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Abstract

The thesis presents a methodology for robust optimization applied to the problem
of finding optimal shapes of fixed and morphing airfoils for helicopter rotor blades.
To this purpose, the employment of robust approaches is explored to demonstrate
their capability of indicating interesting design in the application to helicopter rotor
blade airfoils. Because robust optimization increases the computational cost of the
optimization process, new uncertainty-based optimization methods are developed.
The goal of this development is to improve the numerical efficiency, thereby mak-
ing robust approaches more attractive to aerodynamic applications. The first method
is based on a multi-fidelity approach to the estimation of the aerodynamic perfor-
mance. The second strategy leverages an adaptive uncertainty quantification method
to reduce the computational cost associated with poor design vectors inside the op-
timization loop. The methods are applied to algebraic test cases and to the robust
optimization of fixed airfoils in the hovering condition. This first application demon-
strates the effectiveness of the proposed strategies and it also provides the mean for
a discussion on the impact of robustness criteria on airfoil design. The robust opti-
mization framework is then used to tackle the forward flight case. In this flight con-
dition, two representative position of the blade over the azimuth are considered, i.e.
the advancing side and the retreating side. Deterministic and robust optimal shapes
are compared and robust airfoils demonstrate to be able to trim the helicopter with
performance close to the deterministic values. The post-processing analysis of this
application includes the comparison of the estimate computed by the steady models
used in the optimization loop throughout the thesis and the objective function esti-
mates obtained from an unsteady CFD model. Finally, the application of morphing
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airfoil is considered. The morphing strategy consists in a variable camber airfoil and
it is conceived with the intent of changing its shape at the 1/rev frequency to enhance
aerodynamic performance. The optimization of morphing airfoils presented in the
thesis takes into account the aerodynamic performance, where technological aspects
are accounted for by means of geometrical constraints. The gain of the morphing
airfoil strategy is assessed not only from a deterministic point of view, but also when
considering uncertainty in the operating conditions.



Sommario

La tesi presenta una metodologia per l’ottimizzazione aerodinamica robusta appli-
cata alla ricerca dei profili ottimi fissi e morphing per le pale di rotore di elicottero.
A tale scopo, l’utilizzo di approcci robusti è esplorato per dimostrare la loro capacità
di indicare regioni dello spazio di design interessanti ai fini dell’applicazione elicot-
teristica. Poichè affrontare un problema di ottimizzazione robusta aumenta il costo
computazionale del processo di ottimizzazione, la tesi presenta due nuovi metodi per
l’ottimizzazione con incertezze. Lo scopo dello sviluppo di questi metodi è di miglio-
rare l’efficienza numerica, permettendo cosı̀ che l’ottimizzazione robusta venga ap-
plicata piú agevolmente a casi aerodinamici. Il primo metodo è basato su una strate-
gia “multi-fidelity” che utilizza due modelli aerodinamici di differente complessità
e costo. Il secondo metodo si basa su un raffinamento adattivo del piano stocas-
tico per la stima delle statistiche della prestazione aerodinamica. I due metodi sono
applicati ad alcuni casi algebrici e al problema di ottimizzazione robusta per profili
fissi di pale di elicottero in volo a punto fisso. Questa prima applicazione dimostra
l’efficacia delle strategie proposte e fornisce la base per una discussione sull’impatto
dei criteri robusti sul progetto di profili. Nel caso di volo avanzato, vengono con-
siderate due posizioni della pala lungo l’angolo azimutale: pala avanzante e pala
retrocedente. I risultati ottenuti tramite l’ottimizzazione robusta e quella determinis-
tica sono confrontati e i profili robusti dimostrano di poter garantire un adeguato liv-
ello di portanza con prestazioni analoghe a quelle dei profili deterministici. L’analisi
dell’ottimizzazione in questa condizione include il confronto delle stime calcolate
con i modelli stazionari usati nel loop di ottimizzazione con un modello di fluido-
dinamica computazionale instazionario. Infine, l’applicazione di profili morphing è
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studiata per migliorare le prestazioni aerodinamiche. La strategia morphing consiste
in un profilo in grado di modificare la sua linea media ed è pensato in modo da garan-
tire una modifica della forma ad una frequenza pari alla 1/giro. L’ottimizzazione dei
profili morphing presentata nella tesi prende in considerazione le prestazioni aerodi-
namiche, mentre gli aspetti tecnologici sono considerati attraverso vincoli geometrici.
Il guadagno dei profili morphing è valutato non solo da un punto di vista determinis-
tico, ma anche considerando incertezze nelle condizioni operative.



CHAPTER 1

Introduction

Helicopters play a unique role in modern aviation thanks to their ability to take-off
and land vertically, fly forward or backward, climb or descend and hover. Thanks to
this unique ability, helicopters are capable of missions that are unsuitable to fixed-
wing aircraft, such as search and rescue in arduous conditions, police surveillance,
offshore missions, and other specific military operations. This fostered the great
employment of helicopter both in the civil and military aviation and the development
of new technologies for this machine since the 1930s.

Aerodynamic forces to fly a helicopter are generated by the rotor, a system of ro-
tating wings, called blades, that provide the lift to sustain flight, the propulsive force
to move the aircraft through the air and the control to trim the aircraft or change its
attitude. In classical configurations, a single main rotor is employed and a sideward,
tail rotor is required to provide anti-torque and directional control. The presence of
rotating elements no doubt increases the complexity of helicopters from both aero-
dynamic and mechanic points of view. With regard to aerodynamics, the flowfield
around the helicopter is dominated by unsteady, three-dimensional effects and inter-
actions among the helicopter bodies (rotor blades, main body and tail), as well as
by vortices and wakes (see Fig. 1.1). This system is so complicated that, after many
years of studies, it still defies an adequate and comprehensive description [1]. From
a mechanic point of view, the presence of the rotor introduces the structural dynam-
ics associated with the degrees of freedom of each blade. In conventional rotors with
fully articulated hubs, helicopter blades are connected to the shaft by means of hinges
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which permit flap and lead-lag motions. Pilot control is exerted through a change in
the pitch angle of the blades, either cyclically or collectively. In addition, blades are
slender bodies undergoing twisting and bending. The aeroelastic degrees of freedom,
together with the remaining rigid motions, are coupled with the aerodynamic loads.

The aerodynamic flowfield, the blade dynamics and aeroelasticity, the pilot con-
trol are all relevant aspects of the environment surrounding the rotor, which must be
taken into account in helicopter rotor design. This poses a great challenge to rotor
designers, because the high-fidelity analysis of all these aspects and their mutual in-
teraction requires the employment of tools with prohibitive cost. In comprehensive
rotor analysis models, parsimonious models of each sub-system (e.g. aerodynamics,
structural dynamics) are used to limit the cost necessary to estimate loads, displace-
ments and overall performance of the rotor [1, p.805]. Examples are the CAMRAD
code [2] developed by Johnson [3, 4] and MBDyn [5, 6] developed at the Department
of Aerospace Science and Technology of the Politecnico di Milano [7]. A modest
cost permits parametric calculations that are crucial in the design stage. To some ex-
tent, the employment of cheap models and the combined use of models of different
fidelity are intrinsically rooted in the design of rotors.

Another major challenge of rotor design is the definition of the performance
goals. In fact, helicopter rotors are required to fulfill many different mission require-
ments. This translates into the necessity for rotor blades to operate with satisfac-
tory performance in extremely different operating conditions, depending on the flight

Retreating side:
subsonic regime, high angles of attack

Advancing side:
transonic conditions,
low angles of attack

Tip
vortices

Blade elasticity

Main body
and tail

interaction

Figure 1.1: Characteristics of the complex flowfield around a helicopter rotor in forward
flight.
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condition, pitch control and advancing or climbing velocity. If the design process is
tackled with an optimization approach, careful analysis is necessary in defining the
interesting operating conditions and in setting the objectives. In most cases, a trade-
off solution must be pursued, whose performance is sub-optimal in each condition
over the flight envelope.

In such a context, the goal of aerodynamic design is to improve the overall per-
formance of the rotor by increasing thrust to accommodate for an increased payload,
reducing the torque due to aerodynamic drag at a given thrust level, alleviating aero-
dynamic loads on the blade structure, enlarging the helicopter rotor flight envelope,
reducing vibrations. In the following sections, a discussion is given on the basic
features of rotorcraft aerodynamics. These basics found the principles of fixed and
morphing airfoil design which are the subject of this thesis and are presented in the
subsequent sections. Finally, the objectives and the structure of the thesis are detailed.

1.1 Basics of rotorcraft aerodynamics

Understanding rotor aerodynamics is key to predict helicopter performance and to
improve helicopter aerodynamic design. The aerodynamic loads acting on the rotor
blades depend on the local angle of attack and the local dynamic pressure of the
blades. These conditions are influenced by the blade motion, the advancing velocity
and the effects of wakes and flowstream across the rotor disk.

In fully articulated rotors, as the one presented Fig. 1.2, the blade is allowed to
flap up and down freely about a “flapping hinge” at the blade root. In addition, a
“lead-lag” hinge is also present to relieve the in-plane bending moments generated
by the Coriolis forces caused by the flapping motion. In hingeless or bearingless rotor
hub, the conventional flapping and lagging hinges are replaced by flexible structural
elements. A great advantage of this hub is the elimination of hinges which leads to
a great simplification of hub design and also reduced aerodynamic drag [8, p.279].
In both cases, the blades are allowed another degree of freedom at the blade root
which is controlled by the pilot: the pitching motion. In fact, the magnitude and
direction of the thrust produced by the rotor are controlled by changing the angle
of attack of all the blades either collectively or cyclically. Collective pitch control
changes the blade pitch angle of each blade in the same way in order to increase the
level of thrust produced by the rotor. When cyclic pitch control is introduced, the
blade pitch angle is varied periodically over the azimuth angle. Under azimuthally
varying aerodynamic loads, the lift produced by the rotor tilts, so that a propulsive
force is created to permit forward (sideward or rearward) flight. Such motion requires
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Figure 1.2: Motion in a fully articulated rotor hub (from Ref. [8, p.2]).

freedom of rotation of the blades about the quarter-chord line, which can be achieved
by introducing a “feathering hinge” at the blade root. Thus, blade motion features
three rigid degrees of freedom and it is subject to aerodynamic forces, centrifugal
forces, structural forces and control forces.

Finally, at the tip of the blade, the local dynamic pressure is very high and strong
vortices are produced [1]. Tip vortices are typically convected rearward of the blade
and downward, producing helical trajectories around the rotor. In hovering flight, the
vortices stay very close to the body and the rotor itself, whereas in forward flight
they are convected to the tail of the helicopter. In any cases, these vortices interact
with the blades themselves or with the other parts of the helicopter, modifying the
aerodynamic loads acting on them. The same applies for the wakes trailed from the
blades.

1.1.1 Hovering flight

Hovering flight is the condition in which the advancing and climbing velocities of
the helicopter are null and the aerodynamic forces produced by the rotor are used to
balance the helicopter weight and mantain its position. In this condition, the lift force
produced by the rotor tends to draw the blade upward and places the tip path plane
above the rotor hub as presented in Fig. 1.3a. The angle formed by the blade is called
coning angle and it is essentially constant over the period of rotation of the rotor. The
drag acting on the blades causes the tip of the blade to lag slightly behind the root of
the blade. The centrifugal force acting radially on the rotating blade counteracts the
coning and lag tendency.

The hover condition is essentially steady and azimuthally axisymmetric with re-
gard to the blade. This means that each blade encounters the same velocity for each
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Coning
angle

Thrust Thrust

(a) Coning angle in forward flight.

ψ = 180 deg

ψ = 270 deg ψ = 90 deg

ψ = 0 deg

V = ΩrR

rR
R

(b) Scheme of incident speed on the rotor
blade in hover.

Figure 1.3: Scheme of hovering condition.

azimuth angle over the period of rotation of the rotor as presented in Fig. 1.3b. Per-
turbations to this perfectly steady and axisymmetric condition may arise from the
effects of tip and blade vortices, and small cyclic pitch control that may be necessary
to trim the aircraft. The variation of the velocity V with the radius of the blade ap-
pears linear, because the only contribution is given by the rotor angular velocity Ω,
so that

V = ΩrR, (1.1)

where r is the ratio between the local radius and the blade radius R. The local angle
of attack is affected by the blade twist, the induced velocity Vi and the blade pitch
angle, resulting from collective pitch control, possible small cyclic control and coning
angle. The angle of attack remains constant with the azimuth angle, while it may vary
radially due to twist and induced velocity distribution.

1.1.2 Forward flight

A helicopter rotor in forward flight encounters a periodically changing airflow. In
fact, the advancing speed V∞ of the helicopter adds to the rotational speed of the
rotor, so that the local velocity at a specific radius rR is given by

V = V∞ sinψ + ΩrR, (1.2)

where ψ is the azimuth angle which is equal to zero when the blade is pointing down-
stream as shown in Fig. 1.3b. The forward speed of the helicopter is expressed by
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ψ = 270 deg ψ = 90 deg

V∞ Zone with
Mach number

exceeding
critical values

Reverse
flow region

Advancing sideRetreating side

Ω

Figure 1.4: Scheme of incident speed on the rotor blade in forward flight.

means of the non-dimensional advance ratio µ, defined as follows

µ =
V∞
ΩR

, (1.3)

or in other words as the ratio between the forward speed and the tip speed.
A typical distribution of the local velocity in forward flight is depicted in Fig. 1.4.

In the advancing side, because of the summation of advancing speed and rotating
speed, the local speed is so high that the outboard sections of the blade may encounter
conditions exceeding the critical Mach number. In the retreating side (azimuth an-
gle ψ = 270 deg) the inboard section may experience reverse flow. Here, the velocity
is so low that the blades angle of attack is very high in order to develop a sufficient
level of trust.

The change in the resultant angle of attack and incident velocity occurs at the
rotational frequency of the rotor: 1/rev or once per revolution. Cyclic pitch is also
applied with the same frequency. However, higher harmonics are introduced in this
situation by the nonlinear blade dynamics and the nonlinear aerodynamic loads acting
on the blades. A complete description of forward flight dynamics and aerodynamics
can be found in Ref. [9, p.152] or Ref. [1, chap. 4].

1.2 Airfoil design for helicopter rotor blades

The choice of airfoil sections for helicopter rotors requires special consideration be-
cause significant improvements in rotor performance can be realized with the optimal
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selection of airfoil shapes [1]. In Ref. [10, p.88] a typical workflow of aerodynamic
rotor design supplied by Westland Helicopters is presented. Given the basic heli-
copter specifications in terms of maximum flight speed, payload and range, the step-
by-step design begins with the definition of the tip speed, followed by the blade area,
rotor radius and finally the number of blades. The selection of the airfoil of the blade
is regarded as an a priori choice which impacts the subsequent steps. For instance,
tip speed for a specific rotor angular velocity is associated with the maximum flight
speed and it is limited by the onset of compressibility effects in forward flight. In
fact, a higher advancing speed in forward flight increases the local Mach number of
the advancing blade, resulting in the onset of strong shock waves that produces ex-
cessive torque on the rotor. In this regard, the employment of advanced blade section
can reduce drag rise and increase the maximum flight speed of the new helicopter,
attracting more customers and building an advantage over competitors. The use of
advanced section affects also the blade area: a higher blade-loading coefficient CT /σ
is obtained with advanced sections that provide higher lift coefficient in the retreating
side, resulting eventually in lower rotor area. This is shown in Fig. 1.5 from Ref. [10,
p.90] where the use of the RAE 9615 airfoil with respect to the classical NACA 0012
airfoil yields a gain close to 10 % in blade area which translates into rotor overall
weight. Furthermore, it can be proved that the figure of merit of the rotor, i.e. the
measure of rotor efficiency, is related to the lift-to-drag ratio of the blade sections
in hovering condition and to the average drag coefficient of the airfoil sections in
forward flight [1, pp.295–301].

Figure 1.5: Impact of airfoil selection on blade required area (from Ref. [10, p.72]).
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Figure 1.6: “Figure-of-eight” diagram for the NACA 0012 (left) and the NPL 9615 (right)
airfoils with compressibility and stall boundaries (from Ref. [10, p.72]).

The selection of airfoil sections for helicopter rotor design is more complicated
than in the case of fixed-wing applications, because rotors are not a “point” design [1,
p.347]. In fact, a wide range of angle of attack and Mach number are encountered
by a rotor blade section in the helicopter flight envelope [11]. A representation of the
widely ranging conditions in forward flight is typically given by the “figure-of-eight”
diagram which plots the operating conditions for a given blade radius rR at a partic-
ular value of the advancing ratio µ. Two representative diagrams for the NACA 0012
and the NPL 9615 airfoils are shown in Fig. 1.6, where the boundaries of static stall
occurrence and drag rise are reported. In the advancing side, the blade section en-
counters high values of the Mach number and low values of the angle of attack, and
may experience drag rise due to compressibility effects. Moving to the retreating
side, the blade section encounters low values of the Mach number and high angle of
attack which may cause separation and stall. Both retreating blade stall and the onset
of strong shock waves on the advancing side limit the rotor performance and airfoil
section design should address these issues with a careful airfoil selection. How-
ever, section with good performance in the advancing side are transonic airfoils, with
modest thickness-to-chord ratio and low camber. On the other side, improving the be-
havior close to the stall limit typically means to increase the camber of the airfoil to
cope with the high values of angle of attack. Figure 1.7 reports examples of sections
used in helicopters that have been conceived to privilege either the advancing side or
the retreating side. For instance, the SC1094-R8 airfoil was introduced because the
original design of the UH-60 Black Hawk rotor blade based on the SC1095 airfoil for
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RC(5)-10

VR-15

High-speed low-angle of attack airfoils

RC(4)-10

SC1094 R8

Low-speed high-angle of attack airfoils

Figure 1.7: Airfoils designed for the advancing and retreating sides of helicopter rotors.

the entire blade radius could not meet the Army’s manoeuvrability requirements [12].
Thus, a cambered nose section was added to the SC1095 airfoil from 0.47% to 0.85%
of the blade radius to increase the maximum rotor thrust in manoeuvres. This modi-
fied SC1095 section is referred to as the SC1094 R8 and it provides higher maximum
lift coefficient which clearly benefits the retreating side [1, p.372].

As a result, the design of blade airfoils appears as a trade-off problem between
conflicting requirements. In addition to good stall and transonic characteristics, an-
other important aspect in selecting airfoils for rotorcraft applications is the value of
the aerodynamic moment coefficient. In fact, the pitching moment, increased ei-
ther by cambered section or compressibility effects, has a negative effect on the load
acting on the structure of the blade. Thus, a gain in maximum lift coefficient must
always be considered in conjunction with a constraint on the moment coefficient.

In addition, in this context it is appropriate to measure the aerodynamic efficiency
of the airfoil section. In Ref. [11] a general correspondence is observed between
global performance parameters, such as the rotor lift-to-drag ratio and the airfoil per-
formance parameters, such as the airfoil lift-to-drag ratio, the drag bucket boundaries
and the divergence Mach number. This correspondence is pointed out also in Ref. [1,
p.297], but in the case of Ref. [11] the author concludes that the relations observed
between global performance and the airfoil environment are such that the emphasis in
airfoil design should be for good lift-to-drag ratio, while the maximum lift coefficient
performance is less important.

To sum up, the general, conflicting requirements for a good helicopter rotor airfoil
are the following:

• high maximum lift coefficient

• high drag divergence Mach number
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• good lift-to-drag ratio over a wide range of Mach number and angle of attack

• low pitching moment.

So far, only static characteristics of airfoils have been discussed. However, rotor
blades operate in an unsteady environment which strongly affects the airfoil behavior.
Thus, an assessment of the unsteady characteristics of the airfoils selected in design is
of utmost importance to get reliable estimate of the rotor performance. In particular,
airfoils for helicopters should be tested to assess the occurrence of dynamic stall,
namely the stall encountered by an airfoil undergoing a time-varying change in the
angle of attack. Dynamic stall exhibits with a hysteresis loop of the aerodynamic
loads, as presented in Fig. 1.8. In short, as the angle of attack increases beyond the
static stall point, the lift coefficient keeps increasing owing to a delay caused by the
kinematics of the pitch rate. Eventually, flow separation develops at the leading edge,
creating a vortex on the upper surface that travels downstream. As the vortex moves
along the chord, lift is still generated, but a strong pitching moment is produced as
well. When the vortex reaches the trailing edge region, the flow is fully separated
and lift breaks down. As the angle of attack decreases and becomes sufficiently low
(lower than the angle of static stall) the flow reattaches front to back.

Dynamic stall is a very complex phenomenon that has been extensively studied
due to its importance [13, 14], but its accurate prediction is still a formidable chal-
lenge [15]. Simplified models of dynamic stall have been developed to implement
straightforward corrections to the linear steady or unsteady models which are ca-
pable of representing the nonlinear behavior of oscillating airfoils. This simplified
models used in aeromechanical comprehensive solvers for rotors are either semi-
analytic methods, combining qualitative feature of the phenomenon with quantitative
test data, or empirical methods based on experimental data. With regard to semi-
analytic methods, great development was carried out in the 70s with the work of
Gross and Harris [16], Gormont [17] and Bielawa [18]: the former two references
present the Boeing-Vertol method, a correction of the unsteady thin airfoil theory of
Theodorsen [19], whereas in the latter a modification of the aerodynamic loads is
developed based on the steady airfoil data.

1.2.1 State-of-the art on optimization of helicopter airfoils

Helicopter airfoil design has been tackled by means of optimization methods in sev-
eral works. Some of them only deal with hover optimization, others treat the hov-
ering case as a starting point for the forward flight case. For instance, in Ref. [20]
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Figure 1.8: Scheme of the essential steps of dynamic stall (from Ref. [1]).

a two-dimensional rotor airfoil optimization is performed for a steady condition that
is representative for hover. In Refs. [21, 22, 23] the optimization of airfoils for heli-
copter rotor blades is considered either in the hovering condition or with a multi-point
approach for forward flight with two or three representative conditions. In these cases
each condition is treated as a steady simulation.

A notable effort in introducing unsteady effects in the optimization loop is the
work presented in Ref. [24] which presents an adjoint-based optimization for a pitch-
ing airfoil. This work shows that for low values of the pitching frequency a multi-
point optimization with steady simulations yields similar results with respect to an
unsteady computation. However, as pitching frequency increases the discrepancy
between the optimal airfoil shapes grows.
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Optimization of airfoil sections for the Caradonna-Tung rotor blade is performed
in Ref. [25] by means of an adjoint method on unstructured mesh. References [26, 27]
present the optimization of blade surface by changing the airfoil shapes. The opti-
mization of the section shape is performed in conjunction with other blade parameters
(such as twist and chord distribution) in Ref. [28]. Finally, optimizations of blade pa-
rameters (twist, chord, sweep, anhedral/dihedral) are presented in Refs. [29, 30, 31,
32, 33].

Reference [34] points out that no algorithmic “silver bullet” has emerged to make
the solution of helicopter optimization problems as computationally efficient and ro-
bust as for traditional structural optimization problems. In the same reference, the
need for a robustness analysis of the optimum is raised to determine the sensitivity of
the optimal solution to modeling inaccuracies.

As a matter of fact, uncertainty in the modelling used within the optimization
procedure no doubt affects the optimum. If the operating condition for which a blade
is optimized during design do not correspond to the conditions in which the blade
actually operates in the real world, the performance of the optimized blade could be
unsatisfactory. Off-design performance analysis and optimization considering uncer-
tainty may cope with these situations. Indeed, robustness concepts directly impact
the design process. As pointed out in Ref. [1, p.278], in the design of a new heli-
copter, performance guarantees are made to the customer based on various agreed
specifications. Any failure of the manufacturer to achieve the negotiated perfor-
mance may result in substantial costs or loss of customers. It is then important to
have a high level of confidence that the performance guarantees can be met. In this
regard, robustness criteria in the design stage can reduce the likelihood of undesired
behavior during flight or experimental tests at the late stage of design and the need
to redesign a new machine. Few works consider uncertainty in the field of helicopter
design. In Ref. [35] a study is presented of the impact on the helicopter performance
of structural and aerodynamic uncertainties, such as blade chord, rotor radius, two-
dimensional lift-curve slope, blade profile drag coefficient, rotor angular velocity,
blade pitch angle, and blade twist rate per radius of the rotor. The uncertain variables
are propagated through an aerodynamic model based on blade element and momen-
tum theory, and a 20-25% excess power is found to be required to the helicopter due
to uncertainties. Reference [36] investigates the effects of spatially uncertain material
properties on the aeroelastic response predictions (e.g., rotating frequencies, vibra-
tory loads, etc.) of composite helicopter rotor and it shows that spatial uncertainty
has considerable influence on the vibratory hub load predictions.
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1.3 Morphing airfoils for helicopter rotor blades

As presented in the preceding sections, airfoils of helicopter rotor blades are required
to operate in different conditions and good performance in one condition does not
transfer to another one. A very attractive solution to this problem is the employment
of a blade capable of changing its shape during flight, that is a morphing blade.

With regard to helicopters, morphing rotor design is a challenging and active
area of research [37]. In helicopter applications, the urgent need to improve the
boundaries of the flight envelope leads research and industry to experiment extreme
configurations and technological solutions. Examples of this are tilt-rotors (e.g. the
Bell XV-15) or hybrid configurations with a rotor and one or two propellers (such
as Sikorsky X2 or Airbus Helicopter X3). In addition, the internal structure of the
blades is made by a single D-shaped spar close to the leading edge and honeycomb
filler for the remaining part. Thus, it seems suited to accommodate for a morphing
actuation mechanism.

The DARPA Mission Adaptive Rotor (MAR) is a research project on adaptive
rotors. In 2009 DARPA planned to fly adaptive rotors by 2018, with the goal of
developing a rotor that can change its configuration before a mission and in flight,
between mission segments and with every revolution [37]. Potential approaches to
reach this goal are variable blade diameter, sweep, chord, variable-camber airfoils,
varying blade twist, anhedral/dihedral, tip speed, stiffness, and damping. These dif-
ferent strategies are expected to increase rotorcraft payload by 30% and range by
40%, while reducing the acoustic detection range by 50% and vibration by 90%
over fixed geometry rotors. Some studies in the field have demonstrated the aero-
dynamic and acoustic benefits of active twist rotor [38, 39], rotor power reduction
using trailing-edge flaps or envelope expansion using extendable chord sections [37].
Geometry variations concerned span variation by means of a telescopic approach
(leveraging centrifugal forces to alleviate actuation). Probably the most developed
type of morphing in the field is related to twist, obtained with aeroelastic effects pro-
duced by trailing-edge control surfaces and “smart spar”, i.e. variable stiffness spar
to create aeroelastic twisting.

Airfoil morphing is mainly concerned with camber variations: to a large extent,
the camber of an airfoil describes its asymmetry, and is typically used to control its
zero-lift angle of attack [40]. Adding camber, for example, will tend to increase the
amount of lift produced at a given angle of attack of the airfoil, although this is lim-
ited by stall and separation. Almost all modern aircraft use discrete control surfaces,
such as flaps, ailerons, or sometimes slats, to adjust the camber of the wing. Trailing
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(a) Prototype of conformable camber air-
foil with piezoelectric actuators developed
in Ref. [41].

(b) FishBAC structure [45].

Figure 1.9: Technologies for variable camber morphing.

edge devices are control surfaces typically hinged at 75% of the chord which rotate
to change their angle and also translate in some cases to increase chord as well as
camber. In helicopter rotor blades, trailing edge flaps have been extensively consid-
ered for vibration reduction over the last decades [41]. For instance, flaps are con-
sidered in the Boeing Smart Materials Actuated Rotor Technology (SMART) rotor
project [42] focused on the development of controllable rotors with smart-material
actuators [43, 44]. However, the camber change is almost always discrete in that
after actuation of the control surface, there is a sudden transition of camber in the
chordwise direction. This causes a sudden change in the pressure distribution over
the corner created at the hinge line, causing a drag penalty and the possibility of sep-
aration. As a result, a smooth variation of camber obtained by airfoil morphing is an
attractive solution to increase the lift coefficient in particular conditions of flight.

Variable camber airfoils have been adopted in fixed-wing applications [46, 47]
and this solution has recently been explored for helicopter applications, as well. To
this extent, a continuously changing rotor blade airfoil is seen as a successor to ro-
tor blade trailing-edge flaps [41]. In Ref. [48] an adaptive airfoil with an aerody-
namically smooth variable leading-edge droop is used to postpone dynamic stall. A
variable-camber airfoil based on a compliant mechanism and piezo-electric actua-
tors is developed in Ref. [41] (see Fig.1.9a). The morphing device is used for active
helicopter vibration reduction. In this case the shape of the airfoil is fixed, but an
optimization is performed to find the optimal material distribution to maximize the
trailing-edge deflection under actuation forces and minimize the deflection under ex-
ternal aerodynamic loads. Another important study in the field is the development
of the FishBone Active Camber (FishBAC) concept introduced and developed in
Refs. [49, 45, 36]. The FishBAC is made of a compliant spine and stringer skele-
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ton, pre-tensioned elastomeric matrix composite skin, an antagonistic tendon drive
linked to a non-backdrivable spooling pulley, and a non-morphing,“rigid”, main spar
(see Fig. 1.9b).

Another solution in the literature is proposed in Ref. [50]. In this case a variable
droop leading edge is used to improve the sectional lift-to-drag ratio by alleviating
dynamic stall on the retreating blade while simultaneously reducing the transonic
drag rise of the advancing blade. A leading edge variation combined with a trail-
ing edge camber variation is the solution presented in Ref. [51] to define shock-free
airfoils for helicopter rotors.

Because morphing structures typically imply increased weight, complexity and
cost, an in-depth assessment of the potential aerodynamic benefit of such an approach
is strongly recommended [45]. As a final remark, optimization of the morphing air-
foil shape to improve the aerodynamic performance is typically run separately to the
morphing mechanism design [40]. To this extent, the optimization approach is con-
ceived as a two-level approach [46]: (i) the best deformed airfoil configuration is
determined according to a desired aerodynamic performance, and (ii) in the second
level, the best internal structural configuration is obtained using a topology optimiza-
tion suited to the chosen compliant structure able to adapt itself in order to match the
optimal shape coming out from the first level.

1.4 Objective of the PhD thesis

The thesis addresses the problem of designing an airfoil of a helicopter blade section
with novel approaches. In the first instance, a problem of design under uncertainty is
formulated to cope with the uncertainty affecting the operating conditions. Secondly,
a morphing airfoil is considered to cope with the different conditions encountered in
forward flight. The possibility of a morphing strategy is also explored from a robust
perspective.

To clarify the application, a template of the aerodynamic design optimization
problems tackled throughout the thesis is depicted in Fig. 1.10. A “classical” opti-
mization problem requires the definition of an aerodynamic system, composed of the
following elements: (i) a model of the system, (ii) the design input, i.e. the airfoil
shape, and (iii) the output of interest, which is typically a function of the flowfield
(e.g. lift coefficient, drag coefficient, pressure in the separation region). The aerody-
namic model is in general a partial differential equation of the type L = 0, where L
is the proper differential operator. The model describes the flowfield around the air-
foil, starting from suited initial and boundary conditions, such as unsteady pitching
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angle or freestream operating conditions. The model computes the performance, i.e.
the aerodynamic loads for a given airfoil shape. However, many of the variables that
need to be specified for this design problem are affected by sources of uncertainty.

With regard to operating conditions, sources of uncertainty may arise from envi-
ronmental perturbations or lack of knowledge in the modelling assumptions. Specif-
ically, the flow conditions encountered by rotor blades may vary due to the effects of
the blade dynamics and flexibility, as well as the interaction with vortices and wakes
trailed from preceding blades. It follows that the flow conditions considered at the
design stage for the definition of the optimal two-dimensional section are usually af-
fected by uncertainty, not only because they are estimates of the actual condition, but
also because modelling involves some level of approximation of the real flowfield.
These sources of uncertainty impact the local angle of attack and incident velocity
at which the airfoil of the blade operates. In the application to morphing structures,
a high level of uncertainty affects the modelling of the environmental conditions en-
countered by the airfoil, and therefore robustness becomes critical to define reliable
design.

In such a context, taking into account the variability of the modelling parameters
in the optimization procedure is a possible way to result in a more reliable optimal
design. This is the goal of uncertainty-based optimization. In particular, robust opti-
mization seeks an optimal design that is minimally sensitive with respect to changes
of the uncertain parameters that define the problem. The result is a robust design that
maintains satisfactory performance also in off-design conditions.

In such a context, several are the objectives of the PhD thesis. First, a methodol-
ogy for robust optimization is developed to tackle the problem of designing fixed and

Aerodynamic models L = 0
to compute the aerodynamic loads

Output uncertainty

Airfoil shape
to be designed

Freestream
operating
conditions

Sources of uncertainty

by means of
shape optimization

Figure 1.10: Representative scheme of the optimization problem of the airfoil shape under
uncertainty.
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morphing airfoils of helicopter rotor blades. To this extent, the employment of robust
approaches is explored to demonstrate their capability of indicating interesting design
in the application to helicopter rotor blade airfoils. In addition, the impact of robust-
ness criteria on airfoil design is discussed. Because robust optimization increases the
computational cost of the optimization process, new uncertainty-based optimization
methods are developed. The goal of this development is to improve the numerical
efficiency, thereby making robust approaches more attractive to aerodynamic appli-
cations. Finally, the gain of the morphing airfoil strategy is assessed not only from
a deterministic point of view, but also when considering uncertainty in the operating
conditions. In such a way, a more realistic estimate of the gain of morphing strategies
can be defined.

1.4.1 Structure of the PhD thesis

The thesis is outlined as follows. Chapter 2 presents the problem of design under un-
certainty, with particular attention to robust design optimization. The methodology of
robust optimization is presented and the numerical ingredients necessary to perform
an optimization under uncertainty are detailed. In particular, multi-objective opti-
mization algorithms and non-intrusive uncertainty quantification methods are pre-
sented.

A major problem in design under uncertainty is the numerical efficiency, because
considering uncertainty results in an increase in computational cost. Thus, in Chap-
ter 3 two novel strategies are developed to improve the efficiency of robust design
methods. The methods are applied to a bi-objective algebraic optimization in the first
instance to assess the impact on the global robust optimization cost.

Chapter 4 is devoted to the optimization of airfoils for the hovering flight condi-
tion. The methods presented in Chapter 3 are applied to the hovering optimization
problem to assess the performance of the methods in an engineering case. Results ob-
tained with the methods are also discussed from a physical point of view to analyze
the aerodynamic performance of the optimal shapes found with the robust approach.

In Chapter 5 the forward flight condition is considered. In this case, two different
classes of optimization are considered. First, a “classical”, deterministic airfoil opti-
mization in forward flight is performed, with a minimization of the drag coefficient
subject to a target lift coefficient for trimming purposes. The second type is the robust
optimization in forward flight condition, namely an optimization that seeks a shape
with a lift-to-drag ratio robust against uncertain operating conditions. The results of
the two optimization problems are compared and their performance over the azimuth
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angle is assessed. Because steady models are used throughout the thesis, a compar-
ison between quasi-steady loads and unsteady loads is presented for the reference
airfoils.

Finally, in Chapter 6 the aerodynamic optimization of morphing airfoils for for-
ward flight application is considered. The morphing strategy consists of a con-
formable camber airfoil which changes over the period of rotation of the blade to
cope with the variable flow conditions encountered in forward flight. A robust op-
timization is considered also in this case to cope with uncertainty in the operating
conditions.



CHAPTER 2

Robust optimization

In most engineering applications, progress in science and technology increased de-
mand for design with better performance, higher reliability and robustness, and lower
cost and risk [52]. To effectively address these competing objectives, designers gen-
erally employ design and optimization methods considering all relevant aspects of
the system operating cycle, in which there inherently exist numerous sources of un-
certainties. For instance, system operating conditions are affected by the status of the
surrounding environment which may change during the system life cycle. Moreover,
some model parameters used to represent the physical system during design stage are
affected by a lack of knowledge of the system itself. Figure 2.1 presents possible
sources of uncertainty that may arise in aircraft design, production and service. It is
clear that these uncertainties may alter the system’s expected performance, jeopar-
dize the safety, and even result in mission failure. Thus, it is beneficial to take into
account this aspect in the optimization tools used during design.

Two main concepts are related to design in the presence of uncertainty: robust-
ness and reliability. In the former case, design solutions are sought with improved
performance and reduced sensitivity to variations. In the latter case, the optimal de-
sign guarantees that the occurrence of undesired events is avoided or kept under a
given threshold. A comparison between the optimal solution of a traditional opti-
mization and the solutions obtained considering robustness and reliability criteria is
presented in Fig. 2.2. In the first case, the robust minimum guarantees that in the
event of a perturbation ∆x of the design variable x1, the perturbation of the objective
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Figure 2.1: Sources of uncertainty in aircraft design, production and service (picture of
aircraft life cycle from www.airbus.com).

function ∆u is minimal. With respect to the traditional minimum (called determin-
istic in Fig. 2.2a), the robust minimum presents a small performance penalty, but
ensures smaller perturbation of the performance. In Fig. 2.2b a reliable minimum is
presented, which is the point with the lower value of the objective function that is also
distant a given safety factor from the unfeasible region imposed by the constraint.

