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Abstract

IN optical communications, local oscillators and propagation introduce
multiplicative phase noise that must be taken in consideration, esti-
mated and compensated at the receiver. In the literature such channels

are dealt with by considering a symbol-spaced discrete-time model where
the transmitted symbol is impaired by both AWGN and a multiplicative
phase noise given by a first order Wiener process. The issues given by such
channels are objects of several works in the literature. The aim of this thesis
is to discuss some of them and try to extend those dissertations.

First of all, in the literature this model is assumed by considering “small”
phase noise but nobody has ever discussed how much “small” it must be. A
statistical and mathematical analysis is derived by the author, and a thresh-
old of validity of the so called Discrete Model is worked out, proving that
the assumption is correct in almost all practical scenario and it is conserva-
tive in term of performance simulation. The analysis of phase noise chan-
nels is then deepened by studying Bayesian tracking techniques to extract
all the information about the transmitted symbols. An iterative demod-
ulation and decoding scheme is proposed and compared to others in the
literature. The major gain is given by the greater spectral efficiency ob-
tained by not transmitting Pilot Symbols and still working better than other
considered similar schemes. Bayesian tracking allows also to derive the in-
formation rate of the considered Discrete Model channel and to verify that
the proposed algorithm can achieve it.

The focus is then moved to analyze short reach access optical scenarios
where, for spectral efficiency and receiver sensitivity, OFDM has been con-
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sidered instead of single carrier systems. For cost, footprint and power con-
sumptions requirements, Direct Detection has several advantages compared
to Coherent schemes since the multiplicative phase noise introduced by the
transmitting laser can be neglected. However, if dispersive compensating
fibers are not used, Chromatic Dispersion impairs the signal and the phase
noise cannot be canceled. The author has proposed the literature analysis of
this phenomenon, enlightening its weaknesses and comparing the new re-
sults of the thesis with experimental measurements given by other authors.
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CHAPTER1

Introduction

1.1 Background

Multiplicative phase noise is one of the major impairments affecting the
performance of coherent optical transmission systems [Leoni et al., 2012,
Magarini et al., 2012a, Goebel et al., 2011]. Phase noise is due to both
laser oscillators used for up- and down-conversion [Foschini and Vannucci,
1988], and to cross-phase modulation that arises in wavelength-division-
multiplexing systems [Essiambre et al., 2010]. In particular, in [Magarini
et al., 2011], it is concluded that the discrete symbol-spaced Optical Chan-
nels transmission can be modeled, if the phase noise line-width is “small”,
as follows

yi = aie
jφi + ni , (1.1)

where ai is the transmitted complex symbol, φi a discretized first-order
Wiener process and ni AWGN. Several schemes have been proposed to es-
timate the received carrier phase for arbitrary PSK and QAM constellations
in presence of phase noise. In this thesis work Bayesian Inference will be
considered to analyze the features and deal with Equation (1.1) channel.
In particular, Bayesian tracking is exploited to follow the hidden phase φi,
given the measurements yi.

1
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Tracking the state of a dynamic system from noisy measurements is a
classical problem in several fields of science. In the state-space approach
to time-series modeling, the state process describes all relevant informa-
tion about the system under investigation. For example, this information
could be related to the kinematic characteristics of a generic target [Li and
Jilkov, 2003, Blackman, 2004]. In an econometrics problem it could be re-
lated to the interest rates or the monetary flow [Gray, 1996, Duffie, 2010].
Alternatively, it could be related to the motion characteristics in video an-
alytics applications for visual tracking, where the aim is to automatically
understand the actions occurring in a monitored scene [Isard and Blake,
1998, Kwon and Lee, 2010, Zhou et al., 2004, Ross et al., 2008].

In order to make inference about the state of a dynamic system that
changes over time, a model of the state evolution with time (the system
model) and a model related to the noisy measurements to the state (the mea-
surement model) are required. For dynamic state estimation, the discrete-
time approach is widespread and convenient. In the Bayesian approach,
system and measurement models are available in a probabilistic form. Ac-
cordingly, probabilities are used to model the state evolution and the mea-
surement given the state, and, from the model and the measurements, infer-
ence is made on the hidden evolving state. By making inference one builds
the probability of the state given all the available measurements, thus em-
bodying all the available statistical information in the inferred distribution.
Therefore it can be said that, in some sense, Bayesian tracking extracts
the information about the state that is brought by the measurements. This
provides a rigorous general framework for dynamic state estimation prob-
lems [Simon, 2006].

The most popular tool for Bayesian tracking of a system with discrete-
time continuous state is the Kalman filter proposed in [Kalman, 1960]
(see, e.g., [Simon, 2006, Haykin, 2004], two comprehensive books on the
Kalman filter). The Kalman filter performs optimal tracking, thus leading to
exact inference, when the equations that describe the system model and the
measurement model are linear and the noisy processes that affect the state
evolution and the measurements are additive and independent Gaussian
processes. When the state transition and/or the measurement equations are
non-linear and/or the noise processes are non-Gaussian, the Kalman filter is
no more optimal. To face the non-optimality of the Kalman filter in case of
non-linear state model and/or measurement model, the extended Kalman
filter has been proposed in [Bellantoni and Dodge, 1967] and adopted in
more applications: real-time traffic estimation [Wang and Papageorgiou,
2005], data-assimilation in oceanography [Pham et al., 1998], estimation
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speed in induction motor [Kim et al., 1994], real-time estimation of rigid
body [Marins et al., 2001], and data-fusion of Global Positioning System
signals [Sasiadek et al., 2000] are some examples. This technique requires
differentiable functions in the state and measurement models and it can
diverge, owing to its linearization. Other techniques try to match the dis-
tribution of the state with a parametric distribution with limited number of
parameters: some examples could be the parametric distributions for res-
idential air exchange rates [Murray and Burmaster, 1995], the parametric
models of geometry and illumination for the visual tracking [Hager and
Belhumeur, 1998], the Tikhonov and Fourier parametrizations proposed
in [Colavolpe et al., 2005] for the phase tracking problem, parametric dis-
tributions of storage time and temperature of ready-to-eat foods [Pouillot
et al., 2010]. When the state-space has reduced dimensionality, an other ap-
proach is the quantization: this trivial non-parametric technique can provide
satisfactory performance as in [Barletta et al., 2012a, Barletta et al., 2011]
for the phase tracking problem. An other example of application of the
quantization technique is the word recognition from acoustic signals [Ra-
biner et al., 1983]. Among the inferential techniques proposed to apply the
Bayesian approach in a more generic framework, particle filter has received
in the past two decades widespread interest. This technique does not need
to the Gaussianity of the noise processes. The basic feature of the particle
filter is to provide a non-parametric approximation to the exact distribu-
tion, thus making possible to accurately infer multi-modal distributions.
Particle filtering techniques have found application in several research ar-
eas, including, to cite just a few, communication systems [Amblard et al.,
2003, Punskaya et al., 2001], data fusion [Perez et al., 2004, Caron et al.,
2007], non-linear control [Rigatos, 2009], target-tracking [Särkkä et al.,
2007,Okuma et al., 2004] analysis of financial time series [Lopes and Tsay,
2011,Fearnhead, 2005]. The papers [Arulampalam et al., 2002,Djurić et al.,
2003,Candy, 2007,Creal, 2012,Hlinka et al., 2013] take a look at the world
of particle filters.

Coming back to the problem of tracking φi in the discrete-time Wiener
phase noise channel of Equation (1.1), among the proposed methods, the
blind feed-forward scheme of [Pfau et al., 2009] addresses the constraints
imposed by high speed parallel processing. Pilot-aided carrier phase re-
covery schemes have recently gained attention as candidate phase recovery
schemes for systems affected by strong phase noise. Papers [Morsy-Osman
et al., 2011, Zhang et al., 2012] are based on the insertion of a pilot tone
in a notch of the transmitted signal spectrum, while in papers [Magarini
et al., 2012b, Spalvieri and Barletta, 2011, Barletta et al., 2013] pilot sym-
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bols are inserted in time domain to demodulate the phase noise signal. Also,
schemes based on time domain interleaving of robust modulation formats
and less robust but more spectrally efficient modulation formats are pro-
posed in [Barletta et al., 2012c, Le et al., 2014]. An iterative demodulation
and decoding algorithm published by the author can demodulate at the in-
formation rate a phase noisy channel with low computational complexity
and without pilot symbols [Pecorino et al., 2015]. The capacity of channels
given by Equation (1.1) are studied in [Dauwels and Loeliger, 2008, Bar-
letta et al., 2011, Barletta et al., 2012a, Barletta et al., 2012b].

Wiener phase noise and its issues are studied in the literature of optical
transmission, where among the different strategies, OFDM has been con-
sidered in [Ma et al., 2009,Armstrong and Lowery, 2006,Shieh et al., 2008]
as a good alternative to the coherent single carrier system [Beppu et al.,
2015, Koizumi et al., 2012] for its good performance in terms of spectral
efficiency, receiver sensitivity, and polarization dispersion resilience. The
internet traffic needs strong and distributed networks, which can carry ever-
growing data demand not only in long-haul and medium range network,
but also in short range scenarios. For this reason, Coherent Optical OFDM
(CO-OFDM) has taken an important role in long-haul transmission [Ma
et al., 2009,Shieh et al., 2008], while Direct Detection Optical OFDM [Zan
et al., 2008, Schmidt et al., 2009, Peng et al., 2009b, Schuster et al., 2008]
(DDO-OFDM) could be very interesting in the short range scenario. How-
ever, compared with optical transport networks, the latter are more sensi-
tive to cost, footprint and power consumptions. For this purpose, the ex-
ploitation of cost-effective and energy efficient laser sources could become
mandatory in the next future. In particular, Vertical Cavity Surface Emit-
ting Lasers (VCSEL) dominate intra-datacenter communications for low-
data rate applications due to their intrinsic low cost, energy efficiency and
footprint [Amann et al., 2012,Hofmann and Bimberg, 2012,Hofmann et al.,
2012]. Nevertheless, Distributed Feedback Lasers (DFB) are mandatory in
metro networks due to their superior performance in terms of emitted power
frequency chirps and linewidth. To overcome the intrinsic bandwidth limi-
tations, the spectral efficiency of the transmitted signal has to be increased.

Compared to CO-OFDM, in DDO-OFDM coarser lasers can be used,
e.g. the already cited VCSEL and DFB. Though those lasers are costly
efficient, they introduce a big phase noise in the optical channel that must
be dealt with. Therefore, it is important to find in the literature some works
that analyze and model phase noise, like [Wu and Bar-Ness, 2004, Liu and
Bar-Ness, 2006,Mandelli et al., 2014,Mandelli et al., 2015,Magarini et al.,
2011]. This thesis inserts itself in this scenario with a contribution reported
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in the following Section.

1.2 Contribution and Outline

This works deepens the analysis on optical Wiener phase noise channels,
aiming to bring three major contributes to the literature.

• Several works are present in the literature that exploits the “small”
phase noise assumption to assume the Discrete Model of Equation
(1.1). However, nobody has never considered how the phase noise
should be in order to have such approximation. Obviously, if the
phase noise is too “strong”, some issues begin to impair the trans-
mission, like cycle slips [Ascheid and Meyr, 1982]. If one considers
infinite phase noise, i.e. the continuous-time phase noise φ(t) being a
uniform white process, it has been demonstrated that the capacity of
such channel is null [Barletta and Kramer, 2014a]. The aim of Chap-
ter 2 is to analyze the mismatch between the continuous-time phase
noise introduced by oscillators [Foschini and Vannucci, 1988] and the
discrete-time model assumed in the literature. A threshold of validity
of the discrete model will be found out and validated through several
tests.

• In Chapter 3, Bayesian tracking applied to state-based approach is pre-
sented with some examples and a scenario where this theory shows its
limits. Then this framework is imported into the discrete-time Wiener
phase noise channel, where phase noise is the hidden state that must be
tracked. Accordingly, in Chapter 4, the Information rate of such chan-
nel is computed, finding in this way the limits of transmission over
that model [MacKay, 2003]. However, Bayesian tracking allows not
only to compute the theoretical optimal transmission rates, but also to
design an algorithm achieving such bounds. Therefore, it is proposed
in the Chapter a complete Demodulation and Decoding algorithm that
can achieve the information rate and, in contrast to the other pub-
lished [Barletta et al., 2013, Spalvieri and Barletta, 2011, Kamiya and
Sasaki, 2013], can work without either using Pilot-Symbols or losing
performance. Furthermore, the heavy computational requirements of
the algorithm are reduced by smart techniques that allows practical
implementation.

• As in single carrier systems, the same phase noise channel model of
Equation (2) [Ma et al., 2009] can be used to evaluate the perfor-
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mance of optical transmission based on OFDM. While Coherent Opti-
cal (CO) OFDM are affected by the same issues of single carrier phase
noise, for Direct-Detection Optical (DDO) OFDM the carrier phase
noise is canceled out by the detector [Peng et al., 2009b]. However,
nobody except [Peng, 2010] has considered Single Side-Band (SSB)
DDO-OFDM scenarios without CD compensation fibers. In this case
CD plays an important role since, after propagation along the chan-
nel, the transmitter laser phase noise cannot be canceled by a Direct
Detection receiver. The author wants to deepen the focus about this
issue since the analysis developed by [Peng, 2010] is only mathemat-
ically derived and it is presented without any experimental validation.
Particularly, unlike previous works, the analysis is focused onto strong
laser line-widths, which are strong candidates to be used in short reach
Access Networks [Alves et al., 2014]. However this is not true any-
more with lasers with line-width comparable to the subcarrier spacing
∆f of an OFDM modulation with a large number Nd of subcarriers.
Consequently, the author analyzes the effects of Phase Noise in DDO-
OFDM Transmission due to Chromatic Dispersion. Since DFB and
VCSEL are typically characterized by linewidths of few MHz, the im-
pact of phase noise after fiber propagation has to be considered. In
Chapter 5 the author begins with the literature analysis of such phe-
nomenon, with cleaner mathematical derivation. SSB transmission
is considered in order to cancel the fading of Dual Side-Band (DSB)
transmission. Then, the limits of [Peng, 2010, Peng et al., 2009a] are
investigated with coarse lasers, like DFB and VCSEL. With this last
Chapter the Monte Carlo performance of [Peng, 2010] are reproduced
by a Semi-Analytical Model and compared with a proposed simula-
tor by the author. Since the results are not the same, the limits of
the Semi-Analytical derivation are investigated and the results com-
pared with the measurements of [Schmidt et al., 2008]. Moreover,
thanks to result from the simulation presented in this paper one can
point out that Chromatic Dispersion limits in DDO-OFDM the trans-
mission over medium to long tracks of fiber when laser line-widths
become closer to the subcarrier spacing.

1.3 Notation

The notations written in this section are valid for the entire Thesis, unless
specified differently. The uppercase bold character U denotes a matrix.
The lowercase simple chapter u denotes either a scalar or a column vector



i
i

“thesis” — 2015/12/23 — 15:18 — page 7 — #23 i
i

i
i

i
i

and the uppercase calligraphic character U denotes the space spanned by
u. The lowercase character between brackets {u} indicates a possibly non-
stationary process, {u} = U0, U1, · · · , where the uppercase indexed letter
Uk denotes a random vector or a random scalar variable, whose generic
realization uk takes its values in Uk. Also, uki denotes a windowed sequence
of vectors or scalars between the discrete time instant i and the discrete time
instant k, that is

uki =

{
(ui, ui+1, · · · , uk) if 0 ≤ i ≤ k

empty elsewhere

It is the same for Uk
i , a sequence of random vectors or scalar random vari-

ables. If Uk
i and uki are used to indicate a sequence of scalars, random or

not, respectively, they can be also interpreted as column vectors. In the fol-
lowing the generic vector is noted as v, whereas a scalar is called s, when
one do not want to specify its dimensionality.

Let ck be a deterministic or random sequence. The polynomial of the
complex variable z denotes as c(z) identifies the z-transform of the se-
quence ck:

c(z) =
∞∑

k=−∞

ckz
−k

. For continuous random variables, p(uk) is a shorthand used to indicate
the univariate probability density function p(Uk = uk), while, when us-
ing discrete random variables, the shorthand p(uk) indicates the univariate
mass probability of Uk evaluated in uk. It is the same for p(uki ) that refers
to the multivariate case or to the joint probability. In case of conditional
probability as p(uk|qk), if qk does not exist then p(uk|qk) = p(uk). In the
Thesis, replacing the probability p(·) with q(·) one wants to point out an
approximating probability af the actual probability. For example, q(uk|vk)
is an approximation of the conditional probability density function or of the
conditional probability mass function p(uk|vk). The Table 1.1 collects all
the other important notations adopted in the Thesis. The notation reported
in this Section are the most used in the thesis. Other punctual definition
will be reported during the dissertation.
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Table 1.1: Iterations performed by the proposed hybrid iterative demodulation and de-
coding algorithm.

Notation Description

|U| number of elements in the discrete set U
j imaginary unit ( j =

√
−1 )

uT , UT vector and matrix transpose, respectively
u∗ complex conjugate of the scalar u or complex conjugate

of each entries of the vector u
I identity matrix
In n× n identity matrix
0n n× 1 zero vector
0n n× n zero matrix

det (U) determinant of the matrix U
E {Uk} mean of the random variable Uk

cov{Uk} covariance matrix of the random vector Uk or variance
of the scalar random variable Uk

log (u) natural logarithm of u
log2 (u) base-2 logarithm of u

exp (u), eu natural exponential of u
mod(u, a) remainder after the division of u to a
Re(c) real part of the complex number c
Im(c) imaginary part of the complex number c
|c| absolute value of the complex number c
∠c phase of the complex number c

g(µ, σ2;x) univariate Gaussian probability density function
over the real axis spanned by x with mean µ
and variance σ2

density function over the complex plane spanned by x
with mean µ and two-dimensional variance σ2

g(µ,R;x) multivariate Gaussian probability density function
over the real space spanned by x with mean vector µ
and covariance matrix R

gc(µ,R;x) multivariate circular symmetric Gaussian
probability density function over the complex space
spanned by x with mean vector µ and covariance
matrix R

δ(x) Dirac function over the space spanned by x
Z set of integer numbers
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CHAPTER2

Modeling the phase Noise

This Chapter investigates the differences between the symbol-spaced discrete-
time Wiener phase noise channel model, commonly assumed to represent
the effect of phase noise [Mengali, 1997], and that obtained by symbol-rate
sampling the filtered continuous-time received signal affected by Wiener
phase-noise. All fields of interest where the phase noise is an issue that
must be considered are well dealt with in the thesis Introduction and are
not considered here if not necessary or examples. In the literature regard-
ing phase noise one can find the continuous-time approach, like in [Gho-
zlan and Kramer, 2013a, Ghozlan and Kramer, 2013b]. Nevertheless, in
most works it is usually considered a symbol-time model for the sampled
signal, e.g. in [Spalvieri and Barletta, 2011, Demir et al., 2000, Magarini
et al., 2011], where discrete-time phase noise after the receive filtering is
considered to be a Wiener process; this is done by assuming that one has
slow phase variation in one time symbol. However, nobody has studied
yet how much must be slow the phase process to fit the so called Discrete
Model (DM). This study is the aim of the Chapter.

The Chapter is organized as follows: in the first Section the commonly
assumed Discrete-time Model (DM) is presented together with the deriva-
tion of the Complete Model (CM). Then the mismatch between the CM

9
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obtained by sampling the continuous-time signal and the DM is found. An-
other Section reports the simulations that investigates the differences and
the similarities of the two models. The power of this mismatch is then
studied by simulations, with a particular emphasis on the phase noise of
the Completed Model. In particular, for comparison, some statistical tests
to check temporal and distributional properties of the two models are con-
sidered. Moreover it is observed that the receive filtering introduces mem-
ory in the phase process. The author concludes by pointing out the limits
of validity of the DM, in order to validate the previous works present in
the literature and to have a precise threshold to work with when assuming
discrete-time Models with such scenarios.

The aim of this Chapter is simple, and can be synthesized in one ques-
tion. How much “small” the phase noise should be to have the continuous-
time Wiener phase noise that affects optical signal transmission should be
to validate the discrete-model of the Equation (1.1)?

2.1 Two Models

2.1.1 Complete Model Derivation

h(t)
a

i

w(t)
jφ(t)

e

h(-t)*r(t) y(t) y
i

t = iT

Figure 2.1: Complex baseband representation of the transmission system with multiplica-
tive phase noise, matched filtering, and symbol-rate sampling.

In [Foschini and Vannucci, 1988] it is shown that phase noise introduced
by laser oscillators can be modeled as a continuous-time Wiener process.
Starting from the assumption above and with reference to Figure 2.1 the
complex baseband model of the continuous-time signal r(t) at the input of
the receiver is

r(t) =
∑
m

amh(t−mT )ejφ(t) + w(t)ejφ(t) (2.1)

where ai is the sequence of zero-mean complex symbols with unit variance
σ2
a = 1 transmitted at rate 1/T , j =

√
−1 is the imaginary unit, h(t) is the
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square-root Nyquist impulse response of the transmit shaping filter with en-
ergy Eh and w(t) is the complex Additive White Gaussian Noise (AWGN)
with power spectral densityN0. The signal-to-noise ratio is SNR = Es/N0,
where ES = σ2

aEh is the average energy per symbol. Just for reference
the information rate between the input modulation and the continuous-time
signal of Equation 2.1 is well studied in [Ghozlan and Kramer, 2013a,Gho-
zlan and Kramer, 2013b] while a lower bound on the capacity has been
recently derived in [Barletta and Kramer, 2015]. Upper bounds on the SNR
penalty due to phase noise with arbitrary discretization in time domain are
given in [Barletta and Kramer, 2014b]. The random phase oscillation of a
continuous-time Wiener process evolves as

φ(t) = φ(0) + σ

∫ t

0

ν(τ)dτ , (2.2)

where φ(0) is a Uniform distributed random variable in the interval [0, 2π],
γ is a real constant, and ν(t) is a real zero-mean white Gaussian process
with autocorrelation

E [ν(τ)ν(τ + t)] =

∫ +∞

−∞
ν(τ)ν(τ + t)dτ = δ(t) , (2.3)

being δ(·) is the Dirac delta function and E[·] is the expectation operator.
Without loss of generality φ(0) is set to 0. Note that, while E[φ(t)] = 0,
the variance of φ(t) is not a constant, but it linearly increases with respect
to the time t

Var[φ(t)] = E[φ2(t)] = σ2E

[(∫ t

0

ν(τ)dτ

)2
]
dt = σ2t (2.4)

If one recall [Foschini and Vannucci, 1988], the Power Spectral Density
(PSD) of the complex exponential ejφ(t) given by a Wiener phase noise
φ(t) is known to be the Lorentzian function given by

L(f) = 4σ2

σ4 + 16π2f 2
(2.5)

with 3 dB line-width σ2/(4π) [Magarini et al., 2011]. After the description
of the properties of the received signal, the author proceeds in deriving the
signals processed at the receiver before any Digital Signal Processing unit,
i.e. prior to the sampler.
The received signal of Equation (2.1) is filtered through the square root
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Nyquist matched filter h∗(−t) and sampled at the time instants t = iT ,
leading to

yi =
∑
l

ai−lc
(i)
l + n′

i , (2.6)

where

c
(i)
l =

∫ +∞

−∞
h(τ − lT )h∗(τ − iT )ejφ(t)dτ , (2.7)

and

n′
i =

∫ +∞

−∞
w(τ)ejφ(t)h∗(τ − iT )dτ . (2.8)

If the phase noise cannot be approximated as nearly constant within the
effective duration of the impulse response of the receive filter, the Nyquist
condition for Inter-Symbol Interference (ISI) free transmission is not satis-
fied. It is worth writing the output of the sampled matched filter as

yi = aie
jφ′

i · ρ′i + n′
i . (2.9)

Equation (2.9) defines the Complete Model (CM). In the next subsection
the Discrete-time Model commonly assumed in the literature is presented.

