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Abstract

RAIL vehicle dynamics and wheel-rail contact mechanics are two relevant issues
in railway engineering and have been subjected to extensive research since the
advent of railways. The powerful computing technique facilitates the problem

solving process. However, the conclusions coming from numerical simulations can-
not be applied into practice before validation normally by experiments in laboratory or
field. The field experiments for these purposes are often challenging due to the diffi-
culties in adequately controlling the test conditions. Roller rigs are a good alternative
in this case because they can offer a repeatable environment for a specific test and al-
low for the use of multiple sensors and data acquisition equipment either difficult or
impossible to use in the field. Full-scale roller rigs for tests on a single wheelset are
recognized as useful test stands to investigate wheel-rail contact/damage issues and to
develop new solutions to extend the life and improve the dynamic behaviour of railway
systems. The replacement of the real track by a pair of rollers on the roller rig causes,
however, inherent differences between wheel-rail and wheel-roller contact. In order to
ensure efficient utilization of the roller rigs and correct interpretation of the test results
with respect to the field wheel-rail scenarios, the differences and the corresponding
causes must be understood a priori.

The aim of this thesis is to derive the differences between these two systems from
both contact mechanics and dynamics points of view based on a full-scale single wheelset
roller rig and to find the influence factors of the differences, with the final aim of better
translating the results of tests performed on a roller rig to the field case, demonstrat-
ing the ability of the experiment and further exploiting the best potential of this test
equipment for rail vehicle dynamics and wheel-rail contact study.

In this thesis, an approximate non-Hertzian contact model has been developed for
dealing with the wheel-rail and wheel-roller contact problems, which is an extension
of the well-known Kik-Piotrowski model with some significant improvements in the
accuracy and wider application scope. Furthermore, advanced methods have been pro-
posed to best reproduce the dynamic behaviour of a wheelset in a running condition of
interest as obtained either from multibody system simulation or from on-track measure-
ments based on the existing theories and experimental experiences, which will mark a
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step forward with respect to presently exiting methods and allow for much increased
accuracy of the roller rig tests and widening the scope of ability of this kind of facil-
ity. Based on the testing methods developed in this thesis, two typical tests namely the
curving test and the wheel wear test on a full-scale roller rig are described in detail.
The proposed contact model and roller rig testing methods are expected to be of benefit
to a number of institutions which operate roller rigs.
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CHAPTER1
INTRODUCTION

With the rapid development of high-speed train all over the world, the railway tech-
nology has received a renewed interest more than ever. The traditional problems such
as rail corrugation and derailment mechanisms have not been understood completely
yet and newly emerged problems for modern trains such as mechatronics and aero-
dynamics become the main concerns in the design of the new generation high-speed
trains. Vehicle dynamics and wheel-rail contact mechanics are the most relevant issues
among others in railway engineering [93]. In order to better understand the mechanisms
underlying the phenomena, many attempts have been made from both theoretical and
experimental points of view. However, field experiments on wheel-rail contact mechan-
ics and vehicle dynamics in some special scenarios can prove to be challenging due to
the difficulties in adequately controlling the test conditions and data acquisition [58].
Roller rigs are a good alternative to carry out experiments in such cases, thanks to
their high controllability and flexibility. They have been used in the railway research
community for more than one century for contact theory validation, suspension system
optimisation, testing of new concept components, etc. The role they played becomes
more and more important in the development of the railway industry.

A few test rigs with new features have been developed recently to meet the demands
of rapid development of railway industry around the world, such as the newly opened
full-scale roller rig for a single wheelset test in China Academy of Railway Sciences
(CARS) [38, 73], another similar one in Korea Railroad Research Institute (KRRI) [1],
a full-scale test rig in the Osmannoro Railway Research Centre in Florence, Italy [38],
and other two are going to be put into service, one of which is a full-scale roller rig at
the University of Huddersfield in the UK, while the other is a scaled test rig at Delft
University of Technology in the Netherlands [81].

Among all of the existing roller rigs, the full-scale roller rig for a single wheelset

1
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Chapter 1. INTRODUCTION

test is one of the most similar test devices to real wheelset-track system in such a simple
configuration from both dynamics and contact mechanics points of view. It represents
the best compromise between cost and test ability without loss of the coupling property
between dynamics and contact for a suspended wheelset system. Therefore, it has been
selected as the main study subject in this work. The BU300 roller rig at Lucchini RS
in Italy and the RaSSP roller rig owned by DB Systemtechnik in Germany as shown in
Figure 1.1 are the typical practical applications of this kind of roller rig. More details
about roller rigs and their applications will be given in Chapter 2.

Figure 1.1: The BU300 rig at Lucchini RS (left) and the RaSSP rig at DB Systemtechnik (right) [99].

1.1 Motivations and aims

The roller rigs offer the advantages that the experiments are independent of weather
conditions, individual phenomena can be investigated, the experiments and the con-
straints as well as the particular conditions are reproducible [47]. Though there are
considerable differences between the dynamics of railway vehicles on roller rigs and
on real tracks, these rigs have been proved useful for both basic research and develop-
ment of innovative designs, as well as for the optimisation of suspensions and vehicle
components. However, it should be kept in mind that the roller rig test will never com-
pletely replace the field test, due to inherent differences caused by the replacement of
the rail by rollers in a roller rig system. Therefore, it is very important to understand
the differences between the roller rig test and field test, to find the corresponding causes
of the differences, to correctly interpret the test results and to find countermeasures for
deviations that might arise between the test on the roller rig and a field test. It is clear
that the choice of testing method and the interpretation of testing results are the keys
of success to running the tests on a roller rig. However, the description of the testing
method, the explanation of the testing principle, the systematic analysis of wheel-roller
contact and its differences with respect to the wheel-rail case, the interpretation of the
final testing results, and especially the challenges faced in the curving test are seldom
addressed in the literature.

There are two principal goals of this thesis: the first is to explore the potential abili-
ties of roller rigs, a full-scale single axle roller rig in particular, based on a comprehen-
sive investigation of the capability of the roller rig to study of the rail vehicle dynamics
and wheel-rail contact from theoretical and experimental points of view and the second
is to develop an advanced contact model and a complete testing method for interpreting

2
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1.2. Methodology and contributions

and translating the testing results on the rig to the corresponding field test case.
The outcomes of this research will hopefully be of benefit to a number of institutions

which operate roller rigs for research in railway field. It is not possible to develop one
single general method valid for various types of test rigs existing all over the world, but
the general methodology proposed and the conclusions obtained in this thesis can be
applied at least on a qualitative basis to any roller rigs with similar configurations.

1.2 Methodology and contributions

The methodology used in this thesis is based on a so-called co-simulation technique by
constructing a network among multi-body system (MBS) simulation, contact modelling
and modern control theory to solve a complex multi-physics problem related to the
wheelset dynamics and wheel-rail/roller contact mechanics in a roller rig system.

The main original contributions of this work can be summarized as follows:

• a systematic description of the differences between the wheel-rail and wheel-roller
contact systems from global geometry contact to local contact mechanics;

• a new contact model developed for dealing with non-elliptic wheel-rail/roller con-
tact problem considering the effect of yaw angle based on the Kik-Piotrowski
method;

• a systematic description of the MBS modelling of a roller rig system and a com-
plete rail vehicle system;

• a set of testing strategies for performing tests on a full-scale roller rig. These are
meant to improve the agreement of the dynamic behaviour of a wheelset running
on a roller rig and on the track;

• two typical testing cases concerning wheelset curving negotiation and wheel pro-
file wear test are provided respectively in detail.

1.3 Thesis structure

The present work is organized in different chapters, each one dedicated to a particu-
lar issue ranging from general dynamics and contact problems in railway field to the
theoretical and experimental studies of roller rigs. Hereafter a short description of the
content of each chapter is given: the state of the art of research on the application of
roller rigs to rail vehicle dynamics and wheel-rail contact mechanics is introduced in
Chapter 2. This is followed by a detailed description of wheel-rail and wheel-roller
contact analysis including the solutions of geometry contact problem, kinematic prob-
lem, normal contact problem and tangential contact problem. A new contact model is
proposed based on the well-known Kik-Piotrowski method for dealing with wheel-rail
and wheel-roller contact in presence of yaw angle in Chapter 3. It is shown that the new
model improves the accuracy regarding the contact size and area as well as the pressure
distribution over the contact patch compared with the original method, considering as
a reference to software CONTACT.

A detailed description on the MBS modelling of the roller rig and that of a complete
rail vehicle is provided in Chapter 4. Chapter 5 describes a general testing procedure

3
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Chapter 1. INTRODUCTION

on a full-scale roller rig and the numerical simulation methodology of virtual test for a
roller rig. In order to show the practical application of the roller rig to vehicle dynam-
ics and wheel-rail contact study, two challenging topics in this field, namely curving
test and wear test on a roller rig are discussed in detail in Chapter 6 and Chapter 7,
respectively. The relevant conclusions drawn from this research are summarised and
the directions for future work in this field are provided in Chapter 8. The interconnec-
tions of the content in each chapter can be described by the relations between system
dynamics and local contact mechanics in the whole vehicle-track coupling system as
presented in Figure 1.2.

LEVEL OF SYSTEM DYNAMICS

LEVEL OF CONTACT MECHANICS

N
i
- Normal force at the contact point, U - Displacement,

Tx- Longitudinal tangential force, Ty- Longitudinal tangential force, Mz- Spin moment,

Chapter 7

Figure 1.2: Contact problem in the field of railway vehicle dynamics, adapted from [64].

The content in the black block mainly relates to system dynamics corresponding to
Chapter 4 and Chapter 6, in contrast, the content in the blue block mainly belongs to
contact mechanics which are treated in Chapter 3 and Chapter 7. Chapter 3 focuses
on the theoretical analysis and numerical modelling for the wheel-rail and wheel-roller
contact, which paves the way for further study of wheel-rail contact at a system level in
practical applications, such as the wear test addressed in Chapter 7.
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CHAPTER2
LITERATURE REVIEW

2.1 Chapter summary

The application of roller rigs to railway engineering has a very long history, and it
becomes more widespread and diverse in recent decades thanks to their high control-
lability and flexibility compared to the field test. The main objective of the roller rigs
is to reduce time of new vehicle/component testing and to extend the range of possible
tests in order to perform different studies without using a dedicated track [115]. The
main interest of this thesis is the application of the roller rig to wheel-rail contact and
vehicle dynamics studies. Therefore, a detailed survey on the development history of
roller rigs is given in this chapter, serving as a theoretical background of this study, and
it is followed by a summary of the state of the art in the filed.

2.2 Development history of roller rigs in railway application

Roller rigs were originally used for the investigation of the performance of steam lo-
comotives over 100 years ago [115]. The first roller rig was built at full scale in 1904
at Swindon in the UK. This roller rig was also reproduced in the USA at the Purdue
University for the Pennsylvania Railway.

Similar test rigs were probably used by Musashi to carry out model tests in 1935 in
Japan as reported by Jaschinski in [47]. In 1957, the development of new bogies for
the high-speed train on Shinkansen was performed at first with the aid of scaled roller
rigs and finally with a full-scale roller rig using an eccentric roller to create a sinusoidal
excitation built at the Railway Technical Research Institute (RTRI) in Japan [19, 75].
Around 1960, tests of bogies commenced on the full-scale roller rig with only two
axles [115]. Then in 1989, simultaneously with the entry into service of the new high

5
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Chapter 2. LITERATURE REVIEW

speed trains, this roller rig was completed with two additional axles to allow tests on
complete vehicles up to 500 km/h [80].

In 1959, the British Rail Research Centre built a two-axle roller rig in Derby, UK,
then completed it with another two axles in 1971 [109]. This roller rig had the capacity
to assess braking power, resonant vibration, and vehicle stability. Latterly, the roller rig
was modified to a modal analysis test stand mainly used for the vibration analysis of
vehicle suspension systems [115].

In 1964, a roller rig was built in Vitry, France by CAFL Company. It allows lateral
and vertical motions of the roller on each axle simultaneously using simple hydraulic
control methods. By using the roller rig, the vertical, lateral, and yaw vibration fre-
quencies, amplitudes and resonance can be measured. In particular, the influence of the
change of the vertical and lateral excitation forces due to the impart force on the vehicle
running performance can be studied and the running safety and ride performance can
also be investigated [115].

In 1967, a roller rig was built in Berlin, Germany. It allows evaluation of traction
equipment, acceptance tests for vehicle springs, and assessment of braking systems
[115].

In 1977, Bundesbahn built a four axles full-scale roller rig at Deutsche Bahn AG
in Munich, Germany, in order to perform tests on vehicles and locomotives [32]. The
rollers had four degrees of freedom including vertical, lateral, inclination, and rotation.
The servohydraulic excitation control system was adopted for the roller rig and could
accurately simulate track conditions for the dynamic simulation of a vehicle operating
on tracks. The rig was mainly utilised for the measurement of the dynamic performance
of vehicles and determination of the effects of vehicle modifications on the system
performance. The Munich roller rig played a very important role in the development of
the ICE high-speed trains. Due to considerable cost and a lack of capacity utilization
this roller rig had to be closed in 2003. It was widely used in Europe to certify new
vehicles for different railway administrations [115].

In 1978, a roller rig, called the roll dynamics unit, with vibrations applied through
the wheels to simulate track conditions, began operation at Pueblo, Colorado, USA. The
rig consists of two separate test stands, one for roller-based testing, and another used as
a vibration stand. The rolling stand can be used for hunting stability and traction power
simulation tests and the vibration stand used for studies of suspension system features,
vehicle system natural frequencies, fatigue strength, and freight load reliability, etc.
The rig was designed for speed of up to 480 km/h [115].

In 1988, NTSEL in Japan developed a full-scale bogie roller rig that can simulate
curving condition [76]. The basic model of the roller rig had four rolling-rig units to
simulate rails. Each rolling-rig unit had a pair of wheels for standard gauge (1435 mm
gauge) track and narrow gauge (1067 mm gauge) track. In 1993, train driving controller
and flying wheel were added to the original designed facility, to reinforce the traction
and braking test functions. The test of regeneration brake of VVVF driving bogie was
carried out. In order to deal with the experiment that involves high creep forces, the
wheel-rig driving system including the driving shafts and gear boxes were reinforced
in 2003. At the same time, a bogie-angle simulating function was added. The roller rig
at NTSEL is shown in Figure 2.1 on the left side.

In 1992, a four-axle roller rig was completed at the Ansaldo Transport Research

6
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Centre in Naples, Italy. The roller rig was designed to allow future upgrading to test
six-axle vehicles and mainly used to test railway locomotives for traction simulation.
Its rollers can only rotate about their axles to simulate running on a straight track. The
maximum running speed is (22 t/axle, 1500 mm diameter rollers) 300 km/h [37].

Figure 2.1: The roller rigs at NTSEL (left) [77] and SWJTU (right).

In 1995, a four-axle roller rig was built at the State Key Laboratory of Traction
Power in Southwest Jiaotong University (SWJTU), China. This roller rig was built for
the optimum design and testing of railway vehicles. Each roller can vibrate in lateral
and vertical directions. In 2002, two new sets of rollers were added, to form six axles,
allowing locomotives to be tested on the rig. With the development of high-speed
railway in China from 2004, the design speed of high-speed trains reached 380 km/h,
while the design of the roller rig was modified, increasing the roller diameter from 1370
mm to 1800 mm and the axis traction to 2000 kW, and realising a new roller rig with
speed up to 600 km/h in 2011. In China there are four roller rigs for whole vehicle tests
and two rigs for bogie tests [38]. The roller rig at SWJTU is shown in Figure 2.1 on the
right side.

In 2013, a new roller rig has been put into service for vehicles of up to six axles
at Osmannoro CDS (Centro Dinamica Sperimentale) testing centre near Florence in
Italy, owned by Italcertifer (ITCF), which is one of the Italian notified bodies for the
certification of the railway rolling stock [38]. This rig can simulate degraded adhesion
conditions to test rail vehicle response.

The roller rigs introduced above are some typical representatives in different eras
in the development history of the roller rigs, and most of them are full-scale bogie or
vehicle test rigs. This kind of roller rigs come closest to reality because full bogie or
vehicle can be tested under conditions very close to a real track. However, the costs
are very high and the wheel/rail contact parameters cannot be controlled accurately.
Actually, the scaled roller rigs have contributed to the railway research together with the
full-scale roller rigs, and the wheel/rail contact parameters can be controlled accurately
in this case. But the major drawback of a scaled system is that it eliminates the ability
to directly test standard components. For more details on the application of the scaled
roller rigs to the railway research, the reader is referred to [3].

There is a relatively recent design of roller rig specially for a single wheelset test
which now is a very popular type of rig for testing railway vehicle dynamics in the

7
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Chapter 2. LITERATURE REVIEW

laboratory. It is considered as the best way to test quickly new components of wheelset
system and to perform stress and wear analysis without a proper track. That is why it is
chosen as the main research subject in this work. To the best of the author’s knowledge,
four test rigs of this type are presently existing as mentioned in Chapter 1. More details
are given in this section.

The RaSSP roller rig owned by Deutsche Bahn’s Research & Technology Centre
(FTZ) at Brandenburg-Kirchmöser in Germany was built in 1999, see Figure 1.1(right).
The 36-tonne steel body of the test rig rests on a 200-tonne vibration pedestal. The
roller rig consists of a roller with two wheels driven by a motor. A full-size wheelset
is mounted on the top of the rollers having a diameter of 2100 mm with actual rail
profiles and connected through primary suspensions to a transversal beam representing
one half of the bogie frame. While the axis of the rail rollers is fixed in space, wheel
contact forces, lateral displacement and the angle of attack of the wheelset are induced
by a system of six hydraulic actuators, which rotates and displaces the wheelset along
all three spatial axes [46]. It is primarily designed for testing rolling contact processes,
and the unit allows full-size wheelsets to be subjected to stressing on a pair of rail
rollers under reproducible dynamic contact conditions. The maximum running speed
is continuously 300 km/h and briefly 330 km/h [100].

The BU300 roller rig owned by Lucchini RS at Lovere, Italy, has been in use since
2001, see Figure 1.1(left). It has similar configuration with RaSSP rig, but electric
servomotors are used for yaw actuation instead of hydraulic actuators. In addition, the
rollers bearing tow rail rings with real rail profiles have a diameter of 2000 mm. The
maximum operating speed is 300 km/h [38].

The roller rig at KRRI in South Korea was opened to service in 2011 [1] and has
a similar concept as the BU300 and the RaSSP rigs, particularly in terms of layout of
the actuators used to apply the vertical and lateral loads. The yaw of the half bogie
is in this case actuated using three hydraulic actuators. It is mainly used to the study
of wheel-rail forces, wear and rolling contact fatigue, and wheelset derailment. The
maximum testing speed of this roller rig is up to 320 km/h [38].

Figure 2.2: The roller rig for tests on a single wheelset at CARS.

The roller rig was newly built at CARS in China using the similar concept to the
other three rigs described above. The diameter of the roller is 3000 mm and the de-
signed testing speed is up to 500 km/h. Moreover, this roller rig allows adhesion tests
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2.3. The application of roller rigs to rail vehicle dynamics

to be performed by introducing a single wheel unit driven by a motor, so that both
traction and braking scenarios can be simulated on the rig [38], see Figure 2.2.

There is no doubt that the significant improvements in roller rigs have consider-
ably increased their ability to replicate and study rail vehicle dynamics and wheel-rail
contact, while further improvements are still highly desirable.

2.3 The application of roller rigs to rail vehicle dynamics

The roller rigs for railway dynamics application have been the subject of extensive
research. One important paper by A. Jaschinski et al. [47] in 1999 described the de-
tails about the roller rig application to railway vehicle dynamics for both full-scale and
scaled roller rigs. Different roller rig designs were presented and discussed along with
their advantages and disadvantages. The paper also illustrates the use of roller rigs
for testing and experimental purposes and for validation real railway vehicle dynamic
simulations. In 2006, a comprehensive study on the application of roller rig in railway
system especially for the full-scale vehicle roller rigs was performed by W. Zhang et
al. [115]. Recently, a brief survey was made by S. Meymand et al. [79] in 2013 to
highlight the advantages and disadvantages of using roller rigs for engineering issues
of importance to the railway industry. In 2014, A. Facchinetti et al. [38] reviewed some
typical roller rigs for rolling stock dynamic evaluation.

