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Abstract

A novel approach to solve the finite volume formulation for unsteady inviscid
compressible flows over three-dimensional dynamic grids is proposed. The ma-
jor novelty of the proposed approach concerns the interpretation of local mesh
modifications—node displacement, deletion, addition or edge swap—by means of
a three-steps procedure that allows to compute the volume change due to mesh
adaptation as series of fictitious continuous deformations of the finite volumes.
Thanks to this procedure, the solution on the new grid is recovered by exploiting
the Arbitrary Lagrangian-Eulerian formulation of the Euler equation without any
explicit interpolation, even if grid connectivity changes occur. This allows to pre-
serve the scheme properties, especially conservativeness and monotonicity, and
to implement multi-step time schemes in a straightforward way. More precisely,
conservativeness is enforced by an appropriate computation of the grid velocity
that allows to automatically fulfill the Geometric Conservation Law.

The robust strategy adopted in the present work consists in moving the mesh
keeping the topology fixed until the quality falls below a certain threshold, then
local mesh adaptation is performed to re-store mesh quality and prevent element
entanglement. Furthermore, mesh adaptation is exploited to increase solution
accuracy, according to a suitable target grid spacing, which in unsteady simula-
tions is obtained from the solution computed in the prediction step carried out
after the mesh deformation. Indeed, no delay between mesh adaptation and the
actual geometry is introduced.

The validity of the proposed conservative adaptive interpolation-free strategy
is first assessed by different simulations of reference test cases, in which a good
agreement with the reference results have been obtained, then three-dimensional
simulations of aeronautical interest are carried out. Mesh adaptation is success-
fully exploited in the steady simulation of the transonic flow around the ONERA
M6 wing to capture the peculiar lambda-shock that forms over the upper wing
surface. The capability of the proposed approach to accurately capture the rel-
evant flow features is assessed also in the unsteady simulations of a pitching
infinite-span NACA 0012 wing, where the bi-dimensional character of the flow is
well reproduced and a good agreement with the bi-dimensional results obtained
for the pitching airfoil is observed. Finally, the capability of dealing with large
boundary displacement is assessed by computing the flow around the infinite-
span NACA 0012 wing in the laboratory reference frame, namely a quiescent
flow is enforced over the boundary domain and the wing travels through the
domain at the flight velocity. With respect to the standard steady simulation
in the wing reference frame, the results of the unsteady simulation show a lim-
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ited oscillation around the steady value. Analogous results are obtained also in
a similar simulation over a finite-span wing, assessing that the proposed strat-
egy is well-suited to perform accurate conservative simulations of moving-body
problems over adaptive grids.

Keywords:

Arbitrary Lagrangian-Eulerian scheme, Mesh adaptation, Large boundary defor-
mations, Euler equations.
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Chapter 1
Introduction

1.1 Motivation and goal

Computation Fluid Dynamics (CFD) proved to be an effective analysis and de-
sign tool in many research and industrial areas, especially in the aerospace one.
Fundamental physics, numerical analysis and computer science are exploited to
model the flow field at the required level of accuracy and to solve it with the avail-
able computational resources. Despite the improvements in numerical techniques
and the steady rise of available computer power in recent decades, geometrically
complex and three-dimensional moving-body problems still represent a challenge
for the CFD community. Unfortunately, a large set of engineering problems of
interest in aerospace falls exactly in this class. Moreover, it is often relevant
for CFD analyses to capture peculiar flow features such as for example vortical
structures or shock waves, whose exact location is not known a priori.

An example is represented by the flow field generated around the helicopter
in forward flight, in which aerodynamics, flight dynamics, aeroelasticity and
acoustics strongly interact. The superimposition of the advancing and rotational
velocity of the blade determines the simultaneous occurrence of diverse physi-
cal phenomena and spatial characterized by different temporal scales, including
transonic flow, shocks, reverse flow, dynamic stall and wakes. In addition to mul-
tidisciplinary aspect, rotor-craft simulations are extremely demanding from the
numerical point of view. Since fluid-structure interaction is found to be one of the
major source of noise and vibrations of helicopters, the accurate representation
of the local flow features is required, along with the capability to deal with the
arbitrary large deformation experienced by the solid boundaries.

Similar complexities stand also in numerical simulations of wind turbines.
In order to make wind energy more competitive from an economical point of
view, the actual trend is to increase the size of wind turbine and typical rotor
diameter can be on the order of some tens of meters. On blades of this length, the
aeroelastic effects have to be taken into account and bi-dimensional aerodynamic
models, based on thin airfoil theory, cannot be used. Hence, the capability to
deal with three-dimensional moving body is mandatory for CFD codes also in
these applications.
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A further example of challenging simulation in the aeronautical field concerns
the deployment of control surfaces. In the transonic regime, the modification
of aerodynamic characteristics may originate highly non-linear effects such as
shock waves and separated flows. Therefore, the accurate prediction of the flow
field around deployed control surfaces requires, in addition to the necessity of
complying with body deformation, also the capability of locally increasing grid
resolution to capture transient flow structures.

Additional examples of time dependent geometries include piston motion and
valve operation in internal combustion engines, rotor-stator interactions in turbo-
machinery and store separation from aircrafts, to name a few. Although charac-
terized by problem-dependent requirements, the CFD simulation of all the cited
flow fields calls for a robust and accurate strategy to handle complex moving
geometrical configurations and, at the same time, to locally modifying the grid
resolution according to the solution itself.

To this end, the present work aims at developing an innovative adaptive
scheme, well-suited to unsteady, three-dimensional flow simulations around com-
plex time-dependent geometries, with the capability of capturing the details of
the flow features including shock waves and shear layers. Thanks to an innova-
tive interpretation of grid connectivity changes, the solution on the new grid is
recovered by exploiting the arbitrary Lagrangian-Eulerian (ALE) formulation of
the Euler equation without any explicit interpolation.

In the next two sections, the background of the exploited techniques is given.
In particular, Section 1.2 provides an overview of the ALE formulation and of
some boundary movement methods. Section 1.3 presents a brief summary about
mesh adaptation techniques. The objectives and the structure of the thesis are
then outlined in Section 1.4.

1.2 Numerical solution of the flow equations
on moving boundaries

Most current CFD techniques require that the flow governing equations are spa-
tially discretized over a computational grid (or mesh), whose quality and res-
olution strongly influence the solution accuracy. When solving the governing
equations on a moving grid, as mandatory in moving boundary problems, two
fundamental aspects should be considered. First, the formulation of the govern-
ing equations has to be modified in some way to account for the relative motion
of the grid with respect to the fluid. Second, if a motion is prescribed to the
boundaries of the grid, the interior points should be relocated to maintain the
required mesh quality.

This section gives an overview of the Arbitrary Lagrangian-Eulerian (ALE)
method, which is a popular framework used to tackle moving boundary problems,
and of some among the several strategies proposed to drive grid modification,
with particular reference to those capable of dealing with large displacement.

1.2.1 Arbitrary Lagrangian-Eulerian framework

The numerical simulation of fluid dynamics and continuum mechanics problems
often requires to deal with strong internal distortions of the fluid domain and,



Introduction 3

at the same time, to precisely follow the boundaries and the interfaces of multi-
material systems. The capability to cope with both requirements is determined by
the choice of the kinematic description, which expresses the relationship between
the deforming continuum and the computational mesh on which the governing
equations are solved. The most natural descriptions are the Lagrangian and
Eulerian viewpoints.

In the Lagrangian description, the initial unmodified configuration is chosen as
the reference one and, during the continuum deformation, each grid point follows
the material point to which it is associated initially. This constraint allows to
easily track boundaries and interfaces, because they are always associated to
the same points. However, Lagrangian algorithms are not suited to follow large
deformations, because of excessively stretched or tangled elements which reduce
accuracy and may invalidate the mesh.

In the Eulerian description, possibly the most popular in fluid dynamics, the
grid nodes are held fixed and the reference configuration is the current one. In this
approach, each grid cell is crossed by different material points as the continuum
deforms. Eulerian algorithms can easily deal with large distortions of the fluid
but the tracking of moving boundaries and interfaces is difficult. Moreover, the
relative motion between the continuum and the grid results in advective (or
convective) terms that have to be taken into account in the governing equations.

The Arbitrary Lagrangian-Eulerian (ALE) formulation can be regarded as a
generalized kinematic description that combines the Lagrangian and the Eulerian
approach. The computational mesh is neither fixed in space nor attached to
the material particle but it moves independently, exploiting the advantages and
reducing the drawbacks of both approaches. As in the Eulerian description,
additional advective terms have to be included in the governing equations.

A classification of ALE algorithms can be done according to the handling
of the convective terms. A possibility is represented by the so-called decoupled
ALE approach, in which a Lagrangian step is followed by a convective step. The
governing equations are first enforced in a pure Lagrangian framework and no
mass flux is exchanged between grid cells. Then, the mesh is modified and the
solution is remapped over the new grid. In this latter phase, convective fluxes
must be computed to account for the apparent displacement of fluid between
cells as the mesh moves and the solution must be conservatively transferred over
the grid. Moreover, the remapping step has to preserve the monotonicity of
the solution. These requirements can be enforce during the remap step properly,
driving, for instance, the remap according to an estimation of the mass exchanged
between cells [95], or performing a repair step after an interpolation [79].

The second category consists of the ALE algorithms that solve the fully cou-
pled equations involving both material and mesh velocities. No distinction be-
tween the mesh update and remap phase is made, since they are performed si-
multaneously. These algorithms can be viewed as an extension to moving meshes
of the classical Eulerian formulation, which already includes conservative terms.
The main advantages of this approach is that no explicit interpolation is required,
since the remap is embedded in the governing equations. Therefore, conserva-
tiveness and monotonicity are inherited by the original scheme. Many different
techniques have been proposed in the open literature and in recent years the
coupled approach has been extended also to high-order schemes [91, 45, 54, 98].

Besides the need of complying with the movement of the domain boundary,
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the capability of the ALE scheme to deal with moving grid points can be exploited
to perform grid regularization and mesh adaptation. The former technique aims
at keeping the computational grid as regular as possible and grid modifications
are driven basically on geometrical considerations. The boundaries, whose mo-
tion is possibly known at prior or, at least partially, unknown, are described by a
Lagrangian formulation, while the displacement of internal points can be deter-
mined by several interpolation techniques, such as, for instance, mesh smoothing,
transfinite mapping, optimization of local mesh quality [132, 65, 58] or the dy-
namic grid techniques described in the next subsection. On the contrary, mesh
adaption strategy aims at optimizing the grid according to the solution. On the
base of an error indicator, the grid points are gathered in the regions of the grid
with strong solution gradients. However, note that the total number of points
and the grid connectivity cannot be modified in the standard ALE formulations.

1.2.2 Small boundary displacement: dynamic grids

Unsteady numerical simulations often require to update the computational do-
main to follow the body motion or the deformation of some of its surfaces. The
so-called dynamic grid methods can be used to efficiency deform the grid keeping
fixed the connectivity and changing only the positions of the grid nodes. The un-
derlying idea is to distribute the deformation occurring at the boundary among
internal grid elements depending on their shape and volume. Smallest elements,
which are usually gathered near the moving body, are subject to a minor distor-
tion, while the largest ones accommodate the most part of the deformation. This
goal can be achieve by moving each point individually in the so-called point-by-
point schemes [31], or by exploiting the mesh connectivity, as for instance in the
elastic analogy or by solving a set of partial differential equations (PDE).

In the elastic analogy the spatial domain is treated as an elastic material
whose boundaries are subject to an imposed deformation which is propagated to
the internal part through elastic forces [13]. The elastic properties of the grid
cells are defined as a function of their shape and volume. A similar approach
is the spring analogy, proposed by Batina [12], which considers each grid node
connected to its neighbors by a fictitious spring whose stiffness is inversely pro-
portional to the their distance. The displacement field is obtained by imposing
the static equilibrium at each node. This technique was improved by Farhat and
collaborators [43] who included also a torsional spring to avoid element tangling.

