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Abstract

Metal oxides have been proposed as candidate materials for a number of
renewable energy technologies, ranging from catalysis, to photocatalysis
and solar cells. In applications involving the conversion of solar
energy into chemical or electrical energy (e.g., in the case of
photoelectrochemical devices or solar cells), a thorough understanding
of the electronic structure and electronic excitation mechanisms is
necessary. In catalytic applications instead, the chemical reactivity of the
material, as well as the energetics relative to catalytic processes in which
the material is actively involved, should be adequately characterized.
Great challenges are posed to theory when these materials properties
are to be computed using first-principles methods, with particular regard
to density-functional theory (DFT) and many-body perturbation theory
(MBPT).

In this thesis, DFT with hybrid exchange-correlation (xc) functionals
are employed for calculation of the electronic structure and ground-state
properties of wide-gap oxide materials. The employed hybrid functional
can be considered as nonempirical, as the fraction of exact exchange to
be admixed in the xc potential is evaluated ab initio for each material
using a procedure which can be rigorously justified within MBPT.
Results of various benchmarks of the method are reported for both bulk
pristine and defective oxides. For the latter case, oxygen vacancies
are investigated as a prototypical intrinsic point defect in transition
metal oxides: the calculated properties are critically compared with
various experiments characterizing charge localization and excitation
mechanisms in the defective material. Furthermore, aluminum-doped
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silicon dioxide is studied as a well-known system in which popular
hybrid functional approximations fail in reproducing well-established
experimental findings, due to inaccurate description of the ground state,
which can be ultimately traced to the arbitrariness of the amount of exact
exchange built in these functionals.
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Sommario

I materiali ossidi sono promettenti candidati per un gran numero
di applicazioni tecnologiche di rilevanza nel campo delle energie
rinnovabili, dalla catalisi, alla fotocatalisi, alle celle solari. Per
applicazioni in cui si vede necessario convertire l’energia solare in
energia chimica o elettrica (ad esempio nei dispositivi fotoelettrochimici
e nelle celle solari), è richiesta una conoscenza accurata della
struttura elettronica del materiale, così come dei meccanismi di
eccitazione elettronica. Per le applicazioni in catalisi, invece, è
necessario ottenere una buona caratterizzazione della reattività chimica
del materiale e dell’energetica associata a processi catalitici che
coinvolgono direttamente il materiale stesso. La descrizione quantitativa
da principi primi di queste proprietà, in particolare nell’ambito della
teoria del funzionale di densità (density-functional theory, DFT) e della
teoria delle perturbazioni a molti corpi (many-body perturbation theory,
MBPT), è ancor oggi oggetto di intensi sforzi di ricerca.

In questa tesi, la teoria del funzionale di densità in combinazione
con funzionali ibridi di scambio e correlazione sono utilizzati per il
calcolo della struttura elettronica e delle proprietà di stato fondamentale
di materiali ossidi ad ampio gap. Il funzionale ibrido utilizzato può
essere considerato non empirico, essendo la frazione di scambio esatto
valutata da principi primi sulla base di una procedura che può essere
rigorosamente giustificata nel contesto della teoria delle perturbazioni
a molti corpi. Viene riportata una validazione del metodo per il
calcolo di diverse proprietà di ossidi bulk ideali e difettivi. Nel
secondo caso, le vacanze di ossigeno sono studiate come difetto di
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punto prototipo negli ossidi di metalli di transizione: le quantità
calcolate vengono criticamente messe a confronto con i risultati degli
esperimenti caratterizzanti la localizzazione di carica e i meccanismi di
eccitazione nel materiale difettivo. Inoltre, il diossido di silicio drogato
con alluminio viene analizzato come materiale modello in cui i più
comuni funzionali ibridi non sono in grado di dare una descrizione
corretta dello stato fondamentale del sistema, una caratteristica che
deriva dall’arbitarietà della frazione di scambio esatto presente in tali
funzionali.
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CHAPTER1
Introduction

1.1 The Electronic Structure Problem

Electronic structure theory constitutes a fundamental tool for
investigating electronic, optical and electrical properties of crystals, in
which qualitatively new, complex physical phenomena emerge when
a huge number of atoms are brought together to form the solid in
the crystalline phase. The overlapping of atomic orbitals gives rise to
extended, energy-dispersive electronic bands.

The theory of electronic bands was pioneered in 1928 by Felix
Bloch [23], who first realized that the simplest and very fundamental
description of electrons in crystals is that of a system of independent
particles moving in a periodic potential. In a perfect crystal, the
single-electron wavefunction obeys Bloch’s theorem and is an eigenstate
of the crystal momentum k, the conserved quantity associated with the
discrete translational symmetry of the underlying atomic lattice.

Early quantitative calculations of electronic bands for simple metals
were performed in the 1930s and 1940s [166,284,324] using the cellular
method, a precursor of the atomic sphere methods which constitute the
basis of some of today’s state-of-the-art approaches for ab initio band
structure calculations. In the early 1950s, the first calculations of the
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Chapter 1. Introduction

band structure of semiconductors also appeared [129].
Most of the current research efforts in the theory and computation of

the electronic structure and optical properties of materials are pursued
within density-functional theory [147] and many-body perturbation
theory [226]. Through these approaches, first-principles calculation1

of the structural, thermodynamic, and optoelectronic properties of
complex, realistic condensed-matter systems can be pursued. The
objective of the Part I of this thesis concerning “Theoretical Methods”
is to overview the fundamental concepts underlying these two different
theoretical schemes, as well as their application to investigation of both
perfect and defective2 insulating materials.

The aim of any theoretical approach to the study of condensed
matter, and in particular of its electronic properties, is ultimately
that of solving the many-body Schrödinger equation for a system of
electrons (coordinates ri, momenta pi, charge −e, mass m) and nuclei
(coordinates RI , momenta PI , charge +zIe, mass MI) interacting via
the Coulomb force, whose Hamiltonian reads

Ĥ =
∑
i

|p̂i|2

2m
+
∑
I

|P̂I |2

2MI

+
∑
i

Vnucl(r̂i)

+
1

2

∑
i 6=j

e2

|r̂i − r̂j|
+

1

2

∑
I 6=J

zIzJe
2

|R̂I − R̂J |

(1.1)

with

Vnucl(r̂) = −
∑
I

zIe
2

|r̂− R̂I |
.

The above Hamiltonian is exact in the nonrelativistic limit, in the
absence of external electromagnetic fields, and if energy terms related to
the spin and the magnetic moment of electrons and nuclei are neglected.
Thus, the terms appearing in its expression represent, respectively, the
kinetic energy of the electrons, the kinetic energy of the nuclei, the
electron-nucleus attractive potential energy, the electron-electron and
nucleus-nucleus repulsive potential energy.

Within the adiabatic Born-Oppenheimer approximation [26] the
nuclei are assumed frozen in a given configuration,3 and the nuclear

1In the present context, a method is referred to as first-principles, or ab initio, if information from
experiments is not used (i.e., the defining model Hamiltonian does not contain empirically fitted parameters);
in principle, only the chemical nature of the atomic species constituting the system is to be known in advance.

2In particular, point defects such as atomic impurities or vacancies are addressed in this thesis.
3This configuration may correspond, for example, to the equilibrium one, in which all the atomic forces

vanish.
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1.1. The Electronic Structure Problem

coordinates thus play the role of parameters in the Hamiltonian (1.1).
Correspondingly, the electron-nucleus potential energy becomes a
constant external field acting on the electronic subsystem, and the
nuclear repulsion term is a constant for any fixed configuration, which
may be canceled by appropriate choice of the energy reference. The
original problem is thus reduced to that of solving the many-body
Schrödinger equation ofN interacting electrons in the external Coulomb
field created by nuclei,

ĤeΨ(r1 σ1, . . . , rN σN) = EΨ(r1 σ1, . . . , rN σN), (1.2)

where σi is the spin coordinate of the i-th electron. The many-electron
Hamiltonian reads

Ĥe =
∑
i

|p̂i|2

2m
+
∑
i

Vnucl(r̂i) +
1

2

∑
i 6=j

e2

|r̂i − r̂j|
, (1.3)

where, in the coordinate representation, r̂ = r, and p̂ = −i~∇.
Even within the adiabatic approximation, the problem is not

fundamentally reduced in its complexity, as the actual difficulties stem
from the electron-electron interaction term, which makes solving the
Schrödinger equation (1.2) an exceptionally hard task to tackle, even
for the simplest molecules and solids. In fact, through this interaction
term, the motion of each electron is intricately correlated to that of all
the others, and the many-electron wavefunction cannot be expressed
as a (antisymmetric) product of one-electron wavefunctions (i.e., a
Slater determinant).4 However, such correlation effects can be equally
represented by recasting the many-electron problem into an equivalent
one for independent particles moving in an effective generalized
potential, which incorporates all the nontrivial many-body interactions.
Density-functional theory (DFT) and many-body perturbation theory
(MBPT) provide different, but equally theoretically justified, approaches
to perform this mapping: the resulting single-particle Schrödinger-like
equation to be solved is known as the Kohn-Sham equation and the
quasiparticle equation, and the potential containing correlation effects
are the exchange-correlation potential and the electron self-energy,
respectively. Either within DFT or MBPT, an approximation for
the relevant effective potential must be devised: some of the most
popular approximations will be presented in Chapters 2 and 3. The

4The ansatz of a product wavefunction leads to the Hartree (simple product) [122], or the Hartree-Fock
(antisymmetrized product) [91] approximations, in which dynamical electronic correlation is completely
missing.
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Chapter 1. Introduction

reformulated many-body problem can thus be solved by resorting to
standard numerical algorithms, and the availability of high-performance
computing resources today makes it possible to investigate the properties
of realistic condensed-matter systems (containing hundreds of atoms).

However, the scope of the two methods is actually different: in its
most common implementation, based on the ideas of Kohn and Sham
[157], DFT is in principle only able to provide the exact ground state
of the quantum system, thus allowing one to compute the corresponding
total energy and other quantities directly related to it. Instead, the MBPT
scheme is naturally suited to address excited states, as some quantities
defined within it (most notably, quasiparticle energies) are apt to direct
and rigorous comparison with spectroscopic observables. Using both
approaches, or an appropriate combination of the two, first-principles
calculation of the electronic structure of solid-state systems can be
pursued, often resulting in satisfactory agreement with experiments.

1.2 Electronic Structure Through DFT and MBPT:
State of the Art

The success of DFT [136] as the today’s standard computational
approach to investigation of a broad variety of solid-state and molecular
systems is justified by its relatively low computational cost, together
with the often good accuracy achieved in the calculation of ground-state
properties [147]. In contrast, excited states are usually poorly described,
being beyond the scope of DFT in the usual Kohn-Sham (KS)
implementation [157]. The KS equations (a system of N coupled
eigenvalue equations)5(
−~2∇2

2m
+ vext(r) + vH[n](r) + vxc[n](r)

)
φi(rσ) = εiφi(rσ) (1.4)

represent the (exact) Schrödinger problem for a system of effectively
independent electrons (described by single-particle orbitals φi), into
which the original many-body problem can be rigorously mapped.
KS electrons are subject to an effective potential vs[n] (the KS
potential) expressible as a functional of the electronic density.6 vs[n]
can be separated into different contributions: the external potential
vext, typically describing the electrostatic field created by the nuclei,

5The index i is shorthand notation for both orbital and spin quantum numbers, and labels single-particle
states in order of increasing energy.

6More precisely, the total energy is a density functional, and the potential is then obtained by
differentiation.
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1.2. Electronic Structure Through DFT and MBPT: State of the Art

the classical (Hartree) contribution coming from electron-electron
interactions, vH[n], and the unknown exchange-correlation (xc) potential
vxc[n], which accounts for all the remaining quantum many-body effects
(electronic exchange and correlation).7

Plenty of approximations have been proposed for vxc[n] in the
literature; the simplest one relies on the assumption that at each point in
the system, the xc energy is given by the xc energy of an homogeneous
electron gas with density equal to the local density [157]. An extension
of this local density approximation (LDA) to include gradient terms in
the local expansion of the density leads to formulation of a new class
of functionals, known as generalized gradient approximations (GGA)
[177]. While working surprisingly well for many ground-state properties
of a wide range of materials, both LDA and GGA fail in providing
electronic band structures in quantitative agreement with experiments.
Remarkably, the band gap, obtained from the eigenvalue difference of
the first unoccupied and last occupied KS orbital, [εN+1(k) − εN(k)],
turns out to be severely underestimated with respect to experimental
values in most semiconductors and insulators. Such behavior is
intimately connected with the fundamental properties of the standard
KS scheme, as discussed Section 2.3).

The need to improve calculated thermochemical properties of
molecular systems led to formulation of a new class of xc functionals,
known as hybrid functionals [19, 20, 244, 292]. Hybrid xc energy
functionals are typically constructed by admixing a GGA-type xc
functional with a portion of the exact Hartree-Fock (HF) exchange
energy. In fact, quantitative deviation of calculated molecular
ground-state properties from experiments can be attributed to the
self-interaction error, i.e. the incomplete cancellation of the Hartree
self-interaction energy by the corresponding term in the exchange
term, which affects both LDA and GGA [248], while being absent by
construction in HF. Hybrid functionals thus constitute an attempt to
partially compensate for such error. They are now routinely applied
to extended, solid-state systems, for which they proved superior to
LDA and GGA in the calculation of electronic band structures, often
providing band gaps in quantitative agreement with experiments [54,
200, 216, 235]. A rigorous rationalization of this improvement can be
given in the context of a generalized KS scheme [271], allowing for
inclusion of nonlocal potentials in the class of admissible xc potentials;
incorporating a portion of nonlocal HF exchange, hybrid functionals do

7For a more detailed definition of these quantities, see Section 2.1.2.
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Chapter 1. Introduction

belong to this class (see Section 2.2.3).
Clearly, the performance of the hybrid functional is closely related to

the amount of exact exchange (EXX) used for its construction. Popular
hybrid functionals have this exchange fraction set to a constant value of
20% (B3LYP [292]) or 25% (PBE0 [244] and HSE06 [132, 133]), but
at the time such choice was ultimately guided (for PBE0 and B3LYP)
by comparison with experimental data (for atomization energies of
standard set of molecules), so that the exchange fraction may be in fact
considered as a semiempirical parameter in these functionals. On the
other hand, application of the B3LYP or PBE0 to solid-state systems
is not completely justified, since these functionals were not originally
conceived for materials, and hence the value of the exchange fraction
therein is not necessarily relevant to calculation of extended systems.
In the end, one needs to seek for the actual physical significance of the
exchange fraction in solids, and to devise an approach to evaluate it from
first principles, i.e. not via direct or indirect relation with experiments.
Such a program can be carried out by analyzing the formal similarities
between the KS equation (1.4) and the quasiparticle equation derivable
within MBPT [141],(
−~2∇2

2m
+ vext(r) + vH(r)

)
fi(rσ)

+
∑
σ′

∫
d3r′Σ(rσ, r′σ′, εQP

i )fi(r
′σ′) = εQP

i fi(rσ),
(1.5)

where the electron self-energy Σ is a generalized effective potential
containing all the effects of exchange and correlation among electrons.8

fi and εQP
i are the quasiparticle wavefunction and eigenvalues,

which characterize effective single-particle states in the interacting
many-body system (see Section 3.1). Notice that in the case of a
crystal, the difference [εQP

N+1(k) − εQP
N (k)] would exactly correspond

to the measurable quasiparticle gap as obtained from photoemission
experiments. Systematic approximations to the self-energy Σ can be
derived within MBPT, and the well-known GW approximation [126]
is the most commonly used one for state-of-the-art electronic structure
calculations of materials [141] (see Section 3.1.3).

Given the manifest analogy between the KS equation (1.4) and
the quasiparticle equation (1.5) (within the hybrid functional scheme,
vxc[n](r, r′) can be viewed as an energy-independent, Hermitian, but

8The electron self-energy in general is a nonlocal, energy-dependent, and non-Hermitian operator.
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1.3. Oxide Materials: Theoretical Challenges and Applications

possibly nonlocal approximation to Σ), one can seek for a formal
relationship between the expression of the hybrid vxc, and Σ as
obtained in the static limit of GW , i.e. within the Coulomb-hole
and screened-exchange (COHSEX) approximation proposed by Hedin
[126]. Remarkably, the exchange fraction can thus be identified
as the inverse macroscopic dielectric constant of the material [6,
198] (see Section 3.3). Hence, the exchange fraction is defined
for each material, and can be evaluated within DFT starting from
a chosen xc approximation. Furthermore, it has been demonstrated
that the exchange fraction and the dielectric constant can be
obtained self-consistently, leading to definition of a self-consistent
dielectric-dependent hybrid functional [283]. This method proved
superior to standard hybrid functional formulations in providing band
gaps in quantitative agreement with experiments [198, 283], besides
ensuring at least the same accuracy in the calculation of structural
properties and total energies for a wide range of bulk semiconductors
and insulators (see Chapter 5). Demonstrating the capabilities of this
approach in investigating the properties of pristine and defective bulk
oxide materials is the principal objective of this thesis.

1.3 Oxide Materials: Theoretical Challenges
and Applications

Metal oxides, and in particular transition metal oxides (TMOs), are
certainly one of today’s most investigated chemical compounds in
condensed matter physics. This interest is motivated both by the
exceptionally rich physical phenomena encountered in these materials,
going from magnetism to high-temperature superconductivity and
strongly correlated phenomena [55, 152], and by the many potential
technological applications (mainly utilizing semiconductors), ranging
from microelectronics to the development of devices for solar energy
harvesting and conversion.

In TMOs, the presence of localized, narrow d electronic bands
plays a fundamental role in determining many interesting electronic and
magnetic properties, making at the same time theoretical modeling of
these materials a challenging task. In the following, a broad discussion
on the present challenges concerning calculation of various properties
of bulk and defective oxide materials is presented; selected examples
of applications are also discussed in connection with some of these
properties.
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Chapter 1. Introduction

1.3.1 Electronic Structure and Photocatalysis

Characterizing the electronic structure of materials is certainly
paramount for photocatalytic applications [253], in which certain
semiconductors can catalyze conversion of sunlight into chemical
energy (producing fuels) [114]. For example, production of hydrogen
through photoelectrochemical splitting of water is a promising field
of application for TMOs [308]. In a typical configuration for water
splitting devices, the semiconductor is placed in contact with an aqueous
electrolyte, and serves as a component for separation of the negative and
positive charge carriers (electrons and holes) upon light absorption and
application of a bias voltage. In order to optimize device performance,
the material should efficiently absorb light in the visible range, and
this limits its band gap to a maximum value of ∼ 3.1 eV. Instead, the
minimum band gap value is determined by the energy required to split
water, corresponding to its redox potential of 1.23 eV, which in devices
is increased up to ∼ 1.9 eV in order to compensate for thermodynamic
losses and the overpotential that needs to be applied in order to boost
reaction kinetics.

Another aspect to be taken into account is the alignment of the
semiconductor band edges with respect to water oxidation and reduction
potentials; in fact, the valence band maximum should be below the
oxidation potential, and the conduction band minimum above the
reduction potential, in order to allow for oxidation and reduction of
water, respectively.

Wide band gap oxide semiconductors have been identified as
promising materials for photocatalytic applications, due to their suitable
electronic structure features [168]. Theoretical investigations have
demonstrated that state-of-the-art DFT (e.g., hybrid functionals) and
many-body (GW ) methods generally achieve a good description of
bulk (see Chapter 5 and references therein) and surface and interface
[209, 210, 252, 312, 317] band structures of oxide materials. Moreover,
band engineering by incorporation of dopant species in the host material
offers an attractive way to improve light absorption efficiency and
band edge positioning, and constitutes a very active field of theoretical
research [72].

1.3.2 Thermochemical Properties and Catalysis

In many other applications, such as in catalysis, one needs to
characterize the chemical reactivity of the material. Oxide materials can
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serve as active catalysts for promoting oxidation and dehydrogenation
reactions. For example, oxidation of carbon monoxide (CO) can be
efficiently achieved by exposure to a rutenium dioxide (RuO2) surface
[228]. Here the Mars-van Kravelen mechanism [199] takes place: the
CO molecules get adsorbed at the RuO2(110) surface, which is highly
reactive thanks to the presence of unsaturated dangling bonds belonging
to the surface Ru atoms; when the CO-covered surface is heated, not
only CO, but also CO2 molecules detach from the surface, which are
formed by surface O atoms reacting with the adsorbed CO. Thus, an
oxygen vacancy (O vacancy) is created at the surface, which can be filled
by exposure to gas phase oxygen, leading to regeneration of the catalyst.
Clearly, the efficiency of the overall catalytic process is influenced by the
energy cost of removing an O atom from the material (i.e. of creating an
O vacancy). The presence of excess electrons consequent to removal of
the O atom leads to reduction of the original oxide material,9 eventually
changing its stoichiometry. One then is interested in evaluating reaction
energies associated to prototypical reduction pathways, such as, in the
case of bulk titanium dioxide (TiO2),

2 TiO2 + H2 → Ti2O3 + H2O (1.6)
2 TiO2 → Ti2O3 + 1/2 O2. (1.7)

The oxidation state of the Ti cation passes from +4 in TiO2 to +3 in
the reduced oxide, Ti2O3, determining a transformation in the oxide
stoichiometry.

A number of theoretical investigations have attempted to address the
calculation of thermochemical quantities in oxides (for a review, see
Ref. [232]), of which the energetics of model reduction processes like
(5.1) and (5.2) is a prototypical example. However, it has been found that
density-functional methods able to describe the thermochemistry are not
necessarily equally capable of providing the correct description of the
electronic band structure, and viceversa. This is dramatically evidenced
when one tries to study the reduction of TiO2 by means of DFT + U
methodologies [189], where the Hubbard parameter U represents the
effective Coulomb interaction for the d-electron subsystem. One then
notices that U values that allow for a good description of the band
structure of TiO2 give reduction reaction energies in stark disagreement
with experiment [139]. This questions on the actual predictivity of these
methods, as long as they contain adjustable parameters whose value is

9This chemical reduction manifests itself in the reduction of the formal charge attributed to the metal
ionic species in the oxide compound.
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to be optimized according to the analyzed property.
In this thesis, the dielectric-dependent hybrid functional method

briefly introduced in Section 1.2 is proposed as a fully ab initio approach
to address the above issues. Benchmarks of its performance are reported
for several polymorphs of five different oxide materials in their bulk
structure.

1.3.3 Defective Oxide Materials: Oxygen Vacancies
and Al-Doped SiO2 as Case Studies

Clearly, the chemical reductions (5.1) and (5.2) constitute just
representative mechanisms of modification of the original oxide
stoichiometry. Actually, the formation of an O vacancy in oxides
(occurring, e.g., through the Mars-van Kravelen mechanism described
above) involves a much richer phenomenology, which cannot be
captured by such a simple model. Thus, one has to directly tackle
the modeling of a nonstoichiometric oxide, which calls for studying
the effects of removal of one single O atom from an otherwise perfect
crystal (see Section 4.1). In fact, this implies not only addressing
the energetics (calculation of the vacancy formation energy), but also
adequately describing the building up of defect levels in the band gap
and the distribution of the related excess charge in the neighborhood of
the defect. The presence of O vacancies substantially alters the optical,
electrical, and magnetic properties of oxide semiconductors [98, 231],
and a correct interpretation of experiments requires these modifications
to be taken into account. A careful control of the defectivity plays a
fundamental role in many applications other than catalysis [232], such
as information technology [265], gas sensors [160], and smart windows
[219]. In catalysis, oxide doping with heteroatoms is a promising way
to reduce the energy cost for oxygen removal (i.e., O vacancy formation
energy) [205], leading to possibly increased catalytic efficiencies.

Modeling of O vacancies in oxide materials is a challenging task,
and the accuracy of the description achieved within DFT is strongly
dependent on the level of approximation used for exchange and
correlation [233]. Local or semilocal functionals such as LDA or GGA
tend to produce delocalization of the excess charge in the host material
(i.e., to poorly describe the defect wavefunction), as a consequence
of the self-interaction error inherent in these approximations [73].
Furthermore, defect levels experimentally found in the bulk band gap
are actually predicted by these methods to hybridize with the band
edges, leading to an incorrect picture. Hybrid functionals generally
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help correcting this problem [64], thanks to incorporation of a portion
of EXX in the density functional. This leads to opening of the
band gap, correcting the position of the band edges [5], and as a
result localized defect levels in the gap show up. Actually, if one
wants to characterize electronic transitions involving such defect levels,
a quantitatively accurate description of the bulk electronic structure
is a necessary prerequisite. Hence, the dielectric-dependent hybrid
functional, being able to provide band gaps in quantitative agreement
with experiments for wide-gap oxides [100, 198, 283], is a promising
candidate for modeling defects; O vacancies represent a prototypical
intrinsic point defect in these materials, where they are inevitably
formed throughout the synthesis process, as a result of the exposition
of the samples to high temperatures and strongly reducing atmospheres.
Hence, they stand out as an ideal test for the performance of the method
in describing defective oxides.

Finally, it is worthwhile to quantify to what extent the self-interaction
error is avoided in the dielectric-dependent hybrid approach. In fact,
this is an important source of inaccuracy in the description of defective
semiconductors and insulators, as explained above. A paradigmatic
system in which incomplete cancellation of self-interaction leads to
a clearly incorrect ground state is aluminum-doped silicon dioxide
(Al-doped SiO2) [172,234]. In this system, the unpaired electron created
by substitution of a tetravalent Si cation with a trivalent Al atom is
predicted by most density-functional methods to be delocalized over
two or more O atoms surrounding the Al impurity, at odds with the
experimental evidence which suggests it to be trapped at a single O atom.
Popular hybrid functionals such as B3LYP also fail in reproducing the
correct experimental picture; it has thus been argued that the amount of
EXX admixed is critical to obtain a truly self-interaction-free functional.
The self-consistent dielectric-dependent functional is here proposed as a
nonempirical approach to evaluate the optimal exchange fraction. Being
this functional an approximate DFT implementation of the many-body
COHSEX potential, in which by construction the exchange contribution
is treated exactly, it is an almost obvious question to wonder if this
property translates into the absence of self-interaction error in the
directly derived DFT method.

11



Chapter 1. Introduction

1.4 Structure of the Thesis

This thesis is organized in two parts: the first one presents a general
overview of ab initio theoretical methods which can be applied to
investigation of bulk and defective materials, and in particular:

• In Chapter 2, a review of density-functional theory methods is
reported, providing a rigorous introduction to the hybrid functional
formalism; different numerical implementations of DFT employed
in this work, corresponding to usage of different basis sets for the
expansion of KS orbitals, are also discussed.

• Chapter 3 provides an overview of many-body perturbation
theory methods based on Green’s function theory, with particular
reference to the GW approximation, which represents the
state-of-the-art approach for electronic structure calculations.
Connection of MBPT with DFT is also discussed, leading
to the notion, central to this thesis, of (self-consistent)
dielectric-dependent hybrid functional.

• Chapter 4 deals with application of DFT methods within the
supercell approximation to characterization of point defects in
insulating materials. The charge-transition level formalism is also
discussed as a useful and rigorous approach to calculation of
excitation and emission energies associated to electronic transitions
involving defect levels and the bulk conduction and valence bands;
connection to experimentally measurable spectroscopic quantities
is discussed.

In the second part of the thesis results of calculations for several bulk
and defective oxide semiconductors and insulators are collected.

• In Chapter 5, band gaps and phase stabilities of five different
oxide materials (MgO, ZnO, TiO2, ZrO2, and WO3) in several
crystallographic structures are investigated by comparing the
performance of different DFT functionals against computed GW
band structures and experiments.

• In Chapter 6, the behavior of O vacancies in rutile and anatase
TiO2, room-temperature monoclinic WO3, and tetragonal ZrO2

is studied using the self-consistent dielectric-dependent hybrid
functional. Calculated charge-transition levels relative to the
O-vacancy defect are compared with the available experimental
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results, with the goal of shedding light on the underlying excitation
mechanism, and related materials properties.

• In Chapter 7, the long-standing problem of the hole localization
at the Al impurity in quartz SiO2 is addressed. Agreement
of theoretical results with electron paramagnetic resonance and
optical experiments is discussed.

Most results discussed in this thesis are adapted from the following
papers by the author, which have been published or will be shortly
submitted for publication in peer-reviewed journals:

[C1] M. Gerosa, C. E. Bottani, L. Caramella, G. Onida, C. Di
Valentin, and G. Pacchioni. Electronic structure and phase stability
of oxide semiconductors: Performance of dielectric-dependent
hybrid functional DFT, benchmarked against GW bandstructure
calculations and experiments. Phys. Rev. B 91:155201, 2015.

[C2] M. Gerosa, C. E. Bottani, L. Caramella, G. Onida, C. Di Valentin,
and G. Pacchioni. Defect calculations in semiconductors through
a dielectric-dependent hybrid DFT functional: the case of oxygen
vacancies in metal oxides. J. Chem. Phys., 143:134702, 2015.

[C3] M. Gerosa, C. Di Valentin, C. E. Bottani, G. Onida, and G.
Pacchioni. Hole localization in Al-doped quartz SiO2 within ab
initio hybrid-functional DFT. J. Chem. Phys., 143:111103, 2015.

[C4] M. Gerosa, C. E. Bottani, G. Onida, C. Di Valentin, and G.
Pacchioni. Electrochromic properties and conductivity of reduced
γ-monoclinic WO3: The anisotropic behavior of the oxygen
vacancy. In preparation.

Chapter 4 contains material from [C1], Chapters 3 and Chapter 5 from
[C2], and Chapter 6 from [C3]. [C4] is partially included in Chapter 5.
In the following, atomic units ~ = m = e = 1 are understood when not
stated otherwise.
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CHAPTER2
Density-Functional Theory Methods

2.1 Fundamentals of Density-Functional Theory

Density-functional theory (DFT), in the approach developed by
Hohenberg and Kohn [136] which addresses the static properties of
an interacting quantum system,1 allows one to look at the many-body
problem from a new, quite revolutionary perspective. In fact, instead
of directly tackling the solution of the many-electron problem (1.2)
(consisting of computing the energy spectrum Ek and the corresponding
wavefunctions |Ψk〉), it focuses on the general structure of the
many-body Schrödinger equation and on the fundamental relationships
among its ingredients.

2.1.1 The Hohenberg-Kohn Theorem

A rigorous definition for such relationships is provided by the
Hohenberg-Kohn (HK) theorem [136], whose fundamental statements
are reported in the following. Consider a system of N interacting
spin-1

2
particles (typically electrons) with Hamiltonian Ĥ = T̂ +

V̂int + V̂ext, where T̂ =
∑

i |p̂i|2/2 is the kinetic energy operator,
1It thus tackles the solution of the time-independent many-body Schrödinger equation.
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V̂int = (1/2)
∑

i 6=j vint(r̂i, r̂j) denotes the total particle-particle potential
energy (it would correspond to the electron-electron repulsive potential
of Eq. (1.3) for a system of electrons), and V̂ext =

∫
d3r vext(r)n̂(r) is

a (spin-independent) external potential acting on the system (identified
with the nuclear electrostatic field of Eq. (1.3) for a system of electrons
in a crystal); n̂(r) is the particle density operator. The following
statements can be proven.

