B(vn − v, wn)‖H2
∗∗ + ‖B(v, wn − w)‖H2

∗∗

≤ c‖vn − v‖W 1,4‖wn‖W 1,4 + c‖v‖W 1,4‖wn − w‖W 1,4 .

The compact embedding H2
∗ (Ω) b W 1,4(Ω) then shows that

‖B(vn, wn)−B(v, w)‖H2
∗∗ → 0

and hence that B is a compact operator. The proof for C is similar.

70



4.2. Preliminaries

We now define another operator D : H2
∗ (Ω)→ H2

∗ (Ω) by

D(v) = C(v,B(v, v)) ∀v ∈ H2
∗ (Ω)

and we prove

Lemma 4.2. The operator D is compact.

Proof. Assume that the sequence {vn} ⊂ H2
∗ (Ω) weakly converges to

v ∈ H2
∗ (Ω). Then, by Lemma 4.1, B(vn, vn) → B(v, v) in H2

∗∗(Ω) and
C(vn, B(vn, vn)) → C(v,B(v, v)) in H2

∗ (Ω). This proves that D(vn) →
D(v) in H2

∗ (Ω) and that D is a compact operator.

In turn, the operator D enables us to define a functional d : H2
∗ (Ω)→ R

by

d(v) =
1

4
(D(v), v)H2

∗ ∀v ∈ H2
∗ (Ω) .

In the next statement we prove some of its properties.

Lemma 4.3. The functional d : H2
∗ (Ω)→ R has the following properties:

(i) d is nonnegative and d(v) = 0 if and only if v = 0 in Ω. Moreover,

d(v) =
1

4
‖B(v, v)‖2

H2
∗∗

;

(ii) d is quartic, i.e.,

d(rv) = r4d(v), ∀r ∈ R, ∀v ∈ H2
∗ (Ω);

(iii) d is differentiable in H2
∗ (Ω) and

〈d′(v), w〉 = (D(v), w)H2
∗ , v, w ∈ H2

∗ (Ω);

(iv) d is weakly continuous on H2
∗ (Ω).

Proof. (i) By (4.22) we know that for any v ∈ H2
∗ (Ω),

(D(v), v)H2
∗ = (C(v,B(v, v)), v)H2

∗

= (B(v, v), B(v, v))H2
∗∗ = ‖B(v, v)‖2

H2
∗∗
.

Whence, if d(v) = 0, then B(v, v) = 0 and [v, v] = 0, see (4.20). But [v, v]
is proportional to the Gaussian curvature and since it vanishes identically
this implies that the surface v = v(x, y) is covered by straight lines. By
using the boundary condition (4.14) we finally infer that v ≡ 0. This idea
of the last part of this proof is taken from [12, Lemma 3.2’].

(ii) The functional d is quartic as a trivial consequence of its definition.
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(iii) From (4.22) we infer that for all v, w ∈ H2
∗ (Ω)

(C(v,B(v, w)), v)H2
∗ = (B(v, v), B(v, w))H2

∗∗

= (C(v,B(v, v)), w)H2
∗ . (4.24)

Then we compute

〈d′(v), w〉 = lim
ε→0

1

4ε
{(D(v + εw), v + εw)H2

∗ − (D(v), v)H2
∗}

=
1

4
{(C(w,B(v, v)), v)H2

∗ + (C(v,B(v, v)), w)H2
∗}

+
1

2
{(C(v,B(v, w)), v)H2

∗}

=
1

2
{(C(v,B(v, v)), w)H2

∗ + (C(v,B(v, w)), v)H2
∗}

=(D(v), w)H2
∗ ,

which proves (iii).
(iv) Assume that the sequence {vn} ⊂ H2

∗ (Ω) weakly converges to v ∈
H2
∗ (Ω). Then by Lemma 4.2 we know that

lim
n→∞

‖D(vn)−D(v)‖H2
∗ = 0.

This shows that
lim
n→∞

(D(vn)−D(v), vn)H2
∗ = 0.

Finally, this yields

d(vn)− d(v) =
1

4
(D(vn)−D(v), vn)H2

∗ +
1

4
(D(v), vn − v)H2

∗ → 0

which proves (iv).

4.2.2 An linear problem

Assume that (3.1), i.e. 0 < σ < 1/2, we analyze the spectrum of the linear
problem:

∆2u+ λuxx = 0 in Ω

u = uxx = 0 on {0, π} × (−`, `)
uyy + σuxx = uyyy + (2− σ)uxxy = 0 on (0, π)× {±`} .