Reliability and robustness are of great interest in aircraft design. Robustness
criteria drive aerodynamic designers to favor airfoils that exhibit trailing edge stall,
rather than leading edge stall airfoils. In fact, in the former case airfoils present
a smoother transition to full flow separation and stall condition, owing to a larger
leading edge radius and strong upper surface curvature. In the latter case, airfoils
have moderate leading edge radii and a flat upper surface, which lead in most cases
to abrupt stall [53]. With regard to reliability-based design, reliability concepts are of
primary interest in structural and aeroelastic aircraft design to prevent wing structure
damage [54] or wing flutter onset [55].

Traditional strategies used in engineering design to ensure robustness and relia-
bility are local sensitivity analysis and safety margin factors. Both strategies are valid
and widely employed, but they have some limitations. In the first case, classical sen-
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Figure 2.2: Scheme of optimal solutions under uncertainty.

sitivity analysis is local and it does not account for the actual range of variations of
the uncertain variables which may dramatically change the system response. Safety
factors may yield too conservative design solutions, which in aerospace structures
sizing translates into increased weight and cost. In both cases, a complete represen-
tation of the behavior under the estimated uncertainties is not provided. This has
motivated the development of more advanced and accurate analytical approaches to
tackle uncertainties systematically and rationally during design. These methods are
ascribed to uncertainty-based design optimization or design under uncertainty and
they are based on the coupling of an optimization method and an Uncertainty Quan-
tification (UQ) method used to quantify the uncertainty of the system performance
due to the uncertainty of the system.

Although the application of uncertainty-based analysis to aerospace vehicle de-
sign has been studied over the past two decades, a concerted effort is still needed
to fully convey existing uncertainty-based design optimization methods from the re-
search community to industry. One major challenge is the improvement of the effi-
ciency of UQ methods and of the coupling between UQ and optimization methods to
solve uncertainty-based optimization.

In this chapter, the concept of robust design is described in Sec. 2.1 using a gen-
eral framework for design under uncertainty. Section 2.2 defines key elements of
multi-objective optimization and presents the optimization algorithms used through-
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out the thesis. Finally, the uncertainty modelling and uncertainty propagation meth-
ods are described in Sec. 2.3.

2.1 What is robust optimization?

The process of obtaining an optimal design according to a set of objectives and con-
straints is called design optimization. In most engineering applications, the objective
of the optimization is a cost function, or quantity of interest, that defines the perfor-
mance of the system to be improved. Constraints are necessary in design optimiza-
tion to enforce compliance of geometrical specifications or avoidance of catastrophic
events, for example.

Both objectives and constraints are typically computed by a mathematical model
of the system under analysis. For this general description, let us consider a model for
a time- and space-dependent system, which could be represented by the following
equation

L(x, t,y;φ(x, t,y)) = 0, (2.1)

with appropriate initial and boundary conditions. To give a rigorous mathematical
description, the operator L is defined on the domain D × T × X , where y ∈ D and
t ∈ T are the spatial and temporal coordinates with D ⊂ Rd, d ∈ {1, 2, 3}, and
T ⊂ R. The vector of the design variables x is defined on the domain X ⊂ Rn,
where n is the number of design variables, and the solution of Eq. (2.1) is φ(x, t,y).

In traditional design optimization, engineers assume that the variables and models
used in the optimization problem are known with certainty. In this case, the optimiza-
tion is referred to as deterministic design optimization and it may be formulated in
mathematical terms as follows

minimize/maximize: u (x)

subject to: g (x) ≤ 0

by changing: x (2.2)

where x ⊂ Rn is the vector of n design variables, u is the performance, i.e. the
objective function and vector g ⊂ Rq describes the q constraints of the optimization
problem. The dependence of the objective u and constraints g on vector x may be
a direct dependence (e.g. a geometrical constraint), or it may stem from the depen-
dence on the solution φ of the equation describing the system under consideration
(Eq. (2.1)). Please note that the arguments y and t are dropped in the preceding
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equation to highlight only the dependency on the design and uncertain variables. In
addition, vector g typically contains also Eq. (2.1), which represents a constraint to
the optimization problem [56].

Now, let us assume that the parameters or the model used in the optimization
problem are affected by uncertainty. In this case, equation (2.1) is written as the
following

L(x, t,y, ξ;φ(x, t,y, ξ)) = 0. (2.3)

The new element in this equation is vector ξ collecting the uncertain variables. Un-
certain variables are not deterministic, or in other words thay cannot be assigned a
single, deterministic value. Instead, they are typically described by means of a dis-
tribution describing the likelihood of the uncertain variable being equal to a specific
value. Different mathematical theories are used to model uncertainties, from prob-
ability theory to interval analysis [57]. A discussion on these theories is presented
in Sec. 2.3. Here, it is important to note that the solution φ of Eq. (2.3) and conse-
quently the quantity of interest u depend on the uncertain variables ξ; in particular,
u = u(φ(x, t,y, ξ)). In other words, the performance of the system is now a function
of a non-deterministic variable and it is a non-deterministic variable itself.

When uncertainty is considered, the goal of the optimization problem is typically
to control the variability of the performance u with respect to the uncertainty in the
system variables ξ. This optimization problem is called uncertainty-based optimiza-
tion or optimization under uncertainty. In general, a problem of uncertainty-based
optimization is stated in mathematical terms as follows

minimize/maximize: f (u (x, ξ))

subject to: g (u (x, ξ)) ≥ 0

by changing: x ∈ X , (2.4)

where the m objective functions are collected in vector f ⊂ Rm, and g ⊂ Rq are the
q constraints of the optimization problem. The objective functions are deterministic
measures of the variation of the performance due to the uncertain variables. For ex-
ample, if probability theory is used to describe the uncertainty involved in the robust
aerodynamic optimization of a transonic wing airfoil, the mean value and the vari-
ance of the drag coefficient are taken as objective functions [58]. Please note that the
optimization problem stated in Eq. (2.4) applies to a generic problem of optimization
under uncertainty. Depending on the objective functions chosen in Eq. (2.4) different
optimization problems are formulated. For instance, Appendix B presents a formu-
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lation for design under uncertainty based on the minimum and the mean value, that
was explored in the thesis.

Specifically, robust design optimization [59] is the process of finding a design
which provides an improved and satisfactory performance and at the same time min-
imizes its sensitivity due to uncertainty. In this way, it is guaranteed that the system
will operate adequately even in off-design conditions. When considering robust de-
sign optimization, the term “robustness” has been used with various meanings de-
pending on the desired objective [60]. It could indicate: (i) a design that is minimally
sensitive to a variability either in the system or in the design itself, (ii) a design that
uniformly improves the performance of the system over a set of operating conditions,
(iii) a design with an improved worst-case performance, and (iv) a design that im-
proves the overall performance over the entire range of operating conditions and/or
lifetime. In this work, robustness means that the design parameters x allow simul-
taneous improvement in the overall performance and minimization of the sensitivity
with respect to changes in the system operative conditions. Thus, in the case of robust
design within a probabilistic framework, the objectives of the optimization are two
low-order statistical moments of the performance of interest u, i.e. the mean value µ
and the variance σ2, and the optimization problem in Eq. (2.4) can be reformulated
as a multi-objective, constrained optimization:

minimize/maximize: µ (u (x, ξ))

and minimize: σ2 (u (x, ξ))

subject to: g (u (x, ξ)) ≥ 0

by changing: x ∈ X , (2.5)

Unlike single-objective optimization where there is only one global optimum, in the
case of multi-objective optimization there is a set of optimal solutions (the so-called
Pareto front) corresponding to various trade-offs between the mean value and the
variance.

Robust design optimization is inextricably linked with the name of Taguchi [61]
who initiated the robust design philosophy in manufacturing quality control. Taguchi’s
idea was to minimize a signal-to-noise ratio defined as the variance of the discrep-
ancy between the measured quality and the desired quality. In his pioneering work,
Taguchi did not use a direct optimization procedure in order to minimize the signal-
to-noise ratio. Instead, Taguchi’s method was based on a methodology similar to a
design of experiments technique in order to evaluate different design vectors for dif-
ferent realizations of the noisy variables [62]. Thanks to the advent of high-speed
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computers and its exponentially progress, robust design criteria have been included
inside optimization loops and gained interest in several industrial fields.

Robust design can be intrinsically more fit than classical deterministic approaches
for very preliminary design phases, since its objective can be interpreted as the search
for optimal solutions that have a low sensitivity to variations of the parameters in the
range of uncertainty. In turn this may reduce the probability of redesign at later stage
of the design process due to lack of adequate performance. Indeed, Taguchi’s ground-
braking idea was to control the quality of the product (i.e. the compliance to given
specifications) before design, and not only by inspection after the production stage.
For this reason, robust approaches have been studied in the field of aerospace vehicles
with application to conceptual, structural and aerodynamic design [52].
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Figure 2.3: Scheme of uncertainty-based optimization.
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2.1.1 Methodology for uncertainty-based optimization

A generic uncertainty-based optimization problem requires several ingredients that
should be carefully analysed and determined. With reference to Fig. 2.3, the first step
requires the modelling of the uncertain system, by defining the following elements.

• System model : a mathematical model such as the one presented in Eq. (2.1)
is required to compute the objective functions and/or the contraints, and to
propagate the uncertainty onto the performance u.

• Deterministic variables: among the variables used in the optimization problem
it is necessary to distinguish between certain, deterministic variables and un-
certain variables. The first set encompasses all the variables either in the system
modelling or in the optimization problem that can be assigned with certainty.

• Uncertain variables: these are the variables that are affected by a source of
uncertainty, such as operating or environmental conditions, modelling coeffi-
cients of a state law, or design variables themselves. The uncertain variables
must be identified and characterized according to the nature of the problem. In
practical design problems, a very large number of variables may be affected
by uncertainty, because these variables stem from assumptions and semplifica-
tions of the real-world system. However, increasing the number of uncertain
variables affect the computational cost of the uncertainty-based optimization
procedure. Using a large number of uncertain variables may require an exces-
sive computational effort. Therefore, it is useful to perform a sensitivity anal-
ysis, such as the one presented in Ref. [63], on a reference or initial design,
in order to identify the uncertain variables whose effect on the performance is
most significant. The uncertain variables whose effect can be disregarded may
then be treated as deterministic variables for the optimization problem. Nev-
ertheless, it is noted that a sensitivity analysis applied on a reference design
may not be sufficient, because non-influential variables for this reference de-
sign could turn out to produce significant effects for other designs encountered
when exploring the design space. With regard to the characterization of the
uncertain variables, the issue of modelling uncertainty is tackled in detail in
Sec. 2.3.1.

• Cost function and constraints: an optimization problem always requires a set
of objective and constraints in order to discriminate between a good and fea-
sible solution and a poor and unfeasible design. The cost and the constraints
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functions need to be formulated to take into account the variability introduced
by the uncertain variables.

In addition to these elements, the following numerical methods must be defined to
proceed with the uncertainty-based optimization.

• Simulation: a numerical implementation of the system model is necessary
to solve the equations describing the system and compute the performance.
For instance, in aerodynamic design a Computational Fluid Dynamics (CFD)
solver is used to simulate the flowfield past a wing or an airfoil and to compute
the aerodynamic loads.

• Optimization algorithm: an optimization method is chosen according to the
optimization problem formulated in the first steps. In robust design, optimiza-
tion problems are typically bi-objective and constrained. An optimization al-
gorithm is typically an iterative method performing a loop: at each iteration
a new design is computed according to specific operators for the chosen opti-
mizer and the objective function for the new design is evaluated. In traditional
deterministic optimization, the evaluation consists of a single simulation of the
system model, providing the performance. Instead, in uncertainty-based op-
timization, the objective functions are computed by means of an uncertainty
quantification method

• Uncertainty quantification method : these methods propagate the uncertainty
affecting the non-deterministic variables into the performance of the system.
To compute the objectives of the current design in the optimization loop, un-
certainty quantification methods require either a group of several simulations
or the solution of an augmented version of the system model. More details on
this are given in Sec 2.3.2.

Once the elements previously described are defined, it is necessary to build a frame-
work to solve the problem presented in Eq. (2.4). A method for optimization under
uncertainty consists of two nested loops: the optimization loop and the UQ loop.
A representation of the coupling of an optimization algorithm and a UQ method is
given in Fig. 2.4. The outer loop is performed by the optimization algorithm which
generates a new design xi based on the history of the optimization procedure. The
new design is passed on to the inner loop in which a UQ method computes an ap-
proximation of the statistics f(xi) of the performance of interest. This computation
is performed by resorting on the simulation of the system. The resulting statistics are



34 Robust optimization

Initial
design x0

Optimization loop

Generate
new design UQ Convergence? Optimal

robust design
xi f(xi) Yes

No

Figure 2.4: Block diagram of the uncertainty-based optimization loop.

the objective functions of the optimization loop, which are passed on to the optimiza-
tion algorithm, which in turn checks if convergence is reached. If the convergence
criterion is not met, the loop goes on with a new design.

Classical approaches for robust design optimization, called decoupled approaches,
are based on two different and independent methods for solving the optimization
problem and the reconstruction of the statistics, respectively. Decoupled approaches
are widely employed in the uncertainty-based optimization literature [64, 65] and
they are very expensive. In fact, performing a deterministic optimization generally
requires several computations of the performance, since many design vectors have to
be tested in the loop. This means that many simulations of the equations describing
the system under consideration (Eq. (2.1)) are required. In the case of uncertainty-
based optimization, the cost is even higher. In fact, to reconstruct the variability of the
performance with respect to the uncertain variables in the system two strategies can
be used: (i) several simulations of the system model are computed which correspond
to different realizations of the input uncertain parameters, (ii) an augmented version
of the system equation is considered to reproduce the dependance of the solution on
the uncertainties. The classical choice in uncertainty-based optimization is the first
strategy, because the second solution is intrusive, requiring an intensive modification
of the system equation. As a result, the cost of solving the equations and therefore
the optimization problem can be very high in most engineering applications. A major
part of the thesis work has attempted to address this issue, and the methods developed
to improve the efficiency are presented in the next chapter.

In the remaining part of the section, multi-objective optimization concepts and
algorithms are described and uncertainty modelling and UQ methods are presented
to better understand the elements involved in uncertainty-based optimization and ap-
preciate the causes of the increase in cost.
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2.2 Methods for optimization

A key element in optimization is the optimization algorithm. Because robust opti-
mization is inherently multi-objective [62], optimization methods for multi-objective
problems are considered in this work. Multi-objective optimization permits to op-
timize several conflicting criteria without resorting on scalarization, i.e. weighting
several objectives, which inevitably affects the optimization results. It is a very im-
portant tool in the early stage of design to explore the design space following many
directions of improvement. It also provides the decision makers with a set of opti-
mal solutions, from which the most interesting ones can be selected and developed
throughout the design process.

Furthermore, the attention is focused on problems in which the functional de-
pendency of the objective function cannot be exploited, either because it is absent or
it is unreliable. In this kind of problems, derivative-free optimization methods can
be used to solve the optimization problem. These methods are very versatile, using
the model of the system as a “black box”. This is advantageous because it does not
require an intrusive modification of the model. For instance, in the application to
fluid dynamics, it is not necessary to modify the CFD solver. It also permits to easily
change the objective function of the optimization. On the other hand, they may be
very expensive from a computational point of view, because of their rate of conver-
gence. Examples of such approaches are the Nelder-Mead method and its modified
versions, the pattern search methods, or genetic algorithms. In this work, the Non-
dominated Sorting Genetic Algorithm and the Bi-objective Mesh Adaptive Direct
Search (BIMADS) algorithm are chosen, because they are suited to tackle the multi-
objective case. A brief description of these methods is given after a brief overview of
some key concepts of multi-objective optimization.

2.2.1 Multi-objective optimization and Pareto dominance

In many applications, conflicting criteria drive the design process. In this case the op-
timization problem has a multi-objective formulation. Indeed, a general uncertainty-
based optimization problem (Eq. (2.4)) is inherently multi-objective: the mean value
is used in conjunction with the variance in robust design, or with the probability of
the occurrence of failure events in the application to reliability-based design.

The solutions of multi-objective problems (m > 1) is a set of solutions (unless
the objectives are concurrent). These solutions represent a trade-off between the
objectives considered in the optimization and they are selected according to the Pareto
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dominance relation.

Definition 1. For two vectors a,b ∈ X with X the design variables domain

a � b (a dominates b) iff βjfj(a) ≤ βjfj(b) ∀j = 1, ...,m and

∃j such that βjfj(a) < βjfj(b)

a ∼ b (a is indifferent to b) iff a does not dominate b and b does not dominate a

Coefficient βj indicates the goal of the optimization of function fj:

βj =

{
1 if fj is to be minimized

−1 if fj is to be maximized

Definition 2. A decision vector x ∈ X is said to be non-dominated regarding a set
A ⊆ X if and only if

@a ∈ A : a � x

Moreover, x is said to be Pareto-optimal iff x is non-dominated regarding X .

The solution vectors that are non-dominated regarding X are the Pareto optimal
solutions, and they belong to the set denoted as P . The image of the set P is called
Pareto front and it defined as TP = {f(x) | x ∈ P}.

The Pareto dominance is used in multi-objective optimization problems to rank
the design vectors and to define the optimal solutions. Please note that single-objective
optimization (m = 1) can also be treated with this criterion. In this case, the third op-
tion in Definition 1 cannot be satisfied, since only one function is considered: either
vector a dominates vector b or viceversa.

2.2.2 Genetic Algorithm

Evolutionary algorithms have been employed to tackle many engineering optimiza-
tion problems. Applications to aerodynamic optimization problems can be found for
instance in Refs. [65, 25, 66]. Main advantages of such approaches are the possibility
to tackle multi-objective problems without scalarization and to exhaustively explore
the design space. On the other hand, they are very expensive from a computational
point of view because they require many computations of the objective function, even
in region of the domain where designs with poorer performance are present.

Genetic algorithms use operators inspired by natural evolution to get to the opti-
mal solution. In such a framework, each design vector is considered as an individual,
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and the design variables in the vector represent the chromosomes. A group of indi-
viduals is called a generation. Each individual is assigned a fitness function, that is
a measure of the probability that this individual will be a parent of the individuals of
the next generation. The fitness in the optimization algorithms is associated to the
objective function: the better the objective function, the higher the fitness value. In
the single objective case, the fitness function is a measure of the objective function.
In the multi-objective case, the fitness function is assigned based on the position of
the individual in the objective space with respect to the current Pareto front. With the
fitness value, the selection step is performed to determine the parents of the new gen-
eration; mutation and crossover operators are then used to mantain genetic diversity
and to obtain different children from a single set of parents.

The genetic algorithm performs a loop over the generations (see Fig. 2.5a). The
starting point is an initial generation of individuals that are typically randomly cho-
sen. For each iteration, a new generation of individuals is computed using selection,
crossover and mutation operators. Then, the objective functions are evaluated for
each individual, and each design vector is assigned a fitness function. The evaluation
of the individual in the case of design under uncertainty require the computation of
the statistics by means of a UQ method. From the fitness of these individuals, a new
generation is computed and the loop goes on for a sufficient number of generations.

In this work, the Non-Dominated Sorting Genetic Algorithm is used [67]. Typical
values for the crossover and mutation probabilities pc = 0.9, pm = 0.1 are chosen
and the sharing parameter is set using a formula based on the number of design vari-
ables.

2.2.3 BIMADS

The Bi-objective Mesh Adaptive Direct Search (BIMADS) algorithm [68] is the ex-
tension of the MADS (Mesh Adaptive Direct Search) algorithm, to bi-objective opti-
mization problems [69].

The MADS algorithm is a direct search algorithm for single-objective optimiza-
tion. The underlying idea is to search an improved solution by evaluating the objec-
tive function for all the points of a mesh defined around the current design vector in
the design variables space. The procedure consists on a two-step iteration based on
a “search” and a “poll” step. The search step evaluates the objective function in the
mesh points around the current design vector; if a better design vector is not found,
a poll step is performed, which consists in a local exploration of the design variables
space. If an improved solution is found, by either the search or the poll step, this
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Figure 2.5: Scheme of optimization algorithms used in the work.

one is set as the new design vector around which a new search mesh is built. Other-
wise, the mesh is refined and the iteration is repeated. The optimization loop stops
either when a fixed number of function evaluations is reached or when the mesh size
reaches a given tolerance.

For bi-objective problems, an approximation of the Pareto front is constructed
using the BIMADS method, which launches successive runs of MADS. In the initial-
ization of the method, two separate single-objective optimization problems (one for
each objective) are performed by means of MADS. From the evaluations of the objec-
tive functions computed in the initialization, an initial list of non-dominated solutions
is defined. The following loop is a repetition of three steps (see Fig. 2.5b). The first
is the computation of a reference point in the objective space from the list of non-
dominated solutions. This reference point is used to define a scalarization function
Φ of the objective functions (for instance, the function is a measure of the distance
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Figure 2.6: Scheme of uncertainty propagation from the input of the system model to the
output.

from the reference point in the objective space). Function Φ is defined in such a way
that it attains lower values in the non-dominated region of the objective space. Sec-
ondly, a MADS run is performed to minimize this scalarized function. Then, a new
list of non-dominated solutions is determined from the evaluations obtained in the
preceding step. Finally, the repetition of the three step is terminated according to a
fixed number of iterations. A version of this algorithm exists for optimization prob-
lem with more than two objective functions; it is not employed here because only
bi-objective cases are considered.

The BIMADS method is very efficient for low-dimensional problems, but its rate
of convergence degrades as the number of design variables increases. Similarly to ge-
netic algorithms, the BIMADS method treats the evaluation of the function for each
design vector as a black-box. Therefore, it is very suited to coupling with the UQ in-
ner loop. Concerning the implementation, the NOMAD software [70, 71] developed
by the authors of the method is coupled with the UQ method.

2.3 Uncertainty quantification

The goal of uncertainty quantification is the quantitative description of the likelihood
of a quantity of interest given its dependence on the uncertainty. It can only be ob-
tained by combining the knowledge of the sources of uncertainties and the behavior
of the quantity of interest functions with respect to the uncertain variables [72]. In a
probabilistic framework, where the uncertain variables are described by a Probability
Distribution Function (PDF), the goal of uncertainty quantification becomes the com-
putation of the PDF of the quantity of interest. Thus, an uncertainty quantification
methods propagates the uncertainty of the input variables into the uncertainty of the
output variables by leveraging a model of the input uncertainty (e.g. the input PDF)
and the system model connecting the input to the output variables (see Fig. 2.6).
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Uncertainty quantification essentially involves two steps: (i) the definition and
modelling the uncertainty, and (ii) the analysis of the uncertainty propagation through
the simulation. These subsequent steps are discussed in the following sections.

2.3.1 Modelling uncertainty

It is clear from Fig. 2.1 that many sources of uncertainty exist in the lifecycle of an
aircraft. Sources of uncertainty are typically grouped into the following categories:

• Model input uncertainty and model parameter uncertainty: this type of uncer-
tainty includes the variability of the input variables of the system model (ge-
ometric variables, initial and boundary conditions, environmental parameters)
and the variability of the parameters used in the model (physical constants,
model coefficients).

• Model form uncertainty: also referred to as model inadequacy or model dis-
crepancy, this is the uncertainty involved in model selection and it is due to a
lack of confidence in selecting the best model [73]. This lack of confidence
typically stems from a lack of knowledge of the underlying true physics, or by
the impossibility to use the complete, accurate model of the true physics.

• Model error: this type is associated with the numerical simulation of the system
model and it may include discretization errors of the equation describing the
system model, round-off errors due to finite digits number representation, or
iteration residual errors. It is important to note that although model errors
are ascribed to the different sources of uncertainty, they differ from the other
uncertainty because they are defiencies of the numerical implementation of
the model and they can be analysed and reduced by a verification process.
Uncertainty, on the other hand, are associated to the choice of the physical
models and to the specification of the input parameters required for performing
the analysis [74].

In this work, the focus is drawn on model input uncertainty, as also highlighted in
Fig. 2.6. With regard to model form uncertainty and model error, these types can
be investigated by the process of model Verification and Validation [75]. The ver-
ification step is aimed at determining whether a model implementation accurately
represents the developer’s conceptual description of the model. It basically answers
the question: “are we solving the equations correctly?” [74]. So, for instance, the
discretization and round-off errors can be estimated by comparison between numer-
ical results of the programmed simulation model and analytical results of the exact
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mathematical model. The validation process attempts to determine how accurate is
a model in representing the real world. It answers the question: “are we solving the
correct equations?”. Model form uncertainty can be characterized by Bayesian ap-
proaches [73, 76, 77], or through model accuracy assessment by comparison between
simulation results and experimental measurements [78].

Classification of uncertainty

The most popular uncertainty classification divides uncertain variables into two types:
aleatory and epistemic. Aleatory uncertainties are irreducible uncertainties aris-
ing from the inherent variation associated with the system [57]. This type is also
called stochastic to highlight the random stochastic nature associated with these vari-
ables. Aleatory uncertainties are typically environmental conditions, measurement
data, manufacturing tolerances. On the other hand, epistemic uncertainties represent
a lack of knowledge associated with the modeling process that are reducible through
the introduction of additional information [79]. These variables are generally param-
eters of the system model.

For example, in the field of fluid dynamics, aleatory uncertainties are the un-
certainties on the geometric parameters [80, 81, 82] and on the operating condi-
tions [60, 25]. Other works focus on epistemic uncertainties, or mixed aleatory-
epistemic uncertainties [83]. For example, in Ref. [84], a combination of an aleatory
uncertainty on the freestream Mach number with an epistemic uncertain variable, i.e.
the kinematic eddy viscosity of the the Spalart-Allmaras model [85], is considered.

Theoretical models for uncertainty

Different approaches are used to provide an appropriate representation and modelling
of uncertainty according to its specific features and the amount of information avail-
able about it. Traditionally, probability theory has provided the mathematics for the
representation of uncertainty in non-deterministic design, thanks to its long history
and sound theoretical foundation [52, 57]. Recently, other mathematical theories for
the representation of uncertainty have been introduced, including evidence theory,
possibility theory and interval analysis. The terms non-probabilistic or imprecise
probability approaches are used to refer to these mathematical models. As proba-
bility theory has deep root in the research of non-deterministic design and it is the
theory used throughout the thesis, a more detailed discussion is given on it.
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Probability theory Probability theory is a mathematical construction to describe
phenomena whose outcomes occur non-deterministically. Few definitions to describe
probability theory are given in this section, which are derived by the exposition of
Ref. [86, Appendix A]. A complete discussion on probability theory may be found
for instance in Refs. [87, 88].

Formally, the probability space is a triple (Θ, F , P ) where

(i) Θ is the sample space, containing all the possible outcomes or everything that
could occur in the particular universe under consideration. An element of Θ is
denoted by ϑ.

(ii) F , is the collection of all the possible events, where an event is a set of out-
comes of Θ. The collection of events F is called a σ–field if

– ∅ ∈ F
– A ∈ F ⇒ Ā ∈ F , where A is an event and Ā is the complement of A;

– A1, A2, ..., AN ∈ F ⇒
(
∪Ni=1Ai

)
∈ F ;

The previous properties indicate that the field contains the empty set (event
with none of the outcome), for each event included in the field it contains the
complement of such an event and it contains the event containing all outcomes.

(iii) P is a probability measure of each event in F .

An R-valued random variable ξ is a map from the sample space into R, i.e. ξ : Θ 7→ R.
The previous definition of a random variable can be extended to Rnξ -valued func-
tions ξ, and if all the nξ coordinates of ξ are random variables, then ξ is called a
random vector.

The integral of ξ with respect to P over the event A ∈ F is given by∫
Θ
IA(ϑ)ξ(ϑ) dP (ϑ) =

∫
A
ξ(ϑ) dP (ϑ) (2.6)

where IA is the indicator function ofA (i.e. a function that is equal to 1 if ϑ ∈ A, and
0 elsewhere). If the previous integral exists and it is finite, ξ is said to be P-integrable
over A. A random vector ξ is P -integrable over A, if each of the elements are P -
integrable over A. When the integration domain is the complete sample space Θ, the
integral corresponds to the expectation operator

E[ξ] =

∫
Θ
ξ(ϑ) dP (ϑ). (2.7)
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Let us denote Lβ(Θ,F , P ), with β an integer number greater or equal to 1, the col-
lection of R-valued random variables ξ defined on (Θ,F , P ) such that

E[|ξ|β] <∞. (2.8)

The case β = 2 gives the L2-space which possesses some essential properties. The
expectation E[ξ λ] of two random variables ξ, λ defines an inner product on L2

E[ξ λ] = 〈ξ, λ〉 (2.9)

and the associated L2 norm reads

||ξ||L2 =
√

(E[ξ ξ]). (2.10)

This aspect is important since most uncertainty modelling in probabilistic framework
consider second-order random vectors, i.e. random vectors belonging to L2, assuring
the existence of a finite value of the L2 norm.

From the probability measure P it is possible to define the cumulative distribution
function and the density function of a random variable. The Cumulative Distribution
Function (CDF) of a random variable ξ defined on a probability space (Θ,F , P ) is
given by

Fξ(ξ̃) = P
(
{ϑ : ξ(ϑ) ≤ ξ̃}

)
= P

(
ξ ≤ ξ̃

)
(2.11)

where ξ̃ ∈ R is the realization of ξ: ξ̃ = ξ(ϑ). The following properties hold true for
the cumulative distribution function

lim
ξ̃→+∞

Fξ(ξ̃) = 1 lim
ξ̃→−∞

Fξ(ξ̃) = 0. (2.12)

The distribution function is increasing, with range [0, 1]. If the cumulative distribu-
tion function Fξ is continous in R, there is an integrable function fξ such that

Fξ(b)− Fξ(a) =

∫ b

a
fξ(ξ̃)dξ̃, a ≤ b (2.13)

where a, b ∈ R. Function fξ is called Probability Density Function (PDF) and it has
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the following properties:

fξ(ξ̃) =
dFξ

dξ̃

∫ ξ̃

−∞
fξ(z)dz = Fξ(ξ̃)

fξ(ξ̃) ≥ 0

∫ +∞

−∞
fξ(x)dx = 1. (2.14)

Some important properties apply to transformation of random variables. Let us
consider a random variable ξ defined on a probability space (Θ,F , P ) and a function
g such that λ = g(ξ) is a random variable defined on (Θ,F , P ). The expectation of
λ can be computed as follows

E[λ] =

∫
Θ
λ(ϑ) dPλ(ϑ) =

∫
R
λ̃ dFλ(λ̃) =

∫
R
g(ξ̃)dFξ(ξ̃)

=

∫
R
g(ξ̃)fξ(ξ̃)dξ̃, (2.15)

or in other words the expectation of λ can be computed from the probability density
function of ξ. The previous equation is sometimes calld the “Law of the Unconscious
Statistician” [88, p. 200] and it is particularly important to UQ. In fact, if ξ is the input
of the system under consideration and λ is the output, equation (2.15) clearly states
that to reconstruct the output PDF it is necessary to combine the input-output function
(i.e. the system model) and the PDF of the input (as presented in Fig. 2.6). In the
trivial case λ = g(ξ) = ξ the previous equation reduces to the classical definition of
expectation

E[ξ] =

∫
R
ξ̃fξ(ξ̃)dξ̃. (2.16)

In addition, the moment of order r of a random variable ξ defined on the probability
space (Θ,F , P ) is given by

µr(ξ) = E[ξr] =

∫ +∞

−∞
ξ̃rfξ(ξ̃)dξ̃. (2.17)

If ξ ∈ Lr(Θ,F , P ), then µr(ξ) exists and it is finite. The central moment of order r
is obtained by subtracting the first-order moment µ1 = µ, callded the expected value
or mean value, as follows

µr(ξ) =

∫ +∞

−∞

(
ξ̃ − µ

)r
fξ(ξ̃)dξ̃. (2.18)
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The second-order central moment is called variance: µ2(ξ) = σ2(ξ).
Finally, the joint distribution function of a random vector ξ = {ξ1, ..., ξnξ} of nξ

random variables is the direct extension of the univariate CDF

Fξ(ξ) = P

( nξ⋂
i=1

{ξi ≤ ξ̃i}

)
(2.19)

and the joint density function of a random vector ξ is given by

fξ(ξ) =
∂Fξ

∂ξ1...∂ξnξ
. (2.20)

The random variables of vector ξ are independent if and only if

P (ξi ≤ ξ̃i, i ∈ J) =
∏
i∈J

P (ξi ≤ ξ̃i), ∀J ⊂ I, ξ̃i ∈ R (2.21)

where I = {1, ..., nξ}. This also implies that the joint distribution and joint density
functions can be computed as follows

Fξ(ξ) =

nξ∏
i=1

Fξi(ξi)

fξ(ξ) =

nξ∏
i=1

fξi(ξi). (2.22)

To sum up, modelling uncertainty in a probabilistic framework means determin-
ing the PDF of the random variable (or the joint density function for a random vector).

Non-probabilistic approaches Non-probabilistic approaches are typicallly used
when poor knowledge is available about the uncertainty under study. In these cases,
assigning a precise probability distribution for a proposition may be too strong a so-
lution in most applications.

A common non-probabilistic method used to describe epistemic uncertainty is ev-
idence theory. Evidence theory, also called the Dempster–Shafer theory, is a math-
ematical construct to measure uncertainty involving two measures of likelihood: be-
lief, i.e. lower limit of likelihood and plausibility, i.e. upper limit of likelihood.
Belief and plausibility are computed with a function which is assigned to a specific
interval of the possible realizations based on the information on the system. This
function can be thought of as the amount of likelihood that is associated with the
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specific interval but without any specification of how this likelihood might be appor-
tioned over the inverval [57]. Thus, evidence theory does not assume any particular
value within the interval and nor does it assign a specific distribution to the interval.
The information or evidence used to assign this likelihood function comes from a
wide range of sources, e.g. experimental data, theoretical evidence, experts’ opinions
concerning belief in the occurrence of an event. This theory has proved effective in
representing epistemic uncertainty in case of uncertainty information coming from
multiple sources with application in fluid dynamics to the treatment of uncertainty on
the closure coefficients used in the Spalar–Allmaras turbulence model [89].

Similarly to evidence theory, possibility theory involves the definition of two
functions: possibility, i.e. the largest value of the likelihood assigned to an event, and
necessity, i.e. the complement likelihood of the possibility of the complement event.
For both evidence and possibility theories, an upper bound and lower bound of the
cumulative distribution function can be defined in order to describe the uncertainty
and propagate it to the output [57].

Instead, in interval analysis the value of a variable is replaced by a pair of num-
bers representing the maximum and minimum values that the variable is expected
to take. Applications based on interval analysis do not attempt to infer an uncer-
tainty structure of the output of the system based on the input uncertainty, so inter-
val analysis does not provide an uncertainty structure. Interval arithmetic rules are
then employed to perform mathematical operations with the interval numbers, so as
to propagate the interval bounds through the computational model and compute the
bounds of the output variables.

2.3.2 Propagating uncertainty

As previously mentioned, in this work the framework of probability theory is used to
model uncertainty, because it provides a solid and comprehensive theoretical founda-
tion and offers the most versatile statistical tools. Within a probabilistic framework,
the uncertain variables vector ξ is defined as a random vector of second-order, in-
dependent random variables (see Sec. 2.3.1 for details) that can have any arbitrary
probability density fξ(ξ).

The goal of uncertainty quantification is the following: given the probability den-
sity function of ξ, calculate the probability density function of the quantity of in-
terest u, i.e. the performance. Specifically, in the case of uncertainty quantification
applied to optimization the actual goal is to compute one or more statistics of the
performance u; for instance, in robust design the objective functions f are given by
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low-order moments such as the mean value and the variance

f = {µu(x), σ2
u(x)}, (2.23)

where x is the vector representing a specific design, for instance the i-th design to
be evaluated inside the optimization loop: x = xi (recall Fig. 2.4). The statistical
moment µru(x) of order r of the output of interest u is computed as

µru(x) = E[ur](x) =

∫
Ξ
u(x, ξ)rfξ(ξ)dξ, (2.24)

where Ξ ⊆ Rnξ is the support of the density function fξ which is equal to fξ =∏nξ
i=1 fξi for independent random variables (see Eq. (2.22)). Several methods exist

to reconstruct the variability of u and to compute Eq. (2.24). Common approaches in
uncertainty-based optimization are Monte Carlo methods, Polynomial Chaos meth-
ods [90, 91] and collocation-based methods [92, 93]. A fundamental distinction
among these approaches is the classification into intrusive and non-intrusive meth-
ods [86].