(a) There is a one-to-one correspondence between vext(r), the
(nondegenerate) ground state |Ψ0〉 resulting from solution of the
Schrödinger equation with Hamiltonian Ĥ , and the ground-state
density n0(r) = 〈Ψ0| n̂(r) |Ψ0〉,

vext(r) ⇐⇒ |Ψ0〉 ⇐⇒ n0(r), (2.1)

up to a constant shift in vext(r). Mathematically, one can state that
the ground state is a unique functional of the ground-state density,

|Ψ〉 = |Ψ[n]〉 =⇒ |Ψ0〉 = |Ψ[n0]〉 . (2.2)

(b) Any ground state observable is a density functional,

O[n] = 〈Ψ[n]| Ô |Ψ[n]〉 (2.3)

and, in particular, the ground state energy reads

E[n] = 〈Ψ[n]| Ĥ |Ψ[n]〉 = F [n] +

∫
d3r vext(r)n(r) (2.4)

where F [n] = 〈Ψ[n]| T̂ + V̂int |Ψ[n]〉 is a universal functional, in
the sense that it only depends on the nature of the particle-particle
interaction potential.

(c) The energy functional E[n] satisfies a variational principle: if n0 is
the ground-state density corresponding to vext, then

E[n0] < E[n] for any n(r) 6= n0(r). (2.5)

The corresponding variational equation,

δ

δn(r)

{
E[n]− µ

(∫
d3r n(r)−N

)}∣∣∣∣
n(r)=n0(r)

= 0 (2.6)

in principle allows one to determine the ground-state density of the
many-body system constituted by a fixed number N of particles (µ
is the Langrange multiplier enforcing this condition, and can thus be
identified with the chemical potential of the system).

16



2.1. Fundamentals of Density-Functional Theory

The above statements are easily proved via reductio ad absurdum
arguments [79]. Statement (a) can be extended to also encompass
degenerate ground states. Notice that E[n] is defined only for ground
state densities resulting from solution of the Schrödinger equation
Ĥ |Ψk〉 = Ek |Ψk〉, once vext has been specified. Such densities
are termed interacting v-representable; the conditions that they should
obey are not known in general, and this makes the problem of the
v-representability a nontrivial one: one can conceive situations in which,
although the density is perfectly admissible, the generating external
potential does not exist or is nonanalytic [79,80]. On the contrary, it can
be proven that any arbitrary nonnegative density of a N -particle system
can be derived from a suitable antisymmetric, normalized N -particle
wavefunction

∣∣ΨN
〉

[104]. Accordingly, it is possible to define a
generalized energy functional (the Levy-Lieb functional), whose domain
is constituted by such interacting N -representable densities [183, 184,
188]; finally, a variational principle analogous to (2.5) can be formulated
for the generalized energy functional. This alternative formulation of
DFT does not suffer from the v-representability issue, as the Levy-Lieb
functional is well-defined for any density n in the vicinity of some
ground state density n0; moreover, it reduces to the usual HK functional
for v-representable densities (for more details about this generalization
of HK-DFT formulation, see Ref. [79]).

Spin-Polarized Systems

The HK theorem can also be extended to describe spin-polarized
systems, e.g. electronic systems subject to an external magnetic field
Bext(r). The magnetic field couples to the magnetization density
m(r), resulting in an additional energy term in the Hamiltonian,∫
d3rBext(r) · m̂(r). Consequently, the ground state |Ψ0〉 is

in one-to-one correspondence with the ground-state particle and
magnetization densities, n0 and m0,

|Ψ〉 = |Ψ[n,m]〉 =⇒ |Ψ0〉 = |Ψ[n0,m0]〉 . (2.7)

The corresponding energy functional E[n,m] satisfies the variational
principle E[n0,m0] < E[n,m] for any (n,m) 6= (n0,m0).

If one considers magnetic fields having a single nonvanishing
Cartesian component, Bext(r) = (0, 0, Bext(r)), only the z-component of
the magnetization density, mz, enters the above relations (spin-collinear
case). Since mz(r) = µB (n↑(r)− n↓(r)),2 with nσ (σ =↑, ↓) being the

2µB = 1/2 is the Bohr magneton.
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spin density of the electron subsystem with spin parallel (antiparallel) to
Bext, the HK energy functional can be expressed in terms of the set of
variables (n↑, n↓), which is completely equivalent to the set (n,mz),

E[n↑, n↓] = F [n↑, n↓] +

∫
d3r {vext(r) (n↑(r) + n↓(r))

+µBBext(r) (n↑(r)− n↓(r))}
(2.8)

where F [n↑, n↓] = 〈Ψ[n↑, n↓]| T̂ + V̂int |Ψ[n↑, n↓]〉. Since in the
spin-collinear case the Hamiltonian commutes with the total particle
number for a given spin, N̂σ =

∫
d3r n̂σ(r), the number of particles

Nσ with spin σ can be fixed, as long as the total number of particles is
constrained to satisfy the condition N = N↑ + N↓. Hence, the DFT
minimum principle can be applied separately to each of the σ sector of
Fock space; the ground state is obtained for the pair (N↑, N↓) which
yields the minimum energy.

Even in the absence of any magnetic field, Bext = 0, the discussed
formalism can be usefully applied to study of spin-polarized systems, i.e.
systems with nonvanishing magnetic moment. Such situation occurs,
for example, in open-shell atomic and molecular systems, as well as
in magnetic solids and defective materials. In these cases, the lowest
energy solution is such that n↑(r) 6= n↓(r), and the DFT minimization is
conveniently performed using spin densities as fundamental variables.

Either in the standard or the spin-polarized case, the ground state
|Ψ[·]〉 has the same functional form for all the many-body systems with
the same particle-particle interaction: this translates into the already
mentioned universality of F [·]. Applied to typical condensed-matter
systems, this means that electrons in atoms, molecules and solids (under
the Born-Oppenheimer approximation) will be described by the same
F [·]. Any information on the specific system under consideration is
contained in the form of the external potential vext. As a consequence,
the properties of any atomic, molecular and solid-state system are
completely determined by the number of electrons (as obtained by
integration of the density over the volume of the system) and the
types and positions of atoms within them. The latter fact is of
fundamental importance for practical implications of the theory, namely
the possibility of a first-principle description of condensed-matter
systems.

In spite of its great conceptual power, DFT does not provide a
direct way to retrieve the properties of a many-particle system from

18



2.1. Fundamentals of Density-Functional Theory

knowledge of its density profile alone. For example, in the case of
N noninteracting electrons in an external potential, the F [n] term in
(2.4) is simply given by the kinetic energy. However, there is no known
way to exactly express the kinetic energy as an explicit functional of
the density. An early attempt to construction of an approximate kinetic
energy functional was made by Thomas [299] and Fermi [84]; in the
Thomas-Fermi theory, the kinetic energy is locally approximated to that
of a noninteracting homogeneous electron gas. However, within this
approach, even basic properties of quantum systems, namely the shell
structure of atoms, are not properly reproduced. For a noninteracting
system, the kinetic energy may be written in terms of single-particle
wavefunctions; yet, the same does not hold true for interacting systems.
The crucial step forward, made by Kohn and Sham in 1965 [157], is to
formulate the kinetic energy in terms of suitable single-particle orbitals
(the Kohn-Sham orbitals), which provide a basis for a convenient (and
nontrivial) representation of the interacting density.

2.1.2 The Kohn-Sham Ansatz

The Kohn-Sham (KS) approach [157] to DFT consists in establishing
a connection between the properties of the original many-body system
and those of an auxiliary noninteracting system, by means of which
the former can be conveniently expressed and computed. The KS
ansatz assumes that such noninteracting system can be chosen so that
its ground-state density equals that of the original interacting system.
Hence, by virtue of the HK theorem,3 it suffices to solve the resulting
auxiliary single-particle equations to obtain an in principle equivalent
description of the interacting system. In practice, all the nontrivial part
of the many-body problem is mapped into an exchange-correlation (xc)
functional of the density, which eventually needs to be approximated.

The auxiliary system is chosen to be realized by N noninteracting
electrons4 subject to a multiplicative external potential vs,

Ĥs = T̂ + V̂s, V̂s =

∫
d3r n̂(r)vs(r). (2.9)

The corresponding N -particle (nondegenerate) ground state is a Slater
3“Any ground state observable is a density functional, which takes its true value when evaluated for the

true ground state density”.
4From now on, the original many-body system is assumed to be constituted by electrons purely

interacting via the Coulomb force, vint(r, r
′) ≡ v(r, r′) = 1/ |r− r′|. The nature of the chosen KS

system follows from this assumption.

19



Chapter 2. Density-Functional Theory Methods

determinant,

Φ0(r1σ1, . . . , rNσN) =
1√
N !

 φ1(r1σ1) . . . φN(r1σ1)
...

...
φ1(rNσN) . . . φN(rNσN)

 (2.10)

constructed from the energetically lowest energy eigenstates φi of the
single-particle Schrödinger equation,(

−∇
2

2
+ vs(r)

)
φi(r) = εiφi(r), (2.11)

where the eigenvalues εi are ordered according to ε1 ≤ ε2 ≤ . . . ≤ εN =
εF < εN+1 ≤ εN+1 ≤ . . ., and εF is the Fermi energy, which is taken
equal to the eigenvalue εN of the highest-occupied single-particle state.5

The quantum number i = (α, s) labels both spatial and spin quantum
numbers; since Ĥs is spin-independent, the total spin operator commutes
with it and φi can be factorized into orbital and spin parts, φi(rσ) =
φα(r)χs(σ), where χs(σ) = δsσ is the Pauli spinor. The eigenvalues εi
are at least twofold degenerate due to spin; the ground-density can thus
be written

n0s(r) =
∑
σ=↑,↓

∑
i

Θi |φi(rσ)|2 = 2

N/2∑
α=1

|φα(r)|2 (2.12)

where the occupation function at zero temperature is Θi = θ(εF − εi),
and θ(x) is the step function; at finite temperature it is identified with
the Fermi function.

The crucial observation is that, by virtue of the HK theorem, n0s

determines the ground state uniquely: |Φ〉 = |Φ[n]〉 =⇒ |Φ0〉 =
|Φ[n0s]〉. The HK ground-state energy functional for the noninteracting
system can be written as

Es[n] = 〈Φ[n]| T̂ + V̂s |Φ[n]〉 = 〈Φ[n]| T̂ |Φ[n]〉+

∫
d3r vs(r)n(r),

(2.13)
and its minimum is obtained for at n(r) = n0s(r): the true ground-state
energy of the noninteracting system is thus Es,0 = Es[n0s].

For any density n resulting from diagonalization of the Hamiltonian
(2.9), i.e. for any noninteracting v-representable density, the kinetic

5The restriction εN < εN+1 is necessary to ensure that Φ0 is nondegenerate. The degenerate case is
more subtle to be treated, see Ref. [79].
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energy functional is defined as

Ts[n] = 〈Φ[n]| T̂ |Φ[n]〉 , (2.14)

which is universal, since so |Φ[n]〉 is. For the true ground state, the
noninteracting kinetic energy can be explicitly expressed in terms of the
single-particle orbitals φi,

Ts,0 = Ts[n0s] =
∑
σ=↑,↓

∑
i

Θi

∫
d3r φ∗i (rσ)

(
−∇

2

2

)
φi(rσ). (2.15)

The KS ansatz can be stated as follows: for any admissible potential
vext, the interacting ground-state density n0(r) is simultaneously the
ground-density of the auxiliary noninteracting system subject to an
appropriate external potential vs. The existence of such KS system is
related to the issue of the noninteracting v-representability of n0: given
an arbitrary n0, is it always possible to construct vs such that n0s equals
n0? The answer to this question involves a rather advanced mathematical
treatment [79]. In the following, it is assumed that this ansatz holds
true for all the physically relevant interacting densities; the KS system
thus yields a highly nontrivial representation of the interacting density
in terms of single-particle orbitals,

n0(r) ≡ n0s(r) =
∑
σ=↑,↓

∑
i

Θi |φi(r, σ)|2 . (2.16)

The ground-state energy functional of the interacting system can be
partitioned as follows

E[n] = Ts[n] + EH[n] + Eext[n] + Exc[n], (2.17)

which isolates contributions readily expressible within the KS system
from all the complicated many-body effects, which are incorporated
into the xc energy functional Exc[n] defined through Eq. (2.17). The
noninteracting kinetic energy is given by Eq. (2.15). The classical
Hartree interaction energy between N electrons with density n is

EH[n] =
1

2

∫
d3r

∫
d3r′n(r)v(r, r′)n(r′) (2.18)

and includes the self-interaction of the charge density with itself. The
energy related to coupling of the external potential to particle density is

Eext[n] =

∫
d3r vext(r)n(r). (2.19)
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Exc[n] is a universal functional of the density, since the same
is true for F [n], Ts[n] (by virtue of the HK theorem applied to
the interacting and the auxiliary noninteracting systems, respectively),
EH[n] and Eext[n]; hence, the same xc functional applies to all systems
in which particle-particle interaction is mediated by Coulomb force.
Notice that Exc[n] does not simply incorporate the quantum many-body
effects beyond the classical Hartree contribution, but also the difference
between the interacting and the noninteracting kinetic energy. This
contribution is generally of the same order of magnitude as the whole
correlation energy.

In order to specify the form of vs, one finally applies the DFT
variational principle: E[n] has a minimum at the true ground-state
density n0(r) ≡ n0s(r) reproduced by the φi orbitals. If the density
is infinitesimally perturbed from its ground-state value,

n(r) = n0(r) + δn(r) (2.20)

thenE[n] departs from the minimum. By performing a Taylor expansion
of the energy functional E[n0 + δn] around n0(r), and imposing the
difference E[n0 + δn] − E[n0] to be zero to second order in δn, one
finally arrives at an explicit form for the noninteracting potential,

vs[n](r) = vext(r) + vH[n](r) + vxc[n](r) (2.21)

which must be determined self-consistently with the orbitals φi by
solving the KS equations(

−∇
2

2
+ vext(r) + vH[n](r) + vxc[n](r)

)
φi(r, σ) = εiφi(r, σ).

(2.22)
vH is the Hartree potential

vH[n](r) =

∫
d3r′ v(r, r′)n(r′), (2.23)

and the xc potential vxc is defined as

vxc[n](r) =
δExc[n]

δn(r)
. (2.24)

Spin-Polarized Systems

The KS formalism can be readily extended to spin-polarized systems; in
the simplest spin-collinear case, in which the external magnetic field is
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restricted to a pure z-component, the noninteracting potential explicitly
depends on the spin state σ,

V̂s =
∑
σ=↑,↓

∫
d3r vσs (r)n̂σ(r). (2.25)

As a consequence, the spatial part of the single-particle orbitals φi
also depends on the spin quantum number s, φi(rσ) = φαs(r)χs(σ).
The resulting KS equations of spin-density-functional theory embody a
spin-dependent potential,(

−∇
2

2
+ vσs [n↑, n↓](r)

)
φασ(r) = εασφασ(r), (2.26)

where vs generalizes to

vσs [n↑, n↓](r) = vext(r) + sign(σ)µBBext(r) + vH[n](r) + vσxc[n↑, n↓](r),

(2.27)

vσxc[n↑, n↓](r) =
δExc[n↑, n↓]

δnσ(r)
. (2.28)

Thus, apart from the term proportional to the magnetic field, the xc
potential also contributes to the different potential experienced by each
spin component. This formalism turns out to be particularly useful in
the limiting case of Bext = 0, i.e. when dealing with systems with a
ground state exhibiting a finite magnetic moment, e.g. paramagnetic
point defects in solids.

2.2 Approximate Treatments of Exchange and Correlation

The fundamental advantage of re-expressing the ground-state energy as
in Eq. (2.17) is that the noninteracting kinetic energy and the Hartree
term (which can be evaluated exactly) are isolated from the remaining
many-body contributions. The former two terms, together with the
energy associated to the physical external potential, are dominating over
the remaining xc energy. Thus, one can hope to obtain reasonably
accurate results by devising appropriate approximations to the xc
functional. In the following, the most popular xc approximations are
reviewed, also in light of their relevance for the rest of the thesis. A
more comprehensive discussion of other xc functionals commonly used
in DFT applications can be found in Refs. [79, 201].
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2.2.1 Local Density Approximation

The simplest approach is to assume that the xc energy density at point
r, where density is n(r), is locally equal to the xc energy density of an
homogeneous electron gas (HEG), eHEG

xc , with density n0 ≡ n(r). The
resulting local density approximation (LDA) [157] to the xc energy reads

ELDA
xc [n] =

∫
d3r eHEG

xc (n(r)). (2.29)

The xc energy density of the HEG can be partitioned into exchange
and correlation contributions, eHEG

xc (n0) = eHEG
x (n0) + eHEG

c (n0). The
exchange energy density ex is easily expressed in terms of the density
[109],

eHEG
x (n0) = −3(3π2)1/3

4π
n

4/3
0 . (2.30)

The correlation energy density ec is not known analytically for arbitrary
densities of the HEG. One can obtain explicit expressions in terms of
n0 in the limit of low and high densities [109]; however, intermediate
density regimes are typically the relevant ones to, e.g., materials and
molecules. ec can be extracted from the HEG total energy computed
by means of quantum Monte Carlo simulations [40], and interpolation
formulas have been proposed to parametrize the correlation energy
density at arbitrary densities, the most popular of which are due to the
work of Vosko, Wilk and Nusair [313], and of Perdew and Zunger [248].
The LDA xc correlation energy can then be explicitly evaluated, and the
corresponding xc potential is a simple function of the local density,

vLDA
xc (r) =

δELDA
xc [n]

δn(r)
=
deHEG

xc (n0)

dn0

∣∣∣∣
n0=n(r)

. (2.31)

One issue which is readily realized with this approximation is that
the LDA potential does not reproduce the correct asymptotic behavior
for |r| → ∞ in finite systems. In atoms, for example, at large
distances from the nucleus an electron should see the Coulomb potential
of the positively charged ion, −1/|r|; in contrast, the LDA predicts an
exponential decay of the exchange potential, as a consequence of the
same behavior followed by the density in finite systems. An analogous
exponential behavior is obtained for vLDA

c (r) at large r, in contrast with
the correct power-law behavior. One important consequence of this
failure is the incorrect description of Rydberg states in atoms, and the
consequent prediction for negative ions to be unbound [282].
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On the other hand, the LDA has proved able to yield exceptionally
accurate results for a wide range of molecular and condensed-matter
systems, regardless the degree of inhomogeneity. This success can be
rationalized on the basis of the generally short-range behavior of the xc
contribution to total energy, the long-range Hartree term being treated
separately and exactly within the KS scheme. Furthermore, one can
show that the LDA satisfies an important sum rule on the global strength
of the exact xc hole [109].

One can similarly construct a local approximation to the (collinear)
spin-density xc functional Exc[n↑, n↓], by generalizing the LDA to the
local spin-density approximation (LSDA). For the exchange energy
functional written in terms of the KS orbitals,6

Ex[n↑, n↓] = −1

2

∑
σ=↑,↓

∑
αβ

ΘασΘβσ

×
∫
d3r

∫
d3r′

φ∗ασ(r)φβσ(r)φ∗βσ(r′)φασ(r′)

|r− r′|

(2.32)

the following factorization holds

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓]) , (2.33)

and thus the the LSDA exchange energy can be evaluated in an
analogous way, by using the LDA exchange (2.29),

ELSDA
x [n↑, n↓] =

1

2

(
ELDA

x [2n↑] + ELDA
x [2n↓]

)
. (2.34)

On the contrary, the spin-dependent correlation energy is more involved
to be evaluated. Starting from the available quantum Monte Carlo
data for the spin-unpolarized or the fully spin-polarized HEG, various
parametrizations of eHEG

c (n↑, n↓) have been suggested for intermediate
spin-polarizations, and the correspondingELSDA

c could then be evaluated
along the same lines as in LDA [247, 248].

2.2.2 Generalized Gradient Approximations

The most obvious extension to L(S)DA would be apparently obtained by
constructing an energy functional explicitly dependent on the gradient of

6The spin-resolved occupation function Θασ is defined by generalizing the occupation function Θi of
Eq. (2.12).
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the density. However, it has been realized that a naive gradient expansion
actually turns out to yield less accurate results than the LDA. The crucial
point is that the xc hole sum rule obeyed by LDA becomes violated
if the xc energy is simply expanded in the density fluctuation around
n(r). Generalized gradient approximations (GGAs) have been proposed
to overcome such limitation [177]. The GGA xc energy functional is
expressible in the form [241]

EGGA
x [n↑, n↓] =

∫
d3r n(r)eHEG

x (n(r))Fxc (n↑, n↓,∇n↑,∇n↓) , (2.35)

where Fxc depends, to lowest order, on the dimensionless variable
s ∼ |∇n|/n. Various forms have been proposed for Fxc, the most
popular of which are contained in the works of Perdew and Wang [247],
and Perdew, Burke and Ernzerhof [242]: the corresponding functionals
are known as PW91 and PBE, respectively. Different forms of Fx

(which is dominating over the correlation part) give different asymptotic
behaviors for large s; however, in the region of 0 < s . 3, which is the
most relevant for most systems of interest, different approximations give
practically the same values [241]. Remarkably, in this region, Fx ≥ 1,
so the GGAs tend to yield an exchange energy lower than the LDA.
Since this reduction is more substantial in atoms (larger inhomogeneity)
than in molecules and solids, this eventually results in a reduction of
the binding energy evaluated within GGAs, which corrects the LDA
overbinding and improves agreement with experiment [79].

2.2.3 Hybrid Functionals

A completely different approach to treatment of the xc energy makes use
of the concept of orbital-dependent functionals [169]: Exc is represented
in terms of the KS orbitals and eigenvalues, and is thus only an implicit
functional of the total density. Such a development is motivated by
the intrinsic limitations of the standard DFT-KS scheme when used in
conjunction with the LDA or the GGA.

In particular, one realizes that the wrong asymptotic behavior of the
LDA and GGA exchange potential is related to incomplete cancellation
of the density self-interaction included in the Hartree potential (2.18) by
the other terms in the approximated KS potential. Such cancellation
occurs exactly in the HF theory, in which the exchange potential,
expressed on a per-orbital basis, is nonlocal in space. This indicates
that some nonlocality should be introduced in the exchange functional,
in order to correctly retrieve the Coulomb 1/r-behavior (the Coulomb
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matrix elements leading to self-interaction in the nonlocal Hartree term
should thus be present, with opposite sign, in the exchange term). The
prototypical functional satisfying this condition is the exact-exchange
(EXX) energy of KS electrons, Eq. (2.32), which can be evaluated
explicitly once a set of KS orbitals is specified.

Another deficiency of the LDA and GGA approximations is the
lack of derivative discontinuity in the xc functional. On the contrary,
the exact functional (suitably generalized to systems with a noninteger
number of particles) exhibits a change in its slope when varying the
particle number across the integer number N [246]. The absence
of the derivative discontinuity results, for example, in a qualitatively
wrong description of dissociation mechanisms in molecules [41].
By construction, orbital-dependent functionals allow for infinitesimal
occupation of a previously unoccupied orbital; they are thus naturally
suitable to best reproducing the derivative discontinuity of the exact xc
functional.

A rigorous implementation of the concept of orbital-dependent xc
functionals is beyond the scope of the standard KS approach described
in Section 2.1.2. To date, the most popular and computationally
efficient way to achieve such description is provided by the generalized
Kohn-Sham (GKS) scheme developed by Seidl et al. [271].7 In this
framework, the physical system is mapped onto an auxiliary interacting
system, which incorporates part of the xc contribution to total energy,
while being still representable through a Slater determinant. The
total energy functional is partitioned so that this (in general, nonlocal
and orbital-dependent) part can be exactly evaluated. For example,
such representation can be chosen so that both the kinetic and the
HF contributions are represented exactly through the auxiliary system,
leaving only correlation to be approximated (Hartree-Fock-Kohn-Sham
equations are thus obtained). Hence, the GKS approach constitutes a
rigorous basis for employing nonlocal, orbital-dependent, xc potentials,
whose exchange component is inspired to the exact HF-like exchange
(2.32).

One of the most popular realizations of orbital-dependent functionals
is represented by hybrid functionals, which were originally introduced
as a method to improve prediction of thermochemical properties
of molecules [19, 20]. The hybrid xc energy is written as a

7Another suitable, but computationally more demanding, approach is represented by the optimized
potential method [275], in which the KS equations are solved simultaneously with an integral equation
for vxc.
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one-parameter-dependent admixture of the KS EXX to GGA-type
functionals,

Exc = αEx + (1− α)EGGA
x + EGGA

c , (2.36)

where 0 < α < 1 is the exchange fraction, and Ex is the EXX energy
of the KS system, Eq. (2.32). A formal justification of an expression of
the form (2.36) for Exc is provided by the adiabatic connection theorem
[120]: the exact xc energy of the electronic system can be expressed in
terms of the xc energy of an auxiliary system with variable interaction
strength λ v,

Exc[n] =

∫ 1

0

dλExc,λ[n], (2.37)

provided that, for any 0 ≤ λ ≤ 1, the true ground state density n0 is
reproduced in the auxiliary system by appropriate choice of the auxiliary
external potential vext,λ, so that n0,λ =

〈
Ψλ
∣∣Ψλ
〉
≡ n0. In the limit

λ = 0 one obtains the KS system, while for λ = 1 the physical,
fully-interacting system is approached. The xc energy of the auxiliary
system is thus

Exc,λ[n] =
〈
Ψλ
∣∣ V̂int

∣∣Ψλ
〉
− EH[n], (2.38)

which leads to a representation of the exact xc energy that allows to
circumvent the evaluation of the kinetic energy term, at the cost of
having to evaluate the potential energy contribution for all the adiabatic
states connecting the KS system to the physical one.

“Half-and-Half” Functional

Different ansatzs have been suggested for approximating the integral
(2.37). If one assumes that Exc,λ varies linearly with λ, the so-called
half-and-half approximation [19] is obtained,

Exc =
1

2
Exc,λ=0 +

1

2
Exc,λ=1. (2.39)

In the noninteracting limit, λ = 0, the KS system is recovered and the
xc energy, given by

Exc,λ=0[n] =
〈
Ψ0
∣∣ V̂int

∣∣Ψ0
〉
− EH[n] (2.40)

where Ψ0 is a Slater determinant, and coincides with the KS EXX energy
(2.32), Ex[n], which is independent of the interaction strength, as it
arises only from the antisymmetry of the wavefunction. In the fully
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interacting limit, λ = 1, the physical system is obtained, for which the
GGA provides a reasonably accurate representation of the xc energy,
since at full coupling strength, the xc hole is expected to localize more
strongly around its electron [243].8 Eq. (2.39) thus becomes

Exc =
1

2
Ex +

1

2
EGGA

xc . (2.41)

PBE0 Functional

A more refined, yet still simple, model for the coupling strength
dependence of the xc energy has been proposed in Ref. [244],

Exc,λ = EGGA
xc,λ +

(
Ex − EGGA

x

)
(1− λ)n−1 (2.42)

which is exact for λ = 0 (EGGA
xc,λ=0 = EGGA

x ), and recovers the GGA
limit for λ = 1, similarly to the half-and-half approach. However, the
form (2.42) is more general, since it allows for an arbitrary power-law
behavior to be reproduced for intermediate strengths λ. For molecules,
the fourth-order Møller-Plesset proves able to yield accurate atomization
energies; if the assumption is made that the xc energy is equally well
evaluated to within the same perturbation order, one can estimate n ≈ 4,
and, after integration of (2.42) over the connection states ensemble, the
following approximations are obtained

Ex =
1

4
Ex +

3

4
EGGA

x (2.43)

Ec = EGGA
c . (2.44)

If the GGA contribution is chosen so that the HEG limit is correctly
reproduced, i.e. through the PBE functional, one finally obtains the
so-called PBE0 functional [244],

EPBE0
xc =

1

4
Ex +

3

4
EPBE

x + EPBE
c (2.45)

which is obtained from the general form (2.36) after identifying the
exchange fraction to be α = 1/4, and choosing the GGA approximation
to be PBE. The PBE0 functional has proven to be superior to the
LDA or GGA in reproducing several thermochemical and spectroscopic
properties of molecules [2, 82, 244].

8This argument has been proven valid by explicit calculations in real molecular systems: in Ref. [81],
the coupling strength dependence of the xc dissociation energy of the N2 molecule is reported to be well
approximated by the LDA or GGA in the λ = 1 limit, while being substantially underestimated for λ = 0. It
is in this limit that local and semilocal approximations cannot provide an accurate description (the exchange
energy is highly nonlocal in the noninteracting case).
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Three-Parameter Hybrid Functionals: B3LYP

Another very popular form of hybrid functionals is based on the
three-parameter mixing [20]

Exc = ELDA
xc + a0

(
Ex − ELDA

x

)
+ ax∆E

GGA
x + ac∆E

GGA
c , (2.46)

where ∆EGGA
x and ∆EGGA

c are the exchange and correlation GGA
corrections to ELDA

x and ELDA
c , respectively. a0, ax, and ac are empirical

parameters whose values were obtained by fitting to molecular data sets;
in the so-called B3PW91 functional [20], in which the B88 [18] and the
PW91 [247] GGA functionals are chosen for exchange and correlation,
respectively, Becke suggested the optimal parametrization to be a0 =
0.2, ax = 0.72, and ac = 0.81. If the same parametrization is employed,
but the PW91 correlation is replaced with the Lee-Yang-Parr (LYP)
GGA correlation functional [180], one obtains the B3LYP functional
[292],

EB3LYP
xc = (1− a0)ELDA

x + a0Ex

+ ax∆E
B88
x + acE

LYP
x + (1− ac)ELDA

c ,
(2.47)

where for ELDA
c , the Vosko-Wilk-Nusair (VWN) parametrization [313]

is used. The B3LYP functional soon became the default choice
for hybrid functional applications in the chemistry community, also
due to its outstanding accuracy in predicting properties of several
molecular [20] and solid-state systems [29, 54, 216]. However, from
the conceptual point of view, it presents some disadvantages. Firstly, the
three-parameter form (2.46) cannot be justified by adiabatic connection
theorem arguments. Secondly, the inclusion of the semiempirical
GGA-LYP correlation results in a functional that does not reduce to the
LDA in the HEG limit. Thus, three-parameter hybrid functionals should
in fact be regarded as semi-empirical xc approximations.

Screened-Exchange Hybrid Functionals

While full-range hybrid functionals, such as PBE0 and B3LYP, have
been successfully applied for calculations of both molecules and
solids, serious limitations are encountered when metallic systems are
addressed. In this case, in fact, one has to deal with the logarithmic
divergence of the derivative of the HF eigenvalues with respect to the
crystal momentum at the Fermi surface [109]: just as in the HF scheme,
the GKS approach suffers from this divergence. Furthermore, it has
been recognized that the decay of the range of the exchange interaction
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is only algebraically for metallic systems, compared to an exponential
decay for gapped systems, and this makes GKS calculations particularly
cumbersome in systems with small or vanishing gaps [132].

