
i
i

“thesis” — 2015/12/22 — 17:59 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

SOFTWARE LEVEL ADAPTATION IN CYBER

PHYSICAL SYSTEMS

Doctoral Dissertation of:
Mikhail Afanasov

Supervisor:
Prof. Luca Mottola

Tutor:
Prof. Luciano Baresi

The Chair of the Doctoral Program:
Prof. Carlo Fiorini

2015 – XXVIII

i
i

“thesis” — 2015/12/22 — 17:59 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page I — #3 i
i

i
i

i
i

Abstract

CYBERPHYSICAL systems (CPSs) are a category of engineered sys-
tems that combines physical processes with computational control.
The key property of these systems is that their functionality is emerg-

ing from the intense interactions between computational devices and the
real world.

Consider a typical CPS application: a Wireless Sensor Network (WSN)
for the environmental monitoring. The environment exhibits multiple di-
mensions that are changing continuously and independently. As the WSN
monitors these changes, its functionality heavily depends on the environ-
mental dynamics, which leads to the need for the WSN software to be
adaptive.

Another large class of CPSs are Unmanned Aerial Vehicles (UAVs).
These are representative of time-critical CPSs. The typical UAV control
board also consists of a number of sensors that are used to calculate the
modulation of the motors and to keep the flight stable. Similarly to WSNs,
UAVs monitor the environment through sensors to control the flight. Cru-
cially, UAVs rely on the sensoric input, and generate the control decisions
in real-time.

In this thesis we focus on the adaptive software for such systems. Our
goal is to provide language independent concepts that can help develop-
ers to design, verify and implement the adaptive software for time-critical
systems. Unlike most existing work, we do not present the mechanisms or
algorithms for adaptation. Our aim is to make the ways these mechanisms
and/or algorithms are designed, programmed, and verified more effective.

I

i
i

“thesis” — 2015/12/22 — 17:59 — page II — #4 i
i

i
i

i
i

In the first part of this thesis we introduce our language-independent
design concepts to organize the WSN operating modes, decoupling the ab-
stractions from their concrete implementation in a programming language.
Our language CONESC natively supports the dedicated adaptation mech-
anisms and allows developers to implement adaptive WSN software. To
verify this software we provided a dedicated verification algorithm. The
latter is integrated with our tool GREVECOM that delivers the seamless
way to build the model of the software, to exhaustively verify it against
the environmental evolutions, and to build the CONESC templates. Finally,
CONESC sources are compiled with the dedicated translator yielding the
binary that is ready to be deployed. The evaluation have shown that our
concepts increase the ease of the developing and verifying of the adaptive
WSNs software with a very little price, such as less than 2.5% memory
overhead and less that 200ms verification time.

In the second part of the thesis we focus on the time aspect in enforc-
ing adaptation decisions. Our concepts deliver different activation types for
the CPS operation modes, trading off latency at run-time vs. programming
efforts. Each activation type has also time boundaries that can be option-
ally enabled by the programmer. We show the usefulness of our concepts
in a prototype built for the Cortex-M3 micro-controller. Our early evalua-
tion has revealed that with the cost of a small MCU performance overhead,
we provide an additional functionality and guaratees that do not exists in
current approaches.

II

i
i

“thesis” — 2015/12/22 — 17:59 — page III — #5 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution and Roadmap 2

2 State of the Art 5
2.1 Adaptivity in Wireless Sensor Networks 5

2.1.1 Paradigmatic Applications 7
2.1.2 Adaptation Scope 8
2.1.3 Type of Adaptation 13

2.2 Adaptivity in Time-Critical Systems 16
2.2.1 Paradigmatic Applications 17
2.2.2 Adaptive Scheduling 18
2.2.3 Component Models 19
2.2.4 Re-configurable Systems 21

2.3 Language Support for Adaptive Mainstream Systems 22
2.3.1 Architecture-Based Adaptation 22
2.3.2 Context Oriented Programming 23
2.3.3 Aspect Oriented Programming 25
2.3.4 Metaprogramming 26

I Adaptive Software in Wireless Sensor Networks 29

3 Design Concepts and Programming Support 31
3.1 Problem . 32

III

i
i

“thesis” — 2015/12/22 — 17:59 — page IV — #6 i
i

i
i

i
i

Contents

3.2 Solution . 33
3.3 Design . 34
3.4 Programming . 36

3.4.1 Context Groups and Contexts 36
3.4.2 Execution . 38
3.4.3 Transition Rules . 39

3.5 Verification . 41
3.5.1 Mapping Algorithm 42

3.6 Tool Support . 47
3.6.1 Grevecom . 48
3.6.2 NuSMV Translation 50
3.6.3 Translator . 52

3.7 Summary . 55

4 Early Experience and Evaluation 57
4.1 Early Experience . 57

4.1.1 Applications . 58
4.1.2 Emerging Patterns 59

4.2 Evaluation . 62
4.2.1 Coupling . 62
4.2.2 Complexity . 64
4.2.3 Software Evolution 65
4.2.4 MCU and Memory Overhead 67
4.2.5 Model Generation Time 68
4.2.6 Verification Time 69
4.2.7 Scaling of Verification 71

4.3 Summary . 72

II Dealing with Time Requirements in Adaptive Software 73

5 Concepts and Early Prototype 75
5.1 Background . 75
5.2 Problem . 77
5.3 Solution . 81

5.3.1 Activation Type . 81
5.3.2 Deadline . 83
5.3.3 Activation Queue 83

5.4 Prototype . 86
5.5 Preliminary Evaluation . 89

5.5.1 Activation Time and Memory Overhead 89

IV

i
i

“thesis” — 2015/12/22 — 17:59 — page V — #7 i
i

i
i

i
i

Contents

5.5.2 Wrapper Classes Overhead 91
5.5.3 Activation Types and Options 92

5.6 Summary . 93

6 Conclusion and Future Work 95

Bibliography 99

V

i
i

“thesis” — 2015/12/22 — 17:59 — page VI — #8 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 1 — #9 i
i

i
i

i
i

CHAPTER1
Introduction

CPSs are defined as systems, where physical processes are tightly inte-
grated with the computational processes. This integration make CPS to
interact with and possibly taking actions on the real world.

1.1 Motivation

The real world exhibits multiple dimensions that influence the behavior
of CPS software continuously and independently. These require the CPS
software to cope with uncertainty of sensoric input and to produce corre-
sponding reactions. This close interaction between the real world and CPSs
reveals several challenges.

In CPSs, the events that occur in the physical world have to be reflected
in the CPSs software, and the decisions taken by the software influence
the physical world [37]. Due to this tight integration, the CPSs software
is continuously confronted with a range of largely unpredictable environ-
ment dynamics and changing requirements. This demands CPSs software
to adapt to a range of different situations.

The adaptation problem is even more difficult under time constraints.
CPSs also include such systems as: aerial drones, and sensor networks for

1

i
i

“thesis” — 2015/12/22 — 17:59 — page 2 — #10 i
i

i
i

i
i

Chapter 1. Introduction

automobiles or railways. All these systems have soft or hard real-time re-
quirements, and in all these cases CPSs are required to handle both periodic
and aperiodic tasks within time constraints.

There are two major classes of systems we focus in this thesis. Wireless
Sensor Networks are typical platforms where adaptivity is required, since
the very functionality of WSNs is entangled with the highly dynamic en-
vironment. Adaptive Time-Critical Systems are also highly adaptive, but in
addition to that, the adaptation is performed with time boundaries.

Taking into explicit account every possible situation in the design and
implementation of CPSs software is a challenge. Crucially, multiple com-
bined dimensions concurrently determine how the software should adapt
its operation. Moreover, these operations may have to be preformed under
time constraints. The challenge increases even more when developers bat-
tle against the resource limitations of many existing CPS platforms. Using
available approaches, this typically results in entangled implementations
that are difficult to debug, to maintain, and to evolve. As the number of
dimensions affecting the execution (and their combinations) grows, the im-
plementations quickly turn into “spaghetti code” [24].

1.2 Contribution and Roadmap

We address this challenge by providing a handful of concepts that provide
a time-critical adaptation mechanisms and help developers to implement
adaptive CPSs software under resource and time constraints.

The first part of this thesis is intended to solve the adaptivity problem
that is described in Section 3.1. To do so, in Section 3.2, we adapt the
Context-Oriented Programming [64] to WSNs – a paradigmatic example
of resource constrained CPSs. In doing so, we provide full support for de-
veloping adaptive software for WSNs. In Section 3.3 we outline a handful
of concepts that greatly simplify the design of the adaptive software for
WSNs. We argue that two main notions in the WSN software are: i) con-
text that represents a single environmental situation the software executes
in, and ii) context group – a collection of the contexts sharing common char-
acteristics. These concepts are implemented in our own language CONESC
that is described in details in Section 3.4. As the software model needs to
be continuously verified during the development, in Section 3.5 we elabo-
rate on a verification algorithm for the context-oriented models. Our tools
described in Section 3.6 allow a designer and a programmer to utilize our
concepts in a real development process. With our tool GREVECOM the de-
signer can build a model of the adaptive software and exhaustively verify it

2

i
i

“thesis” — 2015/12/22 — 17:59 — page 3 — #11 i
i

i
i

i
i

1.2. Contribution and Roadmap

against environmental evolutions. Based on this model, the CONESC tem-
plates are automatically generated allowing the programmer to implement
the actual functionality of the application. Finally, our dedicated translator
generates the binary based on CONESC sources.

In Section 4.1, we describe our early experience in developing the adap-
tive WSN software using our concepts and tools. We also noticed particular
recurring patterns that are used in some application. Our evaluation in Sec-
tion 4.2 has shown that our concepts make the software components much
more decoupled and more simple, which directly influences the ease of de-
bugging, maintaining, and evolving the code. These benefits come with a
cost of memory overhead and verification time. We have shown, however,
that our approach has a little price: less that 2.5% memory overhead and up
to 200ms of the verification time.

The second part is devoted to time-critical systems. In Section 5.1 we
show that the adaptation problems are similar to the ones we observed in
WSNs, but in this part we focused on the context activation time aspect, as
described in Section 5.2. In our solution, described in Section 5.3, in addi-
tion to the design concepts described in Section 3.3, we provided different
types of context activation: i) fast and ii) lazy. The main difference be-
tween the two is that the fast activation requires less time, but more efforts
from a programmer’s perspective, while the lazy one allows the program-
mer not to spend much efforts with the cost of increase activation time. As
in time-critical systems tasks may have deadlines, in our solution, the pro-
grammer can also add a deadline to the activation command: whenever the
deadline is not met, the programmer will be notified about the failure. Our
prototype described in Section 5.4 implements these concepts and shows
how our concepts can be used in an implementation of adaptive software
for time-constrained CPSs. Our measurements in Section 5.5 reveal that
our concepts cover a significant part of the timing aspect of the adaptation,
while the overhead is fairly modest.

3

i
i

“thesis” — 2015/12/22 — 17:59 — page 4 — #12 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 5 — #13 i
i

i
i

i
i

CHAPTER2
State of the Art

Cyber-Physical Systems (CPSs) are a class of systems that continuously
interacts and possibly affects the real world. Due to the dynamic nature
of the real world, CPSs should always adapt their functionality according
to the changes in the environment they operate in. In this work we fo-
cus on a large group of CPSs: Wireless Sensor Networks (WSNs). In the
section 2.1 we show the need of adaptivity in WSNs, and explore the ex-
isting approaches towards the adaptivity in these platforms. Then, we in-
vestigate another big group of CPSs: Time-Critical Embedded Devices, for
example, aerial drones, railways, robots, etc. The common characteristic
of the platforms from this group is that the time required for adaptation is
crucial, and we show it in the section 2.2. In the section 2.3 we discuss
different approaches and programming paradigms, which provide language
independent concepts and a language support for implementing adaptation
mechanisms for the adaptive software.

2.1 Adaptivity in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are embedded platforms that are wire-
lessly connected to each other forming a network. Each node in the network

5

i
i

“thesis” — 2015/12/22 — 17:59 — page 6 — #14 i
i

i
i

i
i

Chapter 2. State of the Art

is typically equipped with a processing unit, set of sensors and/or actuators,
and a wireless communication interface. Most of the applications for WSNs
utilize tiny, battery powered devices that are deployed over some area. Such
deployment provides a fine-grained interaction with the world, a low-cost
re-deployment, and an increased flexibility in scenarios. The advantage of
this technology would not be fully achieved without a proper programming
support.

WSNs operate in a highly dynamic and rapidly changing environment.
In order to keep a good quality of service and a functionality that is adequate
to the current conditions, a software for WSN must react to these changes
and adapt to them accordingly. As it is shown in figure 2.1, there are two
main dimensions in the approaches towards adaptive WSNs: i) adaptation
type; and ii) adaptation scope. Along the latter dimension existing ap-
proaches achieve the adaptivity by modifying either a network topology,
an application’s global state, or protocol’s parameters. Approaches along
the first dimension achieve the adaptivity in a different way: either through
the re-programming, or by applying different configurations depending on
the situation. These dimensions are orthogonal, though, so every approach
can be evaluated in terms of this two-dimensional space.

The common approach to the adaptation is through the reprogramming
the application logic at run-time, as we can seen in figure 2.1. The less
usual approach to the adaptation is the parametric adaptation either on the
network level, the application level, or the protocol stack level. Through
our examination we found out that the adaptation in the protocol stack is
only achieved through the parametric type of adaptation. The same situa-
tion can be observed in the adaptation in the network level: the reprogram-
ming is not used in this case.

Scope

Type

Network Application Protocol

Reconfiguring
parameters

Reconfiguring
functionality

ASCENT [13]
COPAL-ML [70]

Starfish [9]
other [35]

pTunes [84]
FennecFox [77]
BioANS [11]

Marionette [80]
RUNES [16]
Figaro [53]

Virtual Machines [46, 54, 73]

Figure 2.1: Adaptation in WSN.

6

i
i

“thesis” — 2015/12/22 — 17:59 — page 7 — #15 i
i

i
i

i
i

2.1. Adaptivity in Wireless Sensor Networks

In section 2.1.1 we review typical applications for WSNs. Then we
discuss the approaches – e.g., that are displayed in figure 2.1 – in terms of
two dimensions: Scope (section 2.1.2), and Type (section 2.1.3).

2.1.1 Paradigmatic Applications

WSNs are widely used in different applications such as monitoring the
man’s health state, or controlling the climate system in a house. For ex-
ample, the goal of WSN for health monitoring [42] is to continuously mon-
itor an individual’s physical conditions. Body-worn sensors track quantities
such as heart rate, blood pressure, body temperature, and so on. WSNs are
also used in a tunnel that is instrumented with networked embedded sen-
sors [16]. The latter are reporting the status of the tunnel and allow one to
detect and to react to the emergency situations. The list of the application
can be continued even further, but here we focus only on two representative
and diverse examples of WSN applications, which require adaptivity.
Wildlife tracking. WSNs are widely used to track the animals [58]. In
these applications, sensor nodes are attached to the collars of animals to
study their movements, e.g., using GPS and accelerometers, and health
conditions, e.g., based on body temperature. A low-power short-range ra-
dio allows nodes to detect social interactions of animals based on periodic
radio beaconing. A node logs acquired data on a local memory, until the
opportunistic encounter with a fixed base-station. The radio is used in this
case to offload the readings. Small solar panels harvest energy to prolong a
node’s lifetime.

The nodes run on batteries, making the energy a precious resource that
programmers need to trade against the system’s functionality, depending
on the situation. For example, sensor sampling consumes non-negligible
energy for the GPS. Depending on the desired granularity and on the differ-
ence between consecutive GPS readings – taken as an indication of the pace
of movement – programmers need to tune the GPS sampling frequency ac-
cordingly. The contact traces can be sent directly to the base-station when-
ever in reach, but they need to be stored locally otherwise. When the battery
is running low, developers may turn the GPS sensor off to make sure the
node survives until the next encounter with a base-station, not to lose the
collected contact traces. This requires the WSN to be adaptive.
Smart home. The sensor network is deployed in a house and equipped
with temperature, lighting, smoke and movement detection sensors. Based
on the gathered data, the system controls the temperature and the lighting
levels in a house. If a housebreaking is detected, e.g., by using movement

7

i
i

“thesis” — 2015/12/22 — 17:59 — page 8 — #16 i
i

i
i

i
i

Chapter 2. State of the Art

detection sensors, the system sends the message to the police. If the sys-
tem recognizes fire, e.g., using smoke detection sensors, it sends the alert
message to firemen.

The need in adaptivity arises when the system needs to tune the tem-
perature and the lighting. The latter depends on the level of natural light
and on the time of the day. For example, in the evening natural light is
not enough and the system turns the lights on. However, at night the lights
should be switched off. Desired temperature also depends on time and the
user’s preferences. Moreover, the user’s preferences may vary depending
on a day of a week. Thus, the user may prefer the higher temperature at
night, and the lower one at working days. However, during a weekend, the
user may prefer the higher temperature for both day and night. Emergency
situations are even less predictable, and the system must rapidly adapt its
functionality to respond to a housebreaking or a fire.
Adaptive protocol stack. This application only affects the system level
of the software. In the WSNs where the nodes have periods of signifi-
cant mobility interleaved with periods of static operation. Within the net-
work of static nodes the node joins to the network by running an instance
of CTP [30]. As soon as the on-board accelerometer detects a signifi-
cant movement, the node switches to a route-less gossip based protocol,
which allows to relay data opportunistically [27]. In addition to the proto-
col switching functionality, the node can change the parameters, based on
the performance priority, which determine whether bandwidth, latency, or
lifetime is favored. In this application, the need in adaptivity arises, when
orthogonal to the switch between different protocols, the software must
tune the protocols according to the situation.

The applications we described above are using WSNs in very different
scenarios. However, all of the application require the adaptivity. The latter
is achieved with different approaches that we describe in the next sections.

2.1.2 Adaptation Scope

As it is depicted in figure 2.1, the adaptation scope determines whether the
whole network or only a single configuration of a node is involved in the
adaptation process. The adaptation can also occur entirely in the application
logic, without any changes in the network or node’s configuration.
Network level. Usually, in WSNs every node has its own role. Adaptation
at the network level involves a dynamic changing of the roles of the nodes in
the network. Approaches at this level focus mainly on such properties of the
network as topology, scaleability, components’ roles, and fault-tolerance.

8

i
i

“thesis” — 2015/12/22 — 17:59 — page 9 — #17 i
i

i
i

i
i

2.1. Adaptivity in Wireless Sensor Networks

For example, Subramanian and Katz [76] proposed a set of roles, which are
forming an adaptive architecture for WSN:

• Specialized sensors monitor different physical entities.

• Routing sensors provide a data routing and a fault tolerance of the
network.

• Aggregator nodes combine routing and sensing functionalities to pro-
vide a better network flexibility.

• Sink nodes have a high storage capacity to store and to process re-
ceived data.

All the components mentioned above are sufficient to build a wide range
of applications, where the infrastructure includes addressing, routing, broad-
casting and multicasting mechanisms. Given the mentioned architectural
components, the authors also propose four steps, which should be per-
formed by the network to self-organize:

• Discovery phase. Each node discovers its neighbors.

• Organizational phase. Nodes organize groups, allocate addresses,
build routing tables and construct a broadcast tree.

• Maintenance phase. Each node keeps a track of its energy; constantly
updates its routing table, broadcast trees and graphs; and sends “I am
alive” message and its routing table to the neighbors.

• Self-Reorganization phase. If the node detects the failure of a neigh-
bor, it updates its routing table, or starts the Discovery phase in case
of the failure of all of the neighbors.

The analysis of the approach shows that the hierarchy of the network is
strictly balanced; the complexity of the routing is O(log n); and the network
is extremely tolerant to either node or link failures. However, this approach
is not applicable for mobile WSNs, such as one for wildlife tracking that is
discussed in section 2.1.1.

A similar approach is proposed in ASCENT [13]. This work proposes
an adaptive network topology for networks with high density of the nodes.
The authors outline two types of nodes: i) active and ii) passive. The latter
just passively listen and periodically check if they have to be involved in
the routing process. Nodes of the first type always stay awake, sample data,
and provide a routing functionality. In the case of low quality channel, the

9

i
i

“thesis” — 2015/12/22 — 17:59 — page 10 — #18 i
i

i
i

i
i

Chapter 2. State of the Art

active nodes send a help message to the passive nodes in order to activate
them.

The self-configuring process starts by turning a random number of the
passive nodes on. The latter enter in a test mode, and if there are too many
neighbor nodes active, the passive node will be switched off. Otherwise,
the node switch to the active mode after a predefined time. If the number
of active neighbor nodes is less than a prefixed parameter, or the data loss
rate is greater than a predefined threshold, the re-configuration process will
start again.
Application level. Another way to achieve the adaptivity is to vary the
application’s behavior depending on the environmental situations. For ex-
ample, COPAL-ML [70] provides language abstractions that tackle changes
in the environment and vary the behavior of the software accordingly. By
using this framework, developers can specify the way the data will be col-
lected, processed and used by the application, depending on the conditions
the network is working in. This approach, however, uses the WSN as a
source of a raw-data, while the main application and its adaptation are ex-
ecuted solely on the base station. Thus, the approach is inappropriate for
applications without a central control, or where the adaptation should occur
on the device.

Another example of the adaptation at application logic is Marionette [80].
The main concept of that tool is a remote procedure call function (RPC-
function) – a function that runs on the embedded device, but can be called
remotely from within the Marionette tool. With this tool a programmer is
able to split the software into two parts: i) a node-specific functionality,
such as a data sampling, messages relay, etc.; and ii) the application logic,
such as data processing and network control. The main application logic
runs on a personal computer (PC), while a node-specific functionality is
implemented as a set of rpc-functions and deployed on the nodes. This ap-
proach allows a programmer to arbitrarily call RPC-functions, depending
on the needs of the application. The application logic, however, can be
changed at any point of the execution, because it’s not on the node. With
this approach a single RPC-function implements only a fraction of the ap-
plication logic, thus, a sensing node should always be connected to a PC.
The latter calls RPC-functions in the appropriate order. In a majority of ap-
plications, the connection between the network and the base station is not
guaranteed, hence, this approach is hardly applicable there.

Virtual Machines (VMs) for WSNs [46,54,73] also provide tools that al-
low programmers to change the application logic at run-time. The common
feature of VMs is that the system consists of two major parts: i) instructions

10

i
i

“thesis” — 2015/12/22 — 17:59 — page 11 — #19 i
i

i
i

i
i

2.1. Adaptivity in Wireless Sensor Networks

that are written by a programmer and sent to the VM, and ii) the VM itself,
which executes these instructions.

For example, Mate [46] is a bytecode interpreter that runs on a single
node. The code for Mate is broken into capsules, each of 24 instructions.
Mate hides the asynchrony of TinyOS programs, as the execution of each
code-capsule is performed in a synchronous way. For example, to measure
the light intensity, the programmer sends a code-capsule that reads the val-
ues and stores them into non-volatile memory. Then, the next code-capsule
instructs Mate to read the value and to send it over the network. While
providing a very flexible and expressive way of programming WSNs, Mate
also limits the programmer by code-capsules, each of which can only con-
tain up to 24 instructions. Moreover, for more complicated applications,
nodes have to be always connected to the Base Station. For example, the
programmer has to send one code-capsule to sample the light readings and
to store them into the memory. The processing of the data is only possible
from within the other code-capsule that is sent from the base station.