In the PDE technique the displacement of the internal grid nodes is com-
puted by solving an elliptic problem. For instance, a Lagrangian smoothing with
variable diffusivity based on the distance from moving bodies or on the element
volume can be used to avoid large distortions, and therefore an accuracy loss, in
the most critical regions [93, 27]. The use of equations of order higher than the
second for the internal deformation permits a finer control on grid quality, but
at a higher computational cost [69].

The main drawback of all these methods is the computational cost, which
can become extremely high for large deformations or for unsteady problems that
require several mesh updates per time-steps. Moreover, the fixed-topology con-
straint limits the displacement that the mesh is capable to handle without inval-
idating the mesh elements or jeopardizing the accuracy of the solution.
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1.2.3 GCL: an essential constraint for deforming meshing

When solving the flow problems over deforming grids, a Geometric Conservation
Law (GCL) needs to be satisfied to avoid errors due to mesh motion. Proposed
first by Thomas and Lombard [119], the GCL states that a numerical scheme
designed to enforce the governing equations over moving grids must compute
exactly a uniform steady-state flow without introducing any perturbations. This
requirement is usually fulfilled by an appropriate computation of the geometric
quantities that involve grid positions and velocities, like for instance the cell
volume or the integrated convective fluxes.

This issue has been addressed since the first dynamic grid methods [12]. The
success of the ALE formulation led to a thorough investigation of the GCL con-
dition and apparently contrasting results have been reported. The discrete coun-
terpart of the GCL, the so called Discrete Geometric Conservation law (DGCL),
was introduced by Loseille and Farhat [86], who proposed a general space-time
discretization method to satisfy the DGCL for finite volume and finite element
schemes. Although Guillard and Farhat proved that, for a p-order time-accurate
scheme, meeting the DGCL condition is a sufficient condition to be at least first-
order time-accurate on a moving mesh [63], Geuzaine and co-authors demon-
strated that the DGCL is neither a necessary nor a sufficient condition for an
ALE numerical scheme to preserve on moving grids its order of time-accuracy
established on fixed grids [56].

On the other hand, respecting the DCGL is a necessary and sufficient con-
dition for preserving on moving mesh the non-linear stability of the underlying
time-integration scheme, namely the absence of spurious oscillations and con-
servation of monotonicity [44]. Indeed, several studies have shown that non-
DGCL-compliant schemes lead to spurious oscillations and require smaller time
steps [48, 98].

Therefore, it is generally accepted that the fulfillment of the DCGL helps in
improving the accuracy of the numerical scheme, in preserving non-linear stability
and in preventing spurious oscillations. This is of paramount importance in fluid-
structure interaction problems, where a violation in the conservation of the flow
quantities (especially momentum and energy) may lead to erroneous calculation
of fundamental quantities [42], such as the flutter velocity. An updated and
comprehensive review of the literature on this subject can be found in [41].

1.2.4 Large boundary displacement

In many of the problems discussed in Section 1.1, the boundaries of the compu-
tational domain experience arbitrarily large displacement so that their accurate
tracking becomes a fundamental requirement for the CFD code. However, as
observed above, fixed-connectivity grids fail in dealing with large deformations.
Therefore a different strategy has to be used.

A possible solution consists in moving the mesh keeping the topology fixed un-
til the quality falls below a certain threshold. The computational domain is then
completely re-meshed and the solution is interpolated on the new grid. However,
the additional interpolation error introduced by a frequent regeneration of the
grid and the quite considerable computational cost make this technique seldom
convenient. Furthermore, the interpolation of the solution between two computa-
tional grids can introduce numerical oscillations and undermine the conservative
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properties and the accuracy of the numerical scheme.

More efficient methodologies involve a completely different approach. Instead
of meshing the computational domain as a whole, the latter is partitioned into
a set of simpler blocks that can move with respect to one another. The idea is
exploited in the Chimera method, originally developed by Benek et al. to simu-
late the compressible transonic flow field around the complete Space Shuttle [14].
This method is well-suited to perform numerical simulation of rotor-crafts and
turbo-machinery, because each grid can rigidly rotate and translate indepen-
dently. Moreover, multiple sub-domains can be used to prescribe different spatial
resolutions according to the scales of the phenomena of interest and the domain
decomposition can be exploited to perform parallel simulations.

The main difficulty concerns the communication between different sub-do-
mains. Indeed, the governing equations are solved separately in each sub-domain
and a background overlap grid is used to match the solutions. A non-trivial
time-consuming tagging procedure is required to locate the interface points on
the background grid, which should also guarantee a suitable overlap for all pos-
sible displacement. Moreover, the simple interpolation of the variables between
different grids does not guarantee that the solution scheme is conservative, i.e.
that mass, momentum and energy are conserved across the interface. In com-
pressible flows, conservativeness is a crucial requirement to correctly propagate
discontinuities and unphysical solutions can be obtained if it is not met. Although
many efforts have been made to develop conservative schemes, the fulfillment of
the global conservation for Chimera overlapping methods still remains an open
problem, especially in three spatial dimensions [117, 126].

A similar technique is represented by the so-called sliding meshes, in which
neither overlaps or gaps between different sub-domains are permitted. A slid-
ing surface is defined as the interface between non-conformed sub-grids. If this
interface is planar, a conservative interpolation can be exploited by splitting it
into conformed sub-faces [110, 47, 50]. However, the requirement to exactly
match sub-grids along the boundaries is not easy or possible to meet for com-
plex domains and/or relative body motions, like for instance load separation or
deployment of control surfaces [117].

A further class of methods well-suited to deal with large boundary displace-
ments are the immersed/embedded boundary methods [101]. The mesh gen-
eration issue is simplified because the computational domain is discretized by
a non-body-fitted mesh. The governing equations are then enforced in an Eu-
lerian formulation without moving the grid. Although simple and consistent,
these methods are not very accurate near the boundaries and the enforcement of
boundary conditions is complicate [1]. Therefore, immersed boundary methods
cannot be easily applied if high accuracy is required in the close proximity of
complex geometries.

Furthermore, the use of adaptive unstructured space-time meshes has been
recently proposed by Wang and Persson [127] to handle large grid deformations
in two dimensions. However, to author’s knowledge, it has not been extended to
three-dimensional problems.

A different approach is applied in this thesis. Similar to the dynamic grid
strategy, the mesh is deformed as much as possible with fixed topology. Then,
local grid modifications are performed, including connectivity changes. Following
the methods proposed for bi-dimensional problems by Guardone et al. [59], the
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local modifications are represented as continuous grid alterations within the ALE
framework and no explicit interpolation is required. This allows to preserve the
scheme properties, especially conservativeness and monotonicity. Moreover, in
contrast to the other above mentioned methods, the implementation of multi-
step time schemes does not require to store all the previous grids but instead
only local modifications history have to be saved.

1.3 Mesh adaptation techniques

Mesh adaptation is widely used in CFD simulations to tackle diverse flow features
characterized by different spatial scales and in all problems where the general
location of relevant flow characteristics is not known a priori [10, 92]. The grid
spacing has to be related to the behavior of the solution in an efficient way to
avoid inaccurate predictions of integral quantities (like aerodynamic coefficients)
or of local flow features (shock waves, contact discontinuities, etc.). Solution-
dependent adaptive grid techniques can be iteratively employed to achieve this
goal without user intervention. To enhance the accuracy of the overall solution
without excessively increase the computational burden, grid resolution can be
increase where the discretization error is estimated to be large. Hence, the key
of the success or failure of mesh adaptation techniques is strictly related to the
criteria used to identify precisely where grid modifications are required.

Furthermore, when dealing with large boundary movements, if simple defor-
mation is not sufficient to perform the whole displacement, local mesh adaptation
techniques can be used to monitor mesh quality and to avoid invalid elements.
In these situations, elements to be modified are determined on the basis of de-
formation measures, shape or aspect ratio [9].

A possible classification of the different mesh adaptation strategies concerns
the mechanism used to alter the mesh. Indeed, three main classes are usually
defined: the p-refinement methods, the r-refinement methods, the h-refinement
methods. The first method, mainly used in finite-element schemes rather than
in finite-volume schemes, does not alter the mesh and it performs refinement by
increasing the order of accuracy of the polynomial in each element and it is often
used in combination with the latter method, in the so-called hp-refinement [8, 55,
38]. On the contrary, the r and the h-refinement methods alter the grid keeping
the connectivity fixed or modifying it, respectively, as described in more detail
in later sections. In the present work, p-refinement methods are not used and
therefore they are omitted by any further description.

A crucial step in mesh adaptation is the re-construction of the solution on
the adapted grid. The solution computed on the old mesh has to be transfered
to the new one, but grid connectivity has changed. Classical techniques perform
an interpolation of the old solution on the new grid. As already pointed out,
this operation can undermine the accuracy of the solution and the conservation
properties of the scheme.

In this section, the two fundamental aspects central to any mesh adaptation
strategy are investigated. Indeed, in Subsection 1.3.1 a review of some adap-
tation criteria proposed in the literature is given, then Subsection 1.3.2 briefly
describes the possible mesh modification strategies. Finally, the peculiarities of
mesh adaptation in unsteady simulations are outlined.
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1.3.1 Adaptation criteria

A key point in mesh adaptation algorithms is the definition of a suitable criterion,
either integral or local, to drive grid alteration. Since an exact characterization
of the error is usually impossible, several error estimators and criteria for feature
detection have been proposed.

The simplest indicators are based on gradients or undivided differences of
some relevant flow variable, such as the density, the pressure, the Mach number,
or a combination of them. These methods implicitly assume that the largest
errors occur in high-gradient regions and have proved to be successful in various
problems [28, 74, 129, 23].

More complex indicators can be built through an estimate of the error in-
troduced by the underlying discrete numerical approximation. For instance,
Richardson’s extrapolation technique has been used to estimate the truncation
error, namely how well the discrete model approximates the governing equations
throughout the domain [15, 16, 3]. Also interpolation-based error estimators
error have been used to generate scalar and metric indicators to describe the
optimal grid spacing [108, 130, 22, 64]. Error estimator can be also obtained by
evaluating the local residual [118].

A possible drawback of local error estimators is that they do not take into
account the propagation of errors through the domain and their impact on the
output quantities. Moreover, continuous local refinement of the strongest fea-
tures of the flow does not necessarily guarantee a corresponding reduction in
the overall discretization error and, sometimes, this may lead to incorrect re-
sults [129, 124]. To overcome the local character of previous indicators, integral
output-based estimators based on the solution of the adjoint flow problem have
been developed [124]. The underlying idea of this technique is that, at the cost
of computing the solution of the adjoint problem and the storage of the Jacobian
(and its computation if not required by the numerical scheme), it is possible to
control the accuracy of the computed output of interest using mesh adaptation.
A detailed review of this class of estimators can be found in [46].

When features of interest such as shocks, boundary layers and discontinuities
exhibit large variations along one direction and less significant changes along the
other ones, anisotropic adaption is recommended to increase grid resolution only
along the relevant direction, limiting the number of new grid points. Since to deal
with anisotropic grids not only the size of the elements is required but also their
shape and orientation, a bi-dimensional or three-dimensional error estimator has
to be built in the form of a metric tensor [53, 30, 37]. This metric map can be
based on the Hessian of a relevant flow variable, which provides an estimate of
the interpolation error, and determines a Riemann space in which the length of
the grid edges is measured. The goal of anisotropic adaptation is to obtain a unit
mesh, i.e. a mesh in which all edges measured in the Riemann space defined by
the metric map have a unit length [22].

