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Abstract

Even though search systems are very efficient in retrieving world-wide in-
formation, they cannot capture some peculiar aspects of user needs, such
as subjective opinions, or information that require local or domain spe-
cific expertise. In these scenarios the knowledge of an expert or a friend’s
advice can be more useful than any information retrieved by a search sys-
tem. This way of exploiting human knowledge for information seeking and
computational task is called Crowdsourcing. The main objective of this
work is to develop methodologies for the creation of applications based on
Crowdsourcing and social interaction. The outcome is a framework based
on model-driven approach that allow end user to develop their own appli-
cation with a fraction of the effort required by the traditional approaches.
It guarantees a strong control of the execution of the crowdsourcing task
by mean of a declarative specification of objectives and quality measures.
A prototype has been developed that allow the creation and execution of
task on various platforms. Validation of the approach has been carried out
with quantitative and qualitative analysis of results and performance of the
system upon some sample scenarios, where real users from social networks
and crowdsourcing platforms have been involved.
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Riassunto

Nonostante i sistemi di ricerca siano molto efficienti nel recupero delle in-
formazioni in tutto il mondo, non possono catturare alcuni aspetti peculiari
di esigenze degli utenti, come opinioni soggettive, o informazioni che ri-
chiedono competenze specifiche di dominio. In questi scenari l’abilitá di
una persona, la conoscenza di un esperto o il consiglio di un amico puó
essere piú utile di qualsiasi informazione fornitas da un sistema di ricerca.
Questo modo di sfruttare la conoscenza umana per ricerca di informazio-
ni e attivitá di calcolo si chiama Crowdsourcing. L’obiettivo principale di
questo lavoro é quello di sviluppare metodologie per la creazione di appli-
cazioni basate su Crowdsourcing e di interazione sociale. Il risultato é un
framework basato su approccio orientato al modello che permette all’utente
finale di sviluppare una propria applicazione con una frazione dello sforzo
richiesto dai metodi tradizionali. Garantisce un forte controllo del lavoro
svolto dalla crowd per mezzo di una specifica dichiarativa degli obiettivi
e di metriche di qualitá. E’ stato sviluppato un prototipo che consente di
poter creare e di far eseguire lavori alla crowd su varie piattaforme. La
validazione dell’approccio é stata effettuata tramite un’analisi quantitativa
e qualitativa dei risultati e le prestazioni del sistema sono state valutate su
alcuni scenari di esempio, in cui sono stati coinvolti gli utenti reali da social
network e piattaforme di crowdsourcing.

III





Contents

1 Introduction and Problem Statement 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Approaches for programming the crowd . . . . . . . . . . 6
2.3 Crowdsourcing Application Design . . . . . . . . . . . . . 10
2.4 Optimization of Crowdsourcing Task Design . . . . . . . . 12
2.5 User Engagement . . . . . . . . . . . . . . . . . . . . . . 14

3 Models for Crowdsourcing Application Design 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Crowd Model . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Problem Model . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Crowdsourcing design process . . . . . . . . . . . . . . . . 23

3.5.1 Operation Design . . . . . . . . . . . . . . . . . . . 23
3.5.2 Object Design . . . . . . . . . . . . . . . . . . . . 23
3.5.3 Performer Selection . . . . . . . . . . . . . . . . . 24
3.5.4 Workplan Design . . . . . . . . . . . . . . . . . . . 24
3.5.5 Platform Selection . . . . . . . . . . . . . . . . . . 25

V



Contents

3.5.6 UI Design . . . . . . . . . . . . . . . . . . . . . . 26
3.6 An Explorative Method for Crowdsoucing Task design . . . 26

3.6.1 Experiment . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Controlling the Crowd 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Crowd Control Model . . . . . . . . . . . . . . . . . . . . 35
4.3 Reactive Control Design . . . . . . . . . . . . . . . . . . . 36

4.3.1 Rule Language . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Active Rule Programming . . . . . . . . . . . . . . 38
4.3.3 Control Rules . . . . . . . . . . . . . . . . . . . . . 40
4.3.4 Result Rules . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 Execution Rules . . . . . . . . . . . . . . . . . . . 43

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.A Grammar of Rule Language . . . . . . . . . . . . . . . . . 50
4.B Rules For the Running Example . . . . . . . . . . . . . . . 50

5 Interoperable Crowdsourcing 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Interoperabiluty Rules . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Cross-Platform Interoperability . . . . . . . . . . . 56
5.3.2 Cross-Community Interoperability . . . . . . . . . . 60
5.3.3 Rule Design Principles . . . . . . . . . . . . . . . . 63

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Cross-Platform Scenario . . . . . . . . . . . . . . . 65
5.4.2 Cross-Community Scenario . . . . . . . . . . . . . 68

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Crowdsourcing Design Patterns 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Models and Design of Crowd-based Workflows . . . . . . . 74

6.2.1 Workflow Design . . . . . . . . . . . . . . . . . . . 74
6.3 Crowdsourcing Patterns . . . . . . . . . . . . . . . . . . . 76

6.3.1 Intra-Task Patterns . . . . . . . . . . . . . . . . . . 76
6.3.2 Auxiliary Intra-Task Patterns . . . . . . . . . . . . 78
6.3.3 Workflow Patterns . . . . . . . . . . . . . . . . . . 78
6.3.4 Auxiliary Workflow Patterns . . . . . . . . . . . . . 79

VI



Contents

6.4 Workflow Execution . . . . . . . . . . . . . . . . . . . . . 80
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.1 Scenario 1: Scene Positioning . . . . . . . . . . . . 82
6.5.2 Scenario 2: Actors . . . . . . . . . . . . . . . . . . 83
6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Users Engagement 89
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Instruments for Building Social Challenges . . . . . . . . . 91

7.2.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2.3 Actor/Actions Interplay . . . . . . . . . . . . . . . 94
7.2.4 Other Aspects that Influence Engagement . . . . . . 95
7.2.5 Sensing the Social Activities . . . . . . . . . . . . . 96

7.3 Architecture and Implementation . . . . . . . . . . . . . . 96
7.4 YourExpo2015 . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.1 Global View . . . . . . . . . . . . . . . . . . . . . 100
7.4.2 Staging . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.3 Time dependency . . . . . . . . . . . . . . . . . . . 104
7.4.4 Individual variability . . . . . . . . . . . . . . . . . 104
7.4.5 Cluster Analysis of Players . . . . . . . . . . . . . 105

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 CrowdSearcher 109
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Task Configuration . . . . . . . . . . . . . . . . . . . . . . 110

8.2.1 Task Design . . . . . . . . . . . . . . . . . . . . . 110
8.2.2 Object Design . . . . . . . . . . . . . . . . . . . . 111
8.2.3 Execution Design . . . . . . . . . . . . . . . . . . 112
8.2.4 Performer Selection or Invitation Design . . . . . . 114
8.2.5 Adaptation Design . . . . . . . . . . . . . . . . . . 114

8.3 Task Execution and Control . . . . . . . . . . . . . . . . . 116
8.4 Task Monitoring . . . . . . . . . . . . . . . . . . . . . . . 117
8.5 CrowdSearcher Architecture . . . . . . . . . . . . . . . . . 118
8.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 122

VII



Contents

9 Conclusions and Future Work 123
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 127

VIII



CHAPTER1
Introduction and Problem Statement

1.1 Introduction

A new class of software applications, called crowd-based applications, is
emerging. These applications use crowds, engaged through a variety of
platforms, for performing tasks; the most typical application scenarios in-
clude fact checking, opinion mining, localized information gathering, mar-
keting campaigns, expert response gathering, image recognition and com-
menting, multimedia decoding and tagging, and so on. Crowds have been
used also for more creative tasks, including scientific discovery1 exploiting
game-with-a-purpose (GWAP) approaches. All these applications delegate
to people the activities that are better performed by humans than by com-
puters.

The common aspect of these applications is the interaction between
the requestor (who poses a task), the system (which organizes the com-
putation by mixing conventional and crowd-based modules), and a poten-
tially wide set of performers (who are in charge of performing crowd tasks
and are typically unknown to the requestor). The system may take multi-
ple forms: in addition to crowdsourcing platforms (such as Amazon Turk

1E.g., FoldIt, a GWAP for protein folding http://fold.it.
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Chapter 1. Introduction and Problem Statement

or CrowdFlower) or question-answering systems (such as Quora or Ya-
hoo!Answers), a recent trend is to use social networks (such as Facebook,
Twitter or LinkedIn) as sources of human labor to be integrated in software
applications, thanks to the availability of their programming interfaces.

Crowd-based computations undergo a new set of design principles and
phases, as dealing with crowds introduces many peculiar aspects:

• Performers should be selected, possibly on the basis of their expertise
on the task that they should perform.

• They must be reached, typically through an invitation system.

• They must be motivated through incentives, that include non-monetary
ones, such as fun, self-esteem, altruism, visibility and reputation.

• Their work should be controlled, and in particular a task should be
deemed as complete when it meets certain quality criteria, which take
into account elapsed time, cost, and quality of result.

• Performers should be controlled, in particular by detecting malicious
and/or incompetent performers, who should be banned from the com-
putation.

Crowd-based computations can be part of a complex workflow and can
be intertwined with conventional software computations; it is important to
provide them with clear interfaces to the rest of the software, so that it be-
comes possible to discuss their requirements, design, testing, deployment,
control, and maintenance, both from a local perspective and from a global,
system-oriented perspective.

1.2 Problem Statement

In this situation different issues arise: each type of scenario is characterized
by a peculiar set of needs and requirements, that need to be mapped to the
particular platform,that usually is not flexible, as it do not support a high-
level, fine-tuned control upon posting and retracting tasks.
For instance if the requester wants to post and control a crowdsourcing
task on Amazon Mechanical Turk he has to code the implementation with
imperative and low-level programming language or using a framework like
Turkit [53]. If he wants to exploit the relations between people, he may
want to use a social network as crowdsourcing platform. In this case the
requester has to directly use the API provided by the social network.
Thus the research questions that lead this work are:

2



1.3. Contribution

1 What are the main features of a crowdsourcing application ?

2 How can I abstract all these characteristics in a agnostic metamodel?

3 How can this model be used to facilitate the development of a crowd
or social based application maximizing its performance?

1.3 Contribution

The objective of this work is to develop methodologies for creating applica-
tions that leverage the knowledge of the crowd or social communities. The
approach developed should be platform agnostic and allow the requester to
create his application without having strong technical knowledge.
This approach defines a design methodology, a specification paradigm and a
reactive execution control environment for designing, deploying, and mon-
itoring crowd-based modules. It is focused on data-centric applications,
which apply structured human processing to large datasets; these applica-
tions represents the largest and currently most important class of crowd-
based applications, as they include big data preparation, cleaning, and con-
sistency checking. I disregard crowd-based applications which are selec-
tively addressed to few performers (possibly a single one), such as interac-
tion with experts or localized question-answering.

1.4 Thesis organization

The remainder of this thesis is structured as follow:

• Chapter 2 provides a detailed overview of the state of the art regarding
crowdsourcing methodologies.

• Chapter 3 describes the proposed model for building crowdsourcing
application and the related design process.

• Chapter 4 deals with the problem of controlling the work of the crowd,
so that cost, quality and time constraints are satisfied.

• Chapter 5 analyses the problem of building interoperable crowdsourc-
ing applications, where the execution of the task is carried out upon
different execution environments.

3
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• Chapter 6 presents a systematic approach to the design and deploy-
ment of crowd-based applications as arbitrarily complex workflows
of elementary tasks

• Chapter 7 addresses the problem of understanding how incentives
(non monetary) influence the engagement of people performing a
crowdsourcing task.

• Chapter 8 describes the prototype (CrowdSearcher) that has been built
in order to perform the experiments needed for the validation of this
work.

• Chapter 9 summarizes the results obtained and proposes possible fu-
ture research directions.

4



CHAPTER2
State of the art

2.1 Introduction

In this chapter I describe the state of the art of Crowdsourcing application,
in particular I focus on four main aspects:

• Approaches for programming the Crowd (Section 2.2): I focus on
previous research studies and tools that aim to facilitate the develop-
ment and the control of Crowdsourcing applications. These works
address the problem in different ways: they provide an imperative or
declarative approach for defining the model of the application and the
rules for the control.

• Crowdsourcing Application Design (Section 2.3): I focus on studies
that focus on more theoretical aspects of modeling, proposing pat-
tern that should enhance the quality of the result of a crowdsourcing
task or studying how different design dimension impact on the per-
formance.

• Optimization of Crowdsourcing Task (Section 2.4): I focus on previ-
ous work that try to address the problem of finding the optimal design

5
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for a crowdsourcing task. Usually they focus on a single single aspect
of the crowdsourcing application (e.g. results aggregation, performer
selections, etc.. ) and build a mathematical model of the problem.

• User Engagement (Section 2.5): I focus on previous work regarding
methods for boosting the participation for users in Crowdsourcing ac-
tivity, both in term of quality of the results and number of workers.
Usually this is achieved using either monetary of non monetary re-
wards. Studies about the former focus on how much to pay and how
to regulate financial bonuses in order to enhance the quality of the
results, while the second studies how to leverage factors such as mo-
tivation and entertainment (i.e. serious games)

2.2 Approaches for programming the crowd

In this section I describe various programming approaches proposed in
these years in order to facilitate the development of application that lever-
age the crowd. Most approaches rely on an imperative programming
model to specify the interaction with crowdsourcing services.

Turkit [55] offers a Java/Javascript API for programming iterative tasks
on Amazon Mechanical Turk. A developer that uses Turkit has access to all
the Javascript features and to an abstraction layer of the Amazon Mechan-
ical Turk API, allowing to create complex set of HITs as steps of an algo-
rithm. They propose a new programming model called crash-and-rerun in
order to address the problems of errors handling and fault detection since it
allows program to be re-executed without repeating the costly parts. This
is achieved by caching the results of costly operations so that, if the pro-
gram crashes, their outcome are easily retrieved. This is very useful in the
context of crowdsourcing because operations cost also money. This also
allows the programmer to tune the program between executions, given that
the order of important operations is not altered. The authors also provide
a web based IDE for developing and running TurkIt scripts, that also al-
lows to keep track of the execution steps. Finally the authors evaluate their
work with different tasks involving also people outside the project. They
noticed that TurkIt is useful for writing simple scripts, but often people
get confused with the crash-and-rerun programming model. Furthermore
it favors usability over efficiency, for instance if a script need to be rerun,
all the loops present need to be re-executed. Another benefit is the experi-
ment replication, since it’s enough to share the source code and the related
database.

6



2.2. Approaches for programming the crowd

RABJ [49] is a proprietary human computation engine developed by
Metaweb to enhance the data processing pipelines of Freebase with human
judgments. The data model is very simple, it’s composed by three enti-
ties: Question, Judgment and Queue. Question is the smallest unit of work,
typically it ask the crowd to evaluate some piece of information or to in-
put some data. The Judgment is the response provided by the worker. The
Queue is a set of Questions bound to an application. The model is content
agnostic, so it can cover very different use cases, the downside of this is that
complex control is delegated to the applications. The authors evaluated this
approach with three application: Typewriter, an application built for con-
necting entity to a class (e.g. is George Clooney an actor?), Geographer, for
associating a location with its geographic coordinates, and Genderizer, for
determining the gender of an entity by looking only to its picture or reading
a description. Finally they report the lesson learned: the relation between
requester and workers is important, the authors didn’t apply complex anti
spam methods, but they invested time in training the workers and in setting
up special communication channel for receiving feedbacks. They noticed
that binary questions are more effective than their multi selection counter-
part, less options lead to less conflict, moreover is important to estimate
the correct amount of response needed. RABJ allows to dynamically tune
the number of judgments needed, but the actual control must be performed
by the client application. Finally incentives for volunteer are very different
from the ones for paid worker: a volunteer wants to be recognized for his
work and enjoy to compete against the others.

Jabberwocky [3] it’s a framework for human computation composed by
three component: Dormouse, a virtual machine that provides cross platform
social computation capabilities by abstracting the implementation details of
the underlying platforms; ManReduce, a parallel programming framework
inspired by MapReduce; and Dog, a high level procedural programming
language that allow to program crowdsourcing tasks. Dormouse sits on top
of the crowdsourcing platforms and it hides their implementation details,
offering a cross-platforms programming environment. It also allow the de-
veloper to build custom social structure and enrich the information related
to the workers. ManReduce, based on MapReduce, allows the system to
be ready for data intensive application. Moreover it allows both machine
and human to perform both the map and reduce steps. Since the ManRe-
duce is too low level for some application, the authors propose also Dog, a
high level programming language that sit on top of ManReduce. It offers a
set of libraries that implement the most common crowdsourcing task type
such as Vote, Compare, Classify and machine functions such as Histogram,

7
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Median, etc.. The language is also extensible by the developers that can
write both human and machine libraries function by accessing directly to
ManReduce.

Other works propose approaches for human computation which are based
on high level abstractions, sometimes of declarative nature.

In [63], authors describe a language that interleaves human-computable
functions, standard relational operators and algorithmic computation in a
declarative fashion. Then they extend their model in order to take into the
account uncertainty, cost, scheduling and spam. This is a very abstract
study, since they do not study the interaction with a real crowdsourcing
environment. They propose a Datalog like model for specifying crowd-
sourcing task and they focus on the optimization of the query processing in
presence of uncertainty.

Qurk [57] is a query system for human computation workflows that
exploits a relational data model, SQL to express queries, and a UDF-like
approach to specify human tasks. In particular, the user writes SQL queries
to require information, and, UDF statement to involve the crowd in the pro-
cess. Each UDF statement is a template for a HIT on Amazon Mechanical
Turk. They propose different optimizations for the query execution. For
instance it can modify the price of a HIT on Amazon Mechanical Turk at
runtime; in case of a big dataset it can sample the input in order to cover
uniformly the input space, or it can group the inputs according to some
feature in order to reduce the number of HITs; training a model in order
to substitute the crowd as they provide answers (for example in a image
recognition task).

CrowdDB [37] also adopts a declarative approach by using CrowdSQL
(an extension of SQL) both as a language for modeling data and to ask
queries; human tasks are modelled as crowd operators in query plan, from
which it is possible to semi-automatically derive task execution interfaces.
They apply the same query optimization and processing as in a traditional
SQL database, such as predicate push-down, stopafter push-down, join-
ordering and determining if the plan is bounded. They evaluated their
approach on Amazon Mechanical Turk. At first they performed a micro
benchmark where they asked the crowd to fill out a form with missing data.
The workers on AMT had to find the phone number and the address of the
company given its name. The authors made three variation of the exper-
iment in order to measure different metrics. In the first case the authors
published the task grouped in HITGroups having different size (from 10
to 400 HITs) and they measured the response time. They noticed that a
trade off between throughput and completion is present: the best through-

8
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put is obtained with the largest HITGroup while the best completion with
HITGroup size of 50 or 100 HITs. In the second the authors published
the HITs varying the amount of money paid to the crowd (from 0.01$ to
0.04$) and they measured the response times. As expected, higher is the
reward, faster the crowd answer. At last they studied the quality of the
results. The ground truth was generated by applying the majority voting
on the five answers for phone numbers. They analyzed the workers that an-
swered to the task of the experiment, and they noticed that their distribution
was skewed (there were few workers executing many HITs). The authors
expected an increase of precision ( as the workers learn to perform the task
) but they found that the error rate remained constant. Finally they tried
to change the reward (from 0.01$ to 0.04$) but they noticed no correlation
with the quality of the results (at least within this range of payments). Then
they experimented with three more complex queries. For the first query the
authors used a dataset composed by companies (name, address). They sub-
mitted to the crowd the query SELECT name FROM company WHERE
name ="[a non-uniform name of the company]". The work-
ers on Amazon Mechanical Turk had to compare 10 company names to the
non uniform one. They measured the time and quality, in term of number
of correct name found. In the second query the authors asked the crowd
to rank of pictures in different subject areas. In particular the workers had
to compare four pairs of pictures. The authors measured the time and the
quality by comparing the final result with a groundtruth built by six experts.
In the last experiment the authors sent the query:

SELECT p.name, p.email, d.name, d.phone
FROM Professor p, Department d
WHERE p.department = d.name AND
p.university = d.university AND
p.name = "[name of a professor]"

They executed it following two different plans: in the first they asked for
the Professor information and the department the professor is associated
with. Then in a second step, they asked to the crowd for the remaining
information of the departments. In the second plan they asked in a single
step for all the information. They measured completion time, quality and
costs.

DeCo [64] system allows SQL queries to be executed on a crowd-
enriched datasource; however, human tasks are defined as fetch and res-
olution rules programmed in a scripting language (Python) and defined in
the schema of the data source. Fetch rules tell the system how to retrieve

9
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the data from the crowd while resolution rules are used to clean the data.
As the authors in [37] they focus on the query processing and optimization,
exploring different fetch rules and query plan. In general the found that
fetch rules that ask for multiple information perform better than the simple
one.

2.3 Crowdsourcing Application Design

In this section I describe works that proposed different models for modeling
crowdsourcing task and studied how different design choices influence the
performance of the crowd.

The authors in [47] performed a broad study on the influence that the
various dimensions have on the quality of the result obtained by the crowd.
They experimented with different levels of payment (0.10$ and 0.25$), task
difficulties (5 or 10 objects per HIT) and qualifying criteria (present or not
present). They found that increasing the pay increases also the quality of
the result, but also attracts unethical worker, so a more refined quality con-
trol is required. Modifying the difficulty of the task has two consequences:
it leads to less accurate results but it attracts well performing workers. Fi-
nally applying qualifying criteria increase directly the overall quality of the
results.

In [56] the authors focused on order and join task types, and they ex-
perimented with different types of implementation. Regarding the join they
propose: SimpleJoin, NaiveBatching, SmartBatching. SimpleJoin consists
in showing to the worker two objects and ask him to tell if they are re-
lated or not, NaiveBatching shows n pairs of objects per HIT and finally
SmartBatching show the objects belonging to the sets to join in two dif-
ferent columns, and the worker has to choose which ones can be joined.
They ran these implementation on Amazon Mechanical Turk and observed
their impact in term of quality, time and cost. They found that batching
has a little effect on quality and time, but it decrease the cost. Regarding
the sort problem they propose a Comparison based or Rating based algo-
rithm, and a Hybrid approach. The Comparison methods ask directly to
the worker to rank the objects, while the Rating approach ask the worker to
rate the object according a numerical scale. The Hybrid approach, instead,
starts from the evaluation gathered with the Rating approach and iteratively
refine it using the Comparison method. They compared the performance
of the various approaches and the found that the Rating method achieved
a lower accuracy than Comparison even though its cheaper. The Hybrid
approach achieved the same result as Comparison but at one third of the
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cost.
In [54] the authors experiments with parallel and iterative human com-

putation processes, in order to understand the tradeoff of each approach.
The processes are defined using the concept of Creation Task, when the
worker create new content, and Decision Task, when he either select the
object through comparison or by giving a score. In the experiments the au-
thors defined iterative and parallel process in order to ask the crowd to solve
the same problem. The question asked to the crowd were: writing image
description, brainstorming and blurry text recognition. In the first exper-
iment the crowd was given the work to write the description of a image,
and as expected the iterative process achieved the best result. In the second
the crowd had to come up with a company name given its description. In
this case the parallel process came up with the name that received the high-
est rating (the rating is also performed by the crowd), however the average
score is higher for the iterative one. In the last experiment the workers
needed to transcribe text from a blurry image. In this case the authors did
not find significant difference between the two type of process, probably
because in the iterative process, one iteration can be influenced by a poor
guess performed by a previous worker.