To sum up, the application of roller rigs to railway dynamics study primarily focuses
on new concepts of innovative railway design or vehicle components optimization [32,
35, 41], the curving dynamics and performance [61, 115], and further investigations
hardly performable on the track for safety reasons e.g. determination of critical speed
[4, 34, 35, 43, 66, 106] and derailment [1, 20].

It should be mentioned that the curving test is generally difficult to be simulated
on a roller rig because of the centrifugal forces and since the different distance to be
travelled on inner and outer rail is neglected by most roller rigs. Therefore, this study
is limited in the literature [61, 115], especially for a single wheelset roller rig [72]. In
order to fill this gap, a detailed discussion about the curving test on the full-scale roller
rig for a single wheelset test will be given in Chapter 6.

2.4 The application of roller rigs to wheel-rail contact

The roller rigs for wheel-rail contact study are generally in the form of disc-on-disc,
wheel-on-roller and wheelset-on-rollers rather than vehicle-on-rollers setup so as to
fully control the wheel-rail contact parameters under various conditions.

Many rigs have been built to deepen the understanding of physics behind the contact
mechanics at the wheel-rail interface [76, 78, 90, 99]. In more detail, the purpose of
the test includes but is not limited to the study of adhesion and creep characteristics
between the wheel and rail [8, 18, 78, 90, 105, 114], validation or improvement of the
existing contact theories [8, 90], and investigation of the surface damage mechanism
of the wheel and rail, e.g. wear , rolling contact fatigue (RCF) [21, 30, 39, 65, 99], and
rail corrugation [74]. More details about wear tests on a roller rig will be provided in
Chapter 7.
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2.5 Roller rig modelling and simulation

Numerical modelling and simulation of the roller rig is useful in the design of such rig,
for guiding the test and for post-processing after test on the rig. A variety of mathemat-
ical models have been developed for different purposes.

R. Dukkipati [33] derived the expressions of the creepages and the four-degrees-of-
freedom equations of motion for a railway wheelset on a roller rig to help the design of
a roller rig in the USA. S. Bruni et al. [23] developed a detailed mathematical model
including control unit for a full-scale roller rig in Italy, and the validation of the model
is achieved by the comparison of testing results. For the same roller rig, F. Braghin
et al. [20] presented the results of experimental and numerical investigations on a de-
railment test. S. Iwnicki et al. [45] developed a numerical model in MATLAB for a
scaled roller rig originally at Manchester Metropolitan University (MMU) in the UK.
For the same roller rig, a comprehensive study was performed afterwards on the inher-
ent errors of the scaled roller rig with the help of numerical simulations [2, 110]. N.
Bosso et al. in paper [16] simulated a scaled roller rig in ADAMS/Rail to compare
the results obtained by using different scaling techniques and to describe the behaviour
of a vehicle on the roller rig, then the dynamic behaviour of a railway wheelset on a
roller rig versus tangent track was investigated with the help of the numerical simu-
lation in [17]. Recently, they designed an approach for the real-time simulation for a
scaled test rig based on a decomposition of the mechatronic system into groups with el-
ements [19]. A. Schmid [92] developed a numerical model of the full-scale roller rig at
DB in SIMPACK for excitation data generation. F. Cheli et al. [26] developed a numer-
ical model of a full-scale locomotive roller rig system (including the locomotive, the
roller rig and the corresponding control systems) to perform parametric analysis and to
investigate the influence of the roller rig dynamics on the test rig behaviour in a design
stage. Recently, B. Allotta et al. [5] developed a Hardware-In-the-Loop (HIL) railway
roller rig model for the traction and braking testing activities under degraded adhesion
conditions. J. Kalivoda et al. [54] developed a mechatronic model via co-simulation
between SIMPACK and SIMULINK to verify and demonstrate the possibilities of the
active wheelset control on a scaled roller rig at Czech Technical University in Prague,
Czech Republic.

The work mentioned above mainly concentrates on the simulation of the dynamic
characteristics of the roller rig system, while few references are available on the contact
study in the wheel-roller interface. A. Keylin et al. [58] derived explicit analytical
expressions for comparing contact patch dimensions and Kalker’s coefficients for a
wheel moving on a roller and on a tangent track, based on Hertz and Kalker’s linear
theory. M. Taheri et al. [98] developed a model for a single wheelset coupled to a
roller rig in SIMPACK to compare the contact patch formed in wheel-rail and wheel-
roller interfaces under the assumptions of the Hertzian theory. The non-Hertz contact
modelling of the wheel-roller contact and the modelling of a roller rig system will be
discussed in detail in Chapter 3 and Chapter 4, respectively.
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CHAPTER3
WHEEL-RAIL/ROLLER CONTACT ANALYSIS

3.1 Chapter summary

The contact between wheel and rail is one of the most important features of the railway
system, and this contact pair has attracted great attention since the advent of railway en-
gineering. Unfortunately, the problems involved in the wheel-rail contact interface have
not been completely understood due to the complexity of the problem. Many attempts
have been made from both theoretical and experimental points of view. Moreover, field
experiments on wheel-rail contact mechanics and dynamics are often challenging due
to the difficulties in adequately controlling the test conditions [58]. Roller rigs are a
good alternative in this case, thanks to their high controllability and flexibility and have
been used as experimental tools in railway engineering over a long time. However, the
roller rig test will never completely replace the field test due to inherent differences
caused by the replacement of the rails by rollers in a roller rig system. Therefore, it is
very important to know the differences between these two systems and the correspond-
ing causes, in order to efficiently perform wheel-rail contact study on a roller rig, to
correctly interpret the test results and to compensate for deviations between the roller
rig and a real track. A novel non-Hertzian method is proposed for dealing with both
wheel-rail and wheel-roller contact problems considering the effect of the yaw angle
based on a detailed analysis of the contact problem in the wheel-rail system.

3.2 General calculation procedure for contact problem

From a mathematical point of view, the contact problem can be solved for both wheel-
rail and wheel-roller contact according to the following four steps [19, 93]. The first
step is to solve the geometrical problem, in which the locations of the contact points on
the contacting bodies are determined. This is followed by solving the normal contact
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Chapter 3. WHEEL-RAIL/ROLLER CONTACT ANALYSIS

problem, in which the shape and size of the contact patch formed in the contact interface
due to body deformation and the normal pressure distribution over the contact patch are
determined. The third step is to deal with the kinematic problem, in which normalized
kinematic quantities, the so-called creepages, are determined. These creepages measure
the relative velocities between the contacting bodies at the contact points. In the final
step, the tangential problem is solved. This step concerns the prediction of tangential
stresses at the contact interface which are generated by friction and creepages within
the contact zone. All these steps need to be dealt with differently for the case of wheel-
roller contact compared to the wheel-rail case, as described in this chapter.

3.3 Contact geometry

Contact geometry analysis deals with the contact searching problem between the con-
tacting bodies. The contact positions depend on the dynamic conditions as well as
material properties of the contact pair. The problem can be simplified as rigid con-
tact detection with geometric constraints or more complicated elastic contact detection.
There are many approaches for the detection of the contact points in the wheel-rail sys-
tem as documented in [93]. Most of the approaches available in the literature assume
that the yaw angle of the wheelset with respect to the track is very small and negligible
when solving the geometric contact problem so as to form the so-called bi-dimensional
method [87]. This assumption largely simplifies the calculation, leading to fast solu-
tions that can be implemented in rail vehicle online dynamic simulations. Nevertheless,
when a train negotiates curves with very small radii, the yaw angle of the wheelset rel-
ative to the track also known as the wheelset’s angle of attack, might be large and
therefore the bi-dimensional method is no longer valid. The three-dimensional method
has been developed to deal with these situations [6, 20, 59, 84, 91]. The effect of the
yaw angle of the wheelset on the contact position is shown in Figure 3.1 generated by
the so-called apparent profile method [59, 84] where the contact lines of wheel are the
visible profiles of the yawed wheel as seen along the rail, and the contact line on rail
coincides with the rail profile.
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Figure 3.1: Effect of the yaw angle on the contact position, adapted from [84].

The replacement of the rail by the roller makes the geometric contact problem more
complicated, which means some traditional approaches of contact geometry analysis of
wheel-rail contact may not be applicable any more to the wheel-roller contact condition.
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3.3. Contact geometry

As stated in [113], three-dimensional wheel-rail contact problem on the tangent track
can be simplified by projecting the yawed wheel profile onto the rail cross-section plane
then calculated with traditional bi-dimensional methods, which is not the case for the
wheel-roller contact where the profile of the rollers are varying in both longitudinal and
vertical directions. To deal with this problem, a method specific to the wheel-roller
contact system is needed. The existing approaches available in the literature can be
found in [112, 113, 115].
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Figure 3.2: Comparisons of geometric contact characteristics between the wheel-rail and wheel-roller
contact.

It is clear that the geometric contact condition between the wheel-rail and wheel-
roller contact pairs is the same for zero yaw angle conditions assuming the contacting
bodies to be rigid. There is a rich body of literature on comparisons of the geome-
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Chapter 3. WHEEL-RAIL/ROLLER CONTACT ANALYSIS

try contact relationship between the wheel-rail and wheel-roller contact pairs, for in-
stance [19, 113, 115]. Therefore, no further discussion is needed here, but a set of
typical case studies are shown in Figure 3.2 for the completeness of this chapter. The
comparisons were made with various magnitudes (2, 20, 60 mrad) of the yaw angle of
the wheelset for the wheel-rail and wheel-roller contact cases. The profile combination
is new S1002/UIC60 with 1:20 rail inclination, the radius of the roller is set to 1 m in
the simulation. Figure 3.2 shows the comparison of geometric contact characteristics
for the right-hand side contact pair of the wheel-rail and wheel-roller systems, and the
differences are calculated by subtracting the quantities of the wheel-roller contact case
from that of the wheel-rail contact case.

As can be seen from Figure 3.2 that the variations of contact geometry relationship
in terms of the lateral and longitudinal contact positions on the wheel and lateral contact
position on the rail/roller are similar when the lateral displacement of the wheelset is
less than 4 mm. In presence of a small yaw angle of the wheelset, the flange contact
occurs when the wheelset displaces approximately 5 mm in lateral direction, while it
takes place at approximately 4 mm in case of a large yaw angle (60 mrad in this case).

It can also be observed that the contact positions detected at the wheel-rail and
wheel-roller interfaces are different even though the wheelset has the same yaw an-
gle (non-zero) and the same lateral displacement due to the finite radius of the roller. It
should be also noted that 60 mrad is a quite large yaw angle for the wheelset and that
smaller differences are found for smaller yaw angles. Obviously, the differences can
be decreased by increasing the radius of the roller, but the dimension of the roller is
limited in practice considering the increased cost and difficulties related with manufac-
turing and installation of the rig.

The contact points detected from the contact geometry analysis in this section are the
inputs of the local contact analysis to be done in the following sections. As an external
load is applied on each body of contact, the two contacting bodies will deform at the
contact point to form a contact area referred to as a contact patch. The forces generated
at the contact patch can be divided into compressive force in the direction normal to
the interface, and frictional force in the direction tangent to the interface. Fortunately,
these two components can be treated separately for quasi-identical contacting bodies
i.e. the same elastic material properties of shear modulus and Poisson’s ratio, and the
wheel-rail and wheel-roller contact are generally assumed to be the case.

3.4 Normal contact

In this section, a brief review of the commonly used methods for solving the normal
contact problem in the wheel-rail system is given first. It is followed by proposing
a novel model for dealing with non-Hertzian contact condition in the wheel-rail and
wheel-roller systems based on the well-known Kik-Piotrowski model [60].

3.4.1 Review of methods for solving the wheel-rail normal problem

One of the first studies of wheel-rail normal contact was carried out by F. Redtenbacher
in 1855 [89]. In 1882, Heinrich Hertz [42] presented a contact theory that accounts
for the shape of the surfaces in the neighbourhood of the contact area. Although the
Hertzian theory relies on a number of rather restrictive assumptions, it is still widely
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used in studying wheel-rail contact mechanics and dynamics and serves as a foundation
for many tangential contact theories. The assumptions made in the Hertzian theory can
be summarized as follows [52, 62]:

• complete linearity, i.e. linear kinematic equations and linear-elastic material law
(additionally the material is isotropic and homogeneous);

• the surfaces are frictionless;

• both bodies are considered as half-spaces and

• the surfaces of the two bodies are regarded as second-order polynomials.

However, the shape and size of the contact patch obtained from the Hertzian theory
are often a poor representation of the true contact patch, primarily due to non-constant
surface curvatures [57, 62]. More accurate contact model is required in these cases,
especially for the simulation of wear, rolling contact fatigue (RCF) and rail corrugation
etc., in the wheel-rail system. For this reason, a number of non-Hertzian and semi-
Hertzian normal contact theories have been proposed to improve the accuracy of the
solution. Some of these theories are modifications of the Hertzian theory, and some are
based on different principles.

The most elaborate contact model to date can be established by finite element method
[29, 102] which is quite complicated and time consuming. The same problem can be
dealt with using the boundary element method as done, e.g. by Prof. Kalker’s algorithm
CONTACT [57] and by the model proposed by Knothe and Le The [63]. The so-called
approximate contact methods represent a trade-off between efficiency and accuracy in
the solution of the normal problem and therefore are generally considered as best suited
for both local contact analysis and on-line dynamics simulation. Methods of this type
include those based on the approximation of a non-elliptic contact zone by a set of el-
lipses developed by Pascal and Sauvage, the well-known method based on the virtual
penetration of contacting bodies proposed by Kik and Piotrowski [60,83,84], a similar
concept adopted by Ayasse and Chollet [13], and Linder’s model [71] etc. Some inter-
esting surveys of the existing approximate methods and the comparisons among them
can be found in [83, 95, 96].

3.4.2 The Extended Kik-Piotrowski model

The Kik-Piotrowski method is a fast and non-iterative method for solving normal con-
tact problem, which will be abbreviated as KP method in this thesis. An outline of
this method will be given in this section. For more details, the reader is referred
to [60,83,84]. The idea of the method is presented in Figure 3.3. When the undeformed
surfaces of the wheel and rail, touching at the initial point of contact O, also called ge-
ometrical point of contact which is determined from geometric contact analysis, are
shifted towards each other by a distance δ called the penetration, they penetrate and
intersect on a closed line, whose projection on Oxy plane is called the interpenetration
region. In reality, the bodies cannot penetrate, deflections occur and the contact zone
comes into being. On the basis of some similarities of the shapes of the contact zone
and interpenetration region, the contact zone is determined by scaling the interpenetra-
tion approach δ0 = εδ with a scaling factor ε = 0.55, then the resulting interpenetration
region is taken as the approximation of the real contact zone.
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Figure 3.3: The Kik-Piotrowski method for contact estimation, adapt from [60].

In common of the widely used approximate methods, the contact patch is always
assumed to be symmetric about its lateral axis in contact plane. This is not true in
presence of a non-negligible yaw angle of the wheelset against the track. Past study
has been done to account for the effect of the yaw angle on wear indexes and derail-
ment risk by applying elastic three-dimensional contact point searching algorithm [91]
which produces more realistic results compared with the traditional methods used in
rail vehicle dynamics simulation. Actually, the yaw angle of the wheelset affects not
only the contact position but also the characteristics of the contact patch as presented
in [102] by using the finite element method. However, this significant effect is rare
to be considered in the commonly used contact models. To fill this gap, a new non-
Hertzian contact model is proposed as an extension of the KP model named Extend
Kik-Piotrowski (EKP) model in this thesis which is capable of taking into account the
influence of the yaw angle and the non-constant surface curvatures of contact bodies on
the normal contact solution in the wheel-rail system.

Two coordinate systems are defined in the contact patch. The first is Oxyz repre-
senting the general contact reference system in which the x-axis points along the rolling
direction of the wheelset, the z-axis is normal to the contacting surfaces, and the y-axis
is mutually perpendicular. The second is Ox0y0z0 indicating the state of Oxyz when
the yaw angle of the wheelset is zero, which means the x0-axis is always along the rail
in longitudinal direction. It is clear that the contact frame Oxyz can be obtained from
Ox0y0z0 by performing a rotation around the z0-axis by an angle ψ representing the
yaw angle of the wheelset.

The cross-sections of the contacting surfaces by xz plane are named rolling sections,
and by yz plane called lateral sections. Therefore, the wheel and rail rolling sections
are zwxz(x) and zrxz(x) and the lateral sections are zwyz(y) and zryz(y), respectively. In
addition, zwy0z0

(y0) and zry0z0
(y0) represent the wheel and rail profiles in the conventional

sense according to the definition. The separation function in contact reference system
can be expressed as follows:

z(x, y) = zw(x, y) + zr(x, y) (3.1)

The next step is to determine the virtual interpenetration region by penetrating the
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wheel and rail surfaces to the depth δ0 called virtual interpenetration. The resulting
interpenetration region is taken as the area of contact. To this end, the interpenetration
function of profiles is defined in the KP by the following formula:

gyz(y) =

{
δ0 − f(y) if f(y) ≤ δ0

0 else.
(3.2)

where f(y) = zwyz(y) + zryz(y) is the distance function at the undeformed state.
Then the contact width can be determined by solving Equation 3.2. It should be

mentioned that the contact width is corrected by adjusting the interpenetration function
in a later version of the KP method, cf. [84].

The leading and trailing edges of the contact patch can be determined by Equation
3.3 in the KP method based on the assumption that the wheel-rail contact problem is
stated in terms of two bodies of revolution with their axes laying in the same plane. The
same assumption was made by Linder [71].

xlxz(y) = −xrxz(y) ≈
√

2Rwgyz(y) (3.3)

where the subscripts xz represents the function defined in xz plane, the subscripts l and
t indicate the terms associated with the leading and trailing edges of the contact patch,
respectively, and Rw is the rolling radius of the wheel.

According to Equation 3.3, the contact area is always symmetric about the y-axis in
the contact reference frame. However, this assumption is violated in case of a yaw angle
formed between the wheel and rail/roller considering the radius of curvature of the
rail/roller rolling section zrxz(x) is no longer constant, which results in an asymmetric
contact area as illustrated in Figure 3.4 for the wheel-rail case.
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Figure 3.4: Effect of the yaw angle ψ on the contact patch for the wheel-rail case (top view, right wheel).

To determine the contact zone in presence of a non-zero yaw angle, the rolling and
lateral sections are required. It is clear that the rolling section of the wheel is a circle
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with a radius of Rcw passing through the contact point and independent of the yaw
angle as express by Equation 3.4.

zwxz(x) = Rcw −
√
R2
cw − x2 (3.4)

where the radius Rcw is assumed to be constant here though it may vary slightly over
the contact patch.

The rolling section of the rail is a straight line, and it is a circle for the roller, when
the yaw angle of the wheelset is zero. For non-zero yaw angle conditions (ψ 6= 0), it
can be obtained from the following equation with reference to Figure 3.4.

zrxz(x) = zry0z0

(
y0

sinψ

)
− hxz (3.5)

with
hxz = Rcr −

√
Rcr − (∆x cosψ)2 (3.6)

where hxz is the arc height of the roller corresponding to the chord ∆x cosψ as shown
in Figure 3.5, ∆x = ∆y cotψ, ∆y being the distance from the origin in y direction,
and hxz = 0 for the wheel-rail case.

hxz

Rcr

x cos

side view of roller

Figure 3.5: Illustration of the arc height of the roller.

It should be noted that the rail lateral section zryz(y) varies with the yaw angle, while
the wheel lateral section zwyz(y) remains the same as its profile zwy0z0

(y0). They can be
expressed as follows: 

zwyz(y) = zwy0z0
(y0)

zryz(y) = zry0z0

(
y0

cosψ

)
− hyz

(3.7)

where hyz = Rcr −
√
Rcr − (∆y sinψ)2 is the arc height of the roller corresponding

to the chord ∆y sinψ, Rcr being the rolling radius of the roller at the contact point, and
hyz = 0 for the wheel-rail case.