Intrusive methods involve the reformulation of the system governing equations
and consequently the modification of the simulation codes, so as to incorporate un-
certainty directly into the system. Typical example of this type is the intrusive Poly-
nomial Chaos Expansion [86, p. 28], which consists in representing the stochastic
process by means of an expansion of orthogonal polynomials. In other words, the
solution φ(x,y, t, ξ) of Eq. (2.3) is replaced by an expansion of orthogonal polyno-
mials in the space of the stochastic variables ξ. By truncating the expansion up to a
desired order and inserting the expansion in the system governing equations, a system
of coupled deterministic equations is found instead of the stochastic equation (2.3).
The coefficients of the polynomials become the unknowns of this augmented system
model, which can be solved by editing the existing analysis codes. It is clear that this
approach requires a significant modification of the deterministic simulation code.

On the other hand, non-intrusive approaches treat numerical simulation code as
a black-box model and do not need modification to the existing deterministic simu-
lation codes. With a proabilistic approach, a non-intrusive method typically draws
ns samples of the input PDF and for each sample solves the system model equation
(Eq. (2.3)) by means of a suited simulation code (see Fig. 2.7). From each simulation,
a sample of the output u is obtained, and the application of specific operators to the
samples of u enable the reconstruction of the statistics. As a result, these methods
are very versatile and they can be easily integrated inside an optimization loop. In
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Figure 2.7: Block diagram of non-intrusive UQ methods.

addition, they can be distributed and performed in parallel. In the following section
the most common approaches are discussed: Monte Carlo methods, non-intrusive
Polynomial Chaos and Stochastic Collocation.

Monte Carlo approaches

In Monte Carlo approaches, a sequence ξ1, ξ2, ..., ξns of ns samples of the ran-
dom vector is sampled according to the probability distribution of ξ, which is ob-
tained from the uncertainty modelling. In this case, repeated simulations of Eq. (2.3)
are required for each sample in the stochastic space to compute the realizations
ũk = u(φ(x,y, t, ξk)), k = 1, ..., ns. The integral in Eq. (2.24) is then replaced by
a summation over the samples

µu(x) ≈ 1

ns

ns∑
k=1

γkũk, (2.25)

where γk is a weighting coefficient associated with each realization (γk = 1 ∀k for
non-biased sampling).

In most application Quasi-Monte Carlo (QMC) methods are used, which dif-
fer from the usual Monte Carlo simulation in that they use quasi-random sequences
instead of pseudo random numbers. The quasi-random sequences are the low dis-
crepancy sequences, which are deterministic and fill the space more uniformly than
pseudo random sequences. Different methods can be used to compute these se-
quences [86, p. 49]: in Fig. 2.8 Sobol sequences are used for the QMC case. Another
improved sampling technique is Latin Hypercube Sampling (LHS), which draws
samples within equiprobable bins in the parameter range.

This type of methods have several advantages: they are simple, because it is suf-
ficient to resolve the deterministic model several times, and they are robust, because
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Figure 2.8: Samples sequence of two uniformly distributed variables with Monte Carlo (left),
Quasi-Monte Carlo with Sobol sequence (center) and Latin Hypercube Sampling (right).

they do not rely on the regularity of the output of Eq. (2.3) with respect to the un-
certain input [86, p. 8-9]. In addition, the rate of convergence scales with n−1/2

s

with ns the number of samples. Thus, the convergence rate does not depend on the
dimensionality of the random vector, which is a clear advantage with respect to other
methods which suffers of the curse of dimensionality. However, a large number of
realizations are required to achieve a sufficiently good estimate of the statistical mo-
ments. This issue is of paramount importance for fluid dynamics applications or in
any applications in which the computation of Eq. (2.3) is very expensive.

Non-Intrusive Spectral Projection with Polynomial Chaos

The employment of the Non-Intrusive Spectral Projection (NISP) based on the Poly-
nomial Chaos (PC) expansion can reduce the computational cost of the uncertainty
propagation, especially when a small number of uncertain variables are considered.

In fact, under specific conditions, a stochastic process can be expressed as a spec-
tral expansion based on suitable orthogonal polynomials, with weights associated to
a particular probability density function. The first study in this field is the Wiener
process that was later developed in Ref. [91]. The basic idea is to project the vari-
ables of the problem onto a stochastic space spanned by a complete set of orthogonal
polynomials Ψ that are functions of the random variables in vector ξ. For example,
the solution of Eq. (2.3) φ has the following spectral representation:

φ (x, t,y, ξ) =

∞∑
k=0

νk (x, t,y) Ψk (ξ) , (2.26)
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where Ψk are the PC orthogonal polynomials and νk the coefficients of the expansion,
which depend on the remaining variables (design, spatial and time variables). In
practice, the series in Eq. (2.26) has to be truncated to a finite number of terms

φ (x, t,y, ξ) ≈
N∑
k=0

νk (x, t,y, ) Ψk (ξ) , (2.27)

where the number N is determined by

N + 1 =
(nξ + no)!

nξ! no!
.

In the previous equation, nξ is the dimension of the random vector ξ and no is the or-
der of the univariate polynomial expansion from which the multivariate polynomials
Ψk(ξ) are obtained via tensorization. In other words,

Ψk (ξ) =

nξ∏
i=1

ϕoi,k(ξi). (2.28)

where ϕoi,k is the univariate polynomial in the variable ξi of order oi,k, which varies
from 0 to no depending on both k and i. An example for a two-dimensional case
with no = 2 is given in Tab. 2.1. The polynomial basis ϕoi,k(ξi) is chosen according
to the Wiener-Askey scheme [91] in order to select orthogonal polynomials with re-
spect to the probability density function fξi(ξi) of the specific input. For instance, if
a uniform distribution is considered, Legendre polynomials are employed, while Her-
mite polynomials are used for a normal distribution (see Fig. 2.9). The corresponding
polynomials for a group of commonly used PDF is given in Tab. 2.2.

The orthogonality property can be advantageously used to compute the PC co-
efficients of the expansion νk in a non-intrusive PC framework. In fact, from the

k 0 1 2 3 4 5

o1,k 0 1 0 2 1 0
o2,k 0 0 1 0 1 2
Psik 1 ξ1 ξ2 ξ2

1 ξ1ξ2 ξ2
2

Table 2.1: Terms in the tensorization of Eq. (2.28) for nξ = 2 and no = 2.



2.3 Uncertainty quantification 51

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

ϕ
(x
)

Legendre

 

 

−2 −1 0 1 2
−40

−20

0

20

40

60

80

x

ϕ
(x
)

Hermite

 

 

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4
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Distribution Polynomials ϕi(ξi) Support

Uniform Legendre [a, b]
Gaussian Hermite (−∞,+∞)
Gamma Laguerre [0,∞)
Beta Jacobi [a, b]

Table 2.2: Probability distribution and associated PC orthogonal polynomials.

orthogonality property it directly follows that

νk =
〈φ(x, t,y, ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉

∀k. (2.29)

where the operator 〈·, ·〉 represents the inner product with respect to the probability
density function, i.e.

〈φ(x, t,y, ξ),Ψk(ξ)〉 =

∫
Ξ
φ(x, t,y, ξ) Ψk(ξ) fξ(ξ) dξ. (2.30)

Equation (2.29) states that the coefficients νk can be computed, up to the normaliza-
tion factor 〈Ψk,Ψk〉, with an nξ-dimensional integral over Ξ. In other words,

νk =

∫
Ξ
φ(x, t,y, ξ) Ψk(ξ) fξ(ξ) dξ

〈Ψk(ξ),Ψk(ξ)〉
∀k. (2.31)

The computation of the right-hand side of Eq. (2.31) can be estimated with several
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approaches:

• Monte Carlo method for NISP : in this case the integral is replaced by a sum-
mation over a sequence of ns samples

〈φ(x, t,y, ξ),Ψk(ξ)〉 =
1

ns

ns∑
i=1

γkφ(x, t,y, ξi)Ψk(ξi) (2.32)

Similarly to the case presented in Sec. 2.3.2, improved sampling technique may
be used to compute the sample sequence and reduce the sampling error.

• Quadrature methods: the integral is computed by a discrete sum

〈φ(x,y, t, ξ),Ψk(ξ)〉 ≈
nQP∑
i=1

g(ξi)W (ξi) (2.33)

where g is a function defined as g = φ(x,y, t, ξ)Ψk(ξ), ξi are the nQP
quadrature nodes and W (ξi) are the weights associated with each node and
defined according to the chosen quadrature formula [94]. The most common
approach is using Gauss quadrature formulas, which are high-order approxi-
mations of integrals and closely related to the orthogonal polynomial family.
In fact, the nodes ξi of the quadrature rule are the zeros of the orthogonal poly-
nomial with respect to the density function fξ. For instance, in the case of
uniformly distributed variables Gauss-Legendre quadrature can be used, and
Gauss-Hermite quadrature for normally distributed variables. The number of
nodes and thereby samples ns for a full quadrature rule is computed based on
the order of the polynomials and the number of uncertain variables

ns = (no + 1)nξ . (2.34)

The Gauss quadrature rules require the computation of a new set of nodes for
each desired order of the polynomial. To circumvent this problem, nested
quadrature formulas are used, where formulas with different accuracy share
nodes. This is the case for example of the Clenshaw-Curtis quadrature [86]. A
major problem of quadrature formula is the exponential increase in the number
of nodes with increasing dimensionality of the random vector ξ. This problem,
also known as “curse of dimensionality”, may limit the application of NISP to
situations where the stochastic dimension is small or moderate.

• Sparse grid quadrature methods: The sparse tensorization of quadrature formu-
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las addresses the issue of the curse of dimensionality of full quadrature rules. In
this case the multi-dimensional product is constructed as a linear combination
of tensor product interpolants, each with relatively few points in its respective
point set [74]. This greatly reduces the total number of abscissas, improving the
computational efficiency of NISP and enlarged its domain of application [86].

Among these approaches, Gaussian quadrature formulas are used in this work [65],
because they ensure higher accuracy and the saving provided by sparse grid methods
is significant for a dimension of the random vector higher than the one considered in
this study.

For any method used to solve the integral in Eq. (2.31), it is clear that the solution
of the deterministic problem in Eq. (2.3) is required for each node of the quadrature
rule or of the sample in the Monte Carlo sequence.

Once the polynomial chaos basis is defined and the associated νk coefficients are
computed, the mean value and the variance of the stochastic variable φ (x, t,y, ξ) are
obtained by leveraging the orthogonality of the polynomials Ψk with respect to the
probability function fξ:

µφ|PC =

〈
N∑
k=0

νk (x, t,y) Ψk (ξ)

〉
= ν0 (x, t,y)

σ2
φ|PC =

〈(
N∑
k=0

νk (x, t,y) Ψk (ξ)

)2〉
− ν2

0 (x, t,y)

=

N∑
k=1

ν2
k (x, t,y) 〈Ψ2

k〉.

Please note that the uncertainty quantification methods presented so far are applied
to the solution φ of Eq. (2.3) in order to make the discussion more general. However,
the uncertainty quantification method in the robust optimization problem is applied
to the quantity of interest u, which can be a function of x only (for instance, it is
computed with an integral of the solution φ in both y and t). Thus, the discussion on
the methods is still valid, only the dependence on the spatial coordinates x and time
t drops out.

Polynomial chaos approaches rely on the regularity of the function φ in the
stochastic space, so that the response φmay be approximated with accuracy by means
of a polynomial basis. In addition, quadrature formula are generally global in that
they spread nodes over the entire stochastic domain. However, in some applications
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function φ may present large gradients only in small areas or be discontinous over
Ξ. In these cases, the convergence of PC methods may be very slow and the method
could be inefficient in practice. In these cases, a stochastic sampling may be prefer-
able or a local adaptivity may advantageous to concentrate samples/nodes close to
critical areas.

Multi-element collocation methods

When φ is discontinuous, the convergence of a global approximation, such as the
one presented in the preceding section, deteriorates. It may then be advantageous to
use a multi-element method, where the impacts of the discontinuity are confined to a
limited number of small elements surrounding the discontinuity [95, 96].

In local UQ methods, such as the multi-element stochastic collocation approach,
the weighted integrals in Eq. (2.24) defined over the parameter space Ξ are computed
as a summation of integrals over ne disjoint subdomains Ξ =

⋃ne
j=1 Ξj

µru(x) ≈
ne∑
j=1

∫
Ξj

u(x, ξ)r fξ(ξ) dξ. (2.35)

To some extent the subdomains represent a numerical grid of elements in the space
of the uncertain variables. An interesting approach is that of refining the element
discretization with a step-by-step approach according to the quality of the current
computation. The advantage of an adaptive strategy is using only as many samples
as required for a sufficiently accurate computation of the statistics. In this work, the
Simplex Stochastic Collocation (SSC) is chosen.

Simplex Stochastic Collocation The SSC method is a method implementing a
simplex elements discretization of the probability space (see Fig. 2.10) with higher
order interpolation and randomized sampling [97]. In the SSC approach [93, 98], the
integrals in the simplex elements Ξj are computed by approximating the response
surface u(ξ) by an interpolation w(ξ) of ns samples v = {v1, . . . , vns}. Each sam-
ple vk of the function u(x, ξ) is computed with the solution φk(x, t,y, ξk) obtained
by solving Eq. (2.3) for the k-th sample ξk of the random parameter vector ξ

L(x, t,y, ξk;φk(x, t,y, ξk)) = 0 ∀k = 1, . . . , ns. (2.36)
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Figure 2.10: Simplex elements (triangles in two-dimensional stochastic space).

The interpolation of the samples w(ξ) consists of a piecewise polynomial function

w(ξ) = wj(ξ) for ξ ∈ Ξj , (2.37)

withwj(ξ) a polynomial interpolation of degree p of the samples vj = {vkj,1 , . . . , vkj,nse}
at the sampling points {ξkj,1 , . . . , ξkj,nse} in element Ξj , where kj,l ∈ {1, . . . , ns}
for j = 1, . . . , ne and l = 1, . . . , nse, with nse the number of samples in the simplex.

The main features of the SSC method [93, 98] are: (i) the possibility to compute
an error estimate, (ii) the adaptive h-refinement and (iii) p-refinement capabilities,
(iv) the treatment of non–hypercube parameter spaces, and (v) the treatment of dis-
continuities in the stochastic space. Properties (i), (ii), (iii) are discussed here, be-
cause they are the key elements used in the method proposed in the thesis. Please
refer to Refs. [93, 98] for the other features.

With regard to the first property, the error ε of the interpolation is estimated using
hierarchical surpluses εj , computed as the difference between interpolated and exact
value of the k-th sample in each element Ξj

εj = w(ξj,k)− v(ξj,k). (2.38)

In this way, both local and global error in each simplex can be computed, thus iden-
tifying the simplex element, where the error is largest.

Concerning h-refinement, SSC has two components: simplex selection (based on
the previous error estimator), and simplex splitting, designed to avoid clustering. In
the first step, the simplex element where the error ε is largest is selected for refine-
ment. Then, a region of this element is selected for node insertion and the new sample
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Figure 2.11: Scheme of the h- and p-refinement of the SSC in two-dimensional stochastic
space.

ξj,k is inserted (see Fig. 2.11a). A threshold τ is assigned to determine whether to
stop the refinement: when ε < τ , the adaptive refinement is stopped.

When using SSC, the error convergence of first degree SSC decreases for an in-
creasing nξ. To cure this issue, a p-refinement criterion for higher degree SSC has
been conceived. In practice, the idea is to use higher degree polynomial interpo-
lation stencil based on Newton-Cotes quadrature. Figure 2.11b shows for a two-
dimensional stochastic space how more than three samples can be used to build a
higher degree polynomial interpolation by enlarging the stencil. The choice of the
optimal polynomial degree p is selected based on the number of uncertainties nξ and
the required order of convergence. A super-linear convergence can be obtained for
smooth responses (see [93] for more details).

The inner loop of the SSC is constituted by the following operations:

• Initial discretization of nsinit samples (2nξ vertexes of the hypercube enclosing
the probability space Ξ and one sampling point in the interior);

• Computation of vk computed in the initial samples by solving nsinit determin-
istic problems (Eq. (2.36)) for the parameter values corresponding to the initial
sampling points ξk located in Ξ only;

• Polynomial approximation (Eq. (2.37)) and p-refinement;

• Error ε estimate and h-refinement according to the threshold τ .

Finally, the probability distribution function and the statistical moments µru of u(ξ)

given by Eq. (2.35) are then approximated by the probability distribution and the
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moments µrw of w(ξ)

µru(x) ≈ µrw(x) =

ne∑
j=1

∫
Ξj

wj(x, ξ)r fξ(ξ) dξ, (2.39)

in which the multi-dimensional integrals are evaluated using a weighted Monte Carlo
integration of the response surface approximation w(ξ) with nmc � ns integration
points. This is a fast operation, since it only involves integration of piecewise poly-
nomial function w(ξ) given by (2.37) and does not require additional evaluations of
the exact response u(x, ξ).





CHAPTER 3

Efficient methods for robust optimization

From the discussion of the previous chapter it is evident that the coupling of the
optimization loop with the uncertainty quantification analysis results in a substantial
increase of the computational cost of the optimization procedure. This increase is
due to the higher number of evaluations of the solution of Eq. (2.3) required by the
uncertainty propagation technique. It is therefore proportional to the cost of solving
the system equations, which can be very high in most engineering applications.

For instance, let us consider an optimization problem in aerodynamics. A typical
goal of aerodynamic optimization is the maximization of the aerodynamic efficiency,
i.e. the ratio of aerodynamic lift over drag, by means of a modification of the wing
shape. In this case, the mathematical model describing the aerodynamic system is
represented by the governing equations of fluid dynamics. The numerical solution of
this equation is achieved by Computational Fluid Dynamics (CFD) tools that require
significant CPU time. The uncertainty-based optimization procedure requires several
CFD computation for each sample in each optimization iteration (see Fig. 3.1). Thus,
the optimization procedure requires a considerable computational effort.

Two different strategies to reduce the computational cost of the optimization un-
der uncertainty are developed in the thesis. In the first strategy, the loop presented
in Fig. 3.1 is not substantially modified, but the samples drawn to reconstruct the
statistics of interest are evaluated by models of the system of different fidelities. In
this case, the cost reduction is obtained by combining the employment of a high-
fidelity, expensive simulation and a lower fidelity, cheaper simulation. The combined
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Figure 3.1: Block diagram of the uncertainty-based optimization loop.

use of models of different fidelity and level of approximation is called multi-fidelity
optimization and it is used to balance computational cost and accuracy.

The second method leverages the employment of an adaptive UQ method, that
improves the accuracy of the objective estimates with increasing number of samples.
The rationale of the novel strategy is to compute with accuracy only the interesting,
non-dominated solutions, while a rough, cheap estimate of the objective functions is
sufficient for clearly dominated solutions. To understand whether higher accuracy is
needed or not for the current individual of the optimization iteration, an exchange of
information is necessary between the outer loop based on the optimization algorithm
and the inner UQ loop. As a result, this is a coupled method for optimization under
uncertainty to the extent that the inner UQ loop depends on the current status of the
optimization loop.

The first section of the chapter is devoted to the description of the multi-fidelity
strategy, while the second section discusses the adaptive method. For both methods,
preliminary results based on algebraic test cases are presented.

3.1 Multi-fidelity uncertainty-based optimization method

In aerodynamic applications, to alleviate the cost of optimization procedures, the nu-
merical model of the aerodynamics provided by the accurate, yet expensive, CFD
solvers could be replaced with a lower-fidelity model. Examples of this type of
model are potential flow models, which have been employed in the past both in
fixed wing [99] and rotor airfoil design [22, 100], as well as surrogate models of
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the performance, such as response surfaces [23]. These models may require a small
amount of CPU time, but their range of applicability is limited and accuracy may be
poor. The employment of inappropriate aerodynamic models inevitably affects the
estimate of the objective function: inaccurate estimates, such as those obtained with
a low-fidelity model, may drive the optimization procedure to false optima.

An alternative approach is based on the combined use of models of different fi-
delity and level of approximation in order to try to balance computational cost with
the accuracy required. In the literature this solution is usually referred to as multi-
fidelity or variable-fidelity optimization and it has been already applied in determin-
istic optimization [101, 102, 103, 104]. In the last years, some applications have con-
sidered the problem of uncertainty-based airfoil optimization, as well. Among these,
a multi-fidelity method is developed in Refs. [105, 106] based on a hierarchical krig-
ing approximation which exploits an estimate of the solution obtained by the same
CFD solver, applied to fine grids for obtaining high fidelity results, and to coarser
meshes for low fidelity ones. Another approach presented in Ref. [107] is based on
the application of the uncertainty quantification technique to the system response ob-
tained by the low-fidelity model and to the correction function, i.e. the discrepancy
between the high-fidelity model and the low-fidelity model. Other works [83] builds
a corrected low fidelity method with a space mapping from a CFD solution computed
on a coarse mesh and uses this surrogate within a NISP algorithm.

In the following, a general framework is built for a multi-fidelity strategy inside
the uncertainty-based optimization loop. The method is based on a simple switching
logic between a low-fidelity, cheap simulation and a high-fidelity, expensive simula-
tion. The underlying assumption of the method is that the discrepancy between high
fidelity method and the low fidelity method is not uniform throughout the stochastic
space, but it varies from region to region. Thus, there may be areas in the stochas-
tic domain where the low fidelity model is sufficiently accurate, and areas where the
error between the low- and high-fidelity methods is very high. This behavior was
observed during a set of first experiments on the aerodynamic models considered for
the aerodynamic design of airfoils in the hovering conditions. Thus, the main idea for
the multi-fidelity strategy stems from the application itself. In this section, a generic
description is given and an algebraic test case is tackled, whereas the application to
the aerodynamic case is discussed in Chapter 4.
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3.1.1 Description of the multi-fidelity strategy

The starting point is the definition of two models of different fidelity for the system
under consideration: an accurate, expensive High-Fidelity (HF) model and a cheap,
Low-Fidelity (LF) model. An initial characterization of the discrepancy between the
estimates of the models must be performed. To do this, the quantity of interest u
for a reference design is computed with both models in each point of the sampling
set Ξs in the stochastic space. The set Ξs is defined by the chosen UQ non-intrusive
method: it is the set containing the quadrature points if the coefficient of the NISP
method are computed by quadrature, for example. The reference design is either the
initial design or a design representative of the class of possible solutions defined by
the chosen parameterization.

Then, a set Ξc of control points is defined which represents a subset of the sam-
ples set Ξs in the stochastic space. This subset includes some representative samples
of the difference between the two models: for example, the sample corresponding to
the nominal condition, or the samples with highest and lowest discrepancy in each
dimension of the stochastic space may fall into this subset. Examples for a one-
dimensional and a two-dimensional case are given in Fig. 3.2a. The control points
are the points in which the control function, i.e. the discrepancy between the HF
and LF models, is going to be computed. In this way, a measure of the difference
between the models is estimated. The sample points will be evaluated with either the
low or high-fidelity model according to a switching logic based on the value of the
discrepancy of the closest control point.

Thus, for each individual inside the optimization loop at a generation, the follow-
ing steps are performed (summarized in Fig. 3.2b):

1. compute the performance using the LF model uLF and using the HF model
uHF for the control points and evaluate the control function C for each control
point

Cj = |(uHF,j − uLF,j)/uHF,j | ∀j ∈ Ξc,

which represents the error of the low-fidelity estimate;

2. for each sample point k ∈ Ξs, the closest control point j ∈ Ξc is found and
if the control function Cj for such control point exceeds an assigned threshold
value C, the simulation of the system model (Eq. (2.3)) is performed with HF;
otherwise, the LF estimate is employed;

3. the mean value and variance are computed by means of the chosen UQ method
using the samples in Ξs.
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Figure 3.2: Scheme of the multi-fidelity method.

As a result, some samples in the stochastic space are evaluated with the low-fidelity
model, and others with the high-fidelity model (see Fig. 3.2).

The method is independent of the type of sampling in the stochastic space, and
of the input PDF as well. However, it is strongly influenced by the choice of control
points. In the cases presented in the thesis, three control points are chosen for a
problem with one uncertain variables and five control points for a two-dimensional
problem in the stochastic space. Additional intermediate control points can be used
to improve the resolution of the control function. This may be a good strategy in the



64 Efficient methods for robust optimization

case of control functions that have many local minima/maxima. It could reduce the
number of HF samples for a given design, but it would increase the number of HF
computations required by the switching logic. A trade-off number should be pursued,
which may also take into account the available resources. As it will be discussed in
the next chapter, a physical knowledge of the problem under consideration and of
the models employed in the optimization would support the definition of the control
points in the multi-fidelity strategy.

To some extent, this multi-fidelity method could be regarded as an extension of
an Evolution Control strategy [108] in the case of uncertainty-based optimization.
As a matter of fact, Evolution Control is a multi-fidelity technique for evolutionary
algorithms in which either a certain number of individuals within a generation or a
certain number of generations within an evolution are evaluated with the high-fidelity
fitness function. The “control” consists in switching to the higher fidelity method for
those selected individuals, thereby adding high-fidelity information about the fitness
function of the population. In the application to robust optimization, the proposed
method performs a control of the evolution in the stochastic space rather than in the
design space. In other words, the switching logic acts on each individual of every
generation, but only for a subset of samples in the stochastic space.

3.1.2 Preliminary results on algebraic test case

In this section, the multi-fidelity method is applied to an algebraic test case. A bi-
objective (m = 2) optimization is considered, with one, uniformly distributed uncer-
tain variable (nξ = 1) and two design variables (n = 2). The optimization problem
reads

minimize: f(x) = {f1, f2} = {µu, σ2
u}

by changing: x ∈ X = [1, 2]× [1, 2]

with: ξ ∼ U(0, 1) (3.1)

where the function representing the performance is the following

u(x, ξ) = ξ − x1ξ
5 + cos (2πx2ξ) + κ, κ = 5. (3.2)

The mean value and variance of function u are represented in the design space in
Fig. 3.3. To test the multi-fidelity strategy, a High-Fidelity (HF) model and a Low-
Fidelity (LF) model of function u are considered. In the former case, the HF function
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Figure 3.3: Objective functions for problem (3.1).
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Figure 3.5: Pareto fronts obtained with different orders of PC expansion (HF model) and
analytic function.

is the exact function uHF = u, whereas the LF model is given by

uLF (x, ξ) = ξ + x1ξ
5 + cos (2πx2ξ) + κ, κ = 5. (3.3)

The LF model of function u is compared to the HF model in Fig. 3.6a. The LF
function uLF is very similar to the accurate function for ξ < 0.5, while a higher
discrepancy exists for increasing values of the stochastic variable. The difference
between the two models strongly influences the resulting mean value and variance,
which are reported in Fig. 3.4. This difference no doubt affects the results of the
optimization problem.

The optimization under uncertainty stated in Eq. (3.1) is tackled by coupling the
NISP method with a full Gauss quadrature method (please refer to Sec. 2.3.2) with
the BIMADS optimization algorithm (presented in Sec. 2.2.3). The optimization is
run three different times using different models to compute the samples of the NISP
method: (i) using only HF samples, (ii) using only LF samples and (iii) with the
multi-fidelity strategy which combines HF and LF samples. In the three cases the
optimization is performed for 22 iterations and a total of 1000 evaluations of the
objective functions. The NISP method with a PC expansion of Legendre 9-th order is
used. Legendre polynomials is chosen to represent function u because the uncertain
variables are uniformly distributed. The 9-th order is chosen after a convergence
analysis on the result of the bi-objective optimization with different PC orders. As
presented in Fig. 3.5, the overlap of the Pareto front obtained with the PC expansion
and the analytic front improves with increasing order and an accurate solution is
obtained for a 9-th order polynomial basis. Figure 3.6b shows that the PC method
with HF samples is very accurate in representing the analytic function, while the PC
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Figure 3.7: Pareto fronts obtained with HF, LF and MF.

expansion based on the LF samples exhibits significant errors for ξ > 0.5. The MF
method provides a trade-off between these two results: despite a small error at the
maximum, the overall trend over the uncertain variable domain is preserved, owing
to the employment of the HF samples in the last three quadrature points.

The results of the optimization are presented in Fig. 3.7. In particular, Figure 3.7a
shows the analytic front (i.e. the front obtained by computing the analytic mean and
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HF LF MF

HF function evaluations 9000 – 5000
LF function evaluations – 9000 7000

Distance to analytic front 7.79e-04 1.03e-1 8.69e-04

Table 3.1: Cost and distance to analytic front of HF, LF, MF approaches.

variance) and the approximate fronts in the objective space, where the objectives are
computed according to the specific method (HF, LF or MF). Instead, in Fig. 3.7b the
fronts are post-processed with the analytical function u to compare the results of the
different optimization runs with the same metrics. The MF results overlap with the
HF front, while the LF front is very far from both fronts. The accuracy of the result
obtained with the MF method is also demonstrated by computing the distance to the
analytic Pareto front. This distance is computed by taking the arithmetic mean of the
distance of each point of the Pareto front to the closest point of the analytical Pareto
front, as suggested in Ref. [109]. In mathematical terms, the distance dA−B of the
Pareto set PA to the Pareto set PB reads

dA−B =
1

|PA|

|PA|∑
i=0

min
f∈PB

||f(xi)− f(xPB )||, (3.4)

where symbol |·| indicates the cardinality (i.e. number of elements) of the set, symbol
|| · || is the Euclidean distance, f and x are respectively the objective functions and
the design variables of the solutions in the Pareto set. The distance is reported in
Tab. 3.1, where it is possible to note that the distance of the HF and MF method
with respect to the analytic result are very similar. Furthermore, Table 3.1 presents
the cost of the three strategies: the MF method requires a total number of evaluations
(12000) higher than the HF and LF method, because both the HF and LF models have
to be evaluated in the control points. However, the total number of HF evaluations is
lower: if the LF simulation is 10 times faster than the HF evaluation, the cost of the
HF optimization has been reduced by 37%. Thanks to the MF strategy, the accuracy
of the Pareto front is preserved and the global cost is reduced.
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3.2 Adaptive method with error bounding boxes

Another way to alleviate the cost of uncertainty-based optimization is to create a
stronger coupling between the inner UQ loop and the outer optimization loop. Specif-
ically, the two loops could share information, and the accuracy in the stochastic space
may be increased as the algorithm gets closer to the optimum. Only few attempts to
develop such an idea are given in the literature. For instance, in Ref. [110] a method
has been presented, which improves the coupling between a Monte Carlo simulation
and the stochastic annealing algorithm. To this end, the number of samples used to
compute the statistics of the performance in the Monte Carlo simulation are increased
as the annealing temperature decreases. This strategy has been extended to genetic
algorithms in Ref. [111] to deal with multi-objective problems. In this case, the num-
ber of samples increases after a certain number of generations. Another example is
the hierarchical stochastic optimization presented in Ref. [112], where the resolution
in the stochastic space is increased over the iterations. A more recent work [113] il-
lustrates the Simplex2 method, a method which efficiently couples the Nelder-Mead
algorithm for the optimization loop and the Simplex Stochastic Collocation [93, 98]
for the uncertainty quantification part. This method only adresses the problem of
single-objective optimization.

In such a context, the novel method presented in the following is based on an
adaptive strategy in the UQ loop to reduce the number of samples in the stochas-
tic space for those designs that are not interesting for optimization purposes. The
main idea is to use the error bounds on the estimates of the objective functions pro-
vided by the UQ method and to define a bounding box in the objective space around
the objective function estimate. A comparison between the bounding box and the
current Pareto front (or current best design in the case of single objective optimiza-
tion) during the optimization loop determines whether a refinement is needed in the
stochastic space. This method applies to both single- and multi-objective optimiza-
tion problems. Unlike the methods presented in the literature, the adaptation is not
set a priori, but instead it depends on the convergence history of the optimization
procedure and the performance of each new design. The strategy is here developed
with either a Non-dominated Sorting Genetic Algorithm or the BIMADS algorithm
for the optimization loop, and the Simplex Stochastic Colocation for the UQ method.
However, the strategy may apply to different algorithms in both the optimization and
the stochastic part, as long as it is possible to define an adaptivity with the available
UQ method.
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3.2.1 Pareto dominance with error bounding boxes

In Sec. 2.2.1, the traditional concept of Pareto dominance is presented, i.e. the re-
lation to define the concept of “optimality” in a multi-dimensional objective space.
Here, the Pareto dominance relation is adapted for the application to the proposed
adaptive method.

Let us assume that each estimate of the objective functions fj , j = 1, ...,m is
affected by an error εfj , j = 1, ...,m. The error is associated to the approximate
method used in the UQ loop to reconstruct the statistics of the performance u, i.e.
the objective functions. Because of the error in the estimation of the statistics, each
objective is a function f ′j that could take any value in the interval

f ′j (x) ∈ [fj
¯
, ..., f̄j ] ∀j = 1, ...,m, (3.5)

where the lower bound fj
¯

and upper bound f̄j are obtained respectively by subtract-
ing and adding the error εfj to the function estimate fj . For instance, assuming the
first objective f1 is the mean value µ, the lower bound f1

¯
and and the upper bound f̄1

read
f1
¯

= µ− εµ f̄1 = µ+ εµ,

where εµ is the error affecting the mean value. Inside the adaptive UQ loop, the error
εfj decreases with increasing number of samples. Typically, a tolerance τ is used,
and when the error εfj is lower than the tolerance the loop breaks. Thus, for a given
design vector a the amplitude of the errors is a function of the tolerance τ applied in
the adaptive uncertainty quantification method. This holds true also for the objective
function f ′j . Thus, both the objective function f ′j and the associated error εfj depends
not only on the design variables x, but also on the tolerance value τ :

f ′j = f ′j (x, τ) εfj = εfj (x, τ) ∀j = 1, ...,m. (3.6)

Once the error is lower than the limiting tolerance τ̂ , the objective function passed on
to the optimization algorithm is set equal to the estimate fj given by the UQ method.

Typically, the same value of the tolerance is set for each design in the optimization
loop, and the optimization and the uncertainty quantification are completely decou-
pled. Instead, in the proposed strategy, the value of the tolerance is updated inside the
inner UQ loop, according to a comparison between the current Pareto front and the
m-dimensional hypercube composed of the upper and lower bounds of each objective
function (see Fig. 3.8). The hypercube is referred to as error bounding box and it is a
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Figure 3.8: Error bounding box in the objective space.

function of the design vector and the tolerance:

B (x, τ) = [f1
¯
, f̄1]× ...× [fm

¯
, f̄m]. (3.7)

The error bounding box has also been used in Refs. [114, 115] to consider a con-
fidence interval around the objective function. To compare the box and the Pareto
front, a modified definition of the Pareto dominance criterion is used, which takes
into account the error associated to the objective function of the current design. Let
us consider a single iteration inside the optimization loop: the comparison is carried
out between the current design a and one of the non-dominated solution vector b
belonging to the current Pareto set.

Definition 3. Consider two vectors a,b ∈ X . The objective functions f(a, τ) of the
first vector depend on the current tolerance τ (and thereby current refinement). The
objective functions f(b) of the second vector have been computed in a previous step
up to the limiting tolerance τ̂ and do not depend on τ . It is possible to state that:

a � b (a dominates b) iff βj
[
fj(a, τ)− βjεfj (a, τ)

]
≤ βjfj(b) ∀j = 1, ...,m

and ∃j such that βj
[
fj(a, τ)− βjεfj (a, τ)

]
< βjfj(b)

a ∼ b (a is indifferent to b) iff a does not dominate b and b does not dominate a

where coefficient βj indicates the goal of the optimization of function fj:

βj =

{
1 if fj is to be minimized

−1 if fj is to be maximized
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Figure 3.9: Scheme of Pareto dominance with error bounding boxes for a minimization
problem.

With the use of the coefficient βj , the definition considers the lower bound of the i-th
function for a problem of minimization of fj , and analogously the upper bound for
maximization problem. Let us consider the example presented in Fig. 3.9 where a
minimization of two objectives f = {f1, f2} is performed. In this case, to compare
the grey shaded box with the current front in the objective space, the point corre-
sponding to the lower bounds (f1 − εf1 , f2 − εf2) is taken (the point is marked with
a grey circle in the figure). Design a′ is clearly dominated, whereas the box asso-
ciated with design a′′ crosses the front. In the latter case, neglecting the error on
the objective functions would result in excluding the design from the non-dominated
set. However, a refinement in the stochastic space could improve the estimate of
the objective functions and it could prove that the design is actually non-dominated
(Fig. 3.9b).

In practice, if an adaptive UQ loop is considered, an estimate of the actual error
is provided for each objective function: ε̃fj . The bounding box is built with the
estimate of the error, rather than the error itself, and it is important that the estimate
is conservative.

Definition 4. In a minimization problem ofm objectives affected by an error εfj , j =

1, ...,m, it is possible to state with certainty that

b � a (b dominates a)
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if and only if

fj(a, τ)− fj(b, τ) > εfj (a, τ) + εfj (b, τ) ∀j = 1, ...,m. (3.8)

When the objective functions are not affected by error, the previous definition corre-
sponds to the inequality of the Pareto dominance relation (i.e. Definition 1).

