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Abstract

This thesis proposes a unified framework that acts as a fundamental structure for a wide
range of acoustic signal analysis, synthesis, and processing tasks. The framework emerges
as a novel system of concepts and methods that encompasses the most recent advances in
signal processing theory for a twofold purpose. From one point of view it provides the
foundation for the design and the evaluation of new signal processing techniques based on
conventional acoustic field representations; from the other point of view, it provides the
required level of abstraction to introduce a novel representation of acoustic fields, based
on the idea of decomposing them into a set of spatially confined wave objects. This thesis
pursues both this purposes.

Conventional representations of acoustic field (in terms of, e.g., plane waves, spherical
waves, etc.) provide a solid foundation for a wide range of acoustic signal processing tasks.
Based on them, many techniques have been presented over the decades to solve a variety
of problems. In this thesis, we interpret the representation of acoustic fields in terms
of plane waves as an instance of multi-dimensional Fourier analysis. This interpretation
is at the core of many techniques proposed in this thesis, as it supports the adoption
of state-of-the-art signal processing techniques for the purpose of acoustic field analysis
and synthesis. Moreover, the plane-wave representation leverages on a strong geometrical
intuition: in this model, sound propagation is considered to occur along straight lines,
referred to as acoustic rays. This fact enables the immediate understanding of several
mechanism of acoustic propagation just employing basic geometric reasoning.

However, the plane-wave representation of acoustic fields is known to be, to some
extent, limited: for instance, acoustic fields generated by near field sources are not
conveniently represented by the superposition of plane waves. Therefore, a more general
representation, allowing us to overcome the limitations of ray-based models, is in order. In
this thesis, we define new elementary functions, referred to as beams, which are conceived
as bundles of acoustic rays. Contrary to plane waves, which act as global descriptors
for acoustic fields (since their spatial extension is infinite), beams are spatially confined;
hence, the provide a local description of acoustic quantities.

Fourier theory shows its limits when trying to describe local phenomena. To overcome
this limitation, in this thesis we embrace the mathematical theory of Gabor frames,
which allows us to introduce a new representation of acoustic fields using beams as
elementary constituents; this representation is referred to as plenacoustic representation
and it parametrizes the acoustic field in terms of both spatial location and direction of
propagation. In this setting, we derive a full-fledged plenacoustic transform that embeds
the concept of a signal decomposition in the plenacoustic representation.

Thereafter, it emerges a promising global framework, in which acoustic fields are
represented in a rigorous but extremely flexible and intuitive fashion. In evidence of this
fact, in this thesis we propose techniques that, in our vision, will advance the state of the
art of acoustic signal processing.
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Sommario

In questa tesi viene proposto un quadro concettuale che consente di unificare una varietà di
operazioni di analisi, sintesi ed elaborazione di segnali acustici. Questo quadro concettuale
è un sistema innovativo di concetti e metodi, e fa proprie le più recenti acquisizioni
nell’ambito della teoria dell’elaborazione dei segnali con un duplice obiettivo: da un lato,
infatti, fornisce i fondamenti per il progetto di nuove tecniche di elaborazione dei segnali
basate su rappresentazioni convenzionali dei campi acustici; dall’altro, fornisce un livello
di astrazione adeguato per introdurre nuove rappresentazioni di campi acustici, basate
sull’idea di scomporre i campi in un insieme di oggetti d’onda confinati spazialmente.

Partendo dalle rappresentazioni convenzionali dei campi acustici (in termini, ad
esempio, di onde piane, onde sferiche, etc.), che forniscono un solido fondamento per
molte recenti tecniche di elaborazione dei segnali acustici, in questa tesi si interpreta la
rappresentazione dei campi acustici in termini di onde piane come un’istanza dell’analisi
di Fourier multidimensionale. Questa interpretazione è centrale in molte tecniche proposte
in questa tesi, dal momento che supporta l’adozione delle più innovative ed efficienti
tecniche di elaborazione dei segnali con lo scopo di analizzare e sintetizzare campi acustici.
Inoltre, la rappresentazione in onde piane fa leva su una forte intuizione geometrica: in
questo modello, la propagazione del suono è descritta tramite rette, dette raggi acustici.
Questo consente la comprensione immediata di molti meccanismi di propagazione acustica,
utilizzando solamente ragionamenti geometrici basilari.

Tuttavia, la rappresentazione di campi acustici in onde piane è nota per essere, in una
certa misura, limitata: ad esempio, i campi acustici generati da sorgenti in campo vicino
non sono rappresentati in modo conveniente da una sovrapposizione di onde piane. Per
questo motivo, nella tesi viene costruita una rappresentazione più generale, che consente
di superare le limitazioni dei modelli basati sui raggi acustici. A questo scopo vengono
definite nuove funzioni elementari, dette beam, che sono concepiti come fasci di raggi
acustici. Contrariamente alle onde piane, che sono descrittori globali per i campi acustici
(dal momento che la loro estensione spaziale è infinita), i beam sono spazialmente confinati,
quindi forniscono una descrizione locale delle quantità acustiche.

La teoria di Fourier mostra, però, i propri limiti nel cercare di descrivere fenomeni
locali. Per superare questa limitazione, in questa tesi si abbraccia la teoria matematica
dei frame di Gabor, la quale consente di introdurre una nuova rappresentazione per i
campi acustici, utilizzando i beam come elementi costitutivi. Questa rappresentazione è
detta rappresentazione plenacustica e parametrizza il campo acustico in termini sia della
posizione spaziale che della direzione di propagazione. In questo contesto, si deriva la
trasformata plenacustica che realizza il concetto della scomposizione dei segnali acustici
nella rappresentazione plenacustica.

Da questo emerge un promettente quadro concettuale, in cui le quantità acustiche
sono rappresentate in modo rigoroso ma estremamente flessibile e intuitivo. Grazie a ciò,
in questa tesi si propongono tecniche che, nelle intenzioni degli autori, avanzeranno lo
stato dell’arte dell’elaborazione dei segnali acustici.

v



This page intentionally left blank.



Acknowledgments

This thesis is the result of a three-year collaboration with the Image and Sound Processing
Group (ISPG) at Politecnico di Milano, Dipartimento di Elettronica, Informazione e
Bioingegneria, lead by Prof. Augusto Sarti and Prof. Stefano Tubaro. It has been a real
honor for me to work in such an inspiring and collaborative research environment.

I would like to thank my supervisor, Prof. Augusto Sarti, who has been a great source
of inspiration and motivation from my first day on; he has been greatly supportive and
helpful at every stage of my work: I am very grateful to Augusto for all his help. A
special thank to Prof. Fabio Antonacci, who trained me, with infinite patience, in the art
of being pragmatic about research, focusing on realistic goals and make things work; I
would like to thank Fabio for all its invaluable help during my work. My gratitude also
goes to Dr. Antonio Canclini and Dr. Dejan Marković, whose studies are the solid roots
of my work. I would like to thank all my friends at ISPG for all the good time spent
together: a big thank goes to Antonio, Bruno, Daniele, Michele, Dejan, Fabio, Francesco,
Massimiliano, Muhammad, Silvia, and Paolo.

I’m grateful to Dr. Filippo Maria Fazi for welcoming me into the Virtual Acoustics and
Audio Engineering group at the Institute of Sound and Vibration Research, University of
Southampton; I would like to thank Filippo for all his help, his hospitality and for the
wonderful discussions on acoustic theory.

My gratitude goes to Prof. Francesco Piazza and Prof. Rudolf Rabenstein for accepting
to review this thesis, for their constructive comments and helpful suggestions.

Thanks to my parents Franco and Giovanna, who gave me all the opportunities one
can wish for. Finally, a special dedication goes to Fosca, who, in her effort to keep my
mind to better things than work, makes life beautiful.

Milano, 2015 L. B.

vii



This page intentionally left blank.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Goals and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Outline and Main Contributions . . . . . . . . . . . . . . . . . . . 6

I Preliminaries 9

2 Signals and Representations 11
2.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 One-Dimensional Continuous Signals . . . . . . . . . . . . . . . . . 12
2.1.2 One-Dimensional Continuous Periodic Signals . . . . . . . . . . . . 13
2.1.3 One-Dimensional Discrete Signals . . . . . . . . . . . . . . . . . . . 13
2.1.4 Multi-Dimensional Continuous Signals . . . . . . . . . . . . . . . . 14

2.2 Bases Representation of Signals . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 General Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Analysis and Synthesis Operators . . . . . . . . . . . . . . . . . . . 16

2.3 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Discrete-Time Fourier Transform . . . . . . . . . . . . . . . . . . . 20
2.3.4 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Frame Representation of Signals . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Gabor Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Local Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Local Continuous Fourier Transform . . . . . . . . . . . . . . . . . 23
2.5.2 Local Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . 24

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Fundamentals of Acoustic Theory 27
3.1 The Laplace Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 The Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 The Homogeneous Wave Equation . . . . . . . . . . . . . . . . . . 29
3.2.2 The Inhomogeneous Wave Equation . . . . . . . . . . . . . . . . . 30

3.3 Solutions to the Homogeneous Wave Equations . . . . . . . . . . . . . . . 30
3.3.1 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Spherical Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Cylindrical Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Solutions to the Inhomogeneous Wave Equation . . . . . . . . . . . . . . . 37

ix



x CONTENTS

3.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Integral Representation of Acoustic Fields . . . . . . . . . . . . . . . . . . 40

3.6.1 Kirchoff-Helmholtz Integral Equation . . . . . . . . . . . . . . . . . 40
3.6.2 Single Layer Potential and Double Layer Potential . . . . . . . . . 41

3.7 Ray Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.1 The Eikonal Equation . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.2 Rays in Acoustic Fields . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Beam Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8.1 The Paraxial Approximation . . . . . . . . . . . . . . . . . . . . . 45
3.8.2 Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Acoustic Field Representations 55
4.1 Plane Wave Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Whittaker’s Representation . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Weyl’s Representation . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Spherical Wave Representation . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Exterior Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Interior Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Bandlimited Spherical Wave Representations . . . . . . . . . . . . 62

4.3 Cylindrical Wave Representation . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Beam-Based Representation of Acoustic Fields . . . . . . . . . . . . . . . 64

4.4.1 General Frame Expansion . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Gaussian Beam Expansion . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II Fourier Analysis and Synthesis of Acoustic Fields 69

5 Analysis of Acoustic Fields 71
5.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Validation in a Controlled Environment . . . . . . . . . . . . . . . 79
5.3.3 Experiments in a Real-World Acoustic Environment . . . . . . . . 80

5.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Synthesis of Acoustic Fields 83
6.1 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.2 Plane-Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Model-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Acoustic Rendering with a Circular Array . . . . . . . . . . . . . . . . . . 88
6.3.1 Discrete Distribution of Plane Waves . . . . . . . . . . . . . . . . . 88
6.3.2 Implementation with Circular Arrays . . . . . . . . . . . . . . . . . 89

6.4 Generalization to Non-Circular Arrays . . . . . . . . . . . . . . . . . . . . 91



CONTENTS xi

6.4.1 Convex Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2 Line Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Simulation in Ideal Conditions . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5.1 Acoustic Field Synthesis with a Circular Array . . . . . . . . . . . 93
6.5.2 Acoustic Field Synthesis with an Elliptical Array . . . . . . . . . . 95
6.5.3 Acoustic Field Synthesis with a Linear Array . . . . . . . . . . . . 96

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 Robust Parameter-Free Regularization . . . . . . . . . . . . . . . . . . . . 99

6.7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7.2 Robust Least Squares Solution . . . . . . . . . . . . . . . . . . . . 101
6.7.3 Validation of the Robust Regularization Technique . . . . . . . . . 102
6.7.4 Setup for the Experimental Validation. . . . . . . . . . . . . . . . . 104
6.7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.8 Regularized Acoustic Field Synthesis . . . . . . . . . . . . . . . . . . . . . 106
6.9 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

III Local Fourier Analysis, Synthesis and Processing 109

7 Local Analysis and Processing 111
7.1 Plenacoustic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Source localization from Plenacoustic Images . . . . . . . . . . . . . . . . 114

7.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.3 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.4 Localization Technique . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 A Plenacoustic Approach to Source Separation . . . . . . . . . . . . . . . 122
7.3.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.2 Spatial Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.3 Source Signal Extraction based on Plenacoustic Information . . . . 125
7.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Plenacoustic Imaging as a Local Fourier transform . . . . . . . . . . . . . 128
7.4.1 Ideal Plenacoustic Imaging . . . . . . . . . . . . . . . . . . . . . . 128
7.4.2 Plenacoustic Imaging with a Microphone Array . . . . . . . . . . . 129
7.4.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.4 Redundancy of the Plenacoustic Representation . . . . . . . . . . . 131

7.5 The Plenacoustic Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5.1 The Plenacoustic Transform as a Linear Operator . . . . . . . . . . 132
7.5.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.5.3 Invertibility of the Plenacoustic Transform . . . . . . . . . . . . . . 136

7.6 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Conclusions and Future Works 137
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 139



This page intentionally left blank.



List of Figures

1.1 Most common microphone array configurations. . . . . . . . . . . . . . . . 4

3.1 Three-Dimensional coordinate systems. . . . . . . . . . . . . . . . . . . . . 28
3.2 Acoustic field of a propagating plane wave. . . . . . . . . . . . . . . . . . . 31
3.3 Acoustic field of an evanescent plane wave. . . . . . . . . . . . . . . . . . . 33
3.4 Geometry of a boundary value problem. . . . . . . . . . . . . . . . . . . . 38
3.5 Rays in plane wave and spherical wave acoustic fields. . . . . . . . . . . . 44
3.6 Ray approximation and paraxial approximation. . . . . . . . . . . . . . . . 45
3.7 Transverse spreading and drop of the on-axis amplitude for axis symmetric

beam propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The α-contours used in the Weyl representations of a spherical wave. . . . 59
4.2 Interior and exterior problems. . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Angular grid adopted for the estimation of acoustic reflections. . . . . . . 75
5.2 Block-diagram of the proposed imaging system for acoustic reflections. . . 78
5.3 Placement of the spherical array in the controlled acoustic environment

and impulse response recorded by the first capsule in the spherical array . 79
5.4 Acoustic reflections in the acoustically controlled environment. . . . . . . 80
5.5 Floor plan of the auditorium “Giovanni Arvedi”, Museo del Violino, Cre-

mona, Italy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Acoustic reflections in the auditorium “Giovanni Arvedi”, Museo del Violino,

Cremona, Italy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Position vector r and wave vector k̂. . . . . . . . . . . . . . . . . . . . . . 85
6.2 Magnitude and phase of the Herglotz density associated to a point source. 87
6.3 Mean square discretization error (6.11). . . . . . . . . . . . . . . . . . . . 89
6.4 Mean square approximation error (6.16) as a function of ωc ρ. . . . . . . . . 90
6.5 Implementation of the loudspeaker filters for the simultaneous rendering of

all secondary sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Secondary sources on a convex curve. . . . . . . . . . . . . . . . . . . . . . 91
6.7 Secondary sources on a line segment. . . . . . . . . . . . . . . . . . . . . . 92
6.8 Reproduction of the acoustic field with a circular array. . . . . . . . . . . 95
6.9 Approximation error in the area S for a circular loudspeaker array rendering

the acoustic field of a point source. . . . . . . . . . . . . . . . . . . . . . . 96
6.10 Spatially averaged mean-squared error (6.29) as a function of the source

distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.11 Acoustic field reproduction with an elliptical distribution of secondary sources. 98
6.12 Acoustic field reproduction with a linear distribution of secondary sources. 99
6.13 Energy of the filter coefficients. . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



xiv LIST OF FIGURES

6.14 Custom cylindrical loudspeaker array and measurement setup. . . . . . . . 104
6.15 Measured array response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.16 Simulated and measured Directivity Index (DI). . . . . . . . . . . . . . . . 107
6.17 White Noise Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.18 Spatially averaged mean-squared error (6.29) as a function of temporal

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Source localization problem: microphone array and acoustic sources. . . . 115
7.2 Non-deconvolved and deconvolved plenacoustic images. . . . . . . . . . . . 120
7.3 Comparison of radiation patterns estimated from non-deconvolved and

deconvolved plenacoustic images. . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 Average localization error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.5 Block diagram for signal extraction of sources in the near-field. . . . . . . 124
7.6 Impact of the localization error on SIR. . . . . . . . . . . . . . . . . . . . 127
7.7 Impact of the transversal source distance ∆z on SIR. . . . . . . . . . . . . 127
7.8 Impact of the co-linear source distance ∆x on SIR. . . . . . . . . . . . . . 128
7.9 Linear aperture on the z axis. . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.10 Linear array on the z axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.11 Illustrative plenacoustic image. . . . . . . . . . . . . . . . . . . . . . . . . 130
7.12 Interpretation of the plenacoustic imaging process. . . . . . . . . . . . . . 131
7.13 Magnitude of the plenacoustic transform |P̃(ω)|. . . . . . . . . . . . . . . 135
7.14 Acoustic field reconstruction at microphone positions using plenacoustic

analysis and synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



Acronyms

DAS Delay and Sum

DI Directivity Index

DNR Diffuse-to-Noise Ratio

DoA Direction of Arrival

HOA Higher-Order Ambisonics

MEMS Micro Electro-Mechanical Systems

MVDR Minimum Variance Distortionless Response

PSF Point Spread Function

RLS Robust Least Squares

SDM Spectral Division Method

SIR Signal-to-Interference Ratio

SNR Signal-to-Noise Ratio

SRP Steered Response Power

TDoA Time Difference of Arrival

ToA Time of Arrival

WFS Wave Field Synthesis

WNG White Noise Gain

xv



This page intentionally left blank.



Nomenclature

Sets, vectors spaces and Hilbert spaces

C The set of complex numbers

R The set of real numbers

Z The set of integer numbers

CR Vector space of complex-valued functions of a single real variable

CRD Vector space of complex-valued functions of D real variables

CZ Vector space of complex-valued sequences of a single integer variable

L2(R) Hilbert space of finite energy function

`2(Z) Hilbert space of finite energy sequences

Constants

c Speed of sound

j Imaginary unit (i.e. j =
√
−1)

Operations and operators

∗ Convolution

~ Circular convolution

(·)∗ Complex conjugation

(·)H Conjugate transpose

(·)T Transposition

〈·, ·〉 Inner product

|·| Absolute value

‖·‖ L2-norm

‖·‖F Frobenius norm

E[·] Mathematical expectation

diag(·) Operates on a vector and forms a diagonal matrix

xvii



xviii NOMENCLATURE

tr(·) Sum of the diagonal elements of a square matrix

∇2 Laplace operator

∇2
T Transverse Laplace operator, see equation (3.99)

Special functions and sequences

δ(·) Dirac’s delta function [Vetterli et al., 2014, pp. 316-317]

δ[k] Kronecker’s sequence [Vetterli et al., 2014, p. 186]

G(r|r′, ω) Green’s function from a source in r′ to an observer in r at frequency ω

H
(1,2)
m (·) Hankel function of first and second kind [Olver, 2010, p. 217]

h
(1,2)
l (·) Spherical Hankel function of first and second kind [Olver, 2010, p. 262]

Jm(·), Ym(·) Bessel’s function of first and second kind [Olver, 2010, p. 217]

jl(·), yl(·) Spherical Bessel function of first and second kind [Olver, 2010, p. 262]

Pml (·) Associated Legendre Polynomial of degree l and order m [Olver, 2010, p. 360]

Pµ(·) Legendre polynomial of degree µ [Olver, 2010, p. 440]

Y m
l (θ, φ) Spherical harmonic of degree l and order m [Ahrens, 2012, p. 27]

Variables

k = [kx, ky, kz] Wavenumber vector

λ Wavelength

n̂(r) Normal unit vector at r

φ Azimuth angle

p(r, t) Acoustic field at point r and time t

P (r, ω) Acoustic field at position r and temporal frequency ω

r = [x, y, z]T Vector of spatial coordinates

r̂ Unit vector in the direction of r

t Time [s]

θ Co-elevation angle

ω Angular frequency [rad s−1]



Chapter 1

Introduction

The ability of sensing spatial properties of sound enables humans to experience immersivity:
sound provides information that enforces the sense of presence in a scene. As a matter of
fact, sound carries semantic information both on the geometric structure of the surrounding
environment and on the position of the listener inside the scene. If we remove all spatial
attributes to sound, the listener experiences a dramatic impairment, and the sense of
presence is inhibited.

Only in the past two decades has the signal processing community started to consider
sound signals as functions of both space and time. In the following of this thesis, we refer
to the class of sound signals that are functions of space and time as acoustic signals. The
power of this idea, foreseen by Rabenstein et al. [2005], Ajdler [2006], Ajdler et al. [2006a],
Rabenstein et al. [2006], Kuntz [2008], Annibale et al. [2009], lies in the fact that it enables
the use of well-established and computationally efficients methods from multi-dimensional
signals and systems theory [Rabenstein and Trautmann, 2002, 2003] when dealing with
acoustic signals, explicitly exploiting the information carried by the spatial structure of
the observed signals.

Spatial distributions of microphones and loudspeakers provide the technological mean
for capturing and reproducing acoustic signals. In the following, the term array is used
with reference to a regular arrangement of acoustic transducers. Just for the moment, we
focus our attention to microphone arrays, since their interpretation is easier; however,
it is important to notice that the very same reasoning is applied in this thesis also to
loudspeaker arrays. Microphone arrays, as they are conventionally employed, are conceived
as global sources of information, in the sense that their spatial extension is exploited to
extract information about the acoustic field at a single point (the center of the array,
or its reference point, conventionally). Devices such as acoustic cameras [Brooks and
W. M. Humphreys, 2004, Yardibi et al., 2008, O’Donovan et al., 2008, Legg and Bradley,
2013] and spherical microphone arrays [Meyer and Elko, 2002, Rafaely, 2005, Jin et al.,
2014] emerged from this view: they do not attempt to extract punctual information at
microphone capsules, rather they rely on their spatial extension to extract information that
is valid only at its center. If the acoustic field can be considered "uniform” in the region
occupied by the array – or equivalently, if the array can be considered compact –, many
effective techniques have been proposed in the literature to extract salient information
from array data.

However, there are situations in which the acoustic field evolves in space: this is the
typical case of sound sources placed in the near field of the microphone array; in such a
case, the spatial properties of the acoustic field vary if one moves along the array. To tackle
this scenario, it is useful to adopt the concept of the plenacoustic function, which has
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been introduced in the literature by Kubovy and Valkenburg [2001], Ajdler and Vetterli
[2003a,b], Ajdler et al. [2005, 2006b,a], Ajdler [2006], for the purpose of encoding the
spatial evolution of the acoustic field as a function of the position along the array. More
recently, the concept of the plenacoustic function has been revisited by Marković et al.
[2012, 2013a, 2015] in a directional form, as describing the acoustic field parametrized by
spatial location and direction of propagation; this form of the plenacoustic function is
referred to as the directional plenacoustic function. The directional plenacoustic function
is the representation of election to encode local information on the acoustic field, as it
allows us to rethink the use of arrays in a local fashion, i.e. by subdividing the array into
smaller portions and by processing their data from a local perspective. This is the route
followed in this thesis.

In this thesis we extend the globality and locality concepts also to arrays of loudspeakers,
thanks to the reciprocity principle.

1.1 Background
The discipline that deals with the processing and extraction of information from acoustic
signals is named acoustic signal processing. This area of signal processing is currently
seeing an increased level of interest in both the academy and the industry. It encompasses
the fundamental theory, applications and algorithms suitable to deal with acoustic signals.

Parametric Representations. Acoustic signal representations are at the heart of
most acoustic signal processing techniques. Two representation paradigms have emerged in
the recent literature. One is based on a parametric description of the acoustic field [Faller,
2004, Pulkki, 2007, Goodwin and Jot, 2008, Ahonen et al., 2008, Laitinen and Pulkki, 2009,
Schultz-Amling et al., 2010, Herre et al., 2011, Thiergart et al., 2013, 2014, Primavera
et al., 2014, Kowalczyk et al., 2015]; within this paradigm, audio signals corresponding to
each sound event are considered along with, possibly, many parameters that describe the
acoustic scene itself (e.g. source locations, environment geometry, etc., depending on the
amount of prior information available and on the desired accuracy).

Microphone arrays have traditionally been exploited to identify the Direction of Arrival
(DoA) of a sound source and enhance sounds coming from desired directions [Mitlanoudis
and Davies, 2003, Markovich et al., 2009, Hioka and Betlehem, 2013, Thiemann and
Vincent, 2013]. This task is accomplished by appropriately filtering microphone signals,
thus achieving directional sound reception [Kennedy et al., 1998, Ryan, 1998, Ward
et al., 1998, Fiori and Piazza, 2000, Meyer, 2001, Benesty et al., 2007, Guillaume and
Grenier, 2007, Li and Duraiswami, 2007, Atkins, 2011, Gauthier et al., 2011, Li and
Chen, 2011, Lorente et al., 2011, Pirro et al., 2011, Yan et al., 2011, Spors et al., 2012,
Pirro et al., 2012]. This filtering operation is known as beamforming [Veen and Buckley,
1988], a concept borrowed from the literature on antenna arrays, and is based on the
idea of altering microphone signals in such a way that sounds coming from desired
angles experience constructive interference (thus being enhanced), while others experience
destructive interference (thus being attenuated).

Another important application is the localization of a sound source, i.e. the estimation
of its position given measurements of the acoustic field [Schmidt, 1972, Stoica and Li, 2006].
Many methods have been proposed for that purpose, mainly based on the estimation
of Time Difference of Arrival (TDoA), e.g. methods in Woodward [1964], Cook and
Bernfeld [1967], Altes [1979], Adams et al. [1980], Carter [1981], Chan and Ho [1994],
Smith and Abel [1987], Strobel and Rabenstein [1999], Strobel et al. [1999], Strobel and
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Rabenstein [2000], Strobel et al. [2001], Annibale [2010], Annibale and Rabenstein [2010,
2012], Compagnoni et al. [2012], Bestagini et al. [2013], Canclini et al. [2013], Compagnoni
et al. [2014], Canclini et al. [2015]; another class of methods is based on the estimation
of the Steered Response Power (SRP), as in Omologo and Svaizer [1994], Gillette and
Silverman [2008], Wei and Ye [2008].

Another application field that is gaining increasing interest is the inference of environ-
ment geometry using both single measurements [Marković et al., 2013b, Zamaninezhad
et al., 2014] and microphone arrays [Canclini et al., 2011, Antonacci et al., 2012, Dokmanić
et al., 2013]: adopting suitable measurement techniques and then analyzing the temporal
and spatial correlation between echoes, it has been shown that it is possible to estimate
several geometric parameters of the environment, like dimension of the room, location
of walls, reflectors, etc., in an acoustic-only fashion. Information on the environment
can be exploited, for instance, for the equalization, correction and compensation of room
acoustics, as in Omura et al. [1999], Spors et al. [2003], Spors [2005], Spors et al. [2007],
Canclini et al. [2012], Cecchi et al. [2012], Carini et al. [2012], Cecchi et al. [2013a,b,
2014a,b,c], Canclini et al. [2014a,b], Poletti et al. [2015].

Nonparametric Representations The other paradigm is based on a nonparametric
description, where no a-priori knowledge on the acoustic scene is assumed [Schetelig and
Rabenstein, 1998, Buchner et al., 2002, Herbordt et al., 2003, Teutsch et al., 2003, Pinto,
2010, Pinto and Vetterli, 2010, Pinto et al., 2014]. Within this paradigm, the sound
scene is described by the acoustic field itself, considered as a function of space and time.
Of course, adopting a point-by-point description for the acoustic field would require to
consider an amount of data that is impossible to handle in any practical application.
For this reason, scholars developed acoustic signal representations that efficiently encode
all the information contained in the acoustic field. Representative examples of these
physically-motivated representations are the plane-wave representations, as introduced by
Whittaker [1903], Weyl [1919], Lalor [1968], Sherman [1969, 1972], Devaney and Sherman
[1973], Devaney and Wolf [1974], Nieto-Vesperinas [1988], Ergin et al. [1999], Hansen and
Yaghjian [1999], Perrey-Debain [2006], Moiola et al. [2011], Hansen [2014] and adopted in
the acoustic signal processing context, among the others, by Rafaely [2004], Duraiswami
et al. [2005], Park and Rafaely [2005], Günel et al. [2007], Rafaely et al. [2007], Zotkin
et al. [2010], Peled and Rafaely [2013]; the spherical wave representation [Devaney and
Wolf, 1974, Mohlenkamp, 1999, Meyer, 2001, Abhayapala and Ward, 2002, Meyer and
Elko, 2002, MacPhie and Wu, 2003, Gover, 2005, Poletti, 2005, Rafaely, 2005, Li and
Duraiswami, 2007, McEwan et al., 2007, Rafaely, 2008, Rafaely and Kleider, 2008, Zotkin
et al., 2008, Koretz and Rafaely, 2009, Parthy et al., 2009, Zotter, 2009, Costa et al.,
2010, Fisher and Rafaely, 2011, Rafaely and Khaykin, 2011, Yan et al., 2011, Ahrens and
Spors, 2012, Lai et al., 2013, Jin et al., 2014, Khalid et al., 2014, Zhang et al., 2015];
and the cylindrical wave representation [Cincotti et al., 1993, Rabenstein et al., 2006,
Teutsch and Kellermann, 2006, Kuntz and Rabenstein, 2007, Ahrens and Spors, 2008a,
Abhayapala and Gupta, 2010, Poletti, 2010, Kolundzija et al., 2011, Hioka and Betlehem,
2013, Alexandridis et al., 2013, Askari et al., 2013, Thomas et al., 2014, Hoffmann and
Fazi, 2015].

Nonparametric analysis concerns the problem of estimating the coefficients of a set
of basis functions in which the acoustic field can be decomposed. This is accomplished
by sampling the acoustic field using an array of microphones, placed in space to capture
variations of the acoustic field as a function of space. Of course, the naive idea of placing
tightly spaced microphones to cover the whole spatial extension of the acoustic field is
not feasible in any practical sense. Indeed, both researchers and industry devised specific
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Figure 1.1: Most common microphone array configurations.

microphone configurations that enable to capture relevant spatial information carried by
the acoustic field. Figure 1.1 shows some illustrative configurations for microphone arrays:
a planar grid (Fig. 1.1a), a linear configuration (Fig. 1.1b), a spherical shell (Fig. 1.1c)
and a circular deployment (Fig. 1.1d). Recent works (e.g. [Ajdler et al., 2006a]) have
introduced the concept that signals from multiple microphones can be interpreted as
time-space samples characterized by specific temporal and spatial sampling frequencies,
the first being determined by the temporal interval between adjacent time samples, while
the latter being determined by the spacing between microphones. In general, the spatial
dependency of an acoustic field can be represented in terms of specific sets of basis
functions (plane waves, spherical waves, cylindrical waves, etc.). Many acoustic signal
processing techniques have been proposed to decompose an acoustic field in terms of
these basis functions, e.g. the techniques in Rafaely [2005], Guillaume and Grenier [2007],
Kuntz [2008], Yan et al. [2011], Gauthier et al. [2011], Samarasinghe et al. [2014].

Another important application for nonparametric representation is the synthesis of
acoustic field, usually referred to as rendering. Acoustic rendering is conceived as the
process of synthesizing physically accurate acoustic fields over an extended area [Spors
et al., 2004], [Spors et al., 2013, p. 1920]. The rendering of acoustic fields is a goal that
has been pursued by the acoustic signal processing community for decades. Solutions
based on spatial arrangements of loudspeakers (loudspeaker arrays) constitute today a
well-established technology. In broad terms, what such solutions do is to reproduce a
desired acoustic field through the superposition of elementary contributions emitted by
the loudspeakers. Many techniques have emerged in order to obtain suitable loudspeaker
driving signals, ranging from analytical (e.g. in Berkhout et al. [1993], Poletti [2005],
Wu and Abhayapala [2009], Ahrens and Spors [2010], Gupta and Abhayapala [2011]),
to numerical approaches (e.g. in Kirkeby et al. [1996], Ward and Abhayapala [2001],
Lilis et al. [2010]). Considering analytical approaches, the most representative acoustic
rendering methods are known as Wave Field Synthesis (WFS) [Berkhout et al., 1993, Spors
et al., 2008] and Higher-Order Ambisonics (HOA) [Daniel, 2003, Poletti, 2005, Ahrens
and Spors, 2008b,a, Wu and Abhayapala, 2009]. Being based on the decomposition of
the acoustic field into spherical waves, the original formulation of HOA is constrained
to circular or spherical loudspeaker arrays. A successive extension, known as Spectral
Division Method (SDM) is introduced by Ahrens and Spors [2010], and it exploits the
same principles of HOA adopting linear or planar loudspeaker arrays.

Geometric Representations. Another class of representations emerges by moving
from the realm of wave acoustics to the realm of geometric acoustics. Geometry-inspired
methods rely on a simplified model of acoustic propagation, where acoustic information is
transported along straight lines, the acoustic rays. Although, from a physical perspective,



1.2. GOALS AND METHODOLOGY 5

this view provides a rough approximation of an acoustic field (especially in the near field of
sound sources), the ray-based model proves its importance for the modeling of arbitrarily
complex acoustic environments, for which a physically accurate modeling is not practical.

Recently, Antonacci et al. [2008] introduced the concept of the ray space, defined as a
projective domain whose primitives are acoustic rays. This domain is built on a powerful
idea, according to which points in the ray space represent plane-wave components of the
acoustic field; moreover, the adoption of a projective domain opens the door to the use of
fast techniques from computational geometry. The power of the ray space is demonstrated
by Marković et al. [2013a, 2015], where it is employed as the domain of the directional
plenacoustic function. In those works, authors proves that all acoustic objects appear in
the ray space as linear patterns. These linear patterns are easy to deal with in a wide
range of problems: localization of multiple sources [Marković et al., 2013a], radiometric
analysis [Marković et al., 2014], environment inference [Antonacci et al., 2012], etc. All
the problems that can be envisioned in the ray space are suitable to be solved with pattern
processing algorithms. However, the plenacoustic representation in the ray space has not
been embedded, so far, with the concept of a signal decomposition in it. The ultimate goal
of this thesis is to define such concept, combining the computational ease and the intuition
enabled by geometry-inspired representations with the accuracy of physically-motivated
representations.

1.2 Goals and Methodology
Goals. We have already raised the issue of global versus local paradigms for array
processing. In all situations in which the spatial properties of the acoustic field can be
considered "uniform” over the whole extension of the array, the global processing paradigm
offers a valuable tool to design effective and efficient signal processing solutions. The
first goal that we pursue in this thesis is to enhance those solutions. We do that by
adopting signal processing methodologies based on Fourier theory, which allows us to
devise techniques that exhibit high accuracy while being conceived to work with real-world
array data. This is the perspective adopted in Part II of this thesis.

In Part III of this thesis we intend to move to an higher degree of proposed innovation,
shifting our mindset towards a local paradigm for array processing. In order to do that,
we consider portions of a whole array: this step introduces resolution issues since, for each
portion of the array, we rely on less data and on a reduced spatial extension. However, we
capture far more information on the acoustic field, being able to represent variations of
the spatial structure of the acoustic field itself. Therefore, we set a trade-off between the
achievable resolution and the capability of capturing the local evolution of the acoustic
field. We intend to provide some tools, based on the mathematical theory of redundant
representation of signals, that allow us to find the optimal trade-off between resolution
and locality.

In this thesis we aim at rethinking array processing in these terms. We derive a new
representation of acoustic fields, which emerges from a generalized version of Fourier
theory that, based on the mathematical theory of frames, allows us to define a spatially
local Fourier transform. We show that this signal processing abstraction is supported by a
strong physical intuition. As a matter of fact, we define acoustic beams as the elementary
wave objects at the roots of the spatially local Fourier transform.

Methodology. In order to pursue these goals, in this thesis, we devise and we follow
a three-step methodology.
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1. First, we identify a suitable set of physical models, ranging from conventional
wave objects (i.e. plane waves, spherical waves, and cylindrical waves) to more
geometrically intuitive models (i.e. acoustic rays). Beams emerge as wave objects
that enable a physically accurate representation of acoustic phenomena maintaining,
at the same time, the strong geometric intuition behind acoustic rays.

2. On top of these physical models, we derive specific representations of acoustic fields:
this is accomplished by merging tools from mathematical physics and from the
theory of signal representations. According to the specific wave object assumed as
the basis for the representation, we end up with representations that are, in general,
infinite-dimensional and continuous.

3. By introducing some assumptions, we can reduce infinite-dimensional and continuous
representations to finite-dimensional and discrete ones. In this latter setting, we
can rely on the powerful tools provided by linear algebra in order to define signal
processing operations (e.g. filtering, spectral analysis, etc.) in the context of such
representations. Furthermore, the properties of linear algebra allow us to discover
and derive fast algorithms for the implementation of those processing operations.

The methodology outlined above, in our view, paves the way to the establishment of the
unified signal processing framework envisioned in this thesis.

1.3 Thesis Outline and Main Contributions
This section provides a chapter by chapter overview, summarizing the main contributions
of this work. References to the publications that have been produced in the course of the
work are provided.

Part I provides necessary background information for later chapters. In particular,
Chap. 2 provides a review of signals and signal representations in the algebraic setting of
Hilbert spaces. In this setting, bases are introduced as non-redundant representations of
signals, and frames as their redundant counterpart. Fourier and Gabor representations
are introduced as specific instances of signal representations.

Chapter 3 reviews the physical laws governing sound generation and propagation; the
wave equation and its fundamental solutions (plane waves, spherical waves, cylindrical
waves) are introduced, as they constitute the basic wave-oriented modeling tools used
in acoustical signal processing. The chapter follows with a presentation of ray acoustics,
derived from approximations to the wave equations. Finally, the paraxial approximation
to the wave equation is thoughtfully discussed, as it provides the foundation to beam
acoustics. The paradigm of beam acoustics is, at our knowledge, a new introduction in
the acoustic signal processing literature and it provides the root for the convergence of
wave acoustics and geometric methods envisioned in this thesis.

Tools from signal processing and acoustic theory are then merged in Chap. 4 to
provide a necessary background on the acoustic field representations widely adopted in
the literature. A unified review of representations based on plane waves, spherical waves,
and cylindrical waves is provided. In this context, the foundations of beam acoustics
introduced in Chap. 3 are employed for the purpose of introducing a novel full-fledged
representation of acoustic signals.

In Part II, we present new techniques for the analysis and synthesis of acoustic fields
based on conventional representations. In particular, Chap. 5 considers the problem of
analyzing acoustic fields using a compact spherical array of microphones. With more
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details, a spherical microphone array is employed to analyze the plane wave DoAs and
strengths, based on high-resolution tools from the literature on spectral analysis of signals.
This technique is validated against the practical problem of identifying acoustic reflections
in arbitrarily complex environments. The work discussed in this chapter has been presented
in Bianchi et al. [2015a].

Chapter 6 considers the problem of synthesizing a physically accurate acoustic field in
an area surrounded by an array of loudspeakers. For this purpose, we present a technique
based on the decomposition of the acoustic field in terms of propagating plane waves;
the proposed technique can be readily applied to arbitrary distributions of loudspeakers.
Moreover, we consider the problem of operating the loudspeaker system in real-world
environments, many non-idealities impair the obtained results. In order to reduce the
impact of non-idealities, a technique is presented that provides an higher accuracy even
in the presence of errors in the modeling of the propagation. The work discussed in this
chapter has been presented in Bianchi et al. [2014, 2016].

Part III presents the most innovative contributions of this thesis. Chap. 7 presents the
directional plenacoustic representation in the light of local Fourier analysis. In this view,
two techniques are presented: one addresses the problem of localizing multiple acoustic
sources with high accuracy; the second relies on this information to enhance the signal
emitted from a specific source, while attenuating other interferers and noise. Thereafter,
Chap. 7 continues by providing the theoretical foundation for a full-fledged acoustic field
representation in the domain of the directional plenacoustic function; the convergence
between local Fourier analysis methods and the beam-based representation of acoustic
field provides the root for such novel representation. The work discussed in this chapter
has been partially presented in Bianchi et al. [2013, 2015b].

Finally, Chap. 8 draws some conclusions and gives directions for further research.
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Chapter 2

Signals and Representations

This chapter presents a review of signals and signal representations. Signals are conceived
here as functions defined on a proper domain (continuous or discrete, one-dimensional or
multi-dimensional), which encode information on some relevant phenomena. In the context
of this thesis, these phenomena are acoustic phenomena; however, the concepts and the
methodologies reviewed in this chapter are valid for any variety of signals. The abstraction
of the signal from its specific physical interpretation is a great advantage provided by
the signal processing paradigm. Indeed, it allows to define concepts and methodologies
independent on the physical nature of specific signal at hand. This constitutes a first step
towards the unifying paradigm addressed in this thesis.

Following Vetterli et al. [2014], signals and their representations are introduced here
through the machinery of Hilbert spaces. Hilbert spaces are abstract vector spaces that
enable to extend in a straightforward fashion all the notions valid in the common Euclidean
space to spaces with infinite dimensions, both countable and uncountable. Thus, Hilbert
spaces provide a common conceptual framework to deal with wide classes of signals, being
them continuous, discrete, one-dimensional, and multi-dimensional.