2.1.2 Discrete-time Wiener Phase Noise Model

In the literature of digital communications, a trusted model to study the
performance of phase noise and its related topics, e.g. carrier recovery,
is the Discrete-time Model (DM) [Magarini et al., 2011, Mengali, 1997]
and [Spalvieri and Barletta, 2011, Magarini et al., 2012b] of Equation 1.1
where

φi = φi−1 + σPNνi (2.10)

σPN = σ2T

νi ∼ N(0, 1) .

The term σPNνi can be interpreted as the instantaneous value of a white fre-
quency noise process, being it given by the difference between two succes-
sive phase noise samples. Note that Equation (2.10) is a first-order Markov
process, since its value at the time i given the one at time (i − 1) does not
depends on the past values [Mengali, 1997].

In other words, translation from continuous to discrete-time is simply
obtained by neglecting the effects of the receive filter on the multiplicative
phase noise. It is trivial that DM of Equation (1.1) in an approximation
of the CM of (2.9). In the next subsection the mathematical discrepancies
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between the two models are pointed out together with the introduction to
the statistical analysis of the mismatch developed in the following Sections.

2.1.3 Model Comparison

The model defined by (1.1) and (2.10) is commonly assumed in computer
simulations for Bit Error Rate (BER) evaluation. Remarkably, the exper-
imental results presented in [Magarini et al., 2011] show that DM can be
adopted to describe carrier phase noise after nonlinear propagation in dif-
ferent transmission scenarios. The goal of this Chapter is to show what are
the limits of applicability of the DM in the approximation of the CM. In
order to do this, we perform statistical tests on temporal and distributional
properties of CM for two different roll-offs that can be considered as end-
points of the range of values that are of practical interest in optical systems.
Then we compare them with those performed on the DM. The main result
is the proof, by simulations, that DM is a good approximation of the CM
when σPN < 0.1 rad. As a further way of evaluating the accuracy provided
by the approximation we present computer simulations to compare BERs
of QPSK and 16-QAM and the power spectral densities of the complex ex-
ponential phase noise obtained by simulating the two models. Nevertheless
a first mathematical comparison is already presented in this Subsection. In-
deed the CM to the DM of Equation (2.9) and (1.1) respectively can be
compared to point out that

• the additive noise n′
i process in the CM is statistically equivalent to

the process ni of the DM,

• the term ρ′ie
j(φ′

i−φi) is a distortion on the symbol ai given by the in-
tegration of the complex exponential through the matched filter. Ac-
tually, as pointed out in [Foschini and Vannucci, 1988], since the ef-
fect of filtering is to convert phase fluctuations in amplitude variations,
phase noise can have a detrimental effect not only for the case of Phase
Modulations (PMs) but also for Amplitude ones (AMs). However, this
PM-AM conversion is totally neglected in the DM.

The distortion term can be explained also by reasoning in frequency do-
main. The noiseless part of the received signal r(t) in (2.1) corresponds to
the multiplication of the filtered data sequence with ejφ(t). If one translates
this to the frequency domain, the Power Spectral Density of the noiseless
part of the received signal is the convolution between σ2

a|H(f)|2/T and the
Lorentzian spectrum of the complex exponential phase noise ejφ(t) given in
(2.5). Since the overall frequency response from the input of the transmit
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filter to the output of the matched filter is not proportional to |H(f)|2, ISI
arises.
The remaining part of this Chapter is organized as follows. Sections 2.2
and 2.3 go further in depth by comparing the statistical characterizations of
the discrete-time sampled-spaced output signals and by discussing the mis-
match between the two models. Simulation results are presented in Section
2.4, where we compare the BER and the power spectral density of discrete-
time phase noise of the CM and with its DM approximation.

2.2 Phase Noise process Properties

The aim of this Section is to check if and when the process φ′
i in Equation

2.9 is a discrete-time Wiener process, that is the same as asking if it is a
good approximation of the DM phase noise of the (2.10).
In order to verify this hypothesis, one should demonstrate that

ηi = φ′
i − φ′

i−1 , (2.11)

is a white and Gaussian process. Being ηi the difference between two
phases at the two successive symbol time instants, i.e. iT and (i − 1)T , it
is defined as Discrete-Time Frequency Noise (DTFN). In the following, the
AWGN terms ni and n′

i appearing in (2.9) and (1.1) will be neglected be-
cause they affect the two discrete-time models with two statistically equiv-
alent processes. Accordingly, the noiseless part of the CM can be written
as follows

yi = aie
jφ′

i · ρ′i . (2.12)

The analysis of the mismatch between CM and DM is performed by means
of simulations. It is worth emphasizing that since the goal of this study is
to analyze the non-linear effects introduced by phase noise, time-domain
processing is implemented. In order to synthetically generate the actual
signal yi in (2.12) the continuous-time signal is sampled at a rate much
higher than the symbol interval. In our simulations the oversampling factor
is equal to 20. Such a value has been chosen after a preliminary analysis
with the goal of providing a safe margin for aliasing free processing and, at
the same time, obtaining numeric results with reasonable complexity.

The discrete-time sequence {ηi} is analyzed by a Monte Carlo (MC) simu-
lator with the block scheme as in Figure 2.2 that is described below:
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Figure 2.2: Simulator Block Diagram for generating ηi, φi and φ′
i.

• The block Zero Padding (ZP) appends 19 zeros after one input sam-
ple {ai}, then the signal is filtered by the Square-Root Raised Cosine
(SRRC) transmit filter hn and arrives at the receiver.

• The Phase Noise (PN) process is originated through a first order fil-
tering of the Gaussian variable σPNνn/

√
20. This is done to have the

cumulative sum of 20 samples have the desired variance σ2
PN. Note

that {νn} ∼ N(0, 1) is a independent identically distributed (i.i.d.)
normal standard random process, whereas it is trivial that the simple
down-sampling of such sequence is {φi}.
• Phase noise and receive matched filtering are applied. Then the se-

quence is down-sampled.

• The phase information of the actual symbol is then removed by multi-
plication of the complex conjugate, then the phase is the process {φ′

i}.
• Trivially is also obtained {ηi}.

In the next two Subsections statistical test about whiteness and gaussianity
of the sequence ηi are performed and then the results are commented in the
last Subsection of this Section.

2.2.1 Test of whiteness

In the test of whiteness we focus on the estimation of the DTFN autocor-
relation. In particular we consider the Pearson’s Correlation Coefficient
(PCC) with time lag mT defined as [Dunn and Clark, 1986]

PCCm =
Cov [ηi, ηi+m]

σ2
η

=
E [ηiηi+m]

E [η2i ]
, (2.13)

where E[ηi] = 0 can be easily assumed. In statistics, Pearson’s correlation
coefficient is one of the most popular tests for measuring the linear depen-
dence between two continuous random variables [Dunn and Clark, 1986].



i
i

“thesis” — 2015/12/23 — 15:18 — page 16 — #32 i
i

i
i

i
i

From (2.13) it follows that PCCl assumes always values between −1 and
+1. Specifically, if PCC1 equals to 0 means that there is no correlation be-
tween the two random variables, a value of +1 (−1) means that there is a
perfect positive (negative) relationship between them and, therefore, as one
variable increases, the second one increases (decreases) in exactly the same
proportion. If the DTFN sequence ηi is white it happens that

PCCm =

{
1 if m = 0,

0 otherwise.
(2.14)

From the sequence of N DTFN samples {ηi}, generated by simulation, an
estimate of the PCC of the (2.13) is obtained as

ˆPCC1 =
(N −m)−1

∑N−m
i=1 ηiηi+m

(N −m)−1
∑N−m

i=1 η2i
=

∑N−m
i=1 ηiηi+m∑N−m

i=1 η2i
(2.15)
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Figure 2.3: ˆPCC1 versus σPN for QPSK and 16-QAM.

Figures 2.3 and 2.4 show ˆPCC1 and ˆPCC2, respectively, versus σPN for
QPSK and 16-QAM with roll-off α = 0.1 and α = 0.5. These two roll-
offs can be considered as the endpoints of the range of values that are of
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Figure 2.4: ˆPCC2 versus σPN for QPSK and 16-QAM.

practical interest for optical systems. From Figures one can clearly distin-
guish between two different cases: the first where σPN is lower than 0.3
rad and the second where it is higher. In the first case one sees that while
for α = 0.5 the values of ˆPCC1 and ˆPCC2 are virtually not affected by the
modulation format, for α = 0.1 this property is satisfied only by ˆPCC2.
Concerning with ˆPCC1, a higher value can be observed for QPSK than
for 16-QAM. A possible explanation of this behavior resides in the com-
bined effect of different amplitude levels of 16-QAM and slow-decaying
tails of the Nyquist impulse responses with small roll-off values. The fast
amplitude variations within a symbol interval induced by higher tails and
amplitude levels of 16-QAM interfere in a stronger way thus reducing the
observed correlation between successive samples of ηi. In the second case,
where σPN has values higher than 0.3 rad, we can see that the large phase
change occurring between successive samples of the Wiener phase noise
process totally decorrelates the sequence of samples ηi.
Moreover, independently on the roll-off value and modulation type, ˆPCC2

can be considered negligible with respect to ˆPCC1. Other values ˆPCCm,
with m > 2, are not reported, since ˆPCCm ≈ 0.
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2.2.2 Test of Gaussianity

The sequence of N DTFN samples {ηi} is used to build a histogram pη(x)
of the samples distribution. In order to test the gaussianity of the DTFN,
we compute the Kullback-Leibler Divergence (KLD) between pη(x) and
the Gaussian distribution

g(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (2.16)

where µ and σ2 are the mean and the variance of the distribution respec-
tively. The KLD is defined in [Arizono and Ohta, 1989] as

KLD(pη(x)||g(x) =
∫ +∞

−∞
pη(x) ln

[
pη(x)|
g(x)

]
dx . (2.17)

and provides a measure of the discrepancy between two probability distri-
butions. With some easy mathematical derivations one can write

KLD(pη(x)||g(x) =
∫ +∞

−∞
pη(x) ln

[
pη(x)|
g(x)

]
dx =

= −H(pη(x))−
∫ +∞

−∞
pη(x)

[
1

2
ln(2πσ̂2

η)−
x2

2σ̂2
η

]
dx =

= −H(pη(x)) +
1

2
ln(2πσ̂2

η) +
1

2

σ̂2
η

σ̂2
η

=

= −H(pη(x)) +
1

2
ln(2πeσ̂2

η) =

= H(g)−H(pη(x)) , (2.18)

where the entropy H(pz) of the random process z with probability density
function (p.d.f.) pz(x) is defined in bit as [MacKay, 2003]

H(pz) = Epz [− log2 pz(x)] = −
∫
x

pz(x) log2 pz(x)dx . (2.19)

It is worth to point out that one can easily derive the entropy of a Gaussian
variable with variance σ2, i.e. H(g) = 0.5 ln(2πeσ2).
Simulations were carried out for QPSK and 16-QAM constellations. Figure
2.5 reports the KL divergence in nats versus σPN for roll-off α = 0.1. For
each point in the Figure, the histogram that approximates the p.d.f. is built
with 103 bins and N = 2 · 105.
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Figure 2.5: Kullback-Leibler Divergence versus σPN with QPSK and 16-QAM.

2.2.3 Discussion of the statistical tests

Values of KLD(pη(x)||g(x)) ≈ 0 mean that {ηi} is virtually Gaussian.
From Figure 2.5 we observe that this happens for values of σPN lower than
the threshold value σPN ≈ 0.3 rad. From the Figure it is clear that the KL
divergence measured for σPN below the threshold σPN is never greater than
0.04. Above σPN the discrete-time frequency noise cannot be considered
Gaussian. This means that if the phase noise is too strong then the approxi-
mation of the phase noise in the CM with the one of the DM does not hold
anymore.
A completely different behavior can be observed in Figure 2.3 for ˆPCC1.
Indeed when σPN > σPN ˆPCC1 tends to 0. This would lead us to the
conclusion that the phase noise of the CM cannot be approximated to a
discrete-time Wiener process, at least for small values of ˆPCC1. However,
Sections 2.3 and 2.4 will enlighten that the difference between the non-
white discrete-time frequency noise ηi, obtained from simulations, and the
discrete-time white frequency process, defining the random increment of
the Wiener phase noise in (2.10), does not have any significant impact on
the power of the error associated with the mismatch due to the use of the
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two models and on the associated measured BERs. As a consequence, the
non-whiteness of the discrete-time phase noise can be neglected in practical
cases.

2.3 Mismatch Power Analysis

In Section 2.2 the mismatch of the phase noise process between the CM and
DM is studied. Still the issue about the ˆPCC1 ̸= 0 must be solved, but one
can trivially understand the presence of some memory after the matched
filter.
Rather than focusing on modeling processes and check their statistical agree-
ment in this Section the author treats the model mismatch in rawer, but more
efficient way. Therefore, in what follows, the power of the model mismatch
is simulated and discussed.
Consider the Mean Square Error of the model mismatch, defined as

P = E
[∣∣xi − aiejφi

∣∣2] , (2.20)

where the processes {ai}, {xi}, and {φi} are simulated from Figure 2.2. P
is defined as the mismatch power.
In the previous Section it is pointed out that the CM innovation process, i.e.
ηi, is not white. Particularly ηi has a non-zero correlation at m = 1-step.
One can be also interested in the analysis of the mismatch power PF be-
tween the CM and a hybrid version of the DM

PF = E
[∣∣xi − aiejφF,i

∣∣2] , (2.21)

with
φF,i = ∠ (z1φi−1 + φi + z1φi+1) , (2.22)

where z1 = ˆPCC1.

From Figures 2.6 and 2.7 one can notice that for both the two considered
roll-off values P and PF scale with respect to σPN with a 20 dB/decade
slope up to about 0.3 rad. By comparing Figures 2.6 and 2.7 one realizes
that 10 log1 0(P/PF ) ≈ 1 dB. This small difference means that the memory
in the DTFN does not dominate the quality of the approximation. Even
more important to note is that, with σPN smaller than 0.1 rad, the powers
of the errors P and PF are still very low, being more than 20 dB below the
signal power. It should be said that σPN = 0.1 rad is really strong phase
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Figure 2.6: Model Mismatch Power P between CM and DM versus σPN with QPSK and
16-QAM.

noise, which can be tolerated only by robust systems as coded BPSK or
coded QPSK [Pattan, 2000]. Since the threshold SNR for these systems is
typically below 10 dB, we can conclude that for both the two models the
level of the error power due to phase noise mismatch is much lower than
the AWGN. This makes negligible the impact of the mismatch introduced
by DM on system performance.

2.4 BER Performance Comparison

While in Section 2.3 the Model Mismatch is analyzed by deepening in its
features, i.e. statistical test on DTFN ηi and the mismatch powers P and
PF , in this Section the author analyzes the agreement of DM with CM in
terms of BER.
Particularly one expects from the results of Mismatch Power that the BER
of DM and CM agrees, and starts to diverge with σPN → σPN.
Accordingly MC Simulation are run in order to have an estimate of the
BER of a QPSK and a 16-QAM. The DM signals are generated according
to Equations (1.1) and (2.10), while CM signal are generated according to
the scheme reported in Fig. 2.2. The CM BER is measured with the roll-off
values of the Square-Root Raised Cosine (SRRC) considered in previous
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Figure 2.7: Model Mismatch Power PF between CM and the Filtered DM versus σPN with
QPSK and 16-QAM.

Sections, i.e. for α = 0.1 and α = 0.5. As standard deviation are consid-
ered values for σPN equal to the set S = {3 · 10−2, 6.6 · 10−2, 0.135} rad.
These values of σPN represents optical systems where strong phase noise
values already considered in the literature to be of practical interest [Ma-
garini et al., 2011, Bisplinghoff et al., 2011]. The reader can consider that
above those values, the transmission is so prohibitive that common constel-
lation, e.g. QAMs, can not be considered. Hence, in these Subsections, one
has to exploit strong codes and robust modulations [Pattan, 2000].

In the three Figures 2.8, 2.9 and 2.10 the results for the three values of
σPN ∈ S are reported. It is worth noting that, only σPN = 3 · 10−2 and
σPN = 6.6 · 10−2 are below the threshold of σPN ≈ 0.1 rad that defines the
maximum standard deviation for which there is a good agreement between
the two models. That threshold has already been observed in the previous
Sections where dealing with the model properties, i.e. statistic of the phase
noise, and mismatch power. In this Section that threshold is also validated
through BER MC simulation.
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Figure 2.8: BER versus SNR with QPSK and 16-QAM with σPN = 3 · 10−2 with QPSK
and 16-QAM.

Coherent demodulation of the discrete-time sequence is realized by pilot-
aided trellis based demodulation scheme proposed in [Barletta et al., 2013].
Such a method is able to provide good tolerance to phase noise because it
implements virtually optimal Bayesian tracking of the unknown phase. It
relies on the insertion of known pilot symbols that are time-division multi-
plexed with the information-bearing symbols. In the results shown in this
Section a pilot overhead of 5% is used. Bayesian tracking [MacKay, 2003]
is an important topic in this thesis and it will be introduced in Chapters 3
and 4.
Figure 2.8 reports the BER versus SNR for σPN = 3 · 10−2. An excel-
lent fit is found between the BER curves of the two models. The AWGN
performance is also reported as a reference in all Figures of this Section.
In the case of σPN = 6.6 · 10−2 the simulated BERs are shown in Figure
2.9. One can observe that for QPSK we still have a good agreement be-
tween the two models, while, in contrast, with 16-QAM a small deviation
appears at BER values lower than 10−3, being the performance achieved
by DM slightly worse than that achieved by CM. Figure 2.10 shows results
for σPN = 0.135. Due to strong phase noise, for both the two models a
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Figure 2.9: BER versus SNR with QPSK and 16-QAM with σPN = 6.6 · 10−2 with QPSK
and 16-QAM.

BER floor is observed at high SNR with 16-QAM. The DM channel model
exhibits a BER floor that is one order of magnitude lower than that of DM.
From these results one concludes that when the DM channel model is used
in computer simulations the resulting BER measure is always conservative.
This gives to previous works exploiting DM rather than considering a CM
approach an even more secure validation. Not only the DM is a good ap-
proximation under the condition σPN < σPN, but it is even conservative in its
BER analysis. The true system can work even better because of the mem-
ory introduced by all the filtering steps. Finally, in all the considered cases
the roll-off factor has negligible impact on the BER performance achieved
by the CM.

2.5 Phase Noise PSD

In this brief Section the author gives a frequency-domain analysis about
the DM and CM mismatch, giving also a possible explanation of the better
behavior of the CM compared to the DM.
The PSD of a sampled signal can be demonstrated to be equal to expected
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Figure 2.10: BER versus SNR with QPSK and 16-QAM with σPN = 0.135 with QPSK and
16-QAM.

value of the its periodogram

|Px(f)|2 =
T · E

[∣∣∣∑N
n=1 xne

j2πnf
∣∣∣2]

N
, (2.23)

where T is the sampling time, i.e. symbol interval, and N the number of
samples [Rabiner and Gold, 1975].
Recalling the simulation with block scheme as in Figure 2.2, the Power
Spectral Density (PSD) of the two processes are simulated as the mean of
the periodograms

|P̂x(f)|2 =
T

NM

M∑
m=1

∣∣∣∣∣
N∑

n=1

xne
j2πnf

∣∣∣∣∣
2

, (2.24)

where M is the number of averages of the periodogram taken by the simu-
lator.



i
i

“thesis” — 2015/12/23 — 15:18 — page 26 — #42 i
i

i
i

i
i

Normalized Frequency
10-6 10-5 10-4 10-3 10-2 10-1 100

C
om

pl
ex

 E
xp

on
en

tia
l P

er
io

do
gr

am
 [d

B
|

-100

-90

-80

-70

-60

-50

-40

-30

CM

DM

Figure 2.11: PSD of φi and φ′
i of DM and CM respectively with σPN = 6.6 · 10−2.

In Figures 2.11 and 2.12 the estimated PSDs of the DM and the CM phase
noise complex exponential, i.e. ejφ and ejφ′ , are plotted. In both scenar-
ios, the CM phase noise PSD is narrower than the DM one. The difference
between the two is apparent for normalized frequency greater than 10−1.
This difference can be explained by observing that CM has been sampled
after having been filtered through the matched filter, which increases the
duration of the continuous-time phase noise memory thus narrowing the
spectrum.
It is strongly intuitive that if one wants to track the phase noise in a carrier
recovery system, the one with broader spectrum is worse tracked
[Rabiner and Gold, 1975]. The are several techniques to perform carrier
recovery, like the Pilot-Aided trellis demodulation already presented
[Barletta et al., 2013] or blind techniques, e.g. decision-directed-mode
[Fatadin et al., 2009].
Finalizing the current dissertation, if one compares the results of this Sec-
tion with the previous one about BER of the two models, he can find a
sort of agreement in the behavior of the model mismatch. The better CM
BER performances of the Bayesian tracking system in Section 2.4 find an
explanation when comparing the two different PSD of the processes φ and
φ′. Particularly, since the power of φ′ is lower with higher normalized fre-
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Figure 2.12: PSD of φi and φ′
i of DM and CM respectively with σPN = 0.135.

quencies can be better tracked by the low-pass nature of the Bayesian filter
used to demodulate the sequence. This is another strong point to validate
the results presented in the Chapter.

2.6 Conclusion

In this Chapter the limits of the symbol-spaced discrete-time channel model
of Equations (1.1) that is commonly adopted to evaluate performance degra-
dation introduced by discrete-time multiplicative Wiener phase noise have
been analyzed. This so called Discrete Model (DM) is commonly assumed
in the literature cited in this Chapter under the condition of “small” phase
noise. However, nobody have yet studied how much “small” the phase
noise must be.
Thus the author has derived the more accurate model obtained by filtering
and sampling at symbol-rate the continuous-time received signal affected
by multiplicative continuous-time Wiener phase noise reported in Equa-
tion (2.9). In the Chapter this model is defined as Complete Model (CM).
Particularly, CM takes into account the effects that affect a received signal
before sampling and any Digital Signal Processing. The fit between the
two models has been analyzed by means of statistical tests aiming to verify
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temporal and distributional properties of both the DM and the CM phase
noise processes. The power of the error resulting from the mismatch of the
noiseless signals between the two models have also been simulated. One
can conclude that, when the standard deviation of the discrete-time Wiener
phase-noise increment is below the threshold of DM validity σPN = 0.1
rad, the discrete-time model provides a good approximation to the sampled
filtered model with continuous-time phase noise with the same width of the
spectral line. This can be concluded from the results of Section 2.3, where
it is shown by MC simulation that the Power of the mismatch error is 20
dB below the power of the signals in the worst case, i.e. σPN → σPN. Note
that in most practical scenarios the values of σPN are way lower than the
threshold of validity of the DM.
The only notable difference between CM and DM phase noise process is the
non-null correlation between the innovation of the phase noise ηi and itself
delayed by one sample. The little memory introduced however is negligible
in practical application because the difference produced by exploiting this
information has brought only a gain of 1 dB in terms of power of mismatch,
that is already very low.
The good quality of the approximation is also demonstrated by analysis of
Bit Error Rate performance, showing that BERs of QPSK and 16-QAM
are close to each other for the two models. Moreover, from results coming
from Sections 2.4 and 2.5, one can conclude that, not only DM is a good
approximation of the CM when σPN < σPN, but the approximation is con-
servative. Indeed as one can see from Sections 2.4 and 2.5 DM’s BER is
always a little bit worse than the CM one and the DM phase noise process
is a bit more difficult to track with a carrier recovery system for its higher
PSD components with high normalized frequencies.
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CHAPTER3

Bayesian Inference in State-based
Problems

Bayesian inference is the process of fitting a probability model to a set of
data and summarizing the result by a probability distribution on the param-
eters of the model and on unobserved quantities such as prediction for new
observation.
After an introductory Section about Bayesian Inference, the author focuses
the attention on the tracking of unknown processes, e.g. phase noise, to
better analyze Channel performances and its models [Gelman et al., 2014].
Bayesian tracking is a really powerful tool, but it has its own limits when
experiencing complex state models, e.g. physical transmission over an op-
tic dispersive channel. This last one will be used as an example of the limits
of such approach in the last Chapter Section.