In [11] the authors propose a task design pattern called Find - Fix -
Verify, in which the work performed by the crowd is split in three phases.
They apply this pattern in order to aid the writing process by integrating the
worker in Microsoft World plugin that is able to: shorten the text, finding
errors and formatting or finding figure. In general the Find phase corre-
sponds to the task of highlight which part of the text can be addressed, the
Fix phase consists in to actually perform the task (correcting the error or
summarizing the sentence) and, finally, in the Verify phase workers eval-
uate the work performed by the others. The authors were able to achieve
satisfying results in all the three cases: shortening text from 10% to 22%,
correcting the 67% of typos (versus the 15% of the tool provided by Word).
The last scenario consisted in sending open ended instruction to the crowd
through the tool (like changing the text of the document to past tense to
present tense). In this case the 30% of the worker result contained errors,
most of the task were done correctly but they made some mistake in the
details.

In [15] the authors propose a model for integrating the contribution of
the crowd with the results of a search engine. They define Query Language
as a mapping from an Input Model, including a dataset of object and the op-
erations the crowd need to perform, to an Output Model, which is obtained
by modifying the dataset and by adding the answers to structured queries.
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The mapping defines how the output model will be created started from
the input. It contains information about the crowdsourcing platform that
will be used, the group of worker that will be involved, the execution con-
straints, how the work should be split and assigned and the template to be
used to render the UI of the task. Moreover they focus on the deployment
on social networks supporting three types of interactions: using directly the
interface of the platforms (e.g the Facebook likes), embedding the interface
in the platform (e.g. A Facebook application), or using an external stan-
dalone application. They also build a prototype that allows the creation of
crowdsourcing task and the deployment on Facebook and Doodle. In the
experiments the both asked the users to answer and create their own crowd-
sourcing tasks. They found that the participation is higher if friends are
involved in the execution of a query. Facebook is most effective in retrieve
answers in the first few hours, but Doodle in the end retrieve more results.

2.4 Optimization of Crowdsourcing Task Design

In this section I describe works that propose methods for optimizing the
results of a crowdsourcing application.

Usually they focus on a single aspect. For example, regarding result
aggregation, in [52] the authors propose probabilistic model and a EM
(Expectation Maximization) algorithm in order to infer the correct answer
of a task that can have infinite number of possible answers. Whether or
not worker get the correct answer, depends on his error parameter and the
difficulty of the task. Then the EM algorithm jointly learns maximum-
likelihood estimates of the difficulty of the task, the error parameter of the
worker while inferring the correct value of the task. The author perform
both simulated and real experiments on Amazon Mechanical Turk. The
synthetic experiments had the purpose to tune the algorithm and to see his
resistance to noisy workers, while the real one show that their methods out-
perform the classic majority votes.

In [5] the authors propose a method based on active learning for infer-
ring the correct solution given a set of answers. In their model each task is
characterized by a difficulty d and a set of possible answer R (where only
one is correct), the workers have a certain level of skill a. Given the set
of worker answers, the model is able to infer the correct solution. They
performed synthetic experiment on the TREC 2011 Crowdsourcing Track
dataset [51] and show that they slightly outperform the majority vote. An
increment of performance is obtained if the worker are first tested on a set
of questions in which the true answer is known.
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The authors in [46] show how to use the probabilistic matrix factoriza-
tion approach in order to aggregate results of a labeling task. The idea is that
methods like majority voting do not take into the account that usually a sin-
gle worker label only a small set of objects, so only few workers influence
the final outcome of a task. The authors address this problem by propos-
ing a collaborative filtering approach. This method can infer the worker’s
missing label, so that all the workers contribute to reach the consensus. The
authors evaluate their approach using the 2010 TREC Relevance Feedback
Track [6] and show that their methods outperforms majority voting and
general EM approaches.

In [73] the authors propose a Bayesian model for aggregating the results
of a labeling task taking into the account the quality of the workers. The
novelty of this approach is that, instead of estimating the reliability of a
single worker, they classify the workers in community according their con-
fusion matrix. Then the accuracy of the worker is given by the accuracy of
the community. The author evaluate their approach on two different dataset
(from CrowdFlower and ClickWorker) with respect to majority vote, EM
and a single worker Bayesian model. Their approach performs better with
small sets of labels by exploiting community patterns between workers and
transferring learning of community knowledge across community mem-
bers. In large sets, it performs comparably or slightly better than the other
methods. In average it performs better than the other baselines.

Regarding task decomposition and assignment in [80] the authors pro-
pose a probabilistic framework for choosing which HIT is better to send to
the crowd from a set of candidates based on the informativeness of the HIT.
They consider only HITs in which the task is answering a yes/no question
(they reduce a labeling problem to a "Is object X a l?" question). Given all
the possible outcome for a given object, the uncertainty is modeled as the
Shannon Entropy, then the utility of a HIT is modeled by its expected un-
certainty reduction. The authors evaluate their approach in three different
scenario, showing that their approach succeeds in reducing the uncertainty
and increase the accuracy with respect to random selection.

Furthermore [45] proposes a model for decomposing a task into simpler
sub-task, focusing on the quality of the final results. In this work the authors
formally define and compare two models for task decomposition (vertical
and horizontal) in order to give explicit guidelines to task requester. In ver-
tical decomposition the task is split according to the operation that need to
be performed (an example is the Find-Fix-Verify approach [11]) while in
the horizontal method, the task is split according the number of objects. In
general in the first case the obtained subtasks are interdependent, while in
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the second they are independent. Then the authors define the concept of
quality and difficulty for the subtasks. Then they run a simulation for both
the models and find that decomposing a task into subtasks is worse than
assigning the whole task to one worker, but in this case it can be difficult to
find a worker willing to perform the task. In general, vertical task decom-
position strategy outperforms the horizontal one in improving the quality
of the final solution

Most of these works focus on a single type of operation or scenario
and address only the problem of aggregating the results of the single eval-
uations given by each performer. Moreover they often fail to guarantee a
consistency check of the effectiveness of the optimal solution in terms of
real-life application execution; also, no mathematical model can cover the
variety of optimization dimensions and constraints, as each model typically
ad- dresses a small set of decisions for a specific crowdsourcing ask; even
under such limitations, many mathematical models are hardly tractable, as
the underlying problems fall into exponential of NP-hard classes.

2.5 User Engagement

Works about user engagement fall into two main categories: they study
either social or monetary rewards.

Even though in this thesis I experimented with purely external and im-
material incentives, i.e., visibility and reputation gains obtained by success-
fully performing the given task [65], I present previous works related both
monetary and non monetary incentives.

Several studies has been done on how monetary incentives influences
the performance on worker in performing Crowdsourcing task, often show-
ing contradicting results.

For instance Harris [42] experimented with both positive (i.e. giving
a bonus if the worker successfully performed the task) and negative (pun-
ishing the performer by reducing his payment if the results were not good
enough) incentives and found out that in both cases the workers performed
better than not applying any bonus.

Both [69] and [77] experimented with different incentives schemes and
sizes, finding that they don’t have any impact on the quality of the results.
The authors in [69] experimented with very small bonuses, so a possibility
that it’s too small to justify an increase of effort. Instead in [77] the authors
used offered large bonuses (with respect to the base payment), so probably
even the smallest bonus was enough to obtain the maximum effort from the
workers.
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On the other hand Yin et al. [78] studied performance base incentives
in the context of switch task (i.e. where workers switch back and forward
between different types of task), and found out that incentives do increase
the performance, in particular when the type of task change occurs.

In [58] the authors shown that financial incentives increase the quantity
of work performed by the crowd but not its quality. They show that more
important is how the incentives are organized: a good incentives scheme
can lead to higher quality work paid less. Furthermore they suggest that
social rewards could be as effective as financial ones.

These findings are in line with other works [25]. The authors in [41]
observed this phenomena also on a different platform such as oDesk1. Fur-
thermore [66] also show that intrinsic (i.e. motivation) incentives lead to
better result.

If the worker is paid with social rewards we are in the context of gami-
fication, [32], where games with a purpose are used for obtaining a specific
objective in terms of user behavior or information collection.

Gamification has been successfully applied in different scenario, such
as: mining data from images [40], collecting urban data [26,27], predicting
proteins structure [48]. Reward and reputation systems are at the core of
gamified applications, which builds upon incentive centered design.

These techniques are studied in persuasive technology [36], where games
are seen as potential means to shape user behavior [1, 61], or to instill de-
sired values or messages [9].

My work on user engagement is founded the well known fact that psy-
chological factors that influence human behavior are fundamentally of two
types, namely, incentive and cost [59, 67]. The former increases and the
latter decreases the motivation to complete an action. People get incentives
when they are awarded with material or immaterial value, spanning from
money or gifts, to points, or simply visibility or popularity.

An important aspect that drives the worker in case of non monetary in-
centives is the motivation. Psychology distinguishes also between external
and internal motivations [10, 14], i.e., socially–derived motivations (e.g.,
public recognition) and individual–based motivations (e.g., enjoyment in
games [71]).

Besides the general classification though, researchers agree that moti-
vations are very heterogeneous, and in particular they vary a lot depending
on uniqueness of each specific scenario [75] and incentives can be dynam-
ically tuned [28]. The incentive problem has been widely studied within

1www.odesk.com
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organizations [68]: for instance, single incentive measure are known to
induce unwanted responses, and therefore multiple incentives are usually
combined to counteract the such behaviors.

Various works studied the incentives and conditions that favor partici-
pation in social networks. Yogo et al. study incentives that stimulate ac-
tivities in social networking services [79]. The work [72] proposes a user
behavior model considering link strength changes, communication time and
participation time; based on that, they examine the conditions that encour-
age users to participate more intensively in social networking. Ermecke et
al. [35] study agents on Facebook in order to understand who contributes to
diffusion of the information. They found out that user behavior has strong
influence on peers. So in order to boos user engagement also the peer-to-
peer relations need to be exploited.

The work [33] studied the tradeoff between the cost represented by the
concern about personal data privacy and the incentive of sharing and show-
ing personal facts, records or content to social connections.

Incentives are also studied in other vertical scenarios, for instance in
[29] the authors studied the incentives in the context of production of se-
mantic context. In particular they propose a developing process for building
an incentive mechanism that better fit your scenario.
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CHAPTER3
Models for Crowdsourcing Application

Design

Part of the work described in this chapter was published in [17]. Further-
more the work described in Section 3.6 was published in [24],

3.1 Introduction

In general a Crowdsourcing application can be modeled with three entities:
a requester, a system and the crowd. The requester is the one who has a
problem he want to solve with the crowd. In order to do so he has to utilize
the system in order to interact with the crowd.
The problem can comprehend a wide range of use cases: translating a text,
transcribing an audio file, annotating images, and so on. Currently crowd-
sourcing has been applied in very different scenarios like: databases, infor-
mation retrieval, artificial intelligence and social science.
The crowd can be very heterogeneous and can range from the anonymous
worker on Amazon Mechanical Turk to your friend on Facebook or an ex-
pert on a Question Answering platform like StackOverflow. Usually the
type of crowd the requester want to involve depends on the type of problem

17



Chapter 3. Models for Crowdsourcing Application Design

need to be solved.
The system should be able to easily translate the problem in a format that
the crowd can solve and allow the correct match between requester’s needs
and crowd type.
In order to do so I defined three models that together allow to design the
human computation application in all its aspects, furthermore they will en-
able the definition of strategy for creating particulars patterns to be applied
to a task (for example limiting the number of object to be evaluated for each
task) and rules to control its execution. These model are:

• Crowd Model: it describes the characteristics of the considered crowd.

• Problem Model: it represents the problem that is going to be solved
with a human computation task, for example the type of operations,
the type of data (structured, unstructured) and peculiar configurations.

• Task Model: represents the structure of a task. It will contain general
information (title, description, etc..) and the objects interested by the
crowdsourcing campaign.

3.2 Crowd Model

Figure 3.1 shows the crowd model. A crowd is composed by a set of Per-
formers, that are the individual that are going to participate to the crowd-
sourcing task. A performer can belong to different Communities, a set of
people that share common interests (e.g., football club fans, opera ama-
teurs, ...), have some common feature (e.g., living in the same country or
city, or holding the same degree title) or belong to a common recognized
entity (e.g., employee in an office, work-group or employer; students in a
university; professionals in a professional association; ...).
A Platform represents the concrete place where the crowdsourcing compu-
tation is carried out, for instance it can be a crowdsourcing market place as
Amazon Mechanical Turk, a social network as Facebook or LinkedIn.
A Performer can exist in different Platform at the same time, hence it has
associated different Profiles. Finally a Performer can have Relations with
others, meaning that it has some kind of link with them on a Platform (e.g
friends on Facebook or followers on Twitter).
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Figure 3.1: Model describing the crowd.

3.3 Problem Model

Figure 3.2 shows the general model of a problem that need to be solved via
crowdsourcing.
Usually a Problem consists in one Operation that need to be performed on
a set of Objects in order to obtain a result. Notice that the operation here, is
more an high level description of the outcome of the crowdsourcing cam-
paign than the operation that the crowd will perform on the objects.
Different problems can be addressed with crowdsourcing, but recently Gadi-
raju et al. proposed the following taxonomy [39]:

• Information Finding: consists in asking the crowd to provide infor-
mation regarding some topics.

• Verification and Validation: consists in asking the crowd to verify
some facts.

• Interpretation and Analysis: consists in asking the crowd to evaluate
some objects.

• Content Creation: consists in asking the crowd to produce new con-
tent for documents or website. The difference between the Informa-
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Figure 3.2: Model describing a problem that needs to be crowdsourced

tion Finding category is that in that case the content is already present
on the web.

• Surveys: consists in asking the crowd to fill forms.

• Content Access: consists into asking the crowd to access to some
content.

A given Problem can be solved in many different way, for instance an
Interpretation and Analysis problem like building a rank can be addressed
by asking the crowd to make pairwise comparison or to give a score to each
objects.

In the following Section I propose a model for the Task to be performed
by the crowd that can be mapped to any Problem and Crowd.

3.4 Task Model

Figure 3.3 shows the abstract model, built after a careful analysis of the sys-
tems for human task executions and of many applications and case studies.

A Task receives as input a list of Objects (e.g., photos, texts, but also
arbitrarily complex elements) whose schema is defined by the Object Type.
Then a task ask the crowd to perform one or more Operation upon the
objects. The possible operations are:
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Figure 3.3: Metamodel of task properties.

• Classify: The performer assigns each object to one or more classes

• Comment: The performer write a comment about an object.

• Like: The performer adds a like to some objects.

• Score: The performer assigns a score (in the 1..n interval) to some
objects.

• Tag: The performer annotates some objects with tags

• Group: The performer clusters the objects into (at most n) distinct
groups

• Insert: The performer inserts up to n objects.

• Delete: The performer deletes up to n objects in the list.

• Modify: The performer changes the values of attributes of some ob-
jects in the list.

• Order: The performer reorders the objects in the input list.

A task can be executed on different Platforms, that can be both crowd-
sourcing marketplaces and social networks, according to some Platform
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Parameters. The Execution element represent the fact that a Performer, be-
longing to a particular Community, produces an Evaluation on a specific
Object. The structure of an Evaluation element depends on the Operation,
in particular the schema are the following:

• Classify: the list of selected categories.

• Comment: the text written by the performer.

• Like: an empty evaluation.

• Score: the number representing the score.

• Tag: the list of tags provided by the performer.

• Group: the group identifier.

• Insert: an annotation that show that the object was created as a re-
sponse.

• Delete: an annotation that show that the object was marker for dele-
tion.

• Modify: the fields new values.

• Order: the position of the object in the list.

Moreover the Execution element contains statistics regarding the activity of
the performer, for instance the how much time he dedicated to performing
the operation. A performer does not execute directly the entire Task, but
operate on a subset of objects called MicroTask. Finally a Performer can
have Accounts on different Platforms and belongs to different Communities
(these concepts will be further explained in Chapter 5).

The model can be extended either by adding custom operation types or
by adding custom parameters and output variables to the given types; how-
ever, the operation types of the model are supported by automatic model
transformations, discussed next, for generating a crowdsourcing applica-
tion, while custom elements require manual refinement of either the trans-
formations or the constructed models.

In the following section I describe the design process that is used for
creating a crowdsourcing application.
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3.5 Crowdsourcing design process

The design of each task in a crowd-based application consists of a progres-
sion of six phases reported in Figure 3.4, namely 1) Operation design,
i.e. deciding which operation the crowd is going to perform on the ob-
jects; 2) Object design, i.e. defining the Object Type and preparing the
actual set of objects to be evaluated, which may be extracted from differ-
ent data sources; 3) Performer design, i.e. selecting the performers that
will be asked to perform the task; 4) Workplan design, i.e. defining how
each task is split into micro-tasks, and how micro-tasks are assigned to ob-
jects; 5) Platform selection, i.e. defining the invitation platforms, where
performers are recruited, and the execution platforms, where performers ex-
ecute tasks; many different platforms may be involved in either roles; 6) UI
design, i.e. defining the front end aspects of the task execution. We next
define each of these phases.

Crowd-based application design

Operation 
design

Perfomer 
design

Platform 
Selection

Object 
design

Workplan 
design

UI 
design

Figure 3.4: Development process of crowdsourcing tasks.

3.5.1 Operation Design

Operation design consists of deciding the operations of the task, it is con-
ducted by instantiating part of the the meta-model in Fig. 3.3, in particu-
lar the Task (containing some additional informations such as a name and
a description) and the Operation, by selecting the type and the following
configuration.

3.5.2 Object Design

Object design consists of defining the dataset which is subject to the anal-
ysis. In particular, object design entails: 1) the definition of the schema of
the objects to be analysed; 2) the extraction or collection of the instances
(e.g., from web sources, proprietary databases, plain text, or multimedia
repositories); and 3) the cleaning of the extracted objects, so as to make
them conforming to the defined schema. By the end of this phase, the Ob-
ject Type and all the Objects elements will be instantiated. Notice that in
case of a Insert operation, the initial list of objects may be empty.
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3.5.3 Performer Selection

In crowdsourcing, strategies for task assignment can be roughly classified
into two main categories: push and pull assignment. With pull assignments,
tasks are published on an open board, and performers select them. This
strategy is used by most crowdsourcing platforms, and is well-suited for
simple repetitive tasks. With push assignments, tasks are routed either to
individuals or to communities based upon trust, knowledge, or expertise.
Performers are either pre-selected or dynamically assigned to executions,
depending on the task content.

Social platforms, such as Facebook, Twitter and LinkedIn, provide their
members with several hundreds of known contacts, with variable expertise
about various topics, and with varying availability and responsiveness.

3.5.4 Workplan Design

Workplan design consists of creating micro-tasks for each task and of map-
ping each micro-task to specific performers (if previously selected) and
objects. Task design includes task splitting, that should be performed on
different task types according to different algorithms. Several articles are
dedicated to task splitting algorithms for specific operations, e.g., [74]; I
don’t discuss task splitting further (although I support it in my framework
and use it in experiments).

Task planning is performed according to planning directives, that indi-
cates:

• Cardinality: the number of objects associated to each micro-task.

• Replication: the number of copies of each object that should be as-
signed to micro-tasks.

• Initiation: the number of micro-tasks which should be created when
the application starts (more micro-tasks can be dynamically created
during the execution).

• Grouping: how the objects should be grouped in micro-task.

This phase generates a number of MicroTasks; each micro-task instance
is associated to one task, a set of performers, and one or more objects.
Depending on the underlying execution platform, tasks can be pushed to
specific performers or performers can pull the tasks that they like; in the
push model micro-task mapping to performers is static, while in the pull
model it is dynamically assigned.
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3.5.5 Platform Selection

Plat.Type Examples Inv. Exec.

Social Net-
work

Facebook, Twitter,
G+, LinkedIn

YES Limited

Question &
Answer

Quora, Doodle Limited YES

Crowd-
sourcing

AMT, CrowdFlower YES YES

Proprietary
UI

Custom developed
application

Limited YES

Email or
messaging

Mailing lists, per-
sonal email, phone
messages

YES Limited

Figure 3.5: Taxonomy of platforms and
use in invitation and execution.

Figure 3.6: Native Facebook “like"
operation.

At this stage, after a platform-independent design, deployment plat-
forms must be chosen. A variety of systems are offered, and it is crucial to
understand how they can be crafted to reflect the application needs. I distin-
guish invitation from execution, the former process is concerned with invit-
ing people to perform tasks, the latter is concerned with executing tasks. In
general it is possible to use different systems for invitation and execution.
Figure 3.5 shows how the different kinds of platform support them.

Social Networks provide powerful interfaces for crowd selection and in-
vitation, and limited support for execution. Note that deployment on social
network can be of two kinds [16]:

• Native implementations use the features of a specific social network
for task execution.

• Embedded implementations use the execution of user-defined code
from within the social network.

For instance, Figure 3.6 shows how Facebook can be natively used for
implementing like operations: data objects are posted on a wall and users
simply click the Facebook Like button. Certain operations, such as liking
and tagging, are best supported by native interfaces.
Question-Answering Systems normally cannot support invitation (or pro-
vide invitation mechanisms that require to provide the list of invitees from
a personal contact list), while they can support execution, although some of
them only support free text responses.
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Crowdsourcing Systems support both invitation and execution, but they do it
within the context of a given platform, which acts as a market place, where
invitations include the monetary reward for each task, and after execution
each performer is credited. Invitations from other platforms are typically
not allowed.
Email and other messaging systems support the invitation phase, that can
be routed to specific groups, mailing lists, or enumerated list of targets.
Execution is typically delegated to other platforms.

The most typical form of deployment consists in delivering a UI crafted
around the features of the specific objects to be shown to performers, as
discussed in the next section.

3.5.6 UI Design

UI design plays an important role in crowdsourcing, as it produces the user
interfaces that permit the actual execution of tasks by performers. UIs can
be designed in three main ways: 1) By exploiting default, basic UIs made
available by crowdsourcing platforms (e.g., AMT); 2) By exploiting the
conceptual task model for generating a simple custom UI; 3) By manually
implementing an ad-hoc user interface most suited to the task.

Finally, no UI is needed if tasks are natively performed on social plat-
forms. For instance, this is the case when a task is performed by directly
exploiting the like mechanism in Facebook.