An Hilbert space is defined, in this thesis, as a vector space in which

• the operation of inner product is defined;

• the inner product induces a norm;

• the notion of completeness applies.

Only an operative perspective on the machinery enabled by Hilbert spaces will be provided
in this thesis; the interested reader is referred to Luenberger [1969], Kennedy and Sadeghi
[2013], Vetterli et al. [2014] for a complete overview of the application of Hilbert spaces
in signal processing. The primary reference for the material reviewed in this chapter
is Vetterli et al. [2014], that features a good balance between mathematical rigor and
intuition.

Hilbert spaces provide an abstract mean to leverage on geometric reasoning when
processing signals. Indeed, signal representations can be conceived as coordinate systems
for the Hilbert space, and transitions among different signal representations appear as
projections. Basis are introduced as complete and non-redundant representations, and
frames as their complete and redundant counterparts. In this setting, an arbitrary signal
can be represented as a linear combination of prototype signals.

In this chapter we introduce the signal spaces use din the rest of this thesis. We
introduce signal spaces whose domain is either continuous or discrete. In each case,
the appropriate definitions for the inner product, for the norm and for the fundamental

11
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operation of convolution are reviewed. Moreover, we introduce Fourier transformations for
each signal class as a projection onto a (non-redundant) set of specific prototype signals:
complex exponentials.

2.1 Signals
This section introduces the signal classes that will be used in the rest of this thesis.
First, one-dimensional signals, whose domain is a continuum, are introduced in both
the aperiodic and periodic settings; then the same concepts and tools are introduced for
discrete (aperiodic and periodic) signals. Finally, the extension to the multi-dimensional
realm is provided. This section acts as an introduction for the notation adopted in the
rest of this thesis.

When dealing with one-dimensional signals, although the setting of this chapter is
general and abstract (in the sense that here the physical interpretation for the signals is
not considered), the classical perspective that associates the independent variables t ∈ R
or l ∈ Z with time is followed. This choice is motivated by the fact that the overall
nomenclature pertaining one-dimensional signals has, historically, been developed with
time-domain signals in mind (see, e.g., Oppenheim et al. [1998]). On the other hand,
when considering multi-dimensional signals the variable r ∈ RD is associated to space1.
The rigorous interpretation of time and space variables is postponed to Chap. 3.

2.1.1 One-Dimensional Continuous Signals
The set of complex functions of a single continuous variable, defined on the domain of real
numbers, (along with function addition and multiplication by a scalar) forms the vector
space CR [Vetterli et al., 2014, p. 19]. Signals in CR are denoted by

f(t), f : R→ C. (2.1)

Real-valued signals (i.e. signals in RR) are considered as a subset of CR. The standard
inner product in CR between two functions f1(t) and f2(t) is [Vetterli et al., 2014, p. 24]

〈f1, f2〉 =

∫ ∞
−∞

f1(t)f∗2 (t) dt, (2.2)

where (·)∗ denotes complex conjugation. Equation (2.2) induces the L2 (Euclidean) norm
[Vetterli et al., 2014, p. 28]

‖f‖ =
√
〈f, f〉 =

(∫ ∞
−∞
|f(t)|2 dt

)1/2

, (2.3)

which is closely related to the energy of a signal, being the energy of the signal f defined
as ‖f‖2. In the following, the attention is restricted to the space of finite-energy signals
L2(R), for which the L2 norm (2.3) is finite, i.e. ‖f‖ < ∞. The constraint of a finite
energy turns the vectors space CR into the Hilbert space L2(R) [Vetterli et al., 2014,
pag. 346].

The convolution between two functions f1(t) and f2(t) is defined as in Vetterli et al.
[2014, p. 356]

(f1 ∗ f2)(t) =

∫ ∞
−∞

f1(τ)f2(t− τ) dτ =

∫ ∞
−∞

f1(t− τ)f2(τ) dτ. (2.4)

1In this thesis vector quantities are denoted with a lowercase bold font.



2.1. SIGNALS 13

2.1.2 One-Dimensional Continuous Periodic Signals
Continuous functions of a single variable that satisfy

f(t+ T ) = f(t), t ∈ R (2.5)

are called periodic signals, and T defines the period. Such signals cannot have, in general
finite L2 norms [Vetterli et al., 2014, p. 351]; instead, when dealing with periodic signals,
it is customary to consider their energy in a single period

‖f‖2 =

∫ T/2

−T/2
|f(t)|2 dt. (2.6)

With this caret, it is possible to identify the Hilbert space L2([−T/2, T/2)) of finite-energy
(over one period) functions.

The circular convolution between two periodic functions f1(t) and f2(t) of period T is
[Vetterli et al., 2014, p. 359]

(f1 ~ f2)(t) =

∫ T/2

−T/2
f1(τ)f2(t− τ) dτ =

∫ T/2

−T/2
f1(t− τ)f2(τ) dτ. (2.7)

The resulting function is periodic of period T , i.e. (f1 ~ f2)(t) = (f1 ~ f2)(t+ T ).

2.1.3 One-Dimensional Discrete Signals
Functions of a single variable, defined on the domain of integer numbers, are also referred
to as sequences. As in the continuous case, tradition motivates the association of the
independent variable l ∈ Z with a time index. Signals in CZ are denoted by

f =
[
. . . f [−2] f [−1] f [0] f [1] f [2] . . .

]T
, (2.8)

where it is implicit that f [l] corresponds to the signal sample at the lth time index and
(·)T denotes transposition. In many situations it is customary to consider only a finite
portion of an infinite-length sequence, say of length L ∈ N, as

f =
[
f [0] f [1] f [2] . . . f [L− 1]

]T
. (2.9)

More formally, sequences are categorized according to the dimensionality of their support
as:

• infinite-length sequences of the form (2.8): the domain is Z and they form the vector
space CZ [Vetterli et al., 2014, p. 183];

• finite-length sequences of the form (2.9): the domain is {0, 1, . . . , L− 1} and they
form the vector space CL [Vetterli et al., 2014, p. 183].

Nevertheless, in this thesis finite-length sequences will not be conceived as the vector
space CL; as a matter of fact, the circular extension of these sequences will be considered,
in which the observed samples are regarded to as a single period of a periodic sequence of
period L, i.e.

f =
[
. . . f [L− 1] f [0] f [1] . . . f [L− 1] f [0] . . .

]T
. (2.10)
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The standard inner product between two sequences f1 and f2 is [Vetterli et al., 2014,
p. 24]

〈f1, f2〉 =
∞∑

l=−∞
f1[l]f∗2 [l] = fH2 f1, if f1, f2 ∈ CZ, (2.11)

〈f1, f2〉 =
L−1∑
l=0

f1[l]f∗2 [l] = fH2 f1, if f1, f2 ∈ CL, (2.12)

where (·)∗ and (·)H denotes the operators of conjugation and of conjugate transpose,
respectively. In (2.11) a slightly abused notation has been adopted, employing a vector
product with infinite dimensional quantities. The inner products (2.11) and (2.12) induce
the `2 (Euclidean) norms

‖f‖ =
√
〈f , f〉 =

( ∞∑
l=−∞

|f [l]|2
)1/2

, (2.13)

‖f‖ =
√
〈f , f〉 =

(
L−1∑
l=0

|f [l]|2
)1/2

, (2.14)

respectively. In the following, the attention is restricted to Hilbert spaces of finite-
energy sequences `2(Z) and `2(ZL), for which the norms (2.13) and (2.14) are finite, as
demonstrated in Vetterli et al. [2014, p. 185 and p. 192]. The notation ZL indicates a
restriction of the set Z to L values in the range [0, L− 1].

The convolution between two sequences f1 and f2 in CZ is defined as [Vetterli et al.,
2014, p. 206]

(f1 ∗ f2)[l] =
∑
k∈Z

f1[k]f2[l − k] =
∑
k∈Z

f1[l − k]f2[k]. (2.15)

The circular convolution between two length-L sequences f1 and f2 is [Vetterli et al., 2014,
p. 213]

(f1 ~ f2)[l] =
L−1∑
k=0

f1[k]f2[(l − k) mod L] =
L−1∑
k=0

f1[(l − k) mod L]f2[k]. (2.16)

2.1.4 Multi-Dimensional Continuous Signals
The set of complex functions of D variables, each defined on the domain of real numbers,
(along with function addition and multiplication by a scalar) forms the vector space CRD .
Signals in CRD are denoted by

f(r), f : RD → C, (2.17)

where r = [r0, r1, . . . rD−1]T ∈ RD denotes the index vector of the multi-dimensional signal.
The standard inner product in CRD between two multi-dimensional functions is

〈f1, f2〉 =

∫
r∈RD

f1(r)f∗2 (r) dr, (2.18)

and it induces the L2 (Euclidean) norm

‖f‖ =
√
〈f, f〉 =

(∫
r∈RD

|f(r)|2 dr
)1/2

. (2.19)
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Even with multi-dimensional signals, the energy is defined as the square of the L2 norm.
In this thesis, the attention is restricted to the space of finite-energy signals L2(RD), for
which the L2 norm (2.19) is finite.

2.2 Bases Representation of Signals
The signal spaces L2(R), L2([−T/2, T/2]), `2(Z) and `2(ZL) reviewed in Sec. 2.1 are
instances of Hilbert spaces. Hilbert spaces are vectors spaces – spaces equipped with
operations, such as the inner product and the norm, that induce intuitive geometric
properties – characterized by the notion of completeness. Without entering into details, it
suffices for our purposes to define the completeness as the property according to which
a representative set of vectors can describe every other vector in the vector space. The
interested reader can find an in-deep discussion on completeness in Vetterli et al. [2014,
pp. 37-40].

The geometric intuition enabled by the Hilbert space machinery enables the introduc-
tion of the concept of signal representations, that can be regarded as coordinate systems
for the Hilbert space. Representations that are not redundant are said to provide a basis
for the Hilbert space; on the other hand, representations that are redundant are said
to provide a frame for the Hilbert space (cfr. Sec. 2.4). In this section we review some
concepts on bases, providing definitions for their specific properties.

In order to simplify the notation, here the convention introduced for the vector space
CR is followed, where lowercase normal font denotes a generic element of the vector space.
Despite this notational difference, the discussion holds directly also for the other vector
spaces.

Given a vector space, a basis is a linearly independent set of vectors that enables a
unique representation of any element of the vector space as a linear combination of basis
elements. Basis are widely exploited in signal processing since they provide a mechanism to
decompose a signal into a set of convenient prototype functions, from which the extraction
of its salient characteristics is easier with respect to the original domain.

Given a vector space V, the set of vectors Ψ = {ψk}k∈K ⊂ V, K denoting the index
set, is a basis for V if i) Ψ spans V ; and ii) the vectors in Ψ are linearly independent (see
Strang [1998, p. 84]).

Definition 1 (Basis). The set of vectors Ψ = {ψk}k∈K ⊂ V is a basis for the vector space
V if

V = span(Ψ) (2.20)

and the vectors in Ψ are linearly independent.

In other words, the choice of the set Ψ has to guarantee the coverage of the vector
space V.

2.2.1 Orthonormal Bases
When the basis Ψ is formed by orthogonal and unit-norm vectors, it is called orthonormal
basis [Strang, 1998, p. 166]; its elements satisfy

〈ψk, ψi〉 = δ[k − i], ∀k, i ∈ K, (2.21)

where δ[k] is the Kronecker’s sequence [Vetterli et al., 2014, p. 186]

δ[k] =

{
1, if k = 0,

0, otherwise.
(2.22)
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The analysis of a signal into a specific orthonormal basis is accomplished by computing
the expansion coefficients of the signal f with respect to Ψ, which are given by the
projection of the element f onto each basis element ψk [Vetterli et al., 2014, p. 75]

ak = 〈ψk, f〉. (2.23)

Conversely, a signal can be synthesized from the knowledge of its expansion coefficients as
the linear combination [Vetterli et al., 2014, p. 75]

f =
∑
k∈K

akψk. (2.24)

The overall representation equation can be obtained by substituting (2.23) into (2.24)

f =
∑
k∈K
〈ψk, f〉ψk. (2.25)

2.2.2 General Bases
When the constraint of orthogonality is relaxed (e.g. to have more freedom in choosing
the basis vectors), a set of vectors can still represent any signal f ∈ V. Consider two sets
Ψ = {ψk}k∈K and Ψ̃ = {ψ̃k}k∈K for which the bi-orthogonality relation [Vetterli et al.,
2014, p. 86]

〈ψk, ψ̃i〉 = δ[k − i] (2.26)

holds. The representation equation for this pair of sets of vectors can be written as

f =
∑
k∈K
〈ψ̃k, f〉ψk =

∑
k∈K
〈ψk, f〉ψ̃k, (2.27)

where it is readily apparent that the roles of ψk and ψ̃k can be exchanged. The two sets Ψ
and Ψ̃ are called bi-orthogonal bases and they are said to form a dual pair. Orthonormal
bases can be considered as a special case of a general basis, where the basis Ψ coincides
with its dual Ψ̃.

We remark that the concepts of bi-orthogonal bases and dual pairs are fundamental
in many signal processing applications. For instance, the almost ubiquitous Short-time
Fourier transform (that will be introduced later in this chapter) uses a dual pair of window
in its analysis and synthesis operations. Moreover, in the following of this chapter, we
will generalize the notions of bi-orthogonality and dual pairs in order to introduce the
properties of redundant representations of signals.

2.2.3 Analysis and Synthesis Operators
Any basis of an Hilbert space can be represented as a matrix2 having the basis vectors as
its columns [Kovacevic and Chebira, 2007, pp. 89-90]

Ψ =
[
ψ0 ψ1 . . .

]
. (2.28)

2Here and in the following of this chapter we adopt a slightly abused notation, according to
which we use a matrix notation also for operators related to infinite-dimensional spaces: this is a
widely adopted notation in the literature of signal representations.
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In order for the matrix Ψ to represent a basis, it has to be non-singular, as shown in
Kovacevic and Chebira [2007, p. 90]. Adopting this notation, we can define the analysis
operator

Ψ̃Hf = a (2.29)

and the synthesis operator
Ψa = f. (2.30)

If the basis Ψ is orthonormal, Ψ is unitary (ΨΨH = I, I being the identity operator) and
the inverse operator is simply its adjoint, i.e. Ψ−1 = ΨH . In this case, the representation
equation can be compactly written as [Kovacevic and Chebira, 2007, p. 90]

f =
∑
k∈K
〈ψk, f〉ψk = ΨΨHf = ΨHΨf. (2.31)

If the basis Ψ is not orthogonal, but it forms a bi-orthogonal pair with Ψ̃, we have
that

Ψ̃H = Ψ−1; (2.32)

the representation formula, in this case, is [Kovacevic and Chebira, 2007, p. 90]

f =
∑
k∈K
〈ψ̃k, f〉ψk = ΨΨ̃Hf = Ψ̃ΨHf =

∑
k∈K
〈ψk, f〉ψ̃k. (2.33)

2.3 Fourier Transforms
In this section the Fourier transformations associated with the classes of signals presented
in Section 2.1 are introduced, an interpretation of Fourier transforms in terms of expansions
into specific bases is provided.

The importance of the Fourier transformations arise from the fact that complex
exponentials (the bases of the Fourier transforms) are eigenfunctions of linear time-
invariant systems, as described in Oppenheim et al. [1997, pp. 182-183]; i.e. applying
the convolution operator to a complex exponential function gives a scalar multiple of the
function itself.

2.3.1 Fourier Transform
A generic one-dimensional complex exponential function of a continuous variable t ∈ R is

v(t) = ejωt, (2.34)

where the parameter ω ∈ R is called angular frequency. When the independent variable t
is interpreted as time, it is customary to consider the quantity ω/(2π) (measured in Hz or
in cycles per second).

The convolution (2.4) of v(t) with an arbitrary function h(t) gives [Vetterli et al., 2014,
p. 360]

(h ∗ v)(t) =

∫ ∞
−∞

v(t− τ)h(τ) dτ =

∫ ∞
−∞

ejω(t−τ)h(τ) dτ

= ejωt︸︷︷︸
v(t)

∫ ∞
−∞

h(τ)e−jωτ dτ︸ ︷︷ ︸
H(ω)

= v(t)H(ω), (2.35)
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where H(ω) denotes the frequency response (at angular frequency ω) of the linear time-
invariant system characterized by the impulse response h(t). The Fourier transform is
defined as the projection of the signal f(t) onto the subspaces generated by each complex
exponential of the form (2.34).

Definition 2 (Fourier transform). The Fourier transform of a signal f ∈ CR is

F (ω) =

∫ ∞
−∞

f(t)e−jωt dt, ω ∈ R. (2.36)

The inverse Fourier transform of a signal F ∈ CR is

f(t) =
1

2π

∫ ∞
−∞

F (ω)ejωt dω, t ∈ R. (2.37)

The notation
F (ω) = Ft{f(t)} and f(t) = F−1

t {F (ω)} (2.38)

is used to denote the direct and inverse Fourier transformations with respect to the
independent variable t.

The reader interested in technical conditions for the existence of (2.36) and (2.37) is
referred to specific texts on the Fourier transform, e.g. (without claims of completeness)
Brémaud [2002, pp. 155-160] for a mathematical discussion and Bracewell [2000, pp. 8-9]
for an engineering perspective. For our purposes, it suffices to remark the fact that the
Fourier transform exists for any function f ∈ L2(R) and the transformed function F (ω) is
itself in L2(R). The same fact holds also for the inverse transform.

Multi-Dimensional Signals

The Fourier transform for signals in CRD arises as a straightforward generalization of the
one-dimensional case. A complex exponential function in CRD is

v(r) = ej〈k,r〉, (2.39)

where k ∈ RD plays the role of a vector of angular frequencies, each along one of the D
dimensions. The multi-dimensional Fourier transform is defined as the projection of the
signal f(r) onto the subspaces generated by each complex exponential of the form (2.39).

Definition 3 (multi-dimensional Fourier transform). The Fourier transform of a signal
f ∈ CRD is

F (k) =

∫ ∞
−∞

f(r)e−j〈k,r〉 dr, k ∈ RD. (2.40)

The inverse Fourier transform of a signal F ∈ CRD is

f(r) =
1

2π

∫ ∞
−∞

F (k)ej〈k,r〉 dk, r ∈ RD. (2.41)

The notation
F (k) = Fr{f(r)} and f(r) = F−1

r {F (k)} (2.42)

is used to denote the direct and inverse Fourier transformations with respect to r.
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2.3.2 Fourier Series
This paragraph introduces the Fourier transformation related to periodic signals in the
vector space L2([−T/2, T/2)), including signals that arise from the circular extension of
functions defined over a finite interval. The Fourier series is defined as the projection of
a signal onto the subspaces generated by the eigenfunctions of the circular convolution
operation. Consider a complex exponential of the form

v(t) = ej2πkt/T , (2.43)

where k ∈ Z is called discrete frequency and it indexes the multiples of the fundamental
frequency ω0 = 2π/T . The circular convolution (2.7) of v(t) with a function h(t) gives
[Vetterli et al., 2014, p. 381]

(h~ v)(t) =

∫ T/2

−T/2
v(t− τ)h(τ) dτ =

∫ T/2

−T/2
ej2πk(t−τ)/Th(τ) dτ

= ej2πkt/T︸ ︷︷ ︸
v(t)

∫ T/2

−T/2
h(τ)e−j2πkt/T dτ︸ ︷︷ ︸

H[k]

,
(2.44)

whereH[k] denotes the frequency response of the linear time-invariant system characterized
by the periodic impulse response h(t) at discrete frequency k. The eigenfunctions of the
circular convolution operation form a countable set.

Definition 4 (Fourier series). The Fourier Series coefficient sequence of a periodic signal
f ∈ CR with period T is

F [k] =
1

T

∫ T/2

−T/2
f(t)e−j(2π/T )kt dt, k ∈ Z. (2.45)

The Fourier series reconstruction for the set of coefficients {F [k]} is

f(t) =
∑
k∈Z

F [k]ej(2π/T )kt, t ∈ [−T/2, T/2]. (2.46)

Also in the case of the Fourier series, the conditions of existence and convergence of
the integral (2.45) are not shown here. The interested reader is referred to Vetterli et al.
[2014, pp. 383-385] and references therein.

Relationship between the Fourier series and the Fourier transform.
The integrals (2.36) and (2.45) are equivalent if the function f takes values only in the
interval [−T/2, T/2) and if ω = 2πk/T . In this case, the Fourier series coefficients are
scaled samples of the Fourier transform of the same function restricted to a single period,
as shown in Vetterli et al. [2014, p. 382].

Fourier Series as an Orthonormal Basis Expansion. Definition (2.45) can
be interpreted as the inner product 〈f, vk〉, where the set {vk} is an orthonormal basis for
L2([−T/2, T/2)), being

vk =
1√
T
ej2πkt/T , t ∈ [−T/2, T/2). (2.47)

A proof of this statement is given in Vetterli et al. [2014, p. 384].
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2.3.3 Discrete-Time Fourier Transform
The Fourier transformation related to functions of a discrete variable is introduced in this
paragraph. The complex exponential sequence in CZ is

v[l] = ejωl, (2.48)

where ω ∈ R is the angular frequency. The convolution 2.15 of v = [v[0], v[1], . . .] with an
arbitrary sequence h is [Vetterli et al., 2014, p. 217]

(h ∗ v)[l] =
∑
k∈Z

v[l − k]h[k] =
∑
k∈Z

ejω(l−k)h[k]

= ejωl︸︷︷︸
v[l]

∑
k∈Z

h[k]e−jωk︸ ︷︷ ︸
H(ejω)

= v[l]H(ejω), (2.49)

where H(ejω) denotes the frequency response of a linear time-invariant system having h
as impulse response. The discrete-time Fourier transform is defined as the projection of
the signal f onto the subspaces generated by complex exponentials of the form (2.48).

Definition 5 (Discrete-time Fourier transform). The discrete-time Fourier transform of
a sequence f is

F (ejω) =

∞∑
l=−∞

f [l]e−jωl, ω ∈ R. (2.50)

The discrete-time Fourier transform exists when (2.50) converges for all ω ∈ R. F (ejω)
is a periodic function of period 2π. The inverse discrete-variable Fourier transform of a
periodic function F (ejω) of period 2π is

f [l] =
1

2π

∫ 2π

0
F (ejω)ejωl dω, l ∈ Z. (2.51)

The series (2.50) may fail to converge for some values of ω. However, Vetterli et al.
[2014, p. 218-221] shows that (2.50) converges for all finite-energy sequences in `2(Z).

2.3.4 Discrete Fourier Transform
The instance of the Fourier transform conceived for circular extensions of finite-length
sequences is introduced here. A periodic complex exponential sequence is a function of
the form

v =
[
1 W−kL . . .W

−(L−1)k
L

]T
, (2.52)

where WL = e−j2π/L (also referred to as root of unity) is an eigen-sequence for the circular
convolution operation, as shown in Vetterli et al. [2014, p. 253]. Applying the circular
convolution operation to the complex exponential v results in the same sequence scaled
by the term H[k], which represents the frequency response of a system having h[n] as
an impulse response. The discrete Fourier transform is defined as the projection of a
sequence f onto the subspaces generated by complex exponentials of the form (2.52).

Definition 6 (Discrete Fourier transform). The discrete Fourier transform of a length-L
sequence f is

F [k] =

L−1∑
l=0

f [l]W kl
N , k ∈ {0, . . . , L− 1}. (2.53)
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The inverse discrete Fourier transform of a length-L sequence F is

f [l] =
1

L

L−1∑
k=0

F [k]W−klL , l ∈ {0, . . . , L− 1}. (2.54)

The notation
F [k] = DFT L{f [l]} and f [l] = DFT −1

L {F [k]} (2.55)

is used to denote the direct and inverse discrete Fourier transforms with respect to the
independent variable l.

Upon introducing the matrix

V =


1 1 1 . . . 1

1 WL W 2
L . . . WL−1

L

1 W 2
L W 4

L . . . W
2(L−1)
L

...
...

...
. . .

...
1 WL−1

L W
2(L−1)
L . . . W

(L−1)2

L

 , (2.56)

Equation (2.53) can be rewritten in matrix form as suggested by Vetterli et al. [2014,
p. 254], yielding

F = Vf . (2.57)

In a dual fashion, upon exploiting the orthogonality property of the roots of unity [Vetterli
et al., 2014, p. 314], (2.54) can be rewritten in matrix form as [Vetterli et al., 2014, p. 254]

f =
1

L
VHF. (2.58)

Discrete Fourier transform as an orthogonal basis expansion As stated in
Vetterli et al. [2014, p. 254], Def. (2.53) can be interpreted as a set of L inner products
〈f ,vk〉, k ∈ {0, . . . , L− 1}, where

vk =
[
1 W−kL . . .W

−(L−1)k
L

]T
. (2.59)

The basis {vk}L−1
k=0 is orthogonal and the norm of each element is

√
L, as shown in Vetterli

et al. [2014, p. 254]. The associated dual basis is [Vetterli et al., 2014, p. 254]

ṽk =
1

L
vk, k ∈ {0, . . . , L− 1} (2.60)

and the relative synthesis operator yields the inverse discrete Fourier transform (2.54).

2.4 Frame Representation of Signals
When dealing with bases, the number of representative vectors of a vector space is equal
to the dimension of the space itself. By adding more vectors to the representative set
(thus losing the independence property), one obtains a frame [Vetterli et al., 2014, p. 101].
Frames enable the representation of signals in a different domain where it is easy to
extract their salient characteristics, and do that in a redundant fashion. This section
briefly reviews the properties of frame-based signal representations that will be used in
the development of this thesis.
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Definition 7 (Frame). The set of vectors Ψ = {ψk}k∈K ⊂ V is a frame for the Hilbert
space V if there exist two constants 0 < A < B <∞ such that

A‖f‖2 ≤
∑
k∈K
|〈f, ψk〉|2 ≤ B‖f‖2, ∀f ∈ V. (2.61)

The constants A and B are called frame bounds.

Given a frame {ψk} of the Hilbert space V, the synthesis operator is defined as

Ψa =
∑
k

akψk = f, (2.62)

where ak are the expansion coefficients of the signal f in the frame {ψk} and a = {ak}k∈K;
the adjoint of the synthesis operator is the analysis operator

ΨHf = 〈ψk, f〉. (2.63)

The frame operator is defined as

Sf = ΨΨHf =
∑
k∈Z
〈f, ψk〉ψk (2.64)

and it is positive and invertible, as shown in Werther et al. [2005, p. 4149].
Given a frame, there exist a dual frame {ψ̃k} such that

f =
∑
k∈Z
〈f, ψ̃k〉ψk =

∑
k∈Z
〈f, ψk〉ψ̃k. (2.65)

Given a frame {ψk}, the dual frame is not unique: there exist many frames that behave
like duals of {ψk}. A possible choice for the set of vectors {ψ̃k} is the canonical dual frame

{ψ̃k} = {S−1ψk}, (2.66)

which minimizes the norm of the expansion coefficients. Later in this thesis, more precisely
in Sec. 7.5, we review an effective solution to compute the dual frame in a finite-dimensional
setting.

2.4.1 Gabor Frames
Gabor frames are one class of frames of widespread use in the signal processing community.
The constituting elements of a Gabor frame are

• a prototype function ψ ∈ L2;

• a time parameter α; and,

• a frequency parameter β.

A Gabor frame is defined in the literature, e.g. in Werther et al. [2005], as a sequence of
translations in time and modulations in frequency applied to the prototype function ψ.
Introducing the translation and modulation operators

Tnαψ = ψt−nα, n ∈ Z (2.67)

Mmβψ = ψejmβt, m = Z, (2.68)
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we can compactly denote a Gabor frame with elements (ψ, α, β) as the set of functions

{TnαMmβψ}m,n∈Z. (2.69)

A widely adopted choice for the prototype function ψ is the dilated Gaussian function,
which in CR is defined as

ψ(t) = e−πt
2/σ2

, σ ∈ R. (2.70)

Its widespread use is motivated by the fact that the Gaussian function exhibit the best
trade-off between time-frequency localization. In Chap. 7 we will discuss with more details
the choice of the Gaussian function.

Gabor frames are of fundamental importance in this thesis. As a matter of fact, in
Sec. 4.4 we show that Gabor frames can be used to build a physically motivated and
rigorous representation for acoustic fields. Moreover, in Chap. 7 we exploit the properties
of Gabor frames in order to define a new transformation for acoustic fields that allows to
represent their information in a specific domain, where their salient characteristics are
readily evident.

2.5 Local Fourier Transform
The Fourier transformations reviewed in Sec. 2.3 are fundamental tools for the global
analysis of a signals, in the sense that all the time-distributed information encoded by
the signal are integrated to provide a single information. However, in many situations
occurring in practical scenarios, we are interested in local properties of a signal, i.e. in
following the evolution of its frequency content along with time. For the sake of an
example, consider a time-domain signal f(t) encoding a musical melody. A melody can be
conceived, in its simplest form, as a succession of notes, i.e. events characterized by pitch
and duration; thus melody is a simple example of a time-domain signal whose frequency
content varies with time. The Fourier transform F (ω) is not suitable to capture this
temporal evolution, as it considers the whole duration of the signal f(t) itself.

For the purpose of processing this class of signals, several transforms have been
introduced in the literature, originating from the work in Gabor [1946] on time-frequency
localization. These transformations are known under many names, i.e. windowed Fourier
transform, as in Brémaud [2002, Chap. D1]; short-term Fourier transform [Allen, 1977];
short-time Fourier transform [Vetterli and Kovacevic, 1995, Sec. 2.6.3], according to the
localizing function that is adopted; in this thesis we adopt the nomenclature local Fourier
transform, as in Vetterli et al. [2014, Chap. 7], in order to highlight its local nature, in
contrast to the global nature of the Fourier transform.

2.5.1 Local Continuous Fourier Transform
We define a real function ψ(t) ∈ RR, whose support is confined to a small interval about
zero; moreover, ψ(t) is assumed to exhibit even symmetry (i.e. ψ(t) = ψ(−t)). Examples
of possible function ψ(t) are the rectangular window of width σ

ψ(t) =

{
1, if − σ/2 ≤ t ≤ σ/2
0, otherwise,

(2.71)

and the dilated Gaussian window

ψ(t) = e−t
2/σ2

, σ ∈ R+. (2.72)
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The local information of a signal f(t) ∈ CR can be retrieved by projecting it onto the
space of time-localized complex exponential functions

vτ (t) = ψ(t− τ)ejωt, τ ∈ R, ω ∈ R, (2.73)

where τ denotes the temporal centroid of the window. The Local Fourier transform is then
introduced starting from the windowed complex exponential function, and it is defined as
the inner product between f and vτ (t).

Definition 8 (Local Fourier transform). The local Fourier transform of a signal f(t) ∈ CR

is
F (ω, τ) = 〈f, vτ 〉 =

∫
t∈R

f(t)vHτ (t) dt, ω, τ ∈ R. (2.74)

The inverse local Fourier transform of F (ω, τ) is

f(t) =
1

2π

∫
ω∈R

∫
τ∈R

F (ω, τ)vτ (t) dτ dω. (2.75)

It can be proved (the interested reader is referred to Brémaud [2002, pp. 178-182] for
a proof) that the inverse local Fourier transform holds under the following assumptions

1.
∫
R|ψ(t)| dt <∞, i.e. ψ(t) ∈ L1(R))

2.
∫
R|ψ(t)|2 dt = 1.

Assumption 2 is just a convention in order for the window function to have unitary energy:
more generally, it is sufficient to assume ψ(t) ∈ L2(R).

The local Fourier transform provides a highly redundant representation of the signal
f(t). Indeed, it maps the one-dimensional signal f(t) to a two-dimensional signal F (ω, τ).
This mapping is based on time-frequency functions vτ (t) that exhibit the most of their
energy in the vicinity of the point (τ, ω) in the time-frequency plane.

2.5.2 Local Discrete Fourier Transform
The one-dimensional local Discrete Fourier transform for finite-length discrete signals is
introduced as the discrete counterpart of the local Fourier transform introduced in the
preceding paragraph. A discrete real sequence ψ[l] ∈ RL is defined, whose support is
included in a small interval about l = τ , τ ∈ Z. The local information of a signal f [l] ∈ CL
around time index n = τ is thus contained in the discrete signal

f [l]ψ[l − τ ], l = 0, . . . , L− 1. (2.76)

The Local Discrete Fourier transform is introduced starting from the windowed discrete
complex exponential function

vτ [l] = ψ[l − τ ]W−klL , τ ∈ {0, . . . , L− 1}, k = {0, . . . , L− 1}, (2.77)

where WL is the root of unity introduced in (2.52).

Definition 9 (Local discrete Fourier transform). The local discrete Fourier transform of
a signal f ∈ CL is

F [τ, k] =
L−1∑
l=0

f [l]ψ[l − τ ]W−klL , τ ∈ {0, . . . , L− 1}, k = {0, . . . , L− 1}. (2.78)

The inverse local discrete Fourier transform of F [τ, k] is

f [l] =
1

L

L−1∑
τ=0

L−1∑
k=0

F [τ, k]W kl
L . (2.79)
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Table 2.1: Summary of various Fourier transform instances. Adapted from [Vetterli
et al., 2014, p. 401, Tab. 4.4].

Transform Analysis/Synthesis Characteristics

Fourier transform F (ω) =

∫ ∞
−∞

f(t)e−jωt dt

(Def. 2) f(t) =
1

2π

∫ ∞
−∞

F (ω)ejωt dω

Fourier series F [k] =
1

T

∫ T/2

−T/2
f(t)e−j(2π/T )kt dt Dual with DTFT

(Def. 4) f(t) =
∑
k∈Z

F [k]ej(2π/T )kt f(t+ T ) = f(t)

Discrete-time F (ejω) =
∞∑

l=−∞
f [l]e−jωl Dual with Fourier Series

Fourier transform (Def. 5) f [l] =
1

2π

∫ 2π

0
F (ejω)ejωl dω F (ej(ω+2π)) = F (ejω)

Discrete Fourier transform F [k] =

L−1∑
l=0

f [l]Wkl
L

(Def. 6) f [l] =
1

L

L−1∑
k=0

F [k]W−klL

Local Fourier transform F (ω, τ) =

∫ ∞
−∞

f(t)v∗τ (t) dt

(Def. 8) f(t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

F (ω, τ)vτ (t) dτ dω

Local Discrete Fourier F [τ, k] =

L−1∑
l=0

f [l]v∗τ [l]

transform (Def. 9) f [l] =
1

L

L−1∑
τ=0

L−1∑
k=0

F [τ, k]vτ [l]

2.6 Summary
• A unified formalism based on the notion of Hilbert spaces is introduced to deal with

different classes of signals

• Bases and frames are presented as tools that enable the representation of signals in
a domain where signal characteristics are more evident.

• Fourier bases (complex exponentials) emerge as one of the most useful signal
representations; Fourier transformations are defined as the projection of a signal f
onto the subspaces generated by complex exponential signals.

• Different instances of the Fourier transformations arise when considering complex
exponentials signals in different vector spaces: a summary is provided in Tab. 2.1.

• Multi-dimensional instances of the Fourier transformations arise as extensions of
the one-dimensional cases.

• Local instances of the Fourier transforms are introduced by windowing the complex
exponential signals.

• Gabor frames are introduced as an useful instance of general frames.
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Chapter 3

Fundamentals of Acoustic Theory

This chapter reviews the physical laws governing sound generation and propagation. In
this chapter sound is described by a scalar function, the acoustic field. An acoustic field
is a real-valued scalar function (or distribution) whose domain is the union of time and
space regions; in mathematical terms, the function

p(r, t), r ∈ R3, t ∈ R (3.1)

is the general form of an acoustic field, with r and t denoting the spatial coordinates
and time, respectively. Acoustic fields (unlike, e.g., electromagnetic fields and all vector
fields) satisfy the property of invariance under a transformation of space coordinates,
meaning that the value of the field at a point in space is independent on the coordinate
system adopted to represent that point, as discussed in Morse and Feshbach [1953, p. 4].
What varies is the functional form of the mathematical expression for the field. In other
words, p(r, t) encodes the same numerical value regardless of the specific coordinate
system adopted to represent the spatial variable r (e.g. Cartesian coordinates, spherical
coordinates, etc.). This consideration motivates the use of different representations for
the acoustic field in Chap. 4, each linked to a specific choice of the reference frame.

Sections 3.1-3.6 review the fundamentals of wave acoustics, i.e. the study of sound
propagation in the form of waves. This paradigm, on which an excellent review can be
found in Williams [1999], is the most widely adopted in the acoustics signal processing
literature and serves as a foundation for many applications. On the other hand, Sec. 3.7-3.8
review two fundamentals approaches to geometrical acoustics, the first based on acoustic
rays, while the latter based on acoustic beams. We remark that, at our knowledge, the
physical model of acoustic beams has not been considered so far in the literature on
acoustic signal processing, hence we consider it as a novel contribution provided by this
thesis.

Before proceeding with the discussion, we introduce the notation used in the rest of
this thesis to denote spatial coordinate systems. We will consider 3D spatial coordinates,
with time being the fourth dimension. Consider a position vector r in a three-dimensional
space. In Cartesian coordinates the position vector r = [x, y, z]T denotes the three spatial
coordinates in a right-handed orthogonal coordinate system, as shown in Fig. 3.1a. Unit
vectors in the three spatial directions are denoted by x̂, ŷ, ẑ. On the other hand, a
point in a spherical reference frame is represented by its distance r from the origin, its
azimuth φ and its co-elevation θ, as shown in Fig. 3.1b. Spherical coordinates are related

27
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Figure 3.1: Three-Dimensional coordinate systems.

to Cartesian coordinates via the relationships

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

(3.2)

and
r =

√
x2 + y2 + z2

φ = arccos

(
x√

x2 + y2

)
= arcsin

(
y√

x2 + y2

)

θ = arccos

(
z√

x2 + y2 + z2

)
.

(3.3)

Finally, a point in a cylindrical reference frame is represented by its radial distance ρ, its
azimuth φ and its height z, as shown in Fig. 3.1c. Cylindrical coordinates are related to
Cartesian coordinates via the relationships

x = ρ cos(φ)

y = ρ sin(φ)
(3.4)

and
ρ =

√
x2 + y2

φ = arctan
(y
x

)
.

(3.5)

3.1 The Laplace Operator
A key property of an acoustic field involves its second order derivatives with respect to the
spatial coordinates. This property measures the curvature of the function p(r, t) and its
mathematical description is provided by the Laplace operator [Morse and Feshbach, 1953,
p. 7], denoted by the symbol ∇2 and defined as the divergence of the gradient operator

∇2 = ∇ · (∇). (3.6)

The Laplace operator takes different forms in different coordinate systems. Equations (3.7)-
(3.9) are the functional forms of the Laplace operator expressed in the coordinate systems
considered in this thesis. These expressions can be obtained starting from the definition of
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the gradient and divergence operators in different coordinate systems, and then applying
the coordinate transformations listed in the previous section.

Cartesian ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.7)

Spherical ∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂

∂φ2
(3.8)

Cylindrical ∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
. (3.9)

3.2 The Wave Equations

3.2.1 The Homogeneous Wave Equation

In the linear regime, the acoustic field can be described by small-amplitude variations of
the pressure p(r, t) as a function of the space variable r and time variable t. Considering
a volume free of sources, the function p(r, t), in order to be a valid acoustic field, must
satisfy the homogeneous wave equation

∇2p(r, t)− 1

c2

∂2p(r, t)

∂t2
= 0, (3.10)

where c denotes the speed of sound in air (expressed in m s−1). We refer the interested
reader to Morse and Ingard [1986, Chap. 6] or to Kinsler et al. [2000, Chap. 5] for a
derivation of (3.10) starting from basic physical principles. Equation (3.10) governs the
propagation of acoustic waves in both space and time domains.