Theorem 1. Given a conservative estimate ε̃fj of the error εfj affecting the m ob-
jectives of a minimization problem, if

fj(a, τ)− fj(b, τ) > ε̃fj (a, τ) + ε̃fj (b, τ) ∀j = 1, ...,m (3.9)

then with certainty

b � a (b dominates a).

Proof.
If the estimate is conservative, then

ε̃fj > εfj ∀j = 1, ...,m (3.10)

thus

εfj (a, τ) + εfj (b, τ) < ε̃fj (a, τ) + ε̃fj (b, τ)

< fj(a, τ)− fj(b, τ) ∀j = 1, ...,m. (3.11)

The latter relation is Definition 4. Thus, the dominance criterion with a conservative
estimate of the error guarantees the detection of truly non-dominated solutions.

3.2.2 Algorithm

Leveraging the idea of the bounding box, an adaptive refinement on the error affecting
the objective function is developed. The novel strategy proposes to modify only the
inner UQ loop (Fig. 3.1), which provides the objective function f for a given design.

The operations of the adaptive strategy are presented in Algorithm 1. For the i-th
design, the current design xi and the set Yi−1 of the objective functions of the old
design vectors are passed to the function. The set is used to compute the Pareto front
according to the classical Pareto dominance relation, i.e. Definition 1. The tolerance
τ is initialized to a coarse, moderately high value τ̄ . Then, the objective function is
evaluated up to the current tolerance with the UQ method of choice. With the adaptive
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Algorithm 1 Scheme of error bounding box refinement
1: procedure EVALUATE(xi, Yi−1)
2: compute Pareto front from Yi−1 with Definition 1
3: τ = τ̄
4: ε̃ = BIG
5: while ( τ ≥ τ

¯
) ∧ ( ε̃ > τ ) do

6: evaluate f(xi) and ε̃(xi) with current τ
7: if ε̃ < τ then
8: compare current box B(xi) with front according to Definition 3
9: if B(xi) is non-dominated then

10: τ = τ/10
11: ns = ns + 1
12: continue
13: else
14: exit while
15: end if
16: else
17: ns = ns + 1
18: end if
19: end while
20: return f(xi)
21: end procedure

UQ method, the error typically decreases by increasing the number of samples ns,
so the number of samples is increased if the error is higher than the tolerance. When
ε̃fj < τ ∀j = 1, ...,m, the error bounding box is compared with the current Pareto
front: if the box is non-dominated, the tolerance is reduced by an order of magnitude
and another iteration is performed. If the box is dominated according to Definition 3,
the while loop is broken and the next individual is computed. The loop stops in any
cases when the error is lower than the tight tolerance τ

¯
.

The choice on the method for reducing the tolerance is arbitrary and it is chosen
based on the value of the limiting tolerance τ̄ and τ

¯
. Here, a factor equal to 1/10 is

used because tolerance τ̄ and tolerance τ
¯

differ of two or three orders of magnitude
in the examples of the following sections. It should be noted that a smaller reduction
results in a higher number of updates and number of comparison between the current
front and the bounding box, but it could potentially reveal dominated solutions with
a fewer number of samples.

The algorithm is formulated in such a way that the accuracy of the objective
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estimates is variable throughout the design space. In fact, the limiting tolerance τ̂
is different for each design. Design vectors far from the Pareto front are computed
with the coarse tolerance τ̂ = τ̄ , the Pareto solutions are computed with the tolerance
τ̂ = τ

¯
providing the highest accuracy (and highest number of samples), and the

intermediate solutions are computed with an intermediate tolerance on a case-by-case
basis in the loop described in Algorithm 1.

As a final remark, the refinement proposed in this strategy is based on a compar-
ison of the current design with the Pareto front. Thus, it is strictly associated to the
performance of each design and to the importance of such a design in the optimization
history. This is a key difference with respect to other approaches in the literature. For
instance, the number of samples increases as the annealing temperature decreases in
the stochastic annealing [110], or as the number of generations increases in stochastic
genetic algorithm [111]. However in these cases, there is not a real connection with
the values of the performance: due to the poor accuracy at the beginning of the opti-
mization history, a good design may be discarded and, viceversa, a poor design may
be included in the non-dominated set. In the proposed strategy, the non-dominated
solutions are always computed with the highest accuracy (corresponding to the low-
est tolerance τ

¯
). This requires a higher computational effort also for those individuals

that may temporarily appear as Pareto optimal during the optimization process, and
will be later dominated. However, the increase in the cost for these individuals is a
necessary price to pay to guarantee that the optimization would end up to the accurate
Pareto front. In future works, this condition may be relaxed to further increase the
computational efficiency.

3.2.3 Convergence analysis

In this section, a proof of convergence is presented to prove that with a bounding
box approach an optimization algorithm able to converge to the correct solution will
converge also in the presence of an error up to the desired tolerance τ̂ , if the error
estimates are conservative.

From the property of the adaptive UQ method, the estimate of the objective func-
tion of a design vector a satisfies the following

lim
τ→0

εfj (a, τ) = 0 (3.12)

Regarding the order of convergence, the UQ method used in this case is the Simplex
Stochastic Collocation (described in Sec. 2.3.2), whose convergence is linear for first-
order piecewise polynomials in a one-dimensional stochastic space, and superlinear



76 Efficient methods for robust optimization

if a p-refinement is used. In the proposed strategy, a very low tolerance τ
¯

is used for
the solutions belonging to the Pareto front P . In other words, by construction of the
method, if b ∈ P , then εfj (b, τ)→ τ

¯
.

Definition 5. Let us consider the i-th iteration of the proposed optimization method,
for a minimization problem of m objectives affected by an error εfj , j = 1, ...,m.
Considering the i-th design vector xi, the estimate of the error satisfies

lim
i→∞

ε̃fj (xi) = τ
¯

∀j = 1, ...,m (3.13)

Let us suppose to have an optimization method to solve the minimization prob-
lem of function f , whose solution is f∗. The quantity f (xi) is the solution at the
i-th iteration, which corresponds to the statistical moment of a given quantity for the
design xi. Note that this quantity is considered as the exact statistical moment associ-
ated to the design xi. Instead, the approximated function computed with a tolerance
and affected by an error is denoted with f̃j,i (xi).

Definition 6. A conservative estimate ε̃fj of the error εfj that affects the estimation
f̃j (xi) of the function fj (xi) is defined as follows∥∥∥fj (xi)− f̃j (xi)

∥∥∥ , εfj < ε̃fj ∀j = 1, ...,m (3.14)

Note that this conservative error estimation can be applied on the error of the
mean, of the variance, or of a linear combination of some statistics if this is the
objective function.

Theorem 2. Let us suppose that the method converges to the solution of the opti-
mization problem, i.e.

lim
i→+∞

∥∥fj,i (xi)− f∗j
∥∥ = 0 ∀j = 1, ...,m (3.15)

or
lim

i→+∞
‖δj,i‖ = 0, ∀j = 1, ...,m (3.16)

Then, by considering the adaptive bounding-box approach, the convergence of the
optimization method is preserved up to the tight tolerance τ

¯
used to compute the

objective functions, provided that a conservative error estimation is computed, i.e.

lim
i→+∞

∥∥∥f̃j,i (xi)− f∗j
∥∥∥ = τ

¯
(3.17)
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Proof.
The proof stems directly from the definition of the conservative error estimation. In
particular, for the j-th objective function

∥∥∥f̃j,i − f∗j ∥∥∥ can be written as follows:

∥∥∥f̃j,i − f∗j ∥∥∥ =
∥∥∥f̃j,i − f∗j − fj + fj

∥∥∥
=
∥∥∥(f̃j,i − fj) + (fj − f∗j )

∥∥∥ (3.18)

Using the triangle inequality, ‖a+ b‖ ≤ ‖a‖+ ‖b‖, we have∥∥∥f̃j,i − f∗j ∥∥∥ =
∥∥∥(f̃j,i − fj) + (fj − f∗j )

∥∥∥
≤
∥∥∥f̃j,i − fj∥∥∥+

∥∥fj − f∗j ∥∥
≤ εfj + δj,i. (3.19)

By recalling the definition of conservative error estimation, the inequality also gives
that ∥∥∥f̃j,i − f∗j ∥∥∥ < ε̃fj ,i + δj,i. (3.20)

By assumption δj,i → 0 as i → +∞. Since by construction of the algorithm, the
conservative estimate ε̃fj ,i goes to the tight tolerance τ

¯
(recall Definition 5), taking

the limit yields
lim

i→+∞
ε̃fj ,i + δj,i = τ

¯
. (3.21)

The previous result shows that the optimal solutions are known up to the tight
tolerance τ

¯
. If a decoupled strategy and a loose tolerance τ̄ are used, the difference

from the computed optimal solutions and the exact solutions may be significant. In-
stead, if a very tight tolerance is used, the discrepancy may be negligible. In addition,
in the limit of τ → 0, Eq. (3.21) reads

lim
i→+∞

lim
τ→0

ε̃fj ,i + δj,i = 0. (3.22)

This means that if the tolerance in the estimation of the objective function is equal to
zero, the computed optimal solutions converge to the exact solutions.

Finally, the order of convergence of the proposed strategy strictly depends on the
convergence of the UQ method (the limit τ → 0) and the order of the optimization
algorithm (the limit i→ +∞).
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3.2.4 Estimation of error bounds in the uncertainty quantification method

The Simplex Stochastic Collocation (SSC) is chosen for the UQ loop, because it relies
on the adaptive refinement of the sampling in the stochastic space [93]. Other exam-
ples of methods in which an adaptive refinement could be used are Monte Carlo sim-
ulation methods, kriging-based or Polynomial-based approaches with nested quadra-
tures.

As presented in the description of the SSC (see Sec. 2.3.2), there is a straightfor-
ward, quantitative way to relate the cost of the uncertainty propagation procedure and
the accuracy of the result: the lower the tolerance τ on the error between function w
and function v, the higher the cost and the better the estimates. On the other hand, a
rough, cheap estimate on the statistics of the output v can be obtained with a coarser
tolerance and fewer samples. To control the accuracy of the result, a measure of the
error of the estimate is required. This measure of the error is the quantity that should
be compared to the desired tolerance.

Different errors are computed in the SSC method, which are quantitative esti-
mates of the error of the statistics (i.e. mean value and variance) due to the polyno-
mial approximation w. In the following, three groups of errors are presented: Monte
Carlo errors, estimated errors and conservative estimated errors. The first set serves
as a reference for the assessment of the other estimates. Note that the errors on mean
value and variance are considered here, but analogous estimates can be derived also
for higher order statistics.

The first set is composed of the Monte Carlo (MC) errors , which are based
only on the value of function w, and are obtained by means of random Monte Carlo
sampling. The mean MC error εµ reads

εµ = ||µmc − µw||, (3.23)

where the mean µmc based on the exact function evaluation and the mean based on
the approximation µw are computed by means of an MC integration over nmc, as
follows:

µmc =
1

nmc

nmc∑
i=1

v(ξi)

µw =
1

nmc

nmc∑
i=1

w(ξi). (3.24)
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Similarly, the variance MC error is the following

εσ2 = ||σ2
mc − σ2

w||

σ2
mc =

1

nmc

nmc∑
i=1

u2(ξi)− µ2
mc

σ2
w =

1

nmc

nmc∑
i=1

w2(ξi)− µ2
w. (3.25)

These errors are useful to compare the function w and v with the same sampling
technique, by ruling out the error associated with the MC method. As a result, these
errors represent the accuracy of the polynomial approximation w. However they rely
on the computation of the exact function in many random samples, thus they are not
employed in practical cases where it is desirable to compute the exact function only
for a small number of samples.

Therefore, the SSC provides a set of estimated errors that are based on the hi-
erarchical surplus and the order of the polynomial employed in each element of the
grid. In this case, the estimation of the error only relies on the (small) set of samples
obtained in each vertex of the SSC grid. Let us define the hierarchical surplus for
the new k-th sampling point ξj,k belonging to the j-th element (see Fig. 2.11a), as
follows

εj = w(ξj,k)− v(ξj,k)

where w is the interpolation before refinement and v is the exact function evaluation.
Based on the hierarchical surplus, we define the estimated mean error ε̂µ as follows

ε̂µ =

ne∑
j=1

Ωj ε̃j

ε̃j =
εj

2
pj+1

nξ

, (3.26)

where Ωj is the probability contained in j-th simplex, pj is the order of the poly-
nomial approximation in the j-th simplex, and nξ is the number of the uncertain
variables. The estimated variance error ε̂σ2 then reads

ε̂σ2 =

∣∣∣∣∣
∣∣∣∣∣ σ2

w −

 1

nmc

nmc∑
i=1

(w(ξi)− ε̃j,i)2 −

(
1

nmc

nmc∑
i=1

(w(ξi)− ε̃j,i)

)2
 ∣∣∣∣∣
∣∣∣∣∣,
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where ε̃j,i is the corrected hierarchical surplus of the element which point i belongs
to. This estimate is found by assuming that one could approximate the function v(ξi)

by w(ξi)− εj,i; this choice is conservative since typically the vertex based on which
the surplus is computed is the one with the greatest error in each simplex. This error
estimate works quite well for smooth functions when the interpolation reaches its
theoretical convergence rate. However, in some cases it may be useful to adopt a
more conservative estimate which is only based on the hierarchical surplus.

The conservative estimated errors are defined with a very similar structure with
respect to the estimated errors, but they employ directly the hierarchical surplus εj ,
without using extrapolation based on h- and p-refinement. The conservative esti-
mated mean error ε̃µ is defined as

ε̃µ =

ne∑
j=1

Ωjεj ,

whereas the conservative estimated variance error ε̂σ2 is

ε̃σ2 =

∣∣∣∣∣
∣∣∣∣∣ σ2

w −

 1

nmc

nmc∑
i=1

(w(ξi)− εj,i)2 −

(
1

nmc

nmc∑
i=1

(w(ξi)− εj,i)

)2
 ∣∣∣∣∣
∣∣∣∣∣,

where εj,i is the hierarchical surplus of the element which point i belongs to. To
assess these estimates a comparison is presented for some analytical cases in the
following subsection.

Analytic testcases for error estimation

To begin with, a one-dimensional sine function (see Fig. 3.10a) is considered:

u(ξ1) = 3 + sin(2πξ1) (3.27)

where the uncertain variable ξ1 is uniformly distributed in the domain [0, 1]. In
Fig. 3.11a the behavior of the errors and estimators is presented, which confirms
the effectiveness of the estimates. In fact, the estimated error and the conservative
estimated errors are larger than the MC error, proving that they are conservative es-
timates of the actual error. In other words, the exact value of the statistics lies in the
error bar defined around the SSC estimate and whose width can be described either
by the estimated or the conservative error. In the case of the sine function, the error
on the variance provides more information on the accuracy of the response approxi-
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Figure 3.10: Functions used to test SSC error estimates.

mation rather than the mean value, which is equal to the constant term in Eq. (3.27)
and it is therefore affected by a small error even in the first iteration.

Then, the method is applied to a more complex function, the one-dimensional
Michalewicz function (Fig. 3.10b), that is a very challenging testcase in global opti-
mization problems

u(ξ1) = − sin(ξ1) sin20

(
ξ2

1

π

)
. (3.28)

The uncertain variable ξ1 is again uniformly distributed in the domain [0, π]. Fig-
ure 3.11b shows the result of the application of SSC and proves that in this case the
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(b) One-dimensional Michalewicz function in Eq. (3.28).
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(c) Two-dimensional inverse tangent function in Eq. (3.29).

Figure 3.11: Monte Carlo, estimated and conservative errors for three analytic functions.
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conservative error is a safer estimate of the error.
Finally, a two-dimensional function is considered to explore multi-dimensional

problems. The inverse tangent presented in Ref. [93] is analysed (Fig. 3.10c), which
reads

u(ξ) = atan
(
ξ · ξ∗ + ξ∗21

)
, (3.29)

with ξ∗ ∈ [0, 1]2 is a two-dimensional vector of arbitrary values. In this case, the
errors of the mean value have a smoother behavior with respect to the errors of the
variance (see Fig. 3.11c). However, even in the latter case the convergence trend is
clear and it appears that, despite the oscillations, the estimated error and the conser-
vative error are consistent with the MC error.

As a final remark, these estimates are associated only to the error due to the
polynomial approximation w. Although the method developed in this work considers
a generic error on the estimate of the objective functions, regardless of the sources
of that error, it is worth noting that these estimates are obtained by means of MC
sampling, which is affected by an error itself. However, this error would decrease
anyway when increasing the number of MC sampling points. Adding a bias to the
estimates would be a possible strategy to include this error as well, without affecting
the proposed optimization method.

3.2.5 Uncertainty-based optimization of algebraic test cases

This section presents some results obtained with the proposed adaptive strategy for
two algebraic test cases, where there is a simple algebraic relationship between the
performance u and the design and uncertain variables. In the comparison with the
standard non-adaptive method, the proposed strategy is referred to as coupled strat-
egy, and the classical approach is called decoupled.

Single-objective algebraic problem

In this section a single-objective (m = 1) optimization is considered, with two uncer-
tain variables (nξ = 2) and two design variables (n = 2). The optimization problem
reads

minimize: f(x) = µ(u) + σ(u)

by changing: x ∈ X = [0, 6]× [0, 6]

with: ξ ∼ U(0, 1) (3.30)
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where the function representing the performance is the following

u(x, ξ) =
[
e−

∑n
i=1(xi/κ)2γ − 2e−

∑n
i=1

∑nξ
j=1 δijξj(xi−π)2

]
·
n∏
i=1

cos2 xi (3.31)

with κ = 15, γ = 5 and δij is the Kronecker delta (δij = 1 if i = j, δij = 0 if
i 6= j). This function was presented in Ref. [116] and it is a modification to the
classical test case for deterministic optimization. In this case, the uncertain variables
are present in the exponential terms and they are as many as the design variables. The
deterministic function has one global minimum u(xopt) = −1 in xopt = {π, ..., π}.
When uncertain variables are considered the function changes its shape, but the global
minimum remains the same for any realization of the uncertain variables. The mean
value of u evaluated in the minimum is equal to -1 and the variance is equal to 0.
Thus the solution of the robust case in Eq. (3.30) is equal to the deterministic global
minimum f(xopt) = −1 in xopt = {π, ..., π}. The solution is close to the mid-point
of the design variables domain, as represented in Fig. 3.12.

The solution of the optimization problem in Eq. (3.30) is obtained by means of the
genetic algorithm described in Section. 2.2.2 and the SSC method (Section. 2.3.2).
The coupling is obtained in three different ways: (i) with a decoupled approach in

Strategy Percentual error on f(x∗) Distance from x∗ N. function evaluations

Decoupled (1e-3) 1.0e-6 6e-4 24956
Decoupled (1e-1) 1.2e-5 2e-3 16820
Coupled 1.7e-7 4e-4 18875

Table 3.2: Comparison of results and cost between decoupled and coupled approaches for
problem in Eq. (3.30)
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which the tolerance is set to 1e-3, (ii) a decoupled approach in which the tolerance
is set to 1e-1, (ii) the coupled strategy. In the latter case, the upper value τ̄ of the
tolerance is set to 1e-1 and the lower value τ

¯
is 1e-3. The three approaches reach the

minimum value of the function in the correct minimum point, in spite of a slightly
higher error for the decoupled approach with the loose tolerance (see Tab. 3.2). The
computational cost of the decoupled strategy with tight tolerance is reduced by 24%
with the coupled approach. The cost of the coupled method is comparable with that
of the decoupled approach with loose tolerance, and the estimate of the minimum
is very accurate. However, in this case a very good estimate of the optimal design
is obtained even with a loose decoupled strategy. In the next section, a test case is
presented which shows the real benefit of the coupled approach.

Multi-objective algebraic problem with NSGA

In this section the same bi-objective optimization problem tackled with the multi-
fidelity strategy in Sec. 3.1.2 is solved (see Eq. (3.1)) by coupling the SSC method
with the genetic algorithm.

Figure 3.13a presents the Pareto fronts of the analytic function and the fronts ob-
tained by means of the decoupled method with tight tolerance, the decoupled method
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Figure 3.13: Results of multi-objective algebraic problem (Eq. (3.1)) with: (i) decoupled
strategy with tight tolerance (1e-4), (ii) decoupled strategy with loose tolerance (1e-1) and
(iii) coupled strategy. The loose tolerance result has been computed after the optimization
with the analytical function for comparison.
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with loose tolerance and the coupled strategy. The sets of solution obtained with the
tight tolerance and the coupled approach compare well, while the loose tolerance re-
sults in a different branch of the front. This different branch obtained with the loose
tolerance is a fictitious front, obtained only by the fact that the use of the loose tol-
erance does not provide an accurate estimate of the objective functions. Because of
this, the front obtained with loose tolerance has been re-computed with the analytic
function and plotted in the objective space for comparison. The solutions of the three
fronts are plotted in the design space in Fig. 3.13b, where it is possible to note that the
set obtained with the coupled approach overlaps the set obtained with the decoupled
strategy with tight tolerance, while the method based on the loose tolerance end up
on a different set of solutions that are not optimal.

The distance to the analytic Pareto front is presented in Fig. 3.14 and it is com-
puted by means of Eq. (3.4). The comparison of the difference computed at each gen-
eration proves that the cheap optimization obtained with the loose tolerance results
in an inaccurate front, while the coupled approach yields a front consistent with the
accurate result. In addition, the approximation w(ξ) obtained with the SSC method
is presented in Fig. 3.15 for a representative design of the inaccurate Pareto front. In
particular, design vector x̃ is selected, which is closest to the mid-point between the
two extremes of the Pareto front obtained with the loose decoupled approach. The
SSC with the tight tolerance provides the best fit of the analytical function, whereas
a good approximation is obtained with the coupled method. Instead, the number of
samples used with the loose tolerance is not sufficient to correctly capture the behav-
ior of the function. Thus, for this test case a tight tolerance is crucial to obtain the
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Figure 3.14: Distance to the Pareto front of the analytical function.
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obtained with the decoupled loose (τ̄ = 1e-1) method.

Strategy Number of function evaluations

Initial generation Evolution Global
Decoupled (1e-1) 1077 5609 6686
Decoupled (1e-4) 4011 24482 28493
Coupled 1849 20368 22217

Table 3.3: Comparison of total number of function evaluations in the NSGA for the multi-
objective algebraic optimization.

correct solutions of the optimization problem.
With regard to the computational cost of the coupled method, the number of func-

tion evaluations for each generation is shown in Fig. 3.16a and reported in Tab. 3.3.
In the very first generation, the coupled approach has a significant reduction of the
cost with respect to the tight decoupled approach: the reduction is close to 54%, thus
the number of evaluations has been reduced to less than half the reference value. With
increasing number of generations, the cost of the coupled approach increases and it
almost converges to the cost of the tight decoupled method. In fact, with increas-
ing number of generations during an evolution, each generation typically becomes
more and more rich of individuals close to the current Pareto front, in other words
design vectors with good objectives. For these “good” individuals the coupled ap-
proach has to compute the objective functions with a tighter tolerance, and the cost
becomes higher. This is also shown in Fig. 3.16b, where the ratio of potentially non-
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Figure 3.16: Cost of the multi-objective algebraic optimization (Eq. (3.1)) with NSGA.
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Figure 3.17: Tolerance and bounding boxes of the coupled approach for the multi-objective
algebraic test case (Eq. (3.1)) with NSGA.

dominated solution over the generation size is presented. A solution is defined as
potentially non-dominated if the objective vector is non-dominated with respect to
the individuals computed up to that point. In mathematical terms, given the number
of individuals in a generation NG the ratio ρ is expressed as follows
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ρ =

∑NG
i=1 ck,i
NG

(3.32)

where the coefficient ck,i indicates whether the design vector xi,l occurring at the
l-th iteration in the current generation and i-th iteration in the global population is
non-dominated regarding the population at the i-th iteration Xi

ci,l =

{
1 if xi,l is non-dominated regarding Xi
0 otherwise.

It appears that when the ratio exceeds 0.3, the cost of the coupled approach becomes
similar to the cost of the tight decoupled approach. Nevertheless, the cost remains
lower and the global cost is reduced by 22 % (see Tab. 3.3). Please note that the ratio
ρ is a lower bound of the cost of the decoupled strategy, because it is computed in a
post-processing stage with the non-dominated solutions based on the final estimate.
Therefore, it does not include the refinement required for dominated solutions close
to the Pareto front. To highlight this aspect, Figure 3.16b presents the modified ratio
ρ1, computed taken into account not only the non-dominated solutions, but also the
solutions within a distance to the current Pareto front of τ

¯
in each direction of the

objective space. In this case the two ratios have similar trend.
Figures 3.17a presents the tolerance τ used for each design vector in the objective

space. During the optimization, the algorithm uses the tighter tolerance τ
¯

= 1e-4 only
in the region close to the actual Pareto front. The loose tolerance τ̄ = 1e-1 is used for
higher values of the mean value f1. As a matter of fact, the resulting error bounding
boxes are wider in that area, as presented in Fig. 3.17b.

Discussion on error estimates During the post-processing stage of the optimiza-
tion, the error with increasing number of samples has been computed for a group of
design vectors. For instance, in Fig. 3.18 the MC errors, estimated and conservative
errors are plotted for the design x̃, a trade-off design belonging to the Pareto front
obtained with the decoupled loose method. The figure shows that in the first itera-
tions of the SSC method the estimated errors is not conservative with respect to the
MC error (which represents the reference value, as explained in Sec. 3.2.4).

In light of this result, the robust optimization has been performed again consider-
ing the conservative estimated errors affecting the objective functions. The resulting
Pareto fronts are presented in Fig. 3.19a, which shows a situation similar to the one
presented in the preceding section. The coupled approach results in a front overlap-
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ping the result of the decoupled method with tight tolerance. Once again, the loose
tolerance does not provide accurate results. The error bounding boxes computed in
the coupled approach are larger in this case, due to the higher order of magnitude of
the conservative estimated errors. The computational cost of the coupled approach in
this case is higher and it approaches the result of the tight tolerance (see Fig. 3.20a).
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Figure 3.18: Errors affecting the mean value and the variance of function u for a representa-
tive design vector of the decoupled loose Pareto front.
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Figure 3.19: Results of multi-objective algebraic problem (Eq. (3.1)) with conservative esti-
mates.
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Figure 3.20: Cost of the multi-objective algebraic optimization (Eq. (3.1)) with NSGA and
conservative estimates.

This is due to two main reasons. First, the ratio of potentially non-dominated solu-
tions over generation size ρ is greater in this case as presented in Fig. 3.20b. Second,
since the conservative estimates overestimate the actual errors, the bounding box is
greater than the box that could be defined with the actual errors (see the boxes in
Fig. 3.19b). As a result, it is more likely for the bounding box to dominate the Pareto
front, thereby requiring a higher number of samples even for the design vectors that
are far from the Pareto front.

The results obtained with the estimated and conservative estimated errors high-
light two important aspects. First, even if the error estimates in the first iterations of
the SSC are not strictly conservative, the proposed strategy is able to attain the accu-
rate Pareto front as presented in the preceding section. In fact, for the non-dominated
solutions the method always uses the lowest tolerance τ

¯
, overcoming the problems

that may arise with a non-conservative error estimates in the first iterations. Thus,
the method is robust and it is able to assess whether a solution that may appear non-
dominated due to a poor accuracy of the objective function is actually dominated.
Nevertheless, conservative estimates are important in the opposite situation, that is to
avoid discarding potentially non-dominated solutions. Secondly, not only it is crucial
to have an error estimate that is conservative, but also the estimate should be consis-
tent with the actual error. A too conservative estimate may jeopardize the efficiency
of the adaptive strategy.
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With regard to the estimate provided by the SSC, a theoretical proof is given
in Ref. [93]. Based on the experience gained with different functions considered
throughout the thesis the robustness of the error estimates turns out to be very problem-
dependent. The theoretical convergence is reliable as long as the function is smooth
and as long as the initial sampling is sufficiently capturing the function variability.
The variability of the function in an optimization problem not only depends on the
uncertain variables, but also on the design variables, so tweaking the initial sampling
is problem-specific and the effect of the sampling should be assessed for representa-
tive design before the optimization run.

Multi-objective algebraic problem coupled method with BIMADS

The multi-objective robust optimization problem presented in Sec. 3.1.2 (Eq. (3.1))
is tackled also with the BIMADS algorithm coupled to the SSC method. The results
are presented in Fig. 3.21a, where the front obtained with the decoupled and coupled
approaches are compared to the result of the analytic function. Similarly to the case
presented in the preceding subsection, the distance computed with respect to the an-
alytic result in Fig. 3.21b proves that the decoupled method with tight tolerance and
the coupled method reaches the analytical result. Furthermore, the convergence is
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Strategy Decoupled (1e-1) Decoupled (1e-4) Coupled
Number of function evaluations 5331 26387 23894

Table 3.4: Comparison of total number of function evaluations in the BIMADS optimization
loop.
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Figure 3.22: Cost of the multi-objective optimization with BIMADS.

The cost of the decoupled approach with tight tolerance is reduced by 30% with
the coupled approach in the first iteration (see Fig. 3.22a). In the following iterations
the coupled approach becomes more expensive and the cost gets closer to the cost of
the tight decoupled method, although it remains lower. The reduction of the global
cost is about 10% in this case. In fact, in the first iterations many design vectors close
to the Pareto front are computed: as reported in Fig. 3.22b over 70% of the design
vectors are potentially non-dominated solutions. In addition, during the remaining
iterations, the design vectors tested are very close to the Pareto front, so a tighter
tolerance is required in those cases. On average, the coupled approach in the last
iterations uses 25 evaluations per design vector, whereas the decoupled tight approach
uses 28 function evaluations.

With respect to the case performed with the NSGA, the coupled approach em-
ploys more function evaluations with the solutions computed in the BiMADS loop.
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In fact, among the design vectors tested in the NSGA loop, the number of solutions
which are “good”, i.e. closer to the Pareto front, is greater in the BiMADS case.
This is shown by the ratio ρ1 in Fig. 3.22b, which clearly presents that the solutions
within a distance to the current Pareto front equal equal to the tight tolerance in each
direction of the objective space are dominant in the BiMADS iteration. This explains
the higher cost of the coupled strategy with BiMADS.

3.3 Remarks on the methods

In the present Chapter two methods to improve the efficiency of robust optimization
have been presented. In the algebraic test cases presented in the previous sections,
both the multi-fidelity and adaptive methods provide a significant gain with respect
to the traditional robust optimization methods. However, the gain is obtained in very
different ways. The first approach leverages models with different fidelity (and cost)
to improve the efficiency of the robust optimization loop. Its gain is somewhat as-
sociated with the difference in the cost of the chosen high- and low-fidelity model.
Furthermore, the availability of two methods to model the system under considera-
tion, which share (almost) the same accuracy in a part of the stochastic domain is a
key element. On the other hand, the adaptive strategy can be used with a single model
and it uses the information shared by the external optimization loop and the internal
UQ loop.

A natural follow-up study would consist in the integration of the two methods.
In fact, these act on two different levels: the multi-fidelity method plays with the
models, the adaptive strategy with the tolerance values. The resulting adaptive, multi-
fidelity strategy could provide even higher computational gain. This study is left for
future activities and it was not investigated in the present thesis because time had to
be devoted to numerous and expensive application of helicopter rotor airfoils. The
hovering condition is considered in the next chapter.



CHAPTER 4

Robust optimization of fixed airfoil in hovering condition

The robust optimization techniques presented in the preceding chapter are applied to
the optimal selection of the airfoil for a helicopter rotor blade in hover.

4.1 Optimization problem

Ideally the hover condition is a perfectly symmetric and steady flow condition when
an isolated rotor is considered. However, when a rotor is installed on the helicopter
(see Fig. 1.1) the interference with the other parts and the necessity to trim the entire
aircraft requires the introduction of some cyclic pitch commands that lead to variable
flow conditions met by the blade section in different azimuth positions. As a con-
sequence, instead of considering a deterministic, representative operating condition
for hover, it is assumed that the freestream condition of the airfoil section is affected
by some level of uncertainty. In this thesis we deal with sources of uncertainty in
the physical modelling employed at the design stage. This uncertainty could arise
from errors in the model representation (e.g. the blade inflow model). Addition-
ally, other physical sources of uncertainty may be considered, such as those related
to blade structural flexibility, that may modify the local pitch angle. Because in the
design stage the blade pitch angle θ and the induced velocity Vi dictate the operating
condition of the airfoil (Fig. 4.1), uncertainties on these two system parameters are
considered in the present analysis. The induced velocity is also a freestream bound-
ary condition that permits consideration of the effect of the wake vorticity of the blade
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UT

Vi

θ

Figure 4.1: Scheme of operating conditions at a blade section: the uncertain variables are
the pitch angle θ and the induced velocity Vi. The velocity component UT is the velocity
tangential to the rotor disk.

on the airfoil in a simple yet effective way [9].
The objective of the aerodynamic optimization is to maximize the lift-to-drag

ratioE, which is a measure of the aerodynamic efficiency of the airfoil. This measure
is chosen because improving the lift-to-drag ratio in the airfoil selection benefits the
rotor performance [11]. The objective of this analysis is mainly to find a robust
optimal airfoil shape. In other words, the optimal design must maximize the mean
value µE and minimize the variance σ2

E of the objective function, computed by taking
into account the uncertainties of the operating conditions. Unlike single-objective
optimization where there is only one global optimum, in the case of multi-objective
optimization, as the one under consideration here, there is a set of optimal solutions
(the so-called Pareto front) corresponding to various trade-offs between the mean
value and the variance.

The objective function E is a function of the output of the aerodynamic system,
that is the solution of the differential equation modelling the aerodynamics:

L (x,y, ξ;φ(x,y, ξ)) = 0, (4.1)

where L is a nonlinear spatial differential operator describing the problem. The so-
lution of the stochastic equation (4.1) is the vector φ(x,y, ξ), which contains the
unknown variables, e.g. density, momentum and total energy. The solution vector φ
is a function of the two-dimensional space variable y ∈ R2, the design variables x

belonging to the design space X , and the uncertain input parameters ξ belonging to
the stochastic space Ξ.

The differential equation (4.1) represents a constraint for the optimization prob-
lem. Additional constraints are related to manufacturing feasibility and costs. The
geometry of the airfoil is constrained in such a way that only airfoils having at most
one inflection point of the camber line are allowed, and the pitching moment co-
efficient computed at the quarter-chord location is constrained to prevent excessive
torque on the blade structure. The latter constraint is applied when the moment co-
efficient about the quarter-chord location exceeds 0.03. Despite the importance of
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minimizing the pitching moment, such a value is chosen to explore the design space
with sufficient freedom.

In mathematical terms, the resulting optimization problem can be stated as:

maximize: µE (φ (x,y, ξ))

and minimize: σ2
E (φ (x,y, ξ))

subject to: L (x,y, ξ;φ(x,y, ξ)) = 0

g (x,y, ξ;φ(x,y, ξ)) ≤ 0

by changing: x (4.2)

with uncertain input parameters ξ = {θ, Vi} and under the constraints previously
described and collected in vector g. The robust optimization problem requires sev-
eral ingredients (Fig: 1.10): (i) a model of the aerodynamic system which includes
the aerodynamic model (L = 0) which describes the flowfield around the airfoil,
the freestream boundary conditions and the airfoil shape, (ii) an uncertainty quan-
tification method that propagates the uncertainty affecting the freestream operating
conditions to the uncertainty on the output, i.e. the aerodynamic loads computed by
means of the aerodynamic model , and (iii) a shape optimization method that seeks
to find the best design according to the objectives and contraints set in Eq. (4.2).

4.2 Numerical ingredients of robust optimization method

The different elements of robust optimization have been discussed in Chapter 2. In
this section, the specific methods used for the robust aerodynamic optimization pre-
sented in the preceding section are outlined.

4.2.1 Uncertain operating conditions

In this work, a reference, or nominal, condition is first chosen which represents a typ-
ical condition for a section of a blade in hover. Then, an estimate of the uncertainty
on each variable is computed. For the nominal condition, data from Ref. [117] are
employed, considering two blade sections respectively at 40% and 80% of the span
(see Tab. 4.1). The blade pitch angle and induced velocity are computed by means of
the Blade Element Momentum Theory (BEMT) starting from data of the Bo105 rotor
and assuming a radial distribution of inflow on the blades [118, p. 127]. Regarding
the uncertain parameters, a variation of ±2 deg is estimated for the blade pitch angle
due to longitudinal cyclic and lateral cyclic pitch, and a value of ±0.5 deg is added
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in order to model the effect of blade flexibility with an uncertainty in the torsional
stiffness. This level of uncertainty has also been found on the pitch measures taken
during the HART II experimental campaign [117]. For the induced velocity, a vari-
ation of ±10% of the nominal value is considered due to the modeling of physical
parameters of the system; such a level of uncertainty has been assessed in Ref. [35]
as a result of uncertainty on both aerodynamic and structural uncertainties such as
blade chord, air density, and rotor angular velocity. Furthermore, a ±5% is added
based on empirical considerations to approximate the effects of the losses due to the
wakes trailed from the blades and other three-dimensional effects of the rotor which
are not yet known in the design stage of the blade.

