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Abstract

In orthopaedic surgery, and in case of Total Knee Arthroplasty (TKA)
for osteoarthritic subjects, planning of the intervention is of fundamen-
tal importance. The insertion of the prosthetic components is extremely
delicate because the deformations induced by the osteophytes must be
resected and at the same time the mechanical axis of the leg must be
corrected. The size of the implant and the plane of resection are es-
timated through a standing X-ray projection that covers the whole leg.
This view gives a hint on the direction of the mechanical axis that must
be restored, but cannot evaluate how the kinematics of the knee is influ-
enced by the insertion. The possibility to check the pre-operative kine-
matic of the knee under weight bearing conditions, in order to evaluate
tension of the ligaments and the distance between the bones, would be
of great importance for the success of the intervention, giving to the sur-
geon the possibility to check the bone’s motion before entering in the
surgery room. This evaluation is currently intraoperatively performed by
the surgeon, who performs passive movements of the joint to check the
correct placement of the prosthetic components, although the conditions
are not similar to the real stress applied during everyday life, as weight
and muscles strengths are missing.

The use of fluoroscopic sequences is common in clinics to rapidly
evaluate the knee kinematics. These fast and low dose X-ray images
allow an accurate visualization of the bone movements without the in-
vasiveness typical of other methodologies. Knee motion analysis is cur-
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rently done manually superimposing the shape obtained from Computed
Tomography (CT) or Magnetic Resonance Imaging (MRI) on the fluoro-
scopic set acquired. The surgeon evaluates the projection of the shape on
the image plane and through further approximations defines the best pose
of the model onto the images. This procedure occupies the surgeon for
a long time, and is affected by operator inaccuracies. A completely au-
tomatic algorithm would solve the challenge, relieving the surgeon from
the duty of detecting the correct pose and allowing a fast and accurate
2D/3D registration. Eventually, the shape could also be derived from a
Statistical Shape Model (SSM), in order to reduce costs and radiation
doses that would be higher with a subject-specific shape derived from
CT or MRI.

The work herein presented shows two alternative methods to perform
2D/3D registration for femur kinematics estimation, starting from a set
of fluoroscopic images and a SSM. Both algorithms allow the surgeon
to have a more complete and functional evaluation of the knee perfor-
mance under weight bearing conditions, that is essential for some type
of operations, such as osteoarthritis and patellofemoral pain.

The thesis begins with the description of a new method for SSM
creation, based on the Minimum Description Length (MDL) algorithm.
SSMs are currently used in orthopaedic surgery to allow accurate po-
sitioning of prosthetic components through bone morphing and to as-
sess the correct post-operative follow up by virtually reconstructing the
surgical site. Focusing on computer assisted TKA applications, a new
approach for establishing landmark correspondence of 3D shapes is pro-
posed, to build SSMs of anatomical structures of the knee joint. The
method is based on landmark correspondence by MDL and introduces a
new constraint on local geometric similarity. This local linear regulariza-
tion ensures that the local shape geometry of corresponding landmarks
on different shapes is similar. The method was tested building SSMs
of three anatomical structures from MRI images of knees, namely fe-
mur, patella and tibia. Compared with the original method using only
the MDL criterion, this new approach shows significant improvement
both qualitatively and quantitatively. The landmarks are in fact better
distributed on the shape surface, and can more accurately represent the
underlying shapes.
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The new SSM is the basis for the development of a 2D/3D registration
algorithm for knee kinematics reconstruction. Starting from the acqui-
sition of two calibrated fluoroscopic images, taken at different flexion-
extension angles, the algorithm performs a feature based non-rigid reg-
istration. The projection of the model’s silhouette and the contour ex-
tracted from the fluoroscopic image are matched using a one-to-many
correspondence based on a nearest neighbour approach. To avoid local
minima, the optimization is inserted in a Genetic Algorithm (GA), that
solves the issues of the suboptimal results but slows down the time for
the solution. The proposed approach was evaluated on 3 sets of digitally
reconstructed radiographic images of osteoarthritic patients. Using the
estimated shape, rather than that calculated from CT, significantly re-
duces the pose accuracy, but still has reasonably good results (angle er-
rors around 2 degrees, translation around 1.5mm). The obtained results
proved to be comparable with the literature, even if our trials were done
using pathological femurs. Although accurate, the algorithm is very slow
and it took a few hours for every femur pose to be properly reconstructed.

To overcome this limitation, a new algorithm based on Gaussian Mix-
ture Model (GMM) is implemented. It is based on the definition of Gaus-
sian mixture, so that each point of the 3D shape used for reconstruction
is considered a mixture of Gaussian Probability Density Function (PDF).
Using a Maximum Likelihood Estimation (MLE) approach, the most
probable position of the shape in the 3D space is obtained. The algo-
rithm was evaluated using Digitally Reconstructed Radiographs (DRRs)
of both healthy and diseased subjects, with a CT extracted shape and a
SSM as the 3D model. In vivo tests were done with fluoroscopically
acquired images and subject specific CT shapes. The results obtained
are in line with the literature, but the computational time is substantially
reduced. This method proved to be accurate and fast, providing to the
surgeon an efficient tool to check the pre-operatory kinematics of the
knee in a virtual 3D environment.

Both the algorithms described show a millimeter accuracy, compa-
rable with the results obtained in literature. The novelty of the GMM
approach opens the way to a fast and accurate kinematic pose reconstruc-
tion for surgery planning, increasing the performance of the operations
and reducing hospitalization costs. The registration is inserted in a clini-
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cal routine already performed: it does not imply additional examinations
of the patient and provides a valid external help to the surgeon.
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CHAPTER1
Clinical problem

1.1 Knee osteoarthritis

Knee OsteoArthritis (OA) is one of the most spread diseases of aged peo-
ple and it is in absolute the most common form of arthritis [29]. It can be
defined as a degenerative pathology that involves joints and in particular
cartilages. Even if it can affect every joint of the human body, it occurs
more often in the knee, hip, fingers and neck joints [1]. In normal joints,
the cartilage acts as a cushion and allows the bones to slide and rotate
on each other without any type of damage. When OA affects the joint,
the cartilage degenerates becoming thinner, and the vanishing of this tis-
sue between the bones causes the reduction of the joint space. The joints
start rubbing on each other (see Figure 1.1). This causes an inflammation
process, in which the patient suffers intense pain. The bones degenerate
by the presence of osteophytes, and the deambulation becomes difficult.

Causes of OA vary from subject to subject. Some people are genet-
ically involved with this pathology, either because they lack a correct
production of collagen or because of slight defects in the way the bones
are linked together. A great role in the development of OA is played by
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Figure 1.1: Representation of knee osteoarthritis. Reprinted with permission from OrthoInfo.
Â© American Academy of Orthopaedic Surgeons

the Body Mass Index (BMI) of the subject. Being overweight, in fact,
augments the loads that each joint has to carry, in particular in case of
knee and hip joint. OA can also be a consequence of injury or overuse of
a specific joint. In particular for athletes who repeatedly injure bones or
ligaments the cartilage degenerates more quickly, leading to OA. How-
ever, the greatest influence on the development of OA is given by ageing.
In fact approximately one on every two subjects will develop knee OA
in their lives.

The primary treatment for osteoarthritis is conservative. Since the
BMI of the subject is important to keep low loads on the joints, the pa-
tient is advised to reduce his weight and improve the mobility of the joint.
The cartilage benefits from stretching and compression of the joint, es-
pecially without weight. The second step involves the reduction of the
symptoms with a pharmacological approach. The treatment with anal-
gesics and other anti-inflammatory medicines can be general (with pills
and syrup) or local, using creams or lotions that have to be applied di-
rectly on the affected joint. The last choice in terms of OA treatment is
surgery. The most common surgery is Total Knee Arthroplasty (TKA).
The joint is completely removed, and two or three prosthetic components
are inserted in the bones, depending on the cases (see Figure 1.2). If the
bone is mainly damaged only in one section, the surgeon can decide to
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perform osteotomy, avoiding the insertion of prostheses in the knee and
restoring the correct load distribution over the surfaces.

Figure 1.2: Knee implant representation. Reprinted with permission from OrthoInfo. Â©
American Academy of Orthopaedic Surgeons

1.2 Surgery planning

If the OA grade is very high and there is no other solution, the clinician
could decide for surgical intervention. In case of OA, the primary in-
tervention in terms of number of operations is TKA. According to the
Organization for economic cooperation and development (OECD) [3],
the number of TKA’s is increasing from year to year, so that the average
number of operations worldwide is doubled from 2000 (ca. 65/100.000)
to 2011 (ca. 130/100.000). The increased number of operations per year
has opened the way for Computer Assisted Surgery (CAS), that enhances
accuracy and repeatability and reduces both time and number of revision
needed [51].

The preoperative planning is the main part of CAS and plays a big role
in the success of the intervention. Before CAS, surgeons used to have a
Computed Tomography (CT) of the patient’s knee and one or two whole
leg radiographies, that were mainly used to determine the size of the
implant and the planning of the resection phase. However, depending on
the positioning of the patient during CT scan, the result of the operation
could be a little compromised [55]. Errors up to one degree can raise
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due to a wrong alignment of the implant during the positioning phase.
Current planning software helps the surgeon to decide the size of the
implant and check before the operation the direction of the mechanical
axis of the knee [36].

The correction of the knee mechanical axis alignment is in fact the
major factor of success of TKA. It was found that the same axis can
be identified in slightly different directions depending on the operator’s
ability, on the scan modality and on the difference between standing and
lying acquisitions [56]. Inter-operator differences are below one degree,
while weight bearing conditions can lead up to three degrees from non-
weight-bearing. The differences depends also by the degree of OA that
the subject has. In case of a high grade of OA, the weight is decentered
and the laxity of the soft tissues determine a different direction of the
mechanical axis. This condition can be estimated by standing whole-leg
radiographies, but the planning is limited by a bidimensional view. In
case of Magnetic Resonance Imaging (MRI) or CT, the subject lies on
the bed and the weight is not loading on the soft structures of the knee.
This type of modalities can give a deep insight in the morphology of the
knee, but cannot be used to estimate the correct direction of the mechan-
ical axis. A combined approach, with the extracted morphology of the
bone superimposed on the radiography of the knee, is currently used in
clinics [36]. Although this approach saves surgical time, trying to antic-
ipate surgeon decisions in the pre-operatory planning, it still requires a
great amount of time and manual accuracy to correctly define the pose
of the bones. In addition, the costs of both radiography and CT or MRI
are greater than those relying only on X-rays.

Several companies have introduced different commercial software and
tools to help the surgeon in the planning phase [2, 5, 6]. These software
guide the whole procedure of TKA, from planning to navigation and in-
sertion of the prosthetic component. However, these software rely on
2D images, or, when possible, on 3D shapes extracted from CT or MRI.
They do not take into consideration the evaluation of the joint kinematic,
even if it would be helpful for some kind of operations.

In order to reduce hospitalization costs and provide to the surgeon
the possibility to plan the operation in a 3D scenario, many authors have
decided to introduce Statistical Shape Model (SSM) in spite of patient-
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specific shape [12, 22, 74, 75].

1.3 State of the art

As described in the previous sections, for a given set of pathologies it is
important to have a weight bearing evaluation of the pose of the knee,
in order to properly evaluate the effective distance between the bones.
In some cases, however, it is also important to evaluate the kinemat-
ics of the knee, as a different distance can occur in only some specific
poses. Pathological tension of tendons and ligaments, that vary during
knee flexion-extension, could be the outcome of a varus or valgus joint,
and can cause pain to the patient. The evaluation of the active knee
kinematics allows the detection of such tension and the planning of the
dedicated intervention.

The preferred method to investigate the kinematics of the knee using
a non invasive approach is based on fluoroscopy [8, 12, 62]. The subject
is asked to flex the knee while two or more fluoroscopic systems image
the interested area. The reconstruction of the movement is done using
a patient specific shape segmented from CT or MRI. For each frame, a
semi-automatic software enables the superimposition of the shape on the
image and the correct detection of the pose.

The most accurate way to determine the pose of the femur during
flexion-extension of the knee is using implanted tantalum markers, that
are highly visible in the X-rays projections (Figure 1.3) [62, 63]. Radio
Stereometric Analysis (RSA) is then used to recover the pose of the
beads in the 3D space. However, this approach has two major draw-
backs: there must be at least two fluoroscopes to define the size of the
shape against the out-of-plane distance and the markers have to be sur-
gically implanted in the bone to be linked to the rigid body, making the
procedure highly invasive and not usable in clinics.

The second solution is given by intensity based methods [9, 34, 65].
Those methods are based on a previous CT scan of the joint in order
to acquire the density of the bones. The patient-specific bone model is
then projected on the image plane integrating the density of each voxel
of the CT along the direction of each ray. The synthesized image is then
compared to the acquired fluoroscopy and the pose is adjusted until the
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Figure 1.3: Rendering of a biplanar acquisition setup (a) and virtual representation of the
system(b): the implanted markers are used for RSA. Figure extracted from [63]

Figure 1.4: Comparison between a fluoroscopic image of the knee (a) and a Digitally Recon-
structed Radiograph of the same femur (b). Figure extracted from [65]

two images are identical (Figure 1.4).
The third way is feature based methods. Those methods are based on

features that are recognizable in the images, such as the contours of the
objects. To relate the extracted contour to the 3D shape, the silhouette
is selected and projected on the image, and various association functions
have been described in literature.

Since feature based methods do not rely on a patient-specific param-
eters, such as bone density and absorption distribution, a feature based
algorithm could be traced out using both subject-specific shapes as CT
or MRI, or even a SSM [12, 74]. Those methods, although similar to the
previous ones, have the peculiarity to use SSM instead of CT extracted
shapes. The morphological scan is avoided, reducing costs and radiation
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doses to the patient.

1.4 Aim of the work and thesis structure

Aim of this work is the development of a robust and accurate method for
2D/3D registration of femur shapes on a set of fluoroscopies acquired
during knee flexion. The three-dimensional representation of the knee
motion allows the complete visualization of each bone segment and their
relative motion. Starting from a simple fluoroscopic set of images, the
complete motion can be represented, in order to properly perform the
pre-operatory planning. Patient-specific models are no more required, as
the SSM deformation allows the approximation of the real shape through
parameter adaptation. A rough manual initialization is enough to ensure
accurate pose registration, and the time required for the surgeon to per-
form the whole planning is substantially reduced. A graphical user inter-
face helps the surgeon to initialize the algorithm and choose the correct
threshold for a canny edge detector in order to select all the contours and
avoid as much noise as possible. The same interface offers the surgeon a
direct visualization of the 3D model according to the acquired images.

The thesis is organized as follows (see Figure 1.5): in chapter 2 we
describe a new method for the construction of the SSM, in chapter 3
we introduced the first method, based on nearest neighbour correspon-
dence and Genetic Algorithm (GA) optimization, while in chapter 4 we
described a new method based on Gaussian Mixture Model (GMM) and
Maximum Likelihood (ML) estimation. The last chapter contains the
conclusion of our work and the results obtained during this three years
of research.
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CHAPTER2
Statistical Shape Model creation

This work was presented at the MEDICON conference, 2013, with the
title "3D Shape Landmark Correspondence by Minimum Description
Length and Local Linear Regularization" [66].

2.1 Introduction

In the field of computer vision and medical image processing, statistical
shape analysis [26] is an important research tool. It offers the possibility
to create different models using a set of similar instances of the same ob-
ject. A Statistical Shape Model (SSM) is a collection of similar shapes,
called instances, from which a mean shape is extracted. The covariance
of the model is used to deform the shape, according to the principal axis
of variation, and the balance between the eigenvectors that deform the
model is achieved using different weights [22]. Different types of SSMs
have been proposed, allowing accurate modelling of shape structure and
variation. Most SSMs treat a shape instance as a vector which is built
from landmarks. Therefore, to make different shape vectors compara-
ble and to construct a meaningful SSM, it is crucial that the landmarks
identified on different shape instances correspond well (Figure 2.1).
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Figure 2.1: The landmarks are corresponding points on different shapes

There has been a considerable work on automatic landmark corre-
spondence in literature. An earlier work of Brett and Taylor [18] tackled
this problem by ICP algorithm. In [69], the landmark sliding algorithm
was proposed which features an objective function which encodes both
global shape deformation and local shape topology. However, their al-
gorithm is developed for the construction of 2D shapes, and the iter-
ative structure adopted makes the algorithm itself very slow. Xie and
Heng [70] developed an algorithm where the shape correspondence is
first established by the shape skeleton features and then refined via point
matching by a assignment problem.

Recently, methods based on Minimum Description Length (MDL)
criterion have shown promising results. The MDL criterion was first em-
ployed for landmark correspondence in [30], and was shown to generate
superior results in [59]. In [39], Heimann et al. proposed a new proce-
dure based on the MDL criterion which is less computationally expensive
and easier to implement.

In this chapter, we propose a new extension to the existing landmark
corresponding method. Our method is based on the framework proposed
by [39]. Motivated by the fact that MDL criterion pays more attention on
global consistency, we introduce a new constraint that enforces the local
shape similarity. Our new constraint, which is based on the local linear
regularization, enforces that the local shape geometry is similar on the
corresponding landmark on different shapes. By combining the standard
MDL criterion with our new constraint, we end up with an objective
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function which enforces the correspondence from both global and local
points of view.

We tested our new algorithm using 24 MRI images of pathological
knees, entailing femur, patella and tibia. We use the bipartite matching
difference and the Wald-Wolfowitz test [54] as performance measures.
Our method resulted in a slightly slower algorithm, but comparing our
result with the original MDL method we observed an improvement in
the case of constructing femur and patella SSMs.

2.2 The Proposed Method

2.2.1 Problem Formulation

Considering a set of M training shapes, each of which is a triangulated
mesh {Sm = (Vm, Em)} with m = 1, . . . ,M , Vm and Em are the sets of
vertices and edges of the mth training shape (Figure 2.1).

The algorithm as presented by Heimann [39] is based on a spherical
parametrization of the shapes. In order to perform this parametrization,
all the shapes must be a Genus Zero Surface, a closed surface on which
no closed lines can be drawn without disconnecting the surface. We
can assure this requirement by closing all the shapes in correspondence
of the femoral and tibial cut. Let us denote Ωm(Sm) as the spherical
parametrization of the mth training shape [64]. For any vertex v ∈ Vm,
Ωm(v) ∈ R3, where |Ωm(v)| = 1, specify the coordinate of v on the unit
sphere (see Figure 2.2).

A set ofN landmarks, {(θ̃n, φ̃n)}, n = 1, . . . , N is also defined on the
sphere, where (θ̃n, φ̃n) are the spherical coordinates of the nth landmark.
To calculate the actual position of the nth landmark on the mth training
shape, we build a ray from the origin to (θ̃n, φ̃n) on the parametriza-
tion sphere, and calculate the intersection of the ray with the mth shape
mesh. We denote anm as the position of the nth landmark on the mth
training shape. anm is a vector in the 3D space, that will be a vertex of the
reparametrized shape but not necessarily coincident with a vertex of the
original shape.

Our goal is to establish landmark correspondence over the training
shapes. The landmarks are defined on the parametrization sphere (i.e.
{(θ̃n, φ̃n)}, n = 1, . . . , N is fixed for all shapes). For every training
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Figure 2.2: Description of the spherical parametrization. Starting from the original shape (a),
we extract the unit normals of each point on the shape and represent them on the unit sphere
(b). After the optimization, the parametrization on the sphere is identical for each shape (c)
and we can represent the same shape with the landmarks just defined (d).
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shape Sm, its parametrization Ωm solely determines {anm}, n = 1, . . . , N ,
the actual position of each landmarks on that shape. Therefore, our goal
is searching for the optimal parametrizations {Ωm},m = 1, . . . ,M un-
der which the landmark positions over the training shapes have optimal
correspondence.

2.2.2 Miminum Description Length cost function

Given the set of all landmark positions on all training shapes {anm},m =
1, . . . ,M, n = 1, . . . , N , in [39], the quality of landmark correspondence
(FMDL) is defined as:

FMDL =
∑
k

Lm,where (2.1)

Lm =

{
1 + log(λm/λcut), if λm ≥ λcut

λm/λcut, if λm < λcut
(2.2)

where λcut is a parameter which represents the expected noise in the
training data and λm is the mth eigenvalue of the distribution, com-
posed by M training shapes. k is the total number of eigenvalues of the
model. In [39], the parametrization {Ωm},m = 1, . . . ,M is optimized
so that the corresponding landmark positions {anm},m = 1, . . . ,M, n =
1, . . . , N generates the minimum FMDL.

2.2.3 Local Linear Regularization cost function

In this chapter we extend the original MDL-based approach with a new
objective function considering the local linear similarity. The idea is to
enforce the geometric consistency in the local neighbourhoods of each
landmark over different shapes. To do this, we first create a neighbour-
hood system N of the landmarks. Specifically, for the nth landmark,
N (n) = {N (n)k}, k = 1, . . . , Kn is the set of Kn landmark indices that
are within its local neighbourhood. Each neighbour shares with the se-
lected landmark one edge of the landmark shape. Then, considering anm,
which is the position of the nth landmark on the mth training shape, it
should be reasonably reconstructed using its neighbouring landmarks on
the same shape:

anm = w1
m,na

N (n)1
m + · · ·+ wKn

m,na
N (n)Kn
m = An

mWm,n (2.3)
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where An
m =

[
a
N (n)1
m , . . . , a

N (n)Kn
m

]
is the matrix of neighbouring land-

marks of anm, and Wm,n =
[
w1
m,n, . . . , w

Kn
m,n

]> ∈ RKn is the reconstruc-
tion coefficient vector. Note that Eq. (2.3) only considers reconstructing
a single landmark on a single shape. In a usual non-degenerate case, Eq.
(2.3) is underdetermined as long as Kn > 3. However, if we consider
the nth landmark on every training shape, it is natural to require that the
same reconstruction weight is used to reconstruct the same landmark on
all shapes. That is, Wm,n should be independent of m. We thus drop the
subscript m, and denote the reconstruction weight as Wn, and Eq. (2.3)
becomes a system of equations defined on all shapes:

∀m = 1, . . . ,M : anm ≈ An
mWn (2.4)

Note that since in our case the number of training shapes is larger than the
number of neighbours, Eq. (2.4) becomes overdetermined andWn can be
solved by Least Mean Squares (LMS) method, given that the landmark
positions anm and An

m are known. In this way we can compute {Wn} for
n = 1, . . . , N , and then the quality of landmark correspondence (FLLR)
can be expressed as the summation of reconstruction errors of all land-
marks over all shapes:

FLLR =
N∑
n=1

M∑
m=1

‖anm − An
mWn‖2 (2.5)

Eq.(2.5) is our objective in terms of the local linear regularization. We
add it to the original objective based on MDL, and get the final objective
function (F ):

F = FMDL + αFLLR (2.6)

with α ∈ [0, 1] being a positive weighing parameter controlling the rela-
tive importance of the new term.

2.2.4 Optimization Process

To find the parametrizations {Ωm} that optimize the objective function,
we adopt a similar optimization strategy as in [39] and adapt it to our
objective function with the new term.
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Initialization For each training shape Sm, we initialize Ωm as a conformal
parametrization as in [64].

Iterative Optimization We iteratively optimize the set of parametrizations
{Ωm}. In each iteration, for each shape, we locally update the parametriza-
tion using an update function Ω′ = Φ(Ω) which is parametrized as
Ω′ = Φc,σ,∆θ,∆φ(Ω), where c and σ are the centre and bandwidth of the
update kernel, and ∆θ and ∆φ specify the update direction. We use a
Gaussian envelope kernel:

ρ(x) =

{
exp

(
−‖x−c‖2

2σ2

)
− exp

(
−(3σ)

2

2σ2

)
for ‖x− c‖ < 3σ

0 for ‖x− c‖ ≥ 3σ
(2.7)

Eq. (2.7) gives the magnitude of change at any point x on the mesh.
Combined with the direction of update, we actually change the spherical
coordinate of x by ρ(x) · (∆θ,∆φ).

During the optimization, three different kernel configurations are used,
with σ decreasing to optimize larger regions at the beginning and details
at the end. The centers of the kernels are coded in order to avoid errors
due to the presence of a pole. In this case, the vertices would all move
towards or away from this point, resulting in a degenerated parametriza-
tion.

The update direction (∆θ,∆φ) in each iteration is determined through
the gradient of the objective function with regard to (∆θ,∆φ). Since the
influence of (∆θ,∆φ) to the objective F is via the landmark positions
we have:

∂F

∂(∆θ,∆φ)
=
∂F

∂aji

∂aji
∂(∆θ,∆φ)

(2.8)

where ∂aji
∂(∆θ,∆φ) is calculated by finite difference method. ∂F

∂aji
is calculated

analytically. From Eq. (2.6), we have:
∂F

∂aji
=
∂FMDL

∂aji
+ α

∂FLLR

∂aji
(2.9)

where ∂FMDL

∂aji
is calculated as in [39]. For ∂FLLR

∂aji
, note from Eq.(2.5) that

in each component of summation ‖anm − An
mWn‖2, depending on the re-

lation of (m,n) and (i, j), aji might not appear, or might appear in anm or
An
m (but not both). Therefore:
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∂FLLR

∂aji
=

M∑
m=1

N∑
n=1

f ′(m,n)(i, j), where (2.10)

f ′(m,n)(i, j) =


2aji − 2WjA

j
i if (m,n) = (i, j)

2W d
n (WnA

n
i − ani ) if m = i and j = N (n)d

0 otherwise
(2.11)

2.3 Experiments

In order to evaluate the performances of our new method, we used a
dataset of 24 MRI images of pathological knees. The images were manu-
ally segmented using Amirar (VSG3D, France), then reduced and rigidly
aligned. We then used both methods to register three different groups
of anatomical structures, namely femurs, patellas and tibias. Table 2.1
shows the number of points of each mesh and the number of landmarks
used for each group.

Table 2.1: Schema of the three different experiments done

Group Anatomical part # points # landmarks

1 Femur 5002 2562
2 Patella 5002 642
3 Tibia 5002 2562

For each group, we ran the algorithm with α equal to 0 (for the orig-
inal algorithm) and with α = 0.5 representing our new implementa-
tion (cfr. Eq.(2.6)). To evaluate the performance of the two algorithms
we used the coefficient described in [54]. This paper states that the
well known measurements of compactness, specificity and generaliza-
tion could have some limitation in the evaluation of a statistical shape
model. In [54] Munsell et al. describe a new benchmark for the eval-
uation of 2D shape-space based on a given ground truth. We extended
this method to 3D volume-space, and used the original shapes as ground
truth. Formally, the evaluation of the shape correspondence follows these
steps:
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• each shape resulting from the two algorithms ({Sri }Mi=1) is rigidly
realigned with its original shape ({Soi }Mi=1), in order to reduce errors
due to misalignment of the two datasets.

• each shape, including the ground-truth shapes, is then voxelized
with a grid of 0.5× 0.5× 0.5 mm.

Rigid re-alignment does not change the position of the landmarks with
respect to the object reference frame, but a common reference frame is
needed for all the shapes in order to compare the two volumes. At this
point we need to introduce the Jaccard coefficient. This is defined as

∆(S1, S2) = 1− |R(S1) ∩R(S2)|
|R(S1) ∪R(S2)|

(2.12)

where S1, S2 are the two shapes considered and |R| computes the volume
enclosed in the surface.

2.3.1 Bipartite matching difference measure

The first measure we define is based on the bipartite-matching differ-
ence between {Soi }Mi=1 and {Srj}Mj=1. We build up the graph that has 2M
vertices for the shapes {Soi }Mi=1 and {Srj}Mj=1. The weight of the link be-
tween two different shapes is given by the Jaccard coefficient between
the two shapes linked. Then, applying the bipartite matching algorithm
(with the Hungarian method [46]), we can match each ground truth shape
with each result shape in order to minimize the sum of the weights. The
bipartite matching difference measure is defined as

∆b =

∑M
i=1 ∆

(
Soi , S

r
b(i)

)
M

(2.13)

where ∆
(
Soi , S

r
b(i)

)
is the Jaccard difference of the identified corre-

sponding shapes. Thanks to the normalization, ∆b is always a value
in [0, 1]; ∆b = 0 implies that the two shape space compared come from
the same distribution, while if ∆b = 1 they describe two completely
different shape spaces.
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2.3.2 Wald-Wolfowitz test

The bipartite matching difference compares couples of two correspond-
ing shapes individually and returns the mean difference between the two
populations. However, even if this measure is equal to 0 (indicating that
the two shapes are identical), it could be that the two populations that
generated the samples are different. To overcome this limitation, we in-
troduced another measure, as in [54]. The second measure we take into
consideration is the Wald-Wolfowitz generalized test, based on the min-
imum spanning tree (MST) algorithm. For this algorithm, we build a
fully connected undirected graph with 2M vertices, that represent both
{Soi }Mi=1 and {Sri }Mi=1. Then we define the weight of each edge connect-
ing two shapes (both inter and intra the two spaces) as the Jaccard coef-
ficient between the two shapes. We then find the MST of the constructed
graph, that is the spanning tree with the minimum total edge weight. On
this tree, we count the number of edges that connect two shapes from the
same space, either inside {Soi }Mi=1 or {Sri }Mi=1. We can call this number
W . Normalizing W over 2M − 2 we finally get the Wald-Wolfowitz
difference measure (∆w).

The ∆w value is thus always included in [0, 1]. In particular, a smaller
value of ∆w indicates that the two distributions most likely come from
the same shape space.

2.3.3 Results

We evaluate the performances of the two algorithms both with the two
methods described above and with a visual/qualitative comparison.

Qualitative differences between the two models are highlighted in
Figure 2.3 and 2.4. For the quantitative results, Table 2.2 describes the
two index achieved with α = 0 (as in [39]) and α = 0.5 (the present
algorithm) for the investigated bones.

2.3.4 Discussion

Quantitative results show that our method performs better in case of fe-
mur and patella, while no improvement is made in case of tibia. Eval-
uating visually the performance, we can see that tibia has some sharp
contours that cannot be rightly approximated by our algorithm, based
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Figure 2.3: Same patella mesh processed with two different values of α

Figure 2.4: Same tibia mesh processed with two different values of α

Table 2.2: Schema of the results achieved

Anatomical part index α = 0 α = 0.5

Femur
∆b 0.0226 0.0204
∆w 0.4348 0.3913

Patella
∆b 0.0786 0.0449
∆w 0.500 0.4783

Tibia
∆b 0.0108 0.0117
∆w 0.4565 0.500
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on the similarity of neighbouring points. However, such low levels of
∆b achieved for tibia with both algorithms, indicates that the two shape
space contain similar meshes and also that a shape has the same proba-
bility density in these two shape spaces.

2.4 Conclusions

We describe a new algorithm to improve landmark correspondences on
different shapes for statistical shape analysis. We evaluate our method
with two different quantitative measures and with a qualitative overview
of the results.

While our method is better in two cases (femur and patella) out of
three, we cannot state that for every shape we can achieve better re-
sults. Further investigation will be done on other bones, in order to asses
the improvement given by our landmark correspondences optimization
method.
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CHAPTER3
Femur kinematics registration based on

Genetic Algorithms

This work was presented in the CARS international conference, IPCAI,
2015, with the title "Fluoroscopy-based tracking of femoral kinematics
with statistical shape models", and has been accepted for publication in
the International Journal of Computer Assisted Radiology and Surgery
[67].

3.1 State of the art

Knee kinematics assessment has great importance both to understand
the problems associated with a large number of knee pathologies and
to improve the design of prosthetic components [11, 12]. In case of
severe osteoarthritis, that are eligible for joint implant surgery, in vivo
pre-operatory knee kinematics is fundamental to understand the relative
motion between the three joint bones. The relative movement can give
an insight of how the ligaments are stretched and their stability, and how
could be the feeling for the patient. In this way, pre-operatory knee kine-
matics could help the surgeon to decide which prosthesis should be used
and how to correct the misalignment of the bones [8].
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Table 3.1: Pros and Cons of the different methods to acquire knee kinematics

Method Pros Cons

Skin mounted
markers and

external cameras
Non invasive Motion artefacts

Implanted
markers and

x-ray projector
Very accurate Highly invasive

Fluoroscopy with
CT or MRI shape

Mostly accurate Highly expensive

Fluoroscopy with
SSM

Non invasive,
cheap

Accuracy
depends on the

deformation
ability of the

model

Currently, the reconstruction of the pose of the knee can be done us-
ing 3D scan such as real time Magnetic Resonance Imaging (MRI) or
through a 2D/3D registration method that superimposes the shape ex-
tracted from MRI or Computed Tomography (CT) onto an image, usually
X-ray or fluoroscopy. Real-time MRI is suitable to study joint kinemat-
ics, as it evidences the muscle structure during movements. However, it
can only be used with relatively slow movements, and the accuracy ob-
tained increases from 1 mm to more than 3 mm depending on the velocity
of the movement. In addition, MRI scans are highly expensive [35]. Tra-
ditional CT and MRI provide an accurate evaluation of the morphology
of the knee, but are limited to static positioning of the patient. A great
number of pathologies, such as patellofemoral pain and osteoarthritis re-
quire a dynamic evaluation of the knee motion [8, 12, 62].

Four main methods are used in research centers to in-vivo assess
knee kinematics (see Table 3.1): using skin-mounted markers, implanted
markers and 2D image based methods both with patient specific shapes
or with Statistical Shape Model (SSM).

Skin-mounted retro-reflective markers are used in gait analysis [20,
42,47] using optical localization techniques. Since this type of measure-
ment suffers from relative motion between the skin and the bone, results
are not reliable to properly investigate joint kinematics.
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The second method is based on tantalum markers implanted in the
bone; even if this method is much more precise than the previous one,
it is not commonly used in clinics due to the high invasiveness of the
intervention [32, 61, 62]. In [60], the authors used mono and biplane
fluoroscopic images to accurately reconstruct the pose of the patella, im-
planting markers in cadaver specimens and artificially flexing the knee
joint.

The use of dynamic fluoroscopy to detect knee kinematics is described
in [34].The authors use a fluoroscopic system flashing at 30Hz, obtain-
ing continuous images of the knee flexion from 0◦ to 120◦. A static
CT is projected to reconstruct knee kinematics. A similar protocol is
used in [7]; the authors describe a method to align CAD projections of
knee implants to fluoroscopic images. They perform dynamic acquisi-
tions at 8Hz moving a Sawbone model with an implant between 0◦ and
90◦. In [38], the authors introduced SSMs to reconstruct the shape of
the femur. They performed a deep analysis on the optimal number of X-
ray scans that allow an accurate reconstruction of the shape of the knee.
Their method was based on manual segmentation of the bone contour
from X-ray images. In [12], the authors introduced a fully automatic
technique to extract the contour from the fluoroscopic images, based on
a Canny edge detector [19]. They used two fluoroscopic sequences of
drop-landing motion with intra-fluoroscopic distance between 58◦−82◦.
They used a cadaveric knee as gold standard, implanting tantalum mark-
ers and simulating motion of the knee while doing fluoroscopic imaging
of the joint. Their mean errors are less than 1 millimiter, spanning to
4 mm both with the CT-extracted shape and the SSM. However, the
method proposed by Baka was only evaluated on healthy subjects, with-
out evidence that the same accuracy could be obtained with osteoarthritic
patients.

The aim of this work is to solve a registration problem between 2D
images and 3D shape using a method based on Genetic Algorithm (GA).
We focused our study on the kinematics of the femur, but the algorithm
can be easily extended to the whole kinematics of the knee. We used
osteoarthritic femurs in order to expand the validity of the method not
only to healthy subjects. The SSM created in the previous chapter (2)
was used in this chapter to register the pose of the femur on fluoroscopic
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images acquired during knee flexion-extension. The method was evalu-
ated generating Digitally Reconstructed Radiographs (DRRs) from static
CT acquisitions of osteoarthritic patients and simulating femur flexion-
extensions. We evaluate the accuracy of the pose reconstruction of the
distal femur both with the CT segmented shape and SSM. We expect
an accuracy index lower than the one found by Baka et al. [13], as we
are introducing deformities due to osteoarthritis. However, with the CT
segmented shape the results should be comparable, as the shape is not
deformed.

3.2 Methods

Our femoral kinematics tracking method is based on SSM which pose
is obtained using a biplane fluoroscopy. We applied a GA optimization
technique, in order to improve the accuracy (Figure 3.1).

The tracking algorithm is divided into three main phases:

• Statistical Shape Model creation (3.2.1)

• Shape pose initialization (3.2.2)

• Femur tracking (3.2.3)

3.2.1 Statistical Shape Model (SSM) creation

SSM gives an effective parameterization of the shape variations found
in a collection of sample models of a given population [23, 74]. For
our study we used the distal part of the femur only. Each bone model
(Mo with o = 1, . . . , O) is represented as an ordered set of p = 1, . . . , P
vertices Mo = [x1, y1, z1, . . . , xp, yp, zp, . . . , xP , yP , zP ] and a list of tri-
angular facets connecting the vertices. Applying the algorithm described
in chapter 2 [68], we found the correspondence between corresponding
vertices on different shapes. The SSM is defined as the mean model M̄
and a set of eigenvectors obtained applying Principal Component Anal-
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Figure 3.1: Flowchart of the GA based algorithm.
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isys (PCA) to the model vectors Mo.

D =
1

O − 1

O∑
o=1

(Mo − M̄)(Mo − M̄)T

D ·
−→
Mo = σ2

o ·
−→
Mo

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
O−1

(3.1)

where σ2
o are the descending-order eigenvalues of the covariance matrix

D and
−→
Mo are the corresponding eigenvectors. Every instance of this

SSM is then expressed as:

MSSM = M̄ +
O′∑
o=1

αo
−→
Mo (3.2)

where αo is the weight corresponding to the oth eigenvector
−→
Mo and

O′ is the number of significant eigenvalues (O′ < O). In our dataset,
O = 24, O′ = 23. For this study, we used 24 MRI datasets of healthy
knees, from which we semi-automatically segmented the femur contours
using Amira® (VSG | FEI, Mérignac Cedex, France). From each volume,
we extracted the femur’s triangulated surface with 2562 points and 5120
facets using the marching cubes technique [50]. To create the SSM, cor-
responding points on different shapes have to be determined [27] [24].
In our case, corresponding points between the O shapes were selected
using the automatic algorithm described in chapter 2 [68]. Within the
corresponding models, we computed the mean model and the covariance
matrix.

All the patients signed an informed consent and the institutional re-
view board approved the study.

3.2.2 Shape pose initialization

The femur tracking dataset is composed of two fluoroscopic frames ac-
quired during knee flexion-extension at each time step twith t = 0, . . . , T .
The contour of the distal femur is extracted on each fluoroscopic image.

We defined a set of I(I = 7) landmarks on the mean model (Li(M̄),
with i = 1, . . . , I) that were used to initialize the pose of the SSM in
the world Reference Frame (RF) RFw (Figure 3.3). The landmarks were
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identified as the most identifiable anatomical landmarks in the images.
Recent studies have addressed the topic of automatically segment con-
tours from X-Ray images using random forests [25, 48]. However, these
methods need to be trained over a consistent number of images to be used
with non-standard projections. In order to save time and to give the pos-
sibility to use any angle of projection the operator is asked to manually
identify the I corresponding landmarks on the two fluoroscopic images
at t = 0 (`i(n) with i = 1, . . . , I and n = 1, 2, where i indicates the num-
ber of the landmark and n indicates the view). For each test, the user has
to define 7× 2 landmarks on the 2 images, based on the highlighted po-
sition of the landmark on the 3D SSM. We also tested if the initialization
was user-dependent. Our study [68] proved that the algorithm is stable
with an initialization error up to 3 cm.

Each fluoroscopic image has its own calibration parameters, so that
we know the position of the source and the position of the image plane
in the RFw , as well as its normal vector. The initialization is used to
estimate the initial position of the SSM with respect to the 2 fluoroscopic
images, i.e. Tw 0

m. We can back-project each landmark pixel (`i(n)) to
the corresponding source Sn. In this way, for each landmark we find 2
skew lines (one for each projection) that should (ideally) intersect in one
point (the 3D position of the landmark) but, due to errors and noise, they
actually do not intersect. Thus to define the position of the landmark we
take the middle point of the shortest line connecting the rays (see Figure
3.2).

As the landmarks are defined both in the 3D space and on the model,
we can use a simple registration algorithm for corresponding points to
find the initial pose of the model in the 3D space [58]. Li(M̄) is the land-

mark on the model surface, the similarity transformation T̂w 0
m (rotation

R, translation t and scaling factor s) transforms the model landmarks
into Li(SSM) (Figure 3.3). To obtain the transformation T̂w 0

m we define a
cost function F based on the Euclidean distance between the transformed
landmarks and the position of the points defined by the backprojection
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Figure 3.2: Definition of the landmark pose in the 3D space. In the right part of the figure the
position of the real landmark is shown (Li(3D)

Figure 3.3: Schematic of the reference frames involved in this algorithm. Points on the image
plane, expressed in pixel index (i, j), are in the RFp n, where n indicates the number of the
image plane. RFm is the reference frame of the SSM, and RFw is the world reference frame.
Points in red on the model are the landmarks Li(M̄), points in blue on the image are the
selected landmarks on the first image `i(n), points in purple are the landmarks in the RFw

extracted from source-image rays ( Li(n) ) and points in green are the model landmarks in
the RFw after the initialization (Li(SSM) ).
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of the landmarks on the images Li(3D).

F =
7∑
i=1

||Li(3D) − Li(SSM)||

Li(SSM) = s ·R · Li(M̄) + t

(3.3)

We thus apply the same transformation matrix T̂w 0
m to all the points

of the mean model (M̄).

M(SSM) = T̂w 0
m · M̄ (3.4)

3.2.3 Femur tracking

After the manual initialization of the pose in the first frames, the algo-
rithm returns the pose of the shape as homogeneous matrix Tw t

m. To
track the pose of the femur in the RFw during time, we repeat the fol-
lowing Pose optimization steps for each sample time t = 0, . . . , T . In
each frame the initialization is given by the homogeneous matrix of the
previous frame ( Tw t−1

m ).
The shape of the femur is optimized at t = 0, as described in the

Shape optimization paragraph, and then kept constant for all the tracking
times.

Pose optimization

Using the initialization of the SSM’s pose in the RFw , for each given
image plane RFi n we can extract the silhouette of the model, identifying
the points that share a “contour” edge. This edge is in common between
two facets that have the normals pointing in opposite directions from the
corresponding source S(n)(see Figure 3.4). We define the silhouette of
the model as Sjn(n), with jn = 1, . . . , Jn;n = 1, 2, where each point
is shared between two “contour” edges. We then project the silhouette
extracted on the corresponding image plane, defining the corresponding
set of pixels on each image plane as sjn(n).

For each contour pixel in ckn(n) we find the nearest pixel of sjn(n), and
associate it to the corresponding silhouette point in Sjn(n). We call Skn(n)

the associated silhouette point.
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Figure 3.4: Definition of the contour edge describing the silhouette of the model. The red points
are the projection of the silhouette points. The green points are the extracted contour.

Figure 3.5: Definition of the objective function: minimization of the distance D

For each point on the image plane we define the projection line from
the source (S(n)) and find Ckn(n), the closest point on the line between
the line and the corresponding silhouette point Skn(n), as shown in Fig-
ure 3.5.

The cost function Fposeto minimize can thus be defined as:

Fpose = min
Tw t
m

(
Kn∑
kn=1

Dkn

)
Dkn = ‖Ckn(n) − Skn(n)‖

Tw m =

[
wRm

wtm

0 1
s

] (3.5)
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where Tw t
m (s, wRm,

wtm) indicates the transformation matrix from
the RFm in the RFw , composed of rotation, translation and scaling factor,
|| . . . || is the Euclidean distance, Ckn(n) and Skn(n) are respectively the
3D point on the contour line and the 3D point of the silhouette of the
model.

A GA optimization process is performed independently on each frame,
to avoid local minima [31]. The population is composed of the param-
eters that define the pose of the femur in the world reference frame, i.e.
Euler angles, translation vector and scaling. The initial population (40
samples) of each minimization is extracted from uniform parameter dis-
tributions defined as small deviations (±10◦,±10mm,±0.1scalefactor)
from an initial pose, i.e. the initialization pose for the first frame or the
result of the previous minimization otherwise. The maximum number of
iterations was equal to 100. However, the minimum was found before
reaching the maximum number of iterations.

Shape optimization

After the first optimization of the pose, we performed a shape optimiza-
tion, based on the algorithm described in [74]. The shape optimization
process implemented a closed form solution for the best approximation
of the original shape with a deformable model. The optimization is in-
serted in a minimization procedure Fshape, based only on the O− 1 = 23
weights of the SSM (αo).

Fshape = min
αo

(
Kn∑
kn=1

Dkn

)
Dkn = ‖Ckn(n) − Skn(n)‖

(3.6)

3.2.4 Validation

Datasets

In order to validate our tracking algorithm we used the datasets of three
different patients, which have respectively severe, mild and moderate
osteoarthritis of the knee. For each patient, we have the CT scan and we
generate the DRRs. The difference in the grade of osteoarthritis for the
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three subject is evidenced by an increased number of osteophytes from
mild to moderate and severe that is reflected in a more deformed femur.
This causes the printed silhouette to be also deformed, and is reflected in
a lower capability of registration compared to healthy subjects.

The CT dataset was composed of DICOM images acquired with a
SIEMENS Sensation 64 CT machine. Each slice is 512x512 pixel (0.3516
mm/pixel) with a slice thickness of 0.6 mm and a spacing between slices
of 0.4 mm. In order to assess the model reconstruction performance we
segmented the bone shape using Amira® (VSG|FEI, France).

For each patient, a virtual environment around the CT was created, in
order to simulate fluoroscopic scans from three different point of views.
11 angles of flexion were simulated for a total of 11 x 3 patients x 3
views = 99 images. The center of the CT dataset was taken as the RFw .
The setup of the acquisition was virtually created in order to have the
ground truth for the pose of the femur. The DRR is built integrating
the density of each voxel of the CT along the direction of each ray as
in [52]. Three different sources and image planes were simulated for
each patient, resulting in three sets for each patient: the first image shows
a lateral view of the femur (L0), the second and third images show a
view rotated on the sagittal plane of 10 (L10) and 90 degrees (F ) (see
Figure 3.6). In this way, we can compare how the results are influenced
by the angle of view of the projection. A lower angle is expected to give
problems in depth definition, but allows us to understand if a registration
with a single plane projection is feasible or not.

To represent the knee flexion-extension, we rotated the images T
times (t = 0, ..., T, with T = 10). The pose of the CT shape is fixed
and the source and the image plane rotate in order to simulate a rotation
of the femur. To build the images on the lateral plane, we rotated the
image plane of 8◦ clockwise. The same rotation is made on the frontal
plane, rotating both the image and the source, to get a consistent motion
of the femur in the 3D space (see Figure 3.7).

Experimental protocol

To reduce the computational effort of the minimization function, we used
3D models with a reduced number of points (1:8). The reduction was
done iteratively collapsing the shortest edge to one point, in order to pre-
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Figure 3.6: Description of the virtual environment setup for the DRR creation. The CT model
reference frame was used as world reference frame (orange reference frame). The source of
L0 was established on the y-axis, as well as the center of L0. L10 is obtained rotating the
source-plane axis of 10 degrees on the x-y plane. F is obtained rotating the source-plane
axis of 90 degrees, having it correspondent to the x-axis [57]
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Figure 3.7: Description of the virtual environment setup for the DRR creation. To represent
the knee flexion-extension, we rotated the images T times of 8 degrees each ( T = 10 ). S0

3

indicates the position of the source of image 3 at time 0, S5
3 indicates the position of the

source of image 3 at time 5 and S10
3 indicates the position of the source at time 10, i.e. after

80 degrees of rotation from time 0

serve the structure of the shape. Eight times was found to be the correct
threshold between a considerable reduction of time and an acceptable
shape to compare the silhouette to the contour. In order to evaluate the
performance of the shape reconstruction and the tracking separately, we
used the CT-based shape and the SSM shape. An open source software
called Cloud Compare (www.danielgm.net/cc) was used to assess the
differences between the SSM and the CT shape. The software returns
both the point to shape distances for the meshes (calculated as the dis-
tance between points and facets) and a graphical view of them. Referring
to Figure 3.6, we call L0 the lateral view (Image 1 in the figure), L10 the
projection at 10 degrees (Image 2 in the figure) and F the frontal view
(Image 3 in the figure). The tracking algorithm was then computed on
the following images sets:

• CT (L0−L10): Tracking is done using the CT shape and images L0

and L10.

• CT (L0 − F ): Tracking is done using the CT shape and images L0

and F .
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• SSM(L0−L10): Tracking is done using the SSM shape and images
L0 and L10.

• SSM(L0 − F ): Tracking is done using the SSM shape and images
L0 and F .

These four setups are tracked for each one of the three models from
which the DRR were generated. Kruskal-Wallis test p < 0.05 was per-
formed to verify the significant difference between the median of each
test.

3.3 Results

We tested the capability of the algorithm to deform the SSM in order to
better approximate the CT shape and the ability to reconstruct the pose
of the femur with two images per sample time.

In most cases, the distance between the SSM and CT was less than
3mm (Figure 3.8 and Table 3.2)

Figure 3.8: Similarity between the original CT mesh and the reconstructed SSM mesh

Table 3.2: Mesh comparison statistical parameters: distances from point to surface represented
as mean and standard deviation

DRR 1 DRR 2 DRR 3

SSM(L0 − L10) 0.516± 2.438mm −0.607± 5.104mm 2.188± 2.933mm
SSM(L0 − F ) 0.545± 2.391mm −0.418± 4.955mm 2.066± 2.835mm
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For each CT shape we identified the anatomical axis (as defined in
[53]) and used these axis to report the errors.

As in [13], we defined the precision as the standard deviation of the
remaining error after removing the mean error of all frames for that spe-
cific sequence. Difference in coordinate system definition is thus mini-
mized, as it is mainly formed by mean error. The three sequences (one
for each patient) are than considered as a single population. In Figure
3.9 the boxplots of the angular precision for each anatomical axis are
shown, while in Figure 3.10 the translation precision on each axis are
shown. Kruskal-Wallis test was performed to verify the significant dif-
ference between the median of each test.

Figure 3.9: Rotation precision with respect to the ground truth (known as artificially gener-
ated). The height of the box indicates the median value and whiskers extend from the 25th to
the 75th percentile. Square parenthesis above two boxes indicates that the two populations
are statistically different.

3.4 Discussion

In this paper, we present a femoral kinematics reconstruction technique
based on biplane fluoroscopic images taken during knee flexion-extension
movements using SSMs.

The tracking capabilities of the proposed method were separately eval-
uated using the exact model, semi-automatically reconstructed from the
CT dataset, and the implemented SSM [68].
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Figure 3.10: Translation precision with respect to the ground truth (known as artificially gen-
erated).

Our approach shows the applicability of a semi-automatic algorithm
for 2D/3D registration using SSM. With respect to dynamic MRI, our
method is less expensive and more accurate [35]. Compared to actual
clinical procedures, that are based on a previous static CT or MRI scan
and a manual fitting of the shape, this method is less expensive (as CT
and MRI can be avoided) and more accurate due to the automatic fitting.
The ionizing radiation given to the patient in our procedure is just a few
hundredths of a mSv (considering a total of 22 images and an average
dose of 0.001mSv for each image, we have a total dose of 0.02mSv,
much lower than a 2.2mSv average dose absorbed with a CT) [4, 40].
Compared to skin mounted markers, our system does not suffer from
relative movements between the skin and the bone, and is thus suitable
for accurate joint kinematics studies [20, 42, 47]. Our method proved to
be stable without relying on implanted markers or joint implants, that
will return more accurate results at the price of high invasiveness [60–
62].

In order to have the ground truth pose of the model, we artificially
simulated the fluoroscopic projections using DRR technique. Our SSM
was derived using 24 MRI datasets of healthy patients. Such a number
of samples is quite limited compared to other datasets in the literature
e.g. [11] used 43 CT images of the knee and [74] used 30 CT-based
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models of the hip. When we evaluated the exact model reconstruction
ability of our SSM and the implemented deformation technique we found
residual errors on the order of 2.2 mm as median Euclidean distance in
the worst case. Such error is due to the different levels of cut of the
femoral diaphysis and to the limited number of femurs used as SSM.
Also, the subject used to obtain the DRRs were osteoarthritic, thus with
evident deformity of the femur’s shape. The result obtained is in line with
the ones by [11], where they state a point to surface distance of 2 mm
and maximum errors of 3 mm. Having a larger dataset, including greater
variations, would allow increasing the morphing possibilities, reducing
reconstruction errors.

In the case of the CT shape, all the median translation errors are lower
than 1 mm, in line with the results presented by [11]. We used two
differents angles for the DRR definition, and the results showed that the
higher translation error in medio-lateral precision at 10◦ is due to a lower
capability to resolve the depth information. The residual error at 90◦ can
be associated to rounding error and to a limited number of generations
for each GA running.

Using the SSM shape the results are statistically different from the one
obtained with the CT shape. The translation median errors are lower than
1.5 mm, probably due to the low deformation possibilities given by the
reduced number of shapes of the training set, whereas the rotation error
spans up to 4◦ in almost all directions. In [13] the authors state errors up
to 3◦ but they used a SSM including a longer femoral diaphysis, thus the
informative content of the statistical model is bigger.

The advances of the proposed new methodology with respect to the
current state of the art resides in the fact that our method has been applied
to pathological patients resulting in accuracy comparable to the current
state of the art. Moreover, we managed to achieve limited decrease in
performance with a lower angle (up to 10◦) between the fluoroscopic
projections. In this way, the range of movement for the flexion-extension
of the knee is enlarged, extending the possibilities for the tracking with
different movements.

One of the limits of our study is the reduced testing dataset for track-
ing, nevertheless since we used 11 image projections, progressively ex-
tending the knee joint, the dataset is enough to assess the statistical power
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of the analysis. Fluoroscopic images could be much noisier than the vir-
tually reconstructed projections, due to fast acquisition of the images
that causes blurring, calibration plates and white noise due to instrumen-
tation. Further analysis will be directed towards adding realistic noise to
the images and testing the tracking algorithm performances. Acquired
images as performed in [57] will also be used to test the algorithm.

In conclusion, we showed the clinical applicability of our method for
femoral tracking using a biplane fluoroscopy and based on SSM, thus
reducing costs and lowering the patient’s radiation dose.

41





CHAPTER4
Femur kinematics registration based on

Gaussian Mixture Models

This work was submitted to the Journal of Medical and Biological En-
gineering and computing with the title "Gaussian Mixture Models based
2D-3D registration of bone shapes for orthopaedic surgery planning" and
has been accepted for publication.

4.1 Introduction

Osteoarthritis is a highly debilitating pathology that affects knees primar-
ily of older people. With this inflammation, the cartilage degenerates, the
distance between bones is reduced and hypertrophy of the bones can oc-
cur, with the creation of osteophytes [72]. The Dutch Institute for Public
Health estimates that worldwide almost 16% of men and 31% of women
aged over 55 years have radiographic knee osteoarthritis [49]. In 12% of
cases the pathology reduces the motion of the knee and causes pain to the
patient, often requiring the use of ambulatory aids [17]. The most used
treatment for severe osteoarthritis is surgery. Almost the 20% of the pa-
tients that undergo Total Knee Arthroplasty (TKA) are not satisfied with
their operation [8].
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A pre-operative study of knee kinematic under weight-bearing condi-
tions can improve the outcome of the surgery [65]. The representation
of the joint kinematics in 3D space allows for understanding pain zones
and ligament tension, determining the best implant positioning and thus
correcting non-alignments of the bone segments [12, 14, 15, 32, 63, 65,
76]. The acquisition of pre-operative Computed Tomography (CT) or
Magnetic Resonance Imaging (MRI) images gives a deep insight into
the morphology of the structures, but these procedures are currently lim-
ited to static positioning and have high costs and radiation doses given
to the patient. Mono and multi-plane fluoroscopy are the most accurate
and used procedures to measure in vivo non-invasive kinematics of the
knee [65, 76]. The current clinical technique is mainly based on the op-
erator’s ability to correctly position the shape on the images [8]. This
technique is time-expensive and error-prone, as it is based on human
ability. Regardless of the number of fluoroscopic projections, two main
automatic methods have been implemented to recover the correct pose
of the bones in 3D space: intensity based and feature based methods.

Intensity based methods need a pre-operative CT scan in order to ac-
quire the density of the patient’s bone. The 2D-3D matching is then
achieved comparing the Digitally Reconstructed Radiograph (DRR) to
the acquired fluoroscopic image and adjusting the rotation and transla-
tion parameters in order to minimize the differences between the two
images in terms of pixel intensities [9, 34, 65]. Although very accurate,
these methods require a previous CT to determine the bone density for
the DRR creation, and are computationally expensive for the number of
pixel intensity comparisons that must be made to find the correct pose.

Feature based methods are based on the contours of the bone shape
that can be extracted from the fluoroscopic images using edge detec-
tor filters, such as Canny or Sobel [19, 44, 45]. These methods project
the silhouette of the bone shapes and match it with the extracted edges.
Usually, feature based methods necessitate a previous morphological 3D
dataset of the bone shapes, such as MRI or CT [7,8,62]. Recently, some
authors have addressed the problem of needing the morphological scan
and substituting it with a Statistical Shape Model (SSM), a collection of
shapes coming from atlas that can be deformed in order to represent ac-
curately the target shape [12, 67, 74]. In this way, costs are reduced and
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the patient is exposed to a lower radiation dose. However, computation
time becomes an issue, as the whole sequence of poses takes some hours
to be computed [13].

The aim of this chapter is to solve a well-known registration prob-
lem of 3D shapes on 2D images. The issue is addressed using Gaussian
Mixture Models (GMMs), a technique already present in literature but
not currently used to solve this type of problems. We tested the algo-
rithm with a SSM of the femur using a set of fluoroscopic images of the
knee. The goal is twofold: we addressed the problem of accurately re-
covering the pose of the knee in 3D space in a completely automatic way
and also of ensuring the correct parameters for the deformation of the
shape. In [43, 73], the authors addressed the problem of the registration
of two point-sets with a GMM fitting. The solution is given through an
Expectation Conditional Maximization (ECM) procedure, that simpli-
fies the original Expectation Maximization (EM) algorithm by Dempster
et al. [33]. Both of these frameworks, however, assume working with
point-sets lying in the same (2D or 3D) space.

The proposed algorithm extends the state of the art to registering a
3D shape of a femur on a set of fluoroscopic images acquired during
flexion-extension of the knee.

4.2 Materials and methods

The knee is imaged during a sequence of flexion-extension movements.
A fluoroscopic tube returns a set of X-ray images. The source and the
image plane are calibrated, and their pose in the world reference frame
is known. The reconstruction of the femur kinematics is done through
a series of features projection and back-projection from the fluoroscopic
image plane to the 3D space. A 3D shape of the bone is used as a model
to reconstruct the correct pose (see Figure 4.1).

4.2.1 Datasets

2D contours

The segmentation of the contour of the shape jyn on each fluoroscopic
image Ij is performed using a semi-automatic algorithm based on gra-
dient enhancement of the image and a spline interpolation between user
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Figure 4.1: Flowchart of the GMM based algorithm.
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picked points [67]. The selected pixels, belonging to the segmentation,
can be transformed in 3D points using the known image calibration pa-
rameters (yn, n = 1, . . . , N ).

3D shape

The 3D shape is defined as a set of points (Xs, s = 1, . . . , S) and tri-
angles that can be either derived from the segmentation of a volumetric
image dataset (CT or MRI) [50] or a SSM [22]. We define the patient
specific 3D shape as 3DSCT/MRI and the SSM as 3DSSSM (chapter 2).
A Gaussian distribution (Xs,Σs) is associated to each 3D point of the
model. The isotropic covariance can be expressed as:

Σs = σsI3 (4.1)

where I3 is the 3 × 3 identity matrix and σs is the scalar value of the
covariance that varies for each Xs point.

2D silhouette

The silhouette of the model is made up of those points that share a con-
tour edge, i.e. an edge shared by two facets with normals pointing in dif-
ferent directions from the source. The silhouette points are then a subset
of the shape points Xm,m = 1, . . . ,M < S. The model silhouette is
projected on the image plane jxm,m = 1, . . . ,M where j indicates the
image on which the points are projected. We also define a set of virtual
observations jom that have a correspondent point in the 3D space Om.

4.2.2 Registration

The registration problem is the estimation of the homogeneous matrix
(expressed by the transformation parameters θ) which minimizes the dis-
tance between the virtual observation Om and the silhouette point Xm.
The description of the algorithm is summarized in 1.

The variables used in this description are:

• jY is the contour extracted from each image, whose pixels are jyn, n =
1, . . . , N (also called observations)

• Xs, s = 1, . . . , S are the points of the 3D shape
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Figure 4.2: The X-ray source jS projects rays on the image plane. The image is processed and
the contours jyn are extracted using a Canny edge detector (black points on the image). In
the middle, the shape is formed by points Xs and triangles. The silhouette of the model,
Xm in red, is made up of those points that share a contour edge, i.e. an edge shared by two
triangles with normals (arrows) pointing in different directions from the source. The zoom
on the right shows the normals of the triangles that point in different directions.

• jX is the set of points of the silhouette jXm,m = 1, . . . ,M < S

• jxm,m = 1, . . . ,M are the pixel of the shape’s silhouette projected
on image j

• jom,m = 1, . . . ,M are the virtual observations on the image j

• Om,m = 1, . . . ,M are the virtual points backprojected in the 3D
space

Initialization

A manual initialization is necessary to define the initial pose for the
shape. Seven landmark points Li, i = 1, . . . , 7 are identified on the
3D shape 3DS. The user is asked to select the same points on the im-
ages [68]. The backprojected lines from the user-selected points to the
corresponding source identify seven landmarks in the 3D space. Using
corresponding points registration [10], we find the homogeneous trans-
formation matrix T that maps the shape in the calibrated image space.
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The accuracy in finding the exact points on the images, and the result-
ing initialization matrix T is not crucial, as the whole algorithm has been
proven to be robust against initialization: we checked the robustness of
the method initializing the algorithm with different poses, starting from
the correct pose and gradually adding up to 5 cm and 5◦ of uniform ran-
dom noise to the correct matrix. The results showed that with an error
higher than 2 cm and 2◦ the system is not assured to converge, while
with a lower error the system converges with final errors lower than 1
mm. The initialization can thus be considered independent from the op-
erator’s skills.

Gaussian Model and Likelihood

Each Xs point of the model is defined as the centroid of a 3D Gaussian
distribution with mean Xs and covariance matrix Σs, identifying in this
way a Gaussian Mixture Model (GMM). The operator µ : R3 → R3

transforms a point Xs in another point µ(Xs, θ) where θ is the parame-
terization of the transformation.

The likelihood (L) that expresses the probability that the contour is
coincident with the silhouette projection is a function of both the regis-
tration parameters θ and the covariances.

L(θ, σ1, . . . , σS | Y) = logP (Y ; θ, σ1, . . . , σS) (4.2)

where P () is the probability that the set of observations Y is extracted
from the GMM with parameters (θ, σ) and the likelihood indicates the
probability that the set of observationsY is coincident with the projection
of the shape’s silhouette X .

This maximization can not be performed due to the presence of miss-
ing data, as the assignment of each observation to one of the Gaussian
of the GMM is unknown. The operator {Z : yn → xm}, n = 1, . . . , N
assigns an observation yn either to a silhouette model point xm or to an
outlier class. If (Z : yn → xm) then the observation yn is associated to
the point xm, otherwise, if (Z : yn → xM+1) then the observation yn is
an outlier.

The likelihood is replaced by the expected complete-data log-likelihood
E conditioned by the observed data, as suggested by Dempster [33].

E(θ, σ1, . . . , σS | Y , Z) = EZ [logP (Y , Z; θ, σ1, . . . , σS) | Y ] (4.3)
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To evaluate eq (4.3) the probabilities of the observations must be ex-
pressed as a set of Probability Density Functions (PDFs).

pm = P (Z : yn → xm)

is the prior probability that the observation yn belongs to the cluster m
with centre µ(xm; θ) while pM+1 = P (Z : yn → xM+1) expresses the
prior probability of yn to be an outlier.

pm =

P (Z : yn → xm) = a
A if 1 ≤ m ≤M

P (Z : yn → xM+1) = A−Ma
A if m = M + 1

(4.4)

In eq (4.4) the variable a indicates a small circular area
(
a = πr2

)
around

the centre of the projected GMM µ(xm, θ), whereas A indicates the
whole volume of work, so that a� A. The likelihood of an observation
yn given its assignment to clusterm is drawn from a normal distribution:

P (yn |Z : yn → xm) = N (yn |µ(xm; θ), σm) =
1

σm
√

2π
e
− ||yn−xm||

2

2σ2m

(4.5)
and the same likelihood of the observation given its assignment to the
outlier class is a uniform distribution over the area A

P (yn |Z : yn → xM+1) = U(yn |A, 0) =
1

A
(4.6)

The marginal distribution of an observation is:

P (yn) =
M+1∑
m=1

pmP (yn |Z : yn → xm) (4.7)

Eq (4.2) then becomes

logP (Y) =
M∑
m=1

log

(
N∑
n=1

pnN (ym |µ(xn; θ), σn) +
pn+1

A

)
(4.8)

and eq. (4.3) becomes

E(θ, σ1, . . . , σS | Y ,Z) =
∑
Z

P (Z |Y , θ, σ1, . . . , σS) ·

· logP (Y ,Z; θ, σ1, . . . , σS) (4.9)
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Expectation Conditional Maximization

The Expectation Conditional Maximization method is an iterative way
to solve the Maximum Likelihood problem of eq (4.3). Starting from
an initial estimate of the parameters, the method computes the posterior
probabilities given the current parameters and covariances and then max-
imizes the expectation in (4.3) with respect to the registration parameters
(given the current covariances) and the covariances (given the newly es-
timated parameters).

The expectation step (E-step) involves the computation of the poste-
rior probability pmn that every point of the projected shape on the im-
age plane (xm,m = 1, . . . ,M ) is associated to a point of the contour
(yn, n = 1, . . . , N ):

pqmn = P (Z : yn → xm |yn; θq, σq) =

=
P (yn |Z : yn → xm)P (Z : yn → xm)

P (yn)
=

=
σ−2
m e

−||yn−xm||2

2σ2m

M∑
i=1

σ−2
i e

−||yn−xi||2

2σ2
i + c

(4.10)

where Z is the association operator between a projected point xm of the
shape’s silhouette Xm with a point of the contour yn extracted from the
image, q is the current time and c is the outlier component:

c = 2r−2 (4.11)

The set of unknown variables is composed by the registration param-
eters θ[6 × 1] = {q1, q2, q3, t1, t2, t3} where qi, i = 1, 2, 3 are the Euler
angles and ti, i = 1, 2, 3 are the translation values, and the set of 3D
points variances σ2

1, . . . , σ
2
M :

ψ = (θ, σ2
1, . . . , σ

2
M) (4.12)

As the direct maximization of the likelihood is intractable, the mini-
mization of the negative log-likelihood (E(ψ)) will instead be taken as
the objective [33]:

E(ψ) = −
N∑
n=1

log
M∑
m=1

P (Xm)P
(
yn |Xm(θ;σ2

m)
)

(4.13)
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The minimization function can thus be transformed in:

E(ψ) =
1

2

N∑
n=1

M∑
m=1

pqmn
σm

[(
||yn −Xm(θ)||2

)
+ 3σ2

m log(σ2
m)
]
+
ρ

2
||L(φ)||2

(4.14)
where ||L(φ)||2 is a regularization parameter over the transformation,
and ρ weights its contribution to the minimization.

The conditional maximization step aims at maximizing the likelihood
described in eq. (4.2) and (4.3). It uses the definition of virtual obser-
vation, that is a normalized sum over all the observations weighted by
their posterior probability [43]. The virtual observation O and its weight
λ are obtained for each model point xn using the posterior probabilities
pqmn and the observations ym:

νn =
M∑
m=1

pqmn

on =
1

νn

M∑
m=1

pqmnym

(4.15)

Eq. (4.3) can be rewritten replacing the conditional probabilities with
the normal and uniform distribution as expressed in eq (4.16) (for the
complete steps the reader can refer to [43])

E = −1

2

M∑
m=1

N∑
n=1

pqmn
σ2
n

(||ym − µ(Xn, θ)||2 + log(σ2
n)) (4.16)

The minimization of eq (4.16) over θ keeping constant the covariances σ
lead to:

θq+1 = arg min
θ

pqmn
σ2
n

||ym − µ(Xn, θ)||2 +
ρ

2
||L(µ)||2 (4.17)

where ||L(µ)||2 is a regularization term over the parameters. Eq (4.17)
can be simplified using the definitions of eq (4.15):

θq+1 = arg min
θ
νn||On − µ(Xn, θ)||2 +

ρ

2
||L(µ)||2 (4.18)

where On is the 3D point nearest to Xn on the ray backprojected from
on. A 2D/3D registration problem is now cast into a 3D/3D registration
that can be solved using already addressed solutions [10, 16, 43, 73].
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The second step of the conditional maximization is the update of the
covariances, using the registration parameters newly computed:

(σ2
n)
q+1 =

M∑
m=1

pqmn||ym − µ(xn, θ
q+1)||2

2
M∑
m=1

pqmn

(4.19)

In eq (4.19) the value µ(xn, θ
q+1) is the projection of the 3D point Xn

updated with the parameters θq+1.
In the case of a rigid transformation, the parameter ||L(φ)||2 is equal

to 0, and the solution of the problem is given by a least-squares fitting of
two 3D point sets, as described in [10].

If the shape to be registered is a 3DSSSM , the parameters to be esti-
mated are the shape coefficient vectors βk, and the regularization term
assumes the form of the Mahalanobis distance, with λ2

k eigenvalues of
the SSM:

||L(φ)||2 =
K ′∑
k=1

β2
k

λ2
k

(4.20)

All the shape coefficients are determined with a closed form solution as
described in [73].

The algorithm converges to a minimum if the percentage difference
between the likelihood of two consecutive frames is below a predefined
threshold. Specifically:

L(t)(X |Y)− L(t−1)(X |Y)

L(t−1)(X |Y)
< ε (4.21)

where X and Y are respectively the GMM and the observations. The
likelihood of the current step is defined as:

L(X |Y) =
N∏
n=1

M∑
m=1

αm ·
(
σ−2
m e

−||yn−xm||2

2σ2m

)
(4.22)

In (4.22), αm is the component prior of the specific model [28].

4.2.3 Validation protocol

Twenty-four healthy knees were imaged with MRI scans and manually
segmented to find the 3D shape. Those shapes were used to define the
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Algorithm 1 GMM-based registration
1: procedure INITIALIZATION

2: Extract contours from figure yn
3: Select landmarks on images L and find initialization matrix T

4: procedure REGISTRATION

5: procedure RIGID TRANSFORMATION

6: loop:
7: procedure E-STEP

8: Project silhouette points xm ← Xm

9: Calculate posterior probability pmn = P (Z(yn = xm(θ, σ2
m)) | yn)

10: procedure CM-STEP (3DSCT/MRI)
11: Find virtual observations om
12: Backproject virtual observations Om

13: Compute registration parameters θ
14: σ ← update variance
15: goto loop.
16: if Shape = SSM then
17: procedure SSM ADAPTATION

18: loop:
19: procedure E-STEP

20: procedure CM-STEP (3DSSSM )
21: Find virtual observations om
22: Backproject virtual observations Om

23: Compute shape deformation parameters β
24: σ ← update variance
25: goto loop.
26: for all images do
27: procedure RIGID TRANSFORMATION
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SSM as described in chapter 2 [68].

The subject dataset is the following (Table 4.1):

• one healthy subject S0 who underwent a CT scan (Sensation Car-
diac 64, Siemens). The CT dataset is composed of 59 slices of
512×512 pixels each (0.7890625 mm/pixel). The slice thickness is
2 mm and the space between slices is 1.7 mm. The CT dataset was
used to generate the DRR for evaluation purposes.

• Seven osteoarthritic patients (Si, i = 1, . . . , 7) eligible for TKA
with different grades of osteoarthritis. The patients underwent a
preoperative CT scan from which the 3DSCT of the femur was
segmented [41]. The CT datasets were composed of DICOM im-
ages acquired with a SIEMENS Sensation 64 CT machine. Each
slice is 512x512 pixel (0.3516 mm/pixel) with a slice thickness of
0.6 mm and a spacing between slices of 0.4 mm. All the patients
were also imaged at seven fixed flexion angles using two sequen-
tial fluoroscopic projections with an AXIOM Luminos dRF flat-bed
(Siemens; Berlin, Germany) [8]. The first image was taken with the
projector placed horizontally (lateral image), while the second was
taken with the source at 10◦ below horizontal. Both projections
were calibrated using custom made calibration software [57]. The
fixed flexion angles (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) were obtained
using steps of different customized heights on which the subject
could step up. Three subjects (S1, S2, S3) with different grades of
osteoarthritis were selected to generate the DRRs of diseased knees.

All the patients signed an informed consent and the institutional
review board approved the study.
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Subject Age Gender Osteoarthritic grade CT DRR0/10/90 Fluoroscopies0/10

S0 47 F none x 0◦ : 3◦ : 72◦

S1 67 M severe x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S2 75 M mild x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S3 82 F moderate x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S4 65 F mild x 0◦ : 15◦ : 90◦

S5 75 M severe x 0◦ : 15◦ : 90◦

S6 71 F moderate x 0◦ : 15◦ : 90◦

S7 82 M mild x 0◦ : 15◦ : 90◦

Table 4.1: For each subject, the age, gender and osteoarthritic grade are indicated. All the
femurs analysed were right femurs. The DRR0/10/90 values indicate the angles for which
we generated the DRRs. We specify the starting and ending angle, with the step used. The
Fluoroscopies0/10 values indicate the angles of the fluoroscopic images.

In order to assess the model reconstruction performances all the CT
datasets were segmented using Amira® (VSG|FEI, France) and the anatom-
ical reference frame was defined as in [53].

The DRR is built integrating the density of each voxel of the CT along
the direction of each ray as in [52]. Three different sources and image
planes were simulated for each patient, resulting in three sets for each
patient: the first image shows a lateral view of the femur (L0), the second
and third images show a view rotated on the sagittal plane of 10 (L10)
and 90 degrees (L90) (see Figure 4.3) [71]. For Subject S0 we rotated the
femur from 0◦ to 72◦ with a step of 3◦ generating the ground truth pose
(Ti

GT0
, i = 0◦, 3◦, . . . , 72◦). The three pathological DRRs were instead

created rotating the femur from 0◦ to 80◦ with a step of 8◦ generating the
ground truth pose (Ti

GT1,2,3
, i = 0◦, 8◦, . . . , 80◦) [67]. The DRRs were

generated by an academic partner and there was no possibility to select
the angles of flexion.

Tests

The initialization is done as described in paragraph 4.2.2. The tracking
consists in finding the correct pose of the 3DS for all the images provided
for a given flexion sequence. The tests were performed with six different
conditions C1,...,7:

C1 : 3DS pose initialization with D0(0
◦) and D90(0

◦) and tracking with
D0 and D90 for all angles with S0, . . . , S3
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(a) DRR creation

F0

F10

(b) Fluoroscopy acquisition

Figure 4.3: Description of the virtual environment setup for the DRR creation and fluoroscopic
acquisitions. The source S0 was established on the medio-lateral axis, as well as the center
of D0 and F0.
For the DRR, D10 is obtained rotating the source-plane axis of 10 degrees on the horizontal
plane. D90 is obtained rotating the source-plane axis of 90 degrees, having it correspondent
to the antero-posterior axis.
For the fluoroscopies, F10 is obtained rotating the source-plane axis of 10 degrees on the
medio-lateral axis.

C2 : 3DS pose initialization with D0(0
◦) and D90(0

◦) and tracking with
D0 for all angles with S0, . . . , S3

C3 : 3DS pose initialization with D0(0
◦) and D10(0

◦) and tracking with
D0 and D10 for all angles with S0, . . . , S3

C4 : 3DS pose initialization with D0(0
◦) and D10(0

◦) and tracking with
D0 for all angles with S0, . . . , S3

C5 : 3DS pose initialization with F0(0
◦) and F10(0

◦) and tracking with
F0 and F10 for all angles with S1, . . . , S7

C6 : 3DS pose initialization with F0(0
◦) and F10(0

◦) and tracking with
F0 for all angles with S1, . . . , S7

For each trial, both the SSM (3DSSSM ) and the CT segmented shape
(3DSCT ) were used.

Results evaluation

The homogeneous matrix Ti
θ was constructed from the optimal parame-

ters θ returned by the ECM algorithm. In case of conditions C1, . . . , C4,
we computed Ti

residual = Ti
GT
−1 · Ti

θ. The errors were presented as
rotations (in terms of Euler angles) and translations of Ti

residual.
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For the conditions C3, . . . , C6, Edge to Surface (E2S) distance was
computed [13]. E2S is defined as the Euclidean distance between a point
on the 3D shape and the closest point on the associated contour pixel
back projection. In this way, E2S does not require the ground truth pose
to evaluate the accuracy of the algorithm. Kruskal-Wallis test with p <
0.05 was used to asses if the results for C3, . . . , C6 using 3DSCT and
3DSSSM were statistically different.

4.3 Results

Figure 4.4 represents the results of an optimization of a 3DSCT in C1

condition. As shown in the figure, the points of the projected silhou-
ette tend to overlay the points of the contour, in order to minimize the
distance between the two datasets.

Figure 4.4: Representation of the contour points and the silhouette points projected after the
optimization of the algorithm

In order to better understand the results, the errors have been ex-
pressed in the anatomical axes of the subject.

Figure 4.5 shows the values of rotation and translation of Tresidual

in the case of the healthy subject S0. As can be seen, in case of single
plane tracking or dual plane tracking with D0 and D10 the error in the
medio-lateral axis is increasing up to 3 cm with the flexion angle. The
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translation errors on the other axis, as well as the rotation errors on every
axis is bounded between some mm and 1 cm in the case of 3DSSSM . The
results are more accurate using the 3DSCT . In this case, the errors are
below 1 cm also in the out-of-plane axis (medio-lateral).

Figure 4.6 shows the errors in terms of rotation and translation for
conditions C1, . . . , C4 and using 3DSCT and 3DSSSM . In these figures it
can be seen that the error is generally lower in the case of 3DSCT , a part
from the medio-lateral axis of S2 when the error raises up to 6 cm. This
is due to a very distal cut on the shaft of subject 2, that makes difficult the
recognition of the correct pose of the shape. In S3 an angle dependent
trend is clearly visible, similar to those shown in Figure 4.5.

The edge to surface index is represented in Figure 4.7 for the only
tests with L0 and L10 images and for subject S1, S2, S3. Results are pre-
sented as a populations of E2S Root Mean Square Error (RMSE) for
each pose of the trials. Results were grouped for type of images analysed
(DRR or fluoroscopies). The parenthesis above the boxplot indicate that
Kruskal-Wallis test returned differences in the distribution median.

In Figure 4.8 are shown the E2S results for the fluoroscopic acquired
images. Patients S1, . . . , S7 proved to be statistically different only in a
few cases, with S2 that has the highest differences.

4.4 Discussion

This paper describes an innovative method to obtain the pose of the fe-
mur from single or biplane fluoroscopies to be used in knee tracking for
accurate planning of orthopaedic surgery, starting from a patient specific
model (obtained from volumetric dataset) or from a generic SSM. In the
latter case, the radiation dose for the patient can be reduced. Knowing
knee kinematics allows understanding pain zones associated with ten-
sions of the ligaments and contact of the bones on each other, improving
the outcome of the surgery.

Our registration method is based on GMMs and solves the Maximum
Likelihood (ML) problem using an ECM approach, which allows signif-
icantly reducing the computational costs. Only a few seconds per image
are enough to ensure the convergence of the system to the correct re-
sult, while for the previous methods [11, 67] several hours were needed
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Figure 4.6: Translation and rotation error of Tresidual for S1, S2, S3
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Figure 4.7: Comparison of the Edge to Surface index for subjects S1, S2, S3 with DRR or
fluoroscopic images
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Figure 4.8: Edge to Surface index for each subject with fluoroscopic images
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to reach convergence. Compared to previous works that used GMMs to
register two different shapes on each other [21,43,73], our approach im-
plements a 2D/3D registration, addressing the problem of a registration
between two datasets with different dimensions. The method works in a
semi-automatic way: it requires a rough initialization from the user and
a threshold parameter to extract the contours with a Canny edge detector,
saving time and improving the accuracy.

The results presented in our analysis show that the difference between
the SSM and the CT extracted shape is significant only in a few cases,
especially with diseased shapes. This can be due to limited morphing ca-
pability of the statistical model given by the low number (24) of healthy
knees used as datasets [67].

Overall, the implemented registration method proved to have results
comparable to the literature. In [13] the authors found a translation error
of a few mm (0.48-0.81 for the median accuracy, and approximately 2
mm for the precision), that are comparable with the results we found in
our experiments in the case of DRR tracking with S0 and C1.

The fluoroscopic images projection angle influences the tracking ac-
curacy of the depth dimension. The ML axis has bigger errors compared
to the others axis, because reducing the angle between the two projec-
tions from 90◦ to 10◦ decreases the pose determination accuracy [37].
The same behaviour regarding out of plane errors, can be observed when
the tracking is performed with single-plane fluoroscopy. The error in
depth increases from frame to frame, as there are no constraints on this
axis. In the case of diseased patients, the error in depth can reach up to
6 cm (Figure 4.6). In fact, the uncertainty given by the single projection
must be added to the non-perfect correspondence between the extracted
contours and the statistical shape. The same considerations could be as-
serted relative to the rotation errors. A-part from Subject S2, which has
a very distal cut of the diaphysis (due to a tight joint intraoperatively)
that compromises the reconstruction of the correct pose, the results are
in line with those presented in [7,63], who found errors below 1 cm with
a higher distance in the out-of-plane axis.

The evaluation of the accuracy with fluoroscopic images was per-
formed using the E2S index to allow an evaluation of the accuracy with-
out knowing the correct pose of the ground truth. The results show a
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statistical difference in the case of tracking with the 3DSCT (Figure 4.7).
This is probably due to a different Canny threshold, which influenced the
correct positioning of the shape. The same error is not visible in the case
of 3DSSSM thanks to the lower deformation of the shape. These results
are comparable with the ones stated by [13] who found an error of ap-
proximately 2 mm. However, their dataset had a bigger part of the shaft
included in the images and in the shapes, augmenting the accuracy of
the algorithm. Dealing with pathological subjects is more challenging,
especially with a reduced set of shapes that created the SSM. Results are
in the order of some mm (depending on the condition) and could be still
acceptable to evaluate the kinematics of the knee. The method proved to
be robust and efficient, especially when used with patient specific shapes.
For single image tracking higher constraints on the depth axis must be
implemented (e.g. a constrained motion of max 1 mm between frames).
Future work will increase the number of shapes to construct the SSM
and include also the tibia in the study, in order to have the joint angle
value for a proper kinematic analysis. The easiest way to incorporate the
tibia in the study is to treat femur and tibia as two different objects with
specific deformable shape. In this case the optimization will be done for
each object separately and the resulting pose in the common reference
frame (the absolute reference frame) could be related to get the joint
angle. Otherwise, a study on the knee kinematics could be done con-
sidering the whole joint. Femur and tibia move relatively to each other,
and this motion can be considered by a single pose registration for the
femur in the space followed by a constrained positioning of the tibia with
respect to the pose of the femur.
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CHAPTER5
Conclusions

The study herein presented describes two different algorithms to obtain
femur kinematics representation in the 3D space. Both algorithms are
based on fluoroscopies and a Statistical Shape Model (SSM), resulting
in a totally non-invasive method. Fluoroscopic sequences of images are
already used in clinics to evaluate the kinematics of pathologic knees be-
fore surgery. The use of a completely automatic method improves the
skills of the surgeon, providing a tool that allows the visualization of the
movement from any point of view and reduces the efforts for planning
the intervention. The surgeon is thus relieved from the duty of manually
reconstructing the knee kinematics, resulting in a faster and more accu-
rate registration. The clinical applicability is confirmed by the complete
non invasiveness of the method, that works with data already acquired
by the clinicians for a more complete representation of the 3D motion.

This study paves the way to a more complex planning software, com-
pletely integrated with the operating room devices, that goes on with
the patient from the diagnosis to the follow up of the operation. Some
crucial points are however still open: the SSM database is too small to
accurately represent all the different bones and types of deformation of
a generic osteoarthritic patient. The dataset must be enlarged, both with
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healthy subjects, to reinforce the average shape, and with diseased knees,
to expand the variability of the deformations.

Other limits of the study are intrinsic limits of the software. The algo-
rithm based on Genetic Algorithm (GA) does not have an execution time
compatible with surgery, as the fluoroscopic study needs some hours to
be processed. Recent changes in computer processor have enhanced the
frequency and capability of the machines. The algorithm, as proposed
in this thesis, was developed on a Matlab interface, which slows down
the performances as it is based on an interpreted language. The code
could however be converted to a C++ language, intrinsically faster. Per-
formance of the machine on which the code runs can be enhanced us-
ing a GPU approach and parallelizing the computation of the point dis-
tances for the optimization. The same optimization could be done for the
Gaussian Mixture Model (GMM) based algorithm. In this case, however,
the optimization is not critical, as the time employed by the algorithm is
just a few minutes.

Both algorithms, when used with SSMs, need the initialization per-
formed with two images. In fact, the SSM does not take into consider-
ation the dimension of the bone segment that can change from subject
to subject. When the tracking is performed with a single image, shape
scaling can be confused with the location on the out-of-plane axis. This
problem is not present if the algorithm works with two images or if the
shape is derived from a Computed Tomography (CT) segmentation, that
does not need scaling and deformation.

As observed in the results, the contour extraction plays a critical role
in the accuracy of the algorithm. It is in fact the observation that both
algorithms use to approximate pose and shape of the model. It is cur-
rently performed with a semi-automatic process based on β-splines, that
require a great amount of time and the attention of the surgeon to identify
the correct path along the image. This step could be optimized and made
automatic using a Canny edge detector. A graphical user interface has
been developed in order to perform this task. The clinician can set the
two thresholds on which the Canny edge detector is based. The selection
is performed interactively, so that the user can choose the best middle
way between a noisy and a complete contour. In this way, the path is
detected by the canny edge detector, and the clinician must only check
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the correctness of the result.
The initial standard deviation of the Gaussian Mixture, that is cur-

rently guessed by the user depending on the number of points and on the
initial distance between the shape and the backprojected contour, could
be optimized using a tuning criterion based on the same factors. A simi-
lar optimization can be performed for the radius of the spherical volume
used to consider the outliers in the GMM based algorithm. Although not
fundamental, these optimizations improve the convergence of the algo-
rithm and thus the execution time of the software.

Overall both methods proved to be robust and accurate, even with the
small limitations described in this chapter. The trials performed indi-
cate that the methods could be used in clinics, to help the surgeon with
the planning of the intervention. Future advancements will concern the
complete analysis of the knee joint, including both tibia and patella in
the 2D/3D registration. The SSM as presented in chapter 2 has been
already built also for tibia and patella. The 2D/3D registration could
be performed using the same software developed here and described in
chapter 3 and in chapter 4. The presentation to the clinicians, however,
must be done through a graphical user interface, easy to use and imme-
diate to understand. The developed software could then become a valid
tool that can help the surgeon during pre-operative planning. All the
steps will be clearly explained and the parameters can be changed in real
time. Thanks to the velocity of the algorithm, numerous trials could be
performed with different parameters. The surgeon can thus have a smart
software able to adapt to different cases, which uses standard clinical ex-
ams already performed in the routine and elaborates them at nearly no
cost.
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