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Sommario

La computazione parallela è da lungo tempo considerata una tecnica
efficace per combinare prestazioni ed efficienza energetica. A partire dal
High Performance Computing (HPC) fino ai moderni sistemi embed-
ded, l’adozione di architetture parallele eterogenee diventa una pratica
sempre più comune, dato che queste consetono di raggiungere un buon
compromesso in termini di efficienza energetica. Il raggiungimento di
prestazioni exascale per la prossima generazione di sistemi HPC è vin-
colata da un consumo complessivo tra i 20 MW e 30 MW. Gli attuali
sistemi HPC “green” non sono tuttavia in grado di raggiungere questo
grado di efficienza nonostante l’utilizzo di moderne architetture parallele
eterogenee. Infine, le piattaforme hardware ultra-low-power guadagna-
no sempre più visibilità dato che possono essere componenti chiave per
consentire ai prossimi sistemi HPC di raggiungere il livello di efficienza
necessaria per raggiungere l’obiettivo exascale.

La programmabilità di quesi sistemi è un aspetto critico che ha un
forte impatto sull’efficienza raggiungibile e ancor di più nel costo per
ottenere tale obiettivo. Programmare architetture parallele è un’opera-
zione complessa, dato che generalemente molte caratteristiche hardware
sono esposte completamente e direttamente ai programmatori. Per que-
sto motivo esistono infrastrutture di programmazione che cercano di
nascondere questa complessità, tuttavia le prestazioni ottenibili sono
sub-ottime rispetto ad implementazioni dedicate, o sono infrastrutture
limitate a specifici domini applicativi.

In questa tesi si affrontano le sfide legate alla programmabilità di
architetture parallele eterogenee, operando su modelli di programma-
zione e architetture sia esistenti che futuri. In particolare, si presenta
OpenCRun, un runtime OpenCL che supporta varie piattaforme con
caratteristiche molto differenti tra loro, come multi-core X86 e accelera-
tori paralleli embedded. Nell’ambito delle architetture ultra-low-power,
si presentano i risultati della collaborazione tra sviluppatori hardware
e software per la piattaforma PULP, mostrando i benefici di oculate
estensioni della ISA e il corrispettivo supporto nel compilatore per mas-
simizzare l’efficienza energetica della piattaforma. Inoltre, per migliorare
la portabilità funzionale e prestazionale di codice OpenCL tra GPGPU
e acceleratori many-core embedded con memorie esplicitamente gestite
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come PULP e STHorm, si presenta una trasformazione, work-item coa-
lescing, che supera le limitazioni mostrate dalle piattaforme embedded,
e una ottimizzazione dei trasferimenti di memoria per incrementare le
prestazioni del codice finale. Al fine poi di innalzare il livello di astra-
zione in modo più radicale, assumendo piattaforme dotate di memoria
virtual condivisa in quanto caratteristica hardware attesa a breve nelle
prossime generazioni di piattaforme eterogenee, si presenta un metodo
per implementare puntatori a funzione condivisi in piattaforme eteroge-
nee con due o più ISA, un mattone fondamentale per ottenere il supporto
al linguaggio C++ tra ISA eterogenee. In aggiunta si presenta un mec-
canismo per supportare chiamate a funzione il cui codice non è presente
per il dispositivo invocante. Tale meccanismo è necessario per ottene-
re un supporto trasparente del linguaggio C++ e fornire una maggiore
flessibilità ai programmatori che lavorano con applicazioni complesse per
portarle all’utilizzo di acceleratori paralleli eterogenei.
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Abstract

Parallel computing has been considered an effective approach to com-
bine performance and power efficiency for a long time. Starting from
High Performance Computing (HPC) to modern embedded systems, the
employment of heterogeneous parallel architectures is becoming the com-
mon case, since they provide a good tradeoff in terms of power efficiency.
The exascale objective for the next generation of HPC systems is con-
strained to a target power envelope ranging from 20 MW to 30 MW. The
existing “green” HPC systems are not yet able to reach the such power
efficiency although they already employ modern heterogeneous parallel
architectures. Ultra-low-power hardware platforms are gaining an in-
creasing traction, as they may represent the key component to allow
future HPC systems to match the required power efficiency.

The programmability of such systems is a critical aspect that has an
huge impact on the reachable power efficiency and the effort required to
reach such target. Programming parallel architectures is a complex task,
since many hardware features are directly exposed to the programmers.
Programming frameworks that try to hide such complexity exist, how-
ever they either provide only sub-optimal performance with respect to
hand tuned implementations, or they are limited to specific application
domains.

This dissertation tackles challenges related to the programmability
of heterogenous parallel architectures, acting on both existing and fu-
ture programming models and hardware architectures. In particular,
we present OpenCRun, an OpenCL runtime implementation supporting
a range of platforms with very different architectures characteristics,
such as X86 multicores and embedded parallel accelerators. In the con-
text of ultra-low-power architectures we report the joint effort between
hardware and software developers towards the PULP platform, show-
ing the benefits of selected ISA extensions and their compiler support to
maximize the power efficiency. Moreover, to improve functional and per-
formance portability of OpenCL code between GPGPUs and embedded
many-core accelerators with explicitly managed memory such as PULP
and STHorm, we have proposed a code transformation technique, work-
item coalescing, that bypasses the limitations of the embedded plat-
forms, allowing code developed for GPGPU to be ported seamlessly, as
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well as a memory transfer optimization technique to tune the result-
ing code to improve performance. Finally, to increase the abstraction
level in a more radical way, leveraging Shared Virtual Memory that is
expected to be available in future architectures, we have presented a
method to transparently implement shared function pointers in hetero-
geneous platforms with two or more ISAs, a building block for enabling
full C++ support across heterogeneous ISAs. Indeed we presented a
fallback solution to implement function calls from device side to func-
tions not available on the device itself. This mechanism is needed to
enable the transparent support of C++, and to provide more flexibility
to the programmers dealing with large and complex applications to be
ported towards heterogeneous parallel accelerators.
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Introduction

Parallel computing has been considered an effective approach to combine
performance and power efficiency for a long time. Originally, highly par-
allel architectures were designed primarily for application specific pur-
poses in the field of High Performance Computing (HPC) – typically
solving large simultaneous equation sets by means of finite elements
methods, tackling problems coming from metereology and fluidodynam-
ics among the others. More recently, the application of parallel com-
puting to computer graphics and the shift from fully-dedicated graphics
hardware to programmable graphic accelerators has brought this kind
of massively parallel hardware into the domain of general purpose com-
puting, and from there back into HPC.

At the same time, in embedded computing smaller-scale parallelism
has been exploited primarily to achieve energy-efficiency – e.g. through
Very Long Instruction Word architectures.

Nowadays, there is a widespread trend towards convergence between
systems targeting very different domains.

HPC systems are increasingly built using heterogeneous components
such as General Purpose Graphics Processor Units (GPGPUs), with the
goal of achieving significant gains in terms of the FLOPS/W metric – the
target power envelope for future exascale system ranges between 20 MW
and 30 MW. Such “Green” HPC systems are espected to make HPC
facilities available to a wide range of smaller-scale clients, expanding
the industrial application of HPC from a few capital intensive domains
(e.g., oil & gas, financial services) to SMEs in fields such as drug design,
mechanical engineering, and so on.

High-end embedded systems feature programmable graphics acceler-
ators. These architectures are clearly moving towards laptop- or even
desktop-grade capabilities, with applications e.g. in gaming.

Finally, ultra-low-power hardware platforms are being designed around
the concept of a fabric of numerous, very small processing elements
loosely coupled to a host processor. Such architectures target a range of
application domains that are gaining increasing traction, such as mobile
image processing for autonomous vehicles.

Heterogeneity seems to be the common denominator of these architec-
tures – combining larger cores for processing control-intensive tasks with
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smaller but numerous cores for processing data-parallel tasks allows,
through appropriate resources management, to limit energy consump-
tion while guaranteeing Quality of Service. This heterogeneity, however,
comes at a cost – programming heterogeneous platforms is all but an
easy task, since these platforms and the programming models built for
them tend to leave to the programmer the explicit management of data
allocation and communication.

Currently, industry standards such as OpenCL [50] are employed to
program heterogeneous, massively parallel platforms. OpenCL supports
functional and performance portability, albeit by exposing both to the
programmer through platform introspection capabilities – the program-
mer is in charge to read the platform capabilities and encode in his
application all the necessary logic to optimize code execution, or even
simply make it possible on a range of different platforms. Typically,
programmers tends to focus on just a set of platforms that are optimal
for their application domain, foregoing performance and even functional
portability to other classes of hardware platforms.

While this may appear sufficient for current purposes, the fast evolu-
tion of hardware platforms in all of the computing continuum may easily
mean that code written today for an HPC application may need to be
rewritten entirely, leading to a slow-down of adoption of new architec-
tures and to increased development costs.

Contributions

In this work, we tackle the abovementioned issue through a two pronged
approach. On one hand, we aim at providing improved functional and
performance portability to OpenCL code through compiler transforma-
tions for low-end parallel architectures. We believe that such techniques
will become relevant to other application domains, up to HPC, as hard-
ware approaches more commonly found in embedded systems become
prevalent in higher-scale systems to cope with the power wall. For
maximizing the performance on heterogeneous parallel architectures,
OpenCL applications are usually written in a target specific way, af-
fecting the portability the application code itself. A common source
of non-portability for embedded heterogeneous parallel architectures is
represented by hard constraints on the work-group size. In the general
case the work-items in a work-group cooperate together exploiting local
memories, thus work-groups reshaping may not be applicable. Chapter 3
shows how to transparently run OpenCL applications presenting non na-
tive work-group sizes on embedded heterogeneous accelerators. Indeed,

2



Contents

it shows a compiler transformation that introduce double-buffering in
order to exploit DMA units available on such embedded platforms.

On the other hand, we look at future parallel architectures featuring
Shared Virtual Memory, and, aiming at providing a radically simpler
programming model, we simplify host/device interaction by allowing a
fully transparent programming model, abstracting the coexistence of
multiple Instruction Set Architectures (ISA) and Application Binary
Interfaces (ABI). Chapter 4 presents a very efficient implementation of
shared function pointers on ISA-heterogeneous architectures, as well as
a transparent programming model employing full C++ support. The
function pointer support in the heterogeneous context is a key compo-
nent for exploiting the shared virtual memory mechanism. From the
programmer perspective, the proposed approach ensures the complete
sharing of both code and data between host and device. This mecha-
nism allows the full C++ support on heterogeneous systems, providing a
simpler but much more flexible programming model that allows the port-
ing of large C++ application towards the use of heterogeneous parallel
platform in a incremental fashion with a reduced programming effort,
since no strong restriction are applied to the code will be promoted to
computational parallel kernel.

The baseline for our work is provided by the Open Source OpenCL
runtime we have developed, OpenCRun, which we also describe in this
thesis.

Organization of the dissertation

The rest of this dissertation is organized as follow. Chapter 1 introduces
the world of parallel computing, from both the hardware and software
perspective. Chapter 2 presents the software architecture developed as
baseline for this work, and the contribution on the PULP platform defi-
nition in the context of ultra low-power parallel accelerators. Chapter 3
deals with the problem of portability of OpenCL application between
GPGPUs and embedded parallel accelerators. Chapter 4 discusses about
the challenges and solutions for full C++ support on heterogeneous par-
allel architectures. Concluding remarks close this dissertation.
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1 Parallel Computing

To understand the requirements imposed on future programming mod-
els for parallel computing and the gap with respect to the state of the
art, it is necessary to analyze the historical evolution of the field, as well
as the current and future trends. Therefore, we present the evolution
of hardware architectures starting from uni-processors to many-core ar-
chitectures discussing the evolution path of hardware architectures, and
the converging point of modern heterogeneous parallel architectures. We
then discuss parallel programming models for multi-cores and many-
cores architectures, pros and cons in terms of programmability of the
underlying architecture versus the ability to exploit the available hard-
ware features.

1.1 Introduction

High Performance Computing (HPC) has been traditionally the domain
of grand scientific challenges and a few industrial domains such as oil &
gas or finance, where investments are large enough to support massive
infrastructures. However, nowadays HPC has been recognized as a pow-
erful tool to increase the competitiveness of nations and their industrial
sector, including small scale but high-tech businesses – to compete, you
must compute has become an ubiquitous slogan [26].

The current road-maps [2, 85] for HPC systems aim at reaching ex-
ascale levels (1018FLOPS) within 2023 – a ×1000 improvement over
petascale, which was reached in 2009, and a ×100 improvement over
current systems. Reaching exascale poses the additional challenge of
significantly limiting the energy envelope while providing massive in-
creases in computational capabilities – the target power envelope for
future exascale system ranges between 20 MW and 30 MW. Thus, a
distinct class of HPC systems, dubbed Green HPC systems, are being
designed aiming at maximizing a FLOPS/Watt metric, rather than the
typical FLOPS one. Such systems are increasingly moving towards het-
erogeneous architectures employing GPGPUs as accelerators - in the
November 2014 Green500 list, the top 23 systems have parallel acceler-
ators. The efficiency of such heterogeneous systems is more than double
that of homogeneous ones (i.e., 5271 MFLOPS/W vs. 2304 MFLOPS/W
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1 Parallel Computing

considering the 1st and 24th entries of the current Green 500 ranking
www.green500.org). This level of efficiency is still one order of mag-
nitude lower than that needed for supporting exascale systems at the
target power envelope of 20 MW. To this end, European efforts have
been focused towards building supercomputers out of the less power-
hungry ARM cores and GPGPUs [40, 74]. On the semiconductor in-
dustry side, the wide margin provided by modern chip manufacturing
techniques, combined with the inability to exploit this silicon headroom
to produce faster, more complex cores due to the breakdown of Dennard
scaling, has given rise to a pervasive diffusion of a number of parallel
computing architectures, up to the point where embedded systems are
also characterized by multi-core processors. The large design effort has
led to a variety of approaches in terms of core interconnection and data
management. Thus, the ability to port applications designed for current
platforms, based on GPGPUs like the NVIDIA Kepler or Tesla families,
to heterogeneous systems such as those currently designed for embedded
systems is critical to provide software support for future HPC.

Designing and implementing HPC applications is a difficult art, which
requires mastering many specialized languages and tools for performance
tuning. This is incompatible with the current drive of opening HPC in-
frastructures to a much wider range of users – the current model of
having the HPC center staff directly support the development of the
application will become unsustainable in the long run. Thus, the avail-
ability of effective standard programming languages and APIs is critical
to provide migration paths towards novel heterogeneous HPC platforms
as well as to guarantee the ability of developers to work effectively on
these platforms.

In the following, Section 1.2 presents the evolution of hardware archi-
tectures starting from uni-processors to many-core ones discussing the
evolution path of hardware architectures, and the converging point of
modern heterogeneous parallel architectures, while Section 1.3 discusses
parallel programming models for multi-cores and many-cores architec-
tures, pros and cons in terms of programmability of the underlying ar-
chitecture versus the ability to exploit the available hardware features.

1.2 Hardware: evolution of computer architectures

Starting from the beginning of the Computer science, hardware has
driven the evolution of languages, programming models and software
architectures. The main goal of the evolution of hardware architectures
has been the improvement of the running time of applications. De-
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1.2 Hardware: evolution of computer architectures

pending on the application domain and the target requirements, several
strategies have been proposed.

1.2.1 Flynn’s Taxonomy

Flynn’s taxonomy [35] is a useful classification of the main directions of
the computer architecture evolution. In Flynn’s taxonomy the hardware
is modelled as a set of processing units, executing program instructions
fetched from an instruction pool employing an instruction stream. Data
is stored in a data pool, and accessed employing a data stream. The
classification considers the number of processing units and how they are
connected to the instruction and data pools.

Single Instruction Single Data (SISD) There is only a single process-
ing unit, and a single data stream. This was the architecture dominating
the general purpose market up to year 2005. Nowadays it represents a
building block for large multi-cores, and it is used in embedded low-
power devices, such as low end micro-controllers.

Single Instruction Multiple Data (SIMD) There are multiple process-
ing units executing the same instruction, and each unit fetches data from
different streams. Vector processors represent the first architecture of
this class, while GPGPUs represent the current design choice in this
class.

Multiple Instruction Multiple Data (MIMD) There are multiple, in-
dependent processing units. Each one executes instructions fetched
from different instruction streams, and fetches data from different data
streams. Modern multi-core processors fall into this category: each core
is independent, so it is possible to execute completely unrelated instruc-
tion flows manipulating independent data streams on each core.

Multiple Instruction Single Data (MISD) There are multiple process-
ing units, executing different instructions on the same data. This class
was defined by Flynn for the sake of symmetry, however basically no
architecture, save for systolic arrays is classified as MISD.

1.2.2 Single-core architectures

Until to 2005 the majority of general-purpose architectures were SISD.
The main target during this period were single-threaded applications,
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1 Parallel Computing

thus the focus in the computer architectures development was the im-
provement of the execution time of a sequential application. To this
end, the first attempt made was the implementation in hardware of
the most recurrent complex operations present in target user applica-
tions. The result of such a design trend are architectures known as
Complex Instruction Set Computing (CISC) architectures. Common
features among them are the support of complex operations and com-
plex addressing modes. However the hardware complexity required to
support such operations impacts adversely on the critical path, thus
limiting the maximum working frequency.

As a consequence of this mindset, the design criteria of computer
architectures were aimed at improving the throughput of completed
instructions, measured in terms of Instructions Per Cycle (IPC). Re-
duced Instruction Set Computing (RISC) architectures exploit better
the pipelining technique. The processing of a single instruction is split
into stages. At each clock cycle, the architecture executes all the stages
of the pipeline in parallel, thus the clock cycle is determined by the la-
tency of the slowest stage. The latency of an instruction is equivalent
to the latency of the pipeline, however the throughput is increased since
an instruction is completed at each cycle.

Pipelining exploits the parallelism between instructions in a single
execution flow – Instruction Level Parallelism (ILP) – executing them
partially in parallel while still exposing a sequential programming model.
However, the benefit of pipelining holds if and only if the pipeline is kept
full, i.e. at each clock cycle an instruction must be issued. If this is not
possible a stall is inserted in the pipeline, leading to a performance loss.
This may happen due to hazards induced by the instruction sequence.
There are three kind of hazards: control, data, and structural. A con-
trol hazard is generated whenever the address of the next instruction is
not ready as an input to the fetch stage. A data hazard is generated
when data needed by an instruction are not available yet. A structural
hazard is triggered when all hardware resources required to execute an
instruction are not free.

To reduce the effect of hazards, several techniques were proposed:
cache hierarchy, pipeline forwarding, super-scalar pipelines, VLIWs, spec-
ulative execution, out-of-order execution [84], branch prediction [91]. In
order to increase the clock frequency pipelines have been split in mul-
tiple stages (e.g. with the last Intel Pentium 4 being designed with a
31-stages pipeline). However, the intrinsic limitation of the ILP [88] in a
single instruction stream acts against advanced and complex techniques
when considering the performance gains versus the power and silicon
costs. This increased power consumption also prevents further increases
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1.2 Hardware: evolution of computer architectures

of the clock frequency, as that would also worsen the the dynamic power
consumption issue. Indeed advanced techniques to minimize the amount
of stalls inserted in the pipeline require complex logic, often contribut-
ing more than a clock increase to the overall power consumption. This
problem is generally identified with the term power wall [18].

Orthogonally, cache hierarchy is used to amortize the cost of accessing
data in memory, however feeding the processor with instructions to be
executed, and data to be computed at each clock cycle is still an issue.
The inability of the memory hierarchy to fulfill the data requests is
identified with the term memory wall [89].

1.2.3 Multi-core architectures

Hitting the power wall forced architecture designers to move towards
other strategies beyond ILP to improve the overall performance and
reduce the power consumption.

To enclose the power consumption, designers removed power-hungry
components required by aggressive ILP techniques. Pipelines became
shorter, the issue width narrowed, and static scheduling with in-order
execution was preferred on low power designs. These design criteria do
not necessarily imply that we cannot execute more complex applications.
At the same time, such simpler designs fit better the emerging figures
of merit, such as the power consumption, and power/energy efficiency.
However, some applications still require raw performance. For example
HPC applications need faster processors to perform more accurate sim-
ulations. Computer-graphics is another field where raw performance is
a stringent requirement.

To provide raw performance, techniques beyond pure ILP have been
employed. Moore’s law is still in effect, increasing each year the number
of transistors that can be packed in a given amount of silicon area, thus
allowing the implementation of new techniques to improve performance.

Starting from 1995, computer architectures contain explicitly parallel
features. Vector instruction set extensions [30, 73] are a good example
of this trend. This concept is borrowed from vector processors, the idea
is to have instructions operating on fixed length vector types.

The trend of exposing hardware parallel features reached the critical
point around 2005. Starting from 2002, Simultaneous Multi Threading
(SMT) designs (e.g. Intel Hyper-Threading [61]) have been employed
to allow the execution of more than one independent execution flow.
Pipeline stalls due to hazards in one execution flow are used to execute
another execution flow.
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Figure 1.1: Quad-core SMP UMA architecture.

The evolution of this approach is Symmetric Multi Processing (SMP)
design, were multiple independent processing elements are explicitly ex-
posed. This technique, initially exploited at multiple package level – i.e.
installing more than one single-core processor on the same motherboard
–, has been widely applied at the single package level – i.e. putting more
than one core on the same die – starting from 2005. This new design
strategy leads to architectures that can be classified as MIMD in Flynn’s
taxonomy.