3.1 Bayesian Tracking of Channel State

As it is said in the Introduction, Bayesian Tracking can be exploited in
many applications. The main objective of a communication system is the
transfer of information over a channel [Nguyen and Shwedyk, 2009]. When

29
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a signal is transmitted through a communication channel, there are two
types of imperfections that cause the received signal to be different from
the transmitted signal. One type of imperfection is deterministic in nature,
such as linear and nonlinear distortions, ISI, etc. The second type is non-
deterministic, such as addition of noise, interference, phase noise, etc. For
a quantitative study of these nondeterministic phenomena, a random model
is required. In this Section it is explained how one can recur to Bayesian
tracking in order to study channel models. This powerful theory allows
to improve communication systems in two ways. First of all, it permits
to theoretically study such channels and to design better communication
systems that exploit the information given by Bayesian tracking and have
better performances.

If one wants to track an evolving channel in digital communication, he
can deal with the so called “State-space approach”, that is the focus on
time-series modeling on the evolving state of a system. The state contains
all relevant information required about the system under investigation. It
is important to distinguish between the state, which is usually hidden, and
the measurements, which are function of the state and random variables.
For the purposes of this thesis work, the discrete-time formulation of the
problem is considered. A complete book on the state-space approach is
[Simon, 2006].

3.1.1 State-based Approach

The state process is denoted with {S}, that is composed by the random
variables {S0, S1, . . . , Sn}, and the measurement process with Y , that is
composed by {Y1, Y2, . . . , Yn} where n is the duration of the state and
measurements sequences. As assumption, the state process starts at time
index k = 0, while the measurements are available from the time index
k = 1. The state-space approach is based on a state transition equation

Sk = fk−1(Sk−1, Vk−1), (3.1)

that defines the system model, and on a measurement equation

Yk = hk(Sk, Nk), (3.2)

that defines the measurement model. It is important to note that in what
follows, we let k = 1, 2, · · · . In Equations 3.1 and 3.2 the process {V }
consists of independent variables called process noise and the process {N}
consists of independent variables called measurement noise and it is inde-
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pendent of V .

p(vn1 ) =
n∏

k=1

p(vk), (3.3)

p(nn
1 ) =

n∏
k=1

p(nk), (3.4)

where p(vk) and p(nk) are known probabilities, ∀k. From (3.2), one can
point out that the evolution of the state is independent of the measurement
process Y . No assumptions about the dimension of the random variables
are done, i.e. according to the investigated problem, they can be random
vectors or scalar random variables. Moreover, the variables can be discrete
or continuous. In this way, both with continuous and discrete state system
models are taken into account.

In this thesis the author considers dynamical systems that can be mapped
onto the framework of first-order Markov hidden state processes. If one
wants to define a first-order discrete-time Markovian state process {S},
e.g. like the one in Equation 2.10 from its joint probability, he can write

p(sn0 ) = p(s0)
n∏

k=1

p(sk|sk−1), (3.5)

where p(sk|sk−1) is called state transition probability and it is known by
derivation from Equation (3.1). The measurement yk is memoryless given
the state sk and it is characterized by the conditional distribution

p(yn1 |sn0 ) =
n∏

k=1

p(yk|sk), (3.6)

where p(yk|sk) is called measurement probability. Note that Equation 3.6
can be easily derived from the (3.2). From Equations (3.5) and (3.6), one
can write the joint distribution

p(sn0 , y
n
1 ) = p(yn1 |sn0 )p(sn0 )

= p(s0)
n∏

k=1

p(yk|sk)p(sk|sk−1), (3.7)

that is all he needs to characterize the system model in a probabilistic way.
After some straightforward passages, one gets

p(sk|sk−1
0 , yk−1

1 ) = p(sk|sk−1), (3.8)

that is the well-known Markovian property.



i
i

“thesis” — 2015/12/23 — 15:18 — page 32 — #48 i
i

i
i

i
i

Proof. Matching the equation (3.7) with

p(sn0 , y
n
1 ) = p(s0)

n∏
k=1

p(sk, yk|sk−1
0 , yk−1

1 ),

one writes
p(sk, yk|sk−1

0 , yk−1
1 ) = p(yk|sk)p(sk|sk−1). (3.9)

Let us write

p(sk, yk|sk−1
0 , yk−1

1 ) =p(yk|sk0, yk−1
1 )p(sk|sk−1

0 , yk−1
1 )

henceforth by (3.6)

p(sk, yk|sk−1
0 , yk−1

1 ) = p(yk|sk)p(sk|sk−1
0 , yk−1

1 ). (3.10)

Equating the right sides of (3.9) and (3.10) one gets

p(sk|sk−1
0 , yk−1

1 ) = p(sk|sk−1).

Note that, unlike the expressions of p(sn0 ), p(y
n
1 |sn0 ), and p(sn0 , y

n
1 ), re-

ported in (3.5), (3.6), and (3.7), respectively, the a posteriori probability
of the state given the measurements p(sn0 |yn1 ) is intractable. Using (3.7) it
results

p(sn0 |yn1 ) =
p(s0)

∏n
k=1 p(yk|sk)p(sk|sk−1)

p(yn1 )
,

where the denominator can not be written as product of marginal distribu-
tions, if not by chain rule as

p(yn1 ) =
n∏

k=2

p(yk|yk−1
1 ),

where p(yk|yk−1
1 ) is still not easily definable. In the following an example

of the state-space approach is reported by describing the tracking of a noisy
sinusoid’s phase.

Esample: Sinusoid embedded in noise in the state-space approach

Estimating the phase of a sinusoid embedded in noise is a fundamental
synchronization problem in many telecommunication systems. When a si-
nusoid is affected by phase noise, one wants to track the phase sequence,
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not only to estimate a parameter. The state-based approach is used to bring
the knowledge of the spectrum of the sinusoid inside the tracking problem.

A generic model for the phase noise Φ is the AutoRegressive Moving
Avarage (ARMA) model. With this model different spectra of sinusoid
embedded in noise can be fitted. Process Φ can be obtained as accumulation
of frequency noise (like the DTFN ηi of Chapter 2 that produced φi), that
is

Φ(z) =
z−1

1− z−1
Λ(z), (3.11)

where the frequency noise process {Λ} is the sequence of coefficients of
the polynomial of complex variable z

Λ(z) = c(z)V (z), (3.12)

where {V } is white scalar Gaussian process noise with zero mean and vari-
ance σ2, and

c(z) =

∏m
i=1(1− βiz−1)∏m
i=1(1− αiz−1)

=
1 +

∑m
i=1 biz

−i

1−
∑m

i=1 aiz
−i
, (3.13)

where m is the order of the ARMA model, |αi| < 1, |βi| ≤ 1, therefore the
transfer function c(z) is causal, monic, and minimum phase [Rabiner and
Gold, 1975]. Since the phase is observed through the complex exponential,
to prevent the overflow in the accumulation one can periodically reduce it
modulo 2π. Note that in this Chapter the simple notation σ is used instead
of the longer σPN of the previous one to point at the standard deviation of
the discrete-time innovation process of the phase noise.
The ARMA phase noise can be cast in the framework of the state-based ap-
proach by defining the state at time k as the column vector with dimension
d = m+ 1

Sk =



Φk

Ωk−1

Ωk−2

...
Ωk−m

 , (3.14)

where, modeling the filter with transfer function (3.13) as a shift register
with feedback taps am1 and forward taps bm1 , Ωk−1

k−m is the content of the shift
register at the k-th channel use, that is

Ω(z) =
V (z)

1− a(z)
.



i
i

“thesis” — 2015/12/23 — 15:18 — page 34 — #50 i
i

i
i

i
i

The relation between Sk and Sk−1 results

Sk = FSk−1 +

Vk−1

Vk−1

0m−1

 , (3.15)

where the state transition matrix is

F =

 1 (am1 + bm1 )
T

0 (am1 )
T

0m−1 Im−1 0m−1

 (3.16)

=



1 a1+b1 a2+b2 · · · am−2+bm−2 am−1+bm−1 am+bm

0 a1 a2 · · · am−2 am−1 am

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0


.

The equation (3.15) is the required transition equation (3.1) of the state-
based approach, where fk−1(·) is independent of time index k.

The k-th complex measurement is

Yk = ejSk,1 +Nk, (3.17)

= ejΦk +Nk,

where j is the imaginary unit, Sk,1 is equal to the first entry of the state
random vector Sk, and N is a complex AWGN process independent of Φ
with zero mean and variance SNR−1. The variance of the measurement
noise N is usually expressed as the inverse of the Signal-to-Noise Ratio
(SNR) when the power of the sinusoid is unitary, as in (3.17). Note that the
random variables in the measurement equation are all scalar.

Figure 3.1 shows the block diagram of the model given by equations
(3.14) to (3.17) with m = 1.

If we consider the unwrapped version of Φk, aware of the possibility to
include Φk modulo 2π in the state definition if needed, the state transition
probability and the measurement probability are equal to

p(yk|sk) = gc(e
jsk,1 , SNR−1; yk)

= gc(e
jϕk ,SNR−1; yk) (3.18)
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Figure 3.1: Block diagram of the sinusoid embedded in noise and affected by ARMA phase
noise with order m = 1, i.e. Wiener Phase Noise.

and

p(sk|sk−1) = g(Fsk−1,Σv; sk), (3.19)

respectively, with

Σv =

 σ2 σ2 0Tm−1

σ2 σ2 0Tm−1

0m−1 0m−1 0m−1

 , (3.20)

where 0m is an all-zero m × m matrix. Given Sk−1, Sk is determined
if also Vk−1 is known, hence the covariance matrix of the state transition
probability has unit rank. All the probability distributions needed in the
state-space approach have been defined, except the probability of the initial
state p(s0) required in the equation (3.5), that is usually set with an uniform
distribution in the range [0, 2π) if there is no information about the initial
phase of the sinusoid, or it is set with a Dirac delta function as distribution if
the initial phase is precisely known. Note that both the state model and the
measurement model are Gaussian, but the state model is also linear, while
the measurement model is non-linear.

As a representative case of a class of frequency noise spectra with we
take

c(z) =
m∏
i=1

1− (1− 3 · 4−2i+1)z−1

1− (1− 3 · 4−2i)z−1
, (3.21)

where the coefficients in the brackets match αi and βi of (3.13). The m
poles and m zeros in the right side of (3.21) are interleaved and spectrally
spaced of two octaves from each other. Starting from low frequency, one
finds for i = m the pole at z = 1− 3 · 4−2m. This pole is followed by pairs
of the type zero-pole, and the sequence of zeros and poles terminates when
i = 1 with the zero at z = 0.25. Denoting by T the time delay represented
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by z−1, the transfer function (3.21) is that of a low-pass filter with −3 dB
normalized frequency

f−3T ≈
3 · 4−2m

2π

determined by the pole at z = 1− 3 · 4−2m.
A particular case of the ARMA phase noise is the well-know Wiener’s

phase noise. It can be derived setting m = 0 in the right side of the equa-
tion (3.13), that produces c(z) = 1 and Λ(z) = V (z). In other words,
the frequency noise V is only accumulated. In this case the state process
coincides with the phase process (Sk = Φk,∀k) and the system and mea-
surement model are defined by

Sk = Sk−1 + Vk−1, (3.22)

Yk = ejSk +Nk, (3.23)

where al the random variables are scalar, and the related probability distri-
bution becomes

p(sk|sk−1) = g(sk−1, σ
2; sk), (3.24)

p(yk|sk) = gc(e
jsk ,SNR−1; yk). (3.25)

Figure 3.1 shows the block diagram of the Wiener’s phase noise model
given by equations (3.22) to (3.23).

The phase process (3.22) is obtained by sampling at symbol frequency
the phase of a continuous-time complex exponential {ejϕ(t)} whose power
spectral density is the Lorentzian function reported below and is the same
of Equation (2.5) Figure 3.2 reports the PSD of the ARMA phase noise ob-
tained by the filter in (3.21) and m = 4, and of the Wiener’s phase noise
Lorentzian spectrum. For both σ is set equal to 1. As comparison, the
white phase noise and a phase noise characterized by second-order model
have been reported in Fig. 3.2. The second-order model is often adopted
to characterize the phase noise of the free-running oscillator in synchro-
nization problems, as in [Driessen, 1994, Patapoutian, 1999, Patapoutian,
2002, Christiansen, 1994, Spalvieri, 2006, Spalvieri and Magarini, 2008].
Note that the white phase noise does not need to bo defined in the frame-
work of the state-based approach because it has no state.
From Fig. 3.2 one appreciates that the spectrum of phase noise obtained by
frequency noise generated by (3.21) closely fits the slope of−30 dB/decade
at normalized frequency higher than f−3T , a slope that is often encoun-
tered in real world oscillators. The frequency noise that generates a phase
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noise whose spectrum has a slope of −30 dB/decade is called Flicker fre-
quency noise, or pink frequency noise, and its spectrum shows a slope of
−10 dB/decade. In Figures 3.3 and 3.4 two examples of realizations of
phase noise are shown, one related to the Wiener’s phase noise and the
other related to tha ARMA phase noise. For a detailed discussion about
models of phase noise than can affect a sinusoid embedded in noise one
can refer to [Meyr and Ascheid, 1990].

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

−20

0

20

40

60

80

100

120

140

Normalized frequency, fT

P
ha

se
 n

oi
se

 p
ow

er
 s

pe
ct

ra
l d

en
si

ty
 [d

B
]

 

 

Figure 3.2: Power spectral density of phase noise generated by accumulating white Gaus-
sian noise with zero mean and unit variance (σ = 1) filtered through a causal, monic,
and minimum phase transfer function. Solid line: phase noise model of the free-
running oscillator in synchronization problems, reported in [Spalvieri and Magarini,
2008]. Dash-dotted line: phase noise generated by (3.21) with m = 4 followed by
accumulation. Dashed line: Wiener’s phase noise. Dotted line: white phase noise.

3.1.2 Bayesian Tracking

The Bayesian tracking of an hidden Markovian state is a general probabilis-
tic approach to estimate the unknown a-posteriori probability distribution
of the evolving state recursively over time. This is done using incoming
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Figure 3.3: ARMA phase noise example generated by (3.21) with m = 4 and σ = 1.
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Figure 3.4: Wiener’s phase noise example with σ = 1.
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measurements and the system and measurement model in (3.1) and (3.2).
Bayesian tracking allows to track the state when the state transition prob-
ability and the measurement probability are know and treatable. Without
loss of generality, we consider the Markovian state continuous. Therefore
one wants to track the probability density function of the state given the
measurements. The case of discrete state can be directly derived, taking
into account that the tool tracks the probability mass function of the state.

The well-known two-step Bayesian recursion allows to track the de-
sired distribution of the state alternating predict and update step. For k =
1, 2, · · · , two-step recursion is composed by the predict step, that is

p(sk|yk−1
1 ) =

∫
Sk−1

p(sk|sk−1)p(sk−1|yk−1
1 ) dsk−1, (3.26)

and the update step, that is

p(sk|yk1) =
p(sk|yk−1

1 )p(yk|sk)
p(yk|yk−1

1 )
, (3.27)

where p(sk|yk−1
1 ) is the predictive distribution and p(sk|yk1) is the posterior

distribution. The term p(yk|yk−1
1 ) is a normalization factor independent of

the state such that the left-hand side of (3.27) is a probability, i.e. it sums to
1 [Walpole et al., 1993]. This last factor can be computed by the Chapman-
Kolmogorov equation

p(yk|yk−1
1 ) =

∫
Sk

p(sk|yk−1
1 )p(yk|sk) dsk, (3.28)

The predictive distribution is the result of the total probability law with the
state transition probability p(sk|sk−1) in place of p(sk|sk−1, y

k−1
1 ) thanks to

the Markovian property in (3.8). The update distribution derives from the
Bayes rule and the substitution of p(yk|sk, yk−1

1 ) with p(yk|sk) thanks to
(3.6). For k = 1 the predictive distribution is

p(s1) =

∫
S0

p(s1|s0)p(s0) ds0. (3.29)

When one knows the initial state s0 = s†0, p(s0) is a Delta function and
p(s1) is equal to the state transition probability p(s1|s0 = s†0). When one
does not have any information about the initial state, p(s0) is uniform on the
domain S0 and p(s1) often remains uniform on its domain. When the state
is discrete we can easily replace the integration operator in (3.26), (3.27),
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and (3.28) with a sum. The two steps in (3.26) and (3.27) can be merged
getting the one-step Bayesian recursion for the posterior distribution

p(sk|yk1) =
p(yk|sk)
p(yk|yk−1

1 )

∫
Sk−1

p(sk|sk−1)p(sk−1|yk−1
1 ) dsk−1, (3.30)

where the normalization factor can be computed as

p(yk|yk−1
1 ) =

∫
Sk
k−1

p(yk|sk)p(sk|sk−1)p(sk−1|yk−1
1 ) dskk−1. (3.31)

According to the application one can choose to employ the two-step or the
one-step Bayesian recursion. In those applications where only the ratio of
the probability of one state to the probability of the other states is required,
computing p(yk|yk−1

1 ), which is common to the entire state space, is not
necessary, therefore one si satisfied with

p(sk|yk1) ∝ p(sk|yk−1
1 )p(yk|sk)

∝ p(yk|sk)
∫
Sk−1

p(sk|sk−1)p(sk−1|yk−1
1 ) dsk−1, (3.32)

where the first and the second lines are the proportional version of (3.27)
and (3.30) respectively.

Example: Phase tracking of a sinusoid embedded in noise affected by
Wiener’s phase noise

This example recalls the previous Subsection related to the sinusoid embed-
ded in noise affected by Wiener’s phase noise. We assume that the initial
state is know and it is equal to 0, which leads to p(s0) = δ(s0). In Fig. 3.5
one can see an example of evolution of the two-step Bayesian recursion for
SNR = 1 dB and σ = 1. The first predictive distribution, that bootstraps
the algorithm, coincides with the state transition probabilities with condi-
tioning term s0 equal to 0. After this, each predictions make smoother
the previous update distribution (this is the effect of the integral in (3.26)),
while each update makes sharper the previous predictive distribution using
the actual measurement (this is the effect of the product in (3.27)). In this
case study, we can see as the predictive and posterior distributions are mul-
timodal. This happens when the phase noise impairment is consistent (in
other words σ is high) and the SNR is sufficiently low.

Figure 3.6 shows a realization of the Maximum A-posteriori Probability
(MAP) estimation obtained by maximization of the posterior distribution
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Figure 3.5: Example of two-step Bayesian recursion applied to the tracking of the phase
of the sinusoid embedded in noise affected by Wiener’s phase noise. SNR = 1dB,
σ = 1, and p(s0) = δ(s0). Dashed line: predictive distribution p(sk|yk−1

1 ). Solid
line: posterior distribution p(sk|yk1 ). Asterisk: actual value of the phase. (a) k = 1.
(b) k = 2. (c) k = 3. (d) k = 4.
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p(sk|yk1) recursion. The figure reports the case of sinusoid embedded in
Wiener’s phase noise with SNR = 5 dB and σ = 2. In Fig. 3.6 the cycle
slip phenomenon is present: the tricky problem to track the unwrapped
phase of a sinusoid is to not perform phase slips multiple of 2π. This occurs
because the measurements are function of the phase modulo 2π. When the
phase noise impairment is consistent and the SNR is not sufficiently high,
the phase tracking with an error of 2π or its multiples can occur. These
errors are not a problem, since the phase is defined modulo 2π, but the
transient in its estimate given by a cycle slip can heavily affect the system
performance.
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Figure 3.6: Example of MAP estimation applied to the phase tracking of a sinusoid
embedded in noise affected by Wiener’s phase noise. Specifically, the estimation is
obtained by the maximization of the posterior probability of the Bayesian recursion.
SNR = 5dB, σ = 2, and p(s0) = δ(s0). Dashed line: MAP estimation of the phase
sk. Solid line: actual phase sk.

Until now, the Bayesian recursion has been presented following the nat-
ural evolution of the time. Specifically the forward version of the Bayesian
recursion have been described. It is possible to see Equations (3.26), (3.27),
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and (3.28) in the backward direction as follows

p(sk|ynk+1) =

∫
Sk+1

p(sk|sk+1)p(sk+1|ynk+1) dsk+1, (3.33)

p(sk|ynk ) =
p(sk|ynk+1)p(yk|sk)

p(yk|ynk+1)
, (3.34)

p(yk|ynk+1) =

∫
Sk

p(sk|ynk+1)p(yk|sk) dsk, (3.35)

where the recursion starts from the probability distribution of the final state
p(sn+1) and it goes on in the past alternating prediction and update steps.

If one wants to make inference on Sk using the entire measurement Y n
1

then one can exploit the forward-backward Bayesian recursion, that is

p(sk|yn1 ) =
p(sk, y

k
1)p(y

n
k+1|sk)

p(yn1 )
(3.36)

=
p(sk|yk1)p(sk|ynk+1)

p(sk)

p(yk1)p(y
n
k+1)

p(yn1 )
(3.37)

∝
p(sk|yk1)p(sk|ynk+1)

p(sk)
. (3.38)

Proof. Starting from the definition of conditional probability and splitting
the sequence of the measurements, one has

p(sk|yn1 ) =
p(sk, y

n
1 )

p(yn1 )

=
p(sk, y

k
1 , y

n
k+1)

p(yn1 )

=
p(sk, y

k
1)p(y

n
k+1|sk)

p(yn1 )
,

where the last step exploits the equality p(ynk+1|sk, yk1) = p(ynk+1|sk). This
last equation is equal to (3.36). Substituting the first factor of the numerator
with p(sk|yk1)p(yk1) and exploiting the Bayes rule for the second factor, one
writes

p(sk|yn1 ) =
p(sk|yk1)p(sk|ynk+1)

p(sk)

p(yk1)p(y
n
k+1)

p(yn1 )
,

that is equal to (3.37). Taking into account that the second ratio is indepen-
dent to sk, the equation (3.38) can be written.
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The forward-backward Bayesian recursion is the result of the product
of the forward posterior distribution p(sk|yk1) and the backward predictive
distribution p(sk|ynk+1), as described in (3.37). The p(sk) distribution can
be usually derived from the system model. It often happens that the distri-
bution of the state Sk without other conditioning terms is uniform and then
p(sk) becomes a normalization factor together with the second ratio of the
(3.37). Also in this case, when the application requires the ratio of the prob-
ability p(sk|yn1 ) of one state to the probability of the other states, one can
use the Equation (3.38). It is easy to demonstrate that if one implements
the product between the forward predictive distribution and the backward
posterior distribution in place of the product between the forward posterior
distribution and the backward predictive distribution, the result does not
change:

p(sk|yn1 ) =
p(sk|yk−1

1 )p(sk|ynk )
p(sk)

p(yk−1
1 )p(ynk )

p(yn1 )
.

Proof. By Bayes rule one has

p(sk|yk1) =
p(yk|sk)p(sk|yk−1

1 )

p(yk|yk−1
1 )

, (3.39)

p(sk|ynk ) =
p(yk|sk)p(sk|ynk+1)

p(yk|ynk+1)
,

where the second equation leads to

p(sk|ynk+1) =
p(sk|ynk )p(yk|ynk+1)

p(yk|sk)
(3.40)

by inversion. In addition one writes:

p(yk1) = p(yk|yk−1
1 )p(yk−1

1 ), (3.41)
p(ynk ) = p(yk|ynk+1)p(y

n
k+1),

where the second equation leads to

p(ynk+1) =
p(ynk )

p(yk|ynk+1)
(3.42)
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by inversion. Replacing (3.39), (3.40), (3.41), and (3.42) in (3.37) one has

p(sk|yn1 ) =
p(yk|sk)p(sk|yk−1

1 )p(sk|ynk )p(yk|ynk+1)

p(sk)p(yk|yk−1
1 )p(yk|sk)

p(yk|yk−1
1 )p(yk−1

1 )p(ynk )

p(yk|ynk+1)p(y
n
1 )

=
p(sk|yk−1

1 )p(sk|ynk )
p(sk)

p(yk−1
1 )p(ynk )

p(yn1 )
.