Another way to dynamically change the logic of the application is to de-
ploy these capabilities into a component model of the software. This class
of approaches define how the software components have to be reconfigured,
and how do they interact with each other. For example, OpenCom [17] in-
troduces a component model that provides such information as: the graph
of the components, interaction between the components, and reconfigura-
tion policies. By modifying the system graph, a programmer can modify
the logic of the applications. Similar capabilities are offered by Starfish [9],
Figaro [53], and RUNES [16] that are described in section 2.1.3. These
frameworks can also be utilized to build adaptive applications.

A slightly different approach is proposed by Huebscher et. al [35],
where they proposed a framework to build a component model that is tai-
lored to a specific application. The framework includes two main abstrac-
tions: i the Context Provider and ii) the Context Service. The Context
Provider collects the raw sensoric data and interprets it to produce context
types for the further usage by the higher level, where Context Services oper-
ate. The latter hide the Context Providers from the application and provide
the contextual data to the application. In doing so, Context Service exam-
ines the metadata of Context Providers to select the most appropriate one
based on such metrics as: availability, precision, refresh rate, etc. Develop-
ers implement Context Providers for each type of the raw sensoric data, and
Context Services for each context type. The application itself is built on top
of the Context Services. The adaptation occurs whenever the new Context
Provider appears, or the existing one fails. In this case, Context Service

11

i
i

“thesis” — 2015/12/22 — 17:59 — page 12 — #20 i
i

i
i

i
i

Chapter 2. State of the Art

re-examines the Context Providers transparently to the user. This approach
along with others mentioned above are designed, however, to provide so-
lutions to specific problems. In our work we provide a general adaptation
mechanism.
Protocol level. At this level programmers often consider the reconfigura-
tion of MAC protocols. One of such examples is pTunes [84]. The pro-
posed framework allows one to adjust the parameters of the protocol stack
to adapt to link, topology, and traffic dynamics. To this end, authors break
a performance model into three levels: i) an application level; ii) a proto-
col independent node-specific level; and iii) a protocol dependent level. At
the application level, such parameters as reliability, latency, and network
lifetime are defined for the whole network as functions of node-specific re-
liability, latency and lifetime. The latter are defined on the node-specific,
yet protocol independent level. On the protocol dependent level, the authors
provide a mechanism that can be adopted to optimize protocol parameters
and, thus, to achieve the required values of node-specific metrics. One of
the main advantages of this approach is that only the protocol-dependent
layer must be changed to adapt the performance model for another MAC
protocol.

By using the model described above, the authors implemented a Java-
based control application. It retrieves the network state, and starts the op-
timization process based on the performance model. The optimization pro-
cess in pTunes can be triggered by three dedicated triggers. The TimedTrig-
ger optimizes parameters periodically; the ConstraintTrigger launches the
optimization only if particular constraints – for example, a maximum la-
tency – are violated; and the NetworkStateTrigger fires the optimization
if the network state requires the MAC parameters to be updated. For ex-
ample, a high traffic volume requires a higher bandwidth. The framework
addresses such challenges as: minimum disruption, timeliness, consistency
and energy efficiency. However, the control application and the solver are
run on the base station and the network should always be able to commu-
nicate with the base station to adapt to the network dynamics.

Another work at this level is BioANS [11] – a self-configurable network
protocol for WSNs. Being based Autonomic Networked Systems (ANS)
the protocol dynamically chooses the best node for each request. Every
sensor within the communication range responds with the random delay. If
quality of service of the node is sufficient, the other nodes stop responding.
The adaptation occurs when the message is lost or some nodes are failed.
If the requester receives no answer, it simply repeats the request and the
selection procedure repeats. If any of the nodes are failed, they do not

12

i
i

“thesis” — 2015/12/22 — 17:59 — page 13 — #21 i
i

i
i

i
i

2.1. Adaptivity in Wireless Sensor Networks

participate in the procedure.
Another example is the Fennec Fox framework proposed by Szczodrak

et. al [77] that provides reconfiguration policies – high-level programming
abstractions for WSN reconfiguration. Similarly to the component-based
approach, the authors split the protocol stack into four layers: radio, MAC,
network, and application. Each level contains one or more modules that
provide an implementation of the service for the each layer. Depending on
the layer, modules can be: i) an application; ii) a network protocol, such
as Collection Tree Protocol (CTP) or Parasite Network Protocol (PNP);
iii) a MAC protocol such as Carrier Sense Multiple Access (CSMA) or
Time Division Multiple Access (TDMA); and iv) a driver of the particular
device. A single configuration in this framework is a set of four modules,
one for each layer. The reconfiguration is a process of switching from one
configuration to another.

Fennec Fox is running on each node and provides a high-level program-
ming abstractions – Swift Fox. It allows one to define configurations, prior-
ities, events, and reconfiguration policies. The latter defines which config-
uration will be loaded whenever a dedicated event occurs. If a single event
invokes several configurations, the configuration with the highest priority
will be chosen.

The adaptation process at this level is very narrow and allows one only to
reconfigure software components related to the protocol stack. Moreover,
while providing the adaptation in a very specific aspect, these approaches
do not allow programmers to implement their own adaptation mechanism.

2.1.3 Type of Adaptation

Orthogonal to the scope, the type of the adaptation determines the mecha-
nism of the adaptation. As it is depicted in figure 2.1, we outline two types:
i) parametric; and ii) re-programming.
Parametric adaptation. This type of the adaptation focuses on the tuning
of the parameters of the algorithm, software component, or hardware mod-
ule. This type of adaptation affects not only the protocol stack, but also
other aspects of the system.

For example, Starfish [9] provides a policy driven adaptation of WSN.
Starfish is a part of Finger2 framework, which provides the most commonly
used functions in WSNs. For example, the Sensor module provides a stan-
dard routine for periodic sampling through the Sense() function, the Get()
function immediately retrieves the value from a sensor, and etc. The module
Buffer provides storage facilities on the node. The Timer module provides

13

i
i

“thesis” — 2015/12/22 — 17:59 — page 14 — #22 i
i

i
i

i
i

Chapter 2. State of the Art

an interface for scheduling of future or periodic tasks. The communica-
tion interface is provided by the Network module. Starfish extends Finger2
by providing the Policy module for the policy management. This library
allows programmers to Enable() or Disable() particular policies. The In-
stall() operation deploys a new policy, and Remove() deletes the policy.
These operations can be performed at run-time providing a basic mecha-
nism for self-adaptation.

The authors proposed the notion of the mission – a set of policies to
accomplish a specific task. The notion of role allows one to dynamically
assign policies to a specific node, while the configuration is a piece of a
source code that is loaded on a node. The framework allows programmers
to build a reconfiguration strategy for dealing with sensor errors, compo-
nent failures and the appropriate reconfigurations. Similarly to the Pol-
icy, the Mission module provides a manipulation of missions by loading,
adding, or removing them. The same functionality with respect to the roles
is implemented in the Role module. By managing the policies, missions,
and roles at run-time, programmers are able to create effective reconfigura-
tion strategies depending on the environment dynamics.

A similar approach is used in pTunes [84], where the system automat-
ically optimizes parameters of the protocols stack, which is already de-
scribed in previous section. Another reconfiguration-based approach is pro-
posed by Fleurey et. al [26] where they developed a framework, which al-
lows programmers to develop an adaptive firmware for sensor nodes. With
this framework the programmer specifies the model and all possible vari-
ations of that model. Optimal configurations for these models are found
through the exhaustive simulation. Then a state machine is created based on
these configurations. This state machine is used then to generate a source-
code.

The adaptation mechanisms in ASCENT [13], COPAL-ML [70], and
Fennec Fox [77] (see section 2.1.2) are also built on top of the parametric
paradigm. The common idea of these approaches is that the adaptation only
occurs in a set of parameters of the software or hardware component. For
example, in ASCENT, the adaptation is performed by changing the role;
COPAL-ML changes the global state according to the context; and Fennec
Fox changes the configuration. However, in our work we provide concepts,
which allow programmers to define where exactly the adaptation should
take a place.
Re-programming. Run-time reprogramming is widely used as an effective
adaptation type. This approach allows programmers to replace an old com-
ponent, or even to add a new one without interrupting the execution flow.

14

i
i

“thesis” — 2015/12/22 — 17:59 — page 15 — #23 i
i

i
i

i
i

2.1. Adaptivity in Wireless Sensor Networks

For example, Contiki [20] is an operating system, which allows program-
mers to distribute code updates and to reprogram sensor nodes at run-time.
Despite an ability of complete reprogramming of a node, the transfer of
binary images over the network requires a high bandwidth. Together with
an unreliable communication medium, this transfer increases energy con-
sumption. Furthermore, for updates to work, a node has to be rebooted, and
its operation has to be interrupted.

Contiki consists of the kernel, the program loader, and a set of processes
and libraries. A process may be either an application or a service. The
latter provides a functionality that is used by several processes. Both the
application program and the process can be replaced at run-time. The whole
systems is partitioned into two parts: the core and the loaded programs. The
latter are loaded by the program loader. The core contains the kernel, the
program loader, the most commonly used functionality, and the support
libraries.

Project RUNES [16] proposes a language-independent component model
that can be used to implement adaptive heterogeneous systems. In this
model, the component is a single unit of deployment that can be instan-
tiated at run-time. Each component provides a functionality through the
interface. Moreover, the component contains a set of dependencies that are
expressed in terms of one or more receptacles. By using these, the system
links the components to each-other through connectors. All the meta-data
can be stored in attributes. The collection of attributes is a capsule. This
component model allows programmers to dynamically change the hierar-
chy of the components.

RUNES framework is implemented in three parts: i) a Java-based im-
plementation contains the code needed for the components instantiation and
destruction; ii) a C/Unix-based gateway; and iii) a Contiki-based run-time
environment for sensor nodes. Dynamically generated components are sent
to the nodes through the gateway, and deployed on the nodes using the Con-
tiki tool-chain.

Being built on top of Contiki, Figaro [53] provides programming ab-
stractions, which provide more fine-grained updates of the software com-
ponents. Being a components model, this approach makes it possible to
re-program sensor nodes on the fly by updating old, or deploying new soft-
ware components. In Figaro, the run-time environment automatically man-
ages the reconfiguration process, based on the dependencies declared by a
programmer. When components are instantiated, the systems keeps track
of their versions, interfaces they implement, and dependencies they have. If
the component is not able to be instantiated because of the missing manda-

15

i
i

“thesis” — 2015/12/22 — 17:59 — page 16 — #24 i
i

i
i

i
i

Chapter 2. State of the Art

tory dependency, it is buffered in hope to receive necessary components
later on. Moreover, in Figaro, programmers are able to specify a single part
of the WSN where the reconfiguration takes a place. It is achieved by two
different ways: i) by specifying the attributes that characterize the node; or
ii) by addressing a subset of nodes directly.

Similarly to Contiki, Dynamic TinyOS [55] enables dynamic repro-
gramming of the components in TinyOS. At the compilation phase, Dy-
namic TinyOS preserves the parts selected by a programmer. The result is
an executable with multiple replaceable objects that can be replaced at run-
time over the air. The code update is done in three phases: i) the compo-
nents of the application and the system are compiled into multiple objects;
ii) updates – e.g., binary objects – are transferred over the air; and iii) up-
dates are stored and linked to the application or to the OS at run-time. The
last phase is done by the Tiny Manager – a run-time system that is executing
on the node and handling storage and integration of the new components.
Thus, the application logic and the software architecture can be modified at
specific points, defined by a programmer.

As we described in section 2.1.2, Marionette [80] and virtual machines
for WSNs [46, 54, 73] also provide re-programming facilities that are used
to build adaptive applications. These approaches, again, provide a very
generic mechanisms that can be utilized to implement the adaptive func-
tionality. The implementation of the adaptation mechanism, however, is
completely on the programmers shoulders.

2.2 Adaptivity in Time-Critical Systems

Time-critical systems are such systems where tasks have deadlines. Should
the deadline be violated, the system treats it as a failure. These systems are
used in automobiles, robots, aerial drones, railways, etc. The problem of the
adaptation in these systems has the same background as in WSNs. Indeed,
these platforms are using time-critical embedded sensing devices that are
also tightly coupled to the environment they operate in, and, thus, have to
adapt to the changes in this environment, as we have shown in section 2.1.
An additional challenge in such systems arises from time constraints: the
system has to change its behavior within the specific time requirements.

In section 2.2.1 we describe representative applications of time-critical
embedded systems. A common approach that addresses the problem of the
task execution at the real-time is an adaptive scheduling that is described
in section 2.2.2. Apart from scheduling, several approaches for real-time
systems are based on the dedicated component models, their architecture

16

i
i

“thesis” — 2015/12/22 — 17:59 — page 17 — #25 i
i

i
i

i
i

2.2. Adaptivity in Time-Critical Systems

and interaction patterns. These approaches are described in Section 2.2.3.
Finally, real-time reconfiguration for the whole system, which is described
in section 2.2.4, is also widely used.

2.2.1 Paradigmatic Applications

Among the great number of different applications of time-critical systems,
we focus on two diverse and the most representative applications, where
the adaptation has to be performed at the real-time.
Gas Leak Localization. In this application, a swarm of aerial drones is
used to monitor a 3-dimensional area in order to find a high gas concentra-
tion – a probable gas leak [10]. Each drone is equipped with a gas sensor
that allows the drone to measure a concentration of the gas; a low-range ra-
dio that is used to discover the neighboring drones via periodic beaconing;
and a high-range radio to receive coordinations from the Base Station. Pe-
riodic beaconing is also used to exchange the data – e.g. gas concentration
samples – between the neighboring drones.

At the beginning, each drone moves to the predefined location in the
area. The map is prealoaded into the memory of drones, and each drone
knows the path to its location. Upon arriving, drones start sampling the
data and exchanging this data with each other. Whenever a single drone,
or a group of drones in the swarm detects a high gas concentration, drones
perform more fine-grained sampling. To do that, they reduce the distance
to the neighbor that sampled the highest value of the gas concentration,
and continue sampling. The gas leak is considered localized, when the
further reduction of the distance between the drone will lead to the collision
between them.

Orthogonal to the main task, drones with low batteries return to the
charging station. If the swarm is partially covered by the base station com-
munication range, drones switch from the direct communication with the
base station to the Collection Tree Protocol.

Drones are representatives of time-critical systems. Indeed, the control
loop of a drone runs with the period of 10-100ms, or even less. Each iter-
ation, the control loop gathers the information from the sensors, analyses
it, and issues commands to the motors. Should some internal task of drone
execute longer than expected, the control loop will not be able to update
the parameters for motors, and drone will crash. Thus, in these systems,
adaptation should occur within the time-constrains.
Automotive Embedded Systems. WSNs are widely used in automobi-
les [82]. The latter consist of a great number of electronic devices that real-

17

i
i

“thesis” — 2015/12/22 — 17:59 — page 18 — #26 i
i

i
i

i
i

Chapter 2. State of the Art

ize the functionality of the car. This networked embedded system controls
the engine; provides the safety features – e.g., anti-lock breaking system;
keeps the vehicle running; provides convenient driving assistance; and en-
tertains passengers.

Consider the networked embedded system in the automobile that has to
adapt to the changes in the environment, as well as to the internal changes.
For example, based on the fuel level, the system may dynamically switch
the engine from the performance to the save mode. Orthogonally, the am-
bient light directly affects on the headlights’ brightness: it’s zero when the
weather is clear; if it’s cloudy or foggy, the brightness is slightly higher; the
maximum brightness is in the evening, or at night; in case of incoming cars,
the brightness should be decreased. In the same time, the system controls
the climate depending on the user preferences and the temperature outside.

The similar adaptation problem we also observed in the Smart Home
Controller before. Here, however, the system has to react quickly to the
changing conditions, either from inside, or outside the system. For exam-
ple, the system has to handle hardware or software failures at real-time,
since the car is moving. In such systems, tasks have deadlines, for exam-
ple, in the critical situation – e.g. hardware or software failure – the system
has to activate breaks before the collision occurs. For the same reason, any
changes in the environmental conditions – e.g., an obstacle appearance or
an incorrect trajectory – have to be tackled immediately. The natural way to
handle the real-time task execution is scheduling. In the adaptive systems,
an adaptive scheduling is widely used.

2.2.2 Adaptive Scheduling

Most of the works in time-critical systems assume that the task execution
has fixed time parameters, e.g., periods, deadlines, etc. Schedulers play an
important role in planning the tasks execution to meet the deadlines, and
to balance the CPU load. Kuo et al. [44] discussed how to adjust the load
in order to handle periodic tasks. The authors analyze existing scheduling
algorithms and show how the load could possibly adjusted there. They con-
clude, that the load adjustment problem is application-specific, and, more-
over, it opens another problem of the adaptive resource allocation.

Naturally, scheduling algorithms are divided into two approaches: under
the non-overload conditions, the time-based deadline-monotonic schedul-
ing (DMS) [5] algorithm schedules the tasks with an optimal processor
load; and during the overload, a value-based scheduling (VBS) [32] is
performed to execute the most valuable tasks first. In real-time systems

18

i
i

“thesis” — 2015/12/22 — 17:59 — page 19 — #27 i
i

i
i

i
i

2.2. Adaptivity in Time-Critical Systems

it is important to detect which scheduling algorithm to use under current
conditions. Richardson et al. [63] provide an adaptive deadline-monotonic
(ADM) scheduling algorithm. This algorithm provides a fault-tolerance by
detecting possible overload of CPU and switching from DMS to VBS. Pos-
sible overload is detected by monitoring the execution of each task, and by
calculating the time before the deadline. In order to find the best moment
to switch to VBS and to avoid the overload, authors introduce a sliding-
window parameter – e.g., the time before the deadline that is considered
critical. Should the time that is remained before the deadline be lesser than
the size of the sliding-window, ADM switches to VBS.

Zhang et al. [83] developed an adaptive algorithm, which calculates
an optimal timeout for saving the task execution state to tolerate possi-
ble faults. To this end, the authors introduce an adaptive check-pointing –
a preservation of the task execution state. Whenever a failure occurs, the
system performs a rollback to recover the last correct state. The goal of the
algorithm, is to make the last checkpoint as close to the failure as possible
and to allow the task to finish the execution within the time constraints.
Every time the rollback occurred, the proposed algorithm evaluates a new
check-pointing interval to reduce the number of rollbacks, while keeping
the execution within the deadline.

A work similar to Richardson et al. [63] towards an adaptive scheduling
for real-time systems has been done by Abeni et al. [1]. They proposed an
adaptive real-time scheduling algorithm that is based on a feedback loop:
Legacy Feedback Scheduler (LFS). The algorithm scans all the scheduled
tasks and calculates the scheduling error for each time-sensitive task. Then
the algorithm updates the time that is reserved for each task. This approach
allows the programmer to adjust time-specific scheduling parameters for
the tasks that are not designed for time-critical systems. Its performance,
however, is lower than the performance of other dedicated schedulers for
time-critical systems.

These works are complementary to ours. We do not focus on the partic-
ular scheduling problem, but provide a simple paradigm and programming
tools, that can be used to implement an adaptive software. Currently, these
tools are not provided by any of the existing approaches.

2.2.3 Component Models

The adaptation in dedicated component models is widely adopted in both
Wireless Sensor Networks and Time-Critical Systems. The adaptation in
the latter is achieved by a dedicated hierarchy of software components.

19

i
i

“thesis” — 2015/12/22 — 17:59 — page 20 — #28 i
i

i
i

i
i

Chapter 2. State of the Art

These models are developed to continuously monitor and calculate the pa-
rameters of the software components of the system.

For example, Zeller et al. [82] proposed a multi-layered control ap-
proach for self-adaptive systems. In this approach, the authors use a hi-
erarchy of layers. A single layer has a number of control loops, each of
them provides an adaptation of a single parameter (variable). Each control
loop on the higher layer requests the decision from the lower layer, and then
decides itself. The last decision is taken by the main control loop on the top
layer. This kind of adaptation only focuses on a reconfiguration of a single
set of parameters. While this approach is proven to be effective in auto-
motive embedded systems, it is quite an overkill for resource constrained
systems. Moreover, this approach considers the large networks with a great
number of sensors, while we focus on a single device and its adaptivity.

Prechofer et al. [61] formalized the adaptation process for time-critical
and resource-constrained embedded systems. In their work the authors con-
sider a heterogeneous sensor network, where a software component can be
transferred from one hardware platform to another. Typically, such systems
are used in automotive embedded systems, which are described previously.
In this case, the component should adapt to different platforms. In order
to preserve the functionality, the software calculates the best configuration
for the transferred component. Contrary, in our work we focus on a single
device, where adaptation requires to react to the environmental changes.
These changes result into a necessity to vary the functionality of the soft-
ware component on withing a single device.

Design patterns that are commonly used in typical scenarios of real-time
embedded systems are described by Loyall et al. [47]. The authors address
to the issue, which arises during the transmission of the information within
the time and resource – e.g., limited bandwidth and processing power –
constraints. The proposed dedicated pattern for this issue – QoS contract
– implies a definition of the requirements, which trigger the execution of a
particular task. Another problem that is tackled in this work appears when
the user wants to see the state of the whole system. Some values can be col-
lected fast, other values require some time to be calculated. This situation
disrupts the integrity of the received state: while the values from the one
sensors will be calculated, values from the other may change already. Ad-
dressing this issue, the authors propose another pattern – snapshot – where
the dedicated software agents make snapshots of the system and move it in
the storage. The user will receive the snapshots from the storage. While
describing these patterns in details, the authors do not provide any abstrac-
tions or tools, which can help a programmer implement an adaptive func-

20

i
i

“thesis” — 2015/12/22 — 17:59 — page 21 — #29 i
i

i
i

i
i

2.2. Adaptivity in Time-Critical Systems

tionality. Our concepts do not rely on the specific scenarios, instead, they
can be used to implement an adaptation mechanism regardless of language
or scenario.

2.2.4 Re-configurable Systems

A re-configurable hardware brings the adaptivity in time-critical systems to
the lower level. Differently from re-configurable software, in this class of
systems it is possible to change the whole circuit. This hardware, such as
Programmable Logic Arrays (PLAs) or Field-Programmable Gate Arrays
(FPGAs), can be reconfigured by downloading a different configuration
data. Thus, the design issues can be corrected, and physically damaged
parts can be avoided. These serve for the better fault tolerance and adaptiv-
ity in real-time systems. In such systems, a circuit configuration is stored
in memory cells.

By design, FPGAs allow developers to implement a high-performance
computational logic, which is crucial in real-time systems. These chips,
however, are subjected to cosmic radiation that can cause Single Event Up-
set [71] and alter the logic [33]. Moreover, the adaptation on these chips
is performed via the reconfiguration of the whole chip, which takes the
considerable amount of time. For this reason, the majority of the work is
performed towards the error tolerance and the reconfiguration time.

Conde at al. [15] addressed the memory corruption issue by introducing
a controller that compares the FPGA configuration with the configuration
stored in a flash memory. In case the controller detects a difference, the
original configuration from the flash memory is loaded into FPGA.

Alfke et al. [2] proposed to read a configuration from several FPGAs
and then vote for the most appropriate one. Xilinx FPGAs offer a readback
capability that can monitor the chips without interfering with the operation
of the device in the system. The authors used this feature to build a triple-
redundancy system: three FPGAs are connected in parallel and configured
to operate synchronously. A small controller initiates a readback from all
the three chips simultaneously, and compares the outputs. If the outputs are
different, then the error correction is launched. The error is corrected in
two ways: i) all three chips are reconfigured, or ii) only the faulty device is
reconfigured based on the feedback of the others.

To reduce a reconfiguration time, vendors designed a chip that can be re-
configured only partially, one of such examples is Xilinx Virtex-II Pro [81].
Moreover, some types of FPGAs can be reconfigured without affecting sys-
tem operation on the chip. Precompiled reconfigurations are stored in non-

21

i
i

“thesis” — 2015/12/22 — 17:59 — page 22 — #30 i
i

i
i

i
i

Chapter 2. State of the Art

volatile memory, so when faults occur, system just reload a new configu-
ration [34, 45]. It also positively affects on the adaptivity: whenever the
adaptation is required, FPGA can be partially or completely reprogrammed
without stopping the operation of the system.