(4.25)
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Lemma 4.4. The problem (4.25) admits a sequence of divergent eigenval-
ues

λ1 < λ2 ≤ ... ≤ λk ≤ ...

whose corresponding eigenfunctions {ek} form a complete orthonormal
system in H2

∗ (Ω).
Moreover, the least eigenvalue λ1 is simple and is the unique value of

λ ∈ ((1− σ)2, 1) such that√
1− λ1/2

(
λ1/2 + 1− σ

)2
tanh(`

√
1− λ1/2 )

=
√

1 + λ1/2
(
λ1/2 − 1 + σ

)2
tanh(`

√
1 + λ1/2 ) ;

the corresponding eigenspace is generated by the positive eigenfunction

e1(x, y) =

(λ1/2 + 1− σ)
cosh

(
y
√

1− λ1/2
)

cosh
(
`
√

1− λ1/2
)
 sinx

+

(λ1/2 − 1 + σ)
cosh

(
y
√

1 + λ1/2
)

cosh
(
`
√

1 + λ1/2
)
 sinx .

Proof. We proceed as in [27, Theorem 3.4], see also [3, Theorem 4], with
some changes due to the presence of the buckling term. We write the eigen-
value problem (4.25) as

(ux, vx)L2 =
1

λ
(u, v)H2

∗ ∀v ∈ H2
∗ (Ω).

Define the linear operator T : H2
∗ (Ω)→ H2

∗ (Ω) such that

(Tu, v)H2
∗ = (ux, vx)L2 ∀v ∈ H2

∗ (Ω).

The operator T is self-adjoint since for any u, v ∈ H2
∗ (Ω)

(Tu, v)H2
∗ = (ux, vx)L2 = (vx, ux)L2 = (u, Tv)H2

∗ .

Moreover, by the compact embedding H2
∗ (Ω) b H1(Ω) and the definition

of T , the following implications hold:

un ⇀ u in H2
∗ (Ω) =⇒ (un)x → ux in L2(Ω)

=⇒ sup
‖v‖

H2∗
=1

((un − u)x, vx)L2 → 0

=⇒ sup
‖v‖

H2∗
=1

(T (un − u), v)H2
∗ → 0

=⇒ Tun → Tu in H2
∗ (Ω),
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which shows that T is also compact. Then the spectral theory of linear
compact self-adjoint operator yields that (4.25) admits an ordered increas-
ing sequence of eigenvalues and the corresponding eigenfunctions form an
Hilbertian basis of H2

∗ (Ω). This proves the first part of Lemma 4.4.
According to the boundary conditions on x = 0, π, we seek eigenfunc-

tions in the form:

u(x, y) =
+∞∑
m=1

hm(y) sin(mx) for (x, y) ∈ (0, π)× (−`, `) . (4.26)

Then we are led to find nontrivial solutions of the ordinary differential equa-
tion

h′′′′m (y)− 2m2h′′m(y) + (m4 −m2λ)hm(y) = 0 , (λ > 0) (4.27)

with the boundary conditions{
h′′m(±`)− σm2hm(±`) = 0 ,

h′′′m(±`) + (σ − 2)m2h′m(±`) = 0 .
(4.28)

The characteristic equation related to (4.27) is α4−2m2α2 +m4−m2λ = 0
and then

α2 = m2 ±m
√
λ . (4.29)

For a given λ > 0 three cases have to be distinguished.
• The case m2 > λ. By (4.29) we infer

α = ±β or α = ±γ with
√
m2 −m

√
λ =: γ < β :=

√
m2 +m

√
λ .

Nontrivial solutions of (4.27) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cosh(γy) + d sinh(γy) , (4.30)

where a, b, c, d ∈ R. By imposing the boundary conditions (4.28) and ar-
guing as in [27] we see that a nontrivial solution of (4.27) exists if and only
if one of the two following equalities holds:

γ

(γ2 −m2σ)2
tanh(`γ) =

β

(β2 −m2σ)2
tanh(`β) , (4.31)

β

(β2 −m2σ)2
coth(`β) =

γ

(γ2 −m2σ)2
coth(`γ) . (4.32)

For any integer m >
√
λ such that (4.31) holds, the function hm in

(4.30) with b = d = 0 and suitable a = am 6= 0 and c = cm 6= 0 yields
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the eigenfunction hm(y) sin(mx) associated to the eigenvalue λ. Similarly,
for any integer m >