The two factors in the numerator of (3.36) can be obtained, by the forward
and backward recursions of the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm described in [Bahl et al., 1974], where it has been applied to decode
the convolutional and block codes with the the goal of to minimize the
Symbol Error Rate (SER). Therefore, it has been presented for discrete-
state case, but it is employable also to track continuous-state. The main
equations of BCJR are

p(sk, y
n
1 ) = p(sk, y

k
1)p(y

n
k+1|sk), (3.43)

p(sk, y
k
1) =

∑
Sk−1

p(sk−1|yk−1
1 )p(sk, yk|sk−1), (3.44)

p(ynk+1|sk) =
∑
Sk+1

p(ynk+2|sk+1)p(sk+1, yk+1|sk), (3.45)

where (3.44) is the BCJR forward recursion, (3.45) is the BCJR backward
recursion, and the product of (3.44) and (3.45) leads to (3.43). In the BCJR
algorithm the forward recursion (3.44) bootstraps with p(s0) in place of
p(sk−1|yk−1

1 ) when k = 1, while the backward recursion (3.45) starts with
p(ynk+2|sk+1) = 1 when k = n − 1. Contrary to the forward-backward
Bayesian tracking in (3.37), the BCJR forward-backward recursion tracks
the joint probability p(sk, yn1 ). It can be used when we are interested to a
proportional value of p(sk|yn1 ), as in (3.38).

Example: Forward-backward phase tracking of a sinusoid embedded
in noise affected by Wiener’s phase noise

In this example the sinusoid embedded in noise affected by Wiener’s phase
noise in still considered, but now taking into account the wrapped version
of the phase. The state transition equation becomes non-linear, while the
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measurement model does not change:

Sk = mod(Sk−1 + Vk−1, 2π), (3.46)

Yk = ejSk +Nk. (3.47)

The state domain is bounded in [0, 2π). In this case the state transition
probability becomes

p(sk|sk−1) =
∞∑

i=−∞

g(sk−1 + 2iπ, σ2; sk). (3.48)

In Fig. 3.7 one can see an example of evolution of the forward-backward
Bayesian recursion for SNR = 8dB and σ = 0.5, applied to a measurement
frame with length n = 100. In the example the initial and final states s0 and
s101, respectively, have been assumed know. The predict and update steps
of the two-step Bayesian recursion in both forward and backward direction
have been numerically computed. As well as in previous examples, one can
say that the predictive probabilities are smoother then the posterior ones,
both in forward and backward direction.

3.1.3 Parametric Bayesian tracking

Taking into account continuous state process, when the measurement and
the state evolution are expressed by a linear and additive noise model with
Gaussian measurement noise and process noise, tracking of the state is fea-
sible by the Kalman filter [Kalman, 1960]. Suppose that the processes S
and Y are composed by random vectors. The case of processes consisting
of scalar random variables is easily derivable. The state transition equation
and the measurement equation are

Sk = Fk−1 Sk−1 + Vk−1, (3.49)
Yk = Hk Sk +Nk, (3.50)

where Hk and Fk−1 are known. The vectors Vk−1 and Nk are jointly in-
dependent and white real Gaussian random vectors with zero mean vectors
and covariance matrices Qk−1 and Rk, respectively. The case of white cir-
cular complex Gaussian noises can be derived from the studied real case
replacing in the following equations the transpose operator with the her-
mitian operator and the real Gaussian distribution with circular complex
Gaussian distribution.
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Figure 3.7: Example of forward-backward Bayesian recursion applied to the tracking
of the wrapped phase of the sinusoid embedded in noise affected by Wiener’s phase
noise. SNR = 8dB, σ = 0.5, and n = 100. p(s0) and p(s101) are Dirac func-
tion. Grayscale image: probabilities distribution for each k time indexes in the x-axis.
White dots: actual value of the phase. (a) forward predictive distribution p(sk|yk−1

1 ).
(b) backward predictive distribution p(sk|ynk+1). (c) forward posterior distribution
p(sk|yk1 ). (d) backward posterior distribution p(sk|ynk ). (e) forward-backward distri-
bution p(sk|yn1 ).
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From the models (3.49) and (3.50) the state transition and the measurement
probabilities are Gaussian

p(sk|sk−1) = g(Fk−1 sk−1,Qk−1; sk)

p(yk|sk) = g(Hk sk,Rk; sk)

By the assumptions made, inferring the state by the two-step Bayesian re-
cursion given by Equations (3.26) and (3.27), the predictive and the poste-
rior distributions still remain multivariate Gaussian distributions. Specifi-
cally, one has the predictive distribution equal to

p(sk|yk−1
1 ) = g(mk,Σk; sk)

with parameters

mk = E
{
Sk|Y k−1

1

}
= Fk−1mk−1, (3.51)

Σk = cov
{
Sk|Y k−1

1

}
= Fk−1Σk−1F

T
k−1 +Qk−1, (3.52)

that is the result of a convolution between two Gaussian functions, and the
posterior distribution equal to

p(sk|yk1) = g(mk,Σk; sk)

with parameters

mk = E
{
Sk|Y k

1

}
= mk +Gkuk, (3.53)

Σk = cov
{
Sk|Y k

1

}
= Σk −GkHkΣk, (3.54)

and

uk = yk −Hkmk, (3.55)

Gk = ΣkH
T
k

(
HkΣkH

T
k +Rk

)−1
. (3.56)

The random vector Uk is the k-th element of the innovation process {U}.
The matrix Gk is known as Kalman gain. Following these last six equa-
tions, one can say that the Kalman filter is a specific parametric tracking of
the two-step Bayesian recursion composed by the prediction and the update
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of two parameters, that are the mean and the covariance of the predictive
and update Gaussian distributions.

When the model is that in (3.49) and (3.50) with Gaussian state noise
and measurement noise, the Kalman filter performs the exact Bayesian
tracking. Conversely, when the noise sequences are not Gaussian and/or
the system and measurement models are non-linear, the Kalman filter com-
putes only an approximated Bayesian tracking. For jointly Gaussian noise
sequences, the predictive mean mk and the posterior mean mk are the opti-
mal estimations under the MAP and Minimum Mean Square Error (MMSE)
criteria:

mk = arg max
sk∈Sk

p(sk|yk−1
1 )

= arg min
ŝk∈Sk

E
{
(Sk − ŝk)T (Sk − ŝk)

}
,

mk = arg max
sk∈Sk

p(sk|yk1)

= arg min
s̃k∈Sk

E
{
(Sk − s̃k)T (Sk − s̃k)

}
,

where ŝk and s̃k are functions of yk−1
1 and yk1 , respectively, and are the

generic estimator of the state sk in the prediction and update step. More in
general, for Gaussian noise processes, the Kalman filter is the best predictor
in the following sense:

mk = arg min
ŝk∈Sk

E
{
(Sk − ŝk)TMk(Sk − ŝk)

}
, (3.57)

where Mk is an user-defined positive definite matrix. When the measure-
ment noise {N} and the process noise {V } are not Gaussian, the prediction
made by the Kalman filter is not optimal, but it is the best linear solution
to the minimization problem in (3.57). Following the equations (3.51) and
(3.53), the Kalman filter can be seen as a 1-casual predictive filter, as de-
picted in Fig. 3.8.
The innovation process {U} contains the novelty carried by the measure-
ment about the state after the prediction step, as one can see in the equation
(3.55). The covariance of the random vector Uk is

cov
{
Uk|Y k−1

1

}
= HkΣkH

T
k +Rk

The innovation process is white and, with Gaussian noise processes, this
means that all the information that is present in the past about the present
has been extracted. One way to check that the filter is working is to verify
that the innovation sequence is white.
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Figure 3.8: Block diagram of the Kalman filter.

From an other point of view the Kalman prediction is the best linear solu-
tion linear solution of the following criterion

mk = arg min
ŝk∈Sk

E
{
UT
k MkUk

}
,

where Uk = Yk −Hkŝk, also when the noise processes are non-Gaussian.
In practical problem, the state transition and the measurement Equations

are often non-linear. In this case performing exact Bayesian tracking is of-
ten infeasible. One can linearize the nonlinear equation around the Kalman
filter estimate. This is the idea of the extended Kalman filter, which was
originally proposed by Stanley Schmidt so that the Kalman filter could be
applied to nonlinear spacecraft navigation problems [Bellantoni and Dodge,
1967]. The system and measurement models need not be linear functions
of the state but may instead be differentiable functions. We refer to the
following model:

Sk = fk−1(Sk−1) + Vk−1, (3.58)
Yk = hk(Sk) +Nk, (3.59)

where Vk−1 and Nk are jointly independent random vectors with zero mean
vectors and covariance matrices Qk−1 and Rk, respectively. The differ-
entiable functions fk−1(·) and hk(·) can be linearized by partial derivation
around an estimation. Let

Fk−1 =
∂fk−1(sk)

∂sk

∣∣∣∣
sk=mk−1

(3.60)

Hk =
∂hk(sk)

∂sk

∣∣∣∣
sk=mk

(3.61)
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the Jacobians matrices calculated in

mk = fk−1(mk−1)

mk = hk(mk),

that are the means of the predictive and posterior inferred distribution, re-
spectively, used as estimation. The covariance of these distributions can be
recursively calculated with (3.52) and (3.54). Following this steps one can
approximate the predictive and posterior distributions as Gaussian:

p(sk|yk−1
1 ) ≃ g(mk,Σk; sk),

p(sk|yk1) ≃ g(mk,Σk; sk).

The extended Kalman filter can be generalized also in case of model in
(3.1) and (3.2), as explained in [Simon, 2006].

3.1.4 Non-Gaussian parametrization: the Tikhonov distribution

In the general case, when the noise processes are non-Gaussian and/or the
model is non-linear, exact Bayesian tracking can be difficult and one usu-
ally makes use of the approximated tracking. The quality of the approxi-
mation depends on the fit between the model and the actual probabilities.
To impose a parametric form to the predictive and posterior distributions of
the two step Bayesian recursion means to implement a parametric tracking.
It is shown in the previous Subsection that, when the predictive and pos-
terior distribution are or are approximated Gaussian, the parametric track-
ing can be performed by Kalman filtering or extended Kalman filtering,
respectively. Conversely, when the predictive and posterior are and are
imposed non-Gaussian, in some way we need to a non-Gaussian version
of the Kalman filter. There are a lot of possible non-Gaussian paramet-
ric parametrizations and they are usually tighly connected to the specifific
tracking problem. In the following the Tikhonov parametrization is de-
scribed. This parametric tracking technique is usually employed for phase
tracking problems.

The idea is to model the predictive and posterior distributions of the
continuous state as Tikhonov distributions (also known as Von Mises dis-
tributions) with probability density function equal to

t(z, a) =
eRe(a e−jz)

2πI0(|a|)
where a is the complex parameter, z ∈ [0, 2π) is the domain, and I0(·) is
the zero-th order modified Bessel function of first kind. ∠a is the mean,
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while |a| is a measure of concentration (a reciprocal measure of the disper-
sion). Some example of this distribution are drawn in Fig. 3.9. In this case,

z

0 π/2 π 3π/2 2π

t(
z

 ,
 a

) 

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.9: Tikhonov distribution for different values of the parameter a. Solid line:
a = exp(jπ/2). Dashed line: a = 0.5 exp(jπ). Dash-dotted line: a = 2 exp(j3π/2)

the two-step Bayesian recursion becomes the succession of prediction and
update operations of a evolving complex parameter a. Defining with

p(sk|yk−1
1 ) = t(sk, ak) (3.62)

p(sk|yk1) = t(sk, ak) (3.63)

the predictive and posterior distributions, respectively, the goal is to find
a recursive law between ak and ak. This law depends on the system and
measurement model. If the real predictive and posterior distributions are
Tikhonov distributions, the parametric Bayesian tracking is exact, other-
wise is approximated. The following example shows a possible application.

Example: Tikhonov’s phase tracking of a sinusoid embedded in noise
affected by Wiener’s phase noise

We refer to the usual example of the sinusoid embedded in noise affected
by Wiener’s phase noise, where the state is equal to the wrapped phase.
A similar problem has been addressed in [Pecorino et al., 2015], where
the Tikhonov approximation has been employed to track the phase in a
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Wiener’s phase noise channel, inside an iterative demodulation and decod-
ing scheme. The non-linear state transition equation and the linear mea-
surement equation are reported in (3.46) and (3.47). The measurement
probability can be written as

p(yk|sk) = gc(e
jsk ,SNR−1; yk)

∝ exp
{
2 SNRRe{yke−jsk}

}
. (3.64)

By the same approximation reported in [Colavolpe et al., 2005], when
the phase of the sinusoid is slowing variant (σ → 0), the state transition
probability can be approximated by

p(sk|sk−1) = δ(sk − sk−1).

Substituting this transition probability and the posterior distribution (3.63)
at time k − 1 in the predict step (3.26) one has

ak = ak−1. (3.65)

Then, the predictive distribution is equal to the previous posterior distri-
bution. When the approximation of slowing variant phase does not hold,
the authors of [Colavolpe et al., 2005] have proposed only a scaling of the
posterior parameter:

ak =
ak−1

1 + σ2|ak−1|
. (3.66)

Replacing the predictive distribution (3.62) and the measurement probabil-
ity (3.64) in the update step (3.27), one can write

ak = ak + 2 SNRyk.

Here parametric tracking as two-step Bayesian recursion has been pre-
sented, while in [Colavolpe et al., 2005] the authors reports an one-step
formulation, that results equal to

ak =
ak−1 + 2 SNRyk−1

1 + σ2|ak−1 + 2 SNRyk−1|
.

Figure 3.10 shows an example parametric Bayesian tracking by Tikhonov
approximation with the employment in the predictive step of both the slow-
ing variant phase assumption (3.65) and the scaling operation in (3.66). The
initial state is unknown, then p(s0) = (2π)−1, that corresponds to bootstrap
the recursion with a0 = a1 = 0. Therefore, the predictive distribution of
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s1 remains uniform as one can see from the Figure. Moreover, the tracking
with the slowing variant phase assumption has been outperformed by the
tracking with the scaling operation in the predictive step. As in this ex-
ample, this is observable when the phase noise is consistent, i.e. σ is high.
When σ is low, the two algorithms have the same performance. Particularly,
if σ → 0, Equation (3.66) approaches the (3.65). One can conclude that the
Tikhonov parametrization allows an approximated Bayesian tracking close
to the exact Bayesian tracking for the problem of a sinusoid embedded in
noise.

As for the application studied in [Colavolpe et al., 2005], if one is in-
terested to the forward-backward Bayesian tracking, the merging of the
forward and the backward distribution is trivial thanks to the Tikhonov
parametrization. Using Equation (3.38) and denoting with afk and afk the
predictive and posterior parameters in the forward direction and with abk and
abk the predictive and posterior parameters in the backward direction, one
can get the parametric forward-backward tracking algorithm by Tikhonov
approximation:

afk =
afk−1

1 + σ2|afk−1|
afk = afk + 2 SNRyk

abk =
abk+1

1 + σ2|abk+1|
abk = abk + 2 SNRyk

p(sk|yn1 ) ≃ t(sk, a
f
k + abk)

It is sufficient to sum the forward predictive parameter with the backward
posterior one or the forward posterior parameter with the backward predic-
tive one, to get the parameter of the Tikhonov approximation of p(sk|yn1 ).

3.1.5 Non-parametric tracking: State-space quantization

Taking into account the case of continuous state and non-Gaussian noise
processes and/or non-linear model, when one has no idea about the shape
of the predictive and posterior distributions, the state-space quantization
techniques is a practical solution to the state tracking problem. The same
algorithm shown in this Subsection, is employable if the state process is dis-
crete. In this case, the Bayesian tracking can be exact, while in the contin-
uous state case the Bayesian tracking is approximated because it certainly
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Figure 3.10: Examples of parametric Bayesian tracking by Tikhonov approximation for
the phase tracking problem of a sinusoid affected by Wiener’s phase noise. σ = 0.5,
SNR = 1dB, p(s0) = (2π)−1. Solid line: actual posterior distribution p(sk|yk1 ).
Dashed line: actual predictive distribution p(sk|yk−1

1 ). Dash-dotted line: approxi-
mated posterior distribution t(sk, ak) by Tikhonov parametrization. Dotted line: ap-
proximated predictive t(sk, ak) distribution by Tikhonov parametrization. Asterisk:
actual value of the phase sk. (a) k = 1, Tikhonov tracking with prediction rule in
(3.65). (b) k = 1, Tikhonov tracking with prediction rule in (3.66). (c) k = 2, Tikhonov
tracking with prediction rule in (3.65). (d) k = 2, Tikhonov tracking with prediction
rule in (3.66). (e) k = 3, Tikhonov tracking with prediction rule in (3.65). (f) k = 3,
Tikhonov tracking with prediction rule in (3.66).
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exploits the quantization approximation of the state. Focusing on contin-
uous state processes, the main idea is to have the state-space divided into
a limited number of bins with equal or different dimensions. These bins
are the centroids of the histogram approximation carried out on the state
probabilities density functions. The discrete or discretized space allows to
define the finite state model, that is mapped onto a Finite State Machine
(FSM), whose time evolution is described by the so-called trellis diagram.
A comprehensive book about the FSMs is [Minsky, 1967]. In Figure 3.11
an example of FSM with four states and related trellis diagram is shown.

Figure 3.11: Example of state diagram (left) and trellis digram (right) of a finite state
machine.

In these subsection {T} is denoted as the discretized state process. The
same equations can be adopted when the state process {S} is discrete, im-
posing {S} = {T}. The trellis structure generally tracks the posterior
probability mass function p(tk|yk1). In this context the one-step Bayesian
recursion in (3.32) is commonly performed. The probabilities p(tk|yk1) for
each possible value of tk are associated to each state of the trellis at time k
and are called state metric. The joint conditional probabilities

p(tk, yk|tk−1) = p(yk|tk)p(tk|tk−1)

are associated to the transitions between the states at time k − 1 and states
at time k in the trellis and are called transition metrics. Starting from the
discrete version of (3.32), the state metric for each possible tk is computed
as

p(tk|yk1) ∝
∑

tk−1∈Sk−1

p(tk, yk|tk−1)p(tk−1|yk−1
1 ), (3.67)

that is the sum of the transition metrics of each incoming arcs multiplied by
the state metrics associated to the previous states connected to arcs’ tails.
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In addition to the one-step formulation, the trellis can separately tracks the
predictive and posterior distributions of the states (the discrete version of
(3.26) and (3.27)) and also it can perform the forward and backward re-
cursion (the discrete version of (3.38)). In the classical applications, since
the trellis structure tracks the probabilities distribution for all the possible
state values, it is sufficient to calculates a proportional values of the wanted
probabilities.
The main limit of this approach, either if the state is discrete by nature or
it is quantized, is the number of state bins. Many bins increase the compu-
tational complexity. However, one cannot reduce at will the bins number.
When the state is continuous the bins may be insufficient to have a good
approximation of the actual probabilities, specially when the state is multi-
dimensional.

Example: State-space quantization technique applied to the phase track-
ing of a sinusoid embedded in noise affected by Wiener’s phase noise

Referring to the already known example of the sinusoid embedded in noise
affected by Wiener’s phase noise, the wrapped phase is considered as state.
The non-linear state transition equation and the linear measurement Equa-
tions are reported in (3.46) and (3.47). To cope with the continuous-state
model of the Wiener’s phase noise, one can compute a non-parametric ap-
proximation to the wanted probability distribution by introducing an aux-
iliary channel where the state space is discretized into bins, leading to
a trellis-based representation of the phase evolution in the discrete-state
space, where trellis’ states are the centroids of the bins, as done in [Barletta
et al., 2012a, Spalvieri and Barletta, 2011, Pecorino et al., 2015, Barletta
et al., 2011].
The continuous phase S is discretized into |S| bins. Then the discrete state
T , takes its values in the set of bins’ centroids:

S = {∆, 3∆, 5∆ · · · , (2|S| − 1)∆} , (3.68)

where

∆ =
π

|S|
(3.69)

is half the bin width. For the sake of simplicity, we limit here ourselves to
uniform and time-invariant quantization. The state transition probability is



i
i

“thesis” — 2015/12/23 — 15:18 — page 58 — #74 i
i

i
i

i
i

approximated by

p(sk|sk−1) ≃ p(tk|tk−1)

=

∫
R(tkk−1)

p(ϕk|ϕk−1)

∆
dϕs dϕs−1, (3.70)

where R(tkk−1) indicates the two-dimensional quantization region whose
centroid is tkk−1. Since p(tk|tk−1) depends only on the difference tk − tk−1,
it takes its values in a set of |S| numbers that can be pre-computed by Equa-
tion (3.70). The probability p(yk|tk) is similar to (3.25) with the centroid
tk in place of the continuous phase. All the needed information to compute
the phase tracking in (3.67) by mean of the trellis structure is available.
An example of application is reported in Figure 3.12, where the wrapped
phase is discretized in |T | = 8 bins, the initial phase is supposed know,
SNR = 1dB, and σ = 0.3. In the Figure one can see an example of the
forward posterior distribution approximated by the trellis computation. In
addition the related broken line, that depicts the MAP estimation, is drawn.

3.1.6 Particle filtering

Particle filtering is among the most popular and effective techniques to eval-
uate non-parametric approximations to the posterior and predictive proba-
bilities density functions of a continuous state. It can be also applied to
the case of discrete state: when the complete analysis of the state space
by a trellis structure is infeasible because the number of possible state
is too high, the particle filter could be a solution to track the state evo-
lution. This technique is well resumed in [Arulampalam et al., 2002].
Other resources are the papers [Carpenter et al., 1999, Pitt and Shephard,
1999,Nummiaro et al., 2003,Van Der Merwe et al., 2000] and the compre-
hensive book [Smith et al., 2013].
The term particle filter was first coined in 1996 by Del Moral in the pa-
per [Del Moral, 1996] in reference to mean field interacting particle meth-
ods used in fluid mechanics since the beginning of the 1960s. This tech-
nique is a sequential importance sampling algorithm based on a Monte-
Carlo method. It merges the Monte-Carlo sampling concept with the im-
portance sampling one, applying them to the Bayesian tracking framework.

The basic concept of the Monte-Carlo sampling is to approximate a dis-
tribution by considering it as sum of Dirac delta functions

p(x) ≃
P∑
i=1

w(i)δ(x− x(i)), (3.71)
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Figure 3.12: Example of forward Bayesian recursion by state-space quantization applied
to the tracking of the wrapped phase of the sinusoid embedded in noise affected by
Wiener’s phase noise. SNR = 1dB, σ = 0.3, and |S| = 8. p(s0) is a Dirac function.
(a) Grayscale image: forward posterior distribution p(sk|yk1 ) approximated by state-
space quantization; solid white line: actual phase evolution. (b) Dotted line: MAP
estimation from the forward posterior distribution p(sk|yk1 ) approximated by state-
space quantization; solid black line: actual phase evolution.
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where w(i) = P−1, and {x(i)}, with

x(i) ∼ p(x), i = 1, 2, · · ·P,

is the set of samples taken with probability p(x). The main property of
(3.71) is that it leads to straightforward computation of expected values:

Ep{f(x)} =
∫
X
f(x)p(x)dx

≃
n∑

i=1

w(i)f(x(i)). (3.72)

Importance sampling is based on the idea of generating samples from the
importance distribution q(x), with

x(i) ∼ q(x) i = 1, 2, · · ·P.

We can assign weights according to

w(i) ∝ p(x(i))

q(x(i))
, i = 1, 2, · · ·P,

and, after an operation of normalization to get

P∑
i=1

w(i) = 1,

we can use the same equation (3.71) and (3.72) to approximate the distribu-
tion p(x) and theirs expected values, respectively. When q(x) = p(x) one
has the basic Monte-Carlo sampling, where all the weights are equal.

In the sequential important sampling the samples evolve in time. The
idea is to track the joint posterior distribution of the state sequence p(sk0|yk1),
updating weights and samples. In this context we are talking about the
particle filtering method, where the samples are called particles. Let P
be the number of particles, s(i)k the state visited by the i-th particle at time
k, and w

(i)
k the weight of the i-th particle at time k. The particle s(i)k is

generated from s
(i)
k−1, which is generated from s

(i)
k−2, and so on. The particles

sequences give a Monte-Carlo importance sampling of the joint posterior
state distribution, as

p(sk0|yk1) ≃
P∑
i=1

w
(i)
k δ(s

k
0 − s

k,(i)
0 ),



i
i

“thesis” — 2015/12/23 — 15:18 — page 61 — #77 i
i

i
i

i
i

where the weight w(i)
k carries the entire history of the i-th particle

w
(i)
k ∝

p(s
k,(i)
0 |yk1)

q(s
k,(i)
0 |yk1)

i = 1, 2, · · ·P. (3.73)

The importance density q(sk0|yk1) is up to the user. If it is chosen as product
of two importance densities

q(sk0|yk1) = q(sk|sk−1
0 , yk1)q(s

k−1
0 |yk−1

1 ), (3.74)

one can get the samples of sk,(i)0 ∼ q(sk0|yk1) by augmenting each of ex-
isting samples of sk−1,(i)

0 ∼ q(sk−1
0 |yk−1

1 ) with the new samples s(i)k ∼
q(sk|sk−1

0 , yk1). Using (3.74) and

p(sk0|yk1) ∝ p(yk|sk0, yk−1
1 )p(sk0|yk−1

1 )

= p(yk|sk0, yk−1
1 )p(sk|sk−1)p(s

k−1
0 |yk−1

1 ), (3.75)

where the Bayes rule was exploited, also the weights of the particles in
(3.73) can be calculated by iteration

w
(i)
k ∝

p(yk|sk,(i)0 , yk−1
1 )p(s

(i)
k |s

(i)
k−1)p(s

k−1,(i)
0 |yk−1

1 ))

q(s
(i)
k |s

k−1,(i)
0 , yk1)q(s

k−1,(i)
0 |yk−1

1 )

=
p(yk|s(i)k )p(s

(i)
k |s

(i)
k−1)

q(s
(i)
k |s

k−1,(i)
0 , yk1)

w
(i)
k−1 i = 1, 2, · · ·P, (3.76)

where the Markovian property in (3.8) is employed. In practical case the
importance density q(sk|sk−1

0 , yk1) is often chosen only dependent on the
current measurement and the previous state, as

q(sk|sk−1
0 , yk1) = q(sk|sk−1, yk)

In this way there is no need to save the history of the particles and the mea-
surements. If the importance density is chosen equal to the state transition
probabilities as

q(sk|sk−1
0 , yk1) = p(sk|sk−1),

the weights update is simplified in

w
(i)
k = αkp(yk|s(i)k )w

(i)
k−1 i = 1, 2, · · ·P, (3.77)
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where

αk =

(
P∑

j=1

p(yk|s(j)k )w
(j)
k−1

)−1

(3.78)

is the normalization factor. This choice is often adopted. Starting from an
initial set of weights {w(i)

0 , i = 1, 2, · · ·P} and from an initial set of parti-
cles {s(i)0 , i = 1, 2, · · ·P} the particle filtering alternates the generation of
the new particles and the update of theirs weights.

The two-step Bayesian recursion tracks the predictive p(sk|yk−1
1 ) and

posterior p(sk|yk1) distributions, while the particle filtering describes the
evolution of the joint distribution p(sk0|yk1). The posterior distribution is
trivially approximated as

p(sk|yk1) ≈
P∑
i=1

w
(i)
k δ(sk − s

(i)
k ), (3.79)

therefore the weights for the joint distribution p(sk0|yk1) remains the weights
of p(sk|yk1).

Proof. By integration one has

p(sk|yk1) =
∫
Sk−1
0

p(sk0|yk1) dsk−1
0

≈
∫
Sk−1
0

P∑
i=1

w
(i)
k δ(s

k
0 − s

k,(i)
0 ) dsk−1

0

Using the definition

δ(sk0 − s
k,(i)
0 ) =

k∏
j=0

δ(sj − s(i)j )

one can write

p(sk|yk1) ≈
∫
Sk−1
0

[
P∑
i=1

w
(i)
k

k∏
j=0

δ(sj − s(i)j )

]
dsk−1

0

=
P∑
i=1

w
(i)
k δ(sk − s

(i)
k )

k−1∏
j=0

∫
Sj

δ(sj − s(i)j ) dsj

=
P∑
i=1

w
(i)
k δ(sk − s

(i)
k ),
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where one exploit the property

k−1∏
j=0

∫
Sj

δ(sj − s(i)j ) dsj = 1.

Using the general definition in (3.76), the predictive distribution can be
obtained as

p(sk|yk−1
1 ) ∝

P∑
i=1

p(s
(i)
k |s

(i)
k−1)

q(s
(i)
k |s

k−1,(i)
0 , yk1)

w
(i)
k−1δ(sk − s

(i)
k ). (3.80)

Proof. By Bayes rule one has

p(sk|yk1) ∝ p(yk|sk)p(sk|yk−1
1 )

where the Markovian property (3.8) is employed. Making the inverse of the
previous equation and using (3.76) and (3.79), the predictive distribution
becomes

p(sk|yk−1
1 ) ∝ p(sk|yk1)

p(yk|sk)

≃
P∑
i=1

w
(i)
k

p(yk|s(i)k )
δ(sk − s(i)k )

∝
P∑
i=1

p(s
(i)
k |s

(i)
k−1)

q(s
(i)
k |s

k−1,(i)
0 , yk1)

w
(i)
k−1δ(sk − s

(i)
k ),

In case of importance density equal to the state transition probabilities
and then adopting the weights update rule in (3.77), the equation (3.80)
becomes

p(sk|yk−1
1 ) ≃

P∑
i=1

w
(i)
k−1δ(sk − s

(i)
k ), (3.81)

In this case, the predictive step of the Bayesian recursion is computed by
only the Monte-Carlo update of the particles as s(i)k ∼ p(sk|s(i)k−1), while the
update step of the Bayesian recursion is performed updating the weights
with (3.77). Taking into account the entire particles sequence, the samples
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are generates by sk,(i)0 ∼ p(sk0), while the weight carries the entire history
of the particles as

w
(i)
k ∝

p(s
k,(i)
0 |yk1)

p(s
k,(i)
0 )

∝ p(yk1 |s
k,(i)
0 ).

In this thesis work, the state transition equation will be always exploited to
generate the new particles. Making explicit the system model in (3.1), the
particles are generated with

s
(i)
k = fk−1(s

(i)
k−1, v

(i)
k−1), (3.82)

where {v(i)k−1, i = 1, 2, · · ·P} is a set of independent samples of process
noise.
After updating the particles with (3.82), a resampling procedure may be
necessary to prevent particles from collapsing onto one particle of uni-
tary weight. For every particle filtering implementation in the thesis, the
classical resampling algorithm is adopted, as described in [Arulampalam
et al., 2002]. The minimum effective sample size has been chosen, as called
in [Arulampalam et al., 2002], equal to the typical value 0.3P . The effec-
tive sample size equal to

∑P
i=1(w

(i)
k )2 is an estimation of particles number

with weight not negligible. The algorithm 1 summarizes the steps of the
particle filtering, with the choice of importance function equal to the state
transition probability and resempling procedure as in [Arulampalam et al.,
2002].

Example: Particle phase tracking of a sinusoid embedded in noise af-
fected by ARMA phase noise

This example considers the sinusoid embedded in noise in case of ARMA
phase noise presented in Subsection 3.1.1. The non-linear state transitionn
and the linear measurement Equations are reported in (3.15) and (3.17).
Here the problem of tracking the phase of the sinusoid cannot worked out
with the state-space quantization techniques, because the state-space is not
confined and its dimension m + 1 is high. Specifically, working out the
phase tracking of the sinusoid affecting by ARMA phase noise is a chal-
lenging problem, because

• the state space is not finite and it is multidimensional, therefore it can-
not be approached by trellis-based techniques shown in the Subsection
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Algorithm 1 Particle filtering

Generate (sn0 , y
n
1 ) ∼ p(sn0 , y

n
1 ) = δ(s0)

∏n
k=1 p(sk|sk−1)p(yk|sk)

Generate s
(i)
0 ∼ p(s0) for i = 1, . . . , P

w
(i)
0 ← P−1 for i = 1, . . . , P

for k = 1, . . . , n do
Generate v

(i)
k−1 ∼ p(vk−1) for i = 1, . . . , P

s
(i)
k ← fk(s

(i)
k−1, v

(i)
k−1) for i = 1, . . . , P

w
(i)
k ← w

(i)
k−1p(yk|s

(i)
k ) for i = 1, . . . , P

αk ←
∑P

i=1 w
(i)
k

w
(i)
k ← w

(i)
k /αk for i = 1, . . . , P

if
∑P

i=1(w
(i)
k )2 > (0.3P )−1 then(

{s(i)k }, {w
(i)
k }
)
← resample

(
{s(i)k }, {w

(i)
k }
)

end if
end for

3.1.5 based on quantization of the state space, because the number of
states of the trellis would be enormous, and

• the measurement is a nonlinear function of the state, therefore the
Kalman filter shown in Subsection 3.1.3 can not be used and the ex-
tended Kalman filter can be far from being optimal.

The sampling by particle filtering can be a possible solution: in Figure 3.13
an example of application is presented, with SNR = 0 dB and ARMA phase
noise with σ = 1 generated by (3.21) and m = 4. The number of particles
is P = 1000. The forward Bayesian recursion for four time steps is shown.
When the state is multidimensional (as in this case that is 5-dimensional)
the predictive and posterior distribution can not be graphically pictured. In
this case is interesting to look the evolving distribution of the phase ϕk that
is the first entry of the state. The particle filter approximates the probability
density functions as sum of Dirac functions, which are not drawable. In
this case one can use the Parzen method for a kernel density estimation
of the probability density functions [Silverman, 1986]. Easily, the Dirac
function can be substituted with a chosen kernel function centered in the
position of Dirac pulse. The use of a Gaussian function as kernel is widely
employed. Therefore the posterior distribution of the first entry of the state
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can be approximated as

p(ϕk|yk1) ≃
P∑
i=1

w
(i)
k g(ϕ

(i)
k , σ

2
g ; sk), (3.83)

where ϕ(i)
k is the first entry of the i-th particle and σ2

g is up to the user. In
the example of Figure 3.13 σ2

g is equal to 0.1. The Parzen method can be
also used in the applications where the evaluation of the posterior and/or
predictive distribution in all the state domain is required.

As it is shown in Figure 3.13, the particle method is able to track the si-
nusoid phase also in presence of strong phase noise and low SNR. Iteration
by iteration the particles increase the explored region allowing the appear-
ance of secondary lobes (that are far multiples of 2π from the main lobe):
this is the effect of the cycle slip, observable at high σ.

3.2 Non linear Optical Channel - An example of Bayesian Track-
ing Limits

In Section 3.1, the State-based Approach is presented together with all tech-
niques to track an hidden state channel. However, this powerful technique
has its own weaknesses. Several parameters make the problem dramatically
scale. If one uses particle filtering to track the probabilities of the Channel-
state, the parameter that he must take into account if he wants to analyze
the complexity is the order of the Markovian state. In this Section the theo-
retical formulation of Bayesian Tracking is presented in order to model the
propagation of a signal over an optical fiber. All possible approximations
are worked out in order to cast the problem onto the State-based Approach
defined previously.
In the end the limits of the described method are analyzed in an inductive
way, taking this Section as a practical example of the State-based Approach
leaks.

3.2.1 Non Linear Optical Channel

In this Section it is introduced also the Kerr non-linear effect of optic prop-
agation given by the cubic electrical field term in the Equation below [Es-
siambre et al., 2010]

∂E

∂L
+
α

2
E + jβ2

∂2E

∂t2
− jγ|E|2E = iN(L, t) , (3.84)

where the terms
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Figure 3.13: Example of forward Bayesian recursion by particle filtering applied to the
tracking of the unwrapped phase of the sinusoid embedded in noise affected by ARMA
phase noise. SNR = 0dB, ARMA phase noise generated by (3.21) with m = 4 and
σ = 1, and p(ϕ0) uniform between [0, 2π). Number of particles P = 1000. Solid
line: posterior distribution p(ϕk|yk1 ) by formula (3.83) with σ2

p = 0.1. Crosses: actual

phase. Dots on the x-axis: values of the first entry of the particles (ϕ(i)
k ) (a) k = 1. (b)

k = 2. (c) k = 3. (d) k = 4.
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• E(L, t) is the electrical field that propagates over the fiber L kilometer
length with time t,

• α is the fiber loss coefficient net of the fiber distributed gain,

• β2 is the Group-Velocity Dispersion (GVD). Remember that the al-
ready presented Chromatic Dispersion parameter D is related to GVD
as follows

D = −2πc

λ2
β2 ,

• the fast change in the fiber medium refractive index that occurs in
the presence of an intense electric field E(L, t) is referred to as the
instantaneous Kerr nonlinearity. Propagation of a signal field in the
presence of loss, gain and instantaneous Kerr nonlinearity, with non
linear parameter

γ =
n2ωs

cAeff
,

where n2 is fiber nonlinear refractive index, ωs = 2πνs is the angular
frequency and Aeff the fiber effective area [Agrawal, 2007].

• N(L, t) is the fiber noise generation phenomenon.

If one wants only to take into account the non-linearities, he can consider
only a simplified version of the (3.84)

∂E

∂L
+
α

2
E − jγ|E|2E = 0 , (3.85)

that has exact solution in

E(L, t) = E(0, t)e−αL/2ejϕNL(z) , (3.86)

where the integrated nonlinear phase is defined as

ϕNL(L) = γ|E(L, t)|2Leff(L) , with (3.87)

Leff(L) =
1− e−αL

α
. (3.88)

However, the integrated nonlinear phase for an arbitrary signal power evo-
lution is

ϕNL(L) = γ

∫ L

0

P (L′)dL′ , (3.89)

where the power is defined as P (z) = |E(z)|2 [Agrawal, 2007]. This type
of nonlinearity is called Instantaneous Kerr Nonlinearity and it is due to the
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fast change in the fiber medium refractive index that occurs in the presence
of an intense electric field [Essiambre et al., 2010]. The other phenomenon
modeled in this Section is the Chromatic Dispersion (CD), which is due to
the term with β2 in Equation (3.85). Particularly, Optical fibers are made
of fused silica, a material that exhibits inherent CD. Standard single-mode
fibers (SSMFs) have a waveguide dispersion smaller than the material dis-
persion with a combined dispersion of D ≈ 17 ps/(nm · Km). Independent
of the origins of dispersion, the equation describing dispersive propagation
in fibers, neglecting all other terms in (3.85), can be written as

∂E

∂L
+ jβ2

∂2E

∂t2
= 0 , (3.90)

that has exact solution in the spectral domain

Ẽ(L, ω) = Ẽ(L, 0)ejβ2ω2L = Ẽ(L, 0)ejDλ2f2L/c = Ẽ(L, 0)HCD(L, f) ,
(3.91)

where ω = 2πf and λ the operating wavelength in micron. As its name
suggests, CD produces a spread in time of the various frequency compo-
nents of a signal due to the difference in group velocity experienced by
each frequency component. As CD accumulates, neighboring symbols start
to overlap in time, with the number of symbols overlapping increasing with
the accumulation of CD, see Chapter XXXX. Moreover, in terms of in-
formation theory, CD introduces memory to the channel [Essiambre et al.,
2010].

3.2.2 State-based Approach

If one wants to model with the State-based Approach the effects of the
optic channel reported in the previous Subsection, i.e. Cromatic Dispersion
and the Nonlinear Phase, he can solve the considered fiber propagating
Equation

∂E

∂L
+ jβ2

∂2E

∂t2
+
α

2
E − jγ|E|2E = 0 (3.92)

by dividing the problem into small propagation sections. If one recalls the
generic State transition and measurement Equations (3.1) and (3.2)

Sk = fk−1(Sk−1, Vk−1),

Yk = hk(Sk, Nk),

he can fit up the model as it is done in Figure 3.14 for two fiber sections
and explained for the general case below.
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c(z)
X(z)

N(z)

Y(z)
L h   (z) g(  ).

CD
h   (z) g(  ).

CD

Transmitter Fiber Section Fiber Section Receiver

Figure 3.14: Block Scheme of the State-based Approach of a two sections optic channel.

• the time index k = 1, 2, · · · , KL can simulate the transmission of K
symbols, padded with L−1 other samples. This is done to have a good
approximation of the continuous-time when the signals’ evolution are
analyzed in a discrete-time manner.

• The two transition functions f(·) and h(·) are time-invariant.

• The process noise {V } is modeled here as cyclostationary process
built by zero-padding the modulation one {X}, leading to the Z-transform

V (z) =
K∑
i=1

Xiz
−iL , (3.93)

where the random variables Xi are the i.i.d. modulation symbols.

• The state transition equation f(·) is the cascade of a shaping trans-
mit filter, e.g. square root raised cosine, and N sections that model
nonlinear propagation in optical fiber.

• The shaping filter is characterized by the transfer function

c(z) =

∏m
l=1(1− βlz−1)∏m
l=1(1− αlz−1)

=
1 +

∑m
l=1 blz

−l

1−
∑m

l=1 alz
−l
, (3.94)

where |αl| < 1 and |βl| ≤ 1 ∀l. Therefore the transfer function c(z) is
causal, monic, and minimum phase.

• The i-th fiber’s section is the cascade of a filter followed by a nonlinear
memoryless transformation whose output is the input to the next sec-
tion. Given the theory of the previous Subsection 3.2.1, the frequency
response of the filter taking into account the CD is

HCD(L, f) = e−αL/2e−j2πDλ2f2L/c , (3.95)
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where the two distinct contributes of the signal attenuation and CD
are split. In order to better focus on fiber nonlinearities and CD, fiber
attenuation α is set to zero. The next aim is to approximate Equa-
tion (3.95) with a linear transfer function in order to fit the state-based
framework, i.e. have a Markovian state. Taking into account the di-
mensionality problem discussed in the previous Section, one limits the
section transfer function to a 2-order one, in the following way

hCD(z) =
1−

(
z−1
0

)∗
z−1

1− z0z−1
· 1− z

−1
0 z−1

1− z∗0z−1
. (3.96)

Note that hCD(z) is all-pass with complex parameter z0. Depending
on |z0| and ∠z0 one can control the phase transition slope and position
respectively in the frequency domain.

• The memoryless nonlinearity applied after each fiber section transfer
function is easily derived from Equations (3.86) and (3.87)

g(E(L, t)) = E(L, t)ejγ|E(L,t)|2L , (3.97)

where Leff = L given that α = 0. Note that one must also determine
L, that is the fiber sections’ length.

3.2.3 Model Fitting

The remaining work is to find the Z-transfer functions c(z), hCD(z). The
method is explained below, while the discussion of weak points is reported
later.

The transmit transfer function c(z) approximates a SRRC filter with an
Infinite Impulse Response (IIR) one. From Equation (3.94), c(z) has order
m. In Figure 3.15 are reported the transfer functions of an m-th order,
m = {4, 5, 6}, that limit the state order to an acceptable value. Note that
the Up-Sampling Factor USF = 32 let the sampling time being TS = T/32.
This expands the normalized frequency axes, such that the frequency cut in
[π rad/sample] is fc = 1/32. All the results of Figure 3.15 are obtained
with apposite Matlab library (rcosine) that gives the best 2-norm IIR filter
approximation for a SRRC filter, given its order m.

The second-order Chromatic Dispersion transfer function hCD(z) is re-
ported in Figure 3.16. Note that z0 = 0.993ej2π·0.5/32 is chosen such that the
phase 2π slope is centered around the normalized frequency fc = 0.5/32,
where USF = 32. Note that the phase response in the frequency domain and
its quadratic MMSE approximation only fits in the central frequencies, that
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Figure 3.15: Frequency and Impulse Responses of approximated Square-Root Raised Co-
sine by m-th order transfer functions.
(a) m = 4 Impulse Response. (b) m = 4 Frequency Response.
(c) m = 5 Impulse Response. (d) m = 5 Frequency Response.
(e) m = 6 Impulse Response. (f) m = 6 Frequency Response.
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are the ones spanned by the transmit filters. However, there is not a perfect
fit of the approximated transfer function. From the quadratic coefficient of
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Figure 3.16: Phase Response of hCD(z), with z0 = 0.993ej2π·0.5/32 (solid line) and its
quadratic MMSE approximation (dashed).

the parabolic approximation of the phase response in Figure 3.16 one can
compute the modeled fiber sections’ length L. Recalling the (3.95), and
given D, λ, a fixed frequency of interest f , and the approximated quadratic
coefficient a

L =
a c

2πDλ2
. (3.98)

Now, one must choose the number of sections and the order m of the
transmit transfer function to set up the state-based approximated optical
channel, therefore he can apply the particle filtering techniques described
in this Chapter to derive information bounds and demodulating techniques
that exploits all the available data to have an optimal estimate of both the
channel state and the transmitted sequence. One should ask at this point
why the actual Section has the second part of its name “An example of
Bayesian Tracking Limits”. This is due to the fact that Bayesian Tracking
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applied to state-based problems works when one is simulating phenomenon
with limited order transfer functions. However, nonlinear optic propagation
is not so easy to be cast in such framework. Remember that the state-
dimension plays a strong limiting role of application of such techniques.
The simulating platform is given by a 2000 particles filter programmed with
Matlab and run on an Intel Core i7-3770 Processor (8M Cache, up to 3.90
GHz) and a 16 GB memory. With such model, the state order that can be
simulated in an acceptable time length is limited to be 11. Two parameters
are linked to the state dimension and are reported below.

• In Figure 3.15 one can observe that the transmit filter is approximated
by the m-th order transfer functions. Obviously m let the state in-
crease accordingly.

• The number of fiber Sections F increases the state by 2F since at each
fiber section the second-order transfer function hCD(z) is applied.

If one wants to resume this concept, he can write that the state dimension
|S| is given and limited by

|S| = m+ 2F ≤ 11 , (3.99)

meaning that, if m = 5, the maximum number of fibers sections F is 3.
If one wants to add also additive independent noise at each fiber Section

c(z)
X(z)

N
2
(z)

Y(z)
L h   (z) g(  ).

CD
h   (z) g(  ).

CD

Transmitter 1st Fiber Section 2nd Fiber Section

N
1
(z)

Figure 3.17: Block Scheme of the State-based Approach of a two sections optic channel
with additive noise at each fiber section.

as schemed in Figure 3.17 he has to model the state including also the
values of all the noise added except the last one, that does not limit the
Markovian properties of the state. However all other noises Ni(z), with
i = 1, · · · , F −1, since they pass through filters and they affect the channel
state must be included in the state, modifying the constraint Equation (3.99)
into

|S| = m+ 3F − 1 ≤ 11 . (3.100)

Given Equation (3.100) and m = 6, one can only deal with F = 2 fiber
sections.
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The limits of the state-based approach applied to this difficult continuous-
time channel are easily given by considering the trade-off between model
complexity and fitting on one side and practical implementation on the
other.

• With the proposed model without noise, only 3 fiber sections can be
simulated, leading to a total fiber length less than one kilometer. The
number becomes 2 if one wants also to take into account the optical
noise introduced during the propagation in the fiber.

• With computational heavy techniques one can track the channel evo-
lution and have optimal demodulators [Pecorino et al., 2015] that can
transmit at the theoretical channel information rate with minimal rate
loss. However, this loss increases as more the state-based channel is
different from the true one. Consider the scenario of nonlinear optical
channels presented in this Section. From Figures 3.15 and 3.16 it is
trivial that the proposed approximation has not a perfect fit with the
true optical channel and a SRRC transmit filter. From the first results
the state-based simulated transmission behavior is so far from a true
Split-Step Fourier Method [Sinkin et al., 2003] propagation that it is
not worth to proceed in this work.