Substituting the lateral section functions derived above into Equation 3.2, the width
of the contact patch can be determined. The next task is to determine the contact bound-
ary in rolling direction. To this end, the contact patch is partitioned into strips paral-
leling with the x-axis in contact plane, and O is the geometrical point of contact deter-
mined in Section 3.3. Hence, the section functions are converted to discrete forms by
strips yi(i = 1...n), as illustrated in Figure 3.4 where the two figures show two strips
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(j and i) in the same contact patch of the same wheel. The rail rolling section strip
zrxz(x, yi) corresponding to the rolling section of the wheel at the i-th strip in contact
patch can be obtained by shifting the rail rolling section strip zrxz(x, 0) (denoted by j-th
strip in Figure 3.4) that passes through the geometrical point of contact along the x-axis.
Because the curvature of the rail rolling section at the contact position A corresponding
to i-th strip is identical to that of the rolling section at position B which is located in the
rail rolling section strip zrxz(x, 0). This means the contact condition between the wheel
rolling section strip zwxz(x, yi) and the rail rolling section strip zrxz(x, yi) at position A is
equivalent to the contact condition between the wheel strip zwxz(x, yi) and the rail strip
zrxz(x, 0) at position B. This relation can be expressed as follows:

zrxz(x, yi) = zrxz(x−∆xi, 0) (3.8)

where ∆xi = yi cotψ is the shifting distance from j-th strip to i-th strip in x direction.
Equation 3.8 makes it possible to determine the so-called undeformed distance sur-

face H(x, y) = z(x, y) + δ0 by simply solving a set of equations without the need of
three-dimensional rolling surfaces of the wheel and rail. Therefore, the computing time
can be reduced considerably. The undeformed distance surface is an important input for
surface-based contact calculation methods, for instance the software CONTACT [103].

In the case of wheel-roller contact, the roller rolling section strip zrxz(x, yi) corre-
sponding to the rolling section of the wheel at the i-th strip in contact patch can be
obtained by rotating instead of shifting (for the wheel-rail case) the rolling section strip
zrxz(x, 0) by an angle γ. This relation can be expressed by Equation 3.9.

[x, zrxz(x, yi) +Rcr] = [x, zrxz(x, 0) +Rcr]

[
cos γ sin γ

− sin γ cos γ

]
(3.9)

where γ = arcsin ∆xi
Rcr

is the rotating angle.
The length of each strip is determined by solving Equation 3.10 instead of Equation

3.3 to include the yaw effect.

zwxz(x, yi)− zrxz(x, yi) = gyz(yi) (3.10)

Equation 3.10 produces two solutions in which the larger one corresponds to the
leading edge. All the extremities of the strips together comprise the boundary of the
contact zone. Figure 3.6 illustrates the determination of the contact length where the
figures (b) and (c) correspond to the two strips shown in Figure 3.4.
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Figure 3.6: Illustration of the determination of the contact length.

In order to estimate the normal pressure distribution over the contact patch, the strips
in contact zone are divided into 50×50 elements. The centre of each element is denoted
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by (xj, yi). For each element the pressure is assumed to be constant and determined by
the following formula:

p(xj, yi) =
p0

xlxz(0)

√
(xlxz(yi))

2 − (xj(yi))
2 (3.11)

where p0 is the maximum pressure over the contact patch, xj(yi) is the coordinate along
x-axis of the j-th element in the i-th strip. More details about the determination of p
and p0 can be found in [60, 83, 84].

Past studies [95, 96] have shown that the contact estimated by the KP method con-
siderably deviates from CONTACT’s result in terms of the contact shape and pressure
distribution when the contact zone spreads into a region with non-constant surface cur-
vatures, which is a condition in which the Hertzian theory is not valid [111]. The main
reason for this discrepancy in contact shape mentioned above is due to the fact that a
single constant approach scaling factor is used in the KP model, whereas the difference
in pressure is due to the assumption made in the KP model that the maximum pressure
in each strip is similar to the length of that strip [95]. It implies that the dependency
of the maximum pressure on other parameters e.g. the variation of the surface curva-
ture is neglected. However, the comparison between the results from CONTACT and
the KP method shows that the KP model provides satisfactory results in the vicinity of
the geometrical point of contact [60, 84, 95]. Therefore, the KP model could be im-
proved by introducing the influence of varying curvatures of the contacting bodies for
the multi-patch or joined-patch contact conditions.

To this end, the KP model is corrected by taking the geometrical point of contact
position as the reference in the EKP model. Firstly, the contact boundary obtained
from Equation 3.10 is corrected according to Equation 3.12.{

xlxz(yi) = k1−1+k2(yi)
k1

(
xl0(yi)− xc(yi)

)
+ xc(yi)

xtxz(yi) = k1−1+k2(yi)
k1

(xt0(yi)− xc(yi)) + xc(yi)
(3.12)

where xl,t0 (yi) represents the boundary solution obtained from Equation 3.10, xc(yi) is
the centre coordinate of the i-th strip along x-axis, k1 and k2 are correction coefficients,
k1 being a non-zero constant and k2 being a function of the strip position at the contact
patch. It should be noted that Equation 3.12 is equivalent to the solution of Equation
3.10 when k2 = 1 and xc(yi) = 0 corresponding to zero yaw angle contact condition.

Then Equation 3.11 is corrected to include the effect of yaw angle and the variation
of curvature at contact region as expressed by Equation 3.13.

p(xj, yi) =


p0(k1−1+k2(yi))
k1(xl(0)−xc(0))

√
(xlxz(yi)− xc(yi))

2 − (xj(yi)− xc(yi))2, if xj(yi) ≥ 0

p0(k1−1+k2(yi))
k1(xt(0)−xc(0))

√
(xtxz(yi)− xc(yi))

2 − (xj(yi)− xc(yi))2, if xj(yi) < 0

(3.13)
where xl,t(0) and xc(0) stand for the leading and trailing edges and the centre coordinate
of the strip including the geometrical point of contact. Equation 3.13 has the same form
as Equation 3.11 if k2 = 1 and xc(y) = 0.

It should be pointed out that the corrections are applied only for the contact con-
ditions where the interpenetration function gyz(y) determined by the KP method pos-
sesses negative curvatures, which implies that the contact zone includes jointed contact
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patch or multiple contact patches, to account for the influence of the curvature variation
of the contact bodies on the contact boundary and pressure.

As mentioned above, the approach scaling factor is treated as a constant of 0.55 in
the KP model for the determination of the interpenetration function gyz(y) according
to Equation 3.2. Consequently, the contact width, which is the range of y coordinate
values considering y > 0, is obtained. However, the contact width may be under esti-
mated in this way under some certain circumstances, for instance the situation shown
in Figure 3.7.
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Figure 3.7: Illustration of the determination of the contact width.

With reference to Figure 3.7, the predicted contact width is WKP according to the
KP method. However, the Greenwood and Williamson model [40] for dealing with
multi-contact problem shows that the heights of the asperities and the radii of curvature
play primary role for contact estimation. It means some essential information related
to the first height in Figure 3.7 may be missing when the KP method is applied. To
deal with this special situation, the following correction is made for the contact width
prediction in the EKP model.

In order to check if the potential contact zone is a jointed patch or multiple contact
patches, the potential interpenetration U(y) obtained by setting δ0 = δ in Equation 3.2
is compressed in lateral coordinate so as to easily capture the variation of its curvature.
The compressed U(y) is denoted by Uc and its curvature is denoted by Cu .

Uc(y) = U(αy) (3.14)

where α < 1 is the compression coefficient, and it is found that 0.01 is a suitable value.
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Then the interpenetration function gyz(y) and the contact width can be determined as
follows:

Step 1, if Cu has negative values, which means there is more than one height in
function U(y), denoted by h1 and h2 , respectively, from left to right as shown in Figure
3.7, go to Step 2. Otherwise, the KP is used with ε = 0.5, instead of 0.55 that is the
value applied in the original KP.

Step 2, if the difference of the two heights denoted by ∆h = |h1 − h2| is less than
0.5δ, the KP is applied with ε = 0.5, else go to next step.

Step 3, the two extremities (yl and yr) of the contact width are obtained solving the
following equations. The predicted contact width by the EKP is denoted by WEKP in
Figure 3.7.

if h1 < h2

{
U(yl) = h2 − h1(1− h1

h2
)

U(yr) = 0.5h2

else

{
U(yl) = 0.5h2

U(yr) = h2 − h1(1− h1

h2
)

(3.15)

Then the updated interpenetration function is obtained in the form of Equation 3.16
instead of Equation 3.2.

gyz(y) =

{
0.5δ U(y)

max(U(y))
if yl < y < yr

0 else
(3.16)

As with function U(y), the interpenetration function is compressed in the same way,
and the compressed interpenetration function is denoted by gc(y).

gc(y) = gyz(αy) (3.17)

In order to define the correction coefficients, the curvature of the interpenetration
function is normalized with respect to its value at the reference point as follows:

Cn(y) =
C(gc(y))

C(gc(0))
(3.18)

where C(· ) defines curvature function, thereby C(gc(0)) represents the curvature of the
compressed interpenetration function at the reference point which is the geometrical
point of contact.

The minimum value of Equation 3.18 is denoted by Cn(ym) = min(Cn(y)). The
corresponding strip ym is chosen to determine the correction coefficient k1. Assum-
ing that the length of this strip is proportional to its corresponding interpenetration
approach, the following relationship holds according to Equation 3.12.

k1 − 1 + Cn(ym)

k1 − 1 + k2(0)
=
gyz(ym)

gyz(0)
(3.19)

where gyz(0) = 1 and k2(0) = 1 represent the values obtained at the reference point,
more detailed definition of k2 will be given later.

Hence, the correction coefficient k1 can be determined as follows:

k1 =
gyz(0)(1− Cn(ym))

gyz(0)− gyz(ym)
(3.20)
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In order to define the correction coefficient k2, an intermediate function R(y) is
introduced according to Equation 3.21.

R(y) =

{
C0.08
n (y) if Cn(y) > 0

0 else
(3.21)

As mentioned above, these corrections are only applied to the contact conditions
where the interpenetration function gyz(y) possesses negative curvatures, which means
function R(y) has more than one peak. The first peak is denoted by R(yp) and the
second by R(yq) with q > p. The contact zone can be divided into two regions with
the width of wp and wq, respectively, by the strip ym. It is assumed that the maximum
pressure at each contact region is directly proportional to the peak value of R(y) and
inversely proportional to the area of the contact region, the following relation holds
according to Equation 3.13.

(
k1 − 1 + kp

k1

)2

= |Cn(ym)|1.4
(
R(yp)

R(yq)

)0.8(
gyz(0)wq
gyz(yp)wp

)0.08

(3.22)

Hence, the constant kp is obtained as follows:

kp = k1

√
|Cn(ym)|1.4

(
R(yp)

R(yq)

)0.8(
gyz(0)wq
gyz(yp)wp

)0.08

+ 1− k1 (3.23)

Finally, the correction coefficient k2 is defined as the following non-linear function:

k2(yi) =


kp i ≤ p

R(yi) p < i < m

R(ym) : R(yq)−R(ym)

q−m : R(yq) m ≤ i ≤ q

1 i > q

(3.24)

It should be noted that the function of k2 is obtained under the assumption of q > p.
If it is not the case, the sequence of k2 should be reversed.

One example for a typical contact condition is presented in Figure 3.8 to better ex-
plain the relations among the relevant parameters introduced by the correction process.
It can be observed from Figure 3.8 that the EKP model is suitable for this case, since
there is a negative value in function Cn at strip m. The correction coefficient k2 > 1
before strip p which means the contact pressure and contact length are amplified in this
contact region and k2 = 1 after strip q which means there is no correction applied in this
region.
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Figure 3.8: Illustration of typical variables introduced for correction.

3.4.3 Validation of the EKP model

In order to validate the proposed contact model and to show its improvement with re-
spect to the original KP, a set of comparisons have been performed among three models
namely EKP, KP and the CONTACT algorithm which is taken here as a reference. The
calculation parameters used for the simulations are listed in Table 3.1.

Table 3.1: Calculation parameters

Parameter type Value

Wheel/rail profile combination New S1002/UIC60
Rail inclination 1:40
Track gauge 1435 mm
Wheel flange back spacing 1360 mm
Tape circle to flange back distance 70 mm
Wheel radius 460 mm
Possion’s ratio 0.3
Young’s modulus 210 MPa

A first run by CONTACT with the parameters listed in Table 3.1 under a normal
force of 80 kN with various contact positions by setting the lateral displacement ∆y
of the wheelset from -5 mm to 5 mm in 1 mm increment is conducted to select the
suitable simulation cases for further study. The calculated contact patches under the
given calculation conditions are presented in Figure 3.9.
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∆y=0mm         ∆y=1mm        ∆y=2mm     ∆y=3mm   ∆y=4mm     ∆y=5mm 

∆y=-5mm       ∆y=-4mm         ∆y=-3mm          ∆y=-2mm           ∆y=-1mm 

Figure 3.9: Contact patch variation with lateral displacement (results of CONTACT calculations).

Considering that the EKP is an extension version of the KP in the sense of the
inclusion of yaw effect and the improvement for non-Hertzian contact estimation, the
highly non-elliptic contact conditions where the wheelset has the displacement of -1
mm, 0 mm, 1 mm and 5 mm, respectively, are chosen for the purpose of comparisons
among the three contact models.

The details of the simulation cases selected are summarized in Table 3.2 where Fn
represents the normal load acting on the contact patch, and ∆y denotes the lateral dis-
placement of the wheelset with respect to the track.

Table 3.2: Contact simulation cases

Case Fn [kN] ∆y [mm] yaw angle [mrad] Case Fn [kN] ∆y [mm] yaw angle [mrad]

1 40 -1 0 2 40 -1 25
3 40 -1 50 4 40 0 0
5 40 0 25 6 40 0 50
7 40 1 0 8 40 1 25
9 40 1 50 10 40 5 0
11 40 5 25 12 40 5 50
13 80 -1 0 14 80 -1 25
15 80 -1 50 16 80 0 0
17 80 0 25 18 80 0 50
19 80 1 0 20 80 1 25
21 80 1 50 22 80 5 0
23 80 5 25 24 80 5 50
25 120 -1 0 26 120 -1 25
27 120 -1 50 28 120 0 0
29 120 0 25 30 120 0 50
31 120 1 0 32 120 1 25
33 120 1 50 34 120 5 0
35 120 5 25 36 120 5 50

The geometrical point of contact for each case is determined in SIMPACK. The
same undeformed distance surface H(x, y) computed by the EKP model is used for the
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same simulation case by different models. The detailed comparisons of the outputs are
presented below. For the sake of simplicity, only the results concerning the shape and
area of the contact patch and the pressure distribution along y-axis for the cases with a
normal load of 80 kN, i.e. cases 13-24 are shown in separate figures in sequence.

It can be seen from Figure 3.10 that the correction in the contact width by the EKP
improves the agreement with CONTACT compared to the KP, and it seems a little bit
over corrected for the results shown in Figure 3.10 (b1) and (b2) but still better than
the KP. When the contact patch tends to be elliptic as shown in Figure 3.10 (c1), the
difference between the KP and EKP methods is marginal. The agreement between the
three models is generally good in this case.
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Figure 3.10: Contact shape (left) and pressure distribution (right) for the cases with a constant lateral
displacement of y= -1 mm, at an angle of yaw ψ=0 mrad (a1, a2), ψ=25 mrad (b1,b2) , and ψ=50
mrad (c1, c2), respectively.

Figure 3.11 shows the contact condition formed when the wheelset is placed at the
central position of the track. It can be observed that the KP can correctly predict the
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contact shape when the yaw angle is small as shown in Figure 3.11 (a1) and (b1), while
it fails to capture the peak in pressure. On the other hand, the discrepancies of the
KP with respect to CONTACT in terms of contact shape and area increase with the
increase of the yaw angle. Because the effect of the yaw angle is ignored in the original
KP method, the contact patch is always symmetric about y-axis in contact plane. The
difference between the KP and CONTACT is approximately 7% in terms of the area of
the contact patch for 50 mrad yaw angle, see Figure 3.11 (c1). In contrast, the EKP has
a good agreement with CONTACT in both contact shape and pressure distribution for
all cases shown in Figure 3.11.
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Figure 3.11: Contact shape (left) and pressure distribution (right) for the cases with a constant lateral
displacement of y= 0 mm, at an angle of yaw ψ=0 mrad (a1, a2), ψ=25 mrad (b1,b2) , and ψ=50
mrad (c1, c2), respectively.

Figure 3.12 shows the results obtained for the cases with lateral displacement y=1
mm and yaw angles ψ=0, 25 and 50 mrad. It can be seen that the contact width pre-
dicted by the KP is shorter compared with CONTACT, although the contact shapes
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estimated by these two methods are similar when the yaw angle is less than 25 mrad.
The difference between the KP and CONTACT in terms of the contact shape is sig-
nificant when the yaw angle is 50 mrad. In contrast, the contact shapes are in good
agreement between the EKP and CONTACT for all cases shown in Figure 3.12. How-
ever, the pressure distributions predicted by the EKP and KP are similar when the yaw
angle is less than 25 mrad, and they deviate from CONTACT as shown in Figure 3.12
(a2) and (b2). Because the pressure peaks appear over the geometrical point of contact,
there is no correction for the EKP in this case. The maximum difference in pressure
with reference to CONTACT is approximately 22%. The last case shown in Figure 3.12
(c2) suggests that the EKP is able to improve the accuracy of the KP significantly in
presence of a yaw angle, taking CONTACT as a reference.
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Figure 3.12: Contact shape (left) and pressure distribution (right) for the cases with a constant lateral
displacement of y= 1 mm, at an angle of yaw ψ=0 mrad (a1, a2), ψ=25 mrad (b1,b2) , and ψ=50
mrad (c1, c2), respectively.

Figure 3.13 shows the results obtained for the cases with lateral displacement y =5
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3.4. Normal contact

mm and yaw angles ψ=0, 25 and 50 mrad. These results show that the KP predicts
a jointed contact patch, while the EKP and CONTACT produce similar results with
two separate contact patches. Once again, the KP model fails to capture the maximum
pressure values for such highly non-elliptic contact conditions as shown in Figure 3.13
(a2) and (b2). Moreover, the considerable effect of yaw angle on the contact shape
presented in Figure 3.13 (b1) is missing in the KP’s result. In addition, the same con-
clusion that the results from three contact models are in good agreement under a nearly
elliptic contact condition can be drawn as for Figure 3.10(c1) and (c2) once again from
Figure 3.13 (c1) and (c2).
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Figure 3.13: Contact shape (left) and pressure distribution (right) for the cases with a constant lateral
displacement of y= 5 mm, at an angle of yaw ψ=0 mrad (a1, a2), ψ=25 mrad (b1,b2) , and ψ=50
mrad (c1, c2), respectively.

To compare the EKP and KP with respect to CONTACT for a wider range of contact
conditions, the results for all cases listed in Table 3.2 in terms of the contact area and
the maximum pressure are plotted against CONTACT’s corresponding results in Figure
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3.14 (a) and (b), respectively. Moreover, the coefficients of determinationR2 for the KP
and EKP models are computed by taking CONTACT as the regression line to measure
their deviations from CONTACT.
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Figure 3.14: Comparisons of the correspondence to CONTACT:(a) contact area (b) maximum pressure.

As far as the contact area is concerned, see Figure 3.14 (a), the coefficients of de-
termination for the KP and EKP are 0.92 and 0.96, respectively. It means both models
have a good agreement with CONTACT, with the EKP being closer to CONTACT with
respect to the KP since its coefficient of determination is a little bit larger. The coeffi-
cients of determination for the KP and EKP in terms of the maximum pressure over the
contact patch are 0.45 and 0.91, respectively. With reference to Figure 3.14 (b), it can
be concluded that the EKP substantially improves the correspondence to CONTACT
compared with the KP, in terms of the maximum pressure obtained in the CONTACT.
The deviation of the KP from CONTACT rapidly increases when the maximum pres-
sure is larger than 1500 MPa.

It should be kept in mind that the comparisons considered in Figure 3.14 are only
made for the contact area and maximum pressure within the contact patch. Extending
the comparison to include more details, e.g. the shape of the contact patch and the
pressure distribution over the contact patch, the advantages of the EKP are expected to
be more remarkable compared to the KP as shown in some of the cases presented in
Figure 3.10-Figure 3.13.

In the light of the results shown, it can be concluded that the results obtained by the
EKP improve substantially the agreement with CONTACT in terms of the shape and
size of the contact patch as well as the pressure distribution over the contact patch with
various yaw angle of the wheelset against the track for all contact conditions consid-
ered, whereas the results of the KP are not satisfactory for highly non-Hertzian contact
conditions and the KP is not able to take the effect of the yaw angle into account. It can
also be concluded that the effect of the yaw angle on the normal contact solution is sig-
nificant when the angle is around 25-50 mrad, especially accompanied by a large lateral
displacement of the wheelset, because the contact patch could change from non-elliptic
contact to nearly elliptic with the change of the yaw angle, as presented in Figure 3.10
and Figure 3.13, and also could change from double-point contact to single-point con-
tact as shown in Figure 3.13.

These variations caused by the yaw angle will not only influence the normal contact
solution as discussed above but also the tangential contact solution which depends on
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3.5. Kinematic problem

the shape and size of the contact patch, the distribution of the normal pressure and fric-
tion between the wheel and rail, and subsequently the contact deterioration mechanisms
as well as the vehicle’s dynamic behaviour. Therefore, the effect of yaw should be taken
into account for wheel-rail contact calculation and rail vehicle dynamics simulation.

The analyses and comparisons have shown that the proposed contact model is ca-
pable of solving wheel-rail normal contact problem taking into account the effect of
yaw for the contact conditions under consideration. Similar conclusions for the case
of wheel-roller contact can be expected. Therefore, no further discussion of that case
is reported, for the sake of conciseness. Of course, massive comparisons need to be
done for wider conditions of contact to verify the scope of application of the proposed
model, such as worn wheel and rail contact, flange contact, and multi-point contact
formed with varied load and yaw angles, which are the task of future research.

3.5 Kinematic problem

Due to the elasticity of the bodies and the externally applied normal load, when tangen-
tial forces are applied to wheel-rail contact, some points on the surfaces in the contact
region may slip while others may stick when the two bodies move relatively to each
other. The difference between the tangential strains of the bodies in the adhesion area
leads to a small apparent slip. This slip normalized by the rolling speed is called creep-
age and is defined using the kinematics of the two bodies. Therefore, the aim of this
section is to determine the creepages in the wheel-rail/roller interface.

sl

rl

sr

rrYw

Zw

Yro

Zro

Front view (no yaw)                                             Side view (non-zero yaw angle)

2l

ZclY
cl

Zcr

Ycr

l r

Figure 3.15: A wheelset rests on rollers.

3.5.1 Kinematics of a wheelset on rollers

For the single wheelset roller rig, the wheelset on the roller has the same degrees of
freedom as on a track, except the constraint in longitudinal direction. Furthermore,
the two rollers fixed on the same axle can only rotate around its axle. To accomplish
the kinematic analysis of a wheelset on rollers, a convenient set of reference frame
systems should be introduced as shown in Figure 3.15. The wheelset reference frame
is denoted by OwXwYwZw attached to the wheelset’s center of mass so that axis OwYw
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coincides with the wheelset’s axis of rotation, the OwZw axis points upwards and the
OwXw axis completes the right-handed coordinate system. Similarly, a roller reference
frame is introduced and denoted byOroXroYroZro attached to the roller’s center of mass
which is defined as the inertial frame. Two contact reference frames OclXclYclZcl and
OcrXcrYcrZcr are introduced at the contact interfaces between the wheelset and roller
on the left and right sides at the wheelset central position.

It is assumed that the wheelset reference frame OwXwYwZw is obtained from the
inertial frame by performing two successive rotations. The axes of the reference frames
are parallel before rotation, and the first rotation is made about the z-axis by an angle ψ
called yaw angle (positive in counter-clockwise direction) followed by a second rotation
about the x-axis by an angle φ called roll angle. Therefore, the transformation matrix
Aw2i connecting the wheelset frame to the inertial frame is expressed as follows:

Aw2i =

 cosψ − sinψ 0

sinψ cosφ cosψ cosφ − sinφ

sinψ sinφ cosψ sinφ cosφ

 . (3.25)

Since the angles of rotation are generally small in railway dynamics, the small angle
approximation can be applied, so that the transformation matrix reduces to:

Aw2i ≈

1 −ψ 0

ψ 1 −φ
0 φ 1

 . (3.26)

The position vectors of the contact points on the wheel and roller can be defined in
the inertial frame as follows:

rwi = Rw + Aw2iūwi (i = l, r) (3.27)

where the position vector of the origin of the wheelset reference frame in the inertial
frame is expressed as follows:

Rw =
[
0 y z

]T (3.28)

and the position vectors of the contact points in the wheelset reference frame can be
expressed in the following forms: for the left-hand wheel

ūwl =
[
rl sin β l −rl cos β

]T (3.29)

and for the right-hand wheel

ūwr =
[
−rr sin β −l −rr cos β

]T (3.30)

where ri(i = l, r) represents the radius of the left and right wheels, l is the half distance
between the contact points on the left and right wheels, and β is the shift angle of the
contact point on the roller with respect to the vertical plane of the inertial frame in
presence of a non-zero angle of yaw. It is assumed that this angle is the same for the
left-hand and right-hand sides on the roller and can be approximated by Equation 3.31,
since it is very small in ordinary circumstances.

β =
lψ

s0 + r0

(3.31)
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3.5. Kinematic problem

In Equation 3.31, r0 and s0 denote the nominal radii of the wheel and roller, respec-
tively.

Taking the derivative of the Equation of 3.27, the velocity vector of the contact point
located on the wheel with respect to the inertial frame is obtained as:

vwi = Ṙw + ωw × uwi (i = l, r) (3.32)

where uwi = Aw2iūwi is the position vector of the point of contact on the wheel defined
in the inertial frame which is determined from Equations 3.26, 3.29 and 3.30 for the
left-hand and right-hand wheels, respectively, as follows:

uwl = Aw2iūwl ≈

 rl sin β − lψ
rlψ sin β + l + rlφ cos β

lφ− rl cos β

 ≈
 rlβ − lψ
l + rlφ

lφ− rl

 (3.33)

and

uwr = Aw2iūwr ≈

 −rr sin β + lψ

−rrψ sin β − l + rrφ cos β

−lφ− rr cos β

 ≈
 −rrβ + lψ

−l + rrφ

−lφ− rr

 (3.34)

and ωw is the absolute angular velocity vector at the point of contact defined in the
inertial system as:

ωw =

 0

0

ψ̇

+ Aw2i

 φ̇

Ωw

0

 =

 φ̇ cosψ − Ωw sinψ cosφ

φ̇ sinψ + Ωw cosψ cosφ

ψ̇ + Ωw sinφ

 ≈
 φ̇− Ωwψ

φ̇ψ + Ωw

ψ̇ + Ωwφ


(3.35)

with Ωw = V
r0

the rolling angular velocity of the wheelset.
Substituting Equations 3.28, 3.33, 3.34 and 3.35 into Equation 3.32, the velocity

vectors of the contact points on the wheelset in the inertial frame are obtained as fol-
lows: for the left-hand wheel

vwl = Ṙw + ωw × uwl

≈

 0

ẏ

ż

+


l(φ̇ψφ− ψ̇)− rl(φ̇ψ + ψ̇φ+ Ωw)

l(−ψ̇ψ − φ̇φ) + rl(ψ̇β + φ̇− Ωwψ)

lφ̇+ rl(φ̇φ− Ωwβ)



≈


−lψ̇ − rl(φ̇ψ + ψ̇φ+ Ωw)

ẏ + l(−ψ̇ψ − φ̇φ) + rl(ψ̇β + φ̇− Ωwψ)

ż + lφ̇+ rl(φ̇φ− Ωwβ)



(3.36)
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and for the right-hand wheel

vwr = Ṙw + ωw × uwr

≈

 0

ẏ

ż

+


l(−φ̇ψφ+ ψ̇)− rr(φ̇ψ + ψ̇φ+ Ωw)

l(ψ̇ψ + φ̇φ) + rr(−ψ̇β + φ̇− Ωwψ)

−lφ̇+ rr(φ̇φ+ Ωwβ)



≈


lψ̇ − rr(φ̇ψ + ψ̇φ+ Ωw)

ẏ + l(ψ̇ψ + φ̇φ) + rr(−ψ̇β + φ̇− Ωwψ)

ż − lφ̇+ rr(φ̇φ+ Ωwβ)

 .

(3.37)

Similarly, the velocity vector of the contact point on the roller in the inertial frame
can be expressed as

vroi = ωro × uroi (i = l, r) (3.38)

where ωro is the angular velocity of the roller with the following form:

ωro =

 0

Ωor

0

 =

 0

− V
s0

0

 (3.39)

and uroi stands for the position vector of the contact point in the inertial frame. For the
left-hand roller, the expression of this vector is

urol =
[
−sl sin β l sl cos β

]T (3.40)

and for the right-hand roller the expression is

uror =
[
sr sin β −l sr cos β

]T (3.41)

Hence, the velocity vectors of the points of contact are obtained. For the left-hand
roller

vrol = ωro × urol =

 0

− V
s0

0

×
−sl sin βl

sl cos β

 =

−
V
s0
sl cos β

0

− V
s0
sl sin β

 ≈
 −

V
s0
sl

0

− V
s0
slβ

 (3.42)

and for the right-hand roller

vror = ωro × uror =

 0

− V
s0

0

×
sr sin β

−l
sr cos β

 =

−
V
s0
sr cos β

0
V
s0
sr sin β

 ≈
 −

V
s0
sr

0
V
s0
srβ

 . (3.43)
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3.5. Kinematic problem

Thus the velocity difference between the wheel and roller at each point of contact in
the inertial frame can be calculated as follows. For the left side

∆vl = vwl − vl− =


−lψ̇ − rl(φ̇ψ + ψ̇φ+ Ωw) + V

s0
sl

ẏ + l(−ψ̇ψ − φ̇φ) + rl(ψ̇β + φ̇− Ωwψ)

ż + lφ̇+ rl(φ̇φ− Ωwβ) + V
s0
slβ

 (3.44)

for the right side

∆vr = vwr − vr− =


lψ̇ − rr(φ̇ψ + ψ̇φ+ Ωw) + V

s0
sr

ẏ + l(ψ̇ψ + φ̇φ) + rr(−ψ̇β + φ̇− Ωwψ)

ż − lφ̇+ rr(φ̇φ+ Ωwβ)− V
s0
srβ

 (3.45)

and the difference of angular velocity is

∆ω = ωw−ωro =

 φ̇ cosψ − Ωw sinψ cosφ

φ̇ sinψ + Ωw cosψ cosφ+ V
s0

ψ̇ + Ωw sinφ

 ≈
 φ̇− Ωwψ

φ̇ψ + Ωw + V
s0

ψ̇ + Ωwφ

 . (3.46)

To determine the creepages and spin, the velocity differences obtained above must
be projected in the contact plane where they are defined. It is assumed that the contact
frames are connected to the wheelset frame by the following transformation matrices
for the left and right wheels, respectively.

Aw2cl =

 cos β 0 sin β

− sin β sin δl cos δl cos β sin δl

− sin β cos δl − sin δl cos β cos δl

 ≈
 1 0 β

0 1 δl

−β −δl 1

 (3.47)

and

Aw2cr =

 cos β 0 − sin β

− sin β sin δr cos δr − cos β sin δr

sin β cos δr sin δr cos β cos δr

 ≈
1 0 −β

0 1 −δr
β δr 1

 (3.48)

where δi(i = l, r) denotes the contact angle.
Hence, the transformation matrices connecting the inertial frame to the contact

frame can be obtained for the left and right side wheels by the following operation.
For the left side

Ai2cl = Aw2clAi2w = Aw2cl(Aw2i)T

≈

 1 0 β

0 1 δl

−β −δl 1


 1 ψ 0

−ψ 1 φ

0 −φ 1

 ≈
 1 ψ β

−ψ 1 δl + φ

−β −δl − φ 1

 (3.49)
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and for the right side

Ai2cr = Aw2crAi2w = Aw2cr(Aw2i)T

≈

1 0 −β
0 1 −δr
β δr 1


 1 ψ 0

−ψ 1 φ

0 −φ 1

 ≈
 1 ψ −β
−ψ 1 −δr + φ

β δr − φ 1

 . (3.50)

The velocity differences between the wheelset and rollers in the contact plane are
obtained. For the left side

∆vcl = Ai2cl∆vl (3.51)

∆ωcl = Ai2cl∆ω (3.52)

Therefore, the longitudinal component is

∆vclx ≈ −lψ̇ − rlψ̇φ− V
rl
r0

+ V
sl
s0

+ ẏψ + βż + lφ̇β (3.53)

the lateral component is

∆vcly ≈ ẏ − V ψ sl
s0

+ rlψ̇β + rlφ̇+ δlż + lδlφ̇+ φż (3.54)

and the normal component of the rotation is

∆ωclz ≈ −βφ̇− V
δ

r0

− V δ

s0

− V φ

s0

+ ψ̇ (3.55)

For the right side
∆vcr = Ai2cr∆vr (3.56)

∆ωcr = Ai2cr∆ω (3.57)

Therefore, the longitudinal component is

∆vcrx ≈ lψ̇ − rrψ̇φ− V
rr
r0

+ V
sr
s0

+ ẏψ − βż + lφ̇β (3.58)

the lateral component is

∆vcry ≈ ẏ − V ψsr
s0

− rrψ̇β + rrφ̇+ δrż + lδrφ̇− φż (3.59)

and the normal component of the rotation is

∆ωcrz ≈ βφ̇+ V
δ

r0

+ V
δ

s0

− V φ

s0

+ ψ̇. (3.60)

Now, the creepages can be obtained by definition as follows. The longitudinal creep-
ages on the left- and right-hand wheels are

ξlx =
∆vclx
V
≈
−lψ̇ − rlψ̇φ− V rl

r0
+ V sl

s0
+ ẏψ + βż + lφ̇β

V
(3.61)

ξrx =
∆vclx
V
≈
lψ̇ − rrψ̇φ− V rr

r0
+ V sr

s0
+ ẏψ − βż + lφ̇β

V
(3.62)

36



i
i

“thesisBINBIN” — 2016/2/12 — 13:38 — page 37 — #45 i
i

i
i

i
i
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the lateral creepages are

ξly =
∆vcly
V
≈
ẏ − V ψ sl

s0
+ rlψ̇β + rlφ̇+ δlż + lδlφ̇+ φż

V
(3.63)

ξry =
∆vcry
V
≈
ẏ − V ψ sr

s0
− rrψ̇β + rrφ̇+ δrż + lδrφ̇− φż

V
(3.64)

and the spin creepages are

ξlz =
∆ωcrz
V

≈
−βφ̇− V δ

r0
− V δ

s0
− V φ

s0
+ ψ̇

V
(3.65)

ξrz =
∆ωcrz
V

≈
βφ̇+ V δ

r0
+ V δ

s0
− V φ

s0
+ ψ̇

V
. (3.66)

It can be seen from the expressions above that the radius of the roller and the shift
angle (function of yaw) contribute to the differences in terms of the longitudinal and
lateral creepages and spin with respect to wheel-rail contact condition. Moreover, the
longitudinal and lateral creepages can be simplified further by assuming that the con-
tacting bodies remain in contact at all times which means the z components vanish in
the corresponding expressions. Knowing these quantities, the creep forces and spin
moment can be calculated as shown in Section 3.6. Moreover, it should be noted that
the forces and moment obtained are defined in the contact reference frame, they must
be transformed to the inertial frame before being substituted to the equations of motion.

3.5.2 Kinematics of a wheelset on a track

The wheel-rail contact can be considered as the limit condition of wheel-roller contact
when the radius of roller goes to infinite. It means the corresponding expressions for
wheel-rail contact condition can be obtained by setting s0 = ∞ and β = 0 in equa-
tions 3.61-3.66. Therefore, the kinematics behaviour of the wheelset on a track can
be derived easily by following the same procedure described above. Any terms in the
preceding equations that include the quantity of roller radius present the differences
between the wheel-rail contact and wheel-roller contact from kinematic point of view.

3.6 Tangential problem

Tangential forces arise due to the relative motion between wheel and rail. However,
the resolution of the tangential problem has been the question that draws the attention
of researchers, leading to define different contact theories [19]. A brief review of the
development of the theories for solving wheel-rail tangential contact problem will be
given first, and this is followed by a description of the method applied in the current
study.

3.6.1 Review of methods for solving the wheel-rail tangential problem

The tangential contact problem in the context of wheel-rail system refers to the rolling
contact. Continuum rolling contact theory started with a publication by Carter in
1926 [24], in which he approximated the wheel as a cylinder and the rail as an infinite
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half-space. The analysis was bi-dimensional and an exact solution was found. Carter
showed that the difference between the circumferential velocity of a driven wheel and
the translational velocity of the wheel has a non-zero value as soon as an accelerating
or braking torque is applied to the wheel. This difference is called creepage that in-
creases as the torque increases until the maximum value according to Coulomb’s law is
reached, this phenomenon is referred to as saturation. Carter formulated a creep-force
law relating the driving-braking torque and the velocity difference.

In 1958, Johnson derived an approximate three-dimensional solution to the rolling
contact problem, considering both longitudinal and lateral creep forces [51]. Johnson
analysed an elastic sphere rolling on an elastic plane and assumed that the overall con-
tact patch is circular, and that the adhesion region is also circular and tangent to the
leading edge of the contact patch, as shown in 1938 by Cattaneo [25]. Johnson verified
his findings experimentally and also investigated the effects of spin creepage on lateral
creep force [51]. Vermeulen and Johnson [101] expanded Johnson’s earlier work and
obtained an approximate solution for creep forces in the case of an elliptical contact
patch, neglecting the spin creepage.

In 1976, Kalker suggested that, for very small creepages, the area of slip is very
small and its effect can be neglected which is known as Kalker’s linear theory [55]. A
program called FASTSIM, which is based on the simplified theory, was developed by
Kalker in 1982 [56] and has been widely used in railway vehicle computer programs.
In 1984, Kalker calculated the creepage and spin coefficients when the relative slip is
small but the contact area is not necessarily elliptic. These calculations were made with
the aid of the program CONTACT [57].

In 1983, Shen et al. [94]. suggested a new approximate heuristic nonlinear theory
based on Kalker’s linear theory. In this theory, the saturation law of Johnson and Ver-
meulen is used, and the effect of spin creepage on the creep forces is considered. The
longitudinal and lateral creep forces are first calculated using Kalker’s linear theory.

In 1999, Polach [85] introduced an algorithm for the computation of the wheel/rail
creep forces, which is implemented in some computer codes for the dynamic simulation
of railway systems. All of this work is Hertzian-based, giving contact solutions for a
class of geometrical objects satisfying the half-space restriction.

3.6.2 Extended FASTSIM algorithm

The common method to solve the wheel-rail tangential contact problem is represented
by the FASTSIM algorithm due to Kalker. This method was originally developed for
elliptic contact condition, but can be extended to cover a more general geometry of the
contact patch. The difficulty is to determine the flexibility parameter that is required
by this method. To overcome this, Kik and Piotrowski proposed a method to define an
equivalent ellipse for each separate contact zone by setting the ellipse area equal to the
non-elliptic contact area and the ellipse semi-axes ratio equal to length to width ratio of
the patch. This is also the choice made in the current study. The flexibility parameter
is determined by equating the two solutions obtained from the linear complete theory
and from the simplified theory for elliptical contact area and pure longitudinal, lateral
and spin creepages. In addition, there are two options with respect to the choice of the
flexibility parameter, namely one single weighted mean flexibility parameter or three
flexibility parameters, one for each creepage component. According to paper [104], the
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3.7. Comparisons between wheel-rail and wheel-roller contact

single flexibility parameter will reduce the agreement of FASTSIM to the exact theory.
Therefore, three flexibility parameters are used in the current study.

It should be noted that the spin does not contribute to the longitudinal creep force
when an elliptic contact patch is assumed. However, for non-elliptical especially the
asymmetric contact patch, see Figure 3.11(b1) and Figure 3.13(b1), both the lateral
creepage and the spin can produce longitudinal forces. To take this effect into account,
a new tangential contact theory is required. One possible solution could be achieved by
introducing four flexibility parameters instead of the three used originally in FASTSIM,
for instance in [7, 64]. For the sake of simplicity, the original method proposed in the
KP is used for solving tangential problem as described below.