In order to overcome this difficulty, Heyd et al. proposed the concept
of screened-exchange functionals, in which the exchange component is
separated into a long-range (LR) and a short-range (SR) part,

Exc = αESR
x (ω) + (1− α)ESR,GGA

x (ω)

+ βELR
x (ω) + (1− β)ELR,GGA

x (ω) + EGGA
c ,

(2.48)

where ω is an empirical parameter determining the range of the Coulomb
interaction, which is split into a SR and a LR part, respectively defined,
in a spatial decomposition of the Coulomb kernel, as

1

|r|
=

erfc(ω|r|)
|r|

+
erf(ω|r|)
|r|

, (2.49)

where erf(x) = (2/
√
π)
∫ x

0
dt e−t

2 and erfc(x) = 1 − erf(x) are
the error function and its complement to one. Various values can be
chosen for the parameters α and β controlling the portion of EXX
in the LR and SR exchange contributions [321, 327]. Given the
problematic description of the long-range tail of the exchange interaction
in periodic systems, one possibility is to constrain such contribution
to be finite-ranged, i.e. to set β = 0 in Eq. (2.48). If moreover
α is set to 0.25, as in the PBE0 functional (2.45), one obtains the
short-range Heyd-Scuseria-Ernzerhof (HSE) functional [132]; in this
functional the range is set to ω = 0.11 bohr−1 [133] so as to perform
at least as good as the PBE0 in the description of various molecular and
solid-state properties [131,200,235], while being computationally more
convenient.

The formulation of screened-exchange functionals definitely opened
the way toward application of the hybrid functional approach to
solid-state problems [29, 200, 216, 235], where, for example, they
partially solve the well-known problem of band gap underestimation
in semiconductors and insulators, faced within both LDA and GGA
(see discussion in Section 5.1). However, there is apparently no
formal justification to the success of hybrid functionals constructed
for molecular calculations when applied to extended systems: the
exchange fraction α in Eq. (2.36), whose value can be rationalized
in molecular systems based on analogy with post-HF methods [244],
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should assume a different meaning in solids. This conceptual difficulty
can be satisfactorily solved by combining hybrid DFT with MBPT
methods, and will be more specifically addressed in Section 3.3, after
introducing the fundamentals of MBPT.

2.3 Interpretation of the Kohn-Sham Eigenvalues:
Excited States and Fundamental Gap in DFT

It is often argued that static DFT is a ground-state theory: in fact, this
statement applies only for DFT within the KS approach. By virtue
of the HK theorem, the external potential vext entering some physical
Hamiltonian Ĥ is uniquely determined by the ground-state density n0;
once vext is known, all excited states are unambiguously determined by
solution of the Schrödinger equation. Hence, the ground-state density
ultimately determines the full spectrum of Ĥ , so that all of its eigenstates
and eigenvalues can be regarded as density functionals. However, this
property can be hardly exploited in practice, except in very specific
cases [79] (mostly not relevant to realistic condensed-matter systems).
This is due to the fact that (i) it is more difficult to derive an explicit
energy functional for excited states, and (ii) there exists no variational
principle for these states.

When coming to the DFT-KS approach, the fundamental issue is to
devise a correct interpretation to the KS single-particle states. In general,
neither the KS eigenvalues, nor the KS orbitals retain a well-defined
physical significance. However, there are exceptions to this statement.
In finite systems, such as atoms or molecules, it can be proven that
the ionization potential I coincides with the negative eigenvalue of the
highest occupied KS orbital, εN [9].9 A generalization of this result to
extended systems with a vanishing gap at the Fermi level (i.e., metals)
is possible: in this case, it can be proven that εN gives the true Fermi
energy of the metal, although the shape of the KS Fermi surface is in
general different from the physical one [206].

In insulating systems, the question naturally arises of whether the
energy gap can be characterized by means of analysis of the associated
KS spectrum. The fundamental band gap Eg is defined as (identifying

9The proof makes use of the fact that in a finite system the exact density asymptotically decays as e−
√
2Ir

for r → ∞, while, in the same limit, the behavior of the KS density is dominated by the eigenvalue of the
highest occupied KS orbital, εN , e−

√
−2εN r . By virtue of the KS ansatz, the two densities are identical,

and as a consequence I = −εN .

32



2.3. Interpretation of Kohn-Sham Eigenvalues . . .

the neutral solid with the N -particle system)

Eg = − [(E0(N)− E0(N − 1))− (E0(N + 1)− E0(N))] , (2.50)

where E0(N) is the ground-state energy of the N -particle system, so
that the energy differences in parenthesis represent the binding energy
of the most weakly bound electron in the N and the (N + 1)-particle
systems, corresponding to the negative ionization potential (I) and
electron affinity (A), respectively.

In order to derive an analogous expression for Eg within HK-DFT,
one needs to generalize the definition of the HK energy functional to
systems with a noninteger number of particles [246]. For example, if the
particle number is let to vary in the interval [N,N + 1), then the total
energy can be expressed in the form

E(N + η) = (1− η)E(N) + ηE(N + 1) (2.51)

with 0 ≤ η < 1. One then recognizes that the total energy depends on
the fractional particle number in a peculiar way: (i) it is linear in the
interval (N − 1, N ] with slope µ(N−), and in the interval [N,N + 1)
with slope µ(N+), (ii) it is continuous at N , (iii) its derivative with
respect to particle number is discontinuous, µ(N−) 6= µ(N+). µ(N−) is
identified with the chemical potential of a system with particle number
approachingN from the left, in (N−1, N ], which defines the ionization
potential I . Similarly, µ(N+) is the chemical potential of a system
with particle number approaching N from the right, in [N,N + 1): it
is identified with the electron affinity A; in summary,

lim
η→0+

µ(N − η) = µ(N−) = E(N)− E(N − 1) = −I (2.52)

lim
η→0+

µ(N + η) = µ(N+) = E(N + 1)− E(N) = −A. (2.53)

One can interpret µ(N ± η) as the Lagrange multiplier enforcing the
proper normalization of the density for the system with particle number
N ± η, in a similar way as in the variational equation (2.6). The
variational principle thus yields

µ(N ± η) =
δE[n]

δn(r)

∣∣∣∣
N±η

(2.54)

where E[n] is the generalization of the HK energy functional to
fractional particle numbers. Thus, one can re-express the fundamental
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band gap as

Eg = −(I − A) = lim
η→ 0+

[µ(N + η)− µ(N − η)] . (2.55)

By using Eq. (2.54), together with the standard decomposition of the
total energy functional within the KS approach, Eq. (2.17), one arrives
at

Eg = lim
η→ 0+

{[
δTs[n]

δn(r)

∣∣∣∣
N+η

− δTs[n]

δn(r)

∣∣∣∣
N−η

]

+

[
δExc[n]

δn(r)

∣∣∣∣
N+η

− δExc[n]

δn(r)

∣∣∣∣
N−η

]} (2.56)

in which the continuous dependence of Eext and EH on particle number
leads to cancellation of the corresponding derivative terms.

For the noninteracting KS system, the fundamental gap is simply the
difference in energy between the first unoccupied and the last occupied
eigenvalues,

EKS
g = εN+1 − εN , (2.57)

since in this case ionization energies are identical to KS eigenvalues,
E0(N) − E0(N − 1) = εN in the noninteracting system. The KS
gap is equivalently expressed as the derivative discontinuity of the
noninteracting kinetic energy Ts, corresponding to the first term in
parenthesis in Eq. (2.56). Hence, the fundamental gap is the sum of
two contributions [245, 274],

Eg = EKS
g + ∆xc (2.58)

where

∆xc = lim
η→ 0+

[
δExc[n]

δn(r)

∣∣∣∣
N+η

− δExc[n]

δn(r)

∣∣∣∣
N−η

]
(2.59)

is the derivative discontinuity of the xc energy functional. Thus,
the KS gap differs from Eg by ∆xc, which is expected to account
for a substantial part of the discrepancy between the LDA/GGA
computed band gap10 and the experimental one (the exchange part of
the discontinuity, ∆x is as large as 5.62 eV in silicon [289]). Notice that,
even if the exact energy functional was known, the gap obtained with
a standard KS calculation needs not be equal to the fundamental gap.

10Or any other xc functional well defined within the pure KS scheme.

34



2.4. Practical DFT Calculations

This is because the KS approach applied to systems with integer particle
numbers is inherently unable to provide information about ∆xc.

While the LDA or GGA are known to yield band gaps significantly
underestimated with respect to experiments, orbital-dependent
functionals, such as hybrid functionals, have been found to
provide values in more quantitative agreement with experiment
[29, 200, 216, 235]. How can one rationalize this improvement? In fact,
since the KS gap is not uniquely related to the fundamental gap, this
may be at first interpreted as due to a naive compensation of the GGA
gap underestimation with the corresponding overestimation provided
by the HF-like contribution. However, a more precise and rigorous
answer can be given by resorting to the GKS scheme [271]. Since
hybrid functionals are well defined within the GKS scheme, the above
derivative discontinuity argument does not directly apply. Instead, it
can be proved that the GKS gap (as defined in a system with a fixed
particle number N ) already contains a portion of ∆xc, which is instead
completely missing in the standard KS gap: the discrepancy between
the GKS gap and the fundamental band gap is thus expected to be
smaller. For example, within the Hartree-Fock-Kohn-Sham scheme,11

the whole exchange contribution to the derivative discontinuity would
be incorporated in the GKS gap [271],

EGKS
g = EKS

g + ∆x. (2.60)

Thus, the generally better performance of hybrid functionals in
electronic structure calculations is formally justified within the GKS
scheme, and should not be regarded as due to a fortuitous cancellation
of errors [169].

2.4 Practical DFT Calculations

In practical molecular and solid-state applications, the solution of
the KS equations (2.22) needs to be pursued via numerical methods.
The iterative scheme adopted for obtaining such solution generally
comprises the following steps [201]:

• Starting from an initial guess for the density n
(0)
σ (r) = nin

σ (r),
the KS potential vin

s , Eq. (2.27), is evaluated (given a chosen xc
approximation).

11A particular case of this approach is obtained by setting α = 1 in the hybrid functional form (2.36).
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• The KS equations (2.22) are solved, yielding the KS orbitals,
φασ(r) and eigenvalues, εασ.

• The electronic density is computed, nout
σ (r) =

∑
α Θασ |φασ(r)|2.

• A new input density is constructed, usually through a suitable
mixing of nout with the density found at the preceding step
(or steps); thus, the new KS potential is evaluated, and the
self-consistency loop is reiterated until convergence at some
determined level of accuracy is achieved.

Convergence to the minimum energy solution is checked by looking at
the variation of total energy functional as the density or the KS potential
are varied from the input to the output values.

Once the self-consistent solution is obtained, energies, eigenvalues,
forces, and stresses can be calculated, and their explicit expressions
depend on the details of the employed numerical scheme [201].
Plenty of numerical schemes have been developed for practical DFT
calculations. Here the fundamentals of the approaches adopted in
the present thesis are outlined, namely the first-principles plane waves
and pseudopotential (PW-PP) and linear combination of atomic orbitals
(LCAO) methods.

2.4.1 Plane Waves and Pseudopotential Method

Within the PW-PP approach, the KS equations (2.22) are represented
in a plane waves basis. It is convenient to look for single-particle
states that are normalized over a large volume NΩ (with Ω being the
volume of the primitive cell, and N the number of primitive cells,
which is allowed to go to infinity), subject to Born-von Karman periodic
boundary conditions [116]. Thus, the single-particle wavefunctions can
be expanded in a basis of orthonormal plane waves characterized by a
wavevector q,

φασ(r) =
∑
q

cασ(q)

{
1√
Ω

eiq·r
}

(2.61)

where cασ(q) are expansion coefficients. In a crystal, due to translational
invariance, the effective KS potential is periodic (with the periodicity
fixed by the primitive cell) and can thus be expressed as

vs(r) =
∑
Gn

vs(Gn)eiq·r (2.62)
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where Gn are the reciprocal lattice vectors and vs(Gn) is the Fourier
transform of the KS potential,

vs(G) =
1

Ω

∫
Ω

d3r vs(r)e−iG·r. (2.63)

If one restricts the crystalline momentum k to lie in the first Brillouin
zone (BZ), q = k+Gn, then a matrix representation of the KS equations
is obtained in reciprocal space,∑

n′

Hnn′(k)cασ,n′(k) = εασ(k)cασ,n(k) (2.64)

where

Hnn′(k) = 〈k + Gn| Ĥs |k + Gn′〉 =
1

2
|k + Gn|2 δnn′+vs(Gn−Gn′).

(2.65)
Thus, a separate Schrödinger-like equation has to be solved for each
k point in the BZ, from which one obtains the single-particle KS
eigenvalues εασ(k) and orbitals,

φασ,k(r) =
∑
Gn

cασ,n(k)

{
1√
Ω

ei(k+Gn)·r
}
. (2.66)

In the limit of largeN , the k-point ensemble becomes a dense continuum
and the eigenvalues εασ(k) give rise to continuous electronic bands.
Actually, once the point-group symmetries of the crystal are taken into
account, one needs to compute solutions of (2.64) only for k points
belonging to the irreducible BZ (IBZ).

In actual calculations, the expansion (2.66) is truncated to a finite
number of plane wave components, by limiting the kinetic energy
through a energy cutoff Ecut,

1

2
|k + Gn|2 < Ecut. (2.67)

The choice of Ecut clearly affects the accuracy of the computed KS
orbitals, as well as of any other quantity, such as the density and
total energy. In particular, calculation of core electron wavefunctions
requires a huge number of plane waves to be included in the sum
(2.66). The energy cutoff determines the computational cost of DFT
calculations within the PW-PP approach: for example, the number of
operations needed to evaluate the density scales roughly as NG logNG
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using fast Fourier transform techniques, with NG being the number
of plane wave components needed to describe the density (which is
roughly an order of magnitude larger than the number of plane wave
components needed in (2.66) at the same level of accuracy). For
this reason, application of plane waves methods inevitably calls for
usage of pseudopotentials to treat the electron-ion Coulomb interaction.
Pseudopotentials allow one to focus only on description of the smooth
valence electron wavefunctions, and thus to limit the number of plane
wave components included in the expansion (2.66).

In hybrid functional calculations, the evaluation of EXX introduces
further complications. In fact, one has to compute the nonlocal EXX
energy,

Ex = − 1

N
∑

ασ,α′σ′

k,k′

ΘασΘα′σ′

×
∫
d3rd3r′

φ∗ασ,k(r)φα′σ′,k′(r)φ
∗
α′σ′,k′(r

′)φασ,k(r′)

|r− r′|
,

(2.68)

where the summations run over all the occupied bands and the k points
belonging to the IBZ. In a PW-PP implementation, an auxiliary grid
of reciprocal space points q is defined in the BZ, so that for each k
point, the summation is restricted to the set k′ = k+ q (this approach is
implemented in the QUANTUM ESPRESSO code [103]). The divergence
of the resulting matrix elements appearing for q = 0 would require
very dense reciprocal space grids in order to accurately evaluate the
EXX contribution: the issue can be circumvented by applying the
Gygi-Baldareschi integration technique [118]. In general, however,
the evaluation of the EXX term remains computationally demanding
within the PW-PP scheme, making hybrid functional calculations with
plane waves basis sets at least one order of magnitude more costly than
nonhybrid ones.

Pseudopotentials

Pseudopotentials (PPs) represent a fundamental ingredient of any
electronic structure methods based on plane waves. The basic idea is
to replace the strong Coulomb potential of the nucleus with a softer
effective ionic potential acting on the valence electrons. One then has
to define a core region, in which the single-electron wavefunction is not
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treated exactly, and a scattering or valence region, for which one aims at
reproducing some desired scattering properties of the physical nuclear
potential, as obtained either from experiments or from first-principles
calculations.

The concept of PP originates from the orthogonalized plane wave
(OPW) method [130], which, under very general assumptions, allows
one to partition the valence atomic wavefunction ψvlm(r) (labeled by the
angular momentum quantum numbers l and m) into a spatially smooth
part ψ̃vlm(r) (with the same angular momentum), and functions ulmj(r)
localized around the nucleus and orthogonal to ψvlm(r),

ψvlm(r) = ψ̃vlm(r) +
∑
j

Blmjulmj(r). (2.69)

If the localized functions are chosen to be the core atomic orbitals,
ulmj = ψclm, then by virtue of the orthogonalization property, one obtains
a smooth function ψ̃vlm which has no radial nodes, thus being smoother
than the true ψvlm. The core orbitals ψclm can largely be considered
as unchanged when passing from the isolated atom to a molecular or
solid-state environment. If the ansatz (2.69) is inserted into the atomic
Schrödinger equation for the valence wavefunctions

Ĥψvlm(r) =

[
−∇

2

2
+ va(r)

]
ψvlm(r) = εvlmψ

v
lm(r) (2.70)

where va is the total atomic potential,12 one obtains an effective
Schrödinger equation for the smooth wavefunctions through a
transformation proposed by Phillips and Kleinman [250] and Antoncik
[10] (PKA transformation)

ĤPKAψ̃
v
lm(r) =

[
−∇

2

2
+ v̂PKA

]
ψ̃vlm(r) = εvlmψ̃

v
lm(r) (2.71)

where v̂PKA = va + v̂R is a nonlocal potential operator which turns
out to be much weaker than the bare atomic potential va. In fact, the
nonlocal operator v̂R acts on the smooth valence wavefunctions ψ̃vlm(r)
by introducing a repulsive potential which largely cancels the strong
bare Coulomb attraction of the nucleus. As a result, the PP often turns
out to be very weak inside the core region. Exploiting both the formal
properties of the PKA potential and the possibility of choosing different

12The potential va(r), which embodies the nuclear attractive Coulomb potential and the electron-electron
interaction, is the KS potential obtained from an atomic DFT calculation.
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PPs reproducing the same scattering properties outside the core region,
one can construct PPs which are smoother and weaker than the original
atomic potential va.

Model ionic PPs have been developed which replace the potential
of the nucleus and of core electrons, while reproducing the scattering
properties of the PKA PP operator. By virtue of the atomic spherical
symmetry, each angular momentum sector (l,m) can be treated
separately, so that one can define a semilocal (SL) PP of the form

v̂SL =
∑
lm

|Ylm〉 vl(r) 〈Ylm| , (2.72)

where |Ylm〉 denotes the spherical harmonic function (l,m), and vl(r)
is a l-dependent potential which is local in the radial variable. For
each l one then has to construct a different potential, a task that can be
pursued either by enforcing fitting to atomic data (leading to definition
of empirical pseudopotentials) [121] or by reproducing the valence
properties calculated ab initio for the atom. The latter represents the
so-called ab initio pseudopotential method: among the many methods
to construct ab initio PPs, the norm-conservation approach proves
successful in providing PPs that are excellently transferable to molecular
and solid-state environments.

In the norm-conserving PP method, the valence
pseudo-wavefunctions are chosen to be orthonormal and normalized
(at odds with the valence functions of the PKA approach), being
solutions of a model potential constructed to reproduce the valence
atomic properties as obtained from an all-electron calculation. Hamann,
Schlüter, and Chiang proposed in Ref. [119] a list of mathematical
conditions that the valence pseudo-wavefunctions should satisfy in
order to fit the behavior of the all-electron wavefunctions, and to
enhance transferability of the resulting PP.

After performing an all-electron atomic DFT calculation with a
chosen approximation for exchange and correlation, one has to identify
the valence states and to generate the PP components vl(r) and the
corresponding pseudo-wavefunctions ψPS

l (r) for each l. The ψPS
l (r)

functions are numerically constructed to fit the desired properties of the
all-electron valence wavefunctions outside a core radius Rc. The choice
of Rc ultimately determines the level of accuracy and transferability of
the PP (the smaller is Rc, the more accurate is the description of the
wavefunction close to the nucleus), as well as its smoothness (a large Rc

allows one to describe the valence pseudo-wavefunction using a limited
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number of plane wave components). The potential vl(r) is then obtained
by numerical inversion of the Schrödinger equation for each ψPS

l . In
the final step, the Hartree and xc potentials for the valence electrons
have to be subtracted from the potential vl(r), in order to obtain a bare
ionic PP that is transferable to different environments. Inclusion of
scalar relativistic and spin-orbit coupling effects can be performed by
solving the Dirac-Kohn-Sham equation instead of the nonrelativistic one
in the atomic calculation. A number of recipes have been proposed in
the literature for constructing ab initio norm-conserving PPs [13, 151,
304, 310], which differ by the choice of the core radius, the conditions
required to be satisfied by the pseudo-wavefunctions, and the numerical
description of the PP components.

In an approach developed by Kleinman and Bylander [154], the
semilocal part of the potential vl(r), Eq. (2.72), is approximated through
a fully nonlocal PP operator v̂NL(r, r′), which is separable as a sum
of products of the form

∑
i fi(r)gi(r

′). Construction of this type of
PP for several atoms has been performed by Goedecker and coworkers
[111, 123]. PPs generated within this scheme are mainly adopted in the
PW-PP based calculations presented in this thesis.

Alternative procedures for constructing PPs that do not belong to the
class of norm-conserving PPs have been devised, and the corresponding
PPs are also commonly used in plane waves based electronic structure
calculations. Ultrasoft pseudopotentials [24, 311] are constructed to
maximize the smoothness of the potential, i.e. to minimize the number
of plane waves components needed to describe the valence properties
to a given accuracy. Another method which has become very popular
in electronic structure calculations of solids is the projector augmented
wave (PAW) method [25, 164], which also allows one to reconstruct the
full all-electron wavefunction once calculation of the smooth part has
been carried out. In the calculations presented in the following chapters,
only norm-conserving PPs have been used.

2.4.2 Linear Combination of Atomic Orbitals Method

A different approach to representation of the electronic wavefunction
in density functional calculations of crystalline systems is based on
usage of localized atom-centered orbitals as basis sets. This method
is implemented, for example, in the CRYSTAL09 code [77, 78] used
for most of the hybrid functional calculations presented in this thesis.
In fact, usage of small-sized localized orbitals basis sets allows one to
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considerably reduce the cost of evaluating EXX with respect, e.g., to
plane waves based methods. The reduction in CPU time is of roughly
two orders of magnitude when passing from PW-PP to LCAO methods
if hybrid functional calculations are performed.

On the other hand, the LCAO method also has its own limitations:
the choice of the basis set should be tailored to the specific system in
order to be accurate and efficient. Convergence issues can arise if this
choice is not made properly. This system-based approach conceptually
implies loss of generality with respect to PW-PP methods, in which a
single form of the basis set is in principle suitable to describing any
system. However, from the practical point of view, great experience has
been acquired in constructing accurate localized basis sets, so that the
ab initio LCAO method generally provides accurate results (see Section
5.1.2).

In the tight-binding LCAO approach [116], the solutions of the
single-particle KS equations (2.22) are sought for in the form of a linear
combination of a set of orbitals χµ(r−RI) localized at atomic position
RI ; in a periodic system RI can be equivalently written as

RI = τκ,j + T, (2.73)

where τκ,j (j = 1, . . . , nκ) are the atomic positions of the atoms of type
κ in the primitive cell, and T is a direct lattice vector (expressed with
respect to some chosen origin of the coordinate system). Together with
the translation vector T, the composite index {κ, j, µ} ≡ n allows the
entire basis set to be be specified; thus, one can define a basis Bloch
function with wavevector k through a lattice sum,

χn,k(r) =
∑
T

eik·Tχn[r− (τn + T)], (2.74)

where the summation is extended to all the direct lattice vectors T. The
KS wavefunction with wavevector k is written as a linear combination
of the basis functions χn,k(r),

φασ,k(r) =
∑
n

cασ,n(k)χn,k(r), (2.75)

where the coefficients cασ,n(k) are solutions of the Schrödinger-like
equation, ∑

n′

[Hnn′(k)− εασ(k)Snn′(k)] cασ,n(k) = 0 (2.76)
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and the matrix elements of the KS Hamiltonian read

Hnn′(k) = 〈χn,k| Ĥs |χn′,k〉 , (2.77)

and
Snn′(k) = 〈χnk|χn′k〉 . (2.78)

One possible choice for the basis set is done by expressing the radial part
of the localized basis functions χn as a linear combination of a certain
number nG of normalized Gaussian-type functions [27, 294],

χn(r) =

nG∑
i

diG(αi; r), (2.79)

where αi are the exponents of the Gaussian, and di are the coefficients of
the expansion, which are defined for any atom type (or, more generally,
atom) in the system. In the CRYSTAL09 code, the localized basis
functions χn are grouped into shells, each of which is identified by the
principal and the angular momentum quantum numbers. The angular
part is described by spherical harmonics.

Due to the mathematical simplicity of Gaussian functions, all the
multi-center integrals involved in evaluation of the matrix elements of
the Hamiltonian (and, in particular, of the Coulomb operator) can be
expressed analytically [264], and numerically approximated to within a
determined accuracy [77]. The possibility of analytical computation of
the exchange Coulomb integral makes Gaussian basis sets particularly
appealing for solid state calculations within HF and hybrid DFT.

Today, a number of Gaussian basis sets optimized for solid state
calculations are available in the literature, which are obtained from
molecular or atomic basis sets after removing the most diffuse functions.
Since the atomic environment in a molecule or a crystal is not spherically
symmetric, it is in general necessary to augment the basis set with higher
angular momentum functions (polarization functions) with respect to the
minimal basis set needed to describe the atom. Another possibility is to
describe polarization effects by modifying the spatial dependence of the
radial function at fixed angular momentum. The latter approach turns
out to be best able to capture the lowest order effects of the nonspherical
environment, and is often adopted in solid state calculations.

The limited computational cost of solving KS equations within the
LCAO approach makes it possible to perform all-electron calculations
on extended systems containing as many as hundreds electrons. On
the other hand, the use of shape-consistent PPs [48, 163], analogous

43



Chapter 2. Density-Functional Theory Methods

to norm-conserving PPs, or energy-consistent [76] PPs (effective core
potentials), typically generated at the HF level, turns out to be necessary
when systems with heavy atoms are to be treated. In fact, on the one
hand the computational cost of an all-electron calculation is too high
for these systems even using the LCAO method, on the other hand
relativistic effects, which are important for core electrons of heavy
atoms, are not taken into account in standard all-electron calculations,
while they can be consistently included in the generation of the PP.
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CHAPTER3
Many-Body Perturbation Theory (MBPT),

and MBPT-Derived DFT Methods

3.1 Green’s Function Theory

Thanks to its versatility and affordable computational cost, DFT
has become a very popular method for calculating ground state
properties and electronic structures of realistic condensed-matter
systems. However in principle, DFT does not lend itself to a
rigorous description of electronic excitations, i.e. it does not provide
a formal theoretical apparatus through which one can derive consistent
approximations to electron and hole excitation and ionization energies
involved, e.g., in optical processes [226] (exceptions to this statement
has been discussed in Section 2.3). In order to account for such
phenomena, one takes advantage of the concept of a quasiparticle
(QP) as a fictitious particle subject to an effective interaction [174,
175] which embodies all the quantum many-body effects. One then
derives an effective Schrödinger-like single-particle equation (the QP
equation), whose solution would give effective single-particle energy
levels; excitation and decay processes involving such quasielectron and
quasihole states may then be rigorously described.
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Although this picture may at first seem similar to the one obtained
within the DFT-KS theoretical scheme, the underlying rationale is
indeed different: the KS theory is to be regarded as a purely
mathematical construct to conveniently represent the ground-state
density of a quantum system, and, with some exceptions, cannot give
a fundamental description of its excited states.

A rigorous mathematical treatment of QP properties in condensed
matter is the subject of many-body perturbation theory [88, 127, 293]
(also known as Green’s function theory), whereby one can in principle
construct systematically improved approximations to the QP equation
and thus calculate excitation and ionization energies, optical absorption
spectra, and related quantities in molecular and condensed-matter
systems [226]. One of such approximations is known as the GW
approximation [11, 126]. This method constitutes the state-of-the-art
approach for electronic structure calculations of materials, and the basis
for all the MBPT-based calculations presented in this work. QP energies
computed within the GW scheme are suitable to comparison with the
measured ones obtained from photoemission spectroscopies.

3.1.1 Single-Particle Green’s Function and the Self-Energy

In the simplest case, in which effective single-particle states in the
many-electron system are addressed, one is interested in calculating the
single-electron Green’s function G, which at zero temperature is defined
as an expectation value over the N -electron ground state

∣∣ΨN
0

〉
,

G(rσt, r′σ′t′) = −i
〈
ΨN

0

∣∣T ψ̂(rσt)ψ̂†(r′σ′t′)
∣∣ΨN

0

〉
(3.1)

where ψ̂(rσt) (ψ̂†(rσt)) is the field operator in the Heisenberg
representation annihilating (creating) one electron of spin σ, at position
r and time t,1

ψ̂(rσt) = eiĤtψ̂(rσ)e−iĤt (3.2)

and T denotes time-ordering of the two field operators. The following
interpretation is apt to Eq. (3.1). For t > t′, an electron with spin σ′

is added at time t′ and position r′ to the N -electron ground state
∣∣ΨN

0

〉
;

the resulting (N + 1)-electron state evolves in time according to the
Hamiltonian Ĥ until time t, at which an electron with spin σ is removed
from the system at position r. For t < t′, an electron with spin σ is

1In a molecular or solid-state system, the N -electron Hamiltonian Ĥ should be identified with the
electronic part Ĥe of the total Hamiltonian, Eq. (1.3), obtained under the Born-Oppenheimer approximation.
The associated eigenvalue problem for Ĥ is denoted Ĥ

∣∣ΨNl 〉
= ENl

∣∣ΨNl 〉
.
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annihilated at time t and position r; after evolution of the resulting (N−
1)-electron state until time t′, the missing electron is reintroduced into
the system at position r′ with spin σ′. The Green’s function G thus
describes the probability amplitude for transitions, under the action of
Ĥ , of an electron or a hole from the initial to the final state throughout
the fully interacting many-electron system.

The Green’s function contains information about ground-state
fundamental properties such as the charge density,

n0(rt) = −i
∑
σ

lim
η→0+

G(rσt, rσt+ η), (3.3)

and the ground-state total energy (through the Galitskii-Migdal formula)
[88]. In view of analysis of excited states, one also introduces
the Lehmann representation of the Green’s function, which reads (in
frequency space)

G(rσ, r′σ, ω) =
∑
l

fl(rσ)f ∗l (r′σ′)

ω − [εQP
l + iη sgn(µ− εQP

l )]
, (3.4)

where the total energy differences

εQP
l =

{
EN+1
l − EN

0 , εQP
l > µ

EN
0 − EN−1

l , εQP
l < µ

(3.5)

refer the energy of the excited state l of the (N+1)- and (N−1)-electron
systems to the ground state of the N -electron system2 (µ ≡ µ(N) =
µ(N + 1) +O(1/N) is the chemical potential), and the QP amplitudes
fl are defined as

fl(rσ) =

{ 〈
ΨN

0

∣∣ ψ̂(rσ)
∣∣ΨN+1

l

〉
, εQP

l > µ〈
ΨN−1
l

∣∣ ψ̂(rσ)
∣∣ΨN

0

〉
, εQP

l < µ.
(3.6)

Thus, the poles of G correspond to electron addition and removal
energies which can be measured in photoemission experiments in
which an electron is added to (inverse photoemission) and subtracted
from (direct photoemission) the original system. The associated QP
amplitudes satisfy the set of coupled equations[

−∇
2

2
+ vext(r)− εQP

l

]
fl(rσ)

+
∑
l′

∫
d3r′ v(r, r′)

〈
ΨN−1
l

∣∣ n̂(r′)
∣∣ΨN−1

l′

〉
fl′(rσ) = 0.