In this work, local error indicators based on the derivatives of flow variables
are chosen because of their easiness of computation. To limit the possibility of
refining only around the strongest features, a multiple evaluation of the error
estimation is used, as suggested by Aftosmis [2], to detect also weaker variations
in the flow variables of interest.
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1.3.2 Adaptation strategy

A possible strategy to meet the computed optimal spacing consists in regener-
ating completely the grid from scratch [107]. To accomplished this goal, many
automatic grid generation techniques are available and this subject has been
thoroughly covered [120, 52, 97]. However, in many case of practical interest, the
modifications are required in small regions of the grid and a complete re-meshing
can be very inefficient, especially in unsteady simulations. Even if re-meshing
can be applied locally, i.e. the regions that require to be altered are identified,
deleted and re-meshed using standard grid generation methods such as for ex-
ample the advancing-front method or Delaunay triangulations, its applicability
and efficiency are strictly limited by the shape and dimension of the regions to
be re-meshed.

A more efficient alternative consists in improving the grid spacing by an ap-
propriate sequence of local geometrical and topological modifications, such as
node insertion and deletion, edge or face swap and point relocation. Several
adaptive algorithms that exploits this possibility have been proposed, like, for
instance [130, 37, 9, 89, 33, 29].

Classical grid enrichment techniques consist in element subdivision and were
first implemented by Berger and Jameson [15] and Dannenhoffer and Baron [28].
Easy to implement and computationally efficient, these techniques are suitable
for triangular, tetrahedral and mixed-element grids, provided that a set of possi-
ble refinement patterns is defined [92, 130]. A drawback of this technique is the
possibility to generate hanging nodes, i.e. non-conforming connectivities between
adjacent elements, which are usually not permitted by flow solvers. Hence, com-
patibility checks have to be performed or additional elements have to selected for
refinement to restore the correct local topology [73, 99]. To avoid an excessive
increase in the number of grid points, the node in low error regions can be deleted
by edge collapse or by using in the inverse way the pattern defined for refinement.

When mode displacement, element subdivision and edge collapse lead to ill-
shape elements, their quality can be recovered by edge or face swap. This tech-
niques aims at modifying the connectivity to improve mesh topology, keeping
unaltered the position and number of grid points. Proposed by Lawson [84] as
an algorithm to for transforming triangulation, edge swap can be exploited to
dramatically improve the overall mesh quality.

A different strategy for adding node relies on the Delaunay triangulation. To
insert a new point in a certain location, the elements having a circumsphere that
includes the new point are deleted to create a suitable cavity around the new
node. The cavity is then triangulated using a simple procedure. Although in two
dimensional grids this procedure usually results in grid elements of acceptable
quality, in 3D it may lead to badly-shaped elements, like slivers. To prevent this,
a minimal volume requirement can be imposed [33].

Finally, the global technique called r -refinement or vertex relocation can be
used with two aims: to gather points toward regions where a finer grid spacing
is required and to increase the quality of the grid elements, according to a pre-
scribed quality function, usually dependent on the element geometry. The main
advantage is that grid topology is held constant and therefore no complex data
structures to handle connectivity changes are required. Unfortunately, as already
pointed out in the previous section, large boundary displacements usually lead to
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very poor element quality and additional precautions has to be taken to prevent
element entanglement or inversion.

1.3.3 Unsteady mesh adaptation

In steady-state adaptive-grid simulations, an iterative procedure is usually per-
formed, namely the information obtained from the solution on a coarser grid is
used to drive the successive grid enrichment. Few adaptation phases are usually
required to converge toward a fixed point for the pair formed by the mesh and
the solution.

When unsteady problems are tackled, a complete mesh adaptation phase, as
in the steady case, is usually performed every several time steps, while only a
r -refinement is eventually performed every time step to cope with the boundary
displacement, see for instance [111, 105, 90]. Differently from the steady case,
the efficiency is much more important than optimality, thus mesh coarsening
is essential to keep the number of grid points under control. Unfortunately,
these classical strategies are characterized by a time shift between mesh and
solution, because mesh adaptation is driven by the estimator built on the solution
computed at the previous time step. Therefore no prediction in the evolution of
the time-dependent flow features is usually carried out.

A different strategy has been developed by Alauzet et al. [6, 5], who propose
to build a transient fixed-point problem by introducing in the main loop, an addi-
tional adaptation loop at each time step. Starting from the solution computed at
time t, an iterative mesh adaptation procedure is performed to converge towards
a fixed point for the time t+ ∆t. Furthermore, to improve the capability of cap-
turing transient solutions, they developed also a time-dependent metric defined
by means of an intersection procedure in time.

1.4 Thesis goals and outline

This thesis proposes a novel approach to solve the finite volume formulation of
the unsteady inviscid compressible governing equations over three-dimensional
dynamic grids. Mesh adaptation is exploited to successfully deal with arbitrarily
large movements of solid boundaries and to capture phenomena with different
spacial scales. The innovative interpretation of the local connectivity changes as
continuous deformations of the finite volumes that compose the computational
domain, proposed by Guardone and collaborators [59, 71], is here extended to
the three-dimensional case.

Modifications due to grid adaptation are then interpreted as continuous el-
ement deformations within the Arbitrary Lagrangian-Eulerian framework and
hence any explicit interpolation between different grids is avoided. Therefore,
the conservation and accuracy properties of the ALE scheme are preserved. The
lack of the interpolation between grids at different time steps allows to easily
implement high-order multi-step time schemes, like for instance Backward Dif-
ferentiation Formula. Moreover, the computation of the geometrical quantities
related to mesh motion is carried out in a way that automatically satisfies the
DGCL, even if topological modifications occur.

The two-dimensional version of the proposed conservative adaptive scheme is
already available in the software FlowMesh, currently under development at the
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Department of Aerospace Science and Technology of Politecnico di Milano [70].
Therefore, the three-dimensional strategy proposed in the present work is imple-
mented in the same software. Moreover, to overcome the difficulties of perform-
ing local grid modifications in three dimensions, the external open-source library
Mmg3d [36] is linked to the flow solver.

The validity of the proposed approach is proved by steady and unsteady
simulations of reference 2D and 3D problems, both in the ideal gas region and
within the so-called non-ideal compressible-fluid dynamics regime, namely in the
proximity of the liquid-vapor critical point and saturation curve [25]. Then three-
dimensional accurate simulations of aeronautical interest are carried out by ex-
ploiting the proposed conservative adaptive interpolation-free strategy.

The outline of the thesis is as follows.

Chapter 2: Finite Volume ALE scheme for three-dimensional flows
In this chapter, the space discretization and time integration of the govern-
ing equations are detailed. The ALE formulation of the compressible Euler
equations is discretized by means of a finite volume scheme over an unstruc-
tured grid, or more precisely over the corresponding median-dual mesh. The
computation of all involved geometrical quantities and the numerical fluxes
is thoroughly explained. To enforce monotonicity near discontinuities in
the solution, a flux limiter approach is used to combine a second-order flux
approximation with a first-order one. With regard to the time integration,
a standard Backward Differentiation Formulae (BDF) scheme is adopted,
together with an implicit dual-time stepping scheme. Particular care is
taken in the computation of the grid velocity that is embedded in the sys-
tem of governing equations to automatically satisfy the DCGL in case of
moving grids.

Chapter 3: Conservative ALE scheme for adaptive meshes
The finite volume ALE scheme described in the previous chapter is here
extended to adaptive grids with local connectivity changes. Thanks to a
sequence of fictitious collapses and expansions of adjacent elements, grid
modifications are treated as continuous deformations of the finite volumes
that compose the computational domain. The complete system of governing
equations for adaptive grids is finally derived.

Chapter 4: Three-dimensional mesh adaptation strategy
The complete mesh adaptation strategy used in this work is detailed in this
chapter. Besides the standard mesh deformation technique based on elastic
analogy, all the considered grid modifications are detailed. Thanks to the
library Mmg3d, edge split, edge collapse, element split and node insertion
by Delaunay triangulation are mixed together to obtained a mesh conform-
ing to the given metric. The target grid resolution is computed according
to an error estimator computed from the solution field obtained in a previ-
ous computation, complemented with a number of grid quality constraints.
Finally, the complete adaptation strategy is summarized, focusing on the
linking between the flow solver and the mesh adaptation library.
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Chapter 5: Numerical simulations of reference ideal and non-ideal compress-
ible-fluid flows
This chapter aims at assessing the reliability of the proposed computational
strategy. First, some standard two-dimensional problems of ideal gas flows
are tackled, including the shock reflection problem and an oscillating airfoil
at transonic speed, to establish the capability of capturing the relevant flow
features. Then, three-dimensional simulations of piston-induced shock-tube
flows are performed and the numerical results are compared to the analyti-
cal solution to verify their accuracy. Finally, mesh adaptation strategy and
criteria are tested also in the non-ideal compressible-fluid dynamic regime
by computing a nozzle flow with non-monotone Mach variation in the di-
vergent part and an under-expanded jet of nitrogen at nozzle discharge.

Chapter 6: Three-dimensional flows around wings
In this chapter, the conservative adaptive ALE scheme is applied to prob-
lems of aeronautical interest. A steady simulation of the transonic flow
around the Onera M6 wing is performed and mesh adaptation is exploited
to accurately capture the peculiar lambda shock. Then, several simulations
of the flow field around an infinite-span NACA 0012 wing are carried out.
The capability of the proposed strategy of dealing with large boundary
movements is assessed by means of a steady simulation in the wing refer-
ence frame and an unsteady simulation in the laboratory reference frame.
The transonic flow around the oscillating wing is then computed and com-
pared with the bi-dimensional results. Finally, the steady and unsteady
flows around a finite-span NACA 0012 wing are also tackled.



Chapter 2
Finite Volume ALE scheme for
three-dimensional flows

This Chapter opens with the integral formulation of the Euler equations in
both the Eulerian and Arbitrary Lagrangian Eulerian framework, completed
by an appropriate thermodynamic model of the fluid. Section 2.3 describes
thoroughly the finite volume discretization of the Euler equations over an
unstructured grid, and it reports also on the computation of the required
geometrical quantities related to the computational grid. Then, Section 2.4
explains the discretization and integration in time of the governing equations.
Finally, the computation of the interface velocity in a way that guarantees
that the GCL is automatically fulfilled is presented in Section 2.5.

2.1 Euler equations

The Euler equations describe compressible inviscid hydrodynamics and in many
cases of practical interest they provide an accurate representation of the flow
field, except in a small, boundary layer region close to the solid bodies. The ap-
proximations introduced when deriving this model are valid under the continuum
hypothesis, namely for sufficiently large fluid density, and provided that thermo-
dynamic as well as chemical equilibrium can be assumed. Moreover, neglecting
the effects of viscosity and thermal conductivity is acceptable for flows around
streamlined bodies and characterized by a high Reynolds number, namely for
flows with thin boundary layers and no separation regions, and with a moder-
ate Mach number, i.e. when hypersonic effects are irrelevant. Therefore, Euler
equations can be used to model compressible-fluid flows, shock reflections and
collisions, blast waves, flows past aerodynamic bodies and related physical phe-
nomena. In aerodynamics, the Euler equation can predict only some features,
like the wake and the induced or wave components of the drag, but not the over-
all efficiency of an aircraft. Since in this work the interest is addressed to the
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predictions of pressure distribution on the surface of aerodynamic bodies, the
Euler equations are chosen as the appropriate mathematical model.

The integral form of the unsteady Euler equations for a fixed control volume
C contained in the domain Ω reads

d

dt

∫
C

u dx +

∮
∂C

f(u) · n ds = 0 (2.1)

where x ∈ Ω ⊆ R3 is the position vector, t ∈ R+ is the time, u is the vector of
conservative variables, f(u) is the inviscid flux and n(s) ∈ R3 is the outward unit
vector normal to the boundary ∂C of the control volume C, which is function of
the boundary coordinate s ∈ ∂Ω ⊆ R2.

The vector of conservative variables u : Ω× R+ → R5 is defined as

u = [ρ, m, Et]T ,

where ρ is the density, m the momentum and Et the total energy. The flux
function f : R5 → R5 is defined as

f(u) =

 m
m⊗m/ρ+ Π(u)I3

[Et + Π(u)]m/ρ

 (2.2)

where Π(u) = Π(ρ,m, Et) is the pressure function, which depends on the ther-
modynamic model, and I3 is the 3×3 identity matrix. Equation (2.1) states that
the rate of change of the total amount of the conserved vector u contained in the
control volume C must balance the net flux of f through the boundary ∂C. To
make the governing equations complete, suitable initial and boundary conditions
must be specified [87].