The approaches described above provide a hardware support for adap-
tation. These tools, however, do not provide a software support for the
adaptation. Moreover, it is not possible neither to control the adaptation
process, nor to tune the adaptation mechanism. In this work we provide
a flexible, yet simple mechanism that can be utilized by a programmer to
handle, to control, and to tune the adaptation process of the application.

2.3 Language Support for Adaptive Mainstream Systems

In this section we outline a language support for implementing adaptive
systems. This area has been exhaustively investigated in traditional compu-
tation platforms. Naturally, an adaptive software is implemented via ded-
icated software architecture styles or a middleware. This approach is the
one of the most common approaches to the software adaptivity in WSNs,
since it provides an architecture that is tailored to the specific problem
and platform. However, a number of dedicated programming techniques
provide more flexible adaptation mechanisms, such as Context-Oriented
Programming [64], Aspect-Oriented Programming [41], and Metaprogram-
ming [74], which are widely used to create self-adaptive software. These
techniques are based on such features of the language as dynamic mem-
ory allocation, computational mirroring, and a source-code modification
at run-time, which are generally not available on the resource and time-
constrained CPSs. Moreover, the solutions based on these techniques are
designed for the application where the adaptation time is not critical. Hence,
these solutions are hardly applicable in CPSs as is.

2.3.1 Architecture-Based Adaptation

In the area of self-adaptive systems, researches mostly focus on the adap-
tation from an architectural viewpoint. For example, Oreizy et al. [57]
proposed a framework that allows the user to change the architecture of
the software dynamically. The architecture of the software is represented
in the framework as the Architectural Model. The Architecture Evolution
Manager (AEM) maintains the correspondence between the implementa-
tion and the model. Every time the model is changed, the AEM determines
if the modification is valid. The AEM uses an explicit knowledge of the
architecture constraints. If the modification violates these constraints, the

22

i
i

“thesis” — 2015/12/22 — 17:59 — page 23 — #31 i
i

i
i

i
i

2.3. Language Support for Adaptive Mainstream Systems

AEM rejects the change. Otherwise, the model is altered and the dedicated
mapping is used to modify the implementation correspondingly.

The Rainbow framework [28] provides an infrastructure to support the
architecture-based self-adaptation. The framework provides two elements
to support a self-adaptivity: the adaptation operator and the adaptation
strategy. The adaptation operators determines a set of actions that are per-
formed to make desirable adaptations in the system, while the adaptation
strategy prevents the system from the undesirable behavior. Offering a
general approach, the framework can also be tailored to a specific class
of systems. For example, in web-based client-server systems, the adapta-
tion strategy focuses mostly on the analysis of the client’s requests and the
time needed for the response. Differently, in the videoconferencing system,
an adaptation strategy optimizes a video quality according to the available
bandwidth.

A number of middleware systems has been developed to support the
implementation of self-adaptive systems. For example, Sadjadi et al. [65]
proposed ACT (Adaptive CORBA Template) that allows a programmer to
modify the behavior of the CORBA applications at run-time. In CORBA
the interaction between components occurs via requests. ACT intercepts
and adapts these requests in order to adapt the behavior of the application.
Another middleware, Madam [51] is able to detect context changes and
to make decisions about the adaptation necessity. This middleware adopts
utility functions that are used to establish general goals, and to implement
the architectural changes.

Even though an architecture-based adaptation is widely applied, the ar-
chitectures are usually tailored to specific problems. The more general ap-
proaches include the support of the adaptation on the language level, pro-
viding developers with more flexible adaptation mechanisms, as we show
in the next section. Nevertheless, these approaches do not consider the lim-
itations of resource-constrained cyber-physical systems.

2.3.2 Context Oriented Programming

Context Oriented Programming (COP) [64] was recently introduced to pro-
vide language abstractions for adaptive software. In traditional languages,
the adaptation would be achieved by if then else structures, making the ap-
plication increasingly complex. COP addresses this issue by modularizing
behavioral variations. Additionally, COP provides explicit mechanisms for
enabling these variations. Two main notions of COP are i) a context that
represents the information about the current state of the environment, and

23

i
i

“thesis” — 2015/12/22 — 17:59 — page 24 — #32 i
i

i
i

i
i

Chapter 2. State of the Art

ii) a layered function that changes its behavior depending on the current
environmental state.

COP has been implemented in a great variety of languages, such as Java,
Python, Ruby, JavaScript, Common List and Scheme [3]. Since these lan-
guages lack a dedicated COP support, researches borrowed COP concepts
to better address specific design issues. Despite the variety, these solutions
share common concepts: i) an abstraction for behavioral variations: typi-
cally a first-class entities, which can be assigned to parameters, or returned
by functions; ii) an activation mechanism defines how the behavioral varia-
tions are enabled or disabled from within the application; and iii) a behavior
combination supports the reaction to the several activated behavioral varia-
tions. Commonly, the behavioral variation is enabled through the activation
of the corresponding context.

ContextJ [64] is one of the implementations of COP paradigm. In Con-
textJ, the first-class entity is the Layer – an object that represents a sin-
gle context. Every software component that provides a context-dependent
functionality should define a context-specific implementations of each lay-
ered function. The dedicated key-word with activates layers within the
scope of this key-word. Thus, context activation affects only the current
thread, and the behavioral variation propagates its effect only within the
activation block.

A different approach, however, is used in Ambience language [31], where
the context spreads its effect across the whole application. The context in
this approach is represented by a hierarchy tree that consists of smaller sub-
contexts. Every path in this tree reflects a contextual information. When-
ever an environment is changed, the topology of the tree changes as well.
The context in Ambience is passed as an additional argument to every
method definition. Thus, every method is aware of the global context of
the application and behaves accordingly. With this approach the activation
of the variation can be triggered for the whole program. Yet, the activation
is completely asynchronous and conflicting variations can be activated.

ContextErlang [69] is another example of COP implementation, yet with
a different context activation mechanism. Being build on top of Erlang lan-
guage, ContextErlang uses messages to activate contexts. Thus, the latter
are activated asynchronously. Moreover, behavioral variations are activated
on per-object basis, so each object can be controlled individually. This also
prevents an unintended adaptation propagation.

Embedded Domain-Specific Language (EDSL) [49] seamlessly embed
abstractions for building context-aware application in Haskell. Every context-
aware computation in EDSL is represented as a function with implicit argu-

24

i
i

“thesis” — 2015/12/22 — 17:59 — page 25 — #33 i
i

i
i

i
i

2.3. Language Support for Adaptive Mainstream Systems

ments and inference rules. These functions automatically derives the con-
textual dependencies from the Global Knowledge Base component. The
latter can be updated by using the parametrized mondas that inject a new
context to the knowledge base. This approach does not only hides the con-
text management from the programmer, but also helps to achieve the static
verification of the context-aware application.

Generally, COP offers a better support for modularity [67], and is specif-
ically designed to allow programmers to implement their own adaptation
mechanisms. These languages, however, are designed for traditional plat-
forms and can not be applied in resource-constrained systems like WSNs
or time-critical systems, as we argued above.

2.3.3 Aspect Oriented Programming

Aspect-Oriented Programming (AOP) is a programming technique that fo-
cuses on providing mechanisms for modularization of orthogonal function-
ality called crosscutting concerns. This technique allows a programmer
to change the behavior of the software at run-time by activating the corre-
sponding aspects. There are several AOP frameworks, such as CaesarJ [36],
Prose [60], JAC [59], and AspectWerkz [8]. These approaches offer gen-
eral adaptation mechanisms that can be used to implement the adaptive
software.

For example, J-EARS [6] is a Java-based framework for developing and
managing the application that perform the adaptation autonomously using
AOP. The framework supports a deployment of a control-loop to the ap-
plication. Firstly, the Application Manager allows a programmer to define
adaptation policies. Secondly, the Aspect Manager provides the interface
to add, to remove and to configure the software components, which are re-
sponsible for the adaptation process, such as monitors, decision makers and
executors. Finally, the Communication layer binds the application with the
managing tool.

TOSKANA [21] framework is devoted to the run-time adaptation of the
UNIX system kernel. A developer uses TOSKANA to deploy the aspects,
which can be activated within the operating system kernel to modify its be-
havior while the system is running. The framework extends the standard
C language with the pointcut, before, after, and around statements. These
statements allow the programmer to define a crosscutting concern – e.g. by
using pointcut key-word – and then specify actions before, after, or both
before and after the pointcut functionality. This framework can be used not
only for the adaptation, but also for the monitoring of the running applica-

25

i
i

“thesis” — 2015/12/22 — 17:59 — page 26 — #34 i
i

i
i

i
i

Chapter 2. State of the Art

tions. In this case, the monitoring functionality crosscuts the main kernel
logic.

CaesarJ [36] provides dedicated wrappers: dynamic extensions of other
classes in the system. Wrappers are instantiated by the WrapperConstruc-
tor, which takes the objects as parameters and returns the corresponding
wrapper object. The latter includes and extends the functionality of both
objects. Moreover, the wrapper object is a singleton – i.e. whenever a
WrapperConstractor is used with the same arguments, it returns the same
wrapper object. This approach does not only provide the adaptation mech-
anism by dynamically extending the functionality of the objects, but also
guarantees the uniqueness of such extensions.

These frameworks, however, are designed for large and complex sys-
tems like OS kernels, client-server applications, or web-applications. De-
spite the usage of AOP for resource-constrained CPSs would be quite an
overkill, it has to be ported to the CPSs because of the reasons we described
before.

2.3.4 Metaprogramming

Metaprogramming is a programming technique that exploits such tools for
dynamic adaptation as: computational reflections, dynamic link libraries
(DLL), and source-code modifications at run-time. Dowling et al. [18] have
concluded that computational reflections offer a significant advantage in
implementing the adaptive paradigm, however, with a non-negligible per-
formance overhead. The metaprogramming is an extremely general mech-
anism, hence, it has to be tailored to the application-specific purposes.

Some languages natively offer a metaprogramming mechanism. Other-
wise, developers implement such abilities manually. For example, TRAP/J
[66] allows the developer to add the dynamic adaptation to every (even to
an existing one) Java application without modifying the original source-
code. The tool wraps the original classes at instantiation time. Then, using
a meta-object protocol, method calls are redirected to the delegated objects.
Thus, the adaptive behavior is achieved at run-time. TRAP/C++ [25] is an
implementation of the same concepts in C++ language.

Metaprogramming is delivered not only by language abstractions, but
also by the dedicated middleware systems. OpenORB [7] and CARIS-
MA [12] are such examples, as they do not provide a meta-object proto-
col, but do provide an API for the already implemented software to make
it adaptive at run-time. For example, CARISMA exploits a meta-object
model to provide the application engineers with customizable services. The

26

i
i

“thesis” — 2015/12/22 — 17:59 — page 27 — #35 i
i

i
i

i
i

2.3. Language Support for Adaptive Mainstream Systems

resulted applications are described as a set of customized services that are
provided by the middleware; policies that define how to deliver the ser-
vices; and configurations – the requirements that must be hold in order for
the policy to be applied.

In our work we focus on the devices with a very limited amount of mem-
ory and without memory protection. Hence, the dynamic memory alloca-
tion (and, thus, the run-time instantiation) is not safe, and metaprogram-
ming technique can not be applied.

27

i
i

“thesis” — 2015/12/22 — 17:59 — page 28 — #36 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 29 — #37 i
i

i
i

i
i

Part I

Adaptive Software in Wireless
Sensor Networks

29

i
i

“thesis” — 2015/12/22 — 17:59 — page 30 — #38 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 31 — #39 i
i

i
i

i
i

CHAPTER3
Design Concepts and Programming

Support

The software for WSNs, as shown in Section 2.1, is continuously con-
fronted with unpredictable environmental dynamics and changing require-
ments. These demand WSN software to adapt to the situations exhibited
by the real world. Programmers, however, are missing a dedicated support
for implementing adaptive software for WSNs. Lack of this support makes
the implementation of adaptive software difficult in general, and even more
under resource constraints, which are common characteristics of WSNs.

In this chapter we describe our work towards the full support for the
developing the adaptive WSN software. In the following Section 3.1, we
investigate the problem in the details, while discussing our solution in Sec-
tion 3.2. We mapped our solution into a handful of design concepts de-
scribed in Section 3.3. These concepts are implemented in our own lan-
guage CONESC, as we described in Section 3.4. Moreover, our concepts
allow the WSN software to be verified even before the actual execution, as
we show in Section 3.5. In Section 3.6, we provide a support of all these
features in a set of tools that we developed for application designers and
software engineers.

31

i
i

“thesis” — 2015/12/22 — 17:59 — page 32 — #40 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

1 module ReportLogs {
2 uses interface Collection;
3 uses interface DataStore;
4 }implementation {
5 int base_station_reachable = 0;
66 event message_t Beacon.receive(message_t msg) {
77 if (call Battery.energy() <= THRESHOLD)
8 return;
9 base_station_reachable = 1;

10 call GPS.stop()
11 call BaseStationReset.stop();
12 call BaseStationReset.startOneShot(TIMEOUT);}
1313 event void BaseStationReset.fired() {
1414 base_station_reachable = 0;}
1515 event void ReportPeriod.fired() {
16 switch (base_station_reachable){
17 case 0:
18 call DataStore.deposit(msg);
19 case 1:
2020 call Collection.send(msg);}}}

Figure 3.1: Example nesC implementation of adaptive functionality: several orthogonal
functionality become entangled an need to share global data.

3.1 Problem

Consider the wildlife tracking application [58] described in Section 2.1.1.
The challenge arises when a programmer and a designer take into explicit
account every possible situation in the design and the implementation of
the WSN software. Multiple combined dimensions – e.g., physical loca-
tion, battery level, and health conditions – concurrently determine how the
software should adapt its functionality. Typical approaches often result in
entangled implementations that are difficult to debug, to maintain, and to
evolve. With the growing number of dimensions and their combinations
that affect the software operation, the software model grows exponentially,
and the implementation quickly turns into “spaghetti code” [24].

To illustrate this problem, we implemented the wildlife tracking appli-
cation in one of the most popular languages for WSNs called nesC [29].
Figure 3.1 shows a greatly simplified example of how the adaptive function-
ality is implemented. The code implements only one aspect of the adaptive
functionality in the wildlife tracking application: to send readings to the
base station whenever it is reachable, or to store them locally otherwise.

The base station continuously broadcasts beacons to signal its presence.
Whenever the node receives this beacon, the event on line 6 is fired, and
the global state base_station_reachable is changed. If the node
has not received the beacon for a considerable amount of time, the event on

32

i
i

“thesis” — 2015/12/22 — 17:59 — page 33 — #41 i
i

i
i

i
i

3.2. Solution

line 13 is fired and the global state is reset. The adaptive behavior is imple-
mented on line 15 , where the programmer uses the DataStore interface
to deposit the readings if the base station is not reachable. Otherwise, the
readings are sent directly to the base station over the Collection inter-
face on line 20 .

However, multiple orthogonal concerns are overlapping the main func-
tionality, making different aspects dependent on each other. For example,
the adaptation process between the lines 15 and 20 rests in the same module
as the operating mode on lines 6 and 14 . Both parts share the global state
base_station_reachable, managing of which is entirely on pro-
grammer’s shoulders. Moreover, if the battery is low, it is better to delay
the transmission of the data, until the battery is charged from the solar pan-
els. This check has to be performed before changing the operating mode, as
on line 7 , and the check is mixed with the code that changes the mode it-
self. Finally, the specific implementation of adaptive functionality, such as
the external interfaces Collection and DataStore, are visible from
the caller module, further coupling the two.

In this situation it is difficult to maintain, to debug, and to evolve the
software. Modification of the code in one place would likely lead to the
need of changing the code in several other places. It is of course possible to
partly ameliorate the problem by alternative implementations. However, we
found many similar implementation patterns by looking at publicly avail-
able implementations, e.g., within the TinyOS codebase [78].

3.2 Solution

We address this problem by providing Context-Oriented Programming
(COP) [64] in resource-constrained WSN software. COP brings a strict
separation of adaptive functionality. This is achieved by two key notions:
i) different situations that software must adapt to are mapped to different
contexts, and ii) context-dependent behaviors are encapsulated in layered
functions, that are the functions whose behavior changes – transparently to
the caller – depending on the context.

COP has already proven its effectiveness in creating context-aware soft-
ware, such as text editors [39], and user interfaces [40], using COP ex-
tensions of popular high-level languages [68]. Currently, COP remains
far from being applicable in WSNs, since most implementations of COP
relay on such capabilities of the languages as run-time instantiation, poly-
morphism, and inheritance [68]. The absence of such abilities in WSN
languages prevents COP to be applied there as is.

33

i
i

“thesis” — 2015/12/22 — 17:59 — page 34 — #42 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

Health conditions group

abnormal temperature
iff (Resting|Moving)

Battery group

Activity group

on enter:
disable GPS

Low
on enter:
enable GPS

Normal

voltage < threshold

voltage > threshold

on active:
track GPS often

Running
on active:
track GPS rarely

Moving
on active:
no GPS tracking

Resting

small GPS difference

large GPS difference negligible GPS difference

acceleration detected

on active:
create alert beacon

Diseased
on active:
create normal beacon

Healthy

normal temperature

Base Station group

on active:
log locally

Unreachabletriggers Resting
on enter:
dump log
on active:
send readings to the BS

Reachable

timeout

BS beacon received
iff Running

Figure 3.2: Context-oriented model of wildlife tracking application.

To address this issue, we borrow concepts from COP and provide context-
oriented programming abstractions for WSN software. In Section 3.3 we il-
lustrate design concepts, which are independent of a specific programming
language. We aim to decouple the abstractions form their implementation
in a concrete language, thus facilitating their application in any language.
One such realization is CONESC, that we describe in Section 3.4. This is
our own context-oriented extension to nesC. We have chosen nesC because
of its popularity, stable toolchain, and node-centric view [52]. The latter
will most likely be used in the applications, such as the wildlife tracking
application, where the adaptation process is local to the individual nodes.
In Section 3.5 we provide an approach to the verification of the adaptive
WSN software model.

In order to cover the whole development process from the early design
to the real deployment, we provide a set of tools that are usable by both: a
designer and a programmer. For the early software design, in section 3.6 we
provide our own editor where the designer can use our concepts to manually
build and to automatically verify the model of the WSN software. Finally,
our translator seamlessly converts the CONESC sources to the plain nesC
sources and compiles them, yielding a binary that is ready for deployment.

3.3 Design

We illustrate language-independent design concepts and provide a founda-
tion for importing COP on target languages. We refer to the wildlife track-
ing application, while explaining how our concepts can improve a design

34

i
i

“thesis” — 2015/12/22 — 17:59 — page 35 — #43 i
i

i
i

i
i

3.3. Design

process.
Figure 3.2 exemplifies how our concepts can be applied to the software

design for the wildlife tracking application. The diagram reflects variations
in functionality depending on the battery level, the base station communi-
cation range, and the animal’s health conditions and activity.

We introduce two core notions: i) a context, and ii) a context group. A
context represents an individual situation the software must adapt to, and
contains a behavioral variation corresponding to this situation. As environ-
ment changes, the software adapts by activating a corresponding context.
A context group is a collection of contexts sharing common characteristics
– e.g. belonging to the same environmental dimension.

The contexts within the group define an individual behavioral variation.
For example, in the wildlife tracking application, the software must report
readings from sensors, and the report function has to behave differently
depending on whether the base station is reachable. If so, a programmer
activates the Reachable context within the Base Station group, and data is
sent directly to the base station, as shown in the diagram in Figure 3.2. Oth-
erwise, the programmer activates the Unreachable context, as the software
must save readings locally.

The contexts are tied with transitions that express context triggering con-
ditions. For example, as it is displayed in Figure 3.2, within the Base Sta-
tion group the transition from the Reachable to the Unreachable context is
triggered if there is no beacon from the base station received. In that case
the software must adapt the behavior, that is, save reports locally, instead
of relaying them to the base station over the radio.

A designer can also add dependencies to transitions. For example, if
the sensor reads an abnormal body temperature, it might indicate that an
animal is Diseased. But if the animal is diseased, it is most probably mov-
ing slightly or not moving at all. In any case, the Diseased animal should
not be Running. If it is not the case, the situation indicates that the model
is incorrect, and probably has some flaws in the design. To this end, the
designer adds a dependency iff(Resting|Moving) to the transition from the
context Healthy to the context Diseased in Figure 3.2. With this depen-
dency we are sure that the transition will be triggered only if the animal is
either Resting or Moving.

Context activation can also trigger a transition in another context group.
For example, in our example the base station is always static. Having
this knowledge, a programmer may want to reduce the power consump-
tion by disabling GPS module whenever the node is nearby a base station.
The module, however, is used in the Activity group, as it is shown in Fig-

35

i
i

“thesis” — 2015/12/22 — 17:59 — page 36 — #44 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

ure 3.2, and should not be disabled outside the group to avoid access con-
flicts. Hence, the programmer activates the Resting context, as shown in
Figure 3.2, to disable the GPS module whenever the base station is Reach-
able. Indeed, if the animal is within the range of the static base station, it is
most likely Resting, since the base station is deployed close to nests.

Contexts must not necessarily provide a complete behavior variation by
their own, but they can serve to other functionality; for example, by proving
context-dependent data. One such example is the Health Conditions group
displayed in Figure 3.2. Using a body temperature sensor, the software
detects if the animal is Healthy or Diseased. The behavioral variations gen-
erates two types of beacons used as “proximity” sensor to detect contacts
between animals. If the animal is Diseased, additional information is added
to the beacon to track the disease spreading. Both types of beacons are then
broadcast via the radio stack.

The outlined concepts are sufficient to implement an environment-de-
pendent functionality in a large class of applications of WSNs, as we show
next. At the same time, unlike the majority of similar approaches [52], our
approach is largely decoupled from a concrete language implementation,
which emphasizes its generality. Although, we use nesC language as a host
for our approach, our concepts can be easily applied to other languages
as well. For example, within functional languages such as Regiment [56]
or Flask [48], variations of programmer-defined functions can be simply
enabled through a proper syntax.

3.4 Programming

We illustrate how our concepts are rendered within CONESC: a context-
oriented extension to nesC. We describe the notions of a context module
and a context configuration in Section 3.4.1, and show how a programmer
can use these notions to specify an adaptive behavior of the application in
Section 3.4.2. Finally, in Section 3.4.3 we describe how the programmer
can gain a fine-grained control on the adaptation process in CONESC.

3.4.1 Context Groups and Contexts

A context group in CONESC is an extension of a nesC configuration. Pro-
grammers use context groups to declare layered functions, which include
behavioral variations. Figure 3.3 shows the Base Station context group,
where the layered function report is declared on line 2 with the key-
word layered. The key-word contexts on line 4 is followed by the
contexts included in the group. There are three such contexts, where the is

36

i
i

“thesis” — 2015/12/22 — 17:59 — page 37 — #45 i
i

i
i

i
i

3.4. Programming

1 context group BaseStationG {
22 layered command void report(messsage_t msg);
3 }implementation {
44 contexts Reachable,
55 Unreachable is default,
66 MyErrorC is error;
7 components Routing, Logging;
8 Reachable.Collection -> Routing;
9 Unreachable.DataStore -> Logging;}

Figure 3.3: Context Group in CONESC.