√
λ such that (4.32) holds, the function hm in (4.30)

with a = c = 0 and suitable b = bm 6= 0 and d = dm 6= 0 yields the
eigenfunction hm(y) sin(mx) associated to the eigenvalue λ. Clearly, the
number of both such integers is finite. In particular, when m = 1 the equa-
tion (4.27) coincides with [27, (57)]. Therefore, the statement about the
least eigenvalue and the explicit form of the corresponding eigenfunction
hold.
• The case m2 = λ. This case is completely similar to the second case

in [27]. By (4.29) we infer that possible nontrivial solutions of (4.27)-(4.28)
have the form

hm(y) = a cosh(
√

2my) + b sinh(
√

2my) + c+ dy (a, b, c, d ∈ R) .

Then one sees that a = c = 0 if 0 < σ < 1/2. Moreover, let s > 0 be
the unique solution of tanh(s) =

(
σ

2−σ

)2
s. If m∗ := s/`

√
2 is an integer,

and only in this case, then λ = m2
∗ is an eigenvalue and the corresponding

eigenfunction is[
σ` sinh(

√
2m∗y) + (2− σ) sinh(

√
2m∗`) y

]
sin(m∗x) .

• The case m2 < λ. By (4.29) we infer that

α = ±β or α = ±iγ with
√
m
√
λ−m2 = γ < β =

√
m
√
λ+m2 .

Therefore, possible nontrivial solutions of (4.27) have the form

hm(y) = a cosh(βy) + b sinh(βy) + c cos(γy) + d sin(γy) ,

where a, b, c, d ∈ R. Differentiating hm and imposing the boundary condi-
tions (4.28) yields the two systems:{

(β2 −m2σ) cosh(β`)a− (γ2 +m2σ) cos(γ`)c = 0

(β3 −m2(2− σ)β) sinh(β`)a+ (γ3 +m2(2− σ)γ) sin(γ`)c = 0 ,{
(β2 −m2σ) sinh(β`)b− (γ2 +m2σ) sin(γ`)d = 0

(β3 −m2(2− σ)β) cosh(β`)b− (γ3 +m2(2− σ)γ) cos(γ`)d = 0 .

Due to the presence of trigonometric sine and cosine, for any integer m
there exists a sequence ζmk ↑ +∞ such that ζmk > m2 for all k ∈ N and
such that if λ = ζmk for some k then one of the above systems admits a non-
trivial solution. On the other hand, for any eigenvalue λ there exists at most
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a finite number of integers m such that m2 < λ; if these integers yield non-
trivial solutions hm, then the function hm(y) sin(mx) is an eigenfunction
corresponding to λ.

The simplicity of the least eigenvalue was not to be expected. It is shown
in [47, §3] that the eigenvalue problem (4.25) for a fully hinged (simply
supported) rectangular plate, that is with u = ∆u = 0 on the four edges,
may admit a least eigenvalue of multiplicity 2.

The least eigenvalue λ1 represents the critical buckling load and may be
characterised variationally by

λ1 := min
v∈H2

∗(Ω)

‖v‖2
H2
∗

‖vx‖2
L2

.

Ferrero-Gazzola [27] studied the eigenvalue problem ∆2u = λu under the
boundary conditions in (4.25): by comparing [27, Theorem 3.4] with the
above Lemma 4.4 we observe that the least eigenvalues (and eigenfunc-
tions) of the two problems coincide, that is,

λ1 = min
v∈H2

∗(Ω)

‖v‖2
H2
∗

‖vx‖2
L2

= min
v∈H2

∗(Ω)

‖v‖2
H2
∗

‖v‖2
L2

. (4.33)

Therefore, the critical buckling load for a rectangular plate equals the eigen-
value relative to the first eigenmode of the plate. In turn, the first eigenmode
is also the first buckling deformation of the plate. From (4.33) we readily
infer the Poincaré-type inequalities

λ1‖vx‖2
L2 ≤ ‖v‖2

H2
∗
, λ1‖v‖2

L2 ≤ ‖v‖2
H2
∗
∀v ∈ H2

∗ (Ω) (4.34)

with strict inequality unless v minimises the ratio in (4.33), that is, v is a
real multiple of e1. Note also that by taking v(x, y) = sinx one finds that
λ1 < 1.