2.1.1 Thermodynamic model

A thermodynamic model is required to express the pressure in terms of conserva-
tive variables, which can be easily provided as a set of two compatible equations
of states (EoS), usually a thermal and a caloric one. The perfect gas equation
is the simplest analytical EoS and it is based on the hypothesis that the gas is
composed by identical molecules of negligible dimensions (considered as points)
which do not exert interaction forces between each other. If also the assumption
of constant specific heat is made, the polytropic ideal gas model is obtained,
which provides accurate predictions in numerous aerodynamic applications.

According to the ideal gas model, the isotherms in the volume-pressure (v-
P ) thermodynamic plane are hyperbolas, i.e., P (T, v) = RP/v, where v is the
volume for unit mass, T is the temperature and R is the gas constant. The fluid
state fulfills the assumption of gas ideality only if the specific volume is large
enough, namely within the so-called dilute region. Approaching the vapor-liquid
saturation curve and, in particular, the critical point the thermodynamic behavior
of the substance deviates significantly from the ideal one. In this regime, called
non-ideal compressible-fluid dynamics regime, transport and physical properties
of the fluid exhibit a peculiar dependence on the pressure and temperature, which
therefore require the inclusion of more complex EoS. The polytropic van der
Waals model is the simplest thermodynamic model capable of taking into account,
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Polytropic ideal gas Polytropic van der Waals gas

P (T, v) = RT
v

P (T, v) = RT
v−b − a

v2

e(T, v) = T
δ

e(T, v) = T
δ
− a
v

Π(u) = δ
[
Et − |m|

2

2ρ

]
Π(u) = δ

Et−|m|2/(2ρ)+aρ2
1−bρ − aρ2

Table 2.1: Polytropic ideal gas and van der Waals thermodynamic models. δ is the
inverse dimensionless specific heat at constant volume, namely, δ = R/cv, which is
constant under the polytropic assumption. The van der Waals constants a and b are
specifics of the fluid and are related to the critical temperature TC and pressure PC as
follows: a = 27/64R2 T 2

C/PC and b = 1/8RTC/PC.

at least qualitatively, these non-ideal compressible-fluid effects [25]. As shown in
Figure 2.1, the isotherms of van der Waals fluids tend to ideal-gas hyperbolas at
high temperature, but become steeper in the non-ideal compressible-fluid region.

In the present work the polytropic ideal and van der Waals models are used to
derive the functional form of the pressure function Π(u). The thermal and caloric
EoS in both models are reported in Table 2.1, along with the pressure functions.
A complete thermodynamic model allows to compute all the thermodynamic
properties of the gas. For instance, the speed of sound, which is defined as

c2 =

(
∂P

∂ρ

)
s

= −v2

(
∂P

∂v

)
s

,

can be computed as

c2 = −v2γ

(
∂P

∂v

)
T

, (2.3)

where γ = cp/cv is the ratio between the specific heat at constant pressure and
the one at constant volume.

2.1.2 Non-dimensional variables

Dimensionless variables are introduced to properly scale the solution variable
and to reduce the round-off errors in the computations. Starting from a refer-
ence pressure and temperature, Pref and Tref respectively, such as for instance
the critical values or the ones of the free-stream. A possible consistence set of
reference values for the conservative variables can be obtained from dimensional
analysis as follows

ρref =
Pref

RTref
, mref =

√
ρrefPref =

Pref√
RTref

, Et
ref = Pref .

The remaining dimensionless quantities can be derived using the above variables.
For instance, defining also a reference length lref , a reference time can be defined
as

tref =

√
ρref

Pref
lref =

lref√
RTref

.

The non-dimensional counterparts of the governing equations (2.1) and the
flux function f(u) have the same functional form and therefore they are simply
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Figure 2.1: Representative isentropes and liquid-vapor saturation curve in the reduced
ρ-P plane in the non-ideal compressible-fluid region for carbon dioxide under the poly-
tropic van der Waals gas. Reduced variables are obtained by dividing dimensional ones
by their corresponding critical point values. The critical isotherm, the critical point
and iso-lines of the fundamental derivative of gasdynamics [121] are also shown.

evaluated using the non-dimensional variables, obtained e.g. as P̂ = P/Pref . A
slight modification occurs in the equation of state, because the gas constant R
is chosen as reference variable both for the gas constant (itself) and the specific
heats cv and cp. Indeed, the equation of state of the polytropic ideal gas simplifies

to P̂ = ρ̂T̂ . In the following, all the variables are assumed to be dimensionless.
However, the “hat” symbol ˆ is not used in the following since it can be safely
dropped without causing confusion.

2.2 ALE formulation of the governing equations

The Arbitrary Lagrangian-Eulerian formulation is now applied to solve the Euler
equations over possibly moving control volumes. To this purpose, two different
configurations are identified: the reference ALE domain ΩX and the current grid
configuration Ωx(t), which corresponds to the Eulerian reference frame. Follow-
ing the work of Donea et al. [39], the mapping between these configurations is
defined as

ϕ : ΩX × R+ −→ Ωx × R+

(X, t) 7−→ ϕ(X, t) = (x, t)

and expresses the motion of the grid points in the reference domain. To be
invertible and preserve the orientation, the Jacobian J of the mapping ϕ has to
satisfy at each point and time the condition

det (J(X, t)) = det

(
∂x(X, t)

∂X

)
> 0 . (2.4)
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The physical variables can be described differently according to the chosen
configuration. Consider for instance a scalar physical quantity described by
f(x, t) in the spatial domain and by F (X, t) in the reference one. The two
functional forms are in general different, but their are related by F (X, t) =
f(ϕ(X, t), t). A further remark has to be made also regarding the derivative
operator. The time derivative in the ALE frame is defined as

∂f(x, t)

∂t

∣∣∣∣
X

=
∂F (X, t)

∂t
with (X, t) = ϕ−1(x, t) .

Likewise, the grid velocity is defined as

v(x, t) =
∂x

∂t

∣∣∣∣
X

.

To obtain the ALE counterpart of the governing equations (2.1), the Eule-
rian time derivative ∂u

∂t

∣∣
x

has to be replaced by the time derivative in the ALE
framework, which can be obtained by the chain rule as

∂u

∂t

∣∣∣∣
X

=
∂u

∂t

∣∣∣∣
x

+
∂x

∂t

∣∣∣∣
x

·∇xu =
∂u

∂t

∣∣∣∣
x

+ v ·∇xu (2.5)

where ∇x( ) indicates the gradient operator in Ωx.
In order to establish the integral form of the conservation laws for mass,

momentum, and energy, the Reynolds transport theorem is now exploited. As
shown for instance in [13], the material time derivative of the integral of a scalar
function f(x, t) over a control volume Cx(t) bounded by a close surface ∂Cx
moving with a velocity v(x, t) can be expressed as

d

dt

∫
Cx(t)

f(x, t) dx =

∫
Cx(t)

∂f(x, t)

∂t
dx+

∮
∂Cx(t)

f(x, t)v · nds . (2.6)

Applying the divergence theorem to the boundary integral, along with the Rela-
tions (2.5), one obtains

d

dt

∫
Cx(t)

f(x, t) dx =

∫
Cx(t)

[
∂f

∂t

∣∣∣∣
x

+ ∇xf · v + f∇x · v
]
dx =

=

∫
Cx(t)

[
∂f

∂t

∣∣∣∣
x

+ ∇x · (fv)

]
dx .

The Euler equations in the ALE framework for a control volume C(t) ∈ Ωx
moving at velocity v are finally obtained as follows

d

dt

∫
C(t)

u dx +

∮
∂C(t)

[f(u)− uv] · n ds = 0, (2.7)

where, differently from Equations (2.1), v and n are also functions of time t.
It should be pointed out that, with respect to the derivation of the ALE for-
mulation here described, an inverse path is usually followed in practice, namely
the grid velocity v = v(x, t) is generally known (prescribed or given by some
computations) and then a compatible ALE mapping is built.
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As recalled in Subsection 1.2.3, when solving the governing equations over
moving domains, the fulfillment of the Geometric Conservation Law (GCL) is
beneficial to avoid spurious oscillations and preserve non-linear stability [86, 44,
48, 98]. To this end, the basic requirement for an ALE scheme is the capability to
exactly compute the trivial solution of a uniform flow. To translate this statement
into a mathematically meaningful equation, the mass balance is usually selected
among the ALE governing equations (2.7). Considering a uniform field over a
moving volume C(t), it reduces to the following continuous geometric conservation
law

d

dt

∫
C(t)
dx =

∮
∂C(t)
v · n ds . (2.8)

Integrating in time from tn to n+1 the previous equation leads to the Discrete
Geometric Conservation Law (DGCL):

V n+1 − V n =

∫ tn+1

tn

(∮
∂C(t)
v · n ds

)
dt , (2.9)

where V n and V n+1 are the volume of C at time tn and tn+1 respectively. The
DCGL states that the variation in volume in a certain time interval should bal-
ance the volume swept by its boundary during the same interval. This require-
ment represents a constraint that the grid velocity must fulfill during the motion.

2.2.1 Jacobian matrix and eigenstructure

The Jacobian matrix of the Euler flux function plays a crucial role in the devel-
opment of the numerical scheme to solve the governing equations.

The Jacobian matrix A is defined as the partial derivatives of the flux func-
tion with respect to the solution vector projected along an arbitrary direction,
identified for instance through the unit vector n. In the ALE framework, it reads

AALE(u,n,v) =
∂f(u)·n
∂u

− (v ·n)I5 = AEUL(u,n)− (v ·n)I5 ∈ R5×R5 . (2.10)

The ALE Jacobian matrix is therefore the sum of the Jacobian matrix com-
puted in the Eulerian formulation plus a correction term proportional to the grid
velocity in the direction n.

Thanks to the hyperbolic nature of the Euler equations, the Jacobian matrix
can be expressed in terms of the matrices of the eigenvalues and eigenvectors by
the following diagonal decomposition

AALE(u,n,v) = RALE(u,v)ΛALE(u,n,v)LALE(u,v) (2.11)

where ΛALE(u,n,v) is the diagonal matrix of the eigenvalues and RALE(u,v) and
LALE(u,v) are the matrices of the right and left eigenvectors, respectively [87].

The eigenvalues of the Euler equations within the ALE framework in three
dimensions are

ΛALE(u,n,v) =

(
m · n
ρ
− v · n

)
I5 − diag

(
c(u), 0, 0, 0, −c(u)

)
where c is the speed of sound. Similarly to the Jacobian matrix, also the ALE
eigenvalues correspond to the ones in the Eulerian framework plus a term propor-
tional to the projection of the grid velocity. On the contrary, since the last term
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in equation (2.10) is already diagonal and it does not depend on the solution u,
the eigenvectors matrices that diagonalize AALE and AEUL are the same and they
do not depend on the velocity v. Therefore, in the following no distinction is
made in the notation, i.e. RALE = REUL = R and LALE = LEUL = L.

A more detailed description of the eigenstructure of the Euler equations can
be found in [113].

2.3 Node-pair finite volume discretization

The discrete counterpart of the Euler equations (2.7) over an unstructured dy-
namic grid with constant topology is obtained by means of the finite volume
formulation. The computational domain Ω(t) is split into Nm non-overlapping
volumes Ci(t), so that

⋃
i Ci(t) ≡ Ω(t). According to the node-centered approach

considered here, the unknowns are associated to the nodes of the mesh and the
control volume Ci that surrounds the node i is composed by a portion of all grid
elements sharing the node i, as shown in Figure 2.2. For each finite volume, the
Equations (2.7) becomes

d

dt
[Viui] +

∮
∂Ci(t)

[f(u)− uv] · ni ds = 0 , ∀i ∈ K (2.12)

where

Vi(t) =

∫
Ci(t)
dx and ui(t) =

1

Vi(t)

∫
Ci(t)

u(x, t) dx ,

K is the set of all nodes of the triangulation and ni is the outward unit normal
to the boundary of the control volume Ci. In the following, the variables of
integration dx and ds are dropped for conciseness.