In addition, the uncertain variables ξ = {θ, Vi} are modelled in a probabilistic
framework, meaning a probability density function is assigned to each variable. In
particular, a uniform PDF is adopted (see Fig. 4.2a) in order to consider the worst-
case scenario among the probabilistic descriptions. That is the one where each event
in the uncertainty range is just as probable as the nominal condition (see Tab. 4.2).
Another modelling assumption is that the uncertain variables are independent, which
may not be true to some extent due to the connection between the rotor induced flow
and the blade control. However, because the complete aero-servo-elastic system is
not under examination but only the aerodynamic subsystem, the two variables are
considered as separate and independent.

The uncertainties of the induced velocity Vi and the blade pitch angle θ affect
the conditions of the flowfield around the airfoil. In particular, its influence on the
airfoil angle of attack is the most significant, while minor effects are noticed on the
Mach and Reynolds numbers. The level of uncertainty considered for each variable is
consistent with those typically employed in the literature of uncertainty-based anal-
ysis in fluid dynamics (e.g. Refs.[119, 120, 121]). Their combined effect results
in a large variation of the angle of attack once it is propagated through the BEMT
equations. Such a variation is up to 60%, as shown in Fig. 4.2b for the section at
80% of the radius. The angle of attack has a fundamental role on the onset of bound-

r [-] Vi [m/s] θ [deg] α [deg] M [-] Re [-]

0.4 10.52 10.11 6.0 0.258 1.6e6
0.5 12.1 11.7 5.9 0.32 2e6
0.8 13.82 9.71 5.2 0.513 3.2e6

Table 4.1: Nominal operating conditions.
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Variable Uncertainty PDF type

Vi ± 15% Uniform
θ ± 2.5 deg Uniform

Table 4.2: Uncertainty on blade pitch angle θ and induced velocity Vi.
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Figure 4.2: Uncertainty on the operating conditions (section at r = 0.8).

ary layer instability, the occurrence of large flow separation and the development of
complex compressibility effects. In this case, taking uncertainty into account yields
large variations of the flowfield characteristics, and the most significant effect is as-
sociated with compressibility. To show the above in a straightforward manner, the
critical Mach number is computed at different angles of attack for the NACA 0012
airfoil by combining the isentropic one-dimensional flow equation for pressure with
either the Prandtl-Glauert or the Karman-Tsien correction rule for the pressure co-
efficient [122, p. 325]. The result is plotted in Fig. 4.3a, where the variablity range
of the flowfield parameters, angle of attack and Mach number, is also presented for
different blade sections. It appears that for sections located at a distance from the root
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Figure 4.3: Analysis of the effect of uncertain operating conditions on the critical Mach
number (a) and on the estimates of the airfoil lift-to-drag ratio (b) fro the NACA 0012 airfoil.

greater than 60% of the radius, the variability range crosses the critical Mach curve,
which represents the onset of significant compressibility effects.

4.2.2 Aerodynamic models

As presented in the preceding section, computations both in the subsonic and low
transonic range are required to reconstruct the mean and the variance of the perfor-
mance. In transonic conditions, only aerodynamic solvers dealing with nonlinear
compressible effects yield meaningful estimates. However, the computational cost
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increases when using compressible aerodynamic models. Under the critical Mach
curve, instead, cheaper computations can be performed with a subsonic, linear model.
As a result, two aerodynamic models are considered, which corresponds to different
level of fidelity: a low-fidelity model suited for flow past an airfoil in subsonic flow,
and a high-fidelity model for (low) transonic conditions.

Low-fidelity model

The low-fidelity solver is XFOIL, an aerodynamic solver which couples panel and
integral boundary layer methods developed for the analysis of subsonic, isolated air-
foils [99]. The outer flowfield is modelled with an inviscid linear vorticity panel-
based method, which is coupled to the viscous layers represented by the two-equation
lagged dissipation integral method in order to correct the potential flow with the vis-
cous boundary layer. Here, the transition of the boundary layer is predicted by apply-
ing the en criterion, while compressible effects for low Mach numbers are taken into
account by the Karman-Tsien correction. This model is well suited for the simulation
of flows around an airfoil at moderate values of the angle of attack and Mach number,
and it permits a rapid evaluation of the aerodynamic coefficients.

High-fidelity model

The high-fidelity solver is MSES [123], a coupled Euler/integral boundary layer code
for the analysis and design of multi-element or single-element airfoils. It couples the
solution of the Euler equations implemented with a streamline-based discretization
for the outer field with a two-equation integral boundary layer formulation for the
thin region close to the airfoil. The coupling is performed by means of the displace-
ment thickness and the system equations are solved simultaneously by a full Newton
method. The prediction of the boundary layer transition from laminar to turbulent
flow is carried out either with the full en method [124] or with the simplified enve-
lope method [125]. Thus, the MSES solver is capable of representing the nonlinear
compressibility effects arising in the transonic flow regime.

Comparison of aerodynamic models

Although the two models share a similar modelling of the boundary layer, the high-
fidelity solver is capable of representing the nonlinear compressibility effects arising
in the low transonic flow regime. In fact, once the critical Mach number is exceeded,
the wave contribution to the global drag coefficient is no longer negligible. As a
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result, the difference in the quantity of interest, i.e. the aerodynamic efficiency, be-
comes important. This is presented in Fig. 4.3b, where the relative error between
the estimates of the two solvers is plotted in the range of Mach number and angle
of attack dictated by the uncertainty on the induced velocity and blade pitch angle.
Finally, the computational cost associated with the low-fidelity model is lower than
the cost of the high-fidelity model: on average, the XFOIL solver is ten times faster
than MSES.

4.2.3 Shape parameterization

The shape of the airfoil is the design output of the optimization problem. To define a
finite, sufficiently small set of design variables, a parameterization is required. In this
work, the Class/Shape function Transformation (CST) [126] is employed to describe
the airfoil shape.

Class/Shape function Transformation

The parameterization is well-defined by specifying two functions: a geometry class
function C and a shape function S that defines the particular shape of the geometry.
The former is defined as follows

C(χ) = χN1(1− χ)N2 , (4.3)

where χ is the non-dimensional chordwise coordinate (χ = x/c) and N1 and N2

are appropriate coefficients that determine the class of the geometry; in the case of
an airfoil with a rounded nose and a sharp trailing edge: N1 = 0.5 and N2 = 1

(see Ref. [126] for further details). The shape function S(χ) is given by a Bernstein
polynomial of order N . The CST is applied to the camber mean-line ζc and to the
thickness distribution ζt of the airfoil (both obtained by projection in the direction
orthogonal to the x-axis) and it reads

ζc(χ) = C(χ) S(χ) + χ ζTEc = C(χ) ·
n∑
i=0

AciSN,i(χ) + χ ζTEc

ζt(χ) = C(χ) S(χ) + χ ζTEt = C(χ) ·
n∑
i=0

AtiSN,i(χ) (4.4)

where the coefficientsAci ,A
t
i define the Bernstein polynomial coefficients of the cam-

ber line and thickness distributions respectively, Sn,i is the i-th term of the Bernstein
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polynomial of order N defined as:

SN,i =
N !

i!(N − i)!
χi · (1− χ)N−i. (4.5)

The coordinate of the trailing edge of the mean camberline is ζTEc , whereas the
coordinate of the trailing edge of the thickness distribution ζTEt is set to zero in
order to consider closed trailing edge airfoils. Finally, from the meanline and camber
distribution the upper surface ζu and lower surface ζl are computed as follows

ζu(χ) = ζc(χ) +
1

2
ζt(χ), ζl(χ) = ζc(χ)− 1

2
ζt(χ). (4.6)

Convergence analysis of the CST

The order of the polynomial is chosen based on a convergence analysis of the CST.
To do this, the parameterization has been applied with an increasing polynomial order
to represent a group of helicopter rotor airfoils (e.g. NACA23012, SC1095, SC1094,
HH02). A least squares fitting is employed to determine the coefficients of the CST
which best represents each airfoil. The mean squared error MSE is computed as
follows

MSE =
1

np

np∑
i=1

(
ζ̃i − ζCST i

)2
,

where np is the number of points on the airfoil surface, ζ̃i is the exact airfoil and
ζCST i is the CST representation, both evaluated at the i-th point. The analysis proves
that with a polynomial of 7-th order the mean quadratic error of the CST reaches a
value equal to or lower than a desired threshold set to 10−7. A representative set of
results is shown for the airfoil SC1094 R8 in Fig. 4.4. Thus, the order of the poly-
nomial is set to seven and the resulting design variables are 17: y = {Aci , Ati, ζTEc}
with i = 0, ..., 7 .

4.2.4 Optimization method

In the present work, the optimizer is based on the Nondominated Sorting Genetic
Algorithm (NSGA) [67]. Main tuning parameters of the algorithm are the population
size, the number of generations, the crossover and mutation probabilities pc, pm and
the so-called sharing parameter r used to take into account the relative isolation of an
individual along a dominance front. Typical values for pc, pm are, respectively, 0.9
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Figure 4.4: Results of the application of the CST for the SC1094 R8 airfoil: each dash-dotted
line in (a), (b) and (c) corresponds to a given polynomial order.

and 0.1; values of r are defined following a formula given in Ref. [67] that takes into
account the population size and the number of objectives.

The constraint on the pitching moment is obtained by means of a penalty func-
tion that is applied to the lift-to-drag ratio when the moment coefficient exceeds the
maximum value reported in Section 4.1. The penalty function is static, with a fixed
value of the penalty function set to a couple of order of magnitude greater than any
feasible lift-to-drag ratio. In the same way, another geometric constraint is added in
order to disregard geometries which are selected by the evolution of the generations,
but possess many inflections points. This strategy is used to avoid computing a CFD
solution on a design that is not feasible from a geometric point of view.
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With regard to the convergence of the optimization, several empirical approaches
exist for evolutionary algorithms. For single-objective optimization, a possible crite-
rion to assess convergence of the solution is tracking the difference between the mean
value of the objective function in the population and the minimum value (for a mini-
mization problem) of the objective function. In fact, when the minimal and the mean
value of the fitness function in the population converge to the same asymptotic value,
the population is considered to converge to a set of almost identical (optimal) individ-
uals. For multi-dimensional cases, measures for assessing convergence include the
global number of dominated solutions per generation, the diversity or spread of the
individuals in the design space and the domination rate [127, 128]. The latter mea-
sure represents the percentage of non-dominated individuals that become dominated
in the following generation, and should then decrease as the population evolves.

Finally, the optimization based on genetic algorithms typically starts with a first
generation that constitutes a Design Of Experiment (DOE), that is the evaluation of
the objective function by sampling in the design space to capture the variation of the
function with respect to the independent variables. The designs involved in the initial
DOE have been selected in order to satisfy the geometric constraint; this step is of
paramount importance to avoid the excessive occurrence of undesirable designs in the
following generations. Because of the structure of genetic algorithms, it is convenient
to implement the algorithm in parallel mode, so that each CFD computation of an
individual in a generation is distributed to the available processor. In this case, the
algorithm is implemented using MPI libraries.

The optimization loop based on the NSGA and the CST parameterization has
been tested for a benchmark case proposed by the AIAA Aerodynamic Design Op-
timization Discussion Group [129]. The results are presented in Ref. [130] and re-
ported here in Appendix A.

4.2.5 Uncertainty quantification method

Before running the robust optimization, a preliminary convergence study in the stochas-
tic space is performed to determine the performance of the UQ methods and the num-
ber of deterministic computations required for each design run. Three methods for
non-intrusive UQ are selected for comparison: (i) QMC with Sobol sequences, (ii)
non-intrusive PC (NISP) and (iii) SSC. Please refer to Sec. 2.3.2 for detailed expla-
nation of these methods. The comparison is based on the capability to reconstruct the
mean and variance of the lift-to-drag ratio for the NACA 0012 airfoil. For this com-
parison, the XFOIL code for the section at 40% of the blade radius is considered. The
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PC order no 2 3 4 5 6 7 8 9 10 20 30
Number of samples 9 16 25 36 49 64 81 100 121 441 961

Table 4.3: PC order and number of samples ((no + 1)nξ , with nξ =2) for the NACA 0012
test.

computations with the QMC are performed for 50, 100, 500, 1000 and 5000 samples.
The order of the PC expansion and the corresponding number of samples are reported
in Tab. 4.3 (please note the exponential increase of the number of samples, according
to Eq. (2.34)). Results with the SSC are obtained in two different ways: (i) using
only first-order Lagrange polynomials and (ii) using the p-refinement capability. The
maximum order of the polynomial p is set to 5, which in principle provides an order
of convergence O equal to three according to the relation O = p+1

nξ
[93]. A uniform

h-refinement is considered because it should avoid clustering when increasing the
number of samples.

Figure 4.5 shows that the PC, QMC and SSC results converge to the same value
with an increasing PC order and number of samples. Taking the QMC result obtained
with the higher number of evaluations (5000) as a reference, the error on the mean
µE and the variance σ2

E are computed and plotted in Fig. 4.6.
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gence).

First, the error on the estimated mean values are lower than those for the variance.
In fact, a higher number of samples are generally required to compute with accuracy
a higher order statistical moment (i.e. the variance), whereas the mean value is well
estimated with fewer terms. In addition, the error on the mean value computed by
the PC and SSC methods is very small even for a small number of samples. With
increasing number of samples, the QMC bridges the gap with the other methods,
but a number samples higher than 100 is prohibitive for a CFD application in a two-
dimensional space. This proves the capability of the PC and SSC approaches to
provide an accurate estimate of the statistics with a much lower number of samples
with respect to the Monte Carlo method for the problem of interest. It is noted that
although the estimate on the mean obtained with the SSC with linear polynomials are
quite similar to the estimates of the QMC, the SSC variance in the first iterations has
already a lower error.

The PC-based method appears to be accurate right from very low orders of the
PC expansion: as a matter of fact, by plotting the response surface of the quantity
of interest E in the stochastic space Vi, θ (see Fig. 4.7), it is possible to note that the
response is smooth and continuous. Indeed, a global meta-model based on a polyno-
mial basis is well suited to approximate this type of functions. Given these results,
the fourth-order PC, which corresponds to 25 samples per design, is chosen for the
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Figure 4.7: PC meta-model of the lift-to-drag ratio E with increasing order.

optimization, as it represents a good trade-off between accuracy and computational
cost.

With regard to the SSC, Figure 4.6 shows how the order of convergence can
be improved by using the p-refinement which improves the first-order convergence
of the first-order Lagrange basis [93]. It is also worth noting that the SSC error
is affected by the MC error used in this implementation to compute the statistical
moments from the interpolation, as given in Eq. (2.39). Improvement of the error
of this type of representation can be obtained using quadrature rules to solve the
integrals based on the approximating function w.

In Fig. 4.8 the error of the SSC with respect to the QMC statistics is compared
to the estimates of the error obtained from the hierarchical surpluses (as explained
in Sec. 3.2.4). These estimates are used by the SSC to stop the adaptation loop.
The stopping criterion is based both on a maximum number of samples and on the
comparison between the estimated errors and a tolerance τ . The percentage error
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Figure 4.8: Errors of the SSC estimate of the mean value (left) and variance (right)

in Fig. 4.8 falls under 10−2 when the SSC estimated errors is 5e-1. Based on these
results, the stopping criteria of the SSC adaptivity are set with a maximum number of
samples equal to 50 and a tolerance on the estimated error of each statistical moment
equal to 5e-1.

It is noted that if SSC were applied to an outer section of the blade section, where
compressibility effects are significant (see Fig. 4.3), a similar behavior of the statistics
would be expected. As a matter of fact, despite the onset of compressibility effects
the response of the lift-to-drag ratio (obtained from integral values) is smooth (this
will be presented in Fig. 4.10b). Thus, the convergence of the SSC should be smooth
and similar to what presented for the 40% case.

4.3 Multi-fidelity method results

In this chapter, the multi-fidelity method presented in Chapter 3 is built with respect to
the different degree of accuracy of the physical models used to describe the flowfield.
In particular, two aerodynamic models are considered in the multi-fidelity strategy:
(i) the compressible coupled Euler equations/integral boundary layer solver MSES
and (ii) the aerodynamic solver coupling a panel method and integral boundary layer
model XFOIL. The former is more expensive than the latter from a computational
point of view. However, it is more accurate in those operating conditions that exhibit
important compressible effects. The proposed multi-fidelity method switches from
the low-fidelity model to the high-fidelity model only in those operating conditions.
Unlike most multi-fidelity methods in aerodynamic optimization, the switching logic
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here is based on physical considerations, so the multi-fidelity approach can be labeled
as physics-based. The low-fidelity physical model does not require training or train-
ing data at each optimization loop, as surrogate models do. An example of a similar
approach in the literature for deterministic aerodynamic optimization is presented in
Ref. [131].

4.3.1 Application of the multi-fidelity strategy

The method described in Sec. 3.1.1 is applied to the aerodynamic optimization prob-
lem in hovering condition. The switching logic is set leveraging physical considera-
tions based on compressibility effects. In Sec. 4.2.2, the estimates of the lift-to-drag
ratio obtained with XFOIL and MSES solvers for the NACA 0012 are compared. The
XFOIL code provides sufficiently accurate results below the critical Mach number
curve (see Fig. 4.3). When compressibility is not negligible, the high-fidelity model
computes a more accurate estimate of the objective function. Thus, the multi-fidelity
method should switch from the low-fidelity model to the high-fidelity model only
when significant compressibility effects are present. In this way, the high-fidelity
model would be used only for a small number of samples, namely the samples in
which the freestream Mach number exceeds the critical value as shown in Fig. 4.3a.
Because the operating conditions for the onset of significant compressibility effects
depend on the shape of the airfoil, they should be evaluated for each particular design
in the optimization loop. Therefore, a set of control points are necessary, in which a
suited control function will be computed.

With regard to the control points, the subset Ξc includes the limiting operating
conditions in the stochastic space. Because the physical problem considered here is
dominated by the effect of the angle of attack and the Mach number, the samples
ξi are mapped into the (α,M)-plane. The subset of control points is chosen as the
set of conditions including (i) the nominal condition (αn,Mn), and the conditions
corresponding to the bounds of the complete samples set: (ii) minimum Mach number
Mmin and angle of attack at the minimum Mach number αMmin , (iii) maximum angle
of attack αmax and minimum Mach number Mmin, (iv) maximum Mach number
Mmax and minimum angle of attack αmin, (v) maximum Mach number Mmax and
angle of attack at maximum Mach number αMmax (see the crosses in Fig. 4.9).

Thanks to the monotonicity of the discrepancy function (which is represented by
points in Fig. 4.3b, the five selected control points should be sufficient for the multi-
fidelity method applied to the specific problem. In a more general case, in addition
to the extreme points and the center point of the domain, intermediate points should
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be considered to control a non-smooth or non-monotonic discrepancy function. For
instance, control points could be placed in points with steep gradients or change in
the sign of the gradient of the discrepancy function.

Once the control points are defined, a measure of the compressibility effects is
required as a control function. The discrepancy between the low-fidelity model and
the high-fidelity model is chosen, because this difference is strictly connected to the
increase of the wave drag, as presented in Section 4.2.2. For each individual, the
operations detailed in Sec. 3.1.1 are performed (see Fig. 3.2b).

4.3.2 Preliminary results

The multi-fidelity strategy is applied to the NACA 0012 as a reference configuration.
The PC meta-model which represents the system output E(x, ξ) as a function of the
uncertain variables (i.e. induced velocity Vi and blade pitch angle θ), is obtained
by means of the high-fidelity (HF) model, the low-fidelity (LF) model and finally
with the proposed multi-fidelity (MF) strategy. The result is presented in Fig. 4.10,
where the samples of the PC method are marked as squares when the HF estimate
is employed and dots for the LF computations. As expected, the LF model does
not account for the loss in the lift-to-drag ratio encountered at higher values of pitch
angles and low values of induced velocity (which correspond to higher angles of at-
tack, since the induced velocity acts as a downwash on the airfoil flowfield). Instead,
the correction of the MF method, which is mainly applied in that area, yields the
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α M
i αn Mn
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Figure 4.9: Points used in multi-fidelity strategy in (α,M )-plane: control points (cross),
points evaluated by low-fidelity model (filled dots) and points evaluated with the high-fidelity
model (empty squares).
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quantitative behavior of the response obtained with the HF model.
The statistics resulting from the PC expansion are then collected in Table 4.4,

which presents the mean value, variance and probability of the lift-to-drag ratio E
obtained with the HF method and the relative error obtained with the LF model and
MF strategy. The error on the MF estimates of the function employed in the optimiza-
tion loop are reduced with respect to the LF case. Figure 4.11 shows the Probability
Density Function (PDF) of the lift-to-drag ratio obtained by means of Monte Carlo
sampling of the PC meta-model. It appears that the multi-fidelity strategy well cap-
tures the tail of the distribution and it shares the same support with respect to the

(a) Lift-to-drag ratio meta-model obtained
with LF samples.

(b) Lift-to-drag ratio meta-model obtained
with HF samples.

(c) Lift-to-drag ratio meta-model obtained
with MF samples.

Figure 4.10: Lift-to-drag ratio evaluation on the PC sampling points using the multi-fidelity
approach (empty squares for HF samples, filled dots for LF samples) at r = 0.8.
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Figure 4.11: Comparison of uncertainty output prediction of the high fidelity (HF) method,
low fidelity (LF) method and multi-fidelity (MF) method at r = 0.8.

high-fidelity PDF, although both the low-fidelity and the multi-fidelity models lack
accuracy in predicting the PDF peak.

Furthermore, the estimates of the mean value and variance of the lift-to-drag
ratio obtained with the HF, LF and MF optimization strategies are compared for the
set of 200 individuals belonging to the first generation of the genetic algorithm for
the blade section at 80% of the radius. The estimates are non-dimensionalised and
plotted in Fig. 4.12, where the dispersion with respect to the solid line represents the
error between the method reported on the ordinate and the HF result on the abscissa.
The MF strategy greatly reduces the dispersion of the LF results, demonstrating the
effectiveness of the switching logic.

4.3.3 Optimization results

Two blade sections are considered: an inboard section at 40% of the blade radius and
an outboard section at 80% (the corresponding operating conditions are reported in

Method µ σ2 σ/µ p(E < 50) p(50 ≤ E ≤ 80) p(E > 80)

HF 74.89 128.99 0.15 0.03 0.54 0.43
err (µ) err

(
σ2
)

err (σ/µ) err (p(E < 50)) err (p(50 ≤ E ≤ 80)) err (p(E > 80))
LF 3.92 % 6.77 % 0.56 % 20.97 % 17.28 % 22.93 %
MF 3.02 % 0.68 % 3.46 % 4.12 % 13.08 % 16.64 %

Table 4.4: Reconstruction of statistics with low-fidelity, high-fidelity and multi-fidelity mod-
els at r = 0.8.
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Figure 4.12: Comparison of objective estimates of the HF, LF and MF methods for the first
generation of the robust genetic optimization obtained at r = 0.8.

Table 4.1). The operating Mach number of the blade section in this case is mainly
affected by the tangential velocity due to the rotor rotation, which grows linearly
going outboard. Thus, the inboard section features subsonic flow, whereas the out-
board section undergoes low transonic flow. The results for the inboard section are
presented to assess the effectiveness of the robust optimization technique by compar-
ing the results with other classical optimization approaches, such as the deterministic
single-point and multi-point optimization problems. The second set of results are
aimed at presenting the performance of the multi-fidelity algorithm.

4.3.4 Inboard section

In this section, the results of the optimization of the inboard section airfoil obtained
with the low-fidelity model are presented in order to examine the effectiveness of the
robust optimization approach. In addition, because the operating conditions at 40%
blade span do not involve significant compressibility effects, the low-fidelity model
in this condition provides good estimates of the quantity of interest at a very low
computational cost.
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Figure 4.13: Convergence of the Pareto front (LF method).

Convergence analysis of optimizer

To begin with, some properties of the optimization algorithms are discussed. The
population size and the number of generations for the convergence of the genetic al-
gorithm should be chosen according to the number of parameters and objectives of
the particular optimization problem. However, in practice the population size and
number of generations are set by also taking into account the constraints related to
the global amount of CPU time devoted to the computation. It must be recalled that
taking too small a population may rapidly lead to a local optimum from which the it-
eration process on the generation number will not evolve. On the other hand, a large
population would permit the computation of only a few generations, resulting in a
poorly converged solution. Here, after performing an initial generation of 200 indi-
viduals to explore the design space, 40 individuals are then retained and evolved. The
evolution of the Pareto front is presented in Fig. 4.13a, where the objective functions
of the individuals are presented at different generations. It appears that by increasing
the number of generations the front moves to higher values of the mean and lower
values of the variance, with a decaying rate.

To assess the convergence of the genetic optimization, the domination rate is
used, which represents the percentage of non-dominated individuals that become
dominated in the following generation, and should then decrease as the population
evolves. The domination rate is plotted in Fig. 4.13b. Despite the presence of oscil-
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lations due to the stochastic nature of the genetic algorithm, the convergence trend is
still clear.

Analysis of Pareto fronts

The final Pareto front is shown in Fig. 4.14a, where the optimal mean airfoil and the
optimal variance airfoil are highlighted with different symbols. Estimates of the mean
and variance for selected reference airfoils are compared against the Pareto front in
the same figure. The NACA 23012 has been here analysed, since it is a reference air-
foil for rotorcraft applications. The airfoil labelled Single-Point is the optimal airfoil
obtained with a single-objective deterministic optimization in the nominal operat-
ing condition. Likewise, the Multi-Point airfoil is the result of a multi-point single-
objective optimization, where the cost function is the average sum of the lift-to-drag
ratio over three operating conditions (nominal, higher angle of attack and lower an-
gle of attack conditions). For these airfoils, the statistics have been evaluated in a
post-processing phase by computing the lift-to-drag ratio in the same uncertain con-
ditions employed for the robust approach. In the objective space, the reference airfoils
have either a high mean value (NACA 23012, Single-Point and Multi-Point) or a low
variance (NACA 0012). The non-dominated solutions represent a trade-off between
the two requirements: in fact, they have a high mean value comparable to those of
the Single-Point airfoil, but they also have a variance lower than the value of the
NACA0012. In this sense, they outperform the reference airfoils. This is especially
true in terms of robustness (i.e. reduction of the variance), even for the cases where
the maximum mean values of the lift-to-drag ratio are obtained. As a consequence,
the robust approach appears to be a better design method, even when compared with
the multi-point optimization. This is because it results in the enhancement of the
performance indicators. The airfoils with higher mean and lower variance and a rep-
resentative trade-off airfoil lying close to the midpoint of the Pareto front are plotted
in Fig. 4.14b.

The results obtained with the high-fidelity and multi-fidelity methods are pre-
sented in Figs. 4.15a and 4.15b. In order to compare the three fronts, the airfoils
belonging to the LF and MF fronts have been evaluated with the HF model after op-
timization. Figure 4.16a shows the comparison of the Pareto fronts. The results ob-
tained by means of both the low-fidelity and multi-fidelity methods are in very good
agreement with those of the high-fidelity model. In particular, the optimal mean air-
foil is the same in the three cases, and the optimal variance airfoils are very similar
(Fig. 4.16b). In fact, the basic physics that dominates the flow in this condition is cap-
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Figure 4.14: Result of the optimization at r = 0.4 for the LF methods.
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Figure 4.15: Result of the optimization at r = 0.4 for the HF and MF methods.

tured in a similar way by the two numerical models. Nevertheless, the multi-fidelity
result is closer to the low-fidelity one. Since the Mach number in this case does not
exceed 0.258, the control of the multi-fidelity strategy acts only on a relatively small
number of points, as defined in Section 4.3.1.

A quantitative measure of this difference is computed by using Eq. (3.4). The
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Figure 4.16: Comparison of LF, HF and MF results at r = 0.4.

LF HF MF

LF evaluations 32100 - 31625
HF evaluations - 32450 6325
Cost 3210 32450 9487

Table 4.5: Comparison of computational cost of different robust optimization strategies:
cost is computed considering 1 cost unit for each HF evaluation and 0.1 cost unit for each LF
evaluation.

distance dMF−HF of the MF set to the HF set is equal to 44.1, while the distance
dMF−LF of the MF set to the LF set is 4.4, proving that the MF set is closer to the
LF set rather than the HF set. With regard to the computational cost, the number
of function evaluations are computed to compare the three strategies. In particular,
the cost is computed by approximating the ratio of the cost of a single LF run over
the cost of a HF run to 0.1 and the results are presented in Table 4.5. It is evident
that the low-fidelity and the multi-fidelity strategy permit a great reduction of the
computational cost, although the optimization result is still consistent with the high
fidelity-based method.
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Analysis of optimal airfoils

In the following, the optimal mean airfoil and the optimal variance airfoil obtained
with the high-fidelity model are analysed in more detail. First, the meta-models repre-
senting the lift-to-drag ratio in the stochastic space are compared in Fig. 4.17. As ex-
pected from the optimization objectives, the lift-to-drag ratio of the optimal variance
airfoil is almost constant over the domain at the expense of a poorer performance.
The output PDF is then obtained by Monte Carlo sampling of the meta-model and
it is presented in Fig. 4.18. The PDF of the optimal mean airfoil has a spread sup-
port which extends to higher values of the lift-to-drag ratio, whereas the PDF of the
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Figure 4.17: Meta-model of lift-to-drag ratio of the optimal mean and variance airfoils (HF).
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Figure 4.19: Comparison of the flowfield of the optimal airfoils (HF): a thick black line is
employed for the nominal condition and thin grey lines for the remaining samples.
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Figure 4.20: Comparison of optimal mean airfoil and optimal airfoil from Ref. [132].

optimal variance airfoil is narrower.

The preceding figures have shown that the optimal variance airfoil appears to
achieve the target of minimizing the variance, by reducing the peak of the lift-to-drag
ratio with respect to the angle of attack. In order to do so, the optimization process
leads to an airfoil shape that reduces the aerodynamic load, by unloading the region
after the suction peak on the upper surface and by increasing the local curvature
on the lower surface with respect to the optimal mean airfoil (see Fig. 4.19). The
reduction of the upper surface thickness results in a sharper leading edge. The fast
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transition to a turbulent boundary layer induced by the highly loaded nose contributes
to the reduction in the lift-to-drag ratio due to the increase in friction drag. On the
other hand, the optimal mean airfoil has higher camber with a more loaded upper
surface and a nearly flat region on the lower surface to reduce the flow acceleration.
In addition, the pressure peak at the leading edge is less severe and more gradual with
respect to the optimal variance airfoil, moving towards a laminar flow airfoil. This
results in a lower drag coefficient, at the cost of a higher sensitivity of the performance
with respect to changes in the operating conditions. As a final remark, the optimal
mean airfoil obtained in this optimization appears to be very similar to the result
obtained in Ref. [132] for the subsonic lift optimization of an airfoil with constrained
drag (see Fig. 4.20). However, the leading edge in that case is more drooped owing
to the higher freestream angle of attack.

4.3.5 Outboard section

In the case of the outboard section at 80% of the blade radius, the freestream con-
dition is low transonic and the compressibility effects are expected to result in non-
negligible differences among the three optimization strategies.

Analysis of Pareto fronts

The Pareto front obtained with the proposed multi-fidelity strategy is presented in
Fig. 4.21a. The MF Pareto front is closer to the front obtained with the HF method
(Fig. 4.21b), even though the starting point of the method is the full LF method which
results in a very different front (Fig. 4.21c). To better appreciate the improvement of
the MF method with respect to the LF optimization, the LF and MF fronts are re-
computed with the HF model, and compared with the HF results in Fig. 4.21d. The
multi-fidelity result is closer to the HF result with respect to the LF front: using the
definition in Eq. (3.4), the distance dMF−HF of the MF set to the HF set is equal to
9.5, while the distance dLF−HF of the LF set to the HF set is 22.8 (see Tab. 4.6).
Also, the MF method defines a Pareto front on the objective space, whereas the LF
results are more sparse and do not present a clear trend.

dMF−HF dLF−HF

9.5 22.8

Table 4.6: Distance of MF and LF fronts to HF front for r = 0.8.
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The airfoils obtained by the optimization are presented in Fig. 4.22. With respect
to the mean optimal airfoils, although the MF and the HF results have a different
maximum thickness position, they present similar curvature in the region close to the
leading edge. Note that the LF optimal mean airfoil shows a greater leading edge
radius, and a distribution of the lower side which resembles the airfoil obtained for
the inboard section. As expected, the LF result does not take into account the change
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Figure 4.21: Result of the optimization at r = 0.8.
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Figure 4.22: Comparison of LF, HF and MF results.
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Figure 4.23: Comparison of the performance and of the optimal mean airfoils resulting from
LF, HF and MF methods: results of LF and MF optimizations are re-computed with HF
model.

in the operating conditions. The difference on the optimal variance airfoils is instead
less pronounced.

The performance of the mean optimal airfoils are compared to appreciate the
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LF HF MF

LF evaluations 32600 - 29166
HF evaluations - 33475 10324
Cost 3260 33475 13241

Table 4.7: Comparison of computational cost of different robust optimization strategies at
r = 0.8: cost is computed considering 1 cost unit for each HF evaluation and 0.1 cost unit
for each LF evaluation.

difference in the results. The lift-to-drag ratio computed for all the three optimization
strategies with the HF model is presented in Fig. 4.23a, which shows that the HF and
MF results present similar trend in terms of lift-to-drag ratio. Both results exhibit an
overall lift-to-drag ratio which is higher than the one obtained by the LF optimization;
this is explained in Fig. 4.23b by the behavior of the wave drag coefficient CDW ,
which is computed as the integral of the momentum defect over the streamtubes in
the region outside the boundary layer [133]. The LF airfoil suffers from a larger drag
penalty for higher values of the angle of attack. In fact, the effect of compressibility
is greater at higher angle of attack with respect to the HF result. Additionally, the
increase in the drag coefficient due to compressibility appears at a lower value of the
angle of attack. The result of the HF optimization does not suffer from a harsh drop
off after the maximum of the lift-to-drag ratio is reached, thereby postponing the drag
rise due to compressibility effects. In this respect, the MF result represents a trade-off
solution between the two results.

With regard to computational cost, the number of evaluations of the solvers is
presented in Table 4.7. The comparison proves that the computational effort of the
HF method is reduced by 60% with the MF strategy. Also, the MF strategy employs
one third of the HF evaluations required by the full HF optimization. This proves the
main benefit of the proposed MF strategy, which generates solutions very close to
the HF ones, but with a strong reduction of the computational cost. The MF strategy
is thus capable of indicating regions of improvement in the design space, whereas
a detailed analysis of the optimal solutions is left to higher fidelity methods and/or
wind tunnel testing.

Analysis of optimal airfoils

To understand the validity of the robust approach in the outboard case as well, the HF
results are discussed in more detail. With regard to the Pareto front airfoils presented
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Figure 4.24: Comparison of the pressure coefficient of the optimal airfoils (HF) at r = 0.8:
a thick black line is employed for the nominal condition and thin grey lines for the remaining
samples.

in Fig. 4.22, it appears that the relationship between the optimal mean airfoils and the
optimal variance airfoils found in the inboard section case, still holds. The optimal
mean airfoils tend to be those with a mild curvature at the leading edge and more
rear loaded. The optimal variance airfoils present a higher curvature at the leading
edge. Indeed, the analysis of the pressure coefficient of the two airfoils, presented in
Fig. 4.24, shows that the optimizer generates an optimal mean airfoil with an almost
flat region of pressure coefficient behind the leading edge and reduces the number of
operating conditions in the considered range for which a weak shock wave occurs.
The optimal variance instead counteracts the growth of the lift coefficient resulting
from the increase in the angle of attack, by producing a shock wave behind the peak
close to the leading edge in a larger range of operating conditions. This balance
results in a lower variance, at the expense of lower lift-to-drag ratio.

4.4 Adaptive method results

The adaptive method based on error bounding boxes (presented in Sec. 3.2) is ap-
plied to the optimal selection of the airfoil for a helicopter rotor blade in hover
(see Eq. (4.2)). The following set of results are obtained for the mid-span section
(r = 0.5), see Tab. 4.1 for the operating conditions. For this blade section, the low
fidelity XFOIL code [99] provides sufficiently accurate estimates, because compress-
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ibility effects are not present, as shown in Fig. 4.3b. A different section of the blade
is used with the intent to explore how the optimal shapes change along the blade ra-
dius. Because time had to be devoted to the forward flight case (presented in the next
chapters), the analysis of the optimal load distributions along the blade radius is left
for future activities.

