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Abstract

In this thesis, we deal with a new framework for the numerical approximation
of partial differential equations which employs main ideas and tools from com-
pressed sensing in a Petrov-Galerkin setting. The goal is to compute an s-sparse
approximation with respect to a trial basis of dimensionN (with s�N ) by pick-
ing m�N randomly chosen test functions, and to employ sparse optimization
techniques to solve the resulting m ×N underdetermined linear system. This
approach has been named COmpRessed SolvING (in short, CORSING).

First, we carry out an extensive numerical assessment of CORSING on ad-
vection-diffusion-reaction equations, both in a one- and a two-dimensional set-
ting, showing that the proposed strategy is able to reduce the computational
burden associated with a standard Petrov-Galerkin formulation.

Successively, we focus on the theoretical analysis of the method. In partic-
ular, we prove recovery error estimates both in expectation and in probability,
comparing the error associated with the CORSING solution with the best s-term
approximation error. With this aim, we propose a new theoretical framework
based on a variant of the classical inf-sup property for sparse vectors, that is
named Restricted Inf-Sup Property, and on the concept of local a-coherence,
that generalizes the notion of local coherence to bilinear forms in Hilbert spaces.
The recovery results and the corresponding hypotheses are then theoretically
assessed on one-dimensional advection-diffusion-reaction problems, while in
the two-dimensional setting the verification is carried out through numerical
tests.

Finally, a preliminary application of CORSING to three-dimensional advec-
tion-diffusion-reaction equations and to the two-dimensional Stokes problem
is also provided.

Keywords: partial differential equations, compressed sensing, Petrov-Galerkin
formulation, inf-sup property, local coherence, estimates in expectation and
probability.
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Sommario

In questa tesi viene proposto un nuovo metodo per l’approssimazione numerica
di equazioni differenziali alle derivate parziali, basato sull’applicazione di tec-
niche e idee del compressed sensing a discretizzazioni di tipo Petrov-Galerkin.
L’obiettivo è quello di calcolare una approssimazione s-sparsa rispetto ad una
base trial di dimensione N (con s � N ), selezionando m � N funzioni te-
st in maniera randomizzata e, successivamente, risolvere il sistema sottode-
terminato ottenuto, di dimensione m × N , tramite tecniche di ottimizzazione
sparsa. Questo approccio è stato denominato COmpRessed SolvING (in breve,
CORSING).

In primis, viene condotta una vasta indagine numerica del CORSING su equa-
zioni di tipo diffusione-trasporto-reazione monodimensionali e bidimensionali,
mostrando come la strategia proposta sia capace di ridurre il costo computazio-
nale associato a discretizzazioni di Petrov-Galerkin standard.

Successivamente, il metodo viene studiato dal punto di vista teorico. In par-
ticolare, si dimostrano delle stime di errore in valore atteso e in probabilità,
mettendo a confronto l’errore della soluzione CORSING e l’errore di miglior ap-
prossimazione s-sparsa. L’analisi teorica è basata su una variante della classica
proprietà di inf-sup per vettori sparsi, denominata proprietà di inf-sup ristretta,
e sul concetto di a-coerenza locale, che generalizza la nozione di coerenza locale
al caso di forme bilineari su spazi di Hilbert. I risultati teorici e le corrispetti-
ve ipotesi vengono poi specializzati al caso di equazioni di diffusione-traporto-
reazione monodimensionali, mentre nel caso bidimensionale le ipotesi vengono
verificate numericamente.

Infine, risultati preliminari mostrano come il CORSING possa essere appli-
cato al caso di equazioni di diffusione-trasporto-reazione tridimensionali e al
problema di Stokes bidimensionale.

Parole chiave: equazioni differenziali alle derivate parziali, compressed sen-
sing, formulazione di Petrov-Galerkin, proprietà di inf-sup, coerenza locale, sti-
me in valore atteso e in probabilità.
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Introduction

We present a novel technique for approximating Partial Differential Equations
(PDEs), taking advantage of concepts from signal processing, nonlinear approx-
imation, sparse representations and, above all, from Compressed Sensing (CS).
The principal motivation is to reduce the computational cost associated with
the Petrov-Galerkin (PG) discretization of a PDE.

The COmpRessed SolvING approach

The CS technique was developed by D.L. Donoho [Don06] and E.J. Candès, J.K.
Romberg and T. Tao [CRT06], and allows one to sample a signal using far fewer
measurements than those required by the Nyquist-Shannon sampling theorem,
where the sampling rate must be at least twice the maximum frequency of the
signal (the so-called Nyquist rate).

This discovery potentially has a substantial impact on real world applica-
tions: for example, in Magnetic Resonance Imaging, this leads to significant scan
time reductions, with benefits for patients and health care economics [LDSP08].
Other remarkable applications of CS are Radar Imaging [HS09] or the Single-
Pixel Camera [DDT+08].

The main hypothesis underlying CS is sparsity or, more generally, compress-
ibility. Many natural signals fit into this framework, having a concise represen-
tation when expressed in the proper basis. In particular, expanding the signal
with respect to a basis of N vectors, it is possible to approximate the best s-
term approximation to the signal, with s � N , by means of m random linear
nonadaptive measurements, with s < m � N , modeled as inner products of
the signal against suitable test vectors, and employing computationally feasible
sparse recovery techniques.

In this thesis, the main idea we use to link the field of signal processing and
the one of numerical methods for PDEs is really simple:

why not identifying the solution of a PDE with a signal?

In particular, we focus on discretization methods based on the PG formulation,
popularized during the 1970’s by A.K. Aziz and I. Babuška [AB72]. This is
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10 INTRODUCTION

Petrov-Galerkin method: Sampling:
solution of a PDE ←→ signal

tests (bilinear form) measurements (inner product)

Figure 1: Analogy between the PG method and the CS sampling procedure.

a general framework, including finite elements (FE), finite volumes, spectral ap-
proximations, where the PDE in a variational form is evaluated against several
test functions. This process is analogous to the measurement of a signal in the
sampling phase of the CS, with the only difference that the tests are performed
using a bilinear form in place of an inner product. We can think of the bilin-
ear form as our measuring device, employed to virtually acquire the unknown
solution of the PDE.

Inspired by this parallelism (Figure 1) we coin the name COmpRessed Solv-
ING, in short CORSING, to refer to the methodology proposed in this thesis.1

In practice, CORSING aims at reducing the computational cost associated
with the standard PG approximation, by reducing the size, N , of the associated
square linear system, selecting just some rows, m� N , of the stiffness matrix
and load vector. This selection amounts to picking a subset of the whole test
functions. We propose either a deterministic or a random selection strategy,
i.e., we pick the first m tests with respect to a predefined ordering, or we ex-
tract them after assigning a probability distribution on the test space. Either
way, we are led to an underdetermined system, which we solve by means of
sparse recovery techniques, such as `1-minimization [DL92] or the greedy algo-
rithm Orthogonal Matching Pursuit (OMP) [MZ93, PRK93], thus computing an
s-sparse approximation to the solution, with s�N .

An important issue related to CORSING is choosing the trial and test func-
tions. In CS, the main idea consists of picking a trial space with good sparsity
properties in the time domain, and a test space sparse in the frequency domain,
or vice versa. We will follow the same heuristics, adopting, on the one hand, the
hierarchical multiscale basis of hat functions [Yse86, Dah97] and, on the other
hand, the basis of sine functions.

Comparison with existing techniques

In order to emphasize the potentialities of the proposed approach, we compare
the CORSING approach with other techniques, consolidated in the literature.

1We have chosen the word CORSING also due to its assonance with the verb coarsen, in reference to
the roughening of the standard PG method.
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Adaptive approximation of PDEs The CORSING method aims at computing the
best s-term approximation to the solution to a PDE. Therefore, it can be clas-
sified among nonlinear approximation methods for PDEs [DeV98, Tem03]. Al-
though the framework for CORSING is very general and can accommodate many
different choices of trial and test spaces, when considering hierarchical piece-
wise polynomials over an initial coarse triangulation as trial basis functions, a
possible competitor approach is the Adaptive Finite Element Method (AFEM)
(see, e.g., [NSV09] and the references therein). AFEM and CORSING are, how-
ever, thoroughly different: in AFEM, the solution is iteratively computed ac-
cording to the loop

SOLVE→ ESTIMATE→MARK→ REFINE,

and exploiting suitable a posteriori error estimators. On the contrary, with
CORSING, we employ a reduced PG discretization, using a fixed trial space of
dimension N (which corresponds ideally to a very fine uniform refinement, ex-
pressed in a hierarchical basis) and performing a fixed number of random mea-
surements in the test space. In particular:

(1) the trial space is not iteratively enlarged, but fixed initially;

(2) the measurements in the test space are performed non-adaptively;

(3) no a posteriori error estimator/indicator is required.

The CORSING procedure then recovers an s-sparse solution, which can be com-
pared with the AFEM solution on the same ground. We consider (1) as a pos-
sible drawback of CORSING, whereas (2) and (3) are upsides. In principle, (1)
requires a higher computational cost in the recovery phase, whereas (2) allows
for full parallelization and (3) significantly reduces the implementation com-
plexity.

In particular, an earlier attempt to apply CS to the adaptive approximation
of a PDE can be found in [JMPY10]. The authors focus on a Galerkin formu-
lation of the Poisson problem, where the trial and test spaces coincide with
piecewise linear finite elements. The proposed technique is fully deterministic
and relies on the successive refinement of the solution on different hierarchical
levels and on a suitable error estimator. Only the `1-minimization is applied
and it appears that m is very close to N .

Infinite-dimensional CS From a different perspective, CORSING can be consid-
ered as a variant of the infinite-dimensional CS, where CS is applied to infinite-
dimensional Hilbert spaces [AH15, AHPR13]. This is achieved by subsampling
a given isometry of the Hilbert space, usually associated with an inner product
and a change of basis (e.g., from a wavelet basis to the Fourier basis). The main
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idea behind CORSING is different, since it deals with the bilinear form arising
from the weak formulation, that can be even nonsymmetric. Nevertheless, we
think that the theory developed in [AH15, AHPR13] could play a significant
role for a deeper understanding of the CORSING technique and this will be a
subject of future investigation.

Reduction strategies based on the SVD The CORSING approach provides a com-
pression of a standard PG discretization, thus it is natural to compare it with
compression strategies based on the SVD factorization [GL13]. A remarkable
application of the SVD for the model order reduction of PDEs is the Proper
Orthogonal Decomposition (see, e.g., [KV02]). This issue is discussed in Sec-
tion 2.3.1.

`1-minimization techniques for PDEs This work can also be related to numeri-
cal methods for PDEs based on `1-minimization. To our knowledge, the earliest
contributions are the pioneering studies by J.E. Lavery on the inviscid Burgers’
equation and on steady scalar conservation laws [Lav88, Lav89]. More recently,
similar techniques have been analyzed in [Gue04, GP09], where transport and
Hamilton-Jacobi equations are considered. However, the CS principles are ap-
plied in none of these works.

CS and high-dimensional stochastic parametric PDEs Finally, it is worth men-
tioning the recent application of CS to the numerical approximation of high-
dimensional stochastic parametric PDEs, of particular interest in Uncertainty
Quantification [DO11, YK13, PHD14, SSN+14, RS14, BBRS15]. Even though
we deal with the issue of reducing the computational cost associated with the
numerical approximation of one single deterministic PDE, we think that a com-
bination of CORSING with the aforementioned techniques could be of interest
for a future investigation.

Outline of the thesis

The thesis is divided in four chapters.

In Chapter 1, we present the CS technique, introducing its main underly-
ing concepts, namely, sparsity, sensing and recovery. Then, we review some
theoretical results about CS. First, we discuss the Restricted Isometry Property
(RIP), the concept of coherence and provide recovery results for the greedy al-
gorithm Orthogonal Matching Pursuit (OMP). Moreover, we introduce the the-
ory of Bounded Orthonormal Systems (BOS) and some recent sampling strategies
based on the notion of local coherence, discussing a particular example (Haar vs
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Fourier), of inspiration for the development of CORSING. Finally, we provide an
original generalization of the RIP for generic matrices, that will be applied in
the theoretical study of CORSING.

In Chapter 2, after presenting the PG method and the main elements of the
Babuška-Nečas theory, we introduce the CORSING approach in its determin-
istic (D-CORSING) and randomized (R-CORSING) version, following the same
heuristic spirit that led us through its discovery. Then, we check, with an ex-
tensive numerical assessment, the CORSING accuracy, computational burden,
and robustness, on one-dimensional and two-dimensional advection-diffusion-
reaction (ADR) problems. In particular, we provide comparisons with the best
s-term approximation error, with the full-PG method (m =N ), with FE and with
an SVD-based approach.

The goal of Chapter 3 is to set up a theoretical analysis of R-CORSING, for-
malizing the empirical recipes given in Chapter 2 and introducing some tech-
nical assumptions based on the concept of local a-coherence, generalization of
the local coherence to bilinear forms in Hilbert spaces. Then, we introduce the
Restricted Inf-Sup Property (RISP), a combination of the classical inf-sup condi-
tion [BF91] and the RIP of CS and provide an analysis of R-CORSING for generic
weak problems in Hilbert spaces. Then, we discuss the application of the CORS-
ING theory to the case of one- and two-dimensional ADR problems. Moreover,
we provide further numerical assessments in order to corroborate the theoreti-
cal results.

Finally, with a view to more practical applications, we validate the CORSING
method on the two-dimensional Stokes problem and, through a tensorization
strategy, on the three-dimensional ADR problem in Chapter 4.





Chapter 1

Compressed sensing

Compressed Sensing (CS) is a novel research area in the signal processing field,
which provides an effective way to acquire a signal by means of a small number
of measurements, less than required by the Nyquist-Shannon sampling theorem
[Nyq28, Sha49]. CS was proposed in 2006 in the pioneering works by D.L.
Donoho [Don06] and by E.J. Candés, J.K. Romberg, and T. Tao [CRT06].

In this chapter, we outline the concepts and results about CS useful for fixing
the COmpRessed SolvING approach.

For the sake of generality, all the results are presented in CN , but they hold
in RN as well.

Outline of the chapter This chapter is organized in two sections. In Section 1.1
we review three basic concepts underpinning the CS method: sparsity, sensing
and recovery. Afterwards, in Section 1.2 we present some elements of the CS
theory, such as the Restricted Isometry Property, the concepts of coherence and
local coherence, the theory of Bounded Orthonormal Systems and some recov-
ery results for the Orthogonal Matching Pursuit algorithm.

1.1 Three main concepts

The aim of CS is to acquire an unknown signal, assumed to have a sparse repre-
sentation, using the minimal number of linear nonadaptive measurements and
then recovering it by means of efficient optimization procedures.

In order to present the CS method, we need to familiarize with three main
concepts. (1) Sparsity: the only hypothesis needed on the unknown signal to be
measured, (2) Sensing: how to acquire a signal in a compressed way, using the
minimum number of measurements, (3) Recovery: the reconstruction of the
signal from its measurements. They will be presented separately in the next
sections.

15



16 CHAPTER 1. COMPRESSED SENSING

1.1.1 Sparsity: what does it mean, exactly?

The only hypothesis underlying the CS approach is sparsity. But what does it
mean for a vector to be sparse, exactly? Informally, a vector is sparse if it has
only few non-zero entries with respect to the total number of entries. However,
due to the importance that this notion has in the CS framework, we need to
define sparsity rigorously.

s-sparsity The first way to measure sparsity relies on the so-called `0-norm,
that simply counts the non-zero entries of a vector. Given u ∈ CN , we define its
support as the set of indices corresponding of its non-zero entries, namely

supp(u) := {j ∈ [N ] : uj , 0},

with [N ] := {1, . . . ,N }, and its `0-norm as the cardinality of the support, i.e.,

‖u‖0 := |supp(u)|. (1.1)

Actually, the `0-norm is not a norm, since ‖λu‖0 = ‖u‖0, ∀λ , 0; however, we
will adopt this terminology due to its ubiquitous presence in the literature.

Using the `0-norm, we define the concept of s-sparsity.

Definition 1.1. A vector u ∈ CN is s-sparse if ‖u‖0 ≤ s.

Moreover, the set containing all the s-sparse vectors of CN is denoted

ΣNs := {u ∈ CN : ‖u‖0 ≤ s}. (1.2)

This definition of sparsity is employed in [CRT06], where the signal is assumed
to be “the superposition of s spikes”. We underline that ΣNs is a finite union
of linear subspaces; a visualization of Σ3

2 in the real-valued case is given in
Figure 1.1.

In CS, one usually deals with situations where the sparsity is much smallest
than the dimension of the space, namely,

s�N.

Compressibility A less restrictive and often adopted hypothesis is to assume u
to be compressible, instead of sparse. This concept relies on the definition of best
s-term approximation error.

Definition 1.2. Given p > 0, s ∈ N and u ∈ CN , the best s-term approximation
error of u with respect to the `p-norm is the quantity

σs(u)p := inf
z∈ΣNs
‖u− z‖p.
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Figure 1.1: The set Σ3
2 of 2-sparse vectors of R3.

Notice that the infimum is (not necessarily uniquely) realized by keeping
the s entries of u having the largest magnitude and placing zeros elsewhere.

A vector u ∈ CN is called compressible when its best s-term approximation
error decays quickly in s, i.e., if there exist p,r > 0 such that

σs(u)p . s−r .

In order to understand what vectors are good candidates to be compressible,
we consider the Stechkin inequality (see [FR13, Theorem 2.5])

σs(u)q .
‖u‖p
s1/p−1/q

, ∀u ∈ CN , ∀s ∈ N, ∀q > p > 0.

As a consequence, all the vectors belonging to a given `p-ball, with p small
enough, have a good level of compressibility. In particular, in his pioneering
work [Don06], D.L. Donoho defines u ∈ CN to be sparse whenever ‖u‖p ≤ R for
some 0 < p < 2 and R > 0.

Sparse representations Assuming a vector u ∈ CN to be sparse, or compressible,
is, in general, too restrictive. What is more often done is to assume a given
signal s ∈ CN to have a sparse representation with respect to a given sparsity basis
of CN . Namely, we assume the existence of an orthonormal basis

Ψ = [ψ1| · · · |ψN ] ∈ CN×N

such that

s = Ψ u =
∑
j∈[N ]

ujψj , with u sparse (or compressible).
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Remark 1.1.1. In this chapter, we make no distinction between orthonormal
bases of CN and unitary matrices, implicitly identifying a unitary matrix U =
[u1| · · · |uN ] ∈ CN×N with the orthonormal basis formed by its columns {u1, . . . ,uN }.

The choice of the sparsity basis actually depends on the particular signal
that one wants to measure. If the signal s itself is sparse, then Ψ = I, i.e., the
identity matrix or, equivalently, the canonical basis, is the most natural choice.
Otherwise, one should employ different bases.

Perhaps the oldest example of sparsity basis is the discrete Fourier basis,
whose origin dates back to the 19th century [Fou22]. Assuming N even, it is
defined as

F =
[
f−N2 +1

∣∣∣∣ · · · ∣∣∣∣fN
2

]
∈ CN×N , (1.3)

whose columns are

[fr]j =
1
√
N

exp
( i2πjr
N

)
, ∀j ∈ [N ],

with r ∈ Z and −N/2 < r ≤ N/2, and i =
√
−1. Using F, we are able to decom-

pose a signal into the sum of harmonics, corresponding to pure frequencies.
A remarkable and well-known property of the discrete Fourier system is that
the matrix-vector multiplication can be computed with complexity O(N logN ),
thanks to the Fast Fourier Transform [CT65].

The Fourier basis can be generalized through tensorization to an arbitrar-
ily high dimension and admits many variants, such as the discrete sine and
cosine bases. An outstanding modern application of this basis is the JPEG stan-
dard for image compression, exploiting the sparsifying capability of the two-
dimensional discrete cosine basis [PM93].

There are many other prominent examples of sparsity bases. For example, it
is worth recallig the Haar system [Haa10] and the wavelets [Dau92], with their
recent variants such as the noiselets [CGM01], the curvelets [SCD02] and the
shearlets [GKL06].

In Section 1.2.6 we will define the discrete Haar basis, and study its relation
with the Fourier basis.

1.1.2 Sensing: the “big soup”

Let s ∈ CN be a signal having a sparse representation s = Ψ u.
Given a set of test vectors {ϕ1, . . . ,ϕm} ⊆ CN , with m� N , the measurement

process is performed in a linear and nonadaptive way by computing the inner
products

〈ϕ i ,s〉 = fi , for i = 1, . . . ,m,
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f ΦH Ψ u

=

Figure 1.2: Schematization of the sensing process leading to f = ΦHΨ u.

with 〈·, ·〉 the standard Hermitian inner product. If we consider the matrix that
collects the vectors ϕ i as columns, Φ = (ϕ i) ∈ CN×m, the whole measurement
process can be recast in the linear system

Au = f, (1.4)

where A = ΦHΨ ∈ Cm×N is the measurement matrix and f ∈ Cm collects the
measurements fi . The measurement process is often called sensing or encoding
and is represented in Figure 1.2. We notice that the case of a signal s that is
trivially sparse, i.e., sparse in the canonical basis, is a simple subcase of this
general framework, with Ψ = I and A = ΦH.

At this stage, a fundamental question arises: given a sparsity basis Ψ , how
should we choose Φ in order to minimize the number of measurements? We
will investigate this issue in the next developments, but the following words by
D.L. Donoho [Don06] give us a first insight.

“Surely then, one imagines, the sampling kernels ξi underlying the
optimal information operator must be simply measuring individual
transform coefficients? Actually, no: the information operator is mea-
suring very complex holographic functionals which in some sense
mix together all the coefficients in a big soup.”1

Moreover, before answering the question, we need to understand how to
recover u after the sensing process.

1Traslating the passage to our notation, Donoho’s “sampling kernels ξi” are the measurement vectors
ϕ i , the “transform coefficients” are the components of u, whereas the “information operator” is the map
u 7→AHu, corresponding to the sensing process.
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`1-ball

`2-ball
Ax = f

Figure 1.3: The shape of the `1-ball promotes sparsity.

1.1.3 Recovery: looking for a needle in a haystack

The linear system (1.4) is highly underdetermined (m� N ) and, in general, it
may have no solution or infinite solutions. To overcome this limit, a recovery (or
decoding) algorithm is employed. The basic idea is to find the sparsest solution
to (1.4), i.e., to solve the nonlinear optimization problem

(P0) min
u∈CN

‖u‖0 s.t. Au = f. (1.5)

Even though problem (P0) has been proved to be NP-hard [Nat95], several algo-
rithms have been devised in order to approximate it. We will focus, in particu-
lar, on the greedy algorithm Orthogonal Matching Pursuit (OMP), presented in
Section 1.2.3.

An alternative and very popular idea, is to relax the `0-norm in (P0) with the
`1-norm, yielding the convex optimization problem

(P1) min
u∈CN

‖u‖1 s.t. Au = f. (1.6)

(P1) was originally introduced in signal processing in [Log65] and then studied
in [DL92] (before CS was born). It can be solved using classical tools of convex
optimization. In fact, it turns out to be a linear programming problem when A
is a real matrix, while it can be reduced to a second-order conic programming
problem when the entries of A are complex. A very fast and stable Matlab

®

package for the `1-minimization is spgl1 (see [vdBF08, vdBF07]).
From an intuitive viewpoint, the `1-minimization is able to recover the spars-

est vector because the intersection of the smaller `1-ball with the linear sub-
space {u : Au = f} is unique and has minimal sparsity, except for pathological
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situations where the kernel of A is parallel to an edge of the `1-ball. This situa-
tion does not occur employing other convex `p-norms, such as the `2-norm (see
Figure 1.3).

More practically, due to the numerical impossibility to realize the exact lin-
ear constraint in (P0) and (P1), we will consider the minimization problems

(Pεq) min
u∈CN

‖u‖q s.t. ‖Au− f‖2 ≤ ε, q = 0,1, (1.7)

where ε > 0 is a given tolerance on the `2-norm of the residual.
Remark 1.1.2 (Least-squares minimization). A classical strategy to solve the un-
derdetermined linear system (1.4) is least-squares minimization, based on the
rank-deficient QR decomposition of A (see [GL13, Section 5.5]). This method
is implemented in the Matlab

® \ (backslash) command. Even though, in some
circumstances, this could be a valuable option, we will focus only on `0- and
`1-minimization, due to a better capability to recover sparse vectors.

1.2 Theoretical tastes

The theory of CS experienced a huge growth in the last decade. For this rea-
son, summarizing it in a few pages is an impossible task. Therefore, we will
just review the theoretical aspects and the main concepts needed for the fur-
ther developments of this thesis, thus providing to the reader some “theoretical
tastes”.

For a thorough review about CS, we highly recommend the textbook [FR13]
that collects an exhaustive set of results and pointers to the literature; moreover
it has the great quality of being self-contained. We also found very helpful
the book [Ela10] and the review papers [CW08, FR11, JV11, Kut12]. Finally,
the online repository by the Rice University [Ric] gathers a vast catalogue of
references.

1.2.1 The Restricted Isometry Property

A deeper understanding of problems (P0) and (P1) requires more conceptual
results. These optimization problems raise some fundamental questions: when
do (P0) and (P1) admit a unique solution? When the solutions of (P0) and (P1) do
coincide? For a certain vector u, with k non-zero entries, what is the minimum
number of measurements needed to successfully recover u?

A fundamental tool to answer these questions is the Restricted Isometry Prop-
erty (RIP), first introduced in [CRT06].

Definition 1.3. A matrix A ∈ Cm×N satisfies the RIP of order s < m and constant
δ ∈ [0,1) if

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22, ∀u ∈ ΣNs ,
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with ΣNs defined as in (1.2). If A satisfies this definition, we say that A ∈
RIP(s,δ). Essentially, we are requiring that A behaves nearly like an isometry
on all the s-sparse vectors.

We briefly browse some well-known “RIP-based” results, referring the reader
to [FR13, Chapter 6] for an exhaustive review. We start with a fundamental re-
covery result about (P0).

Proposition 1.4. Let A ∈ Cm×N , u ∈ CN , with ‖u‖0 ≤ s, and Au = f. If there exists
δ ∈ [0,1) such that A ∈ RIP(2s,δ), then (P0) recovers u exactly.

Proof. Let u∗ be a solution to (P0). Then, thanks to its optimality, we have
‖u∗‖0 ≤ ‖u‖0. This condition, together with the hypothesis ‖u‖0 ≤ s, implies
‖u−u∗‖0 ≤ 2s. Finally, using that A ∈ RIP(2s,δ), we get

(1− δ)‖u−u∗‖22 ≤ ‖A(u−u∗)‖22 = ‖Au−Au∗‖22 = ‖f− f‖22 = 0,

hence u = u∗.

In practice, this proposition states that, for any fixed s-sparse signal u, with
associated measurement vector f, problem (P0) yields a unique solution, coin-
ciding with u.

An original and slight improvement over Proposition 1.4 is given in terms
of a suitable inf-sup property [BMP15] by the following

Proposition 1.5. Let A ∈ Cm×N , u ∈ CN , with ‖u‖0 ≤ s, and Au = f. If A satisfies

inf
x∈ΣN2s; x,0

sup
z∈Cm; z,0

zHAx
‖z‖2‖x‖2

= α > 0,

then (P0) recovers u exactly.

Proof. We mimic the proof of Proposition 1.4. The only variant is that, for each
solution u∗ of (P0), there exists a z , 0 such that

α ‖u−u∗‖2 ≤
zHA(u−u∗)
‖z‖2

= 0,

hence u = u∗.

Remark 1.2.1. The inf-sup condition in Proposition 1.5 is equivalent to the prop-
erty

‖Ax‖∗ ≥ α‖x‖2 ∀x ∈ ΣN2s,
where

‖y‖∗ = sup
z∈Cm; z,0

zHy
‖z‖2

is the dual norm of y ∈ Cm. The proof of this statement is a consequence of
[BBF13, Proposition 3.4.4].
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Remark 1.2.2. The inf-sup condition in Proposition 1.5 can be replaced by the
hypothesis

Aw = 0 =⇒w = 0, ∀w ∈ ΣN2s,

or, equivalently, by requiring that any set of 2s columns of A be linearly inde-
pendent.

The following recovery result holds for the (P1) problem, and the proof is
provided in [FR11, Theorem 3.4].

Proposition 1.6. Let A ∈ Cm×N , u ∈ CN and Au = f. If A ∈ RIP(3s,δ), with δ ∈
[0, 1

3 ), and u∗ is a solution to (P1), then there exists a constant C = C(δ) > 0 such
that the `2-norm error estimate holds

‖u−u∗‖2 ≤ C
σs(u)1√

s
,

where σs(u)1 is the best s-term approximation error of u with respect to the `1-norm.

An immediate consequence of Proposition 1.6 is the following exact recovery
result.

Corollary 1.7. Let A ∈ Cm×N , u ∈ CN , with ‖u‖0 ≤ s, and Au = f. If there exists
δ ∈ [0, 1

3 ) such that A ∈ RIP(3s,δ), then (P1) recovers u exactly.

Despite its simple definition, the RIP condition is not easy to verify, because
of its intrinsic combinatorial nature. In order to give sufficient conditions for
the RIP to be fulfilled, we introduce a concept of fundamental importance: the
coherence. Based on this tool, we provide sufficient conditions on the matrices
Ψ and Φ that guarantee A to fulfill the RIP, with high probability.

1.2.2 The importance of being incoherent

A useful tool to understand how to build matrices A suitable for CS is the co-
herence.

Definition 1.8. Given A = [a1| · · · |aN ] ∈ Cm×N with `2-normalized columns, we
define its coherence as

µ(A) := max
i,j∈[N ]

|〈ai ,aj〉|.

The coherence measures to what extent the columns of A are far from being
an orthonormal basis. Indeed, the two extreme cases are: (1) when m = N and
the columns of A form an orthonormal basis of CN , then µ(A) = 0; (2) if A has
two identical columns, then µ(A) = 1.
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Thanks to the Cauchy-Schwarz inequality, µ(A) ≤ 1. Moreover, a sharp
bound for the coherence from below is the following

µ(A) ≥
√

N −m
m(N − 1)

, ∀A ∈ Cm×N . (1.8)

This bound was proved for the first time in [Wel74] and it is known as Welch
bound. There are special matrices guaranteeing the equality in (1.8), called
equiangular tight frames (see [FR13, Theorem 5.7]).

We can extend the definition of coherence to sets of two bases, introducing
the concept of mutual coherence.

Definition 1.9. Given U = [u1| · · · |uN ],V = [v1| · · · |vN ] ∈ CN×N unitary matrices,
the mutual coherence between U and V is defined as

µ(U,V) := max
q,j∈[N ]

|〈uj ,vq〉|,

i.e., the coherence µ([U|V]) of the matrix built concatenating U and V horizon-
tally.

An immediate consequence of (1.8) is that

µ(U,V) ≥
√

1
2N − 1

.

In particular, when this minimum is reached, up to a constant factor, we say
that U and V are mutually incoherent.

An uncertainty principle There is an important discrete uncertainty principle
regarding two mutually incoherent bases, proved in [EB02], generalizing the
uncertainty principle proved in [DS89] regarding the Fourier basis and the
canonical basis.

Theorem 1.10. Let U,V ∈ CN×N two unitary matrices and K > 0 a constant such
that

µ(U,V) ≤ K
√
N
.

Let x,y ∈ CN be such that Ux = Vy. Then,

‖x‖0 + ‖y‖0 ≥
2
√
N
K

.
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In other words, if a vector is sparse with respect to U, it is forced to be full
with respect to V, and vice versa. This provides the main intuition underlying
CS: if a signal has a sparse representation with respect to U, then its representa-
tion with respect to V is almost full. Therefore, if one performs scalar products
against all the columns of V, there is too much redundancy of information.
Thus, a randomized selection of just m� N columns of V as test vectors suffi-
cies to store the required amount of information, with high probability.

1.2.3 Orthogonal Matching Pursuit: “greed is good”

The Orthogonal Matching Pursuit (OMP) algorithm has a long genealogy. We
can trace its origin back to the late 60s, in the context of statistical regression
[HL67, LH70], whereas its first ancestor projection pursuit regression appeared
a decade later [FS81]. It was published in the form presented here in [CBL89].
Nevertheless, OMP started to attract more and more interest after its applica-
tion to signal processing, [MZ93, PRK93]. For a wider historical overview see
[Tem03].

OMP is presented in Algorithm 1.1, where the matrix A is assumed to have
`2-normalized columns.

Algorithm 1.1 Orthogonal Matching Pursuit (OMP)

Input:
Matrix A ∈ Cm×N , with `2-normalized columns
Vector f ∈ Cm
Tolerance on the residual ε > 0 (or else, sparsity s ∈ [N ])

Output:
Sparse solution u to (Pε0) (or else, (Ps0))

Procedure:
1: S ← ∅ . Initialization
2: u← 0
3: while ‖Au− f‖2 > ε (or else, ‖u‖0 < s) do
4: j← argmaxj∈[N ] |[AH(Au− f)]j | . Select new index
5: S ← S ∪ {j} . Enlarge support
6: u← argminz∈CN ‖Az− f‖2 s.t. supp(z) ⊆ S . Minimize residual
7: end while
8: return u

The OMP algorithm iteratively enlarges the support S of the sparse solution
u, by adding, at each step, the component j ∈ [N ] corresponding to the column
of A that maximizes the angle with respect to the residual Au − f. Then, the
residual is orthogonally projected on the span of the columns of A correspond-
ing to the indices in S . This method is called “greedy”, since it aims at reducing
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the `2-norm of the residual as much as possible at each step. The stopping cri-
terion can be related to the `2-norm of the residual, if we aim at solving (Pε0),
defined in (1.7), or to the sparsity of the solution, if we consider the problem

(Ps0) min
u∈CN

‖Au− f‖2 s.t. ‖u‖0 ≤ s.

The OMP algorithm has been implemented in a very efficient way in [RZE08]
through the Matlab

® package omp-box [Rub09].

Recovery results A complete recovery theory for the OMP algorithm is still
an open issue. So far, the existing theorems regarding the OMP performances
rely on the concepts of coherence (Definition 1.8) and RIP (Definition 1.3). The
common goal of the theorems that we are going to discuss is the same: provide
sufficient conditions such that the OMP algorithm computes a solution u that
fulfills the inequality

‖Au− f‖2 . inf
w∈ΣNs

‖Aw− f‖2,

using O(s) iterations.
The study of OMP based on the coherence was pioneered by A.C. Gilbert

et al. in [GMS03] and then analyzed by J.A. Tropp in [Tro04], where sufficient
conditions are provided in terms of µ(A). The first result presented here corre-
sponds to [Tro04, Corollary 4.4].

Theorem 1.11. For every s ∈ N, with s ≤ 1
3µ(A) , the OMP algorithm computes a

solution u such that

‖Au− f‖2 ≤
√

1 + 6s inf
w∈ΣNs

‖Aw− f‖2,

in s iterations.

The analysis in [Tro04] essentially relies on the Exact Recovery Condition
(1.9). In particular, he shows that, if f admits a sparse representation with re-
spect to the columns of A, namely if there exists u ∈ ΣNs such that f = Au, then
OMP algorithm exactly recovers u if

max{‖A+
Sw‖1 : supp(w) ⊆ [N ] \ S} < 1, (1.9)

where S = supp(u), AS is the submatrix of A built by keeping the columns with
indices in S , and X+ := (XHX)−1XH denotes the Moore-Penrose pseudoinverse of
a matrix X.

Of course, this condition is, from a concrete viewpoint, unpractical to verify,
since it requires the knowledge of the support of u, the exact solution. Never-
theless, condition (1.9) is the main ingredient needed to formulate a series of
interesting results, like Theorem 1.11.
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Another result based on the coherence is proved in [Liv12, Theorem 2] and
relates the residual norm achieved after 2s steps of the OMP algorithm with the
best s-term approximation error of f in the space generated by the columns of
A.

Theorem 1.12. For every s ∈ N, with s ≤ 1
20µ(A) , the OMP algorithm computes a

solution u such that
‖Au− f‖2 ≤ 2.7 inf

w∈ΣNs
‖Aw− f‖2,

in 2s iterations.

If compared with Theorem 1.11, the assumption on µ(A) is stronger, but the
asymptotic constant on the right-hand side is now universally bounded.

The main problem regarding Theorems 1.11 and 1.12 is that they essentially
rely on the coherence µ(A), that can be shown to be small enough only is some
particular, not always realistic, situations. An alternative way for characterizing
the performance of OMP, is based on the RIP (Definition 1.3). The next result
was first proved by T. Zhang in [Zha11]. Then, its proof has been simplified and
also generalized to the context of Hilbert spaces by A. Cohen et al. in [CDD15].
It corresponds to [CDD15, Theorem 1.1].

Theorem 1.13. There exist fixed constants K ∈ N, C > 0 and δ ∈ (0,1) such that for
every s ∈ N, the following holds: if A ∈ RIP((K + 1)s,δ), then, for any f ∈ Cm, the
OMP algorithm computes a solution u that fulfills

‖Au− f‖2 ≤ C inf
w∈ΣNs

‖Aw− f‖2,

in Ks iterations.

Accelerations and extensions In Algorithm 1.1, the projection Step 6 is the most
costly one, and it can be practically implemented as

u←A+
Sf = (AH

SAS )−1AH
Sf. (1.10)

A common strategy to accelerate this step is to make a clever usage of the QR or
Cholesky factorization. Indeed, the most heavy operation performed in (1.10)
is the inversion of AH

SAS . This can be done efficiently by noticing that, at each
step, only the last row and the last column of AH

SAS are added. For example,
if one has the Cholesky factorization of a matrix M = LLH ∈ Ck×k, then the
Cholesky factorization of

Mnew =
[

M v
vH x

]
∈ C(k+1)×(k+1),
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with v ∈ Ck and x ∈ C, is easily updated as Mnew = LnewLH
new, with

Lnew =
[

L 0
wH

√
x −wHw

]
, with w = L−1v.

This simple algebraic consideration is the main idea of the accelerated OMP-
Cholesky algorithm ([RZE08, Algorithm 2]). Analogously, one can employ the
updated QR decomposition.

An interesting variant of OMP is the Weak Orthogonal Matching Pursuit
(WOMP), where a relaxation parameter ω ∈ (0,1] is introduced and Step 4 is
replaced with

find j ∈ [N ] : |[AH(Au− f)]j | ≥ ωmax
j∈[N ]
|[AH(Au− f)]j |.

When ω = 1, WOMP coincides with OMP. Theorems analogous to those re-
ported in this section hold for WOMP, see [Tro04, CDD15].

The omp-box package employed in this thesis contains a very efficient im-
plementation of the OMP algorithm called Batch-OMP, where AHA and AHf are
precomputed and the Cholesky factorization is employed (see [RZE08, Algo-
rithm 3]).

1.2.4 Bounded Orthonormal Systems

We present some recent results about CS, regarding a class of structured ran-
dom matrices, arising from random sampling in a suitable finite-dimensional
function space, spanned by a so-called Bounded Orthonormal System (BOS), i.e.,
an orthonormal basis whose elements are uniformly bounded with respect to
the supremum norm. This presentation is mainly based on [Rau10] and [FR13,
Chapter 12].