Finally, let us mention that Lemma 4.4 may be complemented with the
explicit form of all the eigenfunctions: they are sin(mx) (m ∈ N) multi-
plied by trigonometric or hyperbolic functions with respect to y.

4.3 The equilibrium positions

In this section, we study the nonlinear plate model (4.19) for the suspension
bridge, that is, with the action of the hangers. First define the constants

α :=

∫
Ω

Υ(y)e2
1 , λ := (αk + 1)λ1 > λ1 , (4.35)
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where λ1 denotes the least eigenvalue and e1 denotes here the positive least
eigenfunction normalised in H2

∗ (Ω), see Lemma 4.4. Then we have

Theorem 4.1. For all f ∈ L2(Ω), λ ≥ 0 and k, δ > 0, the problem (4.19)
admits a solution (u,Φ) ∈ H2

∗ (Ω)×H2
∗∗(Ω). Moreover:

(i) if λ < λ1 there exists K > 0 such that if ‖f‖L2 < K then (4.19) admits
a unique solution (u,Φ) ∈ H2

∗ (Ω)×H2
∗∗(Ω);

(ii) if λ > λ1 and f = 0 then (4.19) admits at least two solutions (u,Φ) ∈
H2
∗ (Ω)×H2

∗∗(Ω) and one of them is trivial and unstable;
(iii) if λ < λ2 and λ < λ < λ2, there exists K > 0 such that if ‖f‖L2 < K
then (4.19) admits at least three solutions (u,Φ) ∈ H2

∗ (Ω) × H2
∗∗(Ω), two

being stable and one being unstable.

Proof. By Lemma 4.3, we know that the energy functional corresponding
to the problem (4.19) reads

J(u) =
1

2
‖u‖2

H2
∗
− λ

2
‖ux‖2

L2

+

∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
+ d(u)−

∫
Ω

fu .

Combining with Lemmas 4.1-4.3, we obtain a one-to-one correspon-
dence between solutions of (4.19) and critical points of the functional J :

Lemma 4.5. Let f ∈ L2(Ω). The couple (u,Φ) ∈ H2
∗ (Ω) × H2

∗∗(Ω) is a
weak solution of (4.19) if and only if u ∈ H2

∗ (Ω) is a critical point of J and
if Φ ∈ H2

∗∗(Ω) weakly solves ∆2Φ = −[u, u] in Ω.

Next, we prove the geometrical properties (coercivity) and compactness
properties (Palais-Smale condition) of J . Although the former may appear
straightforward, it requires delicate arguments. The reason is that no useful
lower bound for d(u) is available. We prove

Lemma 4.6. For any f ∈ L2(Ω) and any λ ≥ 0, the functional J is co-
ercive in H2

∗ (Ω) and it is bounded from below. Moreover, it satisfies the
Palais-Smale (PS) condition.

Proof. Assume for contradiction that there exists a sequence {vn} ⊂ H2
∗ (Ω)

and M > 0 such that

lim
n→∞

‖vn‖H2
∗ →∞, J(vn) ≤M.

Put wn = vn
‖vn‖H2∗

so that vn = ‖vn‖H2
∗wn and

‖wn‖H2
∗ = 1 ∀n . (4.36)
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Since∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
≥ 0, for all u ∈ H2

∗ (Ω), (4.37)

we infer that by combining the Hölder inequality with (4.34)

M ≥ J(vn) ≥1

2
‖vn‖2

H2
∗

+ ‖vn‖4
H2
∗
d(wn)

− λ

2
‖vn‖2

H2
∗
‖(wn)x‖2

L2 −
‖f‖L2√
λ1

‖vn‖H2
∗ , (4.38)

where we also used Lemma 4.3 (ii).
By letting n → ∞, we have d(wn) → 0 which, combined with Lemma

4.3 and (4.36), shows that wn ⇀ 0 in H2
∗ (Ω); then, (wn)x → 0 in L2(Ω) by

compact embedding. Hence, since d(wn) ≥ 0, (4.38) yields

o(1) =
M

‖vn‖2
H2
∗

≥1

2
+ ‖vn‖2

H2
∗
d(wn)− λ

2
‖(wn)x‖2

L2

− ‖f‖L2

‖vn‖H2
∗

√
λ1

≥1

2
+ o(1),

which leads to a contradiction by letting n → ∞. Therefore J is coercive.
Since the lower bound for J(vn) in (4.38) only depends on ‖vn‖H2

∗ , we also
know that J is bounded from below.