The problem of feeding processors with data is orthogonal to the power
problem. However the same techniques can be useful to deal with the
memory wall. On SISD architectures there is an unique path for access-
ing the main memory – all accesses go through the memory controller.
The primary measure of its efficiency is the bandwidth, that is the amount
of bytes it can transfer from/to the memory per time unit. To increase
this amount, the memory controller has been integrated in the same die
on which the CPU resides. It works closely with the cache hierarchy,
and they are responsible for ensuring memory consistency. Considering
that the memory access latency and bandwidth do not evolve like the
performance of the core, the memory controller becomes rapidly a bot-
tleneck of the architecture. Moreover, the increasing number of cores
per die imposes a further load on the memory controller due to the fact
that it has to provide data for all of them.

Architectures where the memory access latency is constant among all
processors are called Uniform Memory Access (UMA). When an access
to the main memory is generated, the cores send a request to the memory
controller. The communication between cores and memory controller
is a shared bus. Figure 1.1 shows the structure of a quad-core UMA
architecture.
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Figure 1.2: Quad-core SMP NUMA architecture.

This design, however, does not scale well increasing the number of
cores. To remove the bottleneck, the number of paths to the main mem-
ory must be increased. Each core can have its own memory controller,
directly connected to a different memory module. In this scenario, a
memory access can be local – i.e. a memory request satisfied by the
private memory controller – or remote – i.e. a memory request thus
satisfied by the memory controller of another core. This choice makes
the access latency dependent on which core performs the memory re-
quest and on which memory module contains the data. On the other
hand, the overall bandwidth is increased. This kind of architectures are
called Non Uniform Memory Access (NUMA). A NUMA node is com-
posed by the code, the cache hierarchy, the memory controller, and the
local memory module. The communication channel between nodes is
generally an interconnect network. Figure 1.2 shows the structure of a
quad-core NUMA architecture.

UMA designs are used in small multi-core architectures, while NUMA
designs are used whenever the number of cores grows beyond the practi-
cal scalability limit for the UMA approach. Hybrid designs are generally
adopted, e.g. Intel QuickPath Interconnect [46] based multi-core show
in Figure 1.3. In these multi-cores we have groups of cores. Each group
has one integrated memory controller. Groups of cores are connected
via a point-to-point interconnect.

The advances of semiconductor technologies, according to Moore’s
law, allow in principle to pack more cores in the same die area. In
practice this is not true for the breakdown of Dennard scaling law –
i.e., constant power density reducing the size and voltage of transistors.
Shrinking the transistors leads to an increment in the power density,
and consequently the temperature of the silicon itself. It becomes an
issue to keep the entire silicon die to a proper working temperature,
thus not all the transistors can be powered on at the same time. The
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Figure 1.3: Intel QuickPath Interconnect architecture. In (a) is shown the
Nehalem architecture. In (b) the interconnection through point-to-point links
of four Nehalem processors.

transistors that cannot be powered at a given time instant are defined
as dark silicon [33].

As a consequence of the dark silicon problem, it’s not feasible to in-
crease unconditionally the number of cores, as a thermal runaway phe-
nomenon would ensue. Because of this, multi-core designs are mov-
ing towards heterogeneous architectures, in order to better employ the
available silicon, and create better power efficient multi-cores. The Cell
Broadband Engine [42] is one the first heterogeneous multi-core archi-
tectures. It is composed by a Power Processor Element (PPE) and eight
Synergistic Processing Elements (SPEs). These are linked toghether by
a high speed bus. The SPEs are optimized for single precision floating
point computation. The PPE is based on the PowerPC architecture, a
two way multithreaded core acting as a controller for the SPEs. Each
SPE is composed of a Synergistic Processing Unit, and a Memory Flow
Controller (DMA, MMU, and bus interface). The SPU instruction set is
characterized by 128 bit vector floating point instructions. Indeed each
SPE contains 256 KiB of SRAM for instruction and data.

The big.LITTLE [8] architecture designed by ARM is another example
of heterogeneous multi-core. Unlike the CellBE architecture all the cores
implement the same base instruction set. The multi-core is composed by
4 high performance Cortex-A15 cores, and 4 power efficient Cortex-A7
cores.

1.2.4 Many-core architectures

As a consequence of the power wall, processors do not scale anymore
towards higher frequencies. The major trend goes to the integration
of more cores per chip. Architecture designs considering a large num-
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ber of cores are generally called many-cores architectures. We refer to
heterogeneous many-cores architectures whenever different kind of cores
are involved. These architectures fit well applications where the same
computation is performed independently on a huge set of input data.
Examples of such application are N-Body simulations, PDE solvers, and
high-end computer graphics such as animation rendering.

For such workloads the most important figure of merit is the through-
put rather than the latency. To this end, considering the trade-off be-
tween number of cores, their complexity, and the total power budget,
increasing the number of cores has turned out to be the best choice.
To manage the power wall and the dark silicon issues, the trend is to
balance the number of cores versus their complexity, and to reduce the
clock frequency of the cores.

General Purpose GPUs computing

The first kind of many-core architecture is represented by Graphic Pro-
cessing Unit (GPU) architectures. Starting off in 1999 with NVIDIA’s
GeForce 256 [67], graphics rendering started to be offloaded on graph-
ics board. Graphics hardware evolved towards stand-alone processors
becoming able to completely replace and outperform general purpose
CPUs for complex graphics operations.

GPU architectures focus on performing large numbers of mostly in-
dependent operations on vertices, and triangles, composing a scene to
be rendered. The affinity with general purpose massive parallel appli-
cations leaded to General Purpose GPU s, where typically computation-
ally intensive parallel tasks are offloaded to exploit the parallel hardware
features. In June 2007 NVIDIA released the first version of CUDA –
Computed Unified Device Architecture – as parallel computing platform
working on Tesla micro-architecture.

Modern GPGPU architectures are composed by an array of computa-
tional units, i.e. Stream Multiprocessors for NVIDIA or Compute Units
for AMD. These architectures can be classified as SIMD machines in the
Flynn’s taxonomy.

NVIDIA Fermi Stream Multiprocessor is composed by 32 cores –
Stream Processors – containing an integer ALU and a floating point
unit each, 16 load/store units, 4 special function units, a shared register
file of 32k registers, and 64 KiB of shared memory [66]. The execution
unit of a Stream Multiprocessor is called warp, that is a group of 32
threads. In a NVIDIA Fermi SM there are 2 warp-schedulers and 2 dis-
patch units. The dispatch unit sequentially feeds all the 16 cores with
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Figure 1.4: NVIDIA Fermi architecture. In (a) the architecture of a Fermi
SM, while in (b) the global architecture of a Fermi GPGPU.

an instruction for the selected warp as depicted in Figure 1.4. The result
is that the 16 cores work in a step locked fashion.

AMD GCN Compute Unit [5] is composed by a 4 independent SIMD
units 16 element wide, a scalar unit, a branch and messages unit, and
64 KiB of shared local memory as depicted in Figure 1.5. Each SIMD
unit has 64 KiB of registers, while the scalar unit has 8 KiB registers
partitioned in 512 entries for each SIMD unit. The execution unit is
called wavefront, that is a group of 16 threads – i.e. one for each SIMD
lane. Each SIMD unit can hold up to 10 wavefronts. The scalar unit
is used to support control flow instructions, including jumps, calls, and
returns. Indeed, predication for vector instructions is managed by the
scalar unit.

Standalone many-core architectures

Apart from GPGPUs, that were designed to accelerate specifically graphic
tasks, and subsequently have been adapted to support also general pur-
pose computation, proper many-core architectures designed for comput-
ing have been proposed starting from 2007.
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Figure 1.5: AMD GCN architecture. In (a) the architecture of a single GCN
core, while in (b) the global architecture of a AMD GCN graphic processor.

Tilera TILE64 released in 2007, it consists of a mesh network of 64
tiles [14]. Each tile is composed by a general purpose core, L1 and L2
caches, and a non blocking router used for communication with other
tiles. Figure 1.6 shows the tiled architecture of TILE64. Each core is
a 3-way VLIW architecture, with two integer ALUs and a load/store
unit. The running frequency of the system is ranging from 600 MHz to
900 MHz.

Intel 80-core Teraflops Research Processor presented in 2007, is a
tiled architecture [86] similarly to TILE64. Each tile is composed by
two single precision FPMAC units, 3 KiB of instruction memory, and a
5 port router for 2D mesh and 3D stacking. The project investigated
inter-core communication methods, per-chip power management, and
achieved 1.01 TFLOPS at 3.16 GHz consuming 62 W of power. This chip
has never been a product, but from this research in 2009 Intel presented
the Single-Chip Cloud computer [43]. This processor contains 48 P54C
Pentium cores connected with a 2D mesh. Each tile contains 2 cores,
and a router.

Intel Xeon Phi is the brand name of Intel Many Integrated Core [31]
architectures. In 2010 Intel presented the first prototype – codename
Knights Ferry. The first commercial version of the MIC architecture –
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codename Knights Corner (KNC) – was released in 2011, and started
being employed in HPC systems. The KNC is composed by 60 small
in-order execution x86 cores. Each core has 64 KiB L1 cache, 512 KiB
L2 cache, and a 512 bit wide vector unit. As shown in Figure 1.7a,
the cores are connected through a 512 bit bi-directional ring bus. L2
caches are kept fully coherent by a global distributed tag directory. The
peak performance of KNC is ∼1 TFLOPS double precision consuming
300 W. In 2013 Intel presented the second generation of Xeon Phi –
codename Knights Landing (KNL). The KNL is composed by up to 72
cores, structured in 36 tiles, connected through a 2D mesh intercon-
nect rather than the previous ring bus, as shown in Figure 1.7b. The
cores are based on the Silvermont architecture: 4 threaded, out-of-order
execution, two 512 bit vector units, supporting almost the entirety of
the common Xeon ISA. The peak performance of KNL is ∼3 TFLOPS
double precision consuming 300 W.

Power-efficient many-core architectures

GPGPU architectures have been employed in HPC systems since their
beginning. Their massive peak performance come at a cost of a con-
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Figure 1.7: Xeon Phi architectures. In (a) the Knights Corner architecture,
while in (b) the Knights Landing architecture.

siderable power consumption (150 W to 200 W for a single GPGPU).
As reported in Section 1.1, the current HPC road-maps aim to reach
exascale levels (1018FLOPS) within 2020, which poses the challenge of
limiting significantly the overall power budget while providing a massive
increases in computational capabilities. In particular the target power
budget for future exascale systems ranges between 20 MW and 30 MW.
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The best system of The Green500 list of November 2014 reach a power
efficiency of 5271 MFLOPS/W which is still one order of magnitude
lower than the efficiency needed for supporting exascale systems within
20 MW.

Because of this designers are looking for alternative, more power effi-
cient solution to many-core architectures. Nowadays are becoming more
interesting designs from embedded architectures where the power effi-
ciency is a primary goal from long time, while the performance require-
ments is constantly increasing.

Three interesting architectures are Kalray MPPA-256 [28], STMicro-
electronics STHorm [16], and PULP [23].

Kalray MPPA-256 released at the end of 2012, is a clustered archi-
tecture of 16 clusters of cores interconnected through an explicitly ad-
dressed Network-on-Chip (NoC). The NoC is a 2D-wrapped-around torus
structure providing a bandwidth up to 3.2 GiB/s between adjacent clus-
ters. Indeed a quality of service mechanism is used to guarantee pre-
dictable latencies for all data transfers. Each cluster is composed by 16
cores as processing elements, one system core, 2 MiB of shared memory,
a DMA unit, L1 instruction and data cache, and the NoC interface. Each
core is a 5-issue VLIW architecture with one branch unit, two ALUs,
one load-store unit with a reduced ALU, double precision FPU with
FMA, and private MMU. The architecture provides a power efficiency
of 23 GFLOPS/W at 400 MHz consuming typically 10 W.

STMicroelectronics STHorm – also known as P2012 – is an hetero-
geneous many-core architecture where the host processor is a dual core
ARM A9 paired with a fabric used as accelerator. The fabric is a clus-
tered architecture composed by 4 clusters connected through a global
asynchronous NoC. Each cluster is composed by 16 cores as processing
elements, one core as cluster controller, 256 KiB of L1 shared memory,
and dual channel DMA unit. Each core is an STxP70, an extendible core
designed by STMicroelectronics. On P2012 each core is extended with a
floating point unit. The core is a 2-issue VLIW with DSP oriented ISA.
Barrier operations intra-cluster are implemented in hardware. Indeed,
there is one extra core – i.e. fabric controller – used as coordinator for
all the clusters on the fabric. At fabric level there is also 1 MiB of L2
shared memory across all the clusters. Indeed within cluster dedicated
IPs can replace the general purpose core to accelerate specific functions.
The cores within a cluster are connected to the shared memory through
a logarithmic interconnect. The fabric can access to a portion of the
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main memory of the host processor. DMA units are useful to imple-
ment asynchronous data transfer between memories. The fabric with 4
clusters provides a peak performance of 80 GFLOPS (single precision)
consuming 500 mW per cluster at a frequency of 600 MHz.

PULP Platform – the Parallel Ultra-Low Power Platform – is a on go-
ing project developed by ETH Zurich and Università di Bologna under
the lead of Prof. Luca Benini, the chief architect of P2012. The design
of such platform is inspired by the results of P2012. However the tar-
get of this platform are ultra-low power embedded systems. Each core
is an OpenRISC architecture based on the opensource OR1200 micro-
architecture. The idea was to replace the proprietary STxP70 cores
with smaller but more power efficient ones. To this end, the micro-
architecture has been optimized, and the ISA has been extended to add
DSP-like features to improve the performances (more details in Sec-
tion 2.3). The fabric is composed by a single cluster of 4 cores. Within
the cluster there are also 48 KiB of TCDM, 256 KiB of L2 memory, and
a dedicated DMA unit. All the cores within a cluster are attached to a
4 KiB shared instruction cache. PULP version 3 has been implemented
using ST28 FDSOI technology with RVT transistors. The maximum fre-
quency is 66 MHz with a power supply voltage of 0.6 V. In such condition
the consumed power is roughly 1.59 mW. Another implementation using
UMC65 technology reaches the maximum frequency of 362 MHz and is
capable of processing 1.4 GOPS at a power budget of 93 mW.

1.2.5 Future perspective

It is clear the hardware evolution trends is converging towards many-
core heterogeneous architectures. The limits in scaling with huge and
complex cores, and the increasing emphasis on the power consumption
moved the interests of architectures designers in architectures with a con-
siderable amount of cores with different features and complexity. Many-
core architectures started with GPU designs, where a great number of
simple cores is employed to execute a single instruction flow on multiple
independent data. However the interest in irregular parallel problems
has shown limitations of such architectures. This is leading towards hy-
brid architectures, i.e. a mix of multi-cores and many-cores, where the
complexity of each core is increased to better fit irregular control-flows
and non predictable data access patterns. Indeed the current trend is
moving towards integrating such cores in the same die area to reduce
the cost of communication between heterogeneous cores. An example of
such trend is the introduction of shared virtual memory between CPU
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and GPUs, e.g., the HSA Foundation [44] requires all the agents to share
the same virtual address space. Once the decision of integrating general
purpose CPUs and GPU cores on the same die, it is feasible, and much
desirable, to interface them with the same main memory. Indeed to
simplify the programmability and to remove the overheads due to use-
less memory transfers, it is interesting to make CPUs and GPUs share
the same virtual address space similarly to what already happens within
modern multi-cores. This is currently a challenge considering the goal to
have transparent coherency between cache hierarchies of both CPUs and
GPUs. The OpenCL 2.0 programming model exposes this feature to the
programmer in two forms: coarse-grain SVM and fine-grain SVM. The
former is the minimum requirement where at least explicitly allocated
buffers can be shared between CPUs and GPUs, and are kept coherent
at given synchronization points. The latter is optional as it requires
that the whole address space to be shared, and must be coherent also
on atomic operations. Modern GPU architectures implement only the
coarse-grained model of SVM, as it can be implemented without the
need for support for lazy page loading, i.e. no page-fault exceptions,
and without the support for cache coherency protocols, because the co-
herency must be ensured only at given synchronization points, thus this
can be enforced by the software runtime. The fine-grain SVM model
requires much more hardware support still not available. However the
fact that such features have been introduced in programming models
suggests that in the near future the hardware will move towards provid-
ing them.

1.3 Parallel programming models

Exposing the control of parallel hardware features to the programmers
allows architecture designers to increase the overall architecture perfor-
mance. However this makes the task of programming these architectures
much more complex.

To take advantage of parallel processing elements there are two pos-
sible approaches: implicit and explicit techniques.

Implicit techniques aim to hide as much as possible the details of the
target architecture from the programmer perspective. The actual ex-
ploitation of parallelism is achieved transparently at run-time or compile-
time. For example ILP exposes to the programmer a sequential program-
ming model, while the actual execution may be performed in parallel.
In an out-of-order architecture ILP acts at runtime dynamically iden-
tifying independent instructions, and executing them in parallel using
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different functional units. At the other end of the architecture design
spectrum, in a VLIW architecture the compiler is in charge of scheduling
instructions to exploits the different functional units available.

Explicit techniques, instead, expose the hardware parallelism to the
programmers. This allows developers to have a greater control on the
mapping of the application on the hardware. On the other hand, it
becomes the programmer’s responsibility to identify and map the parts
of the application which can be efficiently parallelized. To this end
explicit parallel programming models are needed.

A programming model is the description of an abstract architecture
used as reference architecture to describe how computation is performed.
The concepts of a programming model are strongly connected with the
class of hardware architectures it targets. Parallel programming models
are built around the concept of multiple execution flows. The ways
multiple execution flows may interact with each other are determined
by the programming model rules, and generally depend on the hardware
features available.

How a given computation on a data set is mapped on multiple ex-
ecution flows determines the nature of the parallelism: the two base
approaches are named data and task parallelism.

Data parallelism partitions the input data set mapping the processing
of each chunk to an execution flow. All the execution flows are fed by the
same instruction stream but compute on different data streams. This
computational model fits SIMD class of Flynn’s taxonomy.

It fits also extensions of this class, like Single Instruction Multiple
Thread (SIMT) – the same instruction is executed by different cores in
a step-locked fashion – and Single Program Multiple Data – the same
program is executed by different cores on different data but the threads
are independent. It is often said that an application suitable for a data-
parallel programming model exhibits a regular behaviour : not control
intensive, with a large number of operations often on large arrays ac-
cessed with fixed strides.

Task parallelism partitions the computation in independent tasks map-
ping each one to a different execution flow. The task is the unit of par-
allelism. A parallel computation is originated by the creation of new
tasks. The act of creating a new task is called spawning. Spawning a
task represents the intent of execute the task in parallel with the cur-
rent execution flow. Synchronization between tasks is usually achieved
by joining : a task can wait for the termination of another task before
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moving on with its execution. The relationships between tasks can be
represented by means of a task-graph. Each node in the graph is a
spawned task. Arcs between nodes can be either spawning actions or
joining actions. This computational model fits MIMD class of Flynn’s
taxonomy and its extensions such as the Multiple Program Multiple Data
(MPMD). This model is said to be suitable for applications with an ir-
regular behaviour : they are generally control-intensive, accessing data
in a non predictable way.

In the following, a brief overview of the most adopted parallel pro-
gramming models suitable for programming of multi-core and many-core
architectures, and a comparative analysis of the interesting features of
such programming models is provided. This analysis aims to highlight
modern trends of parallel programming models illustrating the different
approaches to express the parallelism exploiting the available hardware
features.

1.3.1 Overview

Several programming models and frameworks have been proposed in
the literature for programming parallel and heterogeneous architectures.
The interest in this chapter is towards the most adopted programming
models for multi-cores and many-cores architectures. Programming
models for distributed systems, such as MPI and PGAS models, are
not discussed as they lie beyond the scope this overview. The selected
programming models are OpenCL [50], CUDA [65], OpenMP [6], Ope-
nACC [70], Codeplay Offload [24], C++AMP [64], SYCL [53], Cilk [36],
Intel TBB [25], StarSs [15, 19], SkePU [32, 10], and some DSLs.

OpenCL is a framework for programming parallel heterogeneous plat-
forms. The architecture of the OpenCL platform, shown in Figure 1.8a,
is composed by an host connected to one or more devices. Each de-
vice is composed by one or more compute units. Each compute unit is
composed by one or more processing elements.

An OpenCL application is generally split into two parts: the host
program, and the kernels for the devices. The kernels represent the
computation executed on the devices. The host program defines the
context for the kernels and manages their execution.

The OpenCL execution model describes how kernels are executed.
When a kernel is submitted to a device for execution by the host, an
index space is defined. An instance of the kernel executes for each point
in the index space. This kernel instance is called work-item and it is
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Figure 1.8: The OpenCL platform. In (a) the relationship between host and
devices, and the structure of a device, while in (b) the memory hierarchy within
a generic device.

identified by its position in the index space. Work-items are organized in
work-groups. The work-groups are the result of a tiling process onto the
index space. The work-items in a given work-group execute concurrently
on the processing elements of a single compute unit. A barrier operation
is indeed defined between the work-items in a given work-group.

There are four distinct memory regions in OpenCL, illustrated in Fig-
ure 1.8b. The global memory can be accessed by all the work-items in
all the work-groups. The constant memory is specialization of global
memory for constant data. Both constant and global memory can be
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accessed by the compute units through a cache hierarchy. Each com-
pute unit has a dedicated local memory, that is a shared memory space
between work-items in a given work-group. The private memory is used
for private variable of each work-item.

The OpenCL execution model is suitable for both data-parallel and
task-parallel approaches. However the execution model fits better data-
parallelism .