1 context Reachable {
2 uses interface Collection;
3 uses context group BatteryG;
4 }implementation {
55 event void activated(){
6 call GPS.stop();}
77 event void deactivated(){//...}
88 command bool check(){
9 return call BatteryG.getContext() == BatteryG.Normal;}

10 layered command void report(message_t msg){
1111 call Collection.send(msg);}}

Figure 3.4: Unreachable context.

1 context Unreachable {
22 transitions Reachable iff ActivityG.Running;
3 uses interface DataStore;
4 }implementation {
5 event void activated(){//...}
6 event void deactivated(){//...}
7 command bool check(){//...}
8 layered command void report(message_t msg){
99 call DataStore.deposit(msg);}}

Figure 3.5: Reachable context.

default modifier on line 5 points to the context that will be activated at
start-up. The modifier is error on line 6 indicates an Error context,
the purpose of which we discuss later in Section 3.4.3. This modifier is not
mandatory, and an Error context is generated automatically if not indicated.

A context in CONESC extends a nesC module by providing a context-
dependent implementation of a layered function declared in the context
group. Only one context can be active at a time providing a corresponding
implementation of the layered function. For example, Figures 3.4 and 3.5
show CONESC snippets for the contexts Reachable and Unreachable, which

37

i
i

“thesis” — 2015/12/22 — 17:59 — page 38 — #46 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

1 module BaseStationContextManager {
2 uses context group BaseStationG;
3 }implementation {
4 event message_t Beacon.receive(message_t msg) {
55 activate BaseStationG.Reachable;
6 call BSReset.stop();
7 call BSReset.startOneShot(TIMEOUT);}
8 event void BSReset.fired() {
99 activate BaseStationG.Unreachable;}}

Figure 3.6: Base-station context manager.

are displayed in Figure 3.2. They provide different implementations of the
layered function report. If the base station is Reachable, and, thus, the
corresponding context is active, the layered function on line 11 of Figure 3.4
transmits messages over the radio. Differently, the code on line 9 of Fig-
ure 3.5 deposits messages in internal memory.

Optionally, a programmer can specify additional instructions, such as
initialize variables or enabling/disabling hardware components upon en-
tering/exiting contexts. For example, on entering the context Reachable,
the programmer may want to disable the GPS-module, since the location
can be obtained from the static base station. To do so, the programmer
puts this functionality into the body of the predefined activated event,
as on line 5 of Figure 3.4. Similarly, the programmer can put clean-up
code that will be executed on exiting the context by implementing the event
deactivated, as on line 7 of Figure 3.4.

3.4.2 Execution

Figure 3.6 shows how a programmer can detect and activate a proper con-
text. Anywhere in the code the programmer can trigger a transition between
the contexts in the group by using the key-word activate. For example,
according to the diagram displayed in Figure 3.2, on line 5 of Figure 3.6
the programmer activates the Reachable context as soon as a beacon is re-
ceived, and activates the Unreachable context whenever the timeout fires
on line 9 . Each time the active context is changed, the context-specific
implementation of the layered function report is used.

The calls to the layered functions occur transparently to the caller w.r.t
the available contexts and independently of which context is active. Fig-
ure 3.7 shows one such example: a programmer just declares the usage of
the Base Station group on line 2 , and uses then the function report on
line 5 . The net advantage here is that the context’s activation/deactivation

38

i
i

“thesis” — 2015/12/22 — 17:59 — page 39 — #47 i
i

i
i

i
i

3.4. Programming

1 module User {
22 uses context group BaseStationG;
3 }implementation {
4 event void Timer.fired() {
55 call BaseStationG.report(msg);}
66 event void BaseStationG.contextChanged(context_t con) {
77 if(con == BaseStationG.Reachable) // DO SOMETHING...}}

Figure 3.7: Caller module.

transitions
transition is possible

iff
dependencies are

satisfied

check()
conditions are

satisfied

context Error
is activated

yes yes

no no

yes

activate
context A

context A is
activated

context A is
not activated

no

Figure 3.8: Context activation rules.

1 context Resting {
22 transitions Moving;
3 }implementation {//...}

Figure 3.9: Resting context.

logic is decoupled from the actual usage of the context-dependent function-
ality, and can be implemented even in a separate module.

Every time the active context in the group is changed, the predefined
event contextChanged is fired. A programmer can implement the body
of this event, as on line 6 of Figure 3.7, to add additional instructions de-
pending on the activated context. Within the body of this event the pro-
grammer uses the parameter, which holds the current active context as on
line 7 .

3.4.3 Transition Rules

A programmer needs to take care of context transitions, as the latter can
drastically change the application’s behavior. To better support program-
mers in doing so, CONESC provides several checking stages, as shown in
Figure 3.8. A successful check allows the transition to continue, while a
failure leads either to the activation of the Error context or to the cancella-
tion of the transition.

39

i
i

“thesis” — 2015/12/22 — 17:59 — page 40 — #48 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

1 context Low {
22 triggers BaseStationG.Unreachable;
3 }implementation {//...}

Figure 3.10: Low context

The first check in Figure 3.8 allows only possible transitions to pass.
Let us refer to the context diagram in Figure 3.2: within the Activity group,
it is only possible to transit from the Resting to the Moving context. In
CONESC, this also can be specified by the programmer by using the key-
word transitions, as on line 2 in Figure 3.9. An attempt to initiate
a transition from the context to the one that is not explicitly mentioned
in the list of possible transitions means a significant hardware or software
failure, and leads to the activation of the Error context. Within the latter a
programmer can implement the run-time exception handling.

There may also exist relations between several context groups. For ex-
ample, within the Base Station group in Figure 3.2, a transition from the
Unreachable to the Reachable context is only meaningful if the context
Running is active, indicating that an animal was actually moving when the
node received a beacon. These inter-group relations are covered by con-
text dependencies in our design, as shown on line 2 of Figure 3.5. The
key-word iff is optionally used to indicate the full name of the required
context. This rule is verified by the second check in Figure 3.8, leading to
the Error context in case of violations, and giving programmers a chance
to handle the exception.

The last check in Figure 3.8 considers violations to “soft” requirements,
which are not necessarily indicating a design or an implementation flaw.
For example, before activating the Reachable context displayed in Fig-
ure 3.2, a programmer may want to check that sufficient energy is available
to transfer the data stored in the local memory to the base station. Should
this not be the case, the activation of the Reachable context will be deferred
until the next attempt to activate this context. To implement this check, the
programmer has to implement the body of a predefined command check
and put necessary conditions there, as shown on line 8 of Figure 3.4. If
check returns false, the transition does not occur, and the system remains
in the previous context.

On the other hand, the programmer may want to proactively initiate a
context transition as a result of another context transition. Let as assume,
for example, that the system is in the Reachable context, and the transition
to the context Low has been initiated in the Battery group of Figure 3.2

40

i
i

“thesis” — 2015/12/22 — 17:59 — page 41 — #49 i
i

i
i

i
i

3.5. Verification

meaning the energy is running low. Since the nodes are equipped with solar
panels, as we described in Section 2.1.1, it is probably better to suspend the
radio communication until the battery is charged again. Our design allows
programmers to express this processing by using the triggers key-word,
as shown on line 2 of Figure 3.10. The triggers key-word indicates the
list of contexts that have to be activated as a result of an enclosed context
being activated. The same checks shown on Figure 3.8 are applied to this
type of transitions.

3.5 Verification

As the WSN software continuously adapts to the environmental dynamics,
it is crucial to exhaustively verify this software. The increasing complexity
of the software leads to the increase in the number of possible situations
the software must adapt to. These situations are difficult to recreate, hence,
it is not feasible to test the software by running it on the device. Off-line
model-checking, however, can help find the flaws of the model even before
the real deployment. With this technique, the model can be exhaustively
verified against different combinations of environmental situations.

Our concepts allow a designer to create a high-level model of the soft-
ware for WSNs, but the semantics of the resulted models is not directly
supported by any of the existing verification and model-checking tools.
The transformation from a context-oriented model to an equivalent state-
machine could help here, but it will be a fairly time consuming process
if performed manually. Indeed, the context-oriented model consists of the
context groups – a set of state machines that operate concurrently. Hence,
the state machine that is equivalent to the context-oriented model will be
a Cartesian product of the context groups, and an increase in the number
of contexts leads to an exponential explosion of states. Moreover, the con-
text groups interact via dependencies and triggers, further complicating the
equivalent state machine. Thus, even a fairly simple context-oriented model
will require a significant amount of time when transformed into an equiva-
lent state-machine manually.

We address this problem by providing an approach that can be utilized to
automatically verify the context-oriented models. We describe the general
rules of transformation, as well as a mapping algorithm from a context-
oriented model to a state-machine.

41

i
i

“thesis” — 2015/12/22 — 17:59 — page 42 — #50 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

Algorithm 1: Mapping algorithm.
Input: Model
Output: States

1 create list States
2 for each Group in Model do
33 States← CartesianProduct(Group, States)
4 end
55 for each State in States do
6 for each transiton in State.outgoingTransitions do
7 if transitions.target.triggers is not empty then
8 Retarget(transition, States)
9 end

10 end
11 end
1212 for each State in States do
13 if State has no incoming transitions then
14 States remove State
15 end
16 end
17 Function CartesianProduct(Group, States)
18 create list newStates
19 for each Context in Group do
20 for each State in States do
21 create newState
2222 newState.name← (Context.name + State.name)
23 create list Transitions
2424 Build(Transitions, Context, State, newState.name)
2525 Build(Transitions, State, Context, newState.name)
26 newState.outgoingTransitions← Transitions
27 create list Triggers
2828 Triggers append Conetxt.triggers
2929 Triggers append State.triggers
30 newState.triggers← Triggers
31 newStates append newState

32 end
33 end
34 return newStates

35 end
3636 Procedure Build(Transitions, SourceState, TargetState, newSource)
3737 for each transition in SourceState.outgoingTransitions do
38 target← transition.target
39 dependency ← transition.dependency
4040 newTarget← (target.name + TargetState.name)
4141 if newTarget satisfies dependency then
4242 Transitions append NewTransition(newSource, newTarget, transition)
43 end
44 end
45 end
46 Function NewTransition(source, target, parent)
47 create transition
48 transition.source← source
49 transition.target← target
50 transition.event← parent.event
51 return transition

52 end
53 Procedure Retarget(transition, States)
54 for each State in States do
55 if State.name contains all transition.target.triggers then
5656 transition.target← State
57 end
58 end
59 end

42

i
i

“thesis” — 2015/12/22 — 17:59 — page 43 — #51 i
i

i
i

i
i

3.5. Verification

3.5.1 Mapping Algorithm

In our transformation algorithm 1, we take a Model as an input. The Model
is a set of Groups, where every group is a set of Contexts. Within the
single group, contexts are connected by labeled transitions, where a label
represents an environmental event and an optional dependency. Only one
context in the group can be active at a time. Whenever the event occurs
and the dependencies are satisfied, the transition executes and another con-
text within the group becomes active. Each context also contains optional
triggers – whenever the context is activated, it can trigger a transition in
another context group. Thus, each Context in the algorithm 1 has a set of
properties:

• Context.name holds a name of the context.

• Context.triggers holds a list of names of contexts from other groups,
that have to be activated whenever current Context is activated.

• Context.outgoingTransitions holds a list of outgoing transitions.

For example, in the context Reachable in figure 3.2, Reachable is a context
name; Resting is a trigger; and Reachable→Unreachable is an outgoing
transition.

Each transition in the algorithm 1 has the following properties:

• transition.source holds the source of the transition.

• transition.target holds the target of the transition.

• transition.event holds the environmental event that triggers the transi-
tion.

• transition.dependency holds an optional dependency: transition can
only be executed if the dependency is satisfied.

For example, in the transition Healthy→Diseased displayed in Figure 3.2,
Healthy is a source and Diseased is a target; abnormal temperature is an
event; and iff(Resting|Moving) is a dependency.

The output of the algorithm 1 is a list of States of the resulted state-
machine. For example, the state-space of the Health Conditions and the
Activity groups is displayed in figure 3.11. We outline a set of rules that are
used to build this state-space.
Rule 1. In a single context group only one context can be active at a time.
Hence, a single state of the system is a combination of the contexts, which

43

i
i

“thesis” — 2015/12/22 — 17:59 — page 44 — #52 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

on active:
create normal beacon
track GPS often

Healthy Running

on active:
create normal beacon
track GPS rarely

Healthy Moving

on active:
create normal beacon
no GPS tracking

Healthy Resting

large GPS difference

acceleration detected negligible GPS difference

small GPS difference

on active:
create alert beacon
track GPS often

Diseased Running

on active:
create alert beacon
track GPS rarely

Diseased Moving

on active:
create alert beacon
no GPS tracking

Diseased Resting

large GPS difference

acceleration detected negligible GPS difference

small GPS difference

normal temperature

abnormal temperature

normal temperature

abnormal temperature

normal temperature

abnormal temperature

Figure 3.11: State-space of the Health Conditions and the Activity groups.

are currently active. Thus, the name of each resulting State is a concatena-
tion of the context names.

The concatenation in the algorithm 1 is represented by the operation +.
For example, the name of the state HealthyRunning in figure 3.11 is a result
of the operation Healthy+Running, where Healthy is a context from the
Health Conditions group and Running is a context from the Activity group.
Applying the Rule 1 to these groups, we obtain the Cartesian product of
these groups, as shown in figure 3.11.

The state-space in the algorithm 1 is built incrementally: at each step,
line 3 , we calculate a Cartesian product of the next context group and
the current state-space, according to the Rule 1. Thus, a name of each new
state defined at line 22 is a concatenation of the names of the context and
a state from the current state-space. At the end of the algorithm, the names
of the resulting states will be the combinations of the names of the contexts
involved, as in figure 3.11.
Rule 2. Each resulting State inherits all the outgoing transitions of the
contexts involved in the concatenation process in the Rule 1. The names of
targets of the inherited transitions are modified by appending the names of
the involved contexts.
Rule 3. The dependencies of the transition prevent some of the inherited
transitions from being added to the list of the outgoing transitions of the
resulting State.

For example, the HealthyRunning state, which is shown in figure 3.11,
inherits both outgoing transitions: Healthy → Diseased and Running →
Moving. Based on these, we correspondingly create the transitions Heal-

44

i
i

“thesis” — 2015/12/22 — 17:59 — page 45 — #53 i
i

i
i

i
i

3.5. Verification

on active:
create normal beacon
track GPS often

Reachable Running

on active:
create normal beacon
track GPS rarely

Reachable Moving

on active:
create normal beacon
no GPS tracking

Reachable Resting

large GPS difference

acceleration detected negligible GPS difference

small GPS difference

on active:
create alert beacon
track GPS often

Unreachable Running

on active:
create alert beacon
track GPS rarely

Unreachable Moving

on active:
create alert beacon
no GPS tracking

Unreachable Resting

large GPS difference

acceleration detected negligible GPS difference

small GPS difference

beacon

timeout

beacon

timeout
beacon

timeout
beacon

trigger

Figure 3.12: State-space of Base Station and Activity groups.

thyRunning→ DiseasedRunning and HealthyRunning→ HealthyMoving.
The dependency iff (Moving|Resting) of the transition Healthy→ Diseased
means that the target state of any inherited transition should strictly con-
tain either Moving or Resting. As the transition HealthyRunnig → Dis-
easedRunning is inherited from the transition Healthy → Diseased and
its target state does not contain neither Resting nor Moving, the transition
HealthyRunning → DiseasedRunnig is not added to the set of the outgo-
ing transitions of the HealthyRunning state. This transition is shown as a
dashed line in figure 3.11.

In the algorithm 1, the Rule 2 and the Rule 3 are implemented in the
procedure BUILD on line 36 . This procedure is called twice: to scan
transitions from the Context at line 24 and from the State at line 25 . This
procedure i) scans outgoing transitions from the SourceState at line 37 ; ii)
builds a new target at line 40 ; and iv) builds and appends a new transition
to the list of Transitions at line 42 if the dependency is satisfied at line 41

.

Rule 4. Each resulting State inherits all the triggers of the contexts involved
in the concatenation process in the Rule 1. The new target’s name is mod-
ified by appending the name of the context that contains the trigger. The
trigger of the context implicitly removes some of the inherited transitions
and adds a new one to the list of the outgoing transitions of the resulting
State.

For example, the state-space of the Base Station and the Activity groups
is shown in figure 3.12. The target of the transition UnreachableRunning
→ ReachableRunning is a concatenation of the Running and the Reachable

45

i
i

“thesis” — 2015/12/22 — 17:59 — page 46 — #54 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

contexts. As shown in figure 3.2, the latter has the trigger Resting, which
is inherited by the ReachableRunning state. Hence, whenever the transi-
tion UnreachableRunning→ ReachableRunning is executed, it should re-
sult into the state ReachableResting, as shown by the dash-dotted lines in
figure 3.12. To do that we retarget this transition to the ReachableRest-
ing state instead of the ReachableRunning state, and the transition becomes
UnreachableRunning→ ReachableResting, as shown by a dotted line.

In the algorithm 1 the Rule 4 is implemented on lines 28 and 29 . Every
new state inherits the triggers from both: the context and the state. Then
on line 5 , the triggers are applied to the state-space. There, we look for a
transition, which has a target with a non-empty list of triggers. Each found
transition is retargeted then to a state, the name of which contains all the
context names from the triggers list, as shown on line 56 . After this pro-
cedure, the old target may happen to be without any incoming transitions.
Hence, at line 12 of our algorithm 1 we scan the state-space and remove
unreachable – i.e., with no incoming transitions – states.

The algorithm 1 is fairly straight-forward, but it gives an intuition how
a context-oriented model is mapped to a state-machine. It also helps one to
make some flaws in the model more evident. For example, in Section 3.3,
we argued that the Diseased animal should not Running. To prevent both
the Diseased and the Running contexts to be active in the same time, we
added a dependency iff(Resing|Moving) to the transition from the context
Healthy to the context Diseased in figure 3.2. After applying the mapping
rules to the Health Conditions and the Activity groups, in figure 3.11 we
notice, that the state DiseasedRunning is reachable in the state-space. This
means that the system can be in a state, when both the Diseased and the
Running contexts can be active at the same time, and this is a flaw. Later
in this work, we provide the tools that can automatically find this kind of
flaws.

In Section 3.3, we also suggested how a programmer can use the notion
of trigger to disable GPS module and to save the energy by triggering the
Resting context in figure 3.2 whenever the Reachable context is activated.
As a result of such activation, we observe a transition UnreachableRun-
ning→ ReachableResting, as shown by a dotted line in Figure 3.12. This
transition implicitly implies two concurrent transitions in the initial model:
Unreachable → Reachable and Running → Resting. The latter, however,
does not exist in the initial model displayed in figure 3.2. Thus, the re-
sulted state-machine has revealed an illegal transition Running→ Resting.
This kind of transitions are automatically revealed, as we show in the next
section.

46

i
i

“thesis” — 2015/12/22 — 17:59 — page 47 — #55 i
i

i
i

i
i

3.6. Tool Support

GroupFoo

eventFooAB
iff ContextBarB

ContextFooBContextFooA

eventFooBA
GroupBar

eventBarAB
iff ContextFooB

ContextBarBContextBarA

eventBarBA

Figure 3.13: Example of a part of a large and complex context-oriented model.

Building an equivalent state-machine from the initial context-oriented
model can also make another flaws more evident. In large models it is usu-
ally difficult to track all the dependencies of the transitions. Moreover, it is
not trivial to find mutually contradictory dependencies. For example, let us
assume a context group GroupFoo where we have a transition ContextFooA
→ ContextFooB with a dependency iff ContextBarB, as in figure 3.13. We
also consider another context group GroupBar where we have a transition
ContextBarA→ ContextBarB with a dependency iff ContextFooB. It results
in a non-evident deadlock: the context ContextFooB is activated only if the
ContextBarB is active and vice versa, so the system is stuck in the Con-
textFooA and the ContextBarA. If there are only two contexts in the Group-
Foo, as in our example, the current situation leads to another non-evident
problem: the context ContextFooB and ContextBarB become unreachable.
As we show in the next section, these issues can be revealed automatically
even before implementing and deploying the actual software to the real de-
vice.

These issues are hard to find in a context-oriented model; an equivalent
state-machine, however, can make them more evident. Even though, we
provided an algorithm to build this state-machine, it is difficult to follow
this algorithm manually due to an exponential state explosion. Addressing
this challenge, we create a tool support described next.

3.6 Tool Support

To better support developers in designing, implementing and deploying the
context-oriented software, we provide set of tools. The whole work-flow
of the development process with our tools is shown in Figure 3.14. The
Designer uses our tool GREVECOM, which is described in Section 3.6.1, to
build the model of the software, to verify it (as described in Section 3.6.2),
and to generate the source-code templates in CONESC. Then, the Program-
mer modifies the templates by adding the actual application specific func-
tionality. The resulting source code is handed then over to our Translator

47

i
i

“thesis” — 2015/12/22 — 17:59 — page 48 — #56 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

Grevecom

Designer

<extends>

Editor

Eclipse NuSMV

NuSMV Model
Generator

NuSMV Result
Parser

ConesC Source-Code Generator

Verify...

Generate... ConesC
templates

ProgrammerTranslator

binary

<uses>
<modifies>

NuSMV Caller

Figure 3.14: GREVECOM architecture and work-flow.

tool. The latter translates the CONESC sources to the plan nesC, as de-
scribed in Section 3.6.3, and uses the nesC tool-chain to produce the binary,
which is ready for the deployment.

3.6.1 Grevecom

The Graphical Editor and Verifier for Context-Oriented Models (GREVE-
COM) allows a designer to build a context-oriented model, to verify it against
environmental evolutions and user-defined constraints, and to generate the
templates for a programmer. The usage diagram of the GREVECOM is
shown in Figure 3.14. The Designer uses the Editor – i.e., an Eclipse
plug-in, which allows the designer to build the model, to verify it and to
generate CONESC templates. The NuSMV Model Generator module is
called whenever the Designer wants to Verify the model, as shown in the di-
agram in Figure 3.14. This module builds a state-machine for the NuSMV
model-checker from the context-oriented model built in the Editor, and via
the NuSMV Caller calls the external NuSMV model-checker. The results
are captured by the NuSMV Result Parser module, which interprets them
in terms of the original context-oriented model and forwards them to the
Editor to display. Whenever the Designer chooses the Generate... option,
the CONESC Source-Code Generator module takes the context-oriented
model as an input and creates CONESC templates.

The main element in the GREVECOM is a canvas, as shown in Fig-
ure 3.15 A, where the designer can put context groups and contexts from
the components palette B. The palette C also contains the most recurring
patters that are described in the details later. Contexts can be bound by
transitions with labels. Each label contains a representation of the envi-
ronmental event and an optional dependency. Events are important in the

48

i
i

“thesis” — 2015/12/22 — 17:59 — page 49 — #57 i
i

i
i

i
i

3.6. Tool Support

Figure 3.15: GREVECOM main window.

Figure 3.16: GREVECOM verification wizard.

49

i
i

“thesis” — 2015/12/22 — 17:59 — page 50 — #58 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

model, but their implementation is application specific. Hence they are ig-
nored when the templates are generated. Dependencies, however, appear in
the templates after the source-code generation. Properties tab D allows a
designer to change the properties of any object on the canvas. For example,
to add an event or a dependency to a transition. The hierarchy tree E helps a
designer to track the structure of large models, when it is difficult to display
the whole model in the canvas A. The customized tool-bar F has a similar
purpose: the designer can zoom in/out the model if it is too large. Apart
from the properties D, a context can be modified in the dedicated context
edit wizard, where a designer can change the name; actions on enter, active,
or exit; make the context default or error; and add triggers.

A designer can verify the model by choosing the command Verify... from
the menu. The verification occurs in a new window, as in Figure 3.16,
where the designer can type a list of CTL constraints divided by a semi-
colon, as in Figure 3.16 A. For example, a constraint AG !(Running&Di-
seased) verifies that the model in Figure 3.2 can not be in the Running
and Diseased contexts simultaneously. Independently of the user-defined
constraint, as we show below, a model will be also verified against auto-
matically generated specifications such as: violation of transitions between
contexts; reachability of contexts; and deadlocks. The results of the verifi-
cation are printed in the frame B. Any found counterexample is graphically
represented as a sequence of activated contexts in the frame C.

3.6.2 NuSMV Translation

During the verification, GREVECOM builds a state-machine from a context-
oriented model using the rules described in Section 3.5. The algorithm de-
scribed there gives an exponential time of model generation, but in NuSMV
we can encode a state as a vector, where each variable represents a state of a
single context group. Similarly to the algorithm 1, GREVECOM scans each
Group in the Model and generates a symbolic variable, which represents a
state of a single context group. The possible assignments of this symbolic
variable are the names of the contexts within the corresponding context
group. Then, GREVECOM builds a set rules for the symbolic variable to
change its value. To do that, GREVECOM scans triggers and outgoing tran-
sitions of each context.

This approach to the generation of the state-machine is computationally
simpler than the one described in Section 3.5. Indeed, let us take NCG as
a number of context groups and MC as a number of contexts per group.
The maximum number of outgoing transitions per context is Mc − 1, and

50

i
i

“thesis” — 2015/12/22 — 17:59 — page 51 — #59 i
i

i
i

i
i

3.6. Tool Support

1 MODULE main
2 VAR
33 bsg_state : {Reachable, Unreachable};
44 ag_state : {Running, Moving, Resting};
5 //...
6 event : {timeout, beacon, //...
7 };
8 ASSIGN
9 next(bsg_state) :=

10 case
11 bsg_state = Reachable & event = timeout : Unreachable;
1212 bsg_state = Unreachable & event = beacon : Reachable;
13 //...
14 esac;
15 next(ag_state) :=
16 case
1717 bsg_state = Reachable : Resting;
18 //...
19 esac;
20 //...
2121 SPEC AG(EF bsg_state=Reachable)
2222 SPEC AG(bsg_state=Reachable->EF bsg_state=Unreachable)
2323 SPEC AG(ag_state=Running->AX(ag_state=Running|ag_state=Moving))
24 //...

Figure 3.17: Generated context-oriented NuSMV model.

the maximum number of triggers per contexts is NCG− 1. As GREVECOM
scans outgoing transitions and triggers, the complexity is the following:
T = NCG ∗MC ∗ (NCG− 1+MC − 1) = O(N2

CG ∗M2
C). We evaluate the

time needed for the generation of the state-machine form a context-oriented
model in Chapter 4.

A snippet of the generated model is displayed in Figure 3.17. For the
Base Station group we create a symbolic variable bsg_state, as on
line 3 . There are two contexts in the group: Reachable and Unreachable.
Hence, the possible assignments of the symbolic variable bsg_state
are the values Reachable and Unreachable. Similarly, the symbolic
variable ag_state, which is declared on line 4 , represents the state of
the Activity group. Based on the transition Unreachable→Reachable in
Figure 3.2, we build a transition rule on line 12 in Figure 3.17: the vari-
able bsg_state changes its value from Unreachable to Reachable,
whenever the event equals to beacon. In the context Reachable in Fig-
ure 3.2 there is a trigger Resting. Based on this information we build an-
other rule on line 17 in Figure 3.17: whenever the bsg_state is assigned
to Reachable, the value of the ag_state is changed to Resting.

Along with building a state-machine for NuSMV, we also build a set of
constraints to check typical, but non-evident flaws in the model. We add to

51

i
i

“thesis” — 2015/12/22 — 17:59 — page 52 — #60 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

the model the following requirements:

• Reachability: each context must be activated at least once. For ex-
ample, to make sure that the context Reachable in Figure 3.2 must be
activated at least once, we build a constraint on line 21 in Figure 3.17:
the value Reachable must be assigned to the bsg_state eventu-
ally in the future.

• Absence of deadlocks, meaning that at some point of the execution,
there are no sequences of events that lead to the activation of any
other context in a group. To avoid this in the Base Station group, for
example, we have to make sure that after the activation of the context
Reachable in Figure 3.2, the context Unreachable can be eventually
activated. The constraint on line 22 in Figure 3.17 represents this re-
quirement: if the bsg_state has a value Reachable, it must be
changed – e.g., assigned with the value Unreachable – eventually
in the future.

• All the transitions must be legal. The transitions defined in the context-
oriented model are legal. However, triggers implicitly create transi-
tions that contradict to the explicitly defined transitions. We call them
illegal transitions, and they may become evident after generating the
state-machine from the context-oriented model. For example, from
the Running context the only transition to the Moving context is pos-
sible, as illustrated by Figure 3.2. This requirement is presented on
line 23 in Figure 3.17: if the ag_state has a value Running, the
next value must be either Moving or the same as before (Running).

For all of the contexts from all of the context groups, GREVECOM gen-
erates the rules and the constraints as described above. Should any of the
constraints be violated, NuSMV provides a counterexample, and GREVE-
COM displays it as a sequence of the events and states in a diagram. The
latter allows a designer to understand where the flaws appear in the model
and why. After fixing the flaws, the designer uses GREVECOM to automat-
ically generate the CONESC templates and hand it over to the programmer,
as in Figure 3.14, for implementing the actual software.

3.6.3 Translator

After the software being implemented, the programmer has to compile and
to deploy the software. To this end, we develop a translator, which converts
CONESC sources to plain nesC, and uses the nesC tool-chain to compile

52

i
i

“thesis” — 2015/12/22 — 17:59 — page 53 — #61 i
i

i
i

i
i

3.6. Tool Support

TRANSLATOR

FooGroup <<context group>>
BarP <<module>>

BarC <<configuration>>

FooConContext <<module>>

FooGroupConfig <<configuration>>
FooGroupBinding <<module>>

FooGroupLayered <<interface>>
ErrorFooGroup <<module>>

<<module>>

<<configuration>>

ConesCInterfaces <<interface>>

nesC toolchain

FooCon <<context>>

<<implements>>

Figure 3.18: CONESC translation to nesC code for a generic FooGroup context group
and an individual context FooCon.

a final binary. Our translator performs two passes through the input code.
First, it reads the main Makefile to recursively scan the component tree.
Based on the information gained during the first pass, including the list of
every context and context groups defined in the code, the translator parses
every input file to convert the CONESC code to plain nesC and to generate a
set of support functionality. The resulting sources are then compiled using
the standard nesC toolchain.

Figure 3.18 illustrates the details of the operations during the second
pass. Generally, the input to the translator includes four types of compo-
nents: context groups, contexts, nesC configurations, and nesC modules
where CONESC constructs appear. In Figure 3.18, context groups and con-
texts are represented by a sample FooGroup context group and an indi-
vidual FooCon context, whereas nesC configurations (modules) with CO-
NESC constructs are represented as BarC (BarP).

Based on every context group, we generate a custom nesC module,
such as FooGroupBinding in Figure 3.18, that implements the dynamic
binding of layered functions to the active context. This module is a part
of a configuration, such as FooGroupConfig, also automatically gen-
erated. This configuration implements a nesC interface our translator pro-
duces, such as FooGroupLayered, that exports the layered functions
defined in the group. Optionally, an error context is also generated in plain
nesC, as indicated by ErrorFooGroup in this case, if the programmer
does not provide one. Each individual context is translated to a corre-
sponding nesC module with the proper interfaces to be wired within the
aforementioned configuration, as in the case of FooConContext for the
FooGroupConfig.

At this stage, context and context groups disappeared, yet CONESC con-
structs, such as activate, may still appear within the source code. Our

53

i
i

“thesis” — 2015/12/22 — 17:59 — page 54 — #62 i
i

i
i

i
i

Chapter 3. Design Concepts and Programming Support

ConeCInterfaces

FooGroup <<context group>>(ConesC)

layeredFunction()

<<interface>>
FooGroupLayered

layeredFunction()

<<module>>
FooGroupBinding

layeredFunction()

<<module>>
FooConContext

layeredFunction()

<<module>>
ErrorFooGroup

<<configuration>>
FooGroupConfig

command activate()
command getContext()
event contextChanged()

<<interface>>
ContextGroup

command activate()
command deactivate()

<<interface>>
ContextCommands

event activated()
event deactivated()

<<interface>>
ContextEvents

Figure 3.19: Hierarchy of generated components.

translator converts these constructs to functionally-equivalent nesC code
both in the nesC files generated out of context groups and individual con-
texts, and in the plain nesC files that possibly includes them, such as BarC
and BarP in Figure 3.18. The resulting sources are then wired to generic
interfaces that define the standard commands and events in CONESC, such
as contextChanged for context groups, as in Figure 3.7, and activa-
ted/deactivated for individual contexts, as in Figure 3.5 and 3.3. The
result is plain nesC code that can be given as input to the nesC toolchain.

The hierarchy of the components generated based on the FooGroup is
displayed in Figure 3.19. The FooGroupLayered is a basic interface for
all the generated components, as it declares the layered functions. The main
generated component is a configuration, such as the FooGroupConf,
which instantiates and links together the contexts and the control mod-
ules. The control module FooGroupBinding implements the Foo-
GroupLayered interface to enable a behavioral variations, and the Con-
textGroup interface to provide the operations over the contexts, e.g.,
the FooConContext. The ErrorFooGroup module is generated if
it was not declared in the FooGroup. Each Context is translated into a
module, as, for example, the FooConContext, which implements the
ContextCommands, the ContextEvents, and the FooGroup inter-
faces mentioned above.

Our translator is implemented using JavaCC [38]. Three aspects are
worth noticing. First, the generated code is still human-readable, and a
programmer can modify it to implement fine-grained optimizations. Sec-
ond, the code is completely hardware-independent. Therefore, hardware
compatibility is the same as the original nesC toolchain, allowing us to
support a wide range of WSN platforms and not to modify our translator

54

i
i

“thesis” — 2015/12/22 — 17:59 — page 55 — #63 i
i

i
i

i
i

3.7. Summary

due to hardware idiosyncrasies. Second, the whole translation process is
only seemingly straightforward. Rendering the logic embedded within the
CONESC abstractions does require a fairly sophisticated processing. To
give an intuition, we measured the size of the CONESC implementations
of the application we use for evaluation, described next, against the size of
the nesC implementations output by our translator. On average, we observe
three times as much lines of code in the automatically-generated nesC code.

3.7 Summary

In this chapter we provided the full support for the developing of the adap-
tive software for WSNs. Our concepts described in Section 3.3 allow a
designer to create an elegant context-oriented model of the adaptive WSN
software. Being implemented in a particular language, e.g., in our own con-
text extension to nesC called CONESC, these concepts give a programmer a
powerful tool to express the adaptive behavior of the software, and to gain
control over the adaptation process, as we have shown in Section 3.4. More-
over, in Section 3.5 it is shown that with our concepts, the designer is able
to verify the context-oriented model against the environmental evolutions
and the user-defined constraints even before implementing and deploying
the actual software. Finally, in Section 3.6 we provided the programming
tools, that the designer and the programmer can use to design, to imple-
ment, and to compile the adaptive WSN software.

55

i
i

“thesis” — 2015/12/22 — 17:59 — page 56 — #64 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 57 — #65 i
i

i
i

i
i

CHAPTER4
Early Experience and Evaluation

In this chapter we describe our early experience of using our design con-
cepts. To do this, we developed a number of WSNs applications and dis-
cussed them it in Section 4.1. In the same section, we also outlined the
typical patterns that recurrently appear independently of the application.
Based on these application, in Section 4.2, we evaluated our approach by
performing a number of experiments.

4.1 Early Experience

In order to demonstrate the generality of our approach, we applied our
concepts to the developing of three representative applications. In ad-
dition to the wildlife tracking application, we implemented the adaptive
protocol stack and the smart-home controller, which are described in Sec-
tion 2.1.1. We describe the implementation of each application in details
in Section 4.1.1, and then, in Section 4.1.2, show typical patterns that are
naturally exhibited when our concepts are applied.

57

i
i

“thesis” — 2015/12/22 — 17:59 — page 58 — #66 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

Temperature group

Preferences group Emergency group

Light intensity group

on enter:
disable GPRS
on active:
send log to the BS

Normal

on enter:
enable GPRS
on active:
send log to a neighbor node
and to the Fire Service

Fire

on enter:
enable GPRS
on active:
send log to the Police

Housebreaking
housebreaking

normal

fire

on enter:
enable conditioner
disable heater

High
on enter:
disable conditioner
disable heater

Normal
on enter:
disable conditioner
enable heater

Low

thresholdL <= temperature <= thresholdH

temperature > thresholdH temperature < thresholdL
on enter:
turn lights off

Bright

on enter:
turn lights on

Dark

light level > threshold

light level < threshold

on active:
day preferences

Day

on active:
weekend preferences

Weekend

on active:
night preferences

Night
night day

!weekend
weekend

normal

fire

Figure 4.1: Smart-home controller design.

4.1.1 Applications

In Section 2.1.1 we discussed example adaptive applications for WSNs. In
this section we provide a context-oriented design of these applications.
Smart home. As we discussed in Section 2.1.1, the smart home controller
regulates temperature and lighting conditions in a house relying on both
the environmental and the user-defined information. The context-oriented
design of the smart-home controller is shown in Figure 4.1. The functional-
ity is driven by user-defined preferences dependent on the current context.
The Preferences group contains contexts, which provide different operating
parameters depending on day/night and weekends vs. working days condi-
tions. Such parameters, compared against current light and temperature
readings, drive the context transitions within the Temperature and Light
context groups. Any time a transition in these groups occurs, the node op-
erates actuators to control HVAC and lighting system. The controller also
exploits smoke sensors, fire sensors, and cameras to detect fire and house-
breaking situations. It notifies the user about the emergency and sends data
to the police or firemen, depending on the situation. The latter functionality

58

i
i

“thesis” — 2015/12/22 — 17:59 — page 59 — #67 i
i

i
i

i
i

4.1. Early Experience

Protocol parameters group Protocol type group

on active:
adjust parameters

Lifetime priority
on active:
adjust parameters

Bandwidth priority

on active:
adjust parameters

Link quality
adaptation

on active:
use CTP protocol

CTP

on active:
use Gossip protocol

Gossip

low link quality

high load
low load

high loadlow load

static

mobile

Figure 4.2: Adaptive protocol stack design.

is encapsulated in the Emergency context group.
Adaptive protocol stack. In Section 2.1.1, we argued about the need of
adaptivity in this application. Indeed, the software must maintain two or-
thogonal functionalities: i) switching between the protocols, and ii) tun-
ing these protocols depending on the situation. Figure 4.2 illustrates the
context-oriented design of this application. The Protocol Type group con-
tains two different implementations of the routing layer: CTP and Gossip.
The latter is preferred in mobile networks, while the former is activated
whenever the node is static. Orthogonal to the protocol switching, the Pro-
tocol Parameters group enables the fine-grained tuning of the parameters
of the protocols depending on the priorities in the network.

As the provided example applications illustrate, even a fairly compli-
cated and entangled functionality can be designed and structured in an ef-
fective and elegant way with our concepts. Moreover, as we figured out,
our concepts exhibit particular design patterns, which we discuss next.

4.1.2 Emerging Patterns

Despite the limited experience we hitherto gathered using CONESC, we
already observe quite distinctive design and programming patterns, repre-
senting solutions to commonly occurring problems. As discussed next, our
approach allows developers to deal with diverse requirements using only a
handful of concepts.
Behavior control. Programmers may employ a single context group to
specify different behaviors for the same high-level functionality. One such
example is the Base Station group in Figure 3.2, which includes two differ-
ent behaviors for the functionality to report contact logs to the users. The
functionality itself is exported by one or more layered functions defined on
the group. The chosen behavior is then determined by activating a single
context within the group.

We found similar designs in other applications as well. In the adaptive

59

i
i

“thesis” — 2015/12/22 — 17:59 — page 60 — #68 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

Behavior Control Group

on active:
perform actionN

Behavior
Variation N

on active:
perform action1

Behavior
Variation 1

Context
Controller

<<controls>>

Service User

Figure 4.3: Behavioral control pattern.

protocol stack, for example, the packet relay functionality also matches a
similar design. Depending on a node’s mobility, the chosen behavior is
picked out of a pool of available protocols, whose functionality are encap-
sulated in single contexts. These are in turn included in a single context
group, which exports a layered function used by the application to trans-
parently accesses whatever protocol is in operation at a given time.

Figure 4.3 shows an abstract view of such commonly recurring pattern.
In addition to the context group exporting the adaptive functionality and
the single contexts therein, programmers also define an additional context
controller component, which activates the single contexts within the group
depending on the situation. Figure 3.6 shows a CONESC example for the
wildlife monitoring application. Similar designs apply to the smart-home
controller and the adaptive protocol stack as well.
Content provider. Different from the behavior control pattern, which pro-
vides non-trivial context-dependent processing, we observe cases where
context-dependent data is offered to other functionality with little to no pro-
cessing involved. In the wildlife monitoring application, for example, the
Health Conditions group in Figure 3.2 provides differently formatted bea-
cons to the radio driver for broadcast transmissions. Layered functions are,
in this case, defined for the group merely to retrieve the context-dependent
data.

In this case as well, we notice the same pattern in other applications. In
the smart-home controller, for example, a context group is defined to man-
age the user preferences depending on day vs. night. These data are simply
retrieved differently from a data storage by two different contexts modeling
day or night situations. Whatever user preference is to be considered at a
given point is then handed over to the control loop in charge of setting the
functioning of the climate systems.

As shown in Figure 4.4, this pattern’s structure differs from that of be-
havior control in that the role of the controller component is often fairly
trivial. In the smart-home controller, for example, the controller compo-

60

i
i

“thesis” — 2015/12/22 — 17:59 — page 61 — #69 i
i

i
i

i
i

4.1. Early Experience

Content Provider Group

on active:
return dataN

Context Data N
on active:
return data1

Context Data 1
Context

Data Consumer
Context

Controller

<<controls>>

Figure 4.4: Content provider pattern.

Trigger Group

on enter/exit:
enable/disable X

Trigger N
on enter/exit:
enable/disable X

Trigger 1
Context

Controller

<<controls>>

Figure 4.5: Trigger pattern.

nent is simply based on the time of the day. On the other hand, the compo-
nent consuming the context-dependent data plays a key role. Indeed, while
functionality structured according to behavior control can be considered
stand-alone, the context provider needs to be tailored to the data consumer.
Trigger. We also recognize designs where single contexts are used only to
trigger specific operations when entering/exiting, but no significant context-
dependent functionality or data is offered as the context remains active.
One example in the wildlife monitoring application is the Battery group
in Figure 3.2. The included contexts are used to enable/disable the GPS
sensor depending on battery levels, but no other functionality is provided
to other components. In this case, layered functions are often not defined,
in that the predefined activated and deactivated events within the
single contexts suffice.

In the smart-home controller, for example, we notice a similar pattern in
the context group regulating light dimming. Depending on perceived light
levels in a room, either context Bright or Dark is activated, and lights are
tuned accordingly when entering either context. This processing is entirely
implemented within the corresponding activated event handlers.

In more general terms, a context controller component is present in this
case as well to drive the context transitions in the group, as shown in Fig-
ure 4.5. However, unlike the other patterns, there is no other significant
component that either uses context-dependent functionality or consumes

61

i
i

“thesis” — 2015/12/22 — 17:59 — page 62 — #70 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

context-dependent data. The functionality is mostly self-contained.

4.2 Evaluation

To evaluate our approach, we implement each application described in Sec-
tion 4.1.1 using either CONESC or nesC. The resulting implementations are
functionally equivalent. Based on these applications we evaluate our ap-
proach along seven dimensions. In Section 4.2.1, we analyze how tight the
components are coupled in our implementations. Coupling generally de-
termines the ease of maintenance and evolution of software [43]. We also
use code metrics to asses the complexity of the software in Section 4.2.2,
that often affects a system’s reliability and ease of debugging [43]. Based
on illustrative case studies, in Section 4.2.3 we measure efforts required for
evolving the software. In Section 4.2.4 we measure the performance over-
head when using CONESC in terms of MCU and memory penalty. Sec-
tion 4.2.5 quantifies the time needed to generate a model for NuSMV from
a context-oriented model. In Section 4.2.6 we calculate the time required to
verify the context-oriented model of the applications. Finally, Section 4.2.7
shows how the verification can be scaled on very large models.

4.2.1 Coupling

There are seven types of coupling between software modules, according to
Stevens et al. [75]. In Table 4.1 we summarize these types. It is generally
known that the tightest is coupling, the more difficult is extending, main-
taining, and debugging the software. We manually inspect the source code,
to investigate the types of coupling in CONESC against nesC implementa-
tions.
Results. Our investigations are shown in Table 4.2. As we observe, CO-
NESC implementations are generally less coupled as compared to their
nesC counterparts. In CONESC different behavioral implementations are
encapsulated in different contexts allowing programmers to avoid Content
coupling. Contrary, nesC programmers are forced to expose internal mod-
ule information to bind command calls or events to different modules, mak-
ing modules operations dependent on each other. For the same reason, nesC
programmers are using global variables to switch between several behav-
ioral variations depending on the situation. This creates Common coupling,
which is avoided in CONESC implementations, since the necessary func-
tionality is automatically generated by our translator. Finally, Control cou-
pling is avoided in CONESC as well. This is a result of dynamic module

62

i
i

“thesis” — 2015/12/22 — 17:59 — page 63 — #71 i
i

i
i

i
i

4.2. Evaluation

Table 4.1: Coupling types.

Type Description
Content (tightest) One module relies on the internal working

of another. Changing one module requires
changes in the other as well.

Common Two or more modules share some global
state, e.g., a variable.

External Two or more modules share a common data
format.

Control One module controls the flow of another, e.g.,
passing information that determine how to
execute.

Stamp Two or more modules share a common data
format, but each of them uses a different part
with no overlapping.

Data Two or more modules share data through a
typed interface, e.g., a function call.

Message (loosest) Two or more modules share data through an
untyped interace, e.g., via message passing.

Table 4.2: Coupling comparison: CONESC implementations save most types of coupling
that are unavoidable in nesC.

Application C
on

te
nt

C
om

m
on

E
xt

er
na

l

C
on

tr
ol

St
am

p

D
at

a

M
es

sa
ge

Wildlife tracking – nesC yes yes yes yes – yes –

Wildlife tracking – ConesC – – yes – – yes –

Smart-home controller – nesC yes yes yes yes – yes –

Smart-home controller – ConesC – – yes – – yes –

Adaptive stack – nesC yes yes yes yes – yes –

Adaptive stack – ConesC – – yes – – yes –

binding driven by the context transitions, which has to be manually coded
in nesC.

While both CONESC and nesC allow a programmer to avoid Stamp and
Message coupling, Data and External couplings are not avoided neither in
CONESC nor in nesC. They both rely on typed interfaces, thus, in both

63

i
i

“thesis” — 2015/12/22 — 17:59 — page 64 — #72 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

Table 4.3: Complexity comparison: CONESC yields simpler implementations that are
easier to debug and to reason about.

Average per-module

Application Va
ri

ab
le

de
cl

a-
ra

tio
ns

Fu
nc

tio
ns

Pe
r-

fu
nc

tio
n

st
at

es
(a

vg
)

Wildlife tracking – nesC 6 8 12567.3

Wildlife tracking – ConesC 3 2 6231.2

Smart-home controller – nesC 2 2 18654.2

Smart-home controller – ConesC 0,8 1,9 5678.3

Adaptive stack – nesC 2,5 3,25 9830.3

Adaptive stack – ConesC 0,4 1,6 3451.8

implementations different modules use a common data format, and these
types of coupling are unavoidable.