In order to prove that J satisfies the (PS) condition we consider a se-
quence {un} ⊂ H2

∗ (Ω) such that J(un) is bounded and J ′(un) → 0 in
H∗(Ω). By what we just proved, we know that {un} is bounded and there-
fore, there exists u ∈ H2

∗ (Ω) such that un ⇀ u and, by weak continuity,
J ′(u) = 0. Moreover, by Lemma 4.3,

〈J ′(un), un〉 =‖un‖2
H2
∗

+ (D(un), un)H2
∗ − λ‖(un)x‖2

L2

+

∫
Ω

Υ(y)
(
k(u+

n )un + δ(u+
n )3un

)
−
∫

Ω

fun

→0 = 〈J ′(u), u〉 = ‖u‖2
H2
∗

+ (D(u), u)H2
∗ − λ‖ux‖

2
L2

+

∫
Ω

Υ(y)
(
k(u+)u+ δ(u+)3u

)
−
∫

Ω

fu .

By compact embedding, we have

‖(un)x‖2
L2 → ‖ux‖2

L2 ,

∫
Ω

fun →
∫

Ω

fu
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and∫
Ω

Υ(y)
(
k(u+

n )un + δ(u+
n )3un

)
→
∫

Ω

Υ(y)
(
k(u+)u+ δ(u+)3u

)
.

Moreover, by Lemma 4.2, (D(un), un)H2
∗ → (D(u), u)H2

∗ . Then it follows
that

‖un‖H2
∗ → ‖u‖H2

∗ .

This fact, together with the weak convergence un ⇀ u proves that

un → u strongly;

this proves (PS).

Lemma 4.6 shows that the (smooth) functional J admits a global min-
imum in H2

∗ (Ω) for any f ∈ L2(Ω) and any λ ≥ 0. This minimum is a
critical point for J and hence, by Lemma 4.5, it gives a weak solution of
(4.19). This proves the first part of Theorem 4.1. Let us now prove the
items.

(i) For any f ∈ L2(Ω), if u is a critical point of the functional J , then it
satisfies 〈J ′(u), u〉 = 0 and therefore, by (4.37) and the Hölder inequality,

‖u‖2
H2
∗

+ 4d(u)−λ‖ux‖2
L2

+

∫
Ω

Υ(y)
(
k(u+)2 + δ(u+)4

)
≤ ‖f‖L2‖u‖L2 .

In turn, by using Lemma 4.3 (i) and twice (4.34), we obtain(
1− λ

λ1

)
‖u‖2

H2
∗
≤ ‖f‖L

2√
λ1

‖u‖H2
∗ .

This gives the a priori bound

‖u‖H2
∗ ≤

√
λ1

λ1 − λ
‖f‖L2 . (4.39)

Next, we prove a local convexity property of the functional J . Let

Q(u) := ‖u‖2
H2
∗
− λ‖ux‖2

L2 ∀u ∈ H2
∗ (Ω) .

Then, for all u, v ∈ H2
∗ (Ω) and all t ∈ [0, 1], we have

Q
(
tu+ (1− t)v

)
− tQ(u)− (1− t)Q(v)

= −t(1− t)
(
‖u− v‖2

H2
∗
− λ‖ux − vx‖2

L2

)
. (4.40)
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Moreover, for all u, v ∈ H2
∗ (Ω) and all t ∈ [0, 1], some tedious computa-

tions show that

d
(
tu+ (1− t)v

)
− td(u)− (1− t)d(v) =

= −t(1− t)
4

{
(t2 − 3t+ 1)(‖B(v, u− v)‖2

H2
∗∗
− ‖B(u, u− v)‖2

H2
∗∗

)

+2(t2 − t+ 1)
(
B(u, u− v), B(u+ v, u− v)

)
H2
∗∗

+2
(
B(v, v), B(v − u, v − u)

)
H2
∗∗

−4t(1− t)
(
B(u− v, u), B(v − u, v)

)
H2
∗∗

}
by (4.23) ≤ C t(1− t) (‖u‖2

H2
∗

+ ‖v‖2
H2
∗
) ‖u− v‖2

H2
∗

; (4.41)

here C > 0 is a constant independent of t, u, v.
Consider the functional defined by

I(u) =
1

2
‖u‖2

H2
∗

+ d(u)− λ

2
‖ux‖2

L2 =
Q(u)

2
+ d(u) . (4.42)

By putting together (4.40) and (4.41) we see that

I
(
tu+ (1− t)v

)
− tI(u)− (1− t)I(v)

≤− t(1− t)
2

(
‖u− v‖2

H2
∗
− λ‖ux − vx‖2

L2

)
+ C t(1− t) (‖u‖2

H2
∗

+ ‖v‖2
H2
∗
) ‖u− v‖2

H2
∗

≤t(1− t)
(
C (‖u‖2

H2
∗

+ ‖v‖2
H2
∗
)− λ1 − λ

2λ1

)
‖u− v‖2

H2
∗
. (4.43)

Take f sufficiently small such that

‖f‖2
L2 < K2 :=

(λ1 − λ)3

4C λ2
1

. (4.44)

By (4.39) and (4.44) we know that any critical point of J satisfies

‖u‖2
H2
∗
≤ λ1

(λ1 − λ)2
K2 =

λ1 − λ
4C λ1

=: ρ2 ;

put Bρ = {u ∈ H2
∗ (Ω); ‖u‖H2

∗ ≤ ρ}. Moreover, from (4.43) we know that

I
(
tu+ (1− t)v

)
− tI(u)− (1− t)I(v) ≤ 0 ∀u, v ∈ Bρ ,
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with strict inequality if u 6= v and t 6∈ {0, 1}. This proves that I is strictly
convex in Bρ. Hence, the functional If = I −

∫
Ω
fu is also strictly convex

in Bρ.
Moreover, by (u + v)+ ≤ u+ + v+ for any u, v ∈ H2

∗ (Ω), we have for
any t ∈ [0, 1]∫

Ω

Υ(y)
(
(tu+ (1− t)v)+

)2 ≤
∫

Ω

Υ(y)
(
tu+ + (1− t)v+

)2

≤ t

∫
Ω

Υ(y)
(
u+
)2

+ (1− t)
∫

Ω

Υ(y)
(
v+
)2

and∫
Ω

Υ(y)
(
(tu+ (1− t)v)+

)4 ≤
∫

Ω

Υ(y)
(
(tu+ + (1− t)v+)2

)2

≤
∫

Ω

Υ(y)
(
t(u+)2 + (1− t)(v+)2

)2

≤ t

∫
Ω

Υ(y)
(
u+
)4

+ (1− t)
∫

Ω

Υ(y)
(
v+
)4
.

Hence,
∫

Ω
Υ(y)

(
k
2
(u+)2 + δ

4
(u+)4

)
is convex and then the functional J(u)

is strictly convex in Bρ.
Summarising, if (4.44) holds, then we know that:

• by (4.39) all the critical points of J belong to Bρ;
• by the first part of the proof we then know that there exists at least a
critical point in Bρ;
• J is strictly convex in Bρ.

We then deduce that J admits a unique critical point in Bρ (its absolute
minimum) and no other critical points elsewhere. Together with Lemma
4.5, this completes the proof of item (i).

(ii) If f = 0, then u = 0 is a solution for any λ ≥ 0. We just need to
show that it is not the global minimum which we know to exist. Let e1 and
α be as in (4.35) and consider the function for t ∈ R

g(t) = J(te1)

= −λ− λ1

2λ1

t2 +
k α

2
(t+)2 +

δ (t+)4

4

∫
Ω

Υ(y)e4
1 + t4 d(e1) . (4.45)

Since λ > λ1, the coefficient of (t−)2 is negative and the qualitative graph
of g is as in Figure 4.2 (on the left the case where λ < λ so that the coeffi-
cient of (t+)2 is nonnegative, on the right the case where also the coefficient
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Figure 4.2: Qualitative graphs of the functions g.

of (t+)2 is negative). It is clear that there exists t < 0 such that g(t) < 0.
This means that J(te1) < 0 and that 0 is not the absolute minimum of J .
This completes the proof of item (ii).

(iii) We study first the case where f = 0 and we name J0 the unforced
functional, that is,

J0(u) =
1

2
‖u‖2

H2
∗
− λ

2
‖ux‖2

L2

+ d(u) +

∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
.