The flux integral in Equation (2.12) can be rearranged to put into evidence
the domain and boundary contributions. Moreover, the domain contribution can
be split into Ni contributions, where Ni is the number of the control volumes
sharing a portion of their boundary with Ci, Ci excluded. The set of this nodes
is denoted by Ki,6= = {k ∈ K, k 6= i | ∂Ci ∩ ∂Ck 6= ∅}. The portion of the shared
boundary ∂Cik(t) = ∂Ci ∩ ∂Ck is usually referred to as cell interface and it is
associated to the couple of interacting nodes i and k, which is termed node-pair.
Therefore, Equation (2.12) can be rewritten as

d

dt
[Viui] +

∑
k∈Ki, 6=

∫
∂Cik(t)

[f(u)− uv] · ni +

∫
∂Ci(t)∩∂Ω(t)

[f(u)− uv] · ni = 0 (2.13)

where the last term—the contribution of the boundary fluxes—is different from
zero only if a portion of ∂Ci lies on the boundary of the computational domain
∂Ω, i.e. if ∂Ci(t) ∩ ∂Ω(t) 6= ∅, see for instance the right picture in Figure 2.2.

A suitable approximation Φ of the integral of the fluxes across the cell inter-
faces is introduced and it will be referred to in the following as the integrated
numerical flux. Considering for instance a centered approximation of the un-
known and of the flux function at the cell interfaces, the domain contributions
read ∫

∂Cik(t)

[f(u)− uv] · ni '
f(ui) + f(uk)

2
· ηik −

ui + uk
2

νik

= Φ(ui, uk, νik, η̂ik, ηik)

(2.14)
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i

k
v1

v2

v4

Figure 2.2: Portions of the finite volumes surrounding the nodes i and k associated
to the four tetrahedral elements defined by the grid nodes i, k, v1, v2, v3, v4. In the left
picture, domain (i.e. internal) grid elements are considered, while in the right one the
faces i-v2-k and i-k-v4 are supposed lying on the boundary ∂Ω. Grid edges are drawn
by black lines. The portions of Ci and Ck are painted respectively blue and green ,
while their boundaries ∂Ci and ∂Ck are painted darker, i.e. and . The red color
identifies the cell interface ∂Cik = ∂Ci ∩ ∂Ck associated to the node-pair i-k, which is
shown entirely. For the boundary case (at right), the patterns and indicates the
boundary interfaces ∂Ci ∩ ∂Ω and ∂Ck ∩ ∂Ω.

where the metric quantities ηik and νik are, respectively, the integrated normal
and interface velocity of ∂Cik, defined as

ηik =

∫
∂Cik
ni and νik =

∫
∂Cik
v · ni , (2.15)

and where ηik = |ηik| and η̂ik = ηik/ηik.

A similar approximation Φ∂ is introduced also for the boundary contribu-
tion in Equation (2.13). Assuming that ui is constant over the finite volume
and therefore also along the boundary portion ∂Ci ∩ ∂Ω, the boundary integral
simplified to∫

∂Ci(t)∩∂Ω(t)

[f(u)− uv] · ni ' f(ui) · ξi − uiνi = Φ∂(ui, νi, ξ̂i, ξi) (2.16)

where, likewise the domain contribution, ξi and νi are the integrated normal and
the interface velocity of the boundary interface associated to the node i

ξi =

∫
∂Ci(t)∩∂Ω(t)

ni and νi =

∫
∂Ci(t)∩∂Ω(t)

v · ni , (2.17)

and where ξi = |ξi| and ξ̂i = ξi/ξi.

To guarantee that the scheme is conservative and that the finite volumes are
closed, the metric vectors introduced in Equations (2.14) and (2.16) must satisfy
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i

k
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j

xeik

xfijk

ηm
ik,fijk

xm

ξm
∂

i,f∂

xeiv ≡ xf∂
iv

xfivj ≡ xm∂

Figure 2.3: Domain and boundary metrics definition. The six triangular facets defin-
ing the contribution of the considered element m to the finite volume Ci are depicted
in blue . Each one has as vertices the barycenter of the element , the barycenter
of a face and that one of an edge . The red pattern highlights the triangle
related to the edge eik and the face i-j-k, over which the elemental contribution to the
integrated normal ηik shown by the red arrow is computed. Moreover, supposing that

the face i-v-j lies on the boundary, the contribution to the boundary metric vector ξm
∂

i,f∂

is shown, where the boundary element m∂ consists in the triangle with vertices i-v-j
and the considered face f∂ is the edge i-v. The green pattern depicts the boundary

elemental portion ∂Cm
∂

i,f∂ . Finally, the volume V mik,f of the sub-tetrahedron that has
∂Cmik,f as base and the node i as opposite vertex is shown in light blue .

the following conditions [116]:

ηik = −ηki (2.18)

νik = −νki (2.19)

ξi(t) +
∑

k∈Ki, 6=

ηik(t) = 0 . (2.20)

Finally, the node-pair representation of the spatially discrete governing equa-
tions (2.12) reads

d

dt
[Viui] = −

∑
k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik) − Φ∂(ui, νi, ξ̂i, ξi) ∀i ∈ K (2.21)

which consists in 5 × NV Ordinary Differential Equations (ODE), where NV is
the number of grid points.

2.3.1 Metrics computation for a tetrahedral mesh

In this section, the expression for the metric quantities ηik and ξi and the volumes
Vi are given in terms of grid nodes position. The time dependence of the position
of the grid points, and therefore of all geometrical quantities involved in metric
computation, is here omitted to lighten the notation. Since the three-dimensional
adaptive scheme described in the following chapter can be applied, at least at the
current level of development, only to tetrahedral grids, only this kind of elements
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ηm
ik,f1
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Figure 2.4: Orientation of the elemental contribution to the integrated normal. The
global orientation of the edge eik is from i to k and it is shared by the faces f1 and
f2 of the element m. The picture shows the elemental interface contribution ∂Cmik,f for
both faces. Suppose that for the face f1, the edge eik has the local orientation equal
to the global one, while for the face f2 it is oriented in the opposite way. Then, when
computing ηmik, the contribution ηmik,f1 is summed with the positive sign while ηmik,f2 is
taken with the negative sign.

are considered in the present description, even if the described approach can be
applied to different types of grid elements.

The control volumes over which the governing equations are enforced are built
according to the median-dual mesh approach [11, 131]. Therefore, each control
volume Ci is bounded by the median planes of the tetrahedra having node i as
a vertex. Conversely, each grid tetrahedron contributes to the control volumes
surrounding its four nodes. With reference to Figure 2.3, the description of the
cell interface ∂Cik between the finite volumes Ci and Ck is given.

First of all, it is to be noticed that the generic interface ∂Cik is associated
to the grid edge eik between the nodes i and k, therefore each element m that
includes the edge eik contributes to the interface with its elemental interface
contribution ∂Cmik . This elemental interface is composed by two triangles ∂Cmik,f
relating to the different faces f of the tetrahedron m to which the edge eik
belongs. The three nodes of the triangle are the barycenters of the element xm,
of the edge xik and of the face xf . According to this partition of the interface,
the integrated normals are computed on each triangular portion ∂Cmik,f and then
summed together.

The elemental contribution to the integrated normal ηik of the element m for
the face f can be computed as

ηmik,f = −1

2
(xf − xm)× (xik − xm) . (2.22)

where the minus sign makes the normal oriented as the node-pair cik, which is
define so that i < k.

Similarly, the boundary metric vector ξi is built by summing the contributions

of all boundary elements sharing the nodes i. The elemental contribution ξm
∂

i,f∂

is a triangle formed by the boundary node i, the barycenters of the element m∂

and of the face f∂ and it reads

ξm
∂

i,f∂ = −1

2

(
xf∂ − xm∂

)
×
(
xi − xf∂

)
(2.23)
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Note that for a tetrahedral grid, the boundary elements are triangles, therefore
the faces of the boundary element correspond to the edges of the triangle.

The metric vectors ηik and ξi can be then computed by summing all the
elemental contributions

ηik =
∑

m∈εi∩εk

∑
f∈Fik,m

ηmik,f and ξi =
∑

m∂∈ε∂i

∑
f∈F

i,m∂

ξm
∂

i,f∂ , (2.24)

where εi and εk are the set of the elements sharing the node i and k, respectively
(often referred to as the element bubble of i and k), Fik,m is set of faces of m
sharing the edge ik, ε∂i is the set of boundary elements sharing the nodes i and
Fi,m∂ is the set of faces of m∂ sharing i. The set εi ∩ εk denotes the set of all
elements sharing the edge ik.

When summing all contributions, particular care must be taken to preserve
the correct orientation of the metric vectors. Each edge of the tetrahedron has
an elemental orientation and a local one, defined so that the normal of each face
points inside the element, i.e. the edges are oriented clockwise on each face.
The minus sign in Equations (2.22) makes the contribution ηmik,f oriented as the
local edge ik of the face f , as Figure 2.4 shows. When performing the internal
sum in Equation (2.24), the elemental contribution ηmik,f is inverted if the global
and local orientations of the edge eik are opposite for the face f . Moreover,
when summing the contribution of different elements, a further inversion of the
elemental contribution is required if the element edge is not oriented as the node-
pair, which is defined as going from i to k with i < k. On the contrary, the
boundary elemental contributions are computed always as oriented outwards the

domain. This can be accomplished by inverting the elemental contribution ξm
∂

i,f∂

if i is the second node of the edge eik (face for the boundary element).
In a similar way, also the volume Vi of the finite volume Ci is computed by

summing elemental contribution. According to the subdivision described above,
each tetrahedron is split into 24 sub-tetrahedra, each of them has the triangular
interface ∂Cmik,f as base and the node i or k as the opposite vertex. The volume
of the sub-tetrahedron with vertices xi, xm, xik and xf is

V mik,f =
1

3
(xm × xi) · ηik,f . (2.25)

It can be noticed that if the vertex xk is used instead of xi, the volume V mik,f is
equal with opposite sign. Provided that the correct orientation of the contribu-
tions is obtained according to the similar considerations made for the integrated
normal ηik, the volume of the finite volume Ci can be computed as

Vi =
∑
m∈εi

∑
k∈Km

i, 6=

∑
f∈Fik,m

V mik,f (2.26)

where Kmi,6= are the three vertices of the tetrahedron m different from i.
The proposed node-pair finite volumes discretization is straightforward to

implement. Thanks to the grid transparency [67], after the median-dual mesh is
generated, all information about elements can be discarded and an edge-based
data structure that makes no distinction between 2D or 3D or different element
types can be used within the flow solver. Moreover, Selmin [115] and Selmin
and Formaggia [116] proved that for fixed simplex grids (triangular in 2D and
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tetrahedral in 3D) the described finite volume discretization is equivalent to a
finite element one with linear elements, except a different treatment of boundary
terms.

2.3.2 Integrated numerical fluxes

When evaluating the numerical fluxes in the spatially discretized equations two
different aims are pursued: to correctly capture the possible discontinuities in
the solution and to achieve second-order spatial accuracy. To this end, in this
work a high-resolution scheme based on the Total Variation Diminishing (TVD)
approach is used for integrated numerical fluxes [123]. Thus, a first order mono-
tonicity preserving scheme is blended with a second-order scheme by means of a
limiter, as briefly described in the following. A more detailed explanation can be
found for instance in [87].