(3.7)

2The label l understands both spatial and spin quantum numbers.
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In the limit of vanishing Coulomb interaction between electrons, v → 0,
the N -, (N + 1)-, and (N − 1)-electron wavefunctions are Slater
determinants constructed from the single-particle orbitals φl of the
noninteracting system with external potential vext (described by the
Hamiltonian Ĥ0 =

∑N
i=1 ĥ0(ri), with h0(ri) = −(1/2)∇2

i + vext(ri)),
and the energy differences εQP

l are identified with the corresponding
single-particle eigenvalues εl, obtained from solution of ĥ0 |φl〉 =
εl |φl〉. Hence the Green’s function reduces to its noninteracting form,

G0(rσ, r′σ, ω) =
∑
l

φl(rσ)φ∗l (r
′σ′)

ω − [εl + iη sgn(µ− εl)]
. (3.8)

From the mathematical point of view, G is the resolvent of Ĥ , G−1 =
ω − Ĥ; similarly, G0 is the resolvent of the noninteracting Hamiltonian
Ĥ0, G−1

0 = ω − Ĥ0. The two Green’s functions are connected through
the Dyson’s equation,∑
σ′′

∫
d3r′′ {δσσ′′δ(r− r′′) [εl −H0(rσ)]− Σ(rσ, r′σ′, εl)} fl(r′′σ′′) = 0,

(3.9)
where the electron self-energy Σ is defined to include all the many-body
Coulomb interaction effects. To lowest order in the Coulomb interaction
v, Σ consists of the direct Coulomb (Hartree) term and the Fock
exchange contribution. More conveniently for practical computational
purposes, the self-energy can be defined to include only interaction
contributions beyond some mean-field description of the many-electron
system. Its expression of course depends on the choice made for the
reference noninteracting system. Most often, one chooses Ĥ0 to be
the Hartree Hamiltonian: hence, vext(r) → vext(r) + vH(r), φl and
εl entering Eq. (3.8) are the Hartree eigenfunctions and eigenvalues,
and the self-energy incorporates the Fock exchange and correlation
contributions.

Despite the form of Eq. (3.9) is apparently analogous to that
of a single-particle Schrödinger-like equation, the presence of the
self-energy operator complicates it substantially. In fact, Σ is a nonlocal,
energy-dependent operator, which has to be approximated by resorting
to perturbative methods. If an analytic continuation of G, Σ, and
related quantities is performed from the real frequency axis to the
whole complex plane, one observes that the QP energies (3.5) become
complex. From a physical point of view, the real part of the QP energy
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gives the position of a peak in the photoemission spectrum, i.e. in the
spectral function

A(rσ, r′σ′, ω) =
1

π
|ImG(rσ, r′σ, ω)| =

∑
l

fl(rσ)f ∗l (r′σ′)δ(ω − εQP
l ),

(3.10)
while its imaginary part describes the peak width, i.e. measures
the QP lifetime, which is made finite by presence of interactions.
Such broadened features may develop from corresponding δ-like peaks
exhibited in the spectrum of the related noninteracting system (from
which the physical interacting system is obtained by adiabatically
switching on the Coulomb interaction v); the δ-like shape of such peaks
is connected to the fact the QPs are infinitely-lived in the absence of
interactions. The established connection between the fully interacting
and the noninteracting systems allows one to interpret a number of
experimental observations obtained in spectroscopies in the framework
of an effectively single-particle picture. This is well in the spirit of the
original Landau’s concept of quasiparticle [174, 175].

3.1.2 Linear Response and Hedin’s Equations

The self-energy incorporates all the dynamical correlation and relaxation
effects beyond the HF description; such effects can be equivalently
understood on the basis of the dynamical response of the system to
addition and removal of one particle from it.3 In linear response, one
defines the total screened potential acting on the system,

vtot(r, ω) =

∫
d3r′ ε−1(r, r′, ω)v0(r

′) (3.11)

as the potential resulting from reduction of the bare external potential
v0 due to dynamical relaxation of the charge density in the system; such
reduction is represented through the inverse of the dielectric function ε.
The irreducible polarizability P is defined through

ε(r, r′, ω) = δ(r− r′)−
∫
d3r′′ v(r− r′′)P (r′′, r′, ω) (3.12)

where v is the bare Coulomb potential. The polarizability operator P
describes the dynamical response of the charge density to the presence
of the screened potential vtot, i.e. P = δn/δvtot. The reducible

3Such response effects are completely neglected within the HF approximation.
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polarizability χ, describing charge density response to the bare external
potential v0, χ = δn/δv0, is related to P through the Dyson’s equation
(written in compact form),

χ = P + Pvχ. (3.13)

Through Eqs. (3.12) and (3.13), one can obtain an explicit expression for
the inverse dielectric function ε−1 in terms of the reducible polarizability,

ε−1(r, r′, ω) = δ(r− r′) +

∫
d3r′′ v(r− r′′)χ(r′′, r′, ω). (3.14)

The screened Coulomb potential is defined in an analogous fashion as in
Eq. (3.11),

W = ε−1v. (3.15)
One can then set up a perturbative expansion of the self-energy in

terms of the screened Coulomb potential W . The use of W instead of
the bare Coulomb potential v is physically justified by the observation
that physical quantities will be actually renormalized by presence of
many-body screening and relaxation effects. Furthermore, usage of
the finite-range screened Coulomb potential will be likely to remove
the divergences encountered in a naive expansion in terms of the bare,
infinite-range, Coulomb potential. Such a program was carried out by
Hedin, who was able to recast the many-body problem as a formally
closed set of integral equations, relating the Green’s function G, the
self-energy Σ, the irreducible polarizability P , the screened Coulomb
potential W , and the vertex function Γ [126]. The celebrated Hedin’s
equations read4

G0(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (3.16)

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P (3, 4)W (4, 2) (3.17)

Σ(12) = i

∫
d(34)G(1, 3)Γ(3, 2; 4)W (4, 1) (3.18)

P (1, 2) = −i
∫
d(34)G(1, 3)G(4, 1)Γ(3, 4; 2) (3.19)

Γ(2, 3; 1) = δ(1, 2)δ(1, 3)

+

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3).

(3.20)

4The numerical labels are shorthand notation for position, spin and time coordinates, i.e. i ≡ riσiti,
and i+ ≡ riσiti + η, with η → 0+.
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Equation (3.16) is equivalent to Eq. (3.9); equation (3.17) is easily
obtained from the Eqs. (3.15) and (3.12). Equation (3.19) shows
that polarization of the electron gas is made up by the creation
of electron-hole pairs (product of retarded and advanced Green’s
functions), and their interaction is determined by the vertex Γ, which
is determined by the change in the self-energy upon electron transitions.

3.1.3 The GW Approximation

Hedin’s equations constitute a set of coupled integral equations which
are to be solved self-consistently for G. In practice, one seeks for an
approximation that allows one to partially decouple this set of equations
[127, 226]. This is equivalent to truncating the self-energy expansion to
a given order in G. The lowest order approximation to Σ is obtained by
neglecting vertex corrections, i.e. assuming Γ(2, 3; 1) = δ(1, 2)δ(1, 3).
In this approximation, the irreducible polarizability is built up by
noninteracting electron-hole pairs,

PRPA(1, 2) = −iG(1, 2)G(2, 1+), (3.21)

i.e. electron and holes propagate independently throughout the
interacting system. Such approximation for P is equivalent to the
so-called random phase approximation (RPA) of many-body theory [88].
Hence Eq. (3.18) implies that Σ is given by

ΣGW (1, 2) = iG(1, 3)W (3, 1) (3.22)

which represents the so-called GW approximation to self-energy. W
is given by Eq. (3.19), with P obtained in the RPA, Eq. (3.21). ΣGW

should be in principle computed self-consistently withG, which satisfies
the Dyson’s equation (3.16). The noninteracting Green’s function
G0 (3.8) can be constructed from the eigenfunctions and eigenvalues
obtained from solution of the Schrödinger equation for a reference
independent-particle system, and iterated until convergence is achieved.
In practice, such self-consistent GW approach is not expected to
systematically improve computed spectroscopic properties, with respect
to the simplest G0W0 scheme, in which only the first iteration step is
performed [167, 226]. This is particularly true for calculation of QP
band gaps of insulating materials, for which self-consistent GW has
been generally found to perform worse than G0W0, or GW0 [281], in
which only G is iterated to self-consistency, while W is kept constant to
its original RPA expression. This tendency points out the importance of
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the vertex correction when attempting a consistent treatment of G and
W . The G0W0 method is more extensively described in Section 3.2,
where its practical implementation into a plane waves framework is also
discussed.

3.1.4 The COHSEX Approximation

In his original work of 1965, Hedin proposed an even simpler
approximation for the self-energy, derivable in the static limit (ω → 0)
from the GW self-energy,5

ΣGW (r, r′, ω) =
i

2π

∫
dω′ eiηω

′
G(r, r′, ω + ω′)W (r, r′, ω′). (3.23)

In fact, the frequency-dependent, polarizable part of W ,

Wp(r, r
′, ω) = W (r, r′, ω)− v(r, r′) (3.24)

can be written in the spectral representation,

Wp(r, r
′, ω) =

∫ ∞
0

dω′
2ω′B(r, r′, ω′)

ω′2 − (ω − iη)2
. (3.25)

One then observes that Eq. (3.23) can be rewritten as [127]

ΣGW (r, r′, ω) =−
∑
l

ΘlW (r, r′, εl − ω)fl(r)f
∗
l (r′)

+
∑
l

fl(r)f
∗
l (r′)

∫ ∞
0

dω′
B(r, r′, ω′)

εQP
l − ω − (ω′ − iη)

(3.26)

If (εQP
l − ω) is smaller than the characteristic excitation energy of

the screened interaction (the plasmon energy), then one can simplify
Eq. (3.26) by assuming εQP

l − ω ≈ 0. By performing the
energy integration, one obtains the following (energy-independent)
approximation to the GW self-energy, known as the Coulomb-hole and
screened-exchange (COHSEX) approximation [126],

ΣGW (rσ, r′σ′, 0) = ΣCOH(r, r′, 0) + ΣSEX(r, r′, 0) = ΣCOHSEX(r, r′)
(3.27)

where
ΣCOH(r, r′, 0) =

1

2
δ(r− r′)Wp(r, r

′, 0) (3.28)

5For the sake of simplicity, spin coordinates and quantum numbers are dropped in the following.
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is the Coulomb hole (COH) self-energy contribution arising from
interaction of the electron with the Coulomb hole created by polarization
of the rest of the system (dynamical effects in the screening are
nonetheless neglected since Wp is evaluated for ω = 0). In this
approximation, the COH term is a local function in space. The static
screened-exchange (SEX) contribution is given by

ΣSEX(r, r′, 0) = −
∑
l

ΘlW (r, r′, 0)fl(r)f
∗
l (r′), (3.29)

which is the statically screened Fock interaction (the Fock potential is
in fact obtained by replacing W with v). COHSEX goes beyond the
HF theory, in the sense that it takes into account (static) polarization
effects that are completely missing in the HF scheme. In fact, the
HF approximation is equivalent to completely neglecting electronic
screening (ε = 1), which amounts at assuming P = 0 in Eq. (3.17);
hence, the self-energy Σ reduces to the HF expression, ΣHF = iGv. The
Coulomb hole term, developing from the poles of the inverse dielectric
function, is also disregarded in this approximation.

The COHSEX method generally improves computed spectroscopic
properties with respect to HF, although with a tendency to overestimate
QP band gaps of materials [141], as a result of overestimation of the
self-energy with respect to its fully dynamical form. On the other
hand, the computational cost of a COHSEX calculation is practically
equivalent to HF, and much smaller than full GW , since all excitation
processes from occupied to empty states are not taken into account in the
evaluation of the dielectric function. Moreover, the energy-independent
expression of the COHSEX self-energy operator is suitable to being
implemented into an hybrid DFT scheme, as described in Section 3.3.

3.2 Practical GW Calculations

3.2.1 The G0W0 Approximation

In practical GW calculations, one typically considers the KS system as
the reference noninteracting system from whichG, P , and Σ are initially
evaluated. One starts by constructing G from the KS orbitals φl and
eigenvalues εKS

l obtained from a DFT calculation,

GKS(r, r′, ω) =
∑
l

φl(r)φ
∗
l (r
′)

ω − [εKS
l + iη sgn(µ− εKS

l )]
. (3.30)
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The RPA polarizability is obtained similarly, starting from Eq. (3.21)
and performing a Fourier transformation [3, 325],

PRPA(r, r′, ω) =
∑
l,l′

(Θl −Θl′)
φl(r)φ

∗
l′(r)φl′(r

′)φ∗l (r
′)

ω − (εKS
l′ − εKS

l ) + iη
. (3.31)

The dielectric function ε is constructed from Eq. (3.12), and, once
inverted, yields the screened interaction W ; then, the self-energy ΣGW

is evaluated using Eq. (3.22).
In order to evaluate the QP energies, one then computes the first-order

correction to KS eigenvalues, using [Σ̂GW (ω) − v̂xc] as perturbation
operator,

εQP
l = εKS

l + 〈φl| [Σ̂GW (εQP
l )− v̂xc] |φl〉 . (3.32)

The self-energy should be evaluated at the unknown QP energy εQP
l .

However, one can perform an expansion of ΣGW (εQP
l ) at first order

around the corresponding KS eigenvalue [141],

εQP
l = εKS

l + Zl 〈φl| [Σ̂GW (εKS
l )− v̂xc] |φl〉 (3.33)

where Zl = (1 − 〈φl| dΣ̂/dω (ω = εKS
l ) |φl〉)−1 is the QP weight.

This approximation is generally able to provide results very close
to the ones obtained by exactly diagonalizing the GW Hamiltonian.
Equation (3.33) provides the G0W0 correction to the KS band structure.
Evaluation of G, P , and Σ using the first-order approximation (3.33) to
QP energies (and assuming, for example, single-particle wavefunctions
to be well described within DFT, i.e. neglecting nondiagonal elements
in the self-energy) leads to the first iteration step of the self-consistent
GW scheme. Clearly the DFT starting point may substantially affect
the accuracy of the obtained GW correction [35, 46]: if for example
the starting KS wavefunctions are qualitatively wrong, i.e. are far from
the actual form of the QP wavefunctions, then the corresponding matrix
elements of Σ are expected to be inaccurate, and this may in principle
result in a degradation with respect to the DFT description. In this
respect, self-consistent GW should instead provide results independent
of the starting approximation.

3.2.2 Plane waves implementation of the G0W0 scheme

In a plane waves and pseudopotential scheme, one resorts to a plane
waves basis set to represent the starting KS wavefunctions, 〈r|l,k〉 =
φl,k(r) given by Eq. (2.66), as well as matrix elements of the various
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operators to be defined in the GW scheme. Such approach is employed
in the BERKELEYGW code [70] used for GW calculations presented in
this work. In reciprocal space, the static RPA polarizability reads

[PRPA]GG′ (q, 0) =
∑
l,l′,k

Θl(1−Θl′)
Mll′(k,q,G)M∗

ll′(k,q,G
′)

εlk+q − εl′k + iη
(3.34)

whereMll′(k,q,G) = 〈l,k + q| ei(q+G)·r̂ |l′,k〉, q is a vector of the first
BZ, and the summation is over occupied (denoted l) and empty (denoted
l′) single-electron states. The size of the matrix [PRPA]GG′ is determined
by the dielectric energy cutoff Eeps

cut , which limits the summation (3.34)
to reciprocal lattice vectors such that (1/2)|G|2 < Eeps

cut . The dielectric
energy cutoff also determines an upper limit to the number of empty
states that should be included in the summation (3.34). In practice,
the static RPA polarizability converges quite rapidly with respect to the
number of the included empty states.

The static dielectric matrix is evaluated using the definition (3.12),
which in reciprocal space reads

εGG′(q, 0) = δGG′ − v(q + G)PGG′ (3.35)

where
v(q + G) =

4π

|q + G|2
(3.36)

is the bare Coulomb potential. The dielectric matrix is then inverted to
yield the screened Coulomb interaction (at zero frequency),

WGG′(q, 0) = ε−1
GG′(q, 0)v(q + G′). (3.37)

In order to extend the dielectric response to finite frequencies, one
can define the fully frequency-dependent retarded (r) and advanced (a)
dielectric matrices,

εr/a
GG′(q, ω) = δGG′ − v(q + G)

∑
l,l′,k

Θl(1−Θl′)Mll′(k,q,G)M∗
ll′(k,q,G

′)

× 1

2

[
1

εlk+q − εl′k − ω ∓ iη
+

1

εlk+q − εl′k + ω ± iη

]
,

(3.38)

and evaluate the screened interaction on a grid of frequencies along the
real axis. Alternatively, one can resort to plasmon-pole approximations:
a simple analytic model for the frequency-dependent dielectric matrix
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is assumed, in which free parameters are chosen so as to satisfy certain
exact conditions. The Hybertsen-Louie generalized plasmon-pole model
[141] implemented in the BERKELEYGW code [70], takes advantage
of the fact that the imaginary part of the inverse dielectric matrix,
Im ε−1

GG′(q, ω), is generally a peaked function of ω. For each set of
indeces (q,G,G′), Im ε−1 is thus modeled as

Im ε−1
GG′(q, ω) = AGG′(q)[δ(ω−ω̃GG′(q))−δ(ω+ω̃GG′(q))]. (3.39)

The corresponding real part is given by

Re ε−1
GG′(q, ω) = 1 +

Ω2
GG′(q)

ω2 − ω̃2
GG′(q)

(3.40)

where ΩGG′(q) is an effective plasma frequency. The model parameters
AGG′(q) and ω̃GG′(q) are fixed by requiring ε−1

GG′(q, ω) to satisfy the
Kramer-Kronig relation, as well as by imposing a frequency sum rule
on Im ε−1

GG′(q, ω) [141]. The resulting model dielectric function is
thus completely determined, and in fact contains no empirically fitted
parameters.

Similarly to COHSEX, the GW self-energy can be separated
in frequency-dependent Coulomb hole and screened exchange
contributions,

〈l,k| Σ̂COH(ω) |l′,k〉 =
i

2π

∑
l′′

∑
qGG′

M∗
l′′l(k,−q,−G)Ml′′l′(k,−q,−G′)

×
∫ ∞

0

dω′
[εr

GG′ ]
−1 (q, ω′)− [εa

GG′ ]
−1 (q, ω′)

ω − εl,k−q − ω′ + iη
(3.41)

〈l,k| Σ̂SEX(ω) |l′,k〉 = −
occ∑
l′′

∑
qGG′

M∗
l′′l(k,−q,−G)Ml′′l′(k,−q,−G′)

× [εr
GG′ ]

−1 (q, ω − εl,k−q)v(q + G′),
(3.42)

which can be evaluated analytically when the generalized plasmon-pole
model is used to describe the frequency dependence [70]. In any
case, the Coulomb hole part of the GW self-energy contains an in
principle infinite summation over empty states, which in practice has
to be truncated. The number of empty states needed to converge
the COH self-energy is typically very large, and its evaluation thus
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Hybrid Functionals

constitutes another computationally intensive step in GW calculations
(besides the evaluation of the polarizability (3.34), and the inversion of
the dielectric matrix). Recently, numerical techniques that allow one to
avoid the explicit calculation of excited states through density-functional
perturbation theory approaches have been developed and implemented
in GW codes [113, 306].

Finally, the QP energies are computed through Eq. (3.33). One then
has to evaluate the matrix elements of the exchange-correlation potential
vxc over the KS wavefunctions, which are expanded in plane waves up
to a cutoff energy Exc

cut.

3.3 Combining MBPT and DFT: Self-Consistent
Dielectric-Dependent Hybrid Functionals

The generally good performance of hybrid xc functionals in electronic
structure calculations of insulating solids is justified by incorporation of
part of the derivative discontinuity in the GKS gap [271]. Popular hybrid
functionals such as PBE0, and especially HSE06, have been shown to
systematically improve agreement of computed band gaps with respect
to experiments, compared with LDA and GGA [216,235]. However, the
value of the admixed EXX fraction in those functionals was originally
obtained by requiring them to provide molecular thermochemical
properties with an accuracy comparable to higher level perturbation
theory (Møller-Plesset) methods [244]. Such an approach is not
necessarily justified when applied to extended systems, for which
GW is the state-of-the-art method for computation of the electronic
structure. In the zero-frequency limit, the GW self-energy can be put in
correspondence with the general expression of the full-range PBE0-like
hybrid xc potential obtained by differentiating the xc energy (2.36),

vxc[n](r, r′) = αvx(r, r
′) + (1− α)vGGA

x (r)δ(r− r′) + vGGA
c (r)δ(r− r′)

(3.43)
where

vx(r, r
′) =

δEx[n]

δn(r)
=
∑
l

Θl φl(r)φl(r
′)v(r, r′) (3.44)

is the nonlocal potential derived from the KS EXX energy, Eq. (2.32).
The zero-frequency limit of ΣGW (r, r′, ω) corresponds to the COHSEX
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expression for self-energy,

ΣCOHSEX(r, r′) = −
∑
l

ΘlW (r,r′, 0)φl(r)φ
∗
l (r
′)

− 1

2
δ(r− r′) [v(r, r′)−W (r, r′, 0)] .

(3.45)

The statically screened Coulomb potential

W (r, r′, 0) =

∫
dr′′ ε−1(r, r′′, 0)v(r′′, r′) (3.46)

can be simplified by neglecting the microscopic components of the static
dielectric function, i.e. by approximating

ε−1(r, r′, 0) ≈ 1

ε∞
δ(r− r′), (3.47)

where ε∞ is the macroscopic dielectric constant of the material [3, 325],

ε∞ = lim
q→0

1

ε−1
G=0,G′=0(q, 0)

(3.48)

evaluated at zero frequency, and comprising the electronic contribution
only (ion-clamped dielectric constant). One thus obtains

W (r, r′, 0) ≈ ε−1
∞ v(r, r′). (3.49)

The screened-exchange part of ΣCOHSEX is thus identified with the
nonlocal Fock exchange part in the hybrid xc potential (3.43), since both
decay asymptotically as 1/|r−r′|. Under the stated approximations, the
EXX fraction is thus given by [6, 90, 198]

α =
1

ε∞
. (3.50)

The self-energy contributions beyond the screened exchange term, i.e.
the static Coulomb hole and the dynamical contributions not described
within COHSEX, are modeled through the local, short-ranged parts of
(3.43). In other words, the assumption is made that the full-range hybrid
xc potential (3.43) correctly describes the long-range behavior of the
self-energy, and that the admixed GGA xc potential accounts for the
remaining, supposedly short-ranged, contributions.
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3.3.1 Literature Review of Approaches to Determine
the Exchange Fraction

Several approaches have been proposed and benchmarked in the
literature to evaluate the exchange fraction α in the full-range hybrid
functional (3.43) for electronic structure calculations. Two opposite
philosophies can be identified: (i) fitting of α so as to reproduce some
desired electronic feature, typically the material band gap, and (ii) ab
initio or semi-empirical evaluation of α based on Eq. (3.50).

In the first class of approaches, the exchange fraction has been
tuned to recover the band gap obtained from experiment [4, 6, 33] or
computed within GW [45], and the resulting functional has been used
for calculation of a different and more complex electronic features, such
as defect levels positions in the bulk band gap and band edges alignment
at semiconductor interfaces.

Approaches to determine α based on Eq. (3.50) differ from each other
depending on how the dielectric constant ε∞ is evaluated. Marques et
al. computed it using the PBE functional [198]; Conesa evaluated α
based on the experimental value of ε∞ [50] and the value calculated at
the hybrid DFT level [51]; other authors employed simplified models
to obtain the static dielectric constant [277–279], or determined it
within the independent-particle approximation6 [158] or the RPA [257],
sometimes employing a self-consistent approach. Skone et al. proposed
a method for determining α and ε∞ self-consistently, based on the
relationship (3.50) and using both the PBE and the PBE0 functionals
as starting approximation to compute the dielectric constant [283]. The
latter is calculated going beyond the RPA, i.e. including the exchange
and correlation contributions to polarization function.

3.3.2 Method Used for Calculation of the Dielectric Constant

The general approach to evaluate the dielectric function within
DFT-GKS makes use of the definition of the irreducible KS
polarizability χs(r, r

′, ω), defined as the density response function to a
variation in the generalized KS potential, χs = δn/δvs, where vs(r, r

′)
is the generalization of the KS potential (2.21) within the GKS scheme,
possibly including nonlocal xc potentials (derived, e.g., from hybrid xc
functionals). The relationship between χs and the physical (reducible)
polarizability χ of Eq. (3.13) is obtained along the lines of the reasoning
in Section 3.1.2: in the presence of a perturbing external potential v0, the

6This approximation corresponds to setting χ = χs in Eq. (3.51), i.e. to neglecting polarization effects.
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electronic density redistributes in the system, inducing a change in the
GKS electronic potential; the two response functions are related by

χ = χs + χs (v + fxc)χ, (3.51)

where
fxc =

δvxc

δn
(3.52)

is the exchange-correlation kernel.
By neglecting the xc contribution to polarizability, i.e. assuming

fxc = 0, one is left with the RPA polarizability, which is equivalent
to the GW approximation. In this approximation, the employed xc
potential does enter only in the construction of the independent-particle
polarizability χs, but not in the higher-order screening contributions.
Since the aim here is to devise a fully self-consistent scheme to evaluate
α based on its relation with ε∞, and since α fixes the form of the xc
potential to be used, it is desirable to consistently include the xc effects
in determining the density response function. Such contributions can
lead to appreciable modification of the computed optical properties,
especially when fxc is derived from nonlocal xc potentials [236]. Going
beyond the RPA requires evaluating the derivative of vxc with respect
to density, which in the case of nonlocal hybrid xc potentials is not
straightforward to compute, due to implicit dependence of vxc on the
density through the KS orbitals.

A suitable computational approach allowing one to directly evaluate
this term is the coupled-perturbed Kohn-Sham (CPKS) method [85,227],
an extension of the coupled-perturbed Hartree-Fock (CPHF) [86, 255]
method including electronic correlation in the evaluation of the dielectric
response. By means of this method, the eigenstates of the perturbed
Hamiltonian as obtained from application of an external electric field
are expressed in terms of the unperturbed ones; the unitary matrix
connecting the two orbital manifolds is approximated within first-order
perturbation theory and evaluated iteratively through the self-consistent
coupled-perturbed procedure. This matrix fully includes contributions
derived from possibly nonlocal energy terms in the Hamiltonian, such
as the ones arising from the EXX part in hybrid xc functionals. Hence,
the static polarizability is computed iteratively, and, after convergence
is achieved, the dielectric constant ε∞ can be readily evaluated. Due to
usage of moderate size Gaussian-type basis sets, the CRYSTAL09 code
offers an efficient implementation of the CPKS method for calculation
of the dielectric properties of extended systems [87].
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Figure 3.1: Flowchart of the sc-PBE0αε∞method.

3.3.3 Self-Consistent Hybrid Functional (sc-PBE0αε∞)

Once ε∞ is calculated in the first step using a suitably chosen xc
approximation (which may be chosen, e.g., as PBE or PBE0), a new
hybrid DFT potential can be constructed with the exchange fraction
obtained from inversion of the computed dielectric constant. The
procedure is then iterated until α and ε∞ are consistently determined,
according to the diagram in Figure 3.1. The xc functional constructed
with the converged α will be referred to as “sc-PBE0αε∞” in the
following, as it is in fact a self-consistent (sc) re-parametrization of the
full-range PBE0 functional.

Optimization of lattice parameters of the bulk solid is performed
at each iteration step, so that the dielectric constant is computed at
the true ground state corresponding to the xc functional at hand. In
fact, structural deformations in principle affect computed electronic
band gaps and dielectric constants, so that a consistent determination
of structural, electronic and dielectric properties may be aimed for.

The self-consistent scheme has been shown to converge within
two or three iteration steps for most semiconductors and insulators
[283], and even after a single iteration the computed band gap is
substantially closer to experiment with respect to the PBE or PBE0
values. Optimization of the cell geometry at each self-consistency step
does not alter quantitatively how quickly this convergence is achieved
[100].
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CHAPTER4
Modeling of Point Defects

in Insulating Materials

4.1 Introduction: The Supercell Approximation

Atomic impurities such as substitutional atoms, atomic vacancies, or
interstitials, are spontaneously formed in materials, where they are
often introduced throughout the synthesis and production processes even
when the latter are carried out under very well-controlled conditions.
The presence of such native defects substantially alters, among others,
the optical, electrical and magnetic properties of the material, and a
correct interpretation of experiments requires these modifications to be
properly described by theory.

When native point defects are formed into an otherwise ideal
crystal, the original periodicity gets inevitably broken. However,
the experimental concentration of these intrinsic defects is typically
too low to be realistically modeled through a correspondingly large
primitive cell representing a single impurity embedded in the ideal
host lattice: the number of atoms belonging to such supercell
would be of the order of several thousands; calculations on cells
of this size is at or beyond the limit of applicability, in terms of
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computational cost, of state-of-the-art DFT methods (e.g., hybrid
functionals) using conventional implementations. In practice, one
has to introduce an artificial periodicity employing much smaller
supercells, which would correspond to an unrealistically large defect
concentration. Consequently, the spurious interaction between image
defects can substantially affect the calculated properties of the defective
system, to an extent at which comparison with experiments may
become meaningless. Such interaction can be quantum-mechanical
(overlap of nearby defect wavefunctions), elastic, electrostatic (for
nonneutral defects), or magnetic in nature, and has to be carefully
accounted for when extrapolating computed quantities to very low
defect concentrations (dilute limit) [93], which is typically the condition
suitable for comparison with experiments for native defects. However,
usage of the supercell approximation in a periodic framework is
advantageous over, e.g., cluster approaches [230], since it allows one to
interpret the defect as a small perturbation of the perfect periodic crystal,
which is naturally described using periodic boundary conditions. In fact,
it constitutes today the most popular approach to theoretical modeling of
point defects in solids.

4.2 Defect Formation Energy

Within the supercell approximation, calculation of fundamental
properties of the defective system is achievable. One of the most
representative of these properties is the energy cost of creating a single
defect in an otherwise perfect crystal. The defect formation energy is
given by (in the grand canonical ensemble at zero temperature,1 and for
a neutral defect, q = 0)

Ef
D,0 = ED,0 − EH −

∑
i

niµi, (4.1)

where ED,0 and EH are the ground-state total energies of the defective
and nondefective (host) supercells, respectively. ni is the number of
atoms of species i added to (ni > 0) or removed from (ni < 0) the host
supercell while forming the defective one. The chemical potentials {µi}
of the reservoirs for the atomic species involved in the defect formation
are ultimately fixed by the experimental conditions at which the defect is
created. For example, one can simulate a condition in which the material

1For a generalization of the definition of defect formation energy to finite temperature and pressure, see
Ref. [93].
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is synthesized in an atmosphere predominantly enriched with a given
atomic species, leading to corresponding creation of substitutional or
interstitial impurities in the perfect crystal. The range of values that µi
can span is determined by appearance of a pure (solid or gaseous) phase
of the species i [309, 329] in some region of µi values.

In order to compute reliable defect formation energies, convergence
of the supercell size should be carefully checked [93]. (i) For a neutral
defect, one should take into account the quantum-mechanical overlap
between defect wavefunctions in nearby supercells, possibly leading to
dispersion of the corresponding defect state along high-symmetry lines
in the BZ; in contrast, in the case of an ideally isolated defect, such
dispersion is suppressed, as the defect state is atomic in nature. (ii)
The relaxation of the host lattice atomic positions can produce elastic
interactions between defects, if the host lattice structure is strongly
perturbed by presence of the defect, and/or the supercell is chosen to
be too small. (iii) Interactions between defects with a nonzero total spin
may also alter the formation energy. Contributions (ii) and (iii) decay
as 1/L3, where L is the representative linear supercell size; the defect
formation energy has been found to converge rapidly with supercell size
when only these interaction energy terms have to be cared of (this is the
case for neutral defects) [159].