Definition 1.14 (Bounded Orthonormal System). Let D ⊆ Cd be endowed with
a probability measure P. A set of functions B = {β1, . . . ,βN }, with βj : D → C, is
called a Bounded Orthonormal System with constant K > 0 if it fulfills∫

D
βjβk dP = δjk , ∀j,k ∈ [N ].

and
‖βj‖∞ = sup

t∈D
|βj(t)| ≤ K, ∀j ∈ [N ].

Given a BOS, we can construct a family of structured random sampling ma-
trices.
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Definition 1.15. Given a BOS B and the vectors t1, . . . ,tm ∈ D selected indepen-
dently according to the probability measure P, every matrix A ∈ Cm×N defined
as

Aij := βj(ti), ∀i ∈ [m], ∀j ∈ [N ],

is called sampling matrix associated with B.

The most remarkable property concerning the BOSs is that any sampling
matrix fulfills the RIP with high probability, after a suitable rescaling. The
proof of this result is quite complex. We report it here by omitting some tech-
nical details that can be found in [FR13, Theorem 12.31]. A variation of this
argument will be employed in Chapter 3, to prove Theorem 1.21.

Theorem 1.16. Let A ∈ Cm×N be a sampling matrix associated with a BOS with
constant K ≥ 1. Then, for every δ ∈ (0,1), provided

m& K2δ−2s log3(s) log(N ),

for some s ≥ K2δ−2 log(N ), it holds

P{m−
1
2 A ∈ RIP(s,δ)} ≥ 1−N− log3(s).

Proof. The proof is divided into four parts. In Part I, we introduce a charac-
terization of the RIP constant. Afterwards, we estimate its expectation (Part II)
and we quantify its deviation from the expected value in probability (Part III).
Finally, in Part IV we conclude by combining the conditions emerging from Part
II and III.

Part I) Characterization of the RIP constant First, we define the matrix semi-
norm ‖| · ‖|s for every matrix B ∈ CN×N as

‖|B‖|s := sup
z∈Ds,N

|〈Bz,z〉|,

where Ds,N := ΣNs ∩ {z ∈ CN : ‖z‖2 ≤ 1} is the set of s-sparse vectors belonging to
the unit ball. Then, we use a characterization of the RIP constant depending on
‖| · ‖|s: namely, if we fix s ∈ N, then

δs := ‖|ÃHÃ− I‖|s,

is the minimum positive constant such that Ã := m−
1
2 A ∈ RIP(s,δs) (see [FR13,

Definition 6.1]). Therefore, the goal is to prove that P{δs > δ} ≤ N− log3(s). Now,
define the random column vectors

xi = (βj(ti))
N
j=1, ∀i ∈ [m].
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In such a way, xH
i is a row of A and the following decomposition holds

ÃHÃ =
1
m

m∑
i=1

xix
H
i .

The orthogonality of the BOS implies E[xixH
i ] = I and, consequently,

δs =
1
m
‖|

m∑
i=1

(xix
H
i −E[xix

H
i ])‖|s.

Now, in order to estimate the expected value of δs, a symmetrization argument
is employed, that allows us to pass from a sum of arbitrary independent random
variables to a Rademacher sum, i.e.,

E[‖|
m∑
i=1

(xix
H
i −E[xix

H
i ])‖|s] ≤ 2E[‖|

m∑
i=1

εixix
H
i ‖|s],

where ε = (εi)i∈[m] is a Rademacher sequence, i.e., a sequence of variables εi tak-
ing values ±1 with equal probability, independently of the sampling points ti .
Then, the following technical lemma is employed, concerning the expectation
of a Rademacher sum.

Lemma 1.17. Let z1, . . . ,zm be vectors in CN , with ‖zi‖∞ ≤ K for all i ∈ [m]. Then,
for s ≤m,

E[‖|
m∑
i=1

εiziz
H
i ‖|s] ≤ C1G(K,s,m,N )

√√
‖|

m∑
i=1

zizH
i ‖|s,

with G(K,s,m,N ) := K
√
s log(4s)

√
log(8N ) log(9m) and C1 ≤ 27.

Proving this lemma is maybe the hardest part of the whole proof, since one
needs to consider a Rademacher process, define a pseudometric on Ds,N and
estimate the covering number of Ds,N with respect to a suitable auxiliary semi-
norm. In particular, a lot of effort is made in order to control the universal
constants. For the proof, see [FR13, Lemma 12.36].

We are now able to prove, first, an estimate in expectation of δs, and then to
convert it in probability.

Part II) Estimate in expectation Define

E := E[δs] =
1
m
E[‖|

m∑
i=1

(xix
H
i − I)‖|s].
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Then, in order to employ Lemma 1.17, we apply Fubini-Tonelli’s Theorem and
integrate separately with respect to the independent variables X := (xi)i∈[m] and
ε. We obtain

E ≤ 2
m
EX[Eε[‖|

m∑
i=1

εixix
H
i ‖|s]] ≤

2C1G(K,s,m,N )
√
m

EX[

√√
‖|m−1

m∑
i=1

xixH
i ‖|s].

Then, adding and subtracting the identity matrix, employing the triangle in-
equality and Jensen’s inequality, yields

E ≤ 2C1G(K,s,m,N )
√
m

EX[

√√
m−1‖|

m∑
i=1

(xixH
i − I)‖|s + 1] ≤D

√
E + 1,

where D := 2C1G(K,s,m,N )/
√
m. Elementary algebraic manipulations show

that

E ≤D
√
E + 1 =⇒ (E −D2/2)2 ≤D2 +D4/4

=⇒ E ≤
√
D2 +D4/4 +D2/2 (1.11)

=⇒ E ≤D +D2.

Therefore, requiring

D :=
2C1K

√
s log(4s)

√
log(8N ) log(9m)

√
m

≤ η1, (1.12)

for some η1 ∈ (0,1), yields the desired estimate E ≤ η1 + η2
1 .

Part III) Estimate in probability The second step is to estimate the deviation of
δs from its expectation in probability. The principal tool employed will be the
following deviation inequality for suprema of empirical processes above their
mean, sometimes referred to as Talagrand’s inequality. This result corresponds
to [FR13, Theorem 8.42].

Lemma 1.18 (Talagrand’s inequality). Let G be a countable set of functions G :
Cn→ R. Let Y1, . . . ,Ym be independent random vectors in Cn such that E[G(Yi)] = 0
and G(Yi) ≤ R almost surely for all i ∈ [m] and for all G ∈ G for some constant R > 0.
Introduce

Z = sup
G∈G

m∑
i=1

G(Yi).
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Let σ2
i > 0 such that E[G(Yi)2] ≤ σ2

i for all G ∈ G and i ∈ [m]. Then, for all t > 0,

P{Z ≥ E[Z] + t} ≤ exp
(
− t2/2
σ2 + 2RE[Z] + tR/3

)
,

where σ2 =
m∑
i=1

σ2
i .

First, with simple algebraic manipulations it is possible to show the identity

mδs = sup
(z,w)∈Q∗s,N

m∑
i=1

Gz,w(xi),

where Gz,w(x) := Re〈(xxH − I)z,w〉, for every x ∈ CN , Q∗s,N is a countable dense
subset of

Qs,N :=
⋃

S⊆[N ], |S|≤s
QS ,N

with

QS ,N := {(z,w) ∈ CN ×CN : ‖z‖2 = ‖w‖2 = 1, supp(z),supp(w) ⊆ S}.

Since E[Gz,w(xi)] = 0, for every (z,w) ∈ Q∗s,N , in order to apply Lemma 1.18, we
need to provide upper bounds to Gz,w(xi) and E[|Gz,w(xi)|2].

Fix a pair (z,w) ∈QS ,N , with |S| = s. Then, we have

|Gz,w(xi)| ≤ |〈(xixH
i − I)z,w〉| ≤ ‖z‖2‖w‖2‖(xi)S (xi)

H
S − IS ,S‖2

≤ ‖(xi)S (xi)
H
S − IS‖1 = max

j∈S

∑
k∈S
|βj(ti)βk(ti)− δjk |

≤ sK2,

where we used the Cauchy-Schwarz inequality, the fact that ‖M‖2 ≤ ‖M‖1, for
any self-adjoint matrix M, the definition of ‖ · ‖1 for matrices and the bounded-
ness condition with constant K ≥ 1. Moreover, (xi)S is the restriction of xi to S
and IS ,S denotes the principal submatrix of I relative to the indices in S .

Now, we estimate

E[|Gz,w(xi)|2] ≤ E[|〈(xixH
i − I)z,w〉|2]

≤ E[‖((xi)S (xi)
H
S − I)z‖22]

= E[‖(xi)S‖22|〈xi ,z〉|
2]− 2E[|〈xi ,z〉|2] + 1,
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by algebraic manipulations, employing the Cauchy-Schwarz inequality and ex-
ploiting that ‖uuH‖2 = ‖u‖22, for every u ∈ CN . Now, observe that

‖(xi)S‖22 =
∑
j∈S
|βj(ti)|2 ≤ sK2,

and that
E[|〈xi ,z〉|2] =

∑
j∈S

∑
k∈S

zjzkE[βj(ti)βk(ti)] = ‖z‖22 = 1.

As a consequence,
E[|Gz,w(xi)|2] ≤ sK2.

Finally, applying Lemma 1.18 yields

P{δs ≥ η1 + η2
1 + η2} ≤ P{δs ≥ E[δs] + η2} = P{mδs ≥ E[mδs] +mη2}

≤ exp
(
−C2(η1)

mη2
2

K2s

)
,

for a suitable positive constant C2(η1) ≤ 3/32, that is less than ε provided that

m ≥ C3η
−2
2 K2s log(ε−1), (1.13)

with C3 = 32/3.

Part IV) Conclusion To summarize, recalling (1.12) and (1.19), we proved that
δs ≤ η1 + η2

1 + η2 with probability at least 1 − ε provided that the conditions
in Table 1.1-(c) be fulfilled. Using elementary algebraic arguments (see [FR13,
Remark 12.33]), it can be proved that they are in turn implied by the conditions
in Table 1.1-(a), with ε = N− log3(s), corresponding to what is claimed in the
thesis.

The sufficient conditions in Theorem 1.16 that guarantee the RIP for m−
1
2 A

with high probability can be restated in several ways (see [FR13, Remark 12.33]).
We summarize the different set of hypotheses in Table 1.1.

The great power of the BOS theory is its huge generality. Indeed, many sit-
uations that frequently occur in CS can be restated under the BOS framework,
such as random subsampling from an orthonormal system of CN .

Discrete orthonormal systems Consider the case Ψ = I. Given a unitary ma-
trix U = [u1| · · · |uN ] ∈ CN×N , if we set D = [N ] and consider the discrete
uniform measure on D, namely

P(q) := q/N, ∀q ∈ [N ],
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Sufficient condition P{m−
1
2 A ∈ RIP(δ,s)}

(a)

m& δ−2K2s log3(s) log(N )

s ≥ K2δ−2 log(N )
≥ 1−N− log3(s)

(b) m& K2δ−2s log4(N ) ≥ 1−N− log3(N )

(c)


m

log(9m) & η−2
1 K2s log2(4s) log(8N )

m& η−2
2 K2s log(ε−1)

δ = η1 + η2
1 + η2

≥ 1− ε

Table 1.1: Different sets of sufficient conditions for Theorem 1.16 to hold.

then the functions βj : [N ]→ C, defined as βj(q) :=
√
N [uj]q, form a BOS if

max
j∈[N ]
‖βj‖∞ =

√
N max
q,j∈[N ]

|Uqj | ≤ K. (1.14)

In this case, Φ is built taking m columns from U drawn independently
at random from [N ] according to the discrete uniform measure P and the
resulting sensing matrix is A = ΦH. The fact that random matrices with
this structure (rescaled by a factor m−1/2) satisfy the RIP with high prob-
ability is a consequence of Theorem 1.16, but was originally proved in
[CR07]. Condition (1.14) essentially prevents the columns of U from be-
gin too concentrated on just few entries. Let us analyze two diametrically
opposed cases: (1) if a column uk has just one non-zero entry (the infor-
mation is maximally concentrated), the normalization condition ‖uk‖2 = 1
forces the left-hand side in (1.14) to be equal to

√
N ; (2) if a column uk is

a constant vector (the information is totally scattered), then the left-hand
side is equal to 1.

A remarkable example is U = F, the Fourier matrix defined in (1.3). In-
deed, |Fqj | = 1/

√
N , for every q, j ∈ [N ].

By noticing that
max
q,j∈[N ]

|Uqj | = µ(U,I),

the boundedness condition (1.14) can be interpreted as a mutual incoher-
ence between U and the canonical basis I.

Mutually incoherent bases Another important application of the BOS theory
is the case of two mutually incoherent bases. Let U = [u1| · · · |uN ],V =
[v1| · · · |vN ] ∈ CN×N be two unitary and mutually incoherent matrices, i.e.,
such that

µ(U,V) ≤ K
√
N
,
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for some constant K > 0. Then, the matrix W := VHU is unitary, and we
can apply the argument used before. In fact, it suffices to notice that

√
N max
q,j∈[N ]

|Wqj | =
√
N max
q,j∈[N ]

|〈vq,uj〉| =
√
Nµ(V,U) ≤ K.

Therefore, if we set Ψ = U and build Φ by taking m columns from V
chosen independently at random using the uniform density, the resulting
rescaled sensing matrix m−1/2A = m−1/2ΦHΨ satisfies the RIP with high
probability thanks to Theorem 1.16.

1.2.5 Sampling strategies based on the local coherence

There is a nice application of the BOS theory, recently published in [KW14], that
provides a general strategy to build sampling matrices, based on the concept of
local coherence. This notion will be extremely useful for the theoretical study of
CORSING, presented in Chapter 3.

Definition 1.19. Given two unitary matrices U = [u1| · · · |uN ],V = [v1| · · · |vN ] ∈
CN×N , the local coherence of U with respect to V is a vector of RN whose q-th
component is2

µlocq (U,V) := max
j∈[N ]
|〈uj ,vq〉|2, for q ∈ [N ].

Notice that, in contrast to the mutual coherence µ(U,V), the local coherence
µlocq (U,V) is not commutative in U and V. Based on this definition and on The-
orem 1.16, we provide a RIP theorem for locally incoherent bases. We also
provide its simple and insightful proof [KW14].

Theorem 1.20. Let U,V ∈ CN×N be unitary matrices and δ ∈ (0,1). Assume the
local coherence to have a componentwise upper bound ν ∈ RN

µlocq (U,V) ≤ νq, ∀q ∈ [N ],

and let s,m ∈ N be such that

s & log(N ), m& δ−2‖ν‖1s log3(s) log(N ).

Define Ψ = U and build Φ by choosing m columns from V, corresponding to the
i.i.d. indices τ1, . . . , τm, independently at random, according to the probability

P{τi = q} = pq :=
νq
‖ν‖1

, ∀q ∈ [N ], ∀i ∈ [m].

2The local coherence defined here corresponds to the square of that defined in [KW14]. This notational
choice will be useful in order to enlighten the notation in Chapter 3.
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Consider the sensing matrix A = ΦHΨ and the diagonal matrix D ∈ Cm×m with
entries

Dik =
δik√
mpτi

, ∀i,k ∈ [m].

Then,
P{DA ∈ RIP(s,δ)} ≥ 1−N− log3(s).

Proof. First, we notice that the matrix W := VHU is unitary. Then, we setD = [N ]
and define the functions βj : [N ]→ C as

βj(q) :=
1
√
pq
Wqj , ∀q, j ∈ [N ].

Now, we show that {βj} is a BOS with respect to the probability measure P.
Indeed, the orthogonality follows from∫

D
βjβk dP =

N∑
q=1

βj(q)βk(q)pq =
N∑
q=1

(
1
√
pq
Wqj

)(
1
√
pq
W qk

)
pq

=
N∑
q=1

WqjW qk = [WHW]k,j = δk,j , ∀j,k ∈ [N ],

whereas, regarding the boundedness, we observe that

|βj(q)|2 =
‖ν‖1
νq
|〈vq,uj〉|2 ≤ ‖ν‖1 =: K2, ∀q, j ∈ [N ].

The thesis is now a direct consequence of Theorem 1.16.

1.2.6 A guiding example: Haar vs Fourier

We provide here a particular choice for Ψ ,Φ ∈ CN×N that is very popular in
CS, namely Ψ collects the Haar wavelets basis and Φ is a subset of the Fourier
basis. This pair of bases has been of strong inspiration for the development of
CORSING (see Chapter 2). For further details we refer to [KW14].

The discrete Haar basis Fix p ∈ N and set N = 2p. Then, the univariate Haar
orthonormal basis H of CN is built as follows. Let c be the constant vector of
CN whose components are equal to 2−p/2. Define the step function h0,0 = h as

[h]j =
{

2−p/2 if 1 ≤ j ≤ 2p−1

−2−p/2 if 2p−1 < j ≤ 2p,
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where j ∈ N, with 1 ≤ j ≤ 2p and build the corresponding dyadic translations
h`,k as

[h`,k]j = 2
`
2 [h]2`j−2pk =


2
`−p

2 if k2p−` < j ≤ (k + 1
2 )2p−`

− 2
`−p

2 if (k + 1
2 )2p−` < j ≤ (k + 1)2p−`

0 otherwise,

where (`,k) ∈ N2, with 0 < ` < p, 0 ≤ k < 2` and j ∈ N, for 1 ≤ j ≤ 2p. Then, the
Haar basis of CN is given by

{c} ∪ {h`,k : 0 ≤ ` < p, 0 ≤ k < 2`}.

For example, the Haar basis of C4 is

H =


1/2 1/2 1/

√
2 0

1/2 1/2 −1/
√

2 0
1/2 −1/2 0 1/

√
2

1/2 −1/2 0 −1/
√

2

 .
Haar vs Fourier Unfortunately, the mutual coherence is a useless tool when
considering the Haar and the Fourier discrete systems. Indeed, we have

µ(H,F) = 〈c,f0〉 = 1.

Nevertheless, this case can be perfectly analyzed employing the local coher-
ence. First, we estimate the scalar products through explicit computations (see
[KW14, Lemma 1])

|〈fr ,h`,k〉|2 ≤min
(

6 · 2 `
2

|r |
,3π2−

`
2

)2

, ∀r , 0, ∀`,k.

Then, employing the inequality min(a,b)2 ≤ ab for every a,b > 0, we obtain the
following upper bound to the local coherence (we employ the translated test
indices r ∈ Z,−N/2 < r ≤N/2)

µlocr (H,F) ≤ 18π
|r |

=: νr , ∀r ∈ Z, −
N
2
< r ≤ N

2
, r , 0.

Now, consider Ψ = H, and build Φ as a random selection of m Fourier vectors
from F, drawn according to the following probability density

P(r) = CN min
(
C0,

1
|r |

)
, ∀r ∈ Z, −N

2
< r ≤ N

2
,
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where CN is a normalization constant and C0 is introduced to avoid the sin-
gularity at r = 0. Then, as a direct consequence of Theorem 1.20, the sensing
matrix A = ΦHΨ satisfies the RIP(δ,s) with overwhelming probability provided
that

m& δ−2s log3(s) log2(N ), s & log(N ),

after a suitable diagonal preconditioning.
In [KW14], this result is also proved in the two-dimensional case, where

both the bases are generalized through tensorization.

1.2.7 RIP for generic matrices

We prove a generalization of Theorem 1.20. In particular, given a matrix B and
a lower (respectively, upper) bound to the minimum (respectively, maximum)
eigenvalue of BHB, we can set up a suitable sampling strategy that guarantees
the RIP for a random selection ofm rows from B with high probability, adopting
a suitable preconditioning. The proof is a modification of that of Theorem 1.16
and of Theorem 1.20.

The results in this section have been obtained in collaboration with Holger
Rauhut and Sjoerd Dirksen, during a visit of the author to RWTH Aachen Uni-
versity in September 2015.

Theorem 1.21. Consider B ∈ RM×N , with M ≥ N , and suppose that there exist two
constants 0 < r ≤ R such that

0 < r ≤ λmin(BHB) ≤ λmax(BHB) ≤ R.

Moreover, assume that there exists a vector ν ∈ RM such that

max
j∈[N ]
|Bqj |2 ≤ νq, ∀q ∈ [M].

Then, for every δ ∈ (1− r/R,1), there exists a constant C such that, provided

m ≥ C̃s log3(s) log(N )

and s ≥ C̃ log(N ), where

C̃ = Cmax{‖ν‖1,R}R−1(δ − 1 + r/R)−2,

choosing τ1, . . . , τm i.i.d. from [M] according to the probability pq = νq/‖ν‖1, it holds

P{DA ∈ RIP(δ,s)} ≥ 1−N− log3(s),

where
Aij = Bτi ,j , Dik =

δik√
mRpτi

, ∀i,k ∈ [m], ∀j ∈ [N ].
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Proof. The proof is divided in four parts, analogously to that of Theorem 1.16.
First, we observe that, for any square symmetric matrix M, it holds

‖|M‖|s ≤ ρ(M), (1.15)

ρ(M) being the spectral radius of M.

Part I) Characterization of the RIP constant First, denoting by Ã := DA, we have
the decomposition

ÃHÃ = AHD2A =m−1
m∑
i=1

xix
H
i ,

with xi := (Rpτi )
−1/2BHeτi . In particular, for every i ∈ [m], it holds

E[xix
H
i ] =

M∑
q=1

pq(pqR)−1BHeqe
H
qB = R−1BHB =: E,

and, thanks to the normalization chosen, we notice that

0 < r/R ≤ λmin(E) ≤ λmax(E) ≤ 1. (1.16)

Employing the triangle inequality, we obtain

δs = ‖|ÃHÃ− I‖|s ≤ ‖|ÃHÃ−E‖|s + ‖|E− I‖|s.

We bound the deterministic term, using (1.15) and (1.16), as

‖|E− I‖|s ≤ ρ(E− I) = 1−λmin(E) ≤ 1− r/R.

Now, defining δ∗s := ‖|ÃHÃ − E‖|s and δ∗ := δ − 1 + r/R, the goal is to find suffi-
cient conditions such that the upper bound δ∗s ≤ δ∗ holds with high probability.
Indeed, δ∗s ≤ δ∗ implies δs ≤ δ. Finally, notice that δ ≥ 1− r/R.

Now, defining

K :=

√
max{‖ν‖1,R}

R
≥ 1,

the random vectors xi satisfy the uniform upper bound

‖xi‖2∞ = (Rpτi )
−1‖BHeτi‖

2
∞ = (Rpτi )

−1 max
j∈[N ]
|Bτi ,j |

2

≤ R−1 ‖ν‖1
ντi

ντi =
‖ν‖1
R
≤ K2. (1.17)
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Part II) Estimate in expectation Define E := E[δ∗s]. Then, analogously to the
proof of Theorem 1.16, we rewrite δ∗s as

δ∗s =
1
m
‖|

m∑
i=1

(xix
H
i −E)‖|s,

and employ Lemma 1.17, obtaining

E ≤ 2C1G(K,s,m,N )
√
m

EX[

√√
‖| 1
m

m∑
i=1

xixH
i ‖|s]

≤ 2C1G(K,s,m,N )
√
m

EX[

√√
‖| 1
m

m∑
i=1

(xixH
i −E)‖|s + ‖|E‖|s]

≤D
√
E + 1,

where D = 2C1G(K,s,m,N )/
√
m and we used that ‖|E‖|s ≤ 1. After few elemen-

tary algebraic manipulations analogous to (1.11), we obtain E ≤D +D2. Hence,
imposing D ≤ η1, with η1 ∈ (0,1), yields E ≤ η1 + η2

1 .

Part III) Estimate in probability First, we observe that

mδ∗s := sup
(z,w)∈Q∗s,N

m∑
i=1

Gz,w(xi),

where Gz,w(x) := Re〈(xxH − E)z,w〉. Now, we check the hypotheses needed in
order to apply Lemma 1.18, fixing a pair (z,w) ∈QS ,N , with |S| = s.

It can be easily checked that E[Gz,w(xi)] = 0.
In order to check the boundedness condition, recalling (1.17), we observe

that, for every j,k ∈ S , it holds

|Ejk | = R−1|[BHB]jk | = R−1
M∑
q=1

|BqjBqk | ≤ R−1
M∑
q=1

νq = R−1‖ν‖1 ≤ K2,

and
|[(xi)S (xi)S ]jk | = |[xi]j[xi]k | ≤ ‖xi‖2∞ ≤ K2.

Then, analogously to the proof of Theorem 1.16, we obtain

|Gz,w(xi)| ≤ ‖(xi)S (xi)
H
S −ES ,S‖1 = max

j∈S

∑
k∈S
|[(xi)S (xi)S ]jk −Ejk | ≤ 2sK2,
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where ES ,S denotes the principal submatrix of E relative to the indices in S .
Now, we check the condition on the second moment

E[|Gz,w(xi)|2] ≤ E[‖((xi)SxH
i −E)z‖22]

= E[‖(xi)SxH
i z‖22 − 2〈(xi)SxH

i z,Ez〉+ ‖Ez‖22]

≤ E[‖(xi)S‖22|〈xi ,z〉|
2] + 2E[‖(xi)S‖2|〈xi ,z〉|]‖E‖2 + ‖E‖22. (1.18)

We also notice that ‖(xi)S‖22 ≤ sK2 and that

‖E‖2 = ρ(EHE) = ρ(E2) = ρ(E)2 ≤ 1,

where we exploit that E is symmetric positive definite. Moreover,

E[|〈xi ,z〉|2] = E[(xH
i z)xH

i z] = zHE[xix
H
i ]z = zHEz ≤ ρ(E) ≤ 1.

Thus, recalling (1.18), we obtain that

E[|Gz,w, (xi)|2] ≤ sK2E[|〈xi ,z〉|2] +
√
sKE[|〈xi ,z〉|] + 1

≤ sK2 +
√
sK + 1 ≤ sK2

(
1 +

1
√
sK

+
1
sK2

)
≤ 3sK2,

where we employed Jensen’s inequality to bound E[|〈xi ,z〉|] ≤ 1 and the fact that
K ≥ 1.

Finally, applying Lemma 1.18 yields

P{δ∗s ≥ η1 + η2
1 + η2} ≤ P{δ∗s ≥ E[δ∗s] + η2} = P{mδ∗s ≥ E[mδ∗s] +mη2}

≤ exp
(
−C2(η1)

mη2
2

K2s

)
,

for a suitable positive constant C2(η1) ≤ 1/32, that is less than ε provided

m ≥ C3η
−2
2 K2s log(ε−1), (1.19)

with C3 = 32. Notice that we are adding a factor 3 with respect to the analogous
constant in Theorem 1.16.

Part IV) Conclusion The concluding remarks are analogous to those of Theo-
rem 1.16.





Chapter 2

CORSING: Towards a theoretical
understanding

In this chapter, we present the CORSING (COmpRessed SolvING) method. The
exposition will be mostly empirical and heuristic, following the same process
that brought us towards the discovery and the formalization of this new method.
A significant part of this chapter corresponds to the contents in [BMP15].

The approach followed will lead us towards a theoretical understanding of
CORSING, that will be presented in Chapter 3.

Outline of the chapter In Section 2.1, we review the classical Petrov-Galerkin
method for advection-diffusion-reaction problems, collecting the most impor-
tant elements from the Babuška-Nečas theory. In Section 2.2, we present the
CORSING method, in its first formulation [BMP15]. Finally, an extensive nu-
merical assessment is presented for the one-dimensional case (Section 2.3) and
the two-dimensional case (Section 2.4)

2.1 The Petrov-Galerkin method

2.1.1 Weak problems in Hilbert spaces

Consider a weak problem of the form

find u ∈U : a(u,v) = F (v), ∀v ∈ V , (2.1)

whereU and V are Hilbert spaces equipped with norms ‖·‖U , ‖·‖V , respectively,
a :U ×V → R is a bilinear form and F ∈ V ∗, V ∗ being the dual space of V .

In particular, we focus on the scalar homogeneous advection-diffusion-reaction
(ADR) problem {

−div(η∇u) + b · ∇u + ρu = f in Ω

u = 0 on ∂Ω,
(2.2)

43
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where η, b, ρ and f are given functions defined on a sufficiently smooth open
domain Ω ⊂ Rd , with d ∈ N, and u is the unknown scalar field defined on Ω.

Problem (2.2) admits the generalized weak formulation (2.1), where U and
V are suitable Hilbert spaces, a priori distinct, a :U ×V → R and F : V → R are
the bilinear and the linear forms defined by

a(u,v) = (η∇u,∇v) + (b · ∇u,v) + (ρu,v), F (v) = (f ,v), ∀u ∈U,∀v ∈ V ,

(·, ·) denoting the L2(Ω)-inner product. Standard notation is employed for all
the Lebesgue and Sobolev spaces and their norms [LM72].

The particular choice U = V in (2.1) identifies the classical weak formula-
tion associated with a standard Galerkin formulation whose well-posedness is
guaranteed by Lax-Milgram’s Lemma, where the sufficient hypotheses required
on a(·, ·) are continuity and coercivity.

Theorem 2.1 (Lax-Milgram’s Lemma). Consider problem (2.1), with U = V . If
a(·, ·) is continuous, i.e.,

∃β > 0 : |a(u,v)| ≤ β‖u‖U‖v‖U , ∀u,v ∈U, (2.3)

and coercive, i.e.,

∃α > 0 : a(u,u) ≥ α‖u‖2U , ∀u ∈U,

then there exists a unique solution u ∈U to (2.1) that satisfies the a priori estimate

‖u‖U ≤
1
α
‖F ‖U ∗ .

In the more general case, U , V , the coercivity of a(·, ·) is replaced by the
well-known inf-sup condition, that will play a key role in this thesis. We have
the following generalization of the Lax-Milgram Lemma, due to Nečas [Neč62].

Theorem 2.2 (Nečas). Consider the problem (2.1) with a(·, ·) continuous. Then,
(2.1) admits a unique solution u ∈U if and only if a(·, ·) satisfies

∃α > 0 : inf
u∈U

sup
v∈V

a(u,v)
‖u‖U‖v‖V

≥ α, (2.4)

sup
u∈U

a(u,v) > 0, ∀v ∈ V \ {0}. (2.5)

Moreover, the following a priori estimate holds

‖u‖U ≤
1
α
‖F ‖V ∗ .
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Proof. A complete proof can be found in [QV08, Theorem 5.1.2] or [EG13, The-
orem 2.6]. The existence and uniqueness essentially rely on the Riesz represen-
tation theorem, whereas the a priori estimate is an immediate consequence of
(2.4), indeed

α‖u‖U ≤ sup
v∈V

a(u,v)
‖v‖V

= sup
v∈V

F (v)
‖v‖V

= ‖F ‖V ∗ .

Condition (2.4) is usually called inf-sup condition, but is also referred to as
Ladyženskaja-Babuška-Brezzi (LBB) condition and will be of vital importance for
the theoretical analysis of CORSING, performed in Chapter 3.

The inf-sup condition can also be employed with U = V , when coercivity
does not hold (and, thus, Theorem 2.1 cannot be applied). This is the case of
the Stokes problem, where U = V =H1

0 (Ω)× (L2(Ω)/R) (see Section 4.1).

2.1.2 From weak problems to linear systems

A very popular, and nowadays classical, way to numerically approximate a so-
lution to (2.1) is the so-called Petrov-Galerkin (PG) method. This approach is
a generalization of the Galerkin method (also known as Bubnov-Galerkin or
Ritz-Galerkin method), and it is sometimes also referred to as the nonstandard
Galerkin method.

A century of history The history of the PG method dates back to the begin-
ning of the 20th century, when W. Ritz set up a mathematical method to study
the deformation of an elastic plate under an external force [Rit08] and to com-
pute the Chaldni figures [Chl87] produced by the sand on a metal plate, when
excited using the bow of a violin [Rit09]. Ritz’s method was immediately em-
ployed in Russia, in order to solve hard engineering problems, by remarkable
scientists such as S.P. Timoshenko [Tim13], I. Bubnov [Bub13], B.G. Galerkin
[Gal15] and G.I. Petrov [Pet40], who first proposed the variant presented here.
The PG method was then formalized during the early 1970’s by A.K. Aziz and
I. Babuška [AB72]. To learn more details about the thrilling history of the PG
method, see the nice review [GW12].

The essence and the power of the PG method is very well summarized by
S.P. Timoshenko [Tim13]:

“We will not address the mathematical aspects of this method: a re-
markable publication of a Swiss scientist, Mr. Walter Ritz, was ded-
icated to this subject. Transforming the problem of integrating the
equations into a problem of evaluating integrals, Mr. W. Ritz has
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shown for a large class of problems, that by increasing the param-
eters a1, a2, a3,..., one can find the exact solution of the problem.”1

The PG method essentially transforms the weak problem (2.1) into a linear
system of equations. This is achieved in four steps: (1) introduce two finite-
dimensional spaces, called trial and test spaces; (2) consider a finite dimen-
sional approximation to (2.1) restricted to the trial and test spaces; (3) choose
two (possibly different) bases for the trial and test spaces; (4) evaluate the bilin-
ear form a(·, ·) and the linear operator F on these basis functions.

The finite dimensional weak problem Consider two finite dimensional subspaces
UN ⊆U of dimension N and Vm ⊆ V of dimension m, called trial space and test
space, respectively. Then, the idea is to consider a finite dimensional approxi-
mation of problem (2.1), defined as follows2

find û ∈UN : a(û,v) = F (v), ∀v ∈ Vm. (2.6)

In this chapter, we consider U = V = H1
0 (Ω), but UN and Vm, in general, do

not coincide, yielding a PG formulation. When N =m and UN = Vm, one has a
Galerkin formulation.

In the following, the solution û to the finite dimensional weak problem (2.6),
will be sometimes denoted as ûNm , when the dimension of the trial space and of
the test space need to be tracked.

The stability and the convergence of the formulation (2.6) are analyzed in
the following theorem due to A.K. Aziz and I. Babuška [AB72].

Theorem 2.3 (Aziz-Babuška). Consider two linear subspaces UN ⊆ U and Vm ⊆
V . If the bilinear form a(·, ·) fulfills the continuity condition (2.3) and satisfies the
conditions

∃α̃ > 0 : inf
u∈UN

sup
v∈Vm

a(u,v)
‖u‖U‖v‖V

≥ α̃, (2.7)

sup
u∈UN

a(u,v) > 0, ∀v ∈ Vm \ {0}, (2.8)

then problem (2.6) admits a unique solution that fulfills the a priori estimate

‖û‖U ≤
1
α̃
‖F ‖V ∗ ,

1a1, a2, a3, . . . are the degrees of freedom of the linear system, i.e., the coefficients with respect to the
trial basis functions.

2In the literature the subspacesUN and Vm are usually calledUh and Vh, and the discrete approximate
solution is usually denoted uh, where h is a parameter related to the mesh that discretizes the physical
domain Ω, e.g., the maximum among the elements’ diameters. In this exposition we prefer to get rid of
this notation, since our discretizations can not be summarized by a single scalar parameter h.
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and the error estimate

‖u − û‖U ≤
(
1 +

β

α̃

)
inf
w∈UN

‖u −w‖U , (2.9)

where u is the solution to (2.1).

Proof. The existence, uniqueness and the a priori estimate are a consequence
of Theorem 2.2. In order to prove the error estimate, first we notice that (2.7)
implies

α̃‖û −w‖U ≤ sup
v∈Vm

a(û −w,v)
‖v‖V

= sup
v∈Vm

a(u −w,v)
‖v‖V

≤ β‖u −w‖U , ∀w ∈UN , (2.10)

where we exploited the property a(û−u,v) = 0, for every v ∈ Vm (usually called
Galerkin orthogonality) and the continuity of a(·, ·). Now, the triangle inequality
implies

‖u − û‖U ≤ inf
w∈UN

(‖u −w‖U + ‖û −w‖U ).

Combining the last inequality with relation (2.10) yields (2.9).

Theorem 2.3 shows that the approximation error committed by solving (2.6)
is near-optimal, in the sense that it is bounded, up to a constant factor, by the
best approximation error of u in the spaceUN . Estimate (2.9) is usually referred
to as Céa’s Lemma.

Moreover, Theorem 2.3 highlights the importance of the discrete inf-sup
condition (2.7): the goal is to build suitable finite dimensional subspaces UN

and Vm such that the constant α̃ does not become too small. The undesirable
case of a small α̃ forces the constant factor in (2.9) to become large, thus not
guaranteeing that the approximate solution û is sufficiently close to the true
solution u.

Remark 2.1.1 (Further extensions). There are several possible variations on this
scenario: for example, we could consider the approximation errors due to nu-
merical integration, yielding an approximate bilinear form â(·, ·) and an approx-
imate linear operator F̂ ; or we could substitute the original norms ‖ · ‖U and ‖·‖V
with some discrete variants ‖·‖UN and ‖·‖Vm . These issues will not be addressed
here and for a further discussion the reader is referred to [QV08, EG13].

The PG discretization Assume UN and Vm to be generated by a basis of trial
functions {ψ1, . . . ,ψN } and test functions {ϕ1, . . . ,ϕm}, respectively. Namely,

UN = span{ψ1, . . . ,ψN }, Vm = span{ϕ1, . . . ,ϕm}. (2.11)
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Then, since Vm = span{ϕi}, the weak formulation (2.6) is then equivalent to

find û ∈UN : a(û,ϕi) = F (ϕi), for i = 1, . . . ,m. (2.12)

If we expand û ∈UN as a linear combination of the trial functions {ψj}, problem
(2.12) can be written as the linear system

Aû = f, (2.13)

where A ∈ Rm×N is the generalized stiffness matrix that represents the bilinear
form a(·, ·) with respect to the bases {ψj}, {ϕi}, and f ∈ Rm is the generalized load
vector, namely,

Aij = a(ψj ,ϕi), fi = F (ϕi), (2.14)

with i = 1, . . . ,m and j = 1, . . . ,N . The unknown vector û ∈ RN contains the
coefficients of the discrete solution û expressed in terms of the trial basis {ψj}.

The solution û to (2.13), will be sometimes denoted as ûNm , in order to keep
track of the trial and test space dimensions.

full-PG vs corsed-PG approximation We denote formulation (2.6) associated with
the choice (2.11) andm =N by full-PG, corresponding to the classical approach.
Goal of this work is to provide a computationally efficient technique to ap-
proximate the full-PG solution by picking m � N , i.e., using far fewer tests
than trials. The resulting approximation is denoted by corsed-PG. This new
approach leads us to deal with a highly underdetermined system (2.13), that
will be solved employing tools from sparse recovery, such as the `0- and the
`1-minimization. Moreover, at this stage, we cannot assume the stiffness ma-
trix A to have a particular sparsity pattern, A being possibly a full matrix. To
define a corsed-PG approximation, we exploit ideas and techniques inspired by
Compressed Sensing.

2.2 CORSING: COmpRessed SolvING

Let us now enter the core of this chapter: the explanation of the proposed
approximation strategy, referred to as COmpRessed SolvING or, more briefly,
CORSING.

2.2.1 Description of the methodology

The CORSING method consists of two distinct phases: the assembly and the re-
covery phase. In the first one, the generalized stiffness matrix and the general-
ized load vector are built. The second one deals with the actual computation of
the corsed-PG solution, outcome of the CORSING approach.