The host-program and the OpenCL kernels are expressed in different
languages. The OpenCL runtime has a standardized set of C APIs.
The runtime offers full control on the management of memory buffers
allocation, and the execution of kernels across the devices. OpenCL
kernels are described through the OpenCL-C programming language.
This language is a restriction of C99 language (e.g. no recursion, no
variable length array) plus some extensions to support vector types and
builtin functions.

OpenCL claims functional portability of an application, as the pro-
gramming language for the kernels is target independent. However it is
still possible to write code for specific targets relying on implicit knowl-
edge of the underlying architecture. This freedom is useful to extract
more performance from the underlying parallel hardware, however it
limits the portability of the code itself.

OpenCL 2.0 introduced some new features, such as the support to
shared virtual memory between host and devices, the generic address
space, and the support for dynamic parallelism, i.e. the possibility of
“spawning” new kernels on a device with no needs for host interaction.

CUDA is the programming framework of NVIDIA for its GPUs. Al-
most all the key concepts are the same as in OpenCL. In the CUDA par-
lance work-items are called threads, and work-groups are called blocks.
The memory model is equivalent to the OpenCL 2.0 one.

The main differences resides in the interface to the programmer. In
particular, CUDA allows to specify the host program and kernels in a
single translation unit. The CUDA programming language is an ex-
tension to C/C++ with attributes for tagging functions that must be
compiled only for the device, for tagging variables with the appropriate
address space modifier. Indeed a new syntax to invoke kernels from the
host part of the program is provided.

OpenMP is a programming framework for multi-cores. It consists of
a set of compiler directives, library routines, and environment variables.
It is available for C, C++, and Fortran. OpenMP follows the fork-join
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Parallel task 2

Parallel task 3

Figure 1.9: Fork-join model. The execution path of the master thread is high-
lighted in grey. On the top of the picture the sequential execution flow, where
only the master thread is active. On the bottom of the picture the parallel
execution flow, where the master thread forks to generate worker threads to
execute the tasks in parallel, and joins them to synchronize.

model, show in Figure 1.9. The program starts with a single thread
called master-thread. At the beginning of a parallel region, the master
threads creates – forks – a team of parallel worker threads. An instance
of the parallel region body is executed by all threads. At the end of the
parallel region all the threads synchronize, and join the master thread.

Using OpenMP both task-parallelism and data-parallelism strategies
can be implemented. The compiler directives are used to describe par-
allel sections and whether some variables are shared or private. These
directives are platform independent, allowing an high degree of portabil-
ity. Furthermore, it enables incremental parallelism as ideally only ad-
ditional compiler directive should be added to enable parallel execution
of a piece of code. However synchronization bugs and race conditions
may occur. Starting with OpenMP 4.0 it is possible to offload parallel
regions to accelerators such as GPGPUs.

OpenACC is a programming framework for parallel computing that
targets CPU-GPGPUs heterogeneous architectures. Similarly to OpenMP
it is based on compiler directives to describe parallel regions, and man-
age data movement from/to the GPU memory. Like OpenMP, it sup-
ports C, C++, and Fortran programming languages. It is common for
an OpenACC compiler to emit OpenCL/CUDA code (or equivalent in-
termediate representations such as SPIR) for the kernels, and rely on
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vendor specific OpenCL/CUDA drivers to offload the computation on
the GPUs.

Codeplay Offload is programming model for both homogeneous and
heterogeneous multi-core processors such as the Cell Broadband Engine.
It allows to offload portions of large C++ applications to be run on ac-
celerator cores. The code that must be offloaded is wrapped in a offload
block, indicating that the code should be compiled for an accelerator,
and executed asynchronously as a separate thread. The main point is to
ensure the portability across heterogeneous and homogeneous platforms,
and relieve the programmer from the burden of writing data movement
and accelerator setup code.

C++ AMP is programming framework that extends C++ to support
data-parallel computation on parallel accelerators like GPUs. The initial
implementation by Microsoft was targeting DirectX 11 drivers. It has
been extended to target both OpenCL and HSA compliant platforms.
C++ AMP is based on the C++11 language and introduces function
modifiers to specify the fact a function should be compiled for the de-
vice or not. The codebase of kernels is expressed using lambda func-
tions as arguments to the parallel for each template function. The
data access by kernel code can only be done throughout the array and
array view wrappers. These wrapper are used as proxy for data that
must be transferred on the accelerator. Although the base language is
C++, the code constructs which can be employed within a kernel are
constrained to match the requirements for offloading the computation
using existing OpenCL drivers.

SYCL is a programming framework built on top OpenCL. It allows to
specify a parallel program exploiting OpenCL devices in a single C++
source. Kernels are expressed similarly to C++AMP through a lambda
function as a parameter to the parallel for template function. This
function takes as input the work-item identifier, and access global and lo-
cal data through accessor objects captured by value. The accessors acts
like a proxy for data that must be transferred on the accelerator. The
SYCL compiler identifies kernels, generates OpenCL code (or equivalent
intermediate representations like SPIR). The SYCL runtime is respon-
sible for wrapping the OpenCL driver in order to offload kernels on the
accelerator. The SYCL compiler is responsible for auto-deducing ad-
dress spaces of variables in the most common cases, however the explicit
pointer classes can be used to indicate the belonging of a given memory
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1.3 Parallel programming models

region to a specific address space. A SYCL program is valid C++ pro-
gram that can be compiled by any C++ compliant compiler, and can be
executed on the host as fallback for platforms with no OpenCL support.

Cilk/Cilk++ are general purpose programming language designed for
multi-threaded parallel computing. They are based on C and C++
languages, and they extend these with constructs to express parallel
loops and spawn/join tasks. Indeed they simplify the syntax for array
operations to help the compiler to effectively vectorize the operations.
The task scheduler in Cilk uses the work-stealing policy to balance the
workload across the cores.

Intel TBB is a C++ template library intended to support task par-
allelism on multi-core processors. Tasks are scheduled using the work
stealing policy like in Cilk. It is composed by generic algorithms (such as
parallel for, parallel reduce), concurrent containers, scalable mem-
ory allocators, mutual exclusion primitives, and a task scheduler.

StarSs is a programming framework developed at Barcelona Super-
computing Center. It is directive based like OpenMP and OpenACC,
it targets multi-core and heterogeneous accelerators. The directives are
used to express data dependencies between tasks. These are organized
in a task-graph according to their data dependencies. Task with no
predecessors represent ready tasks. The runtime moves them from the
task-graph to the ready queues of worker threads. Data dependencies
refer to memory locations, expressed as base address and size. An input
dependency represents a location that is read by the task. An output
dependency a location that is written by the task. An input/output
dependency represents a location read and written by the task.

SkePU is C++ template library of “skeletons”. A skeleton is a pre-
defined, generic component such as map, reduce, scan, farm, pipeline,
etc. that implements a common specific pattern of computation and
its data dependencies. Skeletons provide an high degree of abstraction
and portability, as their implementations encapsulate all low-level and
platform specific details, such as parallelization, synchronization, and
communication. It supports multi-cores and multi-GPUs systems both
with OpenCL and CUDA. It implements an auto-tuning framework for a
context-aware dynamic selection of the expected fastest implementation
variant of each skeleton. Indeed it ca be integrated with the StarPU run-
time system. StarPU is a task programming library for heterogeneous
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architectures, it manages automatically all the data transfers between
devices.

Domain specific languages are employed to simplify the specification
of algorithms and programs relative of a given application domain. They
generally are high-level languages that completely hide the detail of the
target architectures. Such approaches to parallel programming can be
very effective for those domains where applications have intrinsic par-
allelism. Some examples are the fields of image processing, computer
graphics, streaming applications, linear algebra, and graph analysis. The
use of high-level languages gives the programmers the ability to express
the target application in a natural way for the given domain. The com-
pilers for DSLs can exploit the properties derived by the application
domain to generate more efficient code for multi-cores and accelerators.

StreamIt [83] is an example of DSL for streaming applications. A
StreamIt application is the composition of filters. These can be con-
nected in cascade to generate a pipeline, or through special nodes, split-
ter and joiner, for splitting/joining the data stream on several parallel
filters.

GLSL – OpenGL Shader Language – is a domain specific language
for computer graphics [72]. This language allows the specification of
graphics shaders to be executed by GPUs.

Writing a DSL with the relative compiler is not a trivial task. There
exist frameworks that simplify the implementation of a DSL compiler,
like Delite [82] and Pencil [12]. These frameworks provide a platform-
neutral intermediate representation for DSLs.

1.3.2 Comparison

The aforementioned programming frameworks cover most of the ap-
proaches to write program for parallel architectures. Interesting dimen-
sions of analysis are the following:

• Abstraction Level, the degree of detail exposed to the programmer
to expressthe parallelism. This aspect is important in terms of pro-
grammability because more details explicitly under control of the
programmer, on one side they imply the possibility of fine-tuning
the mapping onto specific target architectures, while on the other
side limit the portability the application as the parameters value
are inherently target specific. An high abstraction level ensures a
high degree of portability as all the details of the architecture are
hidden from the programmer.
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• Parallelism flavor, the ability to express data or task parallelism.
While data-parallelism has been the first kind of investigated par-
allelism, task-parallelism is becoming much more interesting as
also irregular applications are moving towards heterogeneous ar-
chitectures.

• Heterogeneity, the ability to target heterogeneous parallel archi-
tecture, thus suitable for modern many-cores.

• Extended Language, whether the parallelism is expressed by means
of extensions to the base language. Solutions employing language
extensions are less portable as an extended compiler is needed,
while a pure library based approach is immune to this issue. On the
other side the use of an extended compiler gives more opportunities
to accurately optimize the generated code.

• Elision property, this feature implies the fact that if the features
introduced by a language extension are ignored, the resulting pro-
gram is a correct sequential version of the parallel program. This
property is useful for testing purposes and to ensure compatibility
of the source code with platforms where such extensions are not
available.

• Data management kind, whether data moves are under the ex-
plicit control of the programmer or are implicitly managed by the
compiler/runtime system. This an important part related to the
abstraction level.

Table 1.1 shows the classification of the analyzed programming frame-
works. Almost all the frameworks support both data and task paral-
lelism, even if few of them, e.g. OpenCL, are biased towards data par-
allelism. Most of them support heterogeneous architectures confirming
the trend towards heterogeneous parallel architectures.

OpenCL, CUDA, and with a lower degree SYCL and C++AMP are
classified as low/mid-low level of abstraction programming framework
because the programmer is either required or allowed to specify how
to map a data-parallel computation onto a given device. In particular
for OpenCL and CUDA, the programmer is also responsible for data
transfers between host and accelerators increasing the boiler-plate code
required and the complexity of programming for such parallel accelera-
tors.

Frameworks based on compiler directives such as OpenMP, OpenACC,
StarSs offer a high degree of portability, as their directives should be
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1.4 Conclusion

target-independent. This is a lightweight approach to integrate par-
allelism annotations within pragmas or comments. However directives
for offloading the computation to parallel accelerators may present pa-
rameters that depend on the specific knowledge of target architecture,
limiting the portability of such approach.

A more intrusive way to express parallelism is to extend existing pro-
gramming languages such as C, C++, or Fortran to support parallel
constructs. This allows for a better integration of such constructs while
keeping the quantity of new notions to learn for the programmer at
minimum. The compiler for such languages is in charge of lowering such
constructs in the best possible manner, on a runtime layer that exploits
parallel hardware features. When dealing with language extensions a
desirable property is elision. Cilk/Cilk++ ensure this property, while
C++AMP does not. Directive based extensions such as OpenMP, Ope-
nACC, and StarSs ensure the elision of the directives that are added on
the sequential version of the program.

On the other hand, SYCL acts like a C++ library, thus not extending
the language. However it relies on compiler modification for the genera-
tion of parallel code targeting OpenCL devices. This implicitly ensures
the elision property as the language, from a syntactical and semantic
point of view, is just pure C++ with a fallback implementation to be
used whenever the code is compiled with a standard C++ compiler.

Data management is another critical point with respect to the pro-
grammability of heterogeneous architectures. High-level approaches hide
the data management to the programmer. This solution reduces the
programming effort, however the runtime system must properly handle
data buffers. When a compiler is used to generate parallel code, it may
optimize the data movements reducing the communication overhead.

The main weakness of DSLs is the inherited limitation to the given
domain, thus the specific solutions may not be applicable to other do-
mains. On the other hand, a DSL ensures the most compact and natural
representation of a program, allowing the compiler to apply domain spe-
cific optimizations, thus leading to a more efficient generated code for
parallel accelerators.

1.4 Conclusion

The analysis of the evolution of hardware architectures tells us that
architecture designs are converging towards heterogeneous many-cores,
that seem to be the path to exploit as much as possible the silicon area
available with the current semiconductor technologies. Such architec-
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tures are characterized by a large number of different cores, generally
with a few complex cores coupled with several simpler ones used to ac-
celerate parallelizable computations.

The programmability of such architectures is still a complex task since
a great portion of the hardware features are directly exposed to the
programmers. Programming frameworks trying to hide such complexity
exist, but either they are either sub-optimal with respect to hand tuned
implementations, or constrained to specific domains.

OpenCL is the de-facto standard for programming heterogeneous par-
allel architectures. With OpenCL programmers have full control on the
mapping of the parallel computation onto the hardware, and the interac-
tion between host and accelerators. Even if OpenCL applications should
be portable, it is still possible to write non-portable target specific code
with respect to both functionality and performance. Under these con-
ditions, the problem of porting applications between different platforms
cannot be automated, and requires a significant re-engineering effort. It
is interesting to understand whether it possible to mitigate this prob-
lem, allowing programmers to be able to execute OpenCL applications
written with a different platform in mind.

Moreover, new architectures introduce interesting features designed to
simplify the programmability of such platforms. The most interesting
example is shared virtual memory. This is a strict requirement for both
OpenCL 2.0 and HSA compliant platforms. This feature will become
commonly available in the near future. However current programming
models are not exploiting completely such feature. The presence of
a shared and coherent virtual address space between host cores and
accelerators will allow further improvements to the programmability of
heterogeneous architectures. Thus it turns out to be very interesting to
explore the possibilities behind this opportunity for the next generation
of heterogeneous hardware architectures.
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In this chapter, we present OpenCRun, our implementation of the OpenCL
runtime support targeting platforms with a wide range of characteris-
tics, from high-end multi-cores to low-power accelerators. We provide
an overview of the most relevant engineering decisions. Since low-power
many-core accelerators are the main target of our investigation, we also
provide insights on the co-development of ISA extensions and the related
compiler support for the PULP platform.

2.1 Introduction

The development of a compiler and runtime for a complex, industry
grade language such as OpenCL is a complex task. Yet, to effectively
perform research on OpenCL, there is a need to access the internals of
the runtime and compiler. Therefore, proprietary, closed source tools
are not a choice. For this reason, in 2011 an effort was started within
the EU FP7 2PARMA project [78] to develop a compiler front-end [58],
back-end [62, 38], and a runtime for OpenCL, called OpenCRun. In par-
allel, other research groups started working on Open Source OpenCL
runtimes. Notable among these efforts are POCL [47], FreeOCL [3], and
SnuCL [54]. POCL focuses mostly on performance, and leverages LLVM
and Clang as its compiler, whereas FreeOCL aims at being independent
from the compiler, allowing the user to select either LLVM/Clang or
GCC, and possibly other compilers. SnuCL instead target heteroge-
neous clusters, exposing to the programmer a set of devices derived
from the computational units distributed among the whole cluster. It
is worth noting that our research goal is to study functional and per-
formance portability. Thus our runtime targets architectures belonging
to widely different classes – server-class x86-64 machines and low-power
many-cores such as STHorm and PULP. This focus is unique among
the currently available implementations of OpenCL, and makes Open-
CRun an interesting choice for those interested in exploring OpenCL on
embedded many-core accelerators.
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OpenCRun
host runtime

Clang
OpenCL FE
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STHorm RT

p12Runtime

OpenCRun
STHorm
library

host side

device side

Figure 2.1: OpenCRun toolchain overview for X86 and STHorm.

2.2 OpenCRun

OpenCRun is written in C++ and aims at providing a multitarget
OpenCL 1.2 infrastructure, based on the LLVM and CLANG open
source frameworks. Currently the runtime targets x86 multi-cores, and
the STHorm platform. In the following a description of main compo-
nents of the runtime is provided. The infrastructure is composed of four
logical components:

• host runtime, which implements the OpenCL APIs;

• device description, as seen by the host;

• device runtime providing for each device the OpenCL runtime;

• device runtime library, providing the implementation of the
builtin functions.

Figure 2.1 depicts the complete toolchain overview: from the host run-
time the OpenCL source code is compiled using the OpenCL frontend.
After the translation in LLVM IR is performed and the LLVM optimizer
is run on it, depending on the selected device, native code is generated.
For the x86 device, native code is emitted directly in memory through
the JIT component of LLVM. For STHorm, a shared object must be
generated to be deployed later on the device memory. The execution
environments are specific for each device. For the x86 device, each core
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2.2 OpenCRun

has a pinned POSIX thread where the computation of work-groups is
issued. For STHorm, an active runtime layer is used to coordinate the
execution of OpenCL commands. The generation of OpenCL builtins
implementations is fully automated using a TableGen-based tool1. The
generation is based on an abstract description of each builtin variant,
a basic implementation for scalar variants, and the strategy that must
be used to build the vectorized variants. Target specific overrides are
allowed for optimized implementation.

In 2.2.2 and 2.2.3 the details of the implementation of the x86-CPU
device and the STHorm device respectively are described. In 2.2.4 the
details of the automatic generation of all the builtin functions are pro-
vided.

2.2.1 Host-runtime architecture

The host runtime implements the OpenCL API exposed to the pro-
grammer. All the concepts of the OpenCL programming model are
represented by classes:

• Platform, a singleton class representing the OpenCRun platform,

• Device, representing an OpenCL device,

• Context, used to track objects such as memory objects, programs,
and queues for a fixed set of devices,

• Program, representing an OpenCL program, usually created from
a string of OpenCL-C code,

• Kernel, a single kernel function,

• CommandQueue, a queue of commands for a specific device in a given
context

• Event, associated to commands, to provide synchronization among
them, useful to impose a partial order between commands for an
out-of-order queue,

• MemoryObject, any memory buffer used for the computation.

The host-runtime is also in charge of handling the compiler for OpenCL
programs. The compiler is based on CLANG and LLVM frameworks.
OpenCRun employs CLANG to translate OpenCL-C code to LLVM-
IR for each device. During this process custom metadata are computed

1TableGen is a component of the LLVM framework
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and stored in the LLVM module. Once the LLVM module has been
generated, a custom optimization pipeline is set up by the runtime.
The optimized module is stored then in the corresponding instance of
Program.

Command queues handle the different OpenCL commands: they are in
charge of submitting commands to the corresponding device and manage
the coherency among cached versions of buffers across the devices in the
same context.

The class Device is the abstract class for all the OpenCL devices we
target, i.e. CPUDevice and STHormDevice. Each device must specify how
to allocate memory on the device, how to handle the various commands
such as buffer reads/writes and kernel executions.

2.2.2 CPU device

The CPUDevice class represents the OpenCL device mapped on the host
machine. It is used to run OpenCL applications on multi-core systems.
The device uses POSIX threads to run several kernels in parallel. When
the runtime is initialized, an instance of CPUDevice is created. The
device is composed of a set of threads, one for each core exposed by the
operating system. Each of the threads is pinned to a core modifying
the affinity of the given thread. These threads are the pool of workers
where commands are dispatched onto. Each thread has its own device
command queue, and processes commands sequentially.

The device uses the LLVM JIT component to generate native code
from the LLVM-IR module on the fly. When an enqueue kernel com-
mand is received, device-specific commands for each work-group are gen-
erated and dispatched on the thread pool. The work-items of a given
work-group are executed sequentially by the worker thread. Barrier op-
erations are implemented by means of a fast context-switch mechanism
between work-items. At the beginning of the command processing, a
single chunk of memory is allocated for all the work-items. The layout
for each work-item, as shown in Figure 2.2, is composed of a pointer
to the next work-item slice, a region dedicated for saving the processor
context, a pointer to the arguments, a pointer to the function, and space
for the work-item stack. The private memories of each work-item are
linked together in a circular single-linked list.

A thread-local pointer variable is set to the current work-item private
memory. On a barrier operation, the status of the registers is saved
in the dedicated region of the current work-item private memory. The
thread-local variable is then updated to point to the next work-item
private memory, and finally the context of the next-work item restored.
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WorkItemLauncher:
// Load args.
movq -8(%rbp), %rdi
// Call kernel.
callq *(rbp)

Figure 2.2: Initialization of work-item private memory for the x86-64 archi-
tecture. The rsp slot is initialized with the address of the end of the area
reserved to the stack as it grows downward. The return address slot is initial-
ized with the address of a custom trampoline used to start the execution of the
work-item. This trampoline assumes that rbp points to the kernel entry point
slot, thus the rbp slot is initialized with the address of the kernel entry point
slot. Apart for the initialization value before the execution, the return address
slot is used to hold the proper return address value across work-item switches.

An experimental support to whole-function vectorization [48] is cur-
rently under development. This approach is useful to vectorize kernels
across work-items allowing for a more aggressive use of SIMD capabili-
ties of x86 processors.