Charged defects (charge q = ±1, . . . ) may also be stabilized in
semiconductors and insulators, where the neutral defect can donate or
trap charge carriers (electron or holes) to or from the host crystal;
as a consequence, the expression for the formation energy features
an additional term, taking into account possibility of charge carriers
exchange with an electron (or hole) reservoir of chemical potential µe

[329],
Ef

D,q = ED,q − EH −
∑
i

niµi + qµe + Ecorr
D,q , (4.2)

where the term Ecorr
D,q corrects the formation energy for the electrostatic

interaction between image charged defects, and µe is referred to the top
of the valence band (VB) of the bulk supercell. Thus Ef

D,q depends on
the asymptotic value of the average electrostatic potential in the bulk
crystal. Due to the long-range nature of the Coulomb potential, such
average potential cannot be uniquely defined for an infinite system with
no surface termination [153]. Hence, the average electrostatic potential
of the defective and the bulk supercells has to be aligned in order to
define an absolute energy scale to which the chemical potential µe may
be referred. In principle, the average potential should converge to its
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bulk value if the supercell is large enough to represent a large enough
portion of the bulk crystal; while quite rapid for neutral defects, such
convergence is much slower for charged defects, due to the asymptotic
q/r decay of the electrostatic potential associated with the defect charge
q [159]. In practice, calculations for charged defects are performed by
adding an homogeneous charge background compensating the defect
charge, hence making the cell neutral; the electrostatic energy, which
is diverging for a system with a net charge [182, 194], is thus made
finite through charge compensation. Correspondingly, the average
electrostatic potential in the bulk crystal is set to zero.

One possible approach to perform electrostatic potential alignment
of pristine and defective supercells, is to choose atomic core levels (e.g.,
the 1s state of Si atom in the silicon crystal) as the energy reference for
the computed KS eigenvalues (and, thus, the VB edge). This method
has also proved capable to yield accurate band offsets at semiconductor
interfaces [251].

4.2.1 Correction Term for Electrostatic Interactions:
the Makov-Payne Scheme

The electrostatic correction term Ecorr
D,q in Eq. (4.2) may be in principle

evaluated by performing separate calculations on increasingly large
supercells, and by extrapolating Ef

D,q to its value for a supercell of
infinite size. In practice, besides this procedure being computationally
cumbersome, one should be aware of how Ecorr

D,q asymptotically decays
as a function of the supercell size L, in order to properly perform the
extrapolation.

Various models for Ecorr
D,q have been proposed in the literature; a

comprehensive analysis of their features are presented in Ref. [159].
Here the model due to Makov and Payne [194] is reviewed. Consider
a model localized charge distribution nD,q(r) (integrating to the total
defect charge, q) periodically repeated and embedded in a neutralizing
homogeneous charge background of density n0 = −q/Ω, where Ω is the
supercell volume. The electrostatic energy of a lattice of point charges q
(separated by distance L) is given by the Madelung energy,

EM =
αMq

2

2L
, (4.3)

where αM is the Madelung constant, which depends on the Bravais
lattice, and can be evaluated using the Ewald method [116]. The
electrostatic interaction of the model defect charge distribution nD,q(r)
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with the homogeneous background charge n0, for a cubic cell of side L,
is given by

ED,bg = −2πqQr

3L3
, (4.4)

where Qr is the quadrupole moment of the localized charge distribution
nD,q(r),

Qr =

∫
Ω

d3r r2nD,q(r). (4.5)

Taking contributions (4.3) and (4.4) into account, the formation energy
(4.2) can be corrected accordingly, resulting in the Makov-Payne (MP)
electrostatic correction energy [194],

EMP
D,q = EMP1

D,q + EMP2
D,q =

αMq
2

2εL
− 2πqQr

3εL3
, (4.6)

where the screening of the defect charge by the host crystal has been
effectively taken into account through scaling of the electrostatic energy
terms by the macroscopic dielectric constant of the embedding medium,
ε. Such screening effects may correspond to (i) rearrangement of the
electronic density in response to presence of the defect charge, or
(ii) rearrangement of the electronic and ionic charge. In case (i) the
defect formation energy is evaluated fixing the atomic structure at the
unrelaxed (e.g., nondefective) one, and ε should be identified with the
high-frequency (ion-clamped) dielectric constant ε∞; in case (ii) atoms
around the defect are free to relax, and the low-frequency (relaxed-ion)
dielectric constant ε0 should be used instead.

Lany and Zunger proposed to calculate the quadrupole term in
Eq. (4.6) using the difference in the total charge density of the charged
and the neutral defective systems [178]. This has been found to be
predominantly contributed by a delocalized screening charge of density
ns = (1 − 1/ε)q/Ω, produced by rearrangement of the electronic
density in response to presence of the defect. By performing the spatial
integration in Eq. (4.5), one obtains (for a cubic cell)

EMP2
D,q = −πq

2

6εL

(
1− 1

ε

)
, (4.7)

which is observed to decay as 1/L, in the same way as the MP1 term;
using the definition in Eq. (4.6), this term can be rewritten

EMP2
D,q = −EMP1

D,q csh

(
1− 1

ε

)
, (4.8)
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where csh is a geometric prefactor depending on the supercell shape;
for a cubic cell, csh = π/(3αM) ≈ 0.369 [179]. The MP correction
term, with the quadrupole contribution evaluated according to Lany and
Zunger, reads

EMP
D,q =

[
1− csh

(
1− 1

ε

)]
αMq

2

2εL
. (4.9)

Hence the term proportional to the Madelung energy is effectively scaled
(at order 1/ε) by a factor (1+f) which, under quite general assumptions
and for different supercell shapes, has been found to be ≈ 0.65 (f ≈
−0.35) [178]. It has also been pointed out that electrostatic corrections
are to be applied in conjunction with potential alignment of the bulk and
defective systems, in order to obtain properly corrected defect formation
energies [159].

Shift of the Kohn-Sham Potential

The correction to supercell energy discussed above determines a
corresponding shift in the KS potential [159, 296]. This is readily
obtained from the definition of KS potential,

vs[n](r) =
δ(E[n]− T [n])

δn(r)
+
δEcorr

D,q

δn(r)
. (4.10)

The charge density distribution associated with the defect can be written

nD,q(r) = q|φD(r)|2 =
∑
I

zI δ(r−RI)− n(r), (4.11)

where φD is the KS defect wavefunction, zI and RI are the nuclei charge
and position within the cell. The derivative of Ecorr

D,q is evaluated by using
the chain rule; if Ecorr

D,q is calculated using the MP formula (4.6), the shift
to be applied to the KS potential reads [45, 159]

vMP
s,q (r) =

δEMP
D,q

δn
= −αMq

εL
+

2πQr

3εL3
+

2π

3εL3
qr2. (4.12)

4.3 Optical and Electrical Properties

The presence of even small concentrations of point defects in insulators
and semiconductors may substantially modify their electrical and optical
properties. This fact is commonly exploited in applications, since
it allows one to engineer the electronic properties of technologically
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important materials. Various spectroscopic techniques can be used to
identify and characterize defects in solids. From the theory side, it is
necessary to conceive a computational approach by means of which
quantities directly comparable with experiments can be calculated.

The presence of point defects in insulating crystals often results in
the formation of defect electronic states in the forbidden energy gap of
the material. Such defect states may be populated by excess electrons or
holes, according to the donor or acceptor nature of the defect.

Excess charges may be trapped at the defect site, or delocalized over
the whole crystal, as a result of thermal ionization of the defect at room
temperature. This causes the observed n-type (electron excitation into
the conduction band) or p-type (hole excitation into the VB) conductivity
of some defective semiconductors. The number of charge carriers
thermally transferred from the defect to the host crystal depends on the
relative stability of different defect charge states, and can be analyzed on
the basis of the corresponding thermodynamic (or adiabatic) transition
levels (see Section 4.3.1). Shallow levels, i.e. defect levels that largely
preserve the nature of electronic states of bulk band edges, are often
involved in thermally assisted ionization processes. Shallow defect
levels can be described within the hydrogenic effective-mass theory of
Kohn and Luttinger [156]. Conversely, deep levels are usually found
stable in their neutral charge state, for which the associated excess
charge remains trapped at the defect site or in its vicinity, and hence
does not contribute to room-temperature conductivity. Their theoretical
description is more involved and cannot be pursued on the basis of
perturbative approaches, like for shallow levels [16].

Defects for which the neutral charge state is stable at room
temperature may also be ionized by transfer of the excess charge into
the host crystal, following absorption of some external (e.g., optical)
perturbation. This gives rise to electron or hole excitation from the
defect state into the conduction or valence band, depending on the defect
donor or acceptor nature. A number of spectroscopic techniques can
characterize defect-related optical transition mechanisms in defective
semiconductors and insulators. From the theoretical point of view,
optical excitation and emission processes are to be modeled on the basis
of optical transition levels (see Section 4.3.1). In principle, computed
DFT-KS defect levels do not provide any insight into the nature of
electronic excitations in defective materials. Since LDA and GGA
severely underestimate the bulk band gap of insulators, positioning of
defect states may turn out to be even qualitatively wrong, predicting
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them to be resonant with the bulk band edges [178]. Usage of hybrid
functionals or many-body GW methods leads to improvements, as a
consequence of the bulk band structure being correctly described, both
in terms of band gap size and of band edge positions with respect to the
defect levels [8,45,64]. Thermodynamic and optical excitation/emission
energies can then be determined by comparing defect formation energies
for charge states differing by one unit, following charge carriers
exchange between the defect and the host crystal. Such charge transition
levels [178, 267, 309] are apt to interpretation of optical spectroscopy,
electrical and electron paramagnetic resonance (EPR) experiments.

4.3.1 Charge Transition Levels

Since a point defect can be viewed as an atomic-like system
embedded in the crystalline medium, ionization potentials and charge
affinities can be determined based on an approach similar to the
delta-self-consistent-field (∆SCF) method [147]. Within ∆SCF,
excitation energies in finite systems (atoms or molecules) can be
computed based on ground-state energy differences between the
N -electron and the (N ± 1)-electron systems (see also Section 2.3).

Considering a variation of the defect charge state from q′ to q, and not
considering structural relaxation at the new charge state (i.e., retaining
the minimum energy configuration of the system at the initial charge
state q′), the optical transition level µopt(q/q′) is defined as the electron
chemical potential at which Ef

D,q′ equals Ef
D,q,

µe = µopt(q/q′) =⇒ Ef
D,q′ = Ef

D,q. (4.13)

Since the external conditions under which the defect is formed are
assumed to be fixed, the term proportional to the chemical potentials
{µi} cancels, and one is left with the final expression for the optical
transition level,

µopt(q/q′) =
E ′D,q′ − E ′D,q

q − q′
, (4.14)

whose value is referred to the top of the bulk VB. Equation (4.14) is
expressed in terms of the ground-state energy of the defective supercells
for different charge states q′ and q; hereE ′D,q is the total energy corrected
for the electrostatic interaction between image defects which is finite
when q 6= 0. One can also recast the energy difference appearing in
Eq. (4.14) in terms of KS defect eigenvalues. If the defect charge state
varies by one unit, e.g. q = q′+ 1 due to excitation of an excess electron
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from the donor defect level into the bulk crystal,2 using Janak’s theorem
[143] one has

E ′D,q′ − E ′D,q =

∫ 1

0

dη εN+1(N + η; q′ + 1− η), (4.15)

where the occupation of the (N + 1)-th KS spin-orbital is varied from
η = 0 (εN+1 corresponding to the lowest unoccupied spin-orbital of
the N -electron system, defect charge state q = q′ + 1) to η = 1
(εN+1 corresponding to the highest occupied spin-orbital of the (N +
1)-electron system, defect charge state q′). In the spirit of Slater’s
transition-state theory [285], the total energy difference (4.15) can be
approximated as [7, 97]

ED,q′ − ED,q ≈
1

2
[εN+1(N + 1; q′) + εN+1(N ; q = q′ + 1)] . (4.16)

Inserted in Eq. (4.14), this approximation allows one to compute
the optical transition level (q/q′) by keeping track of the shift in
the KS frontier eigenvalue upon removal of an electron from the
corresponding orbital, not taking into account subsequent structural
relaxations. This approximate approach has been demonstrated to
provide transition energies in good agreement with experiments [97], as
well as with transition levels computed on the basis of a direct evaluation
of total energy differences [7]. Analogously, optical transition levels
corresponding to trapping of an electron by a defect with initial charge
state q can be computed; the charge trapping induces a change in the
charge state from q to q′ = q − 1, and

E ′D,q′ − E ′D,q ≈
1

2
[εN+1(N ; q) + εN+1(N + 1; q′ = q − 1)] (4.17)

Thermodynamic transition levels µtherm(q/q′) are to be related to
adiabatic charge excitations or decays qi → qf, in which the transition
develops over timescales allowing for structural relaxation around the
defect in its final charge state, qf. The thermodynamic level is obtained
from the corresponding optical level, by adding or subtracting the
relaxation energy

Erel = ED,qf |qi geom − ED,qf |qf geom , (4.18)

2To fix the ideas, consider for example the optical ionization of an initially neutral donor defect (q′ = 0):
its final charge state will be q = +1.
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according to whether q ≡ qf = qi + 1 ≡ q′ + 1 (electron excitation), or
q′ ≡ qf = qi − 1 ≡ q′ + 1 (electron trapping) [97],

µtherm(q/q′) = µopt(q/q′)± Erel. (4.19)

The formalism presented above for electron transitions can equally
well be applied to study of optical or thermodynamic transitions of
excess holes from an acceptor-like point defect level into the host VB.

In order to correctly evaluate the KS eigenvalues to be used in
Eq. (4.16), one has to take into account the finite-size issues already
discussed for calculation of defect formation energies. In fact, the
KS eigenvalues obtained from the two bulk calculations corresponding
to different defect charge states q and q′ have to be referenced to
some common energy scale, which may be identified with some
suitably chosen atomic core level of species in the bulk crystal.
Moreover, for charged defects, the shift in the KS potential due to
electrostatic interaction between images (computed within the MP
correction scheme, Eq. (4.12)) induces a corresponding shift in the KS
defect eigenvalue [45, 159],

εMP
D,q = −αMq

εL
+

2π

3εL3

[∫
d3r r2nD,q(r) + q 〈φD| r̂2 |φD〉

]
= −αMq

εL
+ 2× 2πQr

3εL3
.

(4.20)

Hence, the electrostatic correction for the KS defect level, which is
connected to the total energy correction through εMP

D,q = −(2/q)EMP
D,q,

can be approximated using the simplified formula (4.9), finally yielding

εMP
D,q = −2(1 + f)

(αM
2L

) q

ε∞
. (4.21)

Notice that the high-frequency dielectric constant ε∞ has been used in
Eq. (4.21). In fact, when optical transitions are computed, the screening
of the final defect charge is due to polarization of the electron gas
only, while ions are assumed to be frozen in their initial equilibrium
configuration. This justifies usage of the electronic dielectric constant
instead of the total (combined electronic and ionic) one. No electrostatic
corrections should be applied when computing the relaxation energy
(4.18), since total energies are evaluated for the same charge state qf,
and thus errors in total energy due to finite-size effects are expected to
cancel against each other [62].
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Figure 4.1: Schematic representation of electronic transitions involving a neutral
defect (q = 0) and a positively (q = +1) and negatively (q = −1) charged
one. Representative optical and thermodynamic charge transition levels are
reported. Spectroscopic techniques suitable for probing each transition are
indicated. Reprinted and adapted with permission from [97]. Copyright 2010,
AIP Publishing LLC.

Connection to Experiments

Transition levels can be related to measured excitation and emission
energies probed through spectroscopies. Figure 4.1 schematically
shows possible transition paths involving defect levels which can
occur in defective semiconductors and insulators. Theoretical studies
can play a fundamental role in elucidating the complex optical
transition mechanisms observed in photoluminiscence and absorption
spectroscopy experiments. Photoluminiscence can be produced by
decay of one electron from the conduction band (CB) into the defect
state (emission energy εCB − µopt(0/ − 1)), or from the defect level
into the VB (emission energy µopt(+1/0) − εVB). More complex
photoluminiscence paths can also occur (labeled PL2 in Figure 4.1):
for example, an electron can decay nonradiatively from the CB into
the defect level, forming a negatively charged defect which reaches its
equilibrium geometry; a subsequent radiative transition from the defect
level into the VB gives rise to the observed photoluminiscence.

Optical transitions involving defect levels can also be observed in
optical absorption spectra. For example, an initially neutral defect can
be ionized by absorption of a photon, as an excess electron is promoted
into the CB (excitation energy εCB − µopt(+1/0)).

Charge transitions involving thermodynamic levels result from
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thermal ionization of the defect, and the magnitude of the transition
energy (or, equivalently, the distance of the thermodynamic level from
the bulk band edges) is indicative of the stability of a given defect
charge state at room-temperature conditions. Deep thermodynamic
levels can also be probed using spectroscopic techniques that allow for
relaxation in the final charge configuration, such as deep-level transient
spectroscopy.

More on excitation mechanisms occurring in defective materials
will be discussed in connection to investigation of defective oxides in
Chapters 6 and 7.
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Part II

Investigation of Bulk and
Defective Oxides
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CHAPTER5
Bulk Oxides:

Band Gaps and Phase Stabilities

In the present chapter a systematic investigation of band gaps and
ground-state properties is presented for the following set of wide-gap
metal oxides in several bulk polymorphic structures: zinc oxide (ZnO),
titanium dioxide (TiO2), zirconium dioxide or zirconia (ZrO2), and
tungsten trioxide (WO3). Results are also reported for MgO, which is
studied as a simple test system, although being an insulator with a gap
as large as 8 eV.

DFT calculations are performed using several local/semilocal
and hybrid xc functionals, and results obtained from PW-PP and
LCAO-based calculations are critically compared. GW band gaps for
selected polymorphs of the above set of oxides are also computed to
provide benchmark of the different analyzed DFT methods, along with
comparison with available experimental results. The relative stability
of several polymorphic structures at zero temperature is investigated
at different levels of theory. Finally, chemical reduction of TiO2 to
Ti2O3 (bulk phases), involving a change in the oxide stoichiometry, is
analyzed. For the last two points, the accuracy of DFT methods in
describing the energetics of phase or stoichiometry transformations in
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bulk oxide materials is investigated. For all of the above properties, a
systematic comparison is reported of at least one approach belonging
to the classes of local/semilocal (LDA, GGA), standard hybrid (PBE0,
HSE06, and B3LYP), and dielectric-dependent hybrid functionals.

5.1 Band Gap: Local/Semilocal, Hybrid Functionals
and GW

In this section, the following materials are considered: cubic (c) rocksalt
MgO, wurtzite (wz) ZnO, anatase (a) TiO2, tetragonal (t) ZrO2, and
WO3 in the room-temperature γ-monoclinic (γ-m) structure. Band gaps
are computed within DFT (within both PW-PP and LCAO schemes)
using several xc functionals, as well as within GW ; results are reported
and compared in Table 5.1, along with selected experimental results.
For a more meaningful comparison of the different computational
approaches, and due to the exceedingly large cost of geometry
optimizations using hybrid functionals with the PW code QUANTUM
ESPRESSO, calculations in this section are performed at the experimental
geometry.

It should be first emphasized that comparison between theoretical
calculations and experimental data is typically far from straightforward
when it comes to spectroscopic properties of semiconductors and
insulators. From the experimental point of view, different techniques
give access to different physical observables. In (direct and inverse)
photoemission experiments, electrons are removed from or added to the
solid (charged excitations), probing hence the energy difference between
the N - and the N ± 1-electron systems. From the theoretical side, such
total energy differences are described by the poles of the single-particle
Green’s function G, i.e. the QP energies (see Section 3.1.1). Thus,
the measured QP energies or their difference (defining the fundamental
gap) can be put in direct comparison with values obtained by solving
the QP eigenvalue problem [141], after devising an approximation to
the self-energy operator Σ, for example within the GW scheme, or by
approximating it with a DFT xc potential (in which case the QP energies
reduce to the KS eigenvalues). In contrast, optical measurements involve
neutral excitations, which can be seen as creation of electron-hole pairs.
The binding energy of electron-hole pairs is hence inherently included.
The theoretical description of neutral excitations in principle requires
working with the two-particle (electron-hole) Green’s function, and such
an analysis lies beyond the scope of the present work. Nonetheless, by
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knowing or guessing the exciton binding energy, optical measurements
can be useful for extrapolating QP gaps when direct and inverse
photoemission measurements are not available for the material at hand.
This situation is not uncommon, as discussed in the following for some
of the materials investigated here.

As a second source of possible disagreement with experiment,
DFT calculations performed at frozen ion positions cannot not take
into account electron-phonon interaction, which generally leads to
renormalization of the band gap, reducing it with respect to the
zero-temperature QP gap [37, 110]. Given the above considerations, it
is worthwhile to give an overview of the experimental scenario (selected
experimental results are reported in Table 5.1).

5.1.1 Experimental Data

The fundamental gap for MgO can be extrapolated from
thermoreflectance measurements [323] following estimation of the
exciton binding energy.

In the case of ZnO, different optical experiments [185, 258] agree on
the value of the reported QP gap, which has been obtained from optical
experiments by detailed analysis of the excitonic levels.

For anatase TiO2, the situation is more complicated, since, to the
author’s knowledge, no experimental data are available to date for the
photoemission gap. However, analysis of the temperature dependence
of the absorption coefficient allows one to estimate the indirect optical
gap to be 3.42 eV [295]. For rutile TiO2, measurements of both the QP
and the optical band gap are available. An optical band gap of ∼ 3.0 eV
has been reported in several investigations [238, 295], while combined
photoemission and inverse photoemission experiments yielded for the
direct fundamental band gap the values of 3.3± 0.5 eV [297] and 3.6±
0.2 eV [256]. Assuming a similar relationship between fundamental and
optical gap holds for anatase, one could tentatively estimate the anatase
QP gap to be in the range 3.7 – 4.0 eV, as also suggested in Refs. [149,
176].

The only available data for the pure phases of ZrO2 are from optical
absorption measurements [92], from which a direct optical gap of
5.78 eV for the tetragonal phase was inferred. Photoemission studies
yielded smaller measured gaps of 5.68 eV [266] and 5.5 eV [22];
however these values cannot be attributed to any of the three ZrO2

phases, as the probed samples were amorphous or polyscrystalline.
For WO3, several ultraviolet direct/inverse photoemission studies
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report a band gap in the range 3.28 – 3.39 eV [165, 208, 320]. Instead,
absorption measurements typically show large data dispersion, with an
optical band gap spanning the range 2.6 – 3.2 eV [32, 134, 155].

5.1.2 DFT LDA, GGA and Standard Hybrids: Comparison
Between PW and LCAO

Results of the present calculations confirm that, as expected, hybrid
functionals provide substantial improvement over the well known
LDA/GGA gap underestimation. In particular, band gaps computed at
the HSE06 level are in good agreement with experiment for a-TiO2,
t-ZrO2 and γ-m-WO3, as also confirmed by previous calculations
on titanium [62, 144, 176] and tungsten [315] oxides. For the
same materials, PBE0 overestimates the band gap with respect to
experiment, while B3LYP generally gives better results; this findings
are in agreement with several previous investigations [21, 36, 96, 315,
330]. Quantitative disagreement with the literature, when present,
may be attributed to different choices of geometry (DFT optimized vs.
experimental, the latter being considered in the present part of the study).
Independently of the adopted theoretical treatment, an indirect gap is
obtained for a-TiO2 and t-ZrO2, and a direct one for the other materials.
Both values are reported in Table 5.1.

In the case of MgO and ZnO, it is observed that hybrid functionals
perform differently from what previously outlined. MgO is an insulator
with a wide band gap of nearly 8 eV; its computed gap, even using
hybrid functionals, is obtained smaller than the experimental value. In
the case of ZnO, due to the strong gap underestimation at the LDA/GGA
level, and contrary to what it is found for the other semiconductors,
PBE0 seems to perform well, similarly to B3LYP, while HSE06 is not
sufficient to correct the PBE underestimation. Recent studies using
hybrid functionals [198, 283, 303, 314, 326] confirm the observed trends
for both MgO and ZnO.

Finally, a comment is due on the comparison between results
obtained within PW-PP and LCAO schemes. From Table 5.1, it is
found that discrepancies in computed band gaps range from ∼ 0.05
to ∼ 0.30 eV, most of them being within 0.20 eV, depending on the
material and the functional used. The closest agreement is observed
at the LDA/GGA level, while with hybrid functionals discrepancies
become more substantial. Different results are the consequence of
different kinds of approximations characterizing the two computational
schemes. Generation of reliable PPs on the one hand and construction
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of accurate Gaussian-type basis sets for solid-state calculations on the
other, are certainly two of the main critical points in this respect. For
example, in the case of ZnO, using a Zn PP with only 3d and 4s electrons
treated in the valence, and adopting an inadequate basis set for Zn
in LCAO calculations, result in computed gaps differing by as much
as ∼ 0.5 eV within LDA/GGA and ∼ 1 eV at the hybrid functional
level. Adoption of a better PP and basis set indeed partially reduce
the disagreement. Inclusion of 3s and 3p semicore electrons in Zn is
also found to be crucial for obtaining reliable G0W0 corrections of the
PBE gap,1 similarly to what has been reported by Gori et al. [112].
In conclusion given the above discussion, the agreement between the
computed PW-PP and LCAO band gaps should be deemed satisfactory.

5.1.3 Many-Body Perturbation Theory: G0W0

Table 5.1 also reportsG0W0 band gaps computed on top of the DFT-PBE
band structure. A generally good agreement is obtained with experiment
for all the materials. The results presented here are in line with previous
investigations, although numerical values may differ as a consequence
of the different computational setup adopted, e.g. the starting DFT
approximation to QP energies and wavefunctions, and the treatment of
the frequency-dependent dielectric function [149].

For MgO, the computed gap of 7.88 eV is very close to experiment
and to the results of the G0W0 investigation of Fuchs et al. adopting a
HSE03 starting point [95]. Calculations starting from DFT-PBE using
the PAW method gave smaller QP gaps of 7.25 eV [281] and 7.41 eV
[44].

For TiO2, the obtained indirect QP gap of 3.73 eV is identical to the
full-frequency result of Landmann et al. [176], and in close agreement
with the ones reported in other investigations [47, 149, 239, 300].

Quasiparticle band structure calculations of ZrO2 are scarce. The
only G0W0 studies the author is aware of reported a fundamental band
gap of 6.40 eV [162] and 5.56 eV [146] for tetragonal zirconia. The
result reported here of 6.06 eV for the direct gap is in between these two
values, and compatible with the measured optical gap of 5.87 eV.

As for γ-m-WO3, recent studies of Galli and coworkers yield QP gaps
of 3.26 eV [254] and 3.30 eV [251], which are very close to the result
reported in Table 5.1, and in excellent agreement with the measured
photoemission gap.

1The computed G0W0 gap without explicitly treating semicore 3s and 3p electrons is ∼ 1 eV.
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Table 5.2: Band gap energy (eV) computed using dielectric-dependent hybrid
functionals defined through the exchange fractions reported in Table 5.3.
Comparison with results obtained within PBE0 and G0W0 is provided. Only the
direct gap is reported for ZrO2, since the measured gap is extrapolated via a
model for a direct gap. MAE and MARE are the mean absolute and mean absolute
relative error, respectively, with respect to the computed G0W0 band gap. All DFT
calculations are performed within the LCAO scheme at the experimental geometry.
Estimated errors are 20 meV and 50 meV for the DFT andGW results, respectively.

Type PBE0αPBE PBE0αPBE0 PBE0 G0W0@PBE Expt.

MgO rs 8.06 8.33 7.38 7.88 7.83
ZnO wz 3.18 3.94 3.35 3.06 3.44
TiO2 a 3.38 3.72 4.24 3.73 3.42
ZrO2 t 5.81 6.12 6.45 6.06 5.78
WO3 γ-m 3.23 3.50 3.74 3.34 3.38

MAE (eV) 0.20 0.31 0.42
MARE (%) 4.6 8.1 9.6

Finally, ZnO stands out as a particularly critical case, for
which considerable disagreement is found in the theoretical literature
concerning its QP properties. Several studies provide QP gaps ranging
from ∼ 2.1 eV [95, 281] to 3.4 eV, obtained by Louie and coworkers
[276] within G0W0@LDA. In the latter study, it was suggested that
smaller computed gaps may be the result of a false convergence behavior
of the dielectric function and self-energy with respect to the number
of included empty states. Stankovski et al. [290] studied the effect
of different plasmon-pole models on the band gap, while Friedrich et
al. [94] carried out G0W0 on top of all-electron DFT calculations to
investigate the effect of the PP approximation. At present there is
no general consensus on which would be the most correct approach
to describe the QP band structure of this material. Although the
above convergence issues have been carefully considered here,2 G0W0

calculations gave a gap of 3.06 eV, which is still significantly smaller
than the experimental one; nonetheless, it agrees with the values
reported in several previous investigations using a G0W0@LDA/GGA
approach.

2See Computational Details.
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Chapter 5. Bulk Oxides: Band Gaps and Phase Stabilities

Table 5.3: Electronic dielectric constant ε∞ (estimated error within 0.02) and
corresponding exchange fraction α (%) evaluated at the PBE and PBE0 levels.
Calculations are performed within the LCAO scheme at the experimental geometry.
Measured dielectric constants are reported for comparison.

PBE PBE0 Expt.a

Type ε∞ α ε∞ α ε∞

MgO rs 3.10 32.2 2.87 34.9 2.96
ZnO wz 4.31 23.2 3.24 30.8 3.74
TiO2 a 6.52 15.3 5.16 19.4 5.62
ZrO2 t 5.45 18.3 4.62 21.6 4.9
WO3 γ-m 5.43 18.4 4.56 21.9 4.81
a Measured static electronic dielectric constants

are taken from the following references: MgO,
Ref. [187]; ZnO, Ref. [12]; TiO2, Ref. [322]; ZrO2,
Ref. [92]; WO3, Ref. [140].

5.1.4 DFT Dielectric-Dependent Hybrid Functionals

The performance of different kinds of dielectric-dependent hybrid
functionals is now analyzed. The EXX fraction is defined as α =
1/ε∞; the macroscopic dielectric tensor is computed within both
PBE and PBE0, without iterating to self-consistency (first step of
the sc-PBE0αε∞method, see Section 3.3, except for usage of the
experimental geometry); for materials with a noncubic primitive cell,
ε∞ is defined as the average of the diagonal elements of the diagonalized
dielectric tensor written in real space.

Table 5.3 reports the computed dielectric constants along with
the corresponding exchange fractions αPBE and αPBE0, defining the
modified PBE0 functionals, PBE0αPBE and PBE0αPBE0. Notice
that, as expected, PBE and PBE0 systematically overestimates and
underestimates, respectively, the dielectric constant, as a consequence
of the opposite tendency in estimation of the band gap.