• Even if the model fitting to the physical behavior of the optical chan-
nel were perfect, there would still remain the problem of implementa-
tion of such method in practical optical demodulators, where Digital
Signal Processing system must work at much high rates [Tamir et al.,
2009]. Such Baud Rates can be achieved by expensive and big sys-
tems, like backbone and long haul optic transmission, where the fiber
length consists in hundreds of kilometers, that is not our case. On the
other hand, for short reach scenarios, it is not worthed to charge such
systems with heavy computational capacity. Indeed, the gain of such
techniques, as can be seen in the following Section, is still not high
enough to let the performance gain over the economic, and dimen-
sion, loss given by such complexity.
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CHAPTER4

Bayesian Tracking in Wiener Phase Noise
Channels

In Chapter 3 Bayesian Tracking applied to state-based approaches is ex-
plained. Both parametric and non-parametric techniques are proposed to
track the hidden state of a channel, with focus onto phase processes. In
this Chapter the knowledge given by this theory are exploited to better an-
alyze the discrete Wiener phase noise channel, whose model, the DM, has
been validated in Chapter 2. After a Section where Bayesian Tracking is
exploited to compute the Information rate that can be transmitted over a
state-based channel, the DM Information rate is computed in Section 4.2.
In order to achieve such rate, one must perform Bayesian tracking of the
channel state, i.e. phase noise. However, this is often computational ex-
pensive and requires Pilot Symbols, like the already cited [Barletta et al.,
2013, Spalvieri and Barletta, 2011] and [Kamiya and Sasaki, 2013]. In the
last Section of the Chapter it is proposed an Iterative demodulation and de-
coding algorithm that can bootstrap without Pilot Symbols and demodulate
a signal transmitted over the DM channel. This algorithm has far less com-
putational load than a conventional and complete tracking algorithm, but it
can still reach the Information Rate and has negligible losses compared to
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the competitors.

4.1 Information rate

4.1.1 Exact Information Rate

In this Section the concept of information rate is firstly introduced. Then
it is described how Bayesian inference developed on auxiliary, and easier,
channels can be exploited to derive information rate bounds and how to
compute them by numerical simulation with particle filtering. The infor-
mation between the state and the measurements can be calculated starting
from the definition of the Shannon mutual information, that is

I(S;Y ) = h(Y )− h(Y |S), (4.1)
= h(S)− h(S|Y ), (4.2)

where h(X) = −E {log2(p(x))} is the entropy of the continuous or discrete
random variable X , as applicable. Since in the state-based approach the
process S and Y have memory, the information rate can be written as

I(S;Y ) = lim
n→∞

1

n
I(Sn

1 ;Y
n
1 ), (4.3)

that, starting from (4.1), becomes

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

E

{
log2

(
p(yk|sk)
p(yk|yk−1

1 )

)}
(4.4)

= lim
n→∞

1

n

n∑
k=1

I(Sk;Yk|Y k−1
1 ). (4.5)

Proof. Starting from (4.1) and using the chain rule and the equation (3.6)
one has

I(S;Y ) = lim
n→∞

1

n
E

{
log2

(
p(yn1 |sn1 )
p(yn1 )

)}
= lim

n→∞

1

n
E

{
log2

( ∏n
k=1 p(yk|sk)∏n

k=1 p(yk|y
k−1
1 )

)}
= lim

n→∞

1

n

n∑
k=1

E

{
log2

(
p(yk|sk)
p(yk|yk−1

1 )

)}
.
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Exploiting the Markovian property in (3.8) one can replace p(yk|sk) with
p(yk|sk, yk−1

1 ) and then conclude

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

[
h(Yk|Y k−1

1 )− h(Yk|Sk, Y
k−1
1 )

]
= lim

n→∞

1

n

n∑
k=1

I(Sk;Yk|Y k−1
1 ).

From an computational point of view, if X is a stationary ergodic pro-
cess, by the Shannon-McMillan-Breiman (SMB) theorem, one can generate
a long sequence {xk} and compute the entropy

h(X) = − lim
n→∞

1

n
log2

(
p(xk|xk−1

1 )
)
,

without the mean operator. Therefore, from (4.4) we have

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

log2

(
p(yk|sk)
p(yk|yk−1

1 )

)
. (4.6)

The numerator in the logarithm of (4.6) is derivable from the measure-
ment equation in (3.2), while the denominator p(yk|yk−1

1 ) needs to Bayesian
tracking. It can be calculated from the Chapman-Kolmogorov equation in
(3.28). The Equation (4.5) shows that the k-th update step of Bayesian
tracking extracts all the information about the state that is present in the
k-th measurement given all the measurements up to time k − 1.
Starting from (4.2), the information rate in (4.3) between the two studied
process with memory becomes

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

E

{
log2

(
p(sk|sk−1, y

n
k )

p(sk|sk−1)

)}
(4.7)

= lim
n→∞

1

n

n∑
k=1

I(Sk;Y
n
k |Sk−1). (4.8)

Proof. Starting from (4.2) and using the chain rule and the equation (3.5)
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one has

I(S;Y ) = lim
n→∞

1

n
E

{
log2

(
p(sn0 |yn1 )
p(sn0 )

)}
= lim

n→∞

1

n
E

{
log2

(
p(s0|yn1 )

∏n
k=1 p(sk|s

k−1
0 , yn1 )

p(s0)
∏n

k=1 p(sk|sk−1)

)}
= lim

n→∞

1

n

n∑
k=1

E

{
log2

(
p(sk|sk−1

0 , yn1 )

p(sk|sk−1)

)}
,

where the term log2 (p(s0)) − log2 (p(s0|yn1 )) has been deleted because,
considering the limit operation, it does not affect the sum. Thanks to the
state-space approach

p(sk|sk−1
0 , yn1 ) = p(sk|sk−1, y

n
k )

and then one conclude

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

E

{
log2

(
p(sk|sk−1, y

n
k )

p(sk|sk−1

)}
= lim

n→∞

1

n

n∑
k=1

I(Sk;Y
n
k |Sk−1).

Computationally, from (4.7) we have

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

log2

(
p(sk|sk−1, y

n
k )

p(sk|sk−1)

)
(4.9)

The denominator in the logarithm of (4.9) is derivable from the state tran-
sition equation in (3.1), while the numerator p(sk|sk−1, y

n
k ) needs to be ma-

nipulated. It can be seen as

p(sk|sk−1, y
n
k ) =

∫
snk+1∈S

n
k+1

p(snk |sk−1, y
n
k ), ds

n
k+1 (4.10)

where p(snk |sk−1, y
n
k ) can be calculated recursively as in (3.75) but starting

with a known state sk−1,

p(sjk|sk−1, y
j
k) ∝ p(yj|sj)p(sj|sj−1)p(s

j−1
k |sk−1, y

j−1
k ) (4.11)
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with j ≥ k, starting from p(sj−1
k |sk−1, y

j−1
k ) = 1 when k = j and obtaining

p(snk |sk−1, y
n
k ) ∝

n∏
j=k

p(yj|sj)p(sj|sj−1). (4.12)

The equation (4.11) is similar to the one-step Bayesian recursion in (3.32)
but without the integral operation. The operation in (4.10), that must be
done ∀k and it is the result of the forward recursion in (4.11) and then an
integration to explore the past, is called Bayesian smoothing.

The information rate I(S;Y ) in the form of (4.6) is equivalent to that
in the form of (4.9) and they are exact. If we have all the needed probabil-
ities, we can perform a Monte-Carlo simulation of the two processes and
then compute the information rate as sample mean of logarithms of prob-
ability ratios. The main obstacle is the exact knowledge of p(yk|yk−1

1 ) and
p(snk |sk−1, y

n
k ) in (4.6) and (4.9), respectively, ∀k. In Subsection (4.1.2)

one can see as overcoming this difficulty to compute the information rate
between the state and the measurement for a general model defined in the
framework of the state-based approach.

Example: Exact information rate by Kalman filter

When the measurement and the transition state Equations are linear and the
noisy processes are Gaussian, the information rate I(S;Y ) can be exactly
computed by the Kalman filter. Starting from the definition (4.5) one has

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

[
h(Yk|Y k−1

1 )− h(Yk|Sk, Y
k−1
1 )

]
.

If Y k−1
1 is know then also the predictive mean mk is know and, according

to the equation (3.55), one can write

h(Uk) = h(Yk|Y k−1
1 ).

Directly from the measurement equation, one has

h(Nk) = h(Yk|Sk, Y
k−1
1 ).

The two last equations lead to

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

[h(Uk)− h(Nk)] .
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Taking into account the differential entropy of a m-variate Gaussian distri-
bution with covariance matrix Γk that is

h(Xk) =
1

2
log2 ((2πe)

m det (Γk)) , (4.13)

one concludes

I(S;Y ) = lim
n→∞

1

n

n∑
k=1

1

2
log2

(
det
(
HkΣkH

T
k +Rk

)
det (Rk)

)

= lim
n→∞

1

n

n∑
k=1

1

2
log2 det

((
R−1

k

(
HkΣkH

T
k +Rk

)))
= lim

n→∞

1

n

n∑
k=1

1

2
log2 det(I+R−1

k HkΣkH
T
k ) , (4.14)

where HkΣkH
T
k +Rk is the covariance matrix of Uk and the properties of

the determinant of the inverse matrix and of the matrix product have been
used.
In conclusion, when the model is linear and with Gaussian noise, as in
(3.49) and (3.50), the information rate between S and Y can be computed
as sum of log-det with matrices tracked by the Kalman filter as argument.

4.1.2 Upper and lower bounds to the information rate

If is not possible to perform an exact Bayesian tracking of the state, one
has an approximation of p(yk|yk−1

1 ) and p(snk |sk−1, y
n
k ) needed in (4.6) and

(4.9), respectively, ∀k. Consequently, the computation of the information
rate between the state process and the measurement process cannot be ex-
acted.

Let p(x) the distribution of a continuous random variable X (the same
can be done if the variable is discrete), and let q(x) an other generic proba-
bility distribution with the same domain X of p(x). The Gibbs’ inequality
say that

h(X) = −
∫
X
p(x) log2 p(x) ≤ −

∫
X
p(x) log2 q(x) = h(X) (4.15)

with equality if and only if p(x) = q(x), ∀x ∈ X . Note that h(X) is
defined as an upper bound on the actual entropy h(X). In other words,
the entropy of a distribution p(x) is less than or equal to its cross entropy
with any other distribution q(x). The difference between the left and right
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side part of the inequality in (4.15) is the already defined in Equation (2.17)
Kullback-Leibler Divergence or relative entropy:

KLD(p(x)|q(x)) =
∫
X
p(x) log2

(
p(x)

q(x)

)
dx ≥ 0. (4.16)

Every time that we do not know the actual probability distribution, we can
realize a Monte-Carlo simulation with the actual processes and compute an
upper bound on the wanted entropy using an approximated version of the
probability distribution.

Let q(yk|yk−1
1 ) and q(snk |sk−1, y

n
k ) the approximations of the distribu-

tion p(yk|yk−1
1 ) and p(snk |sk−1, y

n
k ), respectively. Using (4.6) and (4.9), the

Gibbs’ inequality leads to the upper bounds

h(Y ) = − lim
n→∞

1

n

n∑
k=1

log2
(
q(yk|yk−1

1 )
)

(4.17)

≥ h(Y )

and

h(S|Y ) = − lim
n→∞

1

n

n∑
k=1

log2 (q(sk|sk−1, y
n
k )) (4.18)

≥ h(S|Y ),

and then we can write upper and lower bounds to the information rate as

I(S;Y ) = h(Y )− h(Y |S) (4.19)

= lim
n→∞

1

n

n∑
k=1

log2

(
p(yk|sk)
q(yk|yk−1

1 )

)
(4.20)

and

I(S;Y ) = h(S)− h(S|Y ) (4.21)

= lim
n→∞

1

n

n∑
k=1

log2

(
q(sk|sk−1, y

n
k )

p(sk|sk−1)

)
, (4.22)

respectively. If these two bounds are close to each other one has obtained
the actual information rate I(S;Y ). The goal becomes to find a good ap-
proximation of p(yk|yk−1

1 ) and p(sk|sk−1, y
n
k ) in order to shrink the bounds’

gap. The conditional probability p(yk|yk−1
1 ) can be calculated in an exact

manner by Bayesian tracking with the Chapman-Kolmogorov equation in
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(3.28). If we compute an approximated tracking, we track q(sk|yk−1
1 ) in

place of the actual predictive distribution, leading to

q(yk|yk−1
1 ) ≃

∫
sk∈Sk

p(yk|sk)q(sk|yk−1
1 ) dsk. (4.23)

The conditional probability p(sk|sk−1, y
n
k ) can be exactly calculated in an

exact manner by Bayesian smoothing with the equation (4.10). In (4.18)
n → ∞ is required to calculate the upper bound h(S|Y ). Using a limited
set of measurements yk+l

k with l > 0 and then adopting in (4.18) an approxi-
mation of p(sk|sk−1, y

k+l
k ) with limited l in place of n→∞, one is still per-

forming an upper bound of h(S|Y ). In other words, with q(sk|sk−1, y
k+l
k )

one has

h(Sk|Sk−1, Y
k+l
k ) ≥ h(Sk|Sk−1, Y

k+l
k ) ≥ h(Sk|Sk−1, Y

n
k ),

where the last inequality holds because removing conditions the entropy
can only increase. As in (4.10), the approximation of p(sk|sk−1, y

k+l
k ) can

be seen as

q(sk|sk−1, y
k+l
k ) =

∫
sk+l
k+1∈S

k+l
k+1

q(sk+l
k |sk−1, y

k+l
k ) dsk+l

k+1, (4.24)

where l is called time-lag of the smoother. In the state-base approach, the
state sequence {Sk, Sk+1, Sk+2, · · · , Sk+l} is a reversible transformation of
the process noise sequence {Vk−1, Vk, Vk+2, · · · , Vk+l−1} given the initial
state Sk−1, therefore in some practical case it’s better to evaluate the wanted
approximation by

q(sk|sk−1, y
k+l
k ) = q(vk−1|sk−1, y

k+l
k )

=

∫
sk+l
k+1∈S

k+l
k+1

q(vk+l−1
k−1 |sk−1, y

k+l
k ) dvk+l−1

k . (4.25)

To find a good approximation of p(yk|yk−1
1 ) and p(sk|sk−1, y

n
k ), the parametric/non-

parametric methods described in the Subsections 3.1.3 and 3.1.5 respec-
tively, can be used.

4.1.3 Upper and lower bounds to the information rate by particle fil-
tering

The particle filtering, widely described in the Subsection 3.1.6, is suitable to
provide an approximation of the needed probabilities that appears in (4.17)
and (4.18). In the following line we can see as the particle filter can com-
pute the upper bounds on h(Y ) and on h(S|Y ).
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Evaluation of h(Y ) As shown in [Dauwels and Loeliger, 2008], the nor-
malization factor αk defined in (3.78) that normalizes the weights of the
particles in the update step can be a good approximation of p(yk|yk−1

1 ).
Substituting the forward predictive distribution approximated by the par-
ticle filtering (3.81) in the approximated Chapman-Kolmogorov equation
(4.23) one has:

q(yk|yk−1
1 ) ≃

∫
sk∈Sk

p(yk|sk)
P∑
i=1

w
(i)
k−1δ(sk − s

(i)
k ) dsk (4.26)

=
P∑
i=1

p(yk|s(i)k )w
(i)
k−1, (4.27)

that is the factor (3.78). Therefore, it can be used in (4.17) to calculate
the upper bound on h(Y ) and then the upper bound on the information rate
I(S;Y ). The entire procedure for Monte-Carlo evaluation of h(Y ) is equal
to the classical particle filtering denoted with Algorithm 1 in the Subsection
3.1.6, followed by the final instruction h(Y ) ← −n−1

∑n
k=1 log2 αk, that

computes the sample mean of the logarithm of the normalization factors.

Evaluation of h(S|Z) For each time instant k, a particle filtering of l steps
with all the particles initialized equal to sk−1 can be performed. In this way
the particle sequence with the related weights gives an approximation of
p(sk+l

k |sk−1, y
k+l
k ) the argument needed in equation (4.24). Denoting with

ℓ the lag index of the evolution of the particles. At time instant k and lag
ℓ = 0 the particles for i = 1, . . . , P are initialized as

s
(i)
k,0 = fk−1(sk−1, v

(i)
k−1,0)

with weight

w
(i)
k,0 =

p(yk|s(i)k,0)∑P
j=1 p(yk|s

(j)
k,0)

,

where the set {v(i)k−1,0, i = 1, 2, · · · , P} is a set of independent samples of
process noise, and sk−1 is the state visited at time k − 1 by the realization
(sn0 , y

n
1 ). For each time lag ℓ = 1, . . . , l the particles and their weights are

updated as
s
(i)
k,ℓ = fk−1+ℓ(s

(i)
k,ℓ−1, v

(i)
k−1,ℓ),

w
(i)
k,ℓ =

w
(i)
k,ℓ−1p(yk+ℓ|s(i)k,ℓ)∑P

j=1w
(j)
k,ℓ−1p(yk+ℓ|s(j)k,ℓ)

,
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where the sets {v(i)k−1,ℓ, i = 1, 2, · · · , P} for ℓ = 1, . . . , l are sets of inde-
pendent samples of the process noise. After l steps, the distribution tracked
by the particle method can be approximated as

q(sk+l
k |sk−1, y

k+l
k ) =

P∑
i=1

w
(i)
k,lδ(s

k+l
k − s(i)k,0:l)

where s(i)k,0:l =
(
s
(i)
k,0, s

(i)
k,1, . . . , s

(i)
k,l

)
. Putting the last equation inside the

integral in (4.24), one derives

q(sk|sk−1, y
k+l
k ) =

P∑
i=1

w
(i)
k,lδ(sk − s

(i)
k,0), (4.28)

that is the approximation of p(sk|sk−1, y
k+l
k ) provided by the particle smoother:

the Dirac functions are centered on the particles of the first step and have
the last computed weight as multiplying factor.

Since the evaluation of q(sk|sk−1, y
k+l
k ) in the point sk visited by the

realization requires that the inferred distribution is actually a probability
density function, a smooth kernel should be used in place of the Dirac delta,
leading to

q(sk|sk−1, y
k+l
k ) =

P∑
i=1

w
(i)
k,lκ(s

(i)
k,0; sk), (4.29)

where the kernel κ(µ;x) is a probability density function over the space
spanned by x with mean vector µ. The same Parzen technique has been
adopted in the Example in Subsection 3.1.6. In practical case the particles
can tracks the process noise. Starting from (4.25), the wanted approxima-
tion can be evaluated by

q(sk|sk−1, y
k+l
k ) = q(vk−1|sk−1, y

k+l
k )

=
P∑
i=1

w
(i)
k,lκ(v

(ρ(i))
k,0 ; vk−1), (4.30)

where ρ(·) is a function used in the resampling procedure. When the algo-
rithm executes the particle resampling procedure, it is important to consider
the right particles, and in the right order, of the set {v(i)k,0, i = 1, 2, · · · , P}
in such a way that, after l steps, the i-th particle s(i)k,l was generated by v(ρ(i))k,0 .
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For example, if P = 4 and the particles {s(1)k,l , s
(2)
k,l , s

(3)
k,l , s

(4)
k,l } are gener-

ated by {v(2)k−1,0, v
(2)
k−1,0, v

(1)
k−1,0, v

(4)
k−1,0}, respectively, then ρ(1) = ρ(2) = 2,

ρ(3) = 1, and ρ(4) = 4 in (4.30).
The entire procedure for Monte-Carlo evaluation of h(S|Z) is reported in
Algorithm 2.

Algorithm 2 Calculate h(S|Y )

Generate (sn+l
0 , yn+l

1 ) ∼ p(sn+l
0 , yn+l

1 ) = δ(s0)
∏n+l

k=1 p(sk|sk−1)p(yk|sk)
Compute vn+l−1

0 from sn+l
0

for k = 1, . . . , n do
Generate v

(i)
k−1,0 ∼ p(vk−1) for i = 1, . . . , P

ρ(i) = i for i = 1, . . . , P

s
(i)
k,0 ← fk−1(sk−1, v

(i)
k−1,0) for i = 1, . . . , P

w
(i)
k,0 ← p(yk|s(i)k,0)/

∑P
j=1 p(yk|s

(j)
k,0) for i = 1, . . . , P

for ℓ = 1, . . . , l do
if
∑P

i=1(w
(i)
k,ℓ−1)

2 > (0.3P )−1 then(
{s(i)k,ℓ−1}, {w

(i)
k,ℓ−1}, {ρ(i)}

)
← resample

(
{s(i)k,ℓ−1}, {w

(i)
k,ℓ−1}, {ρ(i)}

)
end if
Generate v

(i)
k−1,ℓ ∼ p(vk+ℓ−1) for i = 1, . . . , P

s
(i)
k,ℓ ← fk+ℓ(s

(i)
k,ℓ−1, v

(i)
k−1,ℓ) for i = 1, . . . , P

w
(i)
k,ℓ ← w

(i)
k,ℓ−1p(yk+ℓ|s(i)k,ℓ)/

∑P
j=1 w

(j)
k,ℓ−1p(yk+ℓ|s(j)k,ℓ) for i = 1, . . . , P

end for
q(vk−1|yk+l

k , sk−1)←
∑P

i=1 w
(i)
k,lκ(v

(ρ(i))
k−1,0; vk−1)

end for
h(S|Y )← −n−1

∑n
k=1 log2 q(vk−1|yk+l

k , sk−1)

From an operative point of view, the classical Algorithm 1 computes
one particle filtering procedure of n steps, where n is the duration of the
long Monte-Carlo sequence, while the Algorithm 2 performs n particle fil-
tering, one for each time instant of the sequence and composed by l steps.
In addition the Algorithm 1 does not have optimization parameters, while
the Algorithm 2 has to optimize the kernel function. It is clear that the
Algorithm 2 is computationally more expensive than the 1.

4.2 The information rate of the Discrete Model channel

In this Section it is reported as an example of Bayesian Tracking applied in
order to compute the Information rate bounds. The Wiener’s phase noise
channel, i.e. the DM, bounds are computed as done in [Barletta et al.,
2012a].
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If one recalls Equations (1.1) and (2.10)

yi = aie
jφi + ni , with

φi = φi−1 + σPNνi

νi ∼ N(0, 1) ,

where σ is considered to be the standard deviation of the DTFN in one
symbol timespan. Without loss of generality, the i.i.d. sequence ai has uni-
tary power, i.e. E[|ai|2] = 1. Consider the discrete-state channel where
the quantized phase noise is s in contrast to the continuous-state phase φ.
The state s is the phase noise quantized into N bins as defined in Equations
(3.68) and (3.69). The new auxiliary channel given by s is an approximated
version of the real channel with a discretized state and it is easy to be sim-
ulated. Therefore a trellis-based recursions can be run in order to compute
the entropies that are needed for the computation of the capacity. The con-
sidered capacity bounds are derived following the same steps of Subsection
4.1.2

I(X;Y ) = H(X) + h(Y )− h(X;Y ) = H(X)−H(X|Y ) ≤
≤ H(X)−H(X|Y ) = I(X;Y ) . (4.31)

In order to derive the upper bound, one has to exploit the Bayes rule [Gel-
man et al., 2014] to write

P (Y |S,X)

P (Y |X)
=
P (S|X,Y )

P (S|X)
. (4.32)

If one considers Equation (4.32) and wants to write h(Y |X), he can write
that

h(Y |X) = h(Y |S,X) + P (S|X)− P (S|X, Y ) ,

leading to the upper bound formula

I(X;Y ) = h(Y )− h(Y |X,S)−H(S) +H(S|X, Y ) ≥
≥ h(Y )− h(Y |X,S)−H(S) +H(S|X, Y ) =

= h(Y )− h(Y |X) = I(X;Y ) . (4.33)

Note that all entropies H and differential entropies h are computed by aux-
iliary channel simulations. The entropies in the lower and upper bounds
of Equations (4.31) and (4.33) respectively must bo computed as follows.
The most trivial ones are H(X) and H(Y |X,S) and they do not need any
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explanation, but the fact that a Quadrature Amplitude Modulation is con-
sidered.

H(X)M-QAM = log2(M)

H(Y |X,S) = log2(πeSNR−1) .