The robust aerodynamic optimization has been performed by a decoupled ap-
proach with tight tolerance (τ

¯
= 5e-1) and a coupled approach with τ

¯
= 5e-1 and

τ̄ = 5. The values of the tolerance are set by applying the same convergence analysis
presented in Sec. 4.2.5 for the considered blade radius (see Ref. [134]). In addi-
tion, the decoupled approach with loose tolerance is not considered here, because
it is deemed that in real-world applications due to the substantial cost of the robust
optimization procedure it may not be possible to assess the effect of the tolerance.
If a single run has to be performed, it is best to choose a tight tolerance that guar-
antees good results. For the optimization loop the NSGA has been used, because
the efficiency of the BIMADS method degrades with such a high number of design
variables.

The Pareto fronts obtained with the decoupled and coupled methods are presented
in Fig. 4.25a and Fig. 4.25b, respectively. In the figures, the solution with higher
mean value, higher variance and a trade-off solution are highlighted. It is clear that
the coupled method compares well to the decoupled approach. The coupled front is
presented in Fig. 4.26 with the result of the decoupled method. The coupled front al-
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Figure 4.25: Pareto fronts of decoupled and coupled methods.
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Figure 4.26: Comparison of Pareto fronts (front obtained with coupled approach has been
post-processed with tight tolerance for comparison).
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Figure 4.27: Optimal airfoils of decoupled and coupled methods.

most overlaps the decoupled results and the distance between the fronts computed by
means of Eq. (3.4) is equal to 2.25. The solutions belonging to the front improves the
mean value of the lift-to-drag ratio of the reference airfoil, i.e. the NACA 0012, and
a subset has also reduced variance. To compare the optimal shapes, the airfoils with
higher mean value and higher variance are presented in Fig. 4.27a and Fig. 4.27b.
Despite minor differences, the airfoils of the fronts obtained with the two methods
share similar trends.

With regard to cost, the coupled method greatly reduces the computational effort
of the decoupled approach (see Tab. 4.8): in the first generation the cost is reduced
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Figure 4.28: Cost of the decoupled and coupled methods for the robust aerodynamic opti-
mization.

Strategy Number of function evaluations

Initial generation Evolution Global
Decoupled tight 3982 51258 55240
Coupled 1661 31760 33421

Table 4.8: Comparison of total number of function evaluations for the robust aerodynamic
optimization.

by 58% and the gain on the global cost is equal to 40%. The great reduction is due to
the fact that the optimization problem is high-dimensional and nonlinear. Thus, the
optimization algorithm samples many design vectors in the design space with poor
objectives, especially in the first iterations. In Fig. 4.28b the ratio ρ of potentially
non-dominated solution over the generation size is presented, which is computed
from Eq. (3.32). As presented in Sec. 3.2.5, a solution is defined as potentially non-
dominated if the objective vector is non-dominated with respect to the individuals
computed up to that point. In this case, ratio ρ is lower than 0.2 (see Fig. 4.28b) with
a growing trend after 20 generations. This means that the generation becomes rich of
non-dominated individuals only after a few generations of the algorithm. As pointed
out in Sec.3.2.5, ratio ρ is a lower bound of the actual cost, since it does not take
into account the refinement needed for dominated solutions close to the Pareto front.
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To highlight this aspect, Figure 4.28b presents the modified ratio ρ1, computed taken
into account not only the non-dominated solutions, but also the solutions within a
distance to the current Pareto front of τ

¯
in each direction of the objective space. The

second ratio has a trend closer to the one of the actual cost of the coupled strategy.
To conclude, the coupled approach gives an accurate estimate of the Pareto front

with a greatly reduced computational effort.

4.5 Final remarks on the methods

The methods outlined in Chapter 3 have been applied in the preceding sections to the
case of the aerodynamic optimization of the blade airfoil in hovering condition.

When considering uncertainties in the operating conditions, different flow regimes
could be encountered in the domain defined by the stochastic variables, which re-
quire specific physical models and numerical solvers. The multi-fidelity strategy pro-
posed in the work deals with two different models of the aerodynamics which have
different accuracy and computational cost. In particular, a rapid estimation is ob-
tained by means of a panel/integral boundary layer method for the stochastic sample
associated with subsonic flow conditions, while a coupled Euler equations/integral
boundary layer solver is employed for those operating conditions in the stochastic
variables domain that exhibit important compressible effects. A switching logic is
used for each design to determine which samples should be computed by the rapid
low-fidelity or by the high-fidelity codes. The method proved effective in finding air-
foils that improve the lift-to-drag ratio, by postponing the boundary layer transition
to turbulence in the subsonic case, and by reducing the drag due to compressibility
effects in the low transonic case, in the range of considered operating conditions.
The multi-fidelity strategy reduces the computational cost by 60% with respect to
the high-fidelity strategy, and results in Pareto airfoils consistent to the high-fidelity
results. Thus, the proposed method is well-suited to indicate regions of improvement
in the design space, which can be later analyzed in detail by means of a high-fidelity
model. In addition, the multi-fidelity strategy could be easily applied to other mod-
els at one’s disposal, and it could be extended to other flowfield characteristics and
physical models.

The gain of the multi-fidelity strategy is close to 60% on the global population,
whereas the cost reduction with the adaptive method is close to 40%. However,
the counterpart of the lower gain of the adaptive strategy is the greater accuracy in
computing the Pareto front: the distance between the reference front and the front
obtained with the new strategy is 9.5 in the case of the multi-fidelity strategy and
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2.25 for the adaptive strategy. As pointed out in Sec. 3.2.2, the method pays the price
of computing the non-dominated individuals with the tightest tolerance to preserve
the accuracy of the final front.

Another important aspect when comparing these methods is related to the possi-
bility of using parallel computation. The adaptive strategy in the current form does
not allow for a parallel mode (except for the very first iteration). This is a crucial
difference if parallel computing resources are available. A possible solution to cure
this issue in the adaptive strategy could be to perform the convergence check and the
tolerance update only after a certain number of iterations, rather than at each iteration.

Although a comparison of the methods is proper at this stage, it is also important
to note that the two methods could be easily integrated, as was previously stated in
Sec. 3.3. The resulting adaptive, multi-fidelity strategy could provide higher compu-
tational gain and it is left for future activities.

Finally, robust optimization proved to be a reliable and effective design tool when
compared with two deterministic approaches. Furthermore, extremely low values of
the variance in the Pareto front comes at the expense of poor performance, while
airfoils with higher mean values possess lower values of the variance of the lift-to-
drag ratio with respect to deterministic results. The reduction of the variance could
lead for instance to a reduction of the required rotor shaft torque in variable operating
conditions.



CHAPTER 5

Robust optimization of airfoils in forward flight

Forward flight is one of the most peculiar flight condition for helicopters. As dis-
cussed in Chapter 1, the flow encountered by the blade in such a condition is pe-
riodically changing over the azimuth angle and the extremes of this cycle are very
different from each other. In the advancing side the rotor blade element encounters
transonic flow and low values of the angle of attack. In the retreating side, the angle
of attack is typically high and the local Mach number is close to the incompressible
limit. For this reason, aerodynamic design should take into account the variability of
the flow encountered by the blade.

Several approaches exist to consider the variation of the performance over the
azimuthal angle. A full unsteady optimization may be considered, by inserting un-
steady models in the optimization loop and directly evaluating the cycle of lift and
drag coefficients for each design. However, such an approach is very expensive from
a computational point of view and the accurate prediction of the time-varying aero-
dynamic load of pitching/plunging airfoil is still a challenge. In most cases, one can
resort on a multi-point approach, where the evaluation of the aerodynamic perfor-
mance is obtained by means of steady models. This approach is the one pursued in
the thesis. In particular, a two-point optimization problem is tackled, considering
the two most representative conditions of forward flight: the retreating and advanc-
ing blade conditions (see Fig. 1.4). Because the optimization only considers two
positions over the azimuth, the evaluation of the performance of the optimal shapes
over the azimuth angle is performed in the post-processing phase with steady models.
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To motivate the choice of steady models, the beginning of the chapter discusses the
comparison between unsteady CFD model predictions and steady computations.

In the following sections, the optimization problem of improving the aerody-
namic performance of fixed airfoils is tackled from both deterministic and robust
points of view. In the deterministic case presented in Sec. 5.2, the objective of the
optimization is to minimize the drag while maintaining a level of lift that guarantees
satisfaction of trimming condition. In the case of robust design, a single condition is
not considered and the trimming condition cannot be applied to a number of values
of the angle of attack. Thus, the idea is to optimize the lift-to-drag ratio as a measure
of the performance of the airfoil, impose inequality constraint on the lift coefficient
to guarantee a sufficient level of lift and then check after optimization that the trim-
ming condition can be satisfied. This approach is used in Sec. 5.3 and results coming
from deterministic and robust optimization are presented and compared in Sec. 5.4.
Because in both cases only two points over the azimuthal angle are considered in the
optimization loop, an a posteriori assessment of the performance over the azimuthal
angle is presented in Sec. 5.5.

5.1 Unsteady CFD simulation

The unsteady effects encountered on a helicopter rotor blade affect the prediction of
both local aerodynamics along the blade radius and the overall performance of the ro-
tor. A proper simulation of the complex rotor blade environment requires considering
simultaneous velocity and incidence fluctuations of the incoming airflow, compress-
ible effects, three-dimensional effects and accurate viscous separation modelling and
coupling of the aerodynamic loads with the blade dynamics and aeroelasticity. Nev-
ertheless, most of the studies regarding the aerodynamics of blades have tackled the
problem by separating the influence of these combined effects.

In particular, when analysing the performance of a blade element, most of the
studies have simulated the case of a two-dimensional unsteady flow around a pitching
or plunging airfoil. However, in forward flight, the combination of the rotational
velocity of the rotor and the advancing velocity causes the blade section to encounter
a time-varying incident velocity. This is clearly presented in Fig. 5.10, taken from
Ref. [9], where the operating conditions of a blade element are presented for different
blade radii. It is clear that both the local angle of attack and the freestream Mach
number undergo a periodic variation over the rotor rotation period.

In the literature only few works have considered a translation parallel to the
freestream direction which is necessary to simulate the speed fluctuation encountered
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M(t)
α(t)

Figure 5.1: Airfoil undergoing time-varying freestream Mach number and angle of attack.

by the blade section [135]. Among these, References [136, 137] have been devoted
to the experimental investigation of the effects of coupled fluctuations in angle of at-
tack and freestream speed, as it occurs in the real flow around the rotor blade. These
studies have tackled conditions below stall (with maximum angle of attack amplitude
lower than the static stall angle) and through stall as well. A few theoretical aerody-
namic models based on the extension of Theodorsen method [1, p.431] are presented
in Ref. [138] for an airfoil undergoing a combination of harmonic pitching, plung-
ing and fore-aft motion in incompressible flow. Results based on these theories have
been used for validation in recent years for the assessment of a surrogate model of
the unsteady aerodynamics of a pitching airfoil with time-varying freestream speed
in Ref. [139]. A compressible formulation of the theories presented in Ref. [138]
has been developed and assessed in Ref. [140] against a CFD code based on the Eu-
ler equations. A numerical analysis of dynamic stall caused by pitching motion and
freestream fluctuations has been performed by means of a CFD tool based on the
SST k − ω turbulence model in Ref. [141]. The shortage of data is likely to be due
to the fact that most of these works focus on both dynamic stall and time-varying in-
cident velocity: because dynamic stall simulation is complex on its own, considering
a time-varying freestream speed in addition to a time-varying angle of attack may
increase the complexity and understanding of a phenomenon that is not fully under-
stood and is still the subject of much research [1, p. 526]. Another explanation for the
lack of experimental data is the challenge associated with producing high-amplitude
unsteady oscillations in the wind tunnel [142].

In such a context, an investigation of the unsteady aerodynamic loads acting on
the reference airfoils, i.e. the NACA 23012 and the NACA 0012 airfoils, is per-
formed. The investigation consists of the simulation of combined pitching motion
and time-varying Mach number as depicted in Fig. 5.1.

5.1.1 Unsteady CFD set-up

The simulation is performed by means of the SU2 software suite [143]. In particular,
the unsteady Reynolds-Averaged Navier-Stokes equations together with the Spalart–
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(a) C-mesh. (b) Close-up on the airfoil.

Figure 5.2: Mesh for unsteady CFD computations.

Allmaras model [85] is used to simulate the flowfield around the airfoil. The numeri-
cal grid is a C-type, structured mesh (Fig. 5.2) with 77792 rectangular cells. The grid
extends ± 30 chords around a unit chord airfoil (Fig. 5.2b) and the first cell is equal
to y+ since wall law is not used in the simulation.

The time-varying freestream Mach number and angle of attack have the following
time dependency

V (t) = V∞ (1 + λ sin(ωt))

α(t) = α0 + ∆α sin(ωt+ ψ) (5.1)

In order to apply a sinusoidal variation to the freestream velocity, a time-varying
translation of the airfoil is performed with the following time dependency

h(t) = −V∞λ
ω

cos(ωt). (5.2)

The translation is applied in the direction of the mean angle of attack α0. The time-
varying translation and pitching are implemented with a volumetric rigid displace-
ment applied to each cell of the mesh in each iteration of the physical time.
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5.1.2 Validation

The CFD setting presented in the preceding section is validated against experimental
and computational measurements of the effects of combined angle of attack and ve-
locity fluctuations below stall. the fluctuations in the angle of attack α(t) and incident
velocity amplitude V (t) are given by the following

V (t) = V∞ (1 + λ sin(ωt)) (5.3)

α(t) = α0 + ∆α sin(ωt+ ψ) (5.4)

where V∞ is the mean freestream speed, λ is the percentage of variation in the
freestream speed, ω is the angular velocity of the fluctuations, α0 is the mean an-
gle of attack and ∆α is the amplitude of the oscillation in angle of attack and ψ is
the phase angle. Please note that the freestream velocity is directed according to the
mean angle of attack α0.

In this type of simulation is of utmost importance to fulfill the requirement of ge-
ometric, kinematic and dynamic similarity between the numerical simulation and the
experimental reference data. The first requirement consists in setting up the geome-
try of the numerical simulation scaling the geometry of the experimental set up while
maintaining its proportion. Second, two measurements (either numerical simulation
or wind tunnel testing) are dynamically similar when the forces at corresponding
points are similar. In the application to the simulation of an oscillating airfoil, the
equivalence of the Reynolds number and the Mach number guarantees the fulfilment
of this requirement [144, p.262]. Finally, with regard to kinematic similarity, the ve-
locity and accelerations of the numerical simulation should be consistent with those
of the reference set up. In particular, for a pitching airfoil with varying freestream,
the amplitude and frequency of the oscillation, the type of motion and the freestream
must match the reference values. For the frequency to be consistent with the exper-
imental data, it is necessary to match the reduced frequency k, an indicator of the
degree of unsteadiness in the problem that appears when non-dimensionalizing the
Navier-Stokes equations [1, p.427]. For an airfoil of chord c undergoing a periodic
variation in angle of attack or a freestream fluctuation with angular frequency ω, the
reduced frequency is defined as

k =
ωc

2V∞
(5.5)

where V∞ is the freestream speed (or mean value, if a periodic variation in velocity
amplitude is considered).

For the validation, different test cases are considered. In the first test case, ex-
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α0 [deg] ∆α [deg] V∞ [m/s] Re M∞ λ k ψ [deg]

6. 0. 25 4·105 0.07 0.114 0.101 0

Table 5.1: Operating conditions for validation with experimental data from Ref. [136].
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Figure 5.3: Lift ratio L/Lst as a function of the azimuth angle ψ = ωt for an airfoil under-
going freestream Mach number variation (Eq. (5.3)).

perimental data are taken from Ref. [136] for the case of the NACA 0012 airfoil
undergoing the speed fluctuation in Eq. (5.3). The corresponding operating condi-
tions are reported in Tab. 5.1. The computations have been performed considering
100 intervals for each period T = 2π/ω, and 800 steps in the dual-time iteration.
The number of steps in dual time are set to 800 to guarantee that the residuals of the
equations are always lower than 1e-4 for every time step. It is noted that the simu-
lation with time-varying freestream Mach number requires a streamwise translation
of the airfoil with amplitudes depending on the chosen variation of speed, but also
on the reduced frequency. In some cases, the amplitude of this motion may exceed 5
chords, therefore it has been found necessary to both reduce the time steps (to apply
a small translation at each outer iteration) and increase the number of dual time steps
(to guarantee time-accuracy). Figure 5.3 presents the lift ratio L/Lst between the
unsteady lift L and the steady value Lst plotted against the azimuth angle ψ = ωt.
A very good agreement is found between the CFD result obtained with the SU2 soft-
ware and the experimental data, with an error affecting the amplitude of the lift ratio
by 6%.
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α0 ∆α M∞ λ k ψ
[deg] [deg] [-] [-] [-] [deg]

Time varying α 2 2 0.3 0. 0.2 0
Time varying M 1 0 0.5 0.4 0.2 0
Time varying AoA and M 1 1 0.5 0.4 0.2 180

Table 5.2: Operating conditions for validation with numerical data from Ref. [140].

0 50 100 150 200 250 300 350
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Azimuth angle [deg]

L
/L

s
t

 

 

SU
2
 unsteady RANS

Unsteady Euler from Ref.[143]

(a) Lift coefficient.
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(b) Moment coefficient.

Figure 5.4: Lift and moment coefficient for α = 2 + 2 sin(ωt) deg, k = 0.2.

Secondly, the numerical data presented in Ref. [140] for the NACA 0006 airfoil
have been compared to the results obtained with the unsteady CFD set-up presented in
the preceding section. The data of this reference are obtained with an Euler equations
model and many combinations of pitching and fluctuating velocity field have been
considered. Table 5.2 shows the different combinations considered in the validation
process. Although Reference [140] uses a different aerodynamic model than the one
used in the present thesis, this data set is used to build confidence in the unsteady
RANS set-up because it is rich in data for a wide range of conditions.

The resulting aerodynamic coefficients are presented in Figs. 5.4, 5.5, 5.6. Fig-
ure 5.4 presents a case of pure pitching motion, where good agreement is found for
both the lift and moment coefficients. In Fig. 5.5 the coefficients for the case of time-
varying freestream are presented: in this test case, an Euler computation with SU2

has also been performed, to demonstrate that the discrepancy in the result is ascribed
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(a) Lift coefficient.
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Figure 5.5: Lift and moment coefficient for M = 0.5(1 + λ sin(ωt)), α = 1 deg, k = 0.2,
λ = 0.4 .
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Figure 5.6: Lift coefficient forM = 0.5(1+λ sin(ωt)), α = 1+1 sin(ωt+ψ) deg, k = 0.2,
λ = 0.4, ψ = 180 deg.
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α0 ∆α M∞ Re λ k ψ

2 2 0.04 3e5 0.5 0.097 0

Table 5.3: Operating conditions for validation with experimental data from Ref. [145].

to the different choice of aerodynamic model and not to the unsteady RANS set-up.
Finally, a case of combined pitching and freestream fluctuations is considered. The
corresponding lift coefficient is presented in Fig. 5.6, which shows a good accuracy
of the CFD set-up.

Finally, an experimental case of combined pitching and freestream speed fluctu-
ations is used as a validation case. The operating conditions are presented in Tab. 5.3
and the airfoil used in this case is a NACA 0018 airfoil. Figure 5.7 shows the lift
coefficient and the excellent agreement between CFD results and wind tunnel results.

As a final remark, it is noted that experimental data on this kind of oscillating
airfoils are scarce and that measurements of the drag coefficients are not assessed in
the analysed literature.
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Figure 5.7: Lift coefficient for the pitching airfoil with fluctuating freestream experiment
(conditions in Tab. 5.3).

5.1.3 Steady vs. unsteady simulation

In this final section the estimate of the lift and drag coefficients obtained with the CFD
set-up are compared to the steady approximation used in the optimization problem.
This comparison is obtained by computing the aerodynamic coefficients by means of
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NACA 0012 NACA 23012
Unsteady Steady Error Unsteady Steady Error

avg(CL) 0.591 0.588 0.5 % 0.756 0.769 1.8 %
avg(CD) [counts] 126.61 110.18 12 % 121.26 101.51 16 %

Table 5.4: Average drag coefficient and lift coefficient obtained from steady and unsteady
computations for the NACA 23012 airfoil.

an unsteady RANS simulation presented in the preceding section and different steady
models:

• for the advancing side, an Euler equations simulation with SU2 is performed,
with the set-up that will be later presented for the optimization problem (Sec. 5.2.2).
Because the Euler equations are used, a correction associated with viscous ef-
fects is added to the inviscid SU2 estimate combining the van Driest II method
and a form-factor correction as presented in Ref. [148];

• for the retreating side, the XFOIL solver is adopted

• for the remaining intermediate points, the MSES code is used.

The results for the NACA 0012 airfoil and NACA 23012 airfoil are presented in
Fig. 5.8 and Fig. 5.9, respectively. The average aerodynamic coefficients over the
azimuth angle are presented in Tab. 5.4. An excellent agreement is observed with
regard to the lift coefficient, both in terms of average value and amplitude oscilla-
tions. The difference between the unsteady CFD-based average and the steady value
is less than 1 % for the NACA 0012 airfoil and less than 2 % for the NACA 23012
airfoil. In terms of drag coefficient, the discrepancy between the unsteady results
and the steady approximation is more pronounced. The unsteady wake effects are
completely neglected in the steady approximation and they greatly affect the drag co-
efficient, more so than in the case of the lift coefficient. This is most likely the reason
for this reduction of accuracy. Nevertheless, the average values of the drag coefficient
differ by 12 % and 16 % for the NACA 0012 and NACA 23012, respectively. The
magnitude of the error for the steady approximation is encouraging and the differ-
ent steady models are considered an acceptable solution to significantly reduce the
computational cost of the optimization loop (both deterministic and robust).

In addition, the work presented in Ref. [24] backs up this conclusion. In fact,
Reference [24] demonstrates that optimal solutions are not greatly affected by the use
of either an unsteady or steady model, as long as the reduced frequency is moderate.
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Figure 5.8: Cycle of lift and drag coefficient of the NACA 0012 airfoil.
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Figure 5.9: Cycle of lift and drag coefficient of the NACA 23012 airfoil.
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This is certainly the case, since the 1/rev frequency is equal to 0.034 and the highest
frequency of the angle of attack reaches 0.12.

5.2 Deterministic forward flight optimization

The deterministic optimization of helicopter rotor airfoil in forward flight consists
typically in the minimization of the drag coefficient CD ensuring the satisfaction
of constraints on the lift CL and moment CM coefficients. Examples of such an
approach are given in Refs. [23, 20, 21]. The constraint on the lift coefficient is set
to maintain the trim condition of the entire helicopter and reduce the interaction with
the blade dynamics.

In this work, a target lift coefficient CL is set to consider a specific trim condition
and the moment coefficient is bounded with a given threshold CM to avoid excessive
loading on the blade structure. The objectives of the advancing and retreating side are
conflicting with one another. In fact, an optimal shape for the advancing side would
be a mildly cambered airfoil to postpone drag rise to higher Mach number values,
whereas the adoption of a highly-cambered airfoil in the retreating side could better
adapt to higher angle of attack, for instance by means of a nose-droop (see Fig. 1.7).

In mathematical terms, two single-objective optimization problems may be for-

Figure 5.10: Operating conditions for blade sections (picture from Ref. [9]).
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mulated as follows

minimize: CDi(x)

subject to: CLi(x) = CLi |CMi(x)| ≤ CMi

by changing: x (5.6)

where x are the design variables. The subscript i is equal to 1 in the advancing
side and 2 in the retreating side. The blade section of the Bo105 rotor [117] at r =

0.85 is considered and the operating conditions for advancing and retreating sides
are taken from the corresponding “figure-of-eight” in the (M,α)–plane from Ref. [9,
p.296] presented in Fig. 5.10. Both operating Mach number and the corresponding
constraints are reported in Tab. 5.6. The values of the lift constraint CLi are set for
each side with the intent of producing a design that improves the performance of
the NACA 23012 airfoil, a classical shape for helicopter rotors. In particular, the
aerodynamic coefficients of the NACA 23012 airfoil in the operating conditions are
presented in Tab. 5.5. It is possible to note that the NACA 23012 airfoil does not
provide positive lift in the advancing side, thus a slightly positive value of CL1 is
set to generate lift. Furthermore, the constraints on the moment coefficient has been
enlarged with respect to the value obtained for the NACA 23012 airfoil to give more
freedom to the design optimization and explore design solutions which may have
greater moment coefficient but better performance in the transonic condition.

To complete the scenario of deterministic optimization problems, a one-objective
optimization with a trade-off performance is performed. The optimization problems
in this case is defined as follows

minimize:
1

2

2∑
i=1

wiCDi(x)

subject to: CLi(x) = CLi |CMi(x)| ≤ CMi i = 1, 2

by changing: x, (5.7)

wherewi are weights chosen from the drag coefficient of the optimal airfoils obtained
in the one-point optimization case (see Tab. 5.6). The result of such an optimization
is a compromise solution between advancing and retreating side that is used as a
reference of a trade-off optimal solution.
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Case α[deg] M [-] Re [-] CL [-] CD [counts] CM [-]

1. -1.5 0.75 4.6e6 -0.025 86.97 0.02
2. 12.5 0.28 1.7e6 1.411 191.3 0.03

Table 5.5: Aerodynamic coefficients of NACA 23012 airfoil.

Case M [-] Re [-] CL CM wi [1/counts]

1. 0.75 4.6e6 0.025 0.08 1/2
2. 0.28 1.7e6 1.411 0.04 1/160

Table 5.6: Operating conditions and aerodynamic constraints.

5.2.1 Design variables

Particular attention is drawn to the design variables. First, to describe an airfoil shape
with a finite set of variables, a shape parameterization is required. The same shape
parameterization used in Sec. 4.2.3 is employed. However in this case, the airfoil
shape is decomposed into the camber mean line and the normal thickness distribution.
The difference lies in the definition of the thickness distribution which in this case is
taken in perpendicular direction with respect to the camber mean line.

Thus, the camber line and thickness distribution are such that the upper surface ζu
and lower surface ζl are obtained applying the thickness perpendicular to the camber
line, as follows

ζu = ζc + ζt cos(ε)

ζl = ζc − ζt cos(ε), (5.8)

where ε = arctan
(

dζc
dχ

)
. Please note that also the χ coordinate of the resulting

airfoil will be affected by this addition of vectors.
With respect to the original formulation, the coordinate of the camber mean line

at the trailing edge is set to zero to consider closed trailing edge and zero geomet-
ric angle of attack. In addition, the class functions for the camber line Cc and the
thickness distribution Ct are defined as follows

Cc(χ) = χ(1− χ) Ct(χ) =
√
χ(1− χ). (5.9)

While the class function for the thickness distribution is the one suggested in Ref. [126]
to define a rounded nose distribution close to the leading edge, the class function for
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the camber presents a linear term to avoid vertical slope of the camber distribution at
the leading edge. In addition, the linear term of the class function permits to directly
relate the first coefficient of the shape function Ac0 with the slope of the camber line
at the leading edge.

The shape function S(χ) is given by a Bernstein polynomial of order N , whose
coefficients represent the design variables xs of the optimization problem. A conver-
gence study, suggested the employment of 4 design variables for each distributions
that yields 10 design variables.

In addition to the coefficients describing the shape of the airfoil, the angle of at-
tack can be regarded as a design variable. In fact, it is possible to solve the constrained
optimization problem stated in Eq. (5.6) by acting on the airfoil design variables xs
to minimize the drag coefficient and on the angle of attack to track the target lift co-
efficient inside two nested loops. The underlying idea is an analogy with the blade
collective pitch control: to increase trust it is necessary to act on the collective pitch,
which changes the angle of attack of the blade section.

Thus, each airfoil tested in the optimization loop is obtained with a specific set
xs, and its performance are evaluated computing the angle of attack α that provides
the desired lift coefficient. The nested optimization loops used to implement this
procedure are described in detail in Sec. 5.2.3. Thus, the resulting set of design
variables is x = {xs, α}.

5.2.2 Aerodynamic models

A model describing the aerodynamic load acting on the airfoil is necessary to com-
pute the objective function of the optimization problem. The aerodynamic models
used in this optimization problem are different for each side of the blade in order to
capture the specific features of the flow in such different operating conditions, while
limiting the computational effort.

In the retreating side featuring subsonic condition below the static stall boundary,
the XFOIL code [99] is adopted, that is presented in Sec. 4.2.2. This code is cho-
sen because it provides a fast and sufficiently accurate estimation of the aerodynamic
force coefficients for a two-dimensional section in the range of angle of attack con-
sidered in this problem. Please note that the highest value of the angle of attack in
the range is below the static stall limit for most airfoils.

On the other hand, the MSES code used in the hovering case is not suitable for the
conditions encountered in the advancing blade. In fact, the coupled Euler/boundary
layer code is accurate and robust only with mild compressible effects. For fully
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(a) O-mesh. (b) Zoom.

Figure 5.11: Coarse structured grid (20480 cells) for Euler computations inside the opti-
mization loop.

developed transonic conditions, like the one experienced in forward flight, a finite
volume-based numerical solver of the Euler equations is used. In this thesis the Stan-
ford University Unstructured (SU2) software suite [143, 146] is employed owing to
the accessibility of the source codes, the extensive validation and verification test
cases assessed in the literature and its capability to handle mesh deformation and un-
steady grid movement. The SU2 solver provides several space discretization schemes,
among which the second-order Jameson-Schmidt-Turkel scheme is employed. An
implicit Euler, local time-stepping is used to converge to the steady-state solution,
and the GMRES method in conjunction with the LU SGS preconditioner is used to
solve the resulting system [147]. This setting for the Euler equations is also used in
the benchmark optimization test case presented in Appendix A.

For the computation inside the optimization loop, a two-dimensional coarse struc-
tured mesh of 20480 rectangular cells is used (see Fig. 5.11). The mesh extends
±25 chords around the unitary-chord airfoil. For each airfoil in the optimization
loop, the computation runs for 500 iterations starting from a baseline solution of the
NACA0012 airfoil. The mesh is deformed by displacing the airfoil boundary cells
according to the new geometry and by translating the displacement to the volume
cells with a method based on the finite element method discretization of the linear
elasticity equations [143]. The element stiffness is set inversely proportional to the
wall distance and 500 smoothing iterations are applied to get a regularly deformed
mesh.
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Figure 5.12: Outer NSGA loop for xs and inner trim loop to determine α.

5.2.3 Optimization algorithm

To solve the optimization problem in Eq. (5.6) the Non-dominated Sorting Genetic
Algorithm is chosen for its ability to explore the design space. Inside the genetic
algorithm loop, an inner loop is nested to deal with the lift coefficient constraint (see
Fig. 5.12). In particular, for each design vector xs,k of the k-th iteration in the genetic
loop, a secant method is used to find the angle of attack α that guaranteesCL,k = CL.
The i-th iteration of the secant loop reads

αi = αli +
αri − αli

CL(αbi)− CL(αai)

(
CL − CL(αai

)
) (5.10)

where αli and αri are the left and right boundaries of the interval in which the angle
of attack is sought and they satisfy: CL(αri) > CL and CL(αli) < CL. The left and
right value are updated according to the value of the lift coefficient for the current αi:
if CL(αi) > CL, then αri+1 = αi; if CL(αi) < CL, αli+1

= αi, and if CL(αi) = CL
the loop breaks.

The method converges in a few iterations, owing to the quasi-linearity of the
lift coefficient for most airfoils in the vicinity of the considered values of the angle of
attack. Lack of convergence within few iterations is not critical, because this happens
for airfoils with poor values of the lift coefficient that should be discarded anyway.
The result of the two nested loops is a set of optimal solutions defined by a design
vector {xs, α}. It is noted that the inner trim loop targets the equality constraint on
the lift coefficient, but the design vector coming out of it may not satisfy the moment
coefficient constraint.
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5.3 Robust optimization problem

The objective of robust optimization is to design an airfoil that is minimally sensi-
tive to the variation of the operating conditions. In this case, it is considered that
the operating conditions at which the blade section will operate are affected by the
uncertainty arising due to modelling assumptions of physical parameters necessary
at the design stage.

Due to the uncertainty, the objective function f is no longer only a function of
the design variables x, but it also depends on the uncertain variables ξ. Within this
uncertain framework a minimization with a target lift coefficient in a specific design
conditions loses its meaning. However, a robustly optimal airfoil with a satisfactory
lift-to-drag ratio in a range of conditions could be used to trim the aircraft in a specific
condition keeping always a low drag coefficient. In addition, if the robustness of
the lift-to-drag ratio will translate into the drag coefficient at a specific target lift
coefficient, a robust shape would ensure less variability of the required power due to
aerodynamic drag.

In particular, for the problem under analysis, the following objectives are defined
for each side of the blade.

1. On the advancing side, rotor blade encounters transonic flow, so airfoils should
typically be designed to delay drag divergence to higher Mach numbers [1, 11]:
however, since the airfoil should feature also a certain amount of lift, the lift-to-
drag ratio is maximized for the first condition corresponding to the advancing
blade at 90 deg (see Fig. 1.4), with the constraint of providing a lift coefficient
equal to or greater than the value of the reference NACA 23012 airfoil. Thus,
the lift-to-drag ratio CL/CD is the objective f1 of the optimization: f1 =

CL/CD.

2. On the retreating side, the increase of the lift coefficient is typically sought [11]:
for the blade at 180 deg the ratio C3/2

L /CD is maximized, which is a measure
related to the rotor figure of merit [1] and privileges the lift coefficient over the
drag coefficient, that is f2 = C

3/2
L /CD.

The nominal operating conditions of the aerodynamic simulation are set using data
from Ref. [9] (see Fig, 5.10). Finally, the constraints on the moment coefficient used
in the deterministic case (and presented in Tab. 5.6) are still considered.
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In mathematical terms, the resulting optimization problem can be stated as:

maximize : µ (fi (xs, ξ))

and minimize : σ2 (fi (xs, ξ))

subject to : g (xs, ξ) ≤ 0

by changing : xs, (5.11)

where the moment constraints are collected in vector g. Similarly to the deterministic
case, function fi is equal to f1 for the advancing side and equal to f2 in the retreating
case. The design variables are the variables defining the shape of the airfoil, while
the angle of attack is considered as one of the uncertain variables in the robust design
problem.

Indeed, the angle of attack α and the Mach number M encountered by the two-
dimensional section of the blade are considered as uncertain, because they are af-
fected by uncertainty on the modeling of the physical parameters considered in the
design stage. For instance, both aerodynamic and structural uncertainties, such as
blade chord, air density, and rotor angular velocity, may affect the value of the angle
of attack and Mach number. Following a probabilistic framework, the uncertain vari-
ables are modeled as uniformly distributed random variables around a nominal value.
The nominal conditions are reported in Tab. 5.5 and the uncertainty band is set to 5%
for the Mach number and for the angle of attack.

The objective functions of Eq. (5.11) are the statistics of the performance f .
These are computed by means of an uncertainty propagation technique, that is a
method to propagate the uncertainty affecting the operating conditions into the quan-
tity of interest f .

5.3.1 Uncertainty quantification

With regard to the method used to compute the statistics of function f , the uncertainty
quantification is performed by the Polynomial Chaos (PC) expansion method [91]
presented in Sec. 2.3.2 and assessed in Sec. 4.2.5. Because a uniform distribution is
considered also in the forward flight case, Legendre polynomials are employed in the
PC expansion. The order of the expansion is retained from the results of Sec. 2.3.2,
because a similar convergence analysis has been performed and proved that a fourth-
order polynomial is sufficient to accurately capture the statistics. The reconstruction
of the statistics is based on the evaluation of the exact function for a set of samples
ξk in the uncertain variables domain for each design vector xs.
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Case Objective Equality Inequality Design
constraints constraints variables

DO1 minCD,1 CL1 = CL1 |CM1 | ≤ CM2 xs, α

DO2 minCD,2 CL2 = CL2 |CM2 | ≤ CM2 xs, α

DO0 min
∑2

i=1wiCD,i CL1 = CL1 |CM1 | ≤ CM1 xs, α

CL2 = CL2 |CM2 | ≤ CM2

RO1 maxµ(f1) and min(σ2(f1) |CM1 | ≤ CM1 xs
RO2 maxµ(f2) and minσ2(f2) |CM2 | ≤ CM2 xs

Table 5.7: Summary of optimization problems.

5.4 Results

As presented in the previous sections, different optimization problems are performed.
A summary of the optimization cases presented in this chapter is given in Tab. 5.7.
Letters D and R stand for the deterministic and robust cases, while numbers 1 and 2
refer to advancing and retreating side, respectively.

5.4.1 Deterministic optimization

The results of the deterministic optimization problems are: (i) airfoil DA1 with op-
timal drag coefficient in the advancing side, (ii) airfoil DA2 with optimal drag co-
efficient in the retreating side, and (iii) airfoil DA0 with optimal weighted drag co-
efficients. These airfoils are presented in Fig. 5.13 and the characteristics of their
geometry is reported in Tab. 5.8. It is possible to note that the optimal airfoil for
the retreating side is highly cambered to cope with the higher angle of attack and it
has a lower thickness-to-chord ratio to reduce the drag coefficient. The optimal air-
foil of the advancing side generates positive lift owing to a slight camber and greater
thickness. The slope of the camber line at the leading edge is controlled by the first
coefficient of the parameterization thanks to the modification of the CST discussed
in Sec. 5.2.1. Both in the overall airfoil geometry and in each specific parameter
presented in Tab. 5.8, it is possible to note that airfoil DA0 represents a trade-off so-
lution between DA1 and DA2, although it appears more similar to the DA1 airfoil.
This similarity is likely to be due to the choice of the weighting function.