Table 5.2 shows that, even without self-consistent treatment,
the dielectric-dependent hybrid approach remarkably improves the
computed gap over the PBE0 functional. Agreement with experiment
and G0W0 calculations is overall satisfactory with both modified
hybrids, with the exception of ZnO, for which PBE0 already performs
well. Since reliable experimental photoemission gaps are not available
for all the materials, mean errors in Table 5.2 are defined with respect
to the computed G0W0 gaps. Error analysis shows that the PBE0αPBE
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5.1. Oxide Polymorphs: Band Gaps, Crystal Structures . . .

functional achieves the closest agreement with G0W0 for the class of
materials under investigation. It is thus taken as the starting point for
evaluating α in most of the calculations presented in this chapter.

5.2 Oxide Polymorphs: Band Gaps, Crystal Structures
and Phase Stability

Several other structural modifications of the materials considered above
are investigated in this section. This includes analysis of the their relative
phase stability, electronic and dielectric properties, and equilibrium
crystal structure, by using different DFT xc functionals.

Phase stability is evaluated on the basis of zero temperature
DFT calculations, thus not taking into account thermal and entropic
contributions. In particular, the thermal contribution mainly comes
from lattice vibrations (phonons), and may be relevant when considering
temperature-induced structural phase transitions. Here it is argued that
an analysis of only the zero-temperature electronic contribution is still
able to provide an at least qualitative picture on the stability issue. In
fact, although in this case quantitative comparison with thermochemical
data may be of limited significance, it can be interesting to assess
whether theory is able to correctly reproduce the experimentally found
phase stability sequence (at ambient pressure) for a given material.

Since typically tiny energy differences are involved in
transformations between phases with similar stabilities, properly
reproducing the stability order is an extremely challenging task, pushing
to the limits of accuracy of DFT methods. Different functionals may
predict different stability sequences, as a consequence of changes in
relative total energies of the order of some meV per atom, going from
one level of theory to another. Even though quantitative conclusions are
hard to be drawn, it is however valuable to check whether, for example,
different hybrid functionals (with different α) provide similar results in
terms of phase stability.

In view of this, the performance of the PBE, PBE0, and
sc-PBE0αε∞(obtained by using the PBE to compute α as a first guess)
functionals is tested in the following. Equilibrium geometries are also
investigated, as it is expected that a good xc functional is able to
yield optimized cell parameters within few percents from experiment.
Moreover, accurate geometry optimizations are needed for obtaining
meaningful total energies to be compared for analysis of phase stability.
For this reason, in the present section all the reported quantities
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Chapter 5. Bulk Oxides: Band Gaps and Phase Stabilities

Table 5.4: Electronic dielectric constant ε∞ (estimated error within 0.02) and
corresponding exchange fraction α = 1/ε∞ (%) evaluated within PBE and
dielectric-dependent PBE0 (PBE0αPBE and sc-PBE0αε∞ ) for various polymorphs
of the studied materials. Calculations are performed within the LCAO scheme at
the optimized geometry.

PBE PBE0αPBE sc-PBE0αε∞
Type ε∞ α ε∞ α ε∞ α

MgO rs 3.13 31.9 2.80 35.7 2.78 36.0
ZnO wz 4.30 23.2 3.28 30.8 3.14 31.8

zb 4.67 21.4 3.37 29.6 3.19 31.3
TiO2 r 7.98 12.5 6.76 14.8 6.59 15.2

a 6.58 15.2 5.59 17.9 5.45 18.3
b 6.95 14.4 5.99 16.7 5.87 17.0

ZrO2 m 5.29 18.9 4.62 21.6 4.55 22.0
t 5.56 18.0 4.89 20.5 4.82 20.8
c 5.86 17.1 5.09 19.7 4.99 20.0

WO3 ε-m 5.58 17.9 4.74 21.1 4.65 21.5
tr 5.54 18.1 4.68 21.4 4.56 21.9
γ-m 5.55 18.0 4.68 21.4 4.57 21.9
or 5.43 18.4 4.55 22.0 4.45 22.5
t 6.47 15.4 5.33 18.7 5.17 19.4
c 10.09 9.90 8.27 12.1 7.98 12.5

(including dielectric constants, which in turn affect the amount of
exact exchange entering the definition of the modified PBE0 functional)
are computed at the minimum energy configuration of the relevant xc
functional. The CRYSTAL09 code, which is very efficient for structural
optimizations with hybrid functionals, is employed throughout all the
calculations performed here. Due to the always considerable cost
of geometry optimizations for the largest cells, the present study is
limited to a single self-consistency step on α (the resulting functional is
denoted sc-PBE0αε∞); however, as shown in the insets of Figure 5.1, the
dielectric constant converges rapidly for the materials considered here,
so that even one step of self-consistency gives a functional very close to
the fully converged one.

In Table 5.4 the electronic dielectric constant and the corresponding
exchange fraction calculated at different levels of theory are reported
for the crystallographic phases under investigation. Comparison of
Tables 5.3 and 5.4 evidences the effect of geometry optimization on
the computed dielectric constants (at the PBE level) for the commonly
studied polymorphs.
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Table 5.5: Differences in total energy per formula unit (meV, estimated error 1 meV)
with respect to a chosen crystallographic phase (redefining the zero of the energy
for each functional individually), for various polymorphs of the studied materials,
computed at different levels of theory.

Type PBE PBE0 PBE0αPBE sc-PBE0αε∞
ZnO wz 0 0 0 0

zb 49 54 102 80
TiO2 r 20 62 18 22

a 0 0 0 0
b -5 32 1 2

ZrO2 m -20 17 33 25
t 0 0 0 0
c 74 45 40 36

WO3 ε-m 5 1 -2 -8
tr 0 0 0 0
γ-m 3 6 2 6
or 6 10 36 1
t 30 70 -153 -139
c 201 301 -403 -462

5.2.1 Polymorphs Structures and Relative Stability

Apart from wurtzite (wz), which is the most thermodynamically stable
phase of ZnO at ambient conditions, the zinc-blende (zb) modification
can be stabilized upon growth in specific conditions [229]. The
rocksalt structure exists only at high pressures, and it is not addressed
here. From Table 5.5 it is seen that the better stability of the
wurtzite phase is correctly predicted at all levels of theory, with the
sc-PBE0αε∞confirming the result of the PBE0αPBE. These findings
are in agreement with previous calculations using LDA, GGA and
screened-exchange hybrid functionals [305].

The three naturally occurring polymorphs of TiO2 are rutile (r),
anatase (a) and brookite (b). Their relative thermodynamic stability
critically depends on crystal size. At ambient conditions, the
thermodynamically most stable macrocrystalline (crystal size exceeding
35 nm) phase of TiO2 is rutile. From calorimetric measurements of the
phase transformation of anatase and brookite to rutile it is suggested
that the phase stability sequence is rutile > brookite > anatase [148]. It
is well-known that GGA is not able to reproduce the correct sequence,
predicting anatase to be more stable than rutile [215]. The present results
confirm such tendency and suggest that, independently of the amount of

85



Chapter 5. Bulk Oxides: Band Gaps and Phase Stabilities

0 5 10 15 20 25 30

α (%)

40

60

80

100

120

140

160

180

E
-
E
w
u
rt
zi
te
(m

eV
) ZnO

0 1 2

iteration

3

3.5

4

4.5

5
ε
∞

zincblende
wurtzite

(a)

0 5 10 15 20 25

α (%)

0

20

40

60

80

E
-
E
an
at
as
e
(m

eV
)

0 1 2

iteration

5

6

7

8

ε
∞

rutile
brookite
anatase

TiO
2

(b)

0 5 10 15 20 25

α (%)

0

50

100

150

200

E
-
E
te
tr
ag
o
n
al
(m

eV
)

0 1 2

iteration

4.5

5

5.5

6

ε
∞

cubic
monoclinic
tetragonal

ZrO
2

(c)

0 5 10 15 20 25

α (%)

-400

-200

0

200

400

600

800

1000

E
-
E
tr
ic
li
n
ic
(m

eV
)

0 1 2

iteration

4

5

6

7

8

9

10

11

ε
∞

RT monoclinic
cubic
tetragonal
LT monoclinic
orthorombic
triclinic

WO
3

(d)

Figure 5.1: Variation of total energy as a function of the exchange fraction α entering
the definition of the dielectric-dependent hybrid functional. Total energies per
formula unit are given with reference to that of a chosen polymorph for each
material: (a) wurtzite for ZnO, (b) anatase for TiO2, (c) tetragonal for ZrO2,
(d) γ-monoclinic for WO3. In the insets convergence of the electronic dielectric
constant ε∞ is shown.

EXX introduced, hybrid functionals are similarly not able to capture
the correct sequence, in agreement with the previous investigation of
Labat et al. [170]. Recent studies have demonstrated that dispersion van
der Waals interactions should be taken into account in order to correctly
predict phase stablity in TiO2 [49, 212]. This lies beyond the scope of
any hybrid functional approach.

Zirconia features three different structural modifications at ambient
pressure; the baddeleyite structure, with a monoclinic (m) unit cell, is
stable at room temperature, and transforms into the tetragonal (t) phase
at 1480 K, which is stable until 2650 K when it is converted into the
cubic (c) fluorite phase. In fact, the tetragonal and monoclinic phases
can be viewed as distorted cubic structures [96]. From Table 5.5 it
is inferred that while PBE predicts the correct stability sequence as a
function of increasing temperature, PBE0 inverts the monoclinic and
tetragonal phases, in fact predicting the latter to be more stable than
the former, in agreement with previous studies [96] but in contrast with
the experimental evidence. Varying the exchange fraction within the
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dielectric-dependent hybrid scheme does not yield qualitatively different
results, similarly to what is found for TiO2.

Finally, the case of WO3 deserves special attention, as the phase
diagram at ambient pressure of this material is exceptionally rich,
exhibiting five different polymorphs transforming into each other upon
temperature variation. The simple cubic (c) structure, only recently
successfully stabilized at ambient conditions [56], is constituted by a
lattice of regular corner-sharing WO6 octahedra, forming a strongly
ionic compound. Several structures are successively obtained by
decreasing the temperature from the melting point at 1700 K: tetragonal
(t, stable above 740 ◦C), orthorhombic (or, from 330 ◦C to 740 ◦C),
room-temperature γ-monoclinic (γ-m, from 17 ◦C to 330 ◦C), triclinic
(tr, from −50 ◦C to 17 ◦C), and low-temperature ε-monoclinic (ε-m,
from −140 ◦C to −50 ◦C) [315].

Octahedra become more and more distorted going from the tetragonal
to the low-temperature monoclinic phase. Previous works have
investigated how such distortions affect the electronic band structure,
as a consequence of energy-lowering rearrangement of the WO6 units
[61, 251, 315]. A recent theoretical study suggested that tilting of the
WO6 octahedra along different crystalline axes is the main responsible
for band gap opening going from the cubic and tetragonal phases (where
no tilting is present) to the other, less symmetric structures [251]. This
is apparent from Table 5.6, in which the reported band gap increases
by as much as ∼ 1 eV or more passing from the tetragonal and cubic
structures to the more distorted ones. A similar relationship between
structural and electronic properties was found in a recent DFT study
on doped WO3 [302], in which intercalated atoms drive the structural
deformation responsible for the band gap reduction.

As expected, the electronic dielectric constant follows an opposite
trend with respect to band gap, being larger in the cubic and tetragonal
phases and decreasing with increasing band gap, as shown in Table 5.4.
This in turn affects the corresponding exchange fractions, whose strong
dependence upon the considered phase is at the origin of the wrong
prediction of the stability order of WO3 within the dielectric-dependent
hybrid scheme. In fact, Table 5.5 shows that, while using the PBE0
functional the cubic and tetragonal phases are predicted to be the
least stable, in agreement with the experimental order as a function of
temperature, they turn out to be the most stable ones when α is obtained
from the computed dielectric constant for each phase separately. This
behavior is not observed in the other materials, where the electronic and
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Table 5.6: Band gap energy (eV, estimated error 20 meV) computed within PBE
and dielectric-dependent PBE0 for various polymorphs of the studied materials.
Fundamental and direct gaps are reported outside and inside parenthesis,
respectively. Calculations are performed within the LCAO scheme at the optimized
geometry.

Type PBE PBE0 PBE0αPBE sc-PBE0αε∞ Expt.a

MgO rs 4.63 7.38 8.24 8.67 7.83
ZnO wz 1.07 3.50 3.32 4.07 3.44

zb 0.91 3.29 2.93 3.76
TiO2 r 1.71 3.90 2.76 2.96 3.3

a 2.14 (2.23) 4.36 (4.36) 3.42 (3.46) 3.66 (3.70) 3.42
b 2.36 4.46 3.53 3.71

ZrO2 m 3.38 (3.78) 5.67 (6.10) 5.09 (5.59) 5.34 (5.77) 5.83
t 3.80 (3.86) 6.07 (6.20) 5.43 (5.53) 5.66 (5.76) 5.78
c 3.12 (3.63) 5.43 (6.04) 4.67 (5.25) 4.91 (5.50) 6.1

WO3 ε-m 1.80 3.85 3.28 3.52
tr 1.67 3.68 3.06 3.36
γ-m 1.62 3.67 3.07 3.34 2.6
or 1.39 3.34 2.81 3.09
t 0.53 2.23 1.53 1.76 1.8
c 0.55 (1.58) 2.19 (3.21) 1.15 (2.17) 1.29 (2.31)

a Measured photoemission gap of r-TiO2 from Ref. [297]; direct optical gap of
m-, t-, c-ZrO2 from Ref. [92]; optical gap of t- and γ-m-WO3 from Ref. [251].
The remaining references for experimental band gaps are those in Table 5.1.

dielectric properties vary more smoothly upon the structural transition,
or, equivalently, the electronic structure correlates more weakly with
lattice distortions. In those cases, the dielectric-dependent hybrid
approach proved to qualitatively reproduce the results of standard PBE0.
This is clearly seen in Figure 5.1, where relative total energy is plotted
as a function of the exchange fraction. Noncrossing lines in the positive
energy half-plane indicate that no phase stability inversion occurs going
from PBE0 to PBE0αPBE and sc-PBE0αε∞ , contrary to what happens in
the case of WO3.

5.2.2 Band Gap Dependence on Polymorphic Structure

The interesting case of WO3 shows that the electronic structure can be
significantly affected by the polymorphic structure. Having assessed
the performance of the dielectric-dependent hybrid method in band
gaps computation of some well-characterized oxide polymorphs (see
Table 5.2), it is worthwhile to investigate the electronic structure of other
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less common phases.
Table 5.6 collects computed band gaps for all the phases. Here, all

calculations are performed at the optimized geometries. Due to the
experimental difficulty in obtaining samples with a well-defined phase,
measured gaps are not available for all the structures or are very disperse,
as in the case of brookite TiO2 [71]. Hence, comparison with previous
hybrid and GW results provides an alternative source of benchmark.

In general, the PBE0αPBE confirms itself as an accurate method for
computing electronic structures. Notice however that self-consistency
on the dielectric constant does not always improve the computed gap, as
happens in the case of MgO and ZnO. Analysis of Table 5.4 and of the
insets in Figure 5.1 shows that convergence on the dielectric constant is
rapidly achieved, as also reported in Ref. [283].

In the following, results from the present calculations are compared
with the existing theoretical and, when available, experimental data.

For ZnO, previous hybrid calculations predict the band gap in the
zinc-blende phase to be ∼ 0.2 eV smaller than in wurtzite [305], which
is also supported by the experimental evidence [181], confirming the
PBE0αPBE results.

For TiO2, the obtained direct gap for rutile is smaller by ∼
0.7 eV than for anatase. The computed gap for rutile is smaller than
previous G0W0@LDA/GGA results spanning the range from 3.3 to
3.6 eV [47, 149, 176, 332], but close to the value of 2.85 eV obtained
within G0W0@LDA+U [239], and compatible with photoemission
measurements, giving 3.3± 0.5 eV [297] and∼ 3.1 eV [270] for the QP
gap. For the brookite phase, a recent G0W0@PBE investigation yielded
a direct band gap of 3.86 eV [332], larger than in rutile and anatase, and
in good agreement with the sc-PBE0αε∞result.

For ZrO2, the predicted band gap ordering for the three phases
is in line with previous investigations using hybrid functionals [96]
and GW , [146, 192] and numerical values agree very well with the
GW0@LDA results of Ref. [146] reporting an indirect band gap of
5.34 eV, 5.92 eV and 4.97 eV for the monoclinic, tetragonal and cubic
structures, respectively.

Only recently GW calculations were performed for all the ambient
pressure polymorphs of WO3 [251]. Computed band gaps within
G0W0@LDA are in good agreement with the sc-PBE0αε∞results, and
confirm the obtained band gap ordering.
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Table 5.7: Optimized cell parameters for selected polymorphs of the studied materials,
computed at different levels of theory. Calculations are performed within the LCAO
scheme using CRYSTAL09.

Type Parameter PBE PBE0 sc-PBE0αε∞ Expt.a

MgO rs a (Å) 4.258 4.207 4.185 4.212
ZnO wz a (Å) 3.292 3.264 3.257 3.250

c (Å) 5.119 5.077 5.071 5.207
TiO2 a a (Å) 3.821 3.765 3.789 3.781

c (Å) 9.672 9.656 9.631 9.515
ZrO2 t a (Å) 3.640 3.608 3.613 3.571

c (Å) 5.288 5.209 5.224 5.182
WO3 γ-m a (Å) 7.444 7.334 7.348 7.306

b (Å) 7.672 7.605 7.616 7.540
c (Å) 7.885 7.801 7.817 7.692
β (◦) 90.65 90.61 90.62 90.88

a Experimental lattice constants are taken from the following references:
Ref. [186] for MgO, Ref. [58] for ZnO, Ref. [138] for TiO2, Ref. [291]
for ZrO2, Ref. [190] for WO3.

5.2.3 Equilibrium Geometries

Finally, in Table 5.7 the optimized cell parameters computed within
PBE, standard PBE0 and dielectric-dependent PBE0 are reported
for some selected polymorphs. Full optimization of both cell
parameters and atomic positions is carried out. Results indicate that
sc-PBE0αε∞generally performs as well as standard PBE0 for calculation
of structural properties, the error with respect to experimental lattice
constants being in most cases within ∼ 2%.

Ti1

Ti2

Ti3
Ti4

Figure 5.2: Bulk primitive cell of corundum Ti2O3. Grey and red spheres
represent Ti and O atoms, respectively. The arrows schematically represent
the spin configuration of the Ti 3d electrons corresponding to the computed
sc-PBE0αε∞ground state.
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Table 5.8: Relative total energies Etot (meV, estimated error 1 meV) per unit
Ti2O3, band gap Eg (eV, estimated error 20 meV) and lattice constants a and c
(Å), computed at the sc-PBE0αε∞ level. AFM1 and AFM2 labels two different
antiferromagnetic (AFM) configurations; FM refers to the ferromagnetic one.
α = 12.8% is used in the dielectric-dependent PBE0; this value is obtained
from the electronic dielectric constant ε∞ = 7.81 computed within PBE0αPBE0

in the AFM1 configuration. Total energies are reported relative to that of the
lowest-energy AFM1 phase. For spin configurations the notation (Ti1, Ti2, Ti3,
Ti4), with Tin = +/−, indicates spin up/down for the 3d electron of the Tin atom
in the unit cell (see Figure 5.2). Calculations were performed within the LCAO
scheme with CRYSTAL09 and for the optimized structure.

Magnetic configuration Etot Eg a c

AFM1 (−, +, +, −) 0 0.59 5.167 13.671
AFM2 (−, +, −, +) 6
Nonmagnetic 13
FM 13
Expt.a 0.11 5.157 13.610
a Experimental band gap from combined conductivity

and thermoelectric coefficient measurements [280].
Experimental lattice parameters from Ref. [260].

5.3 Stoichiometry Transformations: Chemical Reduction
of Bulk TiO2

Finally, the performance of the dielectric-dependent hybrid method in
calculating reaction energies for the chemical reduction of TiO2 to Ti2O3

in their bulk phases is analyzed. Differences in total energy involved
in chemical reactions are typically of the order of few eV, compared
to few meV or tens of meV, normally observed in crystallographic
phase transitions. This allows one to meaningfully address the issue
of whether the method is able to quantitatively improve over standard
hybrid functionals in terms of computed ground-state total energies.

Two reduction pathways for bulk TiO2 are considered as a case study
of reduction mechanisms typically occurring in oxide materials:

2 TiO2 + H2 → Ti2O3 + H2O (5.1)
2 TiO2 → Ti2O3 + 1/2 O2. (5.2)

Ti2O3 is a small gap insulator featuring corundum structure. Its bulk
unit cell is rhombohedral and contains two Ti2O3 units, with atoms
positioned as shown in Figure 5.2. The magnetic properties of Ti2O3
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at low temperature have been subject of intensive investigation both
at the experimental [1, 150] and theoretical level [38, 117, 139, 142].
However, no general consensus has been achieved on whether the
low-temperature ground state of Ti2O3 is antiferromagnetic (AFM) or
nonmagnetic. Here, the issue is re-investigated using both standard
and dielectric-dependent PBE0. Local/semilocal DFT predicts the
material to be metallic [202], at odds with the experimental evidence.
Spin-polarized PBE0 calculations yield an AFM ground state with
AFM1 (−, +, +, −) spin configuration of Ti 3d electrons (see
Figure 5.2). Previous studies within HF [38], hybrid DFT, and DFT+U
[139] reported the same result. Ferromagnetic (FM) and nonmagnetic
solutions are found to be much higher in energy at the PBE0
level. Interestingly, different investigations using screened-exchange
hybrid functionals predicted the nonmagnetic configuration to be the
most stable [117, 142]. Calculations using the dielectric-dependent
PBE0αPBE0 functional confirm the magnetic configuration to be the
AFM1, as reported in Table 5.8. The corresponding computed band
gap of 0.59 eV is larger than the experimental value of 0.11 eV obtained
by combined conductivity and thermoelectric coefficient measurements
[280], but still closer than the PBE0 result of 2.63 eV, and in agreement
with screened-exchange hybrid calculations [142] reporting a value of
0.57 eV.

For TiO2, the rutile phase is considered in the present analysis,
since experimental data are available for the reaction enthalpy of the
transformation to Ti2O3. Full geometry optimizations are carried out
within PBE0, PBE0αPBE0, and sc-PBE0αε∞ . A band gap of 3.03 eV
is obtained within sc-PBE0αε∞ , which is very close to the previously
reported value of 2.96 eV (see Table 5.6), obtained using as initial guess
for α the value computed within PBE instead of PBE0.

The computed energies of reactions (5.1) and (5.2) are summarized
in Table 5.9. The dielectric-dependent PBE0 yields results in excellent
agreement with experiment, with a clear improvement over PBE0. Other
first-principles investigations within GGA + U found that choosing the
value of the Hubbard parameter U between 2 eV and 3 eV results in
reaction energies close to experiments [139, 191]. However, the chosen
value of U strongly affects the computed electronic band structure.
Ti2O3 has been reported to be metallic when using U = 2 eV, and U =
3 eV is needed to open a gap of comparable size with the experimental
one. For TiO2 it has been demonstrated that U should be set to ∼ 10 eV
in order to obtain a band gap of 3 eV [249], close to the experimental
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Chapter 5. Bulk Oxides: Band Gaps and Phase Stabilities

one. Another deficiency of the DFT+U approach lies in the failure to
predict accurate lattice parameters for Ti2O3 [139]. Both of the above
issues are solved using the sc-PBE0αε∞method, which has been found
out to be able to accurately characterize reaction energies, electronic
structures and structural parameters within a single, parameter-free, and
fully ab initio theoretical approach.

5.4 Summary and Conclusions

The dielectric-dependent hybrid paradigm has been tested for
calculation of the electronic structure and the ground-state total energy
of bulk oxide materials. Concerning calculation of the band gap, this
approach has generally proved superior to any other density-functional
method, either at the local/semilocal or fixed-α hybrid functional level.
Its predictive accuracy is comparable to that achieved by the more
expensive many-body GW methods. An exception is represented by
MgO and ZnO, for which standard hybrid methods perform better.
In this respect, the dielectric-dependent approach seems to be most
accurate for materials with a dielectric constant higher than ∼ 4.
Geometry optimization at each self-consistency step makes this issue
more critical.

Concerning calculation of ground-state total energies, two test
cases have been considered: prediction of the crystallographic phase
stability order (as determined by the zero temperature electronic
contribution), and determination of reaction energies associated to
model reduction pathways for a prototypical bulk oxide material,
titanium dioxide. In the former case, the sc-PBE0αε∞approach proves
to perform similarly to PBE0, except in the case of WO3, in which
a peculiar correlation between structural and electronic properties
leads to inversion of the (qualitatively correct) phase stability order
predicted within PBE0. Instead, computed reaction energies for the
TiO2 → Ti2O3 transformation clearly improve when passing from
PBE0 to sc-PBE0αε∞ , which is able to provide at the same time a
good description of the electronic and structural properties for both
compounds.

For structural properties (equilibrium cell parameters) the
sc-PBE0αε∞proves essentially as good as PBE0 for all the analyzed
materials.

In conclusion, the method qualifies for accurate determination of
both excited- and ground-state properties of bulk oxides, constituting
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a useful tool for describing those systems in which a good description
of both is called for. However, in its present form, the method
can only be applied to homogeneous or quasi-homogeneous systems.
The study of point defects in bulk materials, for which at low defect
concentrations the dielectric properties are essentially determined by
the host pristine material, but the electronic and optical properties
are substantially altered, constitutes the first step towards treatment of
weakly inhomogeneous systems. Due to the weak deviation from a
perfect crystal, the sc-PBE0αε∞method is still applicable in its present
formulation, and turns out to be very promising in description of the
optical features in defective semiconductors and insulators. Analysis of
its performance in these systems is the central topic of the following
chapters.

Computational details

PW-PP calculations PW-PP DFT calculations were performed using the QUANTUM
ESPRESSO package [103]. A norm-conserving Troullier-Martins PP [304] with 2s and
2p electrons in the valence was used for oxygen, while for metals, norm-conserving
Hartwigsen-Goedecker-Hutter PPs [111, 123] explicitly including semicore electrons
in the valence were employed. A careful treatment of core-valence partitioning in metal
atoms has been proved to be determinant for obtaining reliable GW corrections [197],
especially in II-IV semiconductors, as analyzed in detail in Ref. [262]. It turns out that
explicit treatment of semicore electrons of the metal atom in oxides is always needed,
as it was experienced in the case of ZnO (see discussion in Section 5.1.3). Since here
PW-PP DFT calculations served as starting point for subsequent GW calculations,
choice of the PPs was guided by the above considerations. Hence, (n− 1) s and (n−
1) p electrons of the metal atom were always explicitly treated in the valence, where
n is the main quantum number of the outermost occupied electronic shell. PPs were
tested by checking that computed optimized lattice parameters and electronic band
structures were in agreement with the reference literature, as well as that the former
showed the expected trends at the LDA and GGA levels of theory when compared to
experiment.

Table 5.10: Computational parameters of DFT PW calculations: k- and q-point BZ sampling
and PW kinetic energy cutoff Ecut (Ry).

k-point grid q-point grid Ecut

MgO 4x4x4 4x4x4 500
ZnO 4x4x2 4x4x2 300
TiO2 4x4x2 4x4x2 150
ZrO2 4x4x4 4x4x4 120
WO3 2x2x2 2x2x2 100
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Including semicore electrons in the self-consistent calculation of charge density
clearly requires using a large number of PW components in the expansion of the KS
orbitals, as semicore electrons are tightly bound to the nucleus. This dramatically
affects the resulting computational cost, especially in hybrid functional calculations, in
which evaluation of the nonlocal EXX using a PW basis set under periodic boundary
conditions is particularly demanding.

BZ sampling is also critical for obtaining well-converged results. Monkhorst-Pack
[213] k-point grids were chosen in such a way that estimated errors in computed band
gaps and total energies were within 20 meV. The q-point grids needed for evaluation
of the EXX contribution were chosen equal to the k-point grids (see Table 5.10).

Full structural optimizations were carried out only at the LDA and GGA levels, as
optimizations with hybrid functionals are very expensive with QUANTUM ESPRESSO.
A quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme was adopted for
the search of the energy minimum. Convergence thresholds on atomic forces and
pressure were set to 10−3 a.u. and 0.5 kbar, respectively.

LCAO Calculations The LCAO method, as implemented in the CRYSTAL09
package [78], was employed for DFT calculations using localized basis sets.
All-electron calculations were performed for MgO, ZnO and TiO2, while for ZrO2

and WO3 the inner electrons of Zr and W atoms were described through effective core
PPs (ECPs) generated with relativistic atomic calculations at the HF level.

The adopted all-electron and valence basis sets were previously tested in analogous
solid state calculations. The following Gaussian-type all-electron basis sets were
employed in the calculations performed in this work: 8-511(d1) for Mg from
Ref. [307], pob-TZVP for Zn from Ref. [240], 8-4611(d41) for Ti from Ref. [333].
For O the 8-411(d1) basis set of Ref. [263] was used, except for the case of ZrO2, in
which the basis set from Ref. [220] was adopted, following the choice of a previous
investigation on this material [96]. Small-core Hay-Wadt ECPs [125] were employed
for the heavy Zr and W atoms. For Zr the 4s, 4p, 5s and 4d electrons were explicitly
treated, using the 311(d31) valence electron basis set of Ref. [30]. For W, electrons
belonging to shells 5s, 5p, 6s and 5d were included in the valence, and a modified
Hay-Wadt double-ζ basis set [315] was employed to describe them.

In the analysis of the chemical reduction of TiO2 to Ti2O3, for both Ti and O
atoms, different basis sets were adopted, following previous HF and DFT + U studies
[38, 139] on the same materials. In molecular calculations basis sets for oxygen [263]
and hydrogen [99] were chosen such that experimental atomization energies for H2,
O2 and H2O molecules were well-reproduced at the PBE0 level.

As a high accuracy is needed when studying the energetics, BZ samplings were
performed so as to ensure convergence within 1 meV per formula unit on total energies
for the different polymorphs of the materials under investigation. This corresponds to
Monkhorst-Pack grids including a number of k-points in the irreducible BZ at least as
large as in PW-PP calculations.

Different cutoff thresholds for the evaluation of Coulomb and exchange integrals
written in terms of Gaussian-type orbitals were set to their standard values in
CRYSTAL09.3 The self-consistent field was considered converged when total energy

3The following thresholds were used: 10−7 for Coulomb overlap tolerance, 10−7 for Coulomb
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Table 5.11: Computational cutoff parameters used in GW calculations: cutoff energies Eeps
cut

andExc
cut (Ry) controlling the size of the dielectric matrix in reciprocal space and the number

of plane waves in the expansion of xc potential, respectively; number of empty states included
in the evaluation of the polarizability χs and of the Coulomb hole (COH) term.

Empty states
Eeps

cut Exc
cut χs ΣCOH

MgO 90 80 300 900
ZnO 70 200 200 2750
TiO2 14 50 500 1300
ZrO2 25 50 500 2100
WO3 16 60 800 2300

difference between two subsequent cycles become lower than 10−6 a.u.
Geometry optimizations were performed at both local/semilocal and hybrid

functional level by fully optimizing both lattice parameters and atomic coordinates.
A quasi-Newton algorithm with a BFGS Hessian updating scheme was adopted for
the search of the energy minimum. Geometry optimizations were terminated when
the maximum component and root-mean-square (rms) of energy gradients become
lower than 0.00045 and 0.00030 a.u., respectively, and the maximum and rms atomic
displacements were below 0.00180 and 0.00120 a.u., respectively.

GW calculations GW calculations were performed using the BERKELEYGW code
[70, 141]. The non self-consistent G0W0 scheme was adopted, in which both the
electronic Green’s function and the screened Coulomb potential were constructed
starting from DFT-KS eigenfunctions and eigenvalues computed at the PBE level
of theory (G0W0@PBE). No further iteration was carried out on either the Green’s
function or the self-energy (see Section 3.2). DFT calculations were performed at
the experimental geometry using QUANTUM ESPRESSO. The frequency dependence
of the dielectric function was evaluated through the plasmon-pole approximation of
Hybertsen and Louie [141].

Concerning cutoff parameters discussed in Section 3.2, careful convergence studies
were carried out for all the materials, ensuring that accuracy within 50 meV on QP band
gaps was reached (see the procedure described in Ref. [196]). Cutoff parameters used
in the presented calculations are reported in Table 5.11. BZ samplings were performed
as in corresponding PW-PP DFT calculations.

DFT xc functionals In local/semilocal calculations, the Perdew-Zunger expression
for the correlation energy [248] for the LDA, and the PBE parametrization [242] for the
GGA were employed. Hybrid functionals considered were the full-range PBE0 [244]
and the screened-exchange HSE06 [132,133].4 The B3LYP hybrid functional [20,292]
was also tested.

penetration tolerance, 10−7 for exchange overlap tolerance, 10−7 for exchange pseudo-overlap in direct
space, 10−14 for exchange pseudo-overlap in reciprocal space.

4The CRYSTAL14 code is used for HSE06 calculations, as screened-exchange hybrid functionals are not
implemented in CRYSTAL09.
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In hybrid calculations with QUANTUM ESPRESSO, PPs were generated at the
closest GGA level, i.e. PBE for PBE0 and HSE06, and BLYP for B3LYP. All PPs
were obtained from the QUANTUM ESPRESSO PP library, except for the Zn atom, for
which the PP was converted from the cpmd format [111, 123, 161].

For defining dielectric-dependent hybrid functionals, electronic dielectric constants
were computed within the CPKS method as implemented in the CRYSTAL09 code (see
Section 3.3.2).
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CHAPTER6
Oxygen Vacancies in

Wide-Gap Metal Oxides

Oxygen vacancies (O vacancies) represent a prototypical native point
defect in oxide materials, where they are inevitably formed throughout
the synthesis process, as a result of exposition of the samples to
high temperatures and strongly reducing atmospheres. The presence
of O vacancies has substantial impact on the observed optical,
magnetic, and electrical properties of substoichiometric oxides [98,231],
and a correct interpretation of, e.g., optical processes observed in
O-deficient wide-gap oxides requires fundamental understanding of
these modifications.

Removal of an O atom from a stoichiometric oxide results in the
presence of two unpaired electrons, previously shared in a chemical
bond between the removed O atom and a metal cation, which typically
redistribute in the neighborhood of the vacancy. In transition metal
oxides (TMOs), the unpaired (or excess) electrons occupy an empty
or partially filled d orbital belonging to metal ions in the vicinity of
the vacancy. However, the degree of localization of the excess charge
is actually strongly influenced by the nature of the chemical bonding
in the host material. In the extreme case of a highly ionic oxide like
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MgO, the strong electrostatic potential between ions (the Madelung
potential) stabilizes the excess charge in the vacancy void, forming
a so-called color center (F center), which gives rise to characteristic
optical transitions which, provided the vacancy is located at the MgO
surface, fall in the visible range of the electromagnetic spectrum.
A similar phenomenology can sometimes be encountered in reduced
TMOs, although in this case a residual charge localization on d orbitals
of the nearby undercoordinated cations can still be present. This
situation is common in nonreducible oxides like ZrO2: the two excess
electrons pair up in a closed-shell singlet state, and are confined by the
Madelung potential to stay in the vacancy void. The vacancy formation
energy is higher than in reducible oxides, such as TiO2, WO3 or NiO:
here the Madelung field is less intense, and the excess charge localizes
on cations not necessarily in the immediate vicinity of the vacancy
[98,233]. The accompanying lattice distortion involves to certain degree
some fully coordinated atoms of the bulk crystal, leading to formation
of a polaron. In reducible oxides, formation of a magnetic ground state,
in which the unpaired electrons occupy different cation d orbitals with
the same spin polarization (realizing a triplet spin configuration), is
often favored. EPR techniques are very useful for characterizing these
magnetically active defect centers in substoichiometric oxides [102].

In wide-gap oxides, O vacancies lead to building up of deep
occupied defect levels in the band gap of the material. Electronic
transitions between defect states and the bulk VB and CB are the
cause of the peculiar optical properties observed, e.g., in absorption and
photoluminiscence (PL) spectroscopies. For example, absorption of a
photon in the reduced oxide may excite an excess electron from the
defect level to the bulk CB: if the vacancy is initially neutral (q = 0,
with both excess electrons occupying the defect level), then the final
defect state will be characterized by a formal charge q = +1. An extra
electron may also decay into the VB, and the resulting electron-hole
recombination gives rise to a luminiscence feature. Ionization of the
vacancy may also be the consequence of thermal excitation of the
excess electrons in the CB: in this case the vacancy is stable, at room
temperature, in a charged state q = +1 or q = +2. Electrons excited
in the CB contribute to the n-type conductivity which is sometimes
observed in O-deficient TMOs.

Theoretical modeling of defects in oxides ideally aims to account
for the complex electronic, optical, and magnetic features exhibited in
these systems within one single method. In TMOs, correctly describing
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localization of the defect-related excess charge on transition metal
cations d orbitals is challenging: local or semilocal DFT typically fails
in providing the correct picture, due to the inherent self-interaction error
which tends to delocalize the charge over a too large portion of the
crystal (see, e.g., the case of reduced TiO2, Ref. [73]). Correspondingly,
the electronic states introduced by the defect are wrongly predicted to
merge with the bulk band edges, even when experiments indicate a deep
donor or acceptor behavior; hence, the observed defect-related optical
features cannot be suitably accounted for by standard DFT methods [45].

Hybrid xc functionals, when used in conjunction with the
charge-transition levels (CTLs) formalism for computation of electronic
transitions (see Section 4.3.1), constitute an excellent tool for accurately
characterizing the excess charge distribution and the related localization
of defect states in the band gap [72]. In fact, on the one hand they are
expected to be less affected by the self-interaction error, which instead
is present in local/semilocal approximations, and thus they are more
suitable to correctly predict charge localization around the defect (i.e.,
to yield the correct ground state). On the other hand, as discussed
in Chapter 5, even the electronic structure of nondefective materials,
when computed at the hybrid functional level, is quantitatively closer
to experiments; this clearly helps in correctly locating defect electronic
levels in the band gap, thus giving a suitable description of the related
optical features.

The sc-PBE0αε∞hybrid functional is a promising candidate for
addressing all the above issues, being a nonempirical hybrid xc
potential derived as an approximation of the exactly self-interaction
free COHSEX self-energy (see also Chapter 7), generally performing
better than standard hybrid functionals in the calculation of electronic
structures. The ab initio evaluation of the admixed portion of EXX
makes it potentially superior to other semiempirical DFT methods, in
terms of predictive power, when applied to defective materials. Clearly,
since magnetic ground states can often be realized in substoichiometric
oxides (and this in turn also affects the description of the excess charge
localization and, hence, of the electronic levels in the band gap),
spin-polarized DFT calculations should be performed.

Given the above considerations, the present chapter is devoted to an
assessment of the efficiency of the sc-PBE0αε∞functional in describing
defective wide-gap oxide semiconductors, with particular concern to
O vacancies. Three different O-deficient TMOs are considered: rutile
and anatase TiO2, WO3 in the room-temperature γ-monoclinic crystal
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structure, and tetragonal ZrO2.

6.1 Reduced Titanium Dioxide: TiO2−x

The optoelectronic properties of O-deficient TiO2 (TiO2−x) have been
extensively investigated both experimentally [75] and theoretically [63,
72,89,144,195,203,204], making this system an ideal model for testing
the performance of the dielectric-dependent hybrid method in describing
the electronic properties of defective oxides.

The observed n-type conductivity of TiO2 samples is usually
rationalized with the presence of O vacancies, acting as intrinsic
donors, formed under strongly reducing synthesis conditions [75]. The
larger intrinsic conductivity of the anatase phase, which also makes it
more appealing for applications, has been explained with the different
behavior of O vacancies in the two polymorphs [63, 203].

On the other hand, optical experiments found the associated defect
levels to be located deep in the TiO2 band gap. Infrared absorption
(IR) [57] ultraviolet photoelectron [221] and electron energy-loss
experiments [128] on reduced rutile samples all agree in attributing a
feature at about 1 eV below the CB to the presence of O vacancies.
Theoretical calculations have revealed that the apparent contradiction
between the observed n-type conductivity and the deep nature of optical
levels in TiO2−x is understood on the basis of the different character
(shallow vs. deep) of the O-vacancy thermodynamic and optical
transition levels [63, 203].

Furthermore, the excess charge introduced by the O vacancy has been
shown to redistribute differently in the host crystal, according to whether
the rutile or anatase polymorph is considered, resulting in localization of
the extra electrons at topologically different Ti atoms [272].

It is the goal of the present section to re-investigate these issues
within the sc-PBE0αε∞approach, which by construction is sensitive
to the different electronic screening features of the rutile and anatase
phases.

6.1.1 Rutile

The ground state of rutile TiO2 with a neutral O vacancy is found
to be a triplet, with the two excess electrons redistributing over the
whole (110) plane containing the vacancy [Figure 6.1(a)]. Most of the
excess charge is contributed by the fully-coordinated Ti2 (spin density
ns = n↑ − n↓ = 0.70), Ti3 (two equivalent atoms, ns = 0.15 each)
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Figure 6.1: O vacancy in rutile TiO2. (a) Isosurface plot of the charge density
associated with the excess electrons for the neutral vacancy. The yellow (large)
and red (small) spheres represent Ti and O atoms, respectively. Only the
atomic plane containing the O vacancy is shown. Corresponding electronic band
structure (shown for both spin majority, α, and spin minority, β) computed at
the equilibrium geometry, (b) for the neutral, and (c) for the singly-charged O
vacancy. (d) Computed optical (solid, black) and thermodynamic (dashed, red)
charge-transition levels. Positions (eV) are given with respect to the top of the
valence band (VB).

and Ti4 (ns = 0.65) atoms. The two under-coordinated Ti1 atoms
instead accommodate a smaller fraction of the charge (ns = 0.13
each).1 This picture is in qualitative agreement with recent scanning
tunneling microscopy (STM) measurements on the rutile (110) surface
[272] suggesting localization of the extra electrons at Ti atoms far from
the vacancy2 with the formation of a polaron. EPR measurements also

1A triplet broken-symmetry solution is found higher in energy by ∼ 60 meV.
2In this case, actually, due to presence of the surface, the extra electrons are preferably localized at

subsurface Ti atoms, but molecular dynamics simulations indicate that a significant contribution is also
given by a fivefold coordinated Ti atom at the (110) surface far from the vacancy (see Ref. [272]). Notice
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Chapter 6. Oxygen Vacancies in Wide-Gap Metal Oxides

confirmed the presence of Ti3+ ionic species formed as a consequence
of electron trapping at Ti4+ centers in TiO2−x crystals [28, 328].

Notice that localization of the unpaired electrons at Ti3+ centers is
correctly described only within the hybrid functional approach [73] at
variance with the case of local/semilocal functionals which commonly
fail in giving a correct picture, due to incomplete cancellation of
the self-interaction error. Notice also that the above physical picture
is correctly captured only at the level of spin-polarized DFT, while
neglecting spin polarization leads to a completely different description,
with the excess charge trapped in the vacancy void in a configuration
typical of a color center [144, 195]. The corresponding closed-shell
ground state singlet is found to be highly unstable, being above the
triplet solution by nearly 2 eV in total energy. In the spin-compensated
case, the two undercoordinated Ti atoms relax towards the vacancy,
shortening their distance to 2.90 Å (compared with an unrelaxed distance
of 2.99 Å); instead, in the true, spin-polarized ground state (triplet), they
move away from the vacancy, resulting in an equilibrium distance of
3.37 Å.

The obtained magnetic ground state is compatible with the evidence
of triplet and doublet signals observed in EPR measurements on
rutile TiO2−x crystals, and attributed to neutral and singly-charged O
vacancies, respectively [28, 328].

A triplet configuration can be also stabilized in which nonetheless
the excess charge is confined at the vacancy void, a situation typically
encountered in nonreducible O-deficient oxides [232].3 However, the
corresponding ground-state energy is found to be ∼ 0.8 eV higher than
that of the triplet polaron-like solution represented in Figure 6.1(a). This
finding definitely rules out the possibility of an F-center-like behavior
of O vacancies in rutile, in favor of the polaron picture, which is in
agreement with all the available experimental evidence. This conclusion
is also corroborated by other theoretical investigations using larger
supercells [63].

The bulk band gap of rutile TiO2, as computed using the
self-consistent hybrid functional, is found to be 2.99 eV, a
value compatible with the available data from photoemission/inverse
photoemission experiments, yielding an electronic gap of 3.3 ± 0.5 eV

also that agreement with the STM findings can be only qualitative in nature, since the calculations presented
here are performed for the O vacancy in bulk TiO2.

3Such solution was obtained by augmenting the basis set with Gaussian functions corresponding to a
ghost O atom positioned in the vacancy; furthermore, a polaron-like configuration was stabilized using the
very same basis set, which allowed for comparison of the corresponding total energies.
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6.1. Reduced Titanium Dioxide: TiO2−x

[297] and∼ 3.1 eV [270]. Upon removal of an O atom, the two resulting
excess electrons occupy two triplet defect states located in the band gap
at about 0.5 − 1 eV below the CB [Figure 6.1(b)]. As the vacancy is
ionized, the remaining excess electron localizes at the three Ti atoms in
the row of the O vacancy, again with a dominant contribution from the
fully-coordinated Ti2 atom (ns = 0.68). The associated occupied defect
level is still localized at about 1 eV below the CB, and turns out to be
quite flat, as shown in Figure 6.1(c).

Figure 6.1(d) shows the computed CTLs. The optical levels lie
deep in the band gap, resulting in excitation energies from the defect
states to the CB of 0.47 eV, 1.20 eV and 0.84 eV for the (+1/0),
(+2/ + 1) and (+2/0) transitions, respectively. Notice that, as a result
of the finite supercell size, the residual defect-defect interaction (i.e.
overlap between polarons in neighboring cells) [273] leads to a small
dispersion of the highest-occupied defect band (about 0.2 eV). This
should be considered as indicative of the numerical accuracy of the
computed level. Also taking into account this limitation, the computed
optical levels can be considered consistent with the features, found at
about 1 eV below the bottom of the CB, observed in experimental
spectra [57, 128, 221]. In particular, IR measurements [57] revealed
two absorption peaks at 0.75 eV and 1.18 eV for the single and double
ionization, which correlate well with the computed first and second
optical ionization energies for the O vacancy.4

Thermodynamic transition levels are significantly higher in energy,
reflecting the sizable structural relaxation associated with the polaronic
distortion. The (+1/0) adiabatic transition is located about 0.1 eV
below the CB, indicating that the neutral O vacancy may be stable
at sufficiently low temperature. The second transition (+2/ + 1) is
at 0.81 eV, while the double ionization [(+2/0) transition] requires
0.46 eV. These values should be compared with measured thermal
ionization energies observed in a range between 0.3 and 0.6 eV [101].

6.1.2 Anatase

The nature of the neutral O vacancy in anatase TiO2 has been extensively
studied in the theoretical literature [60, 63, 74, 89, 203, 204, 214].
However, no consensus has been achieved so far concerning the

4The computed (+1/0) optical transition level is inherently less accurate than (+2/ + 1) one (this is
noticed a posteriori by comparison with the experimental absorption energies); in fact, the defect KS levels
associated with the neutral O vacancy exhibit a dispersion of about 0.2 eV, whereas the KS defect level for
the singly-charged O vacancy shows no dispersion; thus, the (+1/0) level should be attributed an accuracy
of ∼ 0.2 eV, while the (+2/+ 1) level is not affected by the band dispersion error.
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Figure 6.2: O vacancy in anatase TiO2. (a) Isosurface plot of the charge density
associated with the excess electrons for the neutral vacancy. The yellow (large)
and red (small) spheres represent Ti and O atoms, respectively. (b) Corresponding
electronic band structure (shown for both spin majority, α, and spin minority, β)
computed at the equilibrium geometry. (c) Computed optical (solid, black) and
thermodynamic (dashed, red) charge-transition levels. Positions (eV) are given
with respect to the top of the valence band (VB).

redistribution of the associated excess electrons in the host crystal. This
difficulty may be rationalized with the presence of several minima on the
relevant adiabatic potential energy surface when the structure is allowed
to relax. The realization of a specific configuration is strongly related
to the description of structural relaxation around the vacancy, which is
affected, for example, by the employed DFT xc approximation.

The performed sc-PBE0αε∞calculations yield a triplet ground state
for the system with a neutral O vacancy, with a corresponding substantial
rearrangement of the atomic positions around the vacancy. As shown
in Figure 6.2(a), this implies a reduction of the local symmetry around
the vacancy, with a nearest-neighbor O atom breaking its bond with
a bulk Ti atom (Ti2) and considerably relaxing towards the vacancy
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6.1. Reduced Titanium Dioxide: TiO2−x

void.5 The same behavior was observed in other computational studies
in which symmetry-breaking relaxation was allowed for [89, 204, 214].
The two excess electrons are found to be localized at two Ti atoms
(the under-coordinated Ti1, with ns = 0.92, and the bulk Ti2, with
ns = 0.84), similarly to a previous DFT + U investigation [214]. This
finding is again in qualitative agreement with the STM investigation
of Diebold and coworkers [272] which suggests that the excess charge
preferably stays close to the vacancy in anatase, as opposed to the case of
rutile in which the major contribution is given by the fully-coordinated
Ti atoms (see Section 6.1.1).

For the system with a neutral vacancy, the computed electronic
structure shows two triplet defect states at ∼ 0.7 − 1 eV below the
CB [Figure 6.2(b)]. The computed band gap is 3.69 eV, larger than
the value of 3.42 eV obtained from optical absorption experiments at
low temperature [295]. As discussed in Chapter 5, no data for the
photoemission gap of stoichiometric anatase TiO2 are available in the
experimental literature. However, the computed gap is consistent with
the results of GW calculations [100, 149, 176].

When the vacancy is ionized, a doublet occupied defect state locates
at ∼ 0.7 eV below the CB. The extra electron remains localized (ns =
0.92) at the under-coordinated Ti1 atom.

The computed thermodynamic transition levels are significantly
shallower than in rutile [compare Figure 6.1(d) and Figure 6.2(c)].
In particular, the (+1/0) level is practically resonant with the CB,
suggesting that an electron can be thermally excited into the CB,
thus accounting for the experimentally observed larger conductivity of
anatase samples.

Similarly to the case of rutile, optical levels are substantially deeper
than the corresponding thermodynamic ones. Computed excitation
energies amount at 0.64 eV, 1.15 eV and 0.89 eV for the (+1/0),
(+2/ + 1) and (+2/0) transitions. Experimentally, a feature at ∼
1.0 − 1.1 eV below the CB has been reported in different experiments
(combined x-ray photoemission/absorption spectroscopy [298] as well
as scanning tunneling spectroscopy [272]) on reduced anatase surfaces,
and has been attributed to O vacancies. Notice that, since the stable
charge state of the O vacancy is q = +1 at room temperature, it
seems likely that the (+2/ + 1) transition is mainly probed in optical
experiments; accordingly, the computed excitation energy of 1.15 eV

5A different triplet solution can be also stabilized, in which the point-group symmetry is preserved; it is
however computed to be 0.23 eV higher in energy than the symmetry-broken one.
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Chapter 6. Oxygen Vacancies in Wide-Gap Metal Oxides

matches well with the measured spectroscopic features.
In conclusion, the sc-PBE0αε∞approach proves capable of

explaining several experimental signatures related to the different
behavior of O vacancies in the two most common TiO2 polymorphs,
rutile and anatase. In particular, the larger conductivity of anatase can be
understood by analysis of the thermodynamic transition levels, whereas
the deep nature of the optical features observed in spectroscopies is
rationalized on the basis of the computed optical transition levels.
The presented results are in qualitative, and sometimes quantitative,
agreement with previous investigations at the hybrid-functional [63, 72]
and DFT + U [203] level.

6.2 Reduced Tungsten Trioxide: WO3−x

The optical and electrical properties of substoichiometric WO3 have
been extensively investigated experimentally, particularly in relationship
with the electrochromic properties exhibited in this material [65].
However, the microscopic origin of this effect, which is intimately
connected with the typical blue coloration of WO3−x films [69, 137]
has been longly debated, and several models have been put forward for
rationalizing experimental observations [65, 66, 83].

On the theory side, a few first-principle investigations have been
performed on O-deficient γ-monoclinic WO3 [43, 173, 211], but among
them only one employed state-of-the-art methods yielding a correct
description of the bulk electronic structure [316]. The latter study of
Wang et al. revealed a delicate interplay between the concentration
of O vacancies and the metallic or insulating nature of WO3−x
[316]. Furthermore, different behaviors were observed according to the
orientation of the W-O-W chain along which the O atom is removed.
For the sake of simplicity, the present discussion is however limited to
the case of an O vacancy created along the a crystallographic axis of
the monoclinic cell,6 which will be shown to give rise to the observed
optical features of WO3−x, namely its blue coloration.

sc-PBE0αε∞calculations indicate the closed-shell singlet solution to
be more stable (by 0.17 eV) than the open-shell triplet one for the system
with a neutral vacancy. Correspondingly, the two extra electrons occupy
a defect state located at about 1.0−1.5 eV below the CB [Figure 6.3(a)];

6Along the W-O-W a-chain, W-O bonds throughout have practically the same lengths, while for chains
along the b and c axes, alternating long and short bonds are present; this peculiar structural feature determines
a different behavior of the O vacancy, according to previous calculations [173, 316].
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Figure 6.3: O vacancy in γ-monoclinic WO3. Isosurface plot of the charge density
associated with the excess electrons for the (a) neutral and (c) singly-charged
vacancy. The yellow (large) and red (small) spheres represent W and O atoms,
respectively. Corresponding electronic band structure computed at the equilibrium
geometry, for the (b) neutral and (d) singly-charged vacancy (shown for both
spin majority, α, and spin minority, β). (e) Computed optical (solid, black) and
thermodynamic (dashed, red) charge-transition levels. Positions (eV) are given
with respect to the top of the valence band (VB).
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they localize mainly at the vacancy void, with a contribution from the
two under-coordinated W atoms [Figure 6.3(b)].

As the vacancy is ionized, the extra electron localizes at one of the
under-coordinated W atoms [Figure 6.3(c)], leading to formation of a
reduced W5+ ionic state. In fact, one of the proposed models for the
chromic mechanism in WO3−x suggests that the presence of W5+ centers
results from localization of excess electrons at W6+ sites upon light
absorption [83]. As shown in Figure 6.3(d), this 5d electron occupies
a defect state ∼ 1.3 eV below the CB (∼ 2 eV if the geometry of the
neutral vacancy is retained).

Several experiments have been performed trying to elucidate the
spectroscopic properties of substoichiometric WO3 samples. The
coloration efficiency of WO3−x (x < 0.4) films has been reported to
increase with increasing O deficiency [17]. Their typical blue coloration
has been correlated with a broad absorption band with a maximum
at 900 nm (∼ 1.38 eV) [69, 137], although this feature has been
observed in amorphous films. PL spectra exhibit an emission peak at
550 nm (∼ 2.26 eV) [237], and photoelectron measurements confirm
the presence of a defect state attributed to O vacancies at ∼ 2 eV above
the VB [31, 137].

The computed optical transition levels reported in Figure 6.3(e) are
consistent with these observations, being positioned in the band gap
in a range from 1.72 eV to 2.33 eV above the VB. The dispersion of
the neutral vacancy defect state limits the accuracy of the calculated
transition levels to∼ 0.2 eV. Notice that the computed band gap is larger
than the reported values from absorption measurements (see Ref. [315]
and references therein), but is in excellent agreement with ultraviolet
direct/inverse photoemission experiments (3.45 eV from Ref. [208]),
as well as with GW calculations [100, 254]. Thus, the excitation
energy pertaining to, e.g., the (+1/0) transition, which is obtained to
be 1.12 eV, is compatible with the experimentally observed features in
the absorption spectra.

The corresponding thermodynamic levels are predicted to be
well-detached from the bottom of the CB, with a minimum excitation
energy of 0.46 eV computed for the (+1/0) transition. This implies
that the specific kind of O vacancy considered here cannot contribute
to the observed n-type conductivity of WO3−x films, which has been
attributed to O vacancies [106]. Thus, although the present work clarifies
the origin of the spectroscopic features evidenced in reduced WO3, in
agreement with the previous investigation of Wang et al. [316], further
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Table 6.1: Formation energy (eV) for the O vacancy in the different materials.

x Formation energy
TiO2−x (rutile) 1/24 5.2
TiO2−x (anatase) 1/32 4.7
WO3−x 1/16 5.3
ZrO2−x 1/36 6.6

study is necessary to elucidate the possibly different behavior of other
inequivalent O vacancy sites.

Results of ongoing work by the author (cited as [C4] in Section 1.4)
evidence that thermodynamic CTLs associated to O vacancies created
along the b and c crystallographic axes of the monoclinic cell are much
shallower than those computed for the vacancy along a, and thus may
account for room-temperature conductivity of reduced WO3 crystals.
For the O vacancy along b and c, the most stable ground state is a
triplet, and the excess electrons localize along the whole W-O-W chain
interrupted by the vacancy. This charge redistribution comes with a
strong lattice relaxation, a fingerprint of the polaronic nature of these
defect states. Hence, the strong structural anisotropy of γ-monoclinic
phase of WO3 reflects on the features of the W-O bonds along the
different crystallographic axes and, thus, on the nature of the O vacancy.

6.3 Reduced Zirconium Dioxide: ZrO2−x

The O vacancy in reduced zirconia has been reported to exhibit features
similar to those of F centers typically observed in nonreducible oxides
[232], the extra charge being trapped in the vacancy void [108]. EPR
studies [108] indicate that ZrO2 is generally less prone to lose oxygen
than other reducible oxides, such as TiO2. This is confirmed by
the sc-PBE0αε∞calculations, which give a formation energy for the
O vacancy in ZrO2−x larger by more than 1 eV with respect to the
other oxides (see Table 6.1), in agreement with previous investigations
[98, 316].

As shown in Figure 6.4(a), upon removal of an O atom in ZrO2, the
two excess electrons stabilize in the vacancy void, with a contribution
from the 4d orbitals of two nearest-neighbor Zr atoms (Zr1 and Zr2); the
corresponding ground state is a closed-shell singlet. As expected, the
neighboring Zr atoms relax towards the vacancy, resulting in a shrinking
of the distance Zr1-Zr2 from 3.61 Å to 3.48 Å, and of Zr1-Zr3 from
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Figure 6.4: O vacancy in tetragonal ZrO2. Isosurface plot of the charge density
associated with (a) the two excess electrons for the neutral vacancy, and (c) the
trapped electron for the negatively-charged vacancy. The yellow (large) and red
(small) spheres represent Zr and O atoms, respectively. Corresponding electronic
band structures, computed at the equilibrium geometry, for (b) the neutral, and (d)
the negatively-charged vacancy (shown for both spin majority, α, and spin minority,
β). (e) Optical (solid, black) and thermodynamic (dashed, red) charge-transition
levels. Positions (eV) are given with respect to the top of the VB.
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3.65 Å to 3.61 Å. The corresponding band structure [Figure 6.4(b)]
exhibits a flat defect state positioned at ∼ 3.3 eV above the VB, in close
agreement with a previous B3LYP study [108].

As the vacancy is ionized, the remaining extra electron distributes at
the two Zr1 and Zr2 atoms, as well as in the space between them, in a
bonding-like configuration. The extra electron occupies a doublet state
in the band gap at ∼ 3.6 eV above the VB.

Finally, a negatively-charged O vacancy can be realized following
trapping of an electron from the bulk CB. Such trapping phenomena can
affect, for example, the performance of electronic devices, for which
high-κ oxide materials such as zirconia or hafnia (HfO2) have been
proposed as gate electrodes [261]. The trapped electron occupies an
additional defect state in the band gap at ∼ 1.2 eV above the (now
spin-resolved, with spin majority shown) states associated with the
neutral vacancy [Figure 6.4(d)], in a bonding-like configuration between
the Zr1 and the Zr2 atoms [Figure 6.4(c)].

The computed CTLs corresponding to both vacancy ionization and
electron trapping are shown in Figure 6.4(e). A band gap of 5.73 eV
is calculated, to be compared with the experimental value of 5.78 eV
deduced from optical absorption measurements [92]; typically GW
calculations give a band gap larger by ∼ 0.1 − 0.2 eV (see Ref. [100]
and references therein).

Much experimental work is available in the literature investigating
the PL properties of ZrO2−x. However, a clear understanding of the
underlying mechanisms seems to be lacking. Several emission features
in the region between 2.0 eV and 3.5 eV are typically observed, and have
been related to O deficiency [286]. The large uncertainty in experimental
results may be the consequence of the practical difficulty in obtaining
high-purity single crystals of zirconia with a well-defined phase.

PL measurements on tetragonal nanocrystalline ZrO2−x showed an
emission peak at 350 nm (∼ 3.54 eV), which was attributed to
electron-hole recombination involving F-center states in the band gap.
Analysis of the PL spectrum evolution with annealing allowed to assign
this feature to O vacancies [52]. The computed position of the (+1/0)
optical transition level (3.40 eV above the top of the VB) may account
for this observation.

Another study on undoped tetragonal zirconia nanocrystals
evidenced the presence of an emission peak at ∼ 2.8 eV [287]. This
may be related to a PL process involving the (+2/ + 1) optical level,
which is computed to be at 2.77 eV above the top of the VB.
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The thermodynamic levels are found below the CB by at least 1.5 eV,
indicating that all the O-vacancy charged states are stable at room
temperature. An exception is represented by the (0/− 1) level, which is
separated from the CB by ∼ 0.3 eV. This level is associated to electron
trapping processes causing the O vacancy to become negatively charged.
The sc-PBE0αε∞calculations suggest that such trapping center is stable
at room temperature, and the same conclusion was obtained from a
similar investigation on hafnia [34] in which, due to analogous chemical
behavior of the Hf and Zr cations, O vacancies are expected to induce
similar effects as in zirconia [331]. In light of this, trapping/detrapping
experiments on HfO2 found the activation energy for the trap level to
be 0.35 eV [259] which is in agreement with the sc-PBE0αε∞results
reported for ZrO2.

6.4 Summary and Conclusions

The behavior of O vacancies in prototypical reducible (TiO2, WO3) and
nonreducible (ZrO2) wide-gap oxide materials has been investigated
through the sc-PBE0αε∞method as defined for the corresponding
pristine material. Its capability of yielding accurate electronic band
structures, together with structural properties and total energies, makes
it an ideal tool for investigating defect levels in insulating materials.