At each cell interface, the domain fluxes in Equation (2.21) are calculated by
the following second-order centered approximation

ΦII(ui, uk, νik, η̂ik, ηik) =
f(ui) + f(uk)

2
· ηik −

ui + uk
2

νik . (2.27)

It is well known that the previous definition of the integrated numerical fluxes
leads to undesirable spurious oscillations near discontinuities [87]. Therefore,
where the solution is discontinuous the approximate Riemann solver proposed
by Roe is employed, which solves at each cell interface a linear substitute of
the classical Riemann problem of gas dynamics, taking the nodal values of the
solution as left and right states [112]. Then, the first-order upwind flux reads

ΦI(ui, uk, νik, η̂ik, ηik) =
f(ui) + f(uk)

2
· ηik −

ui + uk
2

νik −
1

2
|Ã|(uk − ui) (2.28)

where Ã is the Roe matrix, defined as the Jacobian of the flux function pro-
jected along the normal direction η̂ik and evaluated at an intermediate state

ũ = ũ(ui, uk), namely Ã = AALE(ũ, η̂ik, ηik, νik). If the polytropic ideal gas model
is assumed, the intermediate state can be computed as

m̃ =
mi
√
ρk +mk

√
ρi√

ρi +
√
ρk

, h̃t =
ht
i

√
ρk + ht

k

√
ρi√

ρi +
√
ρk

,

where (ht = Et + P )ρ is the specify total enthalpy. The intermediate density is
arbitrarily chosen as ρ̃ =

√
ρiρk, since for an ideal polytropic gas the Roe matrix

is independent from its value. The extension of the Roe linearization to the van
Der Waals Gas is derived by Guardone and Vigevano in [62].

To compute the absolute value of the Roe matrix, the latter is factorized by a
spectral decomposition, i.e. Ã = R̃|Λ̃|L̃, where R̃ = R(ũ, η̂ik) and L̃ = L(ũ, η̂ik) are
the right and left eigenvectors matrices introduced in Equation (2.11) evaluated

in the Roe state. The diagonal matrix |Λ̃| is built by the absolute values of the

eigenvalues of Ã integrated over the interface ∂Cik, namely

∣∣Λ(ũ,ηik, νik)
∣∣ =

(
m̃ · ηik

ρ̃
− νik

)
I5 − diag

(
c(ũ), 0, 0, 0, −c(ũ)

)
.
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As a final remark, it should be noted that the upwind term in (2.28) can be in-
terpreted as a dissipation term. When numerical dissipation is too small, the Roe
linearization may lead to non-physical solutions that do not respect the entropy
condition, i.e. the additional constraint to the solution scheme that guarantees
that the conservation laws converge to the unique physically relevant, physical
weak solution [87]. This drawback occurs when the eigenvalues of the Roe ma-

trix λ̃ are close to zero, therefore it can be avoided by a suitable modification
of the eigenvalues, which is often called entropy fix [106]. In the present work,
the modification of the entropy fix proposed by Selmin [115] is employed and the
p-th eigenvalue of the Roe matrix is modified as follows

λ̂p =


|λ̃p| if λ̃p > δ̃,

λ̃2
p + δ̃2

2δ̃ + ε
if λ̃p < δ̃,

(2.29)

where ε = 10−12 is a small parameter to avoid divisions by zero, and

δ̃ =
1

5

(
M(ũ, η̂ik, ηik, νik) + 1

)
ηik and M (ũ, η̂, η, ν) =

1

c(ũ)

(
m̃ · η̂
ρ̃
− ν

η

)
where M in the above relations is the Mach number of the intermediate state
projected along the η̂ik direction.

Flux limiter

The Total Variation Diminishing approach [66] is used to obtained the high-
resolution expression for the integrated numerical domain fluxes. A suitable flux
limiter is used to control the switch from the centered second-order approximation
ΦII to the monotonicity preserving scheme ΦI near discontinuities. Denoting the
limiter by Υ = diag(Υ1, ...Υ5), the high resolution integrated flux reads

ΦHR
ik = ΦI

ik + Υ(ΦII
ik − ΦI

ik) = ΦII
ik +

1

2
R̃|Λ|

[
Υ− I5

]
L̃(uk − ui) (2.30)

with Υ defined according to the expression of the van Leer limiter [123]. The
limiters are usually defined in terms of the ratio between the variation of the
solution in the upwind and the centered scheme. To evaluate the upwind jump
over an unstructured mesh, it is convenient to recast to an extended node-pair
structure. Following [61], for each node-pair i-k, two additional nodes i? and k?

are considered, that are selected as the best aligned node-pair with direction i-k
as shown in Figure 2.5. Thus, the p-th component of the characteristic upwind
jump–i.e. multiplied by the corresponding eigenvector—can be computed as

q̃p =


η̂ik · (xk − xi)
η̂ik · (xk? − xk)

L̃p(uk? − uk) if λ̃p > 0 ,

η̂ik · (xk − xi)
η̂ik · (xi − xi?)

L̃p(ui − ui?) if λ̃p ≤ 0 ,

(2.31)

where L̃p is the p-th row of the left eigenvector matrix.
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i?

i
k

k?

Figure 2.5: Extended node-pair structure for the node-pair i-k for the high-resolution
integrated flux. For the sake of clarity, a bi-dimensional grid is sketched.

Boundary fluxes

The boundary conditions are enforced in a weak form, i.e. the imposed boundary
values are taken into account by evaluating the flux Φ∂i in a suitable boundary

state u∂ = u∂(ui, ξ̂i, ξi, νi). Two types of boundary conditions are used here: slip
(or symmetry) and non-reflecting.

Slip boundary conditions are imposed by subtracting to the state ui the nor-
mal component of the velocity, taking into account mesh velocity, namely

u∂,Wi = ui −

0,

(
mi · ξ̂i −

ρiνi
ξi

)
ξ̂i,

1

2
ρi

∣∣∣∣∣mi · ξ̂i
ρi

− νi

ξ̂i

∣∣∣∣∣
2
T

.

Thus, the corresponding boundary flux simplifies to

Φ∂i (u∂,Wi , νi, ξ̂i, ξi) = Π(ui)
[
0, ξiξ̂i, νi

]T
,

which corresponds to pressure forces and their power only.

As regards the enforcement of the non-reflecting boundary condition, due to
the hyperbolic nature of the Euler equations, the same portion of a boundary
can be both an inflow and an outflow boundary for different characteristic field.
Therefore, the boundary state u∂,∞i is computed via characteristic reconstruc-
tion [61] as follows

u∂,∞i (ui, ξ̂i, ξi, νi) = ui + R(ui, ξ̂i) SN (ui, ξ̂i, ξi, νi) L(ui, ξ̂i) [u∞ − ui] ,

where SN is an operator that selects only the strictly negative eigenvalues and
stores them in a diagonal matrix. Thus, for a supersonic outflow the above
relation simplifies to u∂,∞i = ui, since all eigenvalues are negative, and to u∂,∞i =
u∞ for a supersonic inflow, when all eigenvalues are positive.

2.4 Time discretization

The finite volume discretization of governing equations are now discretized in
time by means of a Backward Differences Formula (BDF). According to the
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approximation of order p+1, the derivative with respect to the time of a function
f can be expressed as

dy

dt
' 1

∆t

p∑
q=−1

aqy
n−q or, equivalently

dy

dt
' 1

∆t

p−1∑
q=−1

αq∆y
n−q

where aq are the coefficient of the BDF scheme [82], which can be expressed
as αq =

∑q
d=−1 aq to obtain the incremental form where ∆yn = yn − yn−1 by

exploiting the property
∑p
q=−1 aq = 0. The definitions above applied to the ODE

system (2.21) give

p∑
q=−1

aqV
n−q
i un−qi = ∆t

[ ∑
k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik)

+ Φ∂(ui, νi, ξ̂i, ξi)

]n+1

, i ∈ K
(2.32)

where Φ(·)n+1 = Φ(·n+1). In the previous system, all quantities at time level n
are known, as well as all the grid-dependent quantities (cell volumes and metric
vectors) at time level n + 1, since the position of the grid points is known as
a function of time. It is important to notice that this does not occur in fluid-
structure interaction problems, in which the node velocity is the outcome of the
solution of the structural problem with aerodynamic loads.

The System (2.32) is non-linear for the unknown variable ui at time level
n + 1, therefore an iterative procedure is used to compute the solution. As it is
standard practice, the convergence towards the solution is enhanced by resorting
to a pseudo-time stepping scheme [72]. Moreover, since the second-order spatial
accuracy and the mixed elliptic-hyperbolic nature of the equations result in a
poorly diagonal dominant matrix, a modified version of the Newton method is
used to solver the linear system. According to the defect-correction method [78],
the exact Jacobian of the integrated flux function is replaced by an approximated
one. At each psuedo-time step, a Simmetric Guass Seidel method is used to obtain
the solution of the system of linear equations.

2.4.1 Iterative implicit solver

The iterative procedure used to solve the System (2.32) is now described. The
equations for all nodes can be rewritten in a more compact form as

a−1

∆t
Vn+1Un+1 + S + R(Un+1) = 0 (2.33)

where U = [u1, u2, ..., uNV
]T is the vector of solutions, the diagonal matrix V =

diag(V1I5, ..., VNV
I5) contains the cell volumes, S =

∑p
q=0 aqV

n−qUn−q is treated
as a source term and R is the residual vector computed as the right hand side,
i.e. its i-th row is Ri = −∑k∈Ki, 6=

Φn+1
ik − Φ∂,n+1

i .
All the terms of the above equation can be gathered in a so-called unsteady

residual R?(Un+1) that should be driven to zero at each time step, namely

R?(Un+1) =
a−1

∆t
Vn+1Un+1 + S + R(Un+1) = 0 . (2.34)
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The equation system above can be solved, in principle, by a Newton-Raphson
scheme. However, in order to converge such iterative methods require that the
initial solution is close enough to the final one. Unfortunately, this is not always
the case if the governing equations are highly non-linear. To overcome this pos-
sible drawback, a pseudo time derivative is included in Equation (2.34) and an
iterative procedure is used to obtain the solution at time level n+ 1 [72]. In the
following the pseduo time is denoted τ and the time levels m and m + 1 refer
to pseudo-time iterations. Thus, knowing the solution Un, the solution Un+1 is
obtained by solving the following equation

dU

dτ
+ R?(Um+1) = 0 , (2.35)

where Um=0 = Un and convergence is achieved when

‖R?(Um+1)‖2 ≤ tol ‖R?(U0)‖2 ,

where tol is a user-defined tolerance, usually chosen in the range 10−8 ≤ toll ≤
10−5 depending on the application. At this point, the solution for the new time
step is obtained, namely Un+1 = Um+1.

The pseudo-time derivative in Equation (2.35) is discretized by means of the
backward Euler scheme and the unsteady residual can be approximated by a
first-order Taylor expansion to obtain(

1

∆τ
+
∂R?

∂U

)
(Um+1 −Um) + R?(Um) = 0 .

Expanding the definition of the unsteady residual at τm and its derivative,
the above equation reads(

1

∆τ
+
a−1

∆t
Vn+1 +

∂R

∂U

)
(Um+1 −Um)

= −a−1

∆t
Vn+1Um −

p∑
q=0

aqV
n−qUn−q − R(Um) (2.36)

which if convergence is obtained reduces to Equation (2.33).
At each pseudo step, the linear System (2.36) has to be solved. To this end, it

can be re-written as Mz = qm. As already said, the matrix M is poorly diagonally
dominant. This occurs especially for steady problems, where the term a−1/∆t
is not present. According to defect-correction approach [78], the Jacobian of

R(U) is replaced by a first order approximation, R̃(U), to increase its diagonally
dominance. More specifically, only the first-order upwind flux in Equation (2.30)

is considered when computing the Jacobian R̃(U). This modification increases
the robustness of the scheme, but unfortunately the quadratic convergence rate,
which could be potentially achieved by the exact Newton method, is lost [125, 96].

Due to the non-linear nature of Equation (2.36), both the matrix M and
the residual vector qm change every pseudo-time step, namely every non-linear
iteration. Therefore, as it is common practice, Um+1 is computed by means of an
iterative scheme, here the Symmetric Guass Siedel, performing only a few number
of so-called linear iterations without seeking the full convergence [125, 96]. Thus,
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Test case Reference γ Com Comax

Steady 3D M6 wing (Section 6.1) 0.01 0.9 1.2
Steady 3D Infinite-span NACA 0012 (Subsection 6.2.1) 0.02 0.9 5.0
Unsteady 2D Airfoil NACA 0012 (Subsection 5.1.2) 0.05 0.95 1.0 105

Unsteady 3D Infinite-span NACA 0012 (Subsection 6.2.2) 0.01 0.9 2.5 105

Table 2.2: Example values for the parameters used to update the Courant number
during pseudo-time iterations.

the iterative scheme is stopped when the ratio between the norm of the linear
residual (qklin = qm−Mzk) and the one of the non-linear residual (qm) goes below
a certain threshold, for instance when ‖qklin‖2 ≤ 0.1‖qm‖2. A very low value of
this threshold is not useful since the linear system is approximate and reaching a
highly precise solution does not lead to a considerable improvement of the overall
(non-linear) convergence [21].

More details about the implicit iterative solution of the linear system, and in
particular about the construction of its matrix, can be found in [21, 70].

Local time stepping

A local time stepping technique is used when solving System (2.36). The local
pseudo-time step ∆τi is defined as

∆τi =
ViCo∑

k∈Ki, 6=
λmax(ui, uk,ηik, νik)

where Co is the Courant number and λmax is the eigenvalue of the Roe ma-
trix with the largest absolute value, as proposed by Giles [57]. The Courant-
Friedrichs-Lewy condition states that a necessary condition for the stability of
the linear hyperbolic equation is that the Courant number has to be lower than
or equal to 1 [87]. However, with the solution Um+1 approaching Un+1, i.e. when
the residual becomes smaller and smaller, the Courant number can be increased
to speed up the convergence, because the backward Euler integration scheme is
unconditionally stable for linear system. Therefore, at each pseudo-time step the
Courant number is modified as

Com+1 = min

(
max

[
γ
‖R(Um−1)‖2
‖R(Um)‖2

, 1

]
Com, Comax

)
where γ = 0.8÷1 is a user-defined parameter to control the increase, ‖·‖2 denotes
the L2 norm and Comax is the maximum allowed value, introduced to avoid the
Courant number to grow indefinitely.

In steady simulations, a uniform initial conditions equal to the free-stream
state is used as initial guess, so the initial solution is quite far from the final one.
This fact, along with the absence of the term a−1/∆t in Equation (2.36) that
reduces the diagonally dominance of the matrix, imposes a small value of the
parameter γ and of the maximum Courant number. For instance, typical values
of the parameters used in the numerical simulations presented in Chapters 5 and
6 are reported in Table 2.2.
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2.5 The IVC condition and the DGCL

The same finite volume discretization applied to the governing equations is used
also to obtain the spatially discrete counterpart of the Geometric Conservation
Law (2.8), namely

dVi(t)

dt
=

∫
∂Ci(t)
v · ni =

∑
k∈Ki, 6=

νik(t) + νi(t) . (2.37)

Following the geometrical partition used to compute the metric vectors, see
Equations (2.24), the portion of the cell volume Vi related to the interface ∂Cik
can be defined as

Vik =
∑

m∈εi∩εk

∑
f∈Fik,m

V mik,f

where V mik,f is the volume of the sub-tetrahedron with vertices xi, xm, xik and
xf computed through Equation (2.25). Therefore, Equation (2.37) can be auto-
matically satisfied by splitting the derivative of the cell volume into contributions
pertaining to the different involved interfaces. It should be noticed that, even no
portion of the volume cell is associated to the boundary interface ∂Ci(t)∩ ∂Ω(t),
its contribution to the derivative dVi

dt is not null. The so-called Interface Velocity
Consistency (IVC) conditions [102] are thus obtained

dVik(t)

dt
= νik(t) , ∀k ∈ Ki,6= and

dVi,∂(t)

dt
= νi(t) , (2.38)

where dVik

dt and
dVi,∂

dt are the volume swept by the interfaces ∂Cik(t) and ∂Ci(t)∩
∂Ω(t), respectively.

If the grid point displacement is known, the left hand sides of the Equa-
tions (2.38) can be computed exactly and they can be used to determine the val-
ues of the interface velocities satisfying the GCL. However, it should be noticed
that, even if Equation (2.38) allows to automatically respect the GCL constraint
and therefore it is the most natural way to compute the interface velocities, this
choice is not unique [98, 41].

The differential relations (2.38) can be used to complete the system of the
Euler equations in the ALE framework (2.21):

d

dt
[Viui] =

∑
k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik) + Φ∂(ui, νi, ξ̂i, ξi) , i ∈ K

dVik
dt

= νik k ∈ Ki,6=
dVj,∂
dt

= νj , j ∈ K∂

(2.39)

where K∂ is the set of boundary nodes. System (2.39) consists in 5NV + Nik +
NV,∂ ODEs, with Nik and NV,∂ the number of node-pairs and boundary nodes,
respectively. As already observed, in the class of problem considered here, the
positions of grid nodes are known, thus the two last equations are not coupled to
the ODE system of the Euler equations. This is not the case in fluid-structure
or aeroelastic problems, in which the velocities of the grid nodes depend on the
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structural problem which also has to take into account the aerodynamic loads
resulting from the flow field. In such a problem, the structural, fluid dynamics and
mesh motion problems are fully coupled. The fluid-structure solver usually acts as
a black box, which not only embeds different disciplinary softwares to solve each
field independently, but also take care of exchanging the information between the
different models, so that the whole problem can be solved at once [109]. However,
the coupled form of System (2.39) is preferred to highlight the existence of a
consistency constraint on the interface velocities. Indeed, the IVC conditions are
related to the time derivative of the cell volume by the following scalar identity

dVi(t)

dt
=

∑
k∈Ki, 6=

dV (t)ik
dt

+
dVj,∂
dt

.

The GCL (2.37) can be discretized in time by resorting to the same BDF
scheme used for the governing equation, i.e.

p−1∑
q=−1

αq
∆V n−qi

∆t
= νn+1

i +
∑

k∈Ki, 6=

νn+1
ik , (2.40)

which is usually denominated Discrete Geometric Conservation Law (DGCL) [44].
More precisely, it is the DGCL of the numerical scheme (2.32), since no DGCL
exists per se but it is necessarily associated to the specific numerical scheme for
which it has been derived [63].

As shown above, the DGCL can be split in two relations expressing the domain
and the boundary contributions. Therefore, the fully discrete system of the
governing equations reads

p∑
q=−1

aqV
n−q
i un−qi = ∆t

[ ∑
k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik)n+1

+ Φ∂(ui, νi, ξ̂i, ξi)
n+1
]
, i ∈ K

p−1∑
q=−1

αq∆V
n−q
ik = ∆t νn+1

ik , k ∈ Ki,6=

p−1∑
q=−1

αq∆V
n−q
j,∂ = ∆t νn+1

j , j ∈ K∂

(2.41)

where ∆V nik and ∆V nj,∂ are the volume swept by the interfaces ∂Cik and ∂Ci(t)∩∂Ω

during the time step from tn to tn+1. It is worth noticing that the system (2.41)
does not contain explicitly the grid velocity v. Indeed, the GCL is fulfilled by
computing the interface velocities νik and νi according to the IVC condition [102].

2.5.1 Interface velocity computation

In System (2.41), the GCL compliant interface velocity νik is computed from the
value of the swept volume ∆Vik, which is

∆Vik =

∫ tn+1

tn

∫
∂Cik(t)

v(t) · ni(t) .
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The computation of the swept volume is performed by splitting the inter-
face ∂Cik into the same triangular elemental contributions ∂Cmik,f introduced in
Subsection 2.3.1, namely

∆Vik =
∑

m∈εi∩εk

∑
f∈Fik,m

∆V mik,f ,

as shown in Figure 2.6. Assuming a constant velocity of the grid points during
the time step, the volume swept by the elemental interface during the time step
∆tn = tn+1 − tn can be computed as

∆V m,nik,f =
vnm + vnf + vnik

3

∫ tn+1

tn
ηmik,f (t) (2.42)

where vnj = (xn+1
j −xnj )/∆tn are the velocities of the barycenters of the element

xm, of the face xf and of the edge xik, for j = m, j = f and j = ik, respectively.
To compute the integral in (2.42), an explicit expression of the integrated

normal portion ηmik,f (t) for tn ≤ t ≤ tn+1 is required. Given the description of
the point position during the time step as xj(t) = xnj +vnj (t−tn) (for j = m, f, ik),
after some algebra it results

ηmik,f (t) = ηnik +
t− tn
∆tn

[
−3ηnik + 4η

n+ 1
2

ik − ηn+1
ik

]
+ 2

(
t− tn
∆tn

)2 [
ηnik − 2η

n+ 1
2

ik + ηn+1
ik

] (2.43)

where the indices f and m are omitted in the right side to simplify the notation

and η
n+ 1

2

ik is defined as

η
n+ 1

2

ik = 1/4(ηnik + ηn+1
ik )− 1/8

[
(xnf − xnm)× (xn+1

ik − xn+1
m )

+ (xn+1
f − xn+1

m )× (xnik − xnm)
]
.

Finally, integrating in time and substituting the expressions for the velocities
of the points, the equation for the volume swept by the interface ∂Cmik,f during
the time step ∆tn is obtained:

∆V m,nik,f =
1

18
(xn+1
m − xnm + xn+1

f − xnf + xn+1
ik − xnik)·

(ηm,nik,f + ηm,n+1
ik,f + 4η

m,n+ 1
2

ik,f ) . (2.44)

With a similar procedure, an expression for the volume swept by a boundary

interface is obtained. First of all, the integrated boundary normal portion ξm
∂

i,f∂ (t)

for tn ≤ t ≤ tn+1 is expressed similarly to Equation (2.43), whit

ξ
n+ 1

2

i,f∂ = 1/4(ξni + ξn+1
i )± 1/8

[
(xnm − xnf )× (xn+1

i − xn+1
f )

+ (xn+1
m − xn+1

f )× (xni − xnf )
]

where the sign ± depends on whether i is the first (−) or second (+) node of
the node-pair corresponding to the face f∂ , which is an edge of the boundary
triangle.
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in
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in+1
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∆V n
ik,f

Figure 2.6: Volume swept by the elemental interface ∂Cmik,f , during the time level
tn ≤ t ≤ tn+1, because of the displacement of the nodes from their positions xn to
xn+1. The pattern highlights the elemental interface ∂Cmik,f , while the red color
depicts the swept volume ∆V m,nik,f .

Finally, the equation for the volume swept by the boundary interface reads

∆V m
∂ ,n

i,f∂ =
1

18

(
xn+1
m∂ − xnm∂ + xn+1

f∂ − xnf∂ + xn+1
i − xni

)
·
(
ξm

∂ ,n
i,f∂ + ξm

∂ ,n+1
i,f∂ + 4ξ

m∂ ,n+ 1
2

i,f∂

)
.

(2.45)





Chapter 3
Conservative ALE scheme for
adaptive meshes

The conservative ALE scheme derived in the previous chapter is here ex-
tended to adaptive grids with variable connectivity. To correctly take into
account the topology changes due to local mesh modifications, a three-steps
procedure is used to interpret local grid alterations as local continuous de-
formations of the finite volumes that compose the mesh, as described in
Section 3.1. Particular care has to be taken in dealing with removed nodes,
because the interface velocities associated to the removed interfaces are not
null, even if their current surface is null. In Section 3.2, the full system of the
governing equations for adaptive meshes with variable connectivity is given.