2.2.3 STHorm device

The STHormDevice represents the OpenCL device mapped on STHorm
fabric. This class uses the Linux driver interface for the interaction
with the fabric. The native runtime resides on the fabric, implemented
as thin layer, offering the basic services such as memory allocation on
the different memory spaces, and function execution on the processing
elements. The OpenCL device-runtime is built on top of this resident
runtime in form of DSO (dynamic shared object) that can be loaded by
the resident runtime. The interaction between host and fabric is based
on message boxes between the host and the fabric controller. The initial-
ization of the OpenCL device starts with the deployment of the OpenCL
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device-runtime on the fabric and its loading. OpenCL memory alloca-
tions are forwarded as memory requests for the resident runtime. The
LLVM module representing the OpenCL program is compiled through
the STxP70 LLVM backend 2 and linked with the runtime libraries to
generate a DSO. The DSO is then loaded on the fabric. Kernel execution
commands are lowered to the corresponding device-runtime command
referencing the appropriate entry point in the loaded DSO.

On the device side, the fabric controller receives all the commands. It
dispatches the execution of work-groups to the cluster controllers. On
the completion of all the work-groups the fabric controller notifies to the
host the kernel completion.

2.2.4 OpenCL builtin library

A considerable effort to support OpenCL is the implementation of all the
builtin functions, i.e. more than 6600 functions. Most of them are over-
loaded versions for vector types, thus it is possible to implement them
starting from the scalar version only. To simplify the task of specify-
ing each builtin function and automatically generate all the overloaded
versions of builtins, we created a simple tool called oclgen. This tool
is based on TableGen, i.e. a description language used within LLVM,
and its purpose is to produce the list of declarations and an OpenCL-C
implementation for all the builtins.

class MathBuiltin_rrSn <string name >
: OCLGenericBuiltinSimple <
name ,
[ocl_gentype_real , ocl_gentype_real , ocl_s_int],
[isSameAs <Id <0>, Id <1>>, isSameDimAs <Id <1>, Id <2>>]

>;

Figure 2.3: OpenCL builtin prototype description within oclgen

We described the OpenCL type system in terms of TableGen entities,
and from this we described the prototype families of the builtins based on
their signature and the constraints between arguments and return types.
Figure 2.3 shows an example of the prototype family used to specify
a builtin with a generalized floating point return type, a generalized
floating point type as first argument, and a generalized signed 32 bit
integer as second argument. The generalized types include vectors and

2Further details about the STxP70 LLVM backend can not be disclosed since it was
developed under a non disclosure agreement with STMicrolectronics within the
framework of 2PARMA EU-FP7 project.
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scalar types of the given base type. The prototype is constrained by the
fact that the type of the return value and the one of the first argument
must be the same, and that the first and the second argument must have
the same dimension, thus either be both scalars or both vectors with the
same number of elements.

To describe the default implementation of builtins, there are three
strategies. The direct split strategy is the simplest one: vector types
are directly scalarized, thus the scalar version of the builtin is invoked
starting on each element of the vector value. The recursive split is a more
efficient strategy for exploiting native vector types: the vector types are
split in sub-vector halving their sizes, and applying the same builtin
on each sub-vector value. The template strategy is used to generate a
builtin function starting from a template of the body. Symbolic names
are defined as template arguments and lowered exploiting the C pre-
processor. The recursive and direct split are tailored to handle the
overload of builtins for vector types, while the template strategy is useful
whenever the implementation of a given builtin can be expressed as an
instantiation of a template, e.g. when a pointer argument can have
different address spaces.

To allow for more flexibility we provided a way to add useful custom
code to define common data structures and/or including external files.
This approach provides a common default implementation for most of
the builtins for all devices. For each device the implementation of any
builtin can be overridden in order to provide a more optimized one, e.g.,
a faster implementation using vector extensions such as SSE and AVX
on x86 targets.

Such builtins are pre-compiled to LLVM-IR for each device, and pro-
vided to the runtime in form of a bitcode library. The runtime loads
this library and links it to the LLVM module containing the kernels, be-
fore the actual conversion to machine code, to allow a more aggressive
optimization of kernels through inlining of small builtins.

2.3 PULP Platform

The increasing performance requirements in computing intensive and
mobile devices raise the need for powerful, but also ultra-low power
(ULP) processors and computing architectures. Since power scales quad-
ratically with the supply voltage, it is more energy efficient to operate a
digital circuit near the threshold voltage of transistors [75]. The reduced
speed can be compensated with multiple processors working in parallel
at lower voltages [11]. To maximize energy efficiency, single processors
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can be turned off depending on the current workload, while resources
like memories and caches can be shared among the cores. To form an
energy-efficient multi-core cluster capable of processing computation in-
tensive applications, the processing element (PE) needs to fulfill certain
requirements like having a small area footprint, being energy efficient
and having a shallow pipeline allowing fast inter-core communication
and data exchange to allow fine-grained data and task-level parallelism.
Moreover, great attention must be paid to integration of the cores to
avoid the creation of a bottleneck in the system due to the instruction
and data interface. It is not enough to just use the most energy efficient
32 bit processor on the market, the ARM Cortex-M0+, to construct
an energy efficient multi-core cluster, but point out the requirement of
careful optimization for an operation in a tightly-coupled cluster. First,
the ARM RTL code is not publicly available which makes an efficient
cluster integration unfeasible. And second, while its energy efficiency
of only 9.39 µW/MHz [7] would suite very well for ULP-operation, it is
not meant to be used for computation intensive or parallel applications.
Other architectures, like the ARM Cortex-M4 are more powerful in this
domain but also show 3 − 4× higher requirements in area and power
consumption [7]. This increase in area and power consumption comes
from moving to a deeper pipeline and from enriching the instruction set
with DSP like features and more advanced ALU operations. In order
to keep the area and power figures under control a careful evaluation
of additional features and instructions must be done, in particular in
ultra-low power contexts.

PULP platform represents an effort to design a many-core platform
responding to the demands of heavily-constrained embedded applica-
tions. The choice for the base core is the OpenRISC architecture which
is a) open source and suitable to be optimized to work in a multi-core
environment, and b) shows a low area footprint with only 35.5 kGE
which allows the core to achieve an energy efficiency of 25.8 µW/MHz in
65 nm technology, which is competitive with an ARM Cortex-M4 with
an energy efficiency of 32.8 µW/MHz at similar area costs in a 90 nm
technology [7].

While the computational efficiency of the OpenRISC architecture has
been improved in terms of instructions per cycle (IPC) [57], it is miss-
ing important DSP-like features which allow a Cortex M4 to execute a
program in less cycles due to its enriched instruction set. Enhancing
an instruction set with very specific instructions is the key to increase
performance in application-specific computing [9].

The PULP platform has been designed by group leaded by Prof. Luca
Benini at Università di Bologna and ETH Zurich. The evolution of such
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platform is on-going. Up to now three version of PULP have been re-
alized. A collaboration between the Formal Languages & Compilers
group of Politecnico di Milano and the group of Prof. Benini was estab-
lished at the beginning of 2014 to work together for the development of
PULP platform on both software and hardware aspects. The main con-
tributions of our group are (1) the development and maintenance of a
production quality compilation toolchain based on LLVM and CLANG,
and (2) active partecipation in the definition of the ISA extensions and
the implementation of the corresponding compiler support.The results
of this collaboration has been published in [39].

2.3.1 Overview of the Platform

PULP platform is based on a low-power, flexible computing fabric that
is able to provide significant performance when needed and remain in
a very low-consumption state otherwise. To achieve these goals, PULP
features clusters of simple PEs that can be used to exploit both coarse-
and fine-grain data- or task-level parallelism. At the same time, voltage
and frequency scaling can be controlled at a fine granularity to achieve
high energy efficiency when the performance constraints are more re-
laxed or when the power budget is tighter. Figure 2.4 shows the PULP
cluster architecture. In its current configuration it consists of four PEs,
a shared 4-way associative I$ with four cache banks of 1 KB each and
a L0 buffer of 128 bits per core holding the most recent cache-line to
reduce access contentions at the cache banks [56]. The refill port of the
shared I$ connects to the system bus together with an L2 memory, and
several peripherals (not shown). The PEs have a multi-banked tightly
coupled data memory (TCDM) acting as a shared scratchpad memory,
instead of private data caches to avoid memory coherency overhead.
TCDM is further divided into 16x4 KB SRAM banks, and 16x0.5 KB
standard cell based memory (SCM) banks allowing the cluster to op-
erate at ultra low voltages to achieve maximum energy efficiency [63].
Intra-cluster communication is based on a high bandwidth, low-latency
interconnect, implementing a word-level interleaving scheme to reduce
the access contention to TCDM banks. A lightweight, low-programming-
latency, multi-channel DMA enables fast and flexible communication
with other clusters, the L2 memory and external peripherals. In the
following we focus on a single core and its integration in the cluster.

The OpenCores community [71] developed the OpenRISC architec-
ture, an open-source processor using a GCC-based toolchain. A RISC
architecture is well-suited to be integrated in a tightly-coupled multi-
core cluster because of its low area footprint and the low pipeline depth
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Figure 2.4: PULP cluster featuring four OpenRISC processor cores, a shared
instruction cache, eight TCDM banks utilized as L1 memory and a DMA for
fast, concurrent data movements.

allowing to interact with other processors in a single cycle. Or10n is a
complete redesign of the micro-architecture in order to balance pipeline
stages, and increase IPC [57]. The redesigned core is divided into four
pipeline stages, instruction fetch (IF), instruction decode (ID), execute
(EX), and write back (WB) and achieves near-optimal IPC values of
1. All operations can be completed in a single cycle except for multi-
plications which are pipelined once, and can lead to stalls if the result
is used in the subsequent cycle. While the core was being attached
to an instruction and data memory [57], it has now been integrated in
a PULP-cluster by connecting it to an I$ and a low-latency intercon-
nect. Implemented in the cluster, the Or10n core utilizes 35.5 kGE. In
this work we focus on increasing the efficiency of the generated machine
code by introducing zero-overhead hardware loops, extended addressing
modes, a more efficient multiplier architecture, and vector ALU opera-
tions. As we will show, getting rid of control code in small loops can lead
to speedups of up to 2×. Extended addressing modes allow to get rid
of instructions to maintain counters and addresses, by storing the up-
dated memory address back to the latch-based register file. Ultimately,
a vector unit that allows to concurrently process four 8-bit or two 16-bit
values has been implemented in order to increase the throughput of the
core. However, such instruction extensions are only useful if the compiler
is able to produce such instructions. Therefore, we have modified the
backend of the LLVM compiler to automatically generate code for the
proposed ISA extensions and used it to evaluate the costs and benefits
of the introduced ISA-extensions.
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2.3.2 Instruction-Set Extensions for OpenRISC

Zero-overhad Hardware Loops

Zero-overhead hardware loops are a common feature in many processors,
especially DSPs. Basically, a hardware loop is an implementation of a
countable loop that avoids the need to explicitly test the loop counter
and perform the branch. This is achieved by providing the hardware
with information about the trip count and the beginning and end ad-
dress of a loop, which are then used by specialized hardware in the com-
putation of the next program counter (PC). The impact of hardware
loops can be amplified by the presence of a loop buffer, i.e. a specialized
cache holding the loop instructions, which removes any fetch delay [37].
In Or10n, we evaluated up to four nested hardware loops through the
instructions shown in Table 2.1. Each hardware loop has associated 3
special purpose register: HWLP START and HWLP END for the start and end
address of the loop, and HWLP COUNT for the loop counter.

Table 2.1: Zero-overhead hardware loop operations. Each hardware loop is
identified with an ID: L0-L3. The notation HWLP START[J] is used to refer to
the HWLP START register of the J th hardware loop.

Instruction format and Opcode Semantics

lp.start J, S (eg. lp.start L0, 10) HWLP START[J]=sext(S*4)+PC
000010 000 JJ SSSSSSSSSSSSSSSSSSSSS

lp.end J, S (eg. lp.end L0, -8) HWLP END[J] =sext(E*4)+PC
000010 001 JJ EEEEEEEEEEEEEEEEEEEEE

lp.counti J, C (eg. lp.counti L0, 8) HWLP COUNT[J]=zext(C)
000010 010 JJ CCCCCCCCCCCCCCCCCCCCC

lp.count J, rA (eg. lp.count L0, r5) HWLP COUNT[J]=[rA]
000010 011 JJ AAAAA----------------

lp.setupi J, E, C (eg. lp.setupi L0, 4, 8) HWLP START[J]=PC+4
000010 100 JJ CCCCCCCCCCCCCEEEEEEEE HWLP END[J] =zext(E*4)+PC

HWLP COUNT[J]=zext(C)

lp.setup J, E, rA (eg. lp.setup L0, 8, r5) HWLP START[J]=PC+4
000010 101 JJ AAAAAEEEEEEEEEEEEEEEE HWLP END[J] =zext(E*4)+PC

HWLP COUNT[J]=[rA]

Hardware loop setup can be performed either explicitly, by initial-
izing each SPRs using the lp.start, lp.end and lp.count (or lp.counti)
instructions, or initializing them in a single instruction using lp.setup
(or lp.setupi).
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Hardware loops are implemented in the micro-architectural level with
only two additional blocks – a controller, and a set of registers to store
the hardware loop variables. The controller is a purely combinational
block which checks if the current PC matches one of the end addresses,
and if the counter is greater than 1. In case both checks are true, the
hwlp-controller informs the main controller to set the next PC to the
corresponding start address of the loop. If two or more end points are
equal, the controller gives priority to the lowest hwlp-ID (i.e., L0 has
the highest priority). Since the performance gain is maximized when
the loop body is small, it is not beneficial to support a lot of register
sets. Therefore, we introduced two register sets in order to allow two
nested loops. The support of additional hardware loops would bring
marginal performance improvements at a non-negligible cost in terms of
area (≈1.5 kGE per register set).

Extended Addressing Modes

Along with Zero-overhead hardware loops, we evaluated the performance
and area impact of extended addressing modes. In the basic Or10n
implementation only one type of load and store (ld/st) was available,
in which the effective address was computed by adding a base address
stored in a register and an offset encoded as an immediate value. The
Or10n core was extended by implementing ld/st with both base and
offset in register and ld/st with pre- and post-increment with both im-
mediate and register offset.

Supporting all the variants of those instructions requires the addition
of 65 new opcodes. To avoid saturation of available opcodes in the Open-
RISC ISA, the new instructions are encoded using only 4 main opcodes
and a sub-opcode field, which imposes a limitation on the immediate size
from 16 to 11 bits. Out of those 65 new instructions, 3 instructions (1
for word, 1 for half word, 1 for byte transfer) are dedicated to each type
of store, 6 instructions, coding different data sizes and sign extension,
for each type of load with overall 5 new types of ld/st. These instruc-
tions are encoded reusing as much as possible the encoding scheme of
the OpenRISC, keeping the source and destination registers at the same
positions as shown in Table 2.2.

In Or10n the effective address is calculated in the ALU and then used
to access the memory during regular ld/st and pre-increment operations.
In case of a post-increment the address generation is bypassed and the
memory is addressed with the base address. Loads with pre- or post-
increment need to write two registers at the same time (the data read
from memory and the incremented address pointer) and this required
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Table 2.2: Load/store addressing modes. Register-register addressing mode
is expressed with the notation rX(rY). Auto-incrementing addressing modes
are identified with a ! before (preincrement) or after (postincrement) the base
address. MMMMM in the sub-opcode is used to indicate bits that are dedicated
to differentiate each type of load/store.

Old Instruction format Opcode

l.s[bhw] I(rA), rB MMMMMM IIIII AAAAA BBBBB IIIIIIIIIII
l.l[bhw][zs] rD, I(rA) MMMMMM DDDDD AAAAA IIIII IIIIIIIIIII

New Instruction format Opcode

l.s[bhw] rD(rA), rB 010101 DDDDD AAAAA BBBBB -----0 1MMMM
l.l[bhw][zs] rD, rB(rA) 010111 DDDDD AAAAA BBBBB -----0 1MMMM

l.s[bhw] I(rA!), rB 010100 IIIII AAAAA BBBBB IIIIII 0MMMM
l.s[bhw] rD(rA!), rB 010100 DDDDD AAAAA BBBBB -----1 1MMMM

l.l[bhw][zs] rD, I(rA!) 010110 DDDDD AAAAA IIIII IIIIII 0MMMM
l.l[bhw][zs] rD, rB(rA!) 010110 DDDDD AAAAA BBBBB -----1 1MMMM

l.s[bhw] I(!rA), rB 010101 IIIII AAAAA BBBBB IIIIII 0MMMM
l.s[bhw] rD(!rA), rB 010101 DDDDD AAAAA BBBBB -----1 1MMMM

l.l[bhw][zs] rD, I(!rA) 010111 DDDDD AAAAA IIIII IIIIII 0MMMM
l.l[bhw][zs] rD, rB(!rA) 010111 DDDDD AAAAA BBBBB -----1 1MMMM

the addition of an extra write port to the register file. Due to the non
criticality of this path, storing the incremented address in the write back
stage can be avoided and the register file can be written directly in the
current cycle. To support stores with the offset or increment in a register
an extra read port was required, in fact, 3 different values have to be
fetched from the register file at the same time (base address, offset and
data to write). The additional write and read port costs less than 1 kGE
due to its non critical timing and its latch based implementation.

ALU Vector Support

Aiming for a more efficient processing of 8, and 16 bit data leads to the
introduction of a vectorized ALU where the datapath is segmented into
two, or four parts and allows to compute up to four bytes in parallel
leading to a speedup of up to a factor of four. Such operations are also
known as subword parallelism [55], packed-SIMD or micro-SIMD [77]
instructions. However, the 32 bit operations remain the norm, meaning
that extending a processor with such vector capabilities is only promising
if the area and power overhead can be kept at a minimum. In order to
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extend our 32 bit OpenRISC ISA with subword parallelism, we have
added two new opcodes for vector operations, one for ALU operations
and one for vectorial comparisons. Each operation is available in three
different vector modes for halfword (h) and byte (b) operations:

• lv.inst.{h,b} rD, rA, rB,

• lv.inst.{h,b}.sc rD, rA, rB,

• lv.inst.{h,b}.sci rD, rA, I,

where the first is a register to register operation, and the other two
are vector operations with a register rA and a scalar replication of the
register rB, or an immediate. The operations based on an adder and
shifter have been realized by splitting the data path in four segments.
The full 32 bit result is computed by chaining the four adder results
with the carry. Multiplications and MACs on the other hand, are com-
plicated because of the additional muxing to support four concurrent
multiplications.

The OpenRISC ISA supports full 64 bit result multiplications and
MAC operations, which cannot be implemented within a single cycle
without impacting the maximum frequency. In a previous implementa-
tion [57], the multiplication was realized with a two cycle multiplier and
MAC operations were based on a special purpose accumulator which is
accessible through special instructions. Given the fact that the full 64 bit
result is often not required, and that the compiler is not always able to
group instructions in a way such that no stalls occur, we have decided
to simplify the multiplication by only generating the 32-bit results. This
allows to support vectorial multiplications with subword selection [55] in
a single cycle. Notice, that the full 64-bit product can still be generated
by the addition of four partial products which can be generated in se-
quence. While in the original implementation three cycles were required
to generate a 64-bit result, with subword selection it is possible to create
it with 10 instructions. Reducing the multiplications to 32 bit makes the
64 bit accumulation register useless. Instead of the large accumulator, a
normal register can be used as accumulation register which leads to two
major advantages: a) it is possible to concurrently maintain multiple
accumulation registers and b) the additional delay of moving data back
and forth from the accumulation special register to a general purpose
register vanishes since the accumulator is placed in the GPR in the first
place.

Implemented in the micro-architecture of Or10n, the vectorial ALU
and fused MULT/MAC unit increase the core area by 6 kGE which ac-
counts for 13 % of the core but less than 1 % of the complete cluster. The
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additional read port of the register file is shared with the advanced ad-
dressing modes and costs less than 1 kGE. In 2.3.4 we show the benefit
of the new multiplier with and without vectorial support.

Other Extensions

Along with the presented instruction extensions, several small ALU ex-
tensions such as min, max, avg, abs have been implemented. The area
penalty of these extensions is less than 1 %. These instructions are sel-
dom used, however they can speed up significantly operations, such as
normalization.

2.3.3 Implementation in the ULP-Cluster

To keep the hardware complexity at a minimum, the introduced ISA-
extensions have been implemented to a large extent with existing re-
sources. The combined costs of all extensions, including all vectorial
operations, are 9 kGE which is 25 % of the core area. As pointed out,
a good core architecture is not enough for an efficient integration in a
multi-core cluster which is why we optimized the data and instruction
interface without increasing the critical path. In the following we high-
light three cluster-specific integration details which allow the processor
to work more efficiently in a multi-core cluster.

Reducing Cache Accesses with a L0 Buffer

The amount of energy consumed by an instruction cache is not to be
underestimated. In fact, a core with a very high IPC is accessing the
instruction cache every cycle. Keeping this in mind and the fact that
hardware loops are most effective if the loop body is small and contains
no branches, adding a small L0 buffer between the instruction cache and
the fetch interface (shown in Figure 2.4) is a promising approach to lower
power consumption by reducing the cache accesses. We have chosen a
128 bit wide L0 buffer, which is capable of holding the most recent
cache-line. Hence, this architecture benefits if the compiler is capable
of placing hardware loops aligned with 128 bits. In particular, when
paired with a shared instruction cache, this approach is very effective
since it significantly reduces access contention at the cache banks [56]
and allows a loop to be fetched only once if the size does not exceed four
instructions. Even though the buffer can only hold 4 instructions, this is
not a restriction on the loop size. Larger loops would still benefit from
the L0 buffer because only every fourth request has to be forwarded to
the cache controller.
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Figure 2.5: Example showing the benefit of unaligned access when computing
a stencil over an image with 8 bit pixels.

Unaligned Memory Access

Data structures are not always word aligned, and even if the compiler is
aware of a vector unit, it is not always possible to align data. For exam-
ple, in a simple 2D-filter on 8 bit data types, as depicted in Figure 2.5,
it is not possible to read aligned data in every cycle, thus leading to
unnecessary masking and shifting or resorting to byte-wise loads. To
support unaligned memory accesses in the tightly-coupled cluster, we
have two options: 1) extend the data interface to 64 bit — 2) implement
the unaligned memory access in 2 cycles.

Since the critical path in the cluster is already on the return path of the
data memory, and that reading 64 bit of data means doubling the size of
the interconnect and also the number of banks, the former option is not
the most promising. In fact, by doubling the size of the interconnect, the
depth increases due to its logarithmic tree. Moreover, since the delay
of the interconnect depends on the depth, it would impact the length of
the cluster’s critical path, leading to a lower energy efficiency. For this
reason we did not further evaluate this solution. The second approach
enables unaligned memory access with two subsequent memory requests,
which are then merged into a single word by the load store unit. This
hardware implementation does not add to the critical path and brings
no additional hardware complexity to the core. Since the TCDM serves
requests within a single cycle, it is possible to read unaligned data in only
two cycles. On the other hand, to perform the same load operations, an
architecture without support for unaligned data requests would require
at least five instructions. Two cycles to read the two data items, two
cycles to shift data and one cycle to combine them in a single register.

Our implementation of unaligned memory requests does allow to use
the vector unit more often3 and is much more efficient in code size, and

3Without unaligned load support the vectorizer can not vectorize most of the loop
due to the lack of proper guarantee on the alignment. Moreover the cost of software
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latency than a software only support. Compared to a single cycle load
operation, our implementation does not require significant additional
hardware resources and is therefore very well suited for the multi-core
cluster.

Branch Prediction to Balance the Paths to I$

Branching was initially performed by using the forwarded flag from the
ALU, thus allowing to branch without stalling the pipeline or having to
predict and probably revert the pipeline. This was particularly impor-
tant when processing loops. With hardware loop support this argument
falls apart and stall free branching is no longer required for efficient loop
handling. Moreover, since the L0 buffer delays the instruction request
path, branch prediction becomes a requirement to prevent slowing down
the system. Specially at lower voltages, where the cluster becomes ex-
tremely energy efficient, this path becomes critical. Synthesizing the
cluster without branch prediction and an L0 buffer of 128 bit in a 28 nm
process leads to a frequency degradation of 13 % at 0.6 V. Branch pre-
diction would split this path, but also slightly increase the runtime due
to mispredictions. Given the fact that we want to operate at ultra-low
power, and that the misprediction penalty is only one cycle in our flat
pipeline, we have chosen the most simple branch predictor, which is to
always take backward branches, never take forward branches.

The branch prediction removes the critical path to the I$, while in-
creasing the number of cycles in our benchmarks by only 1.32 % on av-
erage, with a maximum of 3.4 %. In combination with hardware loops,
this number decreases to only 0.7 % additional cycles. Hence, we con-
clude that even a very simple branch predictor, if paired with hardware
loops, does only increase the number of cycles by 0.7 % while allowing
the core to be clocked 13 % higher at low voltages.

2.3.4 Performance, Area, And Power Results

In the following we are discussing the performance, area, and power
impact of the introduced ISA-extensions. The execution time in num-

unaligned memory operations overcomes the benefit of vectorization itself as our
vector unit lacks efficient vector shuffle instructions. For simple loops where only
one array is processed it would be possible to peel some iterations of the loop in
order to align the pointer and vectorize the remaining iterations. Alternatively
the vectorizer should generate different versions of the loop dominated by runtime
checks to ensure the required alignment of pointers. In the context of this work it
has been preferred to extend the core implementing unaligned memory operations
since their cost is almost negligible.
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ber of cycles has been measured in RTL-simulations, while the area in-
crease was determined with Synopsys Design Compiler in topographical
mode, and the power estimations were performed on a back-annotated
placed&routed netlist at nominal voltage of 1.2 V and a frequency of
50 MHz. The complete design, including a final tapeout of the PULP
chip, was done in UMC 65 nm technology. Unless otherwise specified,
all power and area numbers are related to this technology.

Execution Time

Each proposed instruction set extension has been analyzed individually
by enabling it in the compiler through dedicated flags. Specifically, we
compared the basic ISA with 4 different configurations, which, respec-
tively, enable 2 sets of hardware loops (H), pre- and post-increment ad-
dressing modes (I), the new single cycle multiplication and three operand
MAC unit (M) and vector operations with unaligned access (V). Finally,
we also performed a comparison with the ARM Cortex-M4 (Cortex-M4).

Figure 2.6 incrementally shows the benefit of each ISA-extension on
our benchmark applications which range from basic matrix multiplica-
tions, based on 8, 16 and 32 bits, through convolutions, filters and cryp-
tographic algorithms. In particular matrix multiplications are presented
in two forms: the classical implementation with row-by-column prod-
ucts, and an optimized version with row-by-row products preceded by
the transposition of the second matrix, being a good candidate for auto-
vectorization. All benchmarks are executed on a single core. Hardware
loops and automatic addressing updates bring speedups up to 1.75×.
The MAC unit has a good impact on computational intensive bench-
marks like convolution and matrix multiplications and allows to pro-
cess those benchmarks up to 2.25× faster. The use of the vector unit
can bring an additional boost when it is applicable. E.g., on the ma-
trix multiplication on 8 bit data, our vector optimization achieves a 5×
speedup with respect to the original ISA. Besides the impact of the ISA
extensions, this figure results from the ability to vectorize row-by-row
products. Similarly, on the 16 bit optimized matrix multiplication we
achieve an overall 3.5× speedup. On the classical row-by-column imple-
mentation on 8 bit data, data access on the column cannot be efficiently
vectorized as there is no hardware support for either strided or gather/s-
catter load/store operations. On 16 bit data matrix multiplication the
compiler does not apply vectorization as it is detected as not effective
by the heuristics.
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Figure 2.6: Comparison of the speedup with the introduced ISA-extensions
versus the initial ISA. Number of cycles are measured in RTL simulations for
the Or10n core and in case of the Cortex-M4 on the real hardware. All the
results are normalized w.r.t. the number of cycles on the plain OpenRISC ISA.

Area and Power Efficiency

Figure 2.7 shows the increase in area and power with each additional
feature. We can conclude that even though the area per core increases
by 25 % to 44.5 kGE, the overhead at cluster level remains small with
only 2.3 % of overhead due to the presence of interconnects, peripherals,
and large amount of memory in the cluster.

The total power consumption of one core running at 50 MHz with
all features enabled is 1.688 mW, which translates to an average energy
efficiency of 33.8 µW/MHz. The core shows a higher power consumption
during the execution of vector heavy code where an energy efficiency of
47.8 µW/MHz is achieved.

At the maximum frequency of 362 MHz, which is not affected by the
ISA-extensions, the four-core cluster is capable of processing 1.4 GOPS
at a power budget of 93 mW of which 55 % is consumed by the cores.
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With respect to a single core implementation, the four-core cluster can
process four times more operations, at a power increase of only 67 %.
Thus, moving from a single core to a four-core cluster increases the
power-efficiency by a factor of 2.4.

Core and Cluster Energy Efficiency

In Figure 2.8 the total amount of energy required to run each benchmark
is shown for the original ISA, the extended ISA with and without vector
unit, and a Cortex-M4. To calculate the numbers for the Cortex-M4, an
energy efficiency of 16.7 µW/MHz is assumed, which is scaled down to
65 nm from a 90 nm technology [7].
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Figure 2.7: Area and power comparison with different ISA-extensions on core
and cluster level. Power is shown on a cluster with 1 and 4 cores.
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Figure 2.8: Energy efficiency of the core with the optimized ISA integrated
in the multi-core cluster in UMC 65 nm. All the results are normalized w.r.t.
the absorbed energy on the plain OpenRISC ISA.
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2.4 Conclusion

In normal execution, where no vector code is used, the energy sav-
ings are 41.1 % on average. Due to the additional speedup of the vector
unit, the savings increase to 59.6 % in the vector intensive matrix mul-
tiplications. When comparing the efficiency to an ARM Cortex-M4, we
observe that the extended ISA is up to 48 % more energy efficient when
processing vector code due to the vector instructions. If no vector code
can be used, the performance of the proposed ISA shows no clear trend
towards Cortex-M4 or OpenRISC.

Taking into account all cluster resources, a cluster consisting of the
improved cores consumes 18 % more power with respect to a cluster with
the initial micro-architecture. Taking the complete cluster power into
account, the energy savings of the cluster based on the extended ISA
with all features enabled ranges from 39 % to 66 %. On average the
cluster is 47.8 % more energy efficient than the initial architecture.

2.4 Conclusion

In this chapter we have introduced OpenCRun, our OpenCL runtime
implementation. The goal of OpenCRun is to support the execution of
OpenCL kernels on a wide range of platforms, from high-end multi-core
processors to low-power many-core accelerators such as PULP. Since the
PULP platform is based on an Open Source Hardware approach, and
employs the OpenRISC core as its processing element, we have partici-
pated in the definition of ISA extensions for the PULP implementation
of OpenRISC. The close cooperation between compiler and hardware
designers has led to major performance and energy efficiency improve-
ments. The runtime and compiler described in this chapter serve has a
baseline for our exploration of functional and performance portability of
OpenCL kernels.
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3 Cross-Platform Functionality and
Performance for OpenCL

OpenCL applications may present tight constraints on work-group sizes
either due to the algorithm design or to the chosen implementation strat-
egy. This may prevent functional or performance portability across dif-
ferent platforms, with the current solution being a re-design of the im-
plementation, optimized for the new platform. However, the required
effort represents a hindrance for the exploitation of future heterogeneous
platforms, where benchmark suites and applications should be ported in
the near future. We aim at tackling the functional portability issue
through applying work-item coalescing techniques to optimize the map-
ping of OpenCL work-items onto the processing elements of the under-
lying architecture. However, this may not be sufficient to achieve sound
performance portability: to this end we show how additional target spe-
cific transformations can improve the performance with respect to the
work-items coalescing baseline. We employ two case studies to show how
the work-item coalescing transformations impact functional portability,
together with providing an opportunity of automatically inserting the
use of asynchronous copies on embedded many-core platforms endowed
with such a feature.

3.1 Introduction

To obtain viable programming frameworks for different parallel archi-
tectures, the Khronos consortium proposed the Open Computing Lan-
guage (OpenCL) programming model as an open standard [49]. OpenCL
describes the computation of a data-parallel program in terms of sets
of work-items, called work-groups, which are mapped on the under-
lying architecture usually by the OpenCL runtime, while providing an
architecture-agnostic structure to the programmer. Thus, OpenCL helps
in providing functional portability of parallel programs across different
multicore platforms.

However, OpenCL applications may present tight constraints on the
size of work-groups due to either the algorithm design or the chosen
implementation strategy. If the target architecture does not provide
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enough resources, the ability of OpenCL to provide functional code
portability is disrupted, as an attempt to execute more work-items than
those allowed by the underlying architecture will fail. Thus, the applica-
tion developers are in charge of inserting code to verify that the kernels
they are writing are actually executable on the available platforms, and
include fallback code to deal with a possible lack of resources. This
approach entails major development cost overheads, as multiple ver-
sions of the code need to be written, and significant boilerplate code is
necessary for the introspection phase. Even when the aforementioned
constraints are satisfied, the performance figures across different hetero-
geneous platforms may exhibit notable differences. Thus, the functional
and performance portability of code across different platforms and differ-
ent domains (from embedded to HPC) has grown into a major research
problem [17, 4, 13].

A typical scenario where the aforementioned issues take place is when
the following architectures are involved: embedded many-core platforms
with explicitly managed memory (EMM) and platforms for general-
purpose computing on graphics processing units (GPGPU). Embedded
EMM architectures, such as P2012 [16], exploit independent processing
elements grouped in clusters, whereas GPGPU architectures are built on
streaming multiprocessors (SMs) with step-locked processing elements.
On P2012, due to the small amount of tightly coupled dedicated mem-
ory bound to the cores, no context-switch mechanism is provided, thus
limiting the maximum size of an OpenCL work-group to the number of
cores in a cluster. By contrast, on GPGPUs a work-group is mapped
on a single SM and a context-switch mechanism is triggered if the work-
group size is bigger than the number of processing elements in the SM.
Thus, an OpenCL application with a large work-group size tailored for
a given GPGPU cannot be run on platforms like P2012.

Contributions

We propose an execution model for transparently running OpenCL ap-
plications (characterized by tight constraints on the work-group size) on
EMM architectures lacking context-switch support. This goal is to be
achieved without significant performance penalties, that is, maximizing
the utilization of the processing elements. The gist of the proposed ap-
proach is to provide a transparent decoupling between the programmers
view of an OpenCL work-group and the actual mapping of its work-
items on the underlying processing elements. This can be realized via a
combined action of both the OpenCL compiler and the OpenCL runtime
platform support. The proposed strategies for mapping the work-groups
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onto the underlying hardware ranges from coalescing all the work-items
into a single work-group and mapping it on a single processing element,
to grouping the work-items into a number of sets fitting the amount of
processing elements. The memory requirements of the aforementioned
approach are the ones of the un-coalesced kernel, multiplied (at most)
by a factor linear in the amount of coalescing done. In particular, the
highest possible multiplicative factor is given by the amount of process-
ing elements when the first strategy is applied, while the second strategy
does not significantly impact on the memory requirements. In addition
to the coalescing approach, we also propose a technique for inserting
automatically asynchronous copies in the code, so to provide a bet-
ter exploitation of parallel computing platforms supporting them, with
the resulting performance enhancement, while guaranteeing functional
portability.

Organization of the Chapter

Section 3.2 describes the functional portability provided by OpenCL,
and the architectural differences present in the computing platforms.
Section 3.3 describes our mapping technique as well as the asynchronous
copy insertion strategy. Section 3.4 reports experimental evidence gath-
ered on two case studies. Section 3.5 provides an overview of related
works, while Section 3.6 draws our conclusions.

3.2 Preliminaries on OpenCL and Background

The OpenCL language and programming model are designed to provide
functional portability of parallel programs across different platforms.
This is achieved providing the programmer with an abstract architec-
tural model, which assumes that the underlying hardware will be exe-
cuting parallel tasks (work-items), clustered in work-groups. Work-items
within a work-group may communicate directly through a shared local
memory. The parallel program is represented as an OpenCL kernel,
which is the function executed by every work-item. The kernel is exe-
cuted by a collection of work-groups that can be run in any order by
the platform. The OpenCL barrier synchronization construct provide a
memory fence for all the work-items of a work-group, while inter-work-
group synchronization is not available as a primitive. To support a wide
range of hardware platforms, OpenCL relies on exposing a large amount
of information to be explicitly managed by the programmer. Thus, the
OpenCL API includes introspection primitives able to return which is
the maximum number of work-items per work-group that can be used
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to perform the proper program management so that the implementa-
tion runs on any platform. This requirement towards the programmer
may act as an hindering factor in the seamless functional portability of
parallel programs – the main goal of OpenCL.

To provide a practical validation of this claim, we examined how fre-
quent it is to encounter OpenCL code samples which do not include
explicit work-group management. Table 3.1 shows an analysis of the
work-group size constraint over four well known OpenCL benchmark
suites. The column labeled as “Fixed” reports the number of programs
(in the corresponding benchmark suite) where the work-group size is
statically chosen. The column labeled as “CT/RT Param.” shows the
number of programs with work-group size parameters configurable either
at compile-time or at runtime, while the column labeled as “Adaptive”
reports the number of programs where the work-group size is actually
computed from the device information retrieved by introspection prim-
itives at runtime, as the best programming practices suggest. Only 10
programs out of the 63 analyzed allow for seamless functional portabil-
ity with OpenCL, while the others mandate either a compile-time or
run-time tuning, or a code modification altogether. This points to the
fact that even experienced programmers working on a benchmark suite
are likely to develop code without taking into account performance (or
even functional) portability beyond the range of platforms immediately
available. It is clear that the cost of coding an application in a portable
way is much higher, not only because the developer needs to make an ad-
ditional effort, but also because this effort is not immediately useful and
cannot be easily tested outside of the current target platform. Indeed,
it is well known that the performance of OpenCL programs strongly de-
pend on the characteristics of the target platform, the applied compiler
transformations, and the way the application is implemented [76]. In this
work, we employ a source-destination platform pair to illustrate how it

Table 3.1: Analysis of OpenCL benchmark suite programs according to the
management of work-group size parameter

Benchmark Numb. of Work-group Size Management

Suite Programs Fixed CT/RT Param. Adaptive

Rodinia [21] 20 6 11 3

Parboil [81] 13 11 0 2

SHOC [27] 11 7 1 3

NVIDIA [69] 19 15 2 2
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is possible to provide to the programmer seamless functional portability
for OpenCL applications even when they do not manage explicitly work-
group sizes. Moreover, we also propose the automated introduction of
asynchronous memory copies to exploit DMA-based global memory ac-
cess mechanisms, which benefit from double-buffering strategies.

In particular, in line with the stated goal of simplifying performance
portability from current platforms to future HPC architectures based on
low-power many-core accelerators, we chose as the source platform for
the porting a typical General Purpose computing Graphics Processing
Unit (GPGPU), while the target platform is the STM-P2012, a many-
core accelerator with explicitly managed memory targeting the domain
of embedded applications [16, 79]. A sketch of a representative of the
GPU architecture, the NVIDIA Kepler, and of the STM-P2012 archi-
tecture is reported in Figure 3.1. The choice of a GPU as the source
architecture for the porting is justified by the OpenCL programming
model being strongly influenced by it, thus implying that most of the
existing OpenCL code has been implemented as best fitting on such an
architecture. In particular, the GPU architecture is characterized by a
set of streaming multiprocessors (SMs), each composed of several pro-
cessing elements called streaming processors (SPs). Processing elements
in a SM are step-locked, so that they run the same instruction at the
same time – thus leading to a low efficiency in the case of control flow
divergence within the work-group. The tight resemblance of the archi-
tecture to the OpenCL programming model allows the work-groups to
be mapped directly onto an SM, provided their size does not exceed
the number of SP. An hardware context-switch mechanism allows work-
groups with size larger than the number of processing elements in a SM
to run correctly, by partitioning the work-items in batches called warps
and serializing the execution of multiple warps.

Differently from the GPU, STM-P2012 is a clustered architecture con-
nected through an asynchronous global network-on-chip. In P2012, the
processing elements within a cluster are independent, and therefore able
to support control flow divergence more efficiently. Memory availability
is much more limited than in a GPGPU, with 256 KiB EnCore memory
(a tightly coupled data memory) for each cluster and 1 MiB of shared
memory for the overall fabric. Since no context-switch mechanism is
provided by the hardware and runtime, a cluster can run only a single
work-group at a time, with a number of work-items less or equal to the
number of processing elements, thus providing a hard limitation on the
work-group size.
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(a) GPGPU Architecture: NVIDIA Kepler
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Figure 3.1: Structure of two multicore architectures with OpenCL support:
the NVIDIA Kepler GPU and STM-P2012

3.3 Kernel Transformations

In this section we present our solution to the functional portability prob-
lem induced by a constrained work-group size and then we present an
optimization useful for platforms like P2012 where DMA units are avail-
able. In the following, we will be adopting the compiler-transformation
point-of-view; we thus recap the OpenCL concepts from this perspective.
An OpenCL kernel function represents the body of a N -dimensional par-
allel loop-nest, where each iteration is named work-item. The iteration
space of this loop-nest is the global-space. In OpenCL the work-items
can be grouped: such a collection of work-items is named work-group.
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This allow us to interpret the kernel function as the body of a 2N -
dimensional parallel loop-nest: the outer N -dimensional loop iterates
on the work-groups, while the inner N -dimensional loop iterates on the
work-items in a work-group. We recall that memory barriers are effective
only between work-items in the same work-group and that both parallel
loop-nest structures are collapsible, i.e., it is possible to map each N -
dimensional iteration space into an equivalent mono-dimensional one.
The transformation targets a single work-group, so from here onwards
we ignore the outer parallel loop, as our focus is the inner one.

3.3.1 Work-item Coalescing

The key idea is to re-structure the iterations in a work-group map them
on the available processing elements. The mapping strategies are imple-
mented through a compiler transformation named work-items coalescing
with cooperation of the OpenCL device runtime. The transformation
must ensure that each processing element will execute the iterations as-
signed to it preserving the semantic of the original OpenCL program.
This requires handling both synchronization barriers and divergent vari-
ables (i.e., variables depending on the loop induction variable). In par-
ticular, a trivial serialization of the iterations would fail to preserve the
semantics, since the execution must reach the synchronization barrier for
all iterations before progressing after it for any of them. The mapping
of a set of iterations (i.e., work-items) to the same processing element
must ensure that all of them execute the kernel code preceding a syn-
chronization barrier prior to execute the code beyond it. To this end, the
proposed work-item coalescing transformation is defined as a sequence of
two steps: a kernel fission pass, which splits the kernel in multiple frag-
ments using the barriers as borders, and a work-items remapping pass,
which is in charge of re-structuring the kernel fragments to compose
new, semantically equivalent, work-items.

Kernel Fission

The first step of the transformation analyzes the kernel code to split
its control-flow graph on the barrier operations, identifying the kernel
parallel regions. A parallel region typically has a single entry point and
multiple exit points. Each exit point transfers the execution flow either
to another region or to the kernel end. The step splits the original
parallel loop into multiple ones, replacing the explicit synchronization
barriers in the original loop body with the implicit ones resulting from
the end of each parallel region.
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for i← 0 to W do parallel
Operations 1
barrier
Operations 2

end

(a) Before

for i← 0 to W do parallel
Operations 1

end
for i← 0 to W do parallel

Operations 2
end

(b) After

Figure 3.2: Example of a kernel fission transformation

Figures 3.2a and 3.2b show how fission is performed. The induction
variables of the new parallel loops are simple clones of the original one.
In addition, the live-out variables of each iteration must be preserved to
keep the original semantic. To this end, a divergence analysis is applied
to move outside the newly created loops the variables which do not
depend on the induction variable. After fission, the iterations within
each parallel region can be executed in any possible order as their code
does no longer include synchronization barriers.

This steps recall a classical loop transformation known as loop fis-
sion. A typical scenario for loop fission is a sequential loop where two
arrays are processed independently. The goal of the transformation is
to split such processing in two different loops to improve both spatial
and temporal locality within the loop body to take advantage of the
cache hierarchy avoiding the trashing effects due to sequential accesses
to different data structures that may be allocated far apart in memory.
Data dependence analysis is a requirement for such transformation to
prove its legality. Kernel fission is conceptually a specialization of loop
fission applied to parallel loops. In this particular case data dependence
analysis is not required, since iterations are assumed to be indepedent,
and the parallel loop is split on synchronization barriers.

Work-items Remapping

The work-items remapping step coalesces the iterations of each paral-
lel loop resulting from kernel fission pass on the processing elements.
The consecutive iterations of the parallel loops are serialized to reduce
the number of parallel iterations. The reduction in number of paral-
lel iterations allows to pair them with the available processing elements
on the target platform. This mapping will also aim at assigning the
same amount of computation to each one of the processing elements,
in order to balance the workload and reduce the synchronization time.
The work-items remapping transformation takes two runtime parame-
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work-group size: 16×16

1 work-group

16 work-items for PE

(a)

work-group size: 16×16

4 work-groups

64 work-items for PE

(b)

work-group size: 16×16

16 work-groups

256 work-items for PE

(c)

Figure 3.3: Work-items mapping strategies on a P2012 cluster. Two different
strategies based on the partial mappings of the work-items are shown in (a)
and (b), while in (c) a full work-items coalescing strategy is shown

ters: CF which is the coalescing factor, and NWr, the number of itera-
tions executed by the r-th processing element. The input of the trans-
formation is a parallel loop with induction variable i∈[0,W−1] with W
the size of the source work-group. The result of the transformation is
a loop-nest, with the external loop being a parallel one with induction
variable i′∈[0,K−1], where K is the maximum number of processing
elements available to execute the kernel. The inner loop of the nest is
a sequential one with induction variable j′∈[0, NWi′−1]. Note that all
the uses of the induction variable i contained in the loop body can be
performed reconstructing the correct value of i as i=CF ·i′+j′. After the
transformation the external parallel loop has a number of iterations that
is at most the number of processing elements that the runtime decided
to allocate for the current work-group, thus all the iterations of the re-
sulting parallel loop can be executed in parallel, effectively emulating a
number of work-items greater than the number of processing elements.

The parameters CF and NWr are computed by the runtime when
an NDRange command is put in execution from the device queue. An
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NDRange command identifies the kernel that must be executed, its argu-
ments, the global size, and the local size L=(L0, L1, . . . , LN−1) expressed
as an array of values containing the the sizes of work-groups. Given the
work-group size W=

∏N−1
i=0 Li and K the maximum number of process-

ing elements to execute the iterations, with PF=bW/CF c being the
number of processing elements that will run exactly CF iterations each,
CF and NWr are computed as stated in Equation 3.1 and Equation 3.2.

Note that it is possible that some processing elements processing ele-
ments do not get any iterations assigned assigned to them, as NWr may
be zero if the work-group size W is not divisible by K.

CF =

⌈
W

K

⌉
(3.1)

NWr =


CF r ∈ [0, PF − 1]

W mod CF r = PF

0 r ∈ [PF + 1,K − 1]

(3.2)

Figures 3.3a, 3.3b and 3.3c show three viable mapping strategies for
a 256 work-item wide work-group, to be mapped to a 16 processing
element underlying architecture. In each figure, we represent on the left
the original work-group as defined in the application code, with a fixed
size of 16×16 elements. On the right we depict the target architecture
element composed of 16 processing elements, as in the case of a P2012
cluster. Through the coloring, the figures show how each mapping is
performed. In Figure 3.3a, each group of 16 work-items is mapped to a
single processing element (CF = 16), thus the work-group is executed
entirely by the cluster . In Figure 3.3b the work-group is split over four
processing elements thus the cluster can execute up to 4 work-groups
in parallel, while in Figure 3.3c the entire work-group is mapped on a
single processing element (CF = 256) thus the cluster can execute up to
16 work-groups in parallel, since all the work-items of the original work-
group are coalesced to be executed by a single architectural processing
element.

3.3.2 Memory Transfers Optimization

The work-items coalescing is a solution to the functional portability
problem, but may not be sufficient to provide performance portability.
This fact emerges especially while moving an application between sig-
nificantly different target architectures, where some relevant features of

64



3.3 Kernel Transformations

kernel myKernel(global uint *in, global uint *out ,
uint seq_len) {

local uint buf_in[BUF_SIZE ];
local uint buf_out[BUF_SIZE ];
uint l = get_local_id (0);
uint b = get_block_id (0);
global uint *base_in = in + b * seq_len;
global uint *base_out = out + b * seq_len;

for (uint i = 0; i < seq_len; i += BUF_SIZE) {
// Collaborative global to local transfer
buf_in[l] = base_in[i + l];
barrier(CLK_LOCAL_MEM_FENCE );

// Computation
compute(buf_out , buf_in );
barrier(CLK_LOCAL_MEM_FENCE );

// Collaborative local to global transfer
base_out[i + l] = buf_out[l];
barrier(CLK_LOCAL_MEM_FENCE );

}
}

Figure 3.4: Structure of kernel for profitable memory transfer optimization.

the source architecture are not present in the target one, and no code is
present to explicitly exploit them. In our case study, P2012 has DMA
units that are employed by the native OpenCL runtime to implement
asynchronous copies between local memory and global memory. On
P2012 the use of double-buffering with DMA transfers is welcome as it
allows to overlap in time memory transfers and computations. Thus
it is useful to introduce this pattern automatically when is potentialy
profitable from a performance perspective.

In GPGPU specific OpenCL kernels, it is common to find parallel
regions split by barrier operations, where a region pre-fetches data in
a local memory buffer, while a subsequent region consumes the data
producing the results, and, optionally, a further region writing them
back to a global memory buffer. This strategy is used due to the smaller
overhead of accessing local memory variables than global memory ones.
Usually, the pre-fetch actions are performed by all the work-items in a
work-group: each work-item copies a portion of the data that will be
processed later on.

We propose a target specific transformation for P2012 to identify this
pattern, and, whenever profitable, to transform it introducing double
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buffering and asynchronous copies. This transformation is generally
profitable when this pattern resides inside a loop, as shown in Fig-
ure 3.4: in such case the pattern gets repeatedly executed, thus allowing
to pipeline the execution introducing the double-buffering and exploit-
ing DMA transfer to overlap memory transfers with the computation.
Given the parallel regions containing memory transfers, the transforma-
tion starts by finding the read accesses from the global memory and the
related store accesses in the local memory.

The main observation is that the source and destination addresses
depend on the induction variable of the parallel loop, thus knowing the
loop iteration space it is possible to generate an equivalent combination
of asynchronous copies.

Figure 3.5 shows the resulting kernel after the transformation. Note
that the introduction of asynchronous copies may increase the perfor-
mance at the cost of requiring a larger amount of local memory: it is
thus crucial to ascertain that the transformed kernel will not exceed the
architectural memory constraints. Furthermore, additional constraints
may be imposed by the number of available DMA request slots, which
in turn bound the maximum number of request which can be served in
parallel.

3.4 Evaluation

In this section we validate our approach through two case studies. The
first is a simple image processing kernel that computes the difference
between two input images. Albeit being a straightforward computation,
its execution patternis the same of many image processing primitives,
such as contrast and brightness alteration, or color balancing. Each
work-group processes a slice of the image row-wise, each work-item pro-
cessing the pixels in a row strided by the work-group size. The second
case study is an implementation of the matrix-multiply, drawn from the
NVIDIA SDK [68] sample programs. The operation is performed block-
wise, and each work-group computes a block of 16 × 16 elements of
the output matrix; each work-item in the work-group computes one el-
ement of the output block. To this end, the first input matrix is sliced
by rows while the second is sliced by columns. The computation of
the output block is done iteratively accumulating the partial results ob-
tained from the corresponding input blocks. Both kernels have a fixed
work-group size of 256 work-items, thus they cannot be executed on
P2012 in their native form requiring the application of the work-item
coalescing technique. Both kernels have a structure similar to the one

66



3.4 Evaluation

kernel myKernel(global uint *in, global uint *out ,
uint seq_len) {

local uint buf_in [2][ BUF_SIZE ];
local uint buf_out [2][ BUF_SIZE ];
uint l = get_local_id (0);
uint b = get_block_id (0);
global uint *base_in = in + b * seq_len;
global uint *base_out = in + b * seq_len;
event_t ev_o = 0;
event_t ev_i = async_work_group_copy(buf_in [0], base ,

BUF_SIZE , 0);

uint i, x = 0;
for (i = 0; i < seq_len; i += BUF_SIZE) {

// Wait for previous async operations
wait_group_events (&ev_i , 1);
wait_group_events (&ev_o , 1);
uint nx = (x + 1) % 2;

// Issue the write of the previous iteration output
if (i >= BUF_SIZE)

ev_o = async_work_group_copy(base_out + i - BUF_SIZE ,
buf_out[nx], BUF_SIZE , 0);

// Issue the read of the next iteration input
if (i + BUF_SIZE < seq_len)

ev_i = async_work_group_copy(buf_in[nx],
base + i + BUF_SIZE ,
BUF_SIZE , 0);

// Compute the current output
compute(buf_out[x], buf_in[x]);

// Swap the buffers
x = nx;

}
wait_group_events (&ev_o , 1);

uint nx = (x + 1) % 2;
ev_o = async_work_group_copy(base_out + i - BUF_SIZE ,

buf_out[nx], BUF_SIZE , 0);
wait_group_events (&ev_o , 1);

}

Figure 3.5: Kernel after Memory transfers optimization: the local buffer is
duplicated to implement double-buffering and asynchronous copies are used to
overlap memory transfer with computation.
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Figure 3.6: Speedup achieved through different mapping strategies, varying
the size of the inputs. The figure shows the different mapping strategies with:
1 (our baseline – red), 2 (orange); 4 (yellow); 8 (green); and 16 (blue) work-
groups per cluster.

reported in Listing 3.4, making them good candidates for the memory
transfer optimization, with the matrix multiplication exhibiting a higher
computation-to-memory-transfer ratio.

To perform the experiments, we ran the kernels using our LLVM-
based OpenCL compiler and the P2012 OpenCL runtime, both with
and without the proposed transformations, to ascertaining their impact
on performance. Figure 3.6a shows the speedups achieved employing
different mapping strategies on the image processing kernel, while Fig-
ure 3.6b reports the ones achieved on the matrix multiplication kernel.
The speedups are normalized with respect to the basic strategy which
maps 1 logical work-group to 1 cluster, employing a coalescing factor
of 16. The proposed remapping strategy provides effective functional
portability for the original code, which had fixed work-group sizes, since
it is always possible, for all the sizes considered in our exploration to
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Figure 3.7: Speedup after the application of memory pre-fetch optimization
varying the size of the inputs. Different colors represent strategies mapping 1
(our baseline – red), 2 (orange); 4 (yellow); 8 (green); and 16 (blue) work-groups
per cluster.

have at least a working configuration after the proposed transformation.
It is worth noting that coalescing multiple work items also yields a per-
formance improvement when increasing the coalescing factor: this can
be ascribed to the increase in the time spent in effective computation
by the processing elements due to the larger size of the computation
performed by a single transformed work-item. This in turn raises the
ratio of useful computation-to-data transfer of the whole kernel.

To evaluate the effects of the automated insertion of asynchronous
copies in the code, we performed a second round of experiments, mea-
suring the effective speedup provided by such technique. Figure 3.7a re-
ports the speedup after the memory transfer optimization for the image
processing kernel while Figure 3.7b reports the speedup for the matrix
multiplication kernel. As it can be seen, the overall speedups provided
by this code transformation on P2012 are quite significant. On the im-
age processing kernel the ability to overlap computations and memory
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transfers decreases the entire kernel execution time up to a factor 60 to
88. On the matrix multiplication being able to overlap computation and
memory transfers decreases the entire kernel execution time by a factor
of 4.

We note that, depending on the coalescing factor, the number of par-
allel asynchronous copies may exceed the limits imposed on the currently
available runtime support. In such a case the obtained speedup is lower
as the runtime needs to serialize some of the asynchronous copies ef-
fectively reducing the overall performance. This effect is evident on
mapping strategies with 8 and 16 work-groups per cluster in the ma-
trix multiplication case, while 4, 8, and 16 work-groups per cluster are
enough to saturate the runtime resources in the image processing kernel.
However, we note that there is no limitation to the number of parallel
asynchronous copies which can be inserted by our technique, thus the
speedup limitation is to be ascribed to the runtime-architecture pair the
code is running on.

The difference in the speedups achieved in the two case studies is
due to the structure of the two computations. In particular, the image
processing kernel obtains significant benefits from asynchronous copies
as both its inputs and outputs are transferred at each iteration of the
kernel. Moreover, the size of the outputs produced by each transformed
kernel computation varies depending on the coalescing factor, allowing
to better exploit the effects of the asynchronous copies. In addition
to this factor, the relatively lightweight nature of the image difference
kernel makes the memory transfers a dominating portion of the com-
putation time: exploiting the possibility of asynchronous block-packed
transfers has thus a significant impact. By contrast, the matrix mul-
tiplication computation produces constant-sized blocks of output data,
regardless of the size of the input matrices, and is characterized by a
higher computation-to-data-transfer ratio, in turn making the process
of employing a double buffering strategy less advantageous, when com-
pared with our other case study.

3.5 Related Work

Several recent works have highlighted the impact of tuning or even re-
writing OpenCL applications to enhance the performance on specific
architectures. Zhang et al. report that a number of manual tuning tech-
niques can improve the performance of OpenCL applications on general
purpose CPUs from 15% to more than 60% [92], while Cao et al. report
performance penalties and the need of architecture-specific tuning when
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implementing typical HPC workloads (e.g., linear algebra libraries) in
OpenCL across a range of devices currently employed in HPC systems
(GPGPUs and Intel Xeon Phi) [20]. Huang et al. and Fang et al.
demonstrated how automated transformations can be used to achieve
performance portability of GPGPU oriented OpenCL code to multicore
CPUs [45, 34]. However, the proposed transformations in both works are
simplifications of the original code (obtained removing explicit synchro-
nization and local memory use), enabled by the more complex nature
of the CPU cores w.r.t. the GPGPU architectures. Similarly, [80] tar-
gets the use of OpenCL on CPU devices. The work-item coalescing
technique employed in our work has been used, for different purposes,
in [59, 60]. A less directly related class of works aims at presenting
multiple, heterogeneous devices as a single OpenCL device, performing
automated load-balancing, taking into account the heterogeneity of the
overall platform. Techniques such as those presented in this work or
in [45] could be used to provide a greater range of options for the au-
tomated scheduler. Yang et al. analyzed several open source CUDA
and OpenCL applications, detecting typical “performance bugs” affect-
ing them, including sub-optimal usage of memory due to unnecessarily
large data types or poor contention management, work-group forma-
tion, and lack of data reuse [90]. They also found performance porta-
bility issues between NVIDIA and AMD GPGPUs, mostly related to
the different micro-architecture of the underlying processing elements.
Consequentially, as this work proposes a transformation to provide func-
tional portability of the parallel application on different platforms, it is
sensible that it might introduce some of such performance bugs. The
transformations required to provide the functional portability can also
be used as an enabling technique to introduce further transformations
for performance portability during the process, thus mitigating the loss
of computational performance or even enhancing it.

3.6 Conclusion

In this work, we have studied the problem of portability of OpenCL code
between two classes of devices, namely GPGPUs and embedded many-
core accelerators with explicitly managed memory, both from the point
of view of functionality and of the one of performance. We have pro-
posed a code transformation technique, work-item coalescing, which can
bypass limitations of the embedded platforms, allowing code developed
for GPGPU to be ported seamlessly, as well as a memory transfer opti-
mization technique to tune the resulting code to improve performance.
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Our results on two case studies show the effectiveness of the proposed
technique, which allowed the code, developed for NVIDIA devices and
not designed with portability to smaller-scale ones in mind, to run on the
STM-P2012 target. Future developments include improvements to the
memory transfer optimization increasing the number of kernels that can
be transformed. A possible approach is to apply pipelineing with double
buffering exploiting the implicit loop iterating across work-groups over-
lapping data transfers and computations of two different work-groups.
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4 C++ Support across
Heterogeneous Systems

In this chapter, we present new techniques to enable full sharing of C++
code and data across heterogeneous systems composed of a host and
multiple accelerator devices. We introduce a new approach for efficiently
handling function pointers, which require special attention in the context
of heterogeneous systems because multiple instruction-sets are involved.
For data sharing, on the other hand, we exploit system-wide Shared
Virtual Memory.

The proposed techniques enable not only plain function pointers shared
across heterogeneous devices, but also the implementation of virtual
member functions. Thus, we show how to enable full and transparent
sharing of C++ objects, without breaking the host Application Binary
Interface. We also illustrate the automatic generation of remote proce-
dure calls for functions that are not present in the devices, either because
the source code is not available or because the invoked functionality may
be present only on the host, such as for operating system services.

The combination of system-wide Shared Virtual Memory with the
proposed techniques enables the use of the accelerator devices from the
very beginning of the application parallelisation and optimization pro-
cess, eliminating the need of adapting existing C++ code to the APIs
exposed by currently available heterogeneous programming models, such
as OpenCL or CUDA.

4.1 Introduction

Programming heterogeneous systems composed of a host subsystem and
a number of accelerator devices is notoriously challenging for two main
reasons: 1) accelerators are typically parallel architectures that require
the critical kernels of the applications to be parallelized in order to pro-
vide benefits; and 2) the interaction between the host and the devices
is exposed to the programmer at different levels of abstraction depend-
ing on the adopted programming model, greatly increasing the effort
required to port complex applications to heterogeneous systems.
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We focus on the latter aspect, i.e. on simplifying the host/device
interaction to the greatest possible extent. We leverage on the current
hardware architecture trend of providing increasingly tightly integrated
systems, and in particular on the opportunities offered by fine-grained
system Shared Virtual Memory (SVM) as defined by the OpenCL 2.0
standard [51], or the Heterogeneous System Architecture Foundation
(HSA) SVM model [44]. SVM greatly simplifies heterogeneous system
programming by enabling the sharing of data pointers, and therefore of
any data structure, across host and devices. However, one last step is still
needed to enable the easiest possible heterogeneous programming model,
that is, offering to developers a fully transparent model. To reach this
goal, it is necessary to abstract the coexistence of multiple instruction-
set architectures (ISAs), each endowed with its own Application Binary
Interface (ABI), running concurrently on the heterogeneous system while
sharing the same source code.

We assume C++ as the single source language for both host and
devices. This assumption is in line with the current trends, both in
language popularity among programmers and in adoption in standards
(e.g. OpenCL C++ static kernel language [52], SYCL [53], AMP [64]).
Current efforts in abstracting the host/device interface are still limited
by the underlying assumption of the lack of SVM, for which data trans-
fers are still explicit (although abstracted as in SYCL and AMP), and
by the lack of support for the dynamic aspects of C++ in the devices,
virtual member functions in particular. In our approach, we avoid the
need for explicitly expressing data transfers by relying on system-wide
SVM, while we focus instead on the required additional support from the
toolchains to also enable full sharing of the source code among the host
and devices, including function pointers and virtual member functions,
so that full C++ programming across the entire heterogeneous system
is made possible.

More precisely, the problem with function pointers in presence of mul-
tiple ISAs is that multiple versions of each function are needed — one for
each ISA. Since function pointers are shared as any other data among
host and devices, dereferencing, i.e., calling, a function pointer requires
specific support to make sure that the right version of the function is
invoked, depending on the device on which the call is performed. C++
is particularly sensitive to this issue due to virtual member functions,
which are implemented through function pointers, demanding therefore
an efficient implementation of the dereferencing mechanism. It is worth
noting that, while in typical HPC applications features such as virtual
member functions are rarely used, there are many potentially highly
parallel applications which would benefit from such features. An exam-
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ple is network packet filtering — a massively parallel application, where
the nature of each packet determines the specific operations that need
to be applied [87]. Such a problem can be easily modeled in object-
oriented programming through a packet class, which is subclassed into
several different types of packets, where each derived class redefines the
operations to fit the structure and semantics of its own data.

In this chapter we illustrate a very efficient implementation that en-
ables full sharing of function pointers in general as well as C++ objects,
inclusive of their virtual member functions, across the host and any de-
vice on the system, while maintaining full compatibility of legacy ABIs
on the host side. Note that the proposed technique and implementation
apply to the C language as well, although their impact is comparatively
lower, since C is not inherently object oriented, and therefore less sen-
sitive to the function pointer sharing issue. Our focus is to provide a
transparent implementation of heterogeneous function pointers, thus not
relying on any a-priori knowledge about the actual mapping between
functions and computational devices. Our approach does not prevent
the exploitation of such additional knowledge to generate more efficient
code, however this is beyond the scope of this work.

Even if full C++ is enabled, some functionalities are still unavailable
on the devices. This is the case for system calls that require the host
operating system intervention, but also external functions (e.g., library
functions) for which source code is not available. For these cases, we
provide a fallback solution that transparently invokes remote functions
from the devices to the host. Invoking remote host services from the
devices is obviously very expensive, as it implies the assembly and dis-
patch of messages between the device and the host. Moreover, the device
execution is suspended while waiting for the responses. Thus, for per-
formance optimization, remote calls should be either eliminated or kept
to the minimum. However, it is still critical to provide this functionality
for enabling an iterative optimization process.

In such a process, the developer focuses first on the more intellectually
challenging task of parallelization of the application code for efficient ex-
ecution on the accelerators. The compiler and language runtime can pro-
vide feedback on the remote calls still performed on the host, so that the
developer can incrementally remove them. For example, our approach
enables the use of STL (Standard Template Library) containers across
the host and the device, which may require dynamic memory allocation
when new elements are added. If the code adding such elements is exe-
cuted on a device, a remote invocation on the host will eventually occur
to perform the required memory allocation, incurring in very significant
performance loss. However, it is easy to notify developers about such
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events, so that they can take actions to remove such inefficiencies, e.g.
by pre-allocating memory and/or by using customizedd memory alloca-
tors that can work transparently on the devices as well. Thus we remove
the initial effort of porting data and code across host and devices, while
enabling the iterative optimization process. We believe such a process
to be much more efficient than the current approach, which forces the
developers to apply a large number of transformations to move from a
functional specification of their algorithms to even an initial version of
the same code able to run on an heterogeneous platform.

Contributions

In this work, we provide two main contributions:

1. A lightweight method for implementing function pointers on ISA-
heterogeneous architectures, so that on each architecture the func-
tion pointer refers to the appropriate code compiled for that archi-
tecture. This is achieved transparently, so that the programmer
does not need to worry about explicitly identifying the different
versions of the same code.

2. A parallel programming model employing full C++ support, ob-
tained through the abovementioned transparent function pointer
implementation and Shared Virtual Memory, to allow parallel code
to be deployed on heterogeneous platforms.

Organization of the Chapter

The remainder of this chapter is organized as follows. In Section 4.2, we
introduce the technique developed to efficiently implement transparent
function pointers, while in Section 4.3 we show how to use them to im-
plement a full parallel programming model. In Section 4.4, we report
on the efficiency of the proposed implementation techniques, by means
of an experimental campaign, while in Section 4.5 we compare our ap-
proach with recent related works. Finally, in Section 4.6 we draw some
conclusions and highlight future research directions.

4.2 Transparent Function Pointers

In this section, we present the first major contribution of this work, a
mechanism to efficiently implement transparent C++ function pointers
on heterogeneous architectures.

76



4.2 Transparent Function Pointers

In C/C++, a function pointer is a data type that represents a refer-
ence to a given function. The most common and straightforward imple-
mentation consists in a data pointer holding the memory address of the
body of the function it points to. This representation is not well suited
for heterogeneous platforms, where multiple implementations of a given
source code function (one for each different ISA, e.g.) could be present.
In this case, a single memory address cannot represent adequately the
function, and a shared function pointer implementation is needed.

extern void (*fnptr )();

static void func() {
// ...

}

void init() {
fnptr = func;

}

void use_fnptr () {
(*fnptr )();

}

Figure 4.1: Example of shared function pointer, in C language. The function
pointer is a global variable, thus shared among all devices. All the functions in
the translation unit are compiled for all the devices. The function pointer can
be initialized either from the host or from a device, and it can be used by both
host and devices.

Figure 4.1 shows an example of a shared function pointer. At source
code level, the global variable fnptr represents a function pointer. The
init function initializes the function pointer value, associating it with
the body of function func. The use fnptr function uses the function
pointer to make an indirect call. Since in a fully transparent heteroge-
neous platform all source code functions can potentially be executed on
all devices, the compiler does not statically know which version of func,
i.e. which memory address, must be stored in fnptr in the initialization.
Let us consider how the compiler can store the necessary information.

A first viable solution is the use a fat pointer : instead of representing
a function pointer as a single data pointer, we represent it as structure
containing a data pointer for each device in the system. With this
strategy, there is no ambiguity as indirect function calls can be compiled
to use the correct field of the fat pointer depending on the target device.
Figure 4.2a and Figure 4.2b show in pseudo-C respectively the code
compiled for the host and for a device. Function init stores all the
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extern struct {
void *host;
void *device;

} fnptr;

void init() {
fnptr = {

__host__(func),
__device__(func)

};
}

void use_fnptr () {
@icall(fnptr.host )();

}

(a) Host code

extern struct {
void *host;
void *device;

} fnptr;

void init() {
fnptr = {

__host__(func),
__device__(func)

};
}

void use_fnptr () {
@icall(fnptr.device )();

}

(b) Device code

Figure 4.2: Fat pointer representation of function pointers for heterogeneous
platforms. The operators host and device are used to represents respec-
tively the host and device version of the symbol operand. Indeed we use the
operator @icall to represent an call operation.

memory addresses of the different version of the function func in fnptr,
while in function use fnptr only one field at time is used depending on
the device the function is compiled to.

Although this solution is compliant with the C and C++ standards, it
does break the host ABI as the new memory layout of function pointers
is not interoperable with the old one, introducing an incompatibility
with pre-compiled libraries. Furthermore, the fat pointer solution breaks
another common assumption — that the conversion between function
pointers and data pointers and vice-versa is well defined and lossless.
This property is commonly implemented in modern compilers and is used
in many occasions in general purpose software, e.g., it is exploited by JIT
compilers and within debuggers. Since compatibility with pre-compiled
libraries is a highly desirable property, we investigate ABI-preserving
solutions.

To preserve the host ABI compatibility, we cannot change the mem-
ory layout of a function pointer. Thus the representation of function
pointers must be a data pointer containing the memory address of the
host version of the function it must point to. Therefore, an indirect
call performed on a device cannot use the function pointer value as the
address of the called function. The function pointer value, however, can
be used as a unique identifier of the function. Thus, it is possible to use
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void indirect_call(void (*fnptr )()) {
void *key = (void*)fnptr;
void *value = map_lookup(key);
if (value) {

@icall(value )();
} else {

// fallback path
}

}

Figure 4.3: Pseudo-code of an indirect call to a device.

an associative map for each device to bind the function pointer value
to the addresses of the corresponding code for that device. Figure 4.3
shows the pseudo-code of an indirect call to a device adopting this ap-
proach. The function pointer value is used as key for the lookup in the
associative map (map lookup). The result of the lookup is not null if
the indirect call is possible — i.e., if there is a compiled version of the
function code for the target device. In the general case, of course, there
is no guarantee that each function will be compiled for all the devices
— e.g., system calls will be compiled only for the host. Thus, we need
a fallback path to perform the call even if there is no version of the
function available for the selected device.

An efficient implementation of the associative map is critical for the
performance of the indirect calls. Straightforward options include vec-
tors of key-value pairs and hashtables. Unfortunately, neither is par-
ticularly effective. A vector of key-value pairs, sorted by key, can be
built at link time. Using a binary search to implement the lookup func-
tion, the lookup cost would vary depending on the number of possible
function pointer values (Θ(log(n)), where n is the number of function
pointer values), which is an undesirable property. A hashtable would
guarantee an amortized constant time complexity for the lookup. How-
ever, in the general case, the hashtable should be built at runtime to
support relocatable code. This negatively affects the startup time of
each program.

To avoid these undesirable side effects, we avoid building an explicit
data structure to represent the associative map, preferring instead a
sparse encoding of the key-value pairs. In particular, we rely on an het-
erogeneous linker, discussed later in 4.3.4, for the generation of decorated
trampolines. A trampoline is a short code stub that is generally used to
reach far locations through an absolute jump. We define the trampoline
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decoration as the set of all the data encoded just before the absolute
jump.

Figure 4.4 shows in pseudo-assembly the code generated for the host
and a device for the sample source code in Figure 4.1, and the trampo-
line code. Note that functions are compiled for both host and device.
When compiling for a device, the name of each function is mangled with
a unique suffix, e.g. the #dev suffix. For both the host and the device
the function pointer is initialized using the symbol corresponding to the
host version of the function. The linker will then resolve this symbol to
the trampoline. The translation of the indirect call on the host is there-
fore straightforward — fnptr points to the address of the trampoline,
which contains a jump instruction to the actual location of the function
code. The indirect call for the device needs to perform the lookup first.
For this purpose, we introduce a magic identifier, that is a fixed bit
pattern corresponding to an invalid/reserved encoding for the host ISA,
which identifies the presence of a trampoline. For the device, the code
generated for the indirect call is a specialization of the pseudo-code in
Figure 4.3. The map lookup implementation tries to match the magic
identifier. If the match is successful then the address of the function
can be loaded from the predefined offset. Otherwise, a fallback path is
taken. A possible fallback implementation is discussed in Section 4.3.2.

In case of multiple devices, the trampoline decoration is composed of
the magic identifier, and different data pointers at a predefined distinct
offset – one for each device – containing the addresses of the correspond-
ing device versions of the function if available, the null pointer otherwise.
Therefore the call sequence must also be extended with a check to avoid
the use of null values.

This solution guarantees a lookup in O(1) time, indeed this approach
can be employed to support shared libraries with position independent
code: instead of encoding the absolute address the device version of
the function, we put the distance between the addresses of the target
function and the trampoline.

The implementation can be further optimized to ensure that the actual
value of a function pointer is the address of the host version of the
function, thus removing completely the overhead for host. This result
can be achieved by placing the trampoline decorations exactly above the
corresponding function, eliminating the need for the unconditional jump
below the magic identifier. There are different ways to implement this
optimization in practice. Our proposal is to let the assembler allocate
the space required by a trampoline just before each function, and emit a
special relocation to inform the linker that the trampoline space has been
pre-allocated. Figure 4.5 shows the pseudo-assembly of the optimized
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.global init
init:

move r0, func
move r1, fnptr
store r0, [r1]
ret

.global use_fnptr
use_fnptr:

move r0, fnptr
load r0, [r0]
call r0
ret

.local func
func:

// ...

(a) Host code

.global init#dev
init#dev:

move x0, func
move x1, fnptr
store x0, [x1]
ret

.global use_fnptr#dev
use_fnptr#dev:

move x0, fnptr
// map_lookup(key)
load x0, [x0]
load x1, [x0 - 4]
move x2, MAGIC_ID
// if (value)
branch.ne x1, x2, .LBB2

.LBB1:
load x0, [x0 - 8]
call x0
jump .LBB3

.LBB2:
// fallback path

.LBB3:
ret

.local func#dev
func#dev:

// ...

(b) Device code

.word func#dev

.word MAGIC_ID
foo#trmpl:

jump func

(c) Trampoline code

Figure 4.4: Example of decorated trampoline use. (a) shows the host code,
(b) shows the device code, and (c) shows the trampoline code. Marked in red
the relocations that the linker shall resolve using the address of the trampoline,
while in blue the references within the trampoline of function func for both host
and device.
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.global func

.hctrmpl func
func:

// ...

(a)

.global func

.word func#dev

.word MAGIC_ID
func:

// ...

(b)

Figure 4.5: Decorated trampoline optimization. In (a) the pseudo-assembly
containing the directive .hctrmpl to allocate the space for the trampoline,
while in (b) the equivalent pseudo-assembly after the materialization of the
trampoline performed by the linker.

trampoline that contains the directive to allocate the trampoline itself,
and the equivalent expanded version after the initialization of trampoline
decorations. However the base solution can be useful for cases where a
legacy library is specialized for a device keeping the original interface
and linked against the original host library.

It is worth noting that the proposed technique can be also imple-
mented entirely within the linker, allowing the use of unmodified legacy
compilers for the host.

4.3 Integrating C++ Support across
Heterogeneous Systems

In this section we extend the efficient implementation of transparent
function pointers illustrated in Section 4.2 to enable full C++ support
across heterogeneous instruction sets. As we are motivated by parallel
accelerator devices, we also briefly introduce a parallel for construct
inspired by SYCL, as an example of a simple way to express paral-
lelism without requiring language extensions. However the mechanisms
exposed for supporting C++ are not limited to this specific parallel
construct, on the contrary they are generic and applicable to any pro-
gramming model. Once more, we assume Shared Virtual Memory to be
provided by the architecture, together with cache coherency across all
computational units.

Within the aforementioned setting, we represent computational ker-
nels as parallel loops defined in terms of an N -dimensional iteration
space and a function representing the loop body. In the following, we
will employ a SYCL-like [53] syntax to encode our computational ker-
nels, as it can be implemented using only templates, thus without any
extension to the language. The basic form to express a kernel, shown in
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template <typename T, int K>
void parallel_moving_average(const std::vector <T> &in,

std::vector <T> &out) {
assert(in.size() > 2 * K);

out.resize(in.size() - 2 * K);
parallel_for(range <1>(in.size() - 2 * K),

[&](id <1> it) {
T sum (0);
for (int i = -K; i <= K; ++i)

sum = in[it.get(0) + i + K];
out[it.get (0)] = sum / (2 * K + 1);

});
}

Figure 4.6: An example of parallel programming using the proposed model.

Figure 4.6, is the parallel for construct. This construct takes as pa-
rameters a C++ lambda function and the range of the iteration space.
The lambda function is the body of each iteration thus takes as argument
a given element of the iteration space. We also borrow from SYCL the
way to explicitly represent a tiled iteration space defining the global size
and the local size, i.e. the size of each tile. Indeed a barrier operation
between iterations of a same tile is provided.

The assumption of full SVM, i.e., the whole address space is shared,
and the shared function pointer implementation described in Section 4.2
allow us to support transparent calls between the host and the devices,
and to support the full range of C++ constructs in our programming
model, preserving ABI compatibility on the host side.

For this last purpose, it is necessary to guarantee that the data layout
used within the host is unchanged, including class layout and virtual
tables.

Finally, we need to support the fallback path for calls to functions for
which an implementation is absent on a given device — in particular
system calls.

In the rest of this section, we will provide an in-depth look at how
virtual member functions, pointer to member functions and generalized
system calls can be implemented in an heterogeneous environment, using
our transparent function pointer implementation.

4.3.1 Virtual member functions

A virtual member function is a mechanism provided by the C++ lan-
guage to support dynamic dispatch. The dispatch policy depends only
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class ClassA {
public:

virtual void msg_A ();
virtual void msg_B ();

private:
int dataA;

};

class ClassB :
public ClassA {

public:
void msg_A() override;
virtual void msg_C ();

private:
int dataB;

};

ClassA::msg A

ClassA::msg B

VFT for ClassA

ClassB::msg A

ClassA::msg B

ClassB::msg C

VFT for ClassB

vptr

dataA

Instance of ClassA

vptr

dataA
dataB

Instance of ClassB

Figure 4.7: Single inheritance virtual tables.

on the runtime type of the target object. The most common implemen-
tation of this mechanism is based on virtual function tables (VFTs), i.e.
a table of function pointers. The table indices are statically associated
with the member functions, allowing access to the actual addresses. Dy-
namic dispatch in C++ is complicated by the need to support different
cases depending on the type of inheritance: single inheritance, multiple
inheritance, and virtual inheritance. We apply the trampoline technique
used for transparent function pointers to manage virtual member func-
tions as well. The application of this technique depends on the type of
inheritance.

Single inheritance. In the case of single inheritance, virtual member
functions of the derived class are assigned consecutive indices in the
VFT, after those used for virtual member functions of the base class.
Figure 4.7 shows a simple example of single inheritance and lists the
virtual tables for two classes, ClassA and ClassB.

In an heterogeneous context, the implementation of shared function
pointers is transparent w.r.t. single inheritance VFT, since the host
function address also serves as the address of the trampoline to reach
the device implementations. If the trampoline is not located immediately
above the host function implementation, then its address replaces the
host function address in the VFT.

Multiple inheritance. In the case of multiple inheritance the issue is
the resolution of the conflicts of the index ranges of virtual member func-
tions inherited by the different base classes. Such conflicts are resolved
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class ClassA {
public:

virtual void msg_A ();
virtual void msg_B ();

private:
int dataA;

};

class ClassB {
public:

virtual void msg_C ();
virtual void msg_D ();

private:
int dataB;

};

class ClassC
: public ClassA ,

public ClassB {
public:

void msg_B() override;
void msg_D() override;

private:
int dataC;

};

ClassA::msg A

ClassA::msg B

VFT for ClassA

ClassB::msg C

ClassB::msg D

VFT for ClassB

ClassA::msg A

ClassC::msg B

ClassB::msg C†

ClassC::msg D

VFT for ClassC,
base ClassA

ClassB::msg C

ClassC::msg D†

VFT for ClassC,
base ClassB

vptr

dataA

Instance of ClassA

vptr

dataA
dataB

Instance of ClassB

vptrA

dataA
vptrB

dataB
dataC

Instance of ClassC

Figure 4.8: Multiple inheritance virtual tables. Entries marked with † indicate
that the this pointer must adjusted before calling the method.

by creating one VFT for each base class. When dealing with multiple
base classes, the object pointer must be properly adjusted before calling
methods. Figure 4.8 shows an example of multiple inheritance and lists
the virtual tables for the base classes ClassA and ClassB, and for the
derived class ClassC. For ClassC there are two different virtual tables.
The first is the proper virtual table of ClassC, used also when accessing
the object using as static type ClassA, while the second is the virtual
table of ClassC, used when the object is accessed using as static type
ClassB. The object pointer adjustment is required whenever we need to
access the object using one of the base type. Generally such adjustment
is handled using a thunk. The pointer adjustment code is folded within
the function registered in the virtual table. Thus, a thunk can be de-
scribed as a small assembly stub that simply adjusts the object pointer
and jumps to the expected function. This solution is efficient as the
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pointer adjustment is performed only when needed and allows to keep
the same layout of virtual tables as the single inheritance case.

In an heterogeneous context, each thunk must be emitted for all the
devices. Thus, each entry of the virtual table allows to reach trampolines
either for virtual member functions or for the corresponding thunks.

Virtual inheritance. In the case of virtual inheritance the sub-object
offset of the virtual base is not fixed in the class hierarchy. The off-
set is encoded in each virtual table to to be used whenever a pointer
adjustment is necessary. However this does not affect the references to
virtual functions. Thus, in an heterogeneous context there is no need for
any further extension to the function pointer solution to support virtual
inheritance.

4.3.2 Generalized system calls

It is generally infeasible to have all functions compiled for both host and
devices. This assumption would prevent the use of third party libraries,
and/or pre-compiled ones. An extreme example are all the services
offered by the operating system of the platform, i.e. system calls. We
define as generalized system calls the set of all the functions, and libraries
that either cannot be, or are not desirable to be supported natively for a
given device. The use of such functionalities it is generally common, e.g.
it is common to use the libc (the standard C library) to perform heap
allocation through malloc. In principle this could accidentally happen
in even in code that we would like to offload to devices. Because of
this, a general mechanism to handle such cases should be provided to
guarantee the functional behavior. The idea is to provide a mechanism
that allows a device to forward the call of foreign function to the host,
i.e. a remote procedure call.

Figure 4.9 shows a simple example of a stub and skeleton pair for
function fun. Function fun#dev stub is the stub generated by the device
compiler, while fun#skel is the skeleton generated by the host compiler.

The compiler generates the code for both stubs and skeletons, as the
former is the interface for the device while the latter is the interface for
the host. A function stub must have the same signature of the function
itself, such that it is possible for the linker to decide whether to solve
relocations on call instructions with either the function address or the
stub address. The stub code must prepare a request message for the host
containing the parameters of the call, and send it to the host along with
the skeleton address that must be invoked. A skeleton of a function
is in charge of unpacking the parameters from the message, perform
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int func(int a);

typedef struct {
int res;
int a;

} msg_func;

void func#skel(void *m) {
msg_func *msg =

(msg_func *)m;

msg ->res =
func(msg ->a);

__rpc_done(msg);
}

(a) Host code

int func(int a);

typedef struct {
int res;
int a;

} msg_func;

int func#stub(int a) {
msg_func msg =

{ 0, a };

__rpc(func#skel ,
&msg);

return msg.res;
}

(b) Device code

Figure 4.9: Stub and skeleton example.

the actual call to the host version of function, store the result into the
response message and send it.

In the case of direct calls the compiler generates conservatively stub
and skeleton for each external call, and the linker must resolve the call
relocation. In the case of indirect calls, the generated code implements
the general schema in Figure 4.3 where the fallback path is the invocation
of the stub. On indirect calls both stub and skeleton are derived using
the function pointer type, and one extra field is added in the message
to store the function pointer value.

Furthermore, to support variadic functions, stubs and skeletons must
be dependent on the actual call site parameter list. This is necessary as
the called function does not statically know the number of the param-
eters, thus to properly serialize the parameters within the message we
need to assume the caller point of view.

A tricky case is represented by those function that contain va list
as argument or return type. The va list is the descriptor to have ac-
cess to the variable arguments of a variadic function. The definition of
this type is platform specific, and is part of the ABI. There is no easy
way to support a remote call to a function dealing with such parame-
ter without any change to the calling convention on the host or device.
Thus, a viable solution is to enforce a particular calling convention for
the device that, in case of variadic function, is compatible with the one
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of the host. However, the use of such functions is infrequent, allowing
an implementation to avoid supporting remote calls for this case.

4.3.3 Other C++ features

There are other, minor, C++ language features that can be easily sup-
ported within an heterogeneous context, like pointer to member func-
tions and runtime type information. Pointer to member functions are
the generalization of function pointers to member functions. Depending
on the kind of function we want to point to, the memory layout of point-
ers to member function may be different. In the case of static member
function or non-virtual member function, the pointer to member func-
tion is just like a raw function pointer. In the case of a virtual member
function, the pointer to member function can be a struct containing the
index of the virtual table entry to call and the adjustment value that
must be added on the object pointer. The function pointer solution de-
scribed in Section 4.2 can be applied to pointer to member functions as
well.

Runtime type information are used to support dynamic cast, typeid
operators, and exceptions. Under the assumption of shared virtual mem-
ory, there is a unique instance of the runtime type information by con-
struction, as it is encoded within the virtual table of class.

4.3.4 Heterogeneous Linker

Our proposed solution for shared function pointer implementation re-
quires the linker to cooperate to ensure the correct behavior at runtime.
Since the main task of the linker is to link together different modules
to generate the final executable, it has a complete view of the compiled
program, thus it is able to resolve symbols based on this knowledge.
The natural extension of this concept within an heterogeneous context
is represented by an heterogeneous linker, able to link modules generated
for both the host and the devices.

The symbol resolution mechanism must handle the symbols defined
in either host or devices modules and referenced potentially in both.
Global data must be defined at most once, so we can safely assume
these are defined only in host modules. The first task of the linker is to
link shared data to both host and devices code. In particular, we need to
properly map the concept of static global variables of the C language,
i.e. a variable visible only within the translation unit. In general, static
variables are mapped to local symbols within the object file. However
in an heterogeneous context a translation unit is processed by multiple
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static int cnt = 0;

void foo() { ++cnt; }

int bar() { return cnt; }

(a) First translation unit

static int cnt = 0;

void baz() { ++cnt; }

int fee() { return cnt; }

(b) Second translation unit

.tu_id 1234

foo#dev:
// ...

bar#dev:
move x0, cnt
// ...

.tu_local cnt

(c) Device code for the first trans-
lation unit

.tu_id 1234

foo:
// ...

bar:
move r0, cnt
// ...

.tu_local cnt
cnt:

.word 0

(d) Host code for the first transla-
tion unit

.tu_id 7890

baz#dev:
// ...

fee#dev:
move x0, cnt
// ...

.tu_local cnt

(e) Device code for the second
translation unit

.tu_id 7890

baz:
// ...

fee:
move r0, cnt
// ...

.tu_local cnt
cnt:

.word 0

(f) Host code for the second trans-
lation unit

Figure 4.10: Example of static variable handling: Figure (a) and (b) show
two translation units both containing a static variable cnt. Figure (d) and (c)
show the equivalent pseudo assembly for host and device of the first translation
unit, while in (f) and (e) the equivalent pseudo assembly for host and device of
the first translation unit. Highlighted in red the relocation of cnt for the first
translation unit, while in blue the relocation of cnt for the second translation
unit
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compilers that generate different object files, thus a static variable may
be referenced in different object files derived from the same translation
unit. Therefore we need a new kind of symbol that represents such
variables, allowing the linker to unify the references to local symbols of
different object files derived from the same translation unit.

Figure 4.10 shows a simple case of static symbols resolution. Fig-
ure 4.10a and 4.10b show two C translation units containing the static
variable cnt, thus not visible across the translation unit boundary. Fig-
ure 4.10d, 4.10c, 4.10f, and 4.10e show the pseudo-assembly of the two
translation units for both host and device. Each translation unit is
uniquely identified, allowing the linker to cluster all the object files de-
rived from the same translation units and solve all the references of static
variables within each cluster.

The linker is also responsible for the generation of decorated trampo-
lines. The trampoline address must be used to fixup relocations associ-
ated to the assignments of function pointers. Whenever the space for a
trampoline has been pre-allocated, the linker encodes only the decora-
tion of the trampoline and uses the host function address as value for the
symbol resolution. The same process must be performed also on virtual
table entries, to ensure the correct behavior of calls to virtual member
functions. Furthermore the linker must properly handle relocations on
direct calls for the device code. Having visibility on the whole program,
the linker knows whether a function symbol is defined or not, thus it
can fixup the relocation on a direct call using the function address, if it
exists, or the stub address.

Moreover, to support shared libraries, structures related to exported
symbols, e.g. the global offset table, must be enriched with device sym-
bols. For each symbol that should be exported and for which a tram-
poline has been generated, the corresponding entry must point to the
trampoline.

Finally, load time relocation shall be emitted for both host and devices
code. Relocations of device code sections may be recorded separately
from host relocations. This can be useful not to modify the system
loader. Under such assumption, a post-loading phase may be required
in order to solve separately device relocations before the invocation of
the main function.
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4.4 Evaluation

In this section, we present an experimental analysis of the overhead im-
posed in supporting heterogeneous function pointers using the proposed
approach.

The focus of the evaluation is to show the impact of the heterogeneous
function pointers overheads for both host and device. The impact on the
host performance is expected to be negligible, even in the non-optimized
form, since the overhead is represented by a single unconditional jump
to the target function. In the optimized version, on the other hand,
there is no overhead for indirect calls to the host function.

The impact on the device side is largely dependent on the device ar-
chitecture, i.e. the memory hierarchy and access latencies and the cost
of branch divergence that may occur on indirect calls. In terms of addi-
tional instructions, in the worst case, the overhead of an indirect call on
the device can be summarized as two loads, two comparisons and one
branch. On modern architectures with complex memory hierarchy and
out-of-order pipeline, the actual impact also varies, depending on the
application and the frequency of such calls. Additional penalties may
be caused by cache misses while accessing the trampoline decorations
as well as branch misprediction. In the case of GPGPUs, the limit-
ing factors are, in general, the amount of latency for memory accesses
and branch divergence. While the latencies due to memory accesses are
generally masked in hardware by interleaving different workloads, the
overhead due to branch divergence depends on the ability of the hard-
ware to handle non uniform control flows. In typical GPGPUs, this is
a significant issue, because only one active control flow is supported at
any time. However, other many-core architectures, such as P2012 [16],
support multiple flows.

The performance evaluation has been carried out in an environment
which allows heterogeneous ISAs, and that supports shared virtual mem-
ory at system level, and cache coherency. The experiments have been
run on a ARM big.LITTLE octa-core with four Cortex-A7 and four
Cortex-A15. The environment is composed by ARM cores where the
host uses the classic ARM instruction set, while the device uses the
Thumb instruction set with NEON extension.

We first evaluated the overhead over traditional implementation of
function pointers varying the total workload. The experiment is com-
posed of an array of 256 function pointers, pointing to different functions
with the same implementation. The code of each function is reported in
Figure 4.11.
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uint64_t test(int i, uint64_t v) {
while (i > 0) {

v = ((v >> 13) ˆ CONST1) | ((v << 31) ˆ CONST2 );
--i;

}
return v;

}

Figure 4.11: Test function with parametric workload.
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Figure 4.12: Overhead over useful computational workload.

Each function takes an argument that controls the amount of com-
putation performed by the function, i.e. the number of iteration of a
loop. We measured the time of performing 1000 random selection from
the array of function pointers and calling the selected function. We ran
several tests with different value for the computation amount ranging
in [2, 65536]. Each run has been repeated at least 30 times in order to
reduce the measurement error.

Figure 4.12 shows the results of the experiment. As expected the
overhead decreases while increasing the amount of useful computation.
In particular, in the worst case, i.e., with the work factor of the load
function equal to 2, the overhead is only 8.2% and it rapidly decreases
to zero. The overhead in terms of code size of the text section of the
executable is ≈ 1.7%: this overhead is computed as the sum of all the
trampolines generated and the additional code at each call site. Note
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Figure 4.13: Overhead on Xerces-C++ DOM tree creation. The experimental
results show that overhead is in the range of 2.7%− 5.5%. Note that 45.4% of
the calls performed in each run are virtual.

that in this test we have exactly 256 function pointer values and just a
single call site that requires extra code.

To obtain an assessment on real code, rather than on a synthetic
benchmark, we also evaluated the overhead of heterogeneous function
pointers using an existing C++ library. We select as a benchmark
Xerces-C++[1], a C++ library for parsing XML documents and manip-
ulating DOM trees. This library employs a non trivial class hierarchy
to represent the elements in a DOM tree with a large number of virtual
member functions. Thus, it represents a good choice for our evaluation
— libraries less reliant on virtual member functions would obviously
demonstrate lower overheads.

The selected test measures the performance of creating a DOM tree
completely in memory. We ran the test several times varying the size
of the generated DOM ranging in [1 · 104, 5 · 104]. Each run has been
repeated 30 times in order to reduce the measurement error.

Figure 4.13 shows the overhead measured on a DOM tree creation
program. Despite the fact that 45.4% of the performed calls are virtual
in this test, the overhead on the whole execution time is contained within
the [2.7%, 5.5%] range. The overhead in terms of code size of the text
section of the executable is ≈ 11%: this overhead is computed as the
sum of all the trampoline generated and the additional code at each call
site.
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4.5 Related Work

The development of programming models for heterogeneous architec-
tures has received the greatest impulse from the GPGPU computing
world. NVIDIA CUDA [65], in particular, was the first attempt to
provide a programming model for heterogeneous devices to reach sig-
nificant commercial success. CUDA, being a proprietary programming
model and toolchain, only supports NVIDIA devices, but the main ideas
behind it were soon adopted by the Khronos Group consortium to define
the open standard OpenCL [51]. Both models rely on explicit separa-
tion of host and device code – a feature that was critical to their success,
giving control to the programmer and simplifying the implementation
of compilers and deployment libraries, but that in the long run may
prove their downfall. Indeed, both CUDA and OpenCL provide cum-
bersome syntaxes and require significant boilerplate code to setup the
offloading of kernels to the compute devices. More recently, attempts
have been done at reducing such drawbacks, by exposing lighter syntax
based on pragmas or special keywords marking the parallelizable regions.
OpenACC [70], the Codeplay Offload technology [22] and Microsoft’s
C++AMP [64] fall in this category. These systems share similar charac-
teristics. In short, all need to identify explicitly the code regions that can
be offloaded to an accelerator device, in order to perform static checks
and code transformations necessary to generate the accelerator code and
the offloading wrapper code. Recent attempts to support C++ execu-
tion on heterogeneous architectures, such as SyCL [53] and PACXX [41],
still need to maintain the programmer aware of the offloading process
– in contrast, our approach aims at complete transparency. The pro-
grammer only needs to deal with the parallelization of code, which is
expressed without need of additional syntax and without imposing spe-
cial restrictions on the offloaded code.

In [29], the problem of heterogeneity is considered in the context of
chip multiprocessors. The authors employ padding to preserve the off-
sets of function addresses with respect to the base address of the code
section across different ISA. Thus, the function pointers have the same
value for all ISAs. In our proposal, padding is not needed, so ISAs that
lead to very different code sizes suffer less penalties in memory occupa-
tion. While our indirect function calls become slightly more complex for
the devices, the increased flexibility in linking makes the (very limited)
overhead worth paying.

94



4.6 Conclusion

4.6 Conclusion

We have presented a method to transparently implement shared function
pointers in heterogeneous platforms where two or more ISAs coexist,
and Shared Virtual Memory is available. Our proposal, based on the
trampoline technique for indirect calls, allows to preserve compatibility
with the host ABI, while introducing only minimal overheads in terms of
performance (2.7%− 5.5%) and code size (≈ 11%). We assume to have
an heterogenous linking process to wire up both host and devices object
files, and materialize such trampolines. This technique is the building
block to support C++ with virtual member functions. We provided a
fallback solution to implement device call to function not available on the
device itself (e.g. operating system services) based on RPC mechanism
where the compiler is responsible to generate stubs and skeletons, and
the heterogeneous linker decides at link-time whether stubs shall be
used or not depending on the presence of the target function for a given
device.

Future developments include the implementation of exceptions in het-
erogeneous contexts (open problems include the semantics of exceptions
and the hardware support needed), and a refinement of the programming
model (e.g., allowing task spawning from the devices, with semantics
similar to dynamic parallelism in NVIDIA Kepler).
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Conclusion

Programming parallel architectures is a complex task, since many hard-
ware features are directly exposed to the programmers. Programming
frameworks that try to hide such complexity exist, however they either
provide only sub-optimal performance with respect to hand tuned imple-
mentations, or they are limited to specific application domains. Industry
standard programming frameworks, such as OpenCL, allow to provide
functional and performance portability, although they assume that the
programmer is willing to shoulder the burden of explicitly supporting
it. Indeed, future architectures may help to alleviate the issue through
providing advanced features such as Shared Virtual Memory.

We have introduced OpenCRun, an OpenCL runtime implementation
aiming at supporting the execution of OpenCL kernels on a range of plat-
forms with very different architectural characteristics. Among these, the
PULP platform has been designed to optimize power efficiency. To this
end, we cooperated with the PULP hardware design team to co-explore
ISA extensions and their compiler support to optimize the OpenRISC
core, used as the processing element of PULP. We have reaped signifi-
cant benefits in terms of energy efficiency with only reduced area costs.
At cluster level the energy savings ranges between 39% and 66%, with
an area increment is only 2.3% and power consumption increased by
18%. On average the cluster is 47.8% more energy efficient than the
initial architecture.

To improve functional and performance portability of OpenCL code
between GPGPUs and embedded many-core accelerators with explicitly
managed memory such as PULP and STHorm, we have proposed a code
transformation, work-item coalescing, to bypass the limitations of em-
bedded platforms, as well as memory transfer optimization to improve
the performance. Work-item coalescing allows to deal with non-native
work group sizes, transforming the kernel code to remap work-items
onto the processing elements, and allowing code developed for GPGPU
to be ported seamlessly, while the memory transfer optimization em-
ploys double buffering technique to improve performance overlapping
memory transfers and computation exploiting the DMA capabilities of
embedded platforms. Our results on two case studies show the effective-
ness of the proposed technique, which allowed the code, developed for
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NVIDIA devices and not designed with portability to smaller-scale ones
in mind, to effectively run on a STHorm target with a speedup up to
88× for non computational intensive kernels and a speedup up to 4× for
computational intensive kernels.

To increase the abstraction level in a more radical way, leveraging
Shared Virtual Memory that is expected to be available in future ar-
chitectures, we have presented a method to transparently implement
shared function pointers in heterogeneous platforms with two or more
ISAs. Our proposal, based on the trampoline technique for indirect
calls, allows to preserve compatibility with the host ABI, while intro-
ducing only minimal overheads in terms of performance (2.7% − 5.5%)
and code size (≈ 11%). This technique is the building block to support
C++ with virtual member functions. We provided a fallback solution
to implement function calls from device to function not available on
the device itself (e.g. operating system services) based on RPC mecha-
nism where the compiler is responsible to generate stubs and skeletons,
and the heterogeneous linker decides at link-time whether stubs shall be
used or not depending on the presence of the target function for a given
device.

Future developments regarding the topic discussed in Chapter 3 in-
clude improvements to the memory transfer optimization to increase the
number of kernels that can be transformed. A possible approach is to
apply pipelining with double buffering exploiting the implicit loop iter-
ating across work-groups overlapping data transfers and computations
of two different work-groups. On the other hand regarding the topic
discussed in Chapter 4, future developments include the implementa-
tion of exceptions in heterogeneous contexts (open problems include the
semantics of exceptions and the hardware support needed), and a re-
finement of the programming model (e.g., allowing task spawning from
the devices, with semantics similar to dynamic parallelism in NVIDIA
Kepler).
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tive Cluster Programming with OmpSs. In Euro-Par (1), pages 555–566,
2011.

[20] Chongxiao Cao, Mark Gates, Azzam Haidar, Piotr Luszczek, Stanimire
Tomov, Ichitaro Yamazaki, and Jack Dongarra. Performance and Porta-
bility with OpenCL for Throughput-oriented HPC Workloads Across Ac-
celerators, Coprocessors, and Multicore Processors. In Proc. of 5th Work-
shop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
ScalA ’14, pages 61–68. IEEE Press, 2014.

[21] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-
fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for
Heterogeneous Computing. In Proc. of the 2009 IEEE International Sym-
posium on Workload Characterization, IISWC 2009, pages 44–54, 2009.

[22] Codeplay. Offload Compiler SDK. https://www.codeplay.com/company/
documents.html?folder=3.

[23] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini. Energy-efficient
vision on the pulp platform for ultra-low power parallel computing. In
Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pages 1–6,
Oct 2014.

[24] Pete Cooper, Uwe Dolinsky, Alastair F. Donaldson, Andrew Richards,
Colin Riley, and George Russell. Offload – Automating Code Migra-
tion to Heterogeneous Multicore Systems. In Yale N. Patt, Pierfrancesco
Foglia, Evelyn Duesterwald, Paolo Faraboschi, and Xavier Martorell, ed-
itors, High Performance Embedded Architectures and Compilers, volume

106

https://www.codeplay.com/company/documents.html?folder=3
https://www.codeplay.com/company/documents.html?folder=3


Bibliography

5952 of Lecture Notes in Computer Science, pages 337–352. Springer Berlin
Heidelberg, 2010.

[25] Intel Corp. Threading Building Blocks. http://www.
threadingbuildingblocks.org/, 2009.

[26] Joe Curley. HPC and Big Data. Innovation, 12(3), July 2014.

[27] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,
Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The
Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In Proc.
of 3rd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU 2010, pages 63–74, 2010.

[28] B.D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P.G. de Massas, F. Jacquet, S. Jones, N.M. Chaisemartin, F. Riss, and
T. Strudel. A clustered manycore processor architecture for embedded
and accelerated applications. In High Performance Extreme Computing
Conference (HPEC), 2013 IEEE, pages 1–6, Sept 2013.

[29] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. Execution Mi-
gration in a heterogeneous-ISA Chip Multiprocessor. In Proceedings of the
Seventeenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVII, pages 261–
272, New York, NY, USA, 2012. ACM.

[30] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter
Scales. AltiVec Extension to PowerPC Accelerates Media Processing.
IEEE Micro, 20(2):85–95, 2000.

[31] A. Duran and M. Klemm. The Intel Many Integrated Core Architecture. In
High Performance Computing and Simulation (HPCS), 2012 International
Conference on, pages 365–366, July 2012.

[32] Johan Enmyren and Christoph W. Kessler. SkePU: A Multi-backend
Skeleton Programming Library for multi-GPU Systems. In Proceedings
of the Fourth International Workshop on High-level Parallel Programming
and Applications, HLPP ’10, pages 5–14, New York, NY, USA, 2010.
ACM.

[33] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark Silicon and the End of Multicore Scaling.
In Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 365–376, New York, NY, USA, 2011. ACM.

[34] J.B. Fang, H. Sips, P. Jaaskelainen, and A.L. Varbanescu. Grover: Look-
ing for Performance Improvement by Disabling Local Memory Usage in
OpenCL Kernels. In 43rd Int’l Conf. on Parallel Processing (ICPP 2014),
pages 162–171. IEEE, Sept 2014.

[35] Michael J. Flynn. Very High Speed Computing Systems. Proceedings of
the IEEE, 54:1901–1909, 1966.

107

http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/


Bibliography

[36] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implemen-
tation of the Cilk-5 Multithreaded Language. In PLDI, pages 212–223,
1998.

[37] G.-R. Uh et al. Techniques for effectively exploiting a zero overhead loop
buffer. In Compiler Construction, pages 157–172. Springer, 2000.

[38] Davide Gadioli, Simone Libutti, Giuseppe Massari, Edoardo Paone,
Michele Scandale, Patrick Bellasi, Gianluca Palermo, Vittorio Zaccaria,
Giovanni Agosta, William Fornaciari, and Cristina Silvano. OpenCL Ap-
plication Auto-tuning and Run-Time Resource Management for Multi-
core Platforms. In IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, ISPA 2014, Milan, Italy, August
26-28, 2014, pages 127–133, 2014.

[39] M. Gautschi, A. Traber, A. Pullini, L. Benini, M. Scandale, A. Di Federico,
M. Beretta, and G. Agosta. Tailoring instruction-set extensions for an
ultra-low power tightly-coupled cluster of OpenRISC cores. In Very Large
Scale Integration (VLSI-SoC), 2015 IFIP/IEEE International Conference
on, pages 25–30, Oct 2015.

[40] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez. En-
ergy Efficient HPC on Embedded SoCs: Optimization Techniques for Mali
GPU. In 28th IEEE Int’l Parallel and Distributed Processing Symposium,
pages 123–132, May 2014.

[41] Michael Haidl and Sergei Gorlatch. PACXX: Towards a Unified Program-
ming Model for Programming Accelerators Using C++14. In Proceedings
of the 2014 LLVM Compiler Infrastructure in HPC, LLVM-HPC ’14, pages
1–11, Piscataway, NJ, USA, 2014. IEEE Press.

[42] H.P. Hofstee. Power efficient processor architecture and the cell proces-
sor. In High-Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on, pages 258–262, Feb 2005.

[43] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-
ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A
48-Core IA-32 message-passing processor with DVFS in 45nm CMOS. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, pages 108–109, Feb 2010.

[44] HSATM Foundation. HSA Platform System Architecture Specification,
Provisional 1.0. http://www.hsafoundation.com/?ddownload=4944, April
2014.

[45] Dafei Huang, Mei Wen, Changqing Xun, Dong Chen, Xing Cai, Yu-
ran Qiao, Nan Wu, and Chunyuan Zhang. Automated Transformation
of GPU-Specific OpenCL Kernels Targeting Performance Portability on
Multi-Core/Many-Core CPUs. In Euro-Par 2014, volume 8632 of LNCS,
pages 210–221. Springer, 2014.

108

http://www.hsafoundation.com/?ddownload=4944


Bibliography

[46] Intel. An Introduction to the Intel QuickPath Interconnect.
http://www.intel.com/content/www/us/en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.html, 2009.
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