From the main assumption of the linear theory which neglects slip in the contact
zone, the tangential stress distribution is derived in the form:{

τx(x, y) = ξx
L1
− y ξz

L3
(x− xlxz)

τy(x, y) = ξy
L2

(x− xlxz) + ξz
2L3

(
x2 − (xlxz)

2
) (3.67)

where ξi(i = x, y, z) are the longitudinal, lateral and spin creepages, and Lj(j = 1−3)
denotes the flexibility parameter for each creepage component.

The stresses stated in Equation 3.67 cannot exceed the so-called traction bound. Slip
occurs in the region where the tangential stresses predicted by Equation 3.67 are greater
than the traction bound. The formulation for the traction bound used in this paper is
obtained by applying Coulomb’s friction law locally with a constant friction coefficient,
i.e. µp(x, y). The tangential forces are obtained from the numerical integration of the
stresses over the contact patch.

3.7 Comparisons between wheel-rail and wheel-roller contact

The effects of roller on the contact solution with respect to the wheel-rail case have
been addressed in this chapter under four different points of view. In reality, all of
these factors are interacting with each other, thereby it is essential to investigate their
combined influence on the contact solution. To this end, a set of cases with various
contact positions and radii of roller have been chosen to quantify the influence. The
calculation parameters listed in Table 3.1 are used, in addition, the normal load is 80
kN, the rolling velocity is 72 km/h, the friction coefficient is 0.35, and the radius of
roller is set to 0.5 m and 1.0 m, respectively, for the purpose of comparison.

For simplicity, track irregularities are neglected and no wheelset velocity compo-
nent is considered except in the rolling direction. The creepages of the right wheel of
the wheelset are calculated according to expressions 3.61-3.66 as presented in Table
3.3 where ξi(i = x, y, z) represents the longitudinal, lateral and spin creepages. Two
contact cases are considered for the central position of the wheelset on the track, i.e.
∆y = 0 mm and a lateral displaced position of the wheelset with ∆y = 3 mm.

It is clear that the major difference in the longitudinal creepage obtained in Table 3.3
is caused by the variation of the roller head circumferential velocity across its profile
according to Equation 3.62. The lateral creepage is zero when the yaw angle is assumed
to be zero according to Equation 3.64 under the considered contact condition. It can
be seen from Equation 3.66 that the additional contribution of the roller rig to the spin
creepage is from the effect of both the wheelset yaw angle and the angular velocity of
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Chapter 3. WHEEL-RAIL/ROLLER CONTACT ANALYSIS

the roller. The contact estimation results are presented in two groups for normal contact
solution and tangential contact solution, respectively.

Table 3.3: Calculation cases for comparison between wheel-rail and wheel-roller contact

No. ∆y Rail Roller s0=1.0 m Roller s0=0.5 m

[mm] ξx ξy ξz[1/m] ξx ξy ξz[1/m] ξx ξy ξz[1/m]

1 0 0 0 0.075 0 0 0.109 0 0 0.143
2 3 -0.0017 0 0.197 -0.0022 0 0.287 -0.0027 0 0.377

The solutions of the normal contact problem in terms of the shape and area of the
contact patch and the corresponding pressure distribution within the contact patch are
obtained by the EKP model for wheel-rail and wheel-roller contact conditions, respec-
tively. The calculation results for the case studies listed in Table 3.3 are presented in
Figure 3.16, and the results of wheel-rail contact and of wheel-roller contact at the same
contact position are presented in the same figure for comparison.
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Figure 3.16: Contact patch (top) and the pressure distribution along its y-axis (bottom) for Case 1 (left)
and Case 2(right).

It can be seen from Figure 3.16 that these two simulation cases correspond to a
highly non-elliptic contact condition in the first case (left column) and nearly elliptic
contact condition in the second case (right column), respectively. In Figure 3.16 (a)
and (b), it is observed that the length of the contact patch in longitudinal direction
decreases on the roller compared to the rail due to the finite radius of roller and this
effect being more visible for the smaller value of the roller radius. On the contrary,
the width of the contact patch is slightly increased in the case of wheel-roller contact.
Eventually, the contact area of the contact patch decreases with the increase of the
radius of the roller. The maximum contact pressure over the contact zone is increased
by a decrease of the roller radius as the same load is spread across a smaller contact
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area, see Figure 3.16 (c) and (d). The change in the contact patch also affects the
semi-axis ratio and consequently the creep coefficient and the creep forces according to
Kalker’s theory. The differences caused by the roller rig in terms of the contact shape
and contact pressure should be taken into account when the roller rig is used for contact
deterioration mechanism studies such as wear and RCF.

The corresponding tangential contact solutions in terms of the stress distribution for
the cases considered are presented in Figure 3.17.
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Figure 3.17: Stress distribution over the contact patch formed by wheel-rail (top), wheel-roller with a
radius of 1 m (middle) and wheel-roller with a radius of 0.5 m (bottom) for Case 1 (left) and Case
2(right). Black and red arrows represent the stress vector in the stick and slip regions, respectively.

It can be observed from Figure 3.17 that the pattern of the stress distribution over
the contact patch is similar for wheel-rail and wheel-roller cases. However, the division
between the slip and stick regions in the contact patch varies case by case.

To quantify the differences involved in the contact solution between wheel-rail and
wheel-roller contact for the cases considered above, the contact area, resulting longitu-
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dinal force, lateral force, spin moment around the z-axis of the local coordinate system,
the percentage of the slip region over the complete contact area, and the frictional power
dissipated by the surface tractions within the contact patch are calculated as listed in
Table 3.4.

Table 3.4: Resulting figures of the contact problems listed in Table 3.3

Figures Case 1 (∆y = 0mm) Case 2 (∆y = 3mm)

Rail Roller1m Roller0.5m Rail Roller1m Roller0.5m

Contact area Ac [mm2] 183 158 142 94 84 78
Longitudinal force [kN] -4.67 -5.97 -6.32 16.46 17.03 17.87
Lateral force [kN] -2.57 -2.96 -2.92 -5.70 -5.45 -5.65
Spin moment [Nm] 58.14 75.96 81.85 9.35 7.64 8.29
Aslip/Ac [%] 8.33 13.33 15.25 26.32 27.40 29.41
Frictional power [W] 87.21 165.58 234.10 608.50 847.42 1119.02

It is observed that when the rail is replaced by a roller with a radius of 1 m and 0.5 m,
the contact area decreases by approximately 10% and 20%, respectively, for both cases.
Correspondingly, the resulting longitudinal contact force increases approximately 28%
and 35%, respectively, for Case 1 and 3.5% and 8.6%, respectively, for Case 2. The
different variation in the longitudinal force between the two cases because Case 1 is a
pure spin condition where the longitudinal contact force is only attributed to the spin,
whereas the longitudinal creepage and spin both contribute to the resulting longitudinal
contact force for Case 2.

Since there is no lateral creepage considered, the resulting lateral contact force com-
pletely comes from the contribution of the spin. Therefore, the resulting lateral contact
force is relatively small, and the influence of the roller on its value is limited, as far as
the lateral contact force is concerned.

The spin moment increases approximately 30% and 40%, respectively, when the rail
is replaced by a roller with a radius of 1 m and 0.5 m, under the pure spin condition,
i.e. Case 1. The inclusion of the longitudinal creepage in Case 2 reduces the magnitude
of the spin moment even though the spin creepage increases with the reduction of the
roller’s radius, since the longitudinal creepage is dominant in this case, resulting in a
reduction of approximately 18% and 11%, respectively, when the radius of roller is 1
m and 0.5 m.

The ratio of the slip area to the entire contact area is increased for both cases, and
the increase is considerable for Case 1. Similar conclusions are applied to the frictional
power dissipation by the surface tractions over the contact patch. The increase of the
frictional power is approximately 160% and 80%, respectively, for Case 1 and Case 2
when the roller’s radius is 0.5 m. The significant increase of the frictional power caused
by the roller rig will affect the surface damage/deterioration of the wheel, e.g. wear and
RCF, therefore, it must be taken into account for performing this kind of test on the
roller rig. More details on this topic will be provided in Chapter 7.
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CHAPTER4
MULTIBODY SYSTEM SIMULATION OF A ROLLER

RIG AND A RAIL VEHICLE

4.1 Chapter summary

Modelling and simulation play an important role in roller rig application to railways as
mentioned in Chapter 2, and in particular for single-wheelset roller rigs. They strongly
complement the physical testing. On the one hand, because wheelsets are constrained
by the vehicle suspension, the movement of the single wheelset on the roller rig is
different from the actual behaviour of the wheelset on the track, unless appropriate
references are fed to the roller rig actuators starting from the simulated/measured be-
haviour of a complete vehicle. This problem will be discussed in Chapter 6 for the case
of a wheelset negotiating a curve. On the other hand, the numerical simulation of the
test performed on the roller rig is also required for at least two reasons. The first one is
to predict the results of the test, ensuring that these will meet expectations: in this way
the complicated and resource consuming full-scale tests can be tuned and optimised
before they are actually performed. Secondly, the comparison of experimental results
with the simulation can be used to assess the accuracy of models and theories.

Therefore, it is the aim of this chapter to develop numerical models for the roller
rig system and a complete rail vehicle separately, which will be used for further study
in the following chapters where they are needed. To this end, the multibody system
(MBS) simulation technique is selected to accomplish this task in this chapter.

4.2 Multibody system simulation in railway application

Multibody system (MBS) dynamics is a branch of the general field of computational
mechanics that is concerned with developing and solving the non-linear equations that
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govern the motion of complex physical systems [93]. MBS simulation is one of the
key methods for the design, homologation and research in the field of railway vehicles.
The complexity of modern rail vehicles requires an as deep as possible insight into
the dynamics of the vehicles already in very early stages of their development. MBS
simulation is able to avoid many costly measurements and tests as well as unwanted
vehicle’s behaviours when the vehicle is in service. Today nearly every newly devel-
oped rail vehicle, from tramcars to high-speed trains and from people movers to roller
coasters, undergoes a thorough analysis by means of MBS simulation as a part of its
design process [107]. For more details on the MBS simulation in railway application,
the reader is referred to [93, 107].

A variety of MBS simulation packages is available for railway application in the
market. Some of them are general purpose packages with rail modules, e.g. SIMPACK,
VI-Grade and UM, while some other codes were especially developed for railway ap-
plication e.g. VAMPIRE, NUCARS, GENSYS and VOCOLIN. Some interesting com-
parisons among the packages that are suitable for railway simulations were made in [44]
and [107]. On the one hand, these commercial packages facilitate the work of railway
engineers and researchers thanks to their powerful functions and friendly user inter-
face. On the other hand, some details that are of interest to users are not available yet
for confidential reasons. Therefore, in-house codes are also common as alternatives in
research institutes due to their complete flexibilities, such as ADTreS developed by the
Railway Dynamics Research Group at Politecnico di Milano in Italy and TPLDYNA at
SWJTU in China.

4.3 Dynamics of a single suspended wheelset system

From a mathematical point of view, the dynamic behaviours of a system is governed
by its differential equations of motion. In order to show the differences in the dynamic
behaviour of a wheelset on a roller versus on a track, the equations of motion of a
suspended wheelset on the roller and on the track are derived, respectively, in this
section.

4.3.1 Equations of motion of a wheelset on rollers

The equations of motion of a wheelset placed on the rotating rollers encompass the
essential features of the wheel-rail geometry, the frictional forces transmitting between
the wheel and roller, and the elastic and damping forces generated by the suspension
[108]. The wheelset is allowed to move in the yaw and lateral directions. Hence,
the system can be considered as a two degrees of freedom (DOF) system and the two
equations of motion describing its dynamics are: the lateral motion of the wheelset

mÿ + Fyl + Fyr +Kyy + Cyẏ +
mgλ

l
y = 0 (4.1)

and the yaw motion of the wheelset

Izψ̈ + b2Kxψ + b2Cyψ̇ + (Fxr − Fxl)b+Mzl +Mzr −mgλlψ −Mdc = 0 (4.2)

where y and ψ denote the lateral displacement and yaw angle of the wheelset, respec-
tively, K and C represent the stiffness and damping of the primary suspensions, m and
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4.4. MBS model of a roller rig system

I stand for the mass and moment of inertia of the wheelset, F and M are the contact
force and spin moment, g is the gravitational acceleration, λ is the equivalent conicity of
the wheel, l is the half distance between the contact points, b is the half gauge of the pri-
mary suspensions, and Mdc presents the moment caused by the so-called de-crowning
effect of the roller rig. More details regarding this issue can be found in Section 4.4.
In addition, the subscripts x, y and z refer to the directions of force and moment, and l
and r refer to the left- and right-hand side of the wheelset. A schematic presentation of
the single suspended wheelset system with symbols used in the equations is shown in
Figure 4.1.

Y
w

Z
w

2l

Ky Ky

CyCy

2b

Figure 4.1: A single suspended wheelset.

The determination of the contact forces is the most challenging part to set up the
equations of motion of the wheelset system, which can be done by the methods pro-
posed in Chapter 3 or simply by Hertzian theory [42] combined with Kalker’s linear
theory [56].

4.3.2 Equations of motion of a wheelset on a track

The equations of motion of a suspended wheelset on the track have a similar form to that
on a roller rig as presented in Equations 4.1–4.2 except the term of Mdc which is only
applicable to wheel-roller contact case. There is no need to repeat the equations once
more here, while it is worth mentioning that there are two main aspects responsible
for the differences of the dynamic behaviour of the wheelset on the track versus on
the roller rig governed by these equations. The first is the different creep coefficients
which depend on the size and dimension of the contact patch resulting in different creep
forces, and the second is an effective increase in the equivalent conicity λ for a wheelest
running on rollers resulting in the increase of the magnitude of the gravitational angular
stiffness, which can explain that the critical speed of a wheelset running on the roller
rig is generally lower than on the track.

4.4 MBS model of a roller rig system

The expressions of the dynamic equations of motion of a wheelset on rollers and a
track presented in preceding section are helpful for understanding the sources of the
differences of the two systems in terms of the dynamic behaviour. It is concise and
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straightforward but too simple to be applied for further study such as a virtual test.
Therefore, a more detailed MBS model of a roller rig system is developed in SIMPACK
in this section. The roller rig for the simulation purpose in this thesis specially refers
to a full-scale roller rig for a single wheelset test unless otherwise stated. Figure 4.2
presents a typical layout of this kind of roller rig under consideration. The complete
roller rig consists of a mechanical system and an actuation system which are simulated
together.

Figure 4.2: Mechanical layout of a roller rig for tests on a single wheelset.

4.4.1 Roller rig mechanical system modelling

The MBS model of the roller rig mechanical system consists of six rigid bodies with
13 state variables and two constraints as shown in Figure 4.3 (left). The portal frame
is fixed to the inertial frame and connects to the half-bogie through actuators. The
half-bogie has four DOFs, namely the vertical and lateral translations plus yaw and roll
rotations. It connects to the axle boxes through the primary suspensions. The contact
between the wheelset and the rollers introduces two degrees of constraint in the system,
hence, the wheelset has four DOFs which are longitudinal and lateral translations, and
yaw and pitch rotations. The roller (assumed to have a radius of 1 m) can only rotate
about its axis of revolution. The typical wheel and rail combination S1002/UIC60 with
the rail inclination 1:40 and 1435 mm track gauge are used. The normal contact force is
evaluated according to Hertzian theory, while the tangential contact force calculation is
implemented according to the FASTSIM algorithm [56] with a constant friction coef-
ficient of 0.5. The additional creepage terms related with the rotation of the roller [47]
are considered.

The MBS model of the roller rig also accounts for the de-crowning phenomenon
[4, 34] that occurs when the wheelset performs a yaw rotation respective to the rollers,
resulting in a component of the normal force in the horizontal plane which in turn leads
to a de-stabilising yaw moment applied on the wheelset as illustrated in Figure 4.3
(right). Since de-crowning is not taken into account in the SIMPACK version [97] used
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to defined the model, this effect is introduced as an additional yaw moment which is
applied on the MBS model via co-simulation with SIMULINK according to Equation
4.3 derived from references [4, 34]:

Mdc =
Nl2ψ

r0 + s0

(4.3)

where N is the sum of normal force components on the left and right wheels, and r0

and s0 are the nominal radii of the wheel and roller, respectively.

 

lψ 

r0 

s0 

side view 

Figure 4.3: MBS model of roller rig (left) and the de-crowning effect (right).

4.4.2 Roller rig actuation system modelling

The roller rig actuation system consists of multiple modules accomplishing different
tasks:

1. a vertical actuation module, consisting of two actuators producing a desired com-
bination of vertical forces on the two sides of the half bogie;

2. the lateral actuation module, consisting of a single actuator which is used to apply
a lateral force on the half bogie;

3. the yaw actuation module, which is used to control the yaw rotation of the half-
bogie. This module may consist of a variable number of actuators (4 in the scheme
of Figure 4.2), depending on the specific mechanical layout adopted in the design
of the rig;

4. a traction module, driving the rollers according to a desired speed profile;

5. the differential gear module, driving the two rollers in different speeds by an ad-
ditional motor via a differential gear.

Modules 1 and 2 are typically operated in force control mode, whereas module 3
is normally operated in position control and module 4 in speed control. Based on the
author’s knowledge, at least for the BU300, KRRI and CARS benches, the references
of actuation modules 1, 2 and 3 can be defined in various ways which include manual
control by a human operator, the execution of a sequence of simple waveforms such as
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ramps, holds, sinusoids or generic time histories that are generated externally and fed
to the control system prior to the execution of the test. Module 5 is based on a modified
design of the roller rig specially for curving test. More details the application of this
module will be given in Chapter 6.

Considering a similar configuration of actuation system of the BU300 rig, the math-
ematical model of the actuation system assumes hydraulic actuation for the vertical
and lateral actuation modules and electro-mechanical actuation for the yaw actuation,
traction and differential gear modules.

A third-order dynamic model is introduced for each hydraulic actuator in the vertical
and lateral actuation modules. According to the characteristic equations of hydraulic
actuators, the numerical model is defined in SIMULINK, see Figure 4.4. Equation
4.4 represents the dynamic response of the servo valve, where xk is the position of
the valve, ik is the input exciting current, Gvm is the current gain, and σv and ξv are
the valve natural frequency and damping factors, respectively. Equation 4.5 describes
the fluid continuity equation, where Pk is the difference of pressure between the two
chambers of the actuator, A is the area of the piston, V0 is the initial volume in the
two chambers of the actuator, β is the fluid compressibility coefficient, Cep is the total
leakage coefficient, Kc is the flow-pressure coefficient relating the flow rate to the dif-
ference of pressure Pk , Kq is the valve flow gain relating the flow rate to the position
of the servo valve xk, yhyd, k is the physical displacement of the actuator (cf. [23] for
more details).

1

σ2
v

ẍk +
2ξv
σv
ẋk + xk = Gvmik (4.4)

V0

2β

dPk
dt

+

(
Cep
2

+Kc

)
Pk + A

dyhyd,k
dt

= Kqxk (4.5)

A PI regulator is adopted in the hydraulic actuator control loop. This control strategy
is chosen in order to obtain small errors for constant reference values (as happens in
steady state curving) together with low noise sensitivity. As mentioned above, the
electro-mechanical actuations are assumed for yaw actuation, traction and differential
gear modules. Therefore, they are treated as ideal actuators in the model. PI regulators
are also adopted, neglecting actuators’ dynamics on account of the much larger pass-
band and accuracy of these actuators, resulting in a lower complexity of the overall
model for the actuation system.

 

Figure 4.4: Hydraulic actuator control loop in SIMULINK.
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4.5 MBS model of a rail vehicle

To define the dynamic behaviours of the wheelset on the roller rig and further compare
with that on a real track under operational conditions, a complete rail vehicle model
is needed. An MBS model of a high-speed rail vehicle with two suspension’s stages
is developed in SIMPACK based on the high-speed Italian train ETR470, as shown
in Figure 4.5. The model consists of a set of rigid bodies including a carbody, two
bogie frames, four wheelsets, and eight axle-boxes as well as suspension components.
The non-linearities of the suspensions and wheel-rail geometry contact are taken into
account as with the roller rig. The same parameters as the roller rig model are used for
wheel-rail contact geometry and contact force calculation.

   

Figure 4.5: ETR470 on track (left) and its MBS model (right).

It should be mentioned that the parameters of the vehicle’s suspension system are
not necessarily the same as those of the roller rig. In addition, the configuration of the
vehicle model may need to be adjusted, depending on the test type being considered.
This vehicle model was validated by comparison with the results presented by S. Bruni
et al. in reference [23].
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CHAPTER5
PROCEDURE FOR TESTS ON A

SINGLE-WHEELSET ROLLER

5.1 Chapter summary

To test any new applications or designs for improving railway performances, e.g. new
concept suspension system and optimizing the match of profiles or materials of the
wheel and rail, and devising methods of detecting defects on a roller rig, the leading-
edge testing methods are required [100]. Due to the inherent differences of the roller
rig test compared with field test, the testing procedure and the underlying test principle
and method on a roller rig are of particular importance to an efficient and successful
test. A general testing procedure for a wheelset on a roller rig will be described in this
chapter based on a detailed discussion on the testing method and principle for using a
full-scale roller rig.

5.2 Testing principle of roller rigs

The testing principle of a testing facility is of importance to a successful representation
of the real operating conditions which shall be reproduced by the experiment. The roller
rig simulates the motion of the wheel on the endless track by the motion on rollers. The
most common method to reproduce wheel-rail contact on roller rigs can be classified
as Hertzian simulation and Geometrical simulation [65].

In Hertzian simulation principle, the average or maximum contact stress, based on
the Hertz theory, are simulated with pre-calculated curvatures of wheel and roller profile
and dimensions, and the contact ellipse produced by the rig has the same ratio of axis
with the actual wheel and rail combination to be tested, which ensures the similarity of
the property of friction interaction, thus, effectively simulating the stress distribution
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Chapter 5. PROCEDURE FOR TESTS ON A SINGLE-WHEELSET ROLLER

Figure 5.1: TNO-TPD test rig (left) and its concept presentation (right).

between wheel and rail under field conditions, but the details of the wheel and rail
profiles are neglected. Therefore, this kind of test rig is mainly used for contact study
rather than for the investigation of vehicle dynamics. The most common test rig of
this kind is a disc-on-disc rig such as the one located at TNO TPD in Delft (see Figure
5.1). The set-up consists of two wheels, one a scale-model (1:3.68) of a wheel and the
other representing the rail called wheel-rail or roller. The effect of the limited radius of
roller on the contact patch is compensated by adjusting the lateral radius of the roller.
Another example of the roller rig using Hertzian simulation principle is the JD-1 rig
at Tribology Research Institute in SWJTU, China [74]. It has been used to study rail
corrugation in particular, and rail-wheel adhesion behaviour in general.

For Geometrical simulation principle, the actual or scaled profiles of wheel and rail
are precisely ground. This type of simulation provides a complete description of wheel-
rail geometric contact relationship and of all the important forces including flange con-
tact, for both tangent and curved track conditions. The common configuration of this
kind of facility can be found in a variety of forms, such as the 1:5 scaled roller rig orig-
inally built at MMU (now at IRR in the University of Huddersfield) in the UK, another
similar one at Politecnico di Torino (PoliTo) in Italy, see Figure 5.2, the roller rig for
tests on a full-scale bogie at NTSEL in Japan, and the six-axle full-scale roller rig for
tests on complete vehicles at SWJTU in China, see Figure 2.1 in Chapter 2.

Figure 5.2: The roller rigs at IRR (left) and PoliTo (right).
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5.3. Testing procedure

There is another kind of roller rig belonging to this category, which is a compromise
between the complexity and cost of the complete vehicle test rig and the similarity of
the reduced scale roller rig. Such sort of roller rigs are designed for a single full-scale
wheelset test, as the BU300 rig at Lucchini RS in Italy and the RaSSP roller rig owned
by DB Systemtechnik in Germany, see Figure 1.1. As mentioned before in Chapter 1
and Chapter 2, this kind of roller rig is the main study subject in this thesis, therefore
the following discussions are mainly based on this specific test rig configuration.

Basically, both the Hertzian and Geometrical simulation principles are able to simu-
late the wheel-rail contact stresses, however, the change of geometrical relationship by
employing the Hertzian simulation makes it impossible to simulate flange contact con-
dition and wheel-rail geometric contact condition. Consequently, it fails to reproduce
the contact force and wear on the flange and dynamic behaviour of the wheel related to
the variation of wheel and rail profiles. Therefore, this testing principle is particularly
applicable to reduced-scale roller rig or single wheel-on-wheel rig for simplicity. In
contrast, Geometrical simulation is capable of reproducing the contact condition be-
tween wheel and rail with a good approximation in terms of contact geometry as well
as contact stresses especially for full-scale roller rigs, although the semi-axis ratio of
the contact patch slightly differ from the field condition. The details about the advan-
tages and disadvantages of using different types of roller rigs for railway application
are discussed in [79].

5.3 Testing procedure

The testing procedure of a roller rig in laboratory may differ slightly for each specific
test, but the main steps remain the same for the roller rigs with similar configurations.
Generally, the test on a full-scale roller rig can be run in the following four modes of
operation:

1. Set-up mode;

2. Manual mode;

3. Sequence-based mode;

4. Time history-based mode.

Modes of operation 1) and 2) are manual modes, which means the operation of the
roller rig is directly controlled by the user, although the roller rig control unit can be
used to reduce the risk of improper use, e.g. by implementing time constants/ramps to
avoid the abrupt change of forces and displacements applied by the actuators, and by
introducing appropriate warning and alarm thresholds.

Modes of operation 3) and 4) are automated modes, which means a sequence of
operations is defined by the user and then executed automatically on the test rig. The
difference between the sequence-based and time history-based modes is that in the
first case the variation of the references to the actuators is defined using simple time
waveforms such as ramps and holds, whereas in the second case general time histories
are defined for the references. Therefore, a reference generator is required in mode 4)
for providing control signals to the control unit since the aim of this test mode is mainly
to reproduce the realistic condition of a wheelset running on the track.
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Chapter 5. PROCEDURE FOR TESTS ON A SINGLE-WHEELSET ROLLER

The whole testing procedure for a single wheelset roller rig can be divided into three
phases similar to the approach proposed in reference [20, 65] namely the preparatory
phase, followed by the trial phase in which the operation mode should be chosen, and
finally the post-processing phase.

Firstly, thoroughly clean the surfaces of the wheels and rollers, measure the profile
shapes and hardness of the surfaces prior to commencing new tests which is so-called
preparatory phase. After these preparations are completed, the operation mode should
be selected. For instance, if mode 4) is selected, the loading will be commenced by
actuators in the following sequence provided that all references (time history-based) of
control unit are ready. A general loading sequence is presented in Figure 5.3.

T1 T2 Ti Ts31 Ts32 Ts33 Td T4 

        

        

        

        

        

        

        

 

        

Time 

A. Velocity  

B.  Vertical force reference FQ1, FQ2 

C.  Lateral force reference FY 

D.  Position references  z1, z2 

Figure 5.3: Loading sequence on a roller rig.

The wheelset is first lowered to just come into contact with the roller at the central
position. As the load is being applied, the monitor system continually samples the load
values. To achieve a certain loading condition, the vertical load is increased to the
needed value without any unloading as shown in section T1 of the curve B in Figure
5.3. This keeps the loads accurate in value (see section T2 of of the curve B). After
ensuring that the vertical load is correct, the roller is driven to the desired test speed
as shown in section Td of curve A in Figure5.3. Meanwhile, the excitations may be
applied by actuators such as the case shown in section Ts31 of curves C and D in Figure
5.3, representing the external forces and constraints applied on the roller rig.

The following parameters are constantly monitored during each test:

• vertical, lateral and longitudinal loads by taking the load cell readings from the
computer,

• speed of the roller and wheelset,

• lateral displacement and yaw angle of the wheelset,
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5.4. Generation of references for the actuators

• contact forces by dynamometric wheelset and/or roller,

• any unusual phenomena like excessive vibrations, corrugations, noise, tempera-
ture, etc.

After the predefined cycles of revolutions or steps are completed, the excitations
applied by the actuators are removed gradually (section Ts33 of curves C and D). Then
the speed of the roller is gradually reduced till the roller is completely stopped as shown
in section Td − T4 of curve A in Figure 5.3. The vertical load is then released, and the
profiles of the wheel and roller are again measured. Then the test comes into final
post-processing state including data collection and analysis, report generation etc.

5.4 Generation of references for the actuators

It can be seen from the preceding section that the roller rig enables a railway wheelset
to be tested under various conditions with a suitable reference. Therefore, the core of
this testing procedure in preparatory phase is to generate the control reference signals.
Generally, two methods can be used to accomplish this task depending on different
control objectives, namely the physical-based method and theoretical-based method.
The difference of the references obtained from each method is attributed to the different
feedback used in the control loop, see Figure 5.4. More details will be introduced in
sequence.

+
_

A1

A2

A3

A3

(a) (b)

+
_

B1

B2

B3

B4

Figure 5.4: Scheme of reference generation: (a) the physical-based method, and (b) the theoretical-
based method.

5.4.1 The physical-based method

The method shown in Figure 5.4(a) definitely adheres to the real physical system. The
feedback directly comes from actuator, which can be force or stroke of the cylinder
depending on the working mode of actuators. A good example of this application is
given by S. Bruni et al. in paper [23].

While the accuracy of this method is shown to be case dependent for curving test
[72, 73]. As discussed in Chapter 3, the curvature of the roller of a test rig affects not
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Chapter 5. PROCEDURE FOR TESTS ON A SINGLE-WHEELSET ROLLER

only the size of the contact patch and the distribution of the normal pressure but also the
creepages and tangential tractions. The initial deviation arises mainly from differences
in the dynamic behaviour of the wheelset running on the test rig compared to the same
wheelset running on the track. In order to fully reproduce the contact condition between
wheel and rail on the roller rig, especially the contact forces, the references obtained
above need to be further corrected, more details will be given in Chapter 6. It should
be noted that the numerical models of the control unit is not required for reference
generation in this case, but they are necessary when a correction loop is introduced.
One program has been developed for the roller rig at CARS for commissioning test
based on this method.

5.4.2 The theoretical-based method

This method is not consistent with the physical system, only aiming at controlling the
contact forces produced on roller with the contact references from track simulation as
depicted in Figure 5.4(b). The method is possible in theory, but hardly feasible in prac-
tice due to its extremely high reliability requirements for control unit and measurement
unit. Therefore, it is difficult to obtain converged results even in numerical simulation.

MECHATRONIC SYSTEM

Feedback

Translate to field condition

MBS model (roller rig)                 

References

Control model

Feedback

MBS model (vehicle)                 

Figure 5.5: Architecture of the virtual test on a full-scale roller rig.

5.5 Virtual test of a roller rig

It is clear from the discussion above that a numerical model of the roller rig system is
of importance to define the control references for running a test on a single wheelset
roller rig. Moreover, a numerical implementation of the testing procedure called virtual
test is a very important complement and extension to the physical test. Firstly, it can
be used to design, select and optimize the testing programmes. Secondly, it is useful
for checking the safety and feasibility of a physical test to be performed. Thirdly, it
can provide a first prediction for the test result. If the virtual test model is validated for
certain typical manoeuvres on the roller rig, the extrapolation to simulation scenarios
going beyond the possibilities of the rig will be possible. Fourthly, the control laws
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5.5. Virtual test of a roller rig

developed for the virtual test can be adopted to the physical test case [41]. Last but not
lest, it can be used as a tool for post-processing, e.g. comparisons between theoretical
and experimental results.

The virtual test of a roller rig is achieved by means of the co-simulation of an MBS
roller rig model and different mathematical models for each actuation module (defined
in Chapter 4). The schematic presentation of the complete process of the co-simulation
applied to perform the virtual test simulation is described in Figure 5.5.

As shown in Figure 5.5, the references for the roller rig actuators are defined based
on the simulation results of a complete railway vehicle based on the physical-based
method. The mathematical model of the roller rig is inherently a multi-physic model, as
it needs to incorporate both a mathematical description of the roller rig as a mechanical
MBS and a model of the different actuation modules in the rig, which are either electro-
mechanical or hydraulic systems.

Two specific test concerning curve negotiation and wheel wear will be described in
detail in Chapter 6 and Chapter 7 within the framework introduced in this chapter.
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CHAPTER6
CURVING TEST ON A ROLLER RIG

6.1 Chapter summary

Curving performance is one of the most importance evaluation criteria for a rail vehicle,
while the field experiment on rail vehicle curving negotiation can prove to be challeng-
ing due to the difficulties in adequately controlling the test conditions. Therefore, the
curving testing study in laboratory is of interest to railway engineers and operators,
nevertheless, the achievements are still limited due to the complexity and difficulty
involved in this problem, such as the difficulties in recreating the centrifugal forces
experienced by a vehicle passing a curve and the complexity of dynamically manoeu-
vring the test rigs. Some attempts have been made to deal with this issue, for instance, a
specific curved track simulator was set up at the National Research Council in Canada
and a complicated curving simulation mechanism designed for a complete vehicle test
rig have been used in the laboratory of SWJTU in China [115]. Nevertheless, it is rare
to find the information about curving test on a single wheelset roller rig in the litera-
ture and actually some doubts have been raised concerning the ability of this kind of
roller rig to effectively reproduce the running dynamic behaviour of a wheelset on a
curve [17, 79].

The objective of the curving test may be various in reality based on different research
aims. It is assumed that the objective of this test is to reproduce the contact forces gen-
erated at the wheel-rail interfaces of a wheelset mounted on a complete vehicle running
on a curve by the roller rig. The aim of this chapter is to show that realistic running
conditions can be achieved on a roller rig even for the curve negotiation scenario by
introducing more advanced methods for the definition of the actuators’ references, es-
pecially in the case when the roller rig is equipped with a differential gear.

59



i
i

“thesisBINBIN” — 2016/2/12 — 13:38 — page 60 — #68 i
i

i
i

i
i

Chapter 6. CURVING TEST ON A ROLLER RIG

6.2 Configuration of the roller rig for curving test

In the existing implementations of roller rigs for a single wheelset, the two rollers are
rigidly connected and actuated to rotate at the same angular speed. In this section,
besides this base arrangement of the traction module, a modified design is considered
which includes a differential gear with the purpose of having slightly different angular
speeds of the two rollers. It should be noted that such an arrangement is at present not
used in any of the existing roller rigs of this kind, however it is used in some scaled
and full-scale roller rigs for tests on bogies or vehicles [54, 77, 115]. Therefore, it is
interesting to investigate the improvements in terms of replication of curving that are
enabled by this layout of the test rig, which is aimed at better controlling the longitudi-
nal creepages at wheel-roller contact.

As shown in Figure 6.1, the modified configuration of the traction module includes
a main motor that drives the input shaft of the differential gear according to a reference
time history defined for the mean angular speed of the two rollers and a secondary
motor that realises the speed difference between these two rollers. The rotation of the
two rollers at slightly different angular speeds can be used to simulate the different
curvature of the inner and outer rail in a curve and, more in general, to modify the
longitudinal creepages on the two wheels which will in turn affect the longitudinal
contact forces generated by the wheelset during the test, eventually leading to a better
match of the contact forces to their targets.

Figure 6.1: Scheme of the traction module including a differential gear.

6.3 Testing methodology

The method is backed by the use of the mathematical model of the roller rig developed
in Chapter 4 and uses an iterative correction scheme, comparing the time histories of
the contact force components from the roller rig test as predicted by the mathematical
model to a set of target contact force time histories coming from the numerical simula-
tion of the complete vehicle model also defined in Chapter 4. Two correction methods
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6.3. Testing methodology

are introduced to perform the iterative correction of results, the first one considering a
standard arrangement of the roller rig, the second one assuming that a differential gear
is introduced in the existing rig, allowing to differentiate the rolling speed of the two
rollers.

The different actuation modules need to be operated in close interaction one with the
other, in order to reproduce realistic testing conditions for the wheelset. This is achieved
starting from some target time histories of the contact forces and of the wheelset angle
of attack that are representative of the running condition considered. These are used to
define suitable time histories of the references for the different actuation modules, with
the final goal of minimising the difference between the target contact forces and those
actually obtained during the test.

The simplified method proposed in [23] is based on a quasi-static balance of the
forces acting on the wheelset and half beam, which is not satisfactory especially for the
scenario of a vehicle running through a curve.

In this thesis, an improvement of the method proposed in [23] is introduced, con-
sisting of applying some correction factors defined according to the original method, to
compensate for the different contact conditions occurring on the roller rig compared to
a line test, as shown in Chapter 3.

The correction factors are defined iteratively with the aim of minimising some mea-
sure of the difference between the target contact forces and those obtained on the roller
rig. To estimate the contact forces obtained in a test on the roller rig, the MBS model
of the roller rig defined in Chapter 4 is used.

In order to run the simulation as close as possible to reality, the physical-based
reference generation method described in Chapter 5 is applied. The process for the
definition of the correction factors is illustrated by the flowchart in Figure 6.2: starting
from the target time histories of the contact forces and angle of attack, a first approx-
imation of the time history of the actuator references Ri,1 is defined according to the
simple method proposed in [23]. Here subscript i denotes the actuation module con-
sidered with i = 1 − 5 for left vertical, right vertical, yaw, lateral and differential gear
respectively.

These first approximation references are used to initiate the iterative process shown
in Figure 6.2: the actuator references defined at iteration j are used as the inputs to
perform a numerical simulation of the wheelset dynamics on the roller rig according
to the multi-body model presented in Chapter 4. The simulation results are compared
to the target time histories of the contact forces and deviations ∆Ek,j are computed at
iteration j for each k-th target contact force component for k = 1 − 6 corresponding
respectively to the vertical, lateral and longitudinal on the left and right side wheel of
the wheelset. The definition of the deviations ∆Ek,j is given by:

∆Ek,j =
µ(yk,j(t)− yrefk (t))

µ(yrefk (t))
× 100% (6.1)

where µ(·) denotes averaging over time, yk,j(t) is the time history of the k-th output
from the roller rig at j-th iteration and yrefk (t) is the corresponding target time history.

Next, the value of the correction factors Fi,j are defined based on the deviations
obtained, and a new time history of the actuator references is obtained by applying the
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Chapter 6. CURVING TEST ON A ROLLER RIG

correction factors on the previous time histories:

Ri,j+1(t) = Ri,j(t)Fi,j (6.2)

 

Figure 6.2: Flowchart of the correction procedure.

The procedure is iterated until all deviations ∆Ek,j fall within an acceptable toler-
ance. In this way, the proposed methodology attempts to control the differences in the
contact forces in a roller rig test compared to the target, relying on a multi-body model
of the roller rig. It is worth noting that the model is able to work in batch mode which
makes it possible to invoke each subsystem automatically.

Different possible ways of defining the correction factors Fi,j are proposed in the
following sections, depending on the objectives of the test to be performed.

6.3.1 Partial correction

Previous research [73] has proven that it is difficult to reproduce on a single wheelset
roller rig the time history of all components of wheel-rail contact forces during a signif-
icant running condition of the vehicle. In particular, due to the rigid connection of the
two rollers the longitudinal creepages occurring on the two wheels cannot be controlled
independently. In this method, corrections are only applied on the references fed to the
vertical, lateral and yaw actuation modules, therefore i = 1− 3. This method is suited
to reduce the deviation of the vertical and lateral forces on the left and right wheel,
but it does not allow controlling the deviation of the longitudinal contact forces with
respect to their reference value. However, the longitudinal component of contact force
can be compensated by a suitable estimation formula which is introduced in Section
6.4. Therefore, targets yrefk (t) are defined for k = 1 − 4 corresponding respectively to
the vertical and lateral contact force on the left and right wheel.

It should be noted that only the sum of the lateral contact forces of the left and
right wheels can be directly controlled by the lateral actuation system due to the rigid
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6.3. Testing methodology

connection of the wheels established by the solid axle, whereas the distribution of the
lateral contact forces on the two wheels depends on the creepage conditions of the
wheelset and can be controlled by adjusting the yaw angle of the wheelset.

In this way, the correction factor for the i-th actuation system only depends on the
deviation ∆Ek,j . The correction factors are therefore introduced according to Equation
6.3.

F k,j+1
i=1−3

=


a

∆Ei
c if ∆Ei > ε;

b
∆Ei
d if ∆Ei < −ε;

1 if |∆Ei| ≤ ε.

(6.3)

with 
∆E1 = ∆E1,j;

∆E2 = ∆E2,j;

∆E3 = max(∆E3,j,∆E4,j).