3.1 Continuum interpretation of 3D grid topology
modifications

In the previous chapter, the implicit finite volume scheme for the ALE formula-
tion of the 3D Euler equations was derived. To ensure conservativeness, the flow
equations are complemented by the IVC conditions that allow to automatically
satisfy the DGCL on moving domain. More precisely, the change in position
and shape of the finite volumes are easily taken into account by computing the
interface velocities as the sum of the volume swept by the interfaces during the
time step. Therefore, if some IVC-compliant interface velocities can be computed
also when topology changes occur, the proposed conservative ALE scheme can be
extended straightforwardly to local mesh adaptation techniques, like node inser-
tion, node deletion and edge swap. A possible choice for computing the interface
velocities if local grid modifications occur is thoroughly explained in the follows.

To guarantee the conservativeness and the monotonicity of the scheme, the
volume and shape modifications due to mesh modifications have to correctly be
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taken into account when projecting the solution on the new grid. Alternatively,
the conservation of mass, momentum and energy has to be explicitly imposed and
the total variations of the solution might need to be limited. For fixed topology
grid, this problem is successfully tackled and different examples of conservative
ALE scheme for moving boundaries can be found in the literature, as for in-
stance [104, 95, 68, 103, 94]. When grid adaptation techniques are applied and
the grid connectivity changes, in principle, the solution obtained at the previous
time step has to be interpolated onto the new grid, but unfortunately this pro-
cedure undermines the conservativeness and the monotonicity of the scheme if
spatial accuracy is preserved. Moreover, additional difficulties might arise when
multi-step high-order integration schemes are used. For a p-steps time integrator,
the interpolation procedure has to be repeated p times because the integration
at the current time level requires the values of the solutions at the previous p
time levels [128].

A different strategy is pursued in the present thesis to avoid the interpolation
of the solution between different grids. The underlying idea is to give an inter-
pretation of the grid connectivity changes that occur due to mesh adaptation as
series of fictitious continuous deformations of the finite volumes. This strategy
was proposed and applied to two-dimensional grids by Guardone and collabora-
tors [59, 71, 70] and it is extended here to three-dimensional tetrahedral grids. In
the proposed approach the volume swept by the interface velocities is split into
two contributions: the deformation, denoted as ∆D, and the adaptation one,
denoted as ∆A. The former contribution is the standard swept volume due to
mesh movement and deformation and it is computed as described in the Subsec-
tion 2.5.1. The second contribution is due to local grid connectivity changes and
it is computed by a three-steps sequence of continuous deformations as described
in the next subsection. Accordingly, the total volume swept by the interface ∂Cik
during the time step n is ∆V nik = ∆Dn

ik + ∆Anik. These additional deformations
due to grid adaptation result in additional fictitious ALE fluxes, which can be
easily taken into account by standard ALE techniques, without requiring any
explicit interpolation of the solution over the new grid. Admittedly, as observed
in [71], the ALE mapping is indeed equivalent to an interpolation, but it does not
require any special treatment to guarantee the conservativeness, the monotonicity
and accuracy of the scheme.

As shown in the next subsection, the three-steps procedure proposed here al-
lows to compute the interface velocities in a IVC-compliant fashion, therefore the
conservation of flow variables is inherently guaranteed by scheme construction.
Moreover, the implementation of high-order multi-step time schemes poses no
problems because the solutions at previous time levels can be retrieved easily.

3.1.1 Three steps procedure

To take into account the volume changes due to local mesh adaptation, a three-
steps procedure is introduced. The fundamental idea is to describe the grid
modification as a sequence of fictitious continuous deformations for which the
volumes swept by cell interfaces can be computed by Equations (2.44) and (2.45).
This can be accomplished by the following three-steps procedure, in which a
fictitious time ζ is used to better distinguish the different phases, with the initial
configuration at ζ=0 and the final one at ζ=1.



Conservative ALE scheme for adaptive meshes 37

1. Collapse, 0<ζ<1/2: the elements involved in the local modification collapse
over an arbitrary point.

2. Connectivity change, ζ=1/2: when all involved elements reach null volumes,
the node is inserted or deleted. This change does not generate any numerical
fluxes, because it takes place at null volumes and interfaces.

3. Expansion, 1/2 < ζ < 1: the elements expand to their final configuration
(if they were not deleted at ζ = 1/2).

To better understand the three-steps procedure, a two-dimensional example
is presented before a detailed description of its application to three-dimensional
grid modifications. In 2D, the proposed procedure can be sketched more clearly
and the fundamental idea can be better illustrated.

2D example

The three-steps procedure is now introduced by a two-dimensional example. Fig-
ure 3.1 shows its application to the edge split, which consists in splitting the
original edge into two edges by the insertion of a new node. Suppose that the
edge eik should be split by inserting the new node j. The edge eik is shared by
two elements (the triangle i-k-v1 and i-k-v1), which have to be split to restore
the correct topology for the triangular grid. Figure 3.1 displays also the finite
volumes associated to the node i and k and how it changes during the three-
steps procedure. In 2D, the interface between two finite volumes consists of line
segments which during deformation sweep a certain area (a volume in 3D). The
first step consists in collapsing the elements sharing the edge, which compose the
quadrilateral i-k-v1-v2. The collapse point is arbitrarily chosen as the position
of the new node j. Then, when the elements have a null area, the new node is
inserted and the topology is modified. Finally, the nodes i, k, v1, v2 are moved
back to their original positions and the new finite volume associated to j expands
to reach the final configuration. The finite volume associated to the nodes i, k, v1

and v2 have changed during the process, but, as clearly shown in Figure 3.2, the
modifications are limited to the portion of the interfaces inside the quadrilateral
i-k-v1-v2.

Detailed description in 3D

The three-steps procedure is now described more thoroughly by referring to Fig-
ure 3.3, which shows its application to an edge split in 3D. This modification
involves all the elements that share initially the edge to split. With reference to
Figure 3.3, consider that the edge between node i and k has to be split to insert
the new node j. Hence, according to the dual mesh definition, the four elements
shown in the picture and the finite volumes associate to nodes i, k, v1, v2, v3, v4

have to be modified to generate the new volume associated with the new node.
Once the involved elements have been identified, the first phase can be carried

out. The collapse from the original configuration to an arbitrary point is simply
a continuous deformation and therefore the swept volumes can be computes with
Equation (2.44) and (2.45).

At this point, the new node can be inserted and connected with the existing
ones to generate new tetrahedra. Since the connectivity change occurs when the
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Figure 3.1: Three-steps procedure applied to the split of edge eik in 2D. The dashed
grey lines show the grid connectivity in the original/final configuration, i.e. the non-
collapsed configuration, for 0 < ζ < 1, while the portions of the finite volumes associated
to i, k and j are shown with light grey , dark grey and the pattern , respectively.
In the first row the collapse phase is depicted: the quadrilateral i-k-v1-v2, composed by
the elements that share the edge at ζ = 0, is collapsed over the mid-point of the edge
eik. When it reaches a null area, the connectivity is changed (ζ = 0.5): the new point
j is inserted, the edge eik is split into two edges (i-j and k-j) and two new edges are
created to connect j to v1 and v2. The second row displays the expansion procedure:
the nodes i, k, v1, v2 return to their original positions to reach the final configuration
(at ζ = 1).
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Figure 3.2: Local character of the edge slit. The initial and the final configuration
for the split of the edge eik described in Figure 3.1 are shown together, along with
some elements external to quadrilateral i-k-v1-v2. The boundaries of the finite volumes
associated to i and k are drawn with different lines to display the modifications due to
the edge split. No modifications occur outside the quadrilateral i-k-v1-v2.
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elements have null volume, and the interfaces have null area, no volume is swept
by any interface. Consequently, this change has no effects in terms of interface
velocities.

Finally, the elements expand towards the final configuration with a continu-
ous deformation, which allows to easily compute the swept volume with Equa-
tion (2.44) and (2.45). As shown in the last two pictures of Figure 3.3, differently
from the collapse phase, a new finite volume is created and also the volume swept
by its interfaces has to be considered.

The complete contribution to the swept volume due to adaptation ∆A is given
by the sum of the volume swept during the collapse and the expansion phases. It
is important to notice the local character of the modification. Similarly to what
happens in 2D, see Figure 3.2, the external faces of the polyhedron formed by
the union of the involved elements remain unchanged. Indeed, since no variation
occurs in the grid elements outside the polyhedron, no variation occurs in the
finite volumes either. Then, the volume swept by the interfaces located outside
the polyhedron during the whole procedure is null, because the interfaces swept
the same volume but with opposite signs during the collapse and the expansion
steps. For instance, for the split of the edge i-k,

∆Alq = ∆Acol
lq + ∆Aexp

lq = ∆Acol
lq −∆Acol

lq = 0 ∀ ∂Clq /∈ poly(Bmik)

where poly(Bmik) denotes the polyhedron composed by the element bubble of the
edge i-k, i.e. all elements having edge eik in common, and the subscripts col and
exp indicate the collapse and expansion phase, respectively. For this reason, the
elements outside the polyhedron are kept unchanged and they are not collapsed
nor expanded during the three-steps procedure.

This three-steps procedure is general and it can be applied also to other local
adaptation techniques. Obviously, the elements to be collapsed and expanded
are different depending on the grid modification, as described in Table 3.1 for
all the local adaptation techniques used in the present work. Figure 3.4 shows
how this procedure is applied to the edge collapse, during which the node j is
collapsed over the node i. Differently from the edge split procedure, in this case
the initial configuration contains elements that have to be removed to comply
with the new topology. Indeed, they are deleted at ζ= 1/2 and they do not take
part in the expansion phase. Also the finite volume connected to the node j is
deleted at ζ = 1/2. Nevertheless, it should be noticed that during the collapse
phase the interfaces of Cj sweep a non-null volume, which generates non-null
interface velocities. This fact has to be carefully taken into account, as described
in Subsections 3.1.3 and 3.2.2.

A final remark has to be done regarding the collapse point. As observed
before, it can be arbitrarily chosen and the DGCL fulfillment does not depend
on this choice. However, the larger is the volume swept by the interfaces during
the collapse and expansion to and from this position, the greater the value of the
interface velocities is. An inappropriate choice of the collapse point, therefore,
can introduce large perturbations in the governing equations. Thus, in this work
the collapse point is chosen in the proximity of the middle of the polyhedron
of elements involved in the grid modification, but no exact minimization of the
swept volume is performed. The collapse points chosen for each used adaptation
technique are listed in Table 3.1.
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Figure 3.3: Three-steps procedure applied to the split of the edge eik. The grey lines
show the grid connectivity in the original/final configuration, i.e. the non-collapsed
configuration, for 0 < ζ < 1. The portions of the finite volumes pertaining to the
polyhedron i-k-v1-v2-v3-v4 and associated to the nodes i, k and j are shown, respectively,
with blue / , green / , and red / (the darker colors refer to the boundaries of the
finite volumes). The first row depicts the collapse phase: the polyhedron is collapsed
over the mid-point of the edge eik. The connectivity change occurs at ζ = 0, when the
surface of the involved interfaces has null area. The second row displays the expansion
procedure: the nodes i, k, v1, v2, v3, v4 return to their original positions and the new
finite volume Cj expands to reach the final configuration (at ζ = 1).
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Figure 3.4: Three-steps procedure applied to the collapse of the edge eij . The grey
lines show the grid connectivity in the original/final configuration, for 0 < ζ < 1.
The portions of the finite volumes pertaining to the polyhedron i-k-v1-v2-v3-v4 and
associated to the nodes i, k and j are shown, respectively, with blue / , green / ,
and red / (the darker colors refer to the boundaries of the finite volumes). The
first row depicts the collapse of the involved elements over the point j, which reach a
null volume. At ζ = 0.5 (second row), the node j is collapsed over the node i. The
elements that share the edge eij are deleted, while for the other elements the node j is
substituted by the node i. In the expansion phase (third row), only the elements that
are not deleted are expanded to reach the final configuration (at ζ = 1).
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Adaptation Polyhedron Collapse point

Edge split Elements sharing the edge New node
Element split Element to split New node
Delaