
A Methodology and a Tool for QoS-Oriented
Design of Multi-Cloud Applications

Giovanni Paolo Gibilisco

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano

Supervisor: Prof. Danilo Ardagna

Co-supervisor: PhD. Michele Ciavotta

Tutor: Prof. Carlo Ghezzi

A thesis submitted for the degree of

Doctor of Philosophy

05 Feb. 2015

mailto:giovannipaolo.gibilisco@polimi.it
http://www.deib.polimi.it/ita/home
http://www.polimi.it

i

Abstract

This work focuses on the support of the development of multi-cloud en-
abled applications with Quality of Service (QoS) guarantees. It embraces
the model driven engineering principles and aims at providing develop-
ment teams with methodologies and tools to assess the expected QoS of
their applications early in the design stages. To do so we adopt and en-
rich different component based and UML-like modeling technologies like
the Palladio Component Model and MODACloudML extending them in
order to determine an optimized deployment in multi-cloud environments
by introducing a new cloud specific meta-model. The integration of the
new meta-model into state of the art modeling tools like Palladio Bench
or Modelio allows software architects to use well known modeling ap-
proaches and specify a cloud specific deployment for their applications.
In order to ease the portability of both the model and the application the
meta-model uses three abstraction levels. The Cloud enabled Computa-
tion Independent Model (CCIM) allows to describe the application with-
out any reference to specific cloud technologies or providers; the Cloud
Provider Independent Model (CPIM) adds the specificity of some cloud
technologies introducing concepts like Infrastructure and Platform as a
Service (IaaS/PaaS) but still abstracts away the specificity of each par-
ticular provider; the Cloud Provider Specific Model (CPSM) adds all the
details related to a particular cloud provider and the services offered al-
lowing to automatize the deployment of the application and generate per-
formance models that can be analyzed to assess the expected QoS of the
application. High level architectural models of the application are then
transformed into a Layered Queuing Network performance model that is
analyzed with state of the art solvers like LQNS or LINE in order to de-
rive performance metrics. The result of the evaluation can be used by

software architects to refine their design choices. Furthermore, the ap-
proach automates the exploration of deployment configurations in order to
minimize operational costs of the cloud infrastructure and guarantee appli-
cation QoS, in terms of availability and response time. In the IaaS context,
as an example, the deployment choices analyzed by the tool are the size of
instances (e.g. Amazon EC2 m3.xlarge) used to host each application tier
and the number of replicas for each hour of the day. The problem of find-
ing the optimal deployment configuration has been analyzed from a math-
ematical point of view and has been shown to be NP-hard. For this reason
a heuristic approach has been proposed to effectively explore the space of
possible deployment configurations. The heuristic approach uses a relaxed
formulation based on M/G/1 queuing models to derive a promising initial
solution that is then refined by means of a two level hybrid heuristic and
validated against the LQN performance model. The proposed methodol-
ogy has been validated by two industrial case study in the context of the
MODAClouds project. A scalability and robustness analysis has also been
performed and shows that our heuristic approach allows reductions in the
cost of the solution ranging from 39% to 78% with respect to current best
practice policies implemented by cloud vendors. The scalability analysis
shows that the approach is applicable also to complex scenarios, with the
optimized solution of the most complex instance analyzed being found in
16 minutes for a single cloud deployment and in 40 minutes for a multi-
cloud scenario.

Contents

Contents iii

List of Figures vi

Nomenclature vii

1 Introduction 1

2 State of the art 8
2.1 Modeling Approaches . 8
2.2 Other approaches for Designing Applications with QoS Guarantees . 12
2.3 Deployment Selection Approach Classification 20

3 The Model Driven Approach 21
3.1 Introduction to Model Driven Engineering 21
3.2 Modeling the Application . 24
3.3 Modeling the Cloud . 31
3.4 Modelling Cloud Specific Concepts 33

3.4.1 Cloud Provider Independent Model 34
3.4.2 CPIM for Private Cloud specification 40
3.4.3 Cloud Provider Specific Model: The Windows Azure use case 41

3.5 Modeling the Quality . 52

4 Design Methodology and Optimization Approach Overview 54
4.1 QoS-Oriented Design Methodology 55

4.1.1 Definition of the characteristics of the candidate cloud services 56

iii

CONTENTS

4.1.2 Modelling . 57
4.1.3 Reiteration . 58

4.2 Hybrid optimization architecture . 59

5 Optimization Problem Formulation 64
5.1 Problem definition . 65
5.2 Analytic Formulation . 66
5.3 Bi-level formulation and NP-Hardness 72

6 Determining an Initial solution 75
6.1 Generation of an initial solution . 75

7 Meta-heuristic Approach 83
7.1 Main Algorithm . 84

7.1.1 Solution Evaluation . 91
7.2 MakeFeasible . 91
7.3 ScaleLS . 94
7.4 TSMove . 99
7.5 Restart . 102
7.6 OptimizeWorkload . 104

8 Approach Evaluation 107
8.1 Industrial Case Studies . 109

8.1.1 The Constellation Platform 109
8.1.1.1 Initial analysis . 109
8.1.1.2 Reiteration . 112

8.1.2 The ADOxx platform . 115
8.2 Scalability Analysis . 123

8.2.1 Design of Experiment . 123
8.2.2 Scalability Results . 125

8.3 Comparison with best practice heuristics 134
8.4 Initial solution Evaluation . 137

8.4.1 Quality Evaluation . 138

iv

CONTENTS

9 Conclusions 142

Bibliography 145

v

List of Figures

3.1 An instance of a CCIM model . 26
3.2 Service Assembly diagram of the SVN Architecture of Constellation . 27
3.3 Orchestration model . 28
3.4 Usage Model . 29
3.5 An instance of a CPIM model . 30
3.6 Deployment Model at CPIM level 32
3.7 Deployment Model at CPSM level 33
3.8 Cloud Meta-Model - General Concepts. 35
3.9 Cloud Meta-Model - Locations . 37
3.10 Cloud Meta-Model - IaaS Cloud Resource 38
3.11 Cloud Meta-Model - Cloud Platform Service 39
3.12 meta-model for the specification of private clouds 42
3.13 Azure CPSM - General overview. 43
3.14 Azure CPSM - Blob and Drive Storage overview. 46
3.15 Azure CPSM - SQL Database and Table overview. 47
3.16 Azure CPSM - Web and Worker Roles overview. 48
3.17 Azure CPSM - Virtual Machine overview. 49
3.18 Azure CPSM - Virtual Machine details. 50
3.19 Azure CPSM - Virtual Machine Instance details. 51
3.20 Azure CPSM - Virtual Machine Medium Instance example. 51
3.21 QoS Constraints . 53

4.1 Main modeling steps in the SPACE4Cloud approach. 55
4.2 SPACE4Cloud architecture. 60

vi

LIST OF FIGURES

6.1 Call chain of functionalities . 80
6.2 DTMC derived by Figure 3.3 . 81

7.1 Tabu Search behavior in presence of local optima 85

8.1 Base workload for the Case Study analysis. 110
8.2 Optimization Result. 111
8.3 Analysis of the case study Constellation and Conference architectures 112
8.4 Conference Architecture of Constellation 113
8.5 Conference Architecture usage model 114
8.6 Cost analysis of the two architectures under evaluation (daily costs for

VMs usage). 115
8.7 ADOxx Architecture . 117
8.8 Orchestration models . 118
8.9 ADOxx Usage Model . 119
8.10 ADOxx Deployment CPIM . 120
8.11 ADOxx Deployment CPSM . 121
8.12 Scalability Analysis Case Study, distribution of calls within the system

components. 124
8.13 Distribution of time spent during the optimization in the mian phases . 126
8.14 Scalability Analysis with a single candidate provider, time breakdown 131
8.15 Scalability Analysis with a two candidate providers, time breakdown . 132
8.16 Scalability Analysis with a three candidate providers, time breakdown 133
8.17 Comparison with heuristics Heur60 and Heur80 136
8.18 MILP optimization time varying the number of tiers and classes of

requests . 138
8.19 Comparison of solution costs found by SPACE4Cloud in the optimiza-

tion process starting from the MILP initial solution and the Heur60

solution. 139

vii

Chapter 1

Introduction

One of the most pervasive changes happened in recent years in the IT world is the
appearance on the scene of cloud computing. The main feature of this new computing
paradigm is its ability to offer IT resources and services in the same way fresh water
or electric power is offered, as a utility. In a traditional environment in order to make
use of a software system to address some business needs a company would need to
acquire and manage the hardware infrastructure, different software stacks and, in many
situations, develop their own software. Cloud computing changes this paradigm by
offering all these elements as services that the user can acquire and release with high
flexibility.

Cloud providers offer a variety of IT resources using the “as a Service” paradigm.
Complex software systems that require multiple application stacks and different hard-
ware resources can now be acquired, entirely or in parts, in matter of minutes. Hard-
ware resources like computation nodes, storage space or network capacity are offered
as Infrastructure as a Service (IaaS), software stacks that allows application develop-
ers to run their own code are offered as Platform as a Service (PaaS), finally, entire
software system that can be directly used to provide some business value without the
need of developing a new system are offered as Software as a Service (SaaS).

Since the early appearance of this technology in the market, many companies have
decided to evolve their own infrastructure in order to embrace this new paradigm and
the offering o cloud services, as well as the number of cloud providers, has grown
quickly [38].

There are many advantages introduced by the adoption of the cloud technology,

1

among all one of the most important is the flexibility in the acquisition and decommis-
sion of software systems and the underlying infrastructure. This advantage is due to the
ability of cloud providers to offer an almost unlimited amount of resources and a pric-
ing policy that allow application developers to avoid long term commitments and pay
only for resources they actually use. Another key advantage brought by the adoption
of the cloud paradigm is the shift of responsibility in the management of the portion
of the software system that is acquired from the cloud provider. If, for example, a
company decides to decommission its own physical infrastructure in favor of a new in-
frastructure offered by a cloud provider all the maintenance operations required by the
hardware and some software systems, like OS acquisition and update, are delegated to
the cloud provider allowing the internal IT team of the company to focus on tasks that
provide more value for the company.

Delegating management responsibility of part of the infrastructure to a third party,
in this case a cloud provider, comes inevitably with a loss of control on the entire
infrastructure. This change creates some new challenges for teams that were used
to build entire software systems from the ground up. When faced with the selection
of a cloud service the application developer has to take into consideration many new
characteristics that he/she was probably not considering before. The wide variety of
similar services, the lack of interoperability between APIs of services offered by dif-
ferent cloud providers and the lack of specific training for developers are just a few of
the new challenges that the IT staff of a company has to face when considering a mi-
gration to a cloud infrastructure. Furthermore, the loss of control on the infrastructure
exposes users to the variability of QoS offered by cloud providers. Usually providers
address this issue by providing generic Service Level Agreements (SLAs) specifying
their expected QoS level and providing discounts on future usage of their services in
case the specified QoS is not met. Amazon EC2 SLA, for instances provides an avail-
ability of 99.95% of up-time in a month for VMs and in case this availability level is
not met users are granted a discount on 10% on service cost. In many situations such
a discount is not comparable to the possible loss generated by the downtime of the ap-
plication. Many examples of cloud outages like the ones happened recently to Google
Cloud 1 or Microsoft Azure 2 shows that availability concerns play a major factors in

1https://status.cloud.google.com/incident/compute/15045
2https://azure.microsoft.com/en-us/status/

2

moving a critical application to the cloud environment.
A solution to this problem comes from the wide variety of similar cloud ser-

vices offered by other providers. If, as an example, the software architect thinks that
the application under development is critical and requires an availability of 99.999%
(also called 5-nines availability) he/she could replicate the application on two cloud
providers, say Amazon AWS and Microsoft Azure, obtaining the required availability.
Moreover, the use of multiple providers might allow the application developer also to
redistribute the incoming workload in order to exploit differences in pricing in order to
reduce the operational costs.

The contributions of this thesis are a methodology and a tool, to help software
developers to build applications capable of exploiting the cloud infrastructure. In par-
ticular the work presented in this thesis tries to simplify the development process by
providing software architects with a meta-model in order to describe possible deploy-
ments of their application over the cloud infrastructure. We then automate the QoS
and cost analysis of such deployments in order to provide software architects with
feedback on their deployment choices. Finally, we automate the generation of possible
deployment configurations, possibly on multiple cloud providers, in order to minimize
infrastructural costs and guarantee a desired QoS level.

Our work embraces the Model Driven Engineering (MDE) paradigm and makes use
of models of the application specified at different levels of abstractions. Allowing the
software architect to start by building simple component based models in a UML-like
notation and then refine them adding information related to the desired cloud environ-
ment allows the development team to keep the focus on the functionality of the system
their are building and delegate some of the architectural choices to the tool we have
developed and integrated in the modeling environment.

Our approach targets the development team and in particular software architects,
application developers and domain experts. The modeling paradigm that we embraced
allow separation of concerns between these figures involved in the software develop-
ment process. In the reminder of this thesis we will refer to this actors as users of our
tool. In contrast the users of the cloud applications developed by using our approach
and deployed on a cloud environment are mentioned as final users or end users. When
the use of these terms might generate ambiguity we will speak directly of software
architects or application developers.

3

The use of state of the art performance models and tools allows to provide to the
development team estimation on the expected QoS of the system under development,
in order to take informed decisions and adapt the design of the system early in the
design stages avoiding complex and expensive re-factoring of the application.

The proposed approach allows designers to annotate theirs models with require-
ments related to the QoS of the application, like the expected response time of certain
functionality or the minimum availability of the system and delegates to the tool the
task of finding a deployment plan capable of fulfilling such constraints.

The deployment optimization strategy proposed in this thesis explores a huge and
complex space of possible configurations by assigning to each component described in
the model of the application a particular cloud service and analyze the behavior of the
entire application in order to see if a particular choice of cloud services is capable of
fulfilling the constraints. This search process takes also in to consideration the cost of
the deployment solution and tries to minimize it.

The scientific literature shows some similar approaches that try to automate deploy-
ment decisions on component based systems but, to the best of our knowledge, this is
the first approach that targets directly multi-cloud environments. In [49], Koziolek
shows that due to the increasing size and complexity of software systems, architects
have to choose from a combinatorially growing number of design and deployment al-
ternatives. Different approaches have been developed to help architects explore this
space with the help of automated tools like [10, 25] or [23, 49]. These approaches are
presented in Chapter 2 help developers to analyze different design choices but do not
address directly the cloud environment.

We argue that the problem becomes significantly more complex when considering
the cloud services that can be employed for the execution of the application compo-
nents. Traditionally the allocation problem has been considered independently from
the design of the application but the possibility of exploiting different cloud services
for different parts of the application has an impact on how the entire system works and
makes the deployment problem even more relevant in the design phase.

If we consider even the simple example of a web application deployed on a single
tier, we need to decide if we want to use a PaaS service to host our application code
or to directly manage the platform used to run our code, say a Tomcat server. This
choice directly affects the design and the development of the application. If we choose

4

to manage directly a Tomcat instance and deploy it on a Virtual Machine (VM) offered
by Amazon, we still need to decide which type of VM we need to use and how many
number of replicas of this machine according to the expected number of end user of
our system. Using a high number of cheap VMs, like the m3.large in order to cope
with a variable workload might seem a good strategy but the software stack needed
to run our application might required more resources and, in this case using a smaller
number of more powerful instances, like the c4.3xlarge, might be more convenient.

In a multi-cloud scenario this problem becomes even more complex because, be-
side making these decisions for both providers, we also have to define how the incom-
ing workload is split among the providers. Since the performance and the price of
resources offered by cloud providers might change with the time of the day, this prob-
lem is very dynamic and requires some automation to help the designer to generate
possible configurations.

When we deal with a more realistic and complex application the development team
is faced with deployment decisions and analyzing all the possible alternatives is a
daunting tasks that calls for automation. The tool developed during this work, called
SPACE4Cloud (System Performance and Cost Evaluation for Cloud), allows to auto-
mate the exploration of these design alternatives. SPACE4Cloud has been developed
in the context of the MODAClouds FP7 IP 1 European project and constitutes one
of the core tools of the MODAClouds IDE design time environment. Our approach
takes into consideration QoS constraints that predicate on the response time, both on
average and percentiles, constraints on the availability of the application and service

allocation constraints. By service allocation constraints we mean those constraints
that are related to the type of technology chosen to build the application and include
minimum requirements on some characteristics of the cloud services required to host
specific components, e.g., minimum amount of memory or cores, or limitations on
the scalability of some service. Our approach differs from those already available in
the literature, since it targets directly the cloud environment taking into consideration
some peculiar features. Cloud environments are naturally shared by multiple users,
the use of a shared infrastructure might lead to contention problems. To address this
kind of behaviors we make use of a performance analysis tool called LINE that take
into consideration variability in the characteristics of the processing resources by using

1www.modaclouds.eu

5

a statistical characterization (via Random Environment [29]). Web applications, like
those developed in a cloud environment are also dynamic and the number of end users
and the price of the cloud resources changes during the day. In many applications,
the incoming workload shows a daily pattern, for this reason we introduce a time-
dependent workload profile over a 24-hour time horizon, which leads to the solutions
of 24 intertwined capacity allocation problems.

We first introduce the modeling paradigm proposed to apply the MDE principles in
the context of cloud application development in Chapter 3. We also present an indus-
trial case study that is used later on in the evaluation of the approach and throughout
the thesis to clarify both modeling concepts and the optimization approach.

We then introduce the general design methodology and optimization strategy used
to tackle the problem along with the architecture of the tool in Chapter 4. We then
formalize the problem in Chapter 5 and we show it is equivalent to a class of NP-hard
problems. These initial part of the work has been submitted for publication in IEEE
Transactions on Software Engineering. In Chapter 6 we use a simplified performance
model and a relaxed formulation of the problem in order to quickly derive a promising
initial solution for the heuristic algorithm and in Chapter 7 we describe in details the
main optimization algorithm used to explore the design space and derive the optimized
deployment configuration. Details on the impact of the initial solution on the entire
optimization procedure have been published in [17].

To validate our approach we have used two industrial case studies that show how
software architects can benefit from using the early QoS analysis and deployment op-
timization provided by our work. We have also inspected how the complexity of the
application under development affects the cost of the solutions obtained and the time
required to execute the optimization with a scalability analysis, the results of this study
is reported in Chapter 8. We compared our heuristic approach against common used
threshold based heuristic that keep the utilization of the system below 60% or 80%.
Using our heuristic we found optimized solutions with cost reductions ranging from
39% to 78%. The analysis also shows that the algorithm is both scalable and robust,
the optimized solution for the most complex case was found in 36 minutes in a sin-
gle cloud scenario and 42 minutes in multi-clouds. Robustness has been analyzed by
repeating several times the optimization procedure during the scalability analysis and
in the worst case the standard deviation of the time spent in the optimization is 18%

6

of the average execution time and the standard deviation of the cost of the solution is
within 6% of the average solution cost. For what concerns the correctness of the QoS
estimation with respect to the real model we relay on the extended literary work on
performance prediction based on LQN starting from [36] that analyzes the accuracy
of the QoS prediction for LQN models. With respect to the characterization of the
parameters of the performance model used to evaluate application QoS we relay again
on previous works like the one by Casale et al. [68] that presents several techniques to
estimate application demands.

A discussion of the results achieved and an outline of future work are drawn in
Chapter 9.

7

Chapter 2

State of the art

This chapter provides a critical view on previous works. We first introduce some ap-
proaches that deal with the problem of modeling applications with a particular focus
on QoS characteristics, in Section 2.1; then we analyze some works that try to solve
the problem of deploying component based applications under QoS constraints. Few
approaches directly target the cloud environment but most of the works presented in
this section focus on similar domains or use techniques that are similar to the one we
adopted; finally we briefly present a classification of meta-heuristics approaches in
general and describe our approach in terms of the classification, in Section 2.3.

2.1 Modeling Approaches

As we have described in Chapter 1, the contribution of this thesis lays in the area of
Model-Driven Quality Prediction (MDQP). MDQP is a special phase of Model Driven
Engineering (MDE) that focuses on the identification of performance characteristics of
a system. The MDQP process starts with the specification of the system under study,
both in terms of the application and the running infrastructure, by using a high level
modeling language that allows the characterization of functional and non aspects, like
the QoS.

The application of MDE principles in the context of software development is called
Model Driven Development (MDD). The most known language for MDD is the Uni-
fied Modeling language (UML), the main feature of UML is its ability to represent a

8

software system under different aspects. This ability comes from the extensibility of
the language by the specification of profiles. UML allows software architects to specify
separate diagrams for different views of the application. Object and Class diagrams,
for example, can be used to specify the architecture of the system, activity diagrams
and state machines can be used to represent behavioral aspects. A UML profile is a
meta-model that can be used in conjunction with the UML meta-model to tailor the
language to describe particular contexts. This mechanism have been extensively used
to create Domain Specific Languages (DSL) as extensions to UML.

To support QoS analysis, for example, the Object Management Group (OMG)
presented two UML profiles: the profile for Schedulability, Performance and Time
(SPT) [63] and the Modeling and Analysis of Real-Time and Embedded system
(MARTE) profile [64]. These extensions allow to model resource consumption, ap-
plication components allocation and non-functional properties. MARTE introduces a
Generic Quantitative Analysis and Modeling profile (GQAM) that includes concepts
shared among many kind of analyses like resources, behaviors and workloads. The
GQAM profile has been further expanded into three separate sub-profiles focused on
different quality aspects: SAM is focused on Schedulability aspects, DAM is focused
on Dependability and PAM is focused on Performance.

MARTE also specifies a language to define Non Functional Properties (NFP). This
language allows to define properties of qualitative and quantitative nature by the use
of predefined or user defined types. Variables, Expressions and Qualifiers can also be
specified to characterize the precision of a property and allows derivations of other
properties.

Another extension to the UML language is the Object Constraint Language (OCL)
that can be used to specify restrictions on the values that certain elements of the UML
diagram can assume.

Many modeling tools have been developed to support designers in the use of UML
and its wide variety of profiles. In particular Papyrus1 is an open source tool based
on the popular Eclipse IDE. It implements the complete UML22 specification and pro-
vides support for many UML profiles like MARTE.

Modelio [71] is an open source UML modeling tool that supports UML2 and Busi-

1https://eclipse.org/papyrus/
2http://www.omg.org/spec/UML/2.0/

9

ness Process Model and Notation (BPMN) specifications. It also provides support for
the MARTE profile and has been extended with the support for the specification of
cloud resources and QoS characteristics by the MODAClouds European project. This
tool has been used in our work as main interface for modeling activities.

The fUML1 and Profiles for Performance Analysis (UPUPA) [8] tool provides a
model-based analysis framework to support non-functional properties early in the de-
velopment process. It carries out performance analysis using traces obtained by run-
ning Executable UML Models.

Other tools that support the UML or UML2 specification and various profiles are:
MOdeling Sofware KIT (MOSKitt)— [3], ArgoUML [1], StarUML [6], UML De-
signer [7], MagicDraw [2] and IBM Rational Software Architect [5].

These tools allow architects to consider QoS characteristics in the modeling phase,
but most of them lack the support of automated techniques to derive accurate perfor-
mance models, needed to make analysis of the expected QoS, from these high level
specification. Furthermore, recent studies [69] show that UML is not considered ade-
quate for wide adoption by the industry and in many cases it is not used, or it is used
in a way that does not comply with the MDD principles.

The lack of adoption of UML as a standard modeling language led to the develop-
ment of alternative languages; with respect to the cloud environment, the Organization

for the Advancement of Structured Information Standards (OASIS) is developing the
Topology and Orchestration Specification for Cloud Applications (TOSCA)2 specifica-
tion, with the goal of enhance portability of applications and services among providers.
They do so allowing the specification of applications, cloud infrastructures and oper-
ational behaviors (e.g., the application deployment) in a cloud provider independent
way. This specification is still focused on functional aspects of the development and is
mainly interested in supporting the portability of models and software artifacts across
different cloud vendors.

A similar language, capable of describing functional aspects of the application and
its management in a cloud vendor agnostic way, is CloudML [34] developed by Sin-
tef3. The proposed domain specific language is supported by a run-time environment

1http://www.omg.org/spec/FUML/
2https://www.oasis-open.org/committees/tosca/
3http://cloudml.org/

10

capable of provisioning and managing the cloud resources and services described in
the application model. This language is evolving in order to support the specification
of different infrastructures but still lack the support for QoS characteristics.

Other approaches that exploit specifically designed languages, such as KLAPER
[42] and the Palladio Component Model (PCM) [23], exist but they all lack specific
support for the cloud environment. Recent surveys of modeling approaches that take
into consideration performance prediction aspects can be found in [20], [51], [10] and
[21].

In particular [51] analyzes different performance prediction approaches for com-
ponent based software systems. The author describes how the MDQP approach can
be applied to component based systems by attaching non functional information, such
as resource demands, to the component specification and performance related infor-
mation to the middleware or infrastructure used to host those components. The paper
presents many performance evaluation techniques that are based on UML or on propri-
etary meta-models, focus on the impact of the middleware or use formal performance
specifications.

In the context of self-adaptive systems [21] presents the SimuLizar tool that ex-
tends the Palladio modeling environment with the ability to model and evaluate tran-
sient phases that occur during a self-adaptation process. This tool has been further
expanded in [22] with the support of the RELAX requirement language to specify
possible ranges of requirements fulfillment and has been used to evaluate the compli-
ance of user defined adaptation strategies with respect to requirements expressed on
the adaptation phase itself, e.g., the speed of the adaptation after a violation of a QoS
requirement is discovered.

To further support the adoption of MDE principles the OMG proposed the Model
Driven Architecture (MDA) [4] to guide software engineers in building systems using
a model-centric perspective. MDA propose three abstraction layers: the Computa-

tional Independent layer is used to express business scenarios and system goals; the
Platform independent layer comprises multiple architectural views of the system to
specify design and quality issue; the Platform Specific layer enriches the design with
technological details. The use of separate abstraction layers allows architects to focus
on different aspects of the system and separate concerns related to the business aspect,
architectural choices and the technology.

11

After the specification of architectural models by the software development team,
the MDQP approach uses automatic transformations of these models into performance
models like LQNs or Markov Chains (see, e.g., [77]), more suited to be analyzed, or
simulated in order to derive QoS characteristics.

An analysis on the derivation of different performance models from the higher
level PCM is presented in [25]. The authors analyze the transformation process used
to derive a simulation model (SimuCom), a Queuing Petri Net and a LQN model and
compare the results of the analysis of the resulting models in order to quantify the
trade-off between accuracy and time required for the analysis. The authors show the
semantic gaps between the presented performance models and compare the results of
the evaluation on four case studies. This comparison can be used as a guideline in the
selection of a performance model. In our approach, as an example, a high number of
solutions has to be evaluated so the use of a fast performance model is preferred.

Most of the approaches aims at providing the user some feedback on the expected
QoS of the system under design and rely on the expertise of users to make adjustments
to the application or its deployment in order to solve QoS problems identified by the
analysis. Our approach aims at ease this process by suggesting to the user possible
deployment choices generated by optimizing a cost function and guaranteeing QoS
constraint satisfaction.

2.2 Other approaches for Designing Applications with
QoS Guarantees

In order to present how similar optimization problems have been approached in the
literature we use a classification partially derived by the one presented in [59]. This
classification is less complex that the one proposed in [74] that we will use to describe
our approach in Section 2.3 but is better suited to describe a broad range of similar
approaches. We will divide the presented approaches in three main categories: rule-
based, meta-heuristic, and Generic Design Space Exploration (GDSE).

Rule-based approaches. This category groups together approaches that embed
performance knowledge into feedback rules. The general flow of optimization ap-

12

proaches that fall in this category is to evaluate a candidate solution to derive perfor-
mance metrics and then apply rules, by means of model to model transformations,
according to the result of the analysis in order to improve the quality of the solution.

A common way to define model to model transformations has been proposed by the
OMG in the Query/View/Transformation (QVT) language. Drago et al. proposed an
extension of QVT in [32] in order to support feedback rules defined on non-functional
requirements. They also provide a framework, called QVTR2 to support software en-
gineers in making architectural choices. In their work a set of feedback rules can be
defined by the user in order to guide the system in the generation of possible alter-
native solutions, starting from the one designed by the user. Alternative solutions are
evaluated from a performance point of view and presented to the user that is in charge
of selecting the best one according to its expertise. This approach requires a good deal
of knowledge of performance optimization from the user since it depends on it both
for the specification of the rules used to generate candidate solutions and to select the
best solution among those generate by the framework.

[78] introduce Performance Booster (PB), a tool capable of deriving performance
models from annotated UML diagrams in order to analyze and optimize the design of
an application. The system proceeds iteratively by analyzing the performance model
and modifying it by triggering feedback rules. Some feedback rules are already in-
cluded in the framework and more can be specified by the user with the JESS [44]
scripting language, when a rule is activated it can modify the performance model in
order to produce a new solution. When no more rules are activated the optimized per-
formance model is proposed to the user who has to trace back the changes in order
to apply them in the UML model. The main drawback of this approach is the lack of
an automated mechanism to trace the changes from the performance model into the
UML domain, furthermore the approach procedure does not allow the user to specify
constraints on the final solution, so changes in the optimized performance model might
lead to solution that can not be implemented in the real system.

The framework proposed by Parsons et al. in [66] monitors a running system in
order to retrieve performance information, it then uses data mining techniques to detect
general, well known, design flaws called anti-patterns. The detection of anti-patterns
from the monitored performance data is performed by means of a rule engine. The
main limitation of this approach is its dependency on run-time data collection, more-

13

over the need of a prototypical implementation of the system make this approach not
applicable in early stages of the design.

Another approach that aims at identifying performance anti-patterns is presented
in [31]. In this work the authors propose a feedback system capable of identifying
well known anti-patterns and provide to the development team alternatives derived by
applying known solutions. Their approach is based on model to model transformation
to derive performance metrics and detect performance anti-patterns. The approach
is general enough to be applied to many modeling languages but extensions to these
languages have to be developed before being able to map the defined anti-pattern into
the specific application model. Our works does not aim at finding performance anti-
pattern at the architecture level and could be integrated with these kind of approaches
but is focused on the identification of an optimized deployment of the application. As
shown in Chapter 8 our approach can lead to the discovery of architectural anti-pattern
as side effect.

[57] propose an approach based on Model-Driven Development in order to ana-
lyze component based software systems from a non functional point of view. Their
approach comprises a trade-off analysis of competing Non-Functional Requirements
(NFR) in order to find which components of the architecture represent critical points
for one or more NFR, related for example to application response time or memory
footprint. Component developers are then required to specify transformation rules that
change the component in order to modify its non-functional properties, a set of rules is
then selected according to the results of the tradeoff analysis and applied to the model.
The resulting model is finally evaluated in order to check its compliance with the spec-
ified NFR. Their work is focused on trade-off analysis of competing NFR and involves
manual intervention for the specification and selection of transformation rules. Fi-
nally the goal of their approach is not to derive an architecture optimized with respect
to some aspect, like the cost, but to find an architecture that satisfy NFR by further
refinements of an initial one.

Meta-heuristics. Meta-heurisic approaches aim at effectively exploring the space
of possible solutions using high-level algorithms, often inspired by biology or other
fields of study. These algorithms might operate by modifying a single solution in order
to improve some characteristics or generate multiple solutions and then evaluate and

14

compare all of them. In general all this algorithms require one or more objective func-
tions that are used to drive the goodness of the solutions and might support constraints
on the characteristics of the solution that are used to define their feasibility.

An approach that uses multiple solutions generation is presented in [55]. The au-
thors present a toolkit, called AQOSA (Automated Quality-driven Optimization of
Software Architecture), that implements evolutionary algorithms (i.e., NSGA-II and
SPEA2) to solve a multi-objective optimization problem. The toolkit integrates mod-
eling capabilities and performance analysis techniques in order to build and evaluate
solutions from a QoS perspective. The optimization problem presented in their work is
tailored to the context of embedded systems and aims at minimizing processor utiliza-
tion, cost and data flow latency. The main drawback of this approach, and in general of
many approaches based on genetic algorithms, is the fact that in order to properly con-
verge to optimal solutions they need to evaluate a huge number of candidate solutions,
called individuals. The time needed to evaluate a single solution is very critical, so
only simple performance models can be adopted. A key difference of multi-objective
approaches, with respect to a single solution heuristic like the one proposed in this
thesis, is that they usually provide a set of non-dominated solution called Pareto front.
Some techniques has been developed in order to explore the Pareto front but ultimately
the choice of the final solution has to be delegated to the user. In general a Pareto
front, usually generated by multiple objectives optimization approaches, are useful to
explore trade-offs between multiple quality criteria. Our work, on the other hand, per-
forms a single objective optimization reducing the cost of the application guaranteeing
the required QoS level. This approach is more suited for situations in which the user
has to come up with a single deployment configuration that guarantee multiple SLA
constraints.

Another approach for the optimization of software architecture of embedded sys-
tem is presented in [11]. The proposed framework uses the Architecture Analysis &
Design Language (AADL) to model the software system. The framework is composed
by a set of components offering different functionality needed for any generic opti-
mization approach like constraint evaluation or quality evaluation. An optimization
interface has been proposed in order to plug in different optimization engines. The
framework supports different quality criteria. The authors used data transmission re-
liability and communication overhead as quality criteria and component deployment

15

into a fixed set of containers as decision variables to validate their approach using a
genetic algorithm.

A hybrid approach in which feedback rules, called tactics, used to identify perfor-
mance issues and propose alternative solutions, are applied within an heuristic opti-
mization algorithm is presented in [47]. The proposed framework, called PerOpteryx,
is focused on component based architectures that are analyzed by means of a LQN
performance model and optimized using a multi-objective evolutionary algorithm (i.e.,
NSGA-II). The algorithm has been extended in order to include the evaluation of tac-
tics during the reproduction step in order to drive the generation of the population of
candidate solutions. PerOpteryx uses the Palladio Component Model (PCM) [23] lan-
guage to describe the application and applies transformations directly at this modeling
level. The main variables considered by the tool to generate candidate solutions are the
allocation of components to servers and the choice of the optimal number of replicas
and processing power for each server. There are two main differences of our work
with respect to the one implemented in PerOpteryx: the search space of our approach
is shaped by the cloud environment, for this reason the speed of resource contain-
ers has to be selected according to the cloud offering. Furthermore, we focus on the
deployment of the application and do not take into consideration the re-allocation of
components into tiers; another difference is in the optimization approach itself. Our
approach use a single solution heuristic that is improved after each iteration. The use
of a single solution usually requires a less number of evaluations of the performance
model that translates in a lower execution time.

In [50], the authors generalize the approach presented in PerOpteryx providing
a meta-model for the definition of Generic Degree of Freedom (GDoF). This meta-
model can be used to specify Degree of Freedom Instances (DOFIs) for specific model
elements. The use of this approach allows a generic definition of the design space
of possible configurations for the system that can be explored by means of different
optimization techniques.

In [62] PerOpteryx is further evolved in order to take into consideration quality con-
straints in the generation of candidates solutions. This extension integrates the Quality
of service Modeling Language (QML) with the PCM and allows software architects
to specify at the same time objective functions and constraints on non-functional char-
acteristics of the application. The use of quality constraints in the generation of can-

16

didate solutions by the genetic algorithm implemented by PerOpteryx allows to focus
the search on promising areas of the design space and reduces the overall time required
for the optimization of about 35%.

Koziolek et al. [48] proceed in the direction of [47] and address the problem of
deriving deployment decisions using an approach similar to the one presented in this
work. The authors make use of an analytic optimization problem derived by a relax-
ation of the entire problem to derive a promising initial population for an evolutionary
algorithm. In this work they deal with a three objective optimization problem trying
to minimize cost and response time, while maximizing application availability. This
work has many points in common with our approach, especially in the use of the same
modelling tool, the PCM and in the use of a hybrid analytic and heuristic model. The
main differences are in the adoption of a genetic algorithm as heuristic optimization
approach and in the constraints posed by the cloud infrastructure to our optimization.

[28] apply genetic algorithms to perform service composition. Their approach al-
low to evaluate a composition of services in terms of QoS characteristics like response
time, reliability or cost and then optimize one or more of these dimensions while ful-
filling constraints on others. In the example reported in their work the system was used
to optimize a function of application response time and cost. Their work is focused on
the realm of service composition and suppose that services expose information about
their QoS.

The authors in [65] developed an efficient tabu search heuristic to solve the redun-
dancy allocation problem for embedded system design. Their approach is focused on
the solution of a Redundancy Allocation Problem (RAP) of series-parallel multistate
systems. In such systems application components are connected in series and contain
multiple elements connected in parallel. Each element is characterized by a cost and
an availability value. Replicating components can increase system availability but also
increases the total cost. The heuristic algorithm search for the solution that guarantees
some user defined availability level and minimizes the cost. This paper presents an
heuristic approach similar to the one we propose in this thesis and applies it to a dif-
ferent domain. The main differences from the heuristic search point of view is that the
problem analyzed in this work can be separated into a set of disjoint subsets in which
tabu search can be applied independently.

[37] presented a combined meta-heuristic-simulation approach to solve the prob-

17

lem of migrating existing enterprise software to cloud platforms considering a com-
bination of a specific cloud environment, deployment architecture, and runtime re-
configuration rules. The design space is explored by means of a genetic algorithm
while a simulator is charged with the solution performance evaluation. This approach
aims at easing the migration of legacy enterprise systems to the cloud, while our ob-
jective is to help QoS engineers to design new cloud-ready applications. Another key
difference is that we explicitly consider both architectural and QoS constraints during
the search process, giving the possibility to express QoS constraints for many crite-
ria in terms of both average values and percentiles. Finally, our approach takes into
consideration deployment scenarios of one day divided into 24 hour periods leading to
multiple final solutions each one tailored to one hour of the day.

In [26] a multi start hill climbing approach is used to optimize component deploy-
ments on a set of resources. This work takes into consideration both communication
and processing delays to evaluate the response time of the application. The authors use
the UML SPT profile to model the application from a performance point of view, Finite
State Processes (FSPs) are then built from the initial model and analyzed via simula-
tion to derive performance related metrics, like object utilization or thread instances.
The results of the simulation are then used together with a model of resources to build a
Software Execution Model that is used to evaluate solutions generated by the heuristic
search. During the search evaluation of performance characteristics of the candidate
deployment is done by means of a performance function proposed by the authors that
takes into consideration networking and processing delays caused by co-location of
components and synchronous and asynchronous calls among components. The main
difference between this work and the one presented in this thesis is that in our work the
co-location of components in application tiers is delegated to the software architects
and the optimization heuristic focus on the assignment of computational resources, or
PaaS services, to the application tiers. The approach presented in this paper, on the
other hand, assumes a fixed set of resources to host application tiers and optimizes the
assignment of component to tiers.

In [60] the authors propose an automatic optimization process for the exploration
of the adaptation space of a service-oriented application. The goal of the exploration is
to find the cheapest sequence of adaptation actions that allow a service-oriented appli-
cation to adapt to changes in the runtime environment or new requirements. Adaptation

18

actions include adding or removing components, changing their implementation, the
interaction style (sync or async) or component re-deployment. The proposed optimiza-
tion strategy is an iterative process composed by two main phases: the new candidate

generation and the functional and quality analysis. In the first phase a tabu search
heuristic is used to generate a population of new candidate adaptations, in the same
phase another method based on the application of best practice design pattern is used
to generate more candidates. In the latter phase both functional and non-functional
requirements are evaluated using a variety of approaches, like scenario-based simu-
lation, model-based testing and queuing network simulation, to analyze the result of
the adaptation strategy. Since the formulation of the problem deals with multiple ob-
jectives, the outcome of the optimization process is a set of Pareto-optimal solutions.
This approach has been particularly tailored for runtime adaptation of service-oriented
application when new requirements are specified.

Generic Design Space Exploration (GSDE) Generic Design Space Exploration
approaches apply feedback rules in a Constraint Satisfaction Problem (CSP) to shape
the space of possible configurations.

An interesting approach is presented in the DESERT framework [33, 61]. DESERT
explores the design space alternatives by organizing them in a tree of system variants,
boolean constraints are aplied to the tree in order to prune non-feasible solutions; the
framework does not specifically target QoS but might be configured to do so. In the
original formulation [61], the approach required the intervention of the human in the
exploration loop in order to prune non-viable solutions, this operation was performed
by specifying additional constraints that the solutions had to verify. The most recent
version of the framework, DESERT-FD [33] automates the generation of these con-
straints removing the need for human intervention.

A more general framework is the one presented by Saxena et al. in [70], called
Generic Design Space Exploration. GDSE allows the definition and the solution of
domain specific design space exploration problems, it provide a language to express
constraints and enable the support for multiple solvers to generate solutions.

A different approach is Formula, presented in [45] by Jackson et al. Their approach
consist in specifying the problem as a satisfiability problem and use the Z3 Satisfiabil-
ity Modulo Theory solver to derive solutions compliant with the design specification.

19

To do so, Formula makes use of logic programs to specify non-functional requirements
and transform these constraints along with the application models and meta-models
into first-order logic relations. This work does not use performance prediction models
but assume the performance data to be embedded in the model.

2.3 Deployment Selection Approach Classification

In this section we position our optimization approach, presented in Chapter 7, accord-
ing to the classification of meta-heuristic optimization algorithms presented in [74].

Our optimization procedure can be briefly described as a Tabu Search (TS), in
which the intensification action is implemented by the ScaleLS function, followed by
the OptimizeWorkload in the multicloud scenario, and the diversification action is im-
plemented by the TSMove procedure (see Chapter 7).

According to the classification of hybrid meta-heuristics presented in [74], the opti-
mization approach proposed in this thesis follows in the Low-level Relay Hybrid (LRH)
category. It is a Hybrid methauristic since the TSMove procedure implements a Multi-
start Local Search (MLS) that uses a roulette wheel (or a fitness proportionate) selec-
tion criteria [56], while the ScaleLS implements an Iterated Local Search (ILS) [72]
that is applied independently on all the 24 hours slots of the solution. An extensive
survey on hybrid meta-heuristics in combinatorial optimization can be found in [74]
and more recently in [24], whilst a complete taxonomy is presented in [73]. It can
be classified as a Low-level since combines two single solution based meta-heuristics
(or S-meta-heuristics) in such a way that the lowest level local search constitute the
intensification action of the upper level search procedure. Finally, it falls in the Relay

category since the low level heuristic (the ILS) uses as starting point the outcome of
the upper level procedure (the MLS), the execution of which is driven by the outcome
of the low level procedure.

The algorithm is also bi-level because it tackles separately each optimization level
of the problem (see Chapter 6), the upper level, the selection of the VM type, is ad-
dressed by the TSMove heuristic and the lower level is tackled by the ScaleLS proce-
dure both presented in Chapter 7.

20

Chapter 3

The Model Driven Approach

“The mere formulation of a problem is far more often essential than its solution, which

may be merely a matter of mathematical or experimental skill. To raise new questions,

new possibilities, to regard old problems from a new angle requires creative imagina-

tion and marks real advances in science”

A. Einstein

3.1 Introduction to Model Driven Engineering

This quote from Albert Einstein reflects the same basic principle of Model Driven
Engineering (MDE). The main idea behind MDE is to focus on the representation
of the problem, called Model, and use this representation as main driver for all the
processes needed to analyze and eventually solve it. Focusing on the representation of
the problem from the very beginning allows us to gather more insights on the nature of
the problem itself and enriches our knowledge. Building different representations, or
different Models, of the object we are studying allows us “to regard old problems from

a new angle.”
A very important tool of MDE is the use of Domain-Specific Modeling Languages

(DSMLs). These languages offers the flexibility required to address problems in very
different domains by providing a limited set of concepts with well defined relationships
and semantic. Adopting the use of a DSML, and in general of different modeling
languages, eases communications between different members of the development team

21

and domain experts. It also allows to use well established tools and techniques to
analyze the problem from different point of views.

In this thesis we adopted the MDE approach in several aspects. First we relay
on existing modeling technologies like the Palladio Component Model [23] or Cre-
ator4Cloud [13] for the modeling interactions with the software architect. Relying on
well established modeling techniques and tools removes the burden of learning a new
modeling language and allows the architect to make use of other functionality offered
by these frameworks. We then provided a meta-model, describing the cloud infras-
tructure in Section 3.4, to extend the modeling capabilities of the PCM and allow the
software architect to specify deployment configurations.

In Section 5.2 we change the point of view on the problem by formalizing it in
mathematical terms. The architecture of the application and the constraints introduced
by the architect have been mapped to equations that define the shape of the search
space, while possible deployment alternatives have been represented with variables
that have to be assigned to provide a complete solution. The use of this formalism
allowed us to better comprehend the nature of the problem and design an effective
optimization strategy.

Another view on the model is given by its formulation as a Layered Queuing Net-
work (LQN) [35]. This formulation is focused on performance estimation, the main
entities of this modeling paradigm are processors that represent resources used to pro-
cess incoming requests. Tools like LINE [67] or LQNS [35] can be used to analyze this
model and derive estimate of performance indicators, like application response time or
resource utilization.

In order to build a LQN model representing the application, we used another key
feature of MDE, the Model Transformation. As we have seen using different modeling
languages and tools allows us to see a problem under different lights, unfortunately
working simultaneously with multiple models representing the same object is chal-
lenging. In the MDE approach, models evolve very rapidly to adapt to changes in the
requirements or, as in our case, to inspect possible variations of the system. Keeping
track of these changes and updating all the models is a daunting task that requires au-
tomation. Model to model transformation techniques have been widely adopted to ease
this task. In our work, performance models are derived from the higher level models,
designed by the architect, by means of a transformation technique offered by Palladio

22

Bench. The mathematical formulation of the problem can also be updated by deriving
values for many parameters. Our tool then operates directly on the performance model
and updates automatically the PCM representation.

The integration of our approach for performance prediction and deployment op-
timization into state of the art modeling platforms allows the software architect to
exploits the MDE approach in the development of cloud applications. It allows to take
into consideration QoS aspects in early stages of the development keeping the focus
on the model of the application.

In the following sections we will introduce the modeling paradigm used to model
an application with our approach. We will do so using the Creator4Cloud IDE since it
better supports the modeling extensions developed to address the cloud environment.
We will use an industrial case study called Constellation developed by SOFTEAM1 to
clarify the modeling concepts here and in the rest of this thesis.

One of the products of SOFTEAM is a modeling environment called Modelio [71].
Modelio supports many modeling standards and provides a central IDE that allows to
combine different modeling languages in the same model. Modelio uses the UML2.x
standard as main modeling technology and represents different languages as UML
profiles, it provides a comprehensive tool for MDE. One of the main feature of Modelio
is its ability to separate concerns among stakeholder providing support for each of
them, it offers high level modeling capabilities as well as low level support of complex
code bases. Modelio is distributed as a desktop tool that developers install on their own
machines and uses a back-end to share models among multiple user. Both Modelio
clients and the back-end have to be managed by SOFTEAM clients.

In order to ease the setup and maintenance of Modelio from the customer perspec-
tive and to include more functionalities, SOFTEAM decided to move to a Software as
a Service (SaaS) solution, offering Modelio as a web based tool. SOFTEAM aims to
ease the burden of their clients from managing their systems by migrating the tool and
its backend to a public cloud infrastructure. The new cloud based extension of Modelio
has been named Constellation.

During the development of Constellation and initial SVN based architecture has
been proposed. This architecture has been modeled and analyzed by means of SPACE-
4Cloud in order to evaluate its expected quality. Section 3.2 describes this architecture

1http://softeam.com/

23

and introduces the modeling notation used in our work.
We will see in the remainder of this Chapter how the Constellation architecture

has been modeled, in Chapter 8 we will see the results of the QoS evaluation of this
architecture and how the discoveries of this analysis based on the tool developed in
this thesis lead to a change in the design of the application.

SOFTEAM had to deal with many challenges in their adoption of a cloud infras-
tructure. The main requirements for a supporting tool that help SOFTEAM move their
product to the cloud were: The ability to study alternative selections of cloud services
taking into account QoS requirements and specific needs of customers; The ability to
keep under control the cost of the cloud infrastructure to achieve return on investment;
The ability to exploit the elasticity of the cloud environment to cope with changes in the
number of users maintaining the required QoS level specified by a set of constraints.
We will see how the work developed in this thesis meets these needs.

The remainder of this chapter is structured as follows. Section 3.2 introduces the
modeling paradigm used by our tool by means of an industrial case study called Con-

stellation. Section 3.3 expands the models introduced by adding elements that are spe-
cific to the cloud environment. Section 3.4 provides some details on the meta-model
developed in this thesis to describe the characteristics of the cloud environment.

3.2 Modeling the Application

The modeling approach used in the following adopts the guidelines of the Model
Driven Architecture (MDA)1 specified by the Object Management Group (OMG). It
is composed by three levels of abstraction, the highest one being the Cloud Compu-

tation Independent Model (CCIM). Models built at this level are used to represent the
application architecture, its behavior and the interactions with the appication end user.
These models carry no information about the platform used to host application compo-
nents and keep the focus on business related aspects keeping the model of the applica-
tion free from details related to the infrastructure. We then add to these models some
information related to the execution platform and the technology used to host some
application components by introducing some elements that are peculiar of the cloud

1http://www.omg.org/mda/

24

environment but still not tied to a specific cloud provider, this modeling level is called
Cloud Provider Independent Model (CPIM). Finally, we add all the details related to
the services offerd by a particular provider binding the general platform selection to
the concrete service offering deriving a Cloud Provider Specific Model (CPSM).

As introduced in Section 3.1, we use Creator4Clouds to build the model of the ap-
plication and the deployment. Creator4Clouds allows architects to build multiple views
of the application in order to specify different aspects of the application. It has been
built in order to keep the distinction among the cloud abstraction levels (CCIM, CPIM
and CPSM) clear and allow refinements of views according to the specific abstraction
level. The specification of a new application starts with the definition of CCIM level
views. In particular the software architect specifies a list of components composing
the application, as shown in Figure 3.1. A component is an element of the application
that provides a set of functionalities. Each component allows the specification of Pro-
vided Interfaces to define which functionality is offered to other components or to the
application end user. Required Interfaces allow to specify functional dependencies of
a component. In the example of Figure 3.1, we see that the Administration Service re-
quired the IDatabase interface to provide its functionality. Such an interface is offered
by the Administration Database component.

This view allows the architect to specify functional offerings and requirements of
each component via interfaces and non functional requirements via the Service Speci-
fication objects. Such objects are divided into QoS and Business requirements. These
requirements predicate of quality aspects on functionalities offered by the component,
like the average time required to execute such a functionality. More details on require-
ment specification are provided in Section 3.5.

The CCIM abstraction level provides two main views of the model. The Service
Assembly view allows to define interconnection among components in order to solve
functional requirements introduced by means or Required Interfaces in the component
specification. The Orchestration view allows the specification of the component in-
ternal behavior by means of a call chain of functionalists implemented internally by
the component or by other components of the application. More information on this
modeling notation can be found in [13].

Figure 3.2 shows a possible architecture for the Constellation application. This
architecture is characterized by five components, enclosed in the blue square that rep-

25

Figure 3.1: An instance of a CCIM model

resent the system boundaries. Some of these components expose interfaces directly
to the final user while other components are used only internally. In particular the
AdministrationServer exposes the WebService interface that provides a way to retrieve
the available projects and read their configuration. This component uses the Adminis-

trationDatabase, internal to the system and not exposed to the end user, to store the
access permission policy and define which projects a user can see. Interactions be-
tween the AdministrationServer and the AdministrationDatabase are defined by the
IDatabase interface. The main interface that allows model manipulation is IRead-

WriteSVNModelFragment which is implemented by the ConstellationSVNAgent. This
interface allows users to open, update and modify a model. As suggested by the com-
ponent name, the ConstellationSVNAgent uses SVN1 to provide versioning, sharing
and conflict detection in order to allow multiple users to work simultaneously on the
same model. To offload the previous component from some of the load the Constella-

tionHTTPAgent provides read only access to the models. Users can open their projects

1http://subversion.apache.org/

26

Figure 3.2: Service Assembly diagram of the SVN Architecture of Constellation

and check for updates by interacting with the IReadOnlyModelFragment interface. Fi-
nally, the AgentManager orchestrates the SVNAgent and the ConstellationHTTPAgent.

This figure represents the core of the application, defines the system boundaries
and provides information about possible interactions between the user and the system
as well as some of the interactions internal to the system itself. All the functionality
depicted in this figure can be annotated with non functional properties like the expected
demand that the execution of a functionality will generate on the system. It is important
to notice that, this model is agnostic with respect to the technology used to host each
component and can be re-used across many different platforms. We will see later how
we can add details to this model to specify, for example, which technology is used for
the AdministrationDatabase and if this service is managed by the cloud provider, in a
PaaS fashion, or installed on a VM managed by the system administrator.

In order to further specify the internal behavior of the system we use Orchestration

27

Figure 3.3: Orchestration model

Models. An example of an Orchestration diagram is shown in Figure 3.3, it shows the
interactions between the Administration Server, whose interface is directly exposed to
the final user, and the Administration Database. This diagram shows that both the get

functionality, used to provide a list of projects, and the readCompleteProjectConfig-

uration, used to load the configuration of a project, require a databaseAccess. The
details of the access, namely the query, is hidden from the model and is embedded in
the Administration Server implementation. The use of separate Orchestration diagrams
allows the software architect to focus on modeling the interactions between a subset
of all of the components of the application and helps maintaining a logical separation
between different parts of the model. The diagram in Figure 3.3 shows only the sub-
set of the application related to the administration aspect and hides all the interactions
with other, logically separated, parts of the application. In order to get an overall view
of the interactions between the components the architect can refer to Figure 3.2. This
modeling approach helps to achieve loose coupling between parts of the application ar-
chitecture that are related to different logical aspects and high cohesion among closely
related components.

A very important factor in the analysis of the application performance is repre-
sented by the amount of work the system is subject to. In the context of our application
the workload is composed by requests generated by users that exploit Constellation for
their modelling activities. As shown in Figure 3.2, users can interact with many differ-
ent interfaces exposed by the system in order to retrieve the list of available projects,

28

open a new project or update a project on which they are already working and com-
mitting changes to the shared repository. To better understand how the system will be
used we make use of the model reported in Figure 3.4.

Figure 3.4: Usage Model

This model shows the typical behavior of a user that interacts with the system.
In this picture we can see that four main interactions, represented as branches, are
performed. The first interaction is a sequence of actions that the user performs to get
the list of available projects, load the configuration of a specific project, open it from
the SVN server and from the HTTP replica and finally update the local copy of the
project. This sequence of interactions might be hidden in a single automated function
from the client or directly performed by the user. This interaction models a new user
that decides to work on a project, this behavior is expected to happen only 5% of the
times as shown by the value of the Test attribute in the top left part of this interaction
branch.

Other interactions are much simpler and represent the common behavior of users

29

that already have a local copy of the model on which they are working. In this scenario
users retrieve frequent updates of the model from the HTTP server and only rarely
perform an update of the entire model directly from the SVN. Finally users commit
their work to the SVN server. The interaction scenarios and the associated probabilities
shown in Figure 3.4 have been gathered by mining the logs of the current version of
Modelio.

The architecture model of Figure 3.2 can be enriched by adding details about the
technology used to host application component in order to derive a deployment model
at the Cloud Provider Independent Model (CPIM) level. As shown by Figure 3.5,
this abstraction level allows the initial specification of deployment diagrams. These
diagrams are used to enrich the model with information required to deploy the system
such as dependencies on particular technology. The CPIM level allows also to refine
the QoS model specified at the CCIM level by adding infrastructural requirements
like the minimum or maximum number ore replicas of the resources used to host a
component.

Figure 3.5: An instance of a CPIM model

An example of such a model for the deployment of the SVN architecture of our
case study is shown in Figure 3.6. Here components introduced in the architectural
model are grouped into tiers that represent resources used to host the components. In
the deployment scenario of Figure 3.6 all the components related to the administration

30

and management aspects of the application are hosted on the same adminServer tier
while the SVN and HTTP agents are hosted each one on a dedicated tier. The diagram
also contains two constraints that target the adminServer and svnAgent tiers. These
constraints predicate on the maximum number of replicas that these tiers can support.
In this case the requirements constraint both tiers to have only a single replica. These
kind of constraints are due to the technology chosen to implement some of the com-
ponents. SVN, for example, is a centralized monolithic technology that assumes the
use of a single central server. We call this type of limitations Architectural constraints.
These constraints do not predicate on quality aspects of the application as seen by
the final user, as opposite to the response time constraint described above, but define
characteristics that a deployment solution must fulfill that are derived by architectural
choices. Some of the concepts presented in this meta-models have been integrated in
MODACloudML [13] .

This diagram adds some more information on how the application will be deployed
on the target infrastructure, as an example Figure 3.6 specifies that all the three tiers
composing the application are hosted on groups of VMs, called Nodes, but still does
not make any commitment to a choice of services of a particular cloud provider. Mod-
els at this level of abstraction are called Cloud Provider Independent Models (CPIMs).

3.3 Modeling the Cloud

In the previous section we have modeled aspects of the application that do not relate
to any particular cloud technology or provider. In order to derive a final design of the
application that can actually be deployed in a cloud environment, either manually or
by means of some automated tool, we need to enrich the previous models with cloud
specific information. The approach followed up to now is a common practice in the
context of Model Driven Engineering and many tools support modeling applications in
similar ways. In the next Section we introduce some modeling extensions that we have
developed in order to describe the cloud environment. These extensions have been
built in the form of a meta-model whose elements can be used along with the models
previously presented to enrich them with cloud specific concepts. The main goal of this
meta-model is to describe the core relations among cloud services from the functional
and non-functional point of view, allowing the construction of a model repository from

31

Figure 3.6: Deployment Model at CPIM level

which the software architect can pick the required service. The repository is also used
during the deployment optimization process to evaluate alternative services selections.
The meta-model has been used to create a model repository that has been integrated in
the tool used to develop this case study allowing the software architect to specify the
cloud specific entities as UML elements.

Figure 3.7 shows a deployment configuration in which each tier, modeled in Fig-
ure 3.6, has been assigned to a VM hosted on Amazon EC2. In particular for the
adminServer an instance of size c3.large has been selected; for the svnAgent, the com-
ponent that hosts most of the computation and whose number of replicas is limited to
1, an instance of size c3.4xlarge has been chosen; finally the lightweight and scalable
httpAgent has been assigned to instances of size m3.xlarge.

The selection of resources provided in this diagram along with the performance
characteristics of these resources contained in the resource model allows us to derive a
complete performance model that can be used to analyze the QoS of the application.

32

Figure 3.7: Deployment Model at CPSM level

3.4 Modelling Cloud Specific Concepts

The models introduced in previous sections of this chapter allow to describe the ar-
chitecture of an application by focusing on different aspects. Here we present a meta-
model that has been introduced to further enrich application models, in particular the
deployment model, by including cloud specific concepts. This meta-model is intended
to bridge the gap between the application specification and the cloud infrastructure by
allowing users to select generic cloud services or specific cloud resources to host their
application tiers. A generic selection of a service, e.g., specifying a database technol-
ogy, can be used to guide further refining of the model and drive the implementation
of the application. A specific selection of a cloud resource, e.g., using a certain type of
VM offered by a particular provider, allows to estimate the performance of the appli-
cation and its cost. This model is used to identify the relations between the different
cloud services offered by providers and provide information about the performance
and cost characterization of such services.

Following the same methodology used in previous sections, we designed the model
in order to provide different levels of abstraction, the highest one being the Cloud

Provider Independent Model or CPIM. This level of abstraction is more specific than
the CCIM used in Section 3.2 since it allows to specify concepts specific to the cloud

33

domain like VMs or PaaS services but still hides the details of a specific cloud provider.

3.4.1 Cloud Provider Independent Model

Figure 3.8 shows the main elements of the meta-model and their relations. This model
has three main components: the CloudProvider, the CloudService and the CloudEle-

ment. The CloudProvider represents the entity, usually a company, that provides some
CloudService. Many modern cloud providers, like Amazon, Google or Microsoft offer
many different kind of cloud services, a common way to group together these kind of
servicing is by distinguishing services that offers computational or storage infrastruc-
ture, IaaS-Services; managed execution platforms for user code, PaaS-Services and
complete software solutions, SaaS-Services. These services are usually composed by
may different elements that cooperate together in the cloud provider environment, this
scenario has been modeled by means of a general CloudElement component that is
further specialized in CloudIaaSResource, CloudPlatformResource or CloudSoftwar-

eResource. A set of runsOn relations between the CloudSoftwareResoruce, the Cloud-
PlatformResource and the CloudInfrastructureResource models internal dependencies
between the services offered by cloud providers. This dependency is not always visible
to the final user but some providers give details about the infrastructure used internally
to provide platform or software services for billing purposes.

CloudElements represent resources that the user can acquire from cloud providers
at a cost. In order to model different billing strategies introduced by many cloud
providers we introduced a CostProfile element related to each CloudElement. Each
CostProfile is composed by a set of Cost elements that represent the basic billing unit
applied to the specific CloudElement. Different CloudElements can be priced accord-
ing to the type of service they provide, VMs for example are priced per hour of usage,
Databases are priced by number of transactions and Network resources are priced by
GB of data transferred. Using multiple Cost elements each with its own unit type as-
sociated to the same CostProfile allows to take into consideration this variety of billing
mechanisms. The Cost might have a validity period in order to model resources whose
cost changes with the time of the day, like Amazon Spot Instances1. Upper and lower
bounds can be used to define specific ranges over the specified unit in order to rep-

1https://aws.amazon.com/it/ec2/spot/

34

Figure 3.8: Cloud Meta-Model - General Concepts.

35

lowerBound upperBound Cost Type For X Units

null null Fixed cost, no range

A null Cost relative to the range X ≥ A

null B Cost relative to the range X < B

A B Cost relative to the range A ≤ X < B

Table 3.1: Cloud Meta-Model - Cost Ranges

resent discounts applied when utilizing a large amount of resources (see Table 3.1).
The FreeQuota element models a common practice of cloud providers that provide a
limited amount of resources free of charges to their users.

PaaS-Services provide complete execution platforms for many different languages
and technologies. The management of such platforms and of the QoS provided by
them is usually delegated to the cloud provider which implements some AdaptivePol-

icy to react to dynamic behavior of the environment like variable number of user. IaaS-
Services allow users to write their own AdaptivePolicies and delegate to the cloud
provider their actuation. These policies are defined on sets of IaaS-Services used to
host the application code. Common actions implemented in AdaptivePolicies operate
either on the type of resources used to host the application or on their type. A common
scenario related to IaaS-Services is the scaling of VMs. In an homogeneous Resour-
cePool of VMs a scaling action might increase (or decrease) the amount of instances
performing horizontal scaling. Another common adaptation action is to change the
type of VMs used by adopting more (or less) powerful instance types, this action is
called vertical scaling.

Figure 3.9 further expands the CloudElement concepts by adding some information
about the physical location of the resources offered by the CloudProvider. In particular
each CloudElement is hosted in a particular Location. Many cloud providers group
resources in a particular area of the world into a Region, inside the region multiple
datacenters, or multiple areas of a single datacenter are managed as SubRegion. Being
aware of the location in which key components have been deployed is critical for many
applications. In sensitive domains like health care regulations do not permit sensitive
data to leave a certain geographical zone so the user must be able to take this constraint

36

Figure 3.9: Cloud Meta-Model - Locations

into consideration when choosing which provider to use. In the context in which a low
latency is a key factor, like online gaming, being aware of the proximity of the infras-
tructure used to host an application and the final user is also of critical importance.
Finally, if availability is of critical importance replicating the application on multiple
SubRegion or Regions provide an effective way to avoid main outages that could affect
datacenters.

Figure 3.9 also expands the CloudIaaSResource showing two resource types. The
Compute element represent VMs while the CloudStorage element represent a data stor-
age service. A group of homogeneous VMs constitute the ResourcePool of Figure 3.8.
Each VM has an internal storage used for its operating system and other CloudStorages
can be attached to provide additional space for user or application data.

Figure 3.10 expands the meta-model by adding details related to the IaaS offer-
ing of cloud providers. The two basic infrastructure services offered by all the cloud
providers are a Compute engine, composed of different type of VMs and a Storage

37

Figure 3.10: Cloud Meta-Model - IaaS Cloud Resource

service that allows to save application and user data. Storage services are usually of-
fered as file systems attached to some VM or as Binary Large Object (Blob) storage.
Different Cloud Elements communicate through links, usually Links that represent the
networking infrastructure internal to the cloud provider. VMs are usually grouped in
ResourcePools, sometimes referred to as autoscaling groups. Resource Pools are used
to host application tiers and provide services like load balancing across the VMs of the
pool or monitoring. As shown in Figure 3.8 the actual number of instances in a pool
can be controlled by applying adaptive policies. Another way to specify the amount of
resources used in each pool is to perform a static partitioning of the time frame, usu-
ally one day, into discrete periods called Allocations. We used 24 allocation periods
of 1 hour each, and define the exact number of replicas for each of these periods. A
collection of non overlapping allocations constitute an Allocation Profile.

Cloud Elements, like VMs or Blob Storages, represent virtual resources that are
hosted on the cloud provider premise on a variety of different hardware. The internals
of the cloud provider datacenter used to host the virtual infrastructure is usually not
known to the user, nevertheless it is important to be aware of possible performance

38

issues due to shared nature of the cloud infrastructure. The Efficiency Element cap-
tures this behavior by providing two ways of considering performance variability. The
most simple way is to use an Efficiency Factor that is used during analysis to reduce
the performance of the affected cloud resource from their nominal value. The more
advanced way is to use a Random Environment, described in [29], that allows to take
into consideration more complex scenarios like VM failure and recovery.

Figure 3.11: Cloud Meta-Model - Cloud Platform Service

Figure 3.11 expands the Platform as a service offering of cloud providers by intro-
ducing five main type of PaaS services. Frontend and Backend services are similar to

39

compute engines in the IaaS environment, in fact they offer a computation resource on
which to run user code. These services are usually backed by a pool of VMs managed
by the cloud provider itself. The Cache service is used to store frequent access data in
order to speed up the execution of some functionality of the application, many different
caching technologies like Memcached 1 or Redis 2 are supported by cloud providers.

Many different type of Databases are supported by modern cloud provider, beside
traditional Relational databases that support SQL access many NoSQL technologies
are provided as platform services. Leveraging database PaaS services users have an
interface to upload their data and submit queries but do not need to deal with the in-
frastructural complexity underlying the chosen database technology. They can also
leverage functionality like data replication or backups managed by the cloud provider.
Among the NoSQL databases we can identify some very popular technologies that
are widely supported by cloud providers. These include Key-Value Stores, that al-
low to store a piece of information with a given key and retrieve it very efficiently;
ColumnStores that organize data in columns, instead of rows as happens in relational
databases, this technology if particularly efficient for analytic applications that calcu-
late aggregates of values in the same column; Document Stores are used to manage
semi structured data; Graph databases are used to host object oriented entities; finally,
MultiModel databases are hybrid technologies that provides characteristics of multiple
of these technologies.

Queue services are used to decouple application components. Queues can use to
host Messages, either containing user requests or internal to the system or Tasks that
have to be scheduled for execution.

In order to provide a persistent storage Queues and Database might rely on the IaaS
CloudStorage service offered by the provider.

3.4.2 CPIM for Private Cloud specification

When a company decides to move to the cloud it rarely abandons completely its pre-
vious infrastructure but usually adopt a gradually the new technology. This leads to
hybrid situations in which both the private infrastructure and the public one coexist.

1http://memcached.org/
2http://redis.io/

40

To allow users to specify these kind of scenarios we have enriched the cloud meta-
model presented in the previous section introducing elements that allow to specify a
Private Cloud infrastructure. The main difference between the public and the private
cloud is that in the latter one the user is aware of the physical infrastructure that can
be specified in terms of Hosts. Each host is characterized by specific performance
parameters. In order to hide the heterogeneity of different hosts usually some virtu-
alization technology is used. The virtualization platform allows the user to manage
virtual resources, like VMs, in the same way he/she manages them in the public cloud.
A common strategy adopted by virtualization platforms to achieve high utilization of
the physical infrastructure is to expose to the user more resources than those that are
actually available in the physical servers, a density factor associated to each host can
be used to specify how many resources are allowed for overbooking. This strategy is
usually implemented also by public cloud providers, the main difference is that in a
private cloud the density factor is known and has to be take into consideration when
calculating the amount of virtual resources the private infrastructure can host. Another
key difference of the private environment, with respect to the public one is that the cost
of the infrastructure is mostly related to the energy consumption of each host, taking
into consideration also the energy used for cooling purposes.

3.4.3 Cloud Provider Specific Model: The Windows Azure use case

Cloud Provider Independent Models can be used to specify some characteristics to an
application that will be deployed in a cloud environment. These characteristics include
many technological choices that can be used to drive the implementation and to have
a better understanding of the management efforts of the operations team. Still these
models do not provide all the information needed to deploy the application, the main
deployment decision that has been postponed to the very end of the design process
is the choice of the actual provider onto which deploy the application. This decision
is complex and needs to take into consideration not only technical and economical
aspects but might involve also business constraints and limitations imposed by the law.
In order to specify a complete deployment the user needs the ability to select a specific
technology offered by a cloud provider. In the Constellation case study, for example,
we saw on Figure 3.7 that the user choose to deploy the svnAgent tier on a VM of size

41

Figure 3.12: meta-model for the specification of private clouds

c3.4xlarge offered by Amazon.
The models presented in this section are a specializations of the previous model

built to represent a particular cloud provider, in this case Microsoft Azure, and are
called Cloud Provider Specific Models (CPSM). By specifying objects taken from this
meta-model users provide all the information needed to deploy the application. This
meta-model also stores performance characteristics of each resource that can be used to
build a performance model and provide an estimation of the application performance,
and cost, at design time.

Figure 3.13 shows specific PaaS and IaaS services offered, as an example, by Win-
dows Azure1. Web Role and Worker Role are examples of PaaS-Services as they both
provide platforms that can host Frontend and Backend services, respectively. Virtual

1The providers analyzed in this thesis and supported by the tool are: Amazon, Google, Microsoft
Azure, Flexiscale, ProfitBricks, CloudSigma, Heroku and Pivotal

42

Machine, Azure Blob, Azure Drive are IaaS-Services, while Azure Table and SQL
Database are PaaS-Services. They provide virtual machines, blob storage, volume
storage, NoSQL and SQL databases, respectively.

Figure 3.13: Azure CPSM - General overview.

Figure 3.14 shows the derivation of the CPSM associated with the Azure Blob

43

and Azure Drive from the CPIM. Azure Blob and Azure Drive are IaaS services
offered by Azure, they both relate to the generic Cloud Storage service of the CPIM
model. In particular Azure Blob Instances are concrete realizations of a Blob Storage

Service while Azure Drive Instances are an implementation of the File System Storage

service.
Figure 3.15 shows a similar expansions of CPIM models into CPSM models with

a focus on PaaS services, in particular on Database services that are mapped to SQL

Database and Azure Table services. SQL Database and Azure Table are two PaaS-

Service realisations and composed of SQL Database Instances and Azure Table In-
stances, respectively. SQL Database instances offer Relational DBs, while Azure Ta-
ble instances offer NoSQL DBs, so both of these instance types are Database Cloud

Resources.
Another specification of PaaS services is offered by Figure 3.16. Web Role and

Worker Role are two PaaS-Service realisations composed of platforms running on
one or more instances. Worker Role Platforms run on Worker Role Instances and
Web Role Platforms run on Web Role Instances. Worker Role Platforms relate to
Backend Cloud Platforms at CPIM level, while Web Role Platforms are related to
Frontend Cloud Platforms.

Figure 3.17 expands the IaaS offering of Azure for what concerns the Compute

service. The Virtual Machine service is composed of several Virtual Machine In-
stances, which are Compute resources. Many types of instance are offered by Azure,
Figure 3.17 only shows some of them, like Extra Small Instance, the Small Instance
and the Medium Instance.

Figures 3.18, 3.19 and 3.20 shows more details related to the virtual machine offer-
ing of Microsoft Azure. In particular, Figure 3.18 shows that the Virtual Machine has
a Virtual Machine Pricing model, derived from the CPIM Cost Profile, which might
be composed by multiple cost elements with different validity periods (e.g. different
hours of the day). It is also possible to define Azure Scaling Policies on Azure Scaling
Groups, which are realisations of CPIM Adaptive Policies and Resource Pools.

Figure 3.19 details the Virtual Machine Medium Instance type. A pool (Azure
VM Pool) of Virtual Machine Instance can be associated to Allocation Profiles (Azure
Allocation Profile), which keeps track of how many instances are allocated in a given
time period. Information about the Location of the instances like the Azure SubRe-

44

gion specification are also available. For the performance point of view the virtual
resources are characterised by their own Efficiency Profiles, which specify how their
efficiencies vary in a given time period.

Finally, Figure 3.20, shows cost and performance details related to the Azure Ex-

ample Medium Instance. This instance is characterised by a Cost (Azure Medium
VM Windows Cost), an Operating System, CPU, Memory and Storage. This diagram
also shows that the instance is located in the North Europe SubRegion (North Europe
in the figure) within the Europe Region (Europe in the figure).

45

Figure 3.14: Azure CPSM - Blob and Drive Storage overview.

46

Figure 3.15: Azure CPSM - SQL Database and Table overview.

47

Figure 3.16: Azure CPSM - Web and Worker Roles overview.

48

Figure 3.17: Azure CPSM - Virtual Machine overview.

49

Figure 3.18: Azure CPSM - Virtual Machine details.

50

Figure 3.19: Azure CPSM - Virtual Machine Instance details.

Figure 3.20: Azure CPSM - Virtual Machine Medium Instance example.

51

3.5 Modeling the Quality

As introduced in Chapter 1, the core of our approach is an optimization procedure
that automate the selection of cloud services in order to minimize cost and guarantee
QoS. For this reason, we included in the modeling phase some elements that allow the
application architect to specify quality goals that the application should achieve. These
requirements can be specified at all levels of abstractions by the use of QoS Models.

At CCIM level, interfaces exposed to the final user, as well as internal to the system
itself, can be annotated with QoS properties. In particular the user can specify con-
straints on the QoS as shown in Figure 3.21. This figure shows five constraints related
to the response time of the application. Constraints HTTPAgentReadModelAverage and
HTTPAgentReadModelPercentile, whose details are shown in Figure 3.21b, target the
partialRead functionality offered by the IReadOnlyModelFragment interface. These
constraints specify that a model partial update has to be executed on average within 5
seconds and that the probability of such a request to be executed within 12 seconds is
at least 85%. Figure 3.21a shows three similar constraints defined over the update and
commit functionality of the IReadWriteSVNModelFragment interface. The main con-
straints considered to define the quality of the application are related to the response
time of the functionalities offered to the user and the availability of the application.

At CPIM level, other type of constraints related to the architecture of the applica-
tion can be specified. These constraints include the minimum and maximum amount
of memory and number of cores required by a tier, the required operating system and
the location of the service. Also constraints on the maximum CPU utilization level, for
VM services, can be specified.

At CPSM level, the application architect can explicitly avoid the use of certain type
of services (e.g. VMs of size m3.small) or prohibit the use of some cloud providers.

52

(a) QoS Constraints Association
(b) QoS Constraints Values

Figure 3.21: QoS Constraints

53

Chapter 4

Design Methodology and Optimization
Approach Overview

Previous chapters have introduced the problem we want to solve (Chapters 1 and 3)
and the modelling technology we use to tackle it (Chapter 3). This chapter introduces
our approach in more details. Embracing the model driven methodology we make
use of specific types of models in different stages of the process. We begin with the
specification of high level design models as shown in Sections 3.2 and 3.3 to ease
the modelling effort of the user. We then derive a performance model from the high
level specification in order to analyze the QoS of the proposed design and deployment.
This separation of concerns between the two different modelling technologies allows
to simplify the interaction with the two models and is reflected in the architecture of
the tool. Hiding the complexity of the performance model to the user allows him/her to
focus on the design of the architecture leaving the synchronization of the design model
to the performance model and the interpretation of its results to the tool.

In the remainder of this Chapter we overview the proposed modeling workflow
in Section 4.1 and then we introduce the optimization approach that we developed to
solve the minimum cost deployment problem, in Section 4.2.

54

Figure 4.1: Main modeling steps in the SPACE4Cloud approach.

4.1 QoS-Oriented Design Methodology

Figure 4.1 shows the main steps of the modeling approach adopted by SPACE4Cloud.
The left side of the picture shows the steps performed in the selection of the cloud
offering to consider for the development of the application. These steps can be per-
formed by cloud service provider in order to add their services to the public offering or
by an independent quality assurance analyst. This activity is independent of the devel-
opment of a particular application and its results can be re-used for the development of
many applications. The outcome of these activities is a set of models that describe the

55

available cloud offerings and can be used in the definition of the application deploy-
ment. The SPACE4Cloud tools comes with some pre-built models of many popular
cloud provider that come as result of such an analysis.

The right side of the of Figure 4.1 shows the main modeling cycle performed in the
design of a cloud application. These steps include requirement elicitation, application
and workload modeling and deployment optimization. All these pieces of information
are required by SPACE4Cloud to perform architectural analysis and the optimization
process.

4.1.1 Definition of the characteristics of the candidate cloud ser-
vices

To support the analysis an optimization of deployment choices performed by SPACE-
4Cloud all the services that could be used by the application have to be modelled and
details related to their cost and performance need to be available. Collecting such char-
acteristics is usually a complex task due to the complexity of the cloud offerings, in
terms of different cost models of similar services and to the lack of information pro-
vided directly by the cloud providers. For the performance point of view, for example,
many cloud providers give some information on the number of cores or amount of
memory of the VMs they are offering but they usually lack a description of the pro-
cessor used to host the machine and the effects of the shared and virtual environment.
To overcome this limitation many approaches, like the ARTIST project [19], involve
benchmarking of different cloud services. In SPACE4Cloud we assume that this infor-
mation is available and provided by a third party that might not be involved in the ap-
plication modelling activity. The meta-models presented in Figure 3.8 to 3.20 of Chap-
ter 3 allow developers to specify performance information of many cloud services. This
information can be shared in a common repository by multiple users of SPACE4Cloud
and updated periodically to add new cloud services or to increase the accuracy of the in-
formation of those already available. SPACE4Cloud comes with a Resource Model da-
tabase, that stores information in the meta-model presented in Chapter 3. This database
has been populated with the data that comes from the ARTIST project and with some
manual gathering of information from coud providers websites. Currently the sup-

56

ported cloud providers are: Amazon AWS1, Microsoft Azure2, Flexiscale3, Google4,
Heroku5, Pivotal6, ProfitBricks7, and CloudSigma8.

4.1.2 Modelling

In order to analyze the behavior of the application and derive a deployment solution
SPACE4Cloud needs some knowledge of the application as well as of the incoming
workload. The modeling formalism used to provide these information has been intro-
duced in Chapter 3, we will give here a brief overview of the steps needed to provide
the required information without entering again in the details of the modeling language.
The first task in our modeling approach is to Acquire Requirements (see Figure 3.21a)
for the application, that can be functional or non-functional requirements arising from
the business level. Some of these requirements can be input directly in the model
and will be taken into consideration by the modeling tool, others are only used by
the development team to build a meaningful model of the application. An example
of a requirement that can be gathered in this phase is a QoS requirement on the av-
erage expected execution time of a critical functionality. A functional requirement,
for example, might derive by a particular technological choice performed by the soft-
ware architects, e.g., the use of a centralized technology like SVN that impose some
limitations on the maximum number of replicas of a particular component. In the Con-
stellation case study introduced in Chapter 3 we see an example of a QoS requirement
depicted in Figure 3.21, in this case the critical functionality is parialRead that is used
to provide a quick update of a model and the required average execution time has to
be lower than 5 seconds. Other constraints gathered in this phase might require a min-
imum level of availability for the entire system. These constrains are used directly by
the optimization approach to drive the search for feasible solutions and can be used
also by the development team to make some further considerations on the evolution of

1http://aws.amazon.com/
2http://azure.microsoft.com/it-it/
3http://www.flexiscale.com/
4https://cloud.google.com/
5https://www.heroku.com/
6http://pivotal.io/
7http://www.profitbricks.com/
8http://www.cloudsigma.com/

57

the application architecture.
After requirement elicitation the development team proceeds to Model the Appli-

cation and Model the Load. These phases can be performed in parallel by different
figures of development team. The first phase is usually performed by software archi-
tects that derive an initial architecture for the system by considering the requirements
and their knowledge of the business environment, possibly interacting with domain
experts. During this phase software architects might add other constraints related to
the choice of a particular technology or design pattern building the architectural model
shown in Figure 3.2 and the orchestration model of Figure 3.3. Recalling again the
Constellation case study of Chapter 3, the use of the SVN technology to implement
one of the application components comes with the definition of a new requirement on
the scalability of the tier hosting that component. Since SVN is a centralized technol-
ogy only a single replica of the SVN server component is allowed to exist. The second
phase is focused on providing an estimation on how the system will be used by the
customers by building a Usage model similar to the one presented in Figure 3.4. This
phase requires a deep knowledge of the business domain and might require inspec-
tion of legacy systems or other systems in a similar domain to understand their typical
usage pattern and report it to the current application model under development.

The third phase combines the information provided in the application and load
model with the performance information stored in the repository of cloud services in
order to find the optimal allocation of application components to cloud services. In our
approach this step is completely automated by SPACE4Cloud and takes into consid-
eration both the QoS requirements gathered in the first phase and those added during
application modelling. The outcome is a more refined model of the application that
could be directly used to drive the deployment of the system along with a performance
characterization of the expected behavior of the application.

4.1.3 Reiteration

The models derived by the optimization of the allocation of cloud services are com-
plete enough to initiate a deployment of the application, either by hand or by using
some automated tool, but in many cases the development team would prefer to fur-
ther inspect those models in order to refine the application, the requirements or inspect

58

some other workload conditions. By reiterating the modeling phases, development
teams can increase their knowledge of the system and come up with better alternative
architecture or more informed deployment decisions. In Chapter 8 we will see how the
reiteration of the application modeling phase on the Constellation case study brought
to a better architecture that is capable of supporting a much higher workload and make
a better use of the scalability offered by the cloud environment.

4.2 Hybrid optimization architecture

SPACE4Cloud delegates to other tools, namely Palladio Bench and Creator4Clouds,
most of the modelling interactions with the user. Palladio Bench1 is a state of the
art modeling tool focused on early performance, reliability, maintainability and cost
prediction of software artifacts developed by Karlsruhe Institute of Technology (KIT),
FZI Research Center for Information Technology and Paderborn University. In the
case of Palladio Bench, in particular, SPACE4Cloud has been seamlessly integrated in
order to obtain performance evaluation results.

Creator4Clouds is the main component of the MODAClouds IDE, build during the
MODAClouds European project as an extension of Modelio2.

Leaving the modelling aspects to other tools SPACE4Cloud can reduce its interac-
tion with the user mostly to the specification of analysis and optimization configura-
tions.

As shown in Figure 4.2, SPACE4Cloud takes as input an Enriched PCM, de-
scribed in Section 3.2. Such a model can be build using either Palladio Bench or
Creator4Clouds, the latter tool offers more support to the definition of cloud related
characteristics of the model.

SPACE4Cloud has been developed as a plugin for the popular Eclipse IDE, it is
coupled with Palladio since it exploits its transformation engine to derive the LQN
performance model from the design model. Once the performance model has been
derived, the execution of SPACE4Cloud proceeds independently of Palladio acting
directly on this model and maintaining an internal representation of the application
in order to perform analysis and optimization. The final solution generated by the

1http://www.palladio-simulator.com/
2https://www.modeliosoft.com/

59

Partial Solution Cache

MILP solver

Initial Solution
Builder

Enriched
PCM

Optimized
Solution

SPACE4Cloud

LQN solver

Multi-thread connectors

MILP Solver
connector

Creator4Clouds

Cost and Feasibility Evaluator

Tabu-Search Optimizer

Palladio Bench

LQN

Palladio

Eclipse

Enriched PCM

Perturbation

Iterated Local
Search

Comparison

SolutionNew Solution

Best Solution

Resource
Model DB

Figure 4.2: SPACE4Cloud architecture.

optimization is then exported back in the Enriched PCM model format in order to be
inspected and eventually modified by the user.

The architecture of SPACE4Cloud is closely related to the design of its optimiza-
tion strategy. The main component, shown in Figure 4.2 is the Tabu-Search Optimizer.
This component implements all of the optimization algorithms described in Chapter 7.
In order to support an efficient execution of the heuristic search and to provide other
auxiliary functionalities to the user, many other components have been developed. In
particular the Initial Solution Builder hosts the relaxed formulation of the optimization
problem shown in Chapter 6. This component creates an instance of the optimiza-
tion problem by considering a simplified performance model based on M/G/1 queuing
networks and the QoS constraints. This instance is then solved by using an external
MILP Solver. In order to support commercial as well as open source solvers, all the
interactions with this service have been decoupled from the Initial Solution Builder
introducing the MILP Solver Connector component.

The goal of the Initial Solution Builder is to perform a quick analysis of the entire
optimization space and derive an initial solution for the heuristic problem.

The Tabu-Search Optimizer operates by modifying the initial solution to assess its
feasibility against the more accurate LQN performance model and then optimizes it
to reduce its operational cost. This method draws its inspiration from both Tabu [39]
and Iterated local search [58]. More details on the algorithms implemented in this

60

component can be found in Chapter 7. A similar approach, in which a relaxation of
the problem is used to generate a good initial solution for an heuristic search, has been
successfully applied in [48]. An analysis on the impact on the initial solution on the
optimization has been reported in [17] and more details can be found in Chapter 8.

During the optimization process the Tabu-Search Optimizer generates many solu-
tions exploring different deployment alternatives. This component generates several
LQN performance models that represent a candidate solutions and relays on the LQN

Solver to derive performance metrics. In order to effectively evaluate these solutions
we have added few layers that decouple the interaction with the LQN Solver. Solving
a single LQN model involves a computational intensive process and in fact represents
the main bottleneck of the optimization, the main goal of the layers that mediate the
interaction of the Tabu-Search Optimizer with the LQN Solver is to reduce as much as
possible the actual number of evaluations performed.

The first layer, the one that interacts directly with the Tabu-Search Optimizer, is
the Cost and Feasibility Evaluator. It has the responsibility of comparing the perfor-
mance metrics derived by the LQN analysis against the constraints defined by the user
and asses the feasibility of the solution. Another important feature of this component
is related to the evaluation of the cost of the application. To this end the Cost and

Feasibility Evaluator inspects the types and replicas of the solutions used to host the
application and interacts with the Resource Model Database in order to retrieve the
cost of each resource and calculate the cost of the entire solution.

The heuristic search described in Chapter 7 implements some well established tech-
niques to avoid cycling into already explored solutions and avoid as much as possible
to re-evaluate solutions already explored. Nevertheless in some situations the Tabu-

Search Optimizer might require the solution of a performance model that has already
been evaluated in earlier stages of the optimization. A simple situation in which such
a behavior might occur is the case of two models of different hours that share the same
workload. When evaluating deployment choices for these hours the heuristic algo-
rithms will try to solve the two problems independently, generating similar solutions.

Recognizing these situations and re-using results of previous evaluations can greatly
reduce the number of actual interactions with the LQN Solver and reduce the optimiza-
tion time. The Partial Solution Cache component has been developed with this objec-
tive. When the evaluation of a performance model is requested this component looks

61

at its internal memory to see if an equivalent model has been previously evaluated and,
in that case it forwards the results of the previous evaluation to the Cost and Feasibil-

ity Evaluator component. If, on the other hand, there is no equivalent instance of the
performance model previously evaluated, the request for the evaluation is forwarded
to the LQN Solver. When the evaluation has been completed the result of the analysis
is added to the memory. Since a complete optimization might involve the solution of a
large number of performance models, from several hundreds to a few thousands, stor-
ing all the results of the evaluation in memory is not a viable option. To this end the
Partial Solution Cache builds an hash of the models that it receives as input and relies
on a memory structure to hold pointers to files containing the result of the evaluations.
In such a way the memory footprint of this component is greatly reduced.

Finally, in order to exploit the parallel architecture of modern computers a Multi-

Threaded Connector is used to manage different LQN Solver at once. SPACE4Cloud
supports LQNS [35] and LINE [67] as LQN Solver. Beside their functional differences,
the two solvers also differ in the way they communicate with SPACE4Cloud. LQNS
is an executable that receives as an input the path to a LQN model to analyze and
produce a file with the result of the evaluation. LINE, on the other hand, acts as a server
receiving evaluation requests using socket connections. From the point of view of the
parallel evaluation of different models, a single instance of LINE can be used while
for LQNS a separate instance has to be launched for each model. The Multi-Threaded

Connector takes care of all of the interactions with the solver and synchronizes the
evaluation of all the models composing a solution.

In all our experiments we choose to use LINE as performance engine because of
its ability to take into consideration variability in the performance of processing re-
sources by means of Random Environments [29]. Random environments are Markov
chain-based descriptions of time-varying operational conditions. The evolution of such
conditions is independent of the system state and model the exogenous variability in
a cloud deployment. Each processing resource of the LQN model generated by the
application architecture is associated to a Continuous Time Markov Chain (CTMC) in
which each state represent a certain performance level. A simple two state CTMC, for
example, could model situations in which the shared physical resource is under heavy
or low contention. This ability is quite important in our view since the cloud infras-
tructure is usually shared among multiple users and complete independence from the

62

actions of other users, from the performance point of view is not always possible. An-
other important feature provided by LINE is the ability to derive not only averages but
also percentiles of the distribution of the response time of the application. This ability
allowed us to include this metric in the definition of QoS constraints giving the user a
more powerful way to control the quality of its application.

Another key component of the architecture is the Resource Model Database. This
component hosts performance and cost information of cloud resources supported by
the tool. Many components interact with this database, in particular Creator4Clouds
integrates it in order to provide the user a list of supported resources to use when
modeling the application. The database includes benchmark results of the ARTIST1

European project in order to assess the performance of VMs offered by the supported
cloud providers. The Initial Solution Builder uses it to retrieve performance and cost
information of the available resources to be used as parameters of the relaxed problem.
The Tabu-Search Optimizer uses it to retrieve performance information needed to se-
lect which type of resource to use for the deployment and update the LQN performance
model. Finally, the Cost and Feasibility Evaluator uses the resource cost in order to
evaluate the cost of a given solution.

1http://www.artist-project.eu/

63

Chapter 5

Optimization Problem Formulation

As discussed in Chapter 1, when it comes to deploy an application in cloud environ-
ments the development team is faced with many possible deployment alternatives. If
the team is also concerned about the availability of its application and decides to repli-
cate it on multiple providers the problem becomes even more complex.

In the remainder of this chapter, as introduced in Chapter 1, we will use the term
user to identify the development team involved in the use of our approach to build a
multi-cloud application.

In the example of Section 3.3, the user chooses to deploy the application on a single
cloud provider, Amazon, and to deploy the adminServer tier in a VM of size c3.large,
the httpAgent on a set of VMs of size m3.large and the svnAgent on a VM of size
c3.4xlarge.

We have seen that a complete description of a deployment configuration requires
mostly three choices: which type of cloud resource (e.g. size of VM) assign to each
tier of the application; how many replicas of such a resource to use for each hour of
the day; how to forward the incoming requests on the available providers, if we are
considering a multi-cloud scenario.

An analysis of the deployment choices we made in this example can give us some
information on the expected QoS of our application. If we find out that some of the
constraints introduced in the model are not met by our deployment we might reconsider
some deployment choices (e.g., we could decide to use more expensive and powerful
VMs or increase the number of replicas). Refining our deployment configuration in
an iterative way by analyzing several alternatives is a very tedious and long process.

64

Moreover, performing a manual exploration, we will only be able to analyze a very
limited subset of the possible deployment configurations so we are likely to miss some
more effective deployments.

We can try to automate the generation of the deployment configuration by formal-
izing the problem and solving it. A rigorous mathematical problem formulation can
help us in two ways. From a very practical point of view, if we are able to express the
problem in a closed form, we can try to solve it using state of the art tools and analyze
manually only the deployment configurations derived by the solution of the problem.

Even if we are not able to provide a formulation of the problem that can be ef-
fectively solved with standard methods or tools we might learn some insights of the
structure of the problem to drive our search for good solutions.

According to the Model Driven Approach introduced in Section 3.1, such a for-
malization of the problem can be seen as a specification of our application along with
its constraints in a different modeling formalism. As we build an LQN model for the
application and use established tools and techniques to perform QoS analysis, we de-
scribe our problem in the mathematical domain and use tools developed in that domain
to analyze our problem. This analysis is the main focus of this chapter.

The remainder of this Chapter introduces the problem, in Section 5.1, in order to
provide some context and relate the main variables and parameters to those defined in
the Constellation case study of Chapter 3. We then provide the analytic formulation of
the deployment problem, in Section 5.2 and an equivalent formulation that shows our
problem to be NP-hard in Section 5.3.

5.1 Problem definition

As shown in Chapter 3, applications are modeled with a component based approach
where each application component contains a closely coupled set of functionality. The
definition of the scope of a components is a complex task performed by the software
architect in the modeling phase. Components provide a logical separation of concerns
of the responsibility of different parts of the application and usually require some in-
terconnection in order to provide their functionality. Components are grouped into ap-
plication tiers, like the Administration Server in our case study, that represent a single
deployment unit. Tiers are allocated on a cloud service, considering the Constellation

65

case study the Administration Server tier is allocated to a pool of VMs. In general
tiers represent dynamic elements with characteristics that can vary in order to handle
dynamic changes in the application environment, such as a sudden increase or decrease
of the incoming workload.

The goal of our problem is to find the cheapest configuration of cloud services (in
case of IaaS services the number and type of VMs for each application tier) capable to
fulfill QoS requirements and service allocation constraints for each hour of the refer-
ence day. As introduced in Chapter 3, QoS constrains predicate on the performance of
the application as experienced by the user, while service allocation constraints predi-
cate on the technological requirements e.g., minimum amount of memory required by
a component, provided by application architects. These constraints are specified at the
CPIM and CPSM level as shown in Section 3.5.

5.2 Analytic Formulation

As previously introduced, an application is hosted on a set of cloud providers P and
divided into tiers, denoted by I, that support the execution of application components.
Each tier consists of multiple homogeneous resources, like VMs in the IaaS scenario,
that shares evenly the incoming workload. Let V be the set of available types of re-
sources (e.g., Amazon EC2 m3.medium, c3.large, etc.1) offered by provider p and T a
set defined by the N time intervals in which the reference day has been split (i.e., 24).
Each resource type v ∈ V is characterized by the corresponding model stored in the
Repository of cloud services. This model stores cost and performance information like
the price of the resource Cp

v,t, which might change over the time horizon, the memory
sizeMp

v and some other performance information like the number of cores or the speed
of the processing resource that will be used in Chapter 6. Each user interacts with the
application executing a chain of requests according to the defined end users’ behavior
model, like the one in Figure 3.4; the set of possible requests is referred to as K. Each
request k ∈ K, in turn, is characterized by a probability to be executed, derived from
the users’ behavior model, and by a set of components supporting its execution (i.e.,
its execution path [15]). The incoming requests that the application has to process in

1http://aws.amazon.com/ec2/instance-types/

66

a particular time interval is described by Nt, with t ∈ T. This workload is split non
uniformly among all the available providers, the amount of workload processed by
each provider is Np

t . If the user is concerned with the availability of the application
and decides to use a multicloud deployment the minimum number of provider that the
optimization should select is given by H and the minimum amount of workload that
each of the selected cloud provider receives at any time interval is given by γ. The
availability of a particular provider p is specified by parameter availp.

As shown in Figure 3.21, in Chapter 3, SPACE4Cloud supports the definition of
performance requirements in terms of thresholds on the average or expected response
time R

E

k and on the percentiles R
Perc

k . Constraints on the average execution time can
be specified for a set of functionalities represented by KAvg ⊂ K and constraints
on the value of the αk percentile of the response time can be specified for a set of
functionalities represented by KPerc ⊂ K. In the most general case both constraints
can be specified for any functionality, leading to KAvg ∩ KPerc 6= ∅. Architectural
constraints introduced by software architects can predicate on the minimum amount
of memory required by a resource to host a particular tier, represented by Mi or the
maximum replicas of resources used to host the tier Zi. In the Constellation case study
of Chapter 3 this limit is set to 1 for the tier hosting the SVN server.

The decision variables of our problem are the following:

• xp is a binary variable that assumes value of 1 if provider p is selected to host
the application, 0 otherwise;

• zpi,v,t is an integer variable that specifies the number of replicas of resource of v
type (either a IaaS VM or a PaaS Container), assigned to the i-th tier at time t;

• Np
t is an integer variable that specifies the number of requests entering to provider

p at time t;

• wpi,v is an accessory binary variable equal to 1 if the resource of type v is assigned
to the i-th tier of the application, 0 otherwise.

It is worth to notice that variables zpi,v,t andNp
t are the main decision variables while

wpi,v and xp are an accessory variables used to simplify the definition of constraints and
make the problem easier to understand.

67

Table 5.1 and Table 5.2 summarizes all the parameters and variables described in
this section and used in the rest of the chapter.

For what concerns the incoming workload, the heuristic optimization process per-
formed in Chapter 7 supports both open and closed workloads. In most of our analysis
we used LINE to analyze the LQN models derived by the application design because
of its ability to derive percentiles of response time. At the time of writing LINE sup-
ports only closed workloads. When addressing an open workload we can make use
of the Little’s law, N = Λ × (R + Z) where Z is the user think time. Since in the
considered scenarios the maximum response time allowed by the application, R is sig-
nificantly lower than Z we can estimate N by using N = Λ × Z) as in [14]. Under
this assumption we can move from open to closed workloads. For simplicity the MILP
optimization model presented in this section is presented as an open model.

Decision variables.
xp Binary variable that is equal to 1 if provider p is selected, 0 otherwise
wp

i,v binary variable that is equal to 1 if a resource of type v, of provider p, is assigned to
the i-th tier and equal to 0 otherwise

zpi,v,t Number of virtual machines of type v assigned to the i-th resource pool at time t
Np

t Workload entering to provider p at time t

Table 5.1: Optimization model decision variables.

The optimization model presented in this section describes a multi-cloud deploy-
ment problem:

min
Z,V,P

∑
t∈T

∑
p∈P

∑
v∈Vp

∑
i∈I

Cpv,tz
p
i,v,t (5.1)

68

System parameters
Index
t ∈ T Time Interval
i ∈ I Set of application tiers
k ∈ K Set of class of requests
p ∈ P Set of cloud providers
v ∈ Vp Type of resource offered by provider p
Parameters
Nt Number of incoming requests (workload) at time t
Cp

v,t Cost of a resource of type v at hosted by provider p at time t
Mp

v Memory of a resource of type v in provider p
M i Minimum amount of memory required to host tier i
Zi Maximum number of replicas used to host tier i
R

E

k Maximum average response time for requests of class k
R

Perc

k Value of the αk-th percentile of the response time of class k
αk Percentile level for class k
γ Minimum percentage of workload processed by a provider
H Minimum number of cloud providers
availp Availability of provider p
MaxUnavail the maximum unavailability specified by the user

Table 5.2: Optimization model parameters.

Subject to: ∑
p∈P

xp ≥ H (5.2)

∑
v∈Vp

wpi,v = xp ∀p ∈ P,∀i ∈ I (5.3)

xpγNt ≤ Np
t ∀p ∈ P,∀t ∈ T (5.4)

Np
t ≤ xpNt ∀p ∈ P,∀t ∈ T (5.5)∑

p∈P
Np
t = Nt ∀t ∈ T (5.6)

wpi,v ≤ z
p
i,v,t ∀t ∈ T,∀p ∈ P,∀v ∈ Vp, ∀i ∈ I (5.7)

zpi,v,t ≤ Ziw
p
i,v ∀t ∈ T,∀p ∈ P,∀v ∈ Vp,∀i ∈ I (5.8)

xp ∈ {0, 1} ∀p ∈ P (5.9)

wpi,v ∈ {0, 1} ∀p ∈ P,∀v ∈ Vp,∀i ∈ I (5.10)

zpi,v,t Integer ∀t ∈ T,∀p ∈ P,∀v ∈ Vp,∀i ∈ I (5.11)∑
v∈Vp

wpi,vM
p
v ≥Mi ∀p ∈ P,∀i ∈ I (5.12)

∑
p∈P

(log(1− availp) · xp) ≤ log(MaxUnavail) (5.13)

xpE[Rtpk (Np
t ,Z

p
t)] ≤ R

E
k ∀p ∈ P, ∀t ∈ T, ∀k ∈ KAvg (5.14)

P (Rtpk (Np
t ,Z

p
t) ≤ R

Perc
k) ≥ αkxp ∀p ∈ P,∀t ∈ T,∀k ∈ KPerc (5.15)

69

Where Z
p
t = {zpi,v,t|(i, v) ∈ I× Vp} represents the assignments of VM types and replicas

to application tiers for provider p at time t.

The main objective of this problem is to minimize the cost of using the cloud infrastructure.

This cost is represented by Formula 5.1 and can be derived by the sum of all the costs related to

the utilization of cloud resources over all the application tiers i, the time intervals t, the selected

providers p and corresponding selection of resource types v.

In the most general case our application might be replicated over multiple providers to pro-

vide guarantees on its availability. The minimum number of providers on which the application

has to be replicated is estabilished by Constraints 5.2. Each cloud provider offers different type

of resources, we use the set Vp to identify all the resources offered by provider p. The binary

variable, wpi,v, which denotes the assignment of a certain type v of resource, among those of-

fered by provider p, to host tier i of the application. The two binary variables just introduced

are used in Constraints 5.3 to guarantee that only a single type of resource is selected for each

active provider and application tier. These constraints also guarantee that if a provider is not

selected (i.e., xp = 0), no type of resource offered by that provider is assigned to host the

application.

Constraints 5.4, 5.5 and 5.6 are related to the the incoming flow of requests and how it

is split among the selected providers. The incoming workload is represented by Nt, while

the amount of requests that reach a provider p is represented by Np
t . Recalling the modeling

approach presented in Section 3.2 we see that different values of the workload can be specified

for each time interval t. Constraints 5.4 reflects the minimum partition of workload γ that has

to be served by each provider, and Constraints 5.5 guarantees that requests are only directed to

selected providers. Finally, Constraints 5.6 makes sure that all incoming requests are served.

As previously introduced, variable wpi , v represents the binding between a resource type

and an application tier. This variable alone does not convey the information about the number

of replicas of such resource. For what concerns the number of replicas of each resource used

to host application tiers we have to make a distinction between the IaaS and PaaS scenarios. If

the resource selected to host a tier is an IaaS resource, namely a group of VMs, we can directly

control the number of replicas, but if the resource is a PaaS Container this control is not always

available. Some cloud services, like Microsoft Azure Web App1allow to control how many IaaS

instances are used to provide a PaaS service and we can exploit this information to control this

resource in the same way we operate with IaaS resources. Other cloud services, like Amazon

Dynamo DB2, allow only to specify a threshold on the response time or the throughput of the

1https://azure.microsoft.com/en-us/documentation/articles/web-sites-scale/
2http://aws.amazon.com/it/dynamodb/details/

70

service and autonomously adjust the number of replicas used to meet the defined goal, in this

scenario we can use the prediction of the response time of the component generated by the

assessment of the solution at design time and use it as threshold for the autoscaling. To this

end we introduced the integer variable zpi,v,t. The two Constraints 5.7 and 5.8 represent upper

and lower bounds to the number of replicas of resources of type v, assigned to tier i within

each provider. Another important effect of this constraints is to restrict resources assigned

to a certain tier to be of the same type. Using homogeneous resources eases the process of

load balancing at runtime and is widely used in cloud environments [12]. The management

of heterogeneous VMs is relevant in a private cloud, but it is usually not considered in public

clouds [27][41].

Constraints 5.12 represents a constraint family that can be provided by the user when se-

lecting computational resources, namely VMs. These constraints restricts the type of machines

that can be assigned to host a particular tier by removing those machines that do not provide

enough memory. The constraint on the minimum amount of memory specified by the user is

represented by parameter Mi while the amount of memory offered by the VM is represented

by Mp
v .

All the constraints presented so far define requirements that shape the structure of the

solution but do not address directly the QoS of the application; we call these Architectural

requirements. On the other hand the last two family of constraints of the model are related to

the QoS of the application and are called QoS requirements. Both these constraints provide

some restrictions on the response time of the application. To calculate this metric we need to

rely on some performance model. In this formulation we focus on modeling constraints that the

user can express with our modeling approach postponing the discussion on how to derive this

metric to Chapter 6. In general we can say that the response time of a functionality k offered

by the application replica in provider p at time t, identified by Rtpk is a, possibly non linear,

function of its incoming workload Np
t and our deployment choice Z

p
t .

Constraints 5.14 predicates on the average response time of the application, only on se-

lected providers, to be lower than the threshold defined by the user REk . Constraints 5.15

operates on the distribution of the response time. In particular it constraints the value of the αk
percentile of the response time to be lower than a threshold defined by the user RPerck . As an

example if αk is 95% andRPerck is 10 seconds this constraint says that 95% of requests of class

k has to be served within 10 seconds by their arrival in the system. In both Constraints 5.14

and 5.15 variable xp is used as a logical value in order to enable the constraint only for those

providers that are selected to be used.

Finally Constraint 5.13 is used to ensure a minimum level of availability for the system.

71

It is derived by operating on the unavailability, defined ad 1 − availp which represents the

probability of provider p to be unavailable. Since our application can be deployed on multiple

clouds we consider the entire application unavailable is all the selected providers, those for

which xp = 1, are unavailable. Since the failure of different cloud providers are independent

events the probability that all of the selected providers fail is given by:

∏
p∈P

(1− availp)xp ≤MaxUnavail (5.16)

This value has been bounded by the maximum unavailability of the system defined by the

user. By applying the logarithm to both sides of Formula 5.16 we get constraint 5.13.

5.3 Bi-level formulation and NP-Hardness

As said in the introduction of this chapter, using the mathematical notation to express our model

allows us to exploit some tools and techniques to analyze different aspects of the problem at

hand. In particular, we can analyze the complexity of the problem in order to gain hints on

what are the main factors that affect the time required to solve it. To do so, we can re-write the

optimization problem of the previous section by making more evident the dependency among

the variables that we need to optimize. This work lead to the following formulation of the

problem.

min
V,P

∑
t∈T

∑
p∈P

∑
v∈Vp

∑
i∈I

Cpv,tz
p
i,v,t (5.17)

72

Subject to: ∑
p∈P

xp ≥ H (5.18)

∑
v∈Vp

wpi,v = xp ∀p ∈ P,∀i ∈ I (5.19)

xpγNt ≤ Np
t ∀p ∈ P,∀t ∈ T (5.20)

Np
t ≤ xpNt ∀p ∈ P,∀t ∈ T (5.21)∑

p∈P
Np
t = Nt ∀t ∈ T (5.22)

xp ∈ {0, 1} ∀p ∈ P (5.23)

wpi,v ∈ {0, 1} ∀p ∈ P,∀v ∈ Vp, ∀i ∈ I (5.24)∑
v∈Vp

wpi,vM
p
v ≥Mi ∀p ∈ P,∀i ∈ I (5.25)

∑
p∈P

(log(1− availp) · xp) ≤ log(MaxUnavail) (5.26)

zpi,v,t = arg min
Z

∑
t∈T

∑
p∈P

∑
v∈Vp

∑
i∈I

Cpv,tz
p
i,v,t (5.27)

Subject to:

zpi,v,t ≤ Ziw
p
i,v ∀t ∈ T,∀p ∈ P,∀v ∈ Vp,∀i ∈ I (5.28)

zpi,v,t Integer ∀t ∈ T,∀p ∈ P,∀v ∈ Vp,∀i ∈ I (5.29)

xpE[Rtpk (Np
t ,Z

p
t)] ≤ R

E
k ∀p ∈ P, ∀t ∈ T, ∀k ∈ KAvg (5.30)

P (Rtpk (Np
t ,Z

p
t) ≤ R

Perc
k) ≥ αkxp ∀p ∈ P,∀t ∈ T,∀k ∈ KPerc (5.31)

Where Z
p
t = {zpi,v,t|(i, v) ∈ I× Vp} represents the assignments of VM types and replicas

to application tiers for provider p at time t.

This formulation is equivalent to the one presented in Section 5.2, in fact most of the con-

straint can be easily traced back, but provides a more clear view on the interaction of the deci-

sion variables. The objective function in Formula 5.17 operates on sets P and V and represent

two deployment decisions: the splitting of the workload among the providers and the selection

of which type of resource to use. Constraints 5.18 to 5.25 are related to the assignment of

these variables. The assignment of the number of replicas for the resources of each tier, that we

represent with zpi,v,t, has been separated into another problem whose objective function 5.27 is

the same as the previous one but operates only over the set Z.

73

This formulation is particularly important because it falls into a class of problems called

bi-level programming problems that is known to be NP-hard. Even the simpler case of linear-

linear bi-level programming problem (BLPP) [46] has been demonstrated to be NP-hard. A

recent survey on the bi-level optimization problems can be found in [30]. Chapter 7 shows how

these considerations have been used in the design of our heuristic algorithm.

The fact that the problem we are addressing is NP-hard means, from a practical point of

view, that there exist no algorithm that can solve it exactly (i.e., determine the global optimum

solution) in polynomial time. These kind of problems are among the hardest one to solve and

historically have been addressed with the use of heuristic algorithms in order to find an approx-

imate solution in a reasonable amount of time. This consideration drove our choices of using

an heuristic optimization approach, in particular the choice of a Tabu search with an embedded

ILS. The efficiency of the ILS in exploring the neighborhood of the solution identified by the

lower level problem allowed us to use a Tabu search instead of a more simple LS to address

the upper level problem and escape local optima. More details on the heuristic algorithm are

given in Chapter 7. Considering the problem at hand, in many real world scenarios the exact

solution is not needed because the formulation of the problem, performed at design time esti-

mating many parameters, might be subject to errors itself. Furthermore, applications deployed

in cloud environments often use auto-scaling mechanism that adapt the results of the offline

analysis to runtime conditions of the environment.

74

Chapter 6

Determining an Initial solution

The focus of this chapter is to detail the role of the Initial Solution Builder component presented

in Section 4.2. As previously introduced, its main goal is to find a promising initial point for

the heuristic optimization by using a MILP formulation that can be solved efficiently. To

accomplish this goal we go back to the formulation of the problem introduced in Section 5.2

and we provide a closed form formula for performance evaluation constraints. A detailed study

of this work has been published in [17].

6.1 Generation of an initial solution

In Chapter 5 we have identified that the problem is NP-hard. Furthermore in the formulation

of the problem we did not introduce an explicit formula to derive the response time of the

application. This omission has been done in order to simplify the formulation and be able to

concentrate our attention on the analysis of the structure of the problem itself. To provide a

MILP formulation we need to decide which performance model to adopt and derive a closed

form formula to apply to Equations 5.14 and 5.15.

As introduced in Chapter 3, we decided to use LQN as performance model due to its ability

to model complex software systems and derive accurate performance estimations. One of the

main drawbacks of this model is that it is not possible to derive a closed form formula for the

average or the distribution of the response time, even for open models. For this reason we have

to choose another, more simple performance model to derive an initial solution.

One of the most studied performance model is the M/G/1. This model constitutes the base

of more complex models, like the LQN and, more importantly, allows us to write in a closed

form the expected response time of the application under the hypothesis of open workloads.

75

Unfortunately the same can not be said for the distribution of the response time, for this reason

we can not calculate values for the percentiles (which leads to non-linear models, especially

for multi-tier systems).

Since our goal in this stage is to derive a promising initial solution, not to solve the en-

tire problem, we relax constraints on percentiles leaving their evaluation ad satisfaction to the

heuristic part.

The more complex LQN model, used in the heuristic optimization of Chapter 4, allows to

define a wider ranges of behavior like fork and joins or shared software resources. The main

problem of using this model in the formulation of the MILP problem is that it is not possible to

derive a closed formula for the response time of the functionalists offered by the application and

the utilization of the resources. A theoretical analysis of the differences in accuracy between

the two performance models used is not possible because of the lack of this closed formula.

It might be possible to perform a comparison by deriving minimum and maximum boundaries

of response time from the models but such an analysis would be complex and the closeness

of such boundaries to average values, which are used in the formulation of this problem is not

known. To overcome this limitation we performed an empirical analysis reported in Chapter 8.

In order to simplify the following discussion, we will not report here the entire problem

but only the changes with respect to the formulation of Section 5.2. The objective function

of Formula 5.1 and all the constraints from 5.2 to 5.13 are left unchanged, constraint 5.15 is

relaxed since the performance model does not allow to write a closed form formula for the

derivation of percentiles of the response time. We can then expand constraints 5.14 by using

the information derived by the M/G/1 performance model.

This model is characterized by some parameters that we have to specify in relation with

the application in order to derive the required performance metrics. The parameters that have

been introduced, in addition to those already presented in Section 5.2 are shown in Table 6.1.

System parameters
Index
βk Proportion of requests of class k in the workload
µp
k,v Maximum service rate of requests of class k when executed on a

resource of type v hosted by provider p
Ki Set of classes of requests co-located in tier i

Table 6.1: M/G/1 Performance Model Parameters.

The first parameter, βk is used to characterize the mixture of the incoming workload and

represent the proportion of requests of class k. In the general formulation of the problem of

Chapter 5 this information was hidden inside the workload Λpt but in order to use the M/G/1

76

performance model to estimate the average execution time of each functionality k we need

to explicitly express this information here. Parameter µpk,v is the maximum service rate of a

request of class k when executed of a machine of type v hosted by provider p. The other

parameter is related to the application modeled by the user. Recalling the component based

modeling approach of Section 3.2, the user can group similar functionalities together in aggre-

gates called components, specify interactions among components and define in which tier each

component is installed. Running different components in the same tier generates contention

on the physical, or virtual, resource used to host that tier. Parameter Ki represents the set of

all the functionalities that are located in the same tier i and is used to take this contention into

consideration.

Recalling the case study application presented in Section 3.2, we can see in Figure 3.6 that

the adminServer tier is used to host the Administration Server, the Administration Database

and the Agent Manager component. All the load generated by these components will be served

by the same processing resource generating contention.

To derive the constraint in Equation 6.19 for the M/G/1 queuing model, we start by par-

titioning the workload entering a provider, namely Λpt , into the k classes, or functionalities,

offered by the application according to probability βk.

The βk parameter can be derived by the specification of the Usage Model diagram. Recall-

ing Figure 3.4 of Chapter 3, the Usage Model diagram shows that, as an example, 75% of users

perform a call to the partialRead functionality offered by the HTTP component.

Λpk,t = Λpt ∗ βk. (6.1)

The maximum service rate of the system, when processing a request of class k, depends

on the speed of the resource used to process it, in order to ease the setup of the problem we

can explicitly show this dependency, according to equation 6.2, and use a machine independent

maximum service rate µk and a scaling factor that depends on the machine Spv .

µpk,v = µkS
p
v (6.2)

In the previous equation Spv represents the ratio between the speed of VMs of type v, hosted

by provider p, and a reference machine of type e with service rate µk. The maximum service

rate of a functionality is defined as the inverse of the demand Dk of that functionality, that

can be specified by the user in the model of the application. The use of a reference machine

eases the definition of the demands and allows to remove the reference to the type of machine

on which the demand has been measured. The underlying assumption is that the demand of a

77

request on a machine is proportional to the speed on the machine. Under these considerations

Spv is given by Formula 6.3.

Spv =
Speedpv
Speede

(6.3)

The processing of a request of class k might involve the execution of other functionalities in

the system, so the average response time of requests of a certain class is given by summing

up the response time of all the sub classes called by that functionality. Looking back at Fig-

ure 3.3 of Section 3.2 we see that, as an example, the functionality offered by the administration

server to read the configuration of a project generates an internal database access request to the

administration database component.

The probability that a request of class k calls a request of class k′ is given by βk,k′ and can

be derived by analyzing the model of the application.

Rpk =
∑
k′∈Uk

βk,k′R
p
k′ (6.4)

Using M/G/1 queues to model tiers, we can write a formulation for the average response

time of requests of a certain class as in Equation 6.5:

Rpk,v,t =

1
µpk,v

1−
∑

k′∈Ki

Λp

k′,t
µp
k′,vN

p
i,t

, (6.5)

where Np
i,t is the number of replicas of the resource hosting the i-th tier, at provider p. The

link betweenNp
i,t and variable zpi,v,t of the optimization model can be defined as in Equation 6.6.

In practice the use of Np
i,t is a shortcut to hide the dependency on the type of resource selected,

since only one type of resource is selected for each tier.

Np
i,t = Np

i,t

∑
v∈Vp

wpi,v =
∑
v∈Vp

wpi,vN
p
i,t =

∑
v∈Vp

zpi,v,t (6.6)

The M/G/1 queuing model allows to derive a formulation of the expected average response

time only under the condition that the system is not overloaded with requests. This condition

has to be added to our model, as Equation 6.7, in order for it to be valid.

1−
∑
k∈Ki

Λpk,t
µpk,vN

p
i,t

< 1 (6.7)

78

By using 6.1 and 6.2 we can get

Rpk,v,t =

1
µkS

p
v

1− Λp
t

Np
i,tS

p
v

∑
k̃∈Ki

βk̃
µk̃

(6.8)

As we have seen in Section 3.2, an application is composed by a set of functionalities that

cooperate to provide some features. When the user imposed a constraint on a functionality

offered by the system it is actually adding a constraint on the execution of a subset of the

functionalities internal to the system.

Recalling the Constellation case study of Chapter 3, Figure 3.3 shows that when a request

of the readCompleteProjectConfiguration reaches the Administration Server component from

an external user, an internal request for a databaseAccess to the Administration Database com-

ponent is generated. Any constraint specified on the execution of the original request would

have to take into consideration both the time spent in the Administration Server and in the

Administration Database.

The constraint on the response time of a given functionality exposed by the system, pro-

vided as input to the model is represented by Rk. We first replicate this constraint by applying

it on all available cloud providers by means of Equation 6.9.

Rpk,t ≤ Rk (6.9)

Unfortunately applying this constraint as is leads to a non linear system (see [53] for further

details). To remove this non linearity from the model we split the constraint Rk over the func-

tionality exposed by the system into a set of stricter constraintsR′
k on all the sub-functionalities

internal to the system involved in the computation of k, leading to:

Rpk,t ≤ R′
k (6.10)

Recalling the example of the case study a constraint on the average execution time of the

readCompleteProjectConfiguration of at most one second could be expanded into two con-

straints of, say 0.5 seconds on the part of the functionality processed in the Administration

Server and 0.5 second on the portion executed in the Administration Database. Splitting the

time specified in the constraint into the functionalities leads to a more strict problem that might

not admit feasible solutions. In order to better generate this splitting, and increase the chance

of getting a better initial solution, we decided to make the proportion of the constraint time

assigned to each sub functionality dependent with the demand of that sub functionality and

79

the overall chain of calls generated by the user request. We describe in the following how we

generate this splitting.

To derive these stricter constraints we analyzed the chain of calls between a functionality,

exposed by the system, and all the other functionalities internal to the system. By looking at

the model of the application we can construct a Discrete Time Markov Chain (DTMC) using

functionalities as nodes and calls between functionalities as arcs. From a given functionality k

we can then look at all possible paths that the request can follow within the system, an example

of such a chain can be found in Figure 6.1.

k1

k4

k5

k3

k2

a13

a12

a34a23

a45

a24

Figure 6.1: Call chain of functionalities

Let Uk be a set of all possible execution paths for requests of class k and designate through

Uk,k′ a subset of all execution paths for requests of class k calling functionality k′. For each

edge l, connecting two functionalities ka and kb, and for each execution path u ∈ Uk we will

deliver in compliance pl(u), the probability that functionality ka calls functionality kb. Given

this chain, the probability that a request of class k flows through path u is pk(u) and is:

pk(u) =
∏
l∈u

pl(u) (6.11)

The probability that, given a request of class k a functionality k′ is executed can be calcu-

lated by summing up the probability that the functionality k′ is in any of the execution paths of

class k multiplied by the probability of the path to be executed. I.e.

pk,k′ =
∑
u:k′∈u

pk(u) =
∑
u:c∈u

∏
l∈u

pl(u) (6.12)

Looking at Figure 6.1 we can calculate the probability that functionality k3 is called when

80

a request of class k1 enters the system, namely pk1,k3 as a13 + a12 ∗ a23.