(6.4)

where Fi,j represents correction factor with an initial value of one which is applied on
each reference as a multiplier, and ε is a given tolerance, coefficients a > 1, b < 1, c
and d are positive constants which can be determined by trial and error based on the
initial deviations before correction. The choice of these coefficients has an influence on
the rate of convergence.

6.3.2 Optimal correction

In order to tackle the difficulties mentioned in preceding section, an optimal correction
strategy is proposed. Better results can be expected by a roller rig including a differen-
tial gear in the system actuating the rollers, so that it is possible to drive the two rollers
to rotate at slightly different speeds, with both speeds defined by the control system.
In this section, a correction strategy is elaborated under the assumption that such addi-
tional device is included in the test bench, with the aim of ensuring a good agreement
of the longitudinal contact forces to their target while keeping the good match on the
lateral and vertical contact forces.

In this case, a different correction method is proposed, by which the correction fac-
tors are iteratively determined so to minimise a figure of merit J defined as the Eu-
clidean norm of deviations ∆Ek,j for k = 1 − 6 corresponding to the vertical, lateral
and longitudinal contact force components on the two wheels. The correction factors
are introduced for all five actuation modules i = 1 − 5 for left vertical, right vertical,
lateral, yaw and differential gear respectively. Therefore, the problem of finding the
correction factors Fi can be stated as:

J(F1, . . . , F5) =

√√√√ 6∑
k=1

∆E2
k,j = min (6.5)

The initial value of correction factors are [1, 1, 1, 1, 0], respectively, for i = 1 − 5
corresponding to no correction state of the reference, together with a rigid rotation of
the rollers. When the optimisation problem presented in Equation 6.5 is solved, the
correction factors which are the variables in this problem are obtained simultaneously.
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Chapter 6. CURVING TEST ON A ROLLER RIG

Figure 6.3: The application of differential gear element.

The schematic presentation of the correction on the modified layout of the roller rig
is shown in Figure 6.3. The reference of the main motor is the wheelset speed, whereas
the reference of the secondary motor is the desired differential speed of the two rollers,
which is subject to the correction factor F5, cf. Equation 6.5.

It is worth pointing out that this approach can also be applied on the conventional
roller rig without differential gear, but the optimal results depend on the test conditions
and test specimen. Therefore, it is not a generic method to obtain the desired results
for a traditional roller rig. The method proposed in Section 6.3.1 is therefore a better
alternative in the case of partial correction.

6.4 Test conditions and simulation results

In order to verify the correction strategies proposed, different tracks consisting of tan-
gent track, transition and full curve with different radius are considered in simulation
cases listed in Table 6.1.The leading wheelset of the first bogie of the vehicle is chosen
to generate reference time histories fed to control unit. The target contact force time
histories are generated by means of numerical simulation performed using the MBS
model of a complete railway vehicle defined in Chapter 4.

6.4.1 Control system response

The control system is pivotal to the success and accuracy of the test in which the ac-
tuators should possess adequate response speed and pass-band. To evaluate the perfor-
mance of the control system, the responses of the actuation module are investigated as
shown in Figure 6.4.

The results indicate that the performances of the actuators are adequate for this
study, as they are able to follow the reference signals very well with a negligible phase
lag. However, the validation of the proposed method to derive the control signals for
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Table 6.1: Simulation cases

Case No. Velocity [m/s] Radius [m] Cant deficiency [mm]

1 45 600 366
2 45 900 194
3 45 1200 108
4 45 1500 56.4
5 45 2000 4.82
6 37 600 199
7 32 600 111
8 29 600 64.3
9 25 600 9.28
10 45 600 456
11 45 600 416
12 45 600 316
13 45 600 266
14 45 600 216
15 45 600 166

the roller rig needs more evidence from the comparisons between the vehicle and rig
with respect to the dynamic behaviour of the wheelset interested. To this end, a set of
comparisons and analyses among the results from vehicle, normal roller rig with and
without correcting loop model are carried out in the following sections.
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Figure 6.4: Responses of the actuation module.

6.4.2 Results for no correction model

For the purpose of comparison, the simulation Case 1 has been chosen to show the
results from the roller rig test before reference correction. Figure 6.5 presents the time
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histories of the vertical (left) and lateral (right) components of the contact forces at the
wheel-rail/roller interface for the case of no correction (references derived according to
the method proposed in [23]).
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Figure 6.5: The time history of the vertical (left) and lateral contact force (right).

It can be seen that the roller rig reproduces well the vertical component of the contact
forces although a slight delay appears due to the limitation of the pass band of the
actuators. As far as the lateral component of the contact force is concerned (shown in
Figure 6.5, right), it can be observed that the difference on the outer and inner wheel is
approximately 6% and 40%, respectively, at the full curve section. It should be pointed
out that the absolute deviations on the two wheels are nearly the same approximately 2
kN.

The difference observed shall be ascribed to the fact that the lateral creep forces of
the inner and outer wheels are not able to be controlled separately, whereas only the sum
of them is controlled through the action of the lateral actuator. The distribution of the
lateral contact forces on the two wheels depends on many factors such as the creepage
conditions and the contact parameters influencing the force-creepage relationship.
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Figure 6.6: Angle of attack the wheelset (left) and longitudinal contact force (right).

Figure 6.6 shows the time histories of the angle of attack (left) of the wheelset and
that of the longitudinal component of the contact forces (right) obtained on the track and
on the roller rig. As far as the angle of attack of the wheelset is concerned, the difference
between the two results in the steady state curving condition is approximately 10% ,
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6.4. Test conditions and simulation results

whereas for the longitudinal force component a larger difference is observed, due to
the different longitudinal creepage conditions of the wheelset on the roller rig and on
the track as discussed in Chapter 3. It is worth recalling that the two rollers of the rig
are rotating at the same speed, so the difference in the rolling speed of the outer and
inner wheels cannot be reproduced. Furthermore, the variation of the rolling radius of
the roller produced by a lateral displacement of the contact point brings an additional
term in the longitudinal creepages of the wheelset on the roller as discussed in Chapter
3 (cf. [47]), which is not present for the wheelset running on the track.

In order to investigate the dependency of the deviations of the contact components
caused from the rig test on the track conditions simulated, a set of simulations is per-
formed with varied curve radius, rolling speed and curve super-elevation.
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Figure 6.7: Line vs. roller difference in terms of lateral contact force.

The percentage difference of the lateral and longitudinal component of the contact
force obtained from the test and the complete vehicle on line simulation are presented in
Figure 6.7 and Figure 6.8, respectively. In Figure 6.7(a) and Figure 6.8(a) the percent-
age difference is displayed as function of the rolling speed (for the same curve radius
and super-elevation), in Figure 6.7(b) and Figure 6.8(b) the same quantity is displayed
as function of the curve radius (for the same wheelset rolling speed and curve super-
elevation), and finally in Figure 6.7(c) and Figure 6.8(c) the same is shown as function
of the super-elevation (for the same wheelset rolling speed and curve radius).

It is observed from Figure 6.7(a)-(c) that the variation trend in terms of the lateral
wheel-rail contact force components is approximately opposite with respect to the left
and right wheel, and the average value is approximately equal to 20%. Figure 6.8(a)-
(c) present that the difference with respect to the longitudinal wheel-rail contact force
components decreases with the increase of rolling speed and curve radius, whereas, it
increases with the increase of super-elevation.

In order to translate the test results on the roller rig to the field test, it is necessary
to find the relation between the two systems. To this end, a variable Ki is introduced to
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Figure 6.8: Line vs. roller difference in terms of longitudinal contact force.

relate the deviations to the test conditions, which is approximately linear as observed in
Figure 6.7(d) and 6.8(d). The definition of Ki and the estimation formula of the mean
value of the percent difference ∆Ei (%) are given by Equations 6.6- 6.8.

Kx = V

(
R

h

) 1
3

(6.6)

Ky =
V

R
1
3h

1
4

(6.7)

|∆Ei| = miKi + ni (6.8)

where V is the rolling speed of the wheelset, R is the curve radius, and h is the super-
elevation, the subscript i = (x, y) corresponds to the case of longitudinal and lateral,
respectively, mx = −0.9, my = 30, nx = 121 and ny = −12 are constants which can
be determined by a linear regression performed on the data presented in Figure 6.7(d)
and 6.8(d), respectively.

As mentioned above, the variation trend in terms of the lateral wheel-rail contact
force components is approximately opposite for the left and right wheels, so only the
right wheel is shown in Figure 6.7(d). Equation 6.8 can be used to estimate the exper-
imental difference in any combinations of curve parameters in the given range of Ki,
also can be treated as a correcting reference after validation in the process of transfer-
ring the laboratory results to field conditions.

6.4.3 Results for the partial correction method

This section presents the results from virtual tests based on the partial correction method.
Figure 6.9 shows the time histories of the vertical, lateral and longitudinal contact force
components before and after the correction which are compared to their respective tar-
get signals for Case 5 in the left column and for Case 10 in the right column.
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Figure 6.9: Comparison of time histories with partial correction for Cases No.5 and10.
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Chapter 6. CURVING TEST ON A ROLLER RIG

It can be seen from Figure 6.9(a1)-(b2) that the corrected time histories of the ver-
tical and lateral components of contact force are in much better agreement with the
target signals compared with the no correction condition in both cases under considera-
tion. However, the deviations caused in the longitudinal component of the contact force
slightly increase with respect to the no correction condition, which results from the
tuning of the references of the yaw actuators as shown in Figure 6.9(c1) and (c2). The
method used to compensate the remaining deviations will be addressed subsequently.

To investigate the sensitivity of the method proposed to the track conditions, simu-
lations were performed considering various curve radius, rolling speed and cant defi-
ciency as listed in Table 6.1. The variation of the deviations of the vertical and lateral
wheel-rail contact force components of the wheelset in the line and on the roller rig are
presented in Figure 6.10.
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Figure 6.10: Line vs. roller deviation in the vertical (upper) and lateral contact forces (lower).

It can be observed from Figure 6.10 that the deviations between wheel-roller con-
tact and wheel-rail contact in terms of vertical and lateral forces are confined within
prescribed tolerance ε = 1% for all the running conditions considered. The deviations
of the longitudinal forces show a trend with the vehicle speed, curve radius and cant
deficiency, as presented in Figure 6.11.

In reference [73] it was shown that the relatively large deviations of the longitudinal
forces obtained on the roller rig compared to the vehicle running on a track can be well
approximated by an interpolation function. In this way, the results of an experiment
carried out on the roller rig can be used, at least in first approximation, to analyse the
behaviour of the wheelset on track not only for the vertical and lateral forces, but also
for the longitudinal ones.

The same procedure is carried out here, and the results suggest that the variation
trend of the deviations is similar to that of reference [73]. It is interesting to find that
the estimation formula Kx obtained by linear regression in this reference remains valid
in this case, as shown in Figure 6.11 (d).
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Figure 6.11: Line vs. roller deviation in terms of longitudinal contact force.

6.4.4 Results for the optimal correction method

In order to solve the optimization problem expressed in Equation 6.5, the MATLAB
built-in function fminsearch is used. Being the calculation process quite time con-
suming, only simulation Cases No.1, 5, 9 and 10 are chosen as examples. Table 6.2
resumes the correction factors introduced for the different actuator references, and
compares the deviations ∆Ek obtained on the different contact force components for
the case with no correction (i.e. references defined according to the method described
in [23]) and for the optimal correction. Additionally, the final row in the table show the
value of the figure of merit J , cf. Equation 6.5.

Very small deviations are obtained for all contact force components after correction
(second column in each case), although the initial deviations with no correction (first
column in each case) are sometimes large, up to more than 80%. This conclusion
applies to a wide range of curving conditions, can therefore be considered as having
general validity for the experimental simulation of wheelset curving on a roller rig.

The time history of the vertical, lateral and longitudinal contact force components
after optimisation are compared to their respective target signals for Case No.5 (small-
est cant deficiency) in Figure 6.12 left column and for Case No.10 (largest cant defi-
ciency) shown in right column. The time history of the contact force obtained using no
correction of the references are also show in the figures as a term of comparison.

The optimally corrected time histories shown in Figure 6.12 have a fairly good
agreement with the target signals in terms of contact forces which suggests that the
variations of contact forces of the wheelset on curves are able to be reproduced at a de-
sired level of accuracy by means of the roller rig test provided that a suitable method is
used to generate the references. With reference to Figure 6.9, it can be observed that the
application of the differential gear is not only able to obtain good results in terms of ver-
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Figure 6.12: Comparison of time histories with optimal correction for Cases No.5 and10.
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6.4. Test conditions and simulation results

tical and lateral contact force as already obtained using the partial correction method,
but also to reproduce the longitudinal force accurately.

Table 6.2: Results for the optimal correction method (using a diffential gear)

Actuation module i Optimised correction factors Fi

Case.1 Case.5 Case.9 Case.10

Left vertical 0.969 0.979 0.972 0.986
Right vertical 1.085 1.026 1.039 1.117
Lateral 1.720 1.502 1.882 1.739
Yaw 0.998 0.985 0.996 0.999
Secondary motor 0.997 1.778 1.797 0.882

Force component k
Deviation ∆Ek[%]

No
corr.

Opt
corr.

No
corr.

Opt
corr.

No
corr.

Opt
corr.

No
corr.

Opt
corr.

Left vertical 3.1 -0.5 1.4 -0.1 2.9 -0.1 3.1 1.0
Right vertical -9.9 1.0 -1.4 0.5 -3.2 0.9 -13.6 0.3
Left lateral -13.2 -0.1 -108.3 0.4 -65.9 0.1 -8.1 0.1
Right lateral -81.8 -0.1 -58.1 -0.8 -76.6 0.1 -80.7 -0.1
Left longitudinal 71.8 -0.2 59.1 0.3 257.1 0.1 33.6 0.1
Right longitudinal 71.9 -0.1 58.8 0.3 254.0 0.4 33.9 0.2
Figure of merit J 131.5 1.1 148.5 1.0 375.3 0.9 95.2 1.0

Results are presented for both correction methods, showing that the deviation of
roller rig test results from the considered targets can be kept within low tolerances
(1% approximately) as far as the vertical and lateral contact forces on both wheels are
concerned, For the longitudinal forces, larger deviations are obtained on a test rig with
standard arrangement ( rollers rigidly connect ), but can be reduced substantially in case
a differential gear is introduced.
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CHAPTER7
WEAR TEST ON A ROLLER RIG

7.1 Chapter summary

Railway wheel wear prediction is a traditional topic, which plays a relevant role in
railway maintenance. The lifetime of the wheels is usually determined by the duration
of the wear process before the wheel surface wear at some profile point reaches a critical
value. To avoid the degradation of the vehicle performances, the wheels need to be
re-profiled to restore their original profiles. This maintenance operation involves costs
and immobilization time which decreases the profitability of the operation of the rolling
stock.

An accurate prediction tool for wheel profile state in service can guarantee the
wheelset to serve at its longest life with safer and more reliable operation. In addition, it
is useful for optimising the maintenance and replacement schedule. In other words, ac-
curate prediction of wheel wear substantially helps in achieving the goals of maximum
safety and availability, minimum unexpected failure of components and maintenance,
consequently reducing the cost significantly. Therefore, it has always been an attractive
subject for railway operators and engineers.

Extensive theoretical and experimental work has been done for understanding the
wear mechanisms and predicting the wear evolution in the wheel-rail interface [15, 31,
36, 48, 49, 70, 117]. From a theoretical point of view, two approaches are generally
used to predict railway wheel wear in the tribological investigation: sliding contact by
using Archard’s equation [9] and rolling/sliding contact by using the energy dissipation
effect [22, 82].

From an experimental point of view, three types of tests are commonly performed
to study wear. The first type is the twin disc or pin-on-disc test concentrating on the
tribological level [68, 116] where the testing condition can be strictly controlled. This
kind of wear test is designed to establish the wear mechanisms, to identify the wear
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Chapter 7. WEAR TEST ON A ROLLER RIG

regimes of the wheel/rail material and to determine the wear coefficients necessary for
the wear modelling [22]. The second is the full-scale roller rig test where the actual
geometry characteristics of the wheel and rail profiles can be taken into account, and
the real operating conditions can be simulated within a controllable environment [21].
The last one consists of taking measurements of the wheel profile for a train under study
at regular intervals of mileage run. Strictly speaking, this is not a test like the other two
mentioned above, rather than a data collecting process because the contact condition is
not under control. However, the measured wheel profile data are very useful for wear
modelling validation.

This chapter focuses on the full-scale roller rig test for the railway wheel profile
wear study. A set of virtual wear tests on the roller rig based on the numerical model
developed in Chapter 4 are performed within the framework of the testing procedure
described in Chapter 5.

7.2 Wear phenomenon in the wheel-rail interface

The wear phenomenon may be classified by mechanism and by engineering conse-
quence, and it can be further divided into four different types from the mechanism point
of view, namely adhesive wear, abrasive wear, corrosive wear and fatigue wear [88].
The wear mechanisms are often coupled, which make the wear phenomenon difficult
to describe. For wheel and rail service life, abrasive wear, adhesive wear and fatigue
wear are among the decisive factors, while the evolution of wheel and rail profiles is
mainly due to abrasive and adhesive wear [69]. However, many studies of the wheel-rail
contact focus on adhesive wear only.

Theoretically, railway wheel wear takes place in two forms, namely regular wear
which refers to the change in the transversal profile, and irregular wear or out-of-
roundness of wheel which is the formation of periodic wear in circumferential direction
of the wheel. In general, these two forms are treated separately in modelling method-
ology because of the different production mechanism and evolution law. Regular wear
is dominant in terms of wear damage in practice, which is produced by slowly varying
values of contact forces and slips associated with the longitudinal and lateral motions
of the wheelset [67]. Only regular wear is concerned in this chapter.

7.3 Virtual wear test on a roller rig

A virtual wear test is a numerical simulation program to reproduce the test on a roller
rig in laboratory. The basic structure of a virtual wear test on a roller rig is presented in
Figure 7.1.

It can be seen from Figure 7.1 that the virtual test starts from the vehicle character-
istics and initial wheel and rail profiles, a sequence of service conditions (e.g. tangent
track running at different speeds, curve negotiation at specified cant deficiencies, etc.)
called "vehicle mission profile" in the figure, which is simulated using the MBS model
of the rail vehicle model developed in Chapter 4. It is followed by the control ref-
erences generator which is developed based on the method proposed in Chapter 5 by
taking the outputs from the MBS vehicle model. Then the control references are passed
to the MBS model of the roller rig developed in Chapter 4. It should be pointed out that
although the Hertzian model combined with FASTSIM used for solving the wheel-rail
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7.3. Virtual wear test on a roller rig

contact problem inside the MBS model is very fast and reliable, it does not provide
the details of the contact patch that are required for wear calculation. Thus, the local
contact analysis focusing on the contact patch is necessary. At each integration step
of the roller rig simulation, global contact parameters such as the shapes and relative
orientation of the profiles, the positions of the contact reference points, the creepages
and the normal contact force are fed into the local contact model, i.e. the KP model in
this case. The KP model will then iterate the penetration until the same normal force
in the global output is achieved. The resulting contact forces and contact patch are
used for wear calculation. It should be noted that the KP model used for local contact
analysis is able to provide more realistic results compared to the Hertzian model used
in MBS simulation, while the inconsistency introduced during this process is difficult
to compensate especially in the case of highly non-Hertzian contact conditions. That is
the reason why the proposed EKP model suitable for highly non-Hertzian contact prob-
lems is not used here. Finally, a model for the estimation of the wheel profile evolution
is needed to calculate the distribution of removed material in each contact patch which
is the task addressed.

Figure 7.1: Wear simulation on roller rig, adapted from [67].

It can be found that the virtual test procedure described above is very similar to
the approach commonly used for the wheel profile wear prediction, for instance the
approach used in [67]. The major differences are the inclusion of a roller rig model
and a reference generation process. Moreover, there are tow options of completing
the profile updating loop in a virtual test. In more detail, the updated profiles can be
applied to the vehicle model that is used for generating new references for the roller rig
with updated profiles as presented in dashed line in Figure 7.1, or the updated profiles
are directly applied to the roller rig model as indicated by solid line in Figure 7.1.
Obviously, the second way is simpler since the test keeps running without the need of
updating control references which implies this method ignores the effect of the change
in wheel profile of the vehicle model for the generation of control references.

Actually, the profile updating strategy is also very important in the wear simulation
process. A frequent profile updating strategy could result in unnecessary computational
effort. On the other hand, if the profiles are not updated at the appropriate time, it
may lead to inaccuracies in the final worn wheel profile or divergence in numerical
simulation. Different wheel profile updating strategies were compared in [14] and it
was found that the most efficient one is based on the maximum wear depth, i.e. the
profile is updated when a given threshold of the maximum value of cumulative wear
depth is reached. A sensitivity analysis showed that a threshold of 0.1 mm is a good
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Chapter 7. WEAR TEST ON A ROLLER RIG

compromise between calculation accuracy and computational cost.
In order to ensure the convergence in the numerical simulation, a smoothing process

of the updated profiles is needed. Different smoothing strategies were compared in [14]
as well. It suggests that a combination of a moving average applied to the cumulative
wear depth before profile updated and a cubic smoothing spline applied to the updated
profiles before starting a new iteration of the wear calculation, is a good option for this
purpose.

7.4 Wheel profile evolution calculation

Archard’s equation is commonly used in adhesive wear prediction in the field of tribol-
ogy. Actually, it has been calibrated for use with wheel and rail steels and has been
applied successfully for different applications [15,36,48,49]. Archard’s equation states
that the volume of material worn Vw is proportional to the sliding distance s and the
normal load N , and inversely proportional to the hardness of the material concerned H
as expressed by Equation 7.1.

Vw = K
Ns

H
(7.1)

where K is the wear coefficient which represents the proportion of all the asperity
contacts resulting in the production of a worn particle [10].

The applications mentioned above suggest that the critical part of the application
of Archard’s equation lies in the determination of coefficient K. Currently, it can be
derived from laboratory tests or, alternatively from extensive calibration based on geo-
metrical comparisons between simulated and measured wheel profiles. Nowadays there
exist in literature a few wear charts and maps for the wear coefficient as a function of
contact pressure and sliding speed, concerning different rail-wheel materials and en-
vironments cf. [10, 48]. The available wear maps are mostly for dry conditions, and
they are not very accurate due to the limited number of experiments available in each
condition. Hence such maps are of restricted usefulness and it would be desirable to
have more accurate maps.

The problem is that the experimental determination of K is difficult and subject to
some uncertainty which should be taken into account to improve the predictability of
the models. To this end, a probabilistic approach will be proposed in the following sec-
tions. Although a probabilistic approach can be used for the wear coefficient [11, 12],
it has in fact usually been treated deterministically, for instance, the application cases
mentioned above. Nevertheless, descriptions of the use of probabilistic approaches to
determine the wear coefficient are rarely found in the literature, especially in railway
wheel wear prediction.

7.4.1 Wear coefficient

Among many experimental investigations of the wear coefficient determination, the
work due to the research group at the Royal Institute of Technology (KTH) is the most
worthwhile to be mentioned. They assumed K is function of sliding speed and contact
pressure between the contact pair. The observation from test shows that the relation-
ship between K and sliding speed and contact pressure is also dependent of material
and contact conditions (e.g. dry, wet). Therefore, they constructed a wear map based

78



i
i

“thesisBINBIN” — 2016/2/12 — 13:38 — page 79 — #87 i
i

i
i

i
i

7.4. Wheel profile evolution calculation

on the analysis and interpolation of different sets of experimental data, including twin-
disc and pin-on-disc results, on different materials and with dry contact conditions, see
Figure 7.2. This makes the wear function material-independent but introduces an ap-
proximation in the method, and it is only applicable under dry condition [86]. This map
is commonly used in railway field for dealing with wear problem. However, the wear
coefficient K from the KTH wear map must be recalibrated for any specific wheel-rail
combination or condition to obtain more realistic results compared with field measure-
ment [15, 50].

0.2 0.7 1

p [MPa]

0.8H

0

1-10

300-400

30-40 1-10

v [m/s]

K*10
-4

Figure 7.2: Wear map for dry wheel-rail contact, adapted from [48].

For simplicity, the common method to obtain the wear coefficient is taking the mid-
dle value of each region from the KTH wear map [49]. It leads to an averaging effect
in the wear prediction and of course there is no uncertainty considered at all, conse-
quently reducing the accuracy of the final result. This method for the determination of
K is labelled MV method in the thesis.

To take the experimental uncertainties in the identification process of the wear co-
efficient and overcome the issue of having few measurements, Universal Kriging tech-
nique [28] is used for the determination of K to take advantage of the spatial depen-
dence of measures in sliding speed v (m/s) and pressure p (MPa) plane. The proposed
model [27] allows an uncertainty analysis of the value of the coefficient K, so that
a prediction interval for K associated to each choice of v and p can be obtained in-
stead of a single punctual prediction. As a consequence, this model predicts a range
for the amount of wheel wear, which is desirable in practical maintenance for railway
operators.

The measurement data were obtained from experiments carried out at the University
of Sheffield by wear testing machine under different conditions with different wheel and
rail materials. For demonstration purpose, the experimental results fromClassD wheel
(H=2.45e3 MPa) versus BS11, UICA, UICB and 1%Chr rail under dry condition
are chosen. Most of observations are in the domain O = {0 < v < 0.08, 400 < p <
1300} which fall into the shaded region in Figure 7.2. Therefore, a spatial model with
linear drift is used to estimate the wear coefficient and to exploit the similarities among
different materials and the spatial dependence of measurements.
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A linear model for the drift

Firstly, a linear model is applied to estimate the drift (large scale variability) [53] and
assess whether there are statistically significant differences in wear coefficient K of
the 4 different rail materials. Given that the distribution of K is highly asymmetrical
and concentrates in a small region, a logarithmic transformation on this variable is
performed.

Then we start fitting a linear model with response logK, quantitative predictors
the sliding speed v and the contact pressure p, and the categorical variable of the rail
material (as well as their interactions). Variable selection leads to the reduced model:

logK = β0 +β1ka+β2kb+β3kc+β4kav+β5kbv+β6kcv+β7kap+β8kbp+β9kcp+ε
(7.2)

where ki(i = a, b, c) are dummy variables that take the value of 1, indicating the corre-
sponding rail material of BS11, UICB and 1%Chr, respectively, and ki = 0 indicates
UICA rail.

Table 7.1: Estimates, standard errors and t-tests for the nullity of the coefficients of the linear model

Estimate Std. Error t value Pr (>|t|)

β0 2.564 0.114 22.52 < 2.2e-16
β1 -3.651 0.442 -8.26 6.17e-13
β2 -3.081 0.514 -5.99 3.33e-08
β3 -4.145 0.571 -7.27 8.31e-11
β4 14.534 2.213 6.57 2.33e-09
β5 22.564 5.079 4.44 2.30e-05
β6 23.498 4.337 5.42 4.16e-07
β7 0.00243 0.000431 5.64 1.57e-07
β8 0.00170 0.000433 3.91 1.67e-07
β9 0.00258 0.000470 5.49 3.10e-07

Table 7.1 lists the coefficients estimated, the standard errors and the p-values of the
t-tests for the nullity of such coefficients: all the regressors are significant. Moreover,
the F-test assesses the significance of the model (p-value < 2.2e-16) and the adjusted
coefficient of determination R2 is quite high (0.65), so the model fits well the data.
However, residuals do not respect the independence assumption that is fundamental for
the linear model used. In fact, residuals are spatially correlated (the space being the v
and p plane) and this fact should be taken into account to obtain an accurate value of the
coefficient K. To this end, the Universal Kriging [53] method is chosen for prediction
and uncertainty analysis of the wear coefficient, and this method is named UK method
in this thesis.

Prediction and uncertainty analysis

The measurements are assumed to be spatial data with coordinates of the sliding speed
v (m/s) and the contact pressure p̃ (10−4 MPa) where the pressure scale is changed
to obtain comparable coordinate ranges. The aim is to predict the wear coefficient K
within the domain D = {0 < v < 0.25, 0 < p̃ < 0.2}, taking advantage of the spatial
correlation of data. The following assumption is made.

logK(s) = µ(s) + δ(s), s ∈ D (7.3)
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where µ(·) is the drift given by Equation 7.2 and δ(·) is a zero-mean second-order
stationary random process with variogram 2γ(·).

A spherical variogram model is used to fit the estimated one, fixing the nugget thanks
to some repeated measures of the wear coefficient in the same position s. The UK
method is then used to predict logK(·) on a grid in the domain D, for each of the 4 rail
materials considered. Moreover, the prediction variance is also computed on the grid,
allowing the construction of 90% pointwise prediction intervals under the assumption
that logK(·) is Gaussian.

Figure 7.3 shows the wear coefficient maps predicted with the UK method in domain
O for ClassD wheel combined with the rail BS11 (a1-a3) and UICA (b1-b3), and
Figure 7.4 for the rail UICB (a1-a3) and 1%Chr (b1-b3). The lower and upper bounds
depict the 90% pointwise prediction intervals. It is important to notice that UK method
prediction is more informative than the wear map in Figure 7.2 (K= 5e-4 in the domain
O by the MV method), and it is associated a rigorous quantification of uncertainty
(prediction intervals).
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Figure 7.3: Wear coefficient maps of ClassD/BS11 (left) and ClassD/UICA (right).

With reference to Figure 7.2, it can be concluded that the wear coefficients obtained

81



i
i

“thesisBINBIN” — 2016/2/12 — 13:38 — page 82 — #90 i
i

i
i

i
i
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from KTH wear map are qualitatively acceptable in most cases because some of the
wheel-rail material combinations manifest similar pattern of wear regime, for instance
ClassD wheel versusBS11, UICB and 1%Chr rail. However, it must be recalibrated
for quantitative prediction of wear for specific contact pair due to the statistically sig-
nificant difference exist, e.g. UICA rail in Figure 7.3 compared to others. This result
has proven that the relationship between the wear coefficient, the sliding speed and the
contact pressure is material-dependent. Therefore, it is hardly possible to have univer-
sal wear coefficients for various wheel and rail combinations without considering the
uncertainty.

It should be pointed out that the UK method is able to provide accurate prediction
in the domain O, while out of this domain it is not guaranteed.
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Figure 7.4: Wear coefficient maps of ClassD/UICB (left) and ClassD/1%Chr (right).

7.4.2 Wear depth

The sliding distance s in Equation 7.1 is another very important parameter for wear
estimation. Moreover, the sliding speed v is also required to determine the wear co-
efficient K as discussed above. Therefore, the sliding speed and sliding distance need
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to be determined locally for the wear calculation considering the global contact prob-
lem is solved by FASTSIM in this study. To this end, the contact patch is divide into
50 × 50 elements with the size of ∆x × ∆y for each element. In the slip area of the
contact patch, the sliding speed and sliding distance for the duration of traversing the
longitudinal increment ∆x can be expressed in the following forms by neglecting the
elastic contribution according to the method implemented in [48].

v = V

[
ξx − ξzy
ξy + ξzx

]
(7.4)

s = |v|∆x
V

(7.5)

where V is the vehicle speed, ξx the longitudinal creepage, ξy the lateral creepage, ξz
the spin creepage, and x, y the cartesian coordinates of the contact patch.

According to Equation 7.1, the wear depth dw in each element can be calculated as
follows:

dw = K
|s|p
H

(7.6)

The total wear distribution over the contact patch is obtained by adding the wear
depths for each element in the slip zone for all longitudinal strips of the contact patch.

7.4.3 Comparison between the UK model and MV model

For simplicity, the wear depth calculation Equation 7.6 is called the UK model when
wear coefficient K is obtained by the UK method and called MV model when K is
obtained by the MV method. In order to check the effect of the uncertainty of the wear
coefficient on the wear simulation results, the two cases listed in Table 3.3 in Chapter 3
are chosen to make comparisons between the UK and MV models. The wear coefficient
K is determined according to the UK method when the pressure and sliding speed fall
into the domain O, and the MV method is applied for the rest.

Figure 7.5 shows the maximum pressure distribution, maximum sliding speed and
normalized wear depth within the contact patch from top to bottom, for Case 1 (left
column) and Case 2 (right column), respectively. It can be observed that the maximum
pressure is approximately 1000 MPa, and the maximum sliding speed in this contact
patch is approximately 0.02 m/s for Case 1. Therefore, the UK method for wear coeffi-
cient determination is fully valid for the entire contact patch. The maximum wear depth
over the contact patch calculated by the UK model (black line) is considerably smaller
than the one estimated by the MV model (blue line) for Case 1 as shown in Figure 7.5
(left bottom). The result of the MV model is close to the upper bound result of the UK
model. For Case 2, the maximum pressure is approximately 1400 MPa which exceeds
the pressure limit in domain O, while the maximum sliding speed is around 0.05 m/s
still within the domain O. The wear depth predicted with the MV model for this case
is approximately 30 % lower than the UK model.

The simulation results show that the uncertainty of the wear coefficient has a con-
siderable influence on the wear prediction results in some circumstances, and the UK
model is able to provide the wear within a range instead of a single value in the com-
monly used methods. Of course, some more validations for the UK method are needed
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for further application. However, the UK model is chosen for running the virtual wear
test simulations in the following section.
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Figure 7.5: Calculation results for Case 1 (left) and Case 2 (right) in Table 3.3 with different methods:
UKlower indicates the results from the UK method with the lower bound ofK, UKpredicted indicates
the results from the UK method with the predicted value of K, UKupper indicates the results from
the UK method with the upper bound of K, and MVKTH indicates the results from the MV method.

7.5 Virtual test results and discussion

The proposed UK model has been incorporated into the virtual test simulation program
aiming at estimating the wheel profile evolution of the rail vehicle developed in Chapter
4. The curve condition No.10 in Table 6.1 in Chapter 6 is chosen to demonstrate the
virtual test. The complete track is modelled as symmetric with respect to left and right
curves, and its total length is 3500 m. It consists of a short section of tangent track,
a transition entry into the curve, full curve, an exit transition, another short section of
tangent track and then a symmetrical section.

The test was performed according to the procedure introduced in Section 7.3. Two
virtual tests were carried out on the roller rig with and without corrected control ref-
erences according to the partial correction method proposed in Chapter 6. The wheel
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wear of the leading wheelset of the complete vehicle is also calculated for the purpose
of comparison with the results from the roller rig tests. Theoretically, the wear pro-
duced on the left- and right-hand wheels of the wheelset under test should be the same
because of the symmetrical curved track condition considered. Therefore, only half
of the complete track is taken into account for wear calculation. The amount of wear
produced on each wheel profile after passing through the entire track can be obtained
by simply summing up the wear of the left- and right-hand side wheels.
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Figure 7.6: Wheel profile wear on the roller rig versus on the track:(a) original wheel profile and (b)
normalized wear depth.

Only one iteration is run on the given track, and the wear depth on the wheel is
normalized for comparison. The results from the UK predicted are shown in Figure
7.6. It can be observed that the roller rig is able to correctly reproduce the locations of
flange and tread wear on the wheel profile, considering as a reference to the simulation
results of the complete vehicle running on the track, whereas the amount of wear of
the wheel produced on the roller rig is much higher than the wheel wear produced on
the track. The correction on the references for the roller rig makes the wear location
closer to the track case, but the magnitude is remain larger than the track case. This
phenomenon can be explained by the accelerated effect of the roller rig on the contact
surface damage discussed in Chapter 3.
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CHAPTER8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Roller rigs are being used in the railway community all over the world to better un-
derstand the rail vehicle behaviour and the mechanism of wheel-rail contact with the
final aim at developing faster, safer and more efficient railways. They have contributed
much to modern railway technology. However, the roller rig test will never completely
replace the field test on real track because the inherent differences exist in the roller rig
system with respect to the real wheel-rail contact system. Moreover, not all types of
track conditions and excitations can be fully reproduced on most roller rigs depending
on the design.

In order to exploit the best potential of roller rigs for railway application, a full-
scale single wheelset roller rig has been chosen as an example for a comprehensive
investigation in this work. As the roller rig is mainly used for the study of rail vehicle
dynamics and wheel-rail contact mechanics, this thesis deals with these two aspects in
great detail theoretically combined with typical test cases.

As far as the usage of the roller rig on wheel-rail contact study is concerned, a novel
non-Hertzian contact model called EKP has been proposed and validated by compari-
son with the software CONTACT. The EKP model is an extension of the well-known
Kik-Piotrowski model. Besides the inherent advantages of the original model, it pos-
sesses some new features including the capability of solving both wheel-rail and wheel-
roller contact problems with enhanced correspondence to CONTACT for highly non-
Hertzian contact conditions, and the ability of considering the effect of the yaw angle
of the wheelset against the rail/roller on the shape of the contact patch and pressure
distribution, which is a feature generally missing in the existing models although it is
significant in certain circumstances. This analysis provides a useful framework for bet-
ter interpreting the results of wheel-rail contact tests performed on a roller rig e.g. wear
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and/or rolling contact fatigue tests.
To reproduce the real dynamic behaviour of a wheelset on a real track as close as

possible using the single wheelset roller rig, an appropriate test procedure needs to be
defined, particularly in terms of actuators’ references, to make sure that meaningful
wheel-rail contact conditions can be reproduced. A new method is proposed in this the-
sis for the optimisation of tests performed on full-scale roller rigs for a single wheelset
by means of correction of actuator references in order to best reproduce the behaviour
of a wheelset and especially the wheel-rail contact forces in a running condition of
interest as obtained from MBS simulation. The method is supported by the use of a
mechatronic model of the roller rig system implemented by means of co-simulation.
Two correction strategies have been proposed. The first one considers a standard ar-
rangement of the roller rig (rollers rigidly connected in torsion): it is shown in this
thesis that this strategy allows the accurate reproduction of the vertical and lateral con-
tact forces on both wheels but introduces inevitable deviations from the case of the
wheelset running on a real track in terms of the longitudinal contact forces. Though,
these deviations can be compensated by means of a suitable post-processing of results,
the effect of these deviations on the wheelset behaviour (e.g. flange climb, wheel wear)
cannot be eliminated from the test itself. The second correction strategy assumes that a
differential gear is introduced to the rig, allowing the rolling speed of the two rollers to
be controlled separately. The inclusion of the differential gear makes it possible to re-
produce the full wheel-rail contact condition in terms of contact forces on the roller rig
for a wheelset running on a curve, with assistance of an optimal correction for control
references, ultimately leading to very small deviations of all contact force components
as compared to the case of the wheelset running on a real track. This result is obtained
for various curving conditions, i.e. for different combinations of the running speed,
track curvature and cant deficiency. In conclusion, the testing methods presented in
this thesis can be used to achieve a better correspondence between the actual running
conditions of a wheelset and experiments performed on single wheelset roller rig.

This study suggest that it is possible to evaluate the practical performance of dynam-
ics and contact mechanics in the railway systems using roller rigs, reducing the need
for line tests. Despite that the focus of this thesis is on roller rigs for a single wheelset,
a similar approach could be considered for more complex roller rigs allowing e.g. the
test of a complete railway bogie.

The potential offered by advanced computing tools and intelligent control meth-
ods means that roller rigs can continue to offer advantages over field test. They also
provide data in new areas where numerical methods are not yet proven or working out-
side the scope of validation. Although field testing of prototype vehicles will never
be completely eliminated, roller rigs will continue to be a valuable tool to researchers
and developers as an intermediate stage between computer simulations and track test-
ing [41].

8.2 Future work

The non-Hertzian contact model proposed in this thesis has been developed with the
long-term goal of providing an advanced model for wheel-rail and wheel-roller contact
calculation with the best compromise between accuracy and computational effort. To
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make the model complete, further work will focus on the extension of the scope of val-
idation of the proposed model to cover a wider range of contact conditions encountered
in reality and on the investigation of the effects on the tangential contact solution caused
by the changes in the normal solution obtained from the proposed model, eventually
developing an advanced model applicable to complete three-dimensional contact prob-
lem in rail vehicle dynamics on-line simulation. As a further step, the complete contact
model will be integrated into the vehicle system dynamics simulation to investigate the
influence of the proposed contact modelling method on the dynamic behaviour of the
vehicle as well as on the roller rig.

The results obtained from the proposed testing methodology are assessed by means
of numerical experiments performed using a mathematical model of the roller rig, but
the use of this methodology in real tests on a full-scale roller rig is envisaged as a future
step of the research.
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