In many contexts it is useful to consider acoustic propagation as a function of space
and temporal frequency. This is the case, for instance, of an acoustic field generated by
a source in harmonic motion. In this case, the dependence on time can be expressed
as p(r, t) = P (r, ω)ejωt, being P (r, ω) = Ft{p(r, t)}. The equation equivalent to (3.10)
in the temporal-frequency domain can be obtained starting from the Fourier transform
(Def. 2) of (3.10) with respect to time

Ft
{
∇2p(r, t)− 1

c2

∂2p(r, t)

∂t2

}
= 0, (3.11)

which can be simplified by exploiting the linearity property of the Fourier transform
[Vetterli et al., 2014, p. 365] to yield

∇2Ft{p(r, t)} −
1

c2
Ft
{
∂2p(r, t)

∂t2

}
= 0. (3.12)

Upon substituting the definition of P (r, ω) and applying the differentiation property of
the Fourier transform [Vetterli et al., 2014, p. 367], it results

∇2P (r, ω) +
(ω
c

)2
P (r, ω) = 0. (3.13)

Equation (3.13) is known as Helmholtz equation, as described in Williams [1999, p. 18].
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3.2.2 The Inhomogeneous Wave Equation
If the volume under consideration is not free of sources, the wave equation (3.10) can
not be used to describe the acoustic field in the volume. As a matter of fact, the wave
equation must include a source excitation term, describing the energy emitted by the
sound source. This is accomplished by replacing the right-hand side of (3.10) with a
suitable source term depending on the volume flow rate per unit volume q(r, t), yielding
the inhomogeneous wave equation

∇2p(r, t)− 1

c2

∂2p(r, t)

∂t2
= −∂q(r, t)

∂t
. (3.14)

We refer the interested reader to Kinsler et al. [2000, Sec. 5.15] for a derivation of (3.14).
Similarly with what has been done for the homogeneous wave equation, we consider

also the formulation of the inhomogeneous wave equation in the temporal-frequency
domain. As in the homogeneous case, the inhomogeneous Helmholtz equation can be
derived by taking the Fourier transform of (3.14) with respect to time, yielding

∇2P (r, ω) +
(ω
c

)2
P (r, ω) = −jωQ(r, ω). (3.15)

3.3 Solutions to the Homogeneous Wave Equations
In this section we review acoustic fields that emerge as solutions to the homogeneous
wave equation presented in the previous section. Each solution emerges from the choice
of the actual reference system in use (Cartesian, spherical, cylindrical). Time-harmonic
dependence for the acoustic fields is assumed; this assumption allows us to consider
the equivalent (but easier) problem of seeking solutions to the homogeneous Helmholtz
equation (3.13).

3.3.1 Plane Waves
We start by reviewing solutions to the homogeneous Helmholtz equation (3.13) in a
Cartesian reference frame. Candidate solutions are in the form of complex exponential
functions, as assumed by Williams [1999, pp. 21-23] and Kinsler et al. [2000, pp. 121-124].
Therefore we can write

P (r, ω) = ej〈k,r〉, (3.16)

where k = [kx, ky, kz] is called the wavenumber vector . The function (3.16) is a solution
to (3.13) as long as k satisfies the dispersion relation

‖k‖2 =
(ω
c

)2
. (3.17)

The dispersion relation establishes the dependency of the wavenumber vector on frequency.
In the following we consider two cases:

• the case of propagating plane waves, where k ∈ R3; and,

• the case of evanescent plane waves, where one component of k assumes imaginary
values, while the other two components are real.
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Figure 3.2: Acoustic field of a propagating plane wave (<{P (r, ω)}). The wavenumber
vector is k = (ω/c)[1/2,

√
3/2, 0]T , ω = 2πf , f = 1 kHz, c = 340ms−1. The

acoustic field is shown on the plane z = 0m.

Propagating Plane Waves. Consider the function (3.16) and restrict k to be in
R3. The locus of points where the phase of the function is constant, usually referred to as
wavefront, arises as the solution to

∠P (r, ω) = 〈k, r〉 = C, (3.18)

being C ∈ R a constant. It is evident from (3.18) that the locus of points at constant phase
is a plane in R3, orthogonal to the vector k. This basic reasoning motivates the name plane
wave assigned to the function (3.16). The unit vector in the direction of k, k̂ = k/‖k‖, is
identified as the Direction of Arrival of the plane wave 1. Figure 3.2 shows the real part
of the acoustic field P (r, ω) of a propagating plane wave with k = ω/c[1/2,

√
3/2, 0]T ,

ω = 2πf , f = 1 kHz, c = 340ms−1. The acoustic field is shown on the plane z = 0m.
The corresponding solution to the homogeneous wave equation (3.10) is found by

adding the time-harmonic dependence to (3.16)

p(r, t) = P (r, ω)ejωt = ej(〈k,r〉+ωt). (3.19)

Wavelength. Along with the direction of arrival, a plane wave is characterized by its
wavelength λ, defined as the spatial distance traveled by a plane of constant phase in a
temporal period T = 2π/ω. Consider a plane of constant phase displaced by δr in a time
interval δt = 2π/ω

∠p(r, t) = ∠p(r + δr, t+ δt), (3.20)

which can be rewritten as

〈r,k〉+ ωt = 〈r + δr,k〉+ ω(t+ δt). (3.21)

Exploiting the distributivity property of the inner product one can write

〈r,k〉+ ωt = 〈r,k〉+ 〈δr,k〉+ ωt+ ωδt, (3.22)

1We remark that this is an arbitrary convention. Some authors prefer to identify the wavenumber
vector with the direction of propagation of the plane wave. In this thesis we adhere to the convention
of k̂ identifying the DoA. Following this convention, we identify the direction of propagation as
−k̂.
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which can be solved for δr after the elimination of common terms

〈δr,k〉 = −ωδt. (3.23)

The wavelength λ can be defined as the norm of the displacement vector δr in (3.23), i.e.
λ = ‖δr‖. We define the angle α between the vectors δr and k; the considered setting
dictates α = π (we recall that k̂ denotes the DoA of the plane wave, which is opposite to
the direction of propagation). The inner product in (3.23) can be expanded in terms of
the norms of the two vectors, and then, by solving for λ, it results

λ =
2π

‖k‖
. (3.24)

Spatial Frequency. The magnitude of the wavenumber vector k expresses the
number of cycles per unit length that the plane wave exhibits along the DoA. Thus, it
can be immediately seen that k plays the role of a spatial frequency variable, in analogy
with the role of ω as a temporal frequency (which expresses the number of cycles per time
unit).

Evanescent Plane Waves. The wavenumber is not constrained to be real in order
to satisfy the dispersion relation (3.17). Indeed, one can relax the constraint k ∈ R3 by
letting two components of k being real, i.e. kx, ky ∈ R, while the third component being
imaginary, i.e. kz = jζ, ζ ∈ R. Thus, the plane-wave function (3.16) can be written as

p(r, t) = ejωtej(kxx+kyy)e−ζz. (3.25)

With reference to (3.25), it is customary to ensure that the complex exponential function
ej〈k,r〉 makes physical sense: i.e. we discard functions that gain energy as they propagate,
as these functions have no physical sense. This is equivalent to constraining ζ to be
positive, i.e. ζ ∈ R+. The class of functions satisfying the above described requirements
is called evanescent waves and consists of plane wave functions whose amplitude decays
exponentially with space. These functions are still solution to (3.2) but they do not
propagate.

In order to derive a condition on the components of the wavenumber vector that
enables the generation of evanescent waves, the dispersion relation (3.17) is rewritten as

k2
z =

(ω
c

)2
− k2

x − k2
y and kz =

√(ω
c

)2
− k2

x − k2
y, (3.26)

from which it is evident that kz is imaginary when k2
x + k2

y > (ω/c)2. Figure 3.3 shows the
real part of the acoustic field of an evanescent plane wave with k = ω/c[

√
1.01, 0, j0.1]T ,

ω = 2πf , f = 1 kHz, c = 340ms−1. The acoustic field is shown on the plane y = 0m.

3.3.2 Spherical Waves
Another elementary solution to the homogeneous Helmholtz equation is the spherical
wave, originated by a sound source of infinitesimal dimension, usually referred to as point
source or acoustic monopole, placed outside the spatial region of interest. The acoustic
field of a point source is an outward spherical wave of the form presented in Williams
[1999, p. 198], i.e.

P (r, ω) =
e−j

ω
c
‖r−r′‖

4π‖r− r′‖
, (3.27)
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Figure 3.3: Acoustic field of an evanescent plane wave (real part). The wavenumber
vector is k = (ω/c)[

√
1.01, 0, j0.1]T , ω = 2πf , f = 1 kHz, c = 340ms−1.

The acoustic field is shown on the plane y = 0m.

where r′ denotes the spatial position of the point source. The loci of constant phase of
(3.27) are the surfaces (ω/c)‖r− r′‖ = 2πC, C ∈ Z, which are concentric spheres centered
at r′ and separated by the wavelength λ = 2π/(ω/c). Spherical waves of the form (3.27)
are outward spherical waves, in the sense that the wavefronts propagate from r′ to ∞.
On the other hand, inward spherical waves generate acoustic fields of the form

P (r, ω) =
ej

ω
c
‖r−r′‖

4π‖r− r′‖
, (3.28)

which exhibit spherical wavefronts propagating from infinity to an infinitesimal sink of
sound at r′.

In many situations, it is convenient to deal with acoustic fields generated by spherical
waves in a coordinate system different from the Cartesian one. The natural choice is the
spherical reference frame. This paragraph reviews solutions to the homogeneous Helmholtz
equation in a spherical reference frame. In this setting, the Laplace operator is (3.8) and
the homogeneous Helmholtz equation (3.13) reads

1

r2

∂

∂r

(
r2∂P (r, ω)

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂P (r, ω)

∂θ

)
+

+
1

r2 sin2(θ)

∂2P (r, ω)

∂φ2
+
(ω
c

)2
P (r, ω) = 0. (3.29)

Solutions to (3.29) are obtained by separation of variables. The acoustic field P (r, ω) is
assumed in the factored form [Morse and Ingard, 1986, p. 333]

P (r, ω) = R(r)Θ(θ)Φ(φ), (3.30)

hence (3.29) can be rewritten as

Θ(θ)Φ(φ)

r2

∂

∂r

(
r2∂R(r)

∂r

)
+
R(r)Φ(φ)

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂Θ(θ)

∂θ

)
+

+
R(r)Θ(θ)

r2 sin2(θ)

∂2Φ(φ)

∂φ2
+
(ω
c

)2
R(r)Θ(θ)Φ(φ) = 0. (3.31)
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After multiplication by r2/(R(r)Θ(θ)Φ(φ)), (3.31) reads

1

R(r)

∂

∂r

(
r2∂R(r)

∂r

)
+

1

Θ(θ) sin(θ)

∂

∂θ

(
sin(θ)

∂Θ(θ)

∂θ

)
+

+
1

Φ(φ) sin2(θ)

∂2Φ(φ)

∂φ2
+
(ω
c

)2
r2 = 0. (3.32)

Dependence on Azimuth. Consider first the dependence of (3.32) on the azimuth
angle φ. The only term in (3.32) depending on φ is the third term, while all the others
can be regarded to as constants. After a multiplication by sin2(θ), it results that the
function Φ(φ) must be a solution to

1

Φ(φ)

∂2Φ(φ)

∂φ2
= −m2, (3.33)

where m is a constant. According to Morse and Ingard [1986, p. 333] and Williams [1999,
p. 185], the solution to (3.33) is

Φ(φ) = Φ1e
jmφ (3.34)

with the constraint m ∈ Z to avoid discontinuities at φ equal to integer multiples of 2π.

Dependence on Co-Elevation. Upon substituting (3.34) into (3.32), the latter can
be rewritten as

1

R(r)

∂

∂r

(
r2∂R(r)

∂r

)
+

1

Θ(θ) sin(θ)

∂

∂θ

(
sin(θ)

∂Θ(θ)

∂θ

)
− m2

sin2(θ)
+
(ω
c

)2
r2 = 0. (3.35)

The first and the last terms in (3.35) do not depend on θ, hence they can be considered
constant. Upon defining this constant as l(l + 1)2, one gets

1

Θ(θ) sin(θ)

∂

∂θ

(
sin(θ)

∂Θ(θ)

∂θ

)
− m2

sin2(θ)
= −l(l + 1). (3.36)

Upon multiplying by Θ(θ) and rearranging terms, (3.36) can be rewritten as

1

Θ(θ) sin(θ)

∂

∂θ

(
sin(θ)

∂Θ(θ)

∂θ

)
+

(
l(l + 1)− m2

sin2(θ)

)
= 0. (3.37)

With the substitution a = cos(θ), (3.37) can be rewritten in the form of the Associated
Legendre Equation [Olver, 2010, p. 352]

∂

∂a

(
(1− a2)

∂Θ(a)

∂a

)
+

(
l(l + 1)− m2

1− a2

)
Θ(a) = 0, (3.38)

whose solution is [Williams, 1999, p. 185]

Θ(a) = Pml (a), a = cos(θ), (3.39)

Pml (a) being the Associated Legendre Polynomial [Olver, 2010, p. 360] of integer degree l
and order m (l ∈ N and m = −l, . . . , l).

2The choice of the constant as l(l + 1) is dictated by the availability of a closed-form solution.
For other choices no solution does exist [Arfken and Weber, 2005, Chap. 12].
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Spherical Harmonics. The functions (3.33) and (3.39) are usually combined, as in
Morse and Ingard [1986, p. 335], into the spherical harmonic function [Ahrens, 2012, p. 27]

Y m
l (θ, φ) = (−1)m

√
(2l + 1)

4π

(l − |m|)!
(n+ |m|)!

ejmφP
|m|
l (cos(θ)). (3.40)

We remark that the angular dependence of a generic solution to the Helmholtz equation
in spherical coordinates, as encoded by the spherical harmonic functions, is independent
on temporal frequency.

The advantage of (3.40) with respect to other definitions for the spherical harmonics
(e.g. the ones in Olver [2010, p. 378, Eq. 14-30.1] and in Williams [1999, p. 186, Eq. 6.20])
is that it enables to directly handle the case m < 0 and, moreover, the conjugation takes
the convenient form [Ahrens, 2012, p. 27]

(Y m
l (θ, φ))∗ = Y −ml (θ, φ). (3.41)

Spherical harmonics of the form (3.40) enjoy the properties of orthogonality and normal-
ization [Olver, 2010, p. 336]∫ 2π

0

∫ π

0
Y −ml (θ, φ)Y m′

l′ (θ, φ) sin(θ) dθ dφ = δ[l − l′]δ[m−m′], (3.42)

where δ[·] denotes the Kronecker delta sequence (2.22).

Dependence on Radius. The radial dependence is obtained by substituting (3.34)
and (3.39) into (3.32), yielding [Morse and Ingard, 1986, p. 335]

∂

∂r

(
r2∂R(r)

∂r

)
+

((ω
c

)2
r2 − l(l + 1)

)
R(r) = 0. (3.43)

As illustrated in Williams [1999, pp. 185-186], the solution to (3.43) can be expressed in
terms of spherical Bessel functions

R(r) = R1jl((ω/c)r) +R2yl((ω/c)r), (3.44)

jl(·) being the spherical Bessel function of first kind [Olver, 2010, p. 262, Eq. 10.47.3],
yl(·) denotes the spherical Bessel function of second kind [Olver, 2010, p. 262, Eq. 10.47.4]
and R1, R2 are constants. Alternatively, the solution to (3.43) can be written in terms of
spherical Hankel functions

R(r) = R3h
(1)
l ((ω/c)r) +R4h

(2)
l ((ω/c)r), (3.45)

where h(1)
l (·) and h(2)

l (·) are spherical Hankel function of first and second kind, respectively
[Olver, 2010, p. 262, Eqs. 10.47.5-6]. The coefficients R1, R2, R3, R4 are usually chosen
in order to keep or discard one or both solutions in (3.44) or (3.45) depending on the
location of the sound sources in the considered setting. Precisely, due to the properties of
spherical Bessel and spherical Hankel functions, the following choices are widely accepted
in the literature:

• the spherical Bessel function of the first kind, jl((ω/c)r), is used to represent
incoming acoustic fields, i.e. acoustic fields due to sources far from the origin and
observed around the origin (cfr. the interior problem in Sec. 4.2.2);

• the spherical Hankel function of the first kind, hl((ω/c)r) is used to represent
outgoing acoustic fields, i.e. acoustic fields due to sources closed to the origin and
observed in an external region (cfr. the exterior problem in Sec. 4.2.1).

The acoustic field P (r, ω) = R(r)Φ(φ)Θ(θ) is called spherical wave.
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3.3.3 Cylindrical Waves
In cylindrical coordinates the Laplace operator is (3.9), hence the Helmholtz equation
reads

∂2P (r, ω)

∂ρ2
+

1

ρ

∂P (r, ω)

∂ρ
+

1

ρ2

∂2P (r, ω)

∂φ2
+
∂2P (r, ω)

∂z2
+
(ω
c

)2
P (r, ω) = 0. (3.46)

Similarly to the spherical case, also in the cylindrical setting solutions to the Helmholtz
equation are obtained by separation of variables. The function P (r, ω) is factored as

P (r, ω) = R(ρ)Φ(φ)Z(z), (3.47)

where R(ρ), Φ(φ) and Z(z) denote the radial dependency, the angular dependency and
the dependency on height z, respectively.

Upon substituting (3.47) into (3.46), taking constant terms out of the derivatives and
dividing by R(ρ)Φ(φ)Z(z) one obtains

1

R(ρ)

∂2R(ρ)

∂ρ2
+

1

ρR(ρ)

∂R(ρ)

∂ρ
+

1

ρ2Φ(φ)

∂2Φ(φ)

∂φ2
+

1

Z(z)

∂2Z(z)

∂z2
+
(ω
c

)2
= 0. (3.48)

Dependence on Height. By observing (3.48), one notices that the only term de-
pending on the height z is the fourth, while the others can be regarded to as constant
with respect to z. Thus, the height dependency is given by the solution to

1

Z(z)

∂2Z(z)

∂z2
= −k2

z , (3.49)

where the constant −k2
z is set for convenience. The solution to (3.49) is given in Williams

[1999, p. 117] as
Z(z) = Z1 + ejkzz + Z2e

−jkzz, Z1, Z2 ∈ R. (3.50)

Dependence on Azimuth. Upon substituting (3.50) into (3.48) one obtains

1

R(ρ)

(
∂2R(ρ)

∂ρ2
+

1

ρ

∂R(ρ)

∂ρ

)
+

1

ρ2Φ(φ)

∂2Φ(φ)

∂φ2
= −

(ω
c

)2
+ k2

z , −k2
ρ, (3.51)

where the quantity kρ =
√

(ω/c)2 − k2
z has been introduced. Upon multiplying (3.51) by

ρ2, it can be noticed that the only term depending on φ is the third, while the others can
be regarded to as constants. The azimuthal dependency of the solution is thus given by

1

Φ(φ)

∂2Φ(φ)

∂φ2
= −m2, (3.52)

whose solution is [Williams, 1999, p. 117]

Φ(φ) = ejmφ, m ∈ Z. (3.53)

Dependence on Radius. The radial dependency is governed by the equation

∂2R(ρ)

∂ρ2
+

1

ρ

∂R(ρ)

∂ρ
+

(
k2
ρ −

m2

ρ2

)
R(ρ) = 0, (3.54)
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which is recognized as the Bessel equation (also known as Riccati equation), whose
solutions are Bessel’s functions of the first and second kind [Olver, 2010, p. 217]

R(ρ) = R1Jm(kρρ) +R2Ym(kρρ). (3.55)

Alternatively, the solution to (3.54) can be expressed in terms of Hankel functions [Olver,
2010, p. 217] as in Williams [1999, p. 118], yielding

R(ρ) = R3H
(1)
m (kρρ) +R4H

(2)
m (kρρ), (3.56)

where H(1)
m (·) and H(2)

m (·) denote the Hankel function of first kind [Olver, 2010, p. 217,
Eq. 10.2.3-6] and second kind [Olver, 2010, p. 217, Eq. 10.2.6], respectively. The acoustic
field P (r, ω) = R(ρ)Φ(φ)Z(z) is called cylindrical wave.

Similarly to the spherical wave case, also in the case of cylindrical waves the Bessel
functions of first kind are used to represent acoustic fields in a region internal with respect
to a source distribution, while Hankel functions of the first kind are used to deal with the
external scenario.

3.4 Solutions to the Inhomogeneous Wave Equa-
tion

The homogeneous wave equation describes acoustic fields in volumes free of sources. On
the other hand, acoustic fields generated by sources inside the volume of interest are
governed by the inhomogeneous wave equation (3.14) and the corresponding Helmholtz
equation (3.15). In this section, mimicking what we have done for the homogeneous case,
we assume time-harmonic dependency for the acoustic field; thus we seek for solutions to
the inhomogeneous Helmholtz equation (3.15).

Arbitrary solutions to (3.15) are constructed starting from a basic solution, resulting
by imposing a spatial impulse at location r′ as the excitation term, i.e.

Q(r, ω) = δ(r− r′)δ(ω), (3.57)

where δ(·) denotes the Dirac delta function [Vetterli et al., 2014, pp. 316-317]. The sound
field G(r|r′, ω) measured at a point r due to a spatial impulse at position r′ is solution to
the inhomogeneous equation obtained upon substituting (3.57) into (3.15)

∇2G(r|r′, ω) +
(ω
c

)2
G(r|r′, ω) = −δ(r− r′). (3.58)

The function G(·) is called Green function and it has been formally defined in Morse and
Feshbach [1953, p. 803, Sec. 7.2]. In a three-dimensional spatial domain and under free
space conditions, the Green function is [Williams, 1999, p. 265, Eq. 8.41]

G(r|r′, ω) =
e−j(ω/c)‖r−r

′‖

4π‖r− r′‖
. (3.59)

Equation (3.59) describes the acoustic field of a point source located at r′ (cfr. Sec. 3.3.2),
radiating energy in an omni-directional fashion (i.e. radiation only depends on the distance
‖r− r′‖, not on angle).

In some situations that will appear during this thesis, it is useful to consider acoustic
fields which are invariant over one spatial coordinate. Without loss of generality, we
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V

∂V

r
n̂(r)

Figure 3.4: Geometry of a boundary value problem.

consider the case of acoustic fields invariant over the z coordinate: this class of acoustic
fields is usually referred to as height-invariant acoustic fields and it is employed to derive
simplifications of three-dimensional problems. In this context, the excitation function
(3.57) can be written as

jωQ(r, ω) = δ(x− x′)δ(y − y′), z ∈ R. (3.60)

This excitation function defines an infinite line source in the z direction located at (x′, y′).
The line source can be interpreted as the superposition of point sources along a straight
line parallel to the z axis. The Green’s function in this setting is obtained by integrating
the Green’s function of point sources along the z direction

G1(r|r′, ω) =

∫ ∞
−∞

G0(r|r′, ω) dz′, r′ = [x′, y′, z′]T . (3.61)

Upon substituting (3.59) into (3.61) one obtains [Williams, 1999, p. 266, Eq. 8.47]

G1(r|r′, ω) =

∫ ∞
−∞

e−j(ω/c)‖r−r
′‖

4π‖r− r′‖
dz′ =

j

4
H

(1)
0

(ω
c
ρ
)
, (3.62)

where the last equality follows from Gradshteyn and Ryzhik [2007, p. 915, Eq. 8.421.11]
with ρ =

√
(x− x′)2 + (y − y′)2.

3.5 Boundary Conditions
In the previous sections the only scenario that has been considered is the free-field scenario,
i.e. the Helmholtz equations (3.13) and (3.15) have been solved in free space. Although
the free-space scenario is fundamental to build many of the techniques that are presented
in this thesis, there are situations in which one has to consider also the presence of acoustic
boundaries. Figure 3.4 illustrates this concept. The region V is the region of space where
the acoustic field is governed by the Helmholtz equation, while on the boundary ∂V
boundary conditions are specified. There exist several boundary conditions, according to
the quantity that is constrained by the boundary, and to the type of constraint. In the
following some of the most used boundary conditions are illustrated, each emerging from
a specific acoustic behavior of the contour.

Dirichlet Boundary Condition. If the boundary constrains a value to the acoustic
field itself, i.e. p(r, ω) is constrained for r ∈ ∂V , the boundary problem is called Dirichlet
boundary problem. The simplest of these problems is the one in which the boundary
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constrains the acoustic field to vanish. This condition is called homogeneous Dirichlet
boundary condition [Ahrens, 2012, p. 49, Eq. 2.58]

P (r, ω) = 0, ∀r ∈ ∂V (3.63)

and it describes a pressure-release boundary. Another problem is the one in which the
acoustic field on the boundary is constrained to be equal to an arbitrary function: this
condition is called Inhomogeneous Dirichlet boundary condition [Ahrens, 2012, p. 49,
Eq. 2.59]

P (r, ω) = F (r, ω), ∀r ∈ ∂V. (3.64)

Neumann Boundary Condition. If the boundary dictates a constraint on the
directional derivative of the acoustic field, the boundary problem is called Neumann
boundary problem. If the boundary constrains the normal directional derivative of the
acoustic field to vanish, the condition is called Neumann boundary condition [Ahrens,
2012, pp. 49-50, Eq. 2.60]

〈∇P (r, ω), n̂(r)〉 = 0, ∀r ∈ ∂V, (3.65)

where n̂(r) denotes the unit vector normal to ∂V at a point r ∈ ∂V , as depicted in Fig. 3.4;
this condition describes a sound hard boundary (like, e.g., a perfectly reflective wall). If
the normal directional derivative is constrained to an arbitrary function on the boundary,
the condition is called inhomogeneous Neumann boundary condition [Ahrens, 2012, p. 50,
Eq. 2.63]

〈∇P (r, ω), n̂(r)〉 = F (r, ω), ∀r ∈ ∂V. (3.66)

Robin Boundary Condition. In many practical situations the boundary is neither
perfectly rigid nor pressure-release, thus neither of Dirichlet and Neumann boundary
conditions accurately model the behavior of the boundary. In all situations where the
boundary can be considered as an absorbing boundary, the homogeneous Robin boundary
condition [Filippi et al., 1998, p. 44]

〈∇P (r, ω), n̂(r)〉 − j ω
c

1

γ(r, ω)
P (r, ω) = 0 (3.67)

can be adopted. This boundary condition states that the normal directional derivative of
the acoustic field is proportional to the acoustic field itself. The quantity γ(r, ω) is called
specific normal impedance.

The three boundary conditions seen so far can be unified into a single expression

α〈∇P (r, ω), n̂(r)〉+ βP (r, ω) = F (r, ω), ∀r ∈ ∂V, (3.68)

with the following cases:

• α = 0, β = 1 dictates a Dirichlet boundary condition;

• α = 1, β = 0 dictates a Neumann boundary condition;

• α = 1, β 6= 0 dictates a Robin boundary condition; and,

• F (r, ω) = 0 dictates homogeneous boundary conditions.

In many situations (e.g. in the sound field reproduction problem), it is customary
to consider a boundary valued problem with a homogeneous Helmholtz equation and an
inhomogeneous boundary condition. This scenario models the practical case of acoustic
energy being furnished into an area by a motion of the boundary.
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Sommerfeld Boundary Condition. In the setting of external acoustic problems
(cfr. Fig. 4.2) the Sommerfeld condition imposes a boundary condition when the boundary
is at infinity. This condition states that no energy contribution to the acoustic field is
originated at infinity [Ahrens, 2012, pp. 50-51, Eq. 2.64]

lim
r→∞

r

(
∂P (r, ω)

∂r
+ j

ω

c
P (r, ω)

)
= 0, (3.69)

where r = ‖r‖.

3.6 Integral Representation of Acoustic Fields
This section shows how the acoustic field in a confined spatial region can be represented
as the radiation of sources located on its boundary. The topics reviewed in this section
are of fundamental importance in this thesis, since they provide the basis for the acoustic
field representations illustrated in Chap. 4 and then used in all the following chapters,
both for acoustic field analysis and synthesis purposes.

3.6.1 Kirchoff-Helmholtz Integral Equation
Consider the volume V and its boundary ∂V. Let F (r, ω) be the space-time excitation
function of a time-harmonic source and P (r, ω) the corresponding acoustic field. The
function P (r, ω) must be a solution to the boundary value problem

∇2P (r, ω) +
(ω
c

)2
P (r, ω) = F (r, ω), r ∈ V (3.70)

α〈∇P (r, ω), n̂(r)〉+ βP (r, ω) = 0, ∀r ∈ ∂V. (3.71)

The acoustic field P (r, ω) can be considered as the superposition of two contributions:

• the acoustic field P0(r, ω) generated by the radiation of the source F (r, ω) in an
unbounded domain, which is given by the Green function (3.59); and,

• the acoustic field P1(r, ω) which is a solution to the homogeneous Helmholtz equation
satisfying the boundary condition in 3.71; this contribution represents the scattered
field, as pointed out in Filippi et al. [1998, p. 81].

The expression that represents a solution to (3.70) with the boundary condition (3.71)
is usually referred to as Kirchoff-Helmholtz integral equation [Williams, 1999, p. 256],
[Filippi et al., 1998, p. 84] and reads

a(r)P (r, ω) = P0(r, ω)+∫
∂V

(
G(r|r′, ω)〈∇P (r′, ω), n̂(r′)〉 − P (r′, ω)〈G(r|r′, ω), n̂(r′)〉

)
dA(r′),

(3.72)
where A(r′) is an infinitesimal element of the surface ∂V and a(r) is the discrimination
term [Williams, 1999, p. 256]

a(r) =


1, for r ∈ V
0.5, for r ∈ ∂V
0, for r /∈ V.

(3.73)

Equation (3.72) can be readily interpreted as follows. The acoustic field inside the region
V is uniquely determined by three contributions:
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1. the acoustic field P0(r, ω) due to the source distribution F (r, ω);

2. the acoustic pressure on ∂V; and,

3. its directional gradient in the direction normal to ∂V

It must be noticed that the two latter functions (the pressure P (r′, ω) and the directional
derivative 〈∇P (r′, ω), n̂(r′)〉) are not independent, since they are related by the boundary
condition (3.71) [Filippi et al., 1998, p. 84].

The Kirchoff-Helmholtz integral is the basis for the derivation of Wave Field Synthesis,
as derived in Berkhout et al. [1993], Spors et al. [2008]. The Kirchoff-Helmholtz integral is
a powerful tool, since it allows one to derive physically-motivated acoustic field synthesis
methodologies.

3.6.2 Single Layer Potential and Double Layer Potential
The Kirchoff-Helmholtz integral equation (3.72) contains two integral contributions

ϕ1(r, ω) =

∫
∂V
G(r|r′, ω)〈∇P (r′, ω), n̂(r′)〉 dA(r′), (3.74)

ϕ2(r, ω) = −
∫
∂V
P (r′, ω)〈G(r|r′, ω), n̂(r′)〉 dA(r′). (3.75)

The function ϕ1(r, ω) is to be interpreted as the acoustic field radiated by a distribution of
point sources on ∂V, each driven by the function 〈P (r′, ω), n̂(r′)〉. The expression (3.74)
is referred to as single layer potential [Colton and Kress, 1992, p. 38] or simple source
formulation [Williams, 1999, p. 267], [Spors et al., 2008]. The function ϕ2(r, ω) can be
interpreted as the acoustic field radiated by a distribution of dipole sources on ∂V; for
this reason it is usually called double layer potential [Filippi et al., 1998, p. 85].

Conditions for the existence and uniqueness of the solution to (3.72), (3.74) and (3.75)
have been derived in Lalor [1968]; more recently they have been reviewed in Filippi et al.
[1998, p. 87] and in Fazi and Nelson [2012].

3.7 Ray Acoustics
In some acoustic propagation problems, it may be impractical to solve exactly the wave
equation, along with its boundary conditions, due to the enormous computational effort
that would be required. Indeed, this is the case of acoustic propagation in realistic
rooms, where all the room’s details make the problem non tractable. Moreover, the exact
solution may be difficult to interpret in terms of one’s intuition about acoustic waves.
This section reviews the theory supporting geometrical acoustics, derived starting from the
high frequency approximation of the wave equation as proposed in Johnson and Dudgeon
[1993, pp. 33-36].

Ray acoustics is the simplest approximation of wave acoustic theory. In its view,
sound is described by rays traveling in accordance with a set of geometrical rules. Ray
acoustics is concerned with the location and direction of acoustic rays. In the scenario
considered in this thesis, where only homogeneous and isotropic propagation media are
considered, acoustic rays point in the direction of flow of the acoustic energy. Thanks to
this characteristic, acoustic rays are usually employed to study the directional propagation
of sound. For the sake of an example, microphone arrays can be built with the purpose of
estimating the acoustic energy reaching the array from a pre-determined set of directions.
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This process is analogous to the image formation process in optics [Saleh and Teich,
1991, p. 3], where the collection of rays reaching an optical component is mapped onto a
corresponding intensity image. Thank to this analogy, acoustic directional intensity maps
are usually referred to as acoustic images. Another application based on acoustic rays
involves their tracing in complex acoustic environments in order to predict the acoustic
behavior of the environment itself [Vorländer, 2008, Chap. 11].

Ray acoustics is based on a set of postulates, similar to the postulates of ray optics.
Let us first consider those postulates in the realm of optics, according to Saleh and Teich
[1991, pp. 3-4].

1. Light travels in the form of rays. Rays are emitted by light sources and can be
sensed by light receivers.

2. In an homogeneous medium (like air), in which the speed of light c is a function
of temperature but can be assumed to be invariant in space. Therefore, the time
taken by light to propagate over a distance d is τ = d/c.

3. Light rays traveling between two points follow a path such that the time of travel
is minimum (Fermat’s principle), which corresponds also to the path of minimum
length (Hero’s principle). Therefore, light rays in air travel in straight lines.

4. Light radiance is invariant along a ray.

Upon introducing some assumptions, these postulates are readily applied to the acoustic
realm. In the following, we introduce approximations to the homogeneous Helmholtz
equation in order to derive a physical model for acoustic rays.

3.7.1 The Eikonal Equation
Ray trajectories can also by univocally identified by the surfaces ψ(r, ω) to which they are
normal. In this setting, ray trajectories can be constructed considering the direction of the
gradient vector ∇ψ(r, ω) at each point r. The function ψ(r, ω) is usually referred to as
Eikonal [Saleh and Teich, 1991, p. 25]. In the following, the equation governing Eikonals
is derived starting from an high-frequency approximation of the Helmholtz equation.

Consider the Helmholtz equation (3.13), here rewritten for completeness

∇2P (r, ω) +
(ω
c

)2
P (r, ω) = 0, (3.76)

where the acoustic field P (r, ω) is a complex function and thus can be written in terms of
its magnitude and phase as

P (r, ω) = |P (r, ω)|ejψ(r,ω). (3.77)

Inserting (3.77) into (3.76) yields

∇2
(
|P |ejψ

)
+
(ω
c

)2
|P |ejψ = 0, (3.78)

where, for brevity, the dependence of P and ψ on r and ω has been omitted. Expanding
the Laplace operator for the product of the two functions |P | and ψ and then applying its
linearity property yields

∇ ·
[
(∇|P |)ejψ

]
+∇ ·

[
|P |∇ejψ

]
+
(ω
c

)2
|P |ejψ = 0, (3.79)
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and then (
∇2|P |

)
ejψ + 2〈∇|P |,∇ejψ〉+ |P |∇2ejψ +

(ω
c

)2
|P |ejψ = 0. (3.80)

Upon taking the gradient of ejψ and then multiplying by e−jψ one obtains [Johnson and
Dudgeon, 1993, p. 34]

∇2|P |+ |P |
{(ω

c

)2
− 〈∇ψ,∇ψ〉

}
+ j

{
|P |∇2ψ + 2〈∇|P |,∇ψ〉

}
= 0. (3.81)

Assuming high frequency, i.e. ω →∞, the first term in (3.81) becomes negligible. For the
equation to be satisfied, both the second and the third terms must equal zero, since the
second is purely real while the third is purely imaginary. Setting the second terms to zero
yields the Eikonal equation as presented in Goodman [1996, p. 402]

〈∇ψ,∇ψ〉 =
(ω
c

)2
, (3.82)

being ψ the Eikonal. The physical interpretation of (3.82) is that it constrains acoustic
rays to travel in the direction orthogonal to lines of constant phase. This observation will
be expanded in the next paragraph.

It should be remarked that acoustic rays encode exactly the same information than
the Eikonals, as these two quantities are intimately related by (3.82). Moreover, in the
following paragraph we will show that acoustic rays encode the same information also with
respect to plane waves: this motivates us in the use of acoustic rays to model acoustic
fields that can be represented as a superposition of plane waves.

3.7.2 Rays in Acoustic Fields
Acoustic rays emerge as the lines orthogonal to the solution of (3.82). In free-space, the
acoustic rays (normals to the Eikonal ψ(r, ω)) must be straight lines [Saleh and Teich,
1991, p. 26] and the Eikonal may be parallel planes or concentric sphere. The following
paragraphs illustrate this concept.

Rays in Plane Wave Acoustic Fields. Consider a plane wave acoustic field
propagating with wavenumber vector k

P (r, ω) = A(ω)ej〈k,r〉, (3.83)

where A(ω) is an amplitude function. Following (3.77), the plane wave acoustic field can
be factorized as

P (r, ω) = |A(ω)|ej(〈k,r〉+φ), (3.84)

being A(ω) = |A(ω)|+ ejφ. The Eikonal is

ψ(r, ω) = 〈k, r〉+ φ. (3.85)

Upon substituting (3.85) into (3.82), it can be immediately seen that a plane wave is a
solution to the Eikonal equation as long as the wavenumber vector k satisfies the dispersion
relation k = (ω/c)2. The trajectory of acoustic rays is determined by the gradient of
ψ(r, ω), which reads

∇ψ(r, ω) = k. (3.86)

Equation (3.86) establishes the strong analogy between the wavenumber vector and the
trajectory of acoustic rays. This concept is illustrated in Fig. 3.5a.



44 CHAPTER 3. FUNDAMENTALS OF ACOUSTIC THEORY
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(a) Rays in plane wave acoustic field.

x

y

(b) Rays in spherical wave acoustic field.

Figure 3.5: Analogy between the wavenumber vector and acoustic rays in a plane wave
acoustic field (Fig. 3.5a); the dashed lines represent the Eikonals, while the
dotted line represents the trajectory of the acoustic ray. Rays in a spherical
wave acoustic field (Fig. 3.5b) ; the dashed circles represent the Eikonals,
while the dotted line represents the trajectories of the acoustic rays.

Rays in Spherical Wave Acoustic Fields. Consider a spherical wave acoustic
field generated by a point source in the origin of the coordinate system

P (r, ω) =
ej

ω
c
‖r‖

4π‖r‖
. (3.87)

The Eikonal is
ψ(r, ω) =

ω

c
‖r‖, (3.88)

whose gradient is

∇ψ(r, ω) =
ω

c

(
x

‖r‖
x̂ +

y

‖r‖
ŷ +

z

‖r‖
ẑ

)
. (3.89)

Upon substituting (3.88) into (3.82) it is possible to verify that spherical wavefronts are
solutions to the Eikonal equation. In this scenario, trajectories of acoustic rays belong to
the bundle of lines crossing at the origin. Figure 3.5b illustrates this setting. In the more
general scenario of a point source placed at r′, acoustic rays belong to the bundle of lines
crossing at r′.

3.8 Beam Acoustics
This section introduces a physical model for acoustic fields in which sound is spatially
confined and it propagates without angular spread. However, elementary solutions to
the Helmholtz equation, like plane waves and spherical waves, seems to preclude such
modelization. Rays in a plane wave acoustic field are aligned with the direction of
propagation: in this setting there is no angular spread, but acoustic energy extends over
the entire space. On the other hand, in a spherical wave acoustic fields rays originate
from a single point, but they propagate diverging in all directions.

Although these two simple considerations (along with the wave acoustic theory reviewed
in the preceding sections) seem to preclude the possibility of adopting a local model,
in the following a physical model based on spatially localized wave objects is presented.
The instance of such wave objects that is considered in this work is called Gaussian
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Figure 3.6: Ray approximation and paraxial approximation.

beam, for which the acoustic energy is concentrated principally withing a small region
about the beam axis, while the energy distribution in any transverse plane is a Gaussian
function centered about the beam axis itself. In other words, Gaussian beams have limited
transverse extension. It should be remarked that such modelization is different from the
concept of a beam used in geometrical acoustics. Indeed, in that domain, a beam is
conceived as a bundle of rays originating from a point source; on the other hand, in this
context, a beam is conceived as originating from a region of finite extent, not from an
infinitesimal point source. In the following of this thesis it will be made clear how such
difference plays an fundamental role.

This section, following the work in Saleh and Teich [1991, Chap. 3] and Goldsmith
[1998, Chap. 2], provides a derivation for Gaussian beams starting from an approximated
form of the Helmholtz equation; then, the physical properties of acoustic Gaussian beams
are discussed.