We now describe the two phases in detail.
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Assembly phase The assembly phase essentially forms the generalized stiffness
matrix and load vector in (2.14). In turn, this phase is divided in three steps:

1. choose two sets of N independent vectors in H1
0 (Ω) for the full-PG formu-

lation: the trial functions {ψ1, . . . ,ψN }, and the test functions {ϕ1, . . . ,ϕN };

2. choose an integer m < N (desirably m� N ) and select a subset of m test
functions {ϕτ1

, . . . ,ϕτm}, where τi ∈ {1, . . . ,N } for i = 1, . . . ,m;

3. build the generalized stiffness matrix A ∈ Cm×N and load vector f ∈ Cm,
defined as

Aij = a(ψj ,ϕτi ) fi = F (ϕτi ).

The assembly phase is, in general, the most costly one (see Section 2.3.1).

Recovery phase Goal of the recovery phase is to compute the corsed-PG so-
lution ûNm to the underdetermined linear system Au = f (i.e., the corsed-PG
solution ûNm of (2.2) via the basis {ψj}). The solution is computed through either
problem (P0) or (P1), defined in (1.5) and (1.6), respectively.

Notice that the global sensing matrix characterizing the standard CS ap-
proach is here replaced by the generalized stiffness matrix associated with the
PG formulation (2.6). Concerning the selection of the trial functions at the step
1. of the assembly phase, one should essentially try to get a discrete solution as
sparse as possible or, at least, compressible with respect to that basis, namely
the sparsity prior for the corsed-PG solution ûNm should be guaranteed. As for
the test functions, at the step 2., the choice of the test indices {τ1, . . . , τm} can
be carried out in either a deterministic or a randomized way. We denote by
D-CORSING the first approach, and by R-CORSING the randomized strategy. In
particular, we adopt the two following extraction procedures:

• D-CORSING: set τi = i for i = 1, . . . ,m;

• R-CORSING: by using Algorithm 2.1, this procedure selects m different
numbers {τ1, . . . , τm} out of the set {1, . . . ,N }, each number i having a prob-
ability proportional to a given weight wi of being drawn without repeti-
tions.

Notice that R-CORSING requires a more involved numerical assessment due to
the randomized nature of the approach. Indeed, to analyze the results using
statistical tools, we need to perform multiple runs of the same experiment.
Numerical experiments show that a uniform random selection of the τi ’s (i.e.,
wi = const, ∀i in Algorithm 2.1) does not correctly work, in general. Vice versa,
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Algorithm 2.1

1: procedure TestSelection(N,m, {w1, . . . ,wN })
2: U ← {1, . . . ,N } . The urn initially contains all the indices
3: T ← ∅ . The selected indices set is initially empty
4: for i = 1, . . . ,m do
5: define P(k) = wk

/∑
k′∈U

wk′ , ∀k ∈ U . Probability distribution on U

6: randomly select τi ∈ U according to P
7: U ←U \ {τi} . Remove τi from the urn
8: T ← T ∪ {τi} . Add τi to the selected indices
9: end for

10: return T
11: end procedure

as shown in Section 2.3, a non-uniform randomization can improve the per-
formance of the CORSING or even become crucial to get a reliable solution in
particular cases.3

In the full-PG case no CORSING occurs and we solve the square system (2.13)
for m =N , via the the Matlab

® \ (backslash) command.
Remark 2.2.1. (Practical usage of omp-box and spgl1) The employed Matlab

®

packages omp-box and spgl1 actually solve the minimization problems

(Pεq) min
u∈CN

‖u‖q s.t. ‖Au− f‖2 ≤ ε, q = 0,1

instead of (P0) and (P1), where ε > 0 is a given tolerance. This is due to the
fact that both omp-box and spgl1 are iterative solvers, and it is numerically im-
possible requiring ‖Au − f‖2 = 0 as a stopping criterion. In every experiment
performed in this chapter, the tolerance on the `2-norm of the residual is set to
ε = 1e-08. Moreover, we always normalize the columns of A with respect to the
`2-norm before employing the solvers. After the solution of the normalized sys-
tem is computed, we apply the substitution uj 7→ uj /‖aj‖2 for every j = 1, . . . ,N ,
where aj is the j-th column of A.

2.2.2 Assembling the stiffness matrix

Usually, building the stiffness matrix is the most costly operation, since the stiff-
ness matrices used in the CORSING approach are in general full. Hence, dealing
with the numerical quadratures could be, in general, a challenging issue. This
inconvenience could be overcome in several possible ways.

3To our knowledge, Algorithm 2.1, despite being already known in the literature, is not given an
identifying name. The officially acknowledged most similar algorithm that we have found so far is
the Independent Chip Model (ICM), used in poker tournaments. See also the MathOverflow question
http://mathoverflow.net/questions/160738.

http://mathoverflow.net/questions/160738
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Symbolic approach Compute symbolically a(ψj ,ϕq), and then just evaluate it
for j ∈ [N ] and q = τi , with i ∈ [m]. Of course, the integrals needed to ob-
tain these expressions are not always explicitly computable. Nevertheless, this
strategy is very effective, e.g., for equations with constant coefficients or with
analytically defined coefficients.

Pre-computing Pre-compute the elements of the whole stiffness matrix B ∈
RN×N , defined as Bqj := a(ψj ,ϕq), ∀j ∈ [N ],∀q ∈ [N ], and then, after the test
selection, extract the rows of B corresponding to the indices τ1, . . . , τm and plug
them in A. This approach requires O(N 2) memory, which is typically a large
amount.

Fast transforms If the trial basis possesses some remarkable structure, as it
does in the examples presented in this chapter, the numerical integration pro-
cess can be implemented using fast transforms, such as FFT, DST, DCT or the
FWT (see, e.g., [Mal99]). Using this approach, the computational cost of the as-
sembly can be considerably reduced, or even avoided, implementing a matrix-
free version of the algorithm.

Interpolation Another possibility is to perform an interpolation of the test
functions ϕq with respect to the basis {ψj}j∈[N ], namely

ϕq ≈
N∑
k=1

φq,kψk , ∀q ∈ [N ].

Then, build the stiffness matrix Aψ ∈ RN×N associated with the Galerkin dis-
cretization performed with respect to the trial functions, defined as

A
ψ
jk := a(ψk ,ψj), ∀j,k ∈ [N ].

Then, each row of A can be built as a suitable linear combination of rows of Aψ.
Again, this would require a significant amount of memory.

As a general remark, the approximation error introduced by the last two
approaches should be estimated on theoretical grounds (see Remark 2.1.1).

In particular, in this thesis we employ the symbolic approach.

2.3 CORSING in action

The choice of the trial and test functions in the assembly phase may be quite
arbitrary, in principle, except for ensuring the well-posedness of (2.6). In par-
ticular, we select hat and sine functions. We explore their role as both trials
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and tests. These two bases have been chosen in order to fulfill two main re-
quirements. On the one hand, they both are able to capture sparsity in H1

0 (Ω),
this being the function space associated with the weak formulation of problem
(2.2). On the other hand, and this is a more heuristic motivation, they belong to
qualitatively different “worlds”, namely, the hat functions are sparse in the spa-
tial domain, the sines are sparse in the frequency domain. This duality between
space and frequency is a key concept to CS, and it has been widely used since
its discovery [CRT06].

The CORSING setting poses more constraints with respect to the standard
CS. First, CS is usually cast in the finite dimensional space CN , whereas CORS-
ING relies on the infinite dimensional function space H1

0 (Ω). About infinite
dimensional spaces, CS has been recently extended to the sampling of a contin-
uous signal that is sparse in a wavelet basis, by resorting to few random Fourier
measurements [AHPR13, AH15]. In these works, the sampling problem takes
place in a Hilbert space. Second, in the CORSING case, a generic bilinear form
a(·, ·), not necessarily symmetric, replaces the Euclidean inner product and the
boundary conditions have to be included in the sampling problem. The choice
of the hat and sine functions matches these requirements as shown below.

We start with the simple 1D case, by choosing Ω = (0,1).

Hat functions The first basis, corresponding to the spatial domain, is the hi-
erarchical multiscale basis over the interval [0,1], consisting of the mother hat
function

H(x) =


x if 0 ≤ x < 1

2
1− x if 1

2 ≤ x < 1
0 otherwise,

and of its scaled dyadic translations H`,k(x) = 2−`/2H(2`x − k), defined for ` ∈ N
and k = 0, . . . ,2` − 1 [Dah97]. The normalization constant guarantees all these
functions to have a unit H1(Ω)-seminorm. Moreover, H`,k is locally supported
on the interval (k2−`, (k + 1)2−`). We denote the hierarchical basis of level L ≥ 0
with

HL = {H`,k : 0 ≤ ` ≤ L}. (2.15)

It can be checked that

span(HL) ≡
{
u ∈ X1

2−(L+1) : u(0) = u(1) = 0
}
, (2.16)

with dim(span(HL)) = 2L+1 − 1, and where X1
h is the space of continuous piece-

wise linear functions over the grid of uniform step h on the interval [0,1]. The
basis H3 is shown in Figure 2.1, (a).



2.3. CORSING IN ACTION 53

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
H

0,0

H
1,0

H
1,1

H
2,0

H
2,1

H
2,2

H
2,3

(a)

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

S
1

S
2

S
3

S
4

S
5

(b)

Figure 2.1: The basisH3, (a); the basis S5, (b).

Remark 2.3.1. The first order derivative (in a weak sense) of H is the Heaviside
step function

ψH(x) =


1 if 0 ≤ x < 1

2
−1 if 1

2 ≤ x < 1
0 otherwise.

Moreover, the functions ψH
`,k(x) = H′`,k(x) = 2`/2ψH(2`x − k), together with the

constant function identically equal to 1, form the well known Haar wavelet basis
of L2(Ω). This property will be useful when approximating the one-dimensional
Poisson problem.

As mentioned before, the choice of the trial and test bases is a key issue in
CORSING, and it will be investigated from a theoretical viewpoint in Chapter 3,
using the notion of local a-coherence.

Remark 2.3.2 (Classical FE bases). It is not convenient to employ a classical
piecewise polynomial FE basis [QV08] as trials, since it is not able to provide
a sparse representation of the exact solution u except when it has a localized
support. On the contrary, the hierarchical structure of HL makes it perfectly
able to sparsify u even though the support of u is the whole Ω.

Sine functions The second basis, associated with the frequency domain, is
given by

S r(x) =

√
2
πr

sin(πrx), x ∈ [0,1],

for r ∈ N \ {0}, where the normalization constant ensures that S r has a unit
H1(Ω)-seminorm. The sine basis of dimension R, for some integer R ≥ 1, is
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denoted by
SR = {S r : 1 ≤ r ≤ R}. (2.17)

We plot the basis S5 in Figure 2.1, (b).
Remark 2.3.3. The set S∞ is a complete orthonormal system of H1

0 (0,1) with

respect to the inner product
∫ 1

0
u′v′ dx. This property can be proved by exploit-

ing the completeness of {eiπrx}r∈Z in L2(−1,1) and using the odd extension from
[0,1] to [−1,1].

Remark 2.3.4. Boundary conditions different from Dirichlet’s lead to a different
choice of the trial and test functions.

Now, we assess the performance of CORSING applied to some simple one-
dimensional problems. After the discussion of these basic examples, we will
deal with more challenging test cases.

2.3.1 The 1D Poisson problem

In order to show the reliability and the robustness of CORSING, we consider
both the constrained minimization problems (P0) and (P1). In particular, we
resort to the Matlab

® packages omp-box [Rub09, RZE08] and spgl1 [vdBF08,
vdBF07], respectively.4

We focus on the 1D Poisson problem{
−u′′ = f in Ω= (0,1)
u(0) = u(1) = 0,

(2.18)

where the source term f is chosen such that the exact solution be

u∗t (x) = (etx − 1)(1− x), ∀x ∈Ω,

with t a positive parameter. The shape of u∗t can be tuned by varying t, i.e., u∗t
exhibits a thinner and thinner boundary layer as t increases (see Fig. 2.2).

Before dealing with the numerical validation of CORSING, we provide the
asymptotic best approximation error estimates for u∗t in the spaces spanned by
the bases HL and SN .

Proposition 2.4. Given t > 0, there exist two constants C,D > 0 such that

inf
v∈span(HL)

‖v −u∗t‖L2(Ω) ≤ CN−2, inf
v∈span(SN )

‖v −u∗t‖L2(Ω) ≤DN−2.5,

inf
v∈span(HL)

|v −u∗t |H1(Ω) ≤ CN−1, inf
v∈span(SN )

|v −u∗t |H1(Ω) ≤DN−1.5,

4All the experiments have been performed using Matlab
® R2013a 64-bit (version 8.1.0.604) on a Mac-

Book Pro equipped with a 3GHz Intel Core i7 processor and 8GB of RAM.
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Figure 2.2: The function u∗t for different values of t.

with N = 2L+1 − 1, and with HL and SN the bases defined in (2.15) and (2.17),
respectively. Moreover, the constants C and D depend only on t, and exhibit the
following asymptotic behavior

C ∼
√
tet, D ∼ tet. (2.19)

Proof. Let us start with the estimates related to span(HL). Due to (2.16), we
exploit the interpolation error estimate in [Qua14, Theorem 4.2] to get, for k =
0,1,

|Π1
Nv − v|Hk(Ω) . |v|H2(Ω)N

−2+k , ∀v ∈H2(Ω),

with Π1
N : H2(Ω)→ X1

1/(N+1) the standard piecewise linear Lagrange interpola-

tion operator, H0(Ω) = L2(Ω), and where it is understood that . hides a con-
stant independent ofN . We observe that the interpolation error associated with
v = u∗t grows as t increases. Indeed we have

|u∗t |H2(Ω) =
√

5
2te

2t − t(t2 − 3t + 5
2 )

and, consequently, for N → +∞, there exists a constant C > 0 such that

inf
v∈span(HL)

|v −u∗t |Hk(Ω) ≤ |Π1
Nu
∗
t −u∗t |Hk(Ω) ≤ CN−2+k , for k = 0,1,

where C behaves like |u∗t |H2(Ω) ∼
√
tet, for t→ +∞.

Concerning the approximation in the space SN , we notice that the fam-
ily {πkSk}k∈N is an orthonormal complete system of L2(Ω) with respect to the
L2(Ω)-scalar product. Employing Parseval’s identity, the squared L2(Ω)-norm
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of the best approximation error in SN associated with u∗t is∥∥∥∥∥u∗t − N∑
k=1

(u∗t ,πkSk)πkSk
∥∥∥∥∥2

L2(Ω)
=

∥∥∥∥∥ +∞∑
k=N+1

(u∗t ,πkSk)πkSk
∥∥∥∥∥2

L2(Ω)

=
+∞∑

k=N+1

|(u∗t ,πkSk)|2.

In order to estimate this series, it can be checked, via a symbolic computation,
that the k-th Fourier coefficient is

|(u∗t ,πkSk)|2 =
2 t2 (t3 − 2π2 k2 +π2 t k2 + 2(−1)kπ2 k2 et)

2

π2 k2 (t2 +π2 k2)4 ,

i.e., for k→ +∞, there exists D̃ > 0 such that |(u∗t ,πkSk)|2 ≤ D̃k−6. Thanks to the
monotonicity of the function x−6 for x > 0, the series with generic term k−6 can
be bounded from above by

+∞∑
k=N+1

k−6 ≤
∫ +∞

N
x−6 dx .N−5.

Finally, we have
inf

v∈span(SN )
‖v −u∗t‖L2(Ω) ≤DN−2.5,

where the constant D is asymptotic to tet, for t→ +∞.
In order to estimate the best approximation error in the H1(Ω)-seminorm,

we observe that since u∗t ∈ C∞(Ω) ∩ H1
0 (Ω), its odd extension u∗,odd

t to [−1,1]
belongs to C1

p,2

∣∣∣
[−1,1)

, where, for a generic k ∈ N, we define

Ckp,2 = {g ∈ Ck(R) and g(x+ 2) = g(x) ∀x ∈ R}. (2.20)

Moreover, its second derivative is (at least) absolutely integrable. Consequently,
the Fourier series of (u∗,odd

t )′, that is obtained as the even extension of (u∗t )
′ to

[−1,1], is convergent in L2(−1,1) and coincides with the term-by-term derivative
of the Fourier series of the even extension to [−1,1] of (u∗t )

′ (see [Tol12, Section
5.8, Theorem 2]). Thus, we have

inf
v∈span(SN )

|v −u∗t |2H1(Ω) =
∥∥∥∥∥(u∗t )

′ −
N∑
k=1

(u∗t ,πkSk)πkS ′k
∥∥∥∥∥2

L2(Ω)

=
∥∥∥∥∥ +∞∑
k=N+1

(u∗t ,πkSk)πkS ′k
∥∥∥∥∥2

L2(Ω)
.
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Using the orthonormality and completeness of the system {
√

2cos(kπx)}k≥0 in
L2(Ω) and with computations similar to the L2(Ω)-analysis, we obtain

inf
v∈span(SN )

|v −u∗t |H1(Ω) ≤DN−1.5.

Remark 2.3.5. An alternative (and more general) proof of the estimates in the
space SN can be based on the decay of the Fourier coefficients with respect
to their frequency index. Actually, it can be proved that, for any piecewise
periodic C1

p,2-function, say g, with at most a finite number of jumps on [−1,1),

the corresponding Fourier coefficients, ĝk, satisfy |̂gk | . 1/k.5 Since (u∗,odd
t )′′

enjoys the properties of g, the Fourier coefficients of u∗,odd
t behave like 1/k3.

This in turn yields that the L2(−1,1)-norm of the approximation error due to
truncation of the Fourier series of u∗,odd

t is .N−2.5.
Alternatively one could rely on [CQ82, Theorem 1.1] involving the Sobolev

spacesH s(−1,1) of non-integer order. Nevertheless, u∗,odd
t ∈H s(−1,1) for 0 ≤ s <

2.5. Thus we would obtain suboptimal convergence rates, in comparison to the
ones in Proposition 2.4.

These two alternative arguments allow the generalization of Proposition 2.4
to functions different from u∗t when SN is the trial basis.

After providing the best-approximation results, we now consider the full-PG
formulation in the spaces span(SN ) and span(HL), with N = 2L+1 − 1, and we
prove that it is well-posed. To show this, we employ the inf-sup condition (see
Section 2.1). This property implies the existence and uniqueness of the solution
ûNN of the full-PG method applied to (2.18) with the sine functions as trials and
the hat functions as tests, as stated in the following

Proposition 2.5. Let L ∈ N and define N = 2L+1 − 1. Then, the finite dimensional
spaces UN = span(SN ) and V N = span(HL) satisfy the inf-sup condition with re-
spect to the bilinear form a(·, ·) associated with problem (2.18). Namely, there exists
a constant α̃ > 0, not depending on N , such that

inf
u∈UN

sup
v∈V N

a(u,v)
|u|H1(Ω)|v|H1(Ω)

≥ α̃, (2.21)

with a(u,v) =
∫ 1

0
u′v′ dx and α̃ = 2/π.

Proof. We recall that UN = span{ψj : 1 ≤ j ≤ N } and V N = span{ϕi : 1 ≤ i ≤ N },
with

ψj(x) = sin(πjx), ∀x ∈ [0,1]

5See Paul Garrett’s answer to the MathOverflow question http://mathoverflow.net/questions/

182684.

http://mathoverflow.net/questions/182684
http://mathoverflow.net/questions/182684
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and

ϕi(x) =


(x − xi−1)/h if x ∈ [xi−1,xi)
(xi+1 − x)/h if x ∈ [xi ,xi+1]
0 otherwise,

where h = 1/(N + 1) and xi = ih. First, we notice that both {ψj} and {ϕi} are
not normalized since α̃ in (2.21) is independent of any scaling of both u and v.
Moreover, condition (2.21) is equivalent to the algebraic condition

∀u ∈ RN \ {0}, ∃v ∈ RN \ {0} s.t. vᵀAu ≥ α̃(uᵀDu)
1
2 (vᵀTv)

1
2 , (2.22)

where u =
N∑
j=1

ujψj , v =
N∑
i=1

viϕi , Dij = δij (πj)2/2, with δij the Kronecker sym-

bol, A is the stiffness matrix, i.e., Aij = a(ψj ,ϕi), and

Tij =


2/h if i = j
−1/h if |i − j | = 1

0 otherwise.

For every u ∈ RN \ {0}, we show that the ansatz

v = Su, (2.23)

where Sij = sin(ijπh), represents the good candidate for satisfying the inf-sup
condition. Observe that it holds

A = TS. (2.24)

Indeed, we have that

Aij = a(ψj ,ϕi) =
1
h

(−sin(πjxi−1) + 2sin(πjxi)− sin(πjxi+1))

=
1
h

(−Si−1,j + 2Sij − Si+1,j) = Ti,i−1Si−1,j + Ti,iSi,j + Ti,i+1Si+1,j

= [TS]ij ,

where it is understood that these equalities formally hold also for i, j ∈ {1,N },
by letting S0,j = SN+1,j = 0 for j = 1, . . . ,N .

Now, employing (2.23) and (2.24), (2.22) can be equivalently written as

uᵀ(SᵀTS)u ≥ α̃2uᵀDu, ∀u ∈ RN \ {0}. (2.25)

In order to determine α̃ > 0, we first exploit the symmetry of S and the property
that the columns of S form a basis of eigenvectors of the matrix T, to show
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that the matrix D̃ = SᵀTS = STS on the left-hand side of (2.25) is diagonal.
In particular, D̃ij = δij 2/h2 sin2(hπj/2). Then, we consider the minimization
problem

α̃2 = min
u∈RN \{0}

uᵀD̃u
uᵀDu

.

This is equivalent to finding the minimum generalized eigenvalue associated
with the matrix pencil D̃−λD, i.e.,

α̃2 ≡min{λ ∈ R : det(D̃−λD) = 0} = min
j∈[N ]

D̃jj
Djj

= min
j∈[N ]

[
sin

(hπj
2

)
/
(hπj

2

)]2
=

[
sin

( N
(N + 1)

π
2

)
/
( N
(N + 1)

π
2

)]2
≥ 4
π2 ,

where the last inequality follows from the observation that g(t) = sin(t)/t, for
t ∈ (0,π/2) can be bounded from below by g(π/2) = 2/π.

According to Theorem 2.3, an immediate consequence of Proposition 2.5 is
the following corollary. Notice that hypothesis (2.8) of Theorem 2.3 holds, since
the stiffness matrix A in (2.24) is nonsingular.

Corollary 2.6. In the same framework as in Proposition 2.5, the following estimate
holds

|u − ûNN |H1(Ω) ≤
(
1 +

β

α̃

)
inf
w∈UN

|u −w|H1(Ω),

where β is the continuity constant of a(·, ·) with respect to the H1(Ω)-seminorm of
the arguments and α̃ is defined as in (2.21).

Analogous results hold by swapping the trial and test spaces.

Proposition 2.7. The inf-sup condition in Proposition 2.5 holds also for UN =
span(HL) and V N = span(SN ), with N = 2L+1 − 1, with the same value of α̃.

Proof. The proof of Proposition 2.5 can be mimicked, working on Aᵀ.

The same statement as in Corollary 2.6 holds for UN = span(HL) and V N =
span(SN ), with N = 2L+1 − 1, with the same value of α̃.

Employing an argument similar to Theorem 2.3, we can prove a recovery re-
sult for the CORSING procedure, that generalizes Proposition 1.5 to the function
space setting. First, we define the space of s-sparse functions in UN

UN
s :=

{
w ∈UN : ∃w ∈ RN s.t. w =

N∑
j=1

wjψj and ‖w‖0 ≤ s
}
.
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Proposition 2.8. Let s,m,N ∈ N such that 0 < 2s ≤ m ≤ N . Suppose that the
corsed-PG solution fulfills the exact constraint Aû = f and that ‖û‖0 ≤ s. Then, if
the following 2s-sparse inf-sup condition is fulfilled

inf
u∈UN

2s

sup
v∈Vm

a(u,v)
|u|H1(Ω)|v|H1(Ω)

≥ α̃, (2.26)

for some positive constant α̃ > 0, the following estimate holds

|u − û|H1(Ω) ≤
(
1 +

β

α̃

)
inf
w∈UN

s

|u −w|H1(Ω),

where β is the continuity constant of a(·, ·) with respect to the H1(Ω)-seminorm of
the arguments.

Proof. Fix w ∈ UN
s . Then, we have û − w ∈ UN

2s . Hence, applying (2.26) and
exploiting the Galerkin orthogonality

a(û −u,v) = 0, ∀v ∈ Vm

due to (2.1) and (2.6), there exists v ∈ Vm such that

|û −w|H1(Ω) ≤
1
α̃

a(û −w,v)
|v|H1(Ω)

=
1
α̃

a(u −w,v)
|v|H1(Ω)

≤
β

α̃
|u −w|H1(Ω),

after exploiting the continuity of a(·, ·). Finally, the triangle inequality implies

|u − û|H1(Ω) ≤ |u −w|H1(Ω) + |û −w|H1(Ω) ≤
(
1 +

β

α̃

)
|u −w|H1(Ω)

so that the thesis follows from the arbitrariness of w.

Remark 2.3.6. The hypotheses of Proposition 2.8 are quite restrictive: the linear
constraint Aû = f is assumed to be exactly fulfilled and, at the same time, the
sparsity of the corsed-PG solution is constrained. Consider, for example, the
OMP algorithm. Although it controls the maximum sparsity level, it produces
- in general - a nonzero residual. The role played by the inf-sup property in the
analysis of CORSING will be thoroughly investigated in the next chapter.

Now, we will test the CORSING procedure described in Section 2.2 using the
bases HL and SN .



2.3. CORSING IN ACTION 61

1.2 1.4 1.6 1.8 2 2.2 2.4
−5

−4

−3

−2

−1

t = 1

t = 5

t = 10

t = 15

log
10

(N)

lo
g 10

(r
el

at
iv

e 
er

ro
r)

 

 

N−2

(a) L2(Ω)-norm

1.2 1.4 1.6 1.8 2 2.2 2.4

−2

−1.5

−1

−0.5

t = 1

t = 5

t = 10

t = 15

log
10

(N)

lo
g 10

(r
el

at
iv

e 
er

ro
r)

 

 

N−1

(b) H1(Ω)-seminorm

Figure 2.3: full-PG error analysis on the model problem (2.18) in the HS case for different
values of t.

Hats vs sines

First, let us consider the functions in HL as trials and the functions in SR as
tests, in short the HS setting. We adopt the lexicographic ordering over the set
HL

(`,k) (0,0) (1,0) (1,1) (2,0) (2,1) (2,2) (2,3) · · ·
l l l l l l l l · · ·
j 1 2 3 4 5 6 7 · · ·

defined by the relation j(`,k) = 2` + k and with inverse mapping

(`,k)(j) = (`(j), k(j)) =
(
blog2(j)c, j − 2blog2(j)c

)
,

b·c denoting the floor function. With this convention, and according to the nota-
tion introduced in Section 2.2, the first combination of trials and tests assessed
is

ψj =H`(j),k(j), ϕi = S i .

Convergence of full-PG We numerically check the convergence and robustness
of the full-PG method. Actually, we reach the best approximation error as stated
in Proposition 2.4. We solve (2.18) for five different choices of the maximum
level, i.e., L = 3,4,5,6,7, corresponding to the linear system (2.13) of dimension
N = 15,31,63,127,255. In particular, this system is solved using the Matlab

® \

(backslash) command. Moreover, the four values of the parameter t = 1,5,10,15
are considered. For any combination of values for L and t, we show in Figure 2.3
the relative error associated with ûNN with respect to the L2(Ω)-norm and the
H1(Ω)-seminorm. The errors follow the behavior predicted in Proposition 2.4
with respect to N . Moreover, the asymptotic constant monotonically grows as a
function of t, according to (2.19).



62 CHAPTER 2. CORSING: TOWARDS A THEORETICAL UNDERSTANDING

20 40 60 80

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Test savings [%]

lo
g

1
0
(r

e
la

ti
v
e

 e
rr

o
r)

Relative error

 

 
L

2
 SPGL1

L
2
 OMP−Box

H
1
 SPGL1

H
1
 OMP−Box

20 40 60 80

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

Test savings [%]

lo
g

1
0
(t

im
e

) 
[s

e
c
]

Computing time

 

 

SPGL1

OMP−Box

(a) level L = 5 (resulting trials: N = 63)

20 40 60 80

−5

−4

−3

−2

−1

0

Test savings [%]

lo
g

1
0
(r

e
la

ti
v
e
 e

rr
o
r)

Relative error

 

 
L

2
 SPGL1

L
2
 OMP−Box

H
1
 SPGL1

H
1
 OMP−Box

20 40 60 80

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Test savings [%]

lo
g

1
0
(t

im
e

) 
[s

e
c
]

Computing time

 

 

SPGL1

OMP−Box

(b) level L = 9 (resulting trials: N = 1023)

Figure 2.4: Numerical performance of D-CORSING in theHS case on the model problem (2.18)
with exact solution u∗5. Maximum level L = 5 (a) and L = 9 (b). Relative error (left) and computing
times of the recovery phase (right).
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Assessment of D-CORSING We check the performance of D-CORSING on the
model problem (2.18) with exact solution u∗5. In order to quantify the com-
pression level of the discretized model, we define a new index, i.e., the Test
Savings

TS = 100
N −m
N

%.

With a view to a computationally efficient approximation of (2.18), a large value
of TS is of course desirable. We carry out two numerical experiments, setting
the maximum level L to 5 in the first case, and to 9 in the second case. In both
cases, the maximum level L (and, consequently, the number of trials equal to
N = 63 and N = 1023, respectively) is kept fixed, while the number m of tests
decreases such that TS varies from 5% (low compression) to 95% (high com-
pression). For each value of m, the underdetermined system (2.13) is solved by
means of both (P0) and (P1), using the solvers omp-box and spgl1, respectively.
The results are shown in Figure 2.4. We evaluate the relative errors associated
with the corsed-PG solution ûNm with respect to the L2(Ω)-norm and H1(Ω)-
seminorm. The relative errors of the (P0) and (P1) approaches are comparable.
Indeed, in both cases, the error follows the trend characterizing the full-PG as
TS approaches 0% (compare the left panel of Fig. 2.4 with Fig. 2.3). The loss
of accuracy with respect to the full-PG error is particularly small (less than one
order of magnitude) for TS . 60%.

The recovery computing times of omp-box are lower than those required by
spgl1 for small sized problems (L = 5), whereas for larger problems (L = 9) the
opposite occurs, up to a maximum TS value. This behavior is supported by
further choices of L not shown in this work.

We also observe that the slope of the curve related to the omp-box recovery
computing time is much more emphasized in case (b). This can be explained
by noticing that the computational cost associated with the OMP algorithm is
O(smN ), where s = ‖ûNm‖0 is the sparsity of the resulting corsed-PG solution
(see [Ela10, Section 3.1.2]). Moreover, we have also experimentally checked
that both omp-box and spgl1 furnish a corsed-PG solution with s ≈ m (we also
refer to Figure 2.14). Henceforth, the resulting computational cost associated
with omp-box is approximately O(m2N ). On the contrary, it is less evident how
to quantify from a theoretical viewpoint the computational effort demanded by
the `1-minimization performed by spgl1, even though experimentally it does
not seem to be as heavily affected by m as omp-box.

Sines vs hats

In the second set of experiments, we set

ψj = S j , ϕi =H`(i),k(i),

and we denote this framework by SH.



64 CHAPTER 2. CORSING: TOWARDS A THEORETICAL UNDERSTANDING

1.2 1.4 1.6 1.8 2 2.2 2.4
−6

−5

−4

−3

−2

t = 1

t = 5

t = 10

t = 15

log
10

(N)

lo
g 10

(r
el

at
iv

e 
er

ro
r)

 

 

N−2.5

(a) L2(Ω)-norm

1.2 1.4 1.6 1.8 2 2.2 2.4

−3.5

−3

−2.5

−2

−1.5

−1

t = 1

t = 5

t = 10

t = 15

log
10

(N)

lo
g 10

(r
el

at
iv

e 
er

ro
r)

 

 

N−1.5

(b) H1(Ω)-seminorm

Figure 2.5: full-PG error analysis on the model problem (2.18) in the SH case for different
values of t.

Convergence of full-PG Analogously to Section 2.3.1, the first test that we per-
form aims at checking the convergence of full-PG applied to the model problem
(2.18) with exact solution u∗1,u

∗
5,u
∗
10,u

∗
15 and for N = 15,31,63,127,255. The

results are shown in Figure 2.5. The theoretical results in Proposition 2.4 are
confirmed, as the relative errors measured in the L2(Ω)-norm and the H1(Ω)-
seminorm exhibit the expected trend and sensitivity to t.

Assessment of D-CORSING Numerical testing shows that D-CORSING is not ro-
bust in the SH case. This is due to the massive presence of the aliasing phe-
nomenon. In Figure 2.6, we have a clear example of such an issue: the number
of trials is N = 63, while the two values m = 29 and m = 30 are considered. In
the case of omp-box, surprisingly, û 63

29 is a good approximation of u∗5, while û 63
30

is totally noisy. This shows that a sequential selection of the levels of HL does
not necessarily capture the high frequency components of the solution. On the
contrary, if we apply R-CORSING, the quality of the corsed-PG solution highly
increases for the same choices of N and m, and the aliasing phenomenon com-
pletely disappears (see Figure 2.6, right). In particular, we plot ten corsed-PG
solutions corresponding to ten random experiments. The same behavior holds
for the spgl1 solver, whose performance is even worse than in the omp-box case
(see Figure 2.6, bottom-left).

Assessment of R-CORSING Due to the results of the last paragraph, hereafter
we employ the R-CORSING for the SH case. The weights used in Algorithm 2.1
are

wi = 2−`(i). (2.27)

So far, this is an empirical choice suggested by an extensive numerical trial-
and-error procedure (see Remark 2.3.7). A rigorous mathematical recipe for
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Figure 2.6: Aliasing phenomenon for D-CORSING (left); R-CORSING (right) in the SH case: exact
solution (dashed line), corsed-PG solution (solid line).

the selection of the weights will be provided in Chapter 3.
It turns out that, for large values of TS, the behavior of R-CORSING is quite

chaotic. In particular, we detect the presence of a clusterization phenomenon.
For example, if we run 200 random experiments for N = 63 and m = 3, 9, 15,
22, 28, we get the results in Figure 2.7 (a), where a histogram representing the
relative error for ûNm with respect to the L2(Ω)-norm, for each random test, is
provided. The numbers on top of the histograms indicate how many experi-
ments are contained in the corresponding cluster. The green number is associ-
ated with successful experiments, i.e., the cluster with the lowest relative error,
whereas the red numbers count the failed experiments. We notice that, for the
smallest values of m, the relative error tends to cluster in separate groups. The
number of these groups decreases, as expected, as m gets higher and higher,
until it narrows down to one.

In order to better analyze these results, we compute the Empirical Success
Probability index, defined as

ESP =
# experiments in the first cluster

# experiments
, (2.28)

whose desirable value is 1. This quantity is plotted as a function of TS in Fig-
ure 2.7, (b). In particular, we select four values of N , i.e., 31,63,127,255, and
we compare the performance of omp-box, (b)-left, with spgl1, (b)-right, for TS
ranging from 60% to 95%. For each value of T S and N , 1000 random experi-
ments are performed. The range of TS starts from 60% since we have observed
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Figure 2.7: Statistical analysis of R-CORSING in the SH case: histograms of the relative error
with respect to the L2(Ω)-norm for N = 63 and for different values of m (a); sensitivity of the
quantity ESP to TS for different values of N (b), and for the omp-box (left) and spgl1 (right)
approach.

that ESP = 1 for TS . 60%, for every N . For a fixed TS, ESP increases mono-
tonically with N . This behavior is what usually occurs in the CS setting. Thus,
larger values of N allow one to obtain a higher compression. Overall, omp-box
performs better than spgl1. Notice that, for example, for this range of TS, ESP
is always greater than 0.85 for omp-box.

Now, we focus on the performance of R-CORSING on the model problem
(2.18), with exact solution u∗5, by duplicating the two experiments of the HS
framework, fixing N = 63 and N = 1023 (see Figure 2.8, (a) and (b), respec-
tively). The number of tests m varies such that TS ranges from 5% to 95%. For
each combination ofN andm, we perform 200 random experiments, using both
omp-box and spgl1, and computing the relative error associated with the L2(Ω)-
norm and the H1(Ω)-seminorm. The relative errors are represented as marked
strips: the markers identify the mean of the errors which belong to the cluster
of the successful experiments, the thickness represents the corresponding 95%
confidence interval, while the numbers provide the value of ESP (they are not
printed twice since the values are the same for both norms). The mean and
the associated confidence interval are computed using the Matlab

® command
ttest on the log10 of the data belonging to the first cluster.

From the accuracy viewpoint, omp-box and spgl1 exhibit similar perfor-
mances. Concerning the values of ESP, both solvers ensure probability 1 for
a large range of TS, i.e., TS . 75% for N = 63, and TS . 85% for N = 1023.
Analogously to the HS setting, spgl1 tends to be much faster than omp-box for
large values of N and as TS decreases (see Figure 2.8, right).
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Figure 2.8: Numerical performance of R-CORSING in the SH case on the model problem (2.18)
with exact solution u∗5: error strips for N = 63 (a), and N = 1023 (b), using omp-box (left) and
spgl1 (center); corresponding computing times (right).
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Figure 2.9: full-PG error analysis in the SH case on the model problem (2.18) with exact solu-
tion w defined in (2.29): L2(Ω)-norm (a) and H1(Ω)-seminorm (b). The light lines refer to the
trends predicted in Proposition 2.4.

Convergence of full-PG and R-CORSING for regular exact solutions The CORSING
approach in the SH case turns out to be really effective when the odd extension
of the solution has high regularity. Consider, for example, the function

w(x) = x3(1− x)3, ∀x ∈ [0,1] (2.29)

and set W = w odd its odd extension on [−1,1]. It is easy to check that W ∈ C3
p,2,

defined in (2.20). Moreover, the fourth-order derivative W (4) of W is infinitely
differentiable except for a finite set of jumps on [−1,1). Differentiating four
times the Fourier series of W term-by-term, we get that the Fourier coefficients
satisfy

|(̂W (4))k | ∼ |Ŵk | |k|4.

Exploiting the same argument as in Remark 2.3.5 on W (4), we have the asymp-

totic decay |(̂W (4))k | ∼ |k|−1 and, henceforth, |Ŵk | ∼ |k|−5. With considerations
analogous to the ones in the proof of Proposition 2.4, we obtain

inf
v∈span(SN )

‖w − v‖Hk(Ω) = O(N−4.5+k) for k = 0,1,

thus predicting a convergence rate higher than those in Proposition 2.4.
In Figure 2.9, we numerically check that full-PG ensures this best-approxi-

mation trend, by computing the relative error with respect to the L2(Ω)-norm
and H1(Ω)-seminorm on problem (2.18) with exact solution w. The order of
convergence is O(N−4.5) for the L2(Ω)-norm and O(N−3.5) for the H1(Ω)-semi-
norm (marked lines in Figure 2.9).

As expected, the regularity of W positively affects the performance of R-
CORSING as well, as shown in Figure 2.10, where the same quantities as in
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Figure 2.10: Numerical performance of R-CORSING on the model problem (2.18) with exact
regular solution w defined in (2.29): error strips for N = 63 using omp-box (left) and spgl1
(center); corresponding computing times (right).