With regard to performance, the drag coefficients of the optimal airfoils are pre-
sented in Tab. 5.9. The drag coefficient are expressed in drag counts, where one drag
count is equal to 0.0001. The gain with respect to the reference NACA 23012 airfoil
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Figure 5.13: Optimal airfoils for optimization problem DA1, DA2 and DA0.

DA1 DA2 DA0

Maximum thickness 0.1187 0.1049 0.1161
Position of maximum thickness 0.36 0.22 0.31
Maximum camber 0.0054 0.0303 0.0079
Position of max camber 0.81 0.31 0.73
First design variable (Ac0) 0.065 0.289 0.107
Camber slope at LE [deg] 3.704 16.098 6.108

Table 5.8: Characteristics of the optimal airfoils (for unitary chord).

CD1 α1|CL1
CM1 CD2 α2|CL2

CM1

[counts] [deg] [-] [counts] [deg] [-]

DA0 0.8947 -1.059 0.0463 177.8 11.1 -0.0108
DA1 0.6927 -1.002 0.0459 – – –
DA2 191.99 -3.101 0.1047 126.0 9.27 -0.0393

Table 5.9: Performance of the optimal airfoils: performance of DA1 in the retreating side is
not reported because DA1 airfoil cannot satisfy lift constraint (see Fig. 5.14b).

are presented in Tab. 5.10. The DA1 airfoil and the DA2 airfoil significantly improve
the performance of the advancing and retreating side, respectively. Airfoil DA1 is an
airfoil which reduces the drag coefficient by smoothing curvature variations of the
upper and lower side, yielding a shock-free flowfield (see the Mach number contour
in Fig. 5.14a, However, in the retreating side the DA1 airfoil cannot satisfy lift con-



152 Robust optimization of airfoils in forward flight

Percentage gain Percentage gain Relative gain Relative gain
side 1 side 2 side 1 side 2

DA0 +99% +7 % 1/97.2 1/1.08
DA1 +99% – 1/125 –
DA2 – +34% – 1/1.52

Table 5.10: Gain of the optimal airfoils with respect to the NACA 23012 airfoil: gain of DA1
in the retreating side and gain of DA2 in the advancing side are not reported because these
airfoils don’t satisfy respectively the lift and moment constraint.
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Figure 5.14: Analysis of optimal DA1 airfoil.

straint (as presented in Fig. 5.14b), therefore its drag coefficient is not reported in
Tab. 5.9 and its gain is not present in Tab. 5.10. Airfoil DA2 reduces the drag coef-
ficient of the NACA 23012 airfoil by 34% by reducing the peak friction coefficient
and by postponing transition to turbulent boundary layer, as presented in Fig. 5.15b.
In the advancing side, the performance of such an airfoil is very poor and a strong
shock wave is present on the lower side (see Fig. 5.15a). The trade-off airfoil has a
significant gain in the advancing side, because it is more similar to the DA1 airfoil.
As a matter of fact, a shock-free flowfield is obtained with this airfoil (Fig. 5.16a),
whereas in the retreating side an earlier transition to a turbulent boundary layer and a
higher friction coefficient are present (Fig. 5.16b).
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Figure 5.15: Analysis of optimal DA2 airfoil.
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Figure 5.16: Analysis of optimal DA0 airfoil.

5.4.2 Comparison with robust optimization

Two different robust optimization problems are performed, the first one for the ad-
vancing side (problem RO1) and the second one for the retreating side (RO2). The
Pareto front for the case of the advancing side is presented in Fig. 5.17a where the
two objective functions are the mean value and the variance of the lift-to-drag ratio.
Please note that in the figure the mean value and the variance are obtained with a
scaling factor of 1/10 acting on f1, because the value of f1 = CL/CD is very large
due to the inviscid estimate of the drag coefficient which is very small (on the or-
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Airfoil CD,1|CL1
α1|CL1

µCD,1 σ2
CD,1

(σ/µ)CD,1
[counts] [deg] [counts] [counts2] [-]

DA0 0.895 -1.059 5.26 65.75 1.54
DA1 0.693 -1.002 2.16 11.12 1.54
RA1 0.898 -1.510 2.03 5.668 1.17

Table 5.11: Drag coefficient of the deterministic airfoil minimizing CD1 (DA1), the trade-off
airfoil(DA0) and the airfoil selected from the robust front in the advancing side (RA1).

der of a drag count) for optimal airfoils. The front presents very robust solution that
however comes at the expense of poor performance. In the higher part of the front,
solutions with high mean value are found. Figure 5.17a does not present the results of
the reference airfoil, i.e. the NACA 23012 airfoil, because this airfoil has a negative
lift-to-drag ratio (due to the negative lift).

To compare the results obtained from the Pareto front in RO1 and the determinis-
tic result DA1, a solution or a group of solutions from the front in Fig. 5.17a should
be selected. To do this, the target lift coefficient CL1 is compared to the lift coef-
ficients obtained in the samples used for the reconstruction of the mean value and
variance in the UQ loop. The lift coefficients for the solutions of the front are plotted
in Fig. 5.17b. From this set airfoil RA1 is selected, which is the airfoil that exhibits a
lift coefficient equal to the target value inside the uncertainty range considered and a
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Figure 5.17: Results of the robust optimization for the advancing side (RO1) .
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Figure 5.18: Mach number contour of RA1 airfoil at α1|CL1
= −1.51 deg.

Airfoil µCL,1 σ2
CL,1

(σ/µ)CL,1 µCM,1 σ2
CM,1

(σ/µ)CM,1

DA0 0.0257 4.52e-05 0.26132 0.0459 9.87e-07 0.0217
DA1 0.0211 4.04e-05 0.30151 0.0457 1.81e-06 0.0294
RA1 0.0253 8.20e-05 0.35816 0.0688 1.47e-06 0.0176

Table 5.12: Lift and moment coefficient of the deterministic airfoil minimizing CD1 (DA1),
the trade-off airfoil(DA0) and the airfoil selected from the robust front in the advancing side
(RA1).

high mean value of the lift-to-drag ratio. Airfoil RA1 is also highlighted in Fig. 5.17a.
The value of the angle of attack for which the lift coefficient of airfoil RA1 is equal to
CL1 is called α1|CL1

and it is equal to -1.51 degrees at the Mach number used for the
deterministic optimization DO1. As presented in Tab. 5.11, in this condition the drag
coefficient is higher than the one provided by airfoil DA1, but it is still lower than one
drag count thanks to the fact that even this airfoil does not present extended region
of supersonic flow and shock waves (see Fig. 5.18). This means that this airfoil is
capable of satisfying the trim condition with a very small drag penalty with respect
to the deterministic airfoil. However, if an uncertainty band is considered around the
condition ensuring trim requirement, both the mean value and the variance of the drag
coefficient for airfoil RA1 are smaller than the values of airfoil DA1 (see Tab. 5.11).
The table also presents the coefficient of variation, defined as the ratio of the standard
deviation σ to the mean value µ, to appreciate the dispersion with respect to the mean
value.
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To complete the analysis, Table 5.12 presents the mean value and variance of the
lift and moment coefficients for airfoil RA1 and airfoil DA1. In the table, it is inter-
esting to note that the mean value of airfoil RA1 is closer to the target value. It is
noted that the mean value of the drag coefficient, lift coefficient and moment coeffi-
cient are obtained with the fourth-order PC expansion assessed in Sec. 4.2.5. Despite
the presence of shock waves in this range of conditions, the integral values remain
smooth throughout the stochastic space and a fourth-order polynomial provides suf-
ficiently accurate estimates of the statistics.

The same analysis can be performed for the Pareto front of the retreating side.
Figure 5.19a presents the optimal set of solutions obtained from the robust optimiza-
tion and the result of the reference airfoil, the NACA 23012. As emerged from the
results in the hovering case (Sec. 4.3.4) and in the advancing side, interesting so-
lutions from the front are typically those with high mean performance. A possible
criterion for decision making in the post-processing of the front is then the selection
of non-dominated solutions with mean value higher than the value of the reference
airfoil. This criterion helps removing the solutions with poor performance, but it still
retains solutions with variance lower than the reference result thanks to the quality of
the Pareto front.

For this subset of airfoils, the comparison between the robust front and the de-
terministic airfoil is performed in the same way presented in the advancing side.
Figure 5.19b shows the lift coefficient of the samples used in RO2 with mean value
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Figure 5.19: Results of the robust optimization for the retreating side (RO2) .



5.4 Results 157

0.26

0.28

0.3

8.5

9

9.5

10
0.011

0.012

0.013

0.014

M [-]α [deg]
C

D
 [

−
]

0.26

0.28

0.3

8.5

9

9.5

10
1.35

1.4

1.45

1.5

M [-]α [deg]

C
L
 [

−
]

0.26

0.28

0.3

8.5

9

9.5

10
−0.041

−0.04

−0.039

−0.038

−0.037

M [-]α [deg]

C
M

 [
−

]

Figure 5.20: Load of DA2 in the uncertainty band around α1|CL1
.

Airfoil CD,2|CL2
α1|CL2

µCD,2 σ2
CD,2

(σ/µ)CD,2
[counts] [deg] [counts] [counts2] [-]

DA0 177.8 11.13 178.4 91.32 0.0536
DA2 126.0 9.27 126.2 28.40 0.0422
RA2 148.1 10.66 148.4 33.83 0.0392

Table 5.13: Drag coefficient of the deterministic airfoil minimizing CD2 (DA2), the trade-off
airfoil(DA0) and the airfoil selected from the robust front in the retreating side (RA2).

higher than the reference value. In this case, every airfoil in the optimal set provides
a lift coefficient that is greater than the target value CL2 . Thus, to select an airfoil
from the front for comparison, airfoil RA2 has been chosen as a trade-off between
the two objectives.

For this airfoil an angle of attack equal to 10.66 deg is needed to satisfy the trim
condition. By applying the same uncertainty range used in the robust optimization
case, it is possible to compute the mean value and the variance of the drag coefficient
of RA2. These values are higher with respect to the value computed for airfoil DA2
(see Tab. 5.13. In fact, the optimal deterministic airfoil has a very low value of
drag coefficient because it satisfies the lift constraint at a very low angle of attack
(9.27 deg) thanks to the highly cambered mean line. However, airfoil DA2 cannot
satisfy the moment coefficient constraint in the uncertainty range. As presented in
Fig. 5.20, the moment coefficient exceeds the threshold value CM2 . On the contrary,
the robust optimization formulation guarantees that the optimal airfoils would not
incur moment penalties throughout the uncertainty range.

Finally, the discrepancy in the performance of airfoil DA2 and airfoil RA2 is due
to the fact that the lift coefficient of the robust airfoils are significantly greater than
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Airfoil µCL,2 σ2
CL,2

(σ/µ)CL,2 µCM,2 σ2
CM,2

(σ/µ)CM,2

DA0 1.3998 8.37e-04 0.207 -1.069e-02 3.84e-06 -0.18
DA2 1.4113 8.67e-04 0.021 -3.924e-02 6.51e-07 -0.02
RA2 1.4016 6.24e-04 0.018 -1.383e-02 7.68e-06 -0.20

Table 5.14: Lift and moment coefficient of the deterministic airfoil minimizing CD2
(DA2),

the trade-off airfoil(DA0) and the airfoil selected from the robust front in the retreating side
(RA2).

the target lift coefficient. Thus, the deterministic optimization and the robust opti-
mization are essentially exploring different regions of the design space, according to
the specific objectives. To some extent, a fair comparison between the two methods
is meaningful if the two methods share the “same” objectives. This means, for ex-
ample, that for this specific case the target lift coefficient should be higher for the
comparison with the robust airfoils. Another possibility is to define the nominal con-
dition for the robust case starting from the deterministic results. This would at least
ensures the presence of the deterministic airfoil in the robust population (as long as
it satisfies the contraints). This option appears more sound and it is the ones used in
the final application of Chapter 6.

5.5 Validation with the azimuth angle

Up to this point, the performance of the optimal airfoils is considered only in the
advancing and retreating side conditions. However, the blade section encounters dif-
ferent operating conditions over the period of rotation of the blade and an assessment
of the performance with the azimuth angle is appropriate. To do this, the variation of
the angle of attack, Mach number and Reynolds number with the azimuth angle must
be computed. This computation is based on the varying freestream Mach number
and angle of attack plotted in Fig. 5.10. The variation of angle of attack and Mach
number presented in the figure are described by means of the following time law

M(t) = M∞ (1 + λ sin(Ωt))

α(t) = α0 +

nh∑
i=1

∆αi sin(iΩt+ ψi), nh = 4 (5.12)

where Ω is the blade 1/rev frequency (such that the azimuth angle ψ satisfies ψ =

Ωt), M∞ is the freestream Mach number and λ is the percentage variation of Mach
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number. The angle of attack is described by means of a sine series, where α0 is
the mean angle of attack, ∆αi is the angle of attack variation of the i-th term in
the series and ψi is the i-th phase angle. This structure of the variations has been
obtained with a convergence analysis based on a sine series with increasing number
of terms. Figure 5.21a shows the reference α − M cycle obtained from Ref. [9]
(i.e. the curve corresponding to r = 0.85 in Fig. 5.10) with a black line and the
samples obtained with the variation in angle of attack and Mach number described
in Eq. (5.12) and presented in Fig. 5.21b. Please note that a variation in Reynolds
number is associated with the variation in Mach number. The values of the variables
in Eq. (5.12) are presented in Tab. 5.15. They directly correspond to the extrema used
in the optimization loop: (i) a maximum value of the angle of attack equal to 12.5
deg at a Mach number of 0.28 and (ii) a minimum value equal to -1.5 deg at a Mach
number equal to 0.75 (see Tab. 5.5).

For the baseline case (i.e. NACA 23012 airfoil), the variables in Eq. (5.12) are
computed to represent the cycle depicted in Fig. 5.10. However, for the optimal
airfoils new values of the amplitude of the sine terms describing the angle of attack
must be computed, because the target lift coefficient is obtained in both sides at a
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Figure 5.21: Time varying Mach number and angle of attack encountered by the blade ele-
ment (Eq. (5.12)).
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M∞ λ α0 ∆α1 φ1 ∆α2 φ2 ∆α3 φ3 ∆α4 φ4

[-] [-] [deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg]

0.515 0.45 5.36 6.84 -173.8 0.67 -86.0 0.28 112.3 0.2 -22.5

Table 5.15: Variables of time-varying angle of attack and Mach number in Eq. (5.12).

DA0 DA1 DA2 RA1 RA2

α0 [deg] 5.04 5.75 3.09 5.49 4.58
∆1 [deg] 5.88 6.51 5.97 6.76 5.87

Table 5.16: Variables of time-varying angle of attack (Eq. (5.12)) for optimal shapes.

different angle of attack. In other words, the amplitude of the time-varying angle of
attack presented in Fig. 5.21b must be corrected for each optimal shape. In general,
the azimuth variation of the angle of attack is caused by the blade cyclic pitch control,
the induced velocity of the rotor, the blade dynamics and aeroelasticity. Thus, as a
first approximation it is possible to associate the 2/rev, 3/rev and 4/rev contributions
in Eq. (5.12) to the nonlinear contributions depending on the aerodynamic effects of
vortices, wakes and the blade dynamics. These contributions are essentially function
of the lift produced by the blade, which remains unchanged for the optimal airfoils.
However, the first sine term (1/rev) is directly related to the cyclic pitch control and
can be adjusted to maintain the trim requirement.

After computing the angle of attack variation for each optimal shape (each term
of Eq. (5.12) is presented in Tab. 5.16), the lift and drag coefficients are obtained
at eight location over the azimuth angle. The steady model used to compute the
coefficients in this validation over the azimuth angle are the following:

• for the advancing side, an Euler equations simulation with SU2 is performed,
with the set-up used in the optimization loop (Sec. 5.2.2). Because the Euler
equations are used, a correction associated with viscous effects is added to the
inviscid SU2 estimate combining the van Driest II method and a form-factor
correction as presented in Ref. [148];

• for the retreating side, the XFOIL solver is adopted

• for the remaining intermediate points, the MSES code is used

The aerodynamic coefficients for the deterministic optimal airfoils (DA0, DA1,
DA2) are presented in Fig. 5.22. It is possible to note that the cycle of the lift co-
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Figure 5.22: Lift and drag coefficient with azimuth for deterministic optimal airfoils.

efficient is similar for the three airfoils owing to the equality constraint on the lift
coefficient used in the optimization loop. Please recall that airfoil DA1 is not capable
of satisfying the trim constraint in the off-design condition (i.e. the retreating side),
as emerged from Fig. 5.14b.

The average of the drag coefficient over the azimuth angle avg(CD) is then com-
puted and the results are summarised in Tab. 5.17. The table also presents the results
for the airfoils selected from the robust Pareto front. i.e. airfoil RA1 and airfoil RA2.
The associated cycles of the aerodynamic coefficients is presented in Fig. 5.23. As
expected, airfoil DA0 provides the best average drag coefficient over the azimuth an-
gle. The penalty of airfoil DA1 in the off-design condition (i.e. the retreating side)
is higher than the penalty suffered by airfoil DA2 in the off-design conditions. As a
result, airfoil DA2 has a better average value. Airfoil RA2 has a small penalty with
respect to its deterministic counterpart and it also presents a fairly symmetrical cy-
cle. Airfoil RA1 on the other hand has a better average value than the corresponding
deterministic airfoil.

Given these results, it could be argued that obtaining DA1 and DA2 from a com-
bined two-point bi-objective problem could result in lower drag coefficient over the
azimuth angle for DA1 and DA2. In fact, with such an approach the drag minimiza-
tion and lift/moment constraints must be simultaneously satisfied for the retreating
and advancing side conditions, resulting in a better average value over the azimuth.
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Figure 5.23: Lift and drag coefficient with azimuth for robust optimal airfoils.

Airfoil DA0 DA1 DA2 RA1 RA2
avg(CD) [counts] 98.76 122.22 105.5 118.84 107.71

Table 5.17: Average drag coefficient for optimal airfoils in forward flight.

This solution was not pursued, because with a bi-objective approach the lift/moment
constraints in the off-design condition limits the gain in each operating condition.
The idea of the single-point deterministic optimization DO1 and DO2 is to define
the “best”, reference airfoils for the advancing and retreating side regardless of their
performance in the off-design point. This choice is motivated by the use of these
airfoils in the definition of the “ideal” morphing, discussed in the following chapter.
Nonetheless, a bi-objective optimization will result in lower average drag coefficient
of airfoils DA1 and DA2, so future activities may include a comparison with such an
approach.



CHAPTER 6

Optimization of morphing airfoils

This chapter is devoted to the definition of optimal shapes for morphing airfoils to
be applied to helicopter rotor blades. The morphing strategy considered in the work
is conceived with the intent of changing its shape at the 1/rev frequency to enhance
aerodynamic performance. Please note that the optimization of morphing airfoils
presented here only takes into account the aerodynamic performance. As a matter
of fact, optimization of morphing airfoils is typically performed separately from the
morphing mechanism design [40] and a two-step procedure is typically pursued: (i)
an aerodynamic optimization to set the optimal shape with respect to performance,
and (ii) a topological optimization to find the best internal configuration to fit the
best aerodynamic shape. The thesis deals with the first step, where technological
aspects are inserted through geometrical constraints. In fact, the thesis presents an
exploratory work on morphing geometries which aims at understanding the relation-
ship between shape degree of freedom and actual aerodynamic gain. The continuous
development of mechanisms used for morphing, such as cell-based structural topolo-
gies [149], may offer more flexibility with respect to the classical choices for mor-
phing geometries. Thus, exploring and demonstrating the gain of the aerodynamic
shape may drive the development of new mechanism for the realization of morphing
structures.

In the following, a discussion on two different choices of morphing strategy is
presented in Sec. 6.1 to assess the capability of morphing airfoils. In this first part,
only deterministic evaluation are presented, because deterministic optimal shapes



164 Optimization of morphing airfoils

(and corresponding operating conditions) represent the good starting point of robust
approaches, as discussed in the preceding chapters. This discussion demonstrates
how camber morphing is more effective to enhance the aerodynamic performance.
Then, optimal shapes from deterministic and robust approaches are computed and
presented in Sec. 6.2. Finally, the validation over the azimuthal angle is presented in
Sec. 6.3.

6.1 Effects of camber and thickness morphing

In this section, the effect of modification of the thickness and the camber of the
airfoils is discussed. An airfoil geometry can be characterized by the coordinates
of the upper and lower surface. However, an airfoil can also be described by the
construction of a thickness shape distributed around a camber line. This description
dates back to the 1920s and 1930s, when the NACA 4-digit and 5-digit airfoils were
generated by superimposing a simple meanline shape with a thickness distribution
that was obtained by fitting a group of popular airfoils of the time.

The camber mean line mainly affects the chordwise load distribution, the angle
of zero lift, the pitching-moment coefficient, the slope of the lift curve and the ap-
proximate position of the aerodynamic center [150, p.65]. Effects of increasing the
camber line are generally a lower zero-lift angle of attack and a higher maximum lift
coefficient. The counterpart of this is an increase in the drag coefficient, especially
at low angle of attack, and an increase in the pitching moment coefficient. This latter
problem, which is crucial in helicopter blade design, led to the almost universal use of
symmetric airfoil sections on helicopter developed before the 1960s [1, p.360]. How-
ever, with the advent of new camber line distribution, such as the NACA 23012 airfoil
which is designed to limit the moment coefficient, cambered airfoils were introduced
also in rotorcraft blades. A clear example of the effect of camber on moment coef-
ficient is given by reflexed airfoils, which have reduced camber over the afterward
section producing less lift over this region, thereby less nose-down pitching moment.
In this case the aft section is actually generating downforce and the moment coeffi-
cient at zero lift is positive.

Effects of thickness distribution includes the increase of maximum lift coefficient
with increasing thickness, at least for thickness-to-chord ratio in the range used for
aeronautical applications (i.e. around 16% [150, p.135] for the NACA 4- and 5-
digit airfoils), above which the effect of thickness become detrimental for separation.
Thickness distribution has a significant impact on profile drag and on wave drag.
With regard to the latter, earlier drag rise and lift break are experienced for thicker
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Figure 6.1: Optimal deterministic shapes and drag coefficient in the advancing and retreating
sides

airfoil [150, p.274], although this is in general an effect of both thickness-to-chord
ratio and distribution, and may vary from airfoil to airfoil.

6.1.1 Camber and thickness morphing from airfoil DA0

In the previous chapter, several optimal shapes have been presented and discussed.
In particular, regarding the deterministic optimal shapes, three different shapes have
been obtained: (i) DA0, the optimal trade-off airfoil, (ii) DA1, the optimal airfoil for
the advancing side and (iii) DA2, the optimal airfoil for the retreating side. These
airfoils are presented in Fig. 6.1 in the space of the objectives of the deterministic
optimization (i.e. the drag coefficient in the advancing and retreating side). Airfoil
DA0 represents the reference optimal solution for a non-morphing configuration. In-
stead, airfoil DA1 and DA2 give an indication of the best possible gain of a morphing
strategy. In fact, the maximum, “ideal” gain of morphing airfoils consists of the gain
of a morphing strategy that could morph the section of a blade from the shape of air-
foil DA1 in the advancing side to the shape of airfoil DA2 in the retreating side. This
is depicted in Fig. 6.2. This solution would have the lowest drag coefficient in the
advancing side and at the same time the lowest drag coefficient on the retreating side.
The morphing strategy is ideal in this case, because in practice any morphing mecha-
nism would impose geometry constraints to the airfoil shape between the advancing
side and retreating side that are not considered in this first instance. Indeed, state-
of-the-art technology permits only local deformation of the camber line, as presented
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f1

f2 Best in condition 1

Best in condition 2
“Ideal”

morphing airfoil

Best trade-off

Figure 6.2: Scheme of two-point optimization and “ideal” morphing airfoil.

DA1 DA2

Gain w.r.t DA0 22 % 29 %

Table 6.1: Gain of an “ideal” morphing with respect to the trade-off non-morphing solution
DA0.

Thickness Camber

Thick DA0 + Camb DA1 DA0 DA1
Thick DA0 + Camb DA2 DA0 DA2
Thick DA1 + Camb DA0 DA1 DA0
Thick DA2 + Camb DA0 DA2 DA0

Table 6.2: Summary of airfoils obtained by imposition of either the thickness or camber line
of DA1 and DA2 from DA0.

in Sec. 1.3, although an active field of research on materials is developing ways of
increasing the degree of freedom of morphing geometries that could be adopted in
future research activities. Nevertheless, the ideal gain is of the greatest significance,
because it sets a reference gain. The gain is computed with respect to the optimal
non-morphing geometry, which in this case is the trade-off airfoil DA0. As presented
in Tab. 6.1, such a “perfectly” morphing airfoil could gain 22% of the drag coefficient
in the advancing side and 29% in the retreating side, while maintaining the trim lift
coefficient and moment constraint.
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Figure 6.3: Airfoils obtained by changing either the thickness or camber line from airfoil
DA0.

CD1 α1|CL1
CD2 α2|CL2

Gain Gain
[counts] [deg] [counts] [deg] side 1 side 2

DA0 0.8947 -1.059 177.8 11.1

Thick DA0 + Cam DA1 0.805 -0.945 192.3 11.502 +10%
Thick DA0 + Cam DA2 151.53 -3.316 141.6 9.55 +20%
Thick DA1 + Cam DA0 0.801 -1.128 – – +10.5%
Thick DA2 + Cam DA0 11.26 -1.028 166.0 10.881 +6%

Table 6.3: Drag coefficient of airfoils obtained from deterministic optimal airfoils (see
Tab. 6.2).

To further support the choice of camber line morph over thickness distribution
morph, a comparison is made among airfoils generated from airfoil DA0 imposing
either the thickness distribution of airfoil DA1 and DA2 or the camber line. In other
words, four airfoils are constructed by fixing either the thickness or the camber line
of airfoil DA0 and imposing the camber line or the thickness of airfoils DA1 and
DA2. The airfoils are summarised in Tab. 6.2 and the resulting shapes are presented
in Fig. 6.3. The first two solutions refers to a camber morphing in which the camber
is modified and the thickness is held constant (and equal to the one of the best non-
morphing solution). On the other hand, the last two solutions represent a thickness
morphing, where the camber is held fixed to the one of airfoil DA0.

For these airfoils the angle of attack for which the lift coefficient satisfies the trim
constraint is computed and the corresponding drag coefficients are evaluated. Results
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α1|CL1
CD1 |CL1

CM1 |CL1
α2|CL2

CD2 |CL2
CM2 |CL2

[deg] [counts] [deg] [counts]

-3.316 151.53 0.109153 9.55 0.01416 -0.0414

Table 6.4: Performance of Thick DA0 + Cam DA2 airfoil in both sides.

are presented in Tab. 6.3. The same model used in Chapter 5 are employed, thus in
the advancing side the Euler equations-based CFD model is used and XFOIL in the
retreating side (see Sec. 5.2.2). It is possible to note that the solutions obtained by
holding the thickness fixed and changing the camber line (Thick DA0 + Cam DA1
and Thick DA0 + Cam DA2) improves the gain of the reference DA0 airfoil by 10%
in the advancing side and 20% in the retreating side. With respect to the ideal gains
presented in Tab. 6.1, this solution restores 50% of the ideal gain in the advancing
side and 90% in the retreating side. On the other hand, solutions obtained by modi-
fying the thickness distribution present a similar gain on the advancing side (10.5%),
but a smaller gain in the retreating side (6%). These results show that the camber
morphing gets closer to the ideal morphing gain and it is therefore more effective.
Furthermore, it seems that the thickness and camber line equally contributes to the
ideal gain in the advancing side, while in the retreating side the camber line plays
a key role. As a matter of fact, in the advancing side transonic flow is experienced,
and the minimization of the drag coefficient corresponds to the minimization of wave
drag. This contribution equally depends on camber and thickness distributions over
chordline. On the other hand, high angle of attack and subsonic flow are encountered
in the retreating side, thus the gain is basically built upon the adaptation of the airfoil
to the high angle of attack achieved through camber.

Finally, results for airfoil Thick DA1+Cam DA0 in the retreating side are not
presented because this airfoil cannot meet the trim constrained, as it happened with
airfoil DA1 in Chapter 5 (see Tab. 5.9 and Fig. 5.14b). In a similar way, airfoil with
DA0 thickness and DA2 camber exceeds the moment coefficient in the advancing
side as presented in Tab. 6.4 (similarly to what happened for DA2, please refer to
Tab. 5.9). To some extent, these airfoils obtained by combination of thickness and
camber of DA0, DA1 and DA2 inherit some of the characteristics of the original air-
foils. However, it is noted that the moment coefficient of the airfoil Thick DA1+Cam
DA2 also exceeds the threshold value CM2 set in the optimization loop (see Tab. 6.4).
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6.2 Optimal morphing airfoils

The optimization problems tackled in the case of morphing airfoils maintain the same
structure of the cases presented in Chapter. 5. Thus, two optimization problems are
performed, one for the advancing side and one for the retreating side, which seeks the
design with minimal drag coefficient with an equality constraint on the lift coefficient
and an inequality constraint on the moment coefficient. The same values of target lift
coefficients, bounding moment coefficients and operating conditions are used (please
refer to Tab. 5.6).

The difference in this case is that the optimization is performed by acting on the
design variables describing the morphing geometry. The morphing design variables
are described in the following section.

6.2.1 Morphing strategy and parameterization

The morphing strategy considered in this work is a conformable camber airfoil, which
changes over the period of rotation of the blade. Several technological solutions can
be employed to achieve this goal: for instance, the FishBone Active Camber [45], the
controllable camber presented in Ref. [41] and chiral structures as the one developed
in Ref. [47]. The basic idea in the definition of a camber morphing airfoil is that the
thickness distribution is held fixed, while the camber is allowed to change its shape
during flight.

The type of morphing introduced to some extent in the previous section permits
modification of the camber over the entire chordwise coordinate. However, in general
the camber line cannot be modified at any chordwise coordinate, but it is held fixed
in particular areas to maintain the internal structure of the blade and to accommodate
morphing mechanisms. In general, the region close to the leading edge is fixed,
where the D-shaped spar used in the helicopter blade structure is found. Thus, two

ζc(χ)

(a) Camber line morphing.

H(χ)

(b) Trailing edge morphing.

Figure 6.4: Types of morphing strategy: baseline geometry (black), camber morph (green)
or trailing edge morph (blue) and resulting morphed geometry (red) .
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types of camber morphing are considered. In the first case (Fig. 6.4a), complete
freedom is given to the camber line. In the second type (Fig. 6.4b) the first part
of the airfoil is fixed, while for the remaining part of the blade section, the camber
can morph and work as a trailing-edge flap with a larger extension and continuous
shape modification. In this way, an increasing level of constraints to the morphing
strategy are given: (i) ideal morphing, with constraints neither on the thickness nor
on the camber line, (ii) camber morphing, with a fixed thickness distribution, and (iii)
trailing edge morphing, with a fixed thickness distribution and a partial constraint on
the camber line.

A suited parameterization is required to describe and optimize a morphing cam-
ber airfoil. The parameterization introduced in Sec. 5.2.1 treats separately the cam-
ber line and the thickness distribution perpendicular to the local camber line. For
the entire camber morphing, the design variables are the coefficients Aci of the shape
function Sc(χ) used to describe the camber distribution as ζc(χ) = Cc(χ)Sc(χ). The
class function is the same function used in Chapter 5 and presented in Eq. (5.9). The
order of the Bernstein polynomials is retained from the optimization in forward flight
condition, but owing to the fact that the thickness distribution is now fixed, the num-
ber of design variables is reduced by half. It follows that the design variables for the
case of camber morphing are xm,c = {Aci}, i = 0, ..., 4.

For the trailing edge morphing modification, a piecewise cubic function is used.
The cubic functions are defined to ensure continuity up to the second order. Following
an approach similar to the one presented in Ref. [40], the morphing camber line is
described as follows

ζc(χ) = Cc(χ) Sc(χ) +H(χ)

H(χ) =

nc∑
i=1

hi(χ) (6.1)

and each cubic function hi(χ) reads

hi(χ) =

0, if χ ≤ ψ0,i

Ami
(x−x0,i)3
(1−x0,i)3 , if χ > χ0,i,

where ai are the coefficients of the cubic functions and x0,i are the locations of the
start of the morph. The number of cubic functions nc is equal to two in order to
represent also reflex cambered airfoil and the locations of the morphs are x0,1 = 0.4

and x0,2 = 0.7. The D-spar length x0,1 is set to 40% of the chord, following the
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FishBAC configuration [40]. The coefficients of the cubic functions are the design
variables of the morphing airfoil xm,te = {Am1 , Am2 }.

6.2.2 Deterministic results

With two different operating conditions and two different morphing strategies, four
optimization problems are performed, which are summarised in Tab. 6.5. Each op-
timization has been performed with an initial generation of 100 individuals and 10
generations of 55 individuals to widely explore the solution space. The results of
these optimization are reported in Tab. 6.6, where the first and second columns in-
dicate the morphing strategy and the objective, respectively. The last two columns
present the gain with respect to the optimal non-morphing airfoil, i.e. airfoil DA0.

The camber morphing involving the entire camber line permits to gain 23% with
respect to DA0 in the retreating side and 10% in the advancing side. In the latter
condition, the optimal solution obtained by the optimization is indeed the airfoil ob-
tained by summing the thickness distribution of DA0 to the camber line of airfoil
DA1, i.e. Thick DA0+Cam DA1. In the retreating side, the optimization is capable
of improving the drag coefficient of airfoil Thick DA0+Cam DA2 and at the same
time overcoming the problem associated with the moment coefficient constraint.

On the other hand, the trailing edge morphing improves the starting airfoil of 5%
in the retreating side, but it does not find better solutions than airfoil DA0 in the ad-
vancing side. A first explanation of this can be found in the fact that airfoil DA0 has a
shape more akin to DA1 than DA2 (see Fig. 6.1) and it is an airfoil that already greatly
reduces the wave drag coefficient of the reference airfoil (i.e. the NACA 23012 air-
foil shown in Tab. 5.5). However, the modification that the camber needs to undergo
to improve the performance in the advancing side (for example, a modification into
the camber line of airfoil DA1) is not compatible with the trailing edge modification
shown in Fig. 6.4b. This problem could be overcome only by changing the thick-

Case Objective Equality Inequality Design
constraints constraints variables

DMO1 minCD,1 CL1 = CL1 |CM1 | ≤ CM2 xm,c, α

DMO2 minCD,2 CL2 = CL2 |CM2 | ≤ CM2 xm,c, α

DTO1 minCD,1 CL1 = CL1 |CM1 | ≤ CM2 xm,te, α

DTO2 minCD,2 CL2 = CL2 |CM2 | ≤ CM2 xm,te, α

Table 6.5: Summary of optimization problems.
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Morphing Objective CD1 α1|CL1
CD2 α2|CL2

Gain Gain
[counts] [deg] [counts] [deg] side 1 side 2

Camber min f1 0.805 -0.945 192.3 11.502 +10%
Camber min f2 102.82 -2.5 135.7 9.62 +23%
TE morph min f1 0.8947 -1.059 177.8 11.1 0%
TE morph min f2 100.50 -1.93 169.2 10.045 +5%

Table 6.6: Performance of the deterministic airfoils obtained with two strategies for camber
morphing
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Figure 6.5: Airfoils obtained by morphing the camber mean line of airfoil DA0.

ness distribution together with the trailing edge modification. The best gain of such a
strategy may be defined only by an optimization problem combining the coefficient
of the thickness distributionAti, the coefficient of the mean lineAci and the coefficient
of the local trailing edge morph Ami .

To appreciate the difference in the morphing strategies, the optimal airfoils for the
retreating side are presented in Fig. 6.5. It is worth noting how the camber morphing
lifts up the camber line while maintaining the trailing edge location, and the trailing
edge morph deflects the trailing edge to achieve an increase in lift coefficient.

6.2.3 Robust results

From the deterministic optimization, valuable information has been obtained. In fact,
the preceding sections have shown how the camber morphing could potentially bridge
the gap between a non-morphing airfoil and an “ideal” morphing airfoil and that the
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Case Objective Inequality constraints Design variables

RMO1 max(µ(f1)) and min(σ2(f1)) |CM | ≤ CM xm,c
RMO2 max(µ(f2)) and min(σ2(f2)) |CM | ≤ CM xm,c

Table 6.7: Summary of robust optimization problems.

morphing over the entire chordwise distribution of the camber line is more effective
to this purpose. Starting from these results, the robust optimization problems are
tackled. The same formulation used in Chapter. 5 is maintained (Eq. (5.11)), but
the design variables used in this case are the design variable of the camber morph-
ing xm,c, as this technique is more effective. Two optimization problems are then
performed, which are summarised in Tab. 6.7.

Given the analysis of the previous chapter, the nominal operating conditions are
set from the deterministic results. In other words, the nominal operating condition of
the robust optimization in the advancing side is defined by the angle of attack α1 of
airfoil DMA1, while for the retreating side the nominal angle of attack is the angle
α2 of airfoil DMA2.

In the robust optimization problem (RMO2) the Pareto front shown in Fig. 6.6a
is obtained. To select an interesting airfoil from the Pareto set the same procedure
used in Sec. 5.4.2 is followed. Thus, the lift coefficient obtained in the samples over
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Figure 6.6: Results of the robust optimization for the retreating side (RMO2) .
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Airfoil CD,2|CL2
α1|CL2

µCD,2 σ2
CD,2

(σ/µ)CD,2
[counts] [deg] [counts] [counts2] [-]

DMA2 135.6 9.62 135.9 39.99 0.047
RMA2 136.6 9.62 136.7 40.06 0.046

Table 6.8: Drag coefficient of the deterministic airfoil minimizing CD2 (DMA2) and the
airfoil selected from the robust front in the retreating side (RMA2).
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Figure 6.7: Results of the robust optimization for the advancing side (RMO1) .

the stochastic domain are plotted against the target lift coefficient and an airfoil is
selected from the front. The selected airfoil is plotted in Fig. 6.6b together with the
deterministic airfoil DMA2. This airfoil is referred to as RMA2 and its performance
in the uncertainty range around the operating condition satisfying the lift constraint
are reported in Tab. 6.8. It is possible to note that airfoils DMA2 and RMA2 are very
similar and therefore they present similar performance. In this case, the result from
the deterministic optimization is a robust airfoil in itself. However, it is important to
note that this in general may not be the case and that robust optimization formulation
represents a procedure to guarantee that the optimal airfoils would not incur in lift
loss, drag increase or moment penalties throughout the uncertainty range.

The results of the robust optimization problem in the advancing side (RMO1)
are shown in Fig. 6.7a. In the Pareto front, airfoil RMA1 is hihglighted which is
chosen for its significantly low variance and average mean performance. The shape
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Airfoil CD,1|CL1
α1|CL1

µCD,1 σ2
CD,1

(σ/µ)CD,1
[counts] [deg] [counts] [counts2] [-]

DMA1 0.805 -0.945 3.99 31.09 1.4
RMA1 0.827 -0.894 5.07 43.57 1.3

Table 6.9: Drag coefficient of the deterministic airfoil minimizing CD1 (DMA1) and the
airfoil selected from the robust front in the advancing side (RMA1) with camber morphing.

of airfoil RMA1 is presented in Fig. 6.7b along with the deterministic optimal airfoil.
It is possible to note that even in this case the deterministic solution is very similar
to a non-dominated robust airfoil. The deterministic airfoil is also very robust, as
demonstrated by the values of the mean and variance presented in Tab. 6.9.

6.3 Validation with azimuth

After evaluating the performance in the advancing and retreating side, the drag coeffi-
cient of the optimal airfoils over the azimuth angle of the blade rotation is computed.
In the case of a morphing airfoil, a smooth transition from the optimal shape in the
advancing side to the optimal shape in the retreating side is required. The transition
over the azimuth angle ψ is obtained as follows

ζ =
ζ1

2
(1 + sin(ψ)) +

ζ2

2
(1− sin(ψ)) (6.2)

where ζ1 is the shape in the advancing side (ζ(90◦) = ζ1) and ζ2 is the shape in the
retreating side (ζ(180◦) = ζ2). The transition in the case of the “ideal” morphing

Figure 6.8: Shapes over the azimuth obtained by morphing DA1 into DA2.
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(a) Morphing DMA1 into DMA2. (b) Morphing DTA1 into DTA2.

Figure 6.9: Shapes over the azimuth.

DA1-DA2 is presented in Fig. 6.8, while the morphing shapes with geometrical con-
straints are shown in Fig. 6.9. The drag coefficient is then evaluated by following the
procedure explained in Sec. 5.5.

The values of the mean angle of attack and the first harmonic amplitude are com-
puted and reported in Tab. 6.10 for the following combinations: (i) DA1-DA2, i.e.
airfoil DA1 morphing into DA2, (ii) DMA1-DMA2, i.e. airfoil DMA1 morphing
into DMA2, and (iii) DTA1-DTA2, i.e. airfoil DTA1 morphing into DTA2. The lift
and drag coefficients for these airfoils are presented in Fig. 6.10. It is possible to note
that the greatest difference among these airfoils is the performance in the retreting
side, where the lowest drag coefficient is obtained for the “ideal” morphing and the
drag coefficient increases with increasing geometrical constraints. The performance
in the advancing side is comparable among the different morphing strategies, because
the viscous correction [148] is dominant with respect to the inviscid drag coefficient.

The average drag coefficient obtained with the “ideal” morphing and the camber
morphing are presented in Tab. 6.11. The table also includes the gain with respect
to the non-morphing optimal airfoil DA0 which is higher for the ideal case (22.6 %)
and reduces to 17.1% and 3 % in the case of the camber morphing and trailing edge
modification, respectively. It is clear that to obtain the maximum gain of the morph-

DA1-DA2 DMA1-DMA2 DTA1-DTA2

α0 [deg] 4.13 4.34 4.49
∆1 [deg] 4.95 5.10 5.36

Table 6.10: Variables of time-varying angle of attack (Eq. (5.12)) for optimal shapes.
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DA1-DA2 DMA1-DMA2 DTA1-DTA2

avg(CD) [counts] 76.44 81.84 95.14

Gain wrt DA0 22.6 % 17.1 % 3.6 %

Table 6.11: Average drag coefficient over the blade rotation period for morphing airfoils and
associated gain.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Mach number

C
L

 

 

0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

180

Mach number

C
D

 [
c
o
u
n
ts

]

DA1−DA2

DMA1−DMA2

DTA1−DTA2

Figure 6.10: Lift and drag coefficient loop of DA1-DA2, DMA1-DMA2 and DTA1-DTA2.

ing strategies, an optimization which can model the thickness distribution as well is
necessary.





CHAPTER 7

Conclusion

A methodology for robust optimization has been developed to tackle the problem of
designing fixed and morphing airfoils of helicopter rotor blades. Robust optimization
requires the coupling of the uncertainty quantification method and the optimization
algorithm. This coupling increases the computational demand, especially in aerody-
namic applications, where a single function evaluation may be very expensive. Two
different methods have been developed to improve the numerical efficiency of the
robust optimization coupled loop.

The first solution is the multi-fidelity strategy based on two different models
of the aerodynamics which have different accuracy and computational cost. In the
aerodynamic application, a rapid estimation is obtained by means of a panel/integral
boundary layer method for the stochastic sample associated with subsonic flow con-
ditions, while a coupled Euler equations/integral boundary layer solver is employed
for those operating conditions in the stochastic variables domain that exhibit impor-
tant compressible effects. A switching logic is used for each design to determine
which samples should be computed by the rapid low-fidelity or by the high-fidelity
codes. The adaptive strategy, on the other hand, reduced the number of function eval-
uations by computing the statistics with higher accuracy only for the solutions which
are interesting for the optimization loop. This method uses a definition of the Pareto
front based on the error bounding boxes, i.e. the error affecting the estimate of the
objective function.

Both strategies have been applied to algebraic test cases and to the hovering op-
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timization problem. In the latter application, the multi-fidelity strategy reduced the
computational cost by 60% with respect to the high-fidelity strategy, and results in
Pareto airfoils consistent to the high-fidelity results. Thus, the proposed method is
well-suited to indicate regions of improvement in the design space, which can be later
analysed in detail by means of a high-fidelity model. In addition, the multi-fidelity
strategy could be easily applied to other models at one’s disposal, and it could be
extended to other flowfield characteristics and physical models. On the other hand,
the adaptive strategy method has reduced the computational cost of the aerodynamic
test case by 40%. However, the accuracy of the front in this case is even higher owing
to the fact that the non-dominated solutions are computed with the tight tolerance.

In the hovering optimization problem the robust optimization method proved ef-
fective in finding airfoils that improve the aerodynamic lift-to-drag-ratio, by postpon-
ing the boundary layer transition to turbulence in the subsonic case, and by reducing
the drag due to compressibility effects in the low transonic case, in the range of con-
sidered operating conditions.

In the forward flight case, deterministic results have proven how different the
optimal airfoils for advancing blade is compared to the retreating case. Comparison
with the robust approaches have shown similarities and differences between the use
of the drag coefficient as a deterministic objective and the employment of the lift-to-
drag ratio in a robust context.

Morphing airfoils have been considered as a possible solution to cope with the
variable flow conditions encountered by blade element in forward flight. Determinis-
tic estimates prove that an “ideal” morphing can increase the performance of an op-
timal non-morphing airfoils by 22.6 % on the average drag coefficient, and by 17 %
when thickness constraint is considered. Results obtained with the trailing edge mor-
phing are not satisfactory and it is required to include the thickness distribution in the
design variables to assess the full potential of this geometry modification.

The employment of robust optimization is thus expected to be of great interest in
the application of helicopter rotor airfoils, owing to the fact that even the airfoils with
higher mean values achieve low values of the variance of the aerodynamic efficiency
with respect to variations of the angle of attack. The reduction of the variance could
lead for instance to a reduction of the required rotor shaft torque in variable operating
conditions. Furthermore, in the different applications presented in the thesis, results
have demonstrated how the robust optimization formulation represents a formal pro-
cedure to guarantee that the optimal airfoils would not incur in lift loss, drag increase
or moment penalties throughout the uncertainty range.

Future works will be devoted to the unsteady assessment of the morphing ge-
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ometries to ultimately verify the result of the steady optimization. In addition, an
optimization including the thickness distribution as a design variable will be con-
sidered for the morphing cases. With regard to the robust technique developed in
the thesis, the joint employment of the multi-fidelity method and coupled adaptive
approach will be explored to further improve numerical efficiency. Furthermore, an-
other important aspect when using robust optimization in real-world application is
the possibility to handle arbitrary probability distributions. Thus, a feature perspec-
tive is to include moment-based PC or generalization of the stochastic collocation.
Finally, the novel strategy reported in Appendix B for dealing with optimization un-
der uncertainty is worth being further investigated for test problems of engineering
interest, in particular in the framework of rotorcraft airfoil optimization.





Nomenclature

α Angle of attack [deg]
β Coefficient for multi-objective optimization problems
ε Camber line slope angle
ε Error of the objective function estimate
εµ, εσ2 MC errors on the mean value and variance obtained with SSC
ε̂µ, ε̂σ2 Estimated errors on the mean value and variance obtained with SSC
ε̃µ, ε̃σ2 Conservative estimated errors on the mean value and variance

obtained with SSC
ζ Non-dimensional coordinate of the airfoil
θ Blade pitch angle [deg]
µ Mean value
µr, µrc Statistical moment and centered moment
νk Coefficient of the PC expansion
ξ Uncertain variable
Ξ Stochastic variables domain
Ξc Set of control points in the stochastic variables domain
Ξs Set of samples in the stochastic variables domain
φ Solution of the system governing equations
ϕ Univariate polynomial used in PC expansion
τ Tolerance of the adaptive uncertainty quantification method
χ Non-dimensional chordwise coordinate of the airfoil
ψ Azimuth angle
Ψ Multivariate polynomial used in PC expansion
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ω Angular frequency [rad/s]
Ω Rotor angular frequency [rad/s]
a,b Design vectors
Am Coefficient of shape parameterization for trailing edge morph
Ac, At Coefficient of shape parameterization for camber and thickness
c Airfoil chord
B Bounding box set
C Control function
C Threshold value of control function
CL, CD, CM Lift, drag and moment coefficient
CL Target lift coefficient
CM Bounding moment coefficient
D Spatial domain
f Objective function
f Objective functions vector
F σ-field of probability space
h Cubic function for trailing edge morphing
H Trailing edge morphing function
L Lift
L Operator of the system model equations
k Reduced frequency, k = ω c/2V∞
m Number of objective functions
M Mach number
n Number of design variables
nξ Number of uncertain variables
ne Number of elements in SSC
nmc Number of Monte Carlo samples
ns Number of samples in the stochastic space
no Order of the PC univariate polynomial
nQP Number of quadrature points
N Number of terms in PC truncated expansion
N Order of the CST Bernstein polynomials
N1, N2 Exponent of CST class function
P Pareto set
q Number of constraints
r Percentage of blade radius
R Blade radius
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T Temporal domain
t Time variable
u Performance or quantity of interest
V∞ Freestream speed
w Approximating function in SSC
x0 Initial location of cubic function for trailing edge morph
x Design variables
xm,c Design variables for camber morph
xm,te Design variables for trailing edge morph
X Design variables domain
y Spatial variables
YP Image of the Pareto set





List of abbreviations

BIMADS Bi-objective Mesh Adaptive Search Algorithm
CFD Computational Fluid Dynamics
DO Deterministic Optimization
DMO Deterministic Morphing Optimization
HF High Fidelity
LF Low Fidelity
NISP Non-Intrusive Spectral Projection
NSGA Non-dominated Sorting Genetic Algorithm
PC Polynomial Chaos
RO Robust Optimization
RMO Robust Morphing Optimization
SSC Simplex Stochastic Collocation
UQ Uncertainty Quantification





APPENDIX A

Deterministic aerodynamic benchmark case

In this appendix, the Non-Dominated Sorting Genetic Algorithm used throughout the
thesis is applied to the minimization of the drag coefficient of an isolated airfoil in
transonic flow. This optimization problem is the first of a set of test cases proposed
by the AIAA Aerodynamic Design Optimization Discussion Group to establish a
series of increasingly complex set of benchmark problems suitable for exercising
aerodynamic optimization methods in a constrained design space [129]. The first test
case was taken by Ref. [151] and it is a constrained minimization problem.

Benchmark problem

The benchmark optimization problem is a minimization of the drag coefficient Cd of
a modified NACA 0012 at a freestream Mach number of 0.85 at zero angle of attack
with a constraint on the minimum thickness of the airfoil. In mathematical terms, it
reads

minimize : Cd,

subject to : y ≥ ybaseline ∀x ∈ [0, 1] (A.1)

with respect to the design variables x. The baseline airfoil ybaseline is the NACA
0012-mod airfoil, which is obtained by imposing zero-thickness at the trailing edge
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and it is defined as follows

ybaseline = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
.

The other constraint of the optimization problem is the equation of state of the system,
that is the governing equation of the aerodynamics. The benchmark problem requires
the aerodynamic model to be the Euler equations with a constant ratio of specific heat
of 1.4.

Shape parameterization

In order to define a finite set of design variables x ∈ Rn, a parameterization is re-
quired. The airfoil is described by means of a parameterization called Class/Shape
function Transformation (CST) [126], described in Sec. 4.2.3. The CST is first ap-
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Figure A.1: Results of the shape parameterization for the NACA 0012-mod airfoil.
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plied to represent the NACA0012-mod airfoil; the coefficients of the CST are ob-
tained by means of a least squares approach for several orders of the polynomial. Fig-
ure A.1a shows that the CST is capable of representing the reference airfoil and that
the error decreases with increasing polynomial order. In particular, with a third-order
polynomial, the mean quadratic error of the CST attains a value lower than 10−8 and
a very good representation of the reference airfoil is obtained (see Fig. A.1b). Note
that a third-order CST corresponds to four design variables.

Aerodynamic model and mesh convergence

The evaluation of the objective function is performed by means of a Computational
Fluid Dynamics (CFD) solver which provides the aerodynamic loads of the airfoil
given its shape and operating conditions. The numerical solver of the Euler equations
implemented in the Stanford University Unstructured (SU2) software suite [143, 146]
is employed. The solver provides several space discretization schemes, among which
the second-order JST scheme is employed. An implicit Euler, local time-stepping is
used to converge to the steady-state solution, and the GMRES method in conjunction
with the LU SGS preconditioner is used to solve the resulting system.

With regard to the computational domain, half of a circular domain around the
airfoil is considered. In fact, the solution of the optimization problem is expected to
be symmetrical, because the angle of attack is set to zero and the optimization objec-
tive is the minimization of the drag of the airfoil. Thus half of a O-mesh extending

(a) 64×128 mesh.
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Figure A.2: Mesh convergence for the NACA 0012-mod airfoil.
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(a) Pressure coefficient on the airfoil. (b) Pressure coefficient contour.

Figure A.3: Pressure coefficient of the NACA 0012 mod (please note that the airfoil in the
left figure has been scaled for visualization purpose).

± 30 chords away of the airfoil is considered. Farfield boundary conditions are ap-
plied to the external half-circle, slip condition is applied to the airfoil boundary and
symmetry conditions are applied to the lines connecting the leading edge and trail-
ing edge of the airfoil to the farfield boundary. The benchmark problem required a
mesh convergence study that is here considered only for the drag coefficient because
of the employment of the symmetry property of the problem. For the baseline air-
foil, several mesh grids are created by halving the number of cells in each direction:
an example is shown in Fig. A.2a. In addition to this first set of mesh, a fine mesh
based on 512×512 cells is considered as a tradeoff between the 256×512- and the
512×1024-mesh. The values of the drag coefficient are presented in Tab. A.1, and the
difference with respect to the drag coefficient of the finest grid CD512×1024 is plotted
against the size of the mesh in Fig. A.2b. The convergence trend is clear and based
on the result of this analysis, the grid with 256×512 cells has been chosen because
it provides an error within 0.1 drag counts with respect to the subsequent refinement,
and a difference of 0.16 drag counts with respect to the finest grid. Furthermore, it is
worth noting that the computational model provides an estimate that compares well
with the results in the benchmark reference [151]. Also the pressure distribution over
the airfoil and in the domain (Fig. A.3) is in agreement with the result of the litera-
ture: due to the high Mach number the NACA 0012 airfoil presents a strong shock at
about 75% of the chord and it suffers from a significant wave drag.

Once the mesh size is set up, the CFD solver is integrated in the optimization
loop. Each computation of the flowfield of a new design is obtained starting from



193

32×64 64×128 128×256 256×512 512×512 512×1024

CD 0.0434738694 0.0465975412 0.0456345116 0.0457837056 0.045789711 0.04579979

Table A.1: Estimates of drag coefficient of the NACA 0012 mod.

the baseline computation and applying a suited displacement to the airfoil boundary
of the mesh. The displacement is then propagated from the boundary to the closer
mesh volumes by means of a mesh deformation method. The solver provides a mesh
deformation tool based on the finite element method discretization of the linear elas-
ticity equations; in this case the element stiffness is inversely proportional to the cell
volume and 500 smoothing iterations are applied to get a regular deformed mesh.

Optimization algorithm

In the present work, the optimization strategy is based on the Non-dominated Sorting
Genetic Algorithm (NSGA) [67]. Typical values for the crossover and mutation prob-
abilities pc, pm are used, i.e. 0.9 and 0.1 respectively, and the geometric constraint
is imposed by penalization of the fitness function. An initial Design of Experiment is
performed with 100 individuals and the following generations are based on 60 design
vectors. The algorithm was implemented in parallel mode, by using MPI libraries.

Results

Initially, four design variables have been considered to perform the optimization,
based on the result discussed in Section 3.2.1. After the initial DOE and 10 gen-
erations, a reduction of 158 counts has been achieved (see Table A.2) that seemed
in agreement with the results presented in the benchmark reference work [151] ob-
tained with a a Bezier curve parametrization with 3 design variables. The contour
of the pressure coefficient and the pressure distribution of this airfoil are presented
in Fig. A.5. Nevertheless, the optimal result appeared quite far from the final goal
reported by Ref. [151], and thus it was deemed that the number of design variables
was not sufficiently high to describe an airfoil with higher performance.

Therefore, it has been decided to increase the number of design variables to re-
lease the level of freedom of the optimization problem. Thus, a 9-th order Bernstein
polynomial has been chosen, which corresponds to ten design variables. In this case,
the range of the coefficients has been reduced to avoid the regions in the design
space that would yield unfeasible geometries (e.g. geometries with too many inflec-
tion points). Twenty generations after the original DOE have been computed which
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(a) Optimal airfoil.
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Figure A.4: Results of the aerodynamic optimization.

correspond to 1300 individuals; the optimal airfoil is presented in Fig. A.4a, with a
comparison with the baseline airfoil. The figure shows that the geometric constraints
is satisfied by the optimal solution. The evolution of the minimum and mean values
of the objective function is shown in Fig. A.4b. It is noticeable that the convergence
of the mean value is monotonic, and that a great improvement with respect to the
reference airfoil is evident from the very first generation. As a matter of fact, genetic
algorithms are very sensitive to the result of the initial DOE which has to be carefully
prepared to get a rough yet comprehensive representation of the performance in the
design space. The evolution is then capable of reducing the initial minimum by 20%,
whereas globally the drag coefficient is reduced of about 340 counts with respect to
the baseline airfoil. A similar reduction was reached in Ref. [151] using 24 design
variables. The resulting optimal design presents a blunt trailing edge with a flat re-
gion that extends for the great majority of the chord length (Fig. A.6). Because of
the shape of the airfoil the strong shock wave that would occur for the NACA 0012
airfoil is almost split into two contributions: one close to the leading edge and the
second one close to the trailing edge. The first shock wave appears less steep with
respect to the results of the literature owing to the lower local curvature of the air-
foil that reaches the maximum thickness more gradually. The second shock instead
appears stronger and results in an increased drag coefficient. Finally, a grid conver-
gence analysis has been performed for the optimal design obtained with 10 design
variables to assess the accuracy of the estimate. The result is reported in Table A.3
which proves the convergence of the estimates.

To sum up, the optimization method based on a genetic algorithm and the CST
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(a) Pressure coefficient on the airfoil. (b) Pressure coefficient contour.

Figure A.5: Pressure coefficient of the resulting optimal airfoil when four design variables
are considered (the airfoil in the left figure has been scaled for visualization purpose).

(a) Pressure coefficient on the airfoil. (b) Pressure coefficient contour.

Figure A.6: Pressure coefficient of the resulting optimal airfoil (the airfoil in the left figure
has been scaled for visualization purpose).

NACA 0012 Optimal airfoil Optimal airfoil
(4 design variables) (10 design variables)

0.045784 0.029953 0.011862

Table A.2: Comparison of drag coefficient.

shape parameterization has proved capable of computing a new design with a perfor-
mance improved by 70% with respect to the baseline airfoil, and in agreement with
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64×128 128×256 256×512 512×512 512×1024

CD 0.011763 0.011901 0.011862 0.011829 0.011849

Table A.3: Estimates of drag coefficient for the optimal airfoil with increasing mesh size.

the results of the literature. The CST shape parametrization proved very effective,
since it has been possible to achieve these results with only 10 design variables. In
addition, the method has dealt with geometric constraints with success.



APPENDIX B

An alternative formulation for design under uncertainty

As presented in Sec. 2.1, a problem of uncertainty-based optimization can be for-
mulated in several ways depending on the application and final goal. “Classical”
formulations typically relies on the computation of the mean value, the variance, or
a function of the two. These quantities however may not be capable of decribing in
a comprehensive way the Probability Density Function (PDF) of the output, which
represents the behavior of the system. In recent years efforts have been made to
find formulations which exert a control on the PDF of the performance inside the
optimization loop [152, 153]. Nevertheless, the computation of the PDF inside the
optimization loop may increase the computational cost, and defining an attainable
target PDF may often be difficult, because the PDF is a feature of the problem and it
is not known a priori in most cases.

Another example is the work presented in Ref. [154], which considers the influ-
ence of high-order statistics during the optimization process. The aim here is to pro-
vide some useful indications for obtaining a good trade-off between the high-quality
information given by high-order statistics and the feasibility of the whole optimiza-
tion loop. In particular, a multi-objective optimization method taking into account
high-order statistic moments, such as the third and fourth-order statistic moments,
i.e. skewness and kurtosis, respectively, is considered. From this work it appears that
the skewness may not be very useful in the definition of the optimization objectives
to control the PDF, because it is difficult to handle in the optimization loop and it
does not limit the tails of the PDF.
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Here, an alternative formulation for design under uncertainty is explored, which
is based on the computation of the mean value and the minimum of the function. The
aim of the method is to exert a stronger control on the system output variability in
the optimization loop at a moderate cost. This would reduce post-processing analysis
of the PDF of the resulting optimal designs, by converging rapidly to the interesting
individuals. In other words, in the set of designs resulting from the optimization, the
new approach should be capable of discarding poor-performance design. Also, no a
priori assumption on the optimal PDF is made.

Optimization problem

In an uncertainty-based optimization, the objectives are formulated to drive the vari-
ability of the performance u with respect to changes in the uncertain variables ξ to
a desirable behavior, by acting on the design variables x [155]. Choosing the objec-
tives in an uncertainty-based optimization basically means choosing the statistics of
the performance that one wishes to optimize. In this work, a different formulation is
presented with the goal of inserting comprehensive information about the PDF of the
performance in the optimization loop at a moderate cost, and without conditioning
the result with constraints or targets. The novel strategy is also explored to assess if
a particular choice of the objectives could influence the global cost of the optimiza-
tion problem, for instance by reducing the number of the final optimal designs. In
the new approach, the mean value of the performance is accompanied by the mini-
mum of the performance. By maximizing both the mean value and the minimum, the
optimization addresses the problem of finding a design that guarantees a desirable
minimum performance while maintaining high mean performances. In addition, this
approach could be suited to tackle reliability-based design problems, where the goal
of the optimization is to reduce the occurrence of undesired system response (e.g.
failures). Although the current work only explores problems related to enhancement
of the performances, reliability-based design is deemed a possible application of the
novel formulation and it will be explored in future work.

In a probabilistic framework (see Sec. 2.3), the uncertain variables are treated as
continous random variables in the stochastic space Ξ and they are assigned a proba-
bility density function pξ. The objectives of the optimization are measures of the re-
sponse of the system under consideration to changes in the random variables. When
the formulation based on the minimum minu is considered the optimization problem
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in Eq. (2.4) reads

maximize: µu (x, ξ) ,minu (x, ξ)

subject to: g (u (x, ξ)) ≥ 0

by changing: x ∈ X . (B.1)

The performance u is typically a function of the solution of the equations describing
the system under consideration which can be defined as follows

L (x, ξ;φ(x, ξ)) , (B.2)

where L is the mathematical operator of the equations and ϕ is the solution vector
and u = u(φ). In the next section, the computation of the minimum in the uncertainty
quantification method is discussed.

Computation of the minimum

The computation of the minimum is performed in three different ways. The first,
straightforward approach is the computation of the minimum value among the sam-
ples obtained for each point of a given quadrature formula (in this case, a Gaussian
quadrature). This solution is referred to as Quadrature Point (QP) minimum compu-
tation and it is expressed as follows

min
ξi∈NQP

v (ξi) , (B.3)

where v is the output of the system, i.e. the quantity of interest, given a particular
design and ξi are the samples drawn in the nξ-dimensional stochastic space belonging
to the set NQP of nQP quadrature points.

The other two methods compute the minimum by leveraging the analytical ap-
proximations provided by two uncertainty quantification methods: (i) the Polynomial
Chaos expansion, and (ii) the Simplex Stochastic Collocation, described in Sec. 2.3.2.
The former provides a meta-model of function v over the entire stochastic space,
starting from the set of nQP samples v [91]. On the other hand, SSC computes a
polynomial approximation either on the whole domain (when the global extremum
diminishing condition is satisfied [93]) or on each element Ξj in which the grid is
divided into.

From the analytical approximationw (either the truncated PC expansion of Eq. (2.27)
or the piecewise polynomial of the SSC in Eq. (2.37)), the gradient of the response for
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each design is computed and it is employed in a descent method based on Newton-
Raphson iterations. From the location ξk at the k-th iteration, the new minimum
location ξk+1 is obtained using the descent step size γ and the descent direction dk
computed from the gradient ∇w(ξk) and the Hessian H(ξk) of the analytical func-
tion in the current point:

ξk+1 = ξk + γdk

H(ξk)dk = ∇w(ξk). (B.4)

If the Hessian is singular, the descent direction is taken proportional to the gradient.
In the case of the PC expansion, the loop is started with the sample with lower value
of function v, i.e. the minimum of the QP approach. With the SSC method, if a global
interpolation is employed, the strategy used with PC still holds. Instead, when a local
interpolation is employed, the descent method described in Eq. (B.4) is applied to
each element Ξj in the stochastic grid and then the lower value of the local minima
found on each element is computed.

It is worth noting that the underlying idea on building a meta-model of the func-
tion v is that the cost of sampling Eq. (B.2) is very high from a computational point
of view. For instance, in the case of aerodynamic design, a Computational Fluid Dy-
namics (CFD) code is used to implement the equations of state, and a single CFD run
can easily be 1000 times slower than the operations of a single optimization iteration.
It follows that the cost of drawing a new sample is far higher than the cost of solving
the iterative method in Eq. (B.4) to compute the minimum, because this procedure
does not involve further sampling of Eq. (B.2).

Results

The novel optimization strategy is based on the mean and minimum values. While
the mean value is a typical quantity in uncertainty quantification, an assessment of
the computation of the minimum is required as this is a key feature of the new ap-
proach. Thus, the first section presents the result concerning the computation of the
minimum. In the second part, the impact of the minimum on the optimization loop
is assessed. Thus, the results first include the assessment of the techniques presented
in the preceding section to compute the minimum. Secondly, the impact of the mini-
mum on the optimization loop is discussed.
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Figure B.1: Errors of the variance and the minimum for two-dimensional Michalewicz func-
tion computed with PC (grey circles) and QP (black squares).

Computation of the minimum

The computation of the minimum is applied to the Michalewicz function, a very chal-
lenging test case for optimization algorithms, which presents one global minimum,
many local minima and wide, flat regions [116]. The function u(ξ1) is considered
here in the one-dimensional stochastic space, and it reads

u(ξ1) = − sin(ξ1) sin20

(
ξ2

1

π

)
(B.5)

where the uncertain variable has uniform distribution in the interval [0, π]. This test
case is tackled by means of QP and PC approaches and the results of the errors for
the variance and the minimum are presented in Fig. B.1a and Fig. B.1b, respectively.
The QP estimate of the minimum presents some oscillations and the error remains
higher with respect to the estimates obtained with the PC and SSC methods. In these
cases, the error affecting the variance is slightly faster and it reaches a value close
to the machine epsilon, whereas the error on the minimum remains a few order of
magnitude larger. As a matter of fact, since the minimum is a point value, it is gen-
erally more difficult to be well captured with respect to an integral value. However,
an error of magnitude -10 is acceptable for use in the optimization loop. Thus, the
results prove that computing the minimum has only a slightly higher cost with respect
to computing the variance and that it is better to resort on functional approximation



202 An alternative formulation for design under uncertainty

instead of using quadrature points.

Optimization with minimum

To assess the impact of the computation of the minimum a modification of the Michalewicz
function [116] is considered. The function depends on two uniformly distributed
uncertain variables in the interval [0, π], and on two design variables: x ∈ X =

[0.1, 1]2. The modified function reads

u(x, ξ) = M(x, ξ) +G(x, ξ) + P (x, ξ)

M(x, ξ) = −
2∑
i=1

sin(ξi + x1) sin20

(
i (ξi + x1)2

π

)
G(x, ξ) =

1

2πx2
exp
− (ξ1−π/2)

2

2x2
− (ξ2−3π/4)2

2x2

P (x, ξ) = 0.2 (ξ1 − π/2) (ξ2 − π/2) (B.6)

TermM is a modification of the Michalewicz function with a phase angle equal to the
first design variable, term G represents a bell function employed to uncorrelate the
mean and the minimum, and the function P is added to avoid the flat regions of the
original function that would yield a high peak of the PDF at zero. The optimization
problem seeks the set of design that maximize both the mean value and the minimum

max
x∈Σ

(µu,minu) . (B.7)

The optimization is performed by means of the Non-dominated Sorting Genetic
Algorithm (NSGA) in the formulation by Deb [156] with a population of 40 individ-
uals and a number of generations equal to 60.

Figure B.2a presents the Pareto fronts obtained using the minimum computa-
tion based on a Polynomial Chaos representation of 50-th order, the corresponding
Quadrature Points, and a random sampling on the analytic function with 500000 sam-
ples which is taken as a reference. The SSC is not considered here for this explorative
case. The solution found by the PC-based approach compares well with the reference
result, while the approach based on the QP ends up on a different front and a differ-
ent set of optimal designs, as presented in Fig. B.2b. Because the computation of
the minimum based on the PC expansion proves robust and effective, it will be the
method of choice in the following analysis.

The results of optimization (B.7) are now compared to the results obtained for
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Figure B.2: Optimization results for the two-dimensional modified Michalewicz function in
Eq. (B.6) obtained with PC (light grey squares), QP (grey circles) and sampling on analytical
function (black plus markers).

the same problem and with the formulation of robust design that maximizes the mean
value and minimizes the variance σ2:

max
x∈X

µu ∧ min
x∈X

σ2
u. (B.8)

The Pareto fronts obtained with the two different formulations are presented in the
µ,min-plane in Fig. B.3a and in the µ, σ2-plane in Fig. B.3b. It appears that both
strategies are capable of finding the sets of design with higher mean values, where
both fronts completely overlap. However, the minimum-based optimization discards
the branch composed of the designs with minimum variance, because they are dom-
inated in the µ,min-plane. On the other hand, the front obtained by maximizing the
mean and minimum values includes a branch with higher minimum values, which,
in turn, the robust optimization cannot find. It is thus evident that the optimization
based on the mean value and the minimum results in the subset with higher mean per-
formance of the front obtained with the classical robust approach, but it also contains
a branch with improved minimum values. Please note that in many applications, the
solutions with very low variance comes at the expense of very poor performance val-
ues, to the extent that these solutions may be rejected in the decision making stage.
In these cases, it is clear the benefit of a method that detects solutions with high mean
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Figure B.3: Optimization results with different formulations: minimum-based optimal solu-
tions (light grey squares) and variance-based optimal solutions (black crosses)

value in the µ, σ2-front.
Three optimal solutions from the non-overlapping branches are compared: from

the optimization based on the mean value and variance, the design with optimal vari-
ance (A) is selected and, from the optimization based on the minimum, the designs
with optimal variance (B) and optimal minimum value (C) are chosen. For these
designs the PDF of function u is plotted in Fig. B.4. The functions share a similar
shape, although the PDF of design B has higher mean value. It is interesting to note
that for this particular case, despite a lower mean value of the performance, the design
with greatest minimum may be an interesting solution for design purposes, because
it possesses not only zero probability of low performances, but also the highest max-
imum value of the performance. This solution would never show up in the classical
optimization based on the mean value and the variance. The optimal designs have
been obtained without any assumptions on the final shape of the PDF, proving that
the method is well suited for exploration of the optimization problem.

As a final remark, the size of the optimal set of designs obtained with the new for-
mulation is comparable to that obtained with the classical approach. In fact, because
the function of the test case in Eq. (B.6) is designed in order to uncorrelate the mean
value, the result is a wide Pareto front. However, in the engineering case tackled in
Ref. [154] the Pareto front obtained with the novel approach is much smaller with re-
spect to the other; the difference in the size of the optimal set speeds up convergence
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Figure B.4: PDF of selected optimal designs: design A (light grey solid line), design B (grey
dashed line) and design C (black solid line).

µu σ2
u minu

A -0.1469 0.1341 -1.763
B -0.1342 0.1368 -1.753
C -0.1589 0.1491 -1.562

Table B.1: Performance of the selected optimal designs.

of the genetic algorithm to the final results, reducing the computational effort of the
novel formulation.

Conclusions

A novel formulation for design under uncertainty have been explored, which is aimed
at maximizing both the mean value and the minimum of the performance. Three
methods for computing the minimum are presented, which are based on the Polyno-
mial Chaos expansion and the Simplex Stochastic Collocation. The method based
on the quadrature points of the PC expansion appears less efficient with respect to
the other strategies which directly exploit the continuous analytical approximations
provided by these methods. The computation based on the PC expansion is effective
and because it is the most straightforward and widely-employed method for uncer-
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tainty quantification, it may be the method of choice for this new formulation. With
regard to the impact on the optimization loop, the method has proven effective in se-
lecting only the designs with higher mean performance from the front obtained with
the classical robust approach, and in finding new interesting designs with improved
minimum values. As a matter of fact, this exploratory study represents one of the first
result in which a set of optimal designs is found which is discarded with a classical
approach.

Future activities will be devoted to consolidate the computation of the minimum.
In particular, the implementation of a refinement strategy based on the minimum in
the SSC algorithm will be developed and assessed for different test cases with the aim
of further reducing the computational cost of the new formulation. In addition, test
cases of engineering interest will be solved with the new optimization formulation
and compared to existing strategies. In this case, because reliability-based analysis
seems to be a natural application of this formulation, test cases of this problem will
be considered.
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