3.8.1 The Paraxial Approximation

The paraxial approximation is an approximation to the Helmholtz equation that is valid
for small angles from the ray axis. It supports an increase of acoustic modeling accuracy
with respect to the ray-based model. Consider the illustrative scenario depicted in Fig. 3.6,
where an acoustic source is placed in the origin and an acoustic receiver is on the z-axis
at r = [0, 0, z]T . Within the acoustic ray approximation, the acoustic field received at
r due to a source in r′ = [0, 0, 0]T is the field of a plane wave with wavenumber vector
k = (ω/c)ẑ

P (r, ω) ≈ ej
ω
c
z, (3.90)

meaning that only a single plane wave in the direction of r contributes to the field. A
more refined approximation can be built associating to the propagation in the direction of
r a complex profile W (r, ω), such that the field received at r is

P (r, ω) = W (r, ω)ej
ω
c
z, (3.91)

as it is illustrated in Fig. 3.6. The ray approximation is a specific instance of paraxial
approximation with W (r, ω) = δ(r). Wave objects of the form (3.91) are called paraxial
waves [Saleh and Teich, 1991, p. 50]. The variation of W (r, ω) with position must be slow
within the distance of a wavelength λ = 2π/(ω/c); in this case, the wave object maintains
its local plane-wave nature [Saleh and Teich, 1991, p. 50]. The last assumption determines
that within a wavelength distance δz = λ, the variation δW is much smaller than W itself.
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Since δW = (∂W/∂z)δz = (∂W/∂z)λ, it follows [Saleh and Teich, 1991, p. 50, Eq. 2.2-20]

∂W (r, ω)

∂z
� ω

c
W (r, ω), (3.92)

and also the derivative ∂W/∂z varies slowly within a wavelength distance, so that

∂2W (r, ω)

∂z2
� ω

c

∂W (r, ω)

∂z
�
(ω
c

)2
W (r, ω). (3.93)

Upon substituting (3.91) into (3.13) one obtains

∇2
(
W (r, ω)ej

ω
c
z
)

+
(ω
c

)2
W (r, ω)ej

ω
c
z = 0. (3.94)

The expansion of the Laplace operator and the elimination of opposite terms yields

(∇2W (r, ω))ej
ω
c
z + 2〈∇W (r, ω),∇ej

ω
c
z〉 = 0 (3.95)

The inner product in (3.95) can be simplified by computing

∇ej
ω
c
z = j

ω

c
ej

ω
c
zẑ, (3.96)

thus yielding

〈∇W (r, ω),∇ej
ω
c
z〉 = j

ω

c

∂W (r, ω)

∂z
ej

ω
c
z. (3.97)

After substituting (3.97) into (3.95) and after multiplying by e−j(ω/c)z, (3.95) takes the
form of the reduced Helmholtz equation as presented in Goldsmith [1998, p. 10, Eq. 2.4]

∇2
TW (r, ω) +

∂2W (r, ω)

∂z2
+ j2

ω

c

∂W (r, ω)

∂z
= 0, (3.98)

where the notation ∇2
T denotes the transversal Laplace operator

∇2
T =

∂2

∂x2
+

∂2

∂y2
. (3.99)

In the sense of (3.93) one can neglect the factor ∂2W/∂z2 in comparison with ∂W/∂z,
thus obtaining

∇2
TW (r, ω) + j2

ω

c

∂W (r, ω)

∂z
= 0, (3.100)

which is known as the paraxial Helmholtz equation [Saleh and Teich, 1991, p. 51, Eq. 2.2-22],
[Goldsmith, 1998, p. 10, Eq. 2.5].

3.8.2 Gaussian Beams
Gaussian Beam Solution in Cylindrical Coordinates. In order to introduce
the Gaussian beam solution to the paraxial Helmholtz equation in a progressive fashion,
first the axial symmetric case (about the z axis) is considered. In particular, the cylindrical
reference frame is adopted, being ρ =

√
x2 + y2 the radial distance from the z axis and

φ being the angular coordinate, as depicted in Fig. 3.1c. In this coordinate system, the
transversal Laplace operator becomes

∇2
T =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ

∂2

∂φ2
. (3.101)
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Hence, the paraxial Helmholtz equation (3.100) is written as

∂2W (r, ω)

∂ρ2
+

1

ρ

∂W (r, ω)

∂ρ
+

1

ρ

∂2W (r, ω)

∂φ2
+ j2

ω

c

∂W (r, ω)

∂z
= 0, (3.102)

being W (r, ω) = W (ρ, φ, z, ω). Assuming axial symmetry (about z) makes W (ρ, φ, z, ω)
independent on φ, hence the second-order derivative of W with respect to φ in (3.102)
equals zero. Thus, the axially symmetric paraxial Helmholtz equation as presented in
Goldsmith [1998, p. 11, Eq. 2.7] reads

∂2W (ρ, z, ω)

∂ρ2
+

1

ρ

∂W (ρ, z, ω)

∂ρ
+ j2

ω

c

∂W (ρ, z, ω)

∂z
= 0. (3.103)

Following Kogelnik and Li [1966, p. 1315, Eq. 12] in the analogy between (3.103) and the
time dependent Schrödinger equation [Schrödinger, 1926], a trial solution to (3.103) is
assumed in the form

W (ρ, z, ω) = e
j

(
ω
c

ρ2

2q(z)
−ψ(z)

)
, (3.104)

being ψ(z) and q(z) complex function to be determined. In order to substitute (3.104)
into (3.102), first the single derivatives in (3.102) are computed, yielding

∂W (ρ, z, ω)

∂ρ
= j

ω

c

ρ

q(z)
W (ρ, z, ω), (3.105)

∂2W (ρ, z, ω)

∂ρ2
=

[
j
ω

c

1

q(z)
−
(ω
c

)2 ρ2

q2(z)

]
W (ρ, z, ω), (3.106)

∂W (ρ, z, ω)

∂z
= −

[
j
ω

c

ρ2

2q2(z)

dq(z)

dz
+ j

dψ(z)

dz

]
W (ρ, z, ω). (3.107)

Upon substituting (3.105)-(3.107) into (3.102) one obtains

−
(ω
c

)2 ρ2

q2(z)

[
1− dq(z)

dz

]
W (ρ, z, ω) + 2

ω

c

[
dψ(z)

dz
+

j

q(z)

]
W (ρ, z, ω) = 0. (3.108)

From (3.108) one can infer that the functions q(z) and ψ(z) must satisfy the differential
equations

dq(z)

dz
= 1, (3.109)

dψ(z)

dz
= − j

q(z)
. (3.110)

The solution to (3.109) is of the form

q(z) = z + q(0), (3.111)

where q(0) denotes the initial value of q(z) for z = 0. It is evident that q(0) must be a
measure of length, so that its dimension is the same as z; however, q(0) can not be a real
value. To demonstrate this statement, consider ad absurdum q(0) ∈ R; then

W (ρ, z, ω) = e
j ω
c

ρ2

2q2(z) e−jψ(z). (3.112)

Since |ej
ω
c

ρ2

2q2(z) | = 1 and since ψ(z) is independent on ρ, one concludes that the phase of
W (ρ, z, ω) is highly oscillatory with ρ, but its amplitude remains constant. This situation
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does not describe a beam, which is conceived to have most of its energy concentrated
near the beam axis (i.e. ρ ≈ 0) and gradually decaying as ρ increases. Hence, the case of
having q(0) ∈ R must be discarded. On the other hand, if q(0) is purely imaginary, i.e.
q(0) = jz0 one can write

q(z) = z + jz0. (3.113)

Since q(z) is present in (3.104) at the denominator of the exponential function, it is worth
expressing it as

1

q(z)
=

1

z + jz0
=

z

z2 + z2
0

− j z0

z2 + z2
0

; (3.114)

thus W (ρ, z, ω) becomes

W (ρ, z, ω) = e
j ω
c

zρ2

2(z2+z20) e
ω
c

z0ρ
2

2(z2+z20)) e−jψ(z). (3.115)

Consider now the solution to (3.110). The substitution of (3.113) into (3.110) yields

dψ(z)

dz
= − j

z + jz0
, (3.116)

whose solution is given by

ψ(z) = −j
∫ z

0

1

z′ + jz0
dz′ = log

(
z′ + jz0

)∣∣z
0

= −j log

(
1− j z

z0

)
.

(3.117)

Hence, the term e−jψ(z) in (3.115) becomes

e−jψ(z) = e− log(1−jz/z0) =
1

1− j zz0
. (3.118)

Upon writing the complex term 1− j(z/z0) in polar form, i.e.

1− j z
z0

=

√
1 +

(
z

z0

)2

e
−j arctan

(
z
z0

)
, (3.119)

(3.118) becomes

e−jψ(z) =
ej arctan(z/z0)√

1 + (z/z0)2
. (3.120)

Finally, upon substituting (3.120) into (3.115) and, in turn, substituting the result into
(3.91) one obtains the expression for the acoustic field of an axis symmetric Gaussian
beam about the z axis

P (r, ω) = e
j ω
c

zρ2

2(z2+z20) e
ω
c

z0ρ
2

2(z2+z20)
ej arctan(z/z0)√

1 + (z/z0)2
ej

ω
c
z. (3.121)

In order for (3.121) to represent a physically meaningful wave object, it must be ensured
that the real exponential term is decaying; this implies z0 ≤ 0; for convenience, a new
variable zc = −z0 is introduced and after this substitution, (3.122) becomes

P (r, ω) = e
j ω
c

zρ2

2(z2+z2c ) e
−ω
c

zcρ
2

2(z2+z2c )
e−j arctan(z/zc)√

1 + (z/zc)2
ej

ω
c
z. (3.122)
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Beam Parameters. In order to provide an illustrative view of beam wave objects,
some fundamental beam parameters are derived. First, consider the acoustic field of a
beam on the z = 0 plane, i.e.

P (ρ, 0, ω) = e
−ω
c
zcρ

2

2z2c = e−
ω
c
ρ2

2zc . (3.123)

Equation (3.123) has the form of the Gaussian function

e
− ρ2

2σ2
0 , (3.124)

where the parameter σ2
0 is related to the full width at half maximum FWHM3 of the

Gaussian function by
FWHM = 2

√
2 log(2)σ0. (3.125)

The parameter σ0 is interpreted as the radius of the beam on the plane z = 0 and by
comparison of (3.123) and (3.124) it is given by

σ0 =

√
zc

(ω/c)
. (3.126)

Another parameter is the radius of curvature of the wavefronts in the beam wave
object. This parameter is defined as

R(z) = z +
z2
c

z
, (3.127)

which in view of (3.126) can be rewritten as

R(z) = z +
1

z

(ω
c

)2
(
σ2

0

2

)2

. (3.128)

While the quantity σ0 is interpreted as the radius of the beam on the plane z = 0,
it is useful to obtain an analytic expression for the beam radius at arbitrary distances
z 6= 0. This quantity is obtain in a way analogous to σ0 removing the constraint of z = 0.
Consider the real exponential term in (3.122); this term in in the form (3.124) where the
parameter σ(z) is now a function of z and can be obtained by equating the exponents in
the two above mentioned equations

− ω

c

zcρ
2

2(z2 + z2
c )

=
ρ2

σ2(z)
, (3.129)

yielding

σ2(z) =
2

(ω/c)

(
zc +

z2

zc

)
. (3.130)

Upon substituting in (3.130) the expression for zc that can be obtained from (3.126), i.e.

zc =
ω

c
σ2

0, (3.131)

3The full width at half maximum is defined here as the difference between the extreme values
of ρ at which the Gaussian function is equal to half of its maximum. In the signal processing
context, this measure is usually regarded to as the bandwidth of a function, being the extreme
values the points at −3dB of attenuation.
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(a) Beam field.
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Figure 3.7: Transverse spreading and drop of the on-axis amplitude for axis symmetric
beam propagation. White dashed lines in Fig. 3.7a denote the beam radius
σ(z). The temporal frequency is set to 1 kHz, the speed of sound is 340ms−1

and the beam waist radius is set to σ0 = 0.05m.

and taking the square root, one obtains the beam radius as

σ(z) = σ0

√
1 +

(
2z

(ω/c)σ2
0

)2

. (3.132)

It can be directly observed from (3.132) that the beam radius is minimum at z = 0; hence
the quantity σ0 is usually referred to as beam waist radius. It can also be observed that at
the beam waist (i.e. at z = 0) the radius of curvature of the wavefronts (3.128) is infinite;
this means that at the beam waist the beam wavefronts are planar.

Adopting the beam parameters introduced in these paragraphs, (3.122) can be rewritten
as

P (r, ω) = e
j ω
c

ρ2

R(z) e
−ω
c

ρ2

σ2(z)
e−j arctan(2z/((ω/c)σ2

0))√
1 + (2z/((ω/c)σ2

0))2
ej

ω
c
z. (3.133)

For illustrative purposes, Fig. 3.7 shows the beam field and the drop of on-axis
amplitude for a Gaussian beam of the form (3.133). The temporal frequency is set to
1 kHz, the speed of sound is 340ms−1 and the beam waist radius is set to σ0 = 0.05m.
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Rayleigh Range In the literature on Gaussian beams, it is common to write the
beam parameters in term of another parameter, called Rayleigh range [Goldsmith, 1998,
p. 22]. The Rayleigh range is defined in Goldsmith [1998, p. 22, Eq. 2.41] as

zR =
σ2

0

2(ω/c)
. (3.134)

Adopting the definition (3.134), the beam parameters can be written as

R(z) = z +
z2

R

z
, (3.135)

σ(z) = σ0

√
1 +

(
z

zR

)2

, (3.136)

e−j arctan(2z/((ω/c)σ2
0)) = e−j arctan(z/zR). (3.137)

At the beam waist, the beam radius σ(z) attains its minimum value σ0; here the
radius of curvature is infinite, being the beam wavefronts planar at the beam waist. The
phase term in (3.137) can be interpreted as the on axis phase shift between a Gaussian
beam and a plane wave [Goldsmith, 1998, p. 23]; it is easy to infer from (3.137) that the
phase shift is zero at the beam waist.

The beam radius increases monotonically with the distance z. It can be verified that
for z < zR the beam radius remains essentially constant, being σ(z) ≤

√
2σ0 in that region.

Due to this consideration, the Rayleigh range is usually regarded to as the propagation
distance z within which the Gaussian beam propagates without significant spreading;
beams in this range are called in the literature collimated beams.

Gaussian Beam Solution in 2-D Cartesian Coordinates. Before introducing
the more general form of the Gaussian beam is three-dimension, this paragraph considers
the simplified case of a beam field that is invariant on the y spatial coordinate. The
paraxial Helmholtz equation (3.100) becomes

∂2W (x, z, ω)

∂x2
+ j2

ω

c

∂W (x, z, ω)

∂z
= 0. (3.138)

Assuming a solution of the form

W (x, z, ω) = Ax(z)e
j ω
c

x2

2qx(z) (3.139)

leads to the conditions

∂qx(z)

∂z
= 1, (3.140)

∂Ax(z)

∂z
= −1

2

Ax(z)

qx(z)
. (3.141)

The first equation is identical to (3.109), thus the same solution (3.113) is employed. This
leads to the same definitions for the beam parameters as in the cylindrically-symmetric
case. On the other hand, the solution for Ax(z) can be assumed of the form [Goldsmith,
1998, p. 16]

Ax(z)

Ax(0)
=

√
qx(0)

qx(z)
, (3.142)
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showing that the real part of the solution, in the two-dimensional case, depends on the
square root of z, while the phase shift is the same as in the previous case. Finally, the
acoustic field due to a two-dimensional beam is [Goldsmith, 1998, p. 16, Eq. 2.30]

P (x, z, ω) = 4

√
2

πσ2
x(z)

e
j ω
c

x2

Rx(z) e
−ω
c

x2

σ2
x(z) e−j arctan(2z/((ω/c)σ2

0,x))ej
ω
c
z. (3.143)

Gaussian Beam Solution in 3-D Cartesian Coordinates. The full 3-D parax-
ial Helmholtz equation (3.100) can be solved by the method of separation of variables,
assuming a solution given by the product of 2-D solutions of the form (3.139), i.e.

W (x, y, z, ω) = Ax(z)Ay(z)e
j ω
c

x2

2qx(z) e
j ω
c

y2

2qy(z) , (3.144)

yielding to the conditions

∂qx(z)

∂z
= 1,

∂qy(z)

∂z
= 1, (3.145)

∂Ax(z)

∂z
= −1

2

Ax(z)

qx(z)
,

∂Ay(z)

∂z
= −1

2

Ay(z)

qy(z)
. (3.146)

Being these conditions of the same form of those seen in the previous paragraph, the
overall acoustic field due to a 3-D Gaussian beam is given by the product of its x and y
independent components

P (x, y, z, ω) =

√
2

πσx(z)σy(z)
e
j ω
c

x2

Rx(z) e
j ω
c

y2

Ry(z) e
−ω
c

x2

σ2
x(z) e

−ω
c

y2

σ2
y(z)

e−j arctan(2z/((ω/c)σ2
0,x))e−j arctan(2z/((ω/c)σ2

0,y))ej
ω
c
z,

(3.147)

being the beam radii

σx(z) = σ0,x

√√√√1 +

(
2z

(ω/c)σ2
0,x

)2

, (3.148)

σy(z) = σ0,y

√√√√1 +

(
2z

(ω/c)σ2
0,y

)2

(3.149)

and the wavefront curvatures

Rx(z) = z +
1

z

(ω
c

)2
(
σ2

0,x

2

)2

, (3.150)

Ry(z) = z +
1

z

(ω
c

)2
(
σ2

0,y

2

)2

. (3.151)

3.9 Summary
• Fundamental equations governing acoustic fields are introduced, both in the time-

domain (referred to as homogeneous (3.10) and inhomogeneous (3.14) wave equa-
tions) and in the temporal-frequency domain (referred to as homogeneous (3.13)
and inhomogeneous (3.15) Helmholtz equations).
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• Plane waves (3.16), spherical waves (3.27) and cylindrical waves (3.50) are introduced
as fundamental solutions to the homogeneous Helmholtz equation in Cartesian,
spherical and cylindrical coordinate systems, respectively.

• The formalism of Green’s functions is introduced as the solution to the inhomoge-
neous Helmholtz equation.

• The Kirchoff-Helmholtz integral equation (3.72) is introduced as a mathematical tool
to determine the acoustic field inside a given a distribution of acoustic monopoles
and dipoles on the boundary. A simplification to the Kirchoff-Helmholtz integral
equation is provided by the single layer potential (3.74) formulation, which employs
only acoustic monopoles.

• Ray acoustics is introduced as a powerful approximation to wave acoustic theory,
valid at high temporal frequencies. Rays are formally introduced as the solution to
the Eikonal equation (3.82), which is derived as an high-frequency approximation
to the Helmholtz equation.

• Beam acoustic is introduced as a more accurate approximation with respect to
ray acoustics. In particular, Gaussian beams are introduced as the solution to the
paraxial Helmholtz equation (3.100), derived as a small-angle approximation to the
Helmholtz equation.



This page intentionally left blank.



Chapter 4

Acoustic Field Representations

This chapter serves as a bridge between the physical acoustics perspective reviewed in
Chap. 3 and the discipline of signal processing. In particular, this chapter presents repre-
sentations for acoustic fields that are direct generalizations of the signal representations
reviewed in Chap. 2. In this view, the attention is focused to non-parametric acoustic
field representations, since these require no a-priori knowledge of the sound scene. In
this scenario the sound scene is completely described by the concept of the acoustic field,
already defined in Chap. 3 as a real-valued scalar function of spatial position and time, i.e.

p(r, ω), r ∈ R3, t ∈ R. (4.1)

A naïve acoustic field representation would be to encode the value of the pressure at
any instant of time in any position of space. Of course, this representation is impractical,
since it requires the encoding of a prohibitive amount of information. The objective
behind any acoustic field representation is to encode all the information contained in the
acoustic field in a more manageable format.

The following steps are applied in order to present each of the acoustic field represen-
tations reviewed in this chapter.

1. A basis solution to the Helmholtz equation is chosen and a set of independent
variables that determine the basis solution is identified.

2. General solutions to the Helmholtz equation are identified as a weighed superposition
of a set of basis solutions.

3. Weighing coefficients are found, which depend on the set of independent variables.

4. The acoustic field is approximated through a weighed sum of basis solutions.

For simplicity, all the representations considered here target time-harmonic signals;
for this reason, in the following just solutions to the Helmholtz equation are considered.
In later chapters, for each of the specific applications considered, it will be explained how
the representation is adapted to accommodate wide-band signals.

4.1 Plane Wave Representations
Upon choosing plane waves as basis solutions, one obtains that an arbitrary acoustic field
satisfying the homogeneous Helmholtz equation can be represented as an integral expansion
of plane waves propagating in all directions. The importance of such representation arise
from several factors, pointed out in Devaney and Sherman [1973, p. 765]:

55
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• plane waves have a simple functional form, the only independent variables that
completely characterize a plane wave are direction of propagation and temporal
frequency, thus their physical interpretation is straightforward;

• under certain conditions, the plane wave expansion can be inverted: indeed, plane
waves amplitudes can be computed starting from the knowledge of the acoustic field;
thus, the plane wave representation constitute an useful model in both analysis and
synthesis problems.

Two different plane wave representations are discussed in this section. The first
has been historically attributed to Whittaker [1903], who showed that an acoustic field
satisfying the homogeneous Helmholtz equation 3.13 in a region V can be represented
in V by an integral of propagating plane waves. Another representation is attributed
to Weyl [1919], who showed that a spherical wave can be represented in any half-space
not containing the point source by an integral of both propagating and evanescent plane
waves. Expansion of the latter type (Weyl’s expansion) are usually called angular spectrum
expansions, as in Mandel and Wolf [1995, pp. 109-127].

Expansion of Whittaker’s and Weyl’s form are similar, in the sense that both are
based on plane waves basis solutions, but they differ in some respect. Indeed, Whittaker’s
expansion contains only propagating plane waves, thus at any observation point it includes
plane waves propagating in all directions, both incoming and outgoing with respect to the
sound source. On the other hand, Weyl’s expansion includes homogeneous plane waves
propagating only in the outgoing half-space. It has been shown in Nieto-Vesperinas [1988]
that the two representations are equivalent in their common domain of validity, in the
sense that the Whittaker expansion of plane waves propagating towards the sound source
is equal to the contribution of evanescent waves in Weyl’s expansion.

4.1.1 Whittaker’s Representation
Consider the acoustic field of a propagating plane wave of the form

P (r, ω) = ej〈k,r〉, k ∈ R3, ‖k‖ =
ω

c
. (4.2)

Upon varying k in R3, with the constraint ‖k‖ = ω
c dictated by the dispersion relation,

one obtains a complete set of basis functions over which an arbitrary acoustic field
may be decomposed. The Whittaker expansion can thus be formulated as an inverse
multi-dimensional Fourier transform with respect to the spatial variable r (cfr. Def. 3),
i.e.

P (r, ω) =

(
1

2π

)3 ∫∫∫
D
P̃ (k)ej〈k,r〉 d3r, D =

{
k ∈ R3 : ‖k‖ =

ω

c

}
, (4.3)

where k plays the role of a spatial frequency and the function P̃ (k) encodes the amplitude
and phase of each plane wave contribution to the integral. We observe that the domain of
integration in (4.3) is a sphere in R3 with radius ω/c; this peculiar domain of integration
results from the dispersion relation, which dictates ‖k‖ = ω/c in order to obtain a
physically-valid acoustic field. The function P̃ (k) can be computed from the knowledge of
the acoustic field P (r, ω) starting from the multi-dimensional Fourier transform of P (r, ω)
with respect to r

P̃ (ξ) =

∫∫∫
R3

P (r, ω)e−j〈ξ,r〉 d3ξ (4.4)
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and then restricting P̃ (ξ) only to those values of ξ that satisfy the dispersion relation

P̃ (k) = P̃ (ξ)|‖ξ‖=‖k‖=ω
c
. (4.5)

The geometric interpretation of (4.3) provides useful insights on the intuition behind
Whittaker expansion. Upon factorizing the wavenumber vector k as

k =
ω

c
k̂, (4.6)

where k̂ is the unit vector in the direction of k, which can be written in terms of its
Cartesian components as

k̂x = κ sin(θ) cos(φ),

k̂y = κ sin(θ) sin(φ),

k̂z = κ cos(θ),

(4.7)

θ and φ being the co-elevation and azimuth angles in the spherical reference frame,
respectively, and κ = 1 to satisfy the dispersion relation (3.17). In order to substitute the
angular factorization (4.7) into the Whittaker expansion, one has to perform a change
of variables in the integration (4.3) from k = (ω/c)[k̂x, k̂y, k̂z]

T to θ, φ, κ. The Jacobian
matrix reads ∣∣∣∣∣∂(k̂x, k̂y, k̂z)

∂(κ, θ, φ)

∣∣∣∣∣ =

∣∣∣∣∣∣
∂k̂x/∂κ ∂k̂x/∂θ ∂k̂x/∂φ

∂k̂y/∂κ ∂k̂y/∂θ ∂k̂y/∂φ

∂k̂z/∂κ ∂k̂z/∂θ ∂k̂z/∂φ

∣∣∣∣∣∣ = κ2 sin(θ). (4.8)

Setting κ = 1 to satisfy the dispersion relation and upon performing the change of variables
using the Jacobian in (4.8), one obtains a different form of Whittaker’s expansion

P (r, ω) =
(ω
c

)3
∫∫
S
P̃ (θ, φ, ω)ej

ω
c

(x sin(θ) cos(φ)+y sin(θ) sin(φ)+z cos(θ)) sin(θ) dθ dφ, (4.9)

with the domain of integration being S = {θ ∈ [0, π], φ ∈ [0, 2π)}. The interpretation of
(4.9) is straightforward and intuitive. Equation (4.9) states that an arbitrary acoustic field
can be represented as a superposition of propagating plane waves in directions θ ∈ [0, π],
φ ∈ [0, 2π), while the function P̃ (θ, φ, ω) encodes the magnitude and phase for each plane
wave in direction θ, φ at temporal frequency ω. The function P̃ (θ, φ, ω) is referred to in
the literature as Herglotz density [Colton and Kress, 1992, p. 54]. It is remarkable that
the representations in (4.3) and (4.9) are valid in a whole source free region V [Sherman,
1969] and P̃ is spatially invariant, in the sense that it does not depend on the observation
position r.

The notion of the Herglotz density is of great importance in this thesis. As it will be
clear in next chapters, it proves it provide the theoretical foundation for several of the
techniques presented in this thesis.

4.1.2 Weyl’s Representation
Consider a source distribution

Q(r, ω) 6= 0, ∀r ∈ Q. (4.10)

The acoustic field generated by this source distribution satisfies the inhomogeneous
Helmholtz equation (3.15) and can be constructed by means of Green’s functions as

P (r, ω) =

∫
Q
Q(r′, ω)G(r|r′, ω) d3r′. (4.11)
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Weyl’s identity [Williams, 1999, p. 35] states that the acoustic field of a point source can
be expanded as an integral of both propagating and evanescent plane waves1 [Mandel and
Wolf, 1995, p. 123, Eq. 3.2-62]

G(r|r′, ω) =
e−j

ω
c
‖r−r′‖

4π‖r− r′‖
= −j(ω/c)

2π

∫∫
R2

ej(kx(x−x′)+ky(y−y′)+kz |z−z′|)

kz
dkx dky, (4.12)

where

kz =


√

(ω/c)2 − k2
x − k2

y, for k2
x + k2

y ≤ (ω/c)2

−j
√
k2
x + k2

y − (ω/c)2, for k2
x + k2

y > (ω/c)2
(4.13)

and the modulus |z− z′| accounts for both half spaces z− z′ > 0 and z− z′ < 0. It should
be remarked that (4.12) is valid unless z = z′. Upon substituting (4.12) into (4.11) one
obtains

P (r, ω) = −j(ω/c)
2π

∫
Q
Q(r′, ω)

[∫∫
R2

ej(kx(x−x′)+ky(y−y′)+kz |z−z′|)

kz
dkx dky

]
d3r′. (4.14)

Considering only the half space z − z′ > 0, after exchanging the order of integration and
bringing terms independent on r′ out of the inner integral, one obtains

P (r, ω) = −j(ω/c)
2π

∫∫
R2

ej〈k,r〉
[∫
Q

Q(r′, ω)

kz
e−j〈k,r

′〉 d3r′
]
dkx dky, (4.15)

where the terms in square brackets in (4.15) is recognized as a multi-dimensional Fourier
transform of Q(r′, ω)/kz, restricted to the domain Q where the sound sources are active.
Equation (4.15) is the Weyl’s expansion of an arbitrary acoustic field P (r, ω) and it
involves both propagating and evanescent plane waves. The integral in square brackets is
known as angular spectrum [Mandel and Wolf, 1995, p. 122], and it exhibits a discontinuity
for kz = 0, i.e. for (ω/c)2 = k2

x + k2
y. The latter constraint represents a circle in the

(kx, ky) plane where the nature of plane waves changes: propagating plane waves are
encoded within the circle, while evanescent plane waves are outside the circle. It is shown
in Mandel and Wolf [1995, pp. 122-123] that the singularity in (4.15) is integrable except
at the position r′ of the point source.

Also in the case of the Weyl’s expansion, a more intuitive geometrical view can be
derived, starting from the change of variables

kx =
ω

c
sin(α) cos(β),

ky =
ω

c
sin(α) sin(β),

kz =
ω

c
cos(α).

(4.16)

1In this thesis, the field of an outgoing spherical wave is described by

P (r, ω) =
e−j

ω
c ‖r−r

′‖

4π‖r− r′‖
,

while in Williams [1999] a different convention is adopted, leading to the functional form

P (r, ω) =
ej

ω
c ‖r−r

′‖

4π‖r− r′‖
.

Due to this discrepancy, the form of Weyl’s identity used in this thesis is taken from Mandel and
Wolf [1995, p. 123] slightly different with respect to the one reported in Williams [1999, p. 35].
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(b) Contour C.

Figure 4.1: The α-contours used in the Weyl representations of a spherical wave. In
Fig. 4.1a each point on the horizontal segment C1 is associated with a
homogeneous plane wave and each point on the vertical line C2 is associated
with an evanescent plane wave. The curve C in Fig. 4.1b is the deformed
contour. This figure has been redrawn from Mandel and Wolf [1995, p. 124,
Fig. 3.14].

In the propagating regime, i.e. when k2
x + k2

y ≤ (ω/c)2, the parameters α and β are the
spherical angles related to the direction of propagation of the plane wave in the considered
half space [Mandel and Wolf, 1995, p. 123, Eq. 3.2-64]

α = θ ∈ [0, π/2), and β = φ ∈ [0, 2π). (4.17)

In the evanescent case, i.e. when k2
x + k2

y > (ω/c)2, the wavenumber component kz is
imaginary, hence α is the complex angle [Mandel and Wolf, 1995, p. 123, Eq. 3.2-65]

α =
π

2
+ jα′, −∞ < α′ < 0, and β = φ ∈ [0, 2π). (4.18)

Upon performing the change of variables (4.16) into (4.14) one obtains

P (r, ω) = −j(ω/c)
2π

∫
Q
Q(r′, ω)[∫ 2π

0

∫
C1+C2

ej
ω
c

(sin(α) cos(β)(x−x′)+sin(α) sin(β)(y−y′)+cos(α)(z−z′)) sin(α) dα dβ

]
d3r′, (4.19)

where C1 denotes the portion of the α-contour associated to propagating plane waves,
while C2 denotes the portion associated to evanescent waves. Figure 4.1a shows the two
contours in the α plane. Thanks to the Cauchy theorem of integration in the complex
plane [Rudin, 1987, p. 220], the contour C1 + C2 can be deformed into any contour that
begins at the origin of the α plane and approaches asymptotically the point π/2− j∞.
An example of such contour is the contour C depicted in Fig. 4.1b. Interchanging the
order of integration in (4.19) and using the inner product notation, one obtains

P (r, ω) = −j(ω/c)
2π

∫ 2π

0

∫
C
ej〈k,r〉Q̃(k) sin(α) dα dβ, (4.20)
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where the function Q̃(k) has been introduced as the multi-dimensional Fourier transform
of Q(r′, ω) with respect to spatial coordinates and restricted to the source domain Q

Q̃(k) =

∫
Q
Q(r′, ω)e−j〈k,r

′〉 d3r′, (4.21)

and the components of k are given in (4.16). Equation (4.20) represents an arbitrary
sound field as the integral of plane waves propagating in one half space and of evanescent
plane waves. The function Q̃(k) encodes the amplitude and phase of each plane wave
component.

Weyl’s expansion is of great importance in this thesis. Particularly, results pertaining
to Weyl’s representation will be employed in next paragraphs to provide a solid physical
foundation for the beam-based representation of acoustic field proposed in this thesis.

4.2 Spherical Wave Representation
The section reviews the spherical wave representation for acoustic fields, which arises from
the choice of spherical waves (cfr. Sec. 3.3.2) as basis solutions to the Helmholtz equation.
The spherical wave expansion describes an acoustic field as a sum of spherical harmonic
waves weighed by suitable coefficients. The importance of this representation lies in the
following considerations:

• the set of coefficients is infinite but discrete, not a continuum as in the plane wave
representation;

• the series can often be truncated, in the sense that if one retains only the first terms,
a good approximation to the acoustic field can still be obtained;

• the angular dependence of the acoustic field is completely described by spherical
harmonics, thus it does not depend on temporal frequency.

Consider the acoustic field of a spherical wave as derived in Sec. 3.3.2

P (r, ω) = R(r)Y m
l (θ, φ), (4.22)

where the function R(r) describes the functional dependency of the acoustic field on the
observation distance r = ‖r‖

R(r) = R1jl

(ω
c
r
)

+R2yl

(ω
c
r
)
, or (4.23)

R(r) = R3h
(1)
l

(ω
c
r
)

+R4h
(2)
l

(ω
c
r
)
. (4.24)

We refer the reader to (3.44) and (3.45) for a discussion on the role played by all the
terms in the two preceding equations. It suffice here to remark that the function jl(·) is
suitable to represent the acoustic field internal to a source distribution, while the external
case is represented by the function h1

l (·).
Any solution to the homogeneous Helmholtz equation can be written as the infinite

sum of spherical waves [Williams, 1999, p. 186]

P (r, ω) =
∞∑
l=0

l∑
m=−l

(
Alm(ω)jl

(ω
c
r
)

+Blm(ω)
(ω
c
r
))

Y m
l (θ, φ) (4.25)

=

∞∑
l=0

l∑
m=−l

(
Clm(ω)h

(1)
l

(ω
c
r
)

+Dlm(ω)h
(2)
l

(ω
c
r
))

Y m
l (θ, φ). (4.26)
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Figure 4.2: Interior and exterior problems. The gray area denotes the volume of interest
V, while the sound source region is colored in black.

In the following a discrimination between the two cases above mentioned cases is
introduced, according to the spatial arrangement of acoustic sources with respect to
the volume where the acoustic field representation is valid: the concepts of interior and
exterior problems, according to the settings described in Williams [1999, p. 207 and p. 217],
are introduced. On the one hand, interior problems consider acoustic fields in a volume
that is free of sources, in the sense that all the acoustic sources and scatterers are located
outside the volume of interest, as depicted in Fig. 4.2a. On the other hand, exterior
problems consider the acoustic field in a volume that is exterior to the spatial region
where sources and scatterers are located, as depicted in Fig. 4.2b. Exterior problems do
not necessary extend to infinity [Ahrens, 2012, p. 30].

It is important to remark that there is a region of space where the acoustic field can
not be represented as a summation of spherical waves. This is the ring-shaped region
that share the same radial distance with respect to the source distribution. A similar
limitation emerges in plane-wave representations. In particular, Weyl’s representation is
valid only in an half space free of sources, while Whittaker’s representation is valid only in
an arbitrarily-shaped source-free volume; both cases are analyzed in Lalor [1968], Devaney
and Sherman [1973].

4.2.1 Exterior Problem
Consider the exterior problem as depicted in Fig. 4.2b. The radial dependency of the
acoustic field, in this case, is conveniently described only by the function h(1)

l , describing
an outgoing wave [Williams, 1999, p. 207]. Thus, the expansion of a general external
acoustic field is [Williams, 1999, p. 206]

P (r, ω) =

∞∑
l=0

l∑
m=−l

Clm(ω)h
(1)
l

(ω
c
r
)
Y m
l (θ, φ). (4.27)

In this expansion, the acoustic field is completely determined by the coefficients Clm(ω).
Assuming that the acoustic field is known on a sphere of radius a, the acoustic field in

the entire external volume V is completely determined once the coefficients Clm(ω) are
known. After evaluating (4.27) on a sphere of radius a (i.e. ‖r‖ = 0) and exploiting the
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orthonormal property of spherical harmonics (cfr. the discussion on Eq. 3.40) one obtains
[Williams, 1999, p. 207, Eq. 6.93]

Clm(ω) =
1

h
(1)
l

(
ω
c r
) ∫ 2π

0

∫ π

0
P (a, θ, φ, ω)Y −ml (θ, φ) sin(θ) dθ dφ, (4.28)

where it has been explicitly indicated that the acoustic field is considered on a sphere of
radius a, i.e.

P (a, θ, φ, ω) = P (r, ω)|‖r‖=a. (4.29)

Upon substituting (4.28) into (4.27) one obtains the expression for the external acoustic
field in all points satisfying ‖r‖ > a [Williams, 1999, p. 207, Eq. 6.94]

P (r, ω) =
∞∑
l=0

h
(1)
l

(
ω
c r
)

h
(1)
l

(
ω
c a
) l∑
m=−l

Y m
l (θ, φ)

∫ 2π

0

∫ π

0
P (a, θ′, φ′, ω)Y −ml (θ′, φ′) sin(θ′) dθ′ dφ′.

(4.30)

4.2.2 Interior Problem
Consider now the interior problem as depicted in Fig. 4.2a. The radial dependence, in this
case, must account for the finiteness of the acoustic field near the origin. Thus, spherical
Bessel functions are chosen to describe the radial dependence [Williams, 1999, pp. 217-218]

P (r, ω) =

∞∑
l=0

l∑
m=−l

Alm(ω)jl

(ω
c
r
)
Y m
l (θ, φ). (4.31)

The expansion coefficients Alm(ω) can be determined from the knowledge of the acoustic
field on a sphere of radius b, following a route analogous to the external case, yielding
[Williams, 1999, p. 218, Eq. 6.140]

Alm(ω) =
1

jl
(
ω
c b
) ∫ 2π

0

∫ π

0
P (b, θ, φ)Y −ml (θ, φ) sin(θ) dθ dφ. (4.32)

Inserting (4.32) into (4.31) one obtains an expression for the acoustic field at ‖r‖ < b
given the knowledge of the field on a sphere of radius b [Williams, 1999, p. 218, Eq. 6-142]

P (r, ω) =

∞∑
l=0

jl
(
ω
c r
)

jl
(
ω
c b
) l∑
m=−l

Y m
l (θ, φ)

∫ 2π

0

∫ π

0
P (b, θ′, φ′, ω)Y −ml (θ′, φ′) dθ′ dφ′. (4.33)

4.2.3 Bandlimited Spherical Wave Representations
Both expansion (4.27) and (4.31) are characterized by an infinite number of coefficients. It
has been shown in Kennedy et al. [2007] that an arbitrary acoustic field can be expressed
as a truncated spherical wave series of the type

PL(r, ω) =
L∑
l=0

l∑
m=−l

Clm(ω)h
(1)
l

(ω
c
r
)
Y m
l (θ, φ) (4.34)

for external fields and of the type

PL(r, ω) =

L∑
l=0

l∑
m=−l

Alm(ω)jl

(ω
c
r
)
Y m
l (θ, φ). (4.35)
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for internal fields, and the error introduced by the truncation is upper bounded.
With more details, Kennedy et al. [2007, p. 2546, Theorem 1] state that an arbitrary

acoustic field P (r, ω) having representation (4.27) or (4.31) can be truncated to l ≤ L
terms as in (4.34) or (4.35), and the normalized truncation error (as defined in Kennedy
et al. [2007, p. 2546, Eq. 28]) is upper bounded by 0.16127e−∆ provided that

L =
⌈e

2

ω

c
‖r‖
⌉

+ ∆, ∆ ∈ Z+. (4.36)

This result provides the theoretical foundation for the use of bandlimited (i.e. truncated)
spherical wave expansions, thus enabling their use in practical contexts. In this scenario,
the acoustic field is compactly described by L2 coefficients.

4.3 Cylindrical Wave Representation
The adoption of cylindrical waves as basis solutions to the Helmholtz equation leads to the
cylindrical wave representation for acoustic field. The importance of this representation lies
in the fact that cylindrical waves are a convenient wave object to describe height-invariant
acoustic field, thus the expansion in terms of cylindrical waves is usually adopted when
one intends to simplify three-dimensional problems considering only a two-dimensional
plane, and assuming the acoustic field to be invariant with respect to the neglected spatial
direction. Similarly to the spherical wave representation, coefficients in the cylindrical wave
representation are infinite but discrete, and the series can be truncated to approximate
the acoustic field with arbitrary accuracy.

Consider the acoustic field of a cylindrical wave, as derived in 3.3.3

P (r, ω) = R(ρ)Z(z)ejmφ, (4.37)

where ρ =
√
x2 + y2 and the function R(ρ) describes the radial dependency of the acoustic

field

R(ρ) = R1Jm(kρρ) +R2Ym(kρρ) (4.38)

R(ρ) = R3H
(1)
m (kρρ) +R4H

(2)
m (kρρ), (4.39)

being kρ =
√

(ω/c)2 − k2
z . Arbitrary solutions to the homogeneous Helmholtz equations

can be written as the infinite sum of cylindrical waves

P (r, ω) =
∞∑

m=−∞
ejmφ

1

2π

∫
R

[
Am(kz, ω)ejkzzJm(kρρ) +Bm(kz, ω)ejkzzYm(kρρ)

]
dkz

(4.40)

=

∞∑
m=−∞

ejmφ
1

2π

∫
R

[
Cm(kz, ω)ejkzzH(1)

m (kρρ) +Dm(kz, ω)ejkzzH(2)
m (kρρ)

]
dkz.

(4.41)

Both expressions in (4.40) and (4.41) can be recognized as a mono-dimensional inverse
Fourier transform on kz and a Fourier series in φ.

The cylindrical wave expansion specialized for external problems includes only Hankel
functions of first kind and reads [Williams, 1999, p. 124, Eq. 4.50]

p(r, ω) =

∞∑
n=−∞

ejmφ
1

2π

∫
R
Cm(kz, ω)ejkzzH(1)

m (kρρ) dkz. (4.42)
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On the other hand, solutions for internal problems are better described by Bessel functions
[Williams, 1999, p. 123, eq. 4.49]

P (r, ω) =

∞∑
m=−∞

ejmφ
1

2π

∫
R
Am(kz, ω)ejkzzJm(kρρ) dkz. (4.43)

In this thesis, expansions (4.42) and (4.43) will not be used directly. Instead, cylindrical
waves expansions will be used to build approximations to three-dimensional problems
when all microphones or loudspeakers are aligned on a single plane. In this scenario it
is customary to consider the acoustic field to be invariant on one spatial coordinate, say
z, and then focus on a single plane, z = 0 for convenience. This restriction prevents
the presence of acoustic waves coming from below or above the plane z = 0, thus kz is
constrained to zero.

With these restrictions, (4.42) and (4.44) become

p(r, ω) =

∞∑
n=−∞

Cm(ω)H(1)
m

(ω
c
ρ
)
ejmφ. (4.44)

and

P (r, ω) =

∞∑
m=−∞

Am(ω)Jm

(ω
c
ρ
)
ejmφ, (4.45)

respectively. Inversion formulas for the computation of the expansion coefficients Cm(ω) or
Am(ω) will be discussed later in this thesis, in relation to specific applicative settings. The
representations (4.44) and (4.45) are usually referred to as circular harmonic expansions.

4.4 Beam-Based Representation of Acoustic Fields
This section introduces the beam-based representation of acoustic field that will be
exploited for acoustic signal processing purposes in Part III of this thesis. The beam-
based representation is here introduced in a slightly different way with respect to the
other representations presented in this chapter. Indeed, for the sake of highlighting
the peculiarities of the beam-based representation in comparison with the conventional
representations previously examined, a derivation of the beam-based representation is
proposed starting from the plane wave representation; from this starting point, the
discussion on the frame-like nature of the beam-based representations follows smoothly.

The goal of this section is to obtain a frame-like representation (cfr. 2.4) for the
acoustic field, expressed as a summation of beam wave objects of the type introduced
in Sec. 3.8. For this purpose, we define the four-dimensional space of spatial positions
r′ = [x, y, 0]T (i.e. the origins of the beam objects) and beam axes k̂ as

X = (r′, k̂). (4.46)

Consider a Cartesian grid on X, where the sampling intervals on x and y axes are equal
and given by x̄. Consider also a uniform sampling in the k̂ plane, where the sampling
interval is denoted by k̄. With this notation, a point in the grid is denoted by

Xµ = (r′m, k̂n) = (m1x̄,m2x̄, n1k̄, n2k̄), (4.47)

where the vector index notation µ = (m,n) = (m1,m2, n1, n2) is used. As proposed in
Shlivinski et al. [2004, p. 2047], a reference temporal frequency ω̄ is chosen to be greater
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than the maximum temporal frequency of interest, i.e. ω̄ > ωmax; then, the discrete space
Xµ is chosen to be critically complete at ω = ω̄, i.e.

ω̄

c
k̄x̄ = 2π. (4.48)

The same grid is used at all temporal frequencies ω < ω̄ of interest; for a specific temporal
frequency ω, the overcompleteness parameter is given by

ν(ω) =
ω

ω̄
< 1. (4.49)

Thus, a frequency independent set of beam origins and axes is obtained by scaling the
overcompleteness parameter ν with frequency, such that (4.49) is satisfied.

4.4.1 General Frame Expansion
Consider a two-dimensional window function and its dual, obtained by Cartesian multipli-
cation of the corresponding one-dimensional functions, i.e. [Shlivinski et al., 2004, p. 2047,
Eq. 22a-b]

ϕµ(r′, ω) = ϕ(r′ − r′m, ω)ej
ω
c
〈k̂n,r′−r′m〉, (4.50)

ϕ̃µ(r′, ω) = ϕ̃(r′ − r′m, ω)ej
ω
c
〈k̂n,r′−r′m〉. (4.51)

An arbitrary acoustic field P (r′, ω) in the z = 0 plane can be represented by a Gabor
frame as

P (r′, ω) =
∑
µ

aµ(ω)ϕ(r′, ω), (4.52)

where the frame expansion coefficients aµ(ω) are given by the projection of the field onto
the dual frame elements

aµ(ω) = 〈P (r′, ω), ϕ̃µ(ω)〉 =

∫∫
P (r′, ω)ϕ̃∗(r′ − r′m, ω)e−j

ω
c
〈k̂n,r′−r′m〉 d2r′. (4.53)

The frame expansion in (4.53) is similar to the multidimensional extension of the local
Fourier transform in Def. 8: this consideration enables the identification of the coefficients
aµ(ω) with the local plane wave spectrum of P (r′, ω) sampled at grid points Xµ.

4.4.2 Gaussian Beam Expansion
The choice of Gaussian windows of the type (2.70) as prototype frame elements leads to
several valuable properties, listed in Shlivinski et al. [2004] and here reported.

• Gaussian windows can be parametrized by the overcompleteness parameter (4.49)
in order to provide the minimum frame ratio for all temporal frequencies of interest.

• Gaussian windows determine Gaussian beams of the form (3.133) as propagating
elements.

Consider a two-dimensional Gaussian window of the form

ϕ(r′, ω) = e−
ω
c
‖r′‖2

2b , (4.54)
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where the parameter b denotes the width of the Gaussian window. In the rest of this
work, the window function (4.54) is employed as frame element for the representation of
acoustic field.

The acoustic field radiated by a Gaussian window of the type (4.54) is obtained from
(4.52) upon substituting ϕ(r′, ω) with a propagator Bµ(r, ω), which describes the acoustic
field radiated by through a Gaussian window on the plane z = 0, yielding

P (r, ω) =
∑
µ

aµ(ω)Bµ(r, ω). (4.55)

The propagator Bµ(r, ω) can be conveniently represented by its Weyl’s plane wave
expansion (c.f.r. (4.11)), thus obtaining the form reported in Shlivinski et al. [2004, p. 2047,
Eq. 26]

Bµ(r, ω) =

(
ω/c

2π

)2 ∫∫
R2

Φµ(k̂, ω)ej
ω
c
〈k̂,r′〉+jkzz dkx dky, (4.56)

being
Φµ(k̂, ω) = Φ(k̂− nk̄) (4.57)

the Fourier transform of ϕµ with respect to space, and kz =

√
1− 〈k̂, k̂〉.

Upon substituting the spatial Fourier transform of (4.54) into (4.56) and employing
saddle point integration, as detailed in Melamed [1997], one discovers that the propagator
Bµ(r, ω) has the form of the Gaussian beam discussed in Sec. 3.8. However, the Gaussian
beam (3.133) has its propagation axis fixed to the z axis. In the case of Bµ(r, ω), on the
other hand, the beam axis is made variable to cover arbitrary beam directions. The beam
Bµ(r, ω) emerges from the point r′m in direction (θn, φn) determined by the wavenumber
vector as

k̂n = sin(θn) [cos(φn), sin(φn)]T . (4.58)

The analytical expression for Bµ(r, ω) is conveniently expressed in the beam coordi-
nates (xbµ , ybµ , zbµ), where the coordinates xbµ and ybµ denote the transverse direction
with respect to the beam axis, and zbµ is the distance along the beam axis. Following
Shlivinski et al. [2004, p. 2048, Eq. 28], the beam coordinates are related to the reference
coordinates (x, y, z) byxbµybµ

zbµ

 =

cos(θn) cos(φn) cos(θn) sin(φn) − sin(θn)
− sin(φn) cos(φn)0

sin(θn) cos(φn) sin(θn) sin(φn) cos(θn)

x− xmy − ym
z

 . (4.59)

Using these coordinates, the Gaussian beam solution to (4.56) can be expressed as
[Shlivinski et al., 2004, p. 2048, Eq. 29]

B(r, ω) ≈

√
−jzc,xµ

zbµ − jzc,xµ

−jzc,yµ
zbµ − jzc,yµ

e
j ω
c
zbµ+ 1

2

x2
bµ

zbµ
−jzc,xµ

1
2

y2
bµ

zbµ
−jzc,yµ . (4.60)

Equation (4.60) represents a Gaussian beam with waist at zbµ = 0 and principal axes xbµ ,
ybµ . The Rayleigh ranges are, in general, different on the two principal axes, i.e. zc,xµ
and zc,yµ are not constrained to be equal; this situation is usually referred to in the optics
literature as astigmatism and it is caused by the beam tilt that reduces the radius of
the beam in the xbµ direction by factor cos(θn) [Shlivinski et al., 2004, p. 2048, Eq. 30],
determining the Rayleigh ranges

zc,xµ = b cos2(θn), zc,yµ = b. (4.61)
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Table 4.1: Beam parameters expressed in the beam coordinates (4.59).

Beam waist radius σ0,xµ =

√
zc,xµ

(ω/c)
σ0,yµ =

√
zc,yµ

(ω/c)

Beam radius σxµ (zbµ ) = σ0,xµ

√√√√1 +

(
zbµ

zc,xµ

)2

σyµ (zbµ ) = σ0,yµ

√√√√1 +

(
zbµ

zc,yµ

)2

Radius of curvature Rxµ (zbµ ) = zbµ +
z2
c,xµ

zbµ
Ryµ (zbµ ) = zbµ +

z2
c,yµ

zbµ

Table 4.1 summarizes the beam parameters introduced in Sec. 3.8, each expressed in
terms of the beam coordinates in (4.59).

In Chap. 7 we employ the beam-based representation of acoustic field as introduced
in this chapter in order to provide a physical interpretation for the plenacoustic transform
introduced in Sec. 7.5.

4.5 Summary
• The acoustic field representations of most widespread use in the acoustic signal

processing literature are introduced in Sec. 4.1-4.3 starting from the basic solutions
to the Helmholtz equation reviewed in Chap. 3. A novel representation borrowed
from the optics literature and based on the concept of Gaussian beams is introduced
in Sec. 4.4.

• Plane wave representations enable the description of an acoustic field as an integral
expansion of plane wave; a representation involving only propagating plane waves
(Whittaker’s representation) is discussed along with another representation involving
both propagating and evanescent plane waves (Weyl’s representation). A geometrical
interpretation is provided in both cases. Analysis and synthesis operations are
described in both representations.

• The spherical wave representation enables the description of an acoustic field as a
series of spherical waves; it is shown that the series can be truncated by retaining
only the first terms, and that the error introduced by truncation is upper bounded.
Analysis and synthesis operations based on spherical waves are described for both
exterior and interior problems.

• The cylindrical wave representation enables the description of an acoustic field as a
series of cylindrical waves. The importance of this representation is identified in
the ease of modeling simplified problems where propagation on a single plane is
considered. In this setting, synthesis operations for external and internal problems
are introduced.

• The frame-like Gaussian beam representation enables the description of an acoustic
field in terms of a discrete summation of tilted Gaussian beams. Exploiting the
properties of frame-like representations introduced in Sec. 2.4 and in Sec. 2.4.1,
the parameters of the representation are determined in a peculiar fashion. This
peculiarity yields to a representation where the beam axis and the quality of the
representation are independent on the temporal frequency.
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Chapter 5

Analysis of Acoustic Fields

This chapter presents novel techniques for the analysis of acoustic fields. Analysis is
conceived here as the extraction of salient information from data acquired by a spatial
distribution of microphones, arranged in space in regular geometries. Acoustic field
analysis is a crucial task in many applicative scenarios. The applicative class considered in
this chapter focuses on the measurement of acoustic properties of an environment. Indeed,
in studying the acoustic properties of closed environments, scholars have introduced a
variety of objective parameters (the interested reader is referred to Kuttruff [2009] for
a comprehensive discussion of those parameters), commonly measured by processing
microphone array data. Of particular interest is the study of early reflections, i.e. sound
events that are sensed by a listener after being reflected by surfaces in the listening
environment, e.g. floor, walls and ceiling.

The analogy between DoAs and spatial frequencies in plane wave representations
provide the foundation of all the techniques presented in this chapter. Indeed, state-of-
the-art tools from the literature on spectral analysis are here adapted to the analysis of
spatial features of acoustic fields. With more details, the methodology adopted in this
chapter is outlined in the following.

1. An arbitrary acoustic field is represented as an integral of propagating plane waves
(according to Whittaker’s representation (4.1.1)).

2. The integral representation is discretized to provide an algebraic formulation whose
central feature is a series of complex exponential contributions.

3. Extract model parameters (in general, amplitude, phase, DoA and Time of Arrival
(ToA) of each plane wave component) from acoustic field measurements performed
by a microphone array.

A technique implementing the methodology outlined above is presented in this chapter.
The technique is based on short-time Fourier analysis to retrieve time-varying information
on the spatial frequency components of the acoustic field; based on this information,
a statistical model is matched to the actual array data, as in Yardibi et al. [2010].
The proposed solution exhibits good robustness to modeling mismatches and to real-
world recording conditions; its effectiveness is proved experimentally in applications of
acoustic measurements both in acoustically conditioned environments and in unconditioned
environments.

Spherical arrays represent the choice of election and have been widely studied in
the literature. Spherical arrays of different flavors have been investigated by scholars,
ranging from open arrays [Gover et al., 2002], rigid arrays (where microphones are placed
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on the surface of a rigid sphere) [Abhayapala and Ward, 2002, Meyer and Elko, 2002]
and hybrid configurations (e.g. a smaller rigid array and a concentric open array with
larger radius [Parthy et al., 2009]). Here the focus is on the use of such techniques for
acoustic measurements, where the goal is to estimate strength, DoA and ToA of plane
wave components impinging on the spherical array. This is usually achieved considering
short-time segments of the signals acquired by the array, estimating modal coefficients
as outlined in Sec. 4.2.2 and then transforming the spherical wave representation to the
plane wave representation. This task can be accomplished using several techniques; among
the others we list MUSIC with time/frequency smoothing [Khaykin and Rafaely, 2012,
Huleihel and Rafaely, 2013], sub-space pre-processing [Epain and Jin, 2013] and maximum
likelihood estimation [Tervo et al., 2013].

Plane waves impinging on the microphone array carry a great deal of information on
the acoustics of the environment. Indeed, each plane wave component can be associated
to a specific acoustic event, namely the direct sound reaching the array along the direct
path and early reflections. Early reflections can be regarded to as a set of spatio-temporal
events occurring at distinct time instants and originating from distinct spatial locations.
Since early reflections coming from walls and obstacles could represent a problem for the
listener (in the sense that they distort the desired perception of a sound scene), researchers
in acoustics and acoustic signal processing community have worked in the past on the
accurate determination of the direction of arrival of early reflections. Many techniques
have been proposed in the literature (e.g. in Gover et al. [2002, 2004], Khaykin and Rafaely
[2012], Martellotta [2013] and references therein) based on acoustic impulse responses,
i.e. measurements obtained by exciting the environment with a proper sound source,
recording the room response with an omnidirectional microphone and then processing
the recorded signal to obtain the impulse response [Müller and Massarani, 2001]. The
determination of direction and strength of early reflections is a fundamental task in the
design and optimization of architectural spaces from the acoustics standpoint: since basic
geometric considerations enable to associate a reflection with the architectural element that
originated it, the analysis of reflections allows to modify the environment in a thoughtful
way. Furthermore, this task is important also in applications of room equalization and
correction [Carini et al., 2012, Canclini et al., 2012, 2014b,a, Poletti et al., 2015], in the
identification and control of industrial and aerospace noise sources [Gover, 2005] and for
speech enhancement [Ribeiro et al., 2010].

The theoretical tools developed in the literature and reviewed in Sec. 4.2.2 could be
used to estimate the parameters of plane waves and identify early reflections starting
from these parameters. Indeed, in O’Donovan et al. [2008] a panoramic projection of
the visual image of the enclosure is layered with the magnitude of directional impulse
response. These responses are obtained through a beamforming based on the expansion of
the acoustic field captured by the array in terms of spherical harmonics. In Farina et al.
[2011, 2010] the previous approach is refined by using measured directional array transfer
functions to deconvolve the acquired signals. The main issue of this refinement lies in the
fact that a preliminary measurement session in an anechoic chamber is required, in order
to determine the response of each microphone in the array to sound waves impinging from
different directions.

The rest of the chapter is structured as follows. Sec. 5.1 presents the proposed analysis
methodology, starting from the algebraic modeling of the underlying acoustic system
(plane wave propagation and sphere scattering); then Sec. 5.2 presents the application
of a state-of-the-art parameter estimation technique proposed in Stoica et al. [2011a]
(borrowed from the literature on spectral analysis) to estimate the plane wave DoAs and
strengths. After that, Sec. 5.3 shows experimental results that prove the effectiveness of the
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proposed technique: first, results related to the validation in an acoustically conditioned
environments are shown; then, results obtained in a challenging real world environment
(the Auditorium “Giovanni Arvedi”, located in the Museo del Violino (Violin Museum),
Cremona, Italy are shown. Results show that the proposed technique is able to estimate
amplitude, strength and ToA of acoustic reflections with remarkable accuracy.

This chapter is focused on the analysis of three-dimensional acoustic field by means of a
spherical microphone array. In particular, a methodology for estimating the temporal and
spatial distribution of reflections in an enclosed space is described. Particular attention is
devoted to the data visualization paradigm, chosen carefully to provide an accessible and
intuitive source of information. The analysis is based on the impulse responses acquired
by exciting the environment with an impulsive sound source, as in Müller and Massarani
[2001].

The work presented here exploits the fact that the underlying model for array data,
abstracting from the actual plane-wave model, assumes the general from of a spectral model,
where the modeled function is conceived as a sum of complex exponential contributions.
The use of such a spectral model paves the way to the generalization and adaptation
of state-of-the-art spectral analysis techniques to estimate the model parameters. In
particular, since in most real-world measurement cases one can not rely on much a-priori
information, a non-parametric approach is presented here; the absence of parameters
makes the proposed method robust to modeling mismatches and frees the user from the
need of carefully tuning the parameters required by other techniques. This constitutes a
great advantage with respect to other state of the art acoustic field analysis methodologies.

In this chapter a rigid spherical microphone array configuration is adopted. This
is a widely used model in array processing with spherical microphone arrays (adopted
e.g. in Meyer and Elko [2002], Rafaely [2004], Park and Rafaely [2005]). The directional
imaging problem is formulated here as a spectral analysis problem, representing the sound
field as a spectrum of propagating plane waves. A state-of-the art spectral analysis tool
presented in Stoica et al. [2011a,b], based on matching the covariance matrix of array
data to a prescribed model, is used to obtain an high resolution estimate of the plane
waves expansion coefficients. Since the magnitude of these coefficients is related to the
sound intensity coming from a specific direction [Fahy, 1995, Sec. 4.4], an estimate is
obtained of the intensity of the reflections coming from a specific direction. Finally, the
reflection intensity diagram is mapped on a panoramic visual image of the environment.
The methodology presented here has already been published by the authors in Bianchi
et al. [2015a].

5.1 Data Model

This section introduces the data model adopted throughout the rest of the paragraph.
The considered scenario is that of an acoustic field generated by a single sound source
in a reflective environment and acquired by a spherical microphone array. Under the
assumption of far-field propagation (i.e. the excitation source and the reflectors are
considered to be in the far field with respect to the microphone array, as in O’Donovan
et al. [2008]), the reflections can be parametrized according to their angle of incidence on
the microphone array.

The physical foundation of the proposed methodology is the Whittaker-type plane
wave expansion (c.f.r. Sec. 4.1.1), in which the acoustic field is represented as the integral
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of propagating plane waves

P (r, ω) =

∫ 2π

0

∫ π

0
P̃ (θ, φ, ω)ej〈k,r〉 sin(θ) dθ dφ, (5.1)

where the wavenumber vector is parametrized as k = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]T ,
being θ ∈ [0, π] and φ ∈ [0, 2π) the co-elevation angle and azimuth angle, respectively.

In the considered scenario, however, prevalent contributions to the acoustic field come
from a specific set of discrete directions; hence, the integral equation (5.1) is simplified as

P (r, ω) =

Q∑
q=1

ej〈k((θ,φ)q ,ω),r〉P̃ ((θ, φ)q, ω), (5.2)

where Q is the total number of reflections contributing to the field and the notation
(θ, φ)q denotes the angles associated to the qth reflection; we denote by Γ the set of
all reflections, i.e. (θ, φ)q ∈ Γ. In principle, the model (5.2) could be directly used to
estimate the magnitude of each reflection, i.e. |P̃ ((θ, φ)q, ω)|. However, this naive solution
suffers from several problems that prevent its practical applicability. The first problem is
the non-feasibility of employing a device with a continuous pressure sensitive spherical
surface; thus, a discrete distribution of microphone capsules has to be adopted on the
spherical surface itself. This operation introduces aliasing errors if the complexity of the
observed acoustic field is greater than the one allowed by the adopted sampling schema.
A discussion of aliasing phenomena in spherical microphone arrays is out of the scope of
this thesis; we refer the interested reader to Rafaely [2005], Li and Duraiswami [2007].
Another source of errors that prevents the direct exploitation of the model in (5.2) is
identified in the microphones self-noise [Rafaely, 2005]. The methodology presented in
the following is intended to circumvent these limitations; indeed the proposed method
is based on a parameter estimation technique that is known to enhance the resolution
of conventional estimators [Stoica et al., 2011a], thus reducing the impact of aliased
component on the estimate; moreover, noise is explicitly taken into account in the data
model and its statistics is exploited in order to refine the estimate.

The data model used in this chapter is directly derived from (5.2) but modified to
accommodate a short-time analysis setting. Indeed, the local (temporal) Fourier transform
of the acoustic field can be written as

P (r, ω, t) =

Q∑
q=1

ej〈k((θ,φ)q ,ω,t),r〉P̃ ((θ, φ)q, ω, t), (5.3)

where k((θ, φ)q, ω, t) is proportional to the plane wave DoA at time t and P̃ ((θ, φ)q, ω, t)
denotes the complex strength of the plane wave a time t. In particular, let y(t) ∈ RM×1

be the impulse response vector acquired by a spherical microphone array composed by
M microphones. The presented methodology is based on short-time segments of the
acquired impulse responses, each weighed by a suitable window function. In this sense,
let y(ωl, tn) ∈ CM×1 be the lth bin of the short-time discrete Fourier transform [Allen,
1977] (cfr. (2.78)) for the segment centered in tn, i.e. ωl = 2πfl/Fs, being fl and Fs
the temporal frequency and the temporal sampling frequency, respectively. The signal
acquired by the microphone array is modeled as the sum of the acoustic field P (r, ω, t)
and a noise component (that, in general, accommodates for the presence of microphone
noise, sensor placement errors, etc.). In the following, the notation in (5.2) is adopted,
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Figure 5.1: Angular grid adopted for the estimation of acoustic reflections.

denoting by a(·) : Γ → CM×1 the propagation function that includes both plane wave
propagation from direction γq and the scattering due to the rigid sphere.

y(ωl, tn) =

Q∑
q=1

a(γq, ωl)sq(ωl, tn) + e(ωl, tn), (5.4)

where e(ωl) ∈ CM×1 is the additive noise term; γq = (θ, φ)q ∈ Γ and sq = P̃ (γq, ω) ∈ C
are the unknown parameters of the qth reflection, i.e. the DoA and the associated signal,
respectively.

The function a(γq, ωl) encodes the modifications undertaken by a planar wave field
component impinging on the microphone array from direction γq, taking into account the
scattering operated by the rigid spherical surface. More formally, the mth component of
a(γq, ωl) represents the pressure generated at the mth microphone due to an impulsive
excitation coming from direction γq. Denoting by rm ∈ R3 the position vector relative to
the mth microphone located on the surface of a rigid sphere of radius r, and by dq ∈ R3

the unit vector in the direction γq, authors in Zotkin et al. [2010, Eq. (10)] derived that

{a(γq, ωl)}m =
i

(rωl/c)2

∞∑
µ=0

jn(2µ+ 1)Pµ(〈rm,dq〉)
h′µ(rωl/c)

, (5.5)

where Pµ(·) is the Legendre polynomial of degree µ [Olver, 2010, Chap. 18] ; 〈rm,dq〉 is
the standard inner product in R3; and h′µ(·) is the first derivative of the spherical Hankel
function of first kind and order µ [Olver, 2010, Sec. 10.47].

The goal of the presented methodology is to estimate the parameters γq and |sq|2
associated with each reflection observed in the nth frame of the acquired signals. However,
the total number of reflections Q and their associated directions of arrival are not known
a-priori. We adopt here a non-parametric estimation method on a predefined angular grid.
Let {γ̃u}, u = (υ, ψ) ∈ Z2 denote the element of a grid that covers Γ and we assume that
each γq is sufficiently close to a grid point, as in Fig. 5.1, i.e. γq ≈ γ̃u; let also U = ΥΨ
be the total number of grid points, au(ωl) = a(γ̃u, ωl) and

s̃u(ωl, tn) =

{
sq(ωl, tn), if γ̃u = γq

0, otherwise.
(5.6)

Using this notation, the model in (5.4) can be rewritten as

y(ωl, tn) = A(ωl)S(ωl, tn) + e(ωl, tm), (5.7)
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where A(ωl) = [a(1,1)(ωl), . . . ,a(Υ,Ψ)(ωl)] and {S(ωl, tn)}u = s̃u(ωl, tn), so that A(ωl) ∈
CM×U and S(ωl, tn) ∈ CU×1.

The following paragraphs show how to accurately estimate |s̃u(ωl, tn)|2 given the
array data, and how these estimates are associated to a panoramic visual image of the
environment under test in order to provide an high-resolution reflection intensity map.
One may observe that the estimation problem based on the data model in Eq. (5.7) is of
widespread use in many application fields; in particular, it is widely studied in the context
of spectral analysis. This fact enables to adapt to our problem solutions studied in other
fields.

5.2 Parameter Estimation
This section briefly reviews the estimation method introduced in Stoica et al. [2011a,b]
and it shows how this estimation method can be applied to the problem at hand. In
order to simplify the notation, in this section the dependency of the data on ωl and tn is
omitted.

Under the assumptions of uncorrelated noise

E[e(ωl, tn)eH(ωl, tn)] =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

M

 , (5.8)

and noise uncorrelated to sound sources, the covariance matrix of the array data can be
written as [Stoica and Moses, 2004, Eq. (6.4.3)]

R = E[yyH ] = AHΣA + E, (5.9)

where the matrix Σ contains the power of individual signal components arranged on its
diagonal, i.e. Σ = diag([σ1, . . . , σU ]), being σu = |s̃u|2, and E = diag([ε1, . . . , εM ]), εm
denoting the noise variance at mth microphone. In the considered problem it is highly
probable that a single impulse associated to an acoustic reflection is present in a frame,
hence it can be safely assumed that the source signals are uncorrelated inside a temporal
frame. However, in case multiple impulses were present inside the same temporal frame, in
Stoica et al. [2011a] it is proved that the method reviewed here is robust to this assumption,
thus the estimate is not impaired.

By defining

Ǎ =
[
A IM×M

]
and Σ̌ =

[
Σ 0U×M

0M×U E

]
, (5.10)

being I and 0 the identity matrix and the zero matrix, respectively. Equation (5.9) can
be rewritten in the compact form

R = ǍHΣ̌Ǎ, R ∈ CW×W , W = U +M. (5.11)

In the following, σ̌w denotes the wth element on the diagonal of Σ̌ and ǎw denotes the
wth column of Ǎ.

The problem of estimating {σ̌w}Ww=1 is solved by fitting the modeled covariance matrix
R to its sample estimate from array data yyH , i.e. by finding the set {σ̌w}Ww=1 that
satisfies [Stoica et al., 2011a, Eq. (19)]

arg min
{σ̌w}

‖R−1/2(yyH −R)‖2F , (5.12)
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Algorithm 5.1 Parameter estimation algorithm.
σ̌

(0)
w = |ǎHwy|2/‖ǎw‖4

i = 1
while ‖Σ(i) −Σ(i−1)‖/‖Σ(i−1)‖ < τ do

R =
∑W

w=1 σ̌wǎwǎHw
z = R−1y
ζ

1/2
w = ‖ǎw‖/‖y‖
ξw = |ǎHw z|

ρ =
W∑
w=1

ζ
1/2
w σ̌

(i−1)
w ξw

σ̌
(i)
w = σ̌

(i−1)
w ξwρ/ζ

1/2
w

i = i+ 1
end while

where here ‖·‖F denotes the Frobenius norm for matrices. By expanding the cost function,
the problem in (5.12) can be equivalently formulated as [Stoica et al., 2011a, Eq. (22)]

arg min
{σ̌w}

tr(yHR−1y) +

U+M∑
w=1

h2
wσ̌w, (5.13)

where hw = ‖ǎw‖/‖y‖ and tr(·) denotes the matrix trace. The minimization problem in
(5.13) is convex and has a global minimum, as shown in Stoica et al. [2011a, Sec. III-A].

An efficient iterative algorithm is derived in Stoica et al. [2011a, Sec. III-B] to solve
(5.13) and it is summarized in Algorithm 5.1. Authors start by considering the modified
problem

arg min
{σ̌w},B

tr(BHΣ̌B) +

U+M∑
w=1

h2
wσ̌w s.t ǍB = yyH . (5.14)

The minimization over B for a fixed set {σ̌w} is given by B̂ = Σ̌AHR−1yyH [Stoica
et al., 2011a, Appendix A]. Substituting B̂ into (5.14) yields the original problem in (5.13).
These considerations enable to conclude that the sets {σ̌w} obtained from (5.13) and
(5.14) must be identical.

Upon defining B = [β1, . . . ,βW ]T , the problem (5.14) for a fixed set {βw} can
rewritten as

arg min
{σ̌w}

W∑
w=1

‖βw‖2

σ̌w
+

W∑
w=1

h2
wσ̌w. (5.15)

It is shown in Stoica et al. [2011a] that the minimizer of (5.15) is

σ̌w =
‖βw‖
hw

, w = 1, . . . ,W. (5.16)

Since the cost function in (5.14) is convex in both B and {σ̌w}, a cyclic iterative min-
imization over B and {σ̌w} leads to a global minimum. The ith iteration involves the
operations

B(i) = Σ̌(i−1)ǍR−1(i− 1)yyH

σ̌(i)
w = ‖β(i)

w ‖/hw, w = 1, . . . ,W

R(i) = ǍΣ̌(i)ǍH .

(5.17)
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Figure 5.2: Block-diagram of the proposed imaging system for acoustic reflections.

Following Stoica et al. [2011a] for the initialization of (5.17), the beamforming estimator

σ̌(0)
w =

|ǎHw y|2

‖ǎw‖4
(5.18)

is used. The algorithm is stopped when the condition

‖Σ(i) −Σ(i−1)‖/‖Σ(i−1)‖ < τ (5.19)

is satisfied for a given value of the threshold τ .

5.3 Experimental Validation
This section shows some experimental results of the proposed high-resolution imaging
approach. For reference purposes, Fig. 5.2 shows the overall block diagram of the imaging
system that has been implemented and that is subject to validation in this section.

5.3.1 Setup
All the experiments are performed with mh acoustics’ Eigenmiker spherical microphone
array, composed of M = 32 capsules mounted on a rigid sphere, whose exact locations can
be found in mh [2013]. The technique presented in 5.2 can be straightforwardly applied
to any rigid spherical microphone array.

The angular grid {γ̃u}(Υ,Ψ)
u=(1,1) is designed to uniformly cover the spherical angular

region of interest Γ. For this purpose, the angular axes θ and φ are uniformly sampled
over Υ and Ψ points, respectively. In this setting, the double index u can be conveniently
sorted as u = (υ − 1)Ψ + ψ, with υ = 1, . . . ,Υ and ψ = 1, . . . ,Ψ, and u = 1, . . . , U .

In all the experiments, the sampling frequency is set to Fs = 44.1 kHz and frames of
length 1.5ms are considered. The impulse responses are measured using the exponential
sine sweep technique [Farina, 2000]. The acquired impulse responses are processed with an
octave pass-band filter centered at fc = 4 kHz, as recommended in Farina et al. [2011], for
the purpose of a better identification of reflections. All the frequency bins in the passband
of the filter concur to the generation of a single acoustic image, with the product of their
geometric and harmonic means as suggested in Azimi-Sadjadi et al. [2004]

Σ̌(tn) =
l2 − l1

l2∑
l=l1

Σ̌−1(ωl, tn)

·

 l2∏
l=l1

Σ̌(ωl, tn)

1/(l2−l1)

, (5.20)
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Figure 5.3: Placement of the spherical array in the controlled environment (Fig. 5.3a).
Impulse response recorded by the first capsule (Fig. 5.3b); peaks are labeled
according to the acoustic paths shown in Fig. 5.3a.

where the integers l1 and l2 are the bin indexes corresponding to the cutoff frequencies of the
octave band-pass filter ω1,2 = 2πl1,2Fs/L. The threshold τ determining the convergence
of Alg. 5.1 is set to 10−12.

Finally, the power estimates in Σ̌ are mapped onto a 2-D image using the equiangular
projection [Snyder, 1993] (i.e. the azimuth angle is uniformly mapped to the horizontal
axis while the polar angle is mapped to the vertical axis of a 2-D plot).

5.3.2 Validation in a Controlled Environment
The first set of experiments is conducted in an acoustically controlled environment (with
reverberation time T60 = 50ms), according to the geometry depicted in Fig. 5.3a. The
acoustic scene consists of a sound source placed at an height of 1.3m, the spherical
microphone array placed at the same height and distant 1.6m from the sound source and
a reflective panel placed 1m behind the array. Reflections from the ceiling and from one
wall (the one behind the sound source) have been damped through the use of absorbing
panels. Reflections from the floor have been damped by a thick carpet.

Figure 5.3b shows the impulse response recorded by the first capsule of the microphone
array. The peaks are labeled according to the acoustic paths shown in Fig. 5.3a. The
location of the peaks in Fig. 5.3b is consistent with the length of the acoustic paths
in Fig. 5.3a; in particular length1 = 1.6m (∼ 4.7ms), length2 = 3.05m (∼ 8.8ms),
length3 = 3.6m (∼ 10.5ms), length4 = 4.4m (∼ 12.8ms). Acoustic paths reflected by the
ceiling and the rear wall are not shown because they are so damped that their associated
peaks are not visible in the impulse response.

Fig. 5.4 shows four panoramic views of acoustic reflections computed from different
time segments, each centered around one of the peaks identified from Fig. 5.3b and
associated to the acoustic path depicted in 5.3a. Fig. 5.4a is captured around t = 4.67ms,
corresponding to the propagation time along the direct path 1 in Fig. 5.3a; a sharp peak in
the estimated energy distribution is observed, coming from the direction under which the
sound source is seen by the microphone array, i.e. θ = 90°, φ = 0°. Fig. 5.4b is computed
from the time segment centered at t = 8.77ms, corresponding to the propagation time
associated with the acoustic path 2, originated at the sound source and reflected by the
floor the measurement chamber; this reflection is highly damped (due to the presence
of a carpet) but still detectable with the proposed technique. Fig. 5.4c is captured
around 10.7ms, corresponding to the propagation time associated with path 3, i.e. the



80 CHAPTER 5. ANALYSIS OF ACOUSTIC FIELDS

−180−135−90 −45 0 45 90 135 180
180

135

90

45

0

φ [deg]

θ
[d

eg
]

−80 −60 −40 −20 0

dB

(a) t = 4.67ms, peak 1.

−180−135−90 −45 0 45 90 135 180
180

135

90

45

0

φ [deg]

θ
[d

eg
]

−180 −160 −140 −120 −100

dB

(b) t = 8.77ms, peak 2.

−180−135−90 −45 0 45 90 135 180
180

135

90

45

0

φ [deg]

θ
[d

eg
]

−100 −80 −60 −40 −20

dB

(c) t = 10.70ms, peak 3.

−180−135−90 −45 0 45 90 135 180
180

135

90

45

0

φ [deg]

θ
[d

eg
]

−160 −140 −120 −100 −80

dB

(d) t = 13.06ms, peak 4.

Figure 5.4: Panoramic views of acoustic reflections in the acoustically controlled envi-
ronment. The values of the power estimates expressed in dB are mapped to
color scale.

first-order path passing through the reflective panel. Finally, Fig. 5.4d is captured around
t = 13.06ms, corresponding to the propagation time associated with path 4, a second
order path passing through the floor and the panel.

5.3.3 Experiments in a Real-World Acoustic Environment
The last set of experiments is conducted in the Auditorium “Giovanni Arvedi”, located in
the Museo del Violino (Violin Museum), Cremona, Italy1, whose floor plane is shown in
Fig. 5.5. Dimensions of the hall are 14m×35m for a maximum height of 14m, the volume
of the hall being 5300m3. The sound source is placed in the center of the stage area (in
the position marked by the cross) on a support of height 1.2m, while the microphone
array is placed in correspondence of the black dot in Fig. 5.5. The distance between the
source and the center of the microphone array is 10.4m.

The results of the application of the proposed analysis methodology to impulse

1We thank Museo del Violino Fondazione Stradivari and its staff for their availability during
the measurement session held in the Auditorium G. Arvedi.
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Figure 5.5: Floor plan of the auditorium “Giovanni Arvedi”, Museo del Violino, Cremona,
Italy.

responses acquired with the setup described above are shown in Fig. 5.6. The two acoustic
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Figure 5.6: Panoramic views of acoustic reflections in the auditorium “Giovanni Arvedi”,
Museo del Violino, Cremona, Italy. The values of the power estimates
expressed in dB are mapped to color scale.

images are computed from two different time segments; the first one, Fig.5.6a, centered in
t = 30.32ms, corresponds to the direct acoustic path from the sound source to the center
of the microphone array; the other, Fig. 5.6b, centered in t = 33.59ms, corresponds to the
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propagation time along the acoustic path generated from the sound source and diffracted
by the railing. The acquired impulse responses do not exhibit other relevant events from
the frontal direction, except the direct and diffraction paths. This is due to the design
of the environment, which does not contain planar surfaces between the source and the
seats, thus enabling only diffusive paths.

From the analysis of the above presented results, one can observe that the proposed
methodology is able to discriminate acoustic events occurring within ∼ 3ms, and coming
from close directions (∼ deg 15). These results demonstrate the direct applicability of the
proposed approach to a challenging real-world scenario, in which the acoustic properties
of the environment are not controlled.

5.4 Main results
• The analysis problem is formulated with reference to the plane wave representations

discussed in Sec. 3.3.1. The integral formulation is discretized and adapted to
accommodate both a short-time analysis framework and real-world noise added at
microphone capsules to the recorded acoustic field.

• A solution to the analysis problem is presented based on a spherical microphone
array. The technique is based on a state-of-the-art spectral analysis technique. The
adoption of such technique, together with the short-time plane wave model enables
highly accurate identification of acoustic reflections. An experimental validation is
shown both in an acoustically conditioned and unconditioned environments.



Chapter 6

Synthesis of Acoustic Fields

The synthesis of acoustic fields is a goal that has been pursued by the signal processing
community for decades. Solutions based on spatial distributions of loudspeakers constitute
today a well-established technology, aimed at eliciting in the listener a deep sense of
immersion [Spors et al., 2013]. In broad terms, what such solutions do is to reproduce a
desired acoustic field through the superposition of the contributions of secondary sources,
whose driving signals can be obtained analytically, as in Poletti [2005], Ahrens and Spors
[2008a], Wu and Abhayapala [2009], Gupta and Abhayapala [2011], Berkhout et al. [1993],
Spors et al. [2008], Ahrens and Spors [2010] or as a numerical approximation of the
solution of an inverse problem, as in Kirkeby and Nelson [1993], Kirkeby et al. [1996],
Ward and Abhayapala [2001], Kolundzija et al. [2009a], Antonacci et al. [2009], Lilis et al.
[2010].

Among the analytical approaches, the family based on the spherical wave representation
of the acoustic field is referred to as HOA [Poletti, 2005, Ahrens and Spors, 2008a, Wu
and Abhayapala, 2009, Gupta and Abhayapala, 2011] and it is derived for circular and
spherical loudspeaker deployments. Those falling into the category of WFS methods
[Berkhout et al., 1993, Spors et al., 2008] rely on the Kirchhoff-Helmholtz integral equation
(3.72). The original formulation of WFS, as found in Berkhout et al. [1993], was derived
for linear loudspeaker deployments.

HOA and WFS approaches are optimal in terms of reproduction accuracy for the
specific geometry that they were formulated for. Their extension to arbitrary geometries
would either require a complete re-purposing of the approach (see Ahrens and Spors [2010]
in the case of HOA for linear and planar loudspeaker arrays); or accept the presence
of artifacts in the rendered acoustic field (see Spors and Rabenstein [2006], Spors et al.
[2008], Ahrens and Spors [2012] for WFS). Besides approaches based on HOA and WFS,
Hannemann and Donohue [2008] proposes an approach for the rendering of acoustic fields
in a small listening region centered on the listener’s head with an arbitrary distribution of
loudspeakers.