Figure 2.8 are shown. In particular, we choose N = 63, and we carry out 200
runs for each value of TS.

These results can be carried over to the more general case where w in (2.29)
is replaced by

w(x) = xr(1− x)r ,

and W = w odd is its odd extension, for any integer r. It can be checked that the
i-th order derivative of w vanishes at x = 0 and x = 1, for i ≤ r, whereas it is
non-zero when i > r. Thus, W ∈ Crp,2 if r is odd and W ∈ Cr−1

p,2 if r is even. The

resulting convergence rates are O(N−(r+1.5−k)) for r odd, and O(N−(r+0.5−k)) for r
even, with respect to the Hk(Ω)-norm, with k = 0,1.

D-CORSINGHS vs R-CORSING SH

We now compare D-CORSING and R-CORSING, under some special conditions.
We first consider the case when the solution to the differential problem is ex-
actly sparse, i.e., it coincides with an element of the trial space, and is a lin-
ear combination of few trial functions. Although this case rarely occurs in ac-
tual situations, it is very useful for assessing a sort of consistency of CORSING.
Then, we check the performance of CORSING when the solution to the differen-
tial problem is characterized by a minimal regularity, i.e., it is only in H1(Ω).
Finally, we assess the accuracy of CORSING, namely, the dependence of the ap-
proximation error on m, in comparison with the best m-term approximation
error in the trial space.

CORSING robustness on sparse solutions We assess the CORSING ability to re-
cover sparse solutions. For this purpose, we fix N = 255 and we denote by s
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Figure 2.11: ESP as a function of m/N and s/N .

the sparsity of the solution to problem (2.18), namely, the number of trial func-
tions involved in the definition of u. Successively, we vary independently m
and s between 1 and N . For each pair, (m,s), we perform 100 runs of CORSING
with an s-sparse randomly generated exact solution. In particular, the indices
of the non-zero coefficients are picked via a uniform probability while the val-
ues of these coefficients follow a standard normal distribution. In the case of
R-CORSING, for each pair, (m,s), them test functions are randomly selected once
for each run, according to the weights in (2.27). For both CORSING approaches,
we employ only the (P0) solver.

We expect that, for m < s, CORSING is hardly able to provide us with the
exact solution. The number of measurements has to match at least the number
of non-zero components.

CORSING robustness is assessed by computing the ESP index, shown in Fig-
ure 2.11, where the white cells are associated with the value 1, whereas black
boxes correspond to the value 0.6 Ideally, the black and white regions should be
separated by the diagonal of the square with an optimal value of the white area
equal to 0.5. By comparing D-CORSING with R-CORSING, we can appreciate the
benefits due to the randomization of the CORSING procedure. In fact, the area
of the white zone is 0.13 in Figure 2.11, (a), while it reaches the value 0.29 in

6In this case, the ESP definition (2.28) needs a clarification: due to the exact s-sparsity of the solution,
the first cluster has been identified by means of a strong condition, namely only the corsed-PG solutions
characterized by an error less than 1e-12 with respect to theH1-seminorm have been considered correctly
recovered.
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Figure 2.11, (b).

Remark 2.3.7 (Tuning of the test selection weights). Now that we presented
both the error analysis with respect to TS (Figure 2.8) and the assessment of
the CORSING on sparse solutions (Figure 2.11), we are in a position to provide
further considerations regarding the choice of the weights wi in Algorithm 2.1.
Let us briefly explain the procedure followed to derive recipe (2.27). First, we
suppose the weights to follow a decay law of the form

wi = 2−C`(i)

forC = 0,0.25, . . . ,1.75,2. For each value ofC, we perform the same ESP analysis
as in Figure 2.11, (b) on exactly sparse solutions. In particular, the correspond-
ing areas of the white region are

C 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Area 0.31 0.32 0.31 0.30 0.29 0.24 0.21 0.19 0.18

This would apparently lead us to the choice C = 0.25, corresponding to the
maximum area. Nevertheless, if we perform an error analysis as in Figure 2.8
on u∗5 for each value of K , it turns out that the mean error associated with the
corsed-PG solutions in the first cluster is lower as C approaches the value 2.
Due to this controversial situation we opted for a trade-off value, i.e., C = 1 as
in (2.27). For a rigorous investigation about the weights selection, we refer to
Chapter 3.

CORSING robustness on low regular solutions Let us consider problem (2.18)
with exact solution

u(x) =


11x − 7 if

7
11
≤ x < 8

11

−11
2
x+ 5 if

8
11
≤ x < 10

11
0 otherwise,

(2.30)

which belongs to the space H s(Ω), for every s < 3/2. We compare the perfor-
mance of D-CORSING HS and R-CORSING SH, paying particular attention to
the coefficients of the corsed-PG solution. Besides computing the errors with
respect to the L2(Ω)-norm and H1(Ω)-seminorm, we are also interested in as-
sessing how the vector ûNm approximates vector u in RN .

We take N = 255, TS = 50% (corresponding to m = 127), and consider the
minimization (P0) only. In the R-CORSING case, only one single run is carried
out. We consider the parameter s = ‖ûNm‖0 as furnished in output by the omp-

box package, based on the sparse Matlab
® format. Actually, s is computed via
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Figure 2.12: Comparison between û255
127 and u for the low regular exact solution (2.30).

Method s ‖u − ûNm ‖L2(Ω) |u − ûNm |H1(Ω) ‖u− ûNm‖2
D-CORSING HS 106 6.1e-04 6.6e-01 3.5e-01
R-CORSING SH 127 5.5e-03 1.6e+00 1.6e+00

Table 2.1: Comparison between D-CORSINGHS and R-CORSING SH with u defined in (2.30).

the command nnz. This value can be assumed as a measure of the computa-
tional cost of the CORSING procedure, because it corresponds to the number of
components of ûNm activated by the greedy algorithm OMP.

The results are shown in Figure 2.12 and in Table 2.1. Since the exact solu-
tion (2.30) has low regularity, the best approximation error in SN decays slowly
[CQ82] and the resulting vector u is poorly compressible. In fact, the largest
components in absolute value of u are well captured by the corsed-PG solution,
whereas the long tail of the smaller coefficients is not captured at all, and causes
some noise in the high frequencies of the corsed-PG solution ûNm (Figure 2.12,
(b)). On the contrary, the low regularity of u does not affect the performance
of D-CORSING HS . The main components of the sparse vector u are almost
perfectly captured by ûNm , as highlighted in Figure 2.12, (a).

Table 2.1 also confirms that D-CORSING HS outperforms R-CORSING SH.
We point out that even though the number, s, of components activated by OMP
is similar in the two cases, the number of meaningful components of ûNm , i.e.,
with absolute value grater than 10−3, is very different, being 38 in the HS case,
and 119 in the SH case.
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Figure 2.13: Comparison between û255
127 and u for the exact solution defined in (2.31).

Remark 2.3.8. An example analogous to that just examined can be carried out by
considering an exact solution that contains few significative frequencies, e.g.,

u(x) = sin(69π(x − 1
4 ))x(1− x). (2.31)

The results in Figure 2.13 show that R-CORSING SH is a better choice than D-
CORSING HS , since in the D-CORSING HS case the solution is not sparse at
all.

CORSING vs best m-term approximation error We assess the behavior of CORS-
ING with respect to the best m-term approximation error. For this purpose, we
recall some results of nonlinear approximation theory following [DeV98].

Let U = span{ψj}j∈N, and

σs(u)H1 = inf
ws∈Us

|u −ws|H1(Ω) (2.32)

be the best s-term approximation error in the H1(Ω)-seminorm, where

Us =
⋃

J⊆N, |J |≤s
span{ψj}j∈J

is the set of vectors that are linear combinations of at most s trials. In the case
when the trials {ψj} are orthonormal with respect to a scalar product, the “inf”
in (2.32) turns out to be a “min” and is realized byws, the vector associated with
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the s largest coefficients of u, expanded in terms of {ψj}. Without the orthonor-
mality of the basis, the computation of the best s-term approximation error
could be a challenging issue [DeV98]. Exploiting the orthonormality property
in CORSING, σs(u)H1 is easily computable identifying the space U with HL or
SN , for L,N →∞, since the basis functions {ψj} are orthonormal with respect
to the inner product,

∫
Ω
u′v′ dx, inducing the H1(Ω)-seminorm.

To actually compare CORSING with the best m-term approximation error,
we consider problem (2.18) with exact solution u∗1. To estimate σm(u)H1 , we
compute the first N coefficients of u∗1 with respect to the basis {ψj} for some
N � N , and then we evaluate the H1(Ω)-seminorm of the difference between
u∗1 and the function spanned by the m trials associated with the m largest coef-
ficients out of theN . The coefficients with respect to the hat trial functions are
computed symbolically, while those associated with the sine functions through
the Matlab

® command dst.
We assume N = 255 and m = 7,15,31,63,127,255, and employ the (P0)

solver. In the R-CORSING case, 100 runs of the same test are performed for
each value of m. The error |ûNm − u|H1(Ω) is compared with σs(u)H1 with s = m.
This choice is due to the fact that, as it can be checked numerically, the spar-
sity, s = ‖ûNm‖0, of the corsed-PG solution ûNm is always very close to m. In this
particular test case, for D-CORSING, ‖ûNm‖0 = m for every value of m, whereas
with R-CORSING the mean values of ‖ûNm‖0 (rounded to the nearest integer) are
7,15,30,60,119,255 for m = 7,15,31,63,127,255, respectively.

In Figure 2.14, we compare |ûNm − u|H1(Ω) with σm(u)H1 . We observe that the
CORSING error reaches the best m-term approximation error only for m = N in
both CORSING approaches. However, the decay rate of |ûNm − u|H1(Ω) is faster
than σm(u∗1)H1 , especially in the HS case.

Comparison with an SVD-based approach

In order to certify, to some extent, the new proposed approach, we compare
CORSING with a reduction strategy based on the SVD factorization [GL13].
This choice is motivated by some recent model order reduction techniques, such
as the Proper Orthogonal Decomposition (see, e.g., [KV02]), which exploit the
SVD factorization.

Here, we compare the CORSING method with an SVD-based reduction tech-
nique, hereafter denoted by SVD-Reduction. Like CORSING, this approach is
split into an assembly and a recovery phase. The first phase essentially coin-
cides with the assembly phase of CORSING, setting m = N (i.e., we build the
full-PG stiffness matrix A) followed by a further step, where we compute the
SVD factorization of such a matrix, A = UΣVᵀ with U,V ∈ CN×N unitary ma-
trices and Σ = diag(σ1,σ2, . . . ,σN ) ∈ CN×N collecting the singular values σi of A,
in decreasing order. We finally compute the m-th order truncation of the SVD
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Figure 2.14: Error analysis of CORSING and comparison with the best m-term approximation
error.

factorization, i.e., we replace A with

Ã = ŨΣ̃Ṽᵀ,

where Ũ,Ṽ ∈ CN×m contain the first m columns of U and V, respectively, and Σ̃
is the leading principal m ×m submatrix of Σ. As an alternative procedure for
the assembly phase, we refer to [Ose10, Gra10].

The recovery phase aims at computing an approximation ũNm to the full-PG
solution uNN , by resorting to the Moore-Penrose pseudo-inverse Ã+ of Ã as

ũNm = Ã+f = ṼΣ̃
+

Ũᵀf,

where f ∈ CN is the full load vector, Σ̃
+

= diag(σ+
1 , . . . ,σ

+
m) with σ+

i = 1/σi if σi , 0
and zero otherwise [GL13].

We apply both CORSING and SVD-Reduction to problem (2.18) with exact
solution u∗5, considering both the HS and SH settings and by employing omp-

box and spgl1. The results are shown in Table 2.2, where we gather the relative
error in the L2(Ω)-norm, the value of ESP for R-CORSING, and the recovery
time trec, for different levels of test savings, and for N = 1023. The values are
computed as the mean over 200 runs.

The SVD reduction leads to the most accurate results in all cases thanks
to the effective low-rank approximation properties of the SVD decomposition,
and it seems to be less sensitive to the compression level. On the other hand,
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TS
omp-box spgl1 SVD

rel. err. ESP trec rel. err. ESP trec rel. err. trec tsvd
HS (D-CORSING vs SVD-Reduction)

5% 7.0e-06 - 4.9e-01 7.9e-06 - 1.3e-01 2.1e-06 6.5e-02

8.5e-01
25% 8.3e-06 - 4.8e-01 8.2e-06 - 1.2e-01 2.1e-06 5.3e-02
45% 8.7e-06 - 4.3e-01 3.1e-05 - 9.7e-02 2.2e-06 6.2e-02
65% 3.5e-05 - 7.2e-02 1.4e-04 - 9.1e-02 2.9e-06 2.8e-02
85% 1.4e-03 - 3.3e-02 1.1e-03 - 5.5e-02 1.7e-05 1.3e-02

SH (R-CORSING vs SVD-Reduction)
5% 1.0e-06 1.00 1.7e+00 9.3e-07 1.00 7.2e-01 2.0e-07 6.5e-02

8.7e-01
25% 1.5e-06 1.00 9.7e-01 1.1e-06 1.00 6.6e-01 3.0e-07 4.9e-02
45% 7.3e-06 1.00 3.7e-01 5.3e-06 1.00 8.0e-01 6.4e-07 6.8e-02
65% 3.7e-05 1.00 9.9e-02 2.5e-05 1.00 6.5e-01 2.0e-06 4.4e-02
85% 7.0e-04 1.00 2.6e-02 5.7e-04 1.00 6.0e-01 1.6e-05 1.8e-02

Table 2.2: Quantitative comparison between CORSING and SVD-Reduction.

TS
CORSING SVD-Reduction

A f A f SVD
HS (D-CORSING vs SVD-Reduction)

5% 8.7e-02 5.3e-04

9.5e-02 6.2e-04 8.5e-01
25% 6.8e-02 6.2e-04
45% 5.2e-02 3.7e-04
65% 3.2e-02 3.2e-04
85% 1.6e-02 3.6e-04

SH (R-CORSING vs SVD-Reduction)
5% 9.7e-02 3.0e-03

1.3e-01 3.0e-03 8.7e-01
25% 8.2e-02 2.3e-03
45% 5.9e-02 1.8e-03
65% 3.8e-02 1.3e-03
85% 2.3e-02 8.4e-04

Table 2.3: Computing times for CORSING and SVD-Reduction for the assembly phase.
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the recovery computing times are in general comparable. Nonetheless, the bot-
tleneck of the SVD is the computing time of the factorization (denoted by tsvd
in Table 2.2) (the times in the table refer to the Matlab

® command svd). In par-
ticular, the asymptotic trend of tsvd is O(N 3), on the order of minutes already
for N ' 4000. In Table 2.3, we investigate in more detail the computing time
of the whole assembly phase, by comparing CORSING with SVD-Reduction. The
times required by the assembling of A and f is substantially comparable for all
the approaches. However, SVD-Reduction has a non-neglibile computational
burden (i.e., at least one order larger with respect to the assembling times of A
and f) due to the SVD algorithm.

Moreover, the memory needed by SVD-Reduction to store Ũ,Ṽ, Σ̃ is even
double with respect to the memory requirement of CORSING, which stores only
matrix A ∈ Rm×N . Finally, we notice that CORSING can be implemented in
a matrix-free version, because the solvers omp-box and spgl1 only require a
matrix-vector multiplication. On the contrary, this is not the case of the SVD-
Reduction.

After the extensive numerical assessment of CORSING on the one-dimen-
sional Poisson problem just carried out, we slightly increase the difficulty of the
test case, dealing with an advection-diffusion equation.

2.3.2 A 1D advection-diffusion problem

We are now interested in testing CORSING on the following advection-diffusion
problem {

−ηu′′ + bu′ = 0 in Ω= (0,1)
u(0) = 0, u(1) = 1,

(2.33)

completed with non-homogeneous Dirichlet boundary conditions, and study-
ing the behavior of the corsed-PG solution ûNm in the presence of a high global
Péclet number Pe = b/(2η) � 1, with b the advective field. In particular, the
solution to (2.33) exhibits a layer of thickness O(η/b) at the boundary x = 1.
The non-homogeneous condition at x = 1 is dealt with a standard lifting, which
allows us to employ both theHS and the SH settings, in a straightforward way.

CORSING validation on an advection-dominated problem The results are shown
in Figure 2.15 for two choices of N and m (i.e., of TS) for Pe = 25, where a zoom
in on the numerical solution in the range 0.9 ≤ x ≤ 1 is highlighted. In all cases,
the method spgl1 is used. D-CORSING in theHS case is considered in (a), while
in (b) we show, for the SH case, a strip delimited by the minimum and the
maximum for every x of the R-CORSING solution over 200 random runs, along
with the associated mean. The D-CORSING solution exhibits a quite standard
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Figure 2.15: CORSING validation on the advection-diffusion problem (2.33): D-CORSING in the
HS framework (a), R-CORSING in the SH setting (b).

behavior according to the chosen discretization step h = 1/64. On the other
hand, the strip related to the R-CORSING solution is rather thin, despite the
high value of the test savings (70%). This corroborates the reliability of the
R-CORSING approach even for a large compression level and for an advection-
dominated problem.

CORSING vs FE We assess the accuracy of CORSING applied to problem (2.33)
with Pe = 200 (corresponding to η = 1 and b = 400) and compare its perfor-
mance to those of a FE method, employing standard P1 elements on a uniform
grid.

We fix N = 2047 and let TS vary from 10% to 80%. The CORSING results
are compared with those obtained via FE for a step size equal to 1/(m + 1), to
preserve the number of tests. Only omp-box is employed in the recovery phase
and the relative error with respect to theH1(Ω)-seminorm is considered. For R-
CORSING, the values are computed as a mean over 100 runs. Moreover, we also
assess the performance of R-CORSING HS , using weights wi = 1/i (empirically
tuned as explained in Remark 2.3.7).

The results are shown in Table 2.4. We observe that the accuracy of D-
CORSING HS and R-CORSING SH is comparable with that of the FE solution
for moderate values of TS, whereas R-CORSING HS is able to outperform FE,
especially when TS becomes large. We can still appreciate the benefits due to
randomization by comparing the results of D-CORSINGHS and R-CORSINGHS .
It is remarkable that the R-CORSING HS accuracy is constant (up to the second
significant digit) with respect to TS.

As a final remark, we stress that the HS approach is more effective than
the SH one because the sparsity of the exact solution with respect to the corre-
sponding trial basis is emphasized in the former case. In Figure 2.16, we plot
the coefficients of the exact lifted solution with respect to HN and SN . In the
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TS m
FE D-CORSING HS R-CORSING HS R-CORSING SH

H1-rel. err. H1-rel. err. H1-rel. err. ESP H1-rel. err. ESP
10% 1842 5.0e-02 6.0e-02 6.0e-02 1.00 3.4e-02 1.00
20% 1638 5.5e-02 8.0e-02 6.0e-02 1.00 4.2e-02 1.00
30% 1433 6.1e-02 9.2e-02 6.0e-02 1.00 5.4e-02 1.00
40% 1228 6.8e-02 1.6e-01 6.0e-02 1.00 1.0e-01 1.00
50% 1024 7.6e-02 4.0e-01 6.0e-02 1.00 1.3e-01 1.00
60% 819 8.6e-02 4.0e-01 6.0e-02 1.00 1.7e-01 1.00
70% 614 9.6e-02 2.6e+01 6.0e-02 1.00 3.2e-01 1.00
80% 409 1.0e-01 2.2e+01 6.0e-02 1.00 6.9e-01 1.00

Table 2.4: Quantitative comparison between CORSING and FE accuracy.
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Figure 2.16: Coefficients of the lifted exact solution to problem (2.33), with η = 1 and b = 400,
with respect to the basisH2047 (top) and S2047 (bottom).

first case (top) the vector is clearly sparse, whereas in the second case (bottom)
the components exhibit only a strong decay.

2.4 Extension to the 2D case

The generalization of CORSING to the 2D case is not straightforward. In partic-
ular, we shall tackle in more detail the selection of the trial and test functions.

Analogously to the 1D case, we select two distinct bases, one associated with
the space domain, the other with the frequency domain. In this section, the
domain is the unit square Ω = (0,1)2.

Pyramids In order to discretize the spatial domain, we consider a hierarchical
multi-scale basis of pyramids, defined as follows. The reference pyramid is
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Figure 2.17: The basis P 1 (a); the basis S3 (b).

P (x) :=



x1 if x ∈ E1

x2 if x ∈ E2
1
2 − x1 + x2 if x ∈ E3
1
2 + x1 − x2 if x ∈ E4

1− x2 if x ∈ E5

1− x1 if x ∈ E6

0 otherwise.
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1

The dyadic translation of level ` and multi-index k = (k1, k2) is the pyramid

P `,k(x) = P (2`x−k), (2.34)

for ` ∈ N and k ∈ 1
2Z

2, such that 0 ≤ k1, k2 < 2` with ({k1}, {k2}) , (1
2 ,

1
2 ), where {λ}

denotes the fractional part of λ ∈ R. We notice that |P `,k |H1(Ω) = 1, ∀`,k.
For a fixed maximum level L, we denote this basis by

P L = {P `,k : 0 ≤ ` ≤ L}.

The cardinality of P L is equal to (2L+1 − 1)2, after discretizing the domain Ω

with a three-directional structured mesh of uniform size h = 1/2L+1. Each level
` contains |P ` | − |P `−1| = 22`3 − 2`+1 elements. In Figure 2.17, (a), we show the
elements of P 1.
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2D Sines The basis associated with the frequency domain consists of the tensor
product of sinusoidal functions, i.e.,

Sr(x) =
2

π‖r‖2
sin(r1πx1)sin(r2πx2), (2.35)

with r = (r1, r2) ∈ N2, and 1 ≤ r1, r2 ≤ R for some integerR ≥ 1. The normalization
constant ensures that |Sr |H1(Ω) = 1. This basis is denoted by

SR := {Sr : 0 ≤ r ≤ R}.

The elements of S3 are plotted in Figure 2.17, (b).7

In the 2D case, the ordering of the basis functions plays a crucial role. In-
deed, this choice affects the D-CORSING and the R-CORSING strategies, that both
depend on how the trials ψj and the tests ϕi are ordered.

For P L, we adopt the lexicographic ordering on the multi-index (`,k) =
(`,k1, k2), i.e.,

(0,0,0), (1,0,0), (1, 1
2 ,0), (1, 1

2 ,1), (1,1,0), . . . , (L,2L − 1,2L − 1).

For SR, we use a diagonal arrangement on r = (r1, r2), i.e.,

(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), . . . , (R,R).

In practice, the multi-index (r1, r2) is ordered such that the sum r1+r2 is increas-
ing, and, for a fixed sum, the lexicographic order is used.

We now apply the CORSING procedure as described in Section 2.2. Analo-
gously to the 1D case, we cast D-CORSING in a PS (Pyramid vs S ine) setting,
i.e., we pick

ψj = P `(j),k(j) and ϕi = Sr(i),

whereas, due to aliasing, R-CORSING is employed in a SP (S ine vs Pyramid)
setting such that

ψj = Sr(j) and ϕi = P `(i),k(i) .

In the R-CORSING case, the weights for the test selection procedure are empiri-
cally chosen as

wi = 2−`(i).

to favour the lower levels.
7In principle, this notation could generate some ambiguity with the family of one-dimensional sine

functions. Nevertheless, in the next developments, the dimension considered will be totally clear from
the context.
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Figure 2.18: The exact solution u∗ to (2.36).

Remark 2.4.1. The Matlab
® implementation of the 2D CORSING requires some

care, especially in assembling the stiffness matrix A. For this purpose, we em-
ploy a symbolic approach where explicit formulas for Aij are first computed via
the symbolic toolbox and then evaluated using a vectorization programming
to avoid loops which unavoidably slow down the performance of the Matlab

®

scripts (see also Section 2.2.2).

2.4.1 The model 2D Poisson problem

First, we focus on the Poisson problem, with Dirichlet homogeneous boundary
conditions {

−∆u = f in Ω = (0,1)2

u = 0 on ∂Ω,
(2.36)

with
f (x) =

1
15

[x1(1− x1) + x2(1− x2)].

The exact solution to (2.36) is the bubble function

u∗(x) = 1
30(x1 − x2

1)(x2 − x2
2) (2.37)

plotted in Figure 2.18. This example is taken from [JMPY10].
In Figure 2.19, we show some results of D-CORSING applied to problem

(2.36) in the PS case. The number of trials is fixed toN = 961, corresponding to
L = 4 maximum hierarchical levels. Then, the number m of tests is chosen such
that TS assumes the values 85%, 90% and 95%. For each combination of N and
m, both spgl1 and omp-box are used. The color plots of the resulting corsed-PG
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Figure 2.19: Numerical performance of D-CORSING in the PS case: L2(Ω)-norm relative error
and color plot of the corsed-PG solution using omp-box (top), and spgl1 (bottom).

solutions are provided along with the values of the relative errors with respect
to the L2(Ω)-norm. The results are promising, especially for spgl1, considering
the high level of compression. Indeed, we have a sufficiently accurate approx-
imation of the true solution for TS . 90%, that corresponds to using at least
m = 96 tests out of 961 available functions. The omp-box solver is also able to
capture the main features of u∗, except for some localized noise. As expected,
the error increases as TS grows, and it is larger in the case of omp-box.

We check now the performance of R-CORSING in the SP setting, resorting
to SR with R = 31, and with N = 312 = 961 trials (see Figure 2.20). In order
to assess the influence of randomization, we carry out three random experi-
ments for each of the three choices of TS. omp-box shows the best performance,
whereas spgl1 seems more sensitive to randomization as well as to the com-
pression level. Moreover, omp-box provides more accurate corsed-PG solutions
than spgl1 does.

A possible justification of the different results in Figures 2.19 and 2.20 is the
different sparsity of the coefficients of the exact solution (2.37) with respect to
the pyramid or sine basis. If the trials are the sine functions, the resulting vector
ûNN , with N = 961, associated with the SP approach is much sparser than the
vector characterizing the PS expansion (see Figure 2.21).
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Figure 2.20: Numerical performance of R-CORSING in the SP case: L2(Ω)-norm relative error
and color plot of the corsed-PG solution using omp-box (top panel), and spgl1 (bottom panel).
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Figure 2.21: Absolute value of the first 100 coefficients of the full-PG solution ûNN to problem
(2.36), with N = 961: PS approach with L = 4 (top); SP formulation with R = 31 (bottom).

2.4.2 A 2D advection-dominated example

After the assessment conducted on the 2D Poisson model problem, we evaluate
the CORSING performances on the following 2D advection-dominated problem{

−η∆u + b · ∇u = f in Ω = (0,1)2,

u = 0 on ∂Ω,
(2.38)

where b = [1,1]ᵀ, 0 < η � 1 and the forcing term is computed so that the exact
solution be

u∗η(x) = Cη(x1 − x2
1)(x2 − x2

2)(ex1/η + ex2/η − 2), (2.39)

where Cη > 0 is chosen such that

max
x∈Ω

u∗η(x) = 1.

The function u∗η exhibits two boundary layers along the edges {x1 = 1} and {x2 =
1} of Ω, that become thinner and thinner as η approaches the critical value zero,
corresponding to a pure transport problem (see Figure 2.22).
Remark 2.4.2 (Condition number of the full-PG stiffness matrix). We numeri-
cally estimate the condition number associated to the full-PG discretization of
problem (2.38), with η = 0.1. We consider L = 1,2,3,4,5, corresponding to
R = 3,7,15,31,63 and a stiffness matrix of dimension N = 9,49,225,961,3969,
respectively. In both the PS and SP cases, the condition number grows pro-
portionally toN 1/2 (Figure 2.23), i.e., proportionally to 1/h, where h is the mesh
diameter associated with the last hierarchical level (` = L) of pyramids. This is
remarkable, since employing the FE method, the condition number would grow
faster, proportionally to 1/h2 (see [QV08, Section 6.3.2]).
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Figure 2.22: The exact solution u∗η to (2.38) for η = 0.05,0.01.
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Figure 2.23: Condition number of the stiffness matrix associated with the full-PG PS and SP
approaches applied to problem (2.38), with µ = 0.1.
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Figure 2.24: Absolute value of the coefficients of the full-PG solution ûNN to problem (2.38), with
η = 0.05 and N = 3969: PS approach with L = 5 (top); SP formulation with R = 63 (bottom).

2.4.3 CORSING performance

In this case, we choose the SP combination for trials and tests. Indeed, u∗η is
much sparser with respect to the sine functions than the pyramids. In par-
ticular, in Figure 2.24 we provide the full-PG solution coefficients in ûNN with
η = 0.05 and N = 3969 (corresponding to R = 63 and L = 5) for the PS case
(top) and the SP case (bottom). We notice that the SP coefficients exhibit a
faster decay than PS and that the most significant coefficients are essentially
the first thousand. This situation leads us to adopt the R-CORSING SP strategy
in order to reach higher TS rates and a substantial cost reduction with respect
to the full-PG approach, as shown in Section 2.4.4.

In the first numerical test, we set η = 0.05 and N = 3969. The results are
shown in Figure 2.25. For each value of TS = 80%, 85%, 87.5%, 50 random ex-
periments have been performed using the omp-box solver in the recovery phase,
to guarantee faster performances for high TS values. The resulting ESP and the
mean relative error with respect to the L2(Ω)-norm of the solutions in the first
cluster are provided. Moreover, in order to show the robustness of the method
even in the worst case scenario, for each value of TS we show the color plot of
the solution characterized by the highest relative error in the first cluster. We
can appreciate that, even for extremely high compression levels, the boundary
layers are well captured and that the ESP values are very high (always greater
than 0.92). We also notice that, as TS increases, a small noise appears where the
solution is smooth. However, this does not spoil the results.

As a last numerical assessment, we select η = 0.01 and R = 127, correspond-
ing to L = 6 and N = 16129. The values of TS are 85% and 90%, and, for each of
them, 50 random experiments are performed. The results are organized simi-
larly to those of the previous experiment and they are shown in Figure 2.26. We
have an experimental confirmation that CORSING can be successfully applied
to advection-dominated problems also in the two-dimensional case, also with
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Figure 2.25: Assessment of R-CORSING SP on problem (2.38), with η = 0.05: worst solution in
the first cluster (right).
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ESP = 1.00
L2-rel. err. = 7.1e-02

L2−rel. err. = 7.2e−02
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Figure 2.26: R-CORSING SP applied on problem (2.38), with η = 0.01: worst solution in the first
cluster (right).
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Problem Bases
full-PG CORSING

A f trec TS A f trec

(2.36)
N = 961

SP 4.5e+00 8.8e-03 3.7e-02
85% 6.1e-01 5.3e-03 1.7e-02
90% 3.8e-01 4.5e-03 1.3e-02
95% 2.1e-01 4.4e-03 1.0e-02

PS 4.4e+00 2.8e-03 3.1e-02
85% 6.0e-01 8.9e-04 2.4e-02
90% 3.7e-01 8.5e-04 1.5e-02
95% 1.9e-01 8.4e-04 9.5e-03

(2.38)
SP 1.4e+02 2.9e-01 1.1e+00

80% 2.9e+01 1.2e-01 2.1e+00
η = 0.05 85% 2.3e+01 9.5e-02 1.1e+00
N = 3969 87.5% 1.8e+01 8.4e-02 9.3e-01

(2.38)
η = 0.01
N = 16129

SP 2.5e+03 9.1e-01 7.1e+01
85% 3.8e+02 2.7e-01 8.1e+01
90% 2.5e+02 2.0e-01 3.4e+01

Table 2.5: Comparison between full-PG and CORSING computing times in the 2D case.

very high TS rates. Also in this case, a small noise appears in the smooth region
for TS = 90%, but the boundary layers are well captured even in the worst case
scenario of this challenging problem.

2.4.4 Analysis of cost reduction with respect to the full-PG approach

The two-dimensional setting is better suited than the one-dimensional case to
appreciate the cost reduction provided by the CORSING method with respect
to the full-PG approach, both in the assembly and in the recovery phase. In
particular, regarding the recovery phase, we restrict our attention to the omp-

box solver, since it exhibits faster performances than spgl1 for high values of TS.
The recovery phase of full-PG is instead performed using the Matlab

® command
\ (backslash).

The results are shown in Table 2.5. All the reported times are expressed in
seconds and they have been computed as mean values over 50 repeated experi-
ments. The time to perform the symbolic computations to build A and f is not
considered. In the recovery phase, the backslash command is a tough nut to
crack, especially considering that omp-box is not a built-in Matlab

® function.
Nevertheless, the OMP algorithm is able to run four times faster for N = 961
and TS = 95% and two times faster for N = 16129 and TS = 90%. In the second
case, the gain in recovery time is non-negligible as well. However, the speed-up
is dramatic for the assembly computing times, especially if we compare those
needed to assemble the stiffness matrix A. In fact, in all cases, the speed-up
is around one order of magnitude. In particular, for N = 16129 the assembly
phase of full-PG employs around 40 minutes, while that of CORSING with TS =
90%, only 4 minutes. Finally, there is also a memory burden associated with the
full-PG approach, not reported in the table. For example, for N = 16129, A has
260144641 full entries, and its storage requires 1.94 GB, while, for CORSING
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with TS=90%, the memory space required is only 198 MB.

The extensive numerical assessment carried out in this chapter shows the
robustness and the reliability of the CORSING method applied to one- and two-
dimensional ADR equations. Now, the next goal is to understand and formalize
the empirical recipes just discovered in a rigorous way. This will be the intent
of Chapter 3.





Chapter 3

A theoretical study of CORSING

The goal of this chapter is to set up a theoretical analysis of R-CORSING, (here
simply referred to as CORSING) providing sufficient conditions for convergence,
and formalizing the empirical recipes given in Chapter 2. With this aim, we in-
troduce a novel variant of the classical inf-sup condition (see Section 2.1.1),
where the infimum is considered among the sparse elements of the trial space
and the supremum over a small test space. We refer to this condition as Re-
stricted Inf-Sup Property (RISP), since it combines the inf-sup condition and the
Restricted Isometry Property (RIP) of CS, discussed in Section 1.2.1. Another
important tool of the analysis below is the concept of local a-coherence, a gen-
eralization of the local coherence (see Section 1.2.5) to bilinear forms on Hilbert
spaces. In particular, we have been inspired by the results reviewed in Sec-
tion 1.2.6, where an optimal recovery result for CS, with non-uniform random
subsampling based on the local coherence, is proved for the Haar and Fourier
discrete bases.

The great potential of the theory presented in this chapter is that the number
of tests m grows linearly or, at most, quadratically with respect to the sparsity
s of the CORSING solution and only logarithmically with respect to the total
dimension N of the trial space, making the CORSING method appealing for
problems where the total number of degrees of freedom N is huge, but one is
interested in recovering only the most significant s � N coefficients with re-
spect to a suitable trial basis. For example, in the case of solutions exhibiting
few features (details) arising in unknown regions of the domain, which, in prin-
ciple, need a severe mesh refinement to be captured, thus making a FE direct
numerical simulation very expensive.

A significant part of this chapter corresponds to the work in [BNMP15].

Outline of the chapter In Section 3.1, we formalize the CORSING procedure,
defining all the input/output variables involved in the algorithm. The theo-
retical analysis based on the RISP is presented in Section 3.2, together with an

93
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optimal RIP result. Then, the application of the theory to advection-diffusion-
reaction equations is discussed in Section 3.3. In Section 3.4, we provide some
additional numerical results.

3.1 Formalizing the CORSING procedure

In this section, after setting up the notation, we formalize the COmpRessed
SolvING procedure, in short, CORSING, introduced in Chapter 2.

3.1.1 Notation

Consider two separable Hilbert spaces, U = span{ψj}j∈N and V = span{ϕq}q∈N,
generated by the bases {ψj}j∈N and {ϕq}q∈N, respectively, and equipped with the
inner products (·, ·)U and (·, ·)V . Given two positive integers N andM, we define
the finite dimensional truncations of U and V , which represent the trial and
test space, respectively, as

UN := span{ψj}j∈[N ] and VM := span{ϕq}q∈[M].

The spaces UN and VM are associated with the full-PG discretization (see Sec-
tion 2.1.2). Notice that, contrarily to the previous chapter, M and N can pos-
sibly be distinct (usually, M ≥ N ). We denote the span of the basis functions
relative to a given subset of indices S ⊆ [N ] as

UN
S := span{ψj}j∈S .

Given a positive integer s ≤ N , we also define the set UN
s of s-sparse functions

ofUN with respect to the basis {ψj}j∈[N ] as the set of all functions that are linear
combinations of at most s basis functions, namely

UN
s :=

⋃
S⊆[N ]; |S|=s

UN
S .

We stress that UN
s is not a vector space. Indeed, the sum of two s-sparse ele-

ments is in general 2s-sparse. The sets VM
T and VM

m are defined analogously, for
every T ⊆ [M] and m ≤M.

We denote by U ∗ and V ∗ the dual spaces of U and V , respectively.
In order to define the reconstruction and decomposition operators, we need

{ψj}j∈N and {ϕq}q∈N to be Riesz bases.

Definition 3.1 (Riesz basis). A sequence {ψj}j∈N ⊆U is a Riesz basis if it is com-
plete in U and there exist two constants 0 < cψ ≤ Cψ <∞ such that

cψ‖u‖22 ≤
∥∥∥∥∥∑
j∈N

ujψj

∥∥∥∥∥2

U
≤ Cψ‖u‖22, ∀u ∈ `2. (3.1)
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In practice, condition (3.1) states that the U -norm of a function and the
`2-norm of its coefficients with respect to the basis {ψj}j∈N are equivalent. Anal-
ogous constants relative to the basis {ϕq}q∈N are denoted cϕ and Cϕ. For more
details about Riesz bases, we refer the reader to [Chr02].

We can introduce now the reconstruction and decomposition operators. These
allow us to switch between functions and the corresponding coefficients in the
basis expansion.

Definition 3.2. The reconstruction operator Ψ : `2 → U related to a Riesz basis
{ψj}j∈N of U associates the linear combination

u = Ψ u :=
∞∑
j=1

ujψj ,

with a sequence u = (uj)j∈N ∈ `2. The decomposition operator Ψ ∗ :U → `2 applied
to a given function u ∈U is defined componentwise as

(Ψ ∗u)k := (u,ψ∗k)U , ∀k ∈ N,

where {ψ∗k}k∈N is the basis biorthogonal to {ψj}j∈N, namely, (ψj ,ψ∗k)U = δj,k, ∀j,k ∈
N.

The reconstruction operator Φ and the decomposition operator Φ∗ associ-
ated with the basis {ϕq}q∈N of V are defined analogously.

Remark 3.1.1. We observe that ΨΨ ∗ = IdU and Ψ ∗Ψ = Id`2 .

Throughout the chapter, we will focus on the weak problem (2.1), assuming
the bilinear form a :U×V → R to fulfil the continuity property (2.3), the inf-sup
property (2.4), and property (2.5), that ensure the validity of Theorem 2.2.

3.1.2 Main hypotheses

We will use three assumptions throughout the chapter.

Hypothesis 1 (Orthonormal tests). The test basis {ϕq}q∈N is an orthonormal sys-
tem of V .

Hypothesis 1 is not strictly necessary, but it makes the exposition simpler.
Indeed, all the results shown in this chapter can be generalized assuming {ϕq}q∈N
to be a Riesz basis. Of course, the Riesz constants cϕ and Cϕ should be appro-
priately tracked throughout the proofs.