4.2.2 Complexity

We estimate the complexity of the implementations by measuring the num-
ber of variable and function declarations in each module. These are gener-
ally considered as intuitive indicators of code complexity [43]. Complexity
is also a function of a number of states in which a program can find it-
self [43]. A state here is any possible assignment of values to the program
variables. Thus, the number of states must be computed by looking at the
different combinations of values of variables for every possible execution.

To perform the latter analysis, we use SATABS [14] – a model-checking
tool for C programs. It performs an off-line verification against user-defined
assertions. To do so, it searches all relevant program executions, where
the assertions hold. The result of such verification process are counterex-
amples, which show the execution where one or more assertions do not
hold. As a complementary information, SATABS also returns the num-
ber of states it explored in the program. With a specific configuration, we
forced SATABS to explore all possible program executions and to return
the total number of distinct states of the program. We use SATABS on a
per-function basis, implementing empty stubs to replace the code that we
cannot process with SATABS, e.g. hardware drivers.
Results. Table 4.3 illustrates our results. CONESC shows a significant

64

i
i

“thesis” — 2015/12/22 — 17:59 — page 65 — #73 i
i

i
i

i
i

4.2. Evaluation

Health conditions group

abnormal temperature
&&(Resting||NotMoving)

on active:
create alert beacon

Diseased
on active:
create normal beacon

Healthy

normal temperature

on active:
create warning beacon

Carrieralert beacon

abnormal temperature
&&(Resting||NotMoving)

Figure 4.6: The extended Health Conditions group. We added the Carrier context.

reduction in both declared functions and variables. This comes from the
ability to dynamically bind function calls to a corresponding behavioral
variation transparently to the caller. On the other hand, in nesC this re-
quires to define a set of global variables to check what variation needs to
be triggered depending on the situation. As a result, the number of per-
function states programmers have to deal with also drastically decreases in
CONESC, making the implementations easier to understand.

The number of lines of code are roughly comparable in both implemen-
tations: nesC and CONESC. It should be also noted that, however, the size
of generated source code is trice as larger, which indicates the “expressive
power” of the abstraction, besides the intuition of the complexity involved
in the translation. It also demonstrates that our few simple concepts do
capture a significant portion of processing.

4.2.3 Software Evolution

Due to changes in requirements, WSN software should constantly change.
The better is an implementation modularized, the easier are the modifica-
tions, since the changes affect only a small part of the code [43]. For each
application we estimate the effort to modify the CONESC implementation
compared to the nesC counterpart. We study three types of modifications:
adding a new context group, adding a new context, and removing a context.

To estimate the effort to remove the context, we modify the scenario of
the adaptive protocol stack. Say, the programmer wants to remove one of
the CTP parameter sets after testing, since this set has shown a bad per-
formance. To study an addition of the new context, we extend the wildlife
tracking application to the case, where it is necessary to track a spread of
the disease. To do this, the programmer adds a new context Carrier to the
Health conditions group, as shown in Figure 4.6. This context generates a
beacon for an animal who was in contact with a diseased one, but shows no

65

i
i

“thesis” — 2015/12/22 — 17:59 — page 66 — #74 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

Temperature group

Preferences group Emergency group

Light intensity group

on enter:
disable GPRS
on active:
send log to the BS

Normal

on enter:
enable GPRS
on active:
send log to a neighbor node
and to the Fire Service

Fire

on enter:
enable GPRS
on active:
send log to the Police

Housebreaking
housebreaking

normal

fire

on enter:
enable conditioner
disable heater

High
on enter:
disable conditioner
disable heater

Normal
on enter:
disable conditioner
enable heater

Low

thresholdL <= temperature <= thresholdH

temperature > thresholdH temperature < thresholdL
on enter:
turn lights off

Bright

on enter:
turn lights on

Dark

light level > threshold

light level < threshold

on active:
day preferences

Day

on active:
weekend preferences

Weekend

on active:
night preferences

Night
night day

!weekend
weekend

normal

fire

Status group

on enter:
report alert
on active:
collect and report the
results of self-diagnostics

Failure

on active:
report logs

Normal

failure occurred

failure is handled

Figure 4.7: The extended model for the Smart Home application. We added the Status
context group.

symptoms yet. We study the addition of a context group by extending the
smart-home controller scenario. We consider a case, when the programmer
wants to add a periodic run-time check to the controller execution loop.
Should a potential failure be discovered, the controller changes its behav-
ior. To this end, the programmer adds an entirely new context group Status
with contexts Normal and Failure, as illustrated in Figure 4.7.

Results. Removing a context in CONESC implementation of the adaptive
protocol stack only requires to modify three sequential lines of code, while
in nesC the developer must modify several lines of code scattered through-
out the main module. To add a context in the wildlife tracking application,
it is necessary to modify only 5 lines of code in CONESC implementation.
To implement the same extension in nesC, besides the code modifications,
the programmer must add new global states, further complicating the con-
trol flow. Adding a new context group in the smart-home controller requires
to modify about 40 lines of code in CONESC, besides the implementations
of the new contexts. However, in nesC, in addition to the same modifica-
tions in the source code, we need to add more global states, again making
the implementation more entangled.

It is worth noticing, that the efforts to apply context-unrelated changes
are the same in both CONESC and nesC implementations.

66

i
i

“thesis” — 2015/12/22 — 17:59 — page 67 — #75 i
i

i
i

i
i

4.2. Evaluation

 0

 5

 10

 15

 20

 25

 30

Wildlife tracking Adaptive stack Smart-home

M
C

U
 c

yc
le

s

Context transition overhead
Function call overhead

(a) MCU overhead.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Wildlife tracking Adaptive stack Smart-home

%

Binary overhead
RAM overhead

(b) Memory overhead.

Figure 4.8: MCU and memory overhead: the resource usage penalty for using CONESC
is almost negligible.

4.2.4 MCU and Memory Overhead

The advantages brought by our approach come at the cost of system over-
head. To assess it, we measure the memory overhead when using CONESC
as compared to nesC, as well as the MCU overhead for context transitions
and calls to layered functions. We estimate the former using nesC and
GNU-C tool-chains, while we estimate the latter by using the MSPSim
MSP430 emulator [22]. As the executions are deterministic, the experi-
ments yield the same results independently of the number of executions.
Results. The results are shown in Figure 4.8. The MCU overhead for
layered functions varies from 2 to 5 MCU cycles depending on the applica-
tion. This is negligible overhead in terms of energy consumption, since the
simplest operations in TinyOS – turning on/off LED – consumes 8 MCU
cycles. The context transition overhead is slightly larger, but in the same
order of magnitude. This is a result of the activation rules described in Sec-
tion 3.4.3: additional MCU cycles are needed to check if the transition is
possible, then to check dependencies, and finally to execute the body of the
check().

Most importantly, the memory overhead is 2.5% in the worst case. The

67

i
i

“thesis” — 2015/12/22 — 17:59 — page 68 — #76 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

complexity of the application, however, largely dictates the corresponding
memory penalty. For example, the wildlife tracking application, being the
most complicated in terms of contexts, context changes, and data process-
ing, shows the highest memory overhead. The overhead for the adaptive
protocol stack is negligible, since a nesC programmer would use the same
set of variables compared to the one generated by our CONESC translator
automatically.

4.2.5 Model Generation Time

We measured the time needed for generating a model for NuSMV sym-
bolic checker, with respect to the number of context groups and contexts
per group. We use a machine with Intel Core2Duo and 4Gb RAM. Dur-
ing the experiment we launch the algorithm with different configurations –
e.g. a set of constant NCG (number of context groups) and MC (number of
contexts per group). The generating algorithm, described in Section 3.6.1,
is implemented in Java. For each fixed configuration we execute the algo-
rithm measure the CPU time of the current thread in java virtual machine
using the dedicated library ThreadMXBean. We perform a set of calls, until
we reach a standard deviation ≤ 5%.

Our example applications contain two to four context groups with two
to three contexts included in a single group. For evaluation purposes, how-
ever, we generate artificially synthesized models. The configuration of the
models is the following:

• The maximum number of the transitions within the context group is
achieved when each context is connected with every other context in
the same group.

• The maximum number of triggers in the context is achieved when the
contexts triggers a single context in every other context group.

• These numbers for the whole model are maximized with an equal
number of contexts per group.

Thus, in the worst case, each group has an equal number of contexts; and
each context is bounded by a transition with every other context in the
group.

The typical device a CONESC program is written for has 10kB of RAM,
and does not involve any significant processing. Thus, we do not expect
designers to deploy a lot of contexts and context group, and, hence, we limit
our measurements with boundaries: MC ∈ [2, ..., 10] and NCG ∈ [1, ..., 10].

68

i
i

“thesis” — 2015/12/22 — 17:59 — page 69 — #77 i
i

i
i

i
i

4.2. Evaluation

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8 9 10

T
im

e,
 m

s

Number of Context Groups

5 contexts per group
8 contexts per group

10 contexts per group

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2 3 4 5 6 7 8 9 10

T
im

e,
 m

s

Number of Contexts per Group

2 groups
5 groups

10 groups

(b)

Figure 4.9: Generation Time for NuSMV models. The generation time remains lower than
160ms even on large numbers.

With MC = 10 and NCG = 10 the model is fairly unrealistic and we
consider it only for comparison.
Results. As we observe in Figure 4.9, both graphs have a perfect shape
of quadratic function, just as we previously calculated: T = O(N2

CG ∗
M2

C). The generating time remains lower than 160 ms even for fairly large
models, hence we pay a little price of generation time.

4.2.6 Verification Time

In this section we show how much time is required to verify context-oriented
models of the real applications described in Section 4.1.1. The experiment
is executed on the machine described in Section 4.2.5. For each application
we automatically built a state-machine that is handed over to the NuSMV
model-checker. To measure the CPU time required for the verification, we
launched NuSMV with UNIX command time, which returns the CPU-time
upon the execution. We launch NuSMV ten times and calculate the stan-
dard deviation. If it is > 5%, then we relaunch NuSMV for another ten
times, until the obtained standard deviation is ≤ 5%.

For each application we measure the verification time of the correct

69

i
i

“thesis” — 2015/12/22 — 17:59 — page 70 — #78 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

 0

 10

 20

 30

 40

 50

Wildlife tracking Smart-home Adaptive stack

T
im

e,
 m

s

w/o flaws
Deadlock

Illegal Transition
User Constraints

Figure 4.10: Verification Time. Generation of counterexamples leads to the increase in
verification time.

model; of the model with different types of flaws such as deadlocks and
illegal transitions; and of the model with user-defined constraints. As we
mentioned in Section 3.6.1, for every a set of constraints is automatically
built to check different flaws in the model. Along with the verification time,
in this experiment we also measure, how the additional user-defined con-
straints affect the verification time. In our experiments, we did not observe
a strong connection between a constraint type and the verification time.
Hence we focus only the type of flaws.

To measure the relationship between the type of flaws and the verifi-
cation time, we slightly modified each context-oriented model, so each of
them does not satisfy only one of the constraints generated by GREVECOM.
To add a deadlock, in each model we modified two dependencies and made
them mutually contradictory. By modifying a single trigger in each model,
we created an illegal transition – i.e., a transition, which is not allowed by
the initial design.
Results. Firstly, as we observe in Figure 4.10, the verification time of the
correct model is always lower than the verification time of other models.
Secondly, the verification time increases with the number of constraints.
This is the results of the specific NuSMV execution: constraint verification
procedures are isolated from each other and executed sequentially. Thus,
NuSMV requires additional CPU-time whenever a new constraint is added.
Thirdly, we observe an increased time of the verification of the models
with flaws, without a significant connection to a type of a flaw, though. As
we show in the following Section 4.2.7, this happens because in NuSMV,
counterexamples are generated in a dedicated procedure that is executed
after the actual verification. Generally, the verification time is negligible:
50ms at most. Even combined with the generation time measured in the
Section 4.2.5, the total overhead is very low.

70

i
i

“thesis” — 2015/12/22 — 17:59 — page 71 — #79 i
i

i
i

i
i

4.2. Evaluation

 0
 10
 20
 30
 40
 50
 60

 2 3 4 5 6 7 8 9

T
im

e,
 m

in
ut

es

Number of Context Groups

no flaws
flaw w/o counterexamples

flaw & counterexamples

Figure 4.11: Verification Time. Verification of the correct model requires more time than
verification of the model with a flaw and without generating counterexamples.

4.2.7 Scaling of Verification

Differently from the Section 4.2.6, we evaluate the scaling ability of our
approach. It is difficult to find a real application with a context-oriented
model that is large enough. That is why we measure the verification time
of artificially synthesized context-oriented models. The setting of this ex-
periment is identical to the one described in Section 4.2.6.

In our previous experiments we observed that verification time loosely
depends on the type of flaws. That is why we examine two types of model:
a fully correct model and a model with an arbitrarily chosen flaw – a dead-
lock. For both models in this experiment, we sequentially increase the
number of context groups, while keeping the number of contexts per group
constant – 5 contexts per group. We also keep the number of transitions,
triggers, and dependencies constant in both models.
Results. Our results are displayed in Figure 4.11: no flaws is the verifica-
tion time of the fully correct model; flows w/o counterexamples is the ver-
ification time of the model with a deadlock, but without generating coun-
terexamples; and flaws & counterexamples is the verification time of the
model with a deadlock, plus generating counterexamples.

Generally, we observe that the verification time grows exponentially
with the linear increase of the number of context groups. It can be ex-
plained by the exponential explosion of states: whenever we add a new
context group, the number of states is multiplied by the number of con-
texts in the new group. Because of that, our approach can not be scaled
on large models very well, but the verification time still remains reasonable
with more realistic configurations: models with NC = 5 and MCG ≤ 7 are
verified in less than a minute.

As we can see, the verification time of the model with flaw and without

71

i
i

“thesis” — 2015/12/22 — 17:59 — page 72 — #80 i
i

i
i

i
i

Chapter 4. Early Experience and Evaluation

generating a counterexample is slightly lower than the time needed to verify
a correct model. The reason is that NuSMV verifies only a part of the
initial model, incrementally extending this part to the whole model. The
verification process is complete when either the specification is false or
the verified part covered the whole model. Thus, NuSMV can report false
specification very early on without verifying the whole model.

NuSMV also separates the process of verification and the process of gen-
erating a counterexample. If generation of counterexample is enabled and
specification is false, NuSMV scans a state-space again building a coun-
terexample from the visited states. It results in an increased verification
time, as we observe in Figure 4.11.

4.3 Summary

In this chapter we show how our concepts can be used in the designing of
the adaptive WSN software. In Section 4.1 we provided a detailed descrip-
tion of the context-oriented models of the applications, which are described
in the previous chapter. The results of our evaluation in Section 4.2 have
shown that with our concepts the yielded software is more modularized and
decoupled. It is easier to understand and to debug this software. Moreover,
the efforts required to modify the software is reduced when our concepts
are used. These benefits come, however, with a negligible price: typical
WSN applications show up to 2.5% memory overhead and up to 200ms of
the verification time.

72

i
i

“thesis” — 2015/12/22 — 17:59 — page 73 — #81 i
i

i
i

i
i

Part II

Dealing with Time Requirements
in Adaptive Software

73

i
i

“thesis” — 2015/12/22 — 17:59 — page 74 — #82 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 75 — #83 i
i

i
i

i
i

CHAPTER5
Concepts and Early Prototype

The problem of the adaptation in time-critical systems is similar to the one
we observed in WSNs. The difference here is that the time aspect is cru-
cial in such systems. Examples of such systems are automotive embedded
systems, miniaturized robots, aerial drones, etc.

In this chapter we focus on aerial drones as a representative example of
time-critical systems, as described in Section 5.1. Based on the latter, we
outline the problem in Section 5.2, and propose our solution in Section 5.3.
In our prototype that is described in Section 5.4, we show how our concepts
can be implemented and used. The preliminary evaluation is provided in
Section 5.5.

5.1 Background

Nowadays, the necessity of small aerial drones becomes more and more
evident. Indeed, their size and agility allows them to perform tasks, which
are impossible for other types of robots. For example, indoor rescue opera-
tions [79] or indoor gas leak localization [10]. The small size allows minia-
turized drones to successfully execute tasks in such environments, where
it is crucial to have a high agility due to complicated topology of space.

75

i
i

“thesis” — 2015/12/22 — 17:59 — page 76 — #84 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

Algorithm 2: A typical controller for obstacle avoidance.
1 Direction← STRAIGHT_FORWARD
2 while True do
3 read hardware buttons stop and reset
44 if stop then
5 a user-defined stop routine
6 break
7 end
88 if reset then
9 a user-defined reset routine

10 end
1111 step()
12 wait for 10ms
13 end
14 Procedure step()
1515 reading a proximity from sensors
16 for each reading in proximity do
1717 adjusting the Direction according to the reading
18 end
1919 modulating motors according to the Direction

20 end

However, the small size is a limitation as well: execution time is limited
due to small batteries; crashes and faults are more critical; small control
boards have memory and performance limitations.

Aerial drones are representative of CPSs. Their control boards modulate
the motors depending on readings from a set of sensors that are embedded
into the board. The drones are representative of time-critical systems as
well. Indeed, to keep the flight, the control board has to continuously re-
modulate motors depending on the input from the sensors. Any delay in
modulation leads to the unexpected or inadequate behavior, or even to a
crash. Crucially, every task in this platform has time boundaries. Should
the boundaries be violated, and the system will not be able to react to the
environmental changes in time.

A natural way to program an aerial drone is to create a dedicated con-
troller, which is specific for the task at hand. The controller runs either on
the base-station or on the board of the robot and contains three main steps:
i) sensing; ii) analyzing; and iv) actuating. Every 10-100 millisecond, or
even faster, the controller calls a function, where a programmer has im-
plemented a sensing routine, a data analysis, and an action execution. A
typical controller [72] is displayed in algorithm 2.

The main loop in Algorithm 2 maintains the control input, such as stop
and reset buttons on lines 4 and 8 . The step() procedure is called
from the loop every 10 ms, as on line 11 . Firstly, the controller reads the
data from the proximity sensors on line 15 . Based on these readings, the
controller adjusts the movement Direction to avoid possible collisions, as
on line 17 . Finally, the calculated Direction is used to modulate the motors

76

i
i

“thesis” — 2015/12/22 — 17:59 — page 77 — #85 i
i

i
i

i
i

5.2. Problem

on line 19 . This controller is fairly simple, because the only environmental
dimension we referring to is the existence (or absence) of obstacles. More
realistic scenarios would require to consider more dimensions, which will
eventually lead to the problem that is described in the following section.

5.2 Problem

To illustrate the problem, let us refer to the gas leak localization task de-
scribed in Chapter 2. The latter can be split into two sub-tasks: i) hover
and sense; and ii) localize the leak. A natural way to implement this kind
of functionality is to use flight modes that are encapsulated in a dedicated
software controller: a single controller for a single sub-task. The solutions
for these sub-tasks already exist [19, 23, 62], but combining them into a
single controller is a challenge.

Each controller operates in its own software environment – a set of vari-
ables and asynchronous operations – and they are not always compatible.
The problem arises when a programmer needs to switch between the con-
trollers: whenever a controller switching is required, the system has to re-
initialize the variables and periodic tasks within the time boundaries be-
tween two sequential calls of the step-function. Should it not be the case, a
robot could not adapt to the new situation.

For example, the drone hovers over some location, but should its neigh-
bor detect an area with a high gas concentration, the drone should move
towards this area and broadcast its readings. This requires an initializa-
tion of a periodic task that broadcasts the sensed values. Moreover, the
initialization has to be executed within the deadline and without a proper
adaptation technique, the implementation of this kind of software becomes
complicated.

Orthogonal to the main task, each drone should adapt to environmental
changes, such as: i) battery level – every time battery is low, the drone re-
turns to a charging site; and ii) the swarm may be partially within the range
of Base Station, thus each drone might need to switch between different
communication protocols depending on availability of the connection with
the Base Station. These adaptations should occur independently of each
other, which makes the controller even more complicated.

Current work towards adaptivity in resource-constrained and time-cri-
tical systems lacks the proper language support to implement this kind
of software. Even though, there are plenty of algorithms [61] and pat-
terns [47] for adaptive software under resource- and time-constraints, with-
out a proper language support the implementation of the adaptation mech-

77

i
i

“thesis” — 2015/12/22 — 17:59 — page 78 — #86 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

anism is totally on programmer’s shoulders. Thus, the adaptive software
may become entangled and hard to debug, to understand, and to maintain.

For example, our investigations of the real code-base of ArduPilot [4]
revealed that the adaptation mechanism is implemented by programmers
manually. Programmers had to manually deal with the adaptation under
time constraints, which makes the software hard to maintain and to under-
stand in general, and even more, when programmers tackle aspects that are
orthogonal to the main functionality. For example, in conditions of low bat-
tery drone has to suspend a task execution and return to the base to recharge.
Gas concentration impacts on the sampling mode: if the gas concentration
is high, drone tries to get closer to the location of the concentration peak,
instead of centrally-defined sampling position. Finally, Base station avail-
ability dictates a relay protocol. Without a proper adaption technique, these
aspects make the source code look like “spaghetti code”.

The step function displayed in Figure 5.1 is a simplified version of the
ArduPilot’s step function. The control functionality is implemented in
the function step(), which is called every 10ms, as shown on line 3 .
This function calls different controller-based step-functions depending on
the global variable current_controller: either hover_step() or
leak_loc_step(), as on lines 7 and 10 . The controller is changed by
the function set_controller(), which is defined on line 24 and called
with different parameters depending on the readings. This function initial-
izes a single controller, as on lines 29 and 32 , executes a cleanup routine of
the previous controller on line 41 , and on line 42 updates a global variable
that holds a current controller.

There are three major problems: i) the possible conflicts during the con-
troller switching are not handled; ii) the absence of the dedicated language
abstractions makes it impossible to guarantee that the step function exe-
cution will satisfy the time boundaries; and iii) the absence of activation
policy may freeze the whole system. We illustrate these problem below,
and address them in the following section.

To illustrate the problems, let us refer to our design concepts that are
that are introduced in Chapter 3. Figure 5.2 displays a context-oriented
model of the adaptive controller. According to the gas leak localization ap-
plication described above, a single drone is Hovering and sensing the gas
concentration. As soon as the gas concentration is higher then the prede-
fined threshold, the drone activates the Leak Loc. context, as displayed in
Figure 5.2. In this context, the drone broadcasts the sensed values, and,
hence, receives the values from the neighbors. To localize the leak, the
drone decreases the distance to the neighbor with the highest value of the

78

i
i

“thesis” — 2015/12/22 — 17:59 — page 79 — #87 i
i

i
i

i
i

5.2. Problem

1 // should be called at 100hz or more
2 // calls the appropriate controller
33 static void step() {
4 sense();
5 switch (current_controller) {
6 case HOVER:
77 hover_step();
8 break;
9 case LEAK_LOC:

1010 leak_loc_step();
11 break;
12 }
13 }
14 // reads data from sensors and updates global variables
1515 void sense() {
16 int16_t concentration = read_gas_concentration();
17 if (concentration > THRESHOLD) {
18 set_controller(LEAK_LOC);
19 } else {
20 set_controller(HOVER);
21 }
22 }
23 static int8_t current_controller = NONE;
2424 static bool set_controller(uint8_t controller) {
25 // boolean to record if controller could be set
26 bool success = false;
27 switch(controller) {
28 case HOVER:
2929 success = hover_init();
30 break;
31 case LEAK_LOC:
3232 success = leak_loc_init();
33 break;
34 default:
35 success = false;
36 break;
37 }
38 // update controller
39 if (success) {
40 // perform any cleanup required by previous controller
4141 exit_mode(current_controller, controller);
4242 current_controller = controller;
43 } else {
44 // Log error that we failed to enter desired controller
45 Log_Write_Error(controller);
46 }
47 return success;
48 }

Figure 5.1: Adaptive controller.

gas concentration. In case of emergency – e.g., unexpected obstacle – the
drone activates the Landing context. Using this model we illustrate the
major problems.

79

i
i

“thesis” — 2015/12/22 — 17:59 — page 80 — #88 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

Flight control group

on active:
sense
broadcast sensed data
reduce the distance to the neighbor with the highest sensed value

Leak Loc

on active:
sense

Hovering

gas concentration >= threshold

gas concentration < threshold

on active:
landing

Landingemergency emergency

Figure 5.2: A Flight Control context group model of the gas leak localization application.

Activation conflicts. In this model, after the initialization routine and be-
fore the cleanup routine, the two contexts may interfere with the work of
each other. Indeed, the Leak Loc. context contains a periodic task broad-
cast sensed data, as displayed in Figure 5.2. Since the cleanup routine of
the Leak Loc. context is executed only after the Hovering context is initial-
ized, as on lines 32 and 41 in Figure 5.1, this task is still active even after the
initialization is complete. The Hovering context, however, is not supposed
to broadcast the data.

Periodic tasks are not the only problem: any asynchronous operations
– e.g., interrupts, callbacks, or asynchronous tasks – will lead to the in-
terference between the contexts’ functionality. This interference should be
carried out by the programmer by providing a safety mechanism manually.

Undefined activation time. In ArduPilot it is required to call the step func-
tion every 10ms. Assume that the controller-based step function require
5ms to execute. It means that the activation time can not exceed 5ms. In
ArduPilot, however, a programmer can not guarantee that these time bound-
aries are met. Moreover, the programmer can not leave the drone without
any control for more than 10ms. Should the activation process not finish
within the 5 ms, the drone will be out of the control.

No activation policy. Assume the value of the gas concentration in our
example is close to the threshold. A stochastic nature of the sampling data
will lead to the rapidly growing number of sequential commands to acti-
vate the Leak Loc. and the Hovering contexts. Without a proper activation
policy, the system may stuck trying to execute all of them. The problem be-
comes even bigger without the proper deadline mechanism, as the control
over the drone will be lost while the system is stuck.

80

i
i

“thesis” — 2015/12/22 — 17:59 — page 81 — #89 i
i

i
i

i
i

5.3. Solution

:main :Flight Control group :Leak Loc. :Hovering:main :Flight Control group :Leak Loc. :Hovering

activate Hovering fast

initialize

notify initialized

Leak Loc.Leak Loc.

notify Hovering active

cleanup

do smth

HoveringHovering

Figure 5.3: A fast activation of the context Hovering.

5.3 Solution

In this section we address these problems by providing simple concepts.
We tackle the problem of conflicts by introducing activation types in Sec-
tion 5.3.1. To allow a programmer to specify activation time boundaries,
in Section 5.3.2, we introduce the notion of deadline. Should the deadline
be violated, the programmer will shortly be warned. Finally, our activation
queue described in Section 5.3.3 provides an activation policy for multiple
activation commands.

5.3.1 Activation Type

In order to provide a control over the activation time, we introduce two
types of the activation: i) lazy and ii) fast. The former allows a programmer
to activate a context and to avoid any conflicts without much efforts. The
latter type takes less time, but the programmer should take care of the pos-
sible conflicts during the activation. Below, we discuss the both types and
the conflicts that might occur during the activation.
Fast activation. This type of activation provides the fastest possible acti-
vation of the context. The sequence diagram of this activation type is dis-
played on Figure 5.3. Let us consider the drone is in the Leak Loc. context.
To activate Hovering as fast as possible, a programmer uses the command
activate Hovering fast. In this case, the context Hovering is ini-
tialized, while the context Leak Loc. is still active. As soon as the context
Hovering is initialized, the main process receives the notification, and only
after that the context Leak Loc. is cleaned up.

81

i
i

“thesis” — 2015/12/22 — 17:59 — page 82 — #90 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

:main :Flight Control group :Leak Loc. :Hovering:main :Flight Control group :Leak Loc. :Hovering

activate Hovering lazy

Leak Loc.Leak Loc.

deactivate

activate

notify initialized

UncertaintyUncertainty

notify Hovering active

do smth

HoveringHovering

Figure 5.4: A lazy activation of the context Hovering.

In this activation scenario, the context Leack Loc. is active during the
initialization of the Hovering context. Then, the latter is active during the
Leack Loc. cleanup routine. It leads to the possible interference during the
activation procedure, as we discussed previously. This interference should
be carried out by the programmer either by providing the safety mechanism
manually, or by using our notion of Wrappers. The latter are the software
components that encapsulate any asynchronous operations. Any wrapper
instance is dedicated to a single context, and whenever the asynchronous
task of the context is about to be executed, the wrapper intercepts the com-
mand and executes it only if the context is active. These additional efforts
are required form the programmer as a price for the fast context activation.

Lazy activation. Another type of the context activation does not require
any additional efforts from the programmer, since it is intended to perform
a safe activation. The diagram 5.4 depicts the process of a lazy activation of
the context Hovering. To avoid the interference between two contexts, sys-
tem deactivates the context Leak Loc., and then activates the context Hov-
ering. During this procedure, the system is in Uncertainty state, because
neither of contexts is active. This activation type avoids the interference
between the contexts by default and the programmer may not care about
them. These benefits come with a price of the activation time: it is a sum
of the time needed for the clean up of the previous context and the time
needed for the initialization of the next context.

82

i
i

“thesis” — 2015/12/22 — 17:59 — page 83 — #91 i
i

i
i

i
i

5.3. Solution

:main :Flight Control group :Leak Loc. :Hovering :Timer:main :Flight Control group :Leak Loc. :Hovering :Timer

activate Leack Loc fast within 5ms

start alarm for 5ms

initialize

alarm fired

notify error

notify initialized

cleanup

HoveringHovering

Figure 5.5: A fast activation with the deadline.

5.3.2 Deadline

To allow a programmer to strictly control the activation time, we introduce a
modifier within. Being used after the activation command, this modifier
determines the time boundaries for the activation that has no deadlines oth-
erwise. For example, in our scenario, the drone can not be out of the control
for more that 10ms, and the activation routine should finish within 5ms, as
we discussed before. To this end, the programmer can use the command
activate Leak Loc within 5ms. Should the activation process
not finish within the 5 ms, the activation will stop, and the previous context
will be activated again.

The diagram in Figure 5.5 illustrates the execution flow of the command
activate Leak Loc fast within 5ms. The dedicated Timer is
started by the Flight Control group. If the initialization of the context Leak
Loc. takes more than 5ms, the alarm is fired, the activation is canceled, and
the context is cleaned up.

The similar procedure also applied to a deadline violation in the lazy
activation. The diagram in Figure 5.6 illustrates the deadline violation at
the clean-up of the context Leak Loc. In this case, the context Hovering
is reinitialized. If the alarm is fired during the initialization of the context
Leak Loc., system has to cleanup the context, and to re-initialize the context
Hovering, as displayed in diagram 5.7.

5.3.3 Activation Queue

In order to handle multiple activation commands, we introduce a notion
of activation queue. Whenever several activation commands appear in the

83

i
i

“thesis” — 2015/12/22 — 17:59 — page 84 — #92 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

:main :Flight Control group :Leak Loc. :Hovering :Timer:main :Flight Control group :Leak Loc. :Hovering :Timer

activate Leack Loc lazy within 5 ms

start alarm for 5ms

HoveringHovering

cleanup

alarm fired

notify error

initialize

notify initialized

UncertaintyUncertainty

notify Hovering active

do smth

HoveringHovering

Figure 5.6: A lazy activation with the violated deadline during a cleanup.

:main :Flight Control group :Leak Loc. :Hovering :Timer:main :Flight Control group :Leak Loc. :Hovering :Timer

activate Leack Loc safe within 5 ms

start alarm for 5ms

HoveringHovering

cleanup

initialize

alarm fired

notify error

notify initialized

cleanup

initialize

notify initialized

UncertaintyUncertainty

notify Hovering active

do smth

HoveringHovering

Figure 5.7: A lazy activation with the violated deadline during an initialization.

84

i
i

“thesis” — 2015/12/22 — 17:59 — page 85 — #93 i
i

i
i

i
i

5.3. Solution

:main :Context Manager :Leak Loc. :Hovering :Landing :Queue:main :Context Manager :Leak Loc. :Hovering :Landing :Queue

activate Hovering fast

initialize

activate Landing lazy

notify warning

push activate Landing lazy

notify initialized

Leack Loc.Leack Loc.

notify Hovering active

cleanup

pop next

activate Landing lazy

HoveringHovering

cleanup

initialize

notify initialized

UncertaintyUncertainty

notify Landing active

do smth

LandingLanding

Figure 5.8: A multiple context activation.

execution flow, they are stored in the Queue, as displayed in diagram in
Figure 5.8. In the latter, the activation of the context Landing is following
just after the activation of the context Hovering. Since the activation of
the latter is not complete, the activation command of the context Landing
is moved to the Queue, and the warning notification is fired, indicating
that the activation is suspended. As soon as the activation of the context
Hovering is complete, the next command – activate Landing lazy
– is popped and executed.

The appearance of the same activation command more then once in the
queue will lead to the repeatable activation. For example, if the activa-
tion sequence Hovering → LeakLocalization → Hovering will be ex-
ecuted, it will not change the active context, but will consume the precious
time. That is why, being stored in the queue, the whole sequence will be

85

i
i

“thesis” — 2015/12/22 — 17:59 — page 86 — #94 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

1 template<typename FunctionalityClass>
2 class Context : public FunctionalityClass{
3 public:
4 virtual void initialize() = 0;
5 virtual void cleanup() = 0;
6 //...
7 };

Figure 5.9: Context template.

ignored except the last command.
The additional modifier immediately allows a programmer to start

the activation procedure immediately and to clear the queue. For example,
in case of the emergency – e.g., an unexpected obstacle – the drone must
land no matter what, and all the queued activation commands are not rele-
vant anymore. As a result of the command activate Landing fast
immediately the system activates the context Landing immediately.

5.4 Prototype

To show our concepts in action, we implemented a prototype. Since the ma-
jority of the aerial drones – our target platforms – are based on the Cortex-
M3 micro-controller, we used a Nucleo STM32L152 prototyping board.
The latter provides all the features of the Cortex-M3 micro-controller via
the dedicated C++ libraries. This platform is not yet supported by our
Translator, and there is no integration with GREVECOM, hence, for this
board we manually implemented our design concepts described in Chap-
ter 3.

In our prototype, every user-defined context inherits the Context class,
that is is depicted in figure 5.9. This class is a template, an argument of
which is an abstract class with the layered functions. Every user-defined
context provides its own implementation of the layered functions.

Similarly, every user-defined context group inherits the Context Group
template shown in Figure 5.10, and provides a layered function, variations
of which are implemented in the contexts. The Context Group template
provides different activation policies, as we discussed previously: FAST
and LAZY, as on line 1 . The activate() function provided by the
template accepts two arguments: a context and a type of the activation,
as it is shown on line 5 . An overloaded function on line 6 accepts an
additional deadline parameter. If the activation is successful, the template
calls a callback that can be set on line 9 . Otherwise, the template calls the

86

i
i

“thesis” — 2015/12/22 — 17:59 — page 87 — #95 i
i

i
i

i
i

5.4. Prototype

11 enum activation_t {NONE, SAFE, LAZY};
2 template<typename FunctionalityClass>
3 class ContextGroup : public FunctionalityClass {
4 public:
55 void activate(Context<FunctionalityClass>* ctx, activation_t type);
66 void activate(Context<FunctionalityClass>* ctx, activation_t type,

float deadline);
7 void activate_immediately(Context<FunctionalityClass>* ctx,

activation_t type);
8 void activate_immediately(Context<FunctionalityClass>* ctx,

activation_t type, float deadline);
99 void set_callback(void (*callback)(Context<FunctionalityClass>*));

1010 void set_errback(void (*errback)(Context<FunctionalityClass>*));
11 //...
12 };

Figure 5.10: Context group template.

1 class FooGroupFunctionality {
2 public:
3 virtual void layeredFunction() = 0;
4 //...
5 };

Figure 5.11: Layered function declaration.

1 class FooContextA : public Context<FooGroupFunctionality> {
2 public:
3 void layeredFunction(){//...}
4 void initialize(){//...}
5 void cleanup(){//...}
6 //...
7 };

Figure 5.12: Context component.

1 class FooGroup : public ContextGroup<FooGroupFunctionality> {
2 public:
3 void layeredFunction(){//...}
4 //...
5 };

Figure 5.13: Context group component.

errback that is set on line 10 .
The usage of these templates is very easy. Firstly, a programmer has to

define the layered functions as an abstract class, as shown in Figure 5.11.
This class serves as a base for both a context and a context group compo-

87

i
i

“thesis” — 2015/12/22 — 17:59 — page 88 — #96 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

11 void contextChanged(Context<FooGroupFunctionality>* ctx) {//...}
22 void deadlineError(Context<FooGroupFunctionality>* ctx) {//...}
3 int main() {
4 FooGroup group;
55 group.set_callback(&contextChanged);
66 group.set_errback(&deadlineError);
7 FooContextA ctxA;
8 FooContextB ctxB;
9 while(1){

1010 group.activate(&ctxA, SAFE);
1111 group.layeredFunction();
1212 group.activate_immideately(&ctxB, FAST, 0.5);
13 }
14 }

Figure 5.14: Usage.

1 void FooContextA::initialize(){
22 _ticker = new Ticker();
33 _ticker->attach(&task, 0.2);
4 //...
5 }

Figure 5.15: Context FooContextA initialization.

nents. For example, Figure 5.12 depicts a context component, which im-
plements its own initialize(), cleanup(), and layeredFunc-
tion(). The context group component should inherit the context group
template, as in Figure 5.13.

The example usage of this implementation of our concepts is shown in
Figure 5.14. To call the layered function, a programmer uses the context
group component, as it is shown on line 11 . Whenever the programmer
wants to activate the context, he or she uses a function activate() as
on line 10 . If the activation was successful, a programmer-defined callback
is called. The latter is defined on line 1 and set on line 5 . Similarly, the
deadlineError(), which is defined on line 2 and set on line 6 , will
be called if the activation is failed.

The context group component also handles the activation queue. As
we previously described, the queue activates the context in FIFO order.
The queue is hidden form the programmer, however, in order to activate
an emergency context, a programmer can use the function activate_-
immediately(), as on line 12 . The latter cleans the queue and activates
the defined context as soon as possible.

During the fast context activation, the functionality of two context can
interfere with each other. To help a developer to take care of this, we also

88

i
i

“thesis” — 2015/12/22 — 17:59 — page 89 — #97 i
i

i
i

i
i

5.5. Preliminary Evaluation

1 _ticker = new SafeTicker(this);

Figure 5.16: SafeTicker example.

implemented a set of wrappers. Consider the context FooContextA has
a periodic task that is launched during the initialization, as on line 3 in
Figure 5.15. However, as we argued in the previous section, if the context
FooContextB is activated fast, the periodic task will be executed even
when this context is already active. A programmer can use our wrappers by
simply replacing the line 2 with the line that is displayed in Figure 5.16,
no further refactoring is needed. Similarly, the programmer can use the
SafeInterruptIn and SafeTimeout classes that wrap the standard
InterruptIn and Timeout classes provided by the board manufac-
turer. Our Safe classes have to be instantiated with the pointer to the context
object in order to track the active context and to prevent any asynchronous
operations – e.g., tasks, interrupts, timers – when the context is not active.
In the following section we use this prototype to perform a set of experi-
ments.

5.5 Preliminary Evaluation

Based on our prototype described in previous section, we measure the per-
formance and memory overhead that comes with the benefits of our solu-
tion. In our experiments we use the on-line IDE [50] that is provided by
the manufacturer of our prototyping board. All the experiments were de-
veloped under the on-line IDE and then run on the Nucleo board described
in the previous section.

Firstly, in Section 5.5.1 we measure Flash memory and RAM overhead
that come with our approach. Then, we measure the MCU time required by
the additional processing within our wrappers in Section 5.5.2. Finally, in
Section 5.5.3 we analyze the trade-offs developers might expect from our
concepts.

5.5.1 Activation Time and Memory Overhead

Our concepts take care of a significant part of processing in the time-critical
context-oriented software. These advantages come with the cost of memory
and MCU performance overhead, which we asses in this section. In doing
so, we implemented two functionally equivalent adaptive controllers for the
Nucleo board: i) the original controller that is described in Section 5.2, and

89

i
i

“thesis” — 2015/12/22 — 17:59 — page 90 — #98 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

 0
 5

 10
 15
 20
 25
 30
 35

Context-Oriented Original

kB

Implementations

Flash memory
RAM

(a) Memory overhead.

 0
 10
 20
 30
 40
 50
 60

Context-Oriented Original

µS
ec

Implementations

Activation routine
Function call

(b) MCU usage.

Figure 5.17: Memory overhead and MCU usage.

ii) a controller that uses our concepts.
We estimate the memory overhead by using the compilation information

exposed by the on-line IDE. To measure the MCU time overhead we launch
the context activation routine of the context-oriented controller for 1000
times and measure the routine execution time with the standard Timer
component. For the original controller, we measured the time required for
the execution of the switch statement. Similarly, we assess the time required
for the controller-specific step-function.
Results. Figure 5.17a depicts the comparison of the flash memory and
RAM usage between the different approaches. The RAM usage in both
controllers is fairly negligible and the overhead is only 13%. The flash
memory usage of the Context-Oriented controller is up to 87% higher.
This is due to the fairly simple implementation prototype. Indeed, in our
prototype there is only one context group with two contexts, which make
the size of the application logic very small: only 15kB. More realistic ap-
plications, however, are much bigger – e. g. ArduPilot [4] requires more
than 262kB of the flash memory – and the relative size of the adaptation
mechanism is much smaller in these cases.

The MCU overhead is displayed in Figure 5.17b. The controller-based

90

i
i

“thesis” — 2015/12/22 — 17:59 — page 91 — #99 i
i

i
i

i
i

5.5. Preliminary Evaluation

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Ticker Timeout InterruptIn

µS
ec

standard
wrapper

Figure 5.18: The overhead of the wrappers.

step-function call overhead is negligible: only 7%. The significant value of
the activation routine in Context-Oriented controller is due to the additional
processing that is covered by our concepts. This processing adds a func-
tionality and guarantees that do not exist in the original implementation.
For example, unlike the original implementation, in our prototype devel-
opers can choose between different activation types. The activation queue
handles the multiple activation commands transparently to the developers.
Moreover, through the deadline handling we guarantee that the activation
will be finished or interrupted within the specific amount of time.

5.5.2 Wrapper Classes Overhead

The wrappers are designed to avoid the interference between the contexts
transparently to the developer. For example, when using the fast activation
type, the developer should either manually avoid possible conflicts during
the activation, or use our wrappers. The latter encapsulate the classes that
include any asynchronous operations. In this section we measure the ad-
ditional MCU time that is required to invoke the asynchronous operation
by using our wrappers – such as SafeTicker, SafeInterruptIn,
and SafeTimeout – as compared to their counterparts, such as Ticker,
InterruptIn, and Timeout that are provided by the board manufac-
turer. In doing so, for the Ticker and Timeout classes and their wrap-
pers we launch the asynchronous task so that it is executed immediately,
then we measure the time between the launch and the actual task execution.
For the InterruptIn and its Safe-implementation, we programmati-
cally invoke the interrupt and measure the time between the interrupt and
the task execution.
Results. Our measurements are displayed in Figure 5.18. The overhead
is due to the additional processing that is performed by the wrapper. In

91

i
i

“thesis” — 2015/12/22 — 17:59 — page 92 — #100 i
i

i
i

i
i

Chapter 5. Concepts and Early Prototype

 5.5

 6

 6.5

 7

 7.5

 8

lazy fast

µS
ec

Activation types

w/o deadline
with deadline

Figure 5.19: Activation types and options overhead.

this processing the software checks if the context associated with the asyn-
chronous task is active and decides whether to execute the task or not. As
expected, the additional processing require more MCU time. Our exam-
ple, however, is artificial and greatly simplified, but it shows that with a
cost of a small performance overhead our wrappers allow the developers to
transparently avoid the conflicts during the context activation.

5.5.3 Activation Types and Options

As we have shown above, our concepts bring a performance overhead. In
this section, we show the trade-offs a developer might expect when using
our concepts with different options. The developer can choose between
two orthogonal activation parameters: the activation type, and the optional
deadline. The activation type is a mandatory parameter and can be either
fast or lazy. The deadline, however, is optional. The processing of the
deadline parameter is designed so that the value of the deadline does not
affect the performance overhead, and we measure only two cases: i) acti-
vation with a deadline, and ii) activation without a deadline. Hence, there
are four combinations of options: fast with deadline, fast without deadline,
lazy with deadline, and lazy without deadline. A single combination of the
parameters delivers specific trade-offs the developer would expect from the
design of the different activation types. For each combination we asses the
time required for the activation as described above in Section 5.5.1.
Result. As shown in Figure 5.19, the lazy activation type requires more
MCU time to activate a context, as expected. This is due to the addi-
tional processing that prevents the possible conflicts during the activation.
It is justified in the applications where developers heavily rely on the asyn-
chronous operations and do not want to trade the performance of the stan-
dard classes with the safety delivered by our wrappers. On the other hand,

92

i
i

“thesis” — 2015/12/22 — 17:59 — page 93 — #101 i
i

i
i

i
i

5.6. Summary

one can get the faster activation by using the fast activation type, which
is suitable for the applications where developers need the faster adaptivity.
However, as the cost of the latter the developers must use our wrappers
whenever any asynchronous operations are needed. In any case, the dead-
line option leads to the additional MCU performance overhead.

5.6 Summary

In this section we focused on the timing aspect of the adaptation decisions
in time-sensitive CPSs. In Section 5.1, we aimed at understanding how
the typical time-sensitive CPSs are programmed. This served to outline the
problem and to describe it in Section 5.2. We addressed this problem in the
Section 5.3 by providing our language independent design concepts. Then,
in Section 5.4 we have shown how the developers can use our concepts in
a real language, and what benefits they might expect using this concepts.
Finally, Section 5.5 contains the performance evaluation of our concepts.

93

i
i

“thesis” — 2015/12/22 — 17:59 — page 94 — #102 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 95 — #103 i
i

i
i

i
i

CHAPTER6
Conclusion and Future Work

Cyberphysical systems play a great role in the interactions between the
physical world and its virtual representation. They do not only gather data
from the environment, but also take actions on the physical world. This
way, CPSs provide the functionality that bridges the physical and virtual
worlds. The key property of such functionality is that it is emerging from
the tight interaction between the CPS device and the real world. The latter,
however, exhibits multiple dimensions that are changing continuously and
independently, but affect the functionality simultaneously. This requires the
CPSs software to be adaptive.

A large part of CPSs is also time-sensitive. In such systems, the control
logic is often encapsulated in a dedicated control-loop that is run at a certain
frequency. Crucially, the control logic must examine the sensors input and
generate the control decisions in real-time. Should any adaptation process
be needed, the execution of the adaptation must be finished within certain
time bounds.

Nonetheless, the above aspects pose difficult challenges to developers,
as they are still left without a dedicated programming support to define the
adaptive functionality with respect to the complected environmental dy-
namics. The solutions presented in this work aimed at simplifying the pro-

95

i
i

“thesis” — 2015/12/22 — 17:59 — page 96 — #104 i
i

i
i

i
i

Chapter 6. Conclusion and Future Work

grammer’s life in developing adaptive time-sensitive CPSs software, while
also improving the system’s dependability. Unlike the previous work, we
focused on resource constrained systems, and delivered programming ab-
stractions that allow the developers to design, to implement, and to verify
the adaptive CPSs software against environmental evolutions.

To reach our ultimate goal, we firstly identified the challenges that de-
velopers must address while developing adaptive time-sensitive CPSs soft-
ware for resource-constrained systems. Then, we examined the state of the
art in the areas of adaptive and time-critical software for both resource-
constrained and mainstream systems. We compared different approaches
and identified the missing programming support, which is often resulted
in a “spaghetti code”. This served to establish the conceptual framework,
which is then implemented in our contribution.

In the first part of the thesis, we solely addressed the adaptivity problem
in resource-constrained CPSs software. In doing so, we adapted Context-
Oriented Programming paradigm to Wireless Sensor Networks—a paradig-
matic example of the resource-constrained CPSs—by providing a handful
of design concepts. The latter were implemented in CONESC—our own ex-
tension to the real language for WSN called nesC. Moreover, we provided a
modeling semantics built on top of our concepts, which allow to model the
adaptive software even before the actual deployment. Our own tool called
GREVECOM supports this semantics and allow to verify the model against
the environmental dynamics, and to generate CONESC templates based on
the model. Thus, we covered a significant part of the developing of the
adaptive WSN software.

Our early experience in using our concepts revealed certain patterns that
naturally exhibited whenever these concepts are applied. These pattern may
significantly improve the developing process, as they already implement a
certain interaction between the software components. The latter are also
less coupled, which makes them less dependent on each other, and the soft-
ware may be modified more easily. The complexity of the components also
becomes lesser when our concepts are used making the software easier to
debug. These also simplify the software evolutions as it requires the soft-
ware to be more understandable and less complicated. All these benefits
come with a little performance overhead. Thus, the off-line verification re-
quires less then one minute and the system requires up to 3% of additional
memory and up to 30 MCU cycles whenever our programming abstractions
are involved into the execution. The MCU overhead is negligible, though,
as even the simplest operation—turning LED on/off—requires 8 MCU cy-
cles.

96

i
i

“thesis” — 2015/12/22 — 17:59 — page 97 — #105 i
i

i
i

i
i

In the second part, we focused on the timing aspect in enforced adapta-
tion decisions in CPSs. In doing so we provide language independent de-
sign concepts, that rely on well-specified semantics when triggering adap-
tations. Our deadline concept aims at defining the time boundaries in adap-
tation decisions. Thus, whenever the deadline is violated, the error event
is fired up allowing the developer to apply proper countermeasures. We
also introduced two different adaptation mechanisms that deliver adapta-
tion latency vs. programming efforts trade-offs, and allow the developers
to choose the most appropriate adaptation type. The benefits of our ap-
proach is shown in a simple prototype built for Cortex-M3 platforms. Our
evaluation has revealed that the benefits came with a modest performance
overhead.

As a logical continuation of our work we work on the real-world appli-
cations of our concepts. In doing so, we aim at providing a tool-chain built
atop of these concepts for the developers of the sensing vehicles software.
The latter represent typical time-sensitive CPSs, as on these platforms the
control logic is often changed at run-time due to the environmental dynam-
ics. We are also intended to extend our formalization semantics to allow
the developers to model the timing aspect of the adaptation. With this se-
mantics we upgrade the verification algorithm to be able verify the model
against the timing limitations. With this regard, there are several open chal-
lenges. How to formalize the adaptation process under time limitations?
How a designer is supposed to specify the fact that the adaptation is exe-
cuted is within the time boundaries? These questions are currently awaiting
an answer we aimed to provide.

97

i
i

“thesis” — 2015/12/22 — 17:59 — page 98 — #106 i
i

i
i

i
i

i
i

“thesis” — 2015/12/22 — 17:59 — page 99 — #107 i
i

i
i

i
i

Bibliography

[1] L. Abeni and L. Palopoli. Adaptive real-time scheduling for legacy applications. In Emerging
Technologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference on,
pages 583–590, Sept 2008.

[2] P. Alfke and R. Padovani. Radiation tolerance of high-density fpgas, 1998.

[3] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Perscheid.
A comparison of context-oriented programming languages. In International Workshop on
Context-Oriented Programming, COP ’09, pages 6:1–6:6, New York, NY, USA, 2009. ACM.

[4] ArduPilot. www.ardupilot.com.

[5] Neil C Audsley. Deadline monotonic scheduling. Citeseer, 1990.

[6] Pawel Bachara, Konrad Blachnicki, and Krzysztof Zielinski. Framework for application man-
agement with dynamic aspects J-EARS case study. Information & Software Technology,
52(1):67–78, 2010.

[7] Gordon S. Blair, Geoff Coulson, Michael Clarke, and Nikos Parlavantzas. Performance and
integrity in the openorb reflective middleware. In Proceedings of the Third International Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns, REFLECTION
’01, pages 268–269, London, UK, UK, 2001. Springer-Verlag.

[8] J. Boner. Aspectwerkz - dynamic aop for java, 2004.

[9] Themistoklis Bourdenas and Morris Sloman. Starfish: Policy driven self-management in wire-
less sensor networks. In Proceedings of the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’10, pages 75–83, New York, NY, USA, 2010.
ACM.

[10] Timo Rolf Bretschneider and Karan Shetti. Uav-based gas pipeline leak detection. In Proceed-
ings of the Asian Conference on Remote Sensing, 2015.

[11] Michael Breza, Richard Anthony, and Julie A. McCann. Scalable and efficient sensor network
self-configuration in bioans. In Proceedings of the First International Conference on Self-
Adaptive and Self-Organizing Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007, pages
351–354, 2007.

99

www.ardupilot.com

i
i

“thesis” — 2015/12/22 — 17:59 — page 100 — #108 i
i

i
i

i
i

Bibliography

[12] L. Capra, W. Emmerich, and C. Mascolo. Carisma: context-aware reflective middleware sys-
tem for mobile applications. Software Engineering, IEEE Transactions on, 29(10):929–945,
Oct 2003.

[13] Alberto Cerpa and Deborah Estrin. Ascent: Adaptive self-configuring sensor networks topolo-
gies. IEEE Transactions on Mobile Computing, 3(3):272–285, July 2004.

[14] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Satabs: Sat-based
predicate abstraction for ansi-c. In Nicolas Halbwachs and LenoreD. Zuck, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 3440 of Lecture Notes in
Computer Science, pages 570–574. Springer Berlin Heidelberg, 2005.

[15] R. F. Conde, A. G. Darrin, F. C. Dumont, P. Luers, S. Jurczy, N. Bergmann, and A. Dawood.
Adaptive instrument module - a reconfigurable processor for spacecraft applications, 1999.

[16] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G.P. Picco, T. Sivaharan,
N. Weerasinghe, and S. Zachariadis. The runes middleware for networked embedded systems
and its application in a disaster management scenario. In Pervasive Computing and Commu-
nications, 2007. PerCom ’07. Fifth Annual IEEE International Conference on, pages 69–78,
March 2007.

[17] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin Lee,
Jo Ueyama, and Thirunavukkarasu Sivaharan. A generic component model for building sys-
tems software. ACM Trans. Comput. Syst., 26(1):1:1–1:42, March 2008.

[18] Jim Dowling, Tilman Schafer, Vinny Cahill, Peter Haraszti, and Barry Redmond. Using re-
flection to support dynamic adaptation of system software: A case study driven evaluation. In
Walter Cazzola, RobertJ. Stroud, and Francesco Tisato, editors, Reflection and Software Engi-
neering, volume 1826 of Lecture Notes in Computer Science, pages 169–188. Springer Berlin
Heidelberg, 2000.

[19] Frederick Ducatelle, GianniA. Di Caro, Alexander FÃ¶rster, Michael Bonani, Marco Dorigo,
StÃ c©phane Magnenat, Francesco Mondada, Rehan O’Grady, Carlo Pinciroli, Philippe
RÃ c©tornaz, Vito Trianni, and LucaM. Gambardella. Cooperative navigation in robotic
swarms. Swarm Intelligence, 8(1):1–33, 2014.

[20] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating system for
tiny networked sensors. In Local Computer Networks, 2004. 29th Annual IEEE International
Conference on, pages 455–462, Nov 2004.

[21] Michael Engel and Bernd Freisleben. Toskana: A toolkit for operating system kernel aspects.
In Awais Rashid and Mehmet Aksit, editors, Transactions on Aspect-Oriented Software De-
velopment II, volume 4242 of Lecture Notes in Computer Science, pages 182–226. Springer
Berlin Heidelberg, 2006.

[22] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels, Thiemo
Voigt, Robert Sauter, and Pedro José Marrón. Cooja/mspsim: Interoperability testing for wire-
less sensor networks. In Proceedings of the 2Nd International Conference on Simulation Tools
and Techniques, Simutools ’09, pages 27:1–27:7, ICST, Brussels, Belgium, Belgium, 2009.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing).

[23] Eliseo Ferrante, AliEmre Turgut, Alessandro Stranieri, Carlo Pinciroli, Mauro Birattari, and
Marco Dorigo. A self-adaptive communication strategy for flocking in stationary and non-
stationary environments. Natural Computing, 13(2):225–245, 2014.

[24] Niclas Finne, Joakim Eriksson, Nicolas Tsiftes, Adam Dunkels, and Thiemo Voigt. Improv-
ing sensornet performance by separating system configuration from system logic. In JorgeSÃ¡
Silva, Bhaskar Krishnamachari, and Fernando Boavida, editors, Wireless Sensor Networks,

100

i
i

“thesis” — 2015/12/22 — 17:59 — page 101 — #109 i
i

i
i

i
i

Bibliography

volume 5970 of Lecture Notes in Computer Science, pages 194–209. Springer Berlin Heidel-
berg, 2010.

[25] Scott D. Fleming, Betty H. C. Cheng, R. E. Kurt Stirewalt, and Philip K. McKinley. An
approach to implementing dynamic adaptation in c++. SIGSOFT Softw. Eng. Notes, 30(4):1–
7, May 2005.

[26] Franck Fleurey, Brice Morin, and Arnor Solberg. A model-driven approach to develop adaptive
firmwares. In Proceedings of the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’11, pages 168–177, New York, NY, USA,
2011. ACM.

[27] Hossein Fotouhi, Marco Zuniga, M$#225;rio Alves, Anis Koubaa, and Pedro Marrón. Smart-
hop: A reliable handoff mechanism for mobile wireless sensor networks. In Proceedings of
the 9th European Conference on Wireless Sensor Networks, EWSN’12, pages 131–146, Berlin,
Heidelberg, 2012. Springer-Verlag.

[28] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

[29] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The
nesc language: A holistic approach to networked embedded systems. SIGPLAN Not., 38(5):1–
11, May 2003.

[30] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. Collec-
tion tree protocol. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’09, pages 1–14, New York, NY, USA, 2009. ACM.

[31] Sebastián González, Kim Mens, and Patrick Heymans. Highly dynamic behaviour adaptability
through prototypes with subjective multimethods. In Proceedings of the 2007 Symposium on
Dynamic Languages, DLS ’07, pages 77–88, New York, NY, USA, 2007. ACM.

[32] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. Value-based scheduling in real-time
database systems. The VLDB Journal, 2(2):117–152, apr 1993.

[33] S. Hauck. The roles of fpgas in reprogrammable systems. Proceedings of the IEEE, 86(4):615–
638, Apr 1998.

[34] Wei-Je Huang and E.J. McCluskey. Column-based precompiled configuration techniques for
fpga. In Field-Programmable Custom Computing Machines, 2001. FCCM ’01. The 9th Annual
IEEE Symposium on, pages 137–146, March 2001.

[35] C. Huebscher and A. McCann. An adaptive middleware framework for context-aware applica-
tions. Personal Ubiquitous Comput., 10(1):12–20, December 2005.

[36] M. Mezini I. Aracic, V. Gasiunas and K.Ostermann. Overview of caesarj. 3880:135 – 173, Feb
2006.

[37] Michael Jackson. The world and the machine. In Proceedings of the 17th International Confer-
ence on Software Engineering, ICSE ’95, pages 283–292, New York, NY, USA, 1995. ACM.

[38] JavaCC - The Java Compiler Compiler. javacc.java.net.

[39] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Eventcj: A context-oriented pro-
gramming language with declarative event-based context transition. In Proceedings of the
Tenth International Conference on Aspect-oriented Software Development, AOSD ’11, pages
253–264, New York, NY, USA, 2011. ACM.

[40] Roger Keays and Andry Rakotonirainy. Context-oriented programming. In Proceedings of
the 3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access,
MobiDe ’03, pages 9–16, New York, NY, USA, 2003. ACM.

101

javacc.java.net

i
i

“thesis” — 2015/12/22 — 17:59 — page 102 — #110 i
i

i
i

i
i

Bibliography

[41] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP, pages 220–
242, 1997.

[42] JeongGil Ko, Chenyang Lu, M.B. Srivastava, J.A. Stankovic, A. Terzis, and M. Welsh. Wire-
less sensor networks for healthcare. Proceedings of the IEEE, 98(11):1947–1960, Nov 2010.

[43] P. Koopman. Better Embedded System Software. Carnagie Mellon Press, 2010.

[44] Tei-Wei Kuo and A.K. Mok. Load adjustment in adaptive real-time systems. In Real-Time
Systems Symposium, 1991. Proceedings., Twelfth, pages 160–170, Dec 1991.

[45] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Algorithms for efficient runtime fault
recovery on diverse fpga architectures. In Defect and Fault Tolerance in VLSI Systems, 1999.
DFT ’99. International Symposium on, pages 386–394, Nov 1999.

[46] Philip Levis and David Culler. Mate: A Tiny Virtual Machine for Sensor Networks. In Pro-
ceedings of the 10th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS X), October 2002.

[47] Joseph P. Loyall, Paul Rubel, Richard Schantz, Michael Atighetchi, and John Zinky. Emerging
patterns in adaptive, distributed real-time, embedded middleware, 2002.

[48] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged functional programming
for sensor networks. SIGPLAN Not., 43(9):335–346, September 2008.

[49] PedroM. Martins, JulieA. McCann, and Susan Eisenbach. The environment as an argument.
In Claudio Russo and Neng-Fa Zhou, editors, Practical Aspects of Declarative Languages,
volume 7149 of Lecture Notes in Computer Science, pages 48–62. Springer Berlin Heidelberg,
2012.

[50] mBed. www.mbed.org.

[51] Marius Mikalsen, Nearchos Paspallis, Jacqueline Floch, Erlend Stav, George A. Papadopoulos,
and Akis Chimaris. Distributed context management in a mobility and adaptation enabling
middleware (madam). In Proceedings of the 2006 ACM Symposium on Applied Computing,
SAC ’06, pages 733–734, New York, NY, USA, 2006. ACM.

[52] Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks: Fundamental
concepts and state of the art. ACM Comput. Surv., 43(3):19:1–19:51, April 2011.

[53] Luca Mottola, Gian Pietro Picco, and Adil Amjad Sheikh. Figaro: Fine-grained software
reconfiguration for wireless sensor networks. In Proceedings of the 5th European Conference
on Wireless Sensor Networks, EWSN’08, pages 286–304, Berlin, Heidelberg, 2008. Springer-
Verlag.

[54] René Müller, Gustavo Alonso, and Donald Kossmann. A virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev., 41(3):145–158, March 2007.

[55] W. Munawar, Muhammad Hamad Alizai, Olaf Landsiedel, and Klaus Wehrle. Dynamic tinyos:
Modular and transparent incremental code-updates for sensor networks. In Proceedings of
IEEE International Conference on Communications, ICC 2010, Cape Town, South Africa, 23-
27 May 2010, pages 1–6, 2010.

[56] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogramming system.
In Proceedings of the 6th International Conference on Information Processing in Sensor Net-
works, IPSN ’07, pages 489–498, New York, NY, USA, 2007. ACM.

[57] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime soft-
ware evolution. In Proceedings of the 20th International Conference on Software Engineering,
ICSE ’98, pages 177–186, Washington, DC, USA, 1998. IEEE Computer Society.

102

www.mbed.org

i
i

“thesis” — 2015/12/22 — 17:59 — page 103 — #111 i
i

i
i

i
i

Bibliography

[58] Bence Pásztor, Luca Mottola, Cecilia Mascolo, Gian Pietro Picco, Stephen Ellwood, and David
Macdonald. Selective reprogramming of mobile sensor networks through social community
detection. In Proceedings of the 7th European Conference on Wireless Sensor Networks,
EWSN’10, pages 178–193, Berlin, Heidelberg, 2010. Springer-Verlag.

[59] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard Florin. Jac: A flexible solu-
tion for aspect-oriented programming in java. In Proceedings of the Third International Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns, REFLECTION
’01, pages 1–24, London, UK, UK, 2001. Springer-Verlag.

[60] Andrei Popovici. PROSE: a study on dynamic AOP. PhD thesis, ETH Zurich, 2003.

[61] C. Prehofer and M. Zeller. A hierarchical transaction concept for runtime adaptation in real-
time, networked embedded systems. In Emerging Technologies Factory Automation (ETFA),
2012 IEEE 17th Conference on, pages 1–8, Sept 2012.

[62] Andreagiovanni Reina, Marco Dorigo, and Vito Trianni. Collective decision making in dis-
tributed systems inspired by honeybees behaviour. In Proceedings of the 2014 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’14, pages 1421–1422,
Richland, SC, 2014. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

[63] P. Richardson, L. Sieh, and A.M. Elkateeb. Fault-tolerant adaptive scheduling for embedded
real-time systems. Micro, IEEE, 21(5):41–51, Sep 2001.

[64] Oscar Nierstrasz Robert Hirschfeld, Pascal Costanza. Context-oriented programming, March-
April 2008.

[65] S. M. Sadjadi and P. K. McKinley. Act: An adaptive corba template to support unanticipated
adaptation. In Proceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’04), ICDCS ’04, pages 74–83, Washington, DC, USA, 2004. IEEE Computer
Society.

[66] S.Masoud Sadjadi, PhilipK. McKinley, BettyH.C. Cheng, and R.E.Kurt Stirewalt. Trap/j:
Transparent generation of adaptable java programs. In Robert Meersman and Zahir Tari, edi-
tors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, volume
3291 of Lecture Notes in Computer Science, pages 1243–1261. Springer Berlin Heidelberg,
2004.

[67] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented programming: A
programming paradigm for autonomic systems. CoRR, abs/1105.0069, 2011.

[68] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented programming: A
software engineering perspective. J. Syst. Softw., 85(8):1801–1817, August 2012.

[69] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Contexterlang: Introducing context-
oriented programming in the actor model. In Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, AOSD ’12, pages 191–202, New York,
NY, USA, 2012. ACM.

[70] Sanjin Sehic, Fei Li, and Schahram Dustdar. Copal-ml: A macro language for rapid devel-
opment of context-aware applications in wireless sensor networks. In Proceedings of the 2Nd
Workshop on Software Engineering for Sensor Network Applications, SESENA ’11, pages 1–6,
New York, NY, USA, 2011. ACM.

[71] P.P. Shirvani. Fault-tolerant computing for radiation environments, 2001.

[72] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile Robots. Brad-
ford Company, Scituate, MA, USA, 2004.

103

i
i

“thesis” — 2015/12/22 — 17:59 — page 104 — #112 i
i

i
i

i
i

Bibliography

[73] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek White. Java™ on
the bare metal of wireless sensor devices: The squawk java virtual machine. In Proceedings of
the 2Nd International Conference on Virtual Execution Environments, VEE ’06, pages 78–88,
New York, NY, USA, 2006. ACM.

[74] Brian Cantwell Smith. Reflection and semantics in lisp. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’84, pages
23–35, New York, NY, USA, 1984. ACM.

[75] W. Stevens et al. Classics in software engineering. chapter Structured Design. 1979.

[76] Lakshminarayanan Subramanian and Randy H. Katz. An architecture for building self-
configurable systems. In Proceedings of the 1st ACM International Symposium on Mobile
Ad Hoc Networking & Computing, MobiHoc ’00, pages 63–73, Piscataway, NJ, USA, 2000.
IEEE Press.

[77] Marcin Szczodrak, Omprakash Gnawali, and Luca P. Carloni. Dynamic reconfiguration of
wireless sensor networks to support heterogeneous applications. 2013 IEEE International
Conference on Distributed Computing in Sensor Systems, 0:52–61, 2013.

[78] TinyOS 2.1.2. www.tinyos.net.

[79] S. Waharte and N. Trigoni. Supporting search and rescue operations with uavs. In Emerging
Security Technologies (EST), 2010 International Conference on, pages 142–147, Sept 2010.

[80] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein Jeong, Jonathan
Hui, Prabal Dutta, and David Culler. Marionette: Using rpc for interactive development and
debugging of wireless embedded networks. In Proceedings of the 5th International Conference
on Information Processing in Sensor Networks, IPSN ’06, pages 416–423, New York, NY,
USA, 2006. ACM.

[81] Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Datasheet. UG012 (v4.2), 2007.

[82] Marc Zeller and Christian Prehofer. A multi-layered control approach for self-adaptation in
automotive embedded systems. Adv. Soft. Eng., 2012:10:10–10:10, January 2012.

[83] Ying Zhang and Krishnendu Chakrabarty. Dynamic adaptation for fault tolerance and power
management in embedded real-time systems. ACM Trans. Embed. Comput. Syst., 3(2):336–
360, May 2004.

[84] Marco Zimmerling, Federico Ferrari, Luca Mottola, Thiemo Voigt, and Lothar Thiele. ptunes:
Runtime parameter adaptation for low-power mac protocols. In Proceedings of the 11th Inter-
national Conference on Information Processing in Sensor Networks, IPSN ’12, pages 173–184,
New York, NY, USA, 2012. ACM.

104

www.tinyos.net

	Introduction
	Motivation
	Contribution and Roadmap

	State of the Art
	Adaptivity in Wireless Sensor Networks
	Paradigmatic Applications
	Adaptation Scope
	Type of Adaptation

	Adaptivity in Time-Critical Systems
	Paradigmatic Applications
	Adaptive Scheduling
	Component Models
	Re-configurable Systems

	Language Support for Adaptive Mainstream Systems
	Architecture-Based Adaptation
	Context Oriented Programming
	Aspect Oriented Programming
	Metaprogramming

	I Adaptive Software in Wireless Sensor Networks
	Design Concepts and Programming Support
	Problem
	Solution
	Design
	Programming
	Context Groups and Contexts
	Execution
	Transition Rules

	Verification
	Mapping Algorithm

	Tool Support
	Grevecom
	NuSMV Translation
	Translator

	Summary

	Early Experience and Evaluation
	Early Experience
	Applications
	Emerging Patterns

	Evaluation
	Coupling
	Complexity
	Software Evolution
	MCU and Memory Overhead
	Model Generation Time
	Verification Time
	Scaling of Verification

	Summary

	II Dealing with Time Requirements in Adaptive Software
	Concepts and Early Prototype
	Background
	Problem
	Solution
	Activation Type
	Deadline
	Activation Queue

	Prototype
	Preliminary Evaluation
	Activation Time and Memory Overhead
	Wrapper Classes Overhead
	Activation Types and Options

	Summary

	Conclusion and Future Work
	Bibliography