For h(S), one can write that

h(S) = −
∫ 2π

0

p(Si|Si−1) log2 p(Si|Si−1)dSi ,

which can be numerically evaluated easily. Due to its folded nature in its
tails h(S) is upper bounded by the entropy of a Gaussian random variable
with variance σ2

PN, that is

h(S) ≤ 1

2
log2(2πeσ

2
PN) . (4.34)

When σ2
PNll0.1, see Chapter 2, the effect of folding is negligible in the

range [0, 2π), therefore h(S) is well approximated by the right side of the
above inequality. In order to compute h(S), one should consider that if i is
sufficiently large, the following holds

h(S) = lim
i→+∞

1

i
log2

i∏
k=1

p(yk|yk−1
1 ) = lim

i→+∞

1

i

i∑
k=1

log2 p(yk|yk−1
1 ) .

(4.35)
The sequences xi1, yi1 and si0 are simulated following the scheme reported
in Figure 2.2. Note that in the channel goes the real phase φ, but in the
trellis computation the quantized discrete-state s is considered. Note that
the discrete-state Wiener phase noise sk is memoryless given its previous
value sk−1, that leads to

P (si0) = P (s0)
i∏

k=1

P (sk|sk−1) .

The channel is assumed to be memoryless given the input and the state.
Moreover the input process and the state process are independent and the
input process are independent random variables, so one can write

p(yi1|xi1, si0) =
i∏

k=1

p(yk|xk, sk) , (4.36)



i
i

“thesis” — 2015/12/23 — 15:18 — page 90 — #106 i
i

i
i

i
i

and the channel probability law can be factorized into

p(yi1, s
i
0|xi1) = P (si0)p(y

i
1|xi1, si0) . (4.37)

Manipulating the previous three equations (4.2), (4.36) and (4.37), one ob-
tains

p(yi1, s
i
0|xi1) = P (s0)

i∏
k=1

P (sk|sk−1)p(yk|xk, sk) . (4.38)

This last equation permits to compute the entropies h(Y ) and h(X, Y ) with
the probabilities p(yk|yk−1

1 ) and p(xk, yk|xk−1
1 , yk−1

1 ) in a recursive way in
trellis with S states, where S is the number of the states of the discrete-state
channel. The computation of H(S|X, Y ) from P (sk|sk−1, xk, yk) derives
easily from the trellis built to compute p(xk, yk|xk−1

1 , yk−1
1 ). In what fol-

lows, p(yk|yk−1
1 ) is derived in such a form that can be simulated. Consider

P (sk|yk1) =
p(yk|sk)P (sk|yk−1

k )

p(yk|yk−1
1 )

=

=
p(yk|sk)

∑
sk−1

P (sk|sk−1)P (sk−1|yk−1
1 )

p(yk|yk−1
1 )

=

∑
xk
p(yk|xk, sk)P (xk)

∑
sk−1

P (sk|sk−1)P (sk−1|yk−1
1 )

p(yk|yk−1
1 )

,

(4.39)

where p(yk|xk, sk) is the pdf of AWGN noise, P (sk|sk−1) is the discrete-
state s innovation law and P (sk−1|yk−1

1 ) the previous step metric. This
is the recursion one needs to find p(yk|yk−1

1 ), which is the normalization
factor such that

∑
sk
P (sk|yk1) = 1. The same derivation is done for the

other metric

P (sk|xl1, yk1) =
p(yk|xk, sk)P (xk)

∑
sk−1

P (sk|sk−1)P (sk−1|xk−1
1 , yk−1

1 )

p(xk, yk|xk−1
1 , yk−1

1 )
,

(4.40)
where one can note the desired normalization factor p(xk, yk|xk−1

1 , yk−1
1 )

needed to compute h(X,Y ). It is important to note that for the trellis (4.39)
we must not substitute the real xi since the variable is saturated, while in
the (4.40) one must use the real transmitted symbol. In the Upper Bound
formula (4.33) it must be compute also

H(S|X,Y ) = − lim
i→∞

1

i+ 1
log2 P (s

i+1
1 |xi1, yi1) . (4.41)
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If one writes

P (si+1
1 |xi1, yi1) = P (si+1)

i∏
k=1

P (sk|sk+1, x
i
1, y

i
1) =

= P (si+1)
i∏

k=1

P (sk|sk+1, x
k
1, y

k
1) , (4.42)

the H(S|X, Y ) can be computed with the same trellis of Equation (4.40)
with some manipulations by Bayes rule

P (sk|sk+1, x
k
1, y

k
1) =

P (sk+1|sk, xk1, yk1)P (sk|xk1, yk1)
P (sk+1|xk1, yk1)

=

=
P (sk+1|sk)P (sk|xk1, yk1)

P (sk+1|xk1, yk1)
, (4.43)

where P (sk|xk1, yk1) is the metric of the trellis (4.40), P (sk+1|sk) the state
change probability and P (sk+1|xk1, yk1) a normalization factor. Note that
the real quantized state sk must be put in the formula in order to have that
P (sk|sk+1, x

k
1, y

k
1) is a number, and not a function of sk. In the simula-

tions the parameters to be chosen are k and the number of the phase quan-
tizer bins N . Obviously one should expect that the Upper Bound (UB)
and the Lower Bound (LB) are closer the higher is the value N . In Fig-
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Figure 4.1: UB and LB of the information rate transferred through a DM channel with
QPSK transmission.

ure 4.1 the information rate bounds of a QPSK modulation with the Dis-
crete Model Channel is reported versus SNR with three different values of
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σPN = {0, 0.125, 0.5}. One should note the good agreements of the two
bounds, therefore he can conclude that the real information rate is well es-
timated. Note the very little loss of information rate from no phase noise
and σPN = 0.125, that is equal to the threshold of validity of the DM. This
is a very interesting result of this thesis work, i.e. at most there is a loss of
less than 1 dB in the SNR from the information rate point of view between
strong phase noise and no phase noise at all with a QPSK modulation. Then
one should design demodulators that can extract, e.g. with Bayesian track-
ing, all the available information from the received data. QPSK modulation
is considered since with such phase noise one should not use higher-order
modulations. The almost absence of performance degradation can be inter-
preted also from a theoretical point of view. Indeed, if one considers that if
the trellis can follow the phase, and the continuous-phase is quantized in a
sufficient way, the DM has only the AWGN impairment
However, in the case of phase noise that strongly impairs the transmission,
like σPN = 0.5 > σPN that is a lot higher than the validity threshold of the
model, one has a consistent loss of performance. Particularly, the curve has
a floor that is lower than 2 bits even with high SNR. This suggests that such
phase noise can not be perfectly tracked by any system, even the strongest
Bayesian tracking one, and its effect cannot be totally erased.

4.3 Iterative demodulation and decoding without Pilot Sym-
bols

In this Section the Discrete Model (DM) of first order Wiener phase noise
channel is considered. However, while in Section 4.2 the information bounds
are derived for such channel, in this Section Bayesian Tracking is exploited
to design a receiving demodulator and decoder that can bootstrap a trans-
mission without the aid of Pilot Symbols [Pecorino et al., 2015]. The pro-
posed system can work without any losses compared to competitor schemes,
but can achieve the information rate, like the one already exploited in the
previous Chapter [Barletta et al., 2013] and [Colavolpe et al., 2005]. More-
over, it is proposed a way to reduce the strong computational requirements
of the complete trellis-based algorithm, by exploring only some states of
the trellis at each step. Finally simulation results for the achievable infor-
mation rate and for the bit error rate (BER) performance of the proposed
iterative demodulation and decoding scheme and of competitor schemes are
presented.
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4.3.1 Transmission Setup and State-based Approach

Consider the Discrete Model of Equation (1.1) and (2.10) recalled below

yi = aie
jφi + ni ,

φi = φi−1 + σPNνi

σPN = σ2T

νi ∼ N(0, 1) .

Here, ai is made by points drawn from a two-dimensional M -ary constel-
lation A carved out from the grid of integers Z2. One can write the state
transition probability of the hidden phase as

p(φi|φi−1) =
+∞∑

k=−∞

g(φi−1 + 2kπ, σPN2 ;φi) , (4.44)

and the measurement or channel probability

p(yi|φi) =
∑
ai∈A

p(ai, yi|φi) =
∑
ai∈A

p(ai)p(yi|ai, φi) =

=
∑
ai∈A

p(ai)gc(aie
jφi , SNR−1; yi) , (4.45)

where gc(µ, σ2; a) indicates a 2-D Gaussian probability density function
with circular symmetry over the complex plane spanned by a with mean µ
and 2-D variance σ2.

The attention now is focused onto the Information Rate. Consider a
transmission scheme where the source is the vector AN

1 of N independent
random variables, and the channel output is Y N

1 . The achievable informa-
tion rate between the source and channel’s output can be written by chain
rule of Equation (4.5) as

I(A;Y ) ≡ lim
N→+∞

1

N
I(AN

1 ;Y
N
1 ) = lim

N→+∞

1

N

N∑
i=1

I(Ai;Y
N
1 |Ai−1

1 ) .

(4.46)
Note that the information extracted about Ak takes advantage of the knowl-
edge of past source symbols Ak−1

1 . A scheme that allows to make use of
past source symbols is the joint equalization and decoding scheme proposed
in [EyuboĞlu, 1988] for the inter-symbol interference channel, which, in
principle, could be used also in the phase noise channel. However, practi-
cal use of this scheme, that is based on interleaving codewords with depth



i
i

“thesis” — 2015/12/23 — 15:18 — page 94 — #110 i
i

i
i

i
i

equal to the memory of the channel, is limited by the high latency that it
introduces, which turns out to be too high in many practical systems. When
demodulation and decoding are disjoint, demodulation cannot exploit the
knowledge of past symbols, that is, the conditions appearing in the argu-
ment of the mutual information in the right side of (4.46) are dropped. In
many cases, one uses preliminary decisions taken from some signal pro-
cessing made on Y N

1 in place of the actual past source symbols. However
this approach can lead to unsatisfactory performance when the error prob-
ability on preliminary decisions is high. Whatever use of Y N

1 is made,
renouncing to the observations AN−1

1 one renounces to some information
rate, as it is apparent from the following where inequality holds because
conditioning does not increase entropy

I(Ai;Y
N
1 |Ai−1

1 ) = H(Ai|Ai−1
1 )−H(Ai|Y N

1 , Ai−1
1 ) =

= H(Ai)−H(Ai|Y N
1 , Ai−1

1 ) ≤ (4.47)

≤ H(Ai)−H(Ai|Y N
1 ) =

= I(Ai;Y
N
1 ) . (4.48)

4.3.2 Demodulation by Bayesian Inference on the state

The Z2/4Z2 transmitted constellation is well explained in the published
article [Pecorino et al., 2015], along with the hybrid iterative demodulation
technique, that exploits a trellis-based demodulation of the signal at the first
step to initialize the known Colavolte, Barbieri and Caire (CBC) [Colavolpe
et al., 2005] algorithm, which is run at the following iteration steps as re-
ported in Figure 4.2. Note that the Soft-In Soft-Out (SISO) decoding is

REDUCED-COMPLEXITY

TRELLIS

DEMODULATION

SISO

LDPC DECODING

PARAMETRIC

DEMODULATION

Figure 4.2: Proposed Iterative Demodulation and Decoding Algorithm Block Scheme.

based on Low Density Parity Check (LDPC) [MacKay, 2003]. This Subsec-
tion focuses the attention on trellis-based Bayesian Inference of the chan-
nel state to demodulate the received signal. The proposed trellis can work
without pilot symbols and this is the most important gain compared to other
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works in the literature, achieving higher data rates compared to pilot-aided
transmissions.

Ideal demodulation, which exploits the conditions Ai−1
1 appearing in the

conditional entropy (4.47), can be performed as

p(ai|yN1 , ai−1
1 ) =

∫ 2π

0

p(φi, ai|yN1 , ai−1
1 )dφi =

=

∫ 2π

0

p(φi|yN1 , ai−1
1 )p(ai|yi, φi)dφi ∝

(a) ∝
∫ 2π

0

p(yi−1
1 , ai−1

1 |φi)p(φi|yNi )p(ai|yi, φi)dφi ∝ (4.49)

∝
∫ 2π

0

p(φi)|yi−1
1 , ai−1

1

p(φi)
p(φi|yNi )p(ai|yi, φi)dφi ∝

∝
∫ 2π

0

p(φi)|yi−1
1 , ai−1

1 p(φi|yNi )p(ai|yi, φi)dφi , (4.50)

where ∝ indicates that a factor independent of ai and φi has been brought
outside the integral and not considered, the product p(yi−1

1 , ai−1
1 |φi)p(φi|yNi )

in step (a) is obtained from p(φi|yN1 , ai−1
1 ) by derivation similar to those

of [Bahl et al., 1974], and the last step holds because p(φi) is uniform.
The forward and backward probability distributions of the phase appearing
inside the integral (4.50) are iteratively computed by Bayesian tracking as

p(φi+1|yi1, ai1) ∝
∫ 2π

0

p(φi|yi−1
1 , ai−1

1 )p(yi, ai|φi)p(φi+1|φi)dφi (4.51)

p(φi|yNi ) ∝ p(yi|φi)

∫ 2π

0

p(φi+1|yNi+1)p(φi|φi+1)dφi+1 (4.52)

where the blind channel probability p(yi|φi) is computed from Equation
(4.45) considering a uniform distribution on A, while the data-aided chan-
nel probability p(yi, ai|φi) = p(yi|ai, φi)p(ai) is computed by taking as
p(ai) an indicator function that is non-zero only in the input symbol visited
by the actual realization.

However, as it is written is Equation (4.48) in Subsection 4.3.1 for the
Information Rate, when input data are not available one is forced to resort
to non-data-aided demodulation, that is similar to (4.50), but all the ai−1

1

are dropped

p(ai|yN1 ) ∝
∫ 2π

0

p(φi)|yi−1
1 p(φi|yNi )p(ai|yi, φi)dφi . (4.53)
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In iterative demodulation and decoding, the first is based on (4.53), but, af-
ter the first decoding, one can use the probability distribution p(ai) coming
from the decoder as extrinsic information in (4.50) - but not to compute
the intrinsic term p(ai|yi, φi) inside the integral (4.53)- to get the transition
metric of forward and backward recursions.

In practice, the continuous-state channel model is intractable. Neverthe-
less, one can compute a non-parametric approximation to the wanted proba-
bility distribution by introducing an auxiliary channel where the state space
is discretized into bins, leading to a trellis-based representation of the phase
evolution in the discrete-state space, where trellis’ states are the centroids
of the bins, like it is done in Subsection 3.1.5. However, trellis-based de-
modulation can be complex, and its complexity increases by a factor equal
to the number of iterations. Therefore here trellis-based demodulation at
the first demodulation step followed by the classical CBC algorithm, that is
far less computational expensive than the trellis-based technique, and it is
briefly recalled in what follows.

The probability distribution of the hidden phase given the observation
is modeled as a Tikhonov distribution. In CBC, the incoming phase distri-
bution is obtained by tracking the parameter of the Tikhonov distribution.
The two-step forward recursion for the tracked parameter is

mf
i = mf

i−1 + 2
yi−1α

∗
i−1

SNR−1 + β2
i−1 − |αi−1|2

, (4.54)

mf
i =

mf
i

1 + σ2
PN|m

f
i |
, (4.55)

αi =
∑
ai∈A

aip(ai) ,

βi =
∑
ai∈A

|ai|2p(ai)

The parametric approximation to the wanted probability distribution is com-
puted as

p(ai|yN1 ) ∝ e−|ai|2SNRI0

(∣∣∣mf
i +mb

i + 2SNRyia∗i
∣∣∣) , (4.56)

where mb
i is obtained from a backward recursion similar to the forward one

and I0(·) is the 0-th order modified Bessel function of first kind. To prevent
numerical problems that occur when the argument of the Bessel function
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becomes too large, one can use the exponential approximation

I0(z) ≈
ez√
2πz

, z ≫ 0 , (4.57)

leading to

p(ai|yN1 ) ∝ e−|ai|2SNR|mf
i +mb

i+2SNRyia∗i |−λ√
2π
∣∣∣mf

i +mb
i + 2SNRyia∗i

∣∣∣ , (4.58)

where the role of λ, which is up to the designer, is that of keeping under
control the exponent of the exponential function. At the first iteration of
the iterative demodulation and decoding algorithm, extrinsic information
about the input symbols is not available, hence the parameters αi and βi are
computed by assuming uniform distribution for p(ai). If the mean value of
constellation’s symbols is zero, then αN

1 is a vector of N zeros, hence from
the numerator of Equation (4.54) one realizes that the algorithm cannot
bootstrap.

4.3.3 Trellis-Based Algorithm for Simulations

Like it is done in Subsection 3.1.5, the continuous-phase φ is discretized
into |S| bins. In this thesis work, uniform and time-invariant quantization
is considered. The state transition probability results to be

p(si|si−1) =

∫
R(sii−1)

p(φi|φi−1)

∆
dφidφi−1 , (4.59)

where ∆ = π/|S| is half the bin width and R(sii−1) the two-dimensional
quantization region whose centroids is sii−1. Since p(si|si−1) depends only
on the difference (si − si−1), it takes its values in a set of |S| numbers
that can be precomputed by Equation (4.59). The probability p(yi|si, ai)
is similar to (4.45) with centroids of the bin si in place of the continuous
phase φi.

As it is said in the previous Subsection, trellis-based demodulation is
computationally expensive. If one wants to reduce the trellis complexity he
can reduce the state transition frequency by merging n steps of the random
walk. This can work for very small step sizes, i.e. σPN · n < σ2

PN, see
Chapter 2. Another way to reduce the computation load is found out by
assuming that at the time instant i, only a small range of the phase domain
has non-negligible probability. Based on this, one can reduce the state bin
set from S to a subset S ′ ⊂ S , where |S ′| is up to the user

S ′
i = {−(|S ′| − 2)∆,−(|S ′| − 4)∆, · · · , (|S ′| − 2)∆}+ µi , (4.60)
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where intuitively µi is the predicted centroid of interest for the phase state
at the time i. The last way to reduce complexity with complex constellation
is to reduce the investigated points of A of Equation (4.45). Actually, at
intermediate-to-high SNR only Np constellation points give non-negligible
contribution to the sum. To further simply signal processing, each con-
stellation point is associated with a look-up table that contains the coordi-
nates of nearest constellation’s points. After this, only the hard decision on
the de-rotated signal and the points in the table associated with the hard-
decision are considered in (4.45), thus avoiding the search of the nearest
constellation points to the received signal.

The complete derivation and exposition of the techniques above can be
found in the published paper [Pecorino et al., 2015], whose results are
briefly resumed in the next Subsection.

4.3.4 Simulation Results

In this Subsection are shown the results of [Pecorino et al., 2015], where
the proposed algorithm is compared also with [Kamiya and Sasaki, 2013]
results, where Pilot Symbols were requested in order to demodulate the
signal. In the following table are resumed the parameters used to run the
simulation The used LDPC code is well explained in [Beermann et al.,

Table 4.1: Simulation Parameters of Trellis-based demodulation

16-QAM 64-QAM
Half bin Width, ∆ π/16 π/64
Number of bins, S ′ 8 8

DNumber of nearest QAM points, Np 16 9
Number of merged phase steps, n 73 73

LDPC code, (n, k) 4088,3066 4088,3066
Number of demodulation and decoding iterations 3 2

Number of iterations of the LDPC decoder for
each iteration of demodulation and decoding 5 5
Number of iterations of the LDPC decoder

after the last demodulation 50 50

2011]. Figures 4.3 and 4.4 report the achievable information rate versus
σPN with 16-QAM and 64-QAM with two different values of SNR each.
In the Figures are reported the information rates of

• pure AWGN channel without phase noise (Dashed line),

• Full version of the trellis with data-aided recursions (Solid line with
squares),
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Figure 4.3: Achievable information rate versus σPN for the phase noise channel with
16-QAM and two values of SNR. Dashed line: pure AWGN. Solid line with squares:
full trellis, forward data-aided recursion. Dash-dotted line: full trellis with forward-
backward non-data-aided recursions. Solid line: reduced complexity trellis with
forward-backward non-data-aided recursions.
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Figure 4.4: Achievable information rate versus σPN for the phase noise channel with
64-QAM and two values of SNR. Dashed line: pure AWGN. Solid line with squares:
full trellis, forward data-aided recursion. Dash-dotted line: full trellis with forward-
backward non-data-aided recursions. Solid line: reduced complexity trellis with
forward-backward non-data-aided recursions.
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• Full version of the trellis without data-aided recursions (Dash-dotted
line),

• Reduced trellis without data-aided recursion (Solid line).

Note that all systems can achieve the information rate computed by Bayesian
tracking with data-aided recursions. Then, the non-data-aided loses track of
the phase at high phase noise values. This is intuitively true since when the
system begins to be stressed by phase noise and decisions âi ̸= ai, the per-
formance of data-aided begins to differ from the non-data-aided one. The
reduced complexity trellis that exploits the minimal state with parameters
of Table 4.1 has more weaknesses than the full-trellis but it can still extract
the full information under some phase noise values. In Figures 4.5 the BER
of the full system, i.e. trellis-based initialization and CBC demodulation
and decoding, are reported:

• Performance limit of AWGN channel (Dashed Line),

• Performance limit of AWGN and phase noise channel (Dash-dotted
line),

• Pure AWGN (Dashed line with Triangles),

• Hybrid iterative demodulation and decoding without pilot symbols
(Solid line),

• Full trellis with data-aided forward recursion and non-data aided back-
ward (Dotted line with Crosses),

• Iterative demodulation and decoding of [Kamiya and Sasaki, 2013],
1/25 Pilot rate (Solid line with circles).

Apparently, the proposed systems can work with 1 − 1.5 dB losses from
the Information Rate optimum SNR. It is apparent from Fig. 5 that, al-
though the proposed method does not make use of pilot symbols and it
is initialized with the loose trellis first step, it can still achieve better per-
formances than the Pilot-aided one of [Kamiya and Sasaki, 2013]. Also,
despite the dramatic complexity reduction, the performance with reduced
trellis is virtually optimal compared to the full-trellis one. Actually, we
have found that system complexity can be reduced without any appreciable
performance degradation until cycle slips starts appearing.
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Figure 4.5: BER versus SNR. Dashed line: performance limit of AWGN channel. Dash-
dotted line: performance limit of AWGN and phase noise channel. Dashed line with
triangles: pure AWGN. Solid line: hybrid iterative demodulation and decoding without
pilot symbols. Dotted line with crosses: full trellis with dataaided forward recursion
and non-data-aided backward recursion. Solid line with circles: iterative demodula-
tion and decoding of Kamiya and Sasaki [Kamiya and Sasaki, 2013] with pilot rate
1/25.
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CHAPTER5

Chromatic Dispersion impact onto phase
noise in DDO-OFDM

In this Chapter the issue of Wiener phase noise is dealt by considering its
effects in another field of interest, Direct Detection (DD) Optical OFDM .
In the first Section a referenced model for the phase noise effects in DDO
OFDM, well known in the literature, is derived [Peng, 2010]. However,
in this thesis the model is criticized since it imposes a strong assumption
in its derivation. After exposing the weak points, a MC simulator have
been setup with two DDO OFDM Scenarios to compare the performances
between them and the literature model. At last, measurements in [Schmidt
et al., 2008] are compared with both [Peng, 2010] and the MC performance
in a “Scenario 0”.

5.1 Single Sideband DDO-OFDM - A mathematical model

With reference to the work of [Peng, 2010], the author proposes a the math-
ematical derivation of the Phase Noise (PN) Effects in Single Side-Band
(SSB) DDO-OFDM Transmission that improves the previous work in two
aspects:

103
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• The derivation is done in a continuous-time domain. More precise
results are obtained with integrals compared to simple discrete-time
sum.

• The results are reported in a cleaner way if compared to [Peng, 2010],
and the dependencies on the system’s parameters are more intelligible.

Consider the continuous-time SSB OFDM signal

s(t) = ej2πfAt

(
A+

Nd∑
k=1

dke
j2π[(k+Nd)∆f ]t

)
, (5.1)

whereA and fA are the carrier complex amplitude and frequency. Note that
fA can be set to zero since now without loss of generality. dk are the Nd

complex modulated symbols on the k-th subcarrier, ∆f the subcarrier spac-
ing. The laser phase noise is a continuous-time Wiener process of Equation
(2.2)

φ(t) = σ

∫ t

0

ν(τ)dτ ,

where it has been set φ(0) = 0. Note that φ(t) ∼ N(0, σt) and the laser
phase noise linewidth can be derived as easily as γPN = σ2/(2π). Hence,
the transmitted signal is affected by phase noise, becoming

sT (t) =

(
A+

Nd∑
k=1

dke
j2π[(k+Nd)∆f ]t

)
ejφ(t) . (5.2)

The chromatic dispersion is modeled as a different time-delay of the pro-
cess with respect of the central frequency of the signal, i.e.

sR(t) ≈ AejΦ(t) +

Nd∑
k=1

dk · ej2π[(k+Nd)∆f ](t−Tk)+jΦ(t−Tk) , (5.3)

where Tk = [DLλ2(k+Nd)∆f/c] and the approximation holds if the phase
noise γPN is sufficiently small compared to ∆f , see Chapter 2. This is the
focal point of the derivation, and it will be deepened later. Before resuming
the derivation, in Figure 5.1 the transmission and CD effect are trivially
shown. From Equation (5.3), one can define the phase noise that affects the
k-th subcarrier as

ρk(t) = φ(t− Tk)− φ(t) , (5.4)

ρk(t) ∼ N(0, βk = σ2Tk) .
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Figure 5.1: OFDM Transmission and different delays due to Chromatic Dispersion.

When the signal is received at the photodiode, it computes the intensity,
leading to the converted electrical signal

|sR(t)|2 ≈ 2Re

{
A∗

Nd∑
k=1

dke
j2πfkt+jρk(t)+jθk

}
+ |A|2 +

Nd∑
k=1

|dk|2 + SSBI

(5.5)
where fk = [(k+Nd)∆f ] and the sideband-sideband beat interference and
θk = −2πfkTk the CD phase rotation on k-th sub [Peng et al., 2009a].
Given (5.5), assuming rectangular filter shaping, the k-th FFT demodulated
signal is

R(k) = Dkψk(0)+

Nd∑
m=1,m̸=k

Dmψm(k−m) , with Dk = A∗dke
jθk , (5.6)

where the disturb comes from the non-zero samples of the sampled process
ejρk(n) FFT

ψk(p) =
1

N

N−1∑
n=0

ej[
2πpn
N

+ρk(n)] . (5.7)

In the thesis it is also considered the effect of phase noise in a continuous-
time manner. Therefore the (5.7) can be written as

ψ′
k(p) =

1

TO

∫
TO

exp

(
j
2πpt

TO

)
ejρk(t)dt . (5.8)

where TO is the OFDM symbol period. The Power Spectral Density (PSD)
of ρk(t) has been derived in [Qi et al., 2006]

Pk(f) = e−βk

[
δ(f)− sin(βk)

πf

]
+

1− e−βk

[
cos(βk)− f

γPN
sin(βk)

]
πγPN

(
1 +

(
f
γPN

)2) ,

(5.9)
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Note that is different from φ(t) PSD, that is the phase noise process in
Coherent Optical OFDM with the Lorentzian spectrum of Equation (2.5)
[Magarini et al., 2011].
Consider Equation (5.6), one can split the disturb on the desired signal Dk

into three term, as it reported in Fig. 5.2 [Peng, 2010] and below

Figure 5.2: Effects of the PN on the received subcarrier signal: (1-red) power degradation
α, (2-green) phase rotation term (PRT), and (3-brown) inter-carrier interference (ICI).

1. Power Degradation (PD),

2. Phase Rotation Term (PRT),

3. Inter-Carrier Interference (ICI).

In the next three Subsections, those three effects are derived in a continuous-
time manner, as opposed to what is done in previous works.

5.1.1 Power Degradation (PD)

Under small phase noise (SPN) assumption [Mandelli et al., 2014], one can
easily compute the ratio αk between the k-th subcarrier received symbol
power with PN and the one without PN. This power loss is due to the power
shifting of the signal to PRT and ICI components. Define

αk = |E [ψk(0)]|2 =
∣∣∣∣E [ 1

TO

∫ T+TO

T

ejρk(t)dt

]∣∣∣∣2 , (5.10)
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where T is the time at the OFDM symbol start. If SPN ρk(t)→ 0, one can
approximate the expectation in (5.10) as follows, by manipulating ejρk(t)

E

[
1

TO

∫ T+TO

T

ejρk(t)dt

]
≈

≈ 1

TO
E

[∫ T+TO

T

1dt+ j

∫ T+TO

T

ρk(t)dt−
1

2

∫ T+TO

T

ρ2k(t)dt

]
=

=1− 1

2TO

∫ T+TO

T

E
[
ρ2k(t)

]
dt = 1− πγTk . (5.11)

The (5.10) becomes

αk ≈ |1− πγTk|2 ≈ 1− 2πγTk = 1− βk . (5.12)

The equation above underlines that if SPN holds, αk + βk ≈ 1, meaning
that the power loss of the k-th subcarrier will turn to the PN power of k-th
subcarrier.

5.1.2 Phase Rotation Term (PRT)

PRT is the 0-order interference ψk(0). Deriving from 5.8 and with SPN,
one can write

ψk(0) =
1

TO

∫ T+TO

T

ejρk(t)dt ≈ 1 + j
1

TO

∫ T+TO

T

ρk(t)dt (5.13)

In (5.13) it is clear that PRT only affects signal imaginary part and therefore
results in a small phase rotation (the second order term is taken into account
in PD, from the third are omitted). Assume without loss of generality that
T = 0. Since ρk(t) is a zero-mean Gaussian variable, PRT will be also a
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zero-mean Gaussian variable with variance

σ2
k,PRT ≈

1

T 2
O

E

[∫ TO

0

ρk(t)dt

]2
=

=
1

T 2
O

E

[∫ TO

0

dt

∫ t

t−Tk

n(ν)dν

]2
=

=
1

T 2
O

E

[
Tk

∫ TO−Tk

0

n(ν)dν +

∫ Tk

0

ν n(ν − Tk)dν +
∫ Tk

0

ν n(TO − ν)dν
]2

=

=
1

T 2
O

{
T 2
k

∫ TO−Tk

0

E
[
n2(ν)

]
dν +

∫ TO

0

ν2E
[
n2(ν − Tk)

]
dν+

+

∫ TO

0

ν2E
[
n2(TO − ν)

]
dν

}
=

=
2πγ

T 2
O

[
T 2
k (TO − Tk) +

2

3
T 3
k

]
=

=
2πγ

T 2
O

[
TOT

2
k −

1

3
T 3
k

]
. (5.14)

In the following list are reported the main differences between this work
and [Peng, 2010] together with the arguable points.

• This is a continuous-time derivation. It is more precise and there are
not problems of dimensionality of spare terms in (5.14) like the ones
in the (11) of [Peng, 2010].

• The number of subcarriers is hidden since now, and the derivation
does not take into account that so it does not depend neither on N nor
Nd. However, note that TO is inversely proportional to the number N
of FFT points, which is strictly related to Nd, given the total band B,
i.e. TO = B/N .

• In order to compare this work to [Peng, 2010] one should define the
sampling period Ts, the frequency spacing ∆f , the number FFT points
N , the number of subcarriersNd and the total considered OFDM band
B. Therefore, the parameters are defined below, along with Mk that is
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the number of delay FFT samples due to the CD:

∆f = T−1
O , (5.15)

Ts =
TO
N

, (5.16)

B ≥ 2Nd∆f =
2Nd

TO
, (5.17)

Mk =
Tk
Ts
. (5.18)

Note that the number of FFT points N must be such that N ≥ Nd. In
what follows the considered band will be considered at its minimum value
B = 2Nd∆f . Exploiting the last four Equation, one can arrange the (5.14)
into

σ2
k,PRT ≈

2πγTs
N2

[
N M2

k −
1

3
M3

k

]
, (5.19)

that is very similar to previous derivation, without that questionable + 1 that
came from the discrete-time sampling. Then, if N ≫Mk, one can write

σ2
k,PRT ≈

2πγTs
N

M2
k = 2πγ

T 2
k

NTs
= 2πγT 2

k∆f =

= 2πγ

(
DLλ

c

)2

(k +Nd)
2(∆f)3 =

= 2πγ

(
DLλ

c

)2(
B · k +Nd

2Nd

)2

∆f (5.20)

From (5.20), one can split the effects on the PRT into three terms:

1. Laser ans Fiber parameters: 2πγ(DLλ/c)2,

2. Frequency offset with respect to the carrier, that is the total band mul-
tiplied by the relative position of the k-th subcarrier. This is the only
term that depends on k: (B(k +Nd)/2Nd)

2,

3. The subcarrier frequency offset ∆f .

5.1.3 Inter-Carrier Interference (ICI)

Not yet derived with integrals, the noise behavior of ICI has long been
considered as a zero-mean complex Gaussian random variable [Yi et al.,
2008, Tomba, 1998]. The ICI power is also a function of the subcarrier
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index and its variance, when normalized to the subcarrier symbol power,
can be exactly obtained without using the small PN assumption, leading to
the upper-bounded to the signal power minus both the PD and PRT power

σ2
k,ICI ≤ 1− (αk + σ2

k,PRT) . (5.21)

This results is really intuitive, since the power loss (1−αk) is almost given
by the two orthogonal effects PRT and ICI variances, given the indepen-
dence of the transmitted subcarriers.

Equations (5.20) is worthy to be investigated. As it is said in the end of
Subsection 5.1.2, σ2

k,PRT linearly depends on ∆f . With constant band B, it
seems that increasing N will reduces the rotation due to the Phase Noise.
This is only partly true. The PRT power in (5.20) can be seen also as the
integration of a constant PSD (constant because Mk ≪ N , or Tk ≪ TO) in
the frequency span ∆f .

The more N increases, the less ∆f will be. Try to consider the whole
system in the frequency domain, as it is shown in (5.6) and (5.8). With the
same system parameter, the PSD of the Phase Noise (5.9) is the same. If
one increases N , he is sampling the PSD of the k-th sub closer and closer
in the frequency domain. From the model expressed by (5.6), the PSD of
the k-th subcarrier baseband demodulated is given by taking each sample
of Pk(f) and convolving this discrete-frequency signal with a sinc-shape
signal with first zero at f ′ = ∆f . From Figures 5.3 it is clear now how
the same Phase Noise power spreads differently with increasing N : remind
that the power is the area of the considered curves. If N is small, a lot of
power goes to the PRT, reducing the ICI power since the closer subcarrier
are far away from the signal. On the contrary, if N is big, PRT power is
less, since ICI draws more available power to itself.
Let N → ∞: this is the case where all phase noise of k-th sub spreads
onto the other subcarriers, where all the phase noise that affects the k-th
sub comes from the other subcarriers. In this case σ2

k,PRT → 0.

5.2 Simulation, measurements and performance analysis

In the beginning of this Section the SA results are computed, from Equa-
tions (5.6) and (5.7). Therefore the SA performance are compared with a
Monte Carlo (MC) simulator that goes deeper in the system. In this Section
two scenarios - Scenario 1 and 2 - of short reach usable lasers are presented.
The first is given by a DFB and second by a VCSEL of 1 MHz and 10 MHz
linewidths respectively. At last the SA approach and the MC simulator are
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Figure 5.3: Effect on PRT’s statistic due to the sampling of the Phase Noise PSD.
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Table 5.1: Semi-Analytical (SA) DDO-OFDM transmission Parameters in Figure 5.4

Scenario 0- [Schmidt et al., 2008] 1 (DFB) 2 (VCSEL)
γPN 200 kHz 1 MHz 10 MHz

Fiber length, L ≈ 400 km ≈ 800 km 100 km
Cyclic prefix, (CP) 20% 20% 20%

M -QAM 16 km 16 km 16 km
Chromatic Dispersion, D 16 ps/(nm · km) 16 ps/(nm · km) 16 ps/(nm · km)

Laser wavelength, λ 1550 nm 1550 nm 1550 nm
Transmitted Rate, Rb 20 Gbit/s 20 Gbit/s 20 Gbit/s

Number of data Subcarriers, Nd 128 128 128
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(a) Scenario 1
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(b) Scenario 2

Figure 5.4: Received 16-QAM constellation transmitted over a L km fiber in the SA model.

compared with the 200 KHz linewidth measurements of [Schmidt et al.,
2008] that will be called Scenario 0.

5.2.1 Semi-Analytical Model

The considered scenarios are taken from the DDO-OFDM measurements
of [Schmidt et al., 2008] , where only γPN is changed. Hence the parame-
ters are reported in Table 5.1: Consequently the OFDM subcarriers spacing
is computed as ∆f = (1 + CP )R/[Nd log2(M)] ≈ 46 MHz. SA sim-
ulation are run by taking random generations of the process Φ(t) and dk
of the well-known Wiener Phase noise given by Equation (2.2) and then
computing the (5.6) and the (5.7) for all k = 1, ..., Nd. In Figures 5.4 are
reported the received constellation of all subcarriers if one considers the
semi-analytic model (5.6). Note the good performances of the modulation,
with a negligible Bit Error Rate (BER). In Figure 5.5 the Mean Square Er-
ror (MSE) of the transmission is plotted versus the Fiber Length (L) defined
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Figure 5.5: MSE of the received signal with the SA and MC simulator.
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as
MSE = E

{
|R−D|2

}
, (5.22)

where R and D are the generic received R(k) and transmitted Dk sym-
bols respectively and no AWGN is considered. One could conclude from
this results that DDO-OFDM transmission is possible in a Short Reach and
even Metro optical access with low quality lasers, like DFB for 1 MHz
and VCSEL for 10 MHz respectively. However, as it is written in previous
Sections, the SA Model has weaknesses if γ is not negligible compared to
∆f . Hence the authors analyze in the following Subsections the scenario
in a more precise fashion - i.e. in exploiting a MC approach versus the SA
presented in this Subsection.

5.2.2 Monte Carlo Framework

The Monte Carlo simulation is run following the block scheme of Figure
5.6.

OFDMd
k

Channel

e jΦ(t)

CD 2 H(f) CD-COMP

EQ
d

k

DSP

Figure 5.6: DDO-OFDM Monte Carlo Simulator Block Scheme

In the following list the features of the simulator are deepened:

• the OFDM block shapes the signal as it is written in (5.1), with the
insertion of Cyclic Prefix (CP). Note that the signal is upsampled by a
factor of 16 to model the continuous-time,

• Chromatic Dispersion is applied as a multiplication in the frequency
domain by exp(−j2πDLλ2f 2/c)

• Optical Filter must be a constant in the band of interest, in order to
avoid distortion that can not be equalized after the photodiode,

• The receive electrical filter is free as long as it is shaped around the
band of the signal,
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• The signal is then sampled, and, without Amplified Spontaneous Emis-
sions (ASE), the Digital Signal Processing (DSP) at the receiver op-
erates a Minimum Mean Square Error Equalization that performs CD
Compensation and removes the Electrical Filter memory in the fre-
quency domain.

In what follows there are reported two different set of results coming from
the MC simulator. The first one regards the transmission setup presented
previously in the semi-analytic Subsection.
As one can see from Figure 5.5 the MC MSE is completely different from
the SA ones with much lower distances than the ones on the Figure 5.4. The
MSE is much higher, about one or two order of magnitude in all scenarios.
Indeed CD distorts the signal in the channel, since it is not an impulse train
in the frequency domain due to convolution with the phase noise Fourier
transform. This proves what the authors claim, i.e. with large linewidth
lasers the SA models in the literature are not valid anymore. However MC
simulator can show the performance of such channels. In the literature there
are several works that deal with long-haul SSB DDO-OFDM [Peng et al.,
2009b, Schuster et al., 2008]. However in these works CD is corrected by
dispersion compensating fibers, that are necessary when working with long
transmissions. In short reach networks dispersion fibers are not necessary .
This arise the CD distortion that is point out in this work. Particularly the
authors claim that CD is the limiting factor of SSB DDO-OFDM with a big
number of subcarriers Nd. This is because the (5.6) is not valid anymore
with a laser linewidth comparable with the subcarrier spacing ∆f .

In Figure 5.7 is also reported the Bit Error Rate of the MC simulator
with additive noise modeled as equivalent Additive White Gaussian Noise
(AWGN) at the input of the demodulator. A SNR equal to 20 dB is cho-
sen according to the Scenario 0 of [Schmidt et al., 2008]. Particularly, if
one considers a 5 · 10−3 threshold on the BER, the transmission fulfills the
requirement until L = 800 km in Scenario 1 and L = 6 km in the 2nd

one. This work seems to be in contrast with the previous [Peng, 2010].
However, if one tries to reproduce the measurements of [Schmidt et al.,
2008] with the MC simulator they fit. In particular at 400 km the simulated
BERS ≈ 7·10−4 is a little bit better than the measured one BERM ≈ 2·10−3

of that paper. The small difference is trivially due to amplifier noise and
experimental impairments. If one has still some issues in validating this
work’s results compared to [Peng, 2010], he should consider that the MSE
of that framework, even in Scenario 0, is always more than one order of
magnitude smaller. Hence the performance of such systems seems to be
too optimistic to the measurements present in the literature.
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Figure 5.7: MC Bit Error Rate versus L. SNR = 20 dB
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Concluding the analysis, Coarse linewidth lasers are considered in this
Chapter due to the increasing demand of economic and small optical sys-
tems in short reach Networks without CD Compensation fibers. The au-
thor has considered lasers like VCSELs of 10 MHz and DFB 1 MHz line
bandwidth, comparing them with the 200 kHz of [Schmidt et al., 2008] in
the same scenario. With phase noise introduced by the laser, Direct De-
tection Optical OFDM (DDO-OFDM) becomes one solution with strong
advantages like system complexity and resistance to carrier phase noise.
However, like it is pointed out in previous works, like [Peng, 2010], Chro-
matic Dispersion negates the full cancellation of the phase noise at the re-
ceiver. Here the mathematical model for the performance of DDO OFDM
affected by phase noise is analyzed, along with its weak points when the
laser linewidth is not small compared to the subcarrier spacing ∆f . A
Monte Carlo simulator is proposed to analyze the BER loss due to CD in
DDO-OFDM with coarse lasers. This confirms that CD strongly affects
the performances of the transmission in Metro Access scenario, limiting
to some kilometers (L < 6 km) the transmission of a 20 Gbit/s stream
with a 16-QAM with a 10 MHz line laser. Note the exorbitant loss of per-
formance when the laser linewidth of VCSEL begin to being comparable
with the subcarrier spacing ∆f . From these poor results for such strong
linewidth laser, like VCSEL of Scenario 2, one can say that it is not worth
anymore to implement a SSB transmission. Accordingly, a DSB transmis-
sion with no substantial losses compared to the SSB one can be performed.
However, for a 1 MHz DFB laser the achievable length is L < 800 km.
Still the results disagree with [Peng, 2010] because of the MSE being far
bigger with the MC simulator. However, one should note that the MSE per-
formance in Figure 5.5 shows that the derivation and the results in the lit-
erature coming from Equation (5.6) are not valid even if the laser linewidth
γPN ≪ ∆f . This happens since the phase noise spectrum, which is con-
volved in the frequency domain with the OFDM signal Fourier Transform,
widens the frequency components of the OFDM subcarriers. The signal
is not frequency-impulsive anymore, hence Chromatic Dispersion does not
only impose a delay, but also distortion that cannot be neglected.
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CHAPTER6

Conclusion

Several Wiener phase noise channel issues have been analyzed in this thesis
work. From the investigation of validity the commonly assumed discrete-
time model, Bayesian tracking is presented to derive the information rate
of that channel and to design a complete iterative demodulation and decod-
ing algorithm for it. Then the analysis is expanded to SSB DDO-OFDM
transmission and CD impact on Wiener phase noise in such scenario. In the
following pages the thesis’ key points are resumed.

This thesis begins from a discussion about Wiener phase noise chan-
nels. Typically the performance of those channels is evaluated assuming a
Discrete-time Model (DM) reported in Equation (1.1). At some point, we
asked ourself if anyone has ever put a threshold of validity at that model
especially when the transmission is impaired by strong phase noise. Since
no works in the literature have dealt with the problem, in Chapter 2 the mis-
match between two models is investigated. The Discrete-Time Frequency
Noise (DTFN) processes of both the DM commonly assumed in the litera-
ture and the continuous-time Complete Model (CM) have been compared
with two statistical tests about their whiteness and gaussianity. One can
conclude that their statistical behavior agrees when the standard deviation
of the DTFN increment σPN is below a threshold of DM validity σPN = 0.1
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rad. This result gives the author relief in claiming that DM can be almost
always used to approximate CM, since normal values of σPN are way lower
than the threshold of validity of the DM. Then the MSE due to the mis-
match and the different BERs of CM and DM have been measured, proving
that not only DM is a good approximation if the condition of validity is
respected, being the mismatch error 20 dB below the power of the signals
in the worst case, i.e. σPN → σPN in Figure 2.6. Moreover DM assumption
is conservative, being DM’s BER is a little bit higher than CM’s, see Figure
2.9. At last phase noise complex exponential PSDs are estimated. From the
stronger high frequency components of DM one can conclude that the DM
phase noise process is a bit more difficult to track with a carrier recovery
system for its higher PSD components with high normalized frequencies.

After the validation of DM has been done, the next step was that of defin-
ing the its performance’s limits. Being the DM a discrete-time continuous-
state system, the tracking of the state is cast on the framework of state-based
problems in the Bayesian tracking theory. In Chapter 3, Bayesian track-
ing applied to state-based approach is presented with some examples and
a scenario where this theory shows its limits. In the discrete-time Wiener
phase noise channel, phase noise is the hidden state that must be estimated.
Bayesian tracking is introduced in Chapter 3, together with the example
of Non linear optical channel propagation, where application of this theory
does not provide meaningful results. Indeed, if one wants to model all the
physical effects in the fiber with a multi-dimensional Markovian state, he
has strong limits in term of computational capacity. Moreover, even if only
two fiber sections can be simulated limiting the transmission to very short
tracks, the approximation of CD and the channel impulse response given
by the limited state totally compromises the whole analysis.

However, the single state DM does not give any of the problems above
and it can be used together with Bayesian Tracking techniques. Those allow
not only to track the hidden phase noise, but also to derive the information
rate bounds of that channel. Accordingly, in Chapter 4, the Information
rate of such channel is computed in Figure 4.1. One can conclude that
with low to medium phase noise σPN the information rate at high SNR still
achieve the AWGN upper bound after a different transient between DM and
AWGN. However, if the phase noise is really huge, there is a lower floor at
high SNR with respect to the AWGN. Bayesian tracking has allowed also to
design a demodulation and decoding algorithm to achieve the predicted in-
formation rates. In contrast to previous published algorithms, the proposed
one does not require Pilot-Aided symbols to bootstrap. Furthermore, the
heavy computational requirements of the algorithm are reduced by smart
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techniques that allow practical implementation.
Moving our analysis towards another applicative field of interest where

phase noise impairs the transmission, in Chapter 5 the focus is set onto
OFDM optical transmission. Direct-Detection systems are considered to
elude the Wiener phase noise and carrier recovery. However, when dis-
persive compensating fibers are not considered, CD has an impact on the
phase noise that cannot be neglected. The author takes the literature anal-
ysis of this phenomenon [Peng, 2010] to a more complete mathematical
derivation. Enlightening previous works weaknesses, the Semi-Analytical
approach of the literature is compared to Monte Carlo simulations in order
to have more realistic performance. A huge difference is found out, par-
ticularly with large linewidth lasers, e.g. VCSEL where the transmission
is limited to few kilometers. With DFB lasers having smaller linewidths
it is possible to achieve hundreds of kilometers transmissions, even if the
results are worse than that obtained by Semi-Analytical analysis in the liter-
ature. The Monte Carlo simulator is at last compared with the experimental
measurements of [Schmidt et al., 2008], finding a good match between the
two.

As future works one can continue the analysis of Chapter 5 with exper-
imental measurements of its own. Short reach and metro access networks
with DFB transmission can be studied without dispersion compensating
fibers. Moreover Data center application where VCSEL are strongly imple-
mented can benefit from the analysis of CD and phase noise interactions.
Since it has been concluded that VCSEL linewdiths impair so badly the
performance, a possible investigation of Dual Side-Band OFDM solutions
can be done.
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