We generalize the notion of local coherence (see Section 1.2.5) to bilinear
forms defined over Hilbert spaces.
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Definition 3.3 (Local a-coherence µN ). Given N ∈ N∪ {∞}, the real-valued se-
quence µN defined as

µNq := sup
j∈[N ]
|a(ψj ,ϕq)|2, ∀q ∈ N,

is called local a-coherence of {ψj}j∈[N ] with respect to {ϕq}q∈N.

The second hypothesis concerns the local a-coherence.
Hypothesis 2 (Summability of µN ). The local a-coherence of {ψj}j∈[N ] with re-
spect to {ϕq}q∈N fulfills the summability condition

‖µN ‖1 < +∞,

or, equivalently, µN ∈ `1.
Notice that Hypothesis 2 does not hinge on the ordering considered for the

elements of the truncated trial basis {ψj}j∈[N ].
The last hypothesis concerns an explicit upper bound to the local a-coherence.

Hypothesis 3 (Upper bound νN ). For every N ∈ N, we assume to have a com-
putable componentwise upper bound νN to the local a-coherence µN , i.e., a
real-valued sequence such that

µNq ≤ νNq , ∀q ∈ N.

For every M ∈ N, we define the vector νN,M ∈ RM as the restriction of νN to the
first M components. Moreover, we require that

• the vector νN,M /‖νN,M‖1 is efficiently computable for every N,M ∈ N;

• there exists a real bivariate polynomial P such that

‖νN,M‖1 . P (logN, logM).

The upper bound νN needs not be sharp.

3.1.3 The CORSING procedure

The CORSING procedure is summarized in Algorithm 3.1. Let us now describe
in more detail the input/output variables and the main steps of the method.

INPUT

• N : dimension of the trial space;

• s�N : number of trial coefficients to recover;

• upper bound νN in Hypothesis 3 and four positive constants γ̂ , Ĉ, γ , andC
used to select the dimensionM of the test space and them tests to perform.
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OUTPUT

• û ∈ UN
s : approximate s-sparse solution to (2.1).

1. Definition of M and m The test space dimension M and the number m of
tests to perform are chosen as functions of N and s as

M = Ĉsγ̂N, m = Csγ‖νN,M‖1 log(N/s).

In Section 3.2, we prove the existence of suitable values for the constants γ̂ , Ĉ,
γ that ensure the CORSING algorithm to recover the best s-term approximation
to u in expectation and in probability. In Section 3.2 we prove that γ = 1,2
are valid choices, and in Section 3.3 we perform a sensitivity analysis on the
constants Ĉ and C for some specific differential problems and with γ = 1,2.
On the contrary, the value of γ̂ seems to depend on the trial and test bases
considered.

2. Test selection In order to formalize the test selection procedure, we intro-
duce a probability space (Ω,E ,P) and consider τ1, . . . , τm as i.i.d. discrete random
variables taking values in [M], namely

τi : Ω→ [M], ∀i ∈ [m].

Moreover, given a vector p = (pq)q∈[M] ∈ [0,1]M such that ‖p‖1 = 1, the probabil-
ity law is defined as

P{τi = q} = pq, ∀q ∈ [M].

Throughout the chapter, the vector p will be assumed to be of the form

p :=
νN,M

‖νN,M‖1
, (3.2)

where the values for νN,M are known from Hypothesis 3.
Notice that the independence of the indices τ1, . . . , τm is assumed in order to

simplify the theoretical analysis. With this choice, we are admitting repetitions
that, in principle, should be avoided. The case of indices without repetitions is
discussed in Section 3.2.7

3. Assembly In this phase, we build the stiffness matrix A ∈ Rm×N and the load
vector f ∈ Rm associated with the PG discretization of (2.1), defined as

Aij := a(ψj ,ϕτi ), fi := F (ϕτi ), ∀j ∈ [N ], ∀i ∈ [m]. (3.3)

Moreover, the matrix D ∈ Rm×m is a diagonal preconditioner, depending on the
vector p as

Dik :=
δik√
mpτi

, ∀i ∈ [m]. (3.4)
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Algorithm 3.1

PROCEDURE û = CORSING (N , s, νN , γ̂ , Ĉ, γ , C)

1. Definition of M and m

• M← Ĉsγ̂N ;

• m← Csγ‖νN,M‖1 log(N/s);

2. Test selection

• p← νN,M /‖νN,M‖1;

• Draw τ1, . . . , τm independently at random from [M] according to p;

3. Assembly

• Build A, f and D, defined in (3.3) and (3.4), respectively;

4. Recovery

• Find an approximate solution û to min
v∈RN

‖D(Av− f)‖22, s.t. ‖v‖0 ≤ s;

• û← Ψ û.

4. Recovery The discrete CORSING solution û is defined as an approximate
solution to

min
v∈RN

‖D(Av− f)‖22, s.t. ‖v‖0 ≤ s, (3.5)

where ‖ · ‖0 is the `0-norm, defined as in (1.1). Consequently, the CORSING solu-
tion is defined as û := Ψ û. An equivalent functional formulation of (3.5) is

min
v∈UN

s

m∑
i=1

1
mpτi

[a(v,ϕτi )−F (ϕτi )]
2. (3.6)

We recall that problem (3.5) is NP-hard, thus computationally intractable. In
practice, its solution is approximated employing the greedy algorithm Orthog-
onal Matching Pursuit (OMP), described in Section 1.2.3.

The reason for this choice is twofold. First, using OMP we can easily con-
trol the parameter s, i.e., the sparsity of the compressed solution û. Second, the
time complexity of the OMP algorithm is easily estimated, namely O(smN ) for
basic implementations and O(sN logN ) using fast transforms. On the contrary,
the complexity of `1-minimization (see Section 1.1.3) depends on the particu-
lar algorithm used to solve the corresponding Linear Programming and it is not
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easily quantifiable. All the numerical experiments made in this chapter are per-
formed using the omp-box Matlab

® package, version 10 - see [RZE08, Rub09].
In Section 3.2.4, we will carry out a recovery error analysis in the ideal sce-

nario where û is supposed to solve (3.6) exactly. The case of û computed via
OMP is discussed in Section 3.2.6.

3.2 Theoretical analysis

3.2.1 Preliminary results

The main statistical tools employed in this chapter are Chernoff bounds for
matrices, introduced by H. Chernoff during the early 50’s in the scalar form
[Che52], and generalized to the matrix setting by R. Ahlswede and A. Winter in
2003 [AW02]. These bounds have been recently generalized in 2012 by J. Tropp
in [Tro12].

First, we present the main result employed in our analysis. The proof of the
following theorem can be found in [Tro12, Corollary 5.2].

Theorem 3.4 (Matrix Chernoff bounds). Consider a finite sequence of i.i.d. ran-
dom, symmetric s × s real matrices X1, . . . ,Xm such that

0 ≤ λmin(Xi) and λmax(Xi) ≤ R almost surely, ∀i ∈ [m].

Define X :=
1
m

m∑
i=1

Xi , Emin := λmin(E[Xi]) and Emax := λmax(E[Xi]). Then,

P{λmin(X) ≤ (1− δ)Emin} ≤ sexp
(
−mξδEmin

R

)
, ∀δ ∈ [0,1], (3.7)

P{λmax(X) ≥ (1 + δ)Emax} ≤ sexp
(
−mξ̃δEmax

R

)
, ∀δ ≥ 0,

with
ξδ := (1− δ) log(1− δ) + δ, ξ̃δ := (1 + δ) log(1 + δ)− δ. (3.8)

Notice that both constants ξδ, ξ̃δ ∼ δ2 when δ→ 0.
We conclude this section by recalling few results that will be repeatedly used

in the next proofs.

Lemma 3.5. If A,B ∈ Rd×d are symmetric and B is also positive definite, it holds

λmin(B−
1
2 AB−

1
2 ) = inf

u∈Rd
uᵀAu
uᵀBu

, (3.9)

λmax(B−
1
2 AB−

1
2 ) = sup

u∈Rd

uᵀAu
uᵀBu

. (3.10)
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Lemma 3.6. Consider a generic set X. The infimum and the supremum on X fulfil
the following properties

sup
x∈X

1/f (x) = 1/ inf
x∈X

f (x), ∀f : X→ (0,+∞), (3.11)

sup
x∈X

f (x)g(x) ≤ sup
x∈X

f (x) sup
x∈X

g(x), ∀f ,g : X→ [0,+∞), (3.12)

inf
x∈X

(f (x)− g(x)) ≥ inf
x∈X

f (x)− sup
x∈X

g(x), ∀f ,g : X→ R. (3.13)

3.2.2 Non-uniform restricted inf-sup property

This section coincides with the core of the chapter, providing an analysis of the
CORSING algorithm.

We fix a subset S := {σ1, . . . ,σs} ⊆ [N ] of cardinality s.
We denote the space of vectors of RN supported in S as RNS , namely

RNS := {u ∈ RN : uj = 0, ∀j < S}.

Moreover, we introduce some further notation.

Definition 3.7 (Matrices K, KS and AS ). We define the matrix K ∈ RN×N as

Kjk := (ψj ,ψk)U ,

and its restriction KS ∈ Rs×s to S as

(KS )jk := (ψσj ,ψσk )U .

Moreover, we denote by AS ∈ Rm×s the submatrix of A consisting only of the
columns with indices in S .

We observe that K is symmetric and positive definite (s.p.d.) and fulfills

uᵀKu = ‖Ψ u‖2U , ∀u ∈ RN , (3.14)

where the reconstruction operator in (3.14) is implicitly restricted from `2 to
RN (equivalently, the vector u is extended to `2 by adding zeros for j > N ). The
matrix KS is also s.p.d. and satisfies the relation

uᵀ
SKSuS = uᵀKu, ∀u ∈ RNS ,

where uS ∈ Rs is the restriction of u to S , namely (uS )j = uσj , for every j ∈ [s].

We introduce the Gram matrix G∞S relative to the restriction of a(·, ·) to UN
S ×

V∞.
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Definition 3.8 (Matrix G∞S ). Define the matrix G∞S ∈ R
s×s such that

(G∞S )jk :=
∞∑
q=1

a(ψσj ,ϕq)a(ψσk ,ϕq), ∀j,k ∈ [s],

where the series are well defined thanks to Hypothesis 2 and (G∞S )jk ≤ ‖µN ‖1,
for every j,k ∈ [s].

The first lemma provides a relation between the inf-sup constant α associ-
ated with the bilinear form a(·, ·), corresponding to (2.4), and the Gram matrix
G∞S .

Lemma 3.9. Suppose that the bilinear form a(·, ·) fulfills the inf-sup property (2.4).
Then, it holds

λmin(K
− 1

2
S G∞S K

− 1
2
S ) ≥ α2.

Proof. The following chain of inequalities holds

α ≤ inf
u∈U

sup
v∈V

a(u,v)
‖u‖U‖v‖V

≤ inf
u∈UN

S

sup
v∈V

a(u,v)
‖u‖U‖v‖V

= inf
u∈RNS

sup
v∈`2

1

‖K 1
2 u‖2‖v‖2

∞∑
q=1

a(Ψ u,ϕq)vq = inf
u∈RNS

1

‖K 1
2 u‖2

 ∞∑
q=1

a(Ψ u,ϕq)
2


1
2

.

The first inequality is property (2.4), while the second inequality follows from
taking the infimum over a subset of U . The first equality is obtained by ex-
panding u and v with respect to the bases {ψj}j∈S and {ϕq}q∈N, respectively;
moreover, we use relations (3.14) and ‖v‖2 = ‖v‖V implied by Hypothesis 1. The
last equality can be deduced by applying the definition of operator norm

sup
v∈`2

1
‖v‖2

∞∑
q=1

a(Ψ u,ϕq)vq = ‖(a(Ψ u,ϕq))q∈N‖(`2)∗

and by identifying (`2)∗ with `2. Now, since all the quantities involved in the
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chain of inequalities are positive, we can square the terms

α2 ≤ inf
u∈RNS

1
uᵀKu

∞∑
q=1

a(Ψ u,ϕq)
2 = inf

u∈Rs
1

uᵀKSu

∞∑
q=1

 s∑
j=1

uja(ψσj ,ϕq)


2

= inf
u∈Rs

1
uᵀKSu

∞∑
q=1

s∑
j=1

s∑
k=1

ujuka(ψσj ,ϕq)a(ψσk ,ϕq)

= inf
u∈Rs

1
uᵀKSu

s∑
j=1

s∑
k=1

ujuk

∞∑
q=1

a(ψσj ,ϕq)a(ψσk ,ϕq)

= inf
u∈Rs

uᵀG∞S u
uᵀKSu

= λmin(K
− 1

2
S G∞S K

− 1
2
S ).

We have expanded Ψ u and identified u with its restriction to S . Then, we
have exchanged the summations thanks to Hypothesis 2 and Fubini-Tonelli’s
theorem. Successively, we have used the definition of G∞S together with relation
(3.9).

The second lemma provides a recipe on how to choose the truncation level
M on the tests, after selecting N and s.

Lemma 3.10. Under the same hypotheses as in Lemma 3.9, we fix a real number
δ̂ ∈ [0,1). Then, if M ∈ N satisfies the truncation condition

s
∑
q>M

µNq ≤ α2λmin(KS )δ̂, (3.15)

the following inequality holds

λmin(K
− 1

2
S GM

S K
− 1

2
S ) ≥ (1− δ̂)α2,

where GM
S ∈ R

s×s is the truncated version of G∞S , namely

(GMS )jk :=
M∑
q=1

a(ψσj ,ϕq)a(ψσk ,ϕq). (3.16)

Proof. First, consider the splitting G∞S = GM
S +TMS , where TMS corresponds to the

tail of the series identifying G∞S ,

(TMS )jk =
∑
q>M

a(ψσj ,ϕq)a(ψσk ,ϕq).
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Now, notice that

λmin(K
− 1

2
S GM

S K
− 1

2
S ) = λmin(K

− 1
2
S (G∞S −TMS )K

− 1
2
S )

≥ λmin(K
− 1

2
S G∞S K

− 1
2
S )−λmax(K

− 1
2
S TMS K

− 1
2
S ).

The inequality can be proved using Lemma 3.5 and exploiting property (3.13).
Applying Lemma 3.9, we obtain

λmin(K
− 1

2
S GM

S K
− 1

2
S ) ≥ α2(1−λmax(K

− 1
2
S TMS K

− 1
2
S )/α2).

Thus, the thesis is proved if we bound the maximum eigenvalue of the tail as
follows

λmax(K
− 1

2
S TMS K

− 1
2
S ) ≤ δ̂α2.

For this purpose, we compute

λmax(K
− 1

2
S TMS K

− 1
2
S ) = sup

u∈Rs

uᵀTMS u
uᵀKSu

= sup
u∈Rs

1
uᵀKSu

s∑
j=1

s∑
k=1

ujuk
∑
q>M

a(ψσj ,ϕq)a(ψσk ,ϕq)

= sup
u∈Rs

1
uᵀKSu

∑
q>M

 s∑
j=1

uja(ψσj ,ϕq)


2

≤ sup
u∈Rs

uᵀu
uᵀKSu

s
∑
q>M

µNq =
1

λmin(KS )
s
∑
q>M

µNq .

We start from definition (3.10). Then, by exploiting Hypothesis 2 and Fubini-
Tonelli’s theorem, combined with Cauchy-Schwarz inequality, the definition of
µN , of (3.9) and of (3.11), we obtain the desired result under hypothesis (3.15).

This lemma provides a sufficient condition on the truncation parameter M
that ensures an arbitrarily small decrease of the inf-sup constant α by a factor
(1− δ̂)

1
2 . Moreover, a valueM that fulfills (3.15) always exists thanks to Hypoth-

esis 2. Relation (3.15) can be also interpreted as a sufficient condition for the
space VM to be δ-proximal for UN

S , with constant δ = δ̂
1
2 (see [DHSW12]).

Now, we prove the main result of this section.

Theorem 3.11 (Non-uniform RISP). Let the truncation condition in Lemma 3.10
hold. Then, for every 0 < ε < 1 and δ ∈ [0,1), provided that

m ≥ C̃S s‖νN,M‖1 log(s/ε),
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where C̃S := [ξδ(1 − δ̂)α2λmin(KS )]−1 and ξδ is defined according to (3.8), the fol-
lowing non-uniform RISP holds with probability greater than or equal to 1− ε

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

> α̃ > 0, (3.17)

where α̃ := (1− δ̂)
1
2 (1− δ)

1
2α and D is defined as in (3.4).

Proof. The proof is organized as follows. First, we show that the inf-sup in
(3.17) can be interpreted as the square root of the minimum eigenvalue of the
sample mean of a sequence of certain i.i.d. random matrices Xτ1 , . . . ,Xτm . Then,
we compute the expectation of Xτi and show that the maximum eigenvalue of
Xτi is uniformly bounded. Finally, we apply the matrix Chernoff bound (3.7).

Let us discuss each step of the proof in detail. First, we compute

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

= inf
u∈Rs

1

‖K
1
2
Su‖2

sup
v∈Rm

vᵀDASu
‖v‖2

= inf
u∈Rs
‖DASu‖2

‖K
1
2
Su‖2

= [λmin(K
− 1

2
S Aᵀ

SD2ASK
− 1

2
S )]

1
2 .

The second equality hinges on the definition of operator norm combined with
the identification of (Rm)∗ with Rm while the third one exploits (3.9).

Relying on the following relation,

[Aᵀ
SD2AS ]jk =

1
m

m∑
i=1

1
pτi
a(ψσj ,ϕτi )a(ψσk ,ϕτi ),

we define the matrices Hτi ∈ Rs×s with Hτi
jk := 1

pτi
a(ψσj ,ϕτi )a(ψσk ,ϕτi ) and

Xτi := K
− 1

2
S HτiK

− 1
2
S ,

so that

X :=
1
m

m∑
i=1

Xτi = K
− 1

2
S Aᵀ

SD2ASK
− 1

2
S .

Thus, it holds

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

= [λmin(X)]
1
2 . (3.18)

With a view to the Chernoff bounds, we estimate E[Xτi ] and the correspond-
ing minimum eigenvalue. A direct computation yields

E[Hτi
jk] =

M∑
q=1

P{τi = q}Hq
jk =

M∑
q=1

pq
1
pq
a(ψσj ,ϕq)a(ψσk ,ϕq) = GMjk .
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As a consequence, we have

E[Xτi ] = E[K
− 1

2
S HτiK

− 1
2
S ] = K

− 1
2
S E[Hτi ]K

− 1
2
S = K

− 1
2
S GM

S K
− 1

2
S ,

i.e., from Lemma 3.10,
λmin(E[Xτi ]) ≥ (1− δ̂)α2. (3.19)

Our aim is now to bound λmax(Xτi ) from above. We have

λmax(Xτi ) = sup
u∈Rs

uᵀHτiu
uᵀKSu

≤ sup
u∈Rs

uᵀu
uᵀKSu

sup
u∈Rs

uᵀHτiu
uᵀu

= [λmin(KS )]−1 sup
u∈Rs

1
uᵀu

s∑
j=1

s∑
k=1

ujuk
1
pτi
a(ψσj ,ϕτi )a(ψσk ,ϕτi )

= [λmin(KS )]−1 1
pτi

sup
u∈Rs

1
uᵀu

 s∑
j=1

uja(ψσj ,ϕτi )


2

≤ [λmin(KS )]−1 ‖νN,M‖1
νNτi

s∑
j=1

a(ψσj ,ϕτi )
2

≤ [λmin(KS )]−1 s ‖νN,M‖1. (3.20)

The first line follows from (3.10) and property (3.12). The equalities in the sec-
ond and in the third line are algebraic manipulations. The fourth line exploits
Cauchy-Schwarz inequality combined with definition (3.2) of p, and the last
one relies on Hypothesis 3.

Now, we compute the probability of failure of satisfying (3.17), i.e.,

P

 inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

≤ α̃

 = P
{
λmin(X) ≤ (1− δ)(1− δ̂)α2

}
≤ P{λmin(X) ≤ (1− δ)λmin(E[Xτi ])} ≤ sexp

(
−

mξδλmin(E[Xτi ])
s‖νN,M‖1[λmin(KS )]−1

)
≤ sexp

− mξδ(1− δ̂)α2

s‖νN,M‖1[λmin(KS )]−1

 . (3.21)

The first equality relies on (3.18) and on the definition of α̃. The first inequal-
ity in the second line hinges on (3.19), while the second inequality is the first
matrix Chernoff bound (3.7), where the uniform estimate (3.20) has been em-
ployed. The final inequality follows from (3.19).
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The thesis is finally proved on estimating that

sexp

− mξδ(1− δ̂)α2

s‖νN,M‖1[λmin(KS )]−1

 ≤ ε⇐⇒m ≥ C̃S s‖νN,M‖1 log(s/ε),

with C̃S := [ξδ(1− δ̂)α2λmin(KS )]−1.

3.2.3 Uniform restricted inf-sup property

We extend the results in the previous Section to the uniform case, i.e., we aim at
proving the RISP overUN

s , instead ofUN
S , for a fixed subset S ⊆ [N ] with |S| = s.

For this purpose, we use the non-uniform Theorem 3.11 and a union bound.
First, we recall the definition of the set ΣNs of s-sparse vectors of RN , namely

ΣNs := {x ∈ RN : ‖x‖0 ≤ s} ≡
⋃

S⊆[N ]; |S|=s
RNS .

The following theorem provides a sufficient condition for the uniform RISP
to hold.

Theorem 3.12 (Uniform RISP). Given δ̂ ∈ [0,1), choose M ∈ N such that the fol-
lowing truncation condition is fulfilled

s
∑
q>M

µNq ≤ α2κsδ̂, (3.22)

where
κs := min

S⊆[N ]; |S|=s
λmin(KS ). (3.23)

Then, for every 0 < ε < 1 and δ ∈ [0,1), provided

m ≥ C̃s s‖νN,M‖1[s log(eN/s) + log(s/ε)], (3.24)

with
C̃s := [ξδ(1− δ̂)α2κs]

−1 (3.25)

and ξδ as in (3.8), the following uniform s-sparse RISP holds with probability greater
than or equal to 1− ε

inf
u∈ΣNs

sup
v∈Rm

vᵀDAu

‖K 1
2 u‖2‖v‖2

> α̃ > 0,

where α̃ := (1− δ̂)
1
2 (1− δ)

1
2α.
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Proof. First, we define the event where the RISP holds non-uniformly over a
single subset S ⊆ [N ] with |S| = s:

ΩS :=

ω ∈Ω : inf
u∈Rs

sup
v∈Rm

vᵀD(ω)AS (ω)u

‖K
1
2
Su‖2‖v‖2

> α̃

 ,
where the dependence of AS and D on ω has been highlighted. Analogously,
we define the event where the RISP holds uniformly

Ωs :=

ω ∈Ω : inf
u∈ΣNs

sup
v∈Rm

vᵀD(ω)A(ω)u

‖K 1
2 u‖2‖v‖2

> α̃

 . (3.26)

In particular, the following relation holds

Ωs =
⋂

S⊆[N ]; |S|=s
ΩS ,

and, thanks to the subadditivity of P and De Morgan’s laws, we have

P(Ωc
s) = P

((⋂
ΩS

)c)
= P

(⋃
Ωc
S

)
≤

∑
S⊆[N ]; |S|=s

P(Ωc
S ), (3.27)

where the superscript c denotes the complement of a set. Now, the non-uniform
inequality (3.21) and the definition (3.23) of κs yield the following uniform
upper bound

P(Ωc
S ) ≤ sexp

− mξδ(1− δ̂)α2

s‖νN,M‖1[λmin(KS )]−1

 ≤ sexp

−mξδ(1− δ̂)α2

s‖νN,M‖1κ−1
s

 . (3.28)

Moreover, Stirling’s formula furnishes the following upper bound

|{S ⊆ [N ] : |S| = s}| =
(
N
s

)
=

N !
s!(N − s)!

≤ N
s

s!
≤

(eN
s

)s
. (3.29)

Combining (3.27), (3.28) and (3.29), we finally obtain the uniform estimate

P(Ωc
s) ≤

(eN
s

)s
sexp

−mξδ(1− δ̂)α2

s‖νN,M‖1κ−1
s

 . (3.30)

Simple algebraic manipulations show that the right hand-side of (3.30) is less
than or equal to ε if and only if relation (3.24) holds.
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Remark 3.2.1. A lower bound for the quantity κs defined in (3.23) is provided
by the Riesz constant cψ, defined in (3.1). Indeed, Lemma 3.5 yields

λmin(KS ) = min
u∈RNS

uᵀKu
uᵀu

= min
u∈RNS

‖Ψ u‖22
‖u‖22

≥ cψ, ∀S ⊆ [N ],

where the representation operator Ψ is implicitly restricted from `2 to RN . As a
consequence, Theorem 3.12 can be restated in a weaker form, replacing κs with
cψ.

We note that the sufficient condition (3.24) is, in general, too pessimistic.
Indeed, in the classical literature on CS (see Section 1.2), the optimal asymptot-
ically dependence of m on s is linear (up to logarithmic factors). This lack of
optimality is due to the union bound, that is a very rough estimate. It is possi-
ble to achieve the optimal behavior by using more advanced tools, such as those
described in Section 1.2.7. This will be investigated in Section 3.2.5.

3.2.4 Recovery error analysis under the RISP

In this section, we deal with the analysis of the recovery error associated with
the CORSING procedure. The CORSING solution û is supposed to solve the min-
imization problem (3.6) exactly. Although this is an ideal scenario, since (3.6) is
NP-hard, it may be useful to understand such a situation. Moreover, this theo-
retical analysis highlights the fundamental role played by the RISP. The case of
û approximated via OMP (or `1-minimization) is discussed in Section 3.2.6.

The recovery error is computed with respect to the trial norm ‖ · ‖U and cor-
responds to the quantity ‖û − u‖U . Notice that this error is a random variable,
depending on the extracted indices τ1, . . . , τm. Our aim is to compare the recov-
ery error with the best s-term approximation error of the exact solution u in
UN , i.e., the quantity ‖us −u‖U , where

us := arg min
w∈UN

s

‖w −u‖U . (3.31)

Due to the s-sparsity constraint in the recovery procedure (3.5), us is the best
result that CORSING can ideally provide.1

For this purpose, we show that the uniform 2s-sparse RISP implies a re-
covery result, depending on a random preconditioned residual (Lemma 3.13),
whose second moment is controlled by the square of the best s-term approx-
imation error (Lemma 3.14). Afterwards, in Theorem 3.16, we prove that the
best s-term approximation error dominates the first moment of the error associ-
ated with a truncated version of the CORSING solution and, finally, we provide
a recovery error estimate that holds with high probability in Theorem 3.17.

1The quantity in (3.31) is actually a minimum and not an infimum, since the function w 7→ ‖w−u‖U is
convex and UNs is a finite union of linear subspaces.
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In the following, a key quantity is the preconditioned random residual

R(w) :=

 1
m

m∑
i=1

1
pτi

[a(w,ϕτi )−F (ϕτi )]
2


1
2

, ∀w ∈U. (3.32)

Now, we prove the two lemmas.

Lemma 3.13. If the uniform 2s-sparse RISP

inf
u∈ΣN2s

sup
v∈Rm

vᵀDAu

‖K 1
2 u‖2‖v‖2

> α̃ > 0, (3.33)

holds, then the CORSING procedure computes a solution û such that

‖û −us‖U <
2
α̃
R(us).

Proof. Define û := Ψ ∗û and us := Ψ ∗us. Then, casting (3.26) in Ω2s, since û−us

is at most 2s-sparse and thanks to the RISP property (3.33), and the definition
of operator norm, we have

‖û −us‖U = ‖K
1
2 (̂u−us)‖2 <

1
α̃

sup
v∈Rm

vᵀDA(̂u−us)
‖v‖2

=
1
α̃
‖DA(̂u−us)‖2.

Moreover, the last norm can be bounded as

‖DA(̂u−us)‖22 =
1
m

m∑
i=1

1
pτi
a(û −us,ϕτi )

2

=
1
m

m∑
i=1

1
pτi

[a(û,ϕτi )−F (ϕτi )− a(u
s,ϕτi ) +F (ϕτi )]

2

≤ 2
m

m∑
i=1

1
pτi
{[a(û,ϕτi )−F (ϕτi )]

2 + [a(us,ϕτi )−F (ϕτi )]
2}

≤ 4
m

m∑
i=1

1
pτi

[a(us,ϕτi )−F (ϕτi )]
2= 4R(us)2,

where the last inequality exploits the optimality of û.

Lemma 3.14. The following upper bound holds

E[R(us)2] ≤ β2‖us −u‖2U , (3.34)

where β is the continuity constant of a(·, ·) defined in (2.3).
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Proof. Thanks to (2.1), the residual (3.32) becomes

R(us)2 =
1
m

m∑
i=1

p−1
τi a(u

s −u,ϕτi )
2,

Thus, in expectation, we obtain

E[R(us)2] =
1
m

m∑
i=1

E[p−1
τi a(u

s −u,ϕτi )
2]. (3.35)

Each term in the last summation can be bounded as

E[p−1
τi a(u

s −u,ϕτi )
2] =

M∑
q=1

p−1
q a(u

s −u,ϕq)2pq ≤
∞∑
q=1

a(us −u,ϕq)2. (3.36)

Now, exploiting Hypothesis 1, we have

‖a(us −u, ·)‖V ∗ = sup
v∈V

|a(us −u,v)|
‖v‖V

= sup
v∈`2

|
∑∞
q=1 vqa(u

s −u,ϕq)|
‖v‖2

=

 ∞∑
q=1

a(us −u,ϕq)2


1
2

.

Plugging this equality and (3.36) in (3.35), and thanks to (2.3), we have

E[R(us)2] ≤ ‖a(us −u, ·)‖2V ∗ ≤ β
2‖us −u‖2U .

If an upper bound of the form ‖u‖U ≤ K is known, a near-optimal recov-
ery result holds in expectation for a truncation of the CORSING solution. This
truncation is obtained through the operator TK :U →U defined as

TKw :=
{
w if ‖w‖U ≤ K,
Kw/‖w‖U if ‖w‖U >K,

∀w ∈U. (3.37)

Using (2.1) and (2.4), a possible choice of K is ‖F ‖V ∗/α.
Then, we have the following lemma whose proof is straightforward.

Lemma 3.15. TK is 1-Lipschitz, with respect to ‖ · ‖U , for every K > 0.

Employing an argument similar to that used in [CDL13, CCM+15], we show
an upper bound to the error associated with the truncated CORSING solution.
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Theorem 3.16 (Error estimate in expectation). Let K > 0 be such that ‖u‖U ≤ K.
Given δ̂ ∈ [0,1), choose M ∈ N such that the truncation condition (3.22) is fulfilled
and fix δ ∈ [0,1). Then, for every 0 < ε < 1, provided

m ≥ 2 C̃2s s‖νN,M‖1[2s log(eN/(2s)) + log(2s/ε)], (3.38)

with C̃2s defined analogously to (3.25) and α̃ = (1 − δ̂)
1
2 (1 − δ)

1
2α, the truncated

CORSING solution TKû fulfills

E[‖TKû −u‖U ] <
(
1 +

2β
α̃

)
‖us −u‖U + 2Kε,

where β is the continuity constant of a(·, ·) defined in (2.3).

Proof. First, recalling the definition (3.26) of the event Ωs, and considering the
partitioning Ω = Ω2s ∪Ωc

2s, we have the splitting

E[‖TKû −u‖U ] =
∫
Ω2s

‖TK(û −u)‖U dP+
∫
Ωc

2s

‖TKû −u‖U dP .

Then, the second term is easily bounded as∫
Ωc

2s

‖TKû −u‖U dP ≤ 2Kε.

Indeed, thanks to the adopted choice ofm, Theorem 3.12 guarantees P(Ωc
2s) ≤ ε.

Moreover, ‖TKû − u‖U ≤ 2K, since both ‖TKû‖U and ‖u‖U are less than or equal
to K.

Now, employing Lemma 3.15 and the triangle inequality, we have∫
Ω2s

‖TK(û −u)‖U dP ≤
∫
Ω2s

‖û −u‖U dP ≤
∫
Ω2s

‖û −us‖U dP+
∫
Ω2s

‖us −u‖U dP .

The second integral on the right-hand side is less than or equal to the best s-
term approximation error ‖us − u‖U . In order to bound the first integral, we
apply Lemmas 3.13 and 3.14, obtaining∫

Ω2s

‖û −us‖U dP <
2
α̃

∫
Ω2s

R(us)dP ≤ 2
α̃
E[R(us)] ≤

2β
α̃
‖us −u‖U ,

where the last relation follows on applying Jensen’s inequality to (3.34). No-
tice that Lemma 3.13 can be employed since the 2s-sparse RISP holds on the
restricted domain Ω2s. Combining all the inequalities yields the thesis.

Finally, we provide a recovery estimate in probability. This is asymptoti-
cally optimal, but the constant grows like the inverse of the square root of the
probability of failure.
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Theorem 3.17 (Error estimate in probability). Given δ̂ ∈ [0,1), choose M ∈ N
such that the truncation condition (3.22) is fulfilled. Then, for every 0 < ε < 1 and
δ ∈ [0,1), provided

m ≥ 2C̃2s s‖νN,M‖1[2s log(eN/(2s)) + log(2s/ε)],

with C̃2s defined analogously to (3.25), with probability greater than or equal to
1− 2ε, the CORSING procedure computes a solution û such that

‖û −u‖U <
(
1 +

2β
α̃
√
ε

)
‖us −u‖U ,

where α̃ := (1−δ̂)
1
2 (1−δ)

1
2α and β is the continuity constant of a(·, ·) defined in (2.3).

Proof. Define es := ‖us − u‖U and the random variables Z := ‖û − u‖U and Zs :=
‖û −us‖U . Moreover, consider the quantity

bs :=
(
1 +

2β
α̃
√
ε

)
es. (3.39)

The goal is to show that P{Z ≥ bs} ≤ 2ε. The triangle inequality implies Z ≤
Zs + es. Thus,

P{Z ≥ bs} ≤ P{Zs ≥ bs − es}.
Moreover, defining the event Ω2s according to (3.26) and denoting by IA the
indicator function of a generic set A, we have

P{Zs ≥ bs − es} = E[I{Zs≥bs−es}] =
∫
Ω2s

I{Zs≥bs−es}dP+
∫
Ωc

2s

I{Zs≥bs−es}dP

≤
∫
Ω2s

I{Zs≥bs−es}dP+P{Ωc
2s}.

Theorem 3.12 implies P{Ωc
2s} ≤ ε. Moreover, employing Lemmas 3.13 and 3.14,

we can bound the first integral as∫
Ω2s

I{Zs≥bs−es}dP ≤
∫
Ω2s

I{(2/α̃)R(us)>bs−es}dP

< E
[

4R(us)2

α̃2(bs − es)2

]
≤

4β2e2
s

α̃2(bs − es)2 = ε,

where the last equality follows from (3.39).

We conclude this section with a useful corollary dealing with a particular
truncation condition. In practice, this corollary provides sufficient conditions
for Theorem 3.16 to hold. We will apply this result to some examples in Section
3.3.
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Corollary 3.18. Suppose that there exist two positive constants K̂ and γ̂ such that∑
q>M

µNq ≤ K̂
(N
M

)1/γ̂
, ∀M ∈ N. (3.40)

Then, for every ε ∈ (0,2−1/3] and for s ≤ 2N/e there exist two positive constants Ĉ
and C such that, for

M ≥ Ĉsγ̂N and m ≥ Cs‖νN,M‖1[s log(N/s) + log(s/ε)], (3.41)

the CORSING solution û fulfills

E[‖TKû −u‖U ] <
(
1 +

4β
α

)
‖us −u‖U + 2Kε,

for every K > 0 such that ‖u‖U ≤ K, with TK defined as in (3.37) and where α and β
are defined by (2.4) and (2.3), respectively. In particular, two possible upper bounds
for the constants Ĉ and C are

Ĉ ≤
(

2K̂
κsα2

)γ̂
and C ≤ 105

α2 ,

respectively, with κs defined in (3.23).

Proof. The idea is to choose δ = δ̂ = 1/2 and, as anticipated, to apply Theorem
3.16. First, notice that assumption (3.40) is consistent with Hypothesis 2, on
passing to the limit for M → +∞. In view of Theorem 3.16, we show that the
second inequality in (3.41) implies (3.38) with a suitable choice of C. Moreover,
the truncation condition (3.22), on which Theorem 3.16 relies on, is implied by

sK̂
(N
M

)1/γ̂
≤ α

2κs
2

,

which, in turn, is equivalent to

M ≥
(

2K̂
κsα2

)γ̂
sγ̂N.

Moreover, thanks to the assumptions on ε and s, we have

ε ≤ 2−1/3 =⇒ log(2s/ε) ≤ 4log(s/ε),
s ≤ 2N/e =⇒ log(eN/(2s)) ≤ 2log(N/s).
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Thus, recalling the right-hand side of (3.38), we have

2 C̃2s s‖νN,M‖1[2s log(eN/(2s))+log(2s/ε)]

≤ 8 C̃2s s‖νN,M‖1[s log(N/s) + log(s/ε)],

where C̃2s is defined analogously to (3.25). In particular, if C in (3.41) is chosen
such that

C ≤ 8 C̃2s =
32

(1− log2)α2 ≤
105
α2 ,

then (3.38) holds. Moreover, relation α̃ = (1− δ̂)
1
2 (1−δ)

1
2α yields α̃ = 1

2α, so that
the quantity 2β/α̃ in Theorem 3.16 can be replaced by 4β/α.

We conclude this section with some technical clarifications.
Remark 3.2.2. The assumptions ε ≤ 2−1/3 ≈ 0.79 and s ≤ 2N/e ≈ 0.74N made in
Corollary 3.18 are quite weak and they are chosen in such a way that the upper
bounds to Ĉ and C are easy to derive. Of course, more restrictive hypothe-
ses on ε and s would give sharper upper bounds for the asymptotic constants.
Moreover, the parameters δ̂ and δ could be chosen differently from δ = δ̂ = 1/2
and this would lead to different values for the constant in the recovery error
estimate.
Remark 3.2.3. If ε ≥ ss+1/N s, then s log(N/s)+log(s/ε) ≤ 2s log(N/s) and the term
log(s/ε) disappears from the inequality onm by doubling the constant C, giving
the trend

m ≥ C‖νN,M‖1s2 log(N/s),
claimed in Algorithm 3.1. This assumption on ε is not restrictive, since s� N
guarantees ss+1/N s� 1.
Remark 3.2.4. A result analogous to Corollary 3.18 holds in probability by re-
sorting to Theorem 3.17 instead of Theorem 3.16 in the proof.
Remark 3.2.5. Throughout all this chapter, the reconstruction and decompo-
sition operators Ψ and Ψ ∗ (see Definition 3.2) are restricted to RN ⊆ `2 and
UN ⊆U , respectively. Therefore, only the operators

Ψ |RN : RN →UN and Ψ ∗|UN :UN → RN

need to be well-defined and, consequently, the assumption that {ψj}j∈N be a
Riesz basis can be weakened. It is sufficient to suppose {ψj}j∈[N ] to be a Riesz
basis. Recalling relation (3.14) and Lemma 3.5, the Riesz constants can be ex-
plicitly computed as cψ = λmin(K) and Cψ = λmax(K).
Remark 3.2.6. Finally, we add a technical clarification with respect to the CS
framework. All the recovery results shown in this section are nonuniform in
the sense of instance optimality (see [FR13, Chapter 11]), since, whenever we
state a result in probability, we implicitly fix the operator F , and thus the exact
solution u.
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3.2.5 Restricted Isometry Property

We present an argument to prove that a linear dependence betweenm and s (up
to logarithmic factors) is sufficient to guarantee the RIP (and, thus, the RISP)
with high probability. The principal tool employed here is Theorem 1.21.