The other class of approaches, instead of adopting analytic representations, is based
on the numerical approximation of the desired acoustic field on a set of control points, e.g.
with least squares [Kirkeby and Nelson, 1993, Kirkeby et al., 1996, Ward and Abhayapala,
2001] or sparse linear regression [Lilis et al., 2010] techniques. Most of these approaches
require the solution of an inverse problem that is not guaranteed to be well-conditioned,
as pointed out in Fazi and Nelson [2007], Kolundzija et al. [2009a]; for this reason,
regularization techniques are usually employed to find a stable solution, as in Poletti
[2005], Kolundzija et al. [2009b], Antonacci et al. [2009]. The impact of regularization
parameters on physical and perceptual properties of the reproduced acoustic field is a

83
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subject of ongoing research [Spors et al., 2013]. This family of approaches presents the
advantage of not being constrained to a specific geometry of the reproduction setup.

This chapter proposes an analytic solution to the problem of acoustic field rendering,
which leverages on specific geometrical aspects of the underlying problem. This approach
is based on the plane wave representation of the acoustic field. Indeed, loudspeakers
driving functions are derived from the plane wave components through simple geometrical
considerations. Relying on simple and intuitive geometrical considerations show that the
definition of driving functions for arbitrary arrangements of loudspeakers along a planar
curve is possible. More specifically, this chapter provides closed-form expressions for the
plane wave representation of two commonly used acoustic field models (plane-wave acoustic
fields and acoustic fields due to a point source), parametrized by the source location.
We interpret the plane wave representation of Whittaker-type as a function describing
amplitude and phase of individual plane-wave components that contribute to the desired
acoustic field. We then exploit the overall loudspeaker array to reproduce individual
plane-wave components, properly weighed by the plane wave expansion coefficients. The
desired acoustic field is then obtained as the superposition of these reproduced components.

This chapter focuses on finding the proper driving functions to reproduce 2-D acoustic
fields. In this scenario, we show the relationship between the number of loudspeakers,
the desired accuracy, the area of the reproduction region and the temporal frequency
range, following the analysis presented in Ward and Abhayapala [2001], Kennedy et al.
[2007]. The concepts presented here can be extended to the 3-D case by simply considering
a 3-D plane wave representation and suitable plane-wave rendering methods for 3-D
deployments of loudspeakers. Although in this chapter only a free-field propagation
scenario is considered, i.e. a scenario in which the effect of reverberation is ignored,
the presented approach can readily be integrated with state-of-the-art compensation
techniques to attenuate the impact of room reverberations on the rendering accuracy, e.g.
using methods in Carini et al. [2012], Canclini et al. [2014a,b], Poletti et al. [2015].

The proposed rendering technique will, at first, be presented in an ideal setting,
where loudspeakers are assumed to be unrealistic height-invariant sources (i.e. sources
propagating according to 3.61) arranged in space with infinite accuracy. However, in
any practical situation none of the above assumptions is realistic and strategies must be
devised in order to control the impairments introduced by such modeling mismatches. For
this purpose, a technique is proposed that exploits the non idealities of the loudspeaker
array in order to provide a more realistic solution. In particular, the attention is focused
on the relevant case of a loudspeaker propagation function that is different from the
ideal one and, possibly, it varies among the loudspeakers. Analysis of the data provided
by a loudspeaker manufacturer show that, indeed, the propagation function of a set of
loudspeakers can be conveniently modeled as a random variable, being the propagation of
each loudspeaker subject to many non-idealities that may appear in the manufacturing
process. The presented technique relies on the statistics of the propagation functions in
order to derive a stable solution for the loudspeaker driving functions.

The work presented in this chapter has been published by the authors in Bianchi et al.
[2014, 2016].

6.1 Preliminaries and Problem Statement
This section discusses how to use the plane wave representation of an acoustic field for
generating a desired acoustic field in a given region. This is done for the 2-D case, meaning
that the field is assumed to be invariant along the vertical direction, as in Ahrens and
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Figure 6.1: Position vector r and wave vector k̂.

Spors [2008a], Wu and Abhayapala [2009].

6.1.1 Notation
This paragraph briefly reviews the notation adopted in the rest of the thesis and here
specialized to the problem under consideration. With reference to Fig. 6.1, let r =
[r cos(φr), r sin(φr)]

T denote the position vector in the 2-D space R2. The unit vector in
the direction of the (nonzero) vector r is defined as r̂ = r/‖r‖, where the notation ‖·‖ is
to be interpreted as ‖·‖2.

6.1.2 Plane-Wave Model
Following Sec. 4.1.1, an arbitrary acoustic field can be modeled as the integral of plane
waves. In an height-invariant scenario, it follows that kz = 0, hence the wavevector
can be parametrized as k(φ) = (ω/c)[cos(φ), sin(φ)], φ ∈ [0, 2π). Starting from (4.3) it
is straightforward to verify that, in two-dimensions, an arbitrary acoustic field can be
modeled as the integral of plane waves coming from directions k(φ), φ ∈ [0, 2π)

P (r, ω) =

(
1

2π

)2 ∫ 2π

0
ej

ω
c
〈r,k̂(φ)〉P̃ (φ, ω) dφ, (6.1)

where P̃ (φ, ω) is a complex-valued function that modulates each plane wave component in
amplitude and phase. As it as been reviewed in Sec. 4.1.1, this function is usually referred
to as Herglotz density [Colton and Kress, 1992, p. 54].

In this chapter the acoustic field is described through its Herglotz density P̃ (φ, ω).
Indeed, P̃ (φ, ω) is space invariant in a region that is free of scatterers (cfr. 4.1.1). In
Sec. 6.3 the spatial invariance of P̃ (φ, ω) is exploited in order to compute the loudspeakers
driving signals.

6.1.3 Problem Statement
The main goal of this chapter is to show how to use the plane-wave representation for
rendering, in a region of interest S ⊂ V, the acoustic field produced by a source placed
outside S (primary source). In particular, the attention is focused on finding an expression
for P̃ (r, ω) given the parameters of a desired acoustic source. Parameters considered here
are the spatial position of the source and its type (point source or plane wave). The
loudspeakers (secondary sources) that generate the acoustic field are assumed to be placed
on the border ∂S of the region of interest.

In order to address the problem with a certain progression, first the theoretical analysis
and then its implementation are discussed. At first, it is assumed that ideal plane-wave



86 CHAPTER 6. SYNTHESIS OF ACOUSTIC FIELDS

generators are available. Then, it is shown how to implement such ideal generators using a
spatial distribution of loudspeakers in Section 6.3.2. We also discuss the errors introduced
with the discretization of the integral (6.1), and approximating ideal plane wave generators
with spatial arrangements of loudspeakers.

6.2 Model-Based Analysis of the Herglotz density
function

This section derives closed-form expressions for P̃ (φ, ω) in the cases of a source at infinity
(plane wave) and an (isotropic) point source at finite distance. These two cases are
important because complex acoustic scenes are, indeed, combinations of such sources. In
fact, sources with non-isotropic radiation pattern can be treated as compact spatial distri-
butions of point sources [Ahrens and Spors, 2007a,b, Corteel, 2007]. Furthermore, complex
acoustic scenes can always be constructed as combinations of (generally anisotropic) real
and image sources, which can be accounted for using the superposition principle.

For the sake of clarity, in this sections all the parameters related to the desired virtual
source (i.e. source position or DoA)are denoted by the subscript (·)z.

In general, the density P̃ (φ, ω) is periodic (of period 2π) in φ, therefore it can be
Fourier-expanded as

P̃ (φ, ω) =

∞∑
m=−∞

Am(ω)ejmφ, (6.2)

where Am(ω) are the Fourier series coefficients. An arbitrary acoustic field can be
completely reconstructed from the sole knowledge of the coefficients Am(ω), cfr. (4.45)

P (r, ω) =

∞∑
m=−∞

Jm

(ω
c
ρ
)
Am(ω)ejmφr , (6.3)

Jm(·) being the Bessel function of first kind and order m [Abramowitz and Stegun, 1972,
Chap. 9] and ρ =

√
x2 + y2. In the following it is shown that, given the model of a

desired acoustic field (planar source or point source), the Herglotz density function can be
computed through (6.2).

6.2.1 Plane Wave

Consider a plane wave coming from direction ẑ = [cos(φz), sin(φz)]
T . We assume that ẑ

has no vertical component (S is assumed as lying on the horizontal plane). The acoustic
field in r ∈ S is [Williams, 1999, Eq. (2.24)], (3.16)

P (r, ω) = ej
ω
c
〈r,ẑ〉 =

∞∑
m=−∞

Jm

(ω
c
ρ
)
ejm(φr−φz), (6.4)

where the second equality is obtained thanks to the Jacobi-Anger expansion [Abramowitz
and Stegun, 1972, Eq. (9.1.41)]. The coefficients Am(ω), in this case, are obtained by
matching mode by mode (6.4) and (6.3), obtaining

Am(ω) = e−jmφz . (6.5)
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Figure 6.2: Magnitude and phase of the Herglotz density associated to a point source
in rz = [1,

√
3]T . Gibbs phenomena are due to the fact that the Series

expansion in (6.2) has been truncated to order M = 25, (m = −25, . . . , 25).

6.2.2 Point Source
Consider now an isotropic 2-D point source (a source that produces a vertically invariant
acoustic field). The acoustic field due to such point source in rz = ρz[cos(φz), sin(φz)]

T is
given by [Williams, 1999, Chap. 4], (3.61)

P (r, ω) =
j

4
H

(1)
0

(ω
c
‖r− rz‖

)
, (6.6)

The Hankel function in (6.6) can be expanded using the addition theorem [Abramowitz
and Stegun, 1972, Eq. (9.1.75)], giving

P (r, ω) =
∞∑

m=−∞

j

4
Jm

(ω
c
ρ
)
H(1)
m

(ω
c
ρz

)
ejm(φr−φz), (6.7)

where H(1)
m (·) is the Hankel function of first kind and order m. The coefficients Am(ω)

are obtained by matching mode by mode (6.7) and (6.3) as

Am(ω) =
j

4
H(1)
m

(ω
c
rz

)
e−jmφz . (6.8)

Fig. 6.2 shows the Herglotz density associated to a point source in rz = [1,
√

3]T , with
parameters ω = 2πf , f = 1 kHz, A(ω) = 1. The Herglotz density has been computed by
substituting (6.8) into (6.2). The infinite series in (6.2) has been truncated to M = 25
(m = −25, . . . , 25), which introduces Gibbs phenomena whose impact on rendering will
be discussed in Sec. 6.3.

The expressions of P̃ (φ, ω) obtained for plane waves and point sources are used in the
next sections in order to derive the rendering filters.
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6.3 Acoustic Rendering with a Circular Array
This section describes how an arbitrary acoustic field can be reproduced using directional
acoustic field modeling. Indeed, the tools presented in Sec. 6.2 provide a parametric model
for the acoustic scene to be rendered. In particular, (6.4) or (6.8) enable to compute the
plane-wave density function based on the model of the desired acoustic field.

6.3.1 Discrete Distribution of Plane Waves
Consider a continuous distribution of plane waves propagating from directions s(φ) =
[ρ cos(φ), ρ sin(φ)]T . The decomposition of the acoustic field in terms of this set of plane
waves is given by (6.1), which states that the acoustic field at any location in S is obtained
by simply knowing the Herglotz density of the target acoustic field valid on the scatterer-
free region S. This is made possible through the spatial invariance of P̃ (φ, ω), which
allows us to reconstruct the acoustic field without any additional information other than
the knowledge of P̃ (φ, ω).

Consider now a discrete distribution of plane waves coming from directions s(φn),
n = 1, . . . , N that uniformly samples the interval [0, 2π). In this case the acoustic field in
(6.1) is approximated by

PN (r, ω) =
1

N

N∑
n=1

P̃ (φn, ω)ej
ω
c
〈r,k̂(φn)〉. (6.9)

In order to understand the properties of the discrete expansion in (6.9), in particular
to quantify the discretization error, one reverts to the modal representation introduced
in Sec. 6.2. Notice that P̃ (φ, ω), as given by (6.2), is periodic in φ with period 2π. It
is common to approximate the infinite series in (6.2) through a truncation of the modal
expansion to order M (i.e. m = −M, . . . ,M). In this situation, the highest angular
frequency contributing to P̃ (φ, ω) is M/(2π), which means that the highest-frequency
mode is ejMφ [Ward and Abhayapala, 2001, Kennedy et al., 2007, Wu and Abhayapala,
2009]. As previously recalled in 4.2.3, in Kennedy et al. [2007, Eq. 24] it is proved that

|P (r, ω)− PN (r, ω)| < 0.16127

∫ 2π

0
|P̃ (φ, ω)| dφ if M ≥

⌈
e
ω

c

ρ

2

⌉
. (6.10)

Eq. (6.10) enables to bound the normalized truncation error given the radius ρ of the
listening area and the frequency ω. According to the Shannon sampling theorem, the
acoustic field can be exactly reconstructed from its samples if the angular interval between
adjacent plane-wave directions of arrival satisfies φn − φn−1 < π/M ,n = 2, . . . , N . For
the case of N uniformly distributed plane waves, if N ≥ 2M + 1 the acoustic field can be
reconstructed without introducing any further errors other than the one introduced by
the discretization.

The approximation error due to discretization can be computed as the mean square
error between the desired acoustic field P (r, ω) and the discretized one PN (r, ω)

εN (ρ, ω) =
1

πρ2

∫ ρ

0

∫ 2π

0

|P (r, ω)− PN (r, ω)|2

|P (r, ω)|2
dφr dρ. (6.11)

Figure 6.3 shows the approximation error (6.11) as a function of ρ
c r for different num-

bers N of plane-wave components, all satisfying the condition N = 2M + 1 for M =
0, 5, 10, 15, 20, 25. The target acoustic field is that produced by a 2-D point source in



6.3. ACOUSTIC RENDERING WITH A CIRCULAR ARRAY 89

0 2 4 6 8 10 12 14 16 18 20

−300

−200

−100

0

ω
c
ρ

10
lo

g
1
0
(ε
N

)

N = 1
N = 11
N = 21
N = 31
N = 41
N = 51

Figure 6.3: Mean square discretization error (6.11). N denotes the number of plane-wave
components. For each curve the truncation order is set to M = b(N −1)/2c.

rz = [1,
√

3]T (i.e. ρz = 2m and φz = π/3). The speed of sound is set to c = 340ms−1.
As expected, the larger is the reproduction area, the larger the number N of secondary
sources used to keep εN down to reasonable levels throughout the whole listening area.

6.3.2 Implementation with Circular Arrays
This paragraph focuses on the reproduction of a plane wave with direction of arrival φn
with an array of L 2-D loudspeakers (i.e. transducers ideally capable of generating an
height invariant acoustic field) that sample the circular contour ∂S of the listening area.
The same L loudspeakers are used for reproducing each one of the N plane waves at
the same time, using the superposition principle. This enables to save in the number of
transducers, while guaranteeing that the maximum number of loudspeakers is used for
approximating each secondary source.

In order to generate a plane wave coming from direction φn, the array of loudspeakers
must be driven by an appropriate spatial filter. Among all possible choices, here we adopt
the one presented in Wu and Abhayapala [2009], which has been proven to provide good
performance for circular rendering setups. However, any other spatial filtering technique
capable of generating plane waves from a circular array of loudspeakers (e.g. the one
presented in Ward and Abhayapala [2001]) could be used with no relevant changes in
the rendering approach. The derivation of the spatial filter follows the mode-matching
strategy already adopted in Sec. 6.2.

Assume that loudspeakers are placed at positions vl = ρ[cos(φl), sin(φl)], l = 1, . . . , L,
thus uniformly sampling the contour ∂S. The filter of the lth loudspeaker is given by

hl(φn, ω) =
4

jL

M∑
m=−M

ejm(φl−φn)

H
(1)
m

(
ω
c ρ
) . (6.12)

As shown in Wu and Abhayapala [2009], h(φn, ω) = [h1(φn, ω), . . . , hL(φn, ω)]T enables
to approximate a plane wave of direction φn in S, as

ej
ω
c
〈r,k̂(φn)〉 ≈

L∑
l=1

hl(φn, ω)G(r|vl, ω), r ∈ S, (6.13)
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Figure 6.4: Mean square approximation error (6.16) as a function of ωc ρ. L is the number
of loudspeakers.

G(r|vl, ω) being the Green’s function from the loudspeaker in vl to the point r (cfr. (3.61))

G(r|vl, ω) =
j

4
H

(1)
0

(ω
c
‖r− vl‖

)
. (6.14)

By substituting (6.13) into (6.9) one obtains that the desired acoustic field at position
r is approximated by

P̂L(r, ω) =
1

N

N∑
n=1

P̃ (φn, ω)
L∑
l=1

hl(φn, ω)G(r|vl, ω). (6.15)

In order to analyze quantitatively the performance of the spatial filter (6.12), the
approximation error between the desired acoustic field P (r, ω) and the approximated one
P̂L(r, ω) is introduced as

ε̂L(ρ, ω) =
1

πr2

∫ ρ

0

∫ 2π

0

|P (r, ω)− P̂L(r, ω)|2

|P (r, ω)|2
dφr dρ. (6.16)

Fig. 6.4 shows this error for different numbers of loudspeakers L. In these simulations the
number of modes and the number of plane waves is fixed (M = 15 and N = 32) while
the number of loudspeakers is let vary between 4 and 64. In all cases, the loudspeakers
uniformly sample a circle of radius ρ = 1m. The target acoustic field is that of a 2-D point
source in rz = [1,

√
3]T (i.e. ρz = 2m and φz = π/3) at a frequency ω = 2πf , f = 1 kHz.

The speed of sound is set to c = 340ms−1.
Fig. 6.4 shows that the best choice for the number of loudspeakers is L = N = d2M+1e,

while using L > N = 32 loudspeakers does not introduce further significant error reductions.
As mentioned above, these L loudspeakers are all used for rendering all the N plane waves
at once. From (6.15), in fact, we obtain that the driving signal for the lth loudspeaker
that render all the N plane-wave components is

wl(ω) =
1

N

N∑
n=1

P̃ (φn, ω)hl(φn, ω). (6.17)

Fig. 6.5 shows the block diagram for the computation of the overall driving signals. Notice
that the filters hl(φn, ω), are completely independent of the sound scene to be rendered,
and can therefore be pre-computed. What changes are only the weights P̃ (φn, ω), which
carry the information on the actual acoustic scene to be rendered.
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Figure 6.5: Implementation of the loudspeaker filters for the simultaneous rendering of all
secondary sources. The set of density coefficients {P̃ (φn, ω)} is independent
on the geometry of the rendering system, while the set of spatial filters
{hl(φn, ω)} is independent on the actual acoustic field to be reproduced.
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Figure 6.6: Secondary sources on a convex curve.

6.4 Generalization to Non-Circular Arrays

In order to demonstrate the generalization of the proposed approach to non-circular
geometries of the loudspeaker array, this section discusses the realization of a rendering
system deployed on two illustrative geometries: a generic convex curve and a line segment.

6.4.1 Convex Curve

Consider a region of interest S that is a convex bounded subset of V, as depicted in
Fig. 6.6. In this geometry, the entire discussion presented for the case of a circular contour
in Sec. 6.3 holds with slight adaptations. In fact, if loudspeakers are placed on a closed
convex curve, they can still be used to effectively reproduce the set of plane waves that
uniformly samples the interval φ ∈ [0, 2π). Indeed, the spatial invariance of the Herglotz
density function enables to conceive points on the border of a convex curve as unique
plane-wave directions of arrival. Each plane wave is modulated by P̃ (φ, ω) as in the case
of the circular rendering setup. The only difference with respect to the circular case lies
in the computation of the spatial filter, as we will show in Paragraph 6.4.3.
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Figure 6.7: Secondary sources on a line segment.

6.4.2 Line Segment

Consider now the distribution of secondary sources on the line segment s = [x0,−y0 ≤ y ≤
y0]T , as depicted in Fig. 6.7. In this case the contour ∂S can still be parametrized by φ,
but the allowed values for φ belong to a subset of [0, 2π). In particular, from geometrical
considerations it follows that the allowed range for φ is

φ ∈ {R|φmin ≤ φ ≤ φmax} , (6.18)

being φmin = arctan(−y0/x0) and φmax = arctan(y0/x0). The acoustic field due to the
limited set of directions of propagation is

P (r, ω) =
1

2π

∫ φmax

φmin

P̃ (φ, ω)ej
ω
c
〈r(φ),k̂(φ)〉dφ. (6.19)

We refer the interested reader to Devaney and Sherman [1973], Shono and Inuzuka [1978]
for a discussion of the conditions under which an acoustic field can be expressed with a
limited number of plane waves.

In analogy with what we have done for the circular case (Sec. 6.3.1) and for the convex
curve (Sec. 6.4.1), φ is sampled in an equiangular fashion with N plane-wave components.
The discretization yields

PN (r, ω) =
φmax − φmin

2πN

N∑
n=1

P̃ (φn, ω)ej
ω
c
〈r,k̂(φn)〉. (6.20)

In order to realize such rendering system, a loudspeaker array with L loudspeakers
uniformly spaced on the y axis is considered, i.e. vl = −y0 + 2y0(l − 1)/(L − 1). As
in Sec. 6.4.1, all the loudspeakers contribute to render plane waves in any direction φn.
Also in this case any spatial filter h(φn, ω) suitable to render plane waves with linear
loudspeaker arrays (e.g. one of the techniques proposed in Berkhout et al. [1993], Ahrens
and Spors [2010], Kumatani et al. [2010], Lee et al. [2015]) can be used to generate plane
waves with direction φn, thus providing an approximation of the propagation term in
(6.20). In Sec. 6.7.2 a novel technique to generate plane waves in real world scenarios is
presented. Finally, the acoustic field is approximated by

P̂L(r, ω) =
φmax − φmin

2πN

N∑
n=1

P̃ (φn, ω)

L∑
l=1

hl(φn, ω)G(r|vl, ω). (6.21)
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6.4.3 Implementation
As discussed above, the acoustic field rendering approach presented in this manuscript is
independent on the actual technique used to produce plane waves from loudspeaker arrays.
In Sec. 6.3.2, while describing the implementation for a circular array of loudspeakers,
a spatial filter with a closed-form solution available from the literature was adopted. In
particular, the filter was given by (6.12) and was derived from Wu and Abhayapala [2009].
When considering loudspeaker distributions of different shapes, such as the ones discussed
in Sec. 6.4.1 and in Sec. 6.4.2, closed-form solutions are not, at our knowledge, available
from the literature. In order to provide the reader with a simple solution, in this paragraph
we show a basic spatial filter design.

This paragraph discusses a naive technique to design the spatial filter h(φn, ω) in such
a way to minimize the error due to the approximation of plane-wave acoustic fields with
loudspeakers, i.e. by finding the spatial filter ĥ(φn, ω) that minimizes the approximation
error in (6.13). In mathematical terms,

ĥ(φn, ω) = arg min
h(φn,ω)

∥∥∥∥∥ej ωc 〈r,k̂(φn)〉 −
L∑
l=1

hl(φn, ω)G(r|vl, ω)

∥∥∥∥∥
2

. (6.22)

The optimization problem in (6.22) can be solved with a least-squares approach, whose
solution is analytically given by writing the problem in matrix form, with {d(φn, ω)}i =

ej
ω
c
〈ri,k̂(φn)〉 denoting the desired plane-wave field over a set of control points ri, i = 1, . . . , I;

{G(ω)}i,l = G(ri|vl, ω) being a matrix containing the Green’s functions from a loudspeaker
in vl to a control point in ri. With this notation, the solution to the problem in (6.22)
can be written as

ĥ(φn, ω) = (G(ω)HG(ω) + λI)−1d(ω), (6.23)

where a Tikhonov regularization have been adopted for the computation of the pseudo-
inverse of the matrix G(ω).

Section 6.5 will make use of (6.12), for the circular case, and (6.23), for the general
case, to obtain spatial filters suitable to a simulative validation of the overall rendering
approach. Notice that, in both cases, the spatial filters ĥ(φn, ω), n = 1, . . . , N can be
pre-computed, as they are independent on the actual scene to be reproduced.

6.5 Simulation in Ideal Conditions
This section provides simulative results to evaluate the accuracy of the rendering technique
proposed in this chapter under ideal conditions. We consider the cases of circular, elliptical
and linear deployments of speakers. In order to enable a fair comparison, the results
shown here are obtained with the state-of-the-art spatial filters introduced in Sec. 6.3-6.4
and not with the spatial filter presented in Sec. 6.7.2. It is assumed that loudspeakers
able to generate the acoustic field in (3.61) are available.

6.5.1 Acoustic Field Synthesis with a Circular Array
Consider a circular reproduction region S of radius ρ = 1m. The target sound pressure
field is that of a point source in rz = [1,

√
3], i.e. rz = 2m and φz = π/3 (Fig. 6.8a). The L

loudspeakers are equally spaced on the contour ∂S. In this simulation we set L = N = 32
and the truncation order is set to M = 15. Notice that this setup satisfies the condition
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L = N > 2M + 1 discussed in Section 6.3. The position of the loudspeakers corresponds
to the direction of propagation of plane waves, i.e. vl = s(φl).

The symbol P̂PWD(r, ω) denotes the acoustic field synthesized through (6.15). In order
to compare our solution with state-of-the-art rendering techniques, we also consider WFS
[Spors et al., 2008, eq. (23)]

P̂WFS(r, ω) =
1

η

L∑
l=1

G(r|vl, ω)
1

2c
α(vl)

〈vl − z, k̂(φl)〉
‖vl − z‖

j
ω

c
H

(1)
1

(ω
c
‖vl − z‖

)
, (6.24)

being

α(vl) =

{
1, if 〈vl − z, k̂(φl)〉 < 0,

0, otherwise,
(6.25)

and η =
∑

l α(vl) the number of active loudspeakers; and by HOA rendering methods
[Wu and Abhayapala, 2009, eq. (20)]

P̂HOA(r, ω) =
2π

L

L∑
l=1

G(r|vl, ω)
M∑

m=−M

2

jπH
(1)
m

(
ω
c ρ
)Am(ω)ejmφl , (6.26)

being

Am(ω) =
j

4
Jm

(ω
c
ρ
)
H(1)
m

(ω
c
z
)
ejm(φl−φz). (6.27)

Synthesized acoustic field in frequency domain. Fig. 6.8 shows the real part
(<{·}) of the acoustic field reproduced with the proposed technique (6.15) (Fig. 6.8b),
with WFS (Fig. 6.8c) and with HOA (Fig. 6.8d). A more quantitative comparison is
offered in Fig. 6.9, which shows the approximation error related to the acoustic fields of
Fig. 6.8. In particular, the approximation error is defined as

ε̂(r, ω) =
|P (r, ω)− P̂ (r, ω)|2

|P (r, ω)|2
; (6.28)

moreover, ε̂PWD denotes the reproduction error for the proposed rendering approach,
while ε̂WFS and ε̂HOA denote the reproduction errors for WFS and HOA, respectively.

Notice that the proposed technique enables an accurate reproduction in a circular area
with a radius of approximately 0.7m and centered in the origin. A very similar spatial
distribution of the reproduction error is obtained through the HOA technique presented
in Wu and Abhayapala [2009]. On the other hand, WFS exhibits a larger approximation
error in the whole area of interest. This is due to the fact that WFS solution is exact only
for linear / planar contours ∂S, while the generalization to other contours causes artifacts,
as described in Spors and Rabenstein [2006], Spors et al. [2008].

Mean square reproduction error as a function of the virtual source dis-
tance. Consider now the rendering performance as a function of the source distance.
The target acoustic field is the field due to a 2-D point source in z = ρz[cos(φz), sin(φz)]

T ,
φz = 0, where ρz is made to vary between 1m and 20m, i.e. ρz = {z ∈ R|1 ≤ z ≤ 20},
with the same reproduction setup described above. Fig. 6.10 shows the spatially averaged
mean-square reproduction error, i.e.

ε̂(ω) =
1

πr̄2

∫ ρ̄

0

∫ 2π

0

|P (r, ω)− P̂ (r, ω)|2

|P (r, ω)|2
dφr dρ (6.29)
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Figure 6.8: Reproduction of the acoustic field with a circular array. Stars mark the
location of loudspeakers, while the white circle denotes the contour ∂S.
ω = 2πf , f = 1 kHz.

as a function of the source distance ρz. The reproduction error has been averaged over
a circular area of radius ρ̄ = 0.7m, which corresponds to the area where the considered
rendering techniques exhibit the best performance. An analysis of the results enables the
conclusion that for the proposed rendering technique and for HOA the reproduction error
is constant with respect to the distance of the source, while for WFS the reproduction
error is not constant with source distance. The performance of the proposed method
method is similar to the one of HOA; this is due to the fact that, as described in Section
6.3.2, in the proposed method multiple HOA filters are used to implement secondary
sources.

6.5.2 Acoustic Field Synthesis with an Elliptical Array
In order to show the applicability of the approach proposed in Section 6.4.1, in this
paragraph we show simulations with an elliptical distribution of loudspeakers, as a
particular case of a convex curve. In particular, the direction of propagation of plane
waves in polar coordinates is s(φ) = (ρ(φ), φ), being ρ(φ) = ab/

√
(b cos(φ))2 + (a sin(φ))2,

where a = 0.7m and b = 1m are the semi-major and semi-minor axis of the ellipse,
respectively. In this example, loudspeakers are placed at positions related to the direction
of propagation of plane waves, i.e. the lth loudspeaker is placed at vl = s(φl).

The target acoustic field is that of a point source in rz = [1,
√

3], i.e. ρz = 2m
and φz = π/3 (Fig. 6.11a). The acoustic field PPWD(r, ω) is synthesized by a discrete
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Figure 6.9: Approximation error in the area S for a circular loudspeaker array rendering
the acoustic field of a point source. ω = 2πf , f = 1 kHz.

distribution of plane waves, as described in Section 6.4.1 (Fig. 6.11b). The acoustic
field P̂PWD(r, ω) is reconstructed with loudspeakers (Fig. 6.11c), where the spatial filter
h(φn, γ) is given by (6.23). The parameter λ for Tikhonov regularization in (6.23) is
computed as the maximum singular value of the propagation matrix G(r|vl, ω) scaled
by a factor 0.01; this is a common choice in the design of loudspeaker systems (see, e.g.
Olivieri et al. [2013]).

6.5.3 Acoustic Field Synthesis with a Linear Array
Here simulations are shown with a linear deployment of loudspeakers, as discussed in
Section 6.4.2. Plane waves propagate with directions s(φ) = [x0, x0 tan(φ)]T , where
x0 = 0.9m and φ ranges from arctan(−y0/x0) to arctan(y0/x0), y0 = 1m. L = 32
loudspeakers are placed to uniformly sample the line segment.

The target acoustic field is that of a point source in rz = [2m, 0]T . The acoustic
field PPWD(r, ω) represents the acoustic field synthesized by the limited set of plane
waves considered, as given in (6.20). Fig. 6.12a shows the real part of the acoustic field
PPWD(r, ω) and Fig. 6.12d shows the reconstruction error with respect to the target
field. The acoustic field P̂PWD(r, ω) reconstructed with loudspeakers is given by (6.21)
(Fig. 6.12b), where the spatial filter h(φn, ω) is given by (6.23). The parameter λ, as in
the case of the elliptical array, is chosen to be the largest singular value of the propagation
matrix scaled by 0.01. The acoustic field reproduced with WFS is obtained from [Spors
et al., 2008, Eq. (23)] (Fig. 6.12c). To provide a more quantitative comparison, Fig. 6.12e
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Figure 6.10: Spatially averaged mean-squared error (6.29) as a function of the source
distance ρz for the considered rendering techniques.

and Fig. 6.12f show the approximation errors. We notice that the proposed technique
allows us to obtain a low reproduction error in the area on the left of the loudspeaker
array, with similar results with respect to WFS, which provides an optimal solution for
the linear geometry.

6.6 Discussion
The rendering method presented so far is theoretically appealing and it offers intuitive
insights on the directional structure of the acoustic field to be reproduced. Moreover, with
respect to other state-of-the-art rendering methods, the loudspeaker driving filters do not
have to be re-computed from scratch every time the desired acoustic field varies. Indeed,
the possibility of splitting loudspeaker driving filters into two components – one dependent
on the actual acoustic field to be reproduced, cfr.(6.4) and (6.8), while the other dependent
only on the loudspeaker geometry, cfr. (6.12) and (6.23) – enables implementation with
reduced complexity; furthermore, the filter component independent on the actual desired
acoustic field can be optimized with respect to real-world operating conditions.

Consider the simplest scenario of a circular loudspeaker deployment. In many practical
situation, the assumptions introduced in order to derive the proposed rendering method
are not realistic. Indeed, most common loudspeakers available today are not suitable to
generate the acoustic field in (3.61), as it is required by the proposed method. In this
case, mismatches arise when one tries to use real world loudspeakers (whose propagation
function is more close to the model of a point source (3.59), rather than an height invariant
source (3.61)) with the proposed rendering method. It should be remarked that this
consideration is valid for all state-of-the-art acoustic rendering systems, not just for the
proposed one; e.g., in the context of WFS, adaptations have been proposed in order to
compensate for the propagation mismatch between (3.59) and (3.61) imposing that the
acoustic field is correct at a reference point inside the listening area [Spors et al., 2008,
Sec. 4.2], while accepting artifacts at other listening positions.

Assuming that a compensation technique of this sort is available, there is still another
issue that remains unsolved. This issue is related to the power that the loudspeaker
array must emit in order to correctly synthesize plane wave components; this quantity is
proportional to the energy of the driving filters (6.12) for each loudspeaker, given by

Q(ω) = 10 log10

(
L∑
l=1

|hl(φn, ω)|2
)

= 10 log10

 4

L

L∑
l=1

∣∣∣∣∣
M∑

m=−M

ejm(φl−φn)

H
(1)
m

(
ω
c ρ
)
∣∣∣∣∣
2
 . (6.30)

It is easy to verify that Q(ω) is independent on the DoA φn of the plane wave to be
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Figure 6.11: Acoustic field reproduction with an elliptical distribution of secondary
sources. Stars mark the location of secondary sources, while the white
ellipse denotes the contour ∂S. ω = 2πf , f = 1 kHz.

synthesized. Figure 6.13 shows the quantity Q(ω) as a function of the temporal frequency
and radius ρ of the reproduction area. One can easily observe that the required power is
almost zero at low temporal frequencies: this leads to robustness issues, since even small
excitation signals at low frequencies make the system unstable.

Another assumption that is not completely justified in real-world situations is that,
in general, loudspeakers employed in an array are not identical, yielding to propagation
functions that are different on a loudspeaker basis. This is mainly due to the tolerances
in the loudspeaker manufacturing process, which lead to significant mismatches between
the ideal loudspeaker propagation and the actual one.

For these reasons, the theoretical solution for the rendering method derived in the
previous sections may not provide optimal results when employed in real-world scenarios.
Indeed, this solution, as well as state-of-the-art analytic rendering solutions, may not be
robust to mismatches in the propagation conditions.

A similar situation arises when considering the least-squares solution (6.23) for the
rendering of plane waves with non-circular loudspeaker deployments. In this case, (6.22)
uses a diagonal loading (Tikhonov regularization) of the propagation matrix in order to
regularize the solution and improve its robustness to modeling mismatches. However,
the selection of an optimal regularization parameter λ is not a trivial task and a general
solution does not exist. Even the criterion employed for the simulations presented in the
previous sections appears questionable in many scenarios, since it has to be scaled by a
factor whose selection is crucial for the successful application of the solution. From an
engineering perspective, a regularization approach that does not depend heavily on the
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Figure 6.12: Acoustic field reproduction with a linear distribution of secondary sources.
Stars mark the location of secondary sources, while the white line denotes
the contour ∂S. ω = 2πf , f = 1 kHz.

choice of a parameter would be of great interest.
Next sections will show how that the most impacting non-idealities can be modeled as

an additive random variable. A parameter-free regularization technique will be presented in
the following section, exploiting the statistical knowledge of the loudspeaker propagation
function in order to provide a solution that is robust to modeling mismatches. This
solution is obtained by casting the filter design problem (6.22) in the form of a Robust
Least Squares (RLS) problem, whose solution is known from the literature on convex
optimization; precisely, the solution is described in Boyd and Vandenberghe [2009, p. 318,
Sec. 6.4].

6.7 Robust Parameter-Free Regularization
Consider the least squares problem (6.23) for the computation of loudspeaker driving
filters able to reproduce plane waves with non-circular loudspeaker deployments. It has
been noted in Mabande et al. [2009], that a direct solution to (6.23) suffers from relevant
errors when the knowledge of the propagation functions is not exact. In particular, the
propagation functions from loudspeakers to control points is affected by uncertainties due
to manufacturing tolerances, loudspeaker positioning errors, modeling inaccuracies, etc.
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Figure 6.13: Energy Q(ω) of the filter coefficients (6.12) as a function of (ω/c)ρ. The
truncation mode is set to M = 15 end the number of loudspeakers is
L = 32.

Several approaches have been proposed to address this sensitivity problem. In Mabande
et al. [2009] the authors present a method that incorporates a constraint for the White
Noise Gain (WNG) into a least-squares beamformer design and still leads to a convex
optimization problem that can be solved directly. An extension to time-domain design
has been presented in Mabande et al. [2011]. In Lai et al. [2011] it is stated, however,
that it is difficult to select an appropriate level of WNG for any given set of errors
in loudspeaker speaker positions and / or directivity pattern; here the authors adopt
a Farrow structure for the beamforming and they incorporate the probability density
functions for the transducer position error into the design formulation. A beamforming
technique that is inherently robust against errors in the propagation matrix is presented
in Trucco et al. [2006] for microphone arrays. In Rübsamen and Gershman [2010, 2012],
Rübsamen and Pesavento [2012], in the context of mitigating the effect of interferes, the
authors extend the 1D covariance matrix fitting approach [Yardibi et al., 2010] to multiple
dimensions, and the steering vectors are modeled by means of uncertainty sets. In Doclo
and Moonen [2003] two design procedures are proposed, aimed at increasing the robustness
of a microphone array design: the first embeds the probability density functions of the
steering vectors, whereas the second optimizes the worst-case performance through the
minimax criterion. In Levin et al. [2013] the authors propose a technique that modifies
the classical loading scheme incorporating a non-diagonal elements to attenuate the effect
of sensor uncertainties. The method in Levin et al. [2013], however, is data-dependent, i.e.
the filters depend on the signal to be rendered, thus making its use for rendering purposes
quite cumbersome.

In this section, the uncertainty in the propagation matrix is modeled as the sum
of a deterministic (nominal) component and a random one. This model enables the
exploitation of the statistical properties of the random component in order to regularize
the solution to the least square problem (6.23), as in the RLS problem discussed in Boyd
and Vandenberghe [2009, p. 318, Sec. 6.4]. A non-diagonal loading of the original least
squares problem is obtained as solution.
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6.7.1 Problem Statement
The solution (6.22) does not take into account uncertainty or variations in speaker locations
and their directivity pattern, which constitute a main issue in loudspeaker array design
[Tashev et al., 2008]. Notice that the propagation function in (6.22) contains contributions
related to both the attenuation with distance from the loudspeakers and the loudspeaker
directivity pattern. Therefore, the propagation function can be factorized as

G(r|vl, ω) = G0(r|vl, ω)d(r|vl, ω), (6.31)

where the term d(r|vl, ω) only contains the directivity pattern, hence it does not depend
on the absolute relative position of r and vl but just on their relative angle

γ = arccos

(
〈r,vl〉
‖r‖ · ‖vl‖

)
, (6.32)

and will be denoted in the following by dl(ω, γ). The symbol G0(·) denotes the free-field
Green’s function (3.59).

Here, the uncertainty in loudspeaker directivity pattern is modeled as a random
variable δ(ω, γ) of variance σ2

D, which alters the nominal directivity pattern d(ω, γ)
usually specified by the loudspeaker manufacturer. Thus, it can be written

dl(ω, γ) = d(ω, γ) + δ(ω, γ), (6.33)

where δ(ω, γ) ∼ N (0, σ2
D(ω, γ)). Notice that the same approach could also be used for the

modeling of the uncertainty of the speaker locations. This aspect, however, goes beyond
the scope of this section. By substituting (6.33) into (6.31), one obtains an expression that
relates the uncertainty on propagation function with the uncertainty on the directivity
pattern

Gl(ω, γ) = G0(r|vl, ω)d(ω, γ) +G0(r|vl, ω)δ(ω, γ), (6.34)

or, in matrix notation,

G(ω) = G0(ω)�D(ω) + G0(ω)�∆(ω) (6.35)

where [G0(ω)]q,l = G0(r|vl, ω) for γq given in (6.32), [D(ω)]q,n = d(ω, γq), [∆(ω)]q,n =
δ(ω, γq) and � denotes Hadamard product. Finally, G(ω) is expressed as the random
variable

G(ω) = G(ω) + U(ω), (6.36)

where G(ω) = GFF (ω)�D(ω) is the mean value of G(ω) and U(ω) = GFF (ω)�∆(ω)
describes its statistical variation.

Next paragraphs will describe how a knowledge of the statistical model of G(ω) can be
exploited to derive a closed-form solution for the problem of designing a robust loudspeaker
driving filter.

6.7.2 Robust Least Squares Solution
Consider the least squares problem in (6.22) and modify it for the purpose of minimizing
the average approximation error, i.e.

arg min
ĥ(φn,ω)

E[‖G(ω)ĥ(φn, ω)− d(φn, ω)‖22], (6.37)
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where E[·] is the expectation operator. Recalling the factorization of the propagation
matrix in (6.36) one can express the objective function as [Boyd and Vandenberghe, 2009,
p. 318]

E[‖Gĥ− d‖22] = E[(Gĥ− d + Uĥ)H(Gĥ− d + Uĥ)]

= (Gh− d)H(Gh− d) + E[ĥHUHUĥ]

= ‖Gĥ− d‖22 + ĥHPĥ,

(6.38)

where the dependency on ω and φn has been dropped for compactness of the notation,
and P = E[UHU]. Hence, the statistical robust least-squares problem can be written as
a regularized least-squares problem

arg min
ĥ

‖Gĥ− d‖22 + ‖P1/2ĥ‖22, (6.39)

whose solution is [Boyd and Vandenberghe, 2009, p. 319]

ĥ = (G
H

G + P)−1G
H

d. (6.40)

It is important to observe that (6.40) corresponds to a loading of the least-squares solution
through matrix P. With respect to the Tikhonov regularization, however, the loading is
not diagonal, as P may have non-diagonal elements different from zero. A similar result
was attained in Levin et al. [2013] in the context of data-dependent beamformers for
microphone arrays.

6.7.3 Validation of the Robust Regularization Technique
The simulations and experimental results reported in this paragraph are intended to
provide a validation for the robust regularization technique presented in the previous
paragraph. The validation is conducted in a significant illustrative setting, where the
reproduction of a broadband plane wave is in order. Hence, it is desirable that the
synthesized acoustic field exhibits invariant characteristics over the temporal frequency
range of interest.

Spatial filters able to synthesize broadband and frequency-invariant plane waves have
been first introduced in Ward et al. [1995], Abhayapala et al. [2000] based on the spatial
Fourier transform of a continuous aperture. Analytic approaches have been presented for
specific discrete array deployments, e.g. linear [Sekiguchi and Karasawa, 2000], cylindrical
[Teutsch and Kellermann, 2005], spherical [Meyer and Elko, 2002, Abhayapala and Ward,
2002, Rafaely, 2005]. To overcome the restrictions on transducer locations imposed by
analytical approaches, in Parra [2006] a numerical method based on the solution of
a least-squares problem is introduced, originally conceived for microphone arrays but
easily applicable to loudspeaker arrays. This is a two-step procedure, which first solves
numerically a least-squares problem that decouples the frequency-behavior from the
spatial-behavior through a change of basis, and then solves a second least-squares problem
for the design of the spatial filter.

Here an extension of the data-independent beamformer in Parra [2006] is adopted,
using the proposed robust regularization technique in both problems of change of basis
and spatial filtering.

In order to produce a frequency invariant plane wave, in Parra [2006] a basis transfor-
mation is proposed, which leads from G(ω) to a new basis G̃ through a transformation
matrix B(ω), which minimizes the approximation error in the least squares sense

arg min
B(ω)

‖G(ω)B(ω)− G̃‖22]. (6.41)
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In Parra [2006] the new basis G̃ is chosen to be frequency-invariant. For this reason, the
new basis consists of spherical harmonics (cfr. 3.3.2) and the approximation is truncated
to order L and degree M (cfr. 4.2.3). The propagation matrix in the direction γ in the
new basis is thus written as

[G̃] = [Y 0
0 (γ), Y −1

1 (γ), . . . , YM
L (γ)]. (6.42)

The design of the spatial filter, in Parra [2006], is accomplished in the transformed domain.
In particular, the spatial filter is computed to approximate an objective array response d
in the least squares sense as

arg min
h̃(ω)

‖G(ω)B(ω)h̃(ω)− d‖22] (6.43)

and the filter coefficients in the original domain are obtained as

h(ω) = B(ω)h̃(ω). (6.44)

However, the derivation in Parra [2006] and briefly summarized here does not take
into account possible uncertainties in the loudspeaker propagation function. In order to
take into account this uncertainty, we follow the procedure presented in Sec. 6.7.2. In
Parra [2006] the propagation matrix appears in both steps of basis transformation and
spatial filter design.

Consider first the basis transformation problem in (6.41), with the objective of mini-
mizing the mean case approximation error. Exploiting the factorization of the propagation
matrix in (6.31), the problem can be written as a regularized least-squares problem, whose
solution is [Boyd and Vandenberghe, 2009]

B =
(
GHG + P

)−1
G
H

G̃. (6.45)

Consider now the problem in (6.43) for the computation of the beamforming filters.
Upon applying the same procedure, one obtains

h̃ = (GB
T
GB + Π)−1GB

T
f , (6.46)

where GB = GB, Υ = UB and

Π = E[ΥTΥ] = BTPB. (6.47)

Finally, the filter coefficients h in the original domain are obtained by the change of basis
in (6.44).

It is important to observe that both (6.46) and (6.45) correspond to a loading of
the least squares solution through matrices P and Π, respectively. With respect to the
Tikhonov regularization, however, the loading is not diagonal, as P and Π may have
non-diagonal elements different from zero. Notice also, from (6.47), that P and Π are
related through B. Therefore, with respect to the solution presented in Parra [2006], the
only additional knowledge required for a complete characterization of the proposed robust
spatial filters is the matrix P, determined by the statistics of the loudspeaker directivity
patterns.
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Figure 6.14: Custom cylindrical loudspeaker array (Fig. 6.14a) and measurement setup
(Fig. 6.14b).

6.7.4 Setup for the Experimental Validation.
The experimental validation is conducted in a room with short reverberation time, being
T60 ≈ 50ms in the frequency band 200Hz÷ 5 kHz. For illustrative purposes, we adopt a
custom cylindrical loudspeaker array, designed by B&C Speakers, mounting N = 32 2-inch
full-range drivers; the spatial filtering problem is here considered in a full 3-D setting.
The radius of the cylinder is 9.2 cm, while the distance between drivers along the z axis
is 7.5 cm. This results in a maximum radiation mode L = 3, having Nyquist frequency
fNyq,3 ≈ 2.2 kHz (cfr. Sec. 4.2.3). Fig. 6.14a shows the loudspeaker array.

The measurement setup, along with the reference frame, is shown in Fig. 6.14b. Notice
that the origin of the reference frame coincides with the center of the loudspeaker array.
In order to estimate the response of the array of loudspeakers, M = 7 measurement
microphones are deployed at angles γ = (θt, 0), t = 1, . . . ,M and distance fixed and equal
to 1.3m, thus forming an arc of sensors on the xz plane. The loudspeaker array is mounted
on a stepper turntable, which enable to rotate the array in the xy plane towards directions
φp, p = 1, . . . , Qφ. The microphones have been calibrated in such a way that their
response to an omnidirectional source located in the center of the reference frame is equal
in amplitude for all the M = 7 microphones. For each rotation angle of the turntable and
for each microphone, the response of the array in the direction (θq, φp) is evaluated. As a
consequence, the response is evaluated on a grid of γq = (φp, θt) propagation directions,
indexed by q = Qφ(t− 1) + p, with resolution 180°/(Qθ − 1) = 15° for the elevation angle
and 360°/Qφ = 5° for the azimuth angle.

In all simulations and experiments shown in this section, the frequency-independent
desired response of the loudspeaker array d(ω) is a plane wave in direction γ = (90°, 0°){

f(ω, γq) = f(γq) = 1, if q = Qφ

(
Qθ+1

2 − 1
)

+ 1,

f(ω, γq) = f(γq) = 0, otherwise.
(6.48)

We choose to truncate the spherical harmonics expansion to L = 12 in order to ensure a
more numerically accurate basis transformation; we remark that this choice is not intended
to increase the accuracy of the reproduced acoustic field since radiation modes higher
than L = 3 are not reproducible by our setup.

The time-domain filters hn(t), n = 1, . . . , N are derived from (6.44) through length-K
Inverse Fourier Transform, beingK = 512. The excitation signals are Golay complementary
sequences a(t) and b(t) of length LG = 4096 [Foster, 1986]. Let ra(t, γq) = a(t) ∗ f(t, γq)
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and rb(t, γq) = b(t) ∗ f(t, γq) be the array responses in direction γq due to inputs a(t)
and b(t), respectively. Through the definition of Golay complementary sequences [Foster,
1986], the array response is obtained by

f(t, γq) = (1/(2LG)) (a(t)ra(t, γq) + b(t)rb(t, γq)) , (6.49)

which is transformed through length-K Fourier transform to obtain the array response
f(ω, γq) in the frequency domain. For each rotation p of the turntable the set d(ω, γq), q =
Qφ(t − 1) + p, t = 1, . . . ,M of array responses is acquired, such that after a complete
rotation of the turntable the array response is sampled on the whole northern hemisphere.
Due to the symmetry of the measurement setup and of the loudspeaker array, the response
on the southern hemisphere is obtained by symmetrizing the response in the northern
hemisphere, i.e.

d(ω, γq)|q=Qφ(t−1)+p,
t=M+1,...,Qθ

= d(ω, γq)|q=Qφ(t−1)+p,
t=M−1,...,1

. (6.50)

In the following paragraph, the behavior of the proposed spatial filter is investigated,
considering as a figure of merit, the far field array response f̂(ω), which for the desired plane
wave to be synthesized ideally should be a unit impulse in the direction γ. We compare
the array response f̂tik(ω) produced by filters computed from (6.43) adopting Tikhonov
regularization, as suggested in Parra [2006], with the array response f̂rls(ω) produced by
filters computed from (6.46). The coefficient for the Tikhonov regularization has been
set to −20 dB. For the proposed robust design, we set the variance of the loudspeaker
directivity pattern to σ2

D(ω, γ) = −20 dB. The nominal directivity pattern d(ω, γ), and the
variance σ2

D(ω, γ) used in both design methodologies, have been experimentally determined
by measuring in a preliminary stage individual drivers mounted in the array structure.

6.7.5 Experimental Results
Figs. 6.15a and 6.15b show the array responses on the xy plane, i.e. f̂tik(ω, (90°, φp)) and
f̂rls(ω, (90°, φp)), p = 1, . . . , Qφ.

Notice that with the proposed design methodology the beam is reasonably rendered
in the whole frequency band of interest, despite the presence of aliasing starting from the
Nyquist frequency. On the other hand, with Tikhonov regularization, the beam is not
rendered for frequencies above 3 kHz.

Figs. 6.15c and 6.15d show the array responses on the xz plane, i.e. f̂tik(ω, (θt, 0°))
and f̂rls(ω, (θt, 0°)), t = 1, . . . , Qθ. As already observed for the xy plane, also in this case
f̂rls(ω) clearly exhibits a reasonably narrow beam, though widened at low frequencies
due to the small number of loudspeakers available to control the sound beam along the
direction of the elevation. On the other hand, f̂tik(ω) only matches the desired response
in a small frequency range between 1.5 kHz and 3 kHz.

In order to quantitatively assess the performance of the proposed design methodology,
Fig. 6.16 shows the DI of the loudspeaker array as a function of frequency. The DI is
denoted by DI(ω) and it is defined as the ratio between the power radiated in the solid
angle towards which the beam is steered and the average power radiated on the sphere, as
in Trees [2002, p. 60, Eq. 2.144]

DI(ω) = 10 log10

[
f̂(ω, (90°, 0°))

1/4π
∫ π

0

∫ 2π
0 sin(θ)f̂(ω, (θ, φ)) dφ dθ

]
. (6.51)
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(a) ftik(ω) on the xy plane.
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(b) frls(ω) on the xy plane.
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(c) ftik(ω) on the xz plane.
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Figure 6.15: Measured array response on the xy plane (Figs. 6.15a and 6.15b) and on
the xz plane (Figs. 6.15c and 6.15d). The amplitude response is normalized
on a frequency basis and represented in a dB scale.

Fig. 6.16a shows the DI computed in a simulative setup that reproduces the real one,
while Fig. 6.16b plots the DI for real data. Both results clearly show that the energy
of f̂tik(ω) is similar to an omnidirectional pattern at frequencies above 3.5 kHz, while a
significant portion of the energy of f̂rls(ω) still remains concentrated in the desired region.

The robustness of the proposed design methodology is highlighted through the analysis
of the power of filter coefficients, as defined in (6.30). Fig. 6.17 compares the power of
the filters computed with Tikhonov regularization with the power of the filters computed
from (6.46). Notice that the proposed methodology is able to guarantee an improved
robustness in the whole frequency band of interest, avoiding the stability problem of
Tikhonov regularization outside the mid frequency band.

6.8 Regularized Acoustic Field Synthesis
This sections shows the use of the regularization technique introduced in Sec. 6.7.2 for the
purpose of making the filter design operation in (6.22) more robust to uncertainties in
the loudspeaker propagation function. As it has been recalled in past paragraphs, those
uncertainties may arise from a mismatch between the ideal directional behavior of the
loudspeakers (i.e. variations from the omnidirectional behavior assumed in the derivation
of the rendering method proposed in this chapter), or even from a non-ideal positioning of
the loudspeakers, whose position may differ from the ideal one due to positioning errors.

In the following, simulations are shown to assess the use of the proposed regularization
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Figure 6.16: Simulated (Fig. 6.16a) and measured (Fig. 6.16b) DI, obtained with
Tikhonov regularization (DItik(ω), blue curves) and with the proposed
design methodology (DIrls(ω), red curves).
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Figure 6.17: White Noise Gain resulting from filters computed with Tikhonov regular-
ization (Qtik(ω), blue curve) and from filters computed with the proposed
methodology (Qrls(ω), red curve).

technique in the context of the acoustic field synthesis method introduced in this chapter.
In all the cases that are shown, the nominal propagation function is perturbed with
an additive random term, as in (6.35), drawn from a Gaussian distribution with zero
mean and variance σ2

D = 0.001. The robust regularization term P has been computed
as the mean of 100 realizations of the random process ∆ ∼ N (0, σ2

D). The Tikhonov
regularization parameter λ is chosen to be the maximum singular value of the propagation
matrix G, scaled by 0.01 as suggested in Olivieri et al. [2013]. All the plots shown in this
section feature a blue curve showing the error obtained with Tikhonov regularization for
filter design, as in (6.23); on the other hand the red curve shows the error obtained with
the proposed regularization technique (6.40).

In particular, Fig. 6.18a shows the spatially averaged mean-squared error (6.29) as a
function of temporal frequency for a circular array composed by L = 52 equiangularly
spaced loudspeakers. The desired field is that of a 2-D point source at ρz = 2 and φz = π/3;
the acoustic field is band-limited to M = 25.

Figure 6.18b shows the spatially averaged mean-squared error (6.29) as a function
of temporal frequency for a linear array composed by L = 32 loudspeakers lying on the
axis x = 1m between y0 = 1m and −y0 = −1m. The desired field is that of a 2-D point
source at ρz = 2m, φz = deg 0; even in this case the acoustic field is band-limited to
M = 25.

Finally, Fig. 6.18c shows the spatially averaged mean-squared error (6.29) as a function
of temporal frequency for an elliptical loudspeaker array composed by L = 52 loudspeakers,
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(a) Circular array.
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(b) Linear array.

500 1,000 1,500 2,000
−40

−30

−20

−10

Frequency [Hz]

1
0

lo
g

1
0
(ε̂
L

)
[d
B

]

tik rls

(c) Elliptical array.

Figure 6.18: Spatially averaged mean-squared error (6.29) as a function of temporal
frequency. The plot marked with circles shows the error obtained with
Tikhonov regularization for filter design, as in (6.23), while the plot marked
with crosses shows the error obtained with the proposed regularization
technique (6.40).

displaced to sample in an equiangular fashion an ellipse with semi-major and semi-minor
axis equal to 1m and 0.7m, respectively. The desired field is that of a 2-D point source
at ρz = 2m, φz = π/3.

It can be noticed that with the proposed regularization technique, the error is lower
in the overall frequency band for all the loudspeakers configurations that have been
considered. This is due to the exploitation of the statistics of the uncertainty in the filter
design process, that adapts the regularization parameter to the actual perturbed model.

6.9 Main Results
• A technique for the synthesis of acoustic field is proposed. This technique is easy

to adapt to arbitrary geometries of the loudspeaker array. Simulative results to
validate the technique are presented.

• In order to overcome performance issue due to non-idealities in practical acoustic
field synthesis systems, a technique to accurately render plane waves from arbitrary
distribution of loudspeaker is proposed. The technique is designed to be robust to
uncertainties in the loudspeaker propagation function.
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Chapter 7

Local Analysis and Processing of
Acoustic Fields

Part II of this thesis showed ad hoc techniques for the analysis and synthesis of acoustic
fields by means of arrays of microphones and loudspeakers, respectively. All the techniques
that have been presented are close to the optimum in ideal scenarios, but when it comes to
practical applications some of their limitations emerge. The major issues are: i) their poor
robustness to real-world conditions (positioning errors, deviations from the ideal acoustic
behavior, noise, etc.); ii) the difficulty in accomodating the modeling of the spatial evolution
of an acoustic field (i.e. modeling of near field sources); and iii) their implementation
complexity. Their implementation complexity, indeed, is still manageable with microphone
and loudspeaker technologies commercially available today, where their per-unit cost limits
the number of transducers to dozens or (in massive implementations) to few hundreds.
Nowadays, the technological change from traditional to Micro Electro-Mechanical Systems
(MEMS) microphones and loudspeakers paves the way to the availability of hundreds
of acoustic transducers at an extremely low price. In this scenario the computational
complexity of the techniques presented in Part II emerges as an actual limitation.

This chapter addresses the problem of analyzing and processing acoustic fields generated
by sources in the proximity of the microphone array. In doing so, we rely on well established
ideas borrowed from antenna array literature; those ideas and techniques are here extended
and modified to suit acoustic applications. This approach presents many advantages,
the most evident being the availability of a large corpus of widely studied algorithms;
however, it should be remarked that these algorithms are designed based on assumptions
that are not, in general, satisfied in the acoustic domain. In particular, many algorithms
are designed based on far field assumptions; e.g., in the analysis case, sources are assumed
to be in the far field, with wavefronts that impinge on the microphone array as planar
wavefronts. Although this assumption is reasonable when the length of the array is really
small compared to the wavelength, in most situations the proximity of acoustic sources
implies a severe model violation, thus degrading the performance of the derived algorithm.

The adoption of well-established array processing techniques in the acoustic realm is
enabled by the adoption of a novel analysis framework, based on the synergy between
three elements:

1. the beam-based physical representation of acoustic field (introduced in Sec. 4.4),
according to which acoustic fields can be expanded into a spectrum of beams propa-
gating in different directions; this property is interpreted in the signal processing
context as
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2. the time-space redundant signal representation, based on the Local Fourier transform
in Def. 8; and

3. the mapping of the transform coefficients onto a highly structured space with specific
geometric properties.

The beam-based representation provides two main advantages over traditional rep-
resentations. Indeed, unlike plane waves, beams are localized in space, meaning that
only those beams passing near an observation point actually contribute to the field there.
Moreover, beams intrinsically constitute a discrete set of basis functions, in the sense that
beams originated at a discrete set of points and oriented to a discrete grid of directions
can be used to represent an arbitrary acoustic field with a desired accuracy. Although
beam-based representations are not popular, at our knowledge, among the acoustic signal
processing community, they are gaining increasing interest in the antenna array processing
community, e.g. in Maciel and Felsen [2002], Lugara et al. [2003], Shlivinski et al. [2004,
2005], Heilpern and Heyman [2013, 2014].

In this thesis, the beam-based representation is interpreted as a structured redundant
frame-like representation, based on the Local Fourier transform (cfr. Def. 8). Frame-like
ideas found a remarkable amount of applications in the overall signal processing community,
among the others (without claims of completeness) in coding [Goyak et al., 1998, Burt
and Adelson, 1983, Cvetković, 2003, Daubechies and DeVore, 2003, Benedetto et al., 2006],
image denoising [Xu et al., 1994, Dragotti et al., 2003], transmission [Bernardini and
Rinaldo, 2005, 2006a,b], signal reconstruction [Balan et al., 2006]. We refer the interested
reader to Kovacevic and Chebira [2007] for a more comprehensive set of references.
Redundant frame representations exhibit some great advantages in practical applications:
mainly in terms of robustness to noise and to modeling mismatches. Moreover, in
the specific case of acoustic signal processing, a frame-based analysis reveals important
characteristics of the acoustic field. Indeed, in this chapter it is shown that frame-based
analysis allows us to retrieve directional components of the acoustic field in the vicinity of
an observation point.

This chapter hosts five main contributions. In Sec. 7.1, we present the plenacoustic
representation that first appeared in Marković et al. [2013a]. We review the concept
and the construction of the so-called plenacoustic image, which is mapped on a specific
domain (the ray space). The ray space provides a suitable representation for the DoA
of directional components of the acoustic field as the field itself varies over space. It is
shown that in the ray space the acoustic field generated by acoustic primitives appear as
linear patterns, thus enabling the easy extraction of their parameters.

The plenacoustic representation is exploited in Sec. 7.2 for the purpose of localizing
acoustic sources placed in the vicinity of the microphone array. It is shown that acoustic
sources can be localized by analyzing the energy distribution of acoustic field coefficients
in the ray space. However, the realization propsed by Marković et al. [2013a] exhibits
limitations due to poor resolution. In order to overcome these limitations, the high-
resolution spectral analysis methodology presented in Sec. 5.2 is here adapted to the
problem at hand. A simulative and experimental validation of this approach is provided.

The localization methodology presented in Sec. 7.2 can be employed as the fundamental
building block for more complex acoustic field analysis methodologies. Sec. 7.3 presents
a methodology for the extraction of a desired near-field sound source from the acoustic
field captured by a microphone array, while attenuating interfering sources and noise.
The methodology is developed in two steps: i) first, the acoustic sources are localized
using the method presented in Sec. 7.2; ii) second, suitable spatial filters are designed to
enhance/attenuate directional components of the acoustic field according to the geometrical
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information provided by the first step, while attenuating also the noise component. The
methodology presented in Sec. 7.3 is validated through simulations.

In Sec. 7.1, the plenacoustic representation is presented in the light of the local Fourier
transform introduced in Sec. 2.5.1; we will show that the plenacoustic image can be
conceived as the magnitude of the Local Fourier transform of the acoustic field captured
by a linear microphone array, with the transform coefficients being mapped on the ray
space.

In some applications the high redundancy of the plenacoustic representation is not
needed, and a more parsimonious representation is desirable. Moreover, the plenacoustic
representation emerging from Sec. 7.1 trns out to be non invertible. Section 7.5 shows
that the theory of Gabor frames provides the foundations for a representation that is
similar to the plenacoustic one (since they share the same domain, the ray space) but is
less redundant and, furthermore, it features perfect reconstruction.

For the purpose of limiting the notational complexity without impairing the generality
of the results, this chapter considers mainly a simplified scenario where a linear array of
microphones deployed on the z axis is adopted. In this scenario, the signals acquired by
the microphone array are independent on azimuth, hence all the acoustic quantities are
considered just on the plane y = 0.

7.1 Plenacoustic Imaging
Plenacoustic imaging (also known as soundfield imaging) is a method for acoustic scene
analysis originally presented in Marković et al. [2013a]. Authors in Marković et al. [2013a]
adopt a linear array of microphones to capture the spatial information available on the
acoustic scene in a local fashion. For this purpose, the authors measure the directional
contributions to the observed acoustic field by using a linear array of microphones
subdivided into overlapping sub-arrays, each composed by adjacent sensors. Data from
each sub-array are used to estimate, through beamforming, the spatial spectrum [Stoica
and Moses, 2004, p. 278], which represents an estimate of the acoustic energy carried by
directional components measured at several points on the array. The magnitude of the
spatial spectra is then represented as an image that is built by juxtaposition of the spatial
spectra from individual sub-arrays. This image is referred to as plenacoustic image (or
soundfield image).

The advantage of this acoustic scene analysis method is that acoustic primitives (as
acoustic sources, reflectors, etc.) appear in the plenacoustic image as linear patterns. For
example, a point source appears as a line in the plenacoustic image [Marković et al., 2013a,
Fig. 3], while acoustic reflectors appear as wedges [Marković et al., 2013a, Fig. 4]. This
property of the ray space makes it a favorable choice for many acoustic scene analysis
applications, including the localization of multiple sources [Marković et al., 2013a], the
estimation of the reflection coefficient [Marković et al., 2014] and others.

Review of the Ray Space. This paragraph briefly introduces the ray space as a
convenient space where salient features of the plenacoustic representation of acoustic fields
are apparent. Indeed, as described in Antonacci et al. [2008], acoustic primitives that
generate the observed acoustic field are mapped in the ray space as linear patterns. In
the following, a scenario where the acoustic field is observed only on a line is considered.
In particular, the acoustic field is observed on the z axis, thus it is independent on the
azimuth. Thanks to this consideration, without limiting the generality of the discussion,
in the following the plane y = 0 is considered.
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The ray space is introduced as the space encoding the parameters of acoustic rays.
According to Marković et al. [2013a], an acoustic ray is the set of points (x, z) that satisfy
the linear equation z = αx+ β, where the parameters (α, β) uniquely identify a ray in
the plane y = 0, and they define the ray space.

The interested reader is referred to Antonacci et al. [2008] or to Marković et al. [2013a,
Sec. II] for a formal definition of the ray space.

7.2 Source localization from Plenacoustic Images
The localization of acoustic sources in the vicinity of a microphone array is a typical
application enabled by the plenacoustic representations. Using tools from the image
pattern analysis literature, a plenacoustic image can be analyzed searching for linear
patterns that identify acoustic primitives. In this context, one of the advantages of
plenacoustic imaging is that several applicative problems can be solved using the same
data, without resorting to ad-hoc representations suitable for the specific problem to be
handled.

In Marković et al. [2013a] the authors employ a Minimum Variance Distortionless
Response (MVDR) estimator (also known as Capon estimator) [Capon, 1969], [Stoica
and Moses, 2004, Sec. 6.3.2] to compute the spatial spectrum from the data acquired by
windowed portions of the overall array. This choice suffers from resolution issues. As a
matter of fact, a trade-off issue arises between the width of the spatial window and the
resolution of individual spatial spectra. Indeed, as the number of microphones insisting
on a spatial window decreases, an higher number of windows is allowed (thus an higher
number of spatial spectra composes the plenacoustic image), but, on the other hand, the
resolution of each spatial spectrum decreases.

This trade-off has important consequences on applications of source localization. It
is known from Marković et al. [2013a, Fig. 3] that a point source is mapped on the
plenacoustic image as a line, and the estimate of the location can be accomplished by
finding the parameters of linear patterns in the image. By decreasing W (the width
of the spatial window), the location of the peaks in the plenacoustic image becomes
undetermined due to the poor resolution of the image itself, but more data are available,
as the plenacoustic image is composed by a higher number of spatial spectra.

This section proposes a method to overcome this trade-off using deconvolution tech-
niques mutuated from research in aerospace acoustic imaging. Consider the case in which
a single point source is present in the acoustic scene, and a continuous aperture is available
to capture is acoustic field. In this ideal setting, spatial spectra appear as Dirac deltas in
the direction of the acoustic source. In a real scenario, i.e. where the number of sensors
is finite, a smearing of the spatial spectrum appears. Such smearing can be modeled
by the Point Spread Function (PSF) [Ribeiro and Nascimento, 2011], a function that
encodes the response of the array to a plane wave. Moreover, authors in Marković et al.
[2013a] employ a rectangular window to partition the whole array into smaller sub-arrays.
This choice maximizes the spatial resolution of the plenacoustic image, but introduces
significant sidelobes in each spatial spectra, as the Fourier transform of the rectangular
window is a cardinal sine function.

This section shows how to apply the deconvolution operator for improving the resolution
of plenacoustic imaging. Moreover, in order to reduce the computational cost, a two-step
version of the algorithm in Yardibi et al. [2008] is here presented, exploiting the information
contained in the plenacoustic image. Indeed, the plenacoustic image is first analyzed to
gather as much information as possible about the location of active acoustic sources. This
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Figure 7.1: Source localization problem: microphone array and acoustic sources.

information is then used in a second stage to speed-up the deconvolution.

7.2.1 Notation
This paragraph introduces the notation used for the source localization application
described in this section. Consider the setup in Fig. 7.1. L acoustic sources are located in
rS,l = [xS,l, 0, zS,l]

T and produce wide-band signals sl(t), l = 1, . . . , L. An uniform linear
array of I microphones is placed on the z axis between z = −z0 and z = +z0. The ith
microphone is at mi = [0, 0, q0 − 2q0i/(I − 1)]T , i = 0, . . . , I − 1. Spatial windowing is
applied to the microphone array, using a rectangular window of width W . Thus, the array
is partitioned into M = I −W + 1 sub-arrays. Microphones insisting on the window
centered in mi are denoted by mj , j = i− (W − 1)/2, . . . , i+ (W − 1)/2, and they acquire
the signals xj(t). The signal xj(t) is processed with a filter bank to obtain xj(t, ωk),
k = 1, . . . ,K, ωk being the central frequency of the kth sub-band. These signals are then
stacked into the vector xi(t, ωk) = [xi−(W−1)/2(t, ωk), . . . , xi+(W−1)/2(t, ωk)]

T and they
can be expressed in matrix form as in (5.7)

xi(t, ωk) = Ai(ωk)S(t, ωk) + e(t, ωk), (7.1)

where S(t, ωk) = [s1(t, ωk), . . . , sL(t, ωk)]
T contains the source signals and e(t, ωk) is a

zero-mean additive noise with covariance matrix σ2I, I being the identity matrix of
dimensions W ×W , and σ2 being the power of the noise component. With the adoption
of such a model, we assume that the noise component is uncorrelated between different
microphones and its power is equal for each sensor. The matrix Ai(ωk) is the collection
of sub-array steering vectors towards each of the L sources in the kth frequency sub-band,
i.e.

Ai = [a(θi,1), . . . ,a(θi,L)], Ai ∈ CW×L

a(θi,l) = [ej(i−
W−1

2 )ωc d sin(θi,l), . . . , ej(i+
W−1

2 )ωc d sin(θi,l)]T ,
(7.2)

The symbol θi,l denotes the angle under which the lth source is seen from the microphone
at mi. With reference to Fig. 7.1, it is

θi,l = arctan

(
zS,l − z0 + 2z0i/(I − 1)

xS,l

)
. (7.3)

7.2.2 Data Model
Following Marković et al. [2013a], and with reference to the notation introduced in the
previous paragraph, a suitable beamforming technique computes the spatial spectrum
p̃i(θ, ωk) for the sub-array centered in mi [Marković et al., 2013a], which can be considered
as the estimate of the energy of acoustic rays reaching the central microphone at mi.
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Spatial spectra p̃i(θ, ωk) are then converted to p̃i(α, β, ωk), whose domain is the ray space,
through

α = tan(θ),

β = z0 − 2z0i/(I − 1).
(7.4)

The plenacoustic image I(α, β, ωk) is, finally, the juxtaposition of p̃i(α, β, ωk), i.e.

I(α, βi, ωk) = p̃i(α, β, ωk), (7.5)

where β = βi = z0 − 2z0i/(I − 1). In Marković et al. [2013a] authors also propose a
wide-band version of plenacoustic imaging by averaging spatial spectra in a frequency
sub-band fashion. In the following, it is specified if the discussion pertains narrow-band
or wide-band signals. For compactness, however, the dependency on ωk is omitted.

No matter what beamforming technique is used to extract p̃i(θ), spatial spectra depend
on the covariance matrix Ri of the signals acquired by the sensors under the ith spatial
window. Upon assuming that noise and source signals are uncorrelated, the covariance
matrix of array data can be modeled as

Ri = E
{
xi(t)xi(t)

H
}

= AiDAH
i + σ2I, (7.6)

where D is the covariance matrix of the L sources. For L uncorrelated sources with
variance σ2

l , the matrix D has the form

D = diag
(
[σ2

1, . . . , σ
2
L]
)
. (7.7)

Denote by hi(θ) the spatial filter that performs the beamforming on the ith sub-array
towards direction θ. Different techniques could be used to design such filter, such as Delay
and Sum (DAS) beamforming [Stoica and Moses, 2004, Chap. 6] and MVDR. No matter
what technique is used, the spatial spectrum is obtained as

p̃i(θ) = hi(θ)
HRihi(θ). (7.8)

For the DAS beamformer hi(θ) = a(θ)/W and

p̃i(θ) =
1

W 2

[
a(θ)HAiDAH

i a(θ) + σ2a(θ)Ha(θ)
]
. (7.9)

In ideal conditions (i.e. infinite number of microphones) the first addend on the right-hand
side of (7.9) is equal to zero for angles θ 6= θi,l and equal to σ2

l for θ = θi,l. In a real
situation, where the array resolution is finite, however, the spatial spectrum takes a
non-zero value also for angles θ 6= θi,l. This effect is modeled in the literature through
the PSF [Ribeiro and Nascimento, 2011]. These considerations can be applied also to
beamforming techniques different from DAS.

Next paragraph summarizes a methodology, originally proposed in Yardibi et al. [2008],
which attenuates the effect of the PSF through a deconvolution operation. The novel
contribution of this section is in the application of such deconvolution methodology to the
process of plenacoustic imaging.

7.2.3 Deconvolution
This paragraph reviews the deconvolution methodology, originally presented in Yardibi
et al. [2008], for the estimation of sources location and power. This methodology is based
on matching the sample estimate of the covariance matrix

R̂i =
1

T

T∑
t=1

xi(t)xi(t)
H (7.10)
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to the model (7.6). It is worth noticing that the number L of sources is unknown in
practical applications. As a consequence, a grid search over all the possible DoAs is
performed. Let N be the number of possible directions of arrival of the source and let
the plane wave components in the model (7.1) be computed on the grid of angles θi,n,
n = 1, . . . , N . Associated to the directions θi,n are the signals power σ2

n. The matrix D,
introduced in (7.7), now generalizes to D = diag

(
[σ2

1, . . . , σ
2
N ]
)
. Under the assumption

that N � L, D can be modeled as sparse; however, the overall methodology is robust
to this assumption. The signal powers σ2

n and the additive noise power σ2 are therefore
estimated by solving the quadratic convex optimization problem

arg min
σ2
n,n=1,...,N,σ2

‖R̂i −AiDAH
i − σ2I‖2F

subject to σ2
n ≥ 0, n = 1, . . . , N,

N∑
n=1

σ2
n ≤ λi, σ2 ≥ 0,

(7.11)

where ‖·‖F denotes the Frobenius norm. Let R̂i = ÛiΓ̂iÛ
H
i be the eigen-decomposition

of R̂i. The parameter λi is given by

λi = Tr(Γ̂i − γ̂iI), (7.12)

γ̂i being the smallest eigenvalue of R̂i. The number of unknowns in (7.11) is N + 1.
The problem formulation in (7.11) assumes the signal sources to be uncorrelated.

In real acoustic scenes, however, acoustic sources can not be considered, in general,
uncorrelated. This is, for instance, the case of non-point-like source, i.e. source whose
spatial domain is extended. In this situation, there is a set of directions θi,n from which
correlated signals impinge on the ith sub-array. In Yardibi et al. [2008] an extension to
correlated sources is proposed. In this more general case, the matrix D is not diagonal any
more, and the optimization problem can be reformulated as the semi-definite quadratic
program

arg min
σ2,D

‖R̂i −AiDAH
i − σ2I‖2F

subject to D ≥ 0, Tr(D) ≤ λi, σ2 ≥ 0.
(7.13)

The number of unknowns is now N2 + 1, therefore the solution of the problem requires
a high computational cost. The increase in the computational cost becomes evident if
we consider the case of wide-band sources, as the minimization must be accomplished K
times, being K the total number of frequency bins of interest.

As shown in Marković et al. [2013a], it is possible to estimate the number of sources
L̂ along with their position p̂S,l through pattern analysis on the plenacoustic image. This
information is exploited to reduce the computational burden of the deconvolution. More
specifically, the number of scanning directions N is replaced with the number of sources
L̂ estimated from a preliminary analysis of the non-deconvolved plenacoustic image, and
considering the steering matrix

Ai = [a(θ̂i,1), . . . ,a(θ̂i,L̂)]. (7.14)

The symbol θ̂i,l denotes the angle under which a source in r̂S,l is seen from the microphone
in mi. Thanks to this substitution, the number of unknowns in problems (7.11) and (7.13)
reduces to L̂ + 1 and L̂2 + 1, respectively. However, the sparsity of the problem is not
guaranteed any more. Moreover, an erroneous estimate p̂S,l could lead to wrong results.
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For the above reasons, acoustic sources are supposed not only to lie at the estimated
position p̂S,l, but also in their neighborhood, i.e. the deconvolution is performed on the
grid of p̊S,l,

p̊S,l ∈ {pS,l : pS,l = p̂S,l + δ, δ = [δx, δy]
T ,

− δmax ≤ δx, δy ≤ δmax}.
(7.15)

The steering vectors become

Ai = [a(θ̊i,1), . . . ,a(θ̊i,L̂)], (7.16)

where θ̊i,l are the directions associated to p̊S,l from the ith sub-array. The optimization
problem is now sparse and is more robust against possible errors in the preliminary
analysis. Finally, the deconvolved spatial spectra are

p̃i(θi,n) = {D}nn, (7.17)

where {D}nn denotes the nth entry on the diagonal of D. The deconvolved plenacoustic
image Ĩ(α, β) becomes the juxtaposition of p̃i,k(α, β), similarly to (7.5).

If the extension to wide-band signals is in order, one can proceed as in Azimi-Sadjadi
et al. [2004] (cfr. Sec. 5.3) by averaging spatial spectra in a frequency sub-band fashion.
In particular, the spatial spectral computed at all frequency bins in the frequency band of
interest concur to the generation of a single plenacoustic image, with the product of their
geometric and harmonic means

p̃i(θi,n) =
l2 − l1

l2∑
l=l1

p̃i(θi,n, ωl)

·

 l2∏
l=l1

p̃i(θi,n, ωl)

1/(l2−l1)

, (7.18)

where the integers l1 and l2 are the bin indexes corresponding to the cutoff frequencies of
the frequency band of interest.

7.2.4 Localization Technique
Following Marković et al. [2013a], a two step localization methodology is adopted here,
based on the analysis of the plenacoustic image. The first step consists in the identification
and disambiguation of DoAs corresponding to the acoustic sources, which are estimated
from the peaks of the computed spatial spectra. This operation is simplified by the inner
nature of the ray space, which enables the clustering of DoAs corresponding to the same
acoustic source on a linear pattern. The assignment of peaks to one of the sources is thus
accomplished using a Hough transform [Duda and Hart, 1972].

The second step consists in finding an estimate of the location of the sources through
a least-squares regression of the detected and clustered peak locations. In particular, the
equation of a line in the ray space corresponding to the lth acoustic source is

β = αxS,l + zS,l, (7.19)

where α and β are two vectors collecting the estimated peak locations in the plenacoustic
image. On rewriting (7.19) as

β = α′rS,l, (7.20)
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with α′ = [α,1] and rS,l = [xS,lzS,l]
T , one obtains that the line that best fits the estimated

peaks in the least squares sense has parameters[
xS,l

zS,l

]
= (α′Tα)−1a′

T
β. (7.21)

The line parameters in the rays space, i.e. xS,l and zS,l are the estimated position of the
acoustic source in the Cartesian reference frame.

7.2.5 Results
This section presents simulations and experimental results to prove the advantages enabled
by deconvolution in plenacoustic imaging. An uniform linear array of length 0.9m
(q0 = 0.45m) and composed by I = 16 microphones is considered. The array is divided
into 14 sub-arrays, applying a rectangular spatial window of width W = 3. For all the
simulations and the experiments, the signals acquired by the microphones are affected by
an additive noise, whose power determines a Signal-to-Noise Ratio (SNR) equal to 10 dB.
Non-deconvolved spatial spectra are obtained with MVDR beamformer, while deconvolved
spatial spectra are obtained by solving the optimization problems in (7.11) or (7.13) with
the CVX Matlab® toolbox [CVX Research, 2012, Grant and Boyd, 2008].

Extended Source. Consider the acoustic scene depicted in Fig. 7.2a. The acoustic
source consists in two discs of radii r = 0.08m and their centers are placed at pS,1 =
[0.6m, 0, 0.08m]T and pS,2 = [0.6m, 0,−0.08m]T . The signals emitted by the two discs
are opposite in phase. Such setup has been simulated with the k-Wave toolbox [Treeby
et al., 2012]. The plenacoustic image is expected to exhibit two parallel lines z1 and
z2, corresponding to the centers of the discs pS,1 and pS,2, respectively. Moreover, the
disc in pS,1 is expected to be occluded by the one in pS,2 for spatial windows in the
half-space z < 0, and vice versa for spatial windows in the half-space z > 0. Finally,
due to the mutual cancellation of contributions from the two discs, the image should
exhibit a null region for spatial windows whose center is close to the origin. Fig. 7.2b and
Fig. 7.2c show the plenacoustic images I(α, β) and Ĩ(α, β), respectively, at f = 1 kHz.
The non-deconvolved plenacoustic image I(α, β) suffers from a smearing of the peaks and
does not present significant energy in the range −0.2 ≤ β ≤ 0.2. On the other hand, the
deconvolved plenacoustic image is composed by two parallel lines.

Estimation of the Radiation Pattern of Acoustic Sources. The increase of
definition gained with the deconvolution enables further analysis on the plenacoustic image.
As an example, Fig. 7.3 shows the actual radiation pattern B(θ) of the two extended
sources considered above. B(θ) has been estimated by placing in the simulation setup 360
microphones around the source distribution. Fig. 7.3 also shows the patterns B̂(θ) and
B̃(θ) estimated from I(α, β) and Ĩ(α, β), respectively. Note that B̂(θ) takes values only
at very few points, due to the absence of relevant peaks in the non-deconvolved spatial
spectra composing I(α, β). On the other hand, B̃(θ) closely approximates B(θ) for a
significant number of points, thanks to the higher resolution of Ĩ(α, β).

Localization. Consider the setup depicted in Fig. 7.4a. Two point-like sources are
located in pS,1 = [1m, 0m0m]T , and pS,2 = [(1 + ∆x)m, 0m, 0m]T , where ∆x is in the
range (0.6m, 1.6m). Localization is performed through suitable image pattern analysis
on the plenacoustic images I(α, β) and Ĩ(α, β). The errors on the estimation of pS,1 and
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(c) Ĩ(α, β).

Figure 7.2: Comparison between non-deconvolved (Fig. 7.2b) and deconvolved (Fig. 7.2c)
plenacoustic images for the setup in Fig. 7.2a. Grayscale plenacoustic images
are represented in dB scale between 0 dB and −20 dB.

pS,2 from I(α, β) are denoted as êS,1 and êS,2, respectively, while ẽS,1 and ẽS,2 are the
localization errors from Ĩ(α, β). One hundred independent realizations of the simulations
are performed for each location pS,2.

Figure 7.4b shows the mean value of the localization errors as a function of the distance
∆x. Notice that the deconvolution enables to accurately localize both sources in pS,1

and pS,2 starting from ∆x = 0.7m, while without the deconvolution the localization is
possible only from ∆x = 0.8m.

Fig. 7.4c shows the average localization error for ten realizations of an experiment
that reproduces the setup in Fig. 7.4a. Sources and microphones have been deployed in a
modestly reverberant room. Notice that the localization error exhibits a trend similar
to Fig. 7.4b, thus confirming the validity of the proposed technique also in real-word
conditions. Moreover, with real-world data, the error êS,2 increases with ∆x, while ẽS,2 is
almost constant.
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Figure 7.4: Average localization error for the setup in Fig. 7.4a. Simulations (Fig. 7.4b)
and experiments (Fig. 7.4c).
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7.3 A Plenacoustic Approach to Source Separation

Source localization, as presented in Sec. 7.2, is a fundamental task both on its own and as
a building block for more advanced applications. This section shows how to employ source
localization and the plenacoustic imaging process in order to separate acoustic sources
from interfering sources and noise.

Enhancement of a desired sound while attenuating interfering sources and background
noise is a goal that has been pursued by the signal processing community for decades;
the reader is referred to Benesty et al. [2005] for a comprehensive review of such research
activity. An intuitive way of approaching the problem is to preliminarily gather spatial
information about the acoustic scene, and then to focus on the source of interest through
spatial filtering. Microphone arrays provide a technological mean to accurately capture
spatial information [Benesty et al., 2008], with techniques borrowed from antenna array
processing.

This approach presents some advantages, such as the availability of a large corpus of
algorithms. However, it should be remarked that these algorithms are usually designed
based on assumptions that are not, in general, satisfied in the acoustic domain: narrowband
stationary signals, free-field propagation and sources in the far field with respect to the
array. On the contrary, microphone array algorithms must be designed to deal with
i) wideband time-varying signals; ii) reverberant environments; and iii) near-field sources.

The first issue is commonly solved by performing spatial filtering in a short-time-
frequency domain [Allen, 1977, Benesty et al., 2012]. The second issue has been recently
addressed, e.g. in Reuven et al. [2008], Markovich et al. [2009], Thiergart and Habets
[2013]. In particular, authors in Thiergart and Habets [2013] propose a spatial filter that
minimizes the diffuse plus noise power at filter output, subject to constraints on the
desired spatial response. This way, the authors can specify a desired spatial response
that enhances (attenuates) sounds coming from desired (undesired) source locations in
the far-field; the constraints are set accordingly to an on-line estimate of the direction of
arrival of the sources. However, this approach relies on the assumption of far-field sources
impinging on the array as plane-wave wavefronts. This assumption can be violated in
practical acoustic scenarios, thus degrading the performance of the spatial filter.

This section presents an approach for source separation that addresses the problem
of working in near-field conditions, still using the simple and well established techniques
borrowed from the array processing literature. A two step procedure is outlined, aimed at
first localizing the source, and then using this information for separation purposes. As far
as source localization is concerned, the approach presented in Sec. 7.2 is here adopted,
and adapted to the case of possibly moving sources in non-anechoic environments.

As for the step of source separation, this section relies on the technique presented in
Thiergart and Habets [2013], modified to work on a sub-array fashion. More specifically, a
spatial filtering is performed for each spatially windowed sub-array, leaving undistorted the
energy emitted by the desired sound source, while attenuating the interferer. Since sub-
arrays are of smaller dimensions with respect to the overall array, the far-field propagation
model is still applicable even in situations where the distance of the source is comparable
with the overall array length. In this section, in line with the previous discussion, a
rectangular spatial window is adopted.

Finally, a time reversal approach is used to apply a delay (possibly negative) and
summing the desired signals at each sub-array, in such a way to propagate the signals
back to the location of the desired source. In doing so, we rely on the source location
estimated by inspection of the plenacoustic image.
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7.3.1 Data Model
We consider the setup depicted in Fig. 7.1, with L (possibly moving) acoustic sources
located at pS,l(t) = [xS,l(t), 0, zS,l(t)]

T , l = 1, . . . , L, where t denotes time. The same
microphone array setup described in Sec. 7.2.1 is adopted here. Let xi(t) denote the
time-domain signal acquired by the ith microphone. In the following, a short-time Fourier
analysis framework is considered (cfr. Def. 8), in which the signal acquired by the ith
microphone is transformed in the signal xi(τ, ω) by

xi(τ, ω) =

∫ ∞
−∞

xi(t)w(t− τ)e−jωt dt, (7.22)

where w(t) denotes a suitable real-valued temporal window function. For the purpose of
clarity, in the following the dependency on time and frequency is omitted; it will be made
again explicit Sec. 7.3.3, for the purpose of re-synthesizing time domain signals. Please
notice that the proposed formulation accommodates the modeling of moving sources, as
far as their position can be assumed to be fixed in the time interval covered by w(t), as it
is widely accepted in the literature.

Signals acquired by microphones are stacked into the vector

xi = [xi−(W−1)/2, . . . , xi+(W−1)/2]T . (7.23)

Each acoustic source is assumed to be at a distance greater than the size of the sub-array,
so that far-field propagation holds within sub-arrays. Under this assumption, the signal
captured by the ith sub-array can be modeled as

xi = Aisi + ξi + ei, (7.24)

si = [s1,i, . . . , sL,i]
T ∈ CL×1 being a vector containing the L source signals. Let ξi ∈ CW×1

denote the diffuse field impinging on the ith sub-array and ei ∈ CW×1 denote the additive
microphone noise. Ai represents the collection of steering vectors [Stoica and Moses, 2004]
towards each of the L sources

Ai = [a(θi,1), . . . ,a(θi,L)], Ai ∈ CW×L

a(θi,l) = [ej(i−
W−1

2 )ωc d sin(θi,l), . . . , ej(i+
W−1

2 )ωc d sin(θi,l)]T ,
(7.25)

where the symbol θi,l denotes the angle under which the lth sources is seen by the ith
sub-array, i.e.

θi,l = arctan

(
yS,l − q0 + 2q0(i− 1)/(M − 1)

xS,l

)
. (7.26)

The covariance matrix of array data can be modeled as [Stoica and Moses, 2004]

Ri = E[xix
T
i ] = AH

i ΣiAi + Ξi + Ei, (7.27)

where Σi = diag(E[|s1,i|2], . . . , E[|sL,i|2]) contains the expected values of the squared
amplitude of the L source signals on its diagonal, (·)H denotes Hermitian transpose
operator, Ξi = σ2

D,iΓ and Ei = σ2
NI. Let σ2

D,i and σ
2
N,i denote the expected power of the

diffuse field and of the microphone noise at the ith sub-array, respectively; Γ is the diffuse
field coherence matrix [Cook et al., 1955] and I is the identity matrix.

The main goal of this section is to show how signal extraction of near-field sound
sources can be conveniently accomplished in the plenacoustic framework. In particular,
it is shown how data from individual sub-arrays concur in the estimation of the desired
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p̂S,l
p̂S,l

Figure 7.5: Block diagram for signal extraction of sources in the near-field.

signal through the application of a spatial filter informed on the location of the sound
sources. The spatial filters are designed at sub-array level to attenuate or enhance sound
coming from specific directions, derived from the source positions with basic geometric
reasoning. Filter outputs from individual sub-arrays are then back-propagated from the
acoustic center of each sub-array to the estimated source location of interest. Finally,
signals are re-synthesized in the time domain. Figure 7.5 shows a block diagram of the
overall system. Next paragraphs will detail all operations in Fig. 7.5.

7.3.2 Spatial Filtering
The goal of spatial filtering is to linearly combine the array data x such that sounds coming
from different directions are enhanced or attenuated according to a desired directivity
function, while attenuating both diffuse and noise field components. In this paragraph we
focus on the whole array, since this is scenario considered in the original work [Thiergart
and Habets, 2013], from which we derive the spatial filters used for our purposes.

The desired signal, i.e. a spatially filtered version of the source signals, can be written
as

y = CT s, (7.28)

where C ∈ RL×1 denotes the desired directivity function. A spatial filter h provides an
estimate of y as a linear combination of array data

ŷ = hHx, h ∈ CW×1. (7.29)

In Thiergart and Habets [2013] the spatial filter is designed by minimizing the sum of
diffuse and noise field powers at filter output, subject to the desired directivity function,
i.e.

ĥ = argmin
h

hH(Ξ + E)h s.t AHh = c. (7.30)

By defining the Diffuse-to-Noise Ratio (DNR) σ2 = σ2
D/σ

2
N and J = σ2Γ + I, the

optimization problem in (7.30) can be rewritten in the equivalent form

ĥ = argmin
h

hHJh s.t AHh = c, (7.31)

whose solution is [Frost, 1972]

ĥ = J−1A
(
AHJ−1A

)−1
c. (7.32)
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7.3.3 Source Signal Extraction based on Plenacoustic Infor-
mation

This paragraph shows how to extract the signal of a near-field sound source in the
plenacoustic framework. Consider the partitioning of the overall microphone array into
maximally overlapped spatially windowed sub-arrays, as described in Sec. 7.3.1. The
spatial filtering technique introduced in Thiergart and Habets [2013] and reviewed in
Sec. 7.3.2 is here adopted in order to enhance or attenuate sound coming from different
directions with respect to the ith sub-array, while minimizing the diffuse and noise
components. This filtering operation is supported by the information on the source
locations, extracted from the plenacoustic image as described in Sec. 7.2.

Consider an acoustic scene in which L acoustic sources are present, whose locations
have been estimated at {p̂S,l}, using the method described in Sec. 7.2. A grid of directions
{θ̂i,l} is set, and it is defined according to the estimated source positions {p̂S,l} as

θ̂i,l = arctan

(
ŷS,l − z0 + 2z0i/(I − 1)

x̂S,l

)
. (7.33)

Thanks to the use of the plenacoustic function, the accuracy of the DoA estimation at
each sub-array is expected to be higher with respect to Thiergart and Habets [2013]. In
fact, the DoA is extracted from the estimate {p̂S,l} of the source location, coming from the
least squares line fitting described in Marković et al. [2013a], which enables to attenuate
the impact of wrong DoA estimation on a small number of sub-arrays.

Let Ai denote the sub-array steering matrix computed on the set of directions {θ̂i,l}.
The desired directivity function for the ith sub-array is defined as

{Ci}l =

{
1, if the lth source is desired, (l = ľ)

0, if the lth source is unwanted, (l 6= ľ)
, (7.34)

where the symbol ľ denotes the index of the desired source. The spatial filter ĥi,ľ to be
applied to the ith sub-array for estimating the ľth source is then computed through (7.32),
and the corresponding filter output is given by

ŷi,ľ = ĥH
i,ľ

xi. (7.35)

The signals ŷiľ estimated on a sub-array basis are then re-aligned and combined to
form a single source signal estimate. For this purpose, a back-propagation approach is
adopted, in which each sub-array signal ŷi,ľ is back propagated from mi to pS,ľ. The
source signal estimate ŷľ is then obtained as the linear combination of the back-propagated
sub-array signals

ŷľ = 4π
I∑
i=1

ŷi,ľ‖pS,ľ −mi‖ei
ω
c
‖pS,ľ−mi‖, (7.36)

where the back-propagation is performed assuming that the sound sources are isotropic
point sources. We observe that this particular choice for the re-alignment of sub-array
signals is arbitrary, as they could be re-aligned through back-propagation to an arbitrary
point in space. However, the plenacoustic analysis framework provides an easy estimate
of the actual source locations, hence it is natural to exploit this further information in the
re-alignment phase.

Finally, the estimated source signal is re-synthesized in the time domain though an
inverse Short-Time Fourier transform (cfr. Def. 8). In particular, denoting by ŷľ(τ, ω) the
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signal estimated as in (7.36) from a frame windowed by w(t− τ) temporally centered in
τ , at a temporal frequency ω, it results

ŷ(t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ŷľ(τ, ω)w(t− τ)ejωt dω dτ. (7.37)

7.3.4 Results
This section presents some simulations aimed at validating the proposed approach to
acoustic signal extraction. All the simulations are performed in anechoic conditions with
I = 16 microphones with spacing d = 6 cm. The width of the spatial window determining
the sub-arrays is varied among simulations and will be specified for each case. The
sampling frequency is set to 44.100 kHz. The short-time analysis is accomplished using a
Hanning window of length 23.21ms, 50% overlap. The speed of sound is fixed to 340ms−1.
The set of directions {θi,l} is obtained by uniformly sampling the interval [−π/2, π/2] in
M = 65 points. The number of the acoustic sources is fixed to L = 2. The source signals
are speech signals from Eur [2008, Tracks 49 (female) and 50 (male)]. In the following,
the female speech is assigned to the source with index 1, while the male speech is assigned
to the source with index 2. Prior to the processing, the source signals are filtered with a
bandpass filter whose cutoff frequencies are 500Hz and 5 kHz. In all the simulations, the
power of the diffuse noise field is set to σ2

D = 0. In the second and third simulations the
variance of the additive noise σ2

N is set so that the signal-to-noise ratio is 20dB.
The performance of the signal extraction approach is evaluated in terms of the Signal-

to-Interference Ratio (SIR), defined as the ratio between the energy of the desired source
signal and the sum of noise and undesired sources energy [Vincent et al., 2006]

SIR = 10 log10

‖ŷľ(t)‖2

‖ε(t)‖2
, (7.38)

where ε(t) is defined as the difference of two contributions:

1. the orthogonal projection of the estimated signal yľ(t) onto the space spanned by
all source signals (i.e. sl(t), l = 1, . . . , L); and

2. the orthogonal projection of yľ(t) onto the space spanned by the original desired
source signal sľ(t).

The SIR metric has been computed using the Matlab implementation provided in Vincent
et al. [2012].

The first simulation evaluates the impact of the localization error on the overall
performance, according to the setup depicted in Fig. 7.6a. For this purpose, an additive
random variable to the true source locations is introduced, such that p̂S,l = pS,l+η, η being
a bi-variate Gaussian random variable with covariance matrix σ2

ηI and zero mean. The
sources are placed at pS,1 = [

√
2/2m, 0m,

√
2/2m]T and pS,2 = [

√
2/2m, 0m,−

√
2/2m]T .

In order to assess only the impact of the localization error, in this simulation the additive
noise power is set to σ2

N = 0. The standard deviation of the localization error ση is let
vary between 0m and 0.23m. For each value of ση, 50 realizations of η are simulated.
Figure 7.6b shows the SIR averaged over all the realizations for each value of σ2

η.
We observe that the localization error introduces some impairments in the source

extraction system, but even in cases where the localization error is high, there is still
an acceptable degree of separation of the two sources. We observe that introducing a
localization error with variance σ2

η > 0.01, the SIR for both sources remains approximately
constant.
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Figure 7.6: Impact of the localization error on SIR.
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ľ = 1 ľ = 2
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Figure 7.7: Impact of the transversal source distance ∆z on SIR.

The second simulation is aimed at assessing the performance of the source extraction
approach when two sources are placed at pS,1 = [1, 0,∆z/2]T and pS,2 = [1, 0,−∆z/2]T .
Figure 7.7a shows the simulative setup. The proposed method is still able to extract the
two sources with SIR ≈ 25dB even when ∆z = 50 cm, which in the considered setup is
equivalent to an angular separation of 25°. The extraction performance is further improved
when ∆z is increased.

Finally, the third simulation is aimed at assessing the performance of the source
extraction approach when two sources are aligned on the x axis, placed at pS,1 =
[0.5m, 0, 0m]T and pS,2 = [(0.5 + ∆x)m, 0, 0m]T . Figure 7.8a shows the simulative
setup. The proposed method is able to extract the two sources even in this challenging
scenario. In particular, the sound source closer to the microphone array is extracted with
a SIR > 20dB when ∆x > 0.8m. The sound source farthest from the microphone array is
still extracted but with a lower SIR.
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Figure 7.8: Impact of the co-linear source distance ∆x on SIR.
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Figure 7.9: Linear aperture on the z axis.

7.4 Plenacoustic Imaging as a Local Fourier trans-
form

This section reinterprets the plenacoustic representation discussed in previous sections in
the light of the local Fourier transform (cfr. Def. 8).

7.4.1 Ideal Plenacoustic Imaging
In order to introduce the concepts in a progressive fashion, consider first the case in
which a pressure sensitive aperture is deployed on the z axis, between z = −z0 and
z = z0, as depicted in Fig. 7.9. Notice that in this scenario the signal received by the
microphone array is independent on azimuth, hence any acoustic system built according
to the configuration in Fig. 7.9 is not able to discriminate the azimuthal direction. The
pressure sensitive aperture enables to capture the acoustic field P (r, ω) on the z axis
between z = −z0 and z = z0, i.e. r = [0, 0, z]T , with −z0 ≤ z ≤ z0; thus, the captured
acoustic field depends only on z and on the temporal frequency ω, hence it can be written
as P (z, ω). In order to simplify the notation, in the following we omit the dependency on
ω.
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Consider a window function ψ(z) that allows us to select portions of the z axis.
Plenacoustic imaging, as it has been introduced in previous sections prescribes the
adoption of a rectangular window. The local Fourier transform (2.74) is obtained by
multiplying the acoustic field P (z) with shifted copies of the window function ψ(z), i.e.[

P̃
]
m,n

(ω) =

∫ z0

−z0
P (z, ω)ψ∗(z −mz̄)e−j

ω
c
nk̄z(z−mz̄) dz, (7.39)

where m = 0, . . . ,M − 1 is an integer representing the spatial displacement along the z
axis and n = 0, . . . , N − 1 is an index representing the spatial frequency. The parameters
z̄ and k̄z denote the sampling intervals on the z axis and on the spatial frequency axis,
respectively.

For convenience, as will be clear in the following, the local Fourier transform coefficients
have been arranged in the matrix P̃. As it has been shown in Sec. 4.1.1, the complex
exponential term in (7.39) can be interpreted as a plane wave with DoA θn given by
cos(θn) = nk̄z. Equation (7.39) is interpreted as a set of beamforming operations each
insisting on a portion of the overall aperture centered at z −mz̄ and steered towards
direction θn = arccos(nk̄z). Notice that this interpretation coincides with the notion of
ideal soundfield camera in Marković et al. [2013a, Sec. III-A], where the window function
ϕ(z) is chosen to be a rectangular window.

Following Marković et al. [2013a, Sec. III-A], the energy of individual local Fourier
transform coefficients |P̃m,n|2 is mapped onto the ray space by

β = mz̄,

α = arctan(arccos(nk̄z)) =

√
1− (nk̄z)2

nk̄z
,

(7.40)

where β represents the z coordinate of the beam origin and α is the angular coefficient of
the line coincident with the beam axis.

7.4.2 Plenacoustic Imaging with a Microphone Array

The previous paragraph showed the idea of plenacoustic imaging in an ideal scenario, where
a pressure sensitive aperture was available. This paragraph shows how a plenacoustic
image can be acquired by means of a microphone array that samples the continuous
aperture in Fig. 7.9. Indeed, consider a linear array of microphones deployed on the z
axis; microphones sample a portion of the z axis of length 2z0, ranging from z = −z0 to
z = z0; Fig. 7.10 shows the setup.

The local Fourier transform coefficients in (7.39) can be approximated by applying a
quadrature rule to the integral over the z axis, where quadrature points are the location
of the microphones in the array. This approximation yields

[
P̃
]
m,n

(ω) ≈ d
I∑
i=0

P (zi, ω)ϕ∗(zi −mz̄)e−j
ω
c
nk̄z(zi−mz̄), (7.41)

where I is the total number of microphones and d = 2z0/(I − 1) is the distance between
adjacent microphones. Figure 7.11 shows an illustrative plenacoustic image generated by
two acoustic sources; the lines Rr1 and Rr1 denote the linear patterns corresponding to
the two acoustic sources.
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Figure 7.11: Illustrative plenacoustic image.

7.4.3 Interpretation
Consider a single spatial window in (7.41), i.e. fix m. The mth row of the matrix P̃(ω)
is interpreted as the spatial spectrum computed from the array data multiplied by the
spatial window function centered in mi = [0, 0, z −mz̄]T , as shown in Fig. 7.12 for the
case of a rectangular window. Indeed, by fixing m and adopting a rectangular spatial
window of width W , (7.41) becomes

P̃n(ω) ≈ ∆z

m+(W−1)/2∑
i=m−(W−1)/2

P (zi, ω)e−j
ω
c
nk̄z(zi−mz̄), (7.42)

which is readily interpreted as a DAS beamforming operation [Stoica and Moses, 2004,
Sec. 6.3.1] on a partial set of array data. In the nomenclature introduced in previous
sections, this partial set is referred to as a sub-array. In the light of this interpretation,
(7.41) is considered as the collection of multiple DAS beamforming operation, each
computed from a specific portion of array data.

The spatial spectral computed from the DAS beamforming estimator are known to
exhibit the same resolution issues of the periodogram spectral estimator [Stoica and Moses,
2004, Chap. 2]. In fact, it is shown in [Stoica and Moses, 2004, p. 278] that the beamwidth
of the spatial filter used to compute the DAS beamforming estimator is approximately
proportional to the inverse of the sub-array length. Adopting sub-arrays of reduced length
with respect to the overall array yields to resolution issues, as it has been shown in Sec. 7.2.
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Figure 7.12: Interpretation of the plenacoustic imaging process.

7.4.4 Redundancy of the Plenacoustic Representation
The acoustic field in the ray space is represented by MN coefficients; the number of
steering directions N is usually chosen to match the desired resolution and can be in the
order of hundreds; on the other hand, the number of window centers I is determined by
the specific choice for the window function and by the overlap between sub-arrays. Upon
adopting the rectangular window of width W and setting the maximum overlap between
windows, M is determined as

M = I −W + 1. (7.43)

Typical array configurations, realized with traditional microphone technologies (and not
with MEMS), consist of tenth of microphones; thus, the acoustic field is represented in
the acoustic domain by a number of coefficients in the order of thousands.

Just to make an illustrative example, consider a microphone array composed by I = 32
microphones and partitioned using maximally overlapped rectangular windows of width
W = 5; this yields to M = 28 window centers. Setting the desired resolution of the
acoustic image in the DoA dimension to 5° yields N = 180°/5° = 72. Thus the total
number of coefficients in the plenacoustic representation is MN = 2016. This number has
to be compared with the original amount of coefficients needed to represent the acoustic
field captured by the microphone array, which is given by the number of microphones
I = 32 itself. Thus, the redundancy of this specific illustrative plenacoustic representation
is 2016/32 = 63.

The high redundancy intrinsic to the plenacoustic representation enables two major
benefits over non-redundant representations:

• the information contained in the signal captured by the microphone array is cast in
a form where its salient characteristics are immediately understandable; this form,
as it has been detailed in past sections, is provided by the ray space;

• redundancy attenuates the effect of noise in the array data; this feature is fundamen-
tal in many applications; indeed, it has been exploited for localization and source
extraction purposes.

7.5 The Plenacoustic Transform
The plenacoustic representation discussed in Chap. 7 exhibits many interesting properties
that make it a favorable choice for many applications. However, there are some applications
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where its properties are not optimal. The major of its pitfalls is that the plenacoustic
representation does not have the concept of a full-fledged signal transformation embedded
in it. As a matter of facts, no tools have been developed to invert the plenacoustic
representation, i.e. to compute the acoustic field given its plenacoustic representation.

Another restriction set by the plenacoustic approach has it has been presented in
Chap. 7 is the it constrains us to use rectangular windows to partition the whole array
into smaller portions. Rectangular windows used in the context of the plenacoustic
representation exhibits the same characteristics widely studied in the field of time-frequency
analysis of signals. Precisely, if we narrow the window (i.e. we consider smaller sub-
arrays) the spatial resolution increases, meaning that we are provided with more analysis
points along the array; however, since the Fourier transform of the rectangular window
is the cardinal sine function, it is easy to notice that the directional resolution worsens.
Hence, the width of the rectangular window function balances the spatial and directional
resolutions. This consideration motivates the impossibility of having a plenacoustic image
with both good spatial and directional resolutions; a technique to overcome such limitation
using rectangular windows and performing a directional analysis of data based on the
sub-array covariance matrix has been presented in Sec. 7.2.

A different choice for the window function paves the way to many interesting properties.
In this chapter we consider the Gaussian window. This choice is supported mainly by
three motivations:

1. the Gaussian window exhibits the best trade-off between resolution in spatial and
directional domains;

2. the Gaussian window enables a strong physical interpretation, in the sense that it
allows us to build a frame-like representation whose constituting wave objects are
acoustic beams (cfr. Sec. 3.8 and Sec. 4.4);

3. the Gaussian window makes it possible to define an invertible transformation that
allows us to represent acoustic signals in the ray space.

The last motivation paves the way to the definition of a new full-fledged transformation
for dealing with acoustic signals in the ray space. As it was claimed in Chap. 1 this is
the final goal of this thesis. In the following of this section we define the plenacoustic
transform starting from the setting of discrete Gabor frames [Qiu and Feichtinger, 1995,
Werther et al., 2005].

7.5.1 The Plenacoustic Transform as a Linear Operator
Consider a family of discrete length-L functions ψm,n ∈ CL, obtained as modulation and
translation of a prototype function ψ(l), i.e.

ψm,n(l) = ψ(l − na)ej2πm(l−na)/M =Mm/MTnaψ(l), (7.44)

where m = 0, . . . ,M − 1, n = 0, . . . , N − 1 and l = 0, . . . , L− 1 are integer indexes; the
parameters a, b,M,N and L are integers that assume the following meanings:

• a is the translation step of the windows on the z axis;

• b is the modulation step of the windows on the spatial frequency domain;

• M is the total number of spatial frequencies;

• N is the total number of spatial translations;
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• L is the number of microphones in the whole array, i.e. the number of samples of
the function P (z) as observed by the microphone array.

The parameters that have been just introduced must satisfy

L = aN = bM. (7.45)

In (7.44) the symbols T and M are used to denote the translation and modulation
operators, defined as

TζP (z) = P ((z − ζ) mod L), (7.46)

MωP (z) = P (z)ej2πωz, (7.47)

respectively. The family of functions satisfying (7.44) is the Gabor system (ψ, a,M).
In this paragraph we define an algebraic setting where the plenacoustic transform,

in both its analysis and synthesis operations, appears as a linear transformations of
array data. In the derivation of the intended setting we follow the literature on discrete
Gabor frames, e.g. Qiu and Feichtinger [1995], Strohmer [1998], Feichtinger et al. [2009],
Moreno-Picot et al. [2010].

Let us define the matrix Ψ ∈ CL×MN that contains the window ψm,n as its (m +
nM + 1)th column, i.e.

Ψ =

 ψ0,0(0) ψ1,0(0) . . . ψ0,1(0) . . . ψM,N (0)
...

...
. . .

...
. . .

...
ψ0,0(L− 1) ψ1,0(L− 1) . . . ψ0,1(L− 1) . . . ψM,N (L− 1)


=
[
ψ0,0 ψ1,0 . . . ψM,N

]
,

(7.48)

where the second equality has been derived by denoting ψm,n = [ψm,n(0), . . . , ψm,n(L−
1)]T .

Let us denote the acoustic signal captured by the microphone array as the vector
p ∈ CL. We define the matrix P̃ ∈ CM×N containing the plenacoustic coefficients of the
acoustic field

P̃ =

 〈p,ψ0,0〉 〈p,ψ0,1〉 . . . 〈p,ψ0,N−1〉
...

...
. . .

...
〈p,ψM−1,0〉 〈p,ψM−1,1〉 . . . 〈p,ψM−1,N−1

 . (7.49)

The vector p̃, defined from P̃ by stacking its columns so that the (m,n)th element
of P̃ corresponds to the (m + nM + 1)th element of p̃, can be obtained as a linear
transformation of array data, as in Moreno-Picot et al. [2010, Eq. 2]

p̃ = ΨHp. (7.50)

With the notation just introduced, the frame operator (cfr. Sec. (2.4)) is defined as
the matrix [Moreno-Picot et al., 2010, Eq. 5]

S = ΨΨH . (7.51)

If the matrix Ψ has rank L, the Gabor system (ψ, a,M) represents a frame in CL, as
demonstrated in Strohmer [1998]; in this case, it is possible to reconstruct p from its
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plenacoustic coefficients P̃ by using a dual Gabor system composed by the family of
function ψ̃. The reconstruction formula, in this case, reads

p =

M−1∑
m=0

N−1∑
n=0

〈p, ψ̃m,n〉ψm,n, (7.52)

where the elements {ψ̃m,n} are defined similarly to (7.44).
We define now Ψ̃ ∈ CL×MN as the matrix having ψ̃m,n as its (m+nM + 1)th column,

i.e.

Ψ̃ =

 ψ̃0,0(0) ψ̃1,0(0) . . . ψ̃0,1(0) . . . ψ̃M,N (0)
...

...
. . .

...
. . .

...
ψ̃0,0(L− 1) ψ̃1,0(L− 1) . . . ψ̃0,1(L− 1) . . . ψ̃M,N (L− 1)


=
[
ψ̃0,0 ψ̃1,0 . . . ψ̃M,N

]
.

(7.53)

If Ψ̃ is a right inverse for Ψ, i.e. if it is verified that

ΨΨ̃H = I, (7.54)

being I the identity matrix, it follows the important result that analysis and synthesis
operations in plenacoustic transform are linear operations involving the elements of the
frame (ψ, a,M) and of its dual (ψ̃, a,M). More formally, we can write [Moreno-Picot
et al., 2010, Eqs. 9-10]

p̃ = Ψ̃Hp (7.55)
p = Ψp̃. (7.56)

According to the choice of the parametersM and N denoting, respectively, the number
of considered directions in the ray space and the number of sub-array partitions, we can
discriminate between the following two cases.

• If MN = L, the matrices Ψ and Ψ̃ are square and Ψ̃H is the inverse of Ψ; the
condition MN = L is usually referred to as critical sampling.

• If MN > L, there exist an infinite number of matrices satisfying (7.54); this case is
usually referred to as oversampled case. One of the possible choices for Ψ̃ is the
pseudo-inverse of Ψ, i.e.

Ψ̃0 = (ΨΨH)−1Ψ (7.57)

The following definition for the plenacoustic transform summarizes the derivation in
this paragraph.

Definition 10 (Plenacoustic transform). The plenacoustic transform of an acoustic field
p sampled by a microphone array is

p̃ = Ψ̃Hp. (7.58)

The inverse plenacoustic transform transform of p̃ is

p = Ψp̃. (7.59)
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Figure 7.13: Magnitude of the plenacoustic transform |P̃(ω)|.

7.5.2 Interpretation
In the light of the discussion in Sec. 4.4, the plenacoustic coefficients obtained through
(7.58) have a straightforward physical interpretation. Indeed, the coefficients P̃m,n(ω)
represents the complex amplitude of a beam wave object originating at z = ma and whose
beam axis is directed as θn = arccos(nb).

In order to clarify this point, Fig. 7.13 shows the absolute value squared of the
coefficients P̃(ω) resulting from the analysis of an acoustic field generated by a point
source in [0.5m, 0, 0]T . The array is composed by L = 16 microphones, with an inter-
element distance d = 5 cm. The speed of sound is c = 340ms−1. In Fig. 7.13, for the
purpose of showing the analogy with plenacoustic images, the coefficients are mapped on
the ray space through the transformation (7.40). The Gaussian window used for analysis
is set to

ψ[l] = e
− l2

σ2
1 , (7.60)

with σ1 = 5. The Gabor parameters are set to a = 1 and M = 1024, resulting in a number
of windows N = 16.

It is evident that Gabor representation does not share the same goal as plenacoustic
representation. While the latter is aimed at providing in informative image of the acoustic
field, that can be analyzed in order to retrieve information about the acoustic field, the
first is aimed at representing the information carried by the acoustic field in a format that
is more suitable for processing. For instance, filtering operations can be designed in the
plenacoustic domain in order to enhance or attenuate specific local directional components
of the acoustic field.

The task of processing acoustic field in the plenacoustic domain requires the plena-
coustic transform to be invertible. For this purpose, it is important to notice that Gabor
frames (on top of which the plenacoustic transform is built) exhibit perfect reconstruction,
in the sense that the subsequent application of the analysis operation (7.58) and the
synthesis operation (7.59) does not introduce loss of information.



136 CHAPTER 7. LOCAL ANALYSIS AND PROCESSING

1 2 3 4 5 6 7 8

−2

−1

0

·10−2

Microphone index

A
co
us
ti
c
fie
ld

<{P [i]} <{P̂ [i]}

Figure 7.14: Acoustic field reconstruction at microphone positions using plenacoustic
analysis and synthesis.

7.5.3 Invertibility of the Plenacoustic Transform
In this paragraph we present simulations to prove the invertibility of the plenacoustic
transform defined in Def. 10. The property of invertibility as also referred to as perfect
reconstruction since it implies that the subsequent application of (7.58) and (7.59) to the
acoustic field p yields exactly p itself.

In order to provide a simulative validation of the invertibility property, consider
the following scenario. The acoustic field has been sampled by a linear array of I = 8
microphones displaced on the z axis as in Fig. 7.10. The length of the array is 70 cm and
the distance between microphones is d = 10 cm. The parameters of the discrete Gabor
frame are set to a = 1 and M = 30. The temporal frequency is set to ω = 2π500Hz and
the source is placed in r = [3m, 0, 0]T . Figure 7.14 shows the real part of the original
acoustic field p and the real part of the acoustic field p̂ reconstructed through plenacoustic
analysis and synthesis. Figure 7.14 qualitatively shows that plenacoustic analysis and
synthesis exhibits perfect reconstruction. To quantitatively support this claim, consider
the normalized mean squared error

ε̄ =
1

I
=

I−1∑
i=0

|P [i]− P̂ [i]|2

|P [i]|2
. (7.61)

In the simulative setup used to compute the data shown in Fig. 7.14 it results ε̄ = 4.13·10−32

and 10 log10(ε) = −313 dB. This means that even in a challenging scenario with few
coefficients at hand the proposed transform is invertible without loss of information.

7.6 Main Results
• Sec. 7.2 presents a technique for localizing acoustic source in the vicinity of the

microphone array based on the plenacoustic representation. A novel method is pre-
sented to overcome resolution issues. Furthermore, the plenacoustic representation
is used to extract in an intuitive fashion the radiance pattern of acoustic sources.

• Sec. 7.3 employs the source localization technique previously introduced in a more
complex acoustic field analysis methodology aimed at extracting the signal emitted
by a desired acoustic source while attenuating interferer and noise.



Chapter 8

Conclusions and Future Works

8.1 Conclusions
In this thesis we have proposed a unified framework for dealing with a wide range of
acoustic signal analysis, synthesis and processing tasks. We have provided a comprehensive
view of recent advances in signal processing, acoustic theory and representation theory
and on top of these concepts we have provided advancements with respect to the state of
the art.

The first contribution of this thesis lies in the attempt of promoting among the signal
processing community a novel representation for acoustic field based on beams, defined as
spatially localized wave objects. We have introduced such wave objects from a physical
perspective and we have shown how to represent an arbitrary acoustic field as a summation
of them.

In Chap. 5 we have proposed a technique for the accurate estimation of acoustic
reflections in a based on impulse responses captured by a spherical microphone array. In
this context, we have introduced a twofold modification of state-of-the-art schemes: at
first, we have employed an explicit model for the scattering due to the rigid sphere that
hosts the microphone array; then, we have shown that it is possible to adopt state of the
art approaches from the literature of spectral analysis in order to detect the directional
distribution of acoustic energy impinging on the array. We have validated the proposed
approach in an acoustically controlled environment and in an auditorium.

In Chap. 6 we have proposed an analytic approach to the problem of acoustic field
synthesis with loudspeaker arrays, based on the plane-wave representation of the desired
acoustic field. We have derived analytical expressions of the loudspeaker weights for a
circular loudspeaker array, providing insight on the reproduction error. Furthermore, we
have investigated the relationship between the number of loudspeakers, the size of the
reproduction region, the frequency range of operation, and the desired accuracy. We
have then shown that the geometrical reasoning enabled by the analogy between plane
waves and acoustic rays allows us to easily extend the proposed approach to arbitrarily
shaped rendering systems. We ha provided simulations aimed at assessing the effectiveness
of the proposed rendering approach in reproducing a desired acoustic field for different
rendering geometries (circular, elliptical, and linear); we have provided comparisons with
state-of-the-art rendering techniques.

Moreover, in Chap. 6 we have presented a methodology for the design of spatial
filters aimed at reproducing plane waves through loudspeakers under uncertainties in the
propagation characteristics of the acoustic drivers. Experimental results and simulations
showed that the new technique that we have introduced is more robust than the traditional
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Tikhonov regularization. Finally, we have applied such robust technique to the rendering
approach described in the first sections of Chap. 6 and we have shown a significant
improvement of the performance.

In Chap. 7 we have proposed several innovations with respect to the state of the art.
First, we have proposed a technique for the deconvolution of plenacoustic images, aimed
at improving the resolution capabilities. The deconvolution is based on the fitting of the
covariance matrix of array data. In order to reduce the computational cost, we propose
a modification of the algorithm, which takes advantage of the information contained in
the plenacoustic image. By applying the deconvolution operation, novel applications
of plenacoustic imaging are possible, such as the estimation of the radiance pattern of
acoustic sources.

Moreover, we have proposed a technique for the extraction of sound sources from
convolutive mixtures captured by a microphone array. The plenacoustic image is exploited
in order to gather information about the spatial distribution of desired and unwanted
acoustic sources. A set of spatial filters is applied to the microphone array in order to
enhance or attenuate the desired or undesired sources, while minimizing diffuse field and
microphone self noise. We have shown that the adoption of the plenacoustic framework
simplifies the whole process. The effectiveness of the proposed solution is validated through
simulations and numerical evaluation.

The most innovative contribution of this thesis is the definition of the plenacoustic
transform in the setting of discrete Gabor frames. We have derived closed form linear
operators to compute both analysis and synthesis operations in the plenacoustic transform.
Moreover, we have proved that the transform is invertible without loss of information. We
have also provided a physical interpretation for the plenacoustic coefficients in transformed
domain, since they encode the complex amplitude of beam wave objects whose origins
and axes are determined by the plenacoustic system itself. con

8.2 Future Work
Future works are mainly concentrated in the area of local analysis and synthesis of acoustic
field. First, we envision to define filtering operations in the plenacoustic domain; such
filtering operations will exploit the highly-structured nature of the plenacoustic domain in
order to facilitate the filter design process.

As a second activity, we plan to investigate how the choice of the window function
and of its parameters can be used to control both analysis and synthesis processes, trying
to understand how they affect the resolution, the depth of field, the invertibility, etc.
We envision that multi-resolution strategies can benefit both for analysis and synthesis
purposes.

Then, following the route traced with the application of the deconvolution operation
to the process of plenacoustic imaging, we aim at improving the acuity of the plenacoustic
transform, even exploiting data coming from several microphone arrays.

Finally, we plan activities to devise fast algorithms for the computation of the ple-
nacoustic transform, suitable for low-cost computational platforms and ready to be
accommodated in distributed computing paradigms.
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