3.6 An Explorative Method for Crowdsoucing Task design

In this section I describe an alternative task design process based on an em-
pirical exploration of the design space, where small prototypes of the task
are executed in order to discover which one will produce the best results.

This approach refers to a fragment (shown in Figure 3.7) of the model
described in the previous sections, which describes how each elementary
execution of a crowdsourcing step, called Execution, is referred to an un-
derlying operation (e.g. classifying, tagging, labeling, liking, commenting)
called Task, to a specific Platform (that can be either a crowdsourcing mar-
ketplace or a social network), to a specific Object of a given collection, and
to a specific Performer who executes.

These concepts, in turn, are characterized by a set of properties, whose
ranges of values define the design space. Typically, they should be assigned
by the application designer in order to configure the crowdsourcing tasks,
either by interacting with a design tool, or by using scripting languages
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Execu&on)Task)

Performer)

Pla3orm)

Object)

name)

cardinality)

reward)

agreement)

Figure 3.7: Concept model and parameters used by our approach

(which in turn invokes an API where they appear as parameters), or for di-
rectly configuring the application. For instance, figure 3.7 illustrates a set-
ting where we define four properties; the method is agnostic to the specific
choices of properties but assumes that they can be referred to the concept
model and, of course, that they can be used for configuring the execution
task. They are:

• Platform: where the task will be executed. This is a very important
dimension because each platform targets different crowds which have
different skills.

• Cardinality, i.e. the number of object shown to the performer: this
parameter controls the amount of work that a performer has to face
each time. It influences the cost and time required by the task.

• Reward, i.e. the cost of a HIT on Amazon Mechanical Turk.

• Agreement: i.e., with a majority based decision for each objects, it
indicates the amount of agreement needed in order to consider an
object as evaluated. A high level of agreement should correspond a
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better quality of the results while negatively impacting on the time
and cost.

This list can be extended in order to satisfy specific user needs, for instance
adding a spam detection strategy, whose modeling would lead to adding
a Spam flag on the performer, set to 0 or 1 to indicate its inclusion or
exclusion.

Each candidate execution is thus represented by a vector S = {s1, s2, . . . , sn}
in an n−dimensional space, where n is the number of considered param-
eters; for instance, an execution on Amazon Mechanical Turk showing 3
objects per HIT, requiring a 2 workers over 3 to agree on the evaluation and
paying each worker 0.01$ is represented as:

S = [”AMT”, 3, 2/3, 0.01] (3.1)

Once the design space is well defined, the designer should then choose
some of the possible strategies (represented as a collection of vectors.) It
is not possible to consider all possible combinations due to the cost and the
required time for conducting all the small-scale experiments. It is impor-
tant to choose few strategies by including interesting points in the solution
space and by using as criteria parameter diversification, at the same time
by avoiding to include any two solutions when one of them dominates the
other. This notion is not easily formalizable, but it takes into account the
correlation between parameters. For instance, it makes little sense to in-
clude two solutions such as one has a higher cost and a lower object cardi-
nality than another one (i.e., a simpler task which is better paid).

The execution of strategies, both in the small and in the large, can be
evaluated by using a set of quality measures that are computed at the end of
the process by inspecting how each object has been managed by the crowd
(e.g., its classification, tagging, liking and commenting). I use the following
quality measures:

• Cohen’s kappa coefficient, a statistical measure of inter-annotator
agreement for categorical annotation tasks. When several perform-
ers evaluate the same objects, kappa measures the agreement among
them.
• Precision of responses, that can be computed only when the ground

truth is available; it corresponds to the percent of correct responses
over the total and can be aggregated at the level of object, performer,
platform, or whole task.
• Execution time, the elapsed time needed to complete the whole task.
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Figure 3.8: (a) Multi-dimensional matrix of parameters which are compared in
the running example, and selection of representative combinations (encircled);
and (b) Quality measures of the selected combinations after their execution
over a subset of the objects.

• Monetary cost, the total amount of money spent for rewarding the
crowd in order to complete the whole task.

This is only a small set of possible performance measures, and can be ex-
tended with more complex (as the ones shown in [44]) or application spe-
cific metrics.

Finally, this approach requires the splitting of the dataset of the objects
into two subsets small and large, with |small| << |large|, such that the
selection of S is not biased.
Then, all the strategies {S1, S2, . . . , Sm} are run on the small set (in the
small phase) and the quality measures are collected; by analysing them, the
strategy Sbest which is associated with the best quality measures is selected.

Eventually Sbest is run on the remaining objects of the large dataset and
its results are composed with the ones obtained with the small set.

3.6.1 Experiment

I designed an image labeling crowdsourcing task in which I ask the crowd
to classify pictures related to actors, telling if it represents the actor himself
in a portrait, if it is a scene taken from a movie, or if it is not relevant (exclu-
sive options); Amazon Mechanical Turk (AMT) has been used as execution
platform.
Using this approach, I identified the following design dimensions: number
of images shown in each user task, agreement level for each picture clas-
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sification, and cost of each AMT hit. Then I selected 8 different strategies
(as shown in Figure 3.8) and I ran them on both the small and large dataset.

The experiment had the purpose of assessing the two main assumptions
of this method:

A1 The outcome of the experiment in the small is correlated with the
result of the experiment in the large;

A2 The cost of performing all experiments in the small followed by one
experiment in the large is affordable and the extra-effort is well com-
pensated by the possibility of choosing the experiment with the best
quality measures in the small.

I determined an experiment of limited size but sufficient to perform such
an assessment. The dataset consists of 900 images related to 90 actors,
retrieved from Google Images; 90 images were selected for the phase in
the small (i.e. 10 images for 9 actors, including both men and women),
so that the comparison of small vs large involves an order of magnitude,
which is enough to illustrate the difference between small and large cases.
This setting hints to the quality of the method also when the difference
between small and large size reaches two or three orders of magnitudes, as
in a typical big data scenario.

Then the experiment was run eight times, both in the small and in the
large, so as to assess the similarity of small and large size experiments; we
paid a total of $227 for the sixteen experiments (of course, introducing two
or more orders of magnitude of difference between the small and large cases
would require a corresponding, proportional increase of the total cost.)

Table 3.1 summarizes the results of the experiment, by reporting the
four quality measures (kappa, precision, cost and duration).

Regarding the assumption A1, I calculated the Pearson correlation co-
efficient, configuration-wise, between the experiments in the small and in
the large. As one can see, correlation is almost one for the cost, that can
be obtained just by considering the scale factor between small and large;
but correlation is quite good also for duration, performer agreement and
precision. Note that durations are longer for the small experiments than for
the long ones. This reflects a known behavior of the crowd, which tends to
select tasks with higher number of executions to perform (also due to the
bias introduced by crowd platforms, which show the biggest tasks first).

Then, for verifying the assumption A2, I compared the strategy by look-
ing for a trade-off between precision and cost. In particular, based upon
the small-scale experiment, I selected Strategy 6, which appears to have
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Table 3.1: Quality measures and Pearson correlation of experiments in the small
and in the large.

Agreement kappa Precision Cost ($) Duration (s)
Config. small large small large small large small large
1 N/A N/A 0.733 0.799 1.35 13.68 14885 8832
2 0.692 0.607 0.778 0.855 4.05 43.97 11788 20346
3 0.596 0.612 0.811 0.838 1.40 14.15 52219 30032
4 0.579 0.578 0.822 0.857 2.25 23.10 114186 63963
5 0.442 0.569 0.856 0.858 4.77 46.35 120983 53162
6 0.499 0.540 0.811 0.864 1.92 16.86 110535 65178
7 0.580 0.606 0.800 0.871 2.70 28.05 121945 67676
8 0.533 0.555 0.833 0.838 4.05 41.67 78086 23745

Correlation 0.707 0.619 0.999 0.915

enough precision (0.864) associated with a low cost (1.92), yielding a good
price/performance ratio.The choice of Strategy 6 completes the decision
making.

The designer’s choice is anyway driven by cost-benefit analysis, that
however is performed in the small, e.g. the designer will be able to decide
if a difference in precision from .811 of case 3 to .856 of case 5 is justified
by an increase in costs from 1.40 to 4.77.

Note that $22.49 were spent for computing all the strategies in the small
and $16.86 for executing the strategy number 6, for a total cost of $39.35;
these two numbers are comparable, but the difference between the cost of
experiments in the small and in the large increases a lot with big input data.
When the task is very large, an incremental tuning is also possible, e.g.
using datasets of increasing sizes for computing the quality measures of a
restricted number of candidates. The case in the large of Table 3.1 can be
considered an intermediate-size experiment if one has to process a dataset
of millions of photos; in such case, the eight cases in the large would result
from a selection starting from a larger number of experiments in the small.

One could note that case 7 is associated with a slightly higher cost of
2.70 compared to case 6 (that was selected by considering quality measures
in the small), but it also exhibits a better precision in the large of 0.871
compared to case 6; such better precision is not predicted by the experi-
ment in the small and comes as a surprise. Indeed the method incurs some
unexpected differences between tests in the small and in the large due to
the intrinsic statistical variability of our study; greater sizes in both small
and large cases would yield to less variability.
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3.7 Conclusion

In this chapter I modeled the main aspects of a Crowdsourcing application.
I defined the Crowd model and the Problem model to be used as guide for
building the Task model. I defined a six steps design process for defining
the Task model. Finally I proposed an alternative design process based on
empirical method in which the "best" instance of the Task model is selected
from various candidates through the execution of small experiment.

The concepts described in this chapter are only the starting point of my
thesis, in the following chapters I will extend the model in order to add
feature of control (Chapter 4), interoperability (Chapter 5) and complex
flows of tasks (Chapter 6)
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CHAPTER4
Controlling the Crowd

The work described in this chapter was published in [17].

4.1 Introduction

Most crowdsourcing systems are not flexible, as they do not support a high
level, fine-tuned control upon posting and retracting tasks. The AMT plat-
form offers an API for controlling the posting and evolution of tasks, but
the implementation of applications must be done through imperative lan-
guages, either with low-level programming or through frameworks like
TurkIt [53]. Since crowdsourcing can be performed upon social network-
ing platforms too, one can exploit social networks APIs for programming
applications which use them. Some academic works provide control capa-
bilities for crowdsourcing, but with limited and specific control rules (e.g.,
the DeCo [64] system provides support for closing tasks based on temporal
constraints). In summary, in spite of the great importance of crowd con-
trol, at the current state-of-the-art designing and deploying crowdsourcing
applications with sophisticated controls is very difficult. All the existing
platforms and approaches lack methods for systematically designing com-
plex control strategies based on the state of tasks, results and performers.
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In this chapter I describe a conceptual framework and a reactive exe-
cution environment for modelling and controlling crowdsourcing computa-
tions; reactive control is obtained through rules which are formally defined
according to a rule specification language and whose properties (e.g., ter-
mination) can be easily proved in the context of a well-organized compu-
tational framework. As highlighted by [63], several programmatic meth-
ods for human computation have been proposed so far [53] [49] [3] [57]
[60], but they do not support yet the complexity required by real-world,
enterprise–scale applications. Due to its flexibility and extensibility, our
approach covers the expressive power in reactive control which is exhibited
by any of the cited systems.

Starting from task types, I then define the data structures which are
needed for controlling the planning, execution, and reactive control of crowd-
sourcing applications. Control encompasses the evaluation of arbitrary con-
ditions on result objects (e.g., on their level of confidence and of agree-
ment), on performers (e.g., on the number of performed tasks and their
correctness, leading to the classification of performers as experts or spam-
mers) and on tasks (e.g., on their number and duration). My framework
provides a reactive style for specifying these conditions and for defining
the actions that must be correspondingly triggered, making decisions about
the production of results, the classification of performers the early termina-
tion and re-planning of tasks, the dynamic definition of micro-tasks, and so
on.

Besides the conceptual definitions and the control rule language, my
proposal comprises a platform which acts either as a stand-alone system
or as an interoperability framework on top of social networks or crowd-
sourcing systems, which are accessed through their APIs – and therefore
are subject to APIs’ limitations; the platform includes an engine which ex-
ecutes rules and crowdsourcing tasks. I present a set of experiments with
different rule sets, demonstrating how simple changes to the rules can sig-
nificantly affect the time, effort and quality of tasks.

The chapter is organised as follows: Section 4.2 defines the model de-
signed for controlling the crowd; Section 4.3 describes in details our reac-
tive language for controlling crowdsourcing tasks; Section 4.4 reports on
my implementation and experiments; and Section 4.5 concludes.

Thorough this chapter I’ll use as running example a simplified version
of the experiments described in Section 4.4; I’ll design the control for a
task in which the crowd has to classify American politician as Democratic
or Republican.
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4.2 Crowd Control Model

For effectively monitoring the execution, it is most convenient to track the
performer’s response for each distinct object which is present in the micro-
task. Thus, starting from the model described in Chapter 3, a final model
transformation creates the control mart, shown in Fig. 4.1, where each mi-
croTObjExecution instance is connected exactly to one task, one performer
and one object. The control mart is analogous to data marts used for data
warehousing [43], as its central entity represents the facts, surrounded by
three dimensions.

A minimal relational representation of the control mart, useful for de-
scribing reactive control design in the next section, is described in listing
4.2.1, and it includes the fact table Execution and the dimension ta-
bles Politician, Performer and Task. Each execution requires
an Eid, as the same performer could be assigned the same politician in
different micro-tasks; Status attributes trace the application evolution
(e.g., a Performer can be ‘Active’ or ‘Spammer’, a Task and an
Execution can be in the status: ‘Planned’, ‘Started’, ‘Completed’
or ‘Invalid’). Additional information of interest is present in the actual
data marts, e.g., the starting and ending time of tasks and execution, the
number of completed tasks for each performer, and so on.

4.2.1 Fact Table and Dimension Tables
Politician (Oid,Party)
Performer (Pid,Status)
Task (Tid,Status)
Execution (Eid,Oid,Pid,Tid,Status,Party)

4.2.2 Aggregate Tables
Object_CTRL (Oid,Eval,Dem,Rep,Answer)
Performer_CTRL (Pid,Eval,Right,Wrong)
Task_CTRL (Tid,CompExec,CompObj)

In addition to the control mart, aggregate tables are derived that contain
one tuple for each politician, performer and task, and are automatically
maintained at each micro-task completion by computing aggregates.

Aggregate tables can be derived in an analogous way also for the other
operations listed in Section 3.4: for instance, the Object_ CTRL table
of a like operation could feature a Preferences attribute to count the
preferences obtained by the object.
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Figure 4.1: Control mart.

At workplan enacting, the system creates the instances of the control
mart and aggregate tables. Some information might be still undefined (e.g.,
with a pull model, the identity of performers becomes known during exe-
cution), but otherwise we assume that each object, performer and task is
associated with suitable entries in the control mart and aggregates tables.
The next section is the core of this chapter, dedicated to object, performer,
and task control.

4.3 Reactive Control Design

Control design consists of three activities:

• Object control is concerned with deciding when and how responses
should be generated for each object.

• Performer control is concerned with deciding how performers should
be dynamically selected or rejected, on the basis of their performance.
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• Task control is concerned with completing a task or re-planning task
execution.

The control of objects, performers, and tasks is performed by active
rules, expressed according to the event-condition-action (ECA) paradigm.
Each rule is triggered by events (e) generated upon changes in the control
mart or periodically; the rule’s condition (c) is a predicate that must be
satisfied on order for the action to be executed; the rule’s actions (a) change
the content of the control mart and aggregate tables. This approach has the
following advantages:

• Automation: most active rules are system-generated.

• Flexibility: encoding variants of simple controls require to change
specific rules while preserving the rest of the rule set.

• Power: rules can be programmed to support arbitrarily complex con-
trols.

4.3.1 Rule Language

The rule language has been inspired by the long-standing tradition of ac-
tive databases [76]; its full syntax is reported in Appendix 4.A. Its peculiar
syntactic features are the following:

• Rules can be triggered by classical data updates and by periodic TIMER
events.

• Rules are at row-level granularity. Variables NEW and OLD denote the
before and after state of each row.

• Special selector formulae are used to express subqueries syntheti-
cally; thus, TABLE[<predicate>].ATTRIBUTE extracts the same
values as SELECT ATTRIBUTE FROM TABLE WHERE <predicate>.

• Special functions may perform operations on the workplan model
(e.g., planning of new micro-tasks).

Two examples of simple active rules for maintaining the counters of ‘Rep’
and ‘Dem’ answers for a given Politician are reported in rules 1 and 2; they
are triggered by the completion of a micro-task, which in turn consists of
an update to the Answer attribute of one or more rows in Execution.

37



Chapter 4. Controlling the Crowd

Rule 1 RepAnswer Rule.
e: UPDATE FOR Execution[Answer]
c: NEW.Answer == ’Rep’
a: SET Object_CTRL[oid == NEW.oid].Rep += 1

Rule 2 DemAnswer Rule.
e: UPDATE FOR Execution[Answer]
c: NEW.Answer == ’Dem’
a: SET Object_CTRL[oid == NEW.oid].Dem += 1

4.3.2 Active Rule Programming

It is known that active rule programming is rather subtle and unstable: the
behaviour of a set of rules may change dramatically as a consequence of
small changes in the rules [76]. To overcome this problem, I observe a best
practice in writing rules. Functionally, I divide rules in three classes:

• Control rules for modifying the control tables;

• Result rules for modifying the result tables (Politician, Performer,
Task);

• Execution rules for modifying the execution table - either directly or
through replanning of crowdsearching.

Consider the Precedence Graph PG =< N,E >, where the nodes N
are tables; an arc < N1, N2 > is drawn when a rule R is triggered by an
operation on N1 and performs an action on N2. Then, I impose that control
and result rules in our system can only generate edges in the PG shown
in Fig. 4.2. Intuitively, this best practice corresponds to propagating rule
execution top-down (from execution to control to result tables) and left-to-
right (from object to performer to task).

I further assume that only control rules can have cycles in PG, and in
such case I assume their triggering graph to be acyclic.1 Then the following
result holds.
Theorem. Any execution of control and result rules terminates.
Proof. The acyclicity of the triggering graph of the rule set, a sufficient con-
dition for termination [76], descends from the acyclicity of the PG graph
shown in Fig. 4.2 (excluding execution rules) and from the acyclicity of
ring rules.

1To guarantee this assumption it is sufficient that aggregate computations is performed progres-
sively, from fine to coarse-grain aggregations, as shown by the example rules in Appendix 4.B.
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Figure 4.2: Precedence Graph for rules.
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Thus, by adopting the best practice for active rule programming de-
scribed above, I need to worry about rule termination only when I add ex-
ecution rules, that typically create cycles in the triggering graph of the rule
set. These rules have to be carefully considered, as I will show in Section
4.3.

4.3.3 Control Rules

Control rules maintain the control tables; they are triggered by updates of
the execution table (e.g., when a micro-task execution is completed), or of
the result tables (e.g., when an object is closed, see later) of the control ta-
bles themselves – e.g., the rules 1 and 2, which update the aggregate counts
Rep and Dem on the basis of the Answer in the Object_ CTRL table.
Control rules are automatically generated, due to the fact that operations
are typed and to the model-driven application generation process described
in Chapter 3. In addition to rules 1 and 2, several control rules are listed
in Appendix 4.B. I next describe the interesting case of rules for spammer
control.

Spammers are performers whose answers deviate significantly from
correct answers; when performers are rewarded by money, spammers typ-
ically give random answers in order to maximise their pay, and providing
unreliable answers; the definition of spammer is orthogonal to the reward
and is defined just on statistical basis. Spammer detection requires two
parts: first computing wrong answers (using a control production rule),
and then deciding which performers are spammers based on the amount of
wrong answers they provide (using a result production rule). Next I show
three different control production rules corresponding to different scenar-
ios; all rules can be automatically produced – the flexibility of the approach
is demonstrated by the fact that a rule change is sufficient to change the
control policy.

Performers evaluation against golden truth

A typical strategy [70] in crowdsourcing is to set a few golden answers
known a priori (e.g., predefined by experts) and then check the correctness
of performers against them, while tasks are executed. This is possible in this
approach by adding the Gold property to the object schema; Gold stores
the golden answer when available, and a NULL value otherwise. Then,
the rule for managing the aggregate control information of performers is
represented in Rule 3.
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Rule 3 GoldenTruthRule.
e: UPDATE FOR Execution[Answer]
c: Politician[oid=NEW.oid].Gold <> NULL
a: IF(NEW.Answer == Politician[oid==NEW.oid].Gold)

THEN SET Performer_CTRL[pid==NEW.PID].Right += 1
ELSE SET Performer_CTRL[pid==NEW.PID].Wrong += 1

The rule is triggered by any answer on Execution and simply checks
if the answer is about a politician with available golden answer; if so, it up-
dates the counters of Right and Wrong answers of Performer_ CTRL
depending on the correctness of the given answer against the golden value.

Performers evaluation on object completion

The second possibility for maintaining the performer counters is to wait
for an object to be completed (Rule 4) – i.e., for a final evaluation to be
produced.

Rule 4 ObjectResultRule.
e: UPDATE FOR Politician[Party]
c: NEW.Party <> NULL
a: FOREACH e IN EXECUTION[Oid==NEW.Oid]

IF (e.Party == NEW.Party)
THEN SET Performer_CTRL[Pid==e.Pid].Right += 1
ELSE SET Performer_CTRL[Pid==e.Pid].Wrong += 1

The rule is triggered by the completion of an object, which is assigned
a non-null Party value as effect of an agreed response. The rule then
considers all the past executions of that object and compares the answers of
the performers with the answer that has been written in the Party attribute,
and updates the Right and Wrong counters of Performer_ CTRL.

Performers evaluation on each execution

The third possibility is to maintain the performer’s counters at each exe-
cution; this anticipates the definition of right and wrong answers even if a
final result is not available for the objects. In this case, the Pid attribute
of the performer who caused the last change to an object is added to the
Object_ CTRL table (the content of Pid is copied from Execution
by a suitable control rule).

In Rule 5, at every update of the current Answer in the Object_
CTRL table, the specific performer who provided the last Answer in the
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Rule 5 ExcutionResultRule.
e: UPDATE FOR Object_CTRL[Answer]
c: Answer<> ’Undefined’
a: SET Performer_CTRL[Pid==NEW.Pid].Right=0

SET Performer_CTRL[Pid==NEW.Pid].Wrong=0
FOREACH e IN Execution [Pid==NEW.Pid]

FOREACH o IN Object_CTRL[Oid==e.Oid]
IF [e.Answer == o.CurrentAnswer]
THEN SET Performer_CTRL[Pid==NEW.Pid].Right += 1
ELSE SET Performer_CTRL[Pid==NEW.Pid].Wrong += 1

execution table is considered, and all the past answers of that performer
are compared with the corresponding current answers; given that current
answers change their value during a crowdsourcing session, incremental
maintenance is impossible, and the counters of the affected performer have
to be set to zero and recomputed.

4.3.4 Result Rules

Result rules are triggered by changes in control tables and produce result
tables; they express the result control logic, that can be specified through
high level directives and be translated to rules. I consider how to decide
that an object is closed or that a performer is a spammer.

Closing Objects

Objects are closed when they are associated with enough evaluations to pro-
vide a conclusive response, i.e. a majority of equal answers. The smallest
possible majority calls for two equal answers, and is recognised by Rule 6.

Rule 6 MajorityResultRule.
e: UPDATE FOR Object_CTRL
c: (NEW.Rep== 2) or (NEW.Dem == 2)
a: SET Politician[oid==NEW.oid].Party = NEW.Answer,

SET Task_CTRL[tid==NEW.tid].CompObj += 1

This rule is triggered by any change of the object control table, and
simply checks that one of the two attributes Rep or Dem is equal to 2; then
it sets the politician’s party equal to the current answer and increases the
number of completed objects in Task_ CTRL.

Of course, different majority conditions are possible, which can be ar-
bitrarily complex and depend also on the number of evaluations, e.g.,
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C1: (Eval>5) and ((Rep>0.5*Dem) or (Dem>0.5*Rep))
C2: (Eval>10) and ((Rep>0.8*Dem) or (Dem>0.8*Rep))
C3: Eval>15

The above cases denote three distinct rule conditions; they can either be em-
bedded into three different rules or their disjunction could be embedded into a
single rule. The effect is to close the object as soon as one of the three conditions
is true. With enough micro-task completions, the condition Eval>15 becomes
eventually true.

Identification of Spammers

Performers are identified as spammers when they are associated with enough wrong
answers, which have been collected according to anyone of the methods discussed
in Section 4.3.3. A simple rule for identifying spammers is:

Rule 7 SpammerIdentificationRule.
e: UPDATE FOR Performer_CTRL
c: (NEW.Eval > 10) and (NEW.Wrong > New.Right)
a: SET Performer[Pid==NEW.Pid].Status = ’Spammer’

This rule is triggered by any change of the performer control table, and simply
checks that after 10 evaluations the number of wrong answers exceeds the number
of right answers; then it sets the performer’s status to ‘Spammer’.

Of course, different spammer identification conditions are possible, e.g., con-
dition C1 identifies as spammer whoever performs 4 errors, condition C2 selects
as spammer anyone who has given more than 20% of wrong answers, condition
C3 uses two thresholds.

C1: Wrong == 4
C2: Wrong > 0.2*Eval
C3: ((Eval>10) and (Wrong>3)) or (Wrong>Right)

4.3.5 Execution Rules

Execution rules respond to the need of altering the execution plan; their action
either changes the current micro-tasks or calls for task re-planning, which eventu-
ally produces new micro-tasks. These rules are triggered by changes in the control
or result tables, and are perhaps the most powerful rules. They must be analysed
because they may introduce danger of nontermination of the computation.
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Remove Spammer’s Micro-Task Executions

Spammer detection results in excluding performers from future assignments. In
addition, I may want to propagate the effects of spamming detection upon micro-
tasks. Rule 8 selects all the executions of the performer which has been recognised
as ’Spammer’, and checks whether the corresponding objects have been already
completed; if not, it logically undoes the spammer’s micro-tasks, by first subtract-
ing 1 from Eval and either the Rep or Dem counters of the object control table,
and then by deleting the execution tuple. Note that the subsequent propagation to
Answer in Object_ CTRL is performed by a rule in Appendix 4.B, with no
change.

Rule 8 RemoveMicroTask.
e: UPDATE FOR Performer[Status]
c: (OLD.Status != ’Spammer’) and (NEW.Status==’Spammer’)
a: FOREACH e IN Execution[Pid==NEW.Pid]

SET e.Status= ’Invalid’,
FOREACH o IN Object_CTRL[o==e.Oid]

IF (Politician[Oid==o.Oid].Party==NULL)
THEN

SET o.Eval -= 1 ,
IF (e.Answer==’Rep’) THEN o.Rep -=1
IF (e.Answer==’Dem’) THEN o.Dem -=1

Proving termination requires considering the cycles in the triggering graph and
reasoning about their mutual triggering [8]. Updates to Object_ CTRL may
cause the closure of objects (see Sect. 4.3.4), but the condition of the correspond-
ing rule may become true only due to increments of the Rep and Dem counters
(which should be equal to given thresholds), while the above rule performs decre-
ments; thus, the condition of that rule fails. Updates to Object_ CTRL may also
cause updates of Performer_ CTRL and the re-classification of the performer
as a spammer; in such case a second instance of Rule 8 would be triggered, but the
condition on the specific performer would fail. Thus, at least one triggered rules
along every potential cycle has a false condition, and no cyclic behavior can occur.

Note that termination analysis for this rule must consider the actual rule set
with mutual triggering and conditions, as the proof of termination cannot be in-
ferred from the structure of the PG graph [76].

Re-planning

Re-planning occurs when, during execution, the answers accumulated so far do not
guarantee convergence to a result. For instance, a system execution could require
a majority of three responses for a given object and start by planning exactly 3
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micro-task executions. Then, on the first conflictual answer, the system could plan
to add 3 more micro-tasks, by using the Plan function, as shown in Rule 9:

Rule 9 ReplanWhenNoMajority.
e: UPDATE FOR Object_CTRL
c: NEW.Eval==3 and NEW.Dem >=0 and NEW.Rep >=0
a: action PLAN(NEW.oid, 3)

A different re-planning could be triggered by a timer event, e.g., in the case
that the designer wishes to add 10 micro-tasks so as to quickly produce additional
executions for each object with less than 30 evaluations, as shown by Rule 10.

Rule 10 ReplanWhenTimeout.
e: TIMER for Object_CTRL
c: Object_CTRL.Eval<30
a: action PLAN(Object_CTRL.oid, 10)

The PLAN function performs the planning of new micro-tasks which are then
described through suitable tuples in the control and aggregate tables; this function
therefore creates new crowdsourcing activities until the condition on evaluations
is met, but rule termination is not affected.

Many complex planning rules can be programmed, as demonstrated in the ex-
periments of Section 4.4; for instance, rules could compute the quality of perform-
ers and the difficulty of closing objects, and then assign difficult objects to good
quality performers.

4.4 Experiments
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Figure 4.3: Results precision and percentage of completed objects over micro-task
executions.

I implemented the reactive control approach in CrowdSearcher (it will be fur-
ther discussed in Chapter 8). Rules are written in Javascript Each relational con-
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trol rule is directly translated into a Javascript file; triggering is modelled through
internal platform events. I developed three applications which demonstrate the
flexibility and expressive power of reactive crowdsearching for different aspects of
application design and deployment. 284 performers were recruited (mainly trough
public mailing lists and social networks announcements), and 3500 micro-tasks
were performed.
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Figure 4.4: User description of the politician classification.

In the politician’s crimes application, the system pre-sents photos of 50 mem-
bers of the Italian parliament and asks performers to indicate if they have ever been
accused, prosecuted or convicted. From the performers’ point of view, this appli-
cation is a game - of physiognomic nature, given that many faces are not known;
each performer sees, in a fixed amount of time, a number of photos which raises
as a function of the performer’s ability; a higher number of photos gives to players
higher possibility of improving their ranking. At the end of each round, the system
presents a report with correct answers and the ranking of performers. Rules are
used for assessing performers’ ability and for creating micro-tasks based on the
dynamically evolving quality of performers; I noted that games with higher vari-
ability of tasks are most appreciated by users (281 vs. 565 executions), and lead to
a considerably higher evaluation precision (65% vs. 82% respectively).

In the politician ranking application, the task is to produce a total ranking of
25 politicians; at each interaction, the performer is presented a pair of politicians
and is asked to chooses the one she likes the most. In this application, used by
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Table 4.1: Description of experiments of the politician classification experiment.

Description Rules NE AT NR NP NS PR
Exp.1 Maj@7 90 21 N/A 17 N/A 0.63
Exp.2 Maj@3/Maj@7 9 65 29 17 12 N/A 0.53
Exp.3 Maj@3/Maj@5/Maj@7 9 50 40 20 11 N/A 0.80
Exp.4 Maj@3/Maj@7/Maj@15 9 74 21 20 22 N/A 0.80
Exp.5 Exp.2,Early Spam@0.5 5, 7, 9 82 31 24 24 4 0.72
Exp.6 Exp.2,Early Spam@0.6 5, 7, 9 74 32 20 27 8 0.83
Exp.7 Exp.2,Early Spam@0.7 5, 7, 9 90 48 27 22 8 0.75
Exp.8 Exp.2,Late Spam@0.5 4, 7, 9 73 17 23 24 2 0.81

159 distinct performers, the system performs an ordering task by splitting it into
micro-tasks with pairwise politician comparisons. Control production rules update
the current score of politicians after each comparison by using the ELO rating
system [34].

Finally, in the politician classification application, performers are asked to
classify the political affiliation of 30 members of the Italian parliament – this ap-
plication is similar to the running case study of the chapter, with six Italian parties
instead of two. Performers are provided with a set of photos of politicians, with
associated names; there is no time limit, and performers are encouraged to use
search engines. This application is therefore an example of human computation
whose execution control aims at result precision and spammer detection.

Within the politician classification application I performed eight experiments,
each featuring a different set of control rules similar to those presented in Section
3; a total of 593 micro-tasks were executed, involving 105 unique users. Table
4.1 reports, for each configuration, a short description, the rules that were used in
the specific configuration, the number NE of executions, the average duration time
AT of each micro-task, the number NR of object re-planning, the number NP of
performers, the number NS of identified spammers, and the precision PR at the
end of the experiment. All experiments use variations of the control rules 1, 2, and
6, and of the Appendix 4.B; the table reports only the optional rules, specific to the
experiment. Tasks are considered closed when all their objects are fully evaluated.

Figure 4.4 shows the overall experiment’s precision, the average performer’s
precision, and the average degree of agreement of performers. I measured the
users’ and experiments’ precision against the available gold truth (the actual af-
filiation of each politician), but I did not used it for controlling spammers, so to
simulate the worst case scenario were the attainable truth is the one agreed by the
involved performers.

Fig. 4.3 (a) - (d) plot the precision and number of object evaluations as a
function of the completed micro-task executions. I stressed four analysis dimen-
sions: result production, object re-planning, spammer identification, and spammer
threshold tuning.
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Result production. I experimented with two result production policies. Exp.1
– Late Policy – produces object’s results as majority answers after 7 evaluations;
Exp.2 – Early policy – adopts the Majority Result policy of Rule 6, where a re-
sult is immediately produced if, after three executions, all the involved performers
agree; otherwise, 4 additional evaluations are planned. As shown in Table 4.1 and
Figure 4.3, the Early policy is able to considerably reduce the number of execu-
tions required for task closing, at the cost of a considerable quality penalization
due to the possibility of performers agreement on wrong classification.

Object replanning. In the second set of experiments (Exp.2, Exp.3, and
Exp.4), I compared three variations of the control logic expressed by Rule 9 for
object replanning. While Exp.2 performs a single stage of replan for objects
which fail to have an early majority after 3 evaluations, Exp.3 and Exp.4 adopt
a two-staged replanning policies, respectively testing for majority on each object
after 5/7 evaluations or after 7/15 evaluations. As displayed in Figure 4.3 b), both
Exp.3, and Exp.4 achieve a considerably higher precision w.r.t. Exp.2; they
differ for the number of executions required for completion.

Spammer identification. The third set of experiments, displayed in Figure 4.3
d), exploited the re-planning policy of Exp.3 while adding spamming detections
capabilities. Exp.5 and Exp.8 respectively implement the early and late evalu-
ation of wrong answers (by rules 5 and 4) and a variant of Rule 7 where spammers
are identified as performers with at least 50% of wrong answers. Both experiments
required an higher number of micro-task executions compared to Exp.3; Exp.5
detected 8 spammers, while Exp.8 detected only 2 spammers.

Spammer threshold tuning. Finally, I performed a fine tuning of the thresh-
old for judging a performer as spammer. Setting the threshold is critical: while
a high threshold value may miss spammers, a low threshold value may detect too
many performers as spammers. I respectively required wrong answers to be 60%
in Exp.6 and 70% in Exp.7; a close comparison of solutions in Figure 4.3 shows
that the intermediate choice of Exp.6 has better performances.

Figure 4.5 shows the number of activations of the various classes of rules dur-
ing the execution of the experiments. Re-planning calls for additional triggering
of both control rules (more control statistics to update) and result rules (more clo-
sures to be done). Execution rules only depend on the re-planning policies, and
their executions are slightly higher for spamming control experiments as they have
to recompute the aggregates relative to invalid micro-tasks of spammers.
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Figure 4.5: Activations of rules of different classes.

4.5 Conclusions

Supporting the dynamic control of crowdsourcing applications is increasingly im-
portant; however, most crowdsourcing platforms do not provide adequate solu-
tions. Many platforms hide the control logic, a few expose limited program in-
terfaces. In this framework I focused on reactive control of human computations
by designing and deploying active rules for crowdsourcing control; my approach
is complemented by a design method for crowdsourcing applications which uses
standard operation types and model-driven transformations. In this way, rules have
a default version that can be automatically derived from application design, but
they can be modified or extended so as to implement arbitrary and sophisticated
control policies.

I detailed in a running case study the exact structure of the relational data
(control mart) and of rules, showing that simple rule substitutions or condition
re-writings enable the encoding of different control policies; these are presented
through extensive examples applied to classical human computations. The pro-
posed approach is a good compromise between the conflicting requirements of
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design automation, flexibility, and expressive power.

4.A Grammar of Rule Language

<rule> ::= ‘rule’ <rulename> ‘e:’ <eventclause> [‘c:’ <condition-clause>] ‘a:’ <action>

<event-clause> ::= ‘TIMER FOR’ <TABLE> <timer-expression>
| ‘INSERT FOR’ <TABLE> | ‘DELETE FOR’ <TABLE>
| ‘UPDATE FOR’ \\ <TABLE> [‘[’<ATTRIBUTE>\{,<ATTRIBUTE>\}‘]’]

<condition-clause> ::= ( <predicate> ) | ‘not’ <predicate>
| <predicate> ‘and’ <predicate> | <predicate> ‘or’ <predicate>

<predicate> ::= <expression> <comp> <expression>

<expression> ::= <expression> <op> <expression>
| <op> <expression> \alt (<expression>) | <constant>
| <variable>.<ATTRIBUTE> | <selector>.<ATTRIBUTE>

<selector> ::= <TABLE>[<condition-clause>]

<action> := <statement> [\{,<statement>\}]

<statement> ::= ‘IF’ <condition-clause> ‘THEN’ <action> [‘ELSE’ <action>]
| ‘FOREACH’ <variable> ‘IN’ \\<selector>.<ATTRIBUTE><action>
| ‘SET’ <selector>‘.’<ATTRIBUTE> ‘=’ <expression>
| ‘SET’ <variable>‘.’<ATTRIBUTE> ‘=’ <expression>
| ‘DELETE FROM’ <selector>
| ‘INSERT INTO’ <TABLE> (<expression> \{,<expression>\})
| <FUNCTION> (<parameter>\{,<parameter>\})

<parameter> ::= <variable> | <constant>

<variable> ::= ‘NEW’ | ‘OLD’ | <variable-name>

<comp> ::= ‘==’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘!=’

<op> ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘+=’

<timer-expression> ::= ‘EVERY’ <time-constant>
| ‘AT’ <time-constant>

<TABLE>, <ATTRIBUTE>, <FUNCTION>, <variable-name>, <constant>,
<time-constant> are strings

4.B Rules For the Running Example

The complete rule set of the example is constituted by the seven rules below and
by rules 1, 2, 6; and optionally one of (3, 4, 5), 7, 8, and one of (9, 10).

rule ObjectEvalCounter
e: UPDATE FOR Execution[Answer]
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a: SET Object_CTRL[oid==NEW.oid].Eval += 1

rule PerformerEvalCounter
e: UPDATE FOR Execution[Answer]
a: SET Performer_CTRL[pid==NEW.pid].Eval += 1

rule TaskEvalCounter
e: UPDATE FOR Execution[Answer]
a: SET Task_CTRL[tid==NEW.tid].CompExec += 1

rule CurrentMajorityDem
e: UPDATE FOR Object_CTRL[Dem,Rep]
c: NEW.Dem > NEW.Rep
a: SET NEW.Answer = ’Dem’

rule CurrentMajorityRep
e: UPDATE FOR Object_CTRL[Dem,Rep]
c: NEW.Rep > NEW.Dem
a: SET NEW.Answer = ’Rep’

rule CurrentMajorityTie
e: UPDATE FOR Object_CTRL[Dem,Rep]
c: NEW.Rep == NEW.Dem
a: SET NEW.Answer = ’Undefined’

rule TaskControlOnClosedObject
e: UPDATE FOR Politician[Status]
c: NEW.Status == ’Complete’
a: SET Task_CTRL[tid==NEW.tid].CompObj += 1
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CHAPTER5
Interoperable Crowdsourcing

The work described in this chapter was published in [22] and in [23]

5.1 Introduction

To get the best possible results, requestors need to dynamically adapt crowd-based
applications so as to get the best quality of results, while minimising or focalising
the interactions required to responders. However, in spite of the great importance
of crowd adaptation and control, designing and deploying crowdsourcing applica-
tions with sophisticated controls is not well covered by existing systems, which
lack methods for systematically designing complex adaptation strategies.

The main focus of this chapter is platform and social community interop-
erability of crowd-based applications, which includes both the possibility of stat-
ically determining the target crowds and crowd-based systems for an application,
and also dynamically changing them, taking into account how the crowd behaves
in responding to task assignments. Design-level interoperability is guaranteed by
the use of a high-level, platform-independent model, that guarantees that tasks of
given kinds can be deployed in a variety of ways on different systems, and that
the same objects (and sometimes even performers) can be used across systems
for the same application. Run-time interoperability is guaranteed by the use of a
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low-level, platform independent execution model, such that the tasks can be dy-
namically created or rerouted in response to performance monitoring. To the best
of my knowledge, enabling system interoperability for crowd-based applications is
new, and opens important opportunities, including tuning the cost of crowdsourc-
ing campaigns, determining the expertise, profile and likely behavior of perform-
ers, and even allowing collaboration between them based on social relations within
the community.

This chapter is organized as follows: Section 5.2 dwells into application in-
teroperability by defining a taxonomy of interoperability solutions; in particular, it
introduces platform and community interoperability, as well as other interoperabil-
ity dimensions. Then, Section 5.3 illustrates several rules for achieving platform
and community interoperability in the context of two applications, respectively
dedicated to the classification of movie scenes and of professors photos extracted
from Google Images. Section 5.4 presents our experimental results, showing how
the applications are actually able to dynamically involve different platforms and
communities, with different characteristics, cost, and quality of results. Finally
Section 5.5 concludes.

5.2 Interoperability

Interoperable crowd-based applications are deployed over multiple crowd-based
systems, including social networks and crowdsoucing platforms; they can change
their deployment settings either prior to being launched or during execution. Two
kinds of changes are possible:

• Adaptation is any change of allocation of the application to crowd-based
systems or to their performers.

• Migration is the moving of the application from a given system to a different
one.

Migration is a special case of adaptation. Adaptation requires replanning and rein-
vitation:

• Replanning is the process of generating new microtasks.

• Reinvitation is the process of generating new invitation messages for exist-
ing or replanned microtasks, with the aim of collecting performers for them.

Adaptation can be applied at different granularity levels:

• Task granularity, when the replanning or reinvitation occur for the whole
task.
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• Object granularity, when the replanning or reinvitation is focused on one
(or a few) objects (for instance, objects on which it is harder to achieve an
agreement among performers, with a majority-based decision mechanisms).

I classify the interoperability scenarios according to several features. Interop-
erability applies across communities or across platforms.

• With Cross-Platform Interoperability, applications change the underlying
social network or crowdsourcing platforms, e.g., from Facebook to Twitter
or to AMT.

• With Cross-Community Interoperability, applications change the perform-
ers’ community, e.g., from the students to the professors of a university.

Adaptation at execution time requires a switch-over, which denotes the time
interval during which adaptation occurs. A switch-over may have joining and
detached crowd-based systems:

• Joining Systems do not participate to the application prior to the switch-
over and becomes involved after the switch-over.

• Detached Systems participate to the application prior to the switch-over and
become not involved after the switch.

A switch-over can be continuous, instantaneous, or reset:

• With a Continuous Switch-Over, results of initiated tasks of detached sys-
tems are considered and contribute to the application’s outcome, even if they
are produced after the switch over.

• With an Instantaneous Switch-Over, results of initiated tasks of detached
systems are considered if they were produced before the switch-over, while
the production of results after the switch-over is either blocked or disre-
garded.

• With a Reset Switch-Over, all the results from detached systems are disre-
garded, including the ones that were submitted before the switch-over.

Adaptation at execution time is either statically or dynamically determined.

• With Static Interoperability, adaptation is planned, and it occurs at a given
time or after receiving a given number of task responses. E.g., an application
could migrate from a community to another or from a platform to another at
a given time of the day, so as to meet lower costs or better performances.
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• With Dynamic Interoperability, adaptation occurs in reaction to specific
events that are observed within the task control system. This covers the case
of crowds which do not respond as expected.

Dynamic interoperability is quite relevant, as crowd reactions can hardly be
anticipated. Thanks to dynamic interoperability, it is also possible to guarantee
certain constraints or requirements on application execution:

• Cost Constraints can be enforced by limiting the number of tasks which are
posted to crowdsourcing systems, or by adapting their cost to the allocated
budget. This is made possible by the availability of communities (e.g., on
social networks) that are willing to participate without a monetary reward.

• Time Requirements can be dealt with by adding more processing capabil-
ity, and possibly by migrating the application, e.g. from social networks
which use voluntary work to crowdsourcing platforms where the work is
paid.

• Diversification Requirements can be dealt with by involving different sys-
tems and performers communities.

5.3 Interoperabiluty Rules

In this section, I show how to model cross-platform and cross-community interop-
erability through active rules. Rules can be derived from the abstract interoperabil-
ity properties discussed in the previous chapters; for ease of presentation, I show
them in the context of two concrete scenarios.

5.3.1 Cross-Platform Interoperability

The first scenario is concerned with movie images classification. Given a set of
still images taken from a movie (produced by crawling the web site imdb.com),
we ask performers to classify the image as belonging to the beginning, middle or
final part of the movie. Furthermore, we ask to explicitly say if the image could be
a spoiler for the movie, i.e., an anticipation of the plot which ruins the enjoyment
of the movie. Given the peculiarity of the task, we let the performers declare that
they haven’t seen the movie (and thus they are not asked to evaluate other images
of that movie) or that they don’t remember the specific scene. The experimental
setting is as follows:

• Dataset: I captured 20 still images from 16 recent and popular movies.
For time positioning, we recorded the timestamp of the capture, we split
the movie in three slots of the same length and we automatically assigned
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each capture to the corresponding slot. I manually defined a ground-truth
on spoiler images, established by experts (i.e., unanimous agreement by 3
people that watched the movie).

• Crowdsourcing: each micro-task consists of evaluating one image. A cus-
tomized, double language UI (Italian and English) is present within Crowd-
searcher (as shown in Figure 5.1).1 Results are accepted, and the corre-
sponding request is closed, when an agreement between 5 performers is
reached both on the temporal category and the spoiler option, independently
on the number of executions.

• Interoperability: we implemented a set of static cross-platform interoper-
ability steps, with continuous switch-over: the first step invites performers
through mailing lists, the second step moves to Twitter; the third step to
Facebook; and the fourth step to Amazon Mechanical Turk (AMT). Switch-
overs are scheduled at every two days.

Figure 5.1: Customized UI for the cross-platform scenario (Movies), where users
can select the screenshot timeframe and whether it is a spoiler or not.

1Movies experiment available at: http://is.gd/expmovies
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Figure 5.2: Control mart for the Cross-Platform scenario (Movies).

Figure 5.2 shows the control mart for the Cross-Platform scenario. In comparison
with control marts introduced in Chapter 4, I added two dimensions, relative to
the platform or the community used in the micro-task execution; in this figure
we include the platform dimension, in the next section we include the community
dimension; they are orthogonal, so an application can have both of them. The
schema of the control mart is automatically constructed by taking into account the
structure of data objects, the operations implemented by the task, and the rules for
object, performer, task, and platform/community control.

Interoperability rules

Next, I show some exemplary rules corresponding to different interoperability op-
tions; all rules are concerned with dynamic adaptation that calls for executing on
Amazon’s Mechanical Turk (AMT) an application which was initiated on Face-
book.
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Rule 11 Static adaptation of an application which adds AMT to Facebook after 2
days, for non-closed objects.
e: AFTER 2 days ON TASK[TaskID == ’Movie’]
c: ---
a: SET PLATFORM_ctrl[PlatformID == ’AMT’].Enabled =
true,

replan(OBJECT_ctrl[Status<>’closed’].ObjectID,’AMT’),
reinvite(’Movie’,’AMT’)

Rule 12 Maintenance of platform control data based on the groundtruth.
e: UPDATE for M_T_O_EXECUTION (PosCat)
c: Scene.Groundtruth[ObjectID == NEW.ObjectID] == true
a: SET PLATFORM_ctrl[platformID == NEW.platformID].Tests++

IF NEW.PosCat == SCENE[ObjectID == NEW.ObjectID].CorrectPos
THEN

SET PLATFORM_ctrl[platformID == NEW.platformID].Score++
ELSE

SET PLATFORM_ctrl[platformID == NEW.platformID].Score--

• Rule 11 replans the task on AMT after two days since it was started. Note
that if the task completes before two days, then the rule does not fire and
AMT is not used at all; note also that the Facebook platform remains en-
abled. This rule applies to all the objects that are not closed; thus, it imple-
ments a static interoperability at task granularity, with continuous switch-
over.

• The next two rules are used for replanning a task when the quality of ex-
ecution on the current platform is not good enough. Rule 12 maintains
platform control data by counting the number of performed tests against
the groundtruth values and changing the score associated with the current
platform at each correct or incorrect answer relative to objects for which
a groundtruth is known. Rule 13 migrates the application to AMT after 50
tests performed on Facebook if the average score is below 50%, by disabling
Facebook and enabling AMT, and by inviting the application’s perfomers on
AMT; replanning applies only to the objects that are not yet closed. The two
rules implement a dynamic interoperability determined at task granularity,
with instantaneous switch-over.

• Rule 14 is used for replanning a specific object, in the lack of ground truth,
when the performers on Facebook are in total disagreement for that object,
i.e., if there is at least one vote on every category of the classify operation;
in that case, all the executions on that objects from the current platforms are
invalidated. We assume that both Facebook and AMT are enabled platforms.
This rule implements a dynamic interoperability determined at object gran-
ularity, with reset switch-over; this requires resetting all the counters and
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Rule 13 Migration of an application from Facebook to AMT.
e: UPDATE for PLATFORM_ctrl (Score)
c: (NEW.Score / NEW.Tests) < 0.5 AND NEW.Tests > 50 AND

NEW.PlatformID == ’Facebook’
a: SET PLATFORM_ctrl[PlatformID == ’Facebook’].Enabled = false,

SET PLATFORM_ctrl[PlatformID == ’AMT’].Enabled = true,
replan(OBJECT_ctrl[Status<>’closed’].ObjectID,’AMT’),
reinvite(’Movie’,’AMT’)

Rule 14 Replanning of a single object from Facebook to AMT, with reset switch-
over.
e: UPDATE for M_T_O_EXECUTION (PosCat)
c: OBJECT_ctrl[ObjectID == NEW.ObjectID].Beg >= 1 AND

OBJECT_ctrl[ObjectID == NEW.ObjectID].Mid >= 1 AND
OBJECT_ctrl[ObjectID == NEW.ObjectID].End >= 1 AND
PLATFORM[ObjectID == NEW.ObjectID].Name = ’Facebook’

a: SET OBJECT_ctrl[ObjectID == NEW.ObjectID].Beg == 0,
SET OBJECT_ctrl[ObjectID == NEW.ObjectID].Mid == 0,
SET OBJECT_ctrl[ObjectID == NEW.ObjectID].End == 0,
SET OBJECT_ctrl[ObjectID == NEW.ObjectID].PosEvals == 0,
FOREACH e IN M_T_O_EXECUTION [ObjectID == NEW.ObjectID]

SET e.Status = ’invalid’,
replan(NEW.ObjectID,’AMT’),
reinvite(NEW.ObjectID,’AMT’)

setting past executions as invalid.

5.3.2 Cross-Community Interoperability

The second scenario is concerned with image classification and demonstrates cross-
community interoperability. The dataset consists of images about professors of our
department retrieved through the Google Image API. In the crowdsourcing cam-
paign we ask the performers to specify whether each image represents the profes-
sor, or some relevant people or places, or other related materials (papers, slides,
graphs or technical materials), or it is not relevant at all. The experimental setting
is as follows:

• Dataset: I selected 16 professors within two research groups in our depart-
ment (DB and AI groups) and downloaded the top 50 images returned by the
Google Image API for each query (the professor’s name followed by the key-
word “Politecnico"); I excluded the images that were not linked or extremely
small in size. I asked the professors themselves to define the ground-truth
on the images, through a specific crowdsourcing task (not described here).

• Crowdsourcing: each microtask consisted of evaluating 5 images regard-
ing a professor. A customized UI (in Italian) has been developed within
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Crowdsearcher (as shown in Figure 5.3).2 Results are considered accepted
(and thus the corresponding object is closed) when enough agreement on the
class of the image is reached among performers. Closed objects are removed
from new executions.

• Interoperability: I defined the communities as the research group of the
professor, the research area containing the group (e.g. computer science),
and the whole department (which accounts for more than 600 people in dif-
ferent areas).

Figure 5.3: Customized UI for the cross-community scenario (Professors).

2Profs experiment (in Italian) at: http://is.gd/expprofs
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Rule 15 Invitation of CS-Area community after deadline.
e: AFTER 2 days ON TASK[TaskID == ’Professor’]
c: ---
a: SET COMMUNITY_ctrl[CommunityID == ’CS-Area’].Enabled
= true,

reinvite(’GoogleImages’,’CS-Area’)

Rule 16 Maintenance of last task execution timestamp.
e: UPDATE for M_T_O_EXECUTION (EndTS)
c: ---
a: SET TASK_ctrl[TaskID == NEW.TaskID].LastExec = NEW.EndTS

Control Mart

Figure 5.4 depicts the control mart of the Cross-Community scenario. Objects of
interest are images returned by Google. In this scenario, interoperability is across
communities and thus the interoperability dimension is represented by Community
and CommunityControl.

Interoperability Rules

The rules of this section show how the application dynamically adapts by expand-
ing to larger crowds.

• Rule 15 invites performers from the research area (CS-Area) after two days
since the initial invitations, which were sent to a specific research group
(DB-group). Note that if the task completes before two days, then the rule
does not fire and the task uses just the research group. This rule imple-
ments a static interoperability determined at task granularity, with continu-
ous switch-over.

• The next two rules are used to invite the performers of a broader community
when the current crowd ceases to produce answers. Rule 16 saves the times-
tamp of the last execution of the current task; Rule 17 invites performers of
the broader community after one hour of idle time, i.e. when the last execu-
tion occurred one hour ago. Rules implement a dynamic interoperability at
task granularity, with continuous switch over.

• Rule 18 is used for replanning a specific object when the performers of a
community are in disagreement, e.g., if there is are vote on every category
of the classify operation. We assume that in this case the invitation was
initially sent to CS-Area and then it is routed to the DB-Group, which is as-
sumed to be a group of experts in recognizing images about colleagues of the
same group; we also let the task evaluation for that object to continue. This
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Rule 17 Invitation of CS-Area community when the DB-Group is idle.
e: EVERY 1 minute ON TASK[TaskID == ’GoogleImages’]
c: now() - TASK_ctrl[TaskID == ’GoogleImages’].LastExec
> 1 hour

AND COMMUNITY_ctrl[CommunityID == ’CS-Area’].Enabled=false
a: SET COMMUNITY_ctrl[CommunityID == ’CS-Area’].Enabled=true,

reinvite(’GoogleImages’,’CS-Area’)

rule implements a dynamic interoperability determined at object granularity,
with continuous switch-over.

5.3.3 Rule Design Principles

Termination of general control rules for crowdsourcing has been discussed in Chap-
ter 4. I now discuss a set of best practices for ensuring the quality of interoperabil-
ity rules, including their termination.

In general, I observe that interoperability rules are concerned with decisions
that occur once the rules for object, task, and performer control have reached a
quiescent state. Thus, interoperability rules should be a lower priority rule stra-
tum. In addition, I assume that the actions of interoperability rules have specific
limitations: they either enable or disable platforms and/or communities, they re-
plan new executions upon existing objects and correspondingly activate invitation
processes, and in some cases they initialize summarization data (by restoring their
initial value); all these actions do not trigger object, performer, or task control rules
as presented in Chapter 4. As a consequence, interoperability rules do not alter the
quiescent state produced by control rules, and hence termination of the two strata
can be discussed independently (see [7]).

Termination of interoperability rules, in turn, is not guaranteed if they incur
into cyclic processes of activations and deactivations of platforms or communities.
For instance, if both Facebook and Twitter executions do not meet the required
level of quality, two rules could call opposite migrations from one platform to the
other, thus producing an endless loop.

Such cause of non-termination cannot occur when platforms or communities
are invoked in a sequence (and thus the number of involved platforms and commu-

Rule 18 Replanning of an object, by invoking an expert community (the DB-
Group).
e: UPDATE for M_T_O_EXECUTION
c: OBJECT_ctrl[ObjectID == NEW.ObjectID].ProfPhoto >= 1 AND

OBJECT_ctrl[ObjectID == NEW.ObjectID].PeoplePlace >= 1 AND
OBJECT_ctrl[ObjectID == NEW.ObjectID].Materials >= 1 AND
COMMUNITY_ctrl[CommunityID == ’DB-Group’].Enabled = false

a: SET COMMUNITY_ctrl[CommunityID == ’DB-Group’].Enabled = true,
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Figure 5.4: Control mart for the Cross-Community scenario (Professors).

nities grows monotonically); this situation arises very commonly, e.g. the ouside-
in or inside-out strategies in the experiments of Section 5.4.2. When the invocation
of platforms and communities is not monotonic, the designer should focus on the
rules that perform enabling and disabling activities upon multiple platforms and
communities, such as Rule 13, and consider their mutual triggering. Rules moni-
toring a single platform/community, e.g. by enabling one platform (such as Rules
11 and 14) or one community (such as Rules 15, 17 and 18), cannot be involved
into enabling/disabling loops, and hence can be disregarded during such analysis.

One should also consider a different kind of termination, that we call applica-
tion termination. Intuitively, users wish their applications to terminate fast, with
the highest possible quality measures, and involving as little resources as possible,
where resources not only include the cost of crowd activities, but also the amount
of cooperation required from communities; in many cases, one would like to min-
imize crowd interactions so as not to abuse of contacts. Thus, designing rules
for application adaptation is quite complex, and it can hardly be modeled as an
optimization problem.

In Crowdsearcher (see Chapter 8) I support a declarative approach to applica-
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tion design, in which users describe interoperability requirements with high-level
specifications (i.e., by indicating the platforms or expert communities, their se-
quence of invocation with the outside-in or inside-out strategy, when and how
switch-over should occur) and then rules are automatically produced from high-
level specifications; Crowdsearcher covers the most significant options, and offers
to knowledgeable designers interfaces presenting the reactive implementation, so
as to fine-tune the produced rules and meet better global performances. Note that
Crowdsearcher offers an environment for fast prototyping of experiments which
allows a progressive tuning of execution rules, as I did in the experiments reported
in Section 5.4.

5.4 Experiments

I performed several experiments on the two scenarios described in Section 5.3.
The groundtruth and results are available online.3

5.4.1 Cross-Platform Scenario

In the first experiment, I considered 4 platforms for inviting performers (email,
Twitter, Facebook, and Amazon Mechanical Turk), and I redirected all the per-
formers to a customized UI. The first round of invitations was sent to the mailing
lists of students of 8 courses; subsequently, I engaged people on Twitter, then
Facebook, and finally I posted HITS on AMT, with a payment of 1 cents per ex-
ecution. The change of platform was performed through static interoperability at
task granularity, using a continuous switch-over every 2 days, by using a rule sim-
ilar to Rule 11. Objects were randomly assigned to executions, but performers
never evaluated the same object twice. Objects (i.e., screenshots) were considered
correctly evaluated (and thus closed) when agreement of 5 votes was reached on
the same category, both for the positioning in time (beginning, mid, end) and for
spoiler labeling (yes, no).

The number of performers that actually participated from each platform and
their precision are reported in Table 5.1; precision is calculated in terms of correct
answers for each evaluation. Figure 5.5 shows the number of executions and of
performers for each platform, along the time of the experiment (one week). The
graphs show substantial participation of people invited via email, which was an en-
gaging invitation platform, given that movie classification was considered as a nice
game by involved students. Invitations to circles of friends using Twitter were less
popular, while invitations using Facebook were more popular. Note that after some
time the executions within all the three social networks reach a plateau, also due

3http://crowdsearcher.search-computing.org/
multiplatform-and-community
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to the specific time (night-time and the weekend show very limited participation;
in our scenario, all performers where from the same timezone).

Invitations on social networks were generated through various techniques: for
instance, on Facebook, engagement was increased by first sharing a link, then an
image, and finally by creating an event and inviting people to it. I also noticed that
spontaneous resharing on social networks contributed to involving more people.
When I turned to a crowdsourcing platform, I got a high number of performed with
a small pay (1 cent per HIT). Performers on AMT closed the remaining objects of
the experiment in few hours, despite such low pay.

Figure 5.6 shows in log scale the number of closed objects in time vs. the
number of performed evaluations (log scale) for the Cross-Platform scenario. A
small number of objects start closing only after 400 evaluations, while most of
them closed after 800 evaluations. This is due to the need of reaching agreement
between 5 performers on the same answer. A parallel experiment (not reported
here) with agreement threshold set to 3 was much faster (all experiments closed in
a matter of hours, instead of days).

Figure 5.7 (a) shows the aggregate precision by performer along time and by
platform; each curve starts from the invitation time on the respective platform.
The X axis represents the number of evaluations, and therefore the contribution of
AMT is greater (while it was very compressed in time in the other graphs). Initial
peaks on each platforms are not significant,they represents the oscillations of the
first evaluations.

Precision of performers invited via email is higher than precision of perform-
ers invited by Twitter and AMT, while Facebook positions in the middle. Note
also that precision is slightly decreasing, as the first evaluations are involved with
objects whose classification is easier and less error-prone. This effect can be seen
also on Figure 5.7(b), which shows the actual precision of the system by keeping
the two classification operations (scene positioning and spoiler detection) separate.

The system’s precision is evaluated after an agreement on five evaluations,
hence it is higher than execution precision; the final system’s precision is respec-
tively 0.85 for spoiler classification and 0.62 for scene positioning. Note that the
precision of spoiler detection is higher and does not change much with time, while
the precision of image detection reduces with time, both because the last scenes
to be closed are most difficult to classify and because AMT users become more
relevant, and they have a lower individual precision.
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Table 5.1: Performers and average precision of evaluations for each platform in
Cross-Platform scenario.

Platform #Performers Precision
Mail 26 0,73
Twitter 9 0,64
Facebook 18 0,69
AMT 140 0,63
Total 193 0,67
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Figure 5.5: Number of executions (a) and performers (b) by platform for the
Cross-Platform scenario.
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objects after majority is applied (b) for the Cross-Platform scenario.

s

5.4.2 Cross-Community Scenario

I next report several experiments of the cross-community scenario described in
Section 5.3. I devised two experiments: in the first one, named inside-out, I started
with invitations to experts, e.g. people the same groups as the professor (DB and
AI), and then expanded invitations to Computer Science, then to the whole De-
partment, and finally to open social networks (Alumni and PhDs communities on
Facebook and LinkedIn); in the second one, named outside-in, I proceeded in the
opposite way, starting with the Department members, then restricting to Computer
Scientists, and finally to the group’s members.

All invitations (except for the social networks in the first experiment) were sent
by email by the system. The communities were not overlapping: every performer
received only one invitation. For doing that, the members of the Department, of
Computer Science area, and of the DB Group were randomly split into two sets.
Invitations have been implemented as a set of dynamic, cross-community interop-
erability steps, with task granularity and with continuous switch-overs starting one
working day after a community was idle (stopped to produce results); interoper-
ability control rules very similar to Rules 16 and 17.

Table 5.2 shows the number of invitations sent out, the number of performers
responding, and the average precision of their evaluations. Notice that precision
is decreasing when moving towards less expert people, while the social network
had good precision as the invitation was posted on groups that know very well the
people involved (who were their professors or advisors).

Figure 5.8 shows the number of executions (a) and performers (b) by commu-
nity. Again, influence of nighttime and weekend on executions is very evident.
Figure 5.9 shows the number of closed objects vs. the number of performed eval-
uations. Figure 5.10 (a) shows the precision of evaluations by community and
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Table 5.2: Cross-Community scenario statistics

Community #Invites #Performers Precision
Research
Group

28 13 0,68

Research Area 61 15 0,64
Department 214 34 0,58
Social Net-
works

N/A 9 0,65

Total 303 71 0,63

Figure 5.10(b) shows the final precision on closed objects.
Figure 5.10(b) compares also the precisions of the inside-out and outside-in

experiments, and shows that former performs better than the latter in terms of
quality of results. This is quite evident in the initial phases (when the first half of
the objects close), as the performance of experts (research group) is much higher
than performance of the people of the rest of department.
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Figure 5.8: Number of executions (a) and performers (b) by community for the
Cross-Community scenario.

5.5 Conclusions

This chapter proposes an empowered programming and control of crowdsourcing
applications, through the use of multiple crowdsourcing platforms and social net-
works. We describe a taxonomy of interoperability scenarios, and show how each
scenario can be implemented through suitable active rules; we also disclose gen-
eral design principles for interoperability, and show the rules at work in applica-
tions which engage their performers through cross-platform and cross-community
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Figure 5.9: Number of closed objects vs. number of performed evaluations (log
scale) for the Cross-Community scenario.

invitations.
Experimental results show that the method can improve the effectiveness and

efficiency of crowd-based applications, by improving quality through dynamic re-
planning strategies. Experiments let us collect interesting lessons learned regard-
ing interoperability, especially with respect to the social communities. We noticed
that expert performers have a completely different attitude towards the tasks: in a
sense, they felt more involved and part of a “mission", they frequently contacted us
(about 30% of performers sent us messages) for providing feedback for improving
the application, they way questions were asked, or even the dataset. They wanted
to understand the purpose of the work, commented on the results, and expected
a feedback after the experiment was completed. Participants appeared more de-
manding than generic crowds with respect to the quality both of the application UI
and of the evaluated objects. The limited number of participants implied a strong
impact of the temporal aspect (responses come in more slowly than in traditional
crowdsourcing systems). One obvious aspect to be considered in cross-platform
interoperability is the reach and visibility of the requestor upon the involved so-
cial networks: the more people receive and re-share the invites, the highest the
probability of getting more performers.
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CHAPTER6
Crowdsourcing Design Patterns

The work described in this chapter was published in [18]

6.1 Introduction

The goal of this chapter is to present a systematic approach to the design and
deployment of crowd-based applications as arbitrarily complex workflows of el-
ementary tasks, which emphasises the use of crowdsourcing patterns. While the
previous chapters I addressed the design and deployment of a single task, in this
chapter I model and deploy applications consisting of arbitrarily complex task in-
teractions, organised as a workflow; I use either data streams or data batches for
data exchange between tasks, and illustrate that tasks can be controlled through
tight coupling or loose coupling. I also show that my model supports the known
crowd management patterns, and in particular I use my model as a unifying frame-
work for a systematic classification of patterns.

The chapter is structured as follows. Section 6.2 introduces the task and work-
flow models and design processes. Section 6.3 details a set of relevant crowd-
sourcing patterns. Section 6.4 illustrates how workflow specifications are embod-
ied within the execution control structures of Crowdsearcher, and finally Section
6.5.3 discusses several experiments, showing how differences in workflow design
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lead to different application results.

6.2 Models and Design of Crowd-based Workflows

A crowdsourcing workflow is defined as a control structure involving two or more
interacting tasks performed by humans. Tasks have an input buffer that collects
incoming data objects, described by two parameters: 1) The task size, i.e. the
minimum number of objects (m) that allow starting a task execution; 2) The block
size, i.e. the number of objects (n) consumed by each executions.

Clearly, n ≤ m, but in certain cases at least m objects must be present in the
buffer before starting an execution; in fact n can vary between 1 and the whole
buffer, when a task execution consumes all the items currently in the buffer. Task
execution can cause object removal, when objects are removed from the buffer, or
object conservation, when objects are left in the buffer, and in such case the term
new items denotes those items loaded in the buffer since the last execution.

Tasks communicate with each other with data flows, produced by extracting
objects from existing data sources or by other tasks, as streams or batches. Data
streams occur when objects are communicated between tasks one by one, typ-
ically in response to events which identify the completion of object’s computa-
tions. Data batches occur when all the objects are communicated together from
one task to another, typically in response to events related to the closing of task’s
computations.

Flows can be constrained based on a condition associated with the arrow rep-
resenting the flow. The condition applies to properties of the produced objects and
allows transferring only the instances that satisfy the condition. Prior to task exe-
cution, a data manipulator may be used to compose the objects in input to a task,
possibly by merging or joining incoming data flows.

Tasks can be represented within workflows as described in Fig. 6.1, where
each task is equipped with an input buffer and an optional data manipulator, and
may receive data streams or data batches from other tasks. Each task consists of
micro-tasks which perform given operations upon objects of a given object type;
the parameter r indicates the number of executions that are performed for each
micro-tasks, when statically defined (default value is 1). Execution of tasks can be
performed according to intra-task patterns, as described in Section 6.3.