Recalling the case study introduced in Chapter 3 we can derive a simple example of such a

DTMC from Figure 3.3, such a DTMC is depicted in Figure 6.2. In this example functionalities

k1 and k2 represent respectively the get functionality and the readCompleteProjectConfigura-

tion of the AdministrationServer component. These functionality allow users to retrieve a list

of projects and open a specific one. Both these functionality require an interaction with Admin-

istrationDatabase by means of the databaseAccess functionality. In this case the interaction is

required so the probability that, for example the get functionality generates a databaseAccess

call, represented by a13 in the figure, is equal to 1.

k1

k2

k3

get

readCompleteProject
Configuration

databaseAccess

a23=1

a13=1

Figure 6.2: DTMC derived by Figure 3.3

In order to derive the response time constraint to apply to the optimization model we de-

cided to split the constraint Rk defined by the user into a set of R′
k constraints on the function-

alities included in the computation of k proportionally to the demand of each sub functionality,

taking into consideration all possible execution paths. To this end we first derive the overall

demand of an execution path by summing all the demands of the functionalities on that path,

I.e. Dk,u =
∑

k′∈uDk′ then we derive the proportion of the demand for all the functionalities

by dividing the given demand by the demand of the entire execution path, as in Formula 6.13:

rk(u) =
Dk

Dk,u
=

Dk∑
k′∈uDk′

(6.13)

Recalling formula 6.3 we can express the maximum service rate of a class µk according to

the speed of the reference machine e as in Formula 6.14:

µk =
Speede
Dk

(6.14)

81

.

By using this proportion to split the user defined response time constraint Rk across func-

tionalities in the call chain we get a set of new constraints on the response time of each func-

tionality k′ when executed within the execution path u is:

R′
k′(u) = rkRk (6.15)

since a request of class k can have multiple execution paths, for each functionality involved

in its execution chain we use the most stringent constraint to remove the dependency of the

constraint to the specific execution path of class k.

R′
k = min

u
R′

k(u) (6.16)

The model obtained with this approach is linear and can be efficiently solved by state of

the art tools.

Re-writing equation 6.10 with 6.5 we get the following formulation for the response time

constraint:
1

µkS
p
v

1− Λp
t

Np
i,tS

p
v

∑
k̃∈Ki

βk̃
µk̃

≤ R′
k (6.17)

After some algebra we get:

ΛptµkR
′
k

∑
k̃∈Ki

βk̃
µk̃
≤ µkR′

kS
p
vN

p
i,t −N

p
i,t (6.18)

Recalling 6.6, we can express explicitly the dependency with variable zpi,v,t obtaining the

formulation of the constraint reported as Equation 6.19:

∑
v∈Vp

(1− µkR′
kS

p
v)zpi,v,t ≤ ΛptµkR

′
k

∑
k̃∈Ki

αk̃
µk̃

∀t ∈ T,∀k ∈ K, ∀p ∈ P (6.19)

To evaluate the quality of the initial solution derived by this approach we have performed

several experiments. We have seen that using this approach over defining an initial solution

using current best practices allows to reduce significantly the time required for the entire op-

timization. More details on the effectiveness of using the solution derived by this approach as

starting point for the heuristic search algorithm are presented in Chapter 8.

82

Chapter 7

Meta-heuristic Approach

In this Chapter we present the meta-heuristic algorithm expressly designed to solve the opti-

mization problem presented in Section 6.1. We choose to use a meta-heuristic algorithm as

a consequence of the analysis of the mathematical formulation of the problem presented in

Chapter 5. The outcome of that analysis showed that the problem we are dealing with is NP-

hard; meta-heuristics algorithms have been shown to be very effective in tackling these type of

problems. The analysis presented in Section 5.3, also showed that this problem has a particular

bi-level structure. For this class of problem a solution to the lower level problem can be found

for each assignment of the variables of the higher level problem. We decided to exploit this

characteristic of the problem to design an heuristic algorithm divided into two main phases

each one tackling a particular level of the problem. The development of the heuristic approach

presented in this chapter has been an iterative process during which the algorithm has evolved

and new features have been added to better guide the exploration of the search space. During

the development we tried many alternative procedures and policies in different parts of the al-

gorithm in order to evaluate their effectiveness in this particular context. In the remainder of

this chapter we will illustrate the choice we made and briefly explain other policies that we

tried and were not included in the final version.

The final outcome of this process is a heuristic algorithm that has been tailored in most of

its parts to effectively tackle this kind of bi-level optimization problems and has been shown to

be effective in exploring the space of possible deployment configurations of cloud applications.

Our approach is composed by a main optimization procedure shown in Algorithm 1 and

described in Section 7.1. This algorithm make use of three main procedures: MakeFeasible,

shown in Algorithm 2 and described in Section 7.2, to assess the feasibility of a solution;

ScaleLS, shown in Algorithm 3 and described in Section 7.3, to find the optimal number of

83

replicas of resources used to host each tier; TSMove, shown in Algorithm 4 and described in

Section 7.4, to change the type of resource assigned to each tier. Two other procedures are

used to tackle specific problems. The OptimizeWorkload procedure, shown in Algorithm 6 and

described in Section 7.6, is used to derive load balancing decisions in a multi-cloud scenario.

The Restart procedure, shown in Algorithm 5 and described in Section 7.5, is used to build a

new solution when the optimization of the higher level problem is trapped in a local optimum.

7.1 Main Algorithm

This section presents the main structure of the heuristic algorithm proposed to solve the cloud

deployment optimization problem. The pseudo-code for the main procedure can be found in

Algorithm 1. This algorithm implements a Tabu Search (TS) [40] heuristic in order to explore

the space of possible solutions. The TS technique is very effective in solving minimization

or maximization problems in which the objective function to minimize has some valleys of

local optima, as shown in Figure 7.1. As shown by the bi-level formulation of the problem

of Section 5.3, the lower level problem presents at least one optimum for each assignment of

variables of the upper level problem. Each of the optima of the lower level problem are local

optima for the entire problem, for this reason the adoption of these kind of algorithms, able to

escape local optima is required.

Traditional local search approaches [74] used to find a minimum value of a function, the

configuration of cloud services with the minimum cost in our context, start from an initial

solution, depicted in the upper left corner of Figure 7.1, generate new solutions by means of

some move or action that modify the initial solution and then replace the initial solution with

the newly created one if its value, the cost in our problem, is smaller. This simple approach

has been modified and implemented in several techniques that focus on finding very effective

moves to generate candidate solutions and reduce the number of iterations, and consequently

the time, required to reach the optimum. The main limitation of local search is that when a local

optimum is reached the set of moves used to modify the solution might not be able to generate

solutions with a lower cost and the optimization ends without reaching the global optimum.

To escape these situations many techniques have been studied. Some techniques, like those

presented in [75], restart the entire optimization process from a different initial solution, on the

extreme right side of the picture for example, and using as final solution the best solution found

by both the optimization runs. Other approaches try to change the way neighboring solutions

are generated either by applying different moves in the hope of generating a solution capable

of escaping the attractive basin of the local optimum.

84

Local Optimum

Global Optimum

Initial Solution

Figure 7.1: Tabu Search behavior in presence of local optima

The TS algorithm solves the local optimum problem by accepting solutions with a higher

cost in case none of the solutions found in the neighborhood of the current solution has a lower

cost. Referring again to Figure 7.1 a traditional local search would only descend the leftmost

part of the slope and stop into the local optimum while the TS approach would accept solutions

with higher costs climbing the slope on the right side of the local optimum and reaching the

valley in which the global optimum sits.

Accepting solutions with a higher cost leads to a series of issues that have to be addressed in

order to make the TS an effective algorithm. First of all, we need to specify an exit criteria that

define when the search of new solutions should stop. Then, we need to save the best solution

found during the entire optimization, a process called elitism, in order to provide it as result

of the optimization process. Finally, we need to avoid to generate twice solutions that have

already been evaluated. Intuitively if we accept a solution with a higher cost near a strong local

optimum, our optimization process might be led back to the local optimum already visited.

The most effective way to avoid this kind of behavior is to introduce a short term memory that

stores the most recent visited solutions, or some equivalent information of the last steps of the

exploration, and inhibits the generation of solutions already visited.

The effectiveness of this technique in exploring complex solution spaces motivated us to

adopt it in the context of our problem and tailor the moves that generate neighborhood solutions

85

by considering the two levels structure identified by the analysis of Chapter 5. In particular we

have delegated the exploration of the lower level problem into one of the moves of the TS. This

move implements another heuristic algorithm called Iterated Local Search (ILS) to solve the

particular instance of the lower level problem defined starting from the solution identified by

the upper level.

Since our approach embeds an ILS into a TS it can be classified as an hybrid heuristic

algorithm according to the classification in [74]. More information on the classification of our

approach and the comparison with other heuristic approaches can be found in Chapter 2.

The main element of this algorithm, and of most of the algorithms in this chapter, is an

object called Solution. This object represents a deployment configuration, either in a single

or multi cloud scenario. As a matter of fact, in the more general case of an application to

be executed on multiple clouds the Solution object contains the decisions about workload

partitioning, resource type selection and allocation, and resource replicas needed to define a

complete deployment over 24 hours. During the optimization process, three main instances of

the solution are always kept alive: the Current solution, which is the one that changes more

frequently as different moves are applied to this instance in order to modify it and explore

different regions of the search space.

The Best solution, instead, is the finest solution found by the optimization algorithm. Dur-

ing each iteration of the main optimization loop the Current solution is compared against the

Best solution (on line 9). If the comparison reveals that the Current solution shows some im-

provement with respect to the Best one we promote that solution to Best and save it. This

process is called Elitism, and allows the algorithm to work on sub-optimal solution while keep-

ing track of the the best solution.

The third main solution used in the optimization process is called LocalBest. Its role is

similar to the one of the Best solution in the sense that it stores the best solution found in

a subset of the optimization space. The main difference with the Best solution is that this

solution is reset when the optimization moves to a different area of the search space, when the

algorithm is exploring a particular subset of the search space this solution is used to restart

many procedures and focus the search process toward promising solutions in that particular

region. On the contrary, the Best solution keeps track of the cheapest solution generated during

the entire optimization process and is never reset but only updated when a better solution is

found.

86

Algorithm 1: Optimization Algorithm
Input : MaxIter // Maximum number of iterations
Output: Best // Optimized solution

1 Current←MILP()
2 Best, LocalBest← Current
3 BestUpdated←− True
4 Iter ← 0
5 MemST,MemLT ← () // Initialization of memory structures
6 while Iter < MaxIter do
7 if Current is not Feasible then
8 Current←MakeFeasible(Current) // Repair action

9 Current← ScaleLS(Current) // Lower level local search
10 LocalBestUpdated←− False
11 if Current < LocalBest then // Update the local best solution
12 LocalBest← Current
13 LocalBestUpdated←− True

14 if #Providers > 1 ∧ LocalBestUpdated then // Multiple clouds are
used

15 Current←OptimizeWorkload(Current) // Redistribute workload
16 Current← ScaleLS(Current,LocalBest)
17 LocalBest←− Current
18 if Current < Best then // Update the best solution
19 Best← Current

20 Current← LocalBest
21 Candidate← TSMove(Current, MemST) // New candidate

solution
22 if Candidate = Current then
23 Candidate← Restart(Current, MemLT) // Aspiration

mechanism
24 LocalBest← Current

25 Current← Candidate
26 UpdateMem(MemST ,Current) // Updating the short term memory
27 UpdateMem(MemLT ,Current) // Updating the long term memory
28 Iter ← Iter + 1

87

More details on the use of this solution are provided in the description of the TSMove in

Section 7.4, for the moment it is sufficient to notice that this solution, unlike the Best one, is

reset when the Restart procedure is applied (on line 23).

The comparison between two solutions, represented in the algorithm via the operator <,

takes into account different factors. Given two solutions A and B, we say that A < B if any of

the following occurs:

• A is feasible and B is not

• Both A and B are not feasible and the number of constraints violated by A is smaller

than those violated by B

• Both A and B are feasible and the cost of A is smaller than the cost of B

In order to simplify the representation of the algorithm we avoided to explicitly address

the multi-cloud scenario, with the exception of Algorithm 6. This simplification is due to the

fact that all the procedures described in this chapter are applied independently to all of the

providers. In order to avoid the complexity of adding a third level to the optimization problem

and explorer we decided to tackle the problem of splitting the workload in a slightly different

way. We first relay on the splitting of incoming workload for each hour of the reference day

specified in the initial solution derived by the problem presented in Chapter 6. We solve the

lower level problem using the workload split defined in the initial solution and then redistribute

the workload towards more utilized providers with the goal of removing some resource from

less loaded cloud providers and reduce the overall cost. More details on this phase are provided

in Section 7.6.

Finally, two other main structures used our approach are the Short Term and Long Term

memory. As previously said, memory structures are often adopted in a TS algorithm in order

to avoid the generation of solution that have already been evaluated. We decided to use the

same approach by introducing the Short term memory that stores the 10 most recent visited

solutions. We have performed several test run of the algorithm before choosing the size of the

short term memory and even if storing a single solution is not expensive in terms of memory

consumption, given the very small footprint of the solution, values greater than 10 did not

produce any significant change in the behavior of the algorithm. As said in the introduction

to this chapter, the development of the heuristic algorithm has been performed in an iterative

way constantly evaluating our choices by optimizing some synthetic models. When we started

performing evaluations on multi-cloud deployments on providers that offer a large number of

resource types we found out that the use of a short term memory was not always sufficient to

88

avoid cycles in the search path. For this reason we introduced a second layer of memory called

Long Term memory. This layer stores statistics about all the solutions that have been evaluated

during the search process and is used to reconstruct a new solution that has never been visited

when the Short Term memory becomes ineffective. More details on the use of these memory

structures are provided in Sections 7.4 and 7.5.

The main optimization algorithm starts with the generation of the initial solution from the

MILP formulation of the relaxed problem (on line 1). This solution is used to initialize both

the Best and LocalBest solutions. The two memories structures called short term memory, or

MemST, long term memory, or MemLT, are then initialized.

The TS is an iterative algorithm, and the main optimization loop, shown from line 6 to 28,

is executed up to a maximum number of iterations.

The number of iterations of the TS algorithm can be specified by the user in order to control

the duration of the optimization process. As a general rule, applications with a higher number

of tiers require more iterations since they require a broader exploration of the space of the

higher level problem.

If the number of iterations is set to 1, the optimization procedure will not take into con-

sideration the effect of the TSMove and, as a result, the optimization process will be limited

only to seek for the optimal number of replicas and, in a multi-cloud scenario, the workload

balancing.

The first part of the optimization loop (lines 6-25) tackles the lower level problem. The

process starts by assessing the feasibility of the Current solution and if necessary repairing it

by means of the MakeFeasible procedure, on line 8, described in Section 7.2. This operation is

needed because the ScaleLS (applied next) only operates on feasible solutions.

After the feasibility of the solution has been assessed the ScaleLS procedure, presented in

Section 7.3, is applied on line 9. This procedure operates on the lower level problem by reduc-

ing the number of replicas in order to minimize the operational cost of the solution preserving,

however, its feasibility. The solution derived by this procedure is optimal in the context of the

lower level problem.

We then proceed by comparing the updating the LocalBest solution with the Current

one and, if necessary updating it.

At this point the algorithm makes a distinction between solutions defined on a single or on

multiple clouds. If the user specified deployment model makes use of a single cloud, then no

further action is needed and the optimization proceeds. If, on the other hand, the deployment

refers to more than one cloud provider, the algorithm needs to address the additional problem

of distributing the workload. To avoid dealing with the problem of workload distribution for

89

every solution considered, we decided to focus the effort of this procedure by applying it only

to locally optimal solutions. We decided to perform this operation only after the solution of

the lower level problem because it is a time consuming process that analyzes several times the

lower level problem for different workload configurations.

This operation is performed in the OptWorkload procedure, described in Section 7.6 and

performed at line 15. This procedure operates on the Current solution without affecting the

number of instances derived in the previous step, rather it tries to bias the distribution of the

workload towards underutilized providers, still preserving the feasibility of the solution, re-

moving load from providers that are already under utilized. The reduction of the load on these

providers give the possibility to the ScaleLS procedure, applied again on line 16, to further

reduce the number of instances used increasing their utilization but reducing the overall cost of

the solution. The OptWorkload and the ScaleLS procedures generate only feasible solutions,

even if they work internally also with unfeasible solutions, for this reason the Current solu-

tion derived after the optimization of the workload is feasible and contains at most the same

number of replicas of resources of the LocalBest solution so we can safely update it.

At this point the Best solution is compared to the Current one and eventually updated.

The second part of the optimization loop (lines 25-28) deals with the upper level problem.

The search process starts from the LocalBest solution, that is copied over the Current solution,

this action drives the search to new types of services to explore sooner regions that are close to

the LocalBest solution. Focusing the search in the proximity of the LocalBest solution allows

to limit the diversification effect of the restart action and better explore regions of the search

space surrounding the LocalBest solution.

The TSMove procedure, described in Section 7.4, is applied in order to generate a Candi-

date solution containing a new service choice for one of the tiers. This procedure makes use of

MemST in order to avoid re-generating solutions that have already been analyzed.

If the space surrounding a LocalBest solution has been fully explored the effect of the

TSMove is no more sufficient to generate a new solution and escape the local optimum. If this

situation occurs, it is necessary to restart the search from a different region of the space, or in a

more extreme way to restart the entire optimization process. In a more general way the criteria

applied to allow the optimization process to escape from the space already explored is called

aspiration criteria. This operation is performed by applying the Restart procedure applied on

line 23 and presented in Section 7.5. The procedure constructs heuristically a new solution by

using the frequency of assignments of services to tiers, such information is contained in the

MemLT. If the Restart procedure is applied then the LocalBest solution has to be invalidated,

i.e., overwritten by the new Candidate solution, since the search has been moved into a dif-

90

ferent region. Before proceeding to the next iteration of the optimization loop both MemST

and MemLT are updated in order to keep track of the search path and avoid generating again

solutions that have already been visited. More details on the use of these memory structures

are provided in Section 7.4.

7.1.1 Solution Evaluation

One of the core operations required by all the optimization procedure presented in this chapter

is the evaluation of a candidate solution. The evaluation is a complex process that requires

interactions with many components of the architecture presented in Chapter 4. It is composted

by two main phases: the cost evaluation and the feasibility evaluation. The cost evaluation

part looks at the type and number of resources specified in the solution and interacts with the

resource model database to retrieve the relative cost, which might also be dependent on the

time of the day, and calculate the final cost of the deployment configuration. The feasibility

evaluation is the more complex and time consuming, in fact most of the time required for the

optimization is spend in this phase. When a solution is evaluated the LQN model that rep-

resents the application is updated to reflect the deployment information of that solution, i.e.,

resource type and number of replicas. The LQN model is then evaluated by LINE, the results

of the evaluation are parsed and finally the constraints defined by the user are checked. Since

the evaluation of a LQN model is a compute intensive and time consuming task, many opti-

mizations, described in Chapter 4, have been implemented in order to speed up the evaluation

process. In particular a caching layer has been introduced in order to re-use partial evaluations

of previous solutions.

7.2 MakeFeasible

The MakeFeasible procedure, detailed in Algorithm 2, is used by the main optimization algo-

rithm to restore the feasibility of a solution in the context of the lower level problem as de-

scribed in Section 7.1. The objective of this procedure is not to solve the lower level problem,

since this task is delegated to the ScaleLS, but rather to guarantee the feasibility of a solution,

paving the way for the execution of the ScaleLS procedure. This operation is performed in two

different phases of the optimization process. It is used first to analyze the initial solution that is

derived, as shown in Chapter 6, using a different performance model and might be unfeasible.

It is then used after the TSmove changes the assignment of a resource type to a tier. This action

might lead to unfeasible solutions since the processing power of newly selected resource might

91

be lower than the original one and require a larger number of replicas to fulfill QoS constraints.

In essence, this procedure embodies an iterative process that gradually increase the number

of resource replicas used to host each tier of the application by multiplying the original number

for a given factor. Such factor is initialized at the beginning of the procedure to a default value

and adapted during the optimization. The default values of 5 for the MaxFactor and 1.2 for the

MinFactor have been chosen by performing some preliminary experiments which have proven

to be effective for most of reasonable size instances.

Algorithm 2: MakeFeasible
Input : Solution; // Candidate Solution

Constraints; // Set of Constraints
MaxIter // Maximum number of iterations

Output: FeasibleSolution; // Feasible Solution

1 Iter ← 0
2 MaxFactor ← 5
3 MinFactor ← 1.2
4 T = [1..24]
5 Feasibile← Evaluate(Solution)
6 if ViolatedConstraints(Solution) contains RAM or Type constraints then

return;
7 while ¬Feasible ∧ Iter < MaxIter do
8

Factor ←MinFactor +
(MaxFactor −MinFactor)

MaxIter
× Iter (7.1)

9 foreach time ∈ T |Solution(time) is not feasible do
// Select the tiers according to the policy

10 Tiers← getCriticalTiers(FailingConstraints)
// Check the constraints on the maximum

replicas
11 Tiers← filterTiersByMaxReplicaConstraints(Tiers,factor)
12 foreach tier ∈ Tiers do
13 ScaleOut(tier,factor)

14 Feasible← Evaluate(Solution)
15 iteration+ +

16 FeasibleSolution← Solution

92

At the beginning of the procedure, the input solution is evaluated in order to assess its

feasibility (on line 5). If the solution is already feasible then no adjustment is needed and the

procedure can terminate immediately. If, on the other hand, the solution is not feasible an

initial check is performed to inspect which constraints are violated. As said, this procedure

operates in the context of the lower level problem, since it does not change the type of services

used to host each application tier. For this reason, this procedure should be applied only if the

violated constraints are related to CPU utilization, Response Time or Minimum and Maximum

number of replicas; any other type of constraint violated by the solution, like the constraint of

the minimum amount of memory, will not be affected by this procedure and their resolution is

delegated to the TSMove procedure. This condition is checked by line 6, if an architectural con-

straint (e.g., a constraint on the minimum amount of memory of VMs used to host a tier) is not

met the procedure is aborted. The procedure delegated to the solution of this type of problems

is the TSMove which is applied before beginning the next iteration of the main optimization

algorithm.

The first operation performed during each iteration of the main optimization loop, is an

update of the factor used to control the replicas increase on selected tiers. Multiplying the

number of replicas of a resource by a constant factor during each iteration leads to an expo-

nential growth of the replicas. This behavior is desirable since allows the algorithm to find a

feasible solution in a small number of iterations but at the same time it moves the actual number

of replicas far from the optimal one, implying more work for the ScaleLS, which is appointed to

optimize the number of replicas of the solution which requires many interaction with the LQN

solver. By starting the process using a small factor in early iterations and increasing it after

each iteration in which the solution is not yet feasible, we reduce the impact of the exponential

growth and the amount of work required by the ScaleLS. The factor is then increased linearly

as shown in Equation 8 in order to address solutions that require a higher number of replicas.

Once the new value of the multiplication factor has been updated, the algorithm proceeds

by selecting which tier to scale; the scaling action is then applied independently for each hour

of the reference day for which a feasible solution has not been found. In order to select the

tiers to scale we make use of the getCriticalTiers procedure (on line 10). This procedure

looks at each constraint violated by the solution and selects all the tiers that affect the metric

specified in the constraint. As an example, if the violated constraint is related to the CPU

utilization of the resource assigned to a particular tier then the selection of the tier to scale is

straightforward. If, on the other hand, such constraint concerns the average response time of a

functionality depending on two or more tiers, choosing the one to scale is not a trivial task. In

order to deal with this kind of situations we have implemented and evaluated different policies:

93

a Random selection of one among the affected tiers is the simplest choice and it has been used

as a reference for the evaluation of other policies; a more advanced policy consists in using the

information on the breakdown of the execution time, the time used to process a request, on all

tiers involved in the computation and choosing the one in which the request requires on average

the longest time; finally, we considered the utilization of each of the affected tiers in order to

take into consideration not only the single functionality but the entire system and selected the

tier with the highest utilization.

Testing these policies in several experiments, we have found out that the policy considering

the utilization of each tier allows to better identify the bottleneck of the system, leading to a

reduction of the number of iterations needed to find a feasible solution. Intuitively this can be

explained by the fact that, in many situations, the demand of the entire application is not evenly

distributed across all the tiers. In such a scenario, if the tier in which most of the computation is

performed is lightly loaded, scaling it will not have a great impact on the overall execution time.

The final outcome of the selection of tiers is a list of all the tiers that affect some unfulfilled

constraints.

Before increasing the number of replicas of these tiers we have to make sure that our

decision on the new number of replicas does not violates constraints on the maximum number

of replicas. For this reason we remove from the list of tiers those that are already using the

maximum number of replicas by means of the filterTiersByMaxReplicaConstraints procedure.

Finally, each remaining tier is scaled (on line 13) and the new solution is evaluated.

7.3 ScaleLS

The ScaleLS (Scale Local Search) procedure implements one of the most important function-

alities of the entire algorithm. It focus on the solution of the lower level problem defined in

Chapter 5. The main goal of each iteration is to reduce the number of replicas of the resources

assigned to a single application tier in order to reduce its cost while maintaining the feasibility

of the solution. Since this procedure operates on the lower level problem, we can safely solve

independently the problem of finding the exact number of replicas for each of the 24 hours. The

only dependency on the structure of the solution that spans all the 24 hours is the assignment of

the type of resource to a tier but this decision has already been taken in the upper level problem

and, in the context of this procedure, is fixed.

94

Algorithm 3: ScaleLS

Input : Solution; // Candidate Feasible Solution
LocalBestSolution; // The local best solution
DefaultFactor; // Initial ScaleLS factor
NonImprovementLimit; // Maximum number of iterations without

improvements
OOBLimit; // Maximum number of iteration in which the solution

is far from the local best
InitialBoundFactor; // Initial bound factor

Output: OptimizedSolution; // The Optimized Solution

1 Iterations←− 0;
2 NoImprovementIterations←− 0;
3 OOBIterations←− 0;
4 BoundFactor ←− InitialBoundFactor;
5 AdjNonImpLimit = NonImprovementLimit×NumberOfT iers;
6 set T = [1..24];
7 for t ∈ T do
8 Factors[t] = DefaultFactor;
9 UnfeasibleIterations[t] = 0;

10 while
NoImprovementIterations < AdjNonImpLimit ∨OOBIterations < OOBLimit do

11 Iterations+ +
12 Scaled←− false
13 PreviousSolution←− Solution
14 for t ∈ T do
15 Tiers←− FindScalableTiers(Solution,t)
16 if Tiers is empty then continue;
17 ScaleIn(Tiers(random),Factors(t))
18 Scaled←− true
19 EvaluateSolution(Solution)
20 for t ∈ T | GetHour(Solution,t) is not feasible do
21 restoreHourSolution(Solution,t,OriginalSolution)
22 UnfeasibleIterations[t] + +

Factor[t]←− 1 +
(DefaultFactor − 1)

UnfeasibleIterations[t]
(7.2)

23 if Current < LocalBest then
24 LocalBest← Current

25 if ¬Scaled ∨ cost(PreviousSolution) <= cost(Solution) then
26 NoImprovementIterations+ +

27 if cost(Solution) - cost(LocalBestSolution) >
BoundFactor×cost(LocalBestSolution) then

28 OOBIterations+ +

29 else30

BoundFactor ←− BoundFactor

Iterations−OOBIterations
(7.3)

95

This function implements an Iterated Local Search (ILS) paradigm that operates starting

from a feasible solution reducing the number of replicas of all the application tiers in order to

produce a lower cost solution that still fulfills all the constraints. Operating on the lower level

problem only this procedure does not modify the type of resources chosen by the upper level

problem, since this task is delegated to the TSMove. The ILS heuristic is a specification of the

LS heuristic. The main difference between the TS presented in Section 7.1 and the ILS is how

the two procedures deal with local optima. As previously introduced, the TS tries to avoid local

optima by changing the way the solution is modified and temporary inhibiting some changes

by using a memory structure in order to escape local optima. On the other hand, ILS tries to

escape local optima by restarting several times the optimization procedure from different initial

solutions. In order to drive the execution of the procedure toward more promising regions of

the search space the restart action might use some information derived by solutions generated

by previous iterations of the optimization.

Algorithm 3 shows the structure of the procedure. The main input parameter is a candidate

feasible solution identified by the variable Solution. In the context of our hybrid optimization

approach this solution is generated by the MakeFeasible procedure described in Section 7.2.

Another important input is the DefaultFactor, this parameter is used to define the intensity of

scaling actions. The procedure operates by removing a certain number of replicas of resources

in order to reduce operational costs but if too many replicas are removed the derived solution

might violate some QoS constraint. If this situation occurs the procedure is restarted and a

smaller number of replicas are removed. The DefaultFactor controls how many replicas are

removed during the first iteration of the procedure. All other parameters shown in Algorithm 3

are used to define the termination condition of the search procedure.

The main optimization loop has two exiting conditions, shown on line 10: the first one

estimates the distance between the current solution and the (unknown) optimal one by taking

into consideration how many iterations of the optimization procedure have been performed

without generating a better solution; the second one considers the distance between the current

solution and the LocalBestSolution identified by the main optimization procedure in order to

terminate the optimization if the current solution is too far from the best one.

When an optimal solution is found, no further reduction is possible. Intuitively the closer

the solution gets to the optimal configuration, the harder becomes to find the right number of

resources to remove without violating any constraint. The NoImprovementIterations variable

keeps track of this information by counting the number of iterations of the main optimization

loop that have been executed without affecting the solution.

It is a common practice in many local search approaches, in which the distance of a candi-

96

date solution to the optimal one can not directly be computed, to use as a stopping criteria the

time spent on the optimization or, as in our case, the number of consecutive iterations that did

not lead to any progress. To this end, we use the NonImprovementLimit as an exit condition.

Its value is not directly used to upper bound the number of iterations but it is multiplied by

the number of tiers in the application, as shown on line 2. The dependency of the maximum

number of iterations with the number of tiers of the application can be intuitively explained

by the fact that the ScaleLS procedure operates on a single tier during each iteration. Since

the tier selected for the scaling action is chosen randomly, we decided to multiply the number

of maximum iterations by the number of tiers to give the procedure a better chance to fully

explore solutions with a complex structure. When the NoImprovementIterations reaches the

NonImprovementLimit threshold the algorithm has reached a local optimum and needs to be

restarted.

If we look more closely to the structure of our entire optimization problem, we will see

that the result of the optimization process on the lower level problem strongly depends on the

decisions taken at the upper level, as discussed in Chapter 5. Indeed, if the Solution provided

to the ScaleLS procedure contains a poor choice on the type of resources to use, relying only on

the exit condition described above might lead the optimization to spend a considerable amount

of time to find the exact amount of replicas for a solution that will be discarded later on as too

expensive. It is easy to see that any exit condition that only operates on the current solution,

and its own progress towards the optimum, can not detect such a situation. For this specific

reason we introduced a second exit condition from the main optimization loop. This condition

operates as a shortcut by allowing the optimization to end before reaching the maximum num-

ber of iterations without improvements if the solution we are considering is far enough from

the LocalBestSolution.

The OOBLimit (Out Of Bound Limit) and InitialBoundFactor are used to control how the

second exiting condition operates. In order to identify whether a solution is far from the Lo-

calBestSolution we look at the difference of the cost of the two solutions. If this difference is

higher than a certain threshold we can speculate that successive reductions of the number of

replicas are not likely to bring the solution close enough to the LocalBestSolution. This bound

is identified in line 27 by considering the cost of the LocalBestSolution and multiplying it by a

BoundFactor. Furthermore, the factor we are using is not static but evolves during the optimiza-

tion process. After each iteration in which the candidate solution was considered close to the

LocalBestSolution, the dimension of the bound is reduced. If, after the next iteration, the cost

of the solution is too high and falls out of the new bound then the BoundFactor is not changed,

allowing the solution to further evolve and reduce its cost. Reducing the BoundFactor ac-

97

cording to Formula 30 makes it approach zero as the number of iterations, in which the solution

was close to the LocalBestSolution, increases. This behavior allows to focus the search to so-

lutions that are likely to perform better than the LocalBestSolution and avoid solutions that are

very far apart. A simpler approach that does not take into consideration the distance of the

current solution from the LocalBestSolution has also been considered, we have discarded that

approach because of its inability of considering the effect of the lower level optimization with

respect to the entire problem. Ignoring this distance the ScaleLS procedure would spend a lot

of time in finding the global optimum of the lower level problem for solutions that are very far

from the LocalBestSolution because of a bad choice performed in the upper level problem and

are be discarded later on in the search process. Using the adaptive behavior described in this

paragraph allowed us to terminate early the ScaleLS procedure and reduce the time required

for the optimization.

In order to identify which tiers can be scaled we implemented a procedure called Find-

ScalableTiers, applied in line 14. In principle, each tier can have a minimum of one replica,

this limitation can be altered by a user specified constraint, as shown in Chapter 3. The Find-

ScalableTiers procedure filters out all the tiers for which the minimum number of replicas

has already been reached. A random tiers is selected among those identified by the previous

operation and its number of replicas is divided by a scaling Factor.

Dividing the number of replicas during each iterations by a constant factor leads to an

exponential reduction on the number of replicas in the solution. This behavior leads to a quick

convergence to solutions that have a high number of replicas but when we get close to the

optimal such a strong reduction is likely to lead to unfeasible solutions. For this reason we

adapt the scaling factor during each iteration as shown in Formula 7.4 reported in line 22.

Factor[t] = 1 +
(DefaultFactor − 1)

UnfeasibleIterations[t]
(7.4)

The factor is reduced when the number of iterations that led to unfeasible solutions in-

creases, up to a point in which every successive iteration will remove just a single replica from

the selected tier. It is worth to notice that if an iteration did not produce an unfeasible solution

then the factor is not updated. Using the same factor for several reductions results in exponen-

tial decrease of the number of replicas which make solutions with a large number of replicas

approach the optimum quickly.

Since this operation is applied to all of the 24 hourly problems in parallel, we use 24 scaling

factor in order to make the magnitude of the scaling actions independent.

To better exploit the ability of the performance solver to analyze multiple performance

98

models in parallel, we evaluate the entire solution only after all the 24 hours have been updated.

The reduction of the number of replicas might lead to a solution in which some of the hours

are feasible but others are not. In order to save the progress of the feasible hours we restore

the feasibility of the entire solution by reverting the failing hours to their original state, using

a copy of the solution saved at the beginning of each iteration (see line 13). This operation is

performed by the restoreHourSolution function in line 21.

When the feasibility of the solution has been restored, we compare it with the LocalBest-

solution and, if the cost of the new solution is lower, we update it.

7.4 TSMove

The TSMove (Tabu Search Move) procedure, shown in Algorithm 4, constitutes the main action

of the global tabu search implemented by Algorithm 1. It allows to change the type of resources

used to host the tiers of the application and explore the space of the upper level problem. The

procedure starts by building a list of all the tiers composing the application and randomizing

its order (steps at lines 1- 2)

The randomization is performed in order to select randomly a tier to which apply the chang-

ing action. In some situations, that will be highlighted in a few paragraphs, the only type of

resources that can be used to host a certain tier is the one already present in the solution. If there

is no other choice for the selected tier the procedure will skip this tier and use the next one on

the list. If none of the tiers can be changed then the procedure is not able to modify the solution

and the NoChanged flag is raised, at line 20, to inform the main optimization procedure that a

stronger action is needed.

When the tier has been selected the procedure continues by building a list of all the possible

resources that could be used to host that tier, on line 5. To build this list the getCandidateRe-

sources procedure interacts with the Resource Model Database, as shown in Chapter 4, to

retrieve a list of resources among which to choose the new service. Such list is built by analyz-

ing the currently selected resource and querying the database for services that have the same

provider, e.g. Amazon, and the same type, e.g. VMs. For example, if the resource assigned to

the selected tier in the Solution is a VM of the provider Amazon of size m3.large, this func-

tionality will retrieve all the other sizes of VMs offered by Amazon. This list is then filtered,

on line 6, in order to meet architectural constrains; these constraints, introduced in Chapter 3,

includes for example constraints on the minimum amount of RAM, if the selected resource is

a VM. Application developers can also explicitly state which type of resources are allowed,

or excluded, in the search process. Finally, the list of candidate resources is filtered by the

99

Algorithm 4: Tabu Search Move TSMove
Input : Solution; // Candidate Solution

Constraints; // Set of Constraints
Output: NewSolution; // The Changed Solution

NoChange; // Boolean Flag

1 Tiers←− getTiers(Solution)
2 Tiers←− randomize(Tiers)
3 while Tiers is not empty do
4 Tier ←− removeFirst(Tiers)

// Get resources to change
5 CloudResourceList←− getCandidateResources(Tier)

// Filter resources according to constraints
6 CloudResourceList←−

filterResourcesByConstraints(CloudResourceList,Constraints)
// Filter resources according to short term memory

7 CloudResourceList←− filterVisitedSolutions(CloudResourceList)
8 if CloudResourceList is not empty then

// Calculate the fitness of each resource
9 for i← 0 ; i < CloudResourceListSize do

10 Resource←− CloudResourceList(i)
11

Fitness(i)←− Resource.cores×Resource.speed
Resource.cost

(7.5)

12 Fitness(i)←− Fitness(i− 1) + Fitness(i)

13 RandomFitness←−
random[0, 1] ∗ Fitness(CloudResourceListSize− 1)

14 NewResource←−
getResourceFromFitness(CloudResourceList,RandomFitness)

15 ChangeResource(Tier,NewResource)
16 EvaluateSolution(Solution)
17 UpdateMemory(Solution)
18 NoChange←− false
19 return

20 NoChange←− True

100

filterVisitedsolutions procedure on line 7 to avoid the generation of solutions already visited.

To perform this filtering we maintain a short term memory of the configurations generated by

the TSMove procedure, this memory is updated on line 17.

The structure of this memory is quite simple and reflects the purpose of the procedure

itself. Since this procedure is only interested in exploring the upper level problem, the number

of replicas used in each tier can be ignored, relaying on the fact that the ScaleLS procedure

will take care of optimizing this aspect of the problem. The remaining configuration can be

easily summarized by looking at the binding of resource types to each tier of the application.

The short term memory uses a simple hash function that concatenates the name of the tier with

the type of the resource used to host that tier. When filtering the available resource types, the

filterVisitedsolutions can check if a solution has already been visited by build its hash and look

into the memory.

After all the filtering has been performed the CloudResourceList will only contain resource

types that would lead to new solutions that satisfy the architectural constrains. In order to se-

lect the resource to use we exploit a well known selection mechanism used in many heuristic

approaches, called Roulette Wheel (or Fitness Proportional) Selection [74]. The principle be-

hind this mechanism recalls the game of the roulette, in our scenario the bins of the roulette

are the resource types. When we throw the ball in the roulette it will fall in one of the bins,

the resource corresponding to that bin will be the selected one. In a regular roulette all the

bins have the same size meaning that the probability of a resource to be chosen is uniformly

distributed. In order to bias the selection towards more promising configurations change the

sizes of the bins of the roulette making them dependent on a function of the characteristics of

the resource they are representing, this function is called Fitness Function. In such a way the

probability of a resource to be selected is proportional to the value of the fitness function. The

core of the Roulette Wheel algorithm is shown in lines 10- 12. In particular, the calculation of

the fitness function is shown by Equation 20 applied on line 11.

Fitness(i)←− Resource.cores×Resource.speed
Resource.cost

(7.6)

Heuristically, the fitness of a resource type is given by the number of cores offered by the

resource multiplied by its speed, over the cost of using that resource. This value identifies the

efficiency of the resource allowing to drive the selection process toward resources that have a

better trade-off between cost and performance.

This kind of formulation is straightforward for resources like VMs but not so intuitive for

101

PaaS services, which might not have the information on the speed or the number of cores. In

some situations the PaaS resource is backed by a IaaS resource, if this information is available

in the Resource Model Database then we will use the corresponding IaaS resource to retrieve

the information needed for the fitness calculation. If none of this information is available, e.g.

for PaaS services whose autoscaling policy is completely managed by the cloud provider, the

fitness is set to a fixed value leading to a uniformly random selection of the resource.

A common way to choose a fitness function is to use directly the optimization objective. In

our case this is not possible because the optimization objective, the total cost of the solution,

depends heavily on the number of replicas of the resources which has been optimized for the

current selection of resources.

When the resource type has been selected the procedure modifies the solution, proceeds

with its evaluation and updates the short term memory. Finally, the NoChange flag is set to

false to signal the general optimization procedure that the solution has been modified and it is

ready to be optimized in the context of the lower level problem.

7.5 Restart

The Restart procedure, shown in Algorithm 5, has a goal similar to the one of the TSMove since

both procedures operates on the higher level problem in order to increase the diversification of

the solutions explored by the optimization algorithm. This procedure in particular applies a

stronger diversification action when the one performed by the TSMove is not able to generate

solutions that have not been previously examined. This situation is quite rare if the MaxIter

parameter of line 6 of Algorithm 1, that identifies how many times the TSMove is applied, is

small. Nevertheless if the user wants to explore a wider range of possible deployments and

sets a high value for MaxIter this situation might arises. This situation is identified by the fact

that the LocalBestSolution has reached a strong local optimum and all of the solutions in its

neighborhood (the one considered by the TSMove) have already been explored.

As shown in Algorithm 1, on line 23, we can identify this situation by looking at the

effect of the TSMove on the Candidate solution. In order to escape this local optimum the

Restart procedure implements a more disruptive action with respect to the TSMove. It is more

disruptive in two ways: first, it changes at the same time the type of resources used in each

tier, while the TSMove operates on a single tier; second, it chooses the new type of machines

by considering how many times a solution with the specified assignment has already been

evaluated and favoring solutions that have been explored less.

The procedure is composed by two operations that are repeated for each tier of the solution.

102

First we use the long term memory, briefly introduced in Section 7.1, in order to find the new

type of resource to assign to the tier, on line 3. Then we apply the change by using the new

type of resource, on line 4.

The main contribution of this procedure to the overall algorithm is given by the way the

long term memory is used to select a new type of resource. The long term memory implements

a frequency memory that stores information about how often a certain assignment of a resource

type to a particular tier appears during the evaluation process. The main difference between

this memory and the short term memory used by the TSMove is that this memory does not store

information about the entire configuration of the application but operates at the level of each

tier. Every time a solution is evaluated this memory gets updated by looking at what type of

resource was assigned to each tier for that particular solution and the appropriate counter is

incremented.

When the Restart procedure is invoked it generates a new solution in a region of the solution

space that has been explored less, in order to escape from attractive regions that have already

been extensively explored. To do so, the procedure uses information related to the frequencies

of evaluations stored in this memory. It operates by changing at the same time the selection of

cloud services associated to each of the tiers of the application, in contrast with the TSMove

procedure that changes the service selection of just one tier. For each tier of the application

the procedure looks into the long term memory to find which service has been less frequently

assigned to that tier. By doing so it generates a solution that is composed by resource types

that have already been chosen by the TSMove and fulfill architectural constraints, as explained

in Section 7.4. The outcome of this procedure is used by the general algorithm to generate a

novel starting point before restarting the main optimization loop.

Algorithm 5: Restart
Input : Solution; // Candidate Solution
Output: ChangedSolution; // Changed Solution

1 ChangedSolution←− Solution
2 for tier ∈ getTiers(ChangedSolution) do
3 NewResource = getLeastFrequentlyUsedResource(tier)
4 ChangeResource(Tier,NewResource)

103

7.6 OptimizeWorkload

As introduced in Section 7.1, most of the procedures described in this chapter are applied

independently to all of the providers involved in the optimization. This approach of tackling

the deployment problem on each cloud separately greatly simplifies the optimization process

and improves its performance. However, as shown in Chapter 5, the solution of the entire

problem depends also on the distribution of the traffic among the available cloud providers.

This dependency makes the problem much more complex since it introduces another level

to the problem. Adding a third level to the optimization algorithm described so far in this

chapter would increase notably its complexity and would have a great impact also on the overall

optimization time. For this reason we decided to deal with this problem is a different way.

The main idea behind our approach is to postpone the optimization of the workload distri-

bution until a new BestSolution is found, as shown in Algorithm 1. When a new BestSolution

is identified, it has already been optimized in the context of both the upper and lower level

problems using a fixed choice of workload distributions that comes from the initial solution,

derived by the MILP relaxation of the problem presented in Chapter 6.

By applying the OptimizeWorkload procedure to that solution we change the way the work-

load is distributed. The new solution goes then through a new ScaleLS phase in order to tailor

the number of replicas of resources to the newly found distribution of workloads. The goal of

this procedure is to change slightly the distribution of workloads from an initial solution by

increasing the workload of the provider that is less utilized without changing the number of

resources used. This action allows to offload other providers so that the ScaleLS procedure can

remove replicas of their resources. Similarly, to the ScaleLS this procedure operates indepen-

dently on all of the 24 hours evaluating the entire solution only when all of the hours have been

modified. Finding the maximum amount of workload a provider can support without incurring

in a scaling action is a complex problem. For this reason we decided to implement a local

search similar to the one implemented by the general algorithm. This initial workload distri-

bution contained in the input solution is refined iteratively by identifying the provider that can

accommodate the most workload, on line 8 and increasing its workload by 5% in each iteration.

Given the context in which this optimization takes place, namely during early stages of the

development, using a finer grain on the splitting of the workload is not advisable. At runtime

the workload balancing is usually performed by dedicated components that implement more

sophisticated control mechanism that operate at a lower granularity taking into consideration

runtime characteristics of the infrastructure, e.g. machine failure1.

1https://status.cloud.google.com/incident/compute/15045

104

In order to choose which provider has more room to accommodate additional workload the

getLeastUtilizedProvider looks at all the available providers and inspects the utilization of all

the tiers. Increasing the workload on a provider has an impact on all the tiers of the application,

so we consider the tier that has the highest utilization as an indicator of whether that provider

can host more requests or not. The procedure selects the provider on which the most utilized

tier is farther from its maximum, that is either 100%, or a threshold defined by the user.

The workload share on the selected provider is then increased and the workload on other

providers is reduced uniformly. Before evaluating the obtained solution, the procedure checks

that the reduced amount of workload entering other providers does not violate any architectural

constraint (presented in Chapter 3); this check is performed by the checkSplitting procedure on

line 12. In a multi-cloud scenario the application architect, concerned with the availability of

the application, might have specified a constraint saying that all of the providers must receive at

least a minimum share of the workload, say 20%. If a provider reached this minimum amount

then we can not move further away the workload, in this case we keep the minimum level of

workload share and mark the optimization for that particular hour as complete.

Algorithm 6: Optimize Workload
Input : Solution; // Multicloud Solution

Constraints; // Set of Constraints
Output: FinalSolution; // Multicloud Solution

1 Increment←− 0.05
2 minWL←− getMinimumWorkload(Constraints)
3 for t ∈ [1..24] do
4 Working(t)←− True

5 while Solution is feasible ∧ (∃t ∈ [1..24]|Working(t)) do
6 FinalSolution←− Solution
7 foreach t ∈ [1..24]|Working(t) do
8 Provider ←− getLeastUtilizedProvider(Solution)
9 Workload←− getWorkload(Solution,Provider)

10 NewWorkload←− Workload+ Increment
11 Solution←− changeWorkload(Solution,Provider,NewWorkload)
12 MiniumReached←− checkSplitting(Solution,Constraints)
13 if MinimumReached then
14 Solution←− changeWorkload(Solution,Provider,Workload)
15 Working(t)←− False

16 evaluate(Solution)

105

Finally, when all of the hours have been modifies we evaluate the entire solution, on line 16.

The optimization procedure continues until all of the 24 hours can not be changed or until the

solution derived is not feasible. In that case the solution of the previous iteration is used as final

solution.

106

Chapter 8

Approach Evaluation

To evaluate our approach we identified a set of evaluation questions aimed at showing the

ability of the approach to deal with real world scenarios and to help software architects in better

understanding how to build applications that can effectively exploit the cloud environment.

Q.1 Is the approach useful?

The main evaluation question is related to the utility of using the proposed approach in

the development of new cloud applications. This question has been analyzed by using the

Constellation case study introduced in Chapter 3 and detailed in Section 8.1.1 and by another

industry relevant application developed by BOC1 described in Section 8.1.2. With the help of

these case studies we expanded the evaluation question Q.1 into three sub-questions:

Q.1.1 Does the proposed methodology help in understanding how the system could lever-

age the cloud platform?

Question Q.1.1 is related to the ability of the tool in understanding if the application design

proposed by software architects can exploit the characteristics of the cloud environment. This

question is analyzed in Section 8.1.1 when the initial design proposed by Softeam is analyzed

by SPACE4Cloud under different workload conditions and a bottleneck is identified. The infor-

mation derived by the analysis has been used by Softeam to successfully change their design

in order to avoid the bottleneck and make a better use of the elasticity offered by the cloud

environment.

Q.1.2 Does the approach helps in understanding the cost of providing a certain quality

level (cost of quality)?

Question Q.1.2 consider the quality aspect of the analysis. In this case the question has

been raised by the case study developed by BOC in which developers asked how the level of

1boc-eu.com

107

quality provided to their users affected the cost of the deployment. In this sense they performed

a small sensitivity analysis by repeating the optimization process performed by SPACE4Cloud

reducing the constraints on the application response time. A secondary feature inspected by this

question is related to the cost of multicloud deployments. Again in the case study developed

by BOC, the cost of deploying the whole application on Profit Bricks or Cloud Sigma, two

cloud providers already in use at BOC, has been analyzed. Finally, we have studied the cost of

distributing replicas of the application on both providers in order to avoid failures due to the

cloud provider.

Q.1.3 Does the approach support the analysis of different mixture of workloads?

Question Q.1.3, is related to the ability of the approach to evaluate changes in the applica-

tion specifications and their impact on the quality of the application. In particular it addresses

the fact that workload estimations used at design time to build user behavior specifications are

often inaccurate. We have analyze the effect of this inaccuracy by changing the specification

of the mixture of users in the workload of the BOC case study and analyzed how the cost of

providing the same quality level changes.

Q.2 Does the optimization approach scale to complex scenarios?

Question Q.2 consider the applicability of the optimization heuristic performed by SPACE-

4Cloud in the real world by analyzing how the time required to find the final solution changes

with the complexity of the application. To answer this questions we have performed a scal-

ability analysis that shows how the optimization time changes with the increasing number of

components and tiers. This analysis show that the approach is capable of handling complex

scenarios in a reasonable time. The longest optimization of an application deployed on three

cloud providers took 40 minutes. To better understand the efficiency of the optimization we

inspected the time required by the different phases of the optimization process and showed that

almost 93% of the time is spent in the execution of the heuristic optimization. Finally most of

this time is spent in solving LQN performance model by means of the LINE tool.

Q.3 Does the approach provide benefits with respect to current best practices?

Finally, question Q.3 consider the performance of the proposed approach with respect to

current best practices proposed in the literature and used in real systems. To answer this ques-

tion we repeated the scalability analysis by using two best practices based on thresholds on the

utilization of resources. We have then compared the solutions obtained by these approaches

with those derived by our and reported the results in Section 8.3. Results show that using the

proposed approach allows an average reduction in the deployment costs of 37%.

108

8.1 Industrial Case Studies

This section presents the use of the design methodology we presented in Chapter 3 in two real

world industrial case studies. The first one, introduced in Chapter 3 and developed by Softeam,

shows how the analysis process implemented by SPACE4Cloud allows the development team

to gather insights on some performance characteristics of the architecture under development

and evolve it in the early stages of the development in order to meet the desired QoS.

The second case study focus on the migration of an existing application into a multi-cloud

environment. The peculiarity of this case study is that the application that BOC decided to

move to the cloud is of critical importance for the attraction of new customers, the requirements

of high availability and proximity of the infrastructure to the final users motivates the adoption

of a multi-cloud deployment.

Together these case studies are used to answer the evaluation question Q.1, along with the

sub questions, related to the usefulness of the approach.

8.1.1 The Constellation Platform

In order to assess the applicability of our approach in a real world scenario, we have used

SPACE4Cloud to study the performance of the Constellation architecture presented in Chap-

ter 3. In particular we are interested in evaluating how well this architecture handles different

workload conditions. For this reason we started our study with a typical pattern of users derived

by an analysis of the current system and then inflated the workload to simulate a growth in the

number of users. In this case study we will use Amazon as target cloud provider.

8.1.1.1 Initial analysis

To better focus the analysis Softeam identified the core of their application in the SVN and

HTTP services that are used to provide users most of the modeling capabilities that represents

the main feature of their application. Administration services are accessory operations required

when joining a new project but are more lightweight and are used less often by end users so

we decided to neglect them in this initial analysis. Table 8.1 shows the demanding time (i.e.,

the time required to serve a single request [54]) of the operations provided by the SVN and

HTTP components, recalling the role of this components in the overall architecture, it is easy

to see that SVN operations are more heavyweight than HTTP since they allow users to update

the entire model and commit their modifications checking and resolving eventual conflicts.

The partialRead functionality offered by the HTTP component is a lightweight version of the

109

update functionality offered by the SVN used to provide users a fast way to update a portion of

their models.

Operation Average time (ms)
readProjectFirstPageDescription 597
readCompleteProjectConfiguration 723
databaseAccess 900
openProject (SVN) 15,000
update (SVN) 2,500
commit (SVN) 41,000
partialRead (HTTP) 1,000

Table 8.1: Constellation demanding times.

To evaluate the behavior of Constellation against the growth of the number of user, we

inflated the base workload, derived by analyzing logs of the current implementation of the ap-

plication and reported in Figure 8.1, by multiplying it up to 10 times and repeated the optimiza-

tion performed by SPACE4Cloud for each workload configuration. Each execution provided

both a service allocation optimized for that workload condition as well as system performance

estimates.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
U

se
rs

Hour

Workload

Figure 8.1: Base workload for the Case Study analysis.

The result of the optimization performed by SPACE4Cloud for a peak number of users

lower than 200 suggested to use the Amazon c3.large flavor to host the tier dedicated to the

HTTP component and the most powerful type of VM available, the c3.2xlarge, to host the tier

110

dedicated to the SVN server component. Using such a configuration the performance analysis

shows that all QoS constraints defined by the user, and reported in Chapter 3 are fulfilled.

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
V

M
s

Hour

Allocations

adminServer svnAgent httpAgent

Figure 8.2: Optimization Result.

When the number of users is further increased, reaching a maximum of 250 users in the

peak hour, the optimization performed by SPACE4Cloud do not produce any feasible solution.

As shown in Figure 8.2,the HTTP Agent has to be replicated 3 times during peak hours to

provide the required QoS but the single VM assigned to the SVN Agent can only handle a

load up to 250 contemporary users. All the solutions explored by the tool whith more than

250 users at peak are not capable of fulfilling constraints associated to the commit and update

operations offered by the SVN component. The result of this analysis allowed the identification

of the weakest point of the architecture in the use of the SVN server, it also showed that other

components of the architecture, like the HTTP component or the administration server and

database, proved to adapt well to increasing workload conditions.

Figure 8.3 summarizes the results of the analysis conducted using SPACE4Cloud. The

thick black line shows the expected response time of the commit functionality, in Figure 8.3a,

and the update functionality, in Figure 8.3b.

In the deign models the software architect defined a constraint of 60 seconds as the upper

bound of the average response time, shown as a thin grey line, and a constraint of 5 minutes on

the 95th percentile for the commit functionality. For what concerns the update functionality, a

constraint of 15 seconds has been specified on the average response time and a constraint of 30

seconds has been specified for the 95th percentile. Figure 8.3 shows that both functionalities

do not scale well with the number of users but the commit functionality is the most critical.

111

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500

R
es

p
o

n
se

 T
im

e
(s

)

Peak Users

Commit Response Time

SVN Conference Constraint

(a) Expected response time of the commit func-
tionality in the Constellation and Conference
architectures

0

5

10

15

20

25

50 100 150 200 250 300 350 400 450 500

R
es

p
o

n
se

 T
im

e
(s

)

Peak Users

Update Response Time

SVN Conference Constraint

(b) Expected response time of the update func-
tionality in the Constellation and Conference
architectures

Figure 8.3: Analysis of the case study Constellation and Conference architectures

The information provided by this analysis allowed to identify the problem related to the

scalability of the SVN architecture and led the development team to reconsider their design

decisions.

8.1.1.2 Reiteration

As introduced in Section 4.1.3, application developers can now use the information gathered by

the analysis of their candidate architecture in order to refine it. The Conference architecture has

been created by the Softeam design team in order to overcome the scalability limitation found

by the previous analysis. The architecture of the new solution is shown in Figure 8.4, some of

the components of the initial architecture have been maintained while the central SVNAgent
has been replaced by a ConferenceAgent used to store the models and apply the modifications

performed by users. This component propagates updates on the model to other lightweight

components, called ReadOnlyConferenceReplica. These components are used to host repli-

cas of the model accessed by users when retrieving an update in order to offload the main

ConferenceAgent of the reading workload. The decoupling of updates and commits has been

performed in order to offload the central SVN component from part of the work and allow it to

effectively manage update requests. In the new Conference architecture, update operations are

delegated to dedicate scalable agents.

From the user point of view the expected behavior will change allowing users to update

their local models from ReadOnlyConferenceReplica agents, they will also be able to commit

more frequently smaller chunks of data, instead of performing few large commits (see Figure

8.5). The model of the user behavior shows just a small change in the way the system is used, in

112

Figure 8.4: Conference Architecture of Constellation

fact most of the elements of this figure are identical to those in Figure 3.4 just the probabilities

of invoking the functionalities to update and commit models are changed.

In order to derive the demanding times of the involved operations, we performed some

preliminary experiments also with this new configuration. Given that this new architecture has

not been implemented, since Softeam is still in the design phase, we used an instance of the SVN

architecture hosted on Amazon EC2 to reproduce the new user behavior and gather demands

in a scenario with small and frequent commits and updates. The demanding times derived by

this analysis are reported in Table 8.2, demands on the Administration Server, Administration

database and HTTP server are the same as those reported in Table 8.1, since that part of the

architecture has not been modified but commit times are much lower than the ones for the

original architecture thanks to reduced size of the commits. These initial estimations can be

used to analyze the general behavior of the new architecture and can then be refined once a

prototype version of the system has been implemented.

Going back to Figure 8.3 we can now see a comparison between the expected response

times for both the commit and update operations in the two considered architectures, the SVN,

shown as a black thick line, and the Conference, shown as a dashed black line. Results show

113

Figure 8.5: Conference Architecture usage model

that the new Conference architecture is capable of supporting a higher number of users and

keep response time below the threshold even when the maximum number of users grows up to

500.

Figure 8.6 shows a comparison of the cost of the solutions derived by the two architec-

tures and demonstrates a similar situation as the Conference system make use of smaller-sized

machines and scales the number of replicas according to actual needs of capacity.

The case study presented in this section shows how SPACE4Cloud can be used to analyze

a candidate application architecture under different workload conditions and identify design

choices, in this case the use of a central SVN server, that can not make an effective use of

114

Operation Average time (ms)
openProject (Conference Model Fragment) 15,000
commit (Conference Model Fragment) 1,500
partialRead (ReadOnlyConferenceReplica) 1,000
commit (ReadOnlyConferenceReplica) 2,500

Table 8.2: Conference service specific operations demanding times.

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

U
SD

Peak Users

Cost

Conference SVN

Infeasible

region

Figure 8.6: Cost analysis of the two architectures under evaluation (daily costs for
VMs usage).

the scalability provided by the cloud environment. The new architecture presented in Sec-

tion 8.1.1.2 shows how this information can be used to derive a better application architecture

capable of exploiting the scalability offered by the cloud environment in order to reduce costs

and support a higher number of users. We argue that this example shows how the proposed

approach helps in understanding how the system under development could leverage the cloud

platform, addressing question Q.1.1.

8.1.2 The ADOxx platform

The second industrial case study we used to evaluate the proposed approach has been developed

by BOC1. BOC is a medium-sized software development and consulting company located in

different countries across Europe. BOC offers a set of tools to support management approaches

in different areas like Strategy, Performance Management, Business Process Management and

others. BOC developed the ADOxx meta-modeling platform to build and customize their tools.

Typically BOC installs the ADOxx platform and the required components on the premises of

1boc-eu.com

115

its customers leaving to the customer organization the provisioning and maintenance of the

required infrastructure and environment.

In order to provide users with a test environment in which they can try out the products,

BOC hosts on its own premise a small datacenter in which a minimal infrastructure setup of

ADOxx is built inside a virtual machine. BOC realized that using a standardized environment,

like the one offered for product testing, allows to minimize infrastructure related issued during

the installation of the ADOxx platform. Managing directly the infrastructure used to provide

ADOxx to its users, BOC can better monitor and maintain the ADOxx platform providing a

more satisfying customer support.