We consider again the function g in (4.45) that we name here h in order to
distinguish their graphs, h(t) = g(t) as in (4.45). Since λ > λ, the coeffi-
cient of (t+)2 is now also negative and the qualitative graph of h is as in the
right picture of Figure 4.3. Then the function h has a nondegenerate local

Figure 4.3: Qualitative graphs of the functions h.

maximum at t = 0 which means that also the map t 7→ J0(te1) has a local
maximum at t = 0 and it is strictly negative in a punctured interval con-
taining t = 0. Let E = span{ek; k ≥ 2} denote the infinite dimensional
space of codimension 1 being the orthogonal complement of span{e1}. By
the improved Poincaré inequality

λ2‖vx‖2
L2 ≤ ‖v‖2

H2
∗
∀v ∈ E
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and by taking into account Lemma 4.3 (i) and λ ≤ λ2, we see that for any
u ∈ E

J0(u) ≥ λ2 − λ
2λ2

‖u‖2
H2
∗

+

∫
Ω

Υ(y)

(
k

2
(u+)2 +

δ

4
(u+)4

)
≥ 0 .

Therefore, the two open sets

A+ = {u ∈ H2
∗ (Ω); (u, e1)H2

∗ > 0, J0(u) < 0} ,

A− = {u ∈ H2
∗ (Ω); (u, e1)H2

∗ < 0, J0(u) < 0}
are disconnected. Since J0 satisfies the (PS) condition and is bounded from
below, J0 admits a global minimum u+ (resp. u−) in A+ (resp. A−) and
J0(u±) < 0.

A sufficiently small linear perturbation of J0 then has a local minimum
in a neighborhood of both u±. Whence, if f is sufficiently small, say
‖f‖L2 < K, then the functional J defined by J(u) = J0(u) −

∫
Ω
fudxdy

admits a local minimum in two neighborhoods of both u±. These local
minima, which we name u1 and u2, are the first two critical points of J .
A minimax procedure then yields an additional (mountain-pass) solution.
Indeed, consider the set of continuous paths connecting u1 and u2:

Γ :=
{
p ∈ C0([0, 1], H2

∗ (Ω)); p(0) = u1, p(1) = u2

}
.

Since the functional J satisfies the (PS) condition, the mountain-pass The-
orem guarantees that the level

min
p∈Γ

max
t∈[0,1]

J
(
p(t)

)
> max

{
J(u1), J(u2)

}
is a critical level for J ; this yields a third critical point. By Lemma 4.5 this
proves the existence of (at least) three weak solutions of (4.19).

Theorem 4.1 gives both uniqueness and multiplicity results. Item (ii)
states that even in absence of an external load (f = 0), if the buckling load
λ is sufficiently large then there exists at least two equilibrium positions;
we conjecture that if we further assume that λ < λ then there exist no
other solutions and that the equilibrium positions look like in Figure 4.4.
In the left picture we see the trivial equilibrium u = 0 which is unstable
due to the buckling load. In the right picture we see the stable equilibrium
for some u < 0 (above the horizontal position). We conjecture that it is a
negative multiple of the first eigenfunction e1, see Lemma 4.4; since ` is
very small, a rough approximation shows that this negative multiple looks
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Figure 4.4: Equilibrium positions of the buckled bridge.

like≈ C sin(x) for some C < 0, which is the shape represented in the right
picture. The reason of this conjecture will become clear in the proof, see in
particular the plots in Figures 4.2 and 4.3: in this pattern, a crucial role is
played by the positivity of e1.

Our feeling is that the action functional corresponding to this case has a
qualitative shape as described in Figure 4.5, where O is the trivial unstable

Figure 4.5: Qualitative shape of the action functional for Theorem 4.1 (ii) when λ < λ.

equilibrium and M is the stable equilibrium. If there were no hangers also
the opposite position would be a stable equilibrium. But the presence of the
restoring force requires a larger buckling term in order to generate a positive
(downwards) displacement. Indeed, item (iii) states, in particular, that if
f = 0 and the buckling load is large then there exist three equilibria: one is
trivial and unstable, the second is the enlarged negative one already found
in item (ii), the third should precisely be the positive one which appears
because the buckling load λ is stronger than the restoring force due to the
hangers. All these conjectures and qualitative explanations are supported
by similar results for a simplified (one dimensional) beam equation, see [14,
Theorem 3.2].
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CHAPTER5
Conclusions and open problems

In this thesis, we considered several new mathematical models (one beam
model, two plate models) for suspension bridges due to the lack of fully
reliable models in the literature. Certainly, we do not claim that our models
are perfect. This is just the beginning in order to reach more challenging
results in this field and much more work is still necessary.

We studied the nonlinear nonlocal beam model in Chapter 2 and ob-
tained an existence result of the problem (2.8). Since it is not clear that the
behavior of the energy functional Jp for lager c, we are not able to ensure
that the problem (2.8) (with larger c) admits a unique solution or multiplic-
ity of solutions.

Since a beam cannot display the torsional oscillations appearing in the
suspension bridges for the one dimensional beam model, we analyzed in
Chapters 3 and 4 two different plate models. In Chapter 3, we mainly fo-
cused on the dynamical suspension bridges and recalled the plate model
suggested by Ferrero-Gazzola [27]. For a non-coercive problem corre-
sponding to the plate model, we investigated the asymptotic behavior of
the unique solution for different initial conditions. Then in order to de-
scribe the boundary behavior of the plate, we set up a kind of dynamical
boundary conditions and showed that there exists a unique explicit solution
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of the linear evolution problem with the dynamical boundary conditions.
If wide deformation appears in the plate, the plate equation based on

the linear Kirchhoff-Love plate theory is not adequate to describe the os-
cillation behavior. Hence, we suggested in Chapter 4 a system (coupled
by two fourth order partial differential equations based on the von Kármán
plate equations) to model the suspension bridges. Then we proved that sta-
ble equilibrium positions or unstable equilibrium positions of the plate for
different assumptions.

5.1 Open problems

Although we obtained several results about our new mathematical models
(see Chapters 2-4), some more problems related to these models are still
open.

5.1.1 The beam model

In Chapter 2, we suggested a kind of nonlinear beam model for suspension
bridge and derived the nonlinear nonlocal problem:{

aw′′′′(x)− b
(

w′(x)
1+(y′(x))2

)′
− c w′′(x)−q/H

(1+(w′(x)+y′(x))2)3/2
Γ(w) = p,

w(0) = w(L) = w′′(0) = w′′(L) = 0,
(5.1)

which admits at least one weak solution in H2 ∩H1
0 (0, L). We also gave a

uniqueness result under suitable assumptions, see Theorem 2.1. However,
the assumption (2.15) does not hold if one takes the values of parameters
from the actual suspension bridge, see [87]. Hence, one cannot ensure the
uniqueness result in this case.

As mentioned in Chapter 2, in the “limit” case (c→ +∞), the problem
(5.1) degenerates to:{

w′′−q/H
(1+(w′+y′)2)3/2

Γ(w) = 0, x ∈ (0, L)

w(0) = w(L) = 0,
(5.2)

which admits infinitely many solutions in H2 ∩H1
0 (0, L).

Moreover, it is not clear about the behavior of the total functional Jp for
lager c. Hence, the uniqueness or multiplicity result of (5.1) with larger c is
still open. Namely,

Remark 5.1. Does the problem (5.1) with larger c admit a unique solution
or at least two solutions if p ∈ H is small in the sense of ‖p‖H?

This problem will be addressed in [35].
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5.1.2 The plate models

In this thesis, we introduced two plate models for suspension bridges, one
is for suspension bridge with small deformation, the other one is for sus-
pension bridge with large deformation.

In Section 3.3, we suggested a linear plate model (see (3.55)-(3.56)) for
dynamical suspension bridges with small deformations and we derived a
linear evolution problem with dynamical boundary conditions, which ad-
mits a unique explicit solution.

For simplicity, we assume that in Section 3.3 the restoring force h due to
the hangers is in linear case, i.e. h = ku with an elasticity constant k > 0.
However, as pointed in Chapter 1, the restoring force h due to the hangers
should be “more than” linear, which is also the opinion of McKenna [55]:

We doubt that a bridge oscillating up and down by about 10 me-
ters every 4 seconds obeys Hooke’s law.

Therefore, one should consider the restoring force h = h(x, y, u) in a non-
linear case, such as (3.3) or (4.18) and then one gets a nonlinear evolution
problem{

utt + ∆2u+ µut + h(x, y, u) = f, (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0, ut(x, y, 0) = u1, (x, y) ∈ Ω
(5.3)

with the dynamical boundary conditions (3.56), see Section 3.3.1.
While the method we used in Section 3.3 is not applied to this nonlinear

problem (5.3) with the dynamical boundary conditions (3.56) and this prob-
lem seems much more difficult. Hence, there is no answers to the following
open problem:

Remark 5.2. Does the problem (5.3) with the dynamical boundary condi-
tions (3.56) admit solutions?
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