The computed optical transition levels are generally found in
agreement with various spectroscopy experiments, providing support for
their interpretation. Instead, thermodynamic levels allow one to infer
about the intrinsic degree of n-type conductivity of substoichiometric
oxide materials through analysis of the stability of the different O
vacancy charge states. Residual discrepancies between theory and
experiment may arise from two main sources: (i) the always present
approximate treatment of xc terms, and (ii) usage of finite supercells.
While the former is intrinsically related to the adopted functional, the
latter may appear also as consequence of the evaluation of CTLs via
Janak’s theorem (see Section 4.3.1) instead of by direct computation of
total energy differences,7 due to the defect band dispersion introduced
by the residual polaron overlapping in neighboring cells.

Fundamental differences are evidenced in the behavior of reducible
and nonreducible oxides. Upon creation of an O vacancy, the former
tend to exhibit polaron-like features: the excess charge mainly localizes
at the metallic ions, reducing their formal charge, and the accompanying

7Such differences cannot be computed with the CRYSTAL09 code [77].
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relaxation of the atomic environment is not restricted to atoms in the
immediate vicinity of the defect. Instead, in nonreducible oxides such
as ZrO2, the excess charge is stabilized in the vacancy void, and the
relaxation is more local; furthermore, transition levels are deeper, being
situated near the center of the band gap. These are the fingerprints of the
F-center-like behavior of O vacancies in these materials.

In conclusion, the sc-PBE0αε∞approach is able to characterize
defect levels in semiconductors in a way that makes it valuable
for predictive studies also on doped semiconductors. Notice
however that, while the method is straightforwardly applied to
point (zero-dimensional) defects,8 its extension to treatment of
higher-dimensional defect structures, such as surfaces, requires facing
unprecedented difficulties. For example, modeling the interface between
two different semiconductors implies the exchange fraction to become
a space-dependent quantity. Local hybrid functionals, in which a
portion of position-dependent HF exchange is admixed to semilocal
[145] or global hybrid functionals [124], may constitute a useful starting
point. However, the extension of the dielectric-constant dependent
mixing approach to non-homogeneous systems will eventually call for
a phenomenological model of the dielectric properties at the interface.
Existing models of the surface and interface optical response [67, 68,
135] may represent a possible starting point for future developments
of the approach presented in this work, although, to the best of the
author’s knowledge, the issue has not yet been explicitly considered in
the literature. An extension of the present approach in this sense would
be highly desirable, making it possible to quantitatively investigate the
electronic structure at interfaces.

Notice also that for treatment of defective systems, the
self-interaction error should be largely corrected for (otherwise the
excess charge would tend to delocalize over an exceedingly large
portion of the crystal). In this respect, the sc-PBE0αε∞functional proves
to behave correctly in the case of O vacancies, for which also standard
hybrid functionals have proved to perform well [8, 64, 72]. An ad
hoc test for the sc-PBE0αε∞functional on a defective system where
even standard hybrids fail in correctly describing charge localization
(evidencing that they are still suffering, to some extent, from the
self-interaction error) is considered in Chapter 7.

8In the dilute limit, the dielectric constant is vanishingly affected by presence of the defects.
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Computational Details

All the calculations were performed using the CRYSTAL09 code [77,78]. In the case of
TiO2, calculations were performed in the all-electron scheme, using the basis set from
Ref. [333] for Ti. Small-core effective-core PPs were employed for modeling core
electrons for W and Zr atoms [125] in WO3 and ZrO2, while valence electrons were
described using the basis sets defined in Ref. [315] (5s, 5p, 6s and 5dW electrons in the
valence) and Ref. [30] (4s, 4p, 5s and 4d Zr electrons in the valence), respectively. The
O atom was always treated at the all-electron level, using the basis set from Ref. [263]
for TiO2 and WO3, and from Ref. [96] for ZrO2.

Bulk 72-atom 2× 2× 3 and 96-atom 2
√

2× 2
√

2× 2 supercells were considered
for rutile and anatase TiO2, respectively. For γ-monoclinic WO3, a model supercell
comprising 64 atoms was adopted, obtained by doubling the primitive cell along
the a crystallographic axis. For tetragonal ZrO2, a 108-atom 2 × 2 × 3 supercell
was employed. The O vacancy was modeled by removing one O atom from
the corresponding supercells. The BZ was sampled using 2 × 2 × 2 Γ-centered
Monkhorst-Pack grids [213], corresponding to 6 or 8 k points in the IBZ.

Structural optimizations were performed by allowing all the atoms in the cell to
relax their positions, keeping the lattice parameters fixed to that of the optimized bulk
cell. Convergence thresholds in geometry optimizations were set at their standard
values in the CRYSTAL09 code: the defined thresholds for the maximum and the
root-mean-square of the energy gradients (atomic displacements) are 0.00045 a.u.
(0.00180 a.u.) and 0.00030 a.u. (0.00120 a.u.), respectively [77].

The self-consistent procedure defining the sc-PBE0αε∞ functional yielded the
following values for the exchange fraction: 15.2% for rutile and 18.4% for anatase
TiO2, 21.9% for RT monoclinic WO3, 20.8% for tetragonal ZrO2.

The 1s KS eigenvalue of the O atom was considered as reference for aligning band
structures in bulk calculations. The spurious electrostatic interaction between image
charged defects was accounted for by correcting the KS eigenvalues according to the
procedure outlined in Section 4.2.1. In particular, the purely geometrical prefactor
(αM/2L) in Eq. (4.21) was evaluated by computing the nuclear-nuclear interaction
energy of a periodic system consisting of hydrogen atoms positioned at the defect
sites [14] (for noncubic cells, L is thus the average distance between defects). For the
dielectric constant ε∞ in the same formula, the self-consistent value obtained within
sc-PBE0αε∞was used.

The O vacancy formation energy was computed with respect to (1/2)E[O2], where
E[O2] is the ground-state total energy of the triplet O2 molecule. This corresponds to
considering the formation of the vacancy under O-rich conditions.
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One of the most important requirements to be met for a DFT functional
is that the self-interaction (SI) error is largely compensated. In fact,
SI leads to prediction of even qualitatively wrong ground states in
systems in which charge density would tend to be highly localized,
favoring instead a ground state in which the charge is spread over
a region as large as possible, in an attempt to minimize the SI
present in the Hartree energy. Point defects in insulators constitute
one paradigmatic condensed-matter system in which this happens. In
particular, aluminum-doped silicon dioxide (Al-doped SiO2) is known
to be an especially difficult system to be treated, since even hybrid
functionals, which, to a large extent, are expected not to suffer from
SI, have proved to fail in properly describing the ground state of this
system.

The Al impurity is one of the most commonly observed defects
in irradiated quartz SiO2, by which a tetravalent Si cation is replaced
with a trivalent Al atom. The Al/Si substitution results in an unpaired
electron (or, in an equivalent description, a hole) which, based on
early experimental observations, has been identified to be trapped in a
nonbonding 2p orbital of an O atom surrounding the substitutional Al

117



Chapter 7. Hole Localization in Al-Doped SiO2

atom [115, 225]. The corresponding neutral Al defect center (hereafter
also denoted [AlO4]0 ) is magnetically active, and has been the subject
of extensive characterization by EPR spectroscopy [223, 224, 269], also
in combination with absorption spectroscopy [207, 218, 268].

From the theory side, it has been recognized that reproduction of the
experimentally observed features of the [AlO4]0 center is subordinate
to a correct description of the hole localization properties. Since early
DFT calculations using local or semilocal density functionals yielded a
wrong picture, predicting the hole to be delocalized over all the four Al
nearest-neighbor O atoms [53,171,193], this problem has been identified
as a challenging testing ground for novel density-functional methods
[172].

The wrong description provided by local/semilocal DFT
functionals has been ascribed to incomplete cancellation of the SI
brought in by the Hartree term [171, 234], as calculations using
exactly SI-free Hamiltonians, such as unrestricted HF (UHF) and
self-interaction-corrected (SIC) DFT, yield the correct hole localization.
Pacchioni et al. also performed unrestricted second-order Møller-Plesset
perturbation theory (UMP2) calculations [234], concluding that no
appreciable role is played by correlation in the specific problem at hand.

Furthermore, it has been found out that popular hybrid functionals,
prescribing 20% or 25% of EXX, such as B3LYP [20, 292] PBE0 [244]
and HSE06 [132, 133] also fail in describing charge localization in
Al-doped silica [105, 172, 230, 288, 334]. Thus, it has been argued
that a large amount of EXX would be necessary to obtain agreement
with experiments [172, 288], much in the same way as a large enough
Hubbard U parameter is needed within DFT + U to solve the same
problem [222]. For example, To et al. found that a semiempirical hybrid
functional including 42% of EXX (called BB1K functional) yielded the
correct picture [301].

In light of the preceding work, it may be concluded that some amount
of empiricism is inevitably required to tackle the Al impurity problem
within DFT, casting doubts on its actual predictive power. In view of
this, the sc-PBE0αε∞approach is very promising: in fact, it can be
regarded as a self-consistent DFT implementation of the many-body
COHSEX self-energy. COHSEX treats the exchange term exactly, and
hence it is SI-free; it thus constitutes the ideal candidate for modeling
systems whose ground state is dominated by the classical Hartree and
electron exchange Fock interactions. It is worthwhile, and the ultimate
goal of the present investigation, to assess whether the directly derived
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O(3)
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Figure 7.1: Ball-and-stick representation (Si, O and Al atoms are shown as yellow,
red, and pink spheres, respectively) of the local atomic structure around the Al
impurity, as obtained from geometry optimization at the (a) sc-PBE0αε∞ , and
(b) B3LYP level of theory. Isosurface of the spin density associated with the
unpaired electron introduced by the [AlO4]0 center is shown. For bond distances
see Table 7.1.

density-functional method exhibits the same property.

7.1 sc-PBE0αε∞Results for Bulk SiO2

Within the sc-PBE0αε∞approach, the dielectric constant of quartz
SiO2 is computed to be ε∞ = 2.15 (the experimental value is
2.38, see Ref. [42] and references therein), which corresponds to an
exchange fraction α = 46.5%. The method predicts a somewhat
overestimated band gap of 11.6 eV, whereas various experiments
measured it in the quite broad range of 8 − 10 eV [319]. The failure
of the sc-PBE0αε∞functional in computing reliable band gaps for some
insulators with very low dielectric constants (and correspondingly large
band gaps) was already reported in Ref. [283], being particularly serious
when the geometry is re-optimized at each self-consistency step (see for
example the case of MgO, which has a dielectric constant of ∼ 3, see
Chapter 5).

However, here the main concern is to pursue the correct description
of the hole localization at the [AlO4]0 center, which is a ground state
property; the related spectroscopic features will be deferred to separate
discussion in Section 7.4.
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Table 7.1: Nearest-neighbor Si-O and Al-O distances (Å) for pristine bulk and
Al-doped SiO2 ([AlO4]0 ), respectively. The O atoms are labeled according to
Figure 7.1.

Pure SiO2 [AlO4]0

Functional sc-PBE0αε∞ sc-PBE0αε∞ B3LYPa B3LYPb

O(1) 1.620 1.910 1.809 1.826
O(2) 1.620 1.699 1.758 1.749
O(3) 1.616 1.687 1.705 1.705
O(4) 1.616 1.691 1.700 1.700
a Starting geometry for optimization: pure SiO2 structure.
b Starting geometry for optimization: sc-PBE0αε∞ -optimized

[AlO4]0 structure.

7.2 Structural Deformation and Hole Localization

Figure 7.1(a) shows the local atomic structure of SiO2 around the Al
impurity, as found by minimizing the total electronic energy using
the sc-PBE0αε∞functional and allowing for symmetry-breaking atomic
relaxations, which amounts at independently optimizing the positions of
each atom of the (O1, O2) and (O3, O4) oxygen pairs (where the two
O atoms within each pair are equivalent to each other in the bulk SiO2

structure). The emerging picture agrees very well with that obtained
within other rigorously SI-free approaches, such as UHF [172, 230] and
SIC-DFT [59]. In particular, the hole introduced by the substitutional
Al atom is found to be trapped at the O(1) atom, and its wavefunction
exhibits purely 2p character, with the corresponding orbital lying almost
perpendicularly to the Al-O-Si plane. As a consequence of charge
localization, the local atomic structure distorts considerably: the O(1)
atom moves away from the Al atom, resulting in an average equilibrium
Al-O distance 13% larger compared to the other Al-O distances (see also
Table 7.1).

7.3 Analysis of EPR Parameters

In order to further confirm the better performance of the
sc-PBE0αε∞approach with respect to B3LYP, hyperfine parameters
relative to the hole-bearing O(1) atom are computed. The hyperfine
coupling matrix A, describing the magnetic interaction of the spin of
an unpaired electron with the spin of the neighboring nuclei (17O and
27Al isotopes), is conveniently divided into an isotropic (spherically
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Table 7.2: Spin population of the O atoms belonging to the [AlO4]0 center, and
EPR hyperfine parameters of the hole-bearing 17O and of the 27Al. The optimized
structures are obtained starting from ideal bulk SiO2.

Functional sc-PBE0αε∞ B3LYP B3LYP Expt.
Geometry sc-PBE0αε∞ B3LYP sc-PBE0αε∞ (Refs. [223, 224])

Spin population
O(1) 0.95 0.58 0.81
O(2) 0.02 0.28 0.07
O(3) < 0.01 0.01 0.03
O(4) < 0.01 0.04 < 0.01

17O(1) hyperfine matrix (G)a

Aiso -42.6 -26.1 -34.7 -26.0
B1 -94.3 -61.7 -83.7 -85.0
B2 47.1 30.7 41.8 41.2
B3 47.2 31.0 41.9 43.8

27Al hyperfine matrix (G)a

Aiso -5.0 -8.1 -5.4 -5.8
B1 -0.4 -0.2 -0.4 -0.4
B2 -0.4 -0.1 -0.3 -0.3
B3 0.8 0.3 0.6 0.7
a The principal values of the anisotropic hyperfine matrix are listed so that
B1 < B2 < B3

symmetric) and an anisotropic (dipolar) part [318],

A = Aiso

1 0 0

0 1 0

0 0 1

+

B1 0 0

0 B2 0

0 0 B3

 . (7.1)

The isotropic part Aiso is proportional to the electron spin density at
the nucleus, and, as such, the dominant contribution to it is caused
by spin-polarization of the s electrons. Instead, the anisotropic part is
related to the spin population of orbitals with higher angular momentum
components; this contribution is commonly expressed in terms of a
traceless matrix with principal values B1, B2 and B3 reported in
Table 7.2. Since the hole wavefunction has purely 2p character, the
dipolar part gives direct access to the corresponding spin distribution.
Instead, the isotropic contribution is notably harder to be reproduced,
being extremely sensitive to details of the calculation in general, and to
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Chapter 7. Hole Localization in Al-Doped SiO2

choice of the basis set in particular [15].
In Table 7.2 the hyperfine parameters are reported for the 17O(1)

and 27Al nuclei. Concerning the anisotropic parameters of 17O,
sc-PBE0αε∞calculations nicely capture the experimentally observed
strong anisotropy along the three axes, and numerical values are in
good agreement with both experiments and the results of previous
investigations based on SI-free approaches (UHF, UMP2, SIC-DFT)
[59,172,230]. In contrast, B3LYP yields a quantitatively wrong picture,
the computed parameters being substantially smaller in absolute value
than experimental ones. The situation is quite the opposite for the
isotropic part, for which sc-PBE0αε∞overestimates the absolute value of
Aiso, while B3LYP yields it exceptionally close to experiment. However,
the latter result can be considered as fortuitous, in the sense that it is
not concomitant with a correspondingly more accurate description of
the hole localization. Firstly, as already discussed, at the B3LYP level
the O(2) atom carries a substantial part of the hole-related spin density
(see Table 7.2), in disagreement with experiment, and consequently
the 17O(2) EPR parameters are of the same order of magnitude as for
17O(1);1 instead, when the hole localization is correctly captured, such
as at the sc-PBE0αε∞level, the former are at least one order of magnitude
smaller than the latter (see also Ref. [301]). Secondly, the improvement
of the isotropic part does not come along with a similar improvement of
the anisotropic one, which indeed is related to the proper description of
the 2p hole wavefunction.

The above conclusion is also supported by the computed
superhyperfine matrix of 27Al: the sc-PBE0αε∞functional gives results
in quantitative agreement with both experiment and UHF calculations
[230], whereas this is not true for B3LYP. Notice that the superhyperfine
interaction with a dopant element like Al that introduces a hole in the
structure is usually the only accessible information. In fact, in order
to measure the O hyperfine constants, 17O-enriched samples have to be
prepared with complex and costly procedures [107].

7.4 Optical properties of the Al impurity

The Al impurity in quartz silica has been observed to act as a color
center, endowing this material with the typical smoky coloration.
However, considerable controversy has arisen as to which absorption

1The 17O(2) EPR parameters, computed at the sc-PBE0αε∞ (B3LYP) level are (in G): Aiso =
−3.6 (−15.3), B1 = −2.9 (−31.7), B2 = 1.4 (15.7), B3 = 1.5 (16.0).
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Figure 7.2: Electronic band structure of SiO2 with a neutral Al impurity, computed at
the (a) sc-PBE0αε∞ , and (b) B3LYP level.

feature had to be correlated with such observation [218, 268]. It was
finally concluded that an absorption peak at about 2.9 eV is to be
associated with the presence of Al centers and, thus, with the smoky
coloring [207].

The observed optical transition should be related to excitation of the
hole trapped at the neutral [AlO4]0 center (q = 0) into the VB, leading
to a negatively charged defect (q′ = −1, [AlO4]−1 center); accordingly,
from the theory side, the optical transition level (0/ − 1) is the relevant
quantity to be compared with experiments. The sc-PBE0αε∞predicts
the computed level to be∼ 4.7 eV above the VB maximum, nearly 2 eV
higher in the band gap with respect to experiments. This large error can
be attributed to the already mentioned overestimation of the electronic
band gap of bulk quartz provided by sc-PBE0αε∞ . Consequently, the
Al-related defect level is wrongly positioned with respect to the VB [∼
5 eV above its edge, see Fig. 7.3(a)] and this eventually gives rise to the
observed overestimation of the optical transition energy.

As a partial workaround, the electronic structure is computed using
the B3LYP functional, which yields a band gap of 8.6 eV for bulk quartz
[see Fig. 7.2(b)], falling in the range of the experimental values; the
[AlO4]0 geometry obtained within sc-PBE0αε∞ is instead retained. The
spin population and EPR parameters computed following this approach
are reported in Table 7.2. The hole is again localized on the O(1) atom,
although with a Mulliken density lower than that obtained by performing
calculations fully within the sc-PBE0αε∞scheme. Surprisingly, the
computed hyperfine parameters are in even better quantitative agreement
with experiments, as the lower spin density counterbalances the
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overestimation yielded by sc-PBE0αε∞; a similar trend was noticed
in the previous hybrid-functional investigation of To et al. [301].
Charge density distribution analysis for the negatively-charged center
leads to conclude that the same qualitative picture is obtained at the
sc-PBE0αε∞and B3LYP levels, provided that the geometry is kept
fixed at the one optimized within sc-PBE0αε∞: the one-particle state
corresponding to vertical excitation of the hole to the VB is still
contributed by the 2p orbitals of the O(1) atom. The computed optical
level for such transition is positioned at ∼ 2.9 eV above the top of
the VB, in excellent agreement with experiment. For comparison,
Table 7.3 reports representative results from previous theoretical studies
for the vertical transition energy correlating with the experimentally
found absorption band with a maximum at ∼ 2.9 eV.

7.5 Summary and Conclusions

The long-standing problem of hole localization in Al-doped quartz SiO2

is an ideal testing ground for novel DFT functionals, since the obtained
ground state for this system turns out to be extremely sensitive to
the SI error: local/semilocal and standard hybrid DFT functionals fail
in capturing the experimentally evidenced hole localization at one of
the Al-coordinated O atoms [172, 230]. In particular, the failure of
popular hybrid functionals, such as B3LYP, has been attributed to the
insufficient amount of EXX admixed. In the sc-PBE0αε∞functional, the
exchange fraction is consistently determined based on the analogy with
the many-body COHSEX approximation to the electron self-energy. The
COHSEX self-energy is rigorously SI-free, and thus constitutes the ideal
starting point for studying systems in which incomplete cancellation of
SI leads to a qualitatively wrong ground state.

For quartz silica, the sc-PBE0αε∞approach yields an exchange
fraction of ∼ 46%. The resulting hybrid functional correctly reproduces
the hole localization at a single O atom nearest-neighbor to the Al
impurity, also giving accurate description of the structural distortion
around it, and allowing to compute EPR parameters in agreement with
previous SI-free calculations [172, 230, 301] and experiment [224].
However, the defect-related optical spectroscopic features are not
well-reproduced by the sc-PBE0αε∞method. This failure is attributed
to overestimation of the pristine quartz silica band gap. Using B3LYP
on top of the sc-PBE0αε∞optimized geometry yields a band structure in
better agreement with experiment, and thus corroborates this hypothesis.
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In conclusion, the sc-PBE0αε∞approach proves capable of correcting
most of the SI error inherent to local/semilocal, as well as more
popular hybrid, DFT functionals. This feature is crucial for adequately
describing the ground state of defective oxide materials. As far as
defect-related excitation energies are concerned, their determination is
subordinate to an accurate calculation of the electronic structure of the
bulk material. This is not always the case for low-dielectric-constant
insulators in general, and for quartz SiO2 in particular. However,
as shown in Chapter 6, the sc-PBE0αε∞method is able to reproduce
the whole experimental scenario when point defects in moderate gap
metal-oxide semiconductors (dielectric constants∼ 4−6) are addressed.

Computational Details

All-electron DFT calculations were performed using the CRYSTAL09 code [77, 78].
The following all-electron basis sets were employed: 66-21G∗ for Si (Ref. [217]),
8-411(d1) for O (Ref. [263]), 85-11G∗ for Al (Ref. [39]).

The Al center was modeled in an embedding 2 × 2 × 2 quartz SiO2 supercell (72
atoms) with the atomic positions and lattice parameters fully relaxed for the bulk cell
using the sc-PBE0αε∞ functional. For the defective supercell, further optimization of
the atomic positions was carried out at fixed lattice parameters. The standard thresholds
defined in CRYSTAL09 were adopted in all geometry optimizations: the defined
thresholds for the maximum and the root-mean-square of the energy gradients (atomic
displacements) are 0.00045 a.u. (0.00180 a.u.) and 0.00030 a.u. (0.00120 a.u.),
respectively [77]. The BZ was sampled using 2 × 2 × 2 Γ-centered Monkhorst-Pack
grids [213], corresponding to 8 k-points in the IBZ.

The 1s KS eigenvalue of Si is taken as reference for aligning band structures in
defect and bulk calculations. The spurious electrostatic interaction between image
charged defects was accounted for by correcting the KS eigenvalues according to the
procedure illustrated in Section 4.2.1 and in the Computational Details of Chapter 6.
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CHAPTER8
Conclusions

In this thesis, a nonempirical hybrid DFT method is tested for calculation
of both ground-state and excited-state properties of pristine and
defective oxide materials. The method is based on a material-dependent
re-parametrization of the full-range PBE0 functional [244], in the
sense that the exchange fraction α is obtained as the inverse
of the high-frequency dielectric constant of the material [6, 198].
This identification arises straightforwardly from comparison of the
expressions for the nonlocal hybrid DFT potential and the electronic
self-energy, as given in the static limit of theGW approximation (known
as COHSEX self-energy) [126]. Actually, in this framework, the full
dielectric response function, which in principle is a spatial-dependent
quantity, has to be averaged over the simulation cell (i.e. the
macroscopic limit has to be taken), in order to derive an explicit
expression for the constant α in terms of the macroscopic dielectric
constant ε∞. As far as ε∞ is computed with ab initio approaches,
the obtained functional can be considered as nonempirical, in the
sense that the exchange fraction built in it is not set a priori or
on the basis of fitting to experiments, at odds with standard hybrid
functional implementations. Moreover, the method can be made
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self-consistent [283], as explained in Section 3.3, thus defining the
sc-PBE0αε∞functional.

In Chapter 5, the sc-PBE0αε∞method has been applied to
computation of band gaps, dielectric constants, and ground-state
properties of a class of wide-gap oxide materials (MgO, ZnO, TiO2,
ZrO2, WO3). For band gaps, comparison has been provided with results
from GW calculations, as well as experiments. In this respect, the
sc-PBE0αε∞ turns out to be roughly as accurate as GW , also being
less expensive than the latter. The self-consistent procedure is shown
to converge within two or three iteration steps for most materials, and
yields dielectric constants closer to experiments with respect to the
starting PBE functional. Then, the phase stability and related electronic
properties of different crystallographic phases for the same set of oxides
have been analyzed. The self-consistent exchange fraction α has been
evaluated for each polymorph separately. The phase stability has been
studied on the basis of differences in ground-state total energy, thus
neglecting thermal contributions. It has been concluded that generally
sc-PBE0αε∞does not produce a clear improvement over standard hybrid
functionals like PBE0 concerning the phase stability issue. Actually, it
performs worse than PBE0 when the structural phase transition comes
along with a drastic change of the electronic structure, as in the case of
WO3. Here, the low-temperature cubic and tetragonal phases exhibit a
much lower band gap than the high-temperature ones. Correspondingly,
the dielectric constant varies by a large amount passing, e.g., from the
cubic to the monoclinic structure. This produces a large variation of
the exchange fraction upon the phase transition, and ultimately leads
to prediction of a wrong phase stability order. Another test on total
energies is performed, calculating the reaction energy associated to a
stoichiometry transformation of bulk TiO2 into Ti2O3. In this case,
more sizable energy differences of the order of few eV are involved.
Hence, the sc-PBE0αε∞method can be better tested in its capability to
give accurate total energies, irrespective of numerical errors inevitably
introduced by convergence of the basis set, of the BZ sampling, etc.
(which in fact can produce errors on the scale of meV, which is
comparable to typical differences in ground-state energies between
two crystallographic phases). The computed reaction energy using
sc-PBE0αε∞results in better agreement with experiments with respect to
standard PBE0. Furthermore, the method consistently provides a good
description of electronic structures and structural properties of both the
TiO2 and Ti2O3 compounds, for which, e.g., DFT + U methodologies
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proved to be less accurate [139].
Passing from pristine to defective oxides, Chapter 6 has been devoted

to study of oxygen vacancies in rutile and anatase TiO2, γ-monoclinic
WO3, and tetragonal ZrO2. This set of materials comprises both
reducible (TiO2, WO3), and nonreducible (ZrO2) oxides, which in
general exhibit qualitatively different electrical and optical behavior
when becoming substoichiometric [233]. The sc-PBE0αε∞functional
is a promising method for ab initio modeling of point defects, for the
following reasons: (i) exact exchange helps selecting ground states with
the correct degree of charge localization, at odds with local/semilocal
functionals which instead tend to artificially delocalize it; (ii) already the
electronic structure and energetics of pristine wide-gap oxides are well
described, as discussed in Chapter 5, and thus defect levels are expected
to be correctly positioned in the band gap even within the KS scheme.
Defect levels have been computed using the charge-transition levels
formalism, which goes beyond a simple KS description, as discussed
in Section 4.3. The sc-PBE0αε∞method proves able to capture the
different behavior of O vacancies in rutile and anatase TiO2, accounting
for the higher n-type conductivity found in the latter (explained by the
shallower thermodynamic transition levels), as well as the nature of
the optical transitions observed in both phases (deep optical transition
levels). Spatial distribution of the excess charge is also found in
qualitative agreement with STM measurements on both phases. Optical
transitions computed for WO3 and ZrO2 are also found to be consistent
with experiments. ZrO2 is correctly predicted to be less prone to form O
vacancies with respect to the other oxides [98], as the related formation
energy is found larger by ∼ 1 eV. Thermodynamic levels are found to
be much deeper in this material, suggesting that the O vacancy is stable
in its neutral state even at high temperature. Overall the sc-PBE0αε∞ ,
employed in conjunction with the charge-transition level scheme, proves
able to describe O-deficient wide-gap metal oxides in terms of their
electrical and optical properties, as well as of spatial distribution of the
excess charge and O-vacancy formation energy.

In Chapter 7 the description of Al impurities in quartz SiO2 has been
tackled. The choice of this peculiar defective system has been guided
by the demonstrated inability of popular hybrid functionals like B3LYP
to correctly capture localization of the unpaired electron introduced
by substitutional aluminum [172, 234]. Since HF instead has been
reported to give correct results, the failure of B3LYP has been ascribed
to incomplete cancellation of the self-interaction error, and later studies
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Chapter 8. Conclusions

have suggested that an exchange fraction as large as 40− 50% is needed
to construct a self-interaction-free hybrid functional [301]. For the
sc-PBE0αε∞functional, obtained for pristine SiO2, the exchange fraction
is about 46%; when applied to defective SiO2, this functional predicts
the hole to be localized on one of the four O atoms nearest neighbor to
the Al impurity; localization is accompanied by considerable structural
distortion of the local structure, in agreement with the experimental
evidence from EPR spectroscopy [224]. Calculated EPR hyperfine
parameters for O and Al atoms confirm that sc-PBE0αε∞ is superior
to B3LYP, since it better describes the symmetry-breaking structural
distortion around the Al atom, which drives localization of the hole
on the O atom moving farthest away from the defect. However,
sc-PBE0αε∞proves not suitable to calculation of optical transitions
induced by presence of the defect in this material. In fact, already
in pristine SiO2, the band gap is overestimated by as much as 2 eV.
This leads to wrong prediction of the defect level position in Al-doped
SiO2, and hence of the associated transition level. Overestimation of the
band gap in insulators with low dielectric constants has to be regarded
as an intrinsic limitation of the method, which tends to yield exchange
fractions approaching 100% when ε∞ → 1, resulting in band gaps close
to those that would be obtained in a HF calculation.

More generally, while this work has clearly demonstrated that
the sc-PBE0αε∞functional represents an improvement, both from the
conceptual and the practical point of view, with respect to standard
hybrid DFT approaches, it is also clear that there are still open
issues in electronic structure theory that this method cannot aim at
solving. For example, calculation of the electronic structure of surfaces
and interfaces, which holds great importance for photovoltaics and
photocatalysis, could not be straightforwardly tackled. Typically, the
dielectric constant varies abruptly across the surface, and this makes
choice of a global exchange fraction in the hybrid functional an
ambiguous one. This difficulty is not present when point defects
are investigated, since for these systems the dielectric constant is
expected to converge to the bulk value in the limit of dilute defect
concentrations which is usually the most relevant to comparison with
experiments. Instead, the dielectric response function is substantially
modified in the presence of surfaces, and thus in principle a full
evaluation of this quantity should be performed using more rigorous
many-body perturbation methods. However, even in cases in which
the sc-PBE0αε∞approach cannot be directly applied, starting from an
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accurate electronic structure method for the bulk material remains
advantageous. In the case of defects at surfaces, for example, an
even qualitatively correct description of defect wavefunctions would be
crucial to obtain meaningful GW quasiparticle corrections to the KS
band structure. Hence, while one should not expect sc-PBE0αε∞ to
provide electronic properties of surfaces and interfaces in quantitative
agreement with experiment, this approach could be still the ideal starting
point for higher-level methods which are naturally able to treat spatially
inhomogeneous systems.
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