Theorem 3.19. Let s,N ∈ N, with s < N . Fix δ̂ ∈ (0,1) and suppose the truncation
condition (3.15) to be fulfilled with S = [N ].

Then, for every

δ ∈
(
1− (1− δ̂)

cψα
2

Cψβ2 ,1
)
, (3.42)

there exists a universal constant C such that, provided

m ≥ C̃N,Ms log3(s) log(N ),

and s ≥ C̃N,M log(N ), where

C̃N,M = Cmax{‖νN,M‖1,Cψβ2}C−1
ψ β

−2
(
δ − 1 + (1− δ̂)

cψα
2

Cψβ2

)−2

,

it holds
P{C−1/2

ψ β−1DA ∈ RIP(δ,s)} ≥ 1−N− log3(s).

Proof. This theorem is a direct application of Theorem 1.21, where the matrix
B is the stiffness matrix associated with the M ×N linear system of the full-PG
discretization, namely,

Bqj := a(ψj ,ϕq), ∀j ∈ [N ],∀q ∈ [M].

A direct computation immediately shows that

BᵀB = GM
[N ],

where GM
[N ] is defined according to (3.16), with S = [N ]. Then, we have

λmin(GM
[N ]) = min

u∈RN

uᵀGM
[N ]u

uᵀu
≥ cψ min

u∈RN

uᵀGM
[N ]u

ᵀ

uᵀKu

= λmin(K−
1
2 GM

[N ]K
− 1

2 ) ≥ (1− δ̂)cψα
2,

where the equalities are due to Lemma 3.5, the second relation is implied by
(3.1) and (3.14), and the last one follows combining Lemma 3.10 with the esti-
mate λmin(K) ≥ cψ (see also Remark 3.2.1).
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Moreover, exploiting the continuity (2.3) of a(·, ·), relation (3.1), and employ-
ing Lemma 3.5, we obtain

λmax(GM
[N ]) = sup

u∈RN

uᵀGM
[N ]u

uᵀu
= sup

u∈RN

1

‖u‖22

∑
j∈[N ]

∑
k∈[N ]

ujuk
∑
q∈[M]

a(ψj ,ϕq)a(ψk ,ϕq)

≤ sup
u∈UN

Cψ

‖u‖2U

∑
q∈[M]

a(u,ϕq)
2 ≤ Cψ sup

u∈UN

‖a(u, ·)‖2V ∗
‖u‖2U

≤ Cψβ2.

The thesis is now implied by Theorem 1.21, with r = (1− δ̂)cψα2 and R = Cψβ2.

Theorem 3.19 has several important consequences. First, we observe that
C−1/2
ψ β−1DA ∈ RIP(δ,s) is equivalent to

(1− δ)‖u‖22 ≤ ‖C
−1/2
ψ β−1DAu‖22 ≤ (1 + δ)‖u‖22, ∀u ∈ ΣNs ,

that, in turn, implies

C1/2
ψ β(1− δ)

1
2 ≤ inf

u∈ΣNs

‖DAu‖2
‖u‖2

= inf
u∈ΣNs

sup
v∈Rm

vᵀDAu
‖u‖2‖v‖2

,

i.e., the s-sparse RISP with constant α̂ = β(1−δ)1/2. Notice that, thanks to (3.42),
it holds 0 < α̂ < (1− δ̂)1/2cψα.

3.2.6 Recovery error analysis under the RIP

The RIP result stated in Theorem 3.19 implies important consequences for the
recovery error analysis of CORSING when problem (3.5) is approximated via
OMP. Employing Theorem 1.13, we prove a result analogous to Lemma 3.13,
where the RISP is replaced by the RIP.

Lemma 3.20. There exists K ∈ N, C >0 and δ ∈ (0,1) such that, for every s ∈ N, if

C−1/2
ψ β−1DA ∈ RIP(δ, (K + 1)s),

the OMP algorithm computes in Ks iterations a CORSING solution û that fulfills

‖û −us‖U ≤

√
2(1 +C)
β2(1− δ)

R(us),

where R(us) is defined as in (3.32). The constants K , C and δ are the same as in
Theorem 1.13.
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Proof. Define û := Ψ ∗û and us := Ψ ∗us and consider the constants K,C, and
δ as in Theorem 1.13. Then, using the RIP(δ, (K + 1)s), the fact that û − us is
(K + 1)s-sparse, and employing relation (3.1), we estimate

‖û −us‖2U ≤ Cψ‖û−us‖22 ≤
Cψ

Cψβ2(1− δ)
‖DA(̂u−us)‖22.

Then, analogously to the proof of Lemma 3.13, we estimate

‖DA(̂u−us)‖22 ≤
2
m

m∑
i=1

1
pτi
{[a(û,ϕτi )−F (ϕτi )]

2 + [a(us,ϕτi )−F (ϕτi )]
2}

≤ (1 +C)
2
m

m∑
i=1

1
pτi

[a(us,ϕτi )−F (ϕτi )]
2 = 2(1 +C)R(us)2,

where the second inequality is implied by Theorem 1.13 and the last equality
relies on (3.32).

Remark 3.2.7. Let s = Ks′, with s′ ∈ N. Then, Lemma 3.20 admits an equiva-
lent formulation where û is s-sparse and the RIP(δ, (K + 1)s) is replaced by the
RIP(δ,s+ s/K).

Following the same roadmap as in Section 3.2.4, Theorem 3.19 and Lem-
ma 3.20 can be combined with Lemma 3.14 to prove estimates in expectation
and in probability. In particular, by letting δ̂→ 0 in (3.42), we obtain an extra
condition on the constant δ in Lemma 3.20, i.e.,

δ > 1−
cψα

2

Cψβ2 . (3.43)

As discussed in [CDD15, Section 1], the constants K , C and δ of Lemma 3.20
are coupled. Therefore, a proper choice of K and C is able to guarantee (3.43).
However, in order to produce quantitative recovery results, the relation linking
the three constants should be made explicit.

Finally, thanks to Theorem 3.19, we can apply all the recovery results of CS
based on the RIP. For example, resorting to Proposition 1.6, we can recover the
best s-term approximation of the exact solution u using the (P1) sparse opti-
mization program2

û := arg min
w∈RN

‖w‖1 s.t. β−1C−1/2
ψ DAw = β−1C−1/2

ψ Df,

2The exact equality constraint corresponds to an idealistic scenario, but it is useful to understand the
situation qualitatively. In general, one should apply recovery results for the (Pε1) problem

û := arg min
w∈RN

‖w‖1 s.t. ‖β−1C−1/2
ψ D(Aw− f)‖2 ≤ ε,

such as, e.g., [FR13, Theorem 6.12].
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up to an error
‖û−u‖2 . s−

1
2σs(u)1.

Then, the crucial point is to characterize the `1-norm of u = Ψ ∗u at a function
level. This can be done, e.g., when {ψj}j∈N is a wavelet family thanks to the
Besov spaces (see [DeV98, Section 7.3]).

3.2.7 Avoiding repetitions during the test selection

We conclude the theoretical analysis by showing how the test selection step in
Algorithm 3.1 can be slightly optimized by avoiding repetitions of the indices
τi , i.e., performing the random drawings without replacement, as we did in the
previous chapter (see Algorithm 2.1). Indeed, if the presence of repeated test
indices is avoided, the resulting stiffness matrix A is guaranteed to have rankm,
i.e., the amount of information contained in the CORSING discretization Au = f
is optimal.

Due to the assumption of independence of τ1, . . . , τm, the theoretical results
of this chapter apply to the case of a test selection with replacement. Indeed,
in the case without replacement, τ1, . . . , τm become dependent. In [Tro11], the
Chernoff bounds are generalized to the case without replacement and with a
selection made according to a uniform probability density. In our setting, the
selection is based on a non-uniform probability density p and, unfortunately,
the Chernoff bounds have not been generalized to this case, so far.

Nevertheless, this problem can be overcome by suitably changing the pre-
conditioner D. The test selection procedure can be performed as follows:

1. keep drawing indices τi from [M] according to p independently at random
until m of them are distinct;

2. the result will be a set T := {τ1, . . . , τm′ } of m′ possibly repeated indices and
a subset T̃ := {τ̃1, . . . , τ̃m} of m distinct indices, with m ≤m′;

3. define the numbers of repetitions ri := |{k ∈ [m′] : τk = τ̃i}|, for every i ∈ [m].

The CORSING procedure can be applied using only the collection of non-repeated
indices τ̃1, . . . , τ̃m. The resulting stiffness matrix Ã ∈ Rm×N and load vector f̃ ∈ Rm
are defined analogously to the standard case

Ãij := a(ψj ,ϕτ̃i ), f̃i = F (ϕτ̃i ), ∀i ∈ [m], ∀j ∈ [N ],

whereas the definition of the diagonal preconditioner D̃ ∈ Rm×m is modified as
follows

D̃ik := δik

√
ri

m′pτ̃i
, ∀i,k ∈ [m].
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We show that the non-uniform RISP still holds when the test are not re-
peated, proving a result analogous to Theorem 3.11.

Theorem 3.21. Given δ̂ ∈ [0,1), choose M ∈ N such that the local a-coherence µN

fulfills the truncation condition (3.15). Then, for every ε > 0 and δ ∈ [0,1), provided

m ≥ C̃S s‖νN,M‖1 log(s/ε),

where C̃S := [ξδ(1 − δ̂)α2λmin(KS )]−1 and ξδ is defined according to (3.8), the fol-
lowing non-uniform RISP holds with probability greater than or equal to 1− ε

inf
u∈Rs

sup
v∈Rm

vᵀD̃ÃSu

‖K
1
2
Su‖2‖v‖2

> α̃ > 0,

where α̃ := (1− δ̂)
1
2 (1− δ)

1
2α.

Proof. The proof is identical to that of Theorem 3.11, thus we report only the
different parts. First, notice that

inf
u∈Rs

sup
v∈Rm

vᵀD̃ÃSu

‖K
1
2
Su‖2‖v‖2

= λmin(K
− 1

2
S Ãᵀ

SD̃2ÃSK
− 1

2
S ).

Moreover, it turns out that

Ãᵀ
SD̃2ÃS = Aᵀ

SD2AS ,

where A ∈ Rm′×N and D ∈ Rm′×m′ are the stiffness matrix and the preconditioner
relative to the indices τ1, . . . , τm′ considered with repetitions. Thus, we have

inf
u∈Rs

sup
v∈Rm

vᵀD̃ÃSu

‖K
1
2
Su‖2‖v‖2

= inf
u∈Rs

sup
v∈Rm′

vᵀDASu

‖K
1
2
Su‖2‖v‖2

.

Consequently, the probability of failure is

P

 inf
u∈Rs

sup
v∈Rm

vᵀD̃ÃSu

‖K
1
2
Su‖2‖v‖2

≤ α̃

 = P

 inf
u∈Rs

sup
v∈Rm′

vᵀDASu

‖K
1
2
Su‖2‖v‖2

≤ α̃


= P

{
λmin(X) ≤ (1− δ)(1− δ̂)α2

}
≤ P{λmin(X) ≤ (1− δ)λmin(E[Xτi ])}.
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Conditioning the probability given the events {m′ = k}, for k ∈ N, and employing
the matrix Chernoff bounds (Theorem 3.4) with the probabilities P{ · |m′ = k},
we obtain

P
{

λmin(X)
λmin(E[Xτi ])

≤ (1− δ)
}

=
∑
k≥m

P
{

λmin(X)
λmin(E[Xτi ])

≤ (1− δ)

∣∣∣∣∣∣m′ = k
}
P{m′ = k}

≤
∑
k≥m

sexp
(
−

kξδλmin(E[Xτi ])
s‖νN,M‖1[λmin(KS )]

)
P{m′ = k}

≤ sexp
(
−

mξδλmin(E[Xτi ])
s‖νN,M‖1[λmin(KS )]

)∑
k≥m

P{m′ = k}

≤ sexp

− mξδ(1− δ̂)α2

s‖νN,M‖1[λmin(KS )]−1

 .
The argument to prove the RISP in the uniform case remains unchanged.
Finally, avoiding repetitions, we are able to provide a meaningful functional

interpretation of the RISP. Indeed, we can write the uniform RISP as

inf
u∈ΣNs

sup
v∈Rm

vᵀD̃Ãu

‖K 1
2 u‖2‖v‖2

= inf
u∈ΣNs

sup
v∈Rm

vᵀÃu

‖K 1
2 u‖2‖D̃−1v‖2

= inf
u∈UN

s

sup
v∈VM

T̃

a(u,v)
‖u‖U‖|v‖|

,

where the norm

‖|v‖|2 := ‖D̃−1Φ−1v‖22 =
m∑
i=1

ri
m′pτi

v2
τi ,

is a weighted `2-norm depending on the representation of v with respect to
the basis {ϕτ̃i }i∈[m]. The operator Φ−1 is implicitly restricted from VM

T̃
to Rm.

This provides a meaningful interpretation of the discrete RISP in a functional
setting. We underline that in the case with repetitions, this remark does not
hold, since the norm ‖| · ‖| would not be well defined.

In the next section of this chapter, we will exploit the recovery results based
on the RISP, and apply them to the ADR equation.

3.3 Application to advection-diffusion-reaction equations

In this section, we apply the general theory presented in Section 3.2 to advection-
diffusion-reaction (ADR) equations.

We adopt Corollary 3.18 as the main tool. In particular, we provide esti-
mates for α, β, κs, K̂ , γ̂ , νN and ‖νN,M‖1, and then deduce suitable hypotheses
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on m and M such that the CORSING method recovers the best s-term approxi-
mation us to u. All the recovery results of the section are given in expectation,
but they can be easily converted in probability (see Remark 3.2.4). Finally, as in
Section 3.2.4, we assume û to solve (3.6) exactly.

Let us first fix the notation. Consider Ω = (0,1), U = V =H1
0 (Ω) and

(u,v)U = (u,v)V =
∫
Ω

u′(x)v′(x)dx,

resulting in ‖ · ‖U = ‖ · ‖V = | · |H1(Ω), the H1(Ω)-seminorm. Moreover, consider
the bases SR andHL defined in Section 2.3 and the corresponding CORSINGHS
and SH strategies.

In both cases,HS and SH, we observe that Hypothesis 1 is fulfilled and that
K = I. Thus, in particular, from (3.23), κs = 1.

As reference problem, we consider the one-dimensional ADR equation over
Ω, with Dirichlet boundary conditions{

−u′′ + bu′ + ρu = f in Ω

u(0) = u(1) = 0,
(3.44)

with b,ρ ∈ R and f : (0,1)→ R, corresponding to the weak problem

find u ∈H1
0 (Ω) : (u′,v′) + b(u′,v) + ρ(u,v) = (f ,v), ∀v ∈H1

0 (Ω), (3.45)

where (·, ·) denotes the standard inner product in L2(Ω).

3.3.1 The 1D Poisson equation (HS).

First, we deal with the Poisson equation, corresponding to (3.44) with b = ρ = 0,
whose weak formulation is

find u ∈H1
0 (Ω) : a∆(u,v) = (f ,v), ∀v ∈H1

0 (Ω). (3.46)

where a∆(u,v) := (u′,v′). In such a case, we denote the local a-coherence by µN
∆

.
The inf-sup and continuity constants of a∆(·, ·) are α = β = 1.

We can prove the following result for the CORSING HS procedure applied
to (3.46).

Proposition 3.22. Fix a maximum hierarchical level L ∈ N, corresponding to N =
2L+1 − 1. Then, for every ε ∈ (0,2−1/3] and s ≤ 2N/e, provided that

M ≥ ĈsN , m ≥ Cs logM[s log(N/s) + log(s/ε)],

for suitable constants C and Ĉ, and chosen the upper bound νN as

νNq :=
8
πq
, ∀q ∈ N,
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Figure 3.1: Sharpness of the upper bound (3.48) with N = 127 and M = 2047.

the CORSING HS solution to (3.46) fulfills

E[|TKû −u|H1(Ω)] < 5|us −u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (3.37). In particular,
two possible upper bounds for Ĉ and C are

Ĉ ≤ 80
3π2 ≈ 2.70 and C ≤ 840

π

(
1 +

1
log3

)
≈ 511.

Proof. An explicit computation yields the exact stiffness matrix entries (the de-
pendence of ` and k on j is omitted)

a∆(H`,k ,Sq) =
4
√

2
π

2
`
2

q
sin

(πq
2`

(
k +

1
2

))
sin2

(π
4
q

2`

)
. (3.47)

Using Definition 3.3, employing the inequalities sin2(x) ≤ 1 on the first sine and
sin4(x) ≤min{1, |x|} on the second sine, for every x ∈ R, we have

|a∆(H`,k ,Sq)|2 ≤
32
π2

2`

q2 sin4
(π

4
q

2`

)
≤min

{
32
π2

2`

q2 ,
8
πq

}
,

and, thus, we obtain the upper bound

µN∆,q ≤min
{

32
π2

2L

q2 ,
8
πq

}
. (3.48)

Figure 3.1 shows that this bound is sharp. Considering the first argument of
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the minimum in (3.48), on noticing that 2L = (N + 1)/2, we obtain∑
q>M

µN∆,q ≤
32
π2
N + 1

2

∑
q>M

1
q2 ≤

16
π2 (N + 1)

[
1

(M + 1)2 +
∫ ∞
M+1

1
q2 dq

]
=

16
π2

N + 1
M + 1

[ 1
M + 1

+ 1
]
≤ 20
π2

N + 1
M + 1

≤ 80
3π2

N
M
.

The fourth and fifth relations hinge on the assumption L ≥ 1, that impliesN ≥ 3.
Consequently, assuming M ≥ N we have also M ≥ 3. This implies 1/(M + 1) ≤
1/4 (fourth relation) and (N + 1)/(M + 1) ≤ 4N/(3M) (fifth relation). Thus, in
view of Corollary 3.18, we can pick

K̂ =
80

3π2 and γ̂ = 1.

Now, to bound ‖νN,M‖1, which is required by Corollary 3.18, we deal with the
second argument of the minimum in (3.48) and set

νNq :=
8
πq
.

This choice leads to the estimate

‖νN,M‖1 =
8
π

M∑
q=1

1
q
≤ 8
π

[
1 +

∫ M

1

1
q

dq
]

=
8
π

(1 + logM) ≤ 8
π

(
1 +

1
log3

)
logM,

(3.49)
since M ≥ 3. Thus, combining the lower bound for m and M in Corollary 3.18
with (3.49), we conclude the proof.

Remark 3.3.1. The upper bound sin4(x) ≤min{1, |x|} can be improved as sin4(x) ≤
min{1,0.68 |x|}. This change leads to rescaling the value of C by a factor 0.68,
i.e., C ≈ 347.

Remark 3.3.2. The choice νNq = 8/(πq) is suboptimal. If we choose the sharper
upper bound

νNq = min
{

32
π2

2L

q2 ,
8
πq

}
,

the term logM in the lower bound to m can be replaced by logN . Indeed, in
this case

‖νN,M‖1 .
N∑
q=1

1
q

+N
M∑

q=N+1

1
q2 . logN +N

( 1
N
− 1
M

)
. logN + 1− 1

s
. logN.
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3.3.2 The 1D ADR equation (HS)

We consider problem (3.44) and state the following result.

Proposition 3.23. Fix a maximum hierarchical level L ∈ N, corresponding to N =
2L+1 − 1. Then, for every ε ∈ (0,2−1/3] and s ≤ 2N/e, provided that

M & sN ,
|b|
M

. 1,
|ρ|
M2 . 1,

m& s(logM + |b|2 + |ρ|2)[s log(N/s) + log(s/ε)],

and chosen the upper bound νN such that

νNq ∼
1
q

+
|b|2

q3 +
|ρ|2

q5 , ∀q ∈ N,

the CORSING HS solution to (3.45), with ρ > −2, fulfills

E[|TKû −u|H1(Ω)] <

1 +
4 + 2

√
2|b|+ 2|ρ|

1 + min(0,ρ/2)

 |us −u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (3.37).

Proof. The argument is the same as in Proposition 3.22, thus we will just high-
light the different parts. The precise values of the asymptotic constants will not
be tracked during the proof.

First, a straightforward computation gives

a(H`,k ,Sq) =
4
√

2
π

2
`
2

q
sin2

(π
4
q

2`

)[(
1 +

ρ

(πq)2

)
sin

(πq
2`

(k + 1
2 )
)

− b
πq

cos
(πq

2`
(k + 1

2 )
)]
.

Hence, using the same upper bounds as in Proposition 3.22, we obtain

|a(H`,k ,Sq)|2 . min
{

2`

q2 ,
1
q

}(
1 +
|b|2

q2 +
|ρ|2

q4

)
,

and, consequently,

µNq . min
{
N

q2 ,
1
q

}(
1 +
|b|2

q2 +
|ρ|2

q4

)
. (3.50)
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Considering the first argument of the minimum in (3.50), yields∑
q>M

µNq .N

[∑
q>M

1
q2 + |b|2

∑
q>M

1
q4 + |ρ|2

∑
q>M

1
q6

]

.N

[
1
M

+
|b|2

M3 +
|ρ|2

M5

]
.
N
M
.

The second inequality hinges on estimates of the sums by suitable integrals,
whereas the third one is implied by the hypotheses |b|/M . 1 and |ρ|/M2 . 1.

Now, considering the second argument of the minimum in (3.50), we have
the upper bound

νNq ∼
1
q

+
|b|2

q3 +
|ρ|2

q5 , ∀q ∈ N,

and, consequently, the `1-norm of its truncation fulfills

‖νN,M‖1 ∼
M∑
q=1

1
q

+
M∑
q=1

|b|2

q3 +
M∑
q=1

|ρ|2

q5 . logM + |b|2 + |ρ|2.

Finally, we notice that (2.4) and (2.3) hold with

α = 1 + min
(
0,
ρ

2

)
, β = 1 +

|b|
√

2
+
|ρ|
2
,

thanks to the Poincaré inequality
√

2‖v‖L2(Ω) ≤ |v|H1(Ω), ∀v ∈H1
0 (Ω).

The thesis is now a direct consequence of Corollary 3.18.

3.3.3 The 1D Poisson equation (SH)

We prove a recovery result for the CORSING SHmethod applied to the Poisson
problem (3.46).

Proposition 3.24. For every ε ∈ (0,2−1/3] and s ≤ 2N/e, there exist two positive
constants C and Ĉ such that, provided

M ≥ Ĉ
√
sN , m ≥ Cs log(M)[s log(N/s) + log(s/ε)],

with M of the form M = 2L+1 − 1 for some L ∈ N, and chosen the upper bound νN as

νNq =
1

2`(q)−1
, ∀q ∈ N,
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Figure 3.2: Sharpness of the upper bound (3.51) with N = 127 and M = 2047.

the CORSING SH solution to (3.46) fulfills

E[|TKû −u|H1(Ω)] ≤ 5|us −u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (3.37) and where α
and β are defined by (2.4) and (2.3), respectively. In particular, two possible upper
bounds for Ĉ and C are

Ĉ ≤ π
√

3
≈ 1.81 and C ≤

210log2(e) log(4)
log(3)

≈ 382.

Proof. The proof is analogous to that of Proposition 3.22. We highlight only the
main differences. First, notice that

a∆(Sj ,H`(q),k(q)) = a∆(H`(q),k(q),Sj).

Moving from (3.47) and employing the inequality sin4(x) ≤ min{|x|4, |x|2}, for
every x ∈ R, we obtain

µN∆,q ≤min
{
π2

8
N 2

23`(q)
,

1
2`(q)−1

}
. (3.51)

Figure 3.2 shows the sharpness of this bound.
Considering the first argument of the minimum in (3.51), and since M =

2L+1 − 1, we have that∑
q>M

µN∆,q ≤
π2

8
N 2

∑
`>L

2`−1∑
k=0

1
23`

=
π2

8
N 2

∑
`>L

1
22`

=
π2

8
N 2

22(L+1)

∑
`≥0

1
22`
≤ π

2

6

(N
M

)2
,

where the change of variable q 7→ (`,k) has been used. Thus, if follows that

K̂ =
π2

6
and γ̂ =

1
2
.
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Now, by considering the second argument of the minimum in (3.51), we select

νNq :=
1

2`−1

and conclude the proof by computing

‖νN,M‖1 =
L∑
`=0

2`−1∑
k=0

1
2`−1

= 2(L+ 1) = 2log2(e) log(M + 1)

≤ 2log2(e)
log(M + 1)

log(M)
log(M) ≤

2log2(e) log(4)
log(3)

log(M),

since M ≥ 3, thanks to L ≥ 1.

Remark 3.3.3. The choice of p prompted by Proposition 3.24 (i.e., pq ∼ 2−`(q)) co-
incides with that in [BMP15], in the R-CORSING SH case, for the corresponding
parameter w, tuned via a trial-and-error procedure.

3.3.4 The 1D ADR equation (SH)

Considerations analogous to those made in the HS case hold in the advec-
tive/reactive case. It suffices to notice that

(u′,v′) + b(u′,v) + ρ(u,v) = (v′,u′)− b(v′,u) + ρ(v,u), ∀u,v ∈H1
0 (Ω),

and then apply the same arguments as in the HS case.

3.3.5 The 1D diffusion equation (HS)

Consider now the diffusion equation with a nonconstant diffusion coefficient
and homogeneous Dirichlet boundary conditions over the domain Ω = (0,1){

−(ηu′)′ = f , in Ω

u(0) = u(1) = 0,
(3.52)

where η : Ω→ R is the diffusion term, such that η ∈ L∞(Ω). Moreover, assume
that there exists ηmin > 0 such that η(x) ≥ ηmin for almost every x ∈ Ω. The
resulting weak formulation is

find u ∈H1
0 (Ω) : (ηu′,v′) = (f ,v), ∀v ∈H1

0 (Ω), (3.53)

with associated bilinear form

a(u,v) = (ηu′,v′).
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In order to apply the arguments used for the Poisson equation, we expand η
with respect to the cosine basis {Cr}r∈N0

,

η =
∞∑
r=0

ηrCr . (3.54)

where Cr(x) :=
√

2cos(πrx), for every r ∈ N, and C0 ≡ 1. This is allowed since
η ∈ L∞(Ω) ⊆ L2(Ω) and {Cr}r∈N0

is a complete orthonormal system of L2(Ω),
equipped with the standard inner product.

Then, the elements of the stiffness matrix associated with (3.52) can be ex-
plicitly computed in terms of those of the (infinite) stiffness matrix associated
with the Poisson problem (3.46)

a(H`,k ,Sq) = (
∞∑
r=0

ηrCrH′`,k ,S
′
q) =

∞∑
r=0

ηr(H′`,k ,CrCq)

=
∞∑
r=0

ηrζr(H′`,k ,Cq+r + C|r−q|)

=
∞∑
r=0

ηrζr[a∆(H`,k ,Sq+r) + a∆(H`,k ,S|r−q|)], (3.55)

where we employed the trigonometric relations

S ′q = Cq, CrCq = ζr(Cr+q + C|r−q|), ∀q ∈ N, ∀r ∈ N0,

and

ζr :=
{

1/2 if r = 0,
1/
√

2 if r , 0.

Formula (3.55) links the bilinear form a(·, ·), associated with the pure diffusive
case, with the bilinear form a∆(·, ·) of the Poisson equation.

Before applying the results of Section 3.2 to problem (3.53), we need a tech-
nical lemma about piecewise C1 odd periodic functions and their sine series
expansion. Although elementary, we provide the proof for the sake of com-
pleteness. In the following, we refer to the one-dimensional torus as T := R/2Z.

Lemma 3.25. Consider a 2-periodic odd function g : T→ R and suppose that there
exists a finite set of points P ⊆ T such that

• g ∈ C1(T \ P );

• sup
x∈T\P

|g(k)(x)| <∞ for k = 0,1.
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Then, the following asymptotic estimate holds

|(g,sin(πr · ))L2(T)|. 1/r, ∀r ∈ N.

Proof. First, suppose P = {x}, with x = 1. Define

f0(x) := sin(πx/2), f1(x) := −2/πcos(πx/2), ∀x ∈ [−1,1)

and extend them periodically over T. Notice that f0(1−) = −f0(1+) = 1 and
f ′0(1−) = f ′0(1+) = 0. Moreover, f1(1−) = f1(1+) = 0 and f ′1(1−) = −f ′1(1+) = −1.

Then, define

g̃ := g +
1
2

∑
k=0,1

(g(k)(1+)− g(k)(1−))fk .

It is not difficult to verify that g̃ ∈ C1(T); this, in turn, implies

|(g̃ ,sin(πr ·))L2(T)|. 1/r, ∀r ∈ N.

Moreover, by direct computation, we have

|(fk ,sin(πr ·))L2(T)|. 1/r, ∀r ∈ N, ∀k = 0,1.

These two facts imply the thesis.
If x , 1, the same argument can be applied to g( · − 1 + x). When |P | > 1, it is

necessary to remove every point of discontinuity using different translates of f0
and f1.

Remark 3.3.4. In the previous lemma, g is not necessarily continuous on T.

The following proposition assesses the performances of the CORSING HS
procedure applied to problem (3.53). For the sake of simplicity, we will not
keep track of the constants Ĉ and C during the proof.

Proposition 3.26. Let Ω = (0,1) and η ∈ L∞(Ω) be such that

• there exists ηmin > 0 so that η(x) ≥ ηmin, for almost every x ∈Ω;

• there exists a finite set P ⊆Ω such that η ∈ C2(Ω \ P );

• sup
x∈Ω\P

|η(k)(x)| <∞, for k = 1,2.

Fix a maximum hierarchical level L ∈ N and put N = 2L+1 − 1. Then, there exists
C > 0 such that

νNq =
C
q
, ∀q ∈ N,
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and there exist two positive constants Ĉ and C such that, provided

M ≥ ĈsN , m ≥ Cs logM[s log(N/s) + log(s/ε)],

the CORSING HS solution û to (3.53) fulfills

E[|TKû −u|H1(Ω)] ≤
(
1 +

4‖η‖L∞
ηmin

)
|us −u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (3.37) and where α and
β are defined by (2.4) and (2.3), respectively.

Proof. First, notice that the inf-sup constant associated with a(·, ·) fulfills α ≥
ηmin, indeed

a(u,v) ≥ ηmin a∆(u,v), ∀u,v ∈H1
0 (Ω),

whereas the continuity constant satisfies β ≤ ‖η‖L∞ . Moreover, recall that κs = 1.
Now, consider the diffusion term η. Extend it evenly from [0,1] to [−1,1] and

then, in turn, extend the resulting function periodically from [−1,1] to the torus
T = R/2R. Denote the resulting function η̃ : T→ R. Thanks to the regularity
hypothesis made on η, the function η̃′ fulfills the hypotheses of Lemma 3.25.
Henceforth, we have the following asymptotic estimate for the coefficients ηr ,
defined by the expansion (3.54)

|ηr | ∼ |(η̃,cos(πr · ))L2(T)| ∼
|(η̃′,sin(πr · ))L2(T)|

(r + 1)
.

1
(r + 1)2 , ∀r ∈ N0. (3.56)

Now, exploiting relation (3.55), we obtain an upper bound to µN , depending
on µN

∆
, i.e., the local a-coherence associated with (3.46), HS case (the depen-

dence of (`,k) on j is omitted)

µNq = sup
j∈[N ]
|a(H`,k ,Sq)|2

= sup
j∈[N ]

 ∞∑
r=0

ηrζr(a∆(H`,k ,Sq+r) + a∆(H`,k ,S|r−q|))


2

= sup
j∈[N ]

 ∞∑
r=0

ηrζr
(r + 1)ϑ

(r + 1)ϑ
(a∆(H`,k ,Sq+r) + a∆(H`,k ,S|r−q|))


2

≤ 1
2

 ∞∑
r=1

1
r2ϑ

 sup
j∈[N ]

∞∑
r=0

η2
r (r + 1)2ϑ[a∆(H`,k ,Sq+r) + a∆(H`,k ,S|r−q|)]2

≤

 ∞∑
r=1

1
r2ϑ

 ∞∑
r=0

η2
r (r + 1)2ϑ(µN∆,q+r +µN

∆,|r−q|).
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The fourth relation hinges on Cauchy-Schwarz inequality, combined with rela-
tion ζ2

r ≤ 1/2, for every r ∈ N0. In the last inequality, the estimate (x + y)2 ≤
2(x2 +y2), for every x,y ∈ R, has been employed. We notice that the series corre-
sponding to the first factor in the last right-hand side is convergent if and only
if ϑ > 1/2. In particular, exploiting (3.56) and choosing ϑ = 1, we have

∑
q>M

µNq .
∑
q>M

∞∑
r=0

µN
∆,q+r

(r + 1)2︸             ︷︷             ︸
=:S1

+
∑
q>M

∞∑
r=0

µN
∆,|q−r |

(r + 1)2︸             ︷︷             ︸
=:S2

. (3.57)

Recalling that (3.48) implies

µN∆,q .
N

q2 , ∀q ∈ N, (3.58)

and plugging (3.58) into (3.57), we obtain

S1 .N
∞∑
r=0

1
(r + 1)2

∑
q>M

1
(r + q)2 .N

∞∑
r=0

1
(r + 1)2(M + r)

≤ N
M

∞∑
r=0

1
(r + 1)2 .

N
M
.

Moreover, exploiting again (3.57), (3.58) and the fact that µN
∆,0 = 0, we estimate

S2 .N

∑
q>M

q−1∑
r=0

(r + 1)−2

(q − r)2︸              ︷︷              ︸
=:S21

+
∑
q>M

∞∑
r=q+1

(r + 1)−2

(q − r)2︸                ︷︷                ︸
=:S22

.

We deal with the term S21 as follows:

S21 =
∞∑
r=0

(r + 1)−2
∑

q≥max(r,M)+1

1
(q − r)2 .

∞∑
r=0

(r + 1)−2

max(r,M) + 1− r

=
M∑
r=0

(r + 1)−2

M + 1− r
+

∑
r>M

(r + 1)−2.

Now, consider the function f (r) := (r+1)−2(M+1−r)−1. We note that f : [0,M]→
R has a global minimum in r = (2M+1)/3 ∈ (0,M]. Henceforth, from elementary
geometric considerations, we have

M∑
r=0

f (r) ≤ f (0) + f (M) +
∫ M

0
f (r)dr, ∀M ∈ N.
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Via direct computation, it turns out that∫ M

0
f (r)dr =

2
M + 2

− 1
M + 1

+
2log(M + 1)

(M + 2)2 ,

henceforth, S21(M) . 1/M. Analogous arguments show that S22(M) . 1/M.
To summarize, we have the truncation condition∑

q>M

µNq .
N
M
,

that yields the existence of Ĉ > 0 and γ̂ = 1.
Exploiting the local a-coherence upper bound

µN∆,q . 1/q, ∀q ∈ N,

derived from (3.48), and plugging it into (3.57), implies

µNq .
∞∑
r=0

(r + 1)−2

q+ r︸         ︷︷         ︸
T1

+
q−1∑
r=0

(r + 1)−2

q − r︸         ︷︷         ︸
T2

+
∑
r>q

(r + 1)−2

r − q︸         ︷︷         ︸
T3

.

First, we have

T1 ≤
1
q

∞∑
r=0

1
(r + 1)2 .

1
q
.

Moreover, applying the same argument used to bound S21, we obtain

T2 ≤
1
q

+
1
q

+
∫ q−1

0

(r + 1)−2

q − r
dr =

2
q

+
2q logq+ q2 − 1

q(1 + q)2 .
1
q
.

Finally,

T3 ≤
1
q

∑
r>q

(r + 1)−1

(r − q)
≤ 1
q

∑
r>q

1
(r − q)2 .

1
q
.

Henceforth, we have νNq . 1/q and, in particular, ‖νN,M‖1 . logM.
The application of Corollary 3.18 concludes the proof.
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Figure 3.3: CORSING PS for 2D the Poisson equation. Numerical validation of inequality (3.59),
(a); numerical validation of the upper bound µN ≤ νN,M in (3.60), (b).

3.3.6 The 2D Poisson equation (PS)

Considering the extension to the two-dimensional case, we recall the results
presented in Section 2.4, where CORSING is applied to the 2D ADR equation
with constant coefficients, employing the hierarchical pyramids P L and the ten-
sor product of sine functions SR, yielding the approaches CORSING PS and SP .

Due to the lack of orthogonality of the hierarchical pyramids in P L, they
can only be used as trial functions. Indeed, in view of the theoretical setting of
this work, Hypothesis 1 does not hold in the SP case. Hence, we focus on the
CORSING PS approach.3

First, recalling Remarks 3.2.1 and 3.2.5, we estimate κs ≥ λmin(K) and em-
ploy the inequality

λmin(K) ≥ log(N )−2, (3.59)

shown in [Yse86] (see also the numerical validation in Figure 3.3, (a)), in order
to show that the term κ−1

s grows at most logarithmically in N .
A less trivial task is to provide a sharp upper bound νN,M to µN , due to the

involved explicit expressions of the stiffness matrix entries. However, we can
numerically check that the following upper bound holds quite sharply

µNq .
C

‖q‖22
=: νNq , (3.60)

for a suitable value of C > 0. In Figure 3.3, (b) we numerically validate (3.60)
with N = M = 961 and C = 2. This provides a practical recipe to implement

3As already noticed in Section 3.1.2, Hypothesis 1 can be weakened by assuming the test functions to
form a Riesz basis.
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CORSING PS . In particular, when truncating the test basis at level R, i.e., con-
sidering SR, we have M = R2 and

‖νN,M‖1 =
R∑

q1=1

R∑
q2=1

νNq ∼
R∑

q1=1

R∑
q2=1

1

‖q‖22

≤
R∑

q1=1

1

1 + q2
2

+
R∑

q2=1

1

q2
1 + 1

+
∫ R

1

∫ R

1

1

q2
1 + q2

2

dq1 dq2

. 1 +
∫ π/2

0

∫ R

1

1
r2 r dr dϑ = 1 +

π
2

log(R) ∼ log(M).

In the first inequality, we estimate the double series with the integral plus the
boundary terms, thanks to the fact that q→ 1/‖q‖22 is decreasing with respect
to q1 and q2; moreover, we employ the change of variable to polar coordinates
(r,ϑ) and enlarge the integration domain in the second inequality. In particular,
this implies the validity of Hypothesis 3 when the upper bound νN,M is chosen
as in (3.60).

The considerations made here allow for a practical use of CORSING PS to
the Poisson problem, with the drawing probability

pq ∼
1

‖q‖22
, ∀q ∈ [R]2

on the test space. Analogous numerical checks can be made in the general ADR
case. Nevertheless, a formal application of the theory to the 2D CORSING PS
case needs the analytical derivation of νN,M and the verification of the trunca-
tion condition (3.22). These are still open issues.

A different possibility to deal with the multi-dimensional case, when the
domain is of the form Ω = [0,1]d , with d > 1, is to generalize theHS formulation
by tensorization of both the trial and the test functions. This option is discussed
in Section 4.2

3.4 Further numerical experiments

We validate the above theoretical results by both a qualitative and a quantitative
analysis.

3.4.1 Sensitivity analysis of the RISP constant

We investigate the sensitivity of α̃ to the constant C on the Poisson problem
(3.46), in the setting HS . We fix the hierarchical level to L = 14, corresponding
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to N = 32767. We consider the values s = 1,2,3,4,5 and choose M = sN , while
selecting m according to one of the following rules

Rule 1: m = dCs2 logM log(N/s)e,
Rule 2: m = dCs logM log(N/s)e, (3.61)

Rule 3: m = dCs log(N/s)e.

Rule 1 is the one derived in this chapter, corresponding to γ = 2. Rule 2 is as-
sociated with γ = 1, and Rule 3 is the asymptotically optimal lower bound that
a general sparse recovery procedure requires to be stable (see [FR13, Propo-
sition 10.7]). For each choice of M and m, we repeat the following experi-
ment 50 times: first, extract τ1, . . . , τm ∈ [M] i.i.d. with probability pq ∼ 1/q and
build the corresponding matrices D and A; then, generate 1000 random subsets
S1, . . . ,S1000 ⊆ [N ] of cardinality s and compute the non-uniform RISP constant
α̃Sk for every k ∈ [1000], corresponding to the minimum singular value of DA,
using the svd command; finally, approximate the uniform RISP constant as

α̃ ≈ min
k∈[1000]

α̃Sk .

We consider the three trends in (3.61) and C = 2 or 5. The corresponding six
boxplots relative to the 50 different values of α̃, computed for each s, are shown
in Figure 3.4, where the crosses represent the outliers.

For Rule 1 and 2, α̃ shows a similar behavior since both trends are approach-
ing the value of the inf-sup constant, α = 1, when s grows. We notice that the
values computed for Rule 1 are more concentrated around the mean, implying
that γ = 2 is too conservative. For Rule 3, α̃ exhibits the lowest values, though
the corresponding boxplots are quite aligned and have similar size, especially
for C = 5, where α̃ seems to stabilize around the value α/2. For C = 2, α̃ ap-
proaches the value α/4, even though the presence of too many outliers suggests
that the RISP is not being satisfied for a reasonable value of ε. However, since
Rule 3 is quite satisfactory, especially for C = 5, the quantity logM does not
seem to be really necessary in Rule 2. Moreover, Rule 1 is penalized by both the
logM term and the extra s factor.

3.4.2 CORSING validation

We test CORSINGHS on the one-dimensional Poisson equation (3.46), choosing
the forcing term so that the exact solution be

u(x) := ũ0.2,0.7,1000(x) + 0.3 · ũ0.4,0.4005,2000(x), ∀x ∈ [0,1] (3.62)
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Figure 3.4: Sensitivity analysis of the RISP constant, with M = sN and m defined according to
(3.61).

with

ũx1,x2,t(x) := ux1,x2,t(x)− ex1,x2,t(x),

ex1,x2,t(x) := xux1,x2,t(1) + (1− x)ux1,x2,t(0),

ux1,x2,t(x) := arctan(t(x − x1))− arctan(t(x − x2)),

for every x ∈ [0,1], 0 ≤ x1 < x2 ≤ 1 and t ∈ R. This particular solution is designed
so as to exhibit two boundary layers at x = 0.2 and x = 0.7, and a small spike-
shaped detail at x = 0.4 (see Figure 3.5).

The hierarchical multiscale basis is particularly suited to capture these sharp
features. We fix L = 12, corresponding to N = 8191, s = 50, M = sN and m =
1200.

In Figure 3.5, we compare u (dashed line) and û (solid line). The exact so-
lution is well recovered. Both boundary layers are correctly captured and also
the spike-shaped feature is successfully detected. More quantitatively, the best
50-term relative error is |u − u50|H1/ |u|H1 ≈ 0.092 and the relative error of the
CORSING solution is |u − û|H1/ |u|H1 ≈ 0.111. Thus, via CORSING, we loose only
the 21% of the best possible accuracy.

Figures 3.6 and 3.7 highlight that CORSING is able to find the most impor-
tant coefficients of u. In particular, in Figure 3.6, the coefficients of u and û
are plotted according to the lexicographic ordering, whereas in Figure 3.7 they
are shown in two dimensions: level ` is the vertical axis, and each level is di-
vided horizontally into 2` parts, corresponding to k = 0, . . . ,2` −1, (left to right).
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a zoom in on the spike-shaped detail of u. Crosses correspond to the selected trial functions.

1000 2000 3000 4000 5000 6000 7000 8000

−15

−10

−5

0

5

10

15

j

u j

 

 
exact
corsing

Figure 3.6: Comparison between u (circles) and û (crosses).
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Figure 3.8: Convergence analysis: mean error ± standard deviation and best s-term approxi-
mation error. Case γ = 2 (right) and γ = 1 (left).

The color plots refer to |u`,k | (left) and |û`,k | (right), in logarithmic scale. It is
remarkable the capability of CORSING in detecting the localized features of the
solution (see the isolated vertical line in Figure 3.7 (right)).

3.4.3 Convergence analysis

We now perform a convergence analysis of CORSING HS applied to (3.46),
showing that the mean error shares the same trend as the best s-term approxi-
mation error, as predicted by the theoretical results. In particular, the forcing
term f is chosen such that the exact solution be

u(x) := C∗(1− x)(exp(100x)− 1),

where C∗ is chosen such that |u|H1 = 1. We take L = 11, corresponding to
N = 4095. For s = 4,8,16,32, we define M = sN and m = dCsγ logM log(N/s)e
for γ = 1,2, and for different values of C. For every combination of γ and C, we
run 100 CORSING experiments and show the mean error obtained ± the stan-
dard deviation, computed using the unbiased estimator. In the case γ = 1, we
select C = 0.25,0.5,0.75, whereas for γ = 2, we consider C = 0.01,0.03,0.05. The
values of C are smaller for γ = 2, in order to ensure that m < N for every s.

The results are shown in Figure 3.8. The mean error reaches the best s-term
approximation rate, which is proportional to 1/s.
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rithmic plot of the mean error as a function of Pe, for different values of C (right).

3.4.4 Sensitivity analysis with respect to the Péclet number

In order to understand how the Péclet number influences the link between m
and s, we consider the one-dimensional advection-diffusion problem (2.33). We
focus on the CORSINGHS case, and carry out a sensitivity analysis with respect
to the constant C and to the Péclet number Pe = b/(2η), assuming γ = 1 .

Fix L = 8, corresponding to N = 511, s = 20, M =N , and define

Cmax :=
N

s log(N )
≈ 4.10.

Then, for each b = 25,50,75 . . . ,575,600 and for each value of C in a grid of 10
equispaced points on [1,Cmax], we fixm = dCs logN e and compute the empirical
mean of the H1(Ω)-relative error over 200 runs. The repetitions of the test
indices are avoided as described in Section 3.2.7, and the local coherence upper
bound is chosen as νNq ∼ 1/q.

In Figure 3.9 (left), we visualize the whole set of numerical experiments as
a surface plot. The mean relative error is plotted as a function of Pe and C. For
values of C and Pe sufficiently large, the mean relative error grows linearly with
respect to Pe and remains constant with respect to C. In Figure 3.10 (right), the
mean relative error is plotted as a function of Pe on logarithmic scale, consider-
ing the first four values of C and C = Cmax. The trend is linear for C & 1.6882
and Pe & 125/2 = 62.5. For smaller values of Pe, the mean error grows sublin-
early in Pe.
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Figure 3.10: Surface plot of the ratio between the mean error and the best s-term approxima-
tion error as a function of Pe and C (left) and logarithmic plot of the same ratio as a function
of Pe, for different values of C (right).

In Figure 3.10 (left), we plot the ratio between the mean error and the best
s-term approximation error as a function of Pe and C. For C sufficiently large,
the trend is constant with respect to C, whereas the dependence on Pe is less
clear. Analogously to Figure 3.9 (right), the same data are plotted in a logarith-
mic scale with respect to Pe for some fixed values of C in Figure 3.10 (right). For
Pe sufficiently large, the ratio between the mean error and the best s-term ap-
proximation error with respect to Pe grows between the algebraic trends (Pe)0.1

and (Pe)0.7. For smaller values of Pe, the growth is more moderate.
We conclude by comparing these numerical results with Proposition 3.23.

Neglecting, for simplicity, the contributions of the truncation operator TK and
of the constant ε, the proposition applied to problem (2.33) states that, provided
that m& |Pe|2s2 log(N ), the CORSING error fulfills

E[|û −u|H1(Ω)] ≤ CPe|us −u|H1(Ω), (3.63)

with CPe ∼ |Pe|. However, considering that the ratio between the mean error and
the best s-term approximation error is constant as a function of C (for C suffi-
ciently large) and recalling Figure 3.10 (right), these asymptotic trends seem
to be rather pessimistic. In practice, we can choose m & |Pe|s logN , which is
equivalent to restrict the surface in Figure 3.10 (left) to a direction C = ϑPe,
with ϑ > 0. Then, the asymptotic constant in (3.63) fulfills

CPe ∼ |Pe|χ, with χ ∈ [0.1,0.7],
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for Pe sufficiently large. Notice that χ tends to 0.1 when ϑ grows larger and
larger. This is promising, considering that we are not applying any stabilization
technique.





Chapter 4

Further applications of CORSING

In the previous chapters, we applied the CORSING strategy to one- and two-
dimensional ADR equations. Now, we deal with more challenging settings.

First, we assess the performances of CORSING on the Stokes problem, em-
ploying the trial and test bases presented in Chapter 2. In particular, we assess
CORSING SP . Then, we deal with ADR equations in dimension d > 2, by resort-
ing to tensorization of the one-dimensional CORSING HS technique, providing
a novel extension, the CORSING QS . We furnish a two- and three-dimensional
validation of CORSING QS and explain how to implement this strategy in a
higher-dimensional scenario, by employing the theoretical concepts introduced
in Chapter 3.

Analogously to Chapter 2, the goal of this chapter is to propose a numerical
validation of CORSING on problems more interesting with a view to practical
applications, while referring to a future work for a rigorous formalization.

Outline of the chapter In Section 4.1 we deal with the Stokes problem. Then,
we generalize the CORSING HS method to ADR equations in dimension d > 2
in Section 4.2, employing tensorization.

4.1 The Stokes problem

In this section, we focus on the Stokes problem. In Section 4.1.1, we introduce
the strong and the weak formulation of Stokes equations and present a test case
with an analytical solution. Then, we derive a PG discretization (Section 4.1.2)
and assess the performance of the full-PG approach, with particular attention to
the stability of the method (Section 4.1.3). Finally, we apply the CORSING SP
to the proposed test case in Section 4.1.4.

143
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4.1.1 Problem setting

Let Ω = (0,1)2 and consider the Stokes problem
−∆u +∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.
(4.1)

These equations model the stationary flow of an incompressible liquid with
unitary viscosity, subject to a body force f : Ω→ R2. The unknowns u : Ω→ R2

and p : Ω → R model the velocity and the pressure of the liquid, respectively.
The first equation represents the momentum equation, whereas the second one
is the continuity equation. The boundary condition employed is referred to as
no-slip condition.

Weak formulation Problem (4.1) admits the following weak formulation

find (u,p) ∈ [H1
0 (Ω)]2 ×L2(Ω) :

a(u,v) + b(v,p) =
∫
Ω

f · v ∀v ∈ [H1
0 (Ω)]2

b(u,q) = 0 ∀q ∈ L2(Ω),
(4.2)

with a : [H1
0 (Ω)]2 × [H1

0 (Ω)]2 → R and b : [H1
0 (Ω)]2 × L2(Ω)→ R bilinear forms

defined as

a(u,v) :=
∫
Ω

∇u : ∇v =
2∑
k=1

∫
Ω

∇uk · ∇vk , ∀u,v ∈ [H1
0 (Ω)]2,

and

b(u,p) := −
∫
Ω

pdivu, ∀u ∈ [H1
0 (Ω)]2, ∀p ∈ L2(Ω).

If the forcing term fulfills f ∈ [L2(Ω)]2, then problem (4.2) admits a unique
solution (u,p) ∈ [H1

0 (Ω)]2× (L2(Ω)/R). In particular the pressure is unique up to
an additive constant (see [BF91, Section IV.2]).

The Stokes equations are an example of a saddle-point problem, since they
are equivalent to finding a saddle-point (u,p) to the functional

L(v,q) :=
1
2
a(v,v) + b(v,q)− (f,v).

The Stokes problem has been extensively studied in the last decades. For fur-
ther details, we refer the reader to [BF91] and [Tem01].
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Figure 4.1: Exact solution to the Stokes problem (4.1), defined by (4.3)-(4.4).

The test case In this section, in order to assess the reliability of the CORSING
method applied to the Stokes problem, we consider a test case with an analytic
solution. The example is a slight modification of a test case in [Li09]. We define
the following analytic expressions for the velocity

u(x) =
[

100x2
1(x1 − 1)2x2(x2 − 1)(2x2 − 1)

−100x1(x1 − 1)(2x1 − 1)x2
2(x2 − 1)2

]
, ∀x ∈Ω, (4.3)

and for the pressure

p(x) = 10x1(x1 − 1)x2(x2 − 1), ∀x ∈Ω. (4.4)

The exact solution is shown in Figure 4.1. The forcing term in (4.1) is computed
as f = −∆u + ∇p. We choose an exact pressure vanishing at the boundary, in
order to employ the bases P L and SR, defined in Section 2.4. As a “thought
experiment”, we can imagine the solution (u,p) defined by (4.3)-(4.4) as a metal
in liquid state, subject to a magnetic forcing term f, that makes the liquid rotate
in a stationary way, free from any container.
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4.1.2 Petrov-Galerkin discretization

In order to discretize the weak problem (4.2), we consider two finite dimen-
sional subspacesUN ,VM ⊆H1

0 (Ω) ⊆ L2(Ω) of dimensionN andM, respectively,
such that

UN = span{ψj}j∈[N ], VM = span{ϕr}r∈[M].

Then, the resulting discrete PG formulation of (4.2) is

find (̂u, p̂) ∈ [UN ]2 ×UN :

a(̂u,v) + b(v, p̂) =
∫
Ω

f · v ∀v ∈ [VM]2

b(̂u,q) = 0 ∀q ∈ VM .

Then, evaluating the momentum and the mass conservation equations of (4.2)
on the trial and test functions, yields a linear system of dimension 3M × 3N .
Indeed, expanding the velocity and the pressure with respect to the trial basis
yields

û1 =
∑
j1∈[N ]

û1,j1ψj1 , û2 =
∑
j2∈[N ]

û2,j2ψj2 , p̂ =
∑
j3∈[N ]

p̂j3ψj3 .

Then, the first M linear equations are obtained considering the momentum
equation and a test function of the form v = [ϕr ,0]ᵀ, namely,∑

j1∈[N ]

û1,j1

∫
Ω

∇ψj1 · ∇ϕr −
∑
j3∈[N ]

p̂j3

∫
Ω

ψj3
∂ϕr
∂x1

=
∫
Ω

f1ϕr , ∀r ∈ [M]. (4.5)

Analogously, considering the momentum equation and a test function of the
form v = [0,ϕr]ᵀ yields the second set of M linear equations∑

j2∈[N ]

û2,j2

∫
Ω

∇ψj2 · ∇ϕr −
∑
j3∈[N ]

p̂j3

∫
Ω

ψj3
∂ϕr
∂x2

=
∫
Ω

f2ϕr , ∀r ∈ [M]. (4.6)

The third set of M linear equations is obtained by considering the mass conser-
vation and a test function of the form q = ϕr , namely,

−
∑
j1∈[N ]

û1,j1

∫
Ω

∂ψj1
∂x1

ϕr −
∑
j2∈[N ]

û2,j2

∫
Ω

∂ψj2
∂x2

ϕr = 0, ∀r ∈ [M]. (4.7)

Finally, we notice that, thanks to the regularity of the trial and test functions,
and to the fact that they vanish on the boundary ∂Ω, the following relations
hold ∫

Ω

ψj
∂ϕr
∂xk

= −
∫
Ω

∂ψj
∂xk

ϕr , k = 1,2, ∀j ∈ [N ], ∀r ∈ [M].
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Collecting the equations (4.5), (4.6) and (4.7), yields the 3M ×3N linear system L 0 T1
0 L T2

T1 T2 0


u1
u2
p

 =

f1
f2
0

 , (4.8)

with uk = (uk,j)j∈[N ], for k = 1,2, p = (pj)j∈[N ] and where L,T1,T2 ∈ RM×N are
defined as

Lrj =
∫
Ω

∇ψj · ∇ϕr , (Tk)rj =
∫
Ω

∂ψj
∂xk

ϕr , ∀j ∈ [N ], ∀r ∈ [M], k = 1,2.

In practice, when considering the full-PG PS approach, we choose UN =
span(P L), with N = (2L+1 − 1)2 and VM = span(SR), with M = R2, where P L
and SR are the bases defined in Section 2.4. In the full-PG SP case, the role of
the trial and test functions is inverted. In particular, we provide an equal-order
approximation for the velocity and the pressure.

Remark 4.1.1. We normalize the trial and test functions for the pressure with
respect to the L2(Ω)-norm. In particular, explicit computations show that

‖P `,k ‖L2(Ω) = 2−(`+ 5
2 ), ‖Sr ‖L2(Ω) =

1
π|r|

, ∀`,k,r,

with P `,k and Sr defined as in (2.34) and (2.35), respectively. This is equiva-
lent to pre- and post-multiplying the full-PG stiffness matrix in (4.8) by suitable
diagonal matrices. Numerical evidence shows that this strategy is able to con-
siderably reduce the condition number of the stiffness matrix, thus making the
procedure more stable (see also Remark 4.1.2).

Finally, we notice that the discretization presented here can be generalized
by considering three different trial spaces relative to u1, u2 and p, of different
dimensions, instead of a unique trial space UN . The same generalization holds
for the test functions.

4.1.3 Numerical assessment of full-PG

We assess the performances of full-PG PS and of full-PG SP on problem (4.1)
with exact solution defined as in (4.3)-(4.4) and with M = N . In particular, we
set L = 4 and R = 2L+1−1 = 31, corresponding to N =M = 961. The L2(Ω)-norm
of the relative error on the velocity and on the pressure is shown in Table 4.1,
in the columns labeled as “M = N”. The velocity is well captured, but, unfor-
tunately, the computed pressure is totally unreliable, especially for the choice
PS . In Figure 4.2 we plot the pressure computed by the two approaches. In
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full-PG PS full-PG SP
M =N M = 4N M =N M ≈ 4.1N

û1 3.2e–03 4.0e–03 1.5e–03 9.0e–04
û2 3.2e–03 4.0e–03 1.7e–03 9.0e–04
p̂ 1.3e+09 2.0e–02 3.3e+01 5.8e–03

Table 4.1: Relative errors with respect to L2(Ω)-norm for full-PG PS and SP applied to the
Stokes problem (4.1) with exact solution (4.3)-(4.4), N = 961 and different values of M.
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Figure 4.2: Pressure computed with the full-PG approach, with M =N : PS (left) and SP (right)
approach.

both cases, a strong instability occurs. This depends on the fact that the stiff-
ness matrix is singular in both cases, having a non-trivial kernel of spurious
pressures, namely

∃p0 ∈UN \ {0} : b(p0,v) = 0, ∀v ∈ [VM]2. (4.9)

In particular, it turns out that the subspace of the pressures satisfying (4.9) is
one-dimensional in both the SP and PS cases (employing the command null

of Matlab
®).

Due to the particular shape of the spurious pressures, this phenomenon can
be classified as a checkerboard instability, already observed in the PG discretiza-
tion of the Stokes problem (see, e.g., [EG13, Section 4.2.3]). Figure 4.2 clearly
highlights this phenomenon.

Enriching the test space In order to overcome the checkerboard instability, we
enrich the test space by choosing M > N . In Table 4.1 we show the results for
both the full-PG PS and SP approaches, with M = 4N and M ≈ 4.1N , respec-
tively. In particular, in the PS case, we set L = 4 and R = 2(2L+1 − 1) = 62, cor-
responding to N = 961 and M = 3844. In the SP case, we let R = 31 and L = 5,
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Figure 4.3: Pressure computed with the full-PG approach, with M >N : PS (left) and SP (right)
approach.

corresponding to N = 961 and M = 3969. In both cases, the resulting full-PG
solution is computed using the backslash \ command of Matlab

®, i.e., solving
a least-squares problem. The checkerboard instability disappears in both cases,
and the pressure is well-captured (see Figure 4.3).

Remark 4.1.2. With reference to Remark 4.1.1, we compare the condition num-
ber of the full-PG stiffness matrix in (4.8) before and after the L2(Ω)-normaliza-
tion of the trial and test functions associated with the pressure, for M > N .
In the PS case, after the L2(Ω)-normalization, the condition number decreases
from 8.2 ·102 to 66.2, whereas in the SP case it decreases from 4.3 ·104 to 33.1.
In both cases, the benefit due to the normalization is evident. This comparison
is meaningless when M =N , since the stiffness matrix is singular.

4.1.4 Numerical assessment of CORSING SP

Finally, we carry out a numerical assessment of the CORSING SP strategy, choos-
ing R = 31 and L = 5, corresponding to the full-PG approach with N = 961 and
M = 3969. First, in Figure 4.4 we numerically show that the vector

ν3N
r :=


0.6 · 2−2`(r) ∀r ∈ [M],
0.6 · 2−2`(r−M) ∀r ∈ [M] +M,
2 · 2−2`(r−2M) ∀r ∈ [M] + 2M,

is an upper bound to the local a-coherence, for N = 961 and M = 3844.
Notice that we need different upper bounds for the velocities and for the

pressure test indices. Moreover, we plot only the tests relative to v1 (the first
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Figure 4.4: Upper bound to the local a-coherence for CORSING SP applied to problem (4.1), for
the velocity, (a) and the pressure, (b).

M rows of the full-PG stiffness matrix), since the results for the tests associated
with v2 (the second group ofM rows of the full-PG stiffness matrix) are identical.

In Figure 4.5, we show the results obtained after 50 runs of CORSING SP .
We choose TS = 50%, 60%, 70%, corresponding to m = 1441,1153,864, respec-
tively. The sparsity level is s = 100 in all three cases and the test selection is
carried out avoiding repetitions. The ESP values are very good, and the veloc-
ities are also very well reconstructed. However, observing the pressure of the
worst solution in the successful cluster (Figure 4.5, right) we notice significant
oscillations for TS = 60% and, especially, for TS = 70%. A deeper understanding
of this phenomenon is currently under investigation.

4.2 Multi-dimensional ADR problems

In this section, we deal with ADR problems of the form (2.2) in dimension d > 2.
We generalize the CORSING HS approach presented in Chapter 2 to higher di-
mensions employing tensorization for both the trial and the test spaces. The
resulting strategy is named CORSING QS . We choose to adopt tensorization
since, on the one hand, it allows for an immediate generalization of the local
a-coherence estimates from the one-dimensional to the d-dimensional case; on
the other hand, the assembly of the resulting stiffness matrix is easily imple-
mented, thanks to the algebraic properties of the Kronecker product.

In Section 4.2.1 we deal with tensorization for general trial and test bases
and we specialize this approach to the case of hierarchical hat functions and
sine functions in Section 4.2.2. Afterwards, we present local a-coherence es-
timates for the d-dimensional case and introduce a tensorized strategy for the
selection of the test functions in Section 4.2.3. In Section 4.2.4 we provide an
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Figure 4.5: Assessment of CORSING SP on the Stokes problem (4.1), with exact solution (4.3)-
(4.4): statistical analysis of the results (left), solution with the worst pressure obtained over 50
runs (right).
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analytical proof of the classical inf-sup property for the full-PG QS discretiza-
tion in the case of the two-dimensional Poisson equation. Finally, a numerical
assessment of the CORSING QS approach is carried out in the two-dimensional
(Section 4.2.5) and the three-dimensional (Section 4.2.6) case.

4.2.1 Tensorization

Let N1,M1 ∈ N and consider two bases {ψj}j∈[N1] and {ϕq}q∈[M1] defined over the
one-dimensional domain (0,1). Then, considering the d-dimensional domain
Ω = (0,1)d , we define the tensorized trial basis as

ψ̂j :=
d⊗
k=1

ψjk , ∀j ∈ [N1]d ,

and the tensorized test basis as

ϕ̂q :=
d⊗
k=1

ϕqk , ∀q ∈ [M1]d , (4.10)

where, ⊗ denotes the standard tensor product of functions, defined as( d⊗
k=1

fk

)
(x) :=

d∏
k=1

fk(xk), ∀x ∈ [0,1]d .

Moreover, we denote N :=N d
1 and M :=Md

1 .
Considering the generic ADR problem (2.2) with Ω = (0,1)d , we compute

the explicit expression for the stiffness matrix A ∈ RM×N associated with the
full-PG discretization with respect to two tensorized families of trial and test
functions.

First, we recall the definition of Kronecker product for matrices.

Definition 4.1. Given two matrices X ∈ Rk×`,Y ∈ Rp×q, their Kronecker product
is defined as

X⊗Y :=


X11Y · · · X1`Y
...

. . .
...

Xk1Y · · · Xk`Y

 ∈ Rkp×`q.
The next lemma shows how to rewrite the stiffness matrix associated with

the d-dimensional problem (2.2), as a suitable combination of Kronecker prod-
ucts of three stiffness matrices L,T,R of dimension M1×N1, associated with the
one-dimensional Laplace, the pure transport, and the pure reactive equation,
respectively.



4.2. MULTI-DIMENSIONAL ADR PROBLEMS 153

Lemma 4.2. Consider the d-dimensional ADR problem (2.2) on Ω = (0,1)d , with
constant data η,ρ ∈ R and b ∈ Rd . Then, the stiffness matrix associated with the
full-PG discretization with respect to the bases {ψ̂j}j∈[N1]d and {ϕ̂q}q∈[M1]d is given by

A := η
d∑
k=1

R(k−1)⊗ ⊗L⊗R(d−k)⊗ +
d∑
k=1

bkR(k−1)⊗ ⊗T⊗R(d−k)⊗ + ρRd⊗,

where L,T,R ∈ RM1×N1 are defined as

Lqj := (ψ′j ,ϕ
′
q), Tqj := (ψ′j ,ϕq), Rqj := (ψj ,ϕq), ∀j ∈ [N1],∀q ∈ [M1],

and
Rn⊗ := R⊗ · · · ⊗R︸      ︷︷      ︸

n times

, ∀n ∈ N.

Proof. First, with straightforward calculations, it is possible to show that the
following relations hold

(∇ψ̂j,∇ϕ̂q) =
d∑
k=1

(ψ′jk ,ϕ
′
qk )

∏
`,k

(ψj` ,ϕq` ),

(b · ∇ψ̂j, ϕ̂q) =
d∑
k=1

bk(ψ
′
jk
,ϕqk )

∏
`,k

(ψj` ,ϕq` ), ∀b ∈ Rd ,

(ψ̂j, ϕ̂q) =
d∏
k=1

(ψjk ,ϕqk ).

Then, recalling that the entries of A associated with problem (2.2) are defined
by

a(ψ̂j, ϕ̂q) = η(∇ψ̂j,∇ϕ̂q) + (b · ∇ψ̂j, ϕ̂q) + ρ(ψ̂j, ϕ̂q),

using the Kronecker product for matrices, and the lexicographic ordering for
the d-dimensional trial and test bases, we obtain the thesis.

4.2.2 The QS trial and test combination

We introduce a new combination of trial and test functions, denotedQS . This is
built up with the tensorization strategy presented above, with the initial choice
corresponding to the HS approach, introduced in Chapter 2.

For every (l,k) ∈ Nd ×Nd , with 0 ≤ k ≤ 2l−1 (the operations and the inequal-
ities are understood component-wise), we have

Ql,k(x) :=
d∏
i=1

H`i ,ki (xi), ∀x ∈ [0,1]d .
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In order to fulfil Hypothesis 1, introduced in Section 3.1.2, we normalize the
tensorized test family. In fact, the family {ϕ̂q}, defined in (4.10) with ϕq = Sq, is
already orthogonal with respect to the H1(Ω)-inner product (∇u,∇v), and the
H1(Ω)-seminorm can be easily computed as

|ϕ̂q|2H1(Ω) = (∇ϕ̂q,∇ϕ̂q) =
d∑
k=1

(S ′qk ,S
′
qk )

∏
`,k

(Sq` ,Sq` )

=
d∑
k=1

∏
`,k

1
(πq`)2 =

‖q‖22
π2(d−1)∏d

k=1 q
2
k

.

Hence, we obtain the normalized sine functions

Sq(x) =
πd−1

‖q‖2

d∏
k=1

qk Sqk (xk), ∀x ∈ [0,1]d .

The tensorized family of normalized sine functions with M1 = R is denoted

SR := {Sq : ‖q‖∞ ≤ R},

according to the definition given in Chapter 2 for the two-dimensional case.
For a fixed L ∈ N and chosen N1 = 2L+1 − 1, we denote the resulting trial

family of tensorized hierarchical hat functions as

QL := {Ql,k : 0 ≤ k ≤ 2l − 1, ‖l‖∞ ≤ L}.

The basis Q1 is plotted in Figure 4.6. The reason for the letter Q for the trial
basis is due to the fact that QL spans the space of piecewise bilinear continuous
function over a regular Cartesian grid of step h = 2−L−1 on [0,1]d and, in the FE
literature, the standard Lagrangian basis functions associated with this space is
usually referred to as Q1 elements (see, e.g., [EG13]).

We also notice that the basisQL has already been employed for the numerical
approximation of PDEs, e.g., in the context of Sparse Grids (see [BG04]).

Unfortunately, the basis QL is not orthogonal with respect to the inner prod-
uct (∇u,∇v) and, at the moment, estimating a good lower bound for the quantity
κs defined in (3.23) is an open issue.

Remark 4.2.1. For practical purposes such as the post-processing of the solution,
the hierarchical basis QL is very easy to handle. Indeed, we can compute the
values of the functions at the Cartesian grid knots by applying a sparse matrix,
having a Kronecker product structure. In particular, in the one-dimensional
case, for every w ∈ RN1 , with N1 = 2L+1 − 1, we define

[Tw]j+1 = (Ψ w)(jh), ∀j = 0, . . . ,N1 + 1, (4.11)
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Figure 4.6: The basis Q1.
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where Ψ is the reconstruction operator (see Definition 3.2) and h = 2−L−1. Then,
in dimension d, the transformation matrix is simply obtained as Td⊗. The coef-
ficients in Tw are extremely simple to handle in Matlab

® using efficient built-in
functions such as, e.g., reshape, interp1, interp2, interp3 and interpn. In
Figure 4.7 the sparsity pattern of T and of T⊗T, for L = 3, are shown.

4.2.3 Local a-coherence upper bound and tensorized randomization

In theQS case in dimension d, the local a-coherence can be estimated as follows.
For the sake of simplicity, let us focus on the case of the d-dimensional Laplace
equation (in the ADR case, analogous considerations can be made). Starting
from the relation

(∇Ql,k,∇Sq) =
πd−1

‖q‖2

d∏
i=1

qi ·
d∑
i=1

(H′`i ,ki ,S
′
qi )

∏
j,i

(H`j ,kj ,Sqj ),

recalling the one-dimensional upper bounds

|(H′`,k ,S
′
q)|2 .

1
q
,

|(H`,k ,Sq)|2 ∼
1
q4 |(H`,k ,S

′′
q )|2 =

1
q4 |(H

′
`,k ,S

′
q)|2 .

1
q5 ,

and using the inequality

( d∑
i=1

xi

)2

≤ d
d∑
i=1

x2
i , ∀x ∈ Rd ,

we obtain the following d-dimensional estimate, independent of (l,k),

|(∇Ql,k,∇Sq)|2 . dπ2(d−1)

‖q‖22

d∏
i=1

q2
i ·

d∑
i=1

|(H′`i ,ki ,S
′
qi )|

2
∏
j,i

|(H`j ,kj ,Sqj )|
2

.
dπ2(d−1)

‖q‖22

d∏
i=1

q2
i ·

d∑
i=1

1
qi

∏
j,i

1

q5
j

= dπ2(d−1)
d∑
i=1

qi
‖q‖22

∏
j,i

1

q3
j

.
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Figure 4.8: Local a-coherence upper bound (4.14) for the three-dimensional Poisson problem.

Now, exploiting the inequality qi/‖q‖22 ≤ 1/qi , for every i ∈ [d], we obtain

|(∇Ql,k,∇Sq)|2 . dπ2(d−1)
d∑
i=1

1
qi

∏
j,i

1

q3
j

= dπ2(d−1)
d∏
i=1

1
qi
·
d∑
i=1

∏
j,i

1

q2
j

. d2π2(d−1)
d∏
i=1

1
qi
. (4.12)

This leads us to the choice

νNq ∼
d∏
i=1

1
qi
, (4.13)

that is far from being optimal (recall that the theory presented in Chapter 3
does not require νN,M to be sharp), but it has a very interesting advantage: νNq
has a separable form, i.e., it is a tensor product of one-dimensional upper bounds
νN1
q ∼ 1/q.

Remark 4.2.2. Observing estimate (4.12), we notice that the choice of the upper
bound (4.13) hides a constant factor d2π2(d−1), that depends exponentially on d.
In other words, we face the curse of dimensionality. Nevertheless, this estimate
seems to be very pessimistic for moderate values of d. In Figure 4.8 we compare
upper bound (4.13) with the local a-coherence, showing in particular that, for
d = 3 and L = 3, corresponding to N1 = 15 and N = 3375, it holds

µ3375
q ≤ 0.02

q1q2q3
, ∀q ∈ [15]3, (4.14)
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in the case of the Poisson problem (the multi-indices q are ordered lexicograph-
ically). How to deal with the case d� 1, remains an open issue.

Tensorized randomization Thanks to the separable form of the upper bound in
(4.13), we apply the following heuristic strategy for the test selection procedure:

1. choose m of the form m =md1, with m1 ∈ N;

2. for every k = 1, . . . ,d, draw m1 indices τk1 , . . . , τ
k
m1

at random according to
the probability density pq ∼ 1/q and define T k := {τk1 , . . . , τkm1

};

3. define the set of m selected multi-indices as T := T 1 × · · · × T d .

This grid structure of the random multi-indices in T allows for an efficient as-
sembly of the stiffness matrix A ∈ Rm×N as a suitable combination of Kronecker
product of m1 ×N1 submatrices of L,T,R defined in Lemma 4.2. For example,
in the case of the three-dimensional Poisson equation, we have

A = LT 1 ⊗RT 2 ⊗RT 3 + RT 1 ⊗LT 2 ⊗RT 3 + RT 1 ⊗RT 2 ⊗LT 3 ,

where LT k is the submatrix of L identified by the rows in T k and RT k is defined
analogously, for k = 1,2,3.

Due to this particular structure of A, we can avoid its storage, implementing
only the matrix-vector multiplication and making use of the algebraic property

(X⊗Y)vec(U) = vec(YᵀUX),

where vec(U) is the vectorization of U, i.e., a column vector made of the columns
of U stacked atop one another from left to right (see, e.g., [Dem97]). In this
way, only the storage of O(d) one-dimensional CORSING matrices (of dimension
m1 ×N1) is needed.

4.2.4 Well posedness of full-PG QS for the 2D Poisson problem

It is possible to show that the full-PG QS formulation fulfills the classical inf-
sup property in the case of the Poisson equation with homogeneous boundary
conditions. In particular, we provide a generalization of Proposition 2.5, based
on a similar linear algebra argument.

Lemma 4.3. Let A ∈ RM×N ,Kψ ∈ RN×N and Kϕ ∈ RM×M . If there exist two invert-
ible matrices Mψ ∈ RN×N ,Mϕ ∈ RM×M such that

Kψ = Mᵀ
ψMψ, Kϕ = Mᵀ

ϕMϕ
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then, the following equivalence holds

inf
u∈RN

sup
v∈RM

vᵀAu

(vᵀKϕv)
1
2 (uᵀKψu)

1
2

= σmin(M−ᵀϕ AM−1
ψ ).

Proof. Consider the substitution ṽ = Mϕv and ũ = Mψu. Then, plugging v =
M−1
ϕ ṽ and u = M−1

ψ ũ into the inf-sup expression, one obtains

inf
u∈RN

sup
v∈RM

vᵀAu

(vᵀKϕv)
1
2 (uᵀKψu)

1
2

= inf
ũ∈RN

sup
ṽ∈RM

ṽᵀM−ᵀϕ AM−1
ψ ũ

‖̃v‖2‖ũ‖2
= σmin(M−ᵀϕ AM−1

ψ ).

Theorem 4.4. For every L ∈ N, defined N1 = 2L+1 − 1, there exists a constant α̃ > 0
such that the following inf-sup condition holds

inf
u∈UN

sup
v∈V N

(∇u,∇v)
|u|H1(Ω)|v|H1(Ω)

≥ α̃, (4.15)

where UN = span(QL) and V N = span(SN1). In particular, α̃ ≥ 16/π4.

Proof. We consider the following one-dimensional trial and test functions, with-
out any rescaling with respect to the H1(Ω)-seminorm and any hierarchical
structure on the hat function basis

ψj(x) := max(1− |x − xhj |/h,0), ϕq(x) := sin(qπx), ∀x ∈ [0,1], ∀j,q ∈ [N1],

with h = 1/(N1 + 1) and xhj := jh, for every j ∈ [N1]. Moreover, we build the
corresponding two-dimensional bases through tensorization, as described in
Section 4.2.1, namely

ψ̂j := ψj1 ⊗ψj2 , ϕ̂q := ϕq1
⊗ϕq2

, ∀q, j ∈ [N1]2.

Now, we define three matrices playing a key role in the proof. The first one is
the well known discrete sine transform matrix S ∈ RN1×N1 , defined as

Sij := sin(ijπh), ∀i, j ∈ [N1].

It is symmetric and fulfills the property S2 = 1
2hI. Moreover, we define two

tridiagonal matrices T1,T2 ∈ RN1×N1 as

(T1)ij :=


2/h if i = j
−1/h if |i − j | = 1
0 otherwise,

∀i, j ∈ [N1],
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and

(T2)ij :=


2h/3 if i = j
h/6 if |i − j | = 1
0 otherwise.

∀i, j ∈ [N1].

It turns out that they are diagonalized by S. In particular, we have

D1 = ST1S, D2 = ST2S, (4.16)

where D1,D2 ∈ RN1×N1 are diagonal matrices defined as

(D1)ij = δij
1
h2 (1− cos(πjh)), (D2)ij = δij

1
6

(2 + cos(πjh)), ∀i, j ∈ [N1].

We also introduce the diagonal matrix D3 ∈ RN1×N1 , defined as

(D3)ij = δij
(πj)2

2
, ∀i, j ∈ [N1].

Then, we consider the one-dimensional Poisson equation and define the cor-
responding full-PG stiffness matrix L ∈ RN1×N1 and the stiffness matrices associ-
ated with the one-dimensional trial and test bases Lψ,Lϕ ∈ RN1×N1 , respectively,
as

Lij := (ψ′j ,ϕ
′
i), (Lψ)ij := (ψ′j ,ψ

′
i), (Lϕ)ij := (ϕ′j ,ϕ

′
i).

Analogously, we define the reaction matrices R,Rψ,Rϕ ∈ RN1×N1 as

Rij := (ψj ,ϕi), (Rψ)ij := (ψj ,ψi), (Rϕ)ij := (ϕj ,ϕi).

Straightforward computations show the following algebraic relations to hold:

L = ST1,

Lψ = T1,

Lϕ = D3,

R = 1
2D−1

3 ST1,

Rψ = T2,

Rϕ = 1
2I.

(4.17)

In particular, we explicitly compute R, exploiting that ϕ′′i = −(iπ)2ϕi , as

Rij = (ψj ,ϕi) = − 1
(πi)2 (ψj ,ϕ

′′
i ) = 1

(πi)2 (ψ′j ,ϕ
′
i) = 1

2(D3)−1
ii Lij .

Hence, B = 1
2D−1

3 L = 1
2D−1

3 ST1.
Now, we define the corresponding matrices for the two-dimensional frame-

work, Â,K̂ψ,K̂ϕ ∈ RN×N , defined as

Âqj := (∇ψ̂j,∇ϕ̂q), (K̂ψ)jk := (∇ψ̂j,∇ψ̂k), (K̂ϕ)ql := (∇ϕ̂q,∇ϕ̂l),
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where the multi-indices j,k,q, l are implicitly ordered lexicographically.
Using this notation, (4.15) is equivalent to its discrete counterpart

inf
u∈RN

sup
v∈RN

vᵀÂu

(vᵀK̂ϕv)
1
2 (uᵀK̂ψu)

1
2

≥ α̃. (4.18)

Thanks to the tensorial nature of the two-dimensional bases, we have the
following algebraic relations

Â = L⊗R + R⊗L,

K̂∗ = L∗ ⊗R∗ + R∗ ⊗L∗, ∗ = ψ,ϕ.

Hence, exploiting the algebraic relations (4.17) and the following property of
the Kronecker product

(X⊗Y)(Z⊗W) = XZ⊗YW, ∀X,Y,Z,W∈ RN1×N1 ,

we obtain

Â = L⊗R + R⊗L

= ST1 ⊗ 1
2D−1

3 ST1 + 1
2D−1

3 ST1 ⊗ST1

= 1
2(I⊗D−1

3 + D−1
3 ⊗ I)(S⊗S)(T1 ⊗T1).

Moreover, using (4.16), we have

K̂ψ = Lψ ⊗Rψ + Rψ ⊗Lψ
= T1 ⊗T2 + T2 ⊗T1

= S−1D1S−1 ⊗S−1D2S−1 + S−1D2S−1 ⊗S−1D1S−1

= 16h4(SD1S⊗SD2S + SD2S⊗SD1S)

= 16h4(S⊗S)(D1 ⊗D2 + D2 ⊗D1)(S⊗S),

and, finally, with similar arguments, it holds that

K̂ϕ = Lϕ ⊗Rϕ + Rϕ ⊗Lϕ = 1
2(D3 ⊗ I + I⊗D3).

Now, defining the N ×N matrices

T̂1 := T1 ⊗T1, Ŝ := S⊗S, D̂1 := D1 ⊗D1,

we obtain the relation

ŜT̂1Ŝ = (S⊗S)(T1 ⊗T1)(S⊗S) = ST1S⊗ST1S = D̂1, (4.19)
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and defining the N ×N diagonal matrices

D̂2 := 1
2(I⊗D−1

3 + D−1
3 ⊗ I),

D̂ψ := 16h4(D1 ⊗D2 + D2 ⊗D1),

D̂ϕ := 1
2(D3 ⊗ I + I⊗D3),

yields the following identities

Â = D̂2Ŝ T̂1, K̂ψ = Ŝ D̂ψŜ, K̂ϕ = D̂ϕ.

As a consequence, (4.18) becomes

inf
u∈RN

sup
v∈RN

vᵀD̂2ŜT̂1u

(vᵀD̂ϕv)
1
2 (uᵀŜ D̂ψŜu)

1
2

≥ α̃. (4.20)

Applying Lemma 4.3 with the factorizations

K̂ψ = (D̂
1
2
ψŜ)ᵀD̂

1
2
ψŜ, K̂ϕ = (D̂

1
2
ϕ)ᵀD̂

1
2
ϕ,

recalling relation (4.19) and using equality Ŝ−1 = 4h2Ŝ, an equivalent formula-
tion of the inf-sup property (4.20) is

σmin(Ĝ) ≥ α̃,

with Ĝ := 4h2D̂
− 1

2
ϕ D̂2D̂1D̂

− 1
2

ψ . Since Ĝ is a diagonal matrix, its minimum singu-
lar value coincides with its smallest absolute diagonal entry, that we explicitly
estimate from below in the following.

Being Ĝ product of diagonal matrices, we have

Ĝk,k = 4h2 (D̂2)k,k(D̂1)k,k√
(D̂ϕ)k,k(D̂ψ)k,k

, ∀k ∈ [N ].

Then, defining the functions

d1(x) := 1− cos(πx), d2(x) :=
1
6

(2 + cos(πx)), d3(x) :=
π2x2

2
, ∀x ∈ [0,1],

and

G(x1,x2) :=
1
√

2

d1(x1)d1(x2)
√
d3(x1) + d3(x2)

d3(x1)d3(x2)
√
d1(x1)d2(x2) + d2(x1)d1(x2)

, (4.21)

and exploiting the relation

(D̃ ⊗ Ẽ)N1(i−1)+j,N1(i−1)+j = D̃iiẼjj ,
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Figure 4.9: Surface plot of the function G defined in (4.21).

for all diagonal matrices D̃, Ẽ ∈ RN1×N1 , it can be easily checked that

ĜN1(i−1)+j,N1(i−1)+j = G(xhi ,x
h
j ), ∀i, j ∈ [N1].

The function G(x1,x2) does not depend on h and its surface plot is reported in
Figure 4.9. Hence,

min
k∈[N ]

Ĝk,k ≥ min
(x,y)∈[0,1]2

G(x1,x2).

The final step is to estimate the minimum of G over [0,1]2 from below. By
noticing that

1
6
≤ d2(x) ≤ 1

2
,

4
π2 ≤

d1(x)
d3(x)

≤ 1, ∀x ∈ [0,1],

where the second inequality holds by continuity at the singular point x = 0, we
obtain

G(x1,x2) ≥ d1(x1)
d3(x1)

d1(x2)
d3(x2)

√
d3(x1) + d3(x2)
d1(x1) + d1(x2)

≥ 4
π2 ·

4
π2 · 1 =

16
π4 ,

which implies the thesis.

Remark 4.2.3. The optimal value of the constant α̃ is actually 8
√

3/π3 ≈ 0.45.
Indeed, looking at the plot in Figure 4.9 of the function G, we notice that its
minimum is reached at (1,1). Hence, α̃ ≥ G(1,1) = 8

√
3/π3. Even if it is graph-

ically evident where this minimum is reached G(1,1), proving it in a rigorous
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Figure 4.10: Convergence trend of the full-PG QS method in the two-dimensional case.

way is not so trivial (see the MathOverflow question http://mathoverflow.

net/questions/219575).
Finally, we observe that, using a similar argument, a statement analogous to

Theorem 4.4 holds in the SQ case.

4.2.5 Numerical results for the 2D case

We assess the performances of the CORSINGQS method with the tensorized test
selection strategy described in Section 4.2.3, applied to the advection-domina-
ted example (2.38), with η = 0.1, b = [1,1]ᵀ and with exact solution defined as
in (2.39).

Convergence of full-PG QS First, we check that the full-PG QS method reaches
the best approximation error with respect to the L2(Ω)-norm in Figure 4.10.
The figure shows the L2(Ω)-norm of the relative error associated with the full-
PG QS solution for N1 = M1 = 2L+1 − 1 and L = 2,3,4,5, corresponding to N1 =
7,15,31,63 and trial space dimension N = 49,225,961,3969, respectively. The
error decays according to the asymptotical trend 1/N .

To show that this is indeed the desired trend, we recall a standard estimate
for the interpolation error on a uniform tensor product grid of mesh-size h (see,
e.g., [BS08, Theorem 4.6.11]), given by

‖w −Π1
hw‖L2(Ω) . h2|w|H2(Ω), ∀w ∈H2(Ω), (4.22)

where Π1
h is the Lagrangian interpolant of order 1. Thanks to the regularity of

the exact solution, we conclude that full-PG reaches the interpolation error with

http://mathoverflow.net/questions/219575
http://mathoverflow.net/questions/219575
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Figure 4.11: Assessment of CORSINGQS on the 2D advection-dominated problem (2.38): exact
solution, (a); best solution in the first cluster, (b); worst solution in the first cluster, (c).

respect to the L2(Ω)-norm. Indeed, the mesh-size is h = 1/N1 = 1/
√
N in the

full-PG QS case.
Remark 4.2.4. We also notice that the error associated with the full-PG solution
is optimal, thanks to Theorem 2.3 and Theorem 4.4.

Assessment ofCORSINGQS We apply the CORSINGQS method using the struc-
tured randomization described in Section 4.2.3, with L = 5, corresponding to
N1 = 63 and a trial space of dimension N = 3969. Then, we fix a sparsity level
s = 50 and TS = 70%, corresponding to m1 = 34 and m = 1156. The resulting
statistical analysis over 50 runs yields an ESP = 0.96, and a mean L2(Ω)-norm
of the relative error in the first cluster of 3.3 · 10−4, with corresponding stan-
dard deviation 6.4 ·10−5. In Figure 4.11, the exact solution (a) is compared with
the best and the worst solutions in the first cluster ((b) and (c), respectively).
The two boundary layers are well captured in both cases, but small artifacts ap-
pear in the worst case scenario (Figure 4.11, (c)). These are probably due to the
tensorized test selection, that makes the random experiments slightly “biased”.

4.2.6 Numerical results for the 3D case

In this final numerical assessment, we provide preliminary results for the ap-
plication of CORSING QS in dimension d = 3. We consider the Poisson equation
as a model problem, with exact solution

u(x) := (x1 − x2
1)(x2 − x2

2)(x3 − x2
3), ∀x ∈ [0,1]3. (4.23)

Convergence of full-PG QS First, we check the convergence of the full-PG QS
method showing that it shares the same trend as the interpolation error with re-
spect to the L2(Ω)-norm (Figure 4.12). In particular, we compute the full-PGQS
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Figure 4.12: Convergence trend of the full-PG QS approach in the three dimensional case.

(a) (b)

Figure 4.13: Comparison between the exact solution (4.23) of the three-dimensional Poisson
problem, (a), and the worst solution in the cluster of the CORSING QS method, (b).
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solution with N1 = M1 = 2L+1 − 1 and L = 1,2,3, corresponding to N1 = 3,7,15
and N = 27,343,3375. The error asymptotically decays like N−2/3. Hence, re-
calling (4.22) and observing that the mesh-size is h =N−1

1 =N−1/3, we conclude
that the full-PG method reaches the interpolation error in the L2(Ω)-norm

Assessment of CORSINGQS We apply the CORSING QS method fixing the hier-
archical level L = 4, corresponding to N1 = 31 and a total trial space dimension
N = 29791. Then we choosem1 = 16, leading to a total number of test functions
m = 4096 and TS = 86% and fix s = 200. We carry out 50 random experiments,
obtaining ESP = 0.78. The resulting mean L2(Ω)-relative error is 3.9 ·10−2, with
a standard deviation 1.1 · 10−2.

We show the worst solution belonging to the successful cluster in Figure 4.13.
The main features of the solution are well captured, confirming the applicabil-
ity of the CORSING strategy to the three-dimensional case.





Conclusions

We have shown how CS can be applied to reduce the computational cost asso-
ciated with the PG discretization of a PDE.

In particular, we applied CORSING to the one-dimensional ADR problem in
Chapter 2, with a suitable choice of the trial and test spaces leading to well
posed full-PG formulations (Propositions 2.5 and 2.7). The extensive numerical
analysis of the one-dimensional case carried out in Section 2.3 shows that the
CORSING procedure is accurate and robust, both in terms of classical error mea-
sures, such as the L2(Ω)-norm and theH1(Ω)-seminorm, as well as with respect
to statistical tools, such as the indices TS and ESP. Moreover, the results of the
thorough numerical comparison against full-PG, FE, an SVD-based approach
and the best s-term approximation error provide an additional confirmation of
the reliability of CORSING.

A comparison between the deterministic (D-CORSING) and randomized (R-
CORSING) variant of the method showed that the first one could be affected
by instability, leading to aliasing phenomena (Figure 2.6), or modest ESP rates
(Figure 2.11), whereas the second one showed to be more robust and reliable.

Afterwards, we generalized the CORSING methodology to the two-dimensio-
nal ADR problem (Section 2.4). In particular, in Section 2.4.4 showed the ad-
vantages of CORSING with respect to the full-PG approach, both in terms of
memory and computational time, on an advection-dominated example.

In Chapter 3, we presented a rigorous formalization and provided a theo-
retical analysis of the R-CORSING method, based on the local a-coherence and
the RISP. In particular, in Theorem 3.11 we showed that a sufficient condition
for the RISP to hold with high probability in a given s-sparse set is that m and s
be linear dependent, up to logarithmic factors. On the contrary, at the moment
we have been only able to prove (Theorem 3.12) a uniform RISP (i.e., a RISP
holding in all possible s-sparse sets) assuming a (suboptimal) quadratic depen-
dence between m and s. Afterwards, an s-sparse RIP result in high probability
is proved in Theorem 3.19, assuming an optimal linear dependence between m
and s. Exploiting these theorems, we proved a recovery result in expectation
(Theorem 3.16) and one in probability (Theorem 3.17).

The hypotheses of this general theory have been explicitly checked in the
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case of CORSING SH and HS applied to one-dimensional ADR equations with
constant coefficients and of CORSING HS applied to a one-dimensional diffu-
sion equation, with nonconstant diffusivity. Finally, we numerically assessed
the theoretical hypotheses for CORSING PS applied to the two-dimensional
Poisson equation.

Considering more challenging benchmarks, we showed that CORSING can
be successfully applied to the Stokes problem (Section 4.1) after a suitable
stabilization strategy for the full-PG approach. Moreover, we generalized the
methodology through tensorization to the multi-dimensional ADR problem in
Section 4.2, introducing the CORSING QS strategy. First, the inf-sup property is
proved for the full-PG QS approach applied to two-dimensional Poisson prob-
lem (Theorem 4.4). Then, after the introduction of a tensorized test selection
strategy, that shows how to apply CORSING in dimension d > 2, a preliminary
validation of CORSING QS on the three-dimensional Poisson equation is pro-
vided.



Future developments

We present a series of open challenges related to the extension and the improve-
ment of the CORSING methodology.

Domains with complex geometries The extension to a domain Ω ⊆ Rd , with
d = 2,3, characterized by a complex geometry is a delicate issue. Mimicking
the approach followed for Ω = (0,1)d , we can build, on the one hand, a hi-
erarchical basis over a set of nested triangulations and, on the other hand, a
family of global basis functions, playing the role of sine functions. This could
be addressed following the approaches proposed in [Osw13] and [CHQZ07],
respectively.

ADR with nonconstant coefficients The case of ADR with nonconstant coeffi-
cients needs to be analyzed in more detail. In particular, even though the the-
oretical results for the one-dimensional diffusion equation with nonconstant
diffusive term seem promising (see Section 3.3.5), a numerical validation of
CORSING is still lacking. Probably, numerical integration for the assembly of
the stiffness matrix could not be avoided in this case.

Stabilization in the advection-dominated case In the advection-dominated case,
the CORSING procedure could benefit of the use of stabilization techniques
(see,e.g., [BDG06, CDW12] and the references therein).

Exploiting the hidden structure of A The stiffness matrix A associated with the
CORSING discretization exhibits a remarkable structure in the SH,HS , SQ and
QS cases (e.g., recall the decomposition A = TS in (2.24) and Lemma 4.2). This
structure could be exploited in order to optimize the linear algebra operations
involved in the OMP algorithm, such as the matrix-vector multiplications asso-
ciated with A and Aᵀ. Moreover, an interesting related direction could be to ap-
ply efficient recovery algorithm such as that proposed in [GHI+13] in the case of
Fourier measurements, that employs O(s logN ) samples and runs in O(s log2N )
time. A computational cost for the recovery phase that scales sublinearly in N
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could make the CORSING method highly competitive in the context of numeri-
cal methods for PDEs.

Application of the theory in the multi-dimensional case The hypotheses of the
theory presented in Section 3.2 have been numerically checked in the case of
CORSING PS and QS , but a rigorous theoretical verification is still open.

Nonorthonormal test functions Numerical evidence shows that CORSING can
be performed also when the test functions are not orthonormal (consider, e.g.,
the CORSING SP approach). Though, at this stage, we cannot provide any the-
oretical justification for this.

Dictionaries vs Bases Another possible extension is the use of dictionaries in-
stead of bases, i.e., families of possibly linearly dependent functions. This is
particularly meaningful in the case of trial functions, since the redundancy of
the dictionary generates very sparse representations of the solution. Moreover,
this could improve the stability of the hierarchical multiscale decomposition
(see [Osw13]).

More challenging benchmarks Finally, we would like to apply the CORSING
strategy to more challenging settings, such as nonlocal problems or boundary
integral equations [Bon99], whose discretization could give rise to full stiffness
matrices, or nonlinear PDEs, such as the well known Navier-Stokes equations.
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List of acronyms

AFEM Adaptive Finite Element Method
BOS Bounded Orthonormal System

CORSING COmpRessed SolvING
CS Compressed Sensing

ESP Empirical Success Probability
FE Finite Elements

full-PG Full Petrov-Galerkin
HS Hat functions vs. Sine functions

OMP Orthogonal Matching Pursuit
PDE Partial Differential Equation

PG Petrov–Galerkin
PS Pyramids vs. Sine functions
QS Q1 polynomials vs. Sine functions
RIP Restricted Isometry Property

RISP Restricted Inf-Sup Property
SH Sine functions vs. Hat functions
SP Sine functions vs. Pyramids
SQ Sine functions vs. Q1 polynomials
TS Test Savings

175





Bibliography

[AB72] A.K. Aziz and I. Babuška. The Mathematical Foundations of the Fi-
nite Element Method with Applications to Partial Differential Equa-
tions, chapter 1. Academic Press, New York, 1972.

[AH15] B. Adcock and A.C. Hansen. Generalized Sampling and Infinite-
Dimensional Compressed Sensing. Found. Comput. Math., pages 1–
61, 2015.

[AHPR13] B. Adcock, A.C. Hansen, C. Poon, and B. Roman. Breaking the co-
herence barrier: asymptotic incoherence and asymptotic sparsity in
compressed sensing. arXiv:1302.0561, 2013.

[AW02] R. Ahlswede and A. Winter. Strong converse for identification via
quantum channels. IEEE Trans. Inform. Theory, 48(3):569–579, 2002.

[BBF13] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and
Applications, volume 44 of Springer Series in Computational Mathe-
matics. Springer-Verlag, Berlin, 2013.

[BBRS15] J.-L. Bouchot, B. Bykowski, H. Rauhut, and C. Schwab. Compressed
sensing petrov-galerkin approximations for parametric pdes. Tech-
nical Report 2015-09, Seminar for Applied Mathematics, ETH,
Zürich, 2015.

[BDG06] P.B. Bochev, C.R. Dohrmann, and M.D. Gunzburger. Stabilization of
low-order mixed finite elements for the Stokes equations. SIAM J.
Numer. Anal., 44(1):82–101, 2006.

[BF91] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods,
volume 15 of Springer Series in Computational Mathematics. Springer-
Verlag, New York, 1991.

[BG04] H.J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–
269, 2004.

177



178 BIBLIOGRAPHY

[BMP15] S. Brugiapaglia, S. Micheletti, and S. Perotto. Compressed solving:
A numerical approximation technique for elliptic PDEs based on
Compressed Sensing. Comput. Math. Appl., 70(6):1306–1335, 2015.

[BNMP15] S. Brugiapaglia, F. Nobile, S. Micheletti, and S. Perotto. A theoreti-
cal study of COmpRessed SolvING for advection-diffusion-reaction
problems. Technical Report MOX-Report No. 42/2015, Politecnico
di Milano, Dip. di Matematica, 2015.

[Bon99] M. Bonnet. Boundary integral equation methods for solids and flu-
ids. Meccanica, 34(4):301–302, 1999.

[BS08] S.C. Brenner and R. Scott. The mathematical theory of finite element
methods, volume 15. Springer Science & Business Media, 2008.

[Bub13] I.G. Bubnov. Report on the works of professor Timoshenko which
were awarded the Zhuranskyi Prize. In Symposium of the institute of
communication engineers, volume 81, 1913.

[CBL89] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares meth-
ods and their application to non-linear system identification. Inter-
nat. J. Control, 50(5):1873–1896, 1989.

[CCM+15] A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R. Tempone. Dis-
crete least squares polynomial approximation with random eval-
uations - application to parametric and stochastic elliptic PDEs.
ESAIM: M2AN, 49(3):815–837, 2015.

[CDD15] A. Cohen, W. Dahmen, and R. DeVore. Orthogonal matching
pursuit under the restricted isometry property. arXiv preprint
arXiv:1506.04779, 2015.

[CDL13] A. Cohen, M.A. Davenport, and D. Leviatan. On the stability and
accuracy of least squares approximations. Found. Comput. Math.,
13(5):819–834, 2013.

[CDW12] A. Cohen, W. Dahmen, and G. Welper. Adaptivity and varia-
tional stabilization for convection-diffusion equations. ESAIM Math.
Model. Numer. Anal., 46(05):1247–1273, 2012.

[CGM01] R. Coifman, F. Geshwind, and Y. Meyer. Noiselets. Appl. Comput.
Harmon. Anal., 10(1):27–44, 2001.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a
hypothesis based on the sums of observations. Ann. Math. Stat.,
23:409–507, 1952.



BIBLIOGRAPHY 179

[Chl87] E.F.F. Chladni. Entdeckungen über die Theorie des Klanges. Zentralan-
tiquariat der DDR, 1787.

[CHQZ07] C.G. Canuto, M.Y. Hussaini, A.M. Quarteroni, and T.A. Zang. Spec-
tral Methods: Evolution to Complex Geometries and Applications to
Fluid Dynamics (Scientific Computation). Springer-Verlag New York,
Inc., 2007.

[Chr02] O. Christensen. An Introduction to Frames and Riesz Bases. Appl.
Numer. Harmon. Anal. Birkhäuser Boston, 2002.

[CQ82] C. Canuto and A. Quarteroni. Approximation results for orthogonal
polynomials in Sobolev spaces. Math. Comp., 38(157):67–86, 1982.

[CR07] E.J. Candès and J.K. Romberg. Sparsity and incoherence in com-
pressive sampling. Inverse Problems, 23:969–985, 2007.

[CRT06] E.J. Candès, J.K. Romberg, and T. Tao. Robust uncertainty princi-
ples: exact signal reconstruction from highly incomplete frequency
information. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calcula-
tion of complex Fourier series. Math. Comp., 19(90):297–301, 1965.

[CW08] E.J. Candès and M.B. Wakin. An introduction to compressive sam-
pling. IEEE Signal Process. Mag., 25(2):21–30, 2008.

[Dah97] W. Dahmen. Wavelet and multiscale methods for operator equa-
tions. Acta Numer., 6:55–228, 1997.

[Dau92] I. Daubechies. Ten Lectures on Wavelets, volume 61. SIAM, Philadel-
phia, 1992.

[DDT+08] M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K. E
Kelly, and R.G. Baraniuk. Single-pixel imaging via compressive
sampling. IEEE Signal Process. Magazine, 25(2):83, 2008.

[Dem97] J.W. Demmel. Applied numerical linear algebra. Siam, 1997.

[DeV98] R.A. DeVore. Nonlinear approximation. Acta Numer., 7:51–150,
1998.

[DHSW12] W. Dahmen, C. Huang, C. Schwab, and G. Welper. Adaptive Petrov–
Galerkin methods for first order transport equations. SIAM J. Num.
Anal., 50(5):2420–2445, 2012.

[DL92] D.L. Donoho and B.F. Logan. Signal recovery and the large sieve.
SIAM J. Appl. Math., 52(2):577–591, 1992.



180 BIBLIOGRAPHY

[DO11] A. Doostan and H. Owhadi. A non-adapted sparse approximation
of PDEs with stochastic inputs. J. Comput. Phys., 230(8):3015–3034,
2011.

[Don06] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory,
52:1289–1306, 2006.

[DS89] D.L. Donoho and P.B. Stark. Uncertainty principles and signal re-
covery. SIAM J. Appl. Math., 49(3):906–931, 1989.

[EB02] M. Elad and A.M. Bruckstein. A generalized uncertainty principle
and sparse representation in pairs of bases. IEEE Trans. Inform. The-
ory, 48(9):2558–2567, 2002.

[EG13] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements,
volume 159. Springer Science+Business Media, 2013.

[Ela10] M. Elad. Sparse and Redundant Representations: from Theory to Ap-
plications in Signal and Image Processing. Springer Science+Business
Media, New York, 1st edition, 2010.

[Fou22] J. Fourier. Theorie analytique de la chaleur, par M. Fourier. Chez
Firmin Didot, père et fils, 1822.

[FR11] M. Fornasier and H. Rauhut. Compressive Sensing. In O. Scherzer,
editor, Handbook of Mathematical Methods in Imaging, pages 187–
228. Springer Science+Business Media, New York, 2011.

[FR13] S. Foucart and H. Rauhut. A Mathematical Introduction to Com-
pressive Sensing. Appl. Numer. Harmon. Anal. Springer Sci-
ence+Business Media, New York, 2013.

[FS81] J.H. Friedman and W. Stuetzle. Projection pursuit regression. J.
Amer. Statist. Assoc., 76(376):817–823, 1981.

[Gal15] B.G. Galerkin. Series solution of some problems of elastic equilib-
rium of rods and plates. Vestnik inzhenerov i tekhnikov, 19(7):897–
908, 1915.

[GHI+13] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi.
Sample-optimal average-case Sparse Fourier Transform in two di-
mensions. In Communication, Control, and Computing (Allerton),
2013 51st Annual Allerton Conference on, pages 1258–1265. IEEE,
2013.



BIBLIOGRAPHY 181

[GKL06] K. Guo, G. Kutyniok, and D. Labate. Sparse multidimensional rep-
resentations using anisotropic dilation and shear operators. Wavelets
und Splines (Athens, GA, 2005), G. Chen und MJ Lai, eds., Nashboro
Press, Nashville, TN, pages 189–201, 2006.

[GL13] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 4th edition, 2013.

[GMS03] A.C. Gilbert, S. Muthukrishnan, and M.J. Strauss. Approximation
of functions over redundant dictionaries using coherence. In Pro-
ceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 243–252. Society for Industrial and Applied Math-
ematics, 2003.

[GP09] J.-L. Guermond and B. Popov. An optimal L1-minimization algo-
rithm for stationary Hamilton-Jacobi equations. Commun. Math.
Sci., 7(1):211–238, 2009.

[Gra10] L. Grasedyck. Hierarchical singular value decomposition of tensors.
SIAM J. Matrix Anal. Appl., 31(4):2029–2054, 2010.

[Gue04] J.-L. Guermond. A finite element technique for solving first-order
PDEs in LP . SIAM J. Numer. Anal., 42(2):714–737 (electronic), 2004.

[GW12] M.J. Gander and G. Wanner. From Euler, Ritz, and Galerkin to Mod-
ern Computing. SIAM Rev., 54(4):627–666, 2012.

[Haa10] A. Haar. Zur theorie der orthogonalen funktionensysteme. Math.
Ann., 69(3):331–371, 1910.

[HL67] R.R. Hocking and R.N. Leslie. Selection of the best subset in regres-
sion analysis. Technometrics, 9(4):531–540, 1967.

[HS09] M. Herman and T. Strohmer. High-resolution radar via compressed
sensing. IEEE Trans. Signal Process., 57(6):2275–2284, 2009.

[JMPY10] S. Jokar, V. Mehrmann, M.E. Pfetsch, and H. Yserentant. Sparse ap-
proximate solution of partial differential equations. Appl. Numer.
Math., 60:452–472, 2010.

[JV11] L. Jacques and P. Vandergheynst. Compressed Sensing: “When Spar-
sity Meets Sampling”. In G. Cristobal, P. Schelkens, and H. Thien-
pont, editors, Optical and Digital Image Processing - Fundamentals and
Applications. Wiley-VCH, Weinheim, Germany, 2011.

[Kut12] G. Kutyniok. Compressed sensing: Theory and applications.
arXiv:1203.3815, 2012.



182 BIBLIOGRAPHY

[KV02] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decompo-
sition methods for a general equation in fluid dynamics. SIAM J.
Numer. Anal., 40(2):492–515, 2002.

[KW14] F. Krahmer and R. Ward. Stable and robust sampling strategies
for compressive imaging. IEEE Trans. Image Process., 23(2):612–622,
2014.

[Lav88] J.E. Lavery. Nonoscillatory solution of the steady-state inviscid
Burgers’ equation by mathematical programming. J. Comput. Phys.,
79(2):436–448, 1988.

[Lav89] J.E. Lavery. Solution of steady-state one-dimensional conserva-
tion laws by mathematical programming. SIAM J. Numer. Anal.,
26(5):1081–1089, 1989.

[LDSP08] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly. Compressed
sensing mri. IEEE Signal Process. Magazine, 25(2):72–82, 2008.

[LH70] L.R. LaMotte and R.R. Hocking. Computational efficiency in the
selection of regression variables. Technometrics, 12(1):83–93, 1970.

[Li09] J. Li. Penalty finite element approximations for the Stokes equations
by l2 projection. Math. Methods Appl. Sci., 32(4):470–479, 2009.

[Liv12] E.D. Livshitz. On the optimality of the orthogonal greedy algorithm
for µ-coherent dictionaries. J. Approx. Theory, 164(5):668–681, 2012.

[LM72] J.L. Lions and E. Magenes. Non-Homogeneous Boundary Value Prob-
lems and Applications, volume I. Springer-Verlag, Berlin, 1972.

[Log65] B.F. Logan. Properties of high-pass signals. PhD thesis, Columbia
university., 1965.

[Mal99] S. Mallat. A Wavelet Tour of Signal Processing. Academic press, 1999.

[MZ93] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dic-
tionaries. IEEE Trans. Signal Process., 41(12):3397–3415, 1993.

[Nat95] B.K. Natarajan. Sparse approximate solutions to linear systems.
SIAM J. Comput., 24(2):227–234, 1995.

[Neč62] J. Nečas. Sur une méthode pour résoudre les équations aux dérivées
partielles du type elliptique, voisine de la variationnelle. Ann. Sc.
Norm. Super. Pisa Cl. Sci., 16(4):305–326, 1962.



BIBLIOGRAPHY 183

[NSV09] R.H. Nochetto, K.G. Siebert, and A. Veeser. Theory of adaptive fi-
nite element methods: an introduction. In Multiscale, nonlinear and
adaptive approximation, pages 409–542. Springer, 2009.

[Nyq28] H. Nyquist. Certain topics in telegraph transmission theory. Trans.
Amer. Inst. Electr. Eng., 47(2):617–644, 1928.

[Ose10] I.V. Oseledets. Approximation of 2d × 2d matrices using tensor de-
composition. SIAM J. Matrix Anal. Appl., 31(4):2130–2145, 2010.

[Osw13] P. Oswald. Multilevel finite element approximation: theory and appli-
cations. Springer-Verlag, 2013.

[Pet40] G.I. Petrov. Application of Galerkin’s method to a problem of the
stability of the flow of a viscous fluid. Priklad. Matem. Mekh., 4:3–
12, 1940.

[PHD14] J. Peng, J. Hampton, and A. Doostan. A weighted `1-minimization
approach for sparse polynomial chaos expansions. J. Comput. Phys.,
267:92–111, 2014.

[PM93] W.B. Pennebaker and J.L. Mitchell. JPEG: Still image data compression
standard. Springer Science & Business Media, 1993.

[PRK93] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. Orthogonal match-
ing pursuit: Recursive function approximation with applications to
wavelet decomposition. In Proceedings of the 27th Annual Asilomar
Conference on Signals, Systems, and Computers, pages 40–44, 1993.

[Qua14] A. Quarteroni. Numerical Models for Differential Problems, volume 8
of MS&A. Springer-Verlag Italia, Milan, 2nd edition, 2014.

[QV08] A. Quarteroni and A. Valli. Numerical Approximation of Partial Dif-
ferential Equations, volume 23 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 2008.

[Rau10] H. Rauhut. Compressive sensing and structured random matrices.
In M. Fornasier, editor, Theoretical Foundations and Numerical Meth-
ods for Sparse Recovery, volume 9 of Radon Series on Computational
and Applied Mathematics, pages 1–92. deGruyter, 2010.

[Ric] Rice University. Compressive Sensing Resources. http://dsp.

rice.edu/cs.

[Rit08] W. Ritz. Über eine neue methode zur lösung gewisser variation-
sprobleme der mathematischen physik. J. Reine Angew. Math.,
135:1–61, 1908.

http://dsp.rice.edu/cs
http://dsp.rice.edu/cs


184 BIBLIOGRAPHY

[Rit09] Walter Ritz. Theorie der transversalschwingungen einer quadratis-
chen platte mit freien rändern. Ann. Phys., 333(4):737–786, 1909.

[RS14] H. Rauhut and C. Schwab. Compressive Sensing Petrov-Galerkin
approximation of high-dimensional parametric operator equations.
arXiv preprint arXiv:1410.4929, 2014.

[Rub09] R. Rubinstein. Omp-Box v10. http://www.cs.technion.ac.il/

~ronrubin/software.html, 2009.

[RZE08] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation
of the k-SVD algorithm using batch orthogonal matching pursuit.
Technical Report CS-2008-08, Technion, Computer Science Depart-
ment, 2008.

[SCD02] J.-L. Starck, E.J. Candès, and D.L. Donoho. The curvelet trans-
form for image denoising. IEEE Trans. Image Process., 11(6):670–684,
2002.

[Sha49] C.E. Shannon. Communication in the presence of noise. Proc. IRE,
37(1):10–21, 1949.

[SSN+14] K. Sargsyan, C. Safta, H.N. Najm, B.J. Debusschere, D. Ricciuto,
and P. Thornton. Dimensionality reduction for complex models via
Bayesian Compressive Sensing. Int. J. Uncertain. Quantif., 4(1), 2014.

[Tem01] R. Temam. Navier-Stokes equations: theory and numerical analysis,
volume 343. AMS, 2001.

[Tem03] V.N. Temlyakov. Nonlinear methods of approximation. Found. Com-
put. Math., 3(1):33–107, 2003.

[Tim13] S. Timoshenko. Sur la stabilité des systèmes élastiques. Annales des
Ponts et Chaussées, 9:496–566, 1913.

[Tol12] G.P. Tolstov. Fourier Series. Dover Books on Mathematics. Dover
Publications Inc., Mineola, N.Y., 2012.

[Tro04] J.A. Tropp. Greed is good: Algorithmic results for sparse approxi-
mation. IEEE Trans. Inform. Theory, 50(10):2231–2242, 2004.

[Tro11] J.A. Tropp. Improved analysis of the subsampled randomized
hadamard transform. Adv. Adapt. Data Anal., 3:115–126, 2011.

[Tro12] J.A. Tropp. User-friendly tail bounds for sums of random matrices.
Found. Comput. Math., 12(4):389–434, 2012.

http://www.cs.technion.ac.il/~ ronrubin/software.html
http://www.cs.technion.ac.il/~ ronrubin/software.html


BIBLIOGRAPHY 185

[vdBF07] E. van den Berg and M.P. Friedlander. SPGL1: A solver for large-
scale sparse reconstruction, 2007. http://www.cs.ubc.ca/labs/

scl/spgl1.

[vdBF08] E. van den Berg and M.P. Friedlander. Probing the pareto frontier for
basis pursuit solutions. SIAM J. Sci. Comput., 31(2):890–912, 2008.

[Wel74] L. Welch. Lower bounds on the maximum cross correlation of sig-
nals (corresp.). IEEE Trans. Inform. Theory, pages 397–399, 1974.

[YK13] X. Yang and G.E. Karniadakis. Reweighted `1-minimization method
for stochastic elliptic differential equations. J. Comput. Phys.,
248:87–108, 2013.

[Yse86] H. Yserentant. On the multi-level splitting of finite element spaces.
Numer. Math., 49(4):379–412, 1986.

[Zha11] T. Zhang. Sparse recovery with orthogonal matching pursuit under
rip. IEEE Trans. Inform. Theory, 57(9):6215–6221, 2011.

http://www.cs.ubc.ca/labs/scl/spgl1
http://www.cs.ubc.ca/labs/scl/spgl1

	Introduction
	The COmpRessed SolvING approach
	Comparison with existing techniques
	Outline of the thesis

	Compressed sensing
	Three main concepts
	Sparsity: what does it mean, exactly?
	Sensing: the ``big soup''
	Recovery: looking for a needle in a haystack

	Theoretical tastes
	The Restricted Isometry Property
	The importance of being incoherent
	Orthogonal Matching Pursuit: ``greed is good''
	Bounded Orthonormal Systems
	Sampling strategies based on the local coherence
	A guiding example: Haar vs Fourier
	RIP for generic matrices


	CORSING: Towards a theoretical understanding
	The Petrov-Galerkin method
	Weak problems in Hilbert spaces
	From weak problems to linear systems

	CORSING: COmpRessed SolvING
	Description of the methodology
	Assembling the stiffness matrix

	CORSING in action
	The 1D Poisson problem
	A 1D advection-diffusion problem

	Extension to the 2D case
	The model 2D Poisson problem
	A 2D advection-dominated example
	CORSING performance
	Analysis of cost reduction with respect to the full-PG approach


	A theoretical study of CORSING
	Formalizing the CORSING procedure
	Notation
	Main hypotheses
	The CORSING procedure

	Theoretical analysis
	Preliminary results
	Non-uniform restricted inf-sup property
	Uniform restricted inf-sup property
	Recovery error analysis under the RISP
	Restricted Isometry Property
	Recovery error analysis under the RIP
	Avoiding repetitions during the test selection

	Application to advection-diffusion-reaction equations
	The 1D Poisson equation (HS).
	The 1D ADR equation (HS)
	The 1D Poisson equation (SH)
	The 1D ADR equation (SH)
	The 1D diffusion equation (HS)
	The 2D Poisson equation (PS)

	Further numerical experiments
	Sensitivity analysis of the RISP constant
	CORSING validation
	Convergence analysis
	Sensitivity analysis with respect to the Péclet number


	Further applications of CORSING
	The Stokes problem
	Problem setting
	Petrov-Galerkin discretization
	Numerical assessment of full-PG
	Numerical assessment of CORSINGSP

	Multi-dimensional ADR problems
	Tensorization
	The QS trial and test combination
	Local a-coherence upper bound and tensorized randomization
	Well posedness of full-PGQS for the 2D Poisson problem
	Numerical results for the 2D case
	Numerical results for the 3D case


	Conclusions
	Future developments
	Acknowledgements
	List of acronyms
	Bibliography