6.2.1 Workflow Design

Workflow design consists of designing tasks interaction; specifically, it consists
of defining the workflow schema as a directed graph whose nodes are tasks and
whose edges describe dataflows between tasks, distinguishing streams and batches.
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Crowd Task

[T operation types]
(intra-task patterns)

Object Type

block size
min #obj
(cons)

input buffer

batch flow (on closed task)
stream flow (on closed object)

MicroTask
[MT operation types]

r

data manipulator

Figure 6.1: Notation for crowdsourcing workflows

In addition, the coupling between tasks working on the same object type can be
defined as loose or tight.

Loose coupling is recommended when two tasks act independently upon the
objects (e.g. in sequence); although it is possible that the result of one task may
have side effects on the other task, such side effects normally occur as an exception
and affect only a subset of the objects. Loosely coupled tasks have independent
control marts and monitoring rules (as described in Chapter 4).

Tight coupling is recommended when the tasks intertwine operations upon the
same objects, whose evolution occurs as combined effect of the tasks’ evolution;
tightly coupled tasks share the same control mart and monitoring rules.

Figure 6.2 shows a simple workflow example in the domain of movie scenes
annotation. The Position Scenes tasks asks performers to say whether a scene
appears at the beginning, middle or end of the film; it is a classification task, one
scene at a time, with 5 repetitions and acceptance of results based on an agreement
threshold of 3. Scenes in the ending part of the movies are transmitted to the
Spoiler Scenes task, which asks performers whether the scene is a spoiler or not;1

scenes at the beginning or in the middle of the movie are transmitted to the Order
Scenes task, which asks performers to order them according to the movie script;
each micro-task orders just two scenes, by asking the performer to select the one
that comes first. The global order is then reconstructed. Given that all scenes are
communicated within the three tasks, they are considered as tightly coupled.

1A spoiler is a scene that gives information about the movie’s plot and as such should not be used
in its advertisement.
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Figure 6.2: Example of crowd flow.

6.3 Crowdsourcing Patterns

Several patterns for crowd-based operations are defined in the literature. I review
them in light of the workflow model of Section 6.2. I distinguish them in three
classes and I implement them in Crowdsearcher (see Section 6.4):

• Intra-Task Patterns. They are typically used for executing a complex task
by means of a collection of operations which are cognitively simpler than
the original task. Although these patterns do not appear explicitly in the
workflow, they are an essential ingredient of crowd-based computations.

• Workflow Patterns. They are used for solving a problem by involving dif-
ferent tasks, which require a different cognitive approach; results of the dif-
ferent tasks, once collected and elaborated, solve the original problem.

• Auxiliary Patterns. They are typically performed before or after both intra-
task and workflow patterns in order either to simplify their operations or to
improve theirs results.

6.3.1 Intra-Task Patterns

Intra-task patterns apply to complex operations, whose result is obtained by com-
posing the results of simpler operations. They focus on problems related to the
planning, assignment, and aggregation of micro tasks; they also include quality
and performer control aspects. Figure 6.3 describes the typical set of design di-
mensions involved in the specification of a task. When the operation applies to a
large number of objects and as such cannot be mapped to a single pattern instanti-
ation, it is customary to put in place a splitting strategy, in order to distribute the
work, followed by an aggregation strategy, to put together results. This is the case
in many data-driven tasks stemming from traditional relational data processing
which are next reviewed.
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Consensus Patterns. The most commonly used intra-task patterns aim at pro-
ducing responses by replicating the operations which apply to each object, col-
lecting multiple assessments from human workers, and then returning the answer
which is more likely to be correct. These patterns are referred to as consensus
or agreement patterns. Typical consensus patterns are: a) StaticAgreement [17]:
accepts a response when it is supported by a given number of performers. For in-
stance, in a tag operation I consider as valid responses all the tags that have been
added by at least 5 performers. b) MajorityVoting [62]: accepts a response only
if a given number of performers produce the same response, given a fixed num-
ber of total executions. c) ExpectationMaximisation [31]: adaptively alternates
between estimating correct answers from task parameters (e.g. complexity), and
estimating task parameters from the estimated answers, eventually converging to
maximum-likelihood answer values.

Join Patterns. Crowd join patterns, studied in [56], are used to build an equal-
ity relationship between matching objects in the context of crowdsourcing tasks. I
identify: a) SimpleJoin consists in defining microtasks performing a simple clas-
sification operation, where each execution contains a single pair of items to be
joined, together with the join predicate question, and two buttons (Yes, No) for
responding whether the predicate evaluates to true or false; b) OneToManyJoin
is a simple variant that includes in the same microtask one left object and several
right candidates to be joined; c) ManyToManyJoin includes in the same micro-
task several candidate pairs to be joined;

Sort Patterns. Sort patterns determine the total ordering of a set of input ob-
jects. The list includes: a) SortByGrouping [56] orders a large set of objects by
aggregating the results of the ordering of several small subsets of them. b) Sort-
ByScoring [56] asks performers to rate each item in the dataset according to a
numerical scale. c) SortByLiking [17] is a variant that simply asks the performer
to select/like the items they prefer. The mean (or sum) of the scores achieved by
each image is used to order the dataset. d) SortByPairElection [17] asks work-
ers to perform a pairwise comparison of two items and indicate which one they
like most. Then ranking algorithms calculate their ordering. e) SortByTourna-
ment [74], presents to performers a tournament-like structure of sort tasks; each
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Figure 6.3: Building blocks of an Intra-Task Pattern.
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tournament elect its champions that progress to the next level, eventually converg-
ing to a final order.

Grouping Patterns. Grouping patterns are used in order to classify or clus-
tered several objects according to their properties. I distinguish:
a) GroupingByPredefinedClasses [30] occurs when workers are provided with
a set of known classes. b) GroupingByPreference [2] occurs when groups are
formed by performers, for instance by asking workers to select the items they pre-
fer the most, and then clustering inputs according to ranges of preferences.

Performer Control Patterns. Quality control of performers consists in decid-
ing how to engage qualified workers for a given task and how to detect malicious
or poorly performing workers. The most established patterns for performer control
include: a) QualificationQuestion [4], at the beginning of a microtask, for assess-
ing the workers expertise and deciding whether to accept his contribution or not.
b) GoldStandard, [17] for both training and assessing worker’s quality through a
initial subtask whose answers are known (they belong to the so-called gold truth.
c) MajorityComparison, [17] for assessing performers’ quality against responses
of the majority of other performers, when no gold truth is available.

6.3.2 Auxiliary Intra-Task Patterns

The above tasks can be assisted by auxiliary operations, performed before or after
their executions, as shown in Figure 6.3. Pre-processing steps are in charge of
assembling, re-shaping, or filtering the input data so to ease or optimise the main
task. Post-processing steps is typically devoted to the refinement or transformation
of the task outputs into their final form.

Examples of auxiliary patterns are: a) PruningPattern [56], consisting of ap-
plying simple preconditions on input data in order to reduce the number of evalu-
ations to be performed. For instance, in a join task between sets of actors (where
you want to identify the same person in two sets), classifying items by gender,
so as to compared only pairs of the same gender. b) TieBreakPattern [56], used
when a sorting task produces uncertain rankings (e.g. because of ties in the eval-
uated item scores); the post-processing includes an additional step that asks for an
explicit comparison of the uncertainly ordered items.

6.3.3 Workflow Patterns

Very often, a single type of task does not suffice to attain the desired crowd busi-
ness logic. For instance, with open-ended multimedia content creation and/or mod-
ification, it is difficult to assess the quality of a given answer, or to aggregate the
output of several executions. A Workflow Pattern is a workflow of heterogeneous
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Figure 6.4: Template for complex task patterns.

crowdsourcing tasks with co-ordinated goals. Several workflow patterns defined
in the literature are next reviewed; they are comparatively shown in Figure 6.4:

a) Create/Decide [54], shown in Figure 6.4(a), is a two-staged pattern where
first workers create various options for new content, then a second group of work-
ers vote for the best option. Note that the create step can include any type of basic
task. This pattern can have several variants: for instance, with a stream data flow,
the vote is typically restricted to the solutions which are produced faster, while
with a batch data flow the second task operates on all the generated content, in
order to pick the best option overall. b) Improve/Compare [53], shown in Figure
6.4(b), iterates on the decide step to progressively improve the result. In this pat-
tern, a first pool of workers creates a first version of a content; upon this version, a
second pool of workers creates an improved version, which is then compared, in a
third task, to decide which one is the best (the original or the improved one). The
improvement/compare cycle can be repeated until the improved solution is deemed
as final. c) Find/Fix/Verify [11], shown in Figure 6.4(c), further decomposes the
improve step, by splitting the task of finding potential improvements from the task
of actually implementing them.

6.3.4 Auxiliary Workflow Patterns

Auxiliary tasks can be designed to support the creation and/or the decision tasks.
They include: a) AnswerBySuggestion [52]: given a create operations as input,
the provided solution can be achieved by asking suggestions from the crowd as fol-
lows. During each execution, a worker can choose one of two actions: it can either
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stop and submit the most likely answer, or it can create another job and receive
another response to the task from another performer. The auxiliary suggestion
task produces content that can be used by the original worker to complete or im-
prove her answer. b) ReviewSpotcheck strengthens the decision step by means
of a two-staged review process: an additional quality check is performed after the
corrections and suggestions provided by the performers of the decision step. The
revision step can be performed by the same performer of the decision step or by a
different performer.

6.4 Workflow Execution

Starting from the declarative specification described in Sections 6.2 and 6.3, an
automatic process generates task descriptors and their relations. Single tasks and
their internal strategies and patterns are transformed into executable specification;
the prototype supports all the intra-task patterns described in Section 6.3, through
model transformations that generate the control marts and control rules for each
task. Task interactions are implemented differently depending on whether inter-
acting tasks are tightly coupled or loosely coupled.

Tightly coupled tasks share the control mart structure (and the respective data
instances), thus coordination is implemented directly on data. Each task posts its
own results and control values in the mart. Dependencies between tasks are trans-
formed into rules that trigger the creation of new micro-tasks and their executions,
upon production of new results by events of object or task closure.

Loosely coupled tasks have independent control marts, hence their interaction
is more complex. Each task produces in output events such as ClosedTask,
ClosedObject, ClosedMicrotask, ClosedExecution. I rely on an
event based, publish-subscribe mechanism, which allows tasks to be notified by
other tasks about some happening. Loosely coupled tasks do not rely on a shared
data space, therefore events carry with them all the relevant associated pieces of
information (e.g., a ClosedObject event carries the information about that ob-
ject; a ClosedTask event carries the information about the closed objects of the
task).

The workflow structure dictates how tasks subscribe to events of other tasks.
Once a task is notified by an incoming event, the corresponding data is incorpo-
rated in its control mart by a-priori application of the data manipulation program,
specified in the data manipulator stage of the task. Then, reactive processing takes
place within the control mart of the task.

Modularity allows executability through model transformations which are sep-
arately applied to each task specification. Automatically generated rules and mart
structures can be manually refined or enriched when non-standard behaviour is
needed.
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Figure 6.5: Flow variants for the Positioning scenario.

6.5 Experiments

I demonstrate various pattern-based workflow scenarios, defined using our model
and method and deployed by using Crowdsearcher as design framework and Ama-
zon Mechanical Turk as execution platform. I consider several scenes taken from
popular movies, and we enrich them with crowd-sourced information regarding
their position in the movie, whether the scene is a spoiler, and the presence of given
actors in each scene. In the experiments reported here I considered the movie “The
Lord of the Rings: the Fellowship of the Ring". 20 scenes were extracted and the
groundtruth dataset created regarding temporal positioning and actors playing in
the scenes. I compare cost and quality of executions for different workflow con-
figurations.

Table 6.1: Scenario 1 (Positioning): number of evaluated objects, microtask exe-
cutions, elapsed execution time, performers, and executinytions per performer
(for each task and for each scenario configuration).

Position Scenes (payed $0.01) Order Scene (payed $0.01) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

P1 20 147 123 16 9.19 17 252 157 14 18.00 342 3.99$ 26
P2 20 152 182 12 12.67 17 230 318 17 13.53 349 3.82$ 26

Table 6.2: Scenario 2 (Actor): number of evaluated objects, microtask executions,
elapsed execution time, performers, and executions per performer (for each
task and for each scenario configuration).

Find Actors (payed $0.03) Validate Actors (payed $0.02) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

A1 20 100 120 18 5.56 – – – – – 120 3.00$ 18
A2 20 100 128 10 10.00 – – – – – 128 3.00$ 10
A3 20 100 123 14 7.15 20 21 154 10 2.10 159 3.42$ 20
A4 20 100 132 10 10.00 41 19 157 9 2.10 164 3.38$ 16
A5 20 100 126 13 7.69 69 60 242 17 3.53 257 4.20$ 24
A6 66 336 778 56 6.00 311 201 821 50 4.02 855 14.10$ 84
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6.5.1 Scenario 1: Scene Positioning

The first scenario deals with extracting information about the temporal position
of scenes in the movie and whether they can be considered as as spoilers. Two
variants of the scenario have been tested, as shown in Figure 6.5: the task Position
Scenes classifies each scene as belonging to the beginning, middle or ending part
of the movie. If the scene belongs to the final part, I ask the crowd if it is a spoiler
(Spoiler Scenes task); otherwise, I ask the crowd to order it with respect to the
other scenes in the same class (Order Scenes task).

Tasks have been configured according to the following patterns:

• Position Scene: task and microtask types are both set as Classify, using a
StaticAgreement pattern with threshold 3. Having 3 classes, a maximum
number of 7 executions grants that one class will get at least 3 selections.
Each microtask evaluates 1 scene.

• Order Scene: task type is Order, while microtask type is set as Like. Each
microtask comprises two scenes of the same class. Using a SortByLiking
pattern, I ask performers to select (Like) which scene comes first in the
movie script. A rank aggregation pattern calculates the resulting total order
upon task completion.

• Spoiler Scene: Task and microtask type both set as Like. A StaticAgreement
pattern with threshold 3 ( 2 classes, maximum 5 executions) defines the
consensus requirements. Each microtask evaluates 1 scene.

I experiment with two workflow configurations. The first (P1) defines a batch
data flow between the Position Scene and Order Scene tasks, while the second
configuration (P2) defines the same flow as stream. In both variants, the data flow
between Position Scene and Spoiler Scenes is defined as stream.

The P2 configuration features a dynamical task planning strategy for the the
Order Scenes task, where the construction of the scene pairs to be compared in is
performed every time a new object is made available by the Position Scenes task.
A conservation policy in the Order Scenes data manipulator ensures that all the
new scenes are combined with the one previously received.
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Figure 6.6: Flow variants for the Actor scenario.

6.5.2 Scenario 2: Actors

In the second scenario, I model a create/decide workflow pattern by asking the
crowd to identify the actors that take part in the movie scenes; in Find Actors, per-
formers indicate actors, in Validate Actor they confirm them. Tasks are designed
as follows:

• Find Actors: Task and microtask types are set as Tag. Each microtask eval-
uates one scene; each scene is evaluated five times. Depending on the con-
figuration, either no consensus pattern (A1, A3, A5) or a StaticAgreement
pattern with threshold three (A2, A4, A6) is employed.

• Validate Actors: the task is preceded by a data manipulator function that
transform the input Scene object and associated tags into a set of tuples
(Scene,Actor), which compose an object list subject to evaluation. In all
configurations, microtasks are triggered if at least one object is available in
the buffer. Note that each generated microtask features a different number
of objects, according to the number of actors tagged in the corresponding
scene. Configurations A5 and A6 features an additional MajorityVoting pat-
tern to establish the final actor validation.

I tested this scenario with five workflow configurations, shown in Figure 6.6,
and designed as follows:

• Configuration A1 performs 5 executions and for each scene collects all the
actors tagged at least once;

• Configuration A2 performs 5 executions and for each scene collects all the
actors tagged at least three times (StaticAgreement@3);
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Figure 6.7: Temporal distributions of closed objects.

• Configuration A3 adds the validation task to A1; the validation asks one
performer to accept or reject the list of actors selected in the previous step;

• Configuration A4 adds a validation task to A3, performed as in A3;

• Configuration A5 is similar to A3, but the validation task is performed 3
times and a MajorityVoting@2 is applied for deciding whether to accept or
not the object;

• Configuration A6 extends A5 by adding a StaticAgreement@3 on FindAc-
tors a feedback stream flow, originating from the Validate Actors task and
directed to the Find Actors task, which notifies the latter about actors that
were wrongly tagged in a scene (i.e., for which agreement on acceptance
was not reached). Misjudged scenes are then re-planned for evaluation; for
each scene, the whole process is configured to repeat until validation suc-
ceeds, or at most 4 re-evaluations are performed.

6.5.3 Results

I tested the performance of the described scenarios in a set of experiments per-
formed on Amazon Mechanical. Table 6.1 and Table 6.2 summarise the experi-
ment statistics for the two scenarios, 1700 HITS for a total cost of 39$.

Streaming Vs. Batch (Scenario 1: Positioning) In the first scenario I tested
the impact on the application performance of the adoption of a stream data flow in
a crowd workflow.
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Time. Figure 6.7(b) shows the temporal distribution of closed objects for the
P1 and P2 configurations. As expected, a stream flow (P2) allows for almost
synchronous activation of the subsequent task in the flow, while batch scenario
(P1) shows a strict sequential triggering of the second task. However, the overall
duration of the workflow is not significantly affected by the change. While the
first task of the flow behaves similarly in the two configurations, the second task
runs significantly quicker in the batch flow, thus recovering the delay due to the
sequential execution.

Quality. Table 6.3a shows the precision of the classification results of task
Position Scenes (note that for this first part the two configurations are exactly the
same, it makes no sense to compare the two results). Table 6.3b shows a measure
of the quality of the obtained orders of scenes, i.e., Spearman’s rank correlation co-
efficient of the resulting ranks from the Order Scenes task against the real order of
scenes. Both tables show that the attained quality was not significantly influenced
by the different task activation modes.

In summary, we didn’t notice a different behaviour due to streaming. One
possible reason is that in the batch configuration the entire set of assignments is
posted at once on AMT, thus becoming more prominent in terms of number of
available executions (and thus being preferred by performers, as widely studied
[50]), while in a stream execution a small number of assignments is posted on
AMT at every closing event of objects from the previous tasks.

Intra-Task Consensus Vs. Workflow Decision (Scenario 2: Actors) The
second scenario aimed at verifying the impact that different intra-task and work-
flow patterns produced on the quality, execution time, and cost. We focused in
particular on different validation techniques.

Time. Figure 6.7(a) and (c) shows the temporal distribution of closed object
for configurations A3-A6. Configurations A1 and A2 are not reported because
they are composed of one single task and thus their temporal distribution is not
comparable. The temporal behaviour of the first and second tasks in the flow are
rather similar (in the sense that the second one immediately follows the other).

Table 6.3: Scenario 1 (Positioning), configuration P1 and P2: a) Precision of
the Position Scenes classification task; b) Spearman’s rank correlation coeffi-
cient of the resulting ranks from the Order Scenes task against the real order of
scenes.

(a)

Config. P Beg. P Mid. P End
P1 0.50 1 0.11
P2 0.50 0.80 0.33

(b)

Spearman Beg. Spearman Mid.
P1 0.500 0.543
P2 0.900 0.517
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Table 6.4: Scenario 2 (Actor): Precision, Recall, and F-score of the 6 configura-
tions.

A1 A2 A3 A4 A5 A6
Precision 0.79 1 0.92 0.99 0.95 0.89

Recall 0.98 0.87 0.97 0.90 1 0.96
F-Score 0.85 0.91 0.93 0.93 0.97 0.90

Validation is more delayed in A5 due to the MajorityVoting pattern that postpones
object close events. Configuration A6 (Figure 6.7(c)) is significantly slower due
to the feedback loop, which also generates a much higher cost of the campaign, as
reported in Table 6.1. Indeed, due to the feedback, many tasks are executed several
times before converging to validated results.

Quality. Table 6.4 reports the precision, recall and F-Score figures of the six
configurations. The adoption of increasingly refined validation-based solutions
(configurations A3-A4-A5) provides better results with respect to the baseline con-
figuration A1, and also to the intra-task agreement based solution A2; validations
do not have a negative impact in terms of execution times and costs. On the other
hand, the complexity of of case A6, with the introduction of feedback, proved
counter-productive, because the validation logic harmed the performance, both in
monetary (much higher cost) and qualitative (lower results quality) senses, bring-
ing as well overhead in terms of execution time. Notice that the configuration
A3 reaches the highest precision score. That’s because the StaticAgreement strat-
egy ensures that all the selected actors really appear in the image, while using the
crowd for the validation part can add some errors (for instance some actors recog-
nized in the Find Actor can be discarded in the Validate Actors ). However note
that the other configurations (A3 - A5) reach an higher recall and F-score value,
meaning an overall better quality of the final result.

In summary, the above tests show an advantage of concentrating design ef-
forts in defining better workflows, instead of just optimising intra-task validation
mechanisms (based e.g. on majority or agreement), although overly complex con-
figurations should be avoided.

6.6 Conclusions

I present a comprehensive approach to the modeling, design, and pattern-based
specification of crowd-based workflows. I discuss how crowd-based tasks com-
municate by means of stream-based or batch data flows, and define the option
between loose and tight coupling. I also discuss known patterns that are used to
create crowd-based computations either within a task or between tasks and we
show how the workflow model is translated into executable specifications which
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are based upon control data, reactive rules, and event-based notifications.
A set of experiments demonstrate the viability of the approach and show how

the different choices in workfllow design may impact on the cost, time and quality
of crowd-based activities.
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CHAPTER7
Users Engagement

7.1 Introduction

In this chapter I study the user engagement by observing their activities in a social
challenges. While other works focused on monetary incentives I studied other type
of means for engaging the crowd.

In particular I’m concerned with the social challenges which take place over
one or more social networks and whose main purpose is to raise awareness or
interest on a specific brand or event. The core of the challenge is a social game,
played by visitors of the social networks. The success of the challenge is measured
by the social mobilization generated by the game, e.g. in terms of number of
accesses to the challenge resources or of positive actions (likes and follows) which
are generated towards them.

Designing a social challenge is not obvious, as it requires not only to raise
the initial interest of the participants, but also to keep it high throughout the life-
time of the challenge, and actually the main objective of the challenge organizers
is to preserve or even increase the social mobilization more or less continuously
throughout the planned lifetime, as success is typically measured not only by the
global mobilization but also by a growing interest of players while the challenge is
in progress. Therefore, the challenge organizer has to plan and schedule a num-
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ber of actions which go beyond the publishing of the game, and use the typical
mechanisms of social networks; the organizer may take the role of participants in
order to solicit peer reactions, or may be helped by the participants who take the
role of the organizer in further publishing the game, typically in order to mobilize
participants who can help them in winning the challenge. While such actions are
fundamental to boost the challenge, they must be used carefully, as an excess of
their use might be seen as an intrusion in the game or an excess of advertisement
that typically causes a loss of interest.

Participants to a challenge can be typically divided into two categories: play-
ers and voters. The former make specific actions, that we further classify as pro-
ducing content or enriching content. The player’s intent is to perform actions
which are popular, where popularity is typically expressed by voters through a
positive vote (using likes actions) and not adversed by a negative vote (using dis-
likes actions); in most cases, they play an active game in soliciting votes, thereby
being the main mechanism for increasing the social mobilization. Winners of the
challenge are determined by voters, through a guided process which is set up by
the organizers and typically uses several intermediate stages.

The most interesting aspects in organizing social challenges is the possibil-
ity of deploying them over multiple social networks. The same social challenge
can use many social platforms in co-ordination, typically adapting to the activi-
ties that are best supported natively by each social platform (e.g., a challenge can
use a social network in order to collect the player’s content and a different social
network to collect the voter’s likes.) Alternatively, different social challenges can
reinforce each other by using cross-challenge and cross-networks reinforcement
actions. Players themselves are active in many social networks and therefore can
perform different activities upon each social network involved in a given challenge.

Another interesting aspect in organizing a social challenge is the careful use
of external contributions to mobilization. We denote as catalysts any external or-
ganization capable of generating social mobilization. Typically, the catalyst’s role
is to announce or promote the challenge, or to reward to the player by means of
tangible prizes or visible social actions.1

Given the above premises, the objective of this chapter is to define and com-
pare a number of strategies that can be used by organizers for increasing social
mobilization, in a challenge which uses multiple social networks, over a planned
lifetime, in the presence of players, voters, and catalysts.

YourExpo2015 was solicited to by the organizers of Expo 2015 in order
to increase the social awareness towards the Expo 2015 event in Milano, which

1In this paper, we omit to consider the economic aspects connected to managing a challenge and
we focus just on how to raise social mobilization; of course, as the challenge’s objective is to raise
the interest towards a brand, it has to be compared to other mechanisms - such as plain advertising -
in terms of cost/effectiveness; the cost of catalyst involvement is just an element of such trade-offs.
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opened on May 1st 2015; the game consists of a social production of content (on
Instagram) and voting (on both Instagram and Facebook), with some awareness
creation activities performed also on Twitter. The challenge consists of twelve
rounds of separate contexts, where each context consists of producing and voting
photos describing specific pairs of topical tags inspired by Expo 2015; the chal-
lenge has been running since Dec. 15, 2014 and will run until March 15, 2015.
Observations of the first nine weeks of the challenge allow us to draw interesting
conclusions on the efficacy of the various actions that we performed (as organizers)
or induced (by using voters and catalysts).

The paper is chapter as follows. Section 7.2 introduces the dimensions and
primitives for the engagement strategies and discusses how such engagement can
be measured. Section 7.3 presents our implementation architecture, Section 7.4
presents the YourExpo2015 challenge and provides several diagrams which il-
lustrate the effect of our actions on social participation and Section 7.5 concludes.

7.2 Instruments for Building Social Challenges

In this section, I analyze the strategies and instruments that are in the organizers’
availability for building social challenges. I observe that social engagement de-
pends on a number of factors (including the time of the day when activities occur);
continuous monitoring of player’s actions and careful planning of reactions (with
a correct level of repetition) can effectively enhance social engagement.

7.2.1 Roles
A social challenge requires the interplay of four kinds of actors.

• Organizer. Sets the rules of the game, typically encoded in the game regu-
lations, and then performs the activities which are prescribed by such rules.
In addition, the organizer performs activities targeted to enhancing social
participation; these activities normally favor the visibility of the top players,
but they should not alter the outcome of the game.

• Player. Autonomously decides to perform actions in the game. Players es-
sentially aim at obtaining visibility for the actions that they perform, granted
either by other members of the social network or by the organizers of the
challenge (or by both of them).

• Participant. Decides the outcome of the game by voting on the content
shared or enriched within the game or on the players.

• Catalyst. Catalysts represent external entities which support the organizers
in boosting the social participation; their actions may or may not be under
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Figure 7.1: Actors and activities interplay in a social network challenge

the control of the organizers, and at times have consequences which are hard
to predict. Catalysts include popular social accounts (actors, celebrities, in-
stitutions, well known brands), or real world events that have a strong impact
on the public (such as TV programs, commercial advertising, endorsement
by government or large companies).

7.2.2 Actions

I define a set of actions and I characterize them in terms of expected reactions and
impact on the public; effort involved in the action and possible level of automation
that can be applied; and applicability on the different social networking platforms.

Concrete actions that can be performed on the social network are grouped
based on the purpose they have. I identify 5 main purposes in a social game:

• Invite. The purpose is to make the game known on the social network and
to convince potential players to participate. The concrete actions that can be
performed in order to obtain this are:

– Announce, i.e., explicitly declare the start of the challenge, through
posting of rules of engagement, deadlines, or aim of the game.
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– Recall, i.e., sending our reminders and repetitive messages about the
topics, the game rules, and the duration of the challenge.

– Share invites, i.e., endorsing, sharing with contacts or republishing an
announcement or recall of the challenge.

These actions may imply publishing of direct descriptions of the game, or
also examples of participant content, or evocative content for the topic or
focus of the game.

• Award. The purpose is to select a subset of players for awarding them some
special prize or enabling them for the next level of participation or selection.
This can be obtained through:

– Admission, i.e., the selection of potential players that are therefore
allowed to participate to the game. This is relevant when some kind of
moderation of the contents is needed.

– Mention, i.e., the selection of a piece of content (or its author) be-
cause of its quality, which makes it a relevant candidate for becoming
a winner of the challenge. This is usually done through multiple level
selection of participants, e.g., initial selection of nominees, then selec-
tion of finalists, and finally selection of winners.

– Share awards, i.e., sharing the mentions of winners on the social net-
work. This is done either by the person that has won the award, or
by any other participant that wants to congratulate or acknowledge the
quality of the winner.

• Produce. The purpose is to generate content within the gaming platform.
The options are:

– Post new, i.e., the player posts original content (photos, videos or text)
produced by himself to the challenge, specifically devised for the chal-
lenge and prepared during the challenge period.

– Post existing, i.e., the player posts some content that was pre-existing
to the challenge. This entails both content produced by other people
(e.g., photos or videos found on the web) or content produced by the
player himself for other reasons (typically in the past) and reused for
the challenge.

– Share content, i.e., various actors share the content of the challenge
with their social network, for various reasons (including: making one’s
own content more popular or distributing valuable content of others).
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• Enrich. The purpose is to expand the description or media materials of a
piece of content participating in the game.

– Tag, i.e., adding tags to the content.

– Geo-tag, i.e., adding a geo-location to the content.

– Cluster, i.e., collecting similar contents in clusters.

– Comment, i.e., adding textual comments to the content.

– Mention, i.e., mentioning people or, more generally, entities related to
or appearing in the content.

– Sort, i.e., listing the contents in some specific order or ranking.

• Appreciate. The purpose is to express and share appreciation for the activi-
ties or content of a participant, or for the participant himself.

– Like, i.e., annotating the content with a “like" or “preference" tag (typ-
ical in social networks like Facebook, Instagram or Twitter).

– Follow, i.e., declaring interest in a person and following his activities.

7.2.3 Actor/Actions Interplay
The interplay between actors and actions is shown in Fig. 7.1. I envisage two
categories of challenges based on content:

• Creational Games. The player generates content (e.g.: photos, videos, text,
tweets, links or others), according to the Produce objective of the activities,
i.e., by posting new or pre-existing content, as described in Section 7.2.2.

• Enrichment Games. The player enriches content which is generated by the
organizer (or possibly by other actors), according to the Enrich objective
described in Section 7.2.2.

The main role of organizers is to produce the invitations and to manage awards.
Shares of invitations and of awards is typically performed by catalysts, but it can
also be performed by players with the objective of enhancing the awareness of their
presence in the challenge. It can also sporadically be performed by participants.

The main role of players to creational games is to produce posts, either of
new or of existing content; such content is also shared by players, catalysts, and
(to a less extent) participants to amplify the social participation. The main role
of players to enrichment games is to enrich posts. Such enrichments can also be
socially amplified by catalysts and participants.

94



7.2. Instruments for Building Social Challenges

Finally, the main role of participants is to appreciate the actions of players,
by following them and liking their actions, thereby performing the evaluation. Ac-
tions of liking and follow can tactically be performed by organizers and by players
to enhance the social participation. Typically, catalysts don’t engage directly into
appreciation actions, because catalysts role must appear as neutral, and their size
and visibility is incomparable to those of players.

7.2.4 Other Aspects that Influence Engagement

Aspects such as the challenge’s staging, timing and multiplatform execution should
be also considered in organizing a challenge.

Staging.

A challenge can be a single-shot event, where players make their actions and par-
ticipants vote within a short time interval. However, an important aspect of social
challenges is to build fidelization, which occurs when the players and participants
become acquainted with the game and perform multiple actions. Fidelization can
only occur when the game is staged, i.e. it is structured in a way that allows a
player to anticipate the game progression and engage in a multi-action participa-
tion. Staging can be obtained by:

• Repeating the challenge periodically, with a winner for each period.

• Sub–structuring the challenge into phases, and giving to the player dif-
ferent task to perform at each stage.

Influence of daytime.

As shown in Section 7.2.3, organizer’s actions and their social amplification occurs
in response to players’ actions. However, the effect of such actions is extremely
different depending on the time at which the action is performed and also of the
particular day (e.g., workday/weekend/vacation). Time-dependent effects must be
studied for each challenge, e.g. certain challenges may attract higher participation
during nighttime or weekends.

Cross-social Network Fertilization.

Cross-network fertilization is made possible because most actors and participants
are part of multiple social networks at the same time (e.g., they share content on In-
stagram and Twitter, and have friends on Facebook and collaborators on LinkedIn).
Thus, it is possible to influence their behavior on one social network through ac-
tions that occur on a different social networks.
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Figure 7.2: Architecture of the system

7.2.5 Sensing the Social Activities
Challenges must be effectively monitored throughout their execution for under-
standing users’ behavior, mapping it to specific aspects of the challenge, and de-
ciding as a consequence the best ways to further boost individual or collective
engagement. I distinguish different levels of monitoring:

• Native Sensing. This level exploits basic quantitative analytics that are na-
tively provided by social network platforms. This includes count of con-
tributions, their re-shares and likes or preferences, and (for some platforms
like Facebook) their global reach.

• Deep Sensing. This level entails deep monitoring of the event occurrences
and user interactions through detail measures that are not natively provided
by the social network platforms; an example is the extraction of timed events
(e.g., likes on Facebook and on Instagram) for which the social network only
provides global counts. Deep sensing occurs by means of periodical and/or
adaptive invocation of social network APIs.

Through both kinds of sensing, I build aggregated popularity measures of con-
tent and I understand and classify the behavior of players in terms of amount of
activity, continuity of the actions in time, reactivity to solicitation from organizers,
willingness to share challenge content and messages of the challenge, and extent
of his social amplification. Similar analysis can be performed over individual par-
ticipants and catalysts.

7.3 Architecture and Implementation

I designed and implemented an architecture for managing staged social challenges,
shown in Fig. 7.2. The architecture is layered, with an external layer, called stag-
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ing infrastructure, which generates several versions of the internal layer, called
single challenge infrastructure. They both are associated with several resources
dedicated to user interaction. Normally, these include a Web Interface which pub-
lishes the rules of the challenge, and several social network pages, describing the
specific portion of the challenge which takes place on each social network. These
resources may be present only at the stage level, if each stage is managed as an
independent challenge. The staging manager holds information about the series
of events which are associated with each stage, and in addition it manages global
data analytics obtained as the summary of the various stages.

The organization of the core of challenges is performed by the challenge man-
ager. It instantiates and manages several crawlers belonging to predefined classes,
that are addressed to specific social networks and perform specific tasks, which are
either content-specific actions or account monitoring on each social networks;
some of them are automatic actions generated in response to the task’s output
(e.g., following accounts or liking contents). Some of the content-specific tasks
need to be organized through mini-workflows (e.g., the monitoring of likes given
to a specific content must follow the post of that content.)

Crawlers activities are timed so as to respect the constraints on API usage
which are imposed by each social network; content is accessed through the given
challenge’s hashtag, generated by the staging infrastructure and used as parameter
in the calls to the social network APIs. The data collected by crawlers are stored
into stage-specifics data analytics; finalists and winners can be automatically de-
termined by the system based upon such analytics, but in many cases it is useful
to provide some crowd-based control of the outcome (e.g., inappropriate content
should be discarded). Such activity is controlled by a crowd-based task which is
executed by experts on behalf of the organizer.

7.4 YourExpo2015

Expo 2015 is the Universal Exhibition hosted in Milano from May 1 to October 31,
2015. Over this six-month period, more than 140 participating countries will run
their own exhibitions around the theme of guaranteeing healthy, safe and sufficient
food for everyone; Expo 2015 expects over 20 million visitors to its 1.1 million
square meters of exhibition area. During the period which precedes the opening,
Expo 2015 has created a number of marketing campaigns on traditional and social
channels. In such framework, I was able to perform an experiment for increasing
the Expo 2015 brand awareness through the development of a photo challenge,
called YourExpo2015, that has been independently managed by me and my
colleagues, but has benefited of some interaction with the large social channels
organized by Expo 2015; these can be considered as catalyst activities according
to the scheme of the previous section.
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Figure 7.3: Phases of YourExpo2015, a multi-platform challenge

The game YourExpo2015 is based on the social production of photos on
Instagram, in response to specific hashtags which are generated by Expo 2015.
The purpose of the challenge is twofold: to engage users and increase visibility
of the brand and initiative of Expo 2015, as well as to collect and disseminate
relevant content associated to the exhibition, so as to increase awareness on the
topics and purposes of Expo 2015. Hashtags are paired in a way that hints to a
contrast (e.g. Fast/Slow, Art/Fun, Land/Sea, and so on). Most photos
show food, but they can be on arbitrary subjects. The best two photos for each
of the two hashtags, separately selected, compose a postcard where photo and
hashtag are shown together (see the last post in Fig. 7.3); as the main reward of the
challenge, Expo 2015 promotes the postcards on its social media2. The challenge
has been running since Dec. 7, 2014 and will run until March 7, 2015, with one
pair of hashtag published every week, for twelve weeks; photos can be posted in
the week following the challenge announcement; thus, each week is associated
with is a different stage, each with its own set of competing photos. Instagram is
used for the initial posting of photos and for the selection of finalists; Facebook is
used only after Jan. 20, for the selection of the winner after the posting of finalists.
We deliberately evolved the format of the challenge from week to week, allowing

2On 2/22/2015, the Facebook page Expo2015Milano.it header shows the postcard of the
two winning photos of the Terra/Mare challenge.
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Figure 7.4: Cumulative impact of the YourExpo challenge before Feb. 21, 2015

The votes accumulated by a few players are illustrated in Fig. 7.3; we trace the
history of votes (likes) expressed upon photos which were posted in response to the
hashtag published on Dec. 27, from the initial posting of photos to the definition
of the winner3. A few days after the start of the stage, we repost the most voted
photos in a format, named composite, that consists of four photos (see the second

3The trace is a close description of real events but is not a reading of real data, postponed to the
next section.
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Figure 7.5: Histogram showing the number of likes and comments received by the
different types of our posts on Instagram

and third posts of Fig. 7.3); in such selection, we ignore the votes (likes) collected
by photos before their posting. The publication of composites starts a first round
of promotion of the authors, yielding to a growth of their votes on Instagram.
After about three weeks, we select the four photos with higher number of votes as
finalist, and we publish the finalists challenge, this time on Facebook; the Facebook
challenge was started on Jan. 27, and lasted 3 days. Initially, finalist publication
has a low reaction, but with a small delay we republish finalists on Instagram; at
this time, the finalists (whose identity on Facebook is not known to us) come to
know about the selection, and they start a second round of promotion through their
friends, this time on Facebook, thereby performing cross-platform engagement.

Each round of promotion corresponds to targeted re-posting, which is not
known to us (thus, we cannot evaluate its impact in terms of additional reach);
we see a significant growth of the votes of finalist photos on Facebook, which we
take as the consequence of promotion activities. Eventually, one winner is selected
(by counting its Facebook votes); this event boosts the likes on the specific photo
as effect of its increased visibility.

7.4.1 Global View

Figure 7.4 shows the global impact of the challenge, which caused more than
600000 actions (post, like, comment) on Instagram and about 150000 contacts
on Facebook, with more than 2000 followers on Instagram and more than 1000
followers on Facebook. The figure shows the main actions performed by the orga-
nizers (challenge announcements, finalists and winners) and all the posts made by
Expo 2015 on their official social media accounts.
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This global view can also be given in terms of specific reactions to our activ-
ities as organizers. Figure 7.5 shows the global number of likes and comments
to our posts on Instagram; the diagram shows that composites got the maximum
of reactions, specifically when announcing the winner of the challenge. Most of
reactions take place in the 12 hours immediately following the posts.

An interesting feature of our challenge architecture is the ability to automat-
ically perform actions in response to the activities of players, that we monitor
through crawlers. In particular, during three weeks we set automatic likes to every
post, and we inspected the player’s response to such automatic likes in the form
of a follow (back) action; in Figure 7.6 the reaction is plotted as a function of the
total number of posts made by each player. It turns out that the first and especially
the second like got the strongest reaction (respectively with around 25% and 60%
of follow backs), while subsequent likes were less effective. The diagrams also
shows that a few players posted a large number of photos.

Table 7.1: Statistical significance of post classes based on number of likes

win. comp. finalists announc. other recall

winnners - NO p<0.001 p<0.01 p<0.001 p<0.01
composite - p<0.01 p<0.01 p<0.001 p<0.01
finalists - NO NO p<0.01
announc. - p<0.05 p<0.001
other - NO
recall -

In order to verify that different types of posts generate different amounts of
interaction, we performed the t-test on the classes, comparing the distribution of
likes and comments of each groups. The null hypothesis is that the different type
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Figure 7.7: Total number of likes, photos and comments for each stage of the
challenge (associated with the week’s hashtag)

Table 7.2: Statistical significance of post classes based on number of comments

win. comp. finalists announc. other recall

winnners - NO NO NO NO NO
composite - NO NO p<0.05 p<0.05
finalists - NO NO NO
announc. - NO NO
other - NO
recall -

of posts generate the same amount of interaction. In particular we used the Welch’s
t-test, since the limited non-normality of our data and because the assumption of
homogeneity of variances failed. We also applied the Holm-Bonferroni correction
for multiple tests. Table 7.1 show the results of the t-test using the number of likes
as feature. The p-value is acceptable for most of the comparisons.

Table 7.2 shows the results of the test using the number of comments as feature.
Instead in this case, the t-test fails in most of the cases, so we can not conclude
that the different types of post have impacts on the number of comments received.

7.4.2 Staging
Figure 7.7 shows the distribution of likes, comments, and photo posts on Insta-
gram, divided in the nine stages of the challenge. We cluster the nine stages into
four periods of the challenges:

• The initial period, when people came to know about the challenge.

• The vacation period, during Christmas vacation, when all the activities had
a reduction.
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Figure 7.8: Graph showing the number of photo posted during the week for each
stage of the challenge

• The full-engagement period, with carefully planned catalyst actions.

• The low-engagement period, with few catalyst actions on Instagram (and
more focus on Facebook).

The number of photos posted for each stage during the first week (when the
photo posting is open) shows some differences in the four periods. Two initial
weeks are represented in Fig. 7.8(a), with few followers and thus few players’
posts, typically boosted by catalyst actions on day 3. Two vacation weeks are
represented in Fig. 7.8(b), where day 6 reports lower activity on Christmas and
New Year’s Eve. Three full-engagement weeks are represented in Fig. 7.8(c),
where we note that players responded immediately to the challenge announcement
of our own account (thanks to the presence of several followers), and then there
responded with peaks of activities on days 4, 6 and 7 to catalyst’s actions. Finally,
two low-engagement periods are represented in Fig. 7.8(d), where interest moved
to Facebook (and catalyst actions reduced).

103



Chapter 7. Users Engagement

0,00%$

2,00%$

4,00%$

6,00%$

8,00%$

10,00%$

12,00%$

14,00%$

16,00%$

18,00%$

20,00%$

23$22$21$20$19$18$17$16$15$14$13$12$11$10$9$8$7$6$5$4$3$2$1$0$

Hour%of%the%day%

#photos$

#likes$

Figure 7.9: Distribution of like and of photo postings in the hours of the day

7.4.3 Time dependency
Actions of players and participants are heavily influenced by the daytime. Fig. 7.9
shows the distribution of likes and photo postings during the day; note the peaks
of posting at 1PM and 10PM, and high commenting activity at 11PM and 12PM.

We also organized an automatic follow action to players’ posts of photos, and
we monitored the player’s responses to our action; Fig. 7.10 shows such responses,
relative to the time of the day when our automatic follow action was issued (we
report the first reaction of users within twelve hours). We note that the reactions
to our early morning follows are limited to few likes, then users’ reactions rise in
quantity and quality, reaching a maximum of responses at 11AM, when 8 out of
30 players decide to post another photo. One can also note that, at all hours, most
reactions occur within the first two-three hours.

7.4.4 Individual variability
Finally, Fig. 7.11 analyzes the votes of some winners, and show that they exhibit
strong differences. Votes are collected both on Instagram and Facebook; the inter-
mediate vertical line indicates the switch from one platform to another, and voting
time is normalized (as number of hours since the starting time of the challenge).
Notice that photos start to collect votes from the moment they enter the challenge
(not necessarily at the beginning). Furthermore, some photos enter the challenge
as content posted in the past, now tagged with the challenge tag. This implies they
enter with a number of likes already in place. The figure shows a winner capable
of collecting about 800 votes on Instagram and much fewer votes on Facebook;
and conversely, another winner with very few votes on Instagram who was able to
collect more than 600 votes on Facebook; other winners exhibit a more coherent
trend within the two platforms.
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Figure 7.11: Story of the winners on Instagram and Facebook

7.4.5 Cluster Analysis of Players
We applied cluster analysis to determine how users are involved in the challenge,
either as players or as voters; to evaluate their behavior, we selected the number
of likes and number of posted photos as dimensions. We first removed the outliers
that were qualitatively detected as the account of the organizer (YourExpo2015)
and all the users that liked only one image and never posted a photo (100k over
160k users), then we run the k-mean cluster algorithms, which produced 7 clusters,
shown in Fig. 7.12. Clusters 7 and 1 group users who specialized as players and
voters respectively; then, clusters 6 and 4 group users who were less active but still
specialized. The other clusters include users which were active in both roles, with
decreasing activity going from cluster 3 to cluster 2 and 5. Clusters 6 and 7 identify
the most active players (158 users), while cluster 5 represents the least active users
(57504 users). Based on the objectives of the challenge, one cluster can bring
better results than another. For instance if it’s a content creation challenge, the
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Figure 7.12: Clusters of users

Organizer should leverage cluster 7 and 6. While if it’s a enriching game, it’s
better to target people belonging to clusters 1 and 4.

7.5 Conclusions

In conclusion, I report a few lessons learned: first of all, management of Expo2015
was satisfied with results: the experience was at risk of being negatively received.
In general, players reported to us that they were pleased by the management of
the challenge, including its fairness. It is important to use social networks at their
best, in our experience we used Instagram for posting and Facebook for final vot-
ing, while our attempts to propagate attention using Twitter were less successful.
The timing of the day must be considered for any kind of action, including the
automatic ones which directly target specific users (likes, follows), which are use-
less/negative if posted at times when people don’t react (including vacation or
holiday time, where reactions become unpredictable).

I also understood that the mere announcements of challenges and call to ac-
tions fail to engage people, but active management pays. In particular, mentioning
players is much more viral, especially when several of them are mentioned to-
gether, because this action stirs interactions among them, even if they didn’t know
each other in advance. The support of popular catalysts is crucial, although it is
typically not under full control of the organizer; through a careful study of few,
well-calibrated actions, we managed to organize regular and timely catalyst’s con-
tributions.

With this approach, the players to the online challenge constitute a large body
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of executors of classic crowd sourcing tasks, such as content creation or tagging.
This study demonstrates that social platforms can be used for effective content
generation, and that a large and rather continuous players’ participation can be
stimulated by well-designed non-monetary rewards. I conclude that: (a) Although
players want to win, the development of social relationship is perhaps an even
stronger driver, therefore organizers should spend lots of efforts in creating mutual
engagement. In my experiments, composite mentioning of several players created
a sub-network of participants who positively interacted, both by contributing con-
tent and by mobilizing voters. This constitutes a notable difference with respect
to traditional crowdsourcing platforms, where instead workers are not engaged by
actions or interactions with others. (b) Visibility provided by catalysts is funda-
mental to boost the challenge and to keep it alive; assuming that catalyst actions
are scarce / expensive resources, they must be programmed in a way that provides
maximum effect upon the players. (c) It is quite important to produce regular chal-
lenges, e.g. through their periodic staging, so that many players can repeat their
actions several times (e.g., several players posted tens of photos); repetition and
long duration also helps in growing a large audience; at the same time, it is impor-
tant to be fully aware of temporal factors, e.g. daytime or festivities, in order to
properly plan automatic and catalyst actions that may engage new players.
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CHAPTER8
CrowdSearcher

8.1 Introduction

In this chapter I describe the prototype that has been developed during this thesis.
Crowdsearcher is a platform for crowd management written in Javascript running
on Node.js server; this is a full-fledged event-based system, which fits the need
of the rule-based approach described in the previous chapters. It offers a plug-
in environment to transparently interface with social networks and crowdsourcing
platforms. It implements the model and the process defined in Chapter 3 allow-
ing to easily define multi-platform crowd-based applications through step-by-step
specifications, where the application is initially configured and then automatically
generated. In the remainder of this chapter I describe in details the functionality of
the tool by showing a step-by-step tutorial on how to configure a crowdsourcing
task.

The chapter is structured as follow: Section 8.2 describe the design process,
from the selection of the operation that need to be performed, to the specification
of the UI, Section 8.5 describes the architecture, and Section 8.6 lists the real world
scenario in which this tools was used.

A running demo and other resources can be found online at: http://demo.
search-computing.com/cs-demo/.
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A short video summarizing the demo steps is available at: http://youtu.
be/9ZAQCqAfwzA.

8.2 Task Configuration

The crowdsourcing task configuration is covered by a 7-step wizard that guides
the task designer in the creation of a task. Each step is described in details in the
following subsections.

8.2.1 Task Design

Figure 8.1: Task design step.

The Task Design step consists in the selection of the task types that will be
performed in the task. These task types are selected from an abstract model de-
scribed in Chapter 3, crafted after a careful analysis of the systems for human task
executions and of many applications and case studies.
As shown in Figure 8.1, the user first selects which type of problem he wants to
solve (e.g., a classification problem, ranking problem, and so on), then he chooses
the task type he wants to use. After selecting a task type, the tool allows to fully
configure the task by inserting a title, a description (it supports the markdown no-
tation1) and setting various parameters that depend on the chosen task type. Some

1http://daringfireball.net/projects/markdown/
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Task type Description
Classify Categorize an object by selecting one cat-

egory
Tag Add one or more of tags to an object
Comment Write a comment related to the object
Hot or Not Compare two objects
Like Rate an object by giving a like
Score Rate an object by giving a score

Table 8.1: Task types supported by the system.

examples are: number of objects per microtask, level of agreement between mul-
tiple performers, an the list of the categories to be used in a classification task.
Each task type come with a set of configuration parameters and an underlying set
of control rules (the actual implementation of the ones described in Chapter 4)
that handle the aggregation of the results. Then the system allows to add other
secondary operations.

8.2.2 Object Design

Figure 8.2: Object design step.

Object Design consists of defining the dataset which is subject to the analysis.
In particular, it entails schema definition, instance collection and data cleaning (so
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as to eliminate irrelevant objects and make them conforming to their schema). In
this step the designer can upload the set of objects of interest (e.g., as a JSON file),
possibly together with a partial ground truth, i.e. correct solutions for a subset of
the objects. Figures 8.2 shows the tool interface for acquiring and previewing the
dataset. A similar UI is in place for collecting the ground truth.

8.2.3 Execution Design

Figure 8.3: Selection of the execution platform.

In this stage the user select the execution platform. Execution can be per-
formed on traditional crowdsourcing platforms (e.g., AMT), on social networks
(e.g. Facebook), or on custom user interfaces, implemented ad hoc by the de-
signer. Figure 8.3 shows the selection of a particular execution platform in the
tool. According to the selected platform, different parameters need to be provided:
access token for accessing to the social network API and configuration parameter
for the HITs on mechanical turk. The supported execution platforms are:

• Amazon Mechanical Turk: the task is translated into HITs on mechanical
turk. The tool allows to use both the native AMT interface or a custom
interface built with the Task Execution Framework.

• Facebook: it allows to directly execute the task on the social network. Since
it uses the user interface provided by Facebook, it only support the Like and
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Comment task type. For instance in case of a Like operation on Facebook,
the system will spawn a Post on the wall for each microtask, containing a
comment for each objects. Then periodically the Crowdsearcher will check
for new answers by calling the social network API.

• Task Execution Framework: an external execution platform provided to-
gether with the CrowdSearcher. It provides both a default interface for exe-
cuting the tasks, and a set of APIs for the creation of custom user interfaces
to be deployed as stand-alone application, or embedded within third-party
platforms such as Amazon Mechanical Turk. It uses a template approach
(specifically Handlebars.js 2) for building the web interface and it offers a
set of JavaScript API in order to interact with the CrowdSearcher. Figure 8.4
show an example of custom user interface that can be built using the Task
Execution Framework.

Figure 8.4: An example of custom task execution UI.
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Figure 8.5: Selection of the invitation platform.

8.2.4 Performer Selection or Invitation Design

In this step the user select the invitation channel to be used to invite people to
perform the task. For instance, if Facebook is selected as invitation platform (as
shown in Figure 8.5), users which are reachable from a specific Facebook account
will be invited through a post on the account’s wall. The supported invitation
platforms are:

• Mail: the invitation in sent via email to a list of contact provided by the user;

• Facebook: the invitation to perform the task is posted on the wall of the
user’s account;

• Twitter: the invitation to perform the task is posted as a tweet on the timeline
of the user’s account.

Furthermore, a URL pointing to the task execution UI is generated by the system
and can be sent manually, at any time, by the designer, through the channels of
choice.

8.2.5 Adaptation Design

The adaptation design consists in the definition of active rules that change the be-
havior of the system according to the status of the execution of the crowdsourcing
task. This part implements the concept described in Chapter 5. Adaptation and
control can be applied to Data Objects, Tasks, Performers, and Platforms. Each

2http://handlebarsjs.com/
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Figure 8.6: Configuration of the adaptation.

of these dimensions is associated with simple statistics, such as Number of ex-
ecutions and Quality, which are computed by formulas taking into account the
current crowd answers. Tasks and Platforms have also parameters describing their
idle time and the number of objects which were either closed (obtained a result
supported by a sufficient number of answers) or invalid (unsupported by adequate
answers). Figure 8.6 shows the interface that allows the composition of this active
rules by selecting the scope of the rule (Task, Object, Performer, Platform), build-
ing simple predicates that use target’s properties (e.g. executions and quality) and
then choosing the action to perform. Actions depend on each specific element and
include:
Object

• REDO: A single object is re-sent to the crowd to be evaluated. The previous
executions are deleted. Similar to a object granularity reset switch over.

• CANCEL: An object is removed from the evaluation.

Task

• RE-INVITE: A new set of performers is invited to perform the task. Similar
to a task granularity continuous switch over
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• RE-PLAN: The unfinished objects of the task are sent again to the crowd on
a different platform. Similar to a task granularity instantaneous switch over.

Performer

• BAN: The performer is marked as spammer and he won’t be able to execute
the task anymore.

Platform

• MIGRATE: The task is sent to another platform. All the previous execution
are deleted. Similar to a task granularity reset switch over.

8.3 Task Execution and Control

Once the task is created, the Crowdsearcher takes the specification built in this
process and generate the data structure needed for its execution.

Figure 8.7: The task life cycle

Figure 8.7 show the life cycle of a task in the system. The circles are the states,
while the arrows represent the internal events that occur in the reactive environ-
ment. Once a task is created it only exist as a persistent object in the database,
in order to be executed by the workers it needs to be deployed to the platforms
through the opening phase. In this phase the system instantiates the reactive rules
and the data structure required for the task control (the control mart) and deploys

116



8.4. Task Monitoring

the task on the correct platform, it creates the post on the social networks or the
HIT on Amazon Mechanical Turk.

While the task is in the OPEN state, the system receives and aggregate the
answers given by the performer (represented by the END_EXECUTION arrows).
Furthermore is still possible to add objects to the task, in order to support the
patterns described in Chapter 6. Once the EOF event is sent, no more objects are
accepted, but the answers are still collected.

When, according to some control rules, the evaluation is completed, the task is
closed.

8.4 Task Monitoring

Figure 8.8: CrowdSearcher dashboard (excerpt).

CrowdSearcher offers also a dashboard, shown in Figure 8.8, that allows de-
signer to continuously monitor crowd-based applications. The dashboard provides
visibility upon:
• Count of executions (closed, active and invalid), objects (closed or currently

under evaluation), microtasks (closed or open), and performers.
• Distribution of execution and microtask duration. It shows in a more detailed

way the status of the task. A long average execution duration can either
mean that the performers are carefully executing the task or that the task is
too difficult, while extremely short durations may mean that the performers
are careless in evaluating the objects.
• Distribution of the closed object over time. This graph gives a hint on how

well the task is performing. If it shows a rapid growth, it means that the
performers are quickly agreeing on the evaluations of the objects.
• Distribution of executions assigned to top performers. The executions are

divided in closed, active and invalid. Too many invalid executions on a
given performer can be a signal of bad behavior.
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This allows monitoring the performance of tasks over time. This, together with
the possibility of easily and quickly configuring the crowdsourcing task with the
tool, allows to compare different task configurations and to see how the crowd
reacts to different types of control.

8.5 CrowdSearcher Architecture

Configura)on*and*
execu)on*data*

Reac)ve*control*
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Figure 8.9: The CrowdSearcher architecture.

Figure 8.9 shows the architecture of the system. The core of the system is a Node.js
application, integrating the data structures stored in a non-sql data source (namely
a MongoDB instance) connected to the reactive control engine, and offering a
set of APIs to support integration with external applications. The Task Designer
can create and manage tasks either through the CrowdSearcher web interface or
through a custom application invoking the API.
The application generator takes the task model built in the process described in
Section 8.2 and generates the data structure, the rules and the objects required for
the task execution and control; finally, it deploys the task on the execution platform
of choice. Reactive rules are translated into scripts, whose triggering is modeled
through internal platform events. Precedence between rules is implicitly obtained
by defining the scripts in the proper order.

For example, Listing 8.1 show the rule that computes majority of answers for
the classify operation. numberOfAnswers is the minimum number of answers
needed and agreement is the number of performers that must agree on a particular
category. The rule has three main parts: (i) lines 15–18 updates the control variable
(total number of answer and the count of the selected category); (ii) lines 21–39
select the category that currently has the higher count and set the control variables;
(iii) lines 43–49 close the current object if termination conditions are met.

Listing 8.1: Calculation of the majority for a classify operation.
1 var pe r fo rmRule = f u n c t i o n ( da t a , c o n f i g , c a l l b a c k ) {
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2 // Array of categories
3 var c a t e g o r i e s = d a t a . t a s k . o p e r a t i o n . params . c a t e g o r i e s ;
4
5 // Minimum number of answers
6 var numberOfAnswers = c o n f i g . numberOfAnswers ;
7
8 // Agreement needed
9 var a g r e e m e n t s = c o n f i g . ag reemen t ;

10
11 var a p p l y M a j o r i t y = f u n c t i o n ( a n n o t a t i o n , c a l l b a c k ) {
12 var o b j e c t = a n n o t a t i o n . o b j e c t ;
13
14 // Updating the metadata
15 var c o u n t = o b j e c t . g e t M e t a d a t a (’count’ ) ;
16 o b j e c t . s e t M e t a d a t a (’count’ , c o u n t +1) ;
17 var s e l e c t e d C a t e g o r y C o u n t = o b j e c t . g e t M e t a d a t a ( a n n o t a t i o n .

r e s p o n s e ) ;
18 o b j e c t . s e t M e t a d a t a ( a n n o t a t i o n . r e s p o n s e , s e l e c t e d C a t e g o r y C o u n t

+1) ;
19
20 // Build the data structure [category, count]
21 var c a t e g o r i e s M e t a d a t a = [ ] ;
22 _ . each ( c a t e g o r i e s , f u n c t i o n ( c a t e g o r y ) {
23 var c o u n t = {
24 c a t e g o r y : c a t e g o r y ,
25 c o u n t : o b j e c t . g e t M e t a d a t a ( c a t e g o r y )
26 } ;
27
28 c a t e g o r i e s M e t a d a t a . push ( c o u n t ) ;
29
30 // Selecting the category with maximum count
31 var max = _ . max ( c a t e g o r i e s M e t a d a t a , f u n c t i o n ( c a t e g o r y C o u n t ) {
32 re turn c a t e g o r y C o u n t . c o u n t ;
33 } ) ;
34
35 // Verifying that the maximum is unique
36 var otherMax = _ . where ( c a t e g o r i e s M e t a d a t a , { c o u n t : max . c o u n t } ) ;
37 i f ( otherMax . l e n g t h ==1) {
38 o b j e c t . s e t M e t a d a t a (’result’ , max . c a t e g o r y ) ;
39 }
40
41 // Checking if the object should be closed
42 // If numberOfAnswers is equal to 0, then ignore the parameter
43 i f ( c o u n t === numberOfAnswers | | numberOfAnswers=== 0) {
44 i f ( max . c o u n t >= agreemen t ) {
45 o b j e c t . s e t M e t a d a t a (’status’ ,’CLOSED’ ) ;
46 }
47 }
48
49 re turn o b j e c t . s ave ( domain . b ind ( c a l l b a c k ) ) ;
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50 ) } ;
51
52 //Call the applyMajority function of each annotation
53 re turn async . e a c h S e r i e s ( a n n o t a t i o n s , domain . b ind ( a p p l y M a j o r i t y ) ,

c a l l b a c k ) ;
54 } ;
55
56 var params = {
57 ag reemen t : [’number’ ] ,
58 numberOfAnswers : [’number’ ]
59 } ;

The execution UI interacts with the core of the system and the execution plat-
form to prepare the questions, collect the answers and send them back to the
CrowdSearcher.

8.6 Evaluation

The implementation of Crowdsearcher granted the opportunity to put the approach
developed in this thesis at work in the development of several real-world applica-
tions.

Multimedia Analysis and Search [21] [38]: By combining CrowdSearcher with
an infrastructure for multimedia analysis, several applications were created (e.g.
trademark and logo detection in video) that demonstrates how the contribution of
(expert) crowds can improve the recall of state-of-the-art traditional algorithms,
with no loss in terms of precision.

In addition, several experiments scenarios were built, aimed at supporting my re-
search activities, while validating the applicability and flexibility of our approach
(most of them are described in this thesis). For instance:

Politician party [17]:In this experiment the crowd was asked to classify the po-
litical affiliation of 30 members of the Italian parliament. To single performer is
presented a set of photos and names and has to match the single politician to the
correct political party.

Politician law [17]: In this experiment photos of 50 members of the Italian par-
liament were presented to the crowd. The users had to indicate if they have ever
been accused, prosecuted or convicted. Each performer sees, in a fixed amount of
time, a number of photos which raises as a function of the performer’s ability, and,
after he give his answer, the system presents a report with correct answers and the
ranking of the other performers.

Politician order [17]: The objective of this experiment was to produce the total
ranking of 25 politicians. At each performer is presented a pair of politicians and
is asked to choose the one he likes the most.
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Model search (1) [12]: In this experiment the crowd evaluated the results of a
query performed on a model repository. Given the query, and two possible results,
the performers had to choose which one is better.

Model search (2) [13]: In this experiment, the crowd evaluated the ranked results
of a query performed over a model repository. Given the query and two possible
ranks, the performer had to decide which one was better.

Transportation: In this experiment the crowd had to validate the classification of
tweets related to public transportation made by an automatic tool. The performers
had to evaluate the correctness of the topic, geo-localization and polarity of the
tweets.

Movie Scenes [19]: In this experiment the crowd had to classify images taken
from movie scenes. Each performer had to tell if an image belonged to the initial,
middle or final part of the film, and, in the latter two cases, if the image was a
spoiler.

Movie actors [19]: In this experiment the crowd had to identify actor in movie
scenes. In particular this scenario was divided in two parts: in the first the per-
formers had to insert the name of the actors present in the image and in the second
they had to validate the answers given by the others

Professors images [22]: In this experiment the crowd was asked to evaluate of
relevance images about the professor of retrieved through the Google Image API.
The performers needed to specify whether each image represents the professor
himself, some relevant people or places, other related materials (papers, slides,
graphs or technical materials), or it is not relevant at all.

Among the various aspects I studied, I considered the cost of development of the
different applications. Figure 8.2 reports the approximate development effort of
nine recent application. Note that data preparation and UI generation (ad hoc)
were required regardless of the adopted method. This approach to monitoring
required large efforts for the first applications, which was well compensated by
a high reuse of rules in the subsequent applications. Note also that this method
enables fast prototyping of applications in the small scale, with small crowds who
give interaction feedbacks; tuning is quite efficient, as it can be done by changing
configuration parameters from within the design framework.
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Experiment Dataset preparation UI generation Monitoring Tuning

Politicians Party 1.5 4 5 1
Politicians Law 1.5 2 7 1.5
Politicians Order 1.5 2 3 1
Model Search 1 3 3 0 (*) 1
Model Search 2 3 3 0 (*) 1.5
Transportation. 1 5 0 (*) 1
Movies Scenes 1 4 2 1
Movies Actors 2 3.5 0.5 (*) 0.5
Image Select 1.5 4.5 1.5 1

Table 8.2: Development effort for different applications (man/days). (*) = high
reuse of existing rules.

8.7 Conclusions

In this chapter I described the prototype that has been developed during the the
work of this thesis. Thanks to this application I was able to:

• Demonstrate the validity of my approach described in each chapters.

• Exploring the flexibility and the effectiveness of my method.

• Utilize my method in real world scenarios.
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CHAPTER9
Conclusions and Future Work

9.1 Conclusion

In this work I developed methodologies for creating applications that leverage the
knowledge of the crowd or social communities. I first defined a platform and
domain agnostic model for modeling Crowdsourcing application and a design pro-
cess that guide the user that need to build the application. I also explored an alter-
native method for designing Crowdsourcing task based on empirical evaluation of
possible task model.

Then I focused on the problem of controlling the execution of a Crowdsourc-
ing application. Unlike other crowdsourcing system that only provide limited and
predefined controls; in contrast, I presented an approach which provides fine-level,
powerful and flexible controls. The control can be automatically generated starting
from the task model or easily configured through active rules. In the experiment I
showed that the proposed approach is a good compromise between the conflicting
requirements of design automation, flexibility, and expressive power.

Then I extended the model in order to dynamically change the crowds and
crowd-based systems according to how the crowd responds to task assignments. I
illustrated hot to achieve platform and community interoperability using the con-
cepts defined in the previous chapters of the thesis. In the experiments I showed
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how the applications are actually able to dynamically involve different platforms
and communities, with different characteristics, cost, and quality of results.

Next I extended the model in order to be able to design and deploy crowd-
based applications as arbitrarily complex workflows of elementary tasks, which
emphasises the use of crowdsourcing patterns. In the experiments I demonstrated
the viability of the approach and showed how the different choices in workfllow
design may impact on the cost, time and quality of crowd-based activities.

Then I studied how to boost user engagement using non monetary rewards.
In particular I studied the problem of organizing social challenges because as it
requires not only to raise the initial interest of the participants, but also to keep it
high throughout the lifetime of the challenge, and actually the main objective of the
challenge organizers is to preserve or even increase the social mobilization more or
less continuously throughout the planned lifetime, as success is typically measured
not only by the global mobilization but also by a growing interest of players while
the challenge is in progress. I defined and compared a number of strategies that
can be used by organizers for increasing social mobilization, in a challenge which
uses multiple social networks, over a planned lifetime, in the presence of players,
voters, and catalysts.

Finally I described the prototype that was developed during work on this the-
sis in order to perform the experiments to validate my approach. This tool also
allowed me to apply my method to real world scenarios.

9.2 Future Work

There are a few future research possibilities for extending my work:

• Expert Finding: in my work I only experimented with simple push and pull
methods for task assignment, even though the model already supports com-
plex matching between task and performer through the control rules. This
approach can be further extended by not only taking in account the expertise
of a worker but also the relation among them. For instance in [20] the au-
thors address the problem of selecting experts inside a social network. They
extract the expertise of a user by mining his activities on the social network
(status updates, tweet posted, post liked, user followed, etc..). For instance
a user could be a soccer expert because he post about soccer or if he follow
a soccer expert.

• Automatic Generation from the Problem: in my work the design phase is
done manually (with the exception of the process proposed in Section 3.6),
only starting from the control phase the application is generated automati-
cally (it’s not necessary to manually write the control rules). In the current
state the Problem model is used as guide for designing the task, but it is
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possible to derive all of part of the Task model. I started to study this part in
the prototype described in Chapter 8, where the user first select the problem
he want to solve, and then select the task type from a set of predefined ones.
These options are partially configured according to the problem selected.
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