Given these benefits, BOC decided to migrate their service offering adopting a SaaS ap-

proach in which they maintain the environment needed to run the ADOxx platform and give

to the final users access to their own copies of ADOxx through a web interface. Adopting this

solutions allows BOC also to exploit economy of scale by allowing different instances of the

ADOxx platform to share some components. In order to avoid large infrastructural investments,

BOC decided to relay on the public cloud offering to outsource the infrastructure management

and focus their development and administration efforts to the provisioning and configuration

of ADOxx.

The case study presented in this section is the first step of a more complex migration ap-

proach presented in [43], in which BOC moves their product trial infrastructure to a public

cloud provider. This case study has been used by BOC to test different migration approaches

in order to understand how their application could be evolved to better exploit the characteris-

tics of the cloud environment and inspect the cost of providing different quality levels.

The portion of the system that the company is moving to the cloud is the one dedicated to

the attraction of new potential customers, for this reason providing a reliable and responsive en-

vironment for new potential user is critical to maintain company brand reputation. To increase

the responsiveness of the system they decided to replicate their infrastructure on different re-

gions, to reduce distance from the data-center to the user increases the responsiveness of the

system making it less susceptible to the unpredictable network performance of the internet. Re-

calling the fact that in a traditional setup users have a dedicated infrastructure, usually hosted

inside the company LAN, it is clear that exploiting the proximity of data-centers to final users

is a critical aspect that BOC need to take into consideration in their migration to the cloud.

The choice of using of multiple cloud providers has also been motivated by availability

concerns. Since this environment is used freely available to users, any failure of the system

could lead to potential customer loss. BOC decided to use services offered by different cloud

providers in order to build a system that is robust against failure of the infrastructure managed

116

by the cloud provider.

Figure 8.7 shows the architecture of ADOxx. The platform is composed in a classical

3-layers structure in which the presentation layer, here implemented by the ADOxx Presenta-

tion component, manages interactions with end users; the back-end layer, implemented by the

ADOxx Business, hosts all the application logic; finally, the database tier, implemented by the

ADOxx Database component, stores user data.

Figure 8.7: ADOxx Architecture

Each tier i interacts with i+1 in order to provide to the user a particular functionality. Each

functionality of the presentation tier has been isolated by others by implementing dedicated

APIs using a Simple Object Access Protocol (SOAP) interface. To retrieve the information

needed to build the objects required by the presentation layer and to store the modifications

of these objects in a persistent way, the business layer makes use of the database layer by

means of an Open DataBase Connectivity (ODBC) interface. Each functionality implemented

by this interface represents a particular query used by the business layer. Figure 8.8 shows

two example of orchestration diagrams for the login functionality and for the report generation

functionality.

117

(a) Orchestration model for the login function-
ality

(b) Orchestration model for the report genera-
tion functionality

Figure 8.8: Orchestration models

In traditional production environments installed by BOC on customer premises each of

these components is deployed into a dedicated tier but in the test infrastructure, that offers a

limited set of functionality, modeled here all the layers have been installed into a single tier

deployed on a VM in a public cloud provider. Using a single VM to host the entire application

stack allows BOC to easily move their current application from one cloud environment to

another without modifications.

Figure 8.9 shows the typical behavior of users that interacts with the ADOxx environment

specified by domain expert that analyzed the behavior of similar systems. The figure shows

two main classes of users, 20% of them are modelers who logs into the system, explore several

models loading them, make some modifications to some of the models saving them on the

system and, finally, log off the system. Most of the users, on the other hand, interact with the

dashboard in order to gather many information on the different models and then log into the

system to generate a report.

Figure 8.10 shows a deployment of the ADOxx architecture at the CPIM level. This di-

agram shows that all the three main layers have been packed into a single VM called BPM-

SCaseStudyVM. This VM contains all the components and some additional tools used to host

the application and interconnect the three layers. This diagram shows that the database used to

store users’ data is implemented using SQL server, while the presentation layer is hosted on a

Tomcat Java server.

Finally, Figure 8.11 shows a CPSM level deployment of the application in which differ-

ent replicas of the VM are hosted on two cloud providers in this case using instances of size

c3.large on Amazon EC2 and instances with 4GB of memory anf 2CPUs on Flexiant. These

instances have been used for prototype development to profile the application and derive the

demands specified in the model. Each tier can host several replicas of the VM in order to

manage traffic coming from multiple users and guarantee QoS.

BOC decided to manage their client engagement environment by providing three QoS lev-

els. Users that occasionally reach on their website and try out the tool are marked are Bronze.

These users might be interested in the products offered by BOC but are not likely to make any

118

Figure 8.9: ADOxx Usage Model

commitment. Users that reach the trial platform after an initial contact with BOC are more

likely to be seriously interested in acquiring their product and are labelled as Silver. Finally,

users that have already initiated the negotiation of a contract with BOC and want to evaluate

more seriously the tools are marked as Gold, these users are very likely to acquire the product

and BOC wants to make sure that they have the best experience possible working with the

evaluation infrastructure. Application administrators provided a different set of constraints for

each class of users and repeated three times the analysis in order to evaluate the impact on costs

of the different QoS levels. By repeating the optimization process separately for each quality

level BOC performed a What-If analysis aimed at understanding the cost of providing to their

users certain quality levels.

As previously introduced, BOC choose to replicate their infrastructure on two cloud providers

in order to increase the availability of their system and exploit the different locations of cloud

providers datacenters to increase proximity to the user. BOC already identified two European

119

Figure 8.10: ADOxx Deployment CPIM

providers, ProfitBricks1 and CloudSigma2, as candidates to host their infrastructure and tried

to evaluate a solution with a single cloud deployment in order to have an initial estimate of the

daily cost that they would sustain choosing either one of these cloud providers.

Table 8.3 shows the constraints on the functionality specified for each level and Table 8.4

shows the cost of the associated deployment configuration Bronze users, for example have a

maximum average response time of the login functionality of 4 seconds while Gold users have

a maximum of 2 seconds. For the saveModel functionality the limit is of 4 seconds for all

the categories but for Bronze users the limit is applied to the 80th percentile but for the Gold

1https://www.profitbricks.com/
2https://www.cloudsigma.com/

120

Figure 8.11: ADOxx Deployment CPSM

Class Login Generate Report Save Model Update DashBoard Load Model
Bronze 4s 20s 80% <4s 80% <15s 80% <8s
Silver 3s 15s 90% <4s 90% <15s 90% <8s
Gold 2s 10s 95% <4s 95% <15s 95% <8s

Table 8.3: User classes constraints

users the limit is applied to the 95th percentile. The optimization process has been repeated

by considering deployments using Cloud Sigma or Profit Bricks, finally we have analyzed the

cost of deploying the application on both cloud providers in order to better exploit the locality

of the data-centers of both providers and reduce the risk of unavailability.

To better characterize the behavior of the application with respect to uncertainty in the

modeling of user behavior BOC decided also to perform a sensitivity analysis on the mix of

121

Class $ Cloud Sigma $ Profit Bricks $ Multi-Cloud
Bronze 294 232.98 365.68
Silver 304.5 184.41 297.24
Gold 429.25 142.91 245.27

Table 8.4: User classes costs

users in the workload changing the distributions of readers and writers. These analysis have

been performed using the constraints of the Gold class. Results, reported in Table 8.5, show the

daily cost of deploying the infrastructure in the scenario in which the percentage of users that

perform report generation grows from 75% to 85%. Report generation is a compute intensive

task, for this reason as the number of readers grows so the cost of the deployment does.

Writers, Readers $ Multi-Cloud
25%, 75% 358.62
20%, 80% 365.68
15%, 85% 372.74

Table 8.5: User behavior analysis

The case study presented in this Section address evaluation question Q.1.2 showing how

SPACE4Cloud can be used to understand the cost of quality when dealing with different quality

levels as in the What-If analysis performed by BOC. The case study also address question

Q.1.3, since it shows a sensitivity analysis on the workload mix in order to address uncertainty

in the estimations of the workload performed at design time.

122

8.2 Scalability Analysis

The two industrial case studies presented in this chapter show how our approach can provide

useful insights on QoS characteristics and cost of the application. This information empowers

software architects to revise some architectural choices in order better exploit some character-

istics of the cloud environment, with the ultimate goal of providing a better QoS to end users

or reduce infrastructural costs. In order to understand if our approach is capable of finding

optimal allocations for complex architecture models withing reasonable time boundaries, and

answer the evaluation question Q.2, we performed a scalability analysis.

8.2.1 Design of Experiment

As introduced in Chapter 5, the problem of finding the optimal allocation of cloud services to

application components presents several dimensions. Using the experience we gathered during

the analysis of the case studies we identified the main factors that affect the time needed to

derive a quality solution and designed the experiments of this section in order to explore their

effects.

The factors that have a greater impact on the time required to obtain a good solution are

the number of tiers of the application under analysis and number of components. The number

of tiers have a direct effect on the size of the upper level optimization problem discussed in

Section 5.2, since the optimization procedure needs to evaluate many assignments of cloud

services to each of them. The number of components do not affect directly the optimization

procedure, since the assignment of services is made at the tier level, but has a big impact on

the complexity of the LQN performance model. Solving LQN performance models is a very

time consuming task and the optimization procedure has to evaluate many performance model,

in the worst case one model per hour of the day, for each candidate solution considered.

To test the performance of SPACE4Cloud we build a large set of randomly generated op-

timization problem instances. Since most of real world applications are composed by two or

three tiers [9] [14] we have focused on such a dimension, we then varied the number of com-

ponents from a minimum of 4 to a maximum of 10. Applications expose to users from a single

entry point component, that represents a web server or an application proxy, three classes of

functionality. The execution of each functionality invoked by the end user involves some com-

putation on several components hosted on all of the tiers.

Figure 8.12 shows the largest model we have used for the analysis and highlights interac-

tions between the various components required to provide the three classes of functionalities.

The three functionalities offered to the users are exposed by component 0 which acts as

123

Figure 8.12: Scalability Analysis Case Study, distribution of calls within the system
components.

a proxy and forwards the requests to internal components required for the execution. As an

example, we see that the execution of Functionality 1 involves the forwarding of the user re-

quest from component 0 to components 1 and 2. Component 1, in turn, requires functionalities

offered by components 4 and 5. Functionalities 2 and 3 have similar behavior and involve in

the computation all 10 components of the application. The allocation of component into tiers

changes with the number of components in the model and the number of tiers in the system. In

the most complex scenario with 10 components and 3 tiers we designated the first tier to host

components 0, 1, 4 and 9; the second to components 2, 6 and 5; and the third to the remaining

ones 3, 8 and 7. This allocation allows to split the load generated by the components in a

balanced way across all the tiers of the system. This principle of splitting the load among all

the tiers has been followed also for the generation of models with two tiers, we removed the

very last tier and moved the components allocated there on the first and second tier in order

maintain as much as possible an even distribution of demands.

We decided to split the demands evenly between the components. This choice has been

made in order to stress the optimization algorithm, in particular in the solution of the lower

level problem that has to focus the local search on all the application tiers since none of them

appear to be critical. If, on the other hand, the system has a clear bottleneck, as shown in the

Constellation case study of Chapter 3, the search procedure will find easily the best number of

replicas for non critical tiers and focus most of the search effort for the critical one.

To derive the constraints on the execution time of the three functionalities offered by the

system we summed up the demands of the execution of each functionality across all the in-

volved components and multiplied this value 10 times as in [15]. We have then introduced

124

an architectural constraint specifying that the first and third tier of the application have to be

hosted on VMs with at least 2GB of memory. We did not specify any constrain on the second

tier in order to allow the algorithm to explore a wider space of possible configuration, including

machines with any memory size. We performed the analysis both in a single and multicloud

scenario with 2 and 3 providers. In the two multicloud scenario we addressed, we introduced

a constraint requiring that, if a provider is selected, it has to serve at least 20% of the incoming

workload.

8.2.2 Scalability Results

The results of the scalability reported in the following try to give more insights on the effec-

tiveness of the optimization approach we implemented in solving complex models. We first

report a breakdown of the time spent during the optimization in all the phases and then discuss

how the time required for each of this phase changes with the complexity of the application

model. All the analysis reported in this section have been performed on a development ma-

chine equipped with an Intel Core i7 Q740 processor and 8GB of RAM. Each model has been

optimized 10 times changing the seed of the optimization procedure in order to take into con-

sideration the effect of non determinism present in many parts of the optimization procedure.

Results reported in this section represent average values over these runs.

Figure 8.13 shows how the time spent during an optimization is split across the main phases

of its execution. Initialization of the connections between the optimization engine, the LQN

solver, the resource model database and the MILP solver as well as the load of the models

have been omitted since they account for less then 0.1% of the entire optimization time. The

first step of the optimization is the generation of an initial solution to the deployment problem

derived by the MILP formulation introduced in Chapter 6. In all our experiments this process

has been executed by an external CMPL solver1 hosted on a virtual machine with four CPUs

hosted on a Xeon E5530 and 6GB of memory. The average time required to generate the initial

solution across all our experiments accounts for 4.24% of the entire time spent in the optimiza-

tion. We will see in Section 8.4 a more detailed analysis of the impact of this initial solution on

the optimization process. The second step in the solution of the problem is the transformation

of the design time model and the initial solution into a LQN performance model. This process

is performed in the LQN Generation phase by PalladioBench and accounts for less than 1%

of the optimization time. The resulting model is then evaluated, for the very first time, in the

Initial Evaluation phase, in order to derive an initial estimation of the QoS and the cost of the

1ILOG CPLEX 12.2.0.0

125

solution derived by the MILP formulation. This evaluation requires the solution of one per-

formance model for each hour of the day, further evaluations of the solutions generated during

the optimization process will make use of the partial solution caching mechanism illustrated

in Chapter 4 and will require a smaller number of interactions with the LQN solver. The time

required for the evaluation of the initial solution accounts for 2.49% of the optimization time.

The remaining, which includes also the time required to analyze the LQN model, account

for 92.97% and is spent in the execution of the Optimization phase which represents the exe-

cution of Algorithm 1 of Chapter 7. Most of this time is spent in solving performance models

generated by the different procedures.

0.30% 4.24%
2.49%

92.97%

Distribution of Time

LQN Generation

Initial Solution Generation

Initial Evaluation

Optimization

Figure 8.13: Distribution of time spent during the optimization in the mian phases

In the Optimization phase many solutions are generated and evaluated by LINE. Recalling

the description of the optimization algorithm of Chapter 7, the main optimization procedure

terminates when a number of iterations of the optimization loop that explores the higher level

problem has been reached. In all of the optimization runs we have performed the best solution

was not the last solution generated by the search procedure, but was created earlier in the

optimization process. Exploiting the elitism principle the optimization procedure continues

its exploration of the search space until the exit condition is met keeping track of the best

solution. The average time spent in the optimization to find the best solution, over all the

evaluated models, accounts for 42% of the time spent in the optimization. This behavior shows

126

that the optimization algorithm is very effective in generating good candidate solutions, for this

reason results obtained by running small scale optimization can be used during the development

process to quickly analyze different architectural solutions, delegating the optimization of the

final deployment in a later stage of the design process in which the developer team can dedicate

more time to the analysis of the final deployment configuration.

Figure 8.14 shows the detailed results of the scalability analysis for deployments on a single

cloud provider. The time spent for each of the optimization phases presented in the beginning of

this section have been reported in order to show how the impact of each phase affect the entire

optimization time. Figure 8.14a shows that the time spent in solving the MILP formulation is

not heavily affected by the increased number of tiers and component, the simplest model has

been solved in 39 seconds and the most difficult one in 90 seconds. A similar behavior is found

in Figure 8.14b, which shows the time spent by Palladio to transform the application model into

the LQN performance model. In this case the dependency of the time spent in transforming

the model with the number of components is not significant, considering also that overall time

required for the transformation accounts for less than 1% of the entire optimization time. All

other figures, on the other hand, show a linear growth in the time spent when the number of

components or the number of tiers of the application is increased. This is due to the fact that the

first two phases are not involved in the solution of the LQN model, while the initial evaluation

time, shown in Figure 8.14c, and the overall optimization time, shown in Figure 8.14e heavily

depend on the time required to solve the LQN performance model. Both these phases show

a linear growth in their execution time when the number of components grows. This growth

is purely due to the increased complexity of the underlying LQN model. The time required

to find the best solution, shown in Figure 8.14d grows as well with the increasing number of

components but also grows with the number of tiers. This is due to the fact that adding a

component does not change the size of the search space but only increases the complexity of

the underlying LQN model; adding a tier, on the other hand, increases the size of the upper

level problem making it harder to find the best combination of cloud services.

Figure 8.15 shows the details of the results of the scalability analysis on deployments per-

formed on two cloud providers. We can identify here a behavior similar to the one shown in the

analysis of the single cloud scenario. The time required to solve the relaxed problem, shown in

Figure 8.15a, increases when the application under analysis has three tiers but does not seem to

have a strong dependency with the number of components, the initial solution for the simplest

model was found in 82 seconds and the most complex model has been solved in 210 seconds.

The transformation phase from the application design model to the LQN performance model

represents again less than 1% of the entire optimization time. The dependency of the process

127

with the number of components, shown in Figure 8.15b, is more evident than in the single

cloud case and reflects the increased complexity of the LQN model. Both the initial solution

evaluation phase and the overall optimization time, shown in Figure 8.15c and Figure 8.15e,

show a linear dependency with the number of components in the application that is due again

to the increased time required to solve the LQN model. Finally, the time required to find the

best solution, shown in Figure 8.15d, shows a similar linear dependency with the number of

tiers and application components as in the single cloud scenario.

Figure 8.16 shows the same behavior in the scenario of a deployment on three cloud

providers. We can recognize here the same dynamics described in Figure 8.14 and 8.15. Fig-

ure 8.16a shows two spikes in the time required to solve the relaxed problem problem to gener-

ate the initial solution for models with 3 tiers and 7 and 10 components. These spikes are due

to the nature of those particular problems for which an integer solution was hard to find. For

all other instances evaluated the CPLEX solver was able to find an integer solution with the

same cost of the solution of the continuous relaxation of the problem, in the cases of these two

particular instances CPLEX was stopped when the cost of the integer solution was 0.1% grater

of the optimal cost of the continuous relaxation.

As shown in Chapther 7, SPACE4Cloud implements a non deterministic algorithm. Ran-

domness comes into play in particular in the TSMove described in Section 7.4 for the selection

of the tier to consider for changing the type of service to use; it also affects the selection of the

new service performed by the roulette wheel mechanism. Introducing some randomness in the

search for new configuration has many advantages as it allows the algorithm to better explore

wide regions of the search space. When non determinism is involved in a search heuristic re-

peating the same optimization several times might lead to the different results. An optimization

algorithm is said to be robust with respect to randomness if, repeating the same optimization

process several times, all the solutions found are very close to each other. In order to test

the robustness of our approach we performed several executions of the optimization procedure

changing the seed used to generate randomness in the algorithm. Each of the 42 models of the

scalability analysis have been optimized 10 times for a total of 420 optimization runs. Results

of the optimization have been analyzed and reported in Table 8.6. For each model the table

reports the number of cloud providers considered for the deployment, the number of tiers, the

number of components of the application, the average and the standard deviation of the cost of

the best solution and the time required to find that solution. In all the experiments the algorithm

proved to be stable with respect to both the cost of the solution and the time required to find it.

The scalability analysis reported in this section show that the proposed optimization ap-

proach is able to scale well with the increasing complexity of the application under analysis,

128

CloudCloudCloud TierTierTier ComponentsComponentsComponents Cost ($)Cost ($)Cost ($) σCost($)σCost($)σCost($) Time (s)Time (s)Time (s) σTime(s)σTime(s)σTime(s)

1

2

4 21.53 3.69 264.82 86.05
5 22.32 3.12 350.83 177.12
6 30.88 6.69 322.15 127.40
7 31.82 7.15 378.11 100.49
8 37.81 8.18 561.63 382.46
9 39.77 9.01 648.79 341.21
10 44.38 8.62 725.31 377.52

3

4 24.18 2.32 229.51 136.19
5 26.57 3.13 396.62 139.88
6 31.53 4.79 408.32 184.60
7 38.02 3.49 419.14 112.24
8 40.55 4.61 673.71 21.61
9 45.88 10.02 657.90 147.51
10 45.43 10.54 968.11 560.09

2

2

4 67.00 4.21 561.74 4.53
5 80.44 4.61 602.92 11.89
6 97.87 5.64 639.34 12.18
7 96.37 6.43 689.86 20.80
8 117.50 6.79 742.65 15.37
9 122.92 8.11 967.29 25.18
10 146.70 8.25 916.73 22.87

3

4 78.72 1.74 489.69 167.98
5 89.43 0.68 758.97 4.79
6 97.99 7.32 1050.47 342.27
7 109.54 3.04 1173.48 159.80
8 123.44 3.51 1200.68 13.48
9 135.42 8.52 1113.44 23.21
10 151.93 2.76 1191.64 70.44

3

2

4 77.27 0.00 535.34 8.86
5 93.30 4.53 807.40 9.55
6 101.38 2.83 862.27 39.04
7 101.85 5.05 1076.26 161.63
8 114.17 1.04 1018.75 50.29
9 136.80 4.78 1980.88 502.78
10 144.21 1.30 1297.42 22.66

3

4 79.22 0.08 663.04 11.72
5 90.05 3.88 973.52 208.57
6 103.87 0.07 1006.44 44.90
7 120.62 0.76 1460.91 78.33
8 130.89 1.00 1642.25 205.27
9 161.50 1.95 1986.03 128.81
10 162.60 1.35 2370.96 92.25

Table 8.6: Average, standard deviation and variance of the final cost and execution
time with different random seeds

129

answering to the evaluation question Q.2. The time required to solve the most complex appli-

cation design in a scenario with 3 cloud providers is of 40 minutes. Given the complexity of

the problem at hand such an optimization time is acceptable for a design time analysis. The

breakdown of the total optimization time into different phases and the analysis of the growth

of the time required for each phase shows that all the phases scale well with the complexity of

the problem.

130

0

20

40

60

80

100

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Initial Solution Generation Time

2 Tiers 3 Tiers

(a)

0

1

2

3

4

5

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Transformation Time

2 Tiers 3 Tiers

(b)

0

10

20

30

40

50

60

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Initial Evaluation Time

2 Tiers 3 Tiers

(c)

0

200

400

600

800

1000

1200

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Time to Best Solution

2 Tiers 3 Tiers

(d)

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Optimization Time

2 Tiers 3 Tiers

(e)

Figure 8.14: Scalability Analysis with a single candidate provider, time breakdown

131

0

50

100

150

200

250

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Relaxed Solution Generation Time

2 Tiers 3 Tiers

(a)

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Transformation Time

2 Tiers 3 Tiers

(b)

0

20

40

60

80

100

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Solution Initialization time

2 Tiers 3 Tiers

(c)

0

200

400

600

800

1000

1200

1400

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Time to Best Solution

2 Tiers 3 Tiers

(d)

0

500

1000

1500

2000

2500

3000

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Optimization Time

2 Tiers 3 Tiers

(e)

Figure 8.15: Scalability Analysis with a two candidate providers, time breakdown

132

0

1000

2000

3000

4000

5000

6000

7000

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Relaxed Solution Generation Time

2 Tiers 3 Tiers

(a)

0

1

2

3

4

5

6

7

8

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Transformation Time

2 Tiers 3 Tiers

(b)

0

20

40

60

80

100

120

140

160

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Solution Initialization time

2 Tiers 3 Tiers

(c)

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Time to Best Solution

2 Tiers 3 Tiers

(d)

0

1000

2000

3000

4000

5000

4 5 6 7 8 9 10

ti
m

e
(s

)

Components

Optimization Time

2 Tiers 3 Tiers

(e)

Figure 8.16: Scalability Analysis with a three candidate providers, time breakdown

133

8.3 Comparison with best practice heuristics

In order to evaluate the quality of the solutions derived by SPACE4Cloud we compared it

with a best practice approach widely adopted by cloud providers and practitioners based on

CPU utilization. As reported in [76, 79], a very common policy to decide how many replicas

of resources to allocate for the infrastructure hosting an application is to fix a threshold on

the maximum utilization of the resources and calculate the number of replicas so so that the

threshold is never exceeded. This policy is also used by many cloud providers1 that allow users

to define such a threshold and manage automatically scaling actions in case the threshold is

exceeded. For what concerns the selection of cloud services, i.e., VM types in the context of

a IaaS deployment, we decided to choose the cheapest type of resource available at the cloud

provider that satisfy all the architectural constraints (e.g., constraints on the minimum amount

of memory).

To run the optimization reported in this section we first selected manually the type of

resource to assign to each tier of the application looking in the resource model database. We

then run SPACE4Cloud using a single constraint on the utilization of each tier, we also specified

in the configuration of SPACE4Cloud to avoid performing the TSMove, so that the optimization

only focuses on the lower level problem and do not change the resource type assignment.

The idea of using a threshold on the utilization of the resource to indirectly control the

response time of the application is given by the fact that the response time is quite smooth

when the utilization of the system is low and grows quickly when the utilization approaches

100%. For this reason many approaches use a fixed threshold on the utilization to decide when

the system requires more replicas. Deciding which utilization threshold to use is not an easy

task, since the sudden growth in response time due to high utilization depends on many factors,

like the demand of the application and the number of replicas of the resource. Our approach,

on the other hand, allow application developers to define constraints directly on the response

time of the application. We also allow the possibility to define constraints on the utilization of

resources. In practice if a user defines a both a constraint on the utilization of a resource and

on the response time of a functionality provided by that resource the more stringent constraint

will be used.

We experimented two utilization thresholds at 60% and 80%, leading to two heuristics

called Heur60 and Heur60 against which we compared the solution derived by SPACE4Cloud.

Figure 8.17 compares the solution obtained by SPACE4Cloud and those obtained by the Heur60

and Heur80 heuristics for each of the models in the scalability analysis. As we can see the

1http://aws.amazon.com/elasticbeanstalk/

134

solution derived by SPACE4Cloud always shows a significant cost reduction with respect to

both heuristics. In particular with respect to Heur80 the average gain is of 55.9%, meaning that

the cost of the solution found by SPACE4Cloud is 55.9% cheaper than the one identified by

Heur80, the minimum and maximum gains are 38.1% and 75% respectively. The benefit of

using SPACE4Cloud over the more conservative Heur60 policy is even greater with an average

cost reduction of 65.5%.

The results reported in this section shows that approach proposed in this work outperforms

current best practices based on thresholds on resource utilization, as required by the evalua-

tion question Q.3. Since the approach also allows the possibility to define resource utilization

constraints, it is also capable of emulating the behavior of these policies.

135

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10

So
lu

ti
o

n
 C

o
st

 (
$

)

Components

Comparison 1 Provider 2 Tiers

Heuristic 60% Heuristic 80% SPACE4Clouds

(a)

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10

So
lu

ti
o

n
 C

o
st

 (
$

)

Components

Comparison 1 Provider 3 Tiers

Heuristic 60% Heuristic 80% SPACE4Clouds

(b)

0

100

200

300

400

500

600

700

4 5 6 7 8 9 10

So
lu

ti
o

n
 C

o
st

 (
$

)

Components

Comparison 2 Provider 2 Tiers

Heuristic 60% Heuristic 80% SPACE4Clouds

(c)

0

100

200

300

400

500

600

700

4 5 6 7 8 9 10

So
lu

ti
o

n
 C

o
st

 (
$

)

Components

Comparison 2 Provider 3 Tiers

Heuristic 60% Heuristic 80% SPACE4Clouds

(d)

0

100

200

300

400

500

600

4 5 6 7 8 9 10

So
lu

ti
o

n
 C

o
st

 (
$

)

Components

Comparison 3 Provider 2 Tiers

Heuristic 60% Heuristic 80% SPACE4Clouds

(e)

0

100

200

300

400

500

4 5 6 7 8 9 10

So
lu

ti
o

n
 C

o
st

 (
$

)

Components

Comparison 3 Provider 3 Tiers

Heuristic 60% Heuristic 80% SPACE4Clouds

(f)

Figure 8.17: Comparison with heuristics Heur60 and Heur80

136

8.4 Initial solution Evaluation

Section 8.2.2 analyzed how the time required to find the optimal solution by our hybrid heuris-

tic algorithm varies with the complexity of the application in terms of number of components

and tiers and the complexity of the deployment, in terms of number of cloud providers. In this

Section we want to focus on the analysis of the generation of the initial deployment configura-

tion, that is the solution of the problem presented in Chapter 6 and on its impact over the entire

optimization procedure. Section 8.2.2 reports in Figures 8.14b, 8.15a, and 8.16a how the time

required to solve the MILP formulation of the problem changes when dealing with multiple

cloud providers, here we focused the analysis on a single cloud provider deployment.

Experiments have been performed on a much larger number of instance synthetically built

to evaluate the sensitivity of the solution of the MILP problem with respect to many parameters.

The results of this scalability analysis tailored to the MILP relaxation of the problem have been

published in [17].

Results have been gathered from an Ubuntu based VirtualBox virtual machine running on

an Intel Xeon Nehalem dual socket quad-core system with 32 GB of RAM. The commercial

CPLEX 12.2.0.0 1 has been used as MILP solver. To guarantee statistical independence of

the results, we have considered ten different instances of each optimization run with the same

configuration of parameters and averaged the results. Results reported here have been obtained

by considering more than 10,000 runs.

We have considered incoming workload generated by considering the trace of a real world

large Web system including almost 100 servers. The trace follows a bimodal distribution with

two peaks around 11.00 and 16.00, we have used the workload derived by this trace as a refer-

ence and added random white noise to generate multiple workloads as in [16] and [52]. As we

did for the sensitivity analysis of Section 8.2.2, and reported in [16, 18], the constraint on the

service time of each class of requests has been set equal to 10 times the sum of the demands

involved in the computation of that class. Details on the cardinality of the sets of the MILP

optimization model are reported Table 8.7 and details on the models are reported in Table 8.8.

For the cases considered in this analysis CPLEX was able to find a solution on average in

3 seconds, in the very worst case, considering a system with 5 tier, 9 classes of requests and

24 time intervals the time required for the optimization was 8.72 seconds. Figure 8.18 reports

a representative example and shows how the optimization time varies by changing the number

of tiers and request classes.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

137

Parameter Range
βk [0.1; 1] %
pk,k′ [0.01; 0.5] %
µk,v [50; 2800] req/sec
Cv,t [0.06; 1.06] $ per

hour
M i [1;4] GB
N i 5000 VMs
Rk [0.005; 0.01] sec

Table 8.7: Ranges of model parameters

Description Variation
range

Number of tiers |I| [1; 9]
Time Intervals |T| [4; 24]
Number of Requests
Classes |K|

[1; 10]

Number of VM types |V| [1; 12]

Table 8.8: MILP sets cardinalities

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9

O
p

ti
m

iz
at

io
n

 T
im

e
 (

se
co

n
d

s)

Number of request classes

3 Containers

5 Containers

7 Containers

9 Containers

Tiers 3 Tiers

4 Tiers

5 Tiers

6 Tiers

Figure 8.18: MILP optimization time varying the number of tiers and classes of re-
quests

8.4.1 Quality Evaluation

Section 8.4 showed that the time required to solve the relaxation of the problem, presented

in Chapter 6, does not grows excessively with the complexity of the application; furthermore,

Section 8.2.2 shows that the time spent in generating the initial solution is a very small fraction

of the total time spent by the hybrid heuristic approach to obtain the final solution. In this

section we want to see how the use of this initial solution, with respect to solutions derived by

the best practice heuristic called Heur60, as reported in [79], presented in Section 8.3, impacts

the overall optimization approach. We evaluated the gains of using the MILP formulation to

find the initial solution in terms of reduction of the optimization time and increased quality of

the final solution, meaning a reduction in its cost.

Figure 8.19 shows the execution trace of the optimization performed by SPACE4Cloud

using as initial point the solution obtained by the Heur60 heuristic, in gray, and the one derived

by the MILP formulation, in black. On the x axis the time spent in the optimization process is

138

50 100 150 200 250 300 350 400 450
10

20

30

40

50

60

∆in

Heur60 solution

MILP solution
∆time

∆out

Time (s)

S
o
lu

ti
on

C
os

t
($

/d
ay

)
MILP(+ SPACE4Cloud) Heur60(+ SPACE4Cloud)

Figure 8.19: Comparison of solution costs found by SPACE4Cloud in the optimization
process starting from the MILP initial solution and the Heur60 solution.

reported (including the time required by CPLEX to gin the initial solution), the y axis reports

the daily resource cost of cloud services.

We have instrumented SPACE4Cloud to export the trace and analyze how the cost of the

solution changes during the optimization process. We have performed over 200 runs consid-

ering all the models used for the scalability analysis and reported the detailed results in this

Table 8.9. The curves shown in Figure 8.19 comes from one of these runs but are representa-

tive of most of the behaviors we have observed. In our analysis we have reported the difference

in cost between the first feasible solution found by SPACE4Cloud starting from the heuristic

solution and by the MILP approach, marked as ∆in. This value shows the distance between

the staring points of the two optimization runs. A positive value for ∆in shows that the solu-

tion derived by the MILP approach is cheaper. The initial gap of the black line represents the

time required to generate the initial solution by the MILP approach. The difference between

the cost of the final solutions obtained by SPACE4Cloud is represented by ∆out. A positive

value indicates savings obtained by the use of the MILP formulation, with respect to Heur60, to

generate the starting point of the optimization. Finally, ∆time represents the time difference in

the time required to find the best solution. A positive value of ∆time indicate a reduction in the

time required by the optimization process when using as initial solution the one derived by the

MILP formulation of the problem. A negative value indicate an increase in the time required

for the optimization.

As shown in Figure 8.19, the initial delay introduces by the solution of the MILP formula-

tion is compensated by the reduced time required to find the final solution. In the comparison

shown in the figure, the final solution obtained with the used of the MILP initial solution is

139

55% cheaper than the one obtained by the use of Heur60 and the time required to identify such

a solution is reduced by half.

Table 8.9 summarizes the results achieved in the columns on the right side, under the

Quality Evaluation header. These results have been obtained by considering 210 total runs of

the entire optimization procedure performed by SPACE4Cloud starting from an initial solution

generated either by using our MILP approach, the Heur60 or the Heur80 heuristics. Columns

∆in, ∆out and ∆time report the relative gain/loss of using the MILP approach to generate the

initial solution.

The final solution obtained by SPACE4Cloud when using the MILP approach to generate

the initial solution is, on average, 37% cheaper than the one obtained using the Heur60 heuristic

and 22% cheaper than the one that uses the Heur80 heuristic. The time required to find the final

solution, again using the MILP approach, is reduced by half with respect to the one obtained

using the Heur60 heuristic and by 22% with respect to the Heur80 heuristic.

Table 8.9 shows that when three Cloud providers are considered, using the initial solution

generated by MILP might increase the optimization time. Nevertheless, the final solution is,

on average, 27% cheaper.

140

Heur60Heur60Heur60 Heur80Heur80Heur80
CloudCloudCloud TierTierTier ComponentsComponentsComponents ∆In %∆In %∆In % ∆Out %∆Out %∆Out % ∆Time %∆Time %∆Time % ∆In %∆In %∆In % ∆Out %∆Out %∆Out % ∆Time %∆Time %∆Time %

1

2

4 76.9% 32.5% 57.8% 69.6% 35.2% 25.9%
5 82.5% 49.8% 47.1% 77.0% 45.2% 9.4%
6 83.8% 47.8% 22.7% 78.7% 28.1% 68.3%
7 90.5% 36.0% 67.5% 82.4% 33.7% 66.6%
8 87.1% 34.0% 60.5% 82.9% 29.8% 52.3%
9 89.6% 42.8% 57.1% 86.2% 39.6% 49.9%
10 89.8% 44.0% 46.6% 86.4% 33.3% 56.2%

3

4 72.1% 37.3% 57.7% 63.9% 38.1% 43.1%
5 75.4% 39.3% 49.0% 68.4% 43.7% 18.3%
6 80.6% 42.9% 58.4% 74.5% 39.6% 54.6%
7 83.3% 36.0% 74.1% 78.0% 36.3% 52.0%
8 85.4% 45.4% 21.3% 80.8% 39.5% 43.8%
9 87.2% 44.2% 50.0% 83.1% 42.3% 41.9%
10 89.2% 46.9% 46.2% 85.7% 47.6% 19.0%

2

2

4 86.0% 39.1% 68.7% 85.1% 44.5% 43.6%
5 89.0% 36.2% 68.1% 84.4% 43.9% 43.0%
6 91.4% 36.3% 71.5% 87.3% 43.3% 62.7%
7 92.5% 42.4% 76.7% 90.9% 53.1% 67.5%
8 92.8% 40.4% 73.9% 90.6% 48.4% 69.2%
9 93.5% 44.5% 74.9% 92.3% 53.3% 56.2%
10 93.9% 40.8% 78.4% 92.3% 46.5% 60.9%

3

4 81.3% 35.7% 68.5% 80.3% 40.1% 52.6%
5 86.2% 38.7% 59.2% 80.9% 43.1% 22.1%
6 89.7% 38.2% 64.0% 86.2% 45.9% 43.3%
7 90.1% 41.1% 65.0% 88.1% 46.8% 48.6%
8 91.2% 40.5% 67.3% 86.9% 45.3% 57.9%
9 92.5% 44.5% 77.9% 88.7% 47.7% 67.3%
10 93.0% 40.2% 80.4% 91.8% 48.0% 68.1%

3

2

4 76.6% 22.6% 37.7% 73.2% 17.9% -27.2%
5 81.0% 19.6% 25.3% 74.6% 17.3% -59.5%
6 84.3% 30.3% 31.5% 80.2% 28.2% -33.4%
7 87.8% 37.8% 26.0% 86.8% 35.6% -20.4%
8 89.0% 37.5% 38.9% 83.4% 34.7% -13.7%
9 90.5% 33.3% -2.5% 88.3% 31.8% -79.1%
10 91.8% 35.1% 41.3% 88.0% 33.6% -40.1%

3

4 74.2% 25.8% 39.2% 66.5% 22.5% -68.2%
5 76.9% 28.2% 25.5% 73.7% 25.3% -71.9%
6 82.0% 31.2% 40.8% 79.2% 28.8% 36.9%
7 83.0% 28.7% 33.6% 80.8% 25.8% -2.0%
8 84.6% 29.8% 40.4% 80.4% 27.7% -7.3%
9 86.9% 23.9% 26.0% 82.7% 21.6% -28.7%
10 88.3% 30.2% 26.9% 87.8% 27.5% -34.9%

Table 8.9: Results of the MILP quality evaluation analysis.

141

Chapter 9

Conclusions

“That’s all Folks!”

Porky Pig

In this work we presented an approach that tries to simplify the process of migrating an

application to the cloud by providing a methodology and a tool to support development teams

in building new applications capable of running in a multi-cloud environment. We proposed a

meta-model that describes cloud services and integrated it with well established modeling tools

like Palladio and Modelio in order to allow application architects to specify configurations in

cloud environments. We then automated the process of evaluating the QoS of the deployment

configuration specified by the software architect allowing her/him to gain valuable insights on

how the design reacts to different working conditions (e.g., variable incoming workload). This

ability empowers the application architects to follow MDE principles and perform QoS and cost

analyses early in the design stage allowing prompt modification of the architecture to tailor it

better to the runtime environment. This ability has been shown by the first industrial case study

by Softeam in which an early analysis of an initial architecture model revealed its inability to

gracefully scale and support higher workloads. This discovery led to a re-design of part of the

architecture leading to a system that could exploit better the scalability feature offered by cloud

environments. A second industrial case study used the tool to evaluate different application

deployments in a multi-cloud scenario.

We then focused on helping the application architect not only in the discovery of potential

issues in the architecture or in a particular deployment configuration, but also in deriving an

optimized deployment that minimize the cost of using cloud services and provide QoS guaran-

tees at the same time. To derive this configuration we designed an optimization heuristic that

142

effectively explores a wide space of possible configurations. We first formalized the problem

from a mathematical point of view and showed it to be NP-hard. We then used M/G/1 queuing

network models to derive a closed form formulation of the application response time and used

this model to solve a relaxation of the original problem and derive a promising initial solution.

This solution is then modified by our hybrid heuristic that makes use of a more accurate per-

formance model, i.d. LQN models, to evaluate the feasibility of the application against user

defined constraints.

We evaluated the applicability of the proposed approach to complex models by means of a

scalability analysis that showed how the solution derived by means of our heuristic algorithm

outperform those derive by policies currently used by practitioners providing an average re-

duction in the cost of the deployment around 55%. The scalability analysis also showed that

the approach can be effectively applied to complex problems, since the optimized solution was

obtained in around 40 minutes in for the most complex model considered.

The main threat to the validity of our approach is the lack of accurate data on the perfor-

mance of cloud services. The optimization approaches uses a Resource Database to update the

performance model with the characteristics of the cloud resource under analysis, as show in

Section 4.2. While some of the information stored in this database are provided publicly by

cloud providers (e.g. the cost of using such a resource or the number of cores of a particular

VM type), other parameters are unknown and have to be estimated by benchmarking such re-

sources. Furthermore the service offer of main cloud providers change very frequently both

in terms of performance upgrades or cost reductions. Since a complete benchmark campaign

was not feasible, we decided to integrate in our approach the results of the ARTIST1 European

project which provide benchmarking information of many cloud resources.

From the optimization point of view, we allowed users to define constraint on the response

time of the application. Current best practices use constraints on resource utilization since as

long as the utilization is low the response time does not change significantly. Using directly

the response time might be effective only if the constraint is so high that high utilization can

be tolerated. To overcome this limitation we added the possibility to take into account resource

utilization constraints as well so that if both type of constraints are defined, one will dominate

the other. Finally the user can specify response time constraint on a functionality offered to the

end user of the application and utilization constraints on part of the resources used to provide

such a functionality. In such a scenario high utilization might be tolerated on some resourced

involved in the processing of the user request while key components might be kept under a

utilization constraint.
1http://www.artist-project.eu/collaboration

143

Our approach has been particularly tailored to support the analysis and optimization of

common web based applications but the modeling approach and the optimization techniques

presented in this thesis can be extended to address different deployment problem.

An extension that we have considered takes into account the use of a mixed cloud environ-

ment in which a private infrastructure is used to process most of the workload and, when the

private infrastructure is not capable of accepting more users, a public cloud is used to replicate

the entire system.

In our work we considered application deployment on multiple clouds in which the entire

system has been replicated on all the available providers. Another possible research line can

consider a more flexible deployment solution where application tiers are deployed on different

cloud providers. The analysis of such a deployment configuration should take into consid-

eration the peculiarity of the technology used to interconnect the application tiers, which we

expect will be enabled by progress in the area of network design. The deployment configu-

ration we considered in this thesis allows to exploit high performance networks available in

cloud providers datacenter and avoid the increased complexity in the analysis.

Recent years showed the appearance of Big Data frameworks and applications. These

applications perform complex analysis of high volumes of data in order to extract insights with

business value. The complexity of the frameworks used to process this kind of data and the size

of the infrastructure required to perform such analysis make the cloud environment the default

choice for many companies that want to exploit this new technology. The approach proposed

in this thesis could be adapted to take into consideration the peculiarity of these applications

and frameworks by the use of a more tailored performance model.

If we consider current technology trends, the raise of container based hosting services

like Amazon EC2 Container Service (ECS)1 or Google Container Engine2 eases the use of

component based approaches in the development of cloud applications. In this context an

optimization technique that derive container characteristics like the container size could greatly

help architects to speed up the development and testing of their application architectures.

Finally, adding the link between the runtime application execution and the models built at

design time by the use of automated tools and an appropriate monitoring technology will enable

a full DevOps approach. The main idea is to use real monitoring data to refine application

performance parameters (e.g., service demands, number of users at peak, switch probabilities

in end user behaviour, etc.). In this vision development decisions and operational aspects are

considered together and the barrier between design time and runtime can be dissolved.

1https://aws.amazon.com/it/blogs/aws/cloud-container-management/
2https://cloud.google.com/container-engine/

144

Bibliography

[1] Argouml - http://argouml.tigris.org/. 10

[2] Magicdraw - http://www.nomagic.com/products/magicdraw.html. 10

[3] Modeling software kitt - https://moskitt.gva.es. 10

[4] Omg model-driven architecture. 11

[5] Rational software architect - http://www-03.ibm.com/software/products/it/ratisoftarch.

10

[6] Staruml - http://staruml.io. 10

[7] Uml designer - http://www.umldesigner.org/. 10

[8] Upupa - http://www.modelexecution.org/. 10

[9] Bernardetta Addis, Danilo Ardagna, Barbara Panicucci, Mark S. Squillante, and

Li Zhang. A hierarchical approach for the resource management of very large cloud

platforms. IEEE Trans. Dependable Sec. Comput., 10(5):253–272, 2013. 123

[10] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software architec-

ture optimization methods: A systematic literature review. Software Engineering, IEEE

Transactions on, PP(99):1–1, 2013. 4, 11

[11] Aldeida Aleti, Stefan Stefan Björnander, Lars Grunske, and Indika Meedeniya.

Archeopterix: An extendable tool for architecture optimization of aadl models. In Proc.

of Workshop MOMPES 2009, 2009. 15

[12] Amazon Inc. AWS Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/. 71

145

BIBLIOGRAPHY

[13] Nicolas Ferry Stepan Seycek Elisabetta Di Nitto Antonin Abherve, Marcos Almeida.

Modacloudml ide final version. Public deliverable, 2015. 22, 25, 31

[14] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic resource

allocation in multitier virtualized environments. Services Computing, IEEE Transactions

on, 5(1):2–19, 2012. 68, 123

[15] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. Software

Engineering, IEEE Transactions on, 33(6):369–384, June 2007. 66, 124

[16] Danilo Ardagna, Sara Casolari, Michele Colajanni, and Barbara Panicucci. Dual time-

scale distributed capacity allocation and load redirect algorithms for cloud systems. Jour-

nal of Parallel and Distributed Computing, 72(6):796 – 808, 2012. 137

[17] Danilo Ardagna, GiovanniPaolo Gibilisco, Michele Ciavotta, and Alexander Lavrentev.

A multi-model optimization framework for the model driven design of cloud applications.

In SBSE 2014 Proc. 2014. 6, 61, 75, 137

[18] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible processes.

IEEE Trans. Software Eng., 33(6):369–384, 2007. 137

[19] George Kousiouris Danilo Ardagna Athanasia Evangelinou, Michele Ciavotta. A joint

benchmark-analytic approach for design-time assessment of multi-cloud applications. In

Proceedings of the 1st International Conference on Cloud Computing, Information Tech-

nology, Big Data and Big Data Management, 2015. 56

[20] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based performance pre-

diction in software development: A survey. Software Engineering, IEEE Transactions

on, 30(5):295–310, 2004. 11

[21] Matthias Becker, Steffen Becker, and Joachim Meyer. SimuLizar: Design-Time Mod-

elling and Performance Analysis of Self-Adaptive Systems. In Proceedings of Software

Engineering 2013 (SE2013), Aachen, 2013. 11

[22] Matthias Becker, Markus Luckey, and Steffen Becker. Performance analysis of self-

adaptive systems for requirements validation at design-time. In Proceedings of the 9th

International ACM Sigsoft Conference on Quality of Software Architectures, QoSA ’13,

pages 43–52, New York, NY, USA, 2013. ACM. 11

146

BIBLIOGRAPHY

[23] S. Becker, H. Koziolek, and R. Reussner. The palladio component model for model-

driven performance prediction. Journal of Systems and Software, 82(1):3–22, 2009. 4,

11, 16, 22

[24] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid metaheuris-

tics in combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135–4151,

2011. 20

[25] F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and S. Kounev. Quantitative

evaluation of model-driven performance analysis and simulation of component-based ar-

chitectures. Software Engineering, IEEE Transactions on, 41(2):157–175, Feb 2015. 4,

12

[26] Omid Bushehrian. The application of fsp models in automatic optimization of software

deployment. In Khalid Al-Begain, Simonetta Balsamo, Dieter Fiems, and Andrea Marin,

editors, Analytical and Stochastic Modeling Techniques and Applications, volume 6751

of Lecture Notes in Computer Science, pages 43–54. Springer Berlin Heidelberg, 2011.

18

[27] Claudia Canali and Riccardo Lancellotti. Exploiting ensemble techniques for auto-

matic virtual machine clustering in cloud systems. Automated Software Engineering,

21(3):319–344, 2014. 71

[28] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. An approach for qos-aware

service composition based on genetic algorithms. In Proceedings of the 2005 conference

on Genetic and evolutionary computation, pages 1069–1075. ACM, 2005. 17

[29] Giuliano Casale and Mirco Tribastone. Modelling exogenous variability in cloud deploy-

ments. SIGMETRICS Perform. Eval. Rev., 40(4):73–82, April 2013. 6, 39, 62

[30] Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization.

Annals of operations research, 153(1):235–256, 2007. 74

[31] Vittorio Cortellessa, Antinisca Di Marco, Romina Eramo, Alfonso Pierantonio, and Catia

Trubiani. Approaching the model-driven generation of feedback to remove software per-

formance flaws. In EUROMICRO-SEAA, pages 162–169. IEEE Computer Society, 2009.

14

147

BIBLIOGRAPHY

[32] MauroLuigi Drago, Carlo Ghezzi, and Raffaela Mirandola. Qvtr2: A rational and

performance-aware extension to the relations language. In Juergen Dingel and Arnor

Solberg, editors, Models in Software Engineering, volume 6627 of Lecture Notes in Com-

puter Science, pages 328–328. Springer Berlin Heidelberg, 2011. 13

[33] B.K. Eames, S.K. Neema, and R. Saraswat. Desertfd: a finite-domain constraint based

tool for design space exploration. Design Automation for Embedded Systems, 14(1):43–

74, 2010. 19

[34] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor Solberg.

Towards model-driven provisioning, deployment, monitoring, and adaptation of multi-

cloud systems. In Lisa O’Conner, editor, IEEE CLOUD 2013 Proc., pages 887–894.

IEEE Computer Society, 2013. 10

[35] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced modeling and

solution of layered queueing networks. Software Engineering, IEEE Transactions on,

35(2):148–161, March 2009. 22, 62

[36] Greg Franks and Murray Woodside. Performance of multi-level client-server systems

with parallel service operations. In Proceedings of the 1st International Workshop on Soft-

ware and Performance, WOSP ’98, pages 120–130, New York, NY, USA, 1998. ACM.

7

[37] Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. Search-based genetic optimiza-

tion for deployment and reconfiguration of software in the cloud. In Proceedings of the

2013 International Conference on Software Engineering, ICSE ’13, pages 512–521, Pis-

cataway, NJ, USA, 2013. IEEE Press. 17

[38] Gartner Group. Hype Cycle for Cloud Computing, 2014.

https://www.gartner.com/doc/2807621/hype-cycle-cloud-computing-, 2014. 1

[39] Fred Glover. Tabu search: part i. ORSA Journal on computing, 1(3):190–206, 1989. 60

[40] Fred Glover and Manuel Laguna. Tabu search. In Handbook of Combinatorial Optimiza-

tion, pages 2093–2229. Springer, 1999. 84

[41] Daniel Gmach, Jerry Rolia, and Ludmila Cherkasova. Selling t-shirts and time shares

in the cloud. In Proceedings of the 2012 12th IEEE/ACM International Symposium on

148

BIBLIOGRAPHY

Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12, pages 539–546, Wash-

ington, DC, USA, 2012. IEEE Computer Society. 71

[42] V. Grassi, R. Mirandola, and A. Sabetta. From design to analysis models: a kernel lan-

guage for performance and reliability analysis of component-based systems. In Proc. of

the Workshop WOSP 2005, 2005. 11

[43] A. Gunka, S. Seycek, and Kuhn H. Moving an application to the cloud an evolutionary

approach. In MultiCloud, 2013. 116

[44] Ernest Friedman Hill. Jess in Action: Java Rule-Based Systems. Manning Publications

Co., Greenwich, CT, USA, 2003. 13

[45] E.K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and T. Santen. Components, platforms

and possibilities: towards generic automation for mda. In Proceedings of the tenth ACM

international conference on Embedded software, pages 39–48. ACM, 2010. 19

[46] Robert G Jeroslow. The polynomial hierarchy and a simple model for competitive analy-

sis. Mathematical programming, 32(2):146–164, 1985. 74

[47] Anne Koziolek. Automated Improvement of Software Architecture Models for Perfor-

mance and Other Quality Attributes. PhD thesis, Institut für Programmstrukturen und

Datenorganisation (IPD), Karlsruher Institut für Technologie, Karlsruhe, Germany, July

2011. 16, 17

[48] Anne Koziolek, Danilo Ardagna, and Raffaela Mirandola. Hybrid multi-attribute qos

optimization in component based software systems. Journal of Systems and Software,

86(10):2542 – 2558, 2013. 17, 61

[49] Anne Koziolek, Heiko Koziolek, and Ralf Reussner. PerOpteryx: Automated Application

of Tactics in Multi-objective Software Architecture Optimization. In QoSA 2011 Proc.,

QoSA-ISARCS ’11, pages 33–42, New York, NY, USA, 2011. ACM. 4

[50] Anne Koziolek and Ralf Reussner. Towards a generic quality optimisation framework for

component-based system models. In Proceedings of the 14th International ACM Sigsoft

Symposium on Component Based Software Engineering, CBSE ’11, pages 103–108, New

York, NY, USA, 2011. ACM. 16

[51] Heiko Koziolek. Performance evaluation of component-based software systems: A sur-

vey. Performance Evaluation, 67(8):634–658, 2010. 11

149

BIBLIOGRAPHY

[52] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei

Jiang. Power and performance management of virtualized computing environments via

lookahead control. Cluster Computing, 12(1):1–15, 2009. 137

[53] Alexander Lavrentev. An optimization approach for cloud providers selection and ca-

pacity allocation for multi-iaas systems. Master’s thesis, Politecnico di Milano, 2013.

79

[54] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative system perfor-

mance: computer system analysis using queueing network models. Prentice-Hall, Inc.,

1984. 109

[55] Rui Li, Ramin Etemaadi, Michael T. M. Emmerich, and Michel R. V. Chaudron. An evo-

lutionary multiobjective optimization approach to component-based software architecture

design. In Proc. of Congress, CEC 2011, 2011. 15

[56] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic accep-

tance. CoRR, abs/1109.3627, 2011. 20

[57] Grzegorz Loniewski, Etienne Borde, and Emilio Insfran. Towards a model driven refine-

ment process through architecture evaluation. In Proceedings of the Fourth International

Workshop on Nonfunctional System Properties in Domain Specific Modeling Languages,

NFPinDSML 2012, pages 4:1–4:6, New York, NY, USA, 2012. ACM. 14

[58] HelenaR. Loureno, OlivierC. Martin, and Thomas Sttzle. Iterated local search: Frame-

work and applications. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of

Metaheuristics, volume 146 of International Series in Operations Research & Manage-

ment Science, pages 363–397. Springer US, 2010. 60

[59] Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. Automatically im-

prove software architecture models for performance, reliability, and cost using evolution-

ary algorithms. In Proc. of Conference WOSP/SIPEW 2010, 2010. 12

[60] Raffaela Mirandola, Pasqualina Potena, and Patrizia Scandurra. Adaptation space ex-

ploration for service-oriented applications. Science of Computer Programming, 80, Part

B:356 – 384, 2014. 18

[61] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts. Constraint-based design-space explo-

ration and model synthesis. In Embedded Software, pages 290–305, 2003. 19

150

BIBLIOGRAPHY

[62] Qais Noorshams, Anne Martens, and Ralf Reussner. Using quality of service bounds for

effective multi-objective software architecture optimization. In Proceedings of the 2Nd

International Workshop on the Quality of Service-Oriented Software Systems, QUASOSS

’10, pages 1:1–1:6, New York, NY, USA, 2010. ACM. 16

[63] OMG. UML Profile for Schedulability, Performance, and Time Specification, 2005. 9

[64] OMG. A uml profile for marte: Modeling and analysis of real-time embedded systems,

2008. 9

[65] Mohamed Ouzineb, Mustapha Nourelfath, and Michel Gendreau. Tabu search for the

redundancy allocation problem of homogenous series-parallel multi-state systems. Rel.

Eng. & Sys. Safety, 93(8):1257–1272, 2008. 17

[66] Trevor Parsons and John Murphy. Detecting performance antipatterns in component

based enterprise systems. Journal of Object Technology, 7(3):55–91, 2008. 13

[67] J.F. Perez and G. Casale. Assessing sla compliance from palladio component models. In

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2013 15th Inter-

national Symposium on, pages 409–416, Sept 2013. 22, 62

[68] Juan F. Pérez, Giuliano Casale, and Sergio Pacheco-Sanchez. Estimating computational

requirements in multi-threaded applications. IEEE Trans. Software Eng., 41(3):264–278,

2015. 7

[69] Marian Petre. Uml in practice. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013. IEEE

Press. 10

[70] T. Saxena and G. Karsai. Mde-based approach for generalizing design space exploration.

Model Driven Engineering Languages and Systems, pages 46–60, 2010. 19

[71] SOFTEAM. Modelio. The open source modeling environment. https://www.modelio.org,

2015. 9, 23

[72] T Stützle. Local search algorithms for combinatorial problems. Darmstadt University of

Technology PhD Thesis, 1998. 20

[73] E-G Talbi. A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(5):541–564,

2002. 20

151

BIBLIOGRAPHY

[74] El-Ghazali Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009. 12, 20,

84, 86, 101

[75] A.P.A. van Moorsel and K. Wolter. Analysis and algorithms for restart. In Quantitative

Evaluation of Systems, 2004. QEST 2004. Proceedings. First International Conference

on the, pages 195–204, Sept 2004. 84

[76] Andreas Wolke and Gerhard Meixner. Twospot: A cloud platform for scaling out web

applications dynamically. In ServiceWave 2010 Proc., 2010. 134

[77] M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, and J. Merseguer. Performance

by unified model analysis (puma). In Proc. of Workshop WOSP 2005, 2005. 12

[78] Jing Xu. Rule-based automatic software performance diagnosis and improvement. In

Proc. of Workshop WOSP 2008, 2008. 13

[79] Xiaoyun Zhu, Donald Young, Brian J. Watson, Zhikui Wang, Jerry Rolia, Sharad Singhal,

Bret Mckee, Chris Hyser, Daniel Gmach, Robert Gardner, Tom Christian, and Ludmila

Cherkasova. 1000 islands: An integrated approach to resource management for virtual-

ized data centers. Cluster Computing, 12(1):45–57, March 2009. 134, 138

152

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	2 State of the art
	2.1 Modeling Approaches
	2.2 Other approaches for Designing Applications with QoS Guarantees
	2.3 Deployment Selection Approach Classification

	3 The Model Driven Approach
	3.1 Introduction to Model Driven Engineering
	3.2 Modeling the Application
	3.3 Modeling the Cloud
	3.4 Modelling Cloud Specific Concepts
	3.4.1 Cloud Provider Independent Model
	3.4.2 CPIM for Private Cloud specification
	3.4.3 Cloud Provider Specific Model: The Windows Azure use case

	3.5 Modeling the Quality

	4 Design Methodology and Optimization Approach Overview
	4.1 QoS-Oriented Design Methodology
	4.1.1 Definition of the characteristics of the candidate cloud services
	4.1.2 Modelling
	4.1.3 Reiteration

	4.2 Hybrid optimization architecture

	5 Optimization Problem Formulation
	5.1 Problem definition
	5.2 Analytic Formulation
	5.3 Bi-level formulation and NP-Hardness

	6 Determining an Initial solution
	6.1 Generation of an initial solution

	7 Meta-heuristic Approach
	7.1 Main Algorithm
	7.1.1 Solution Evaluation

	7.2 MakeFeasible
	7.3 ScaleLS
	7.4 TSMove
	7.5 Restart
	7.6 OptimizeWorkload

	8 Approach Evaluation
	8.1 Industrial Case Studies
	8.1.1 The Constellation Platform
	8.1.1.1 Initial analysis
	8.1.1.2 Reiteration

	8.1.2 The ADOxx platform

	8.2 Scalability Analysis
	8.2.1 Design of Experiment
	8.2.2 Scalability Results

	8.3 Comparison with best practice heuristics
	8.4 Initial solution Evaluation
	8.4.1 Quality Evaluation

	9 Conclusions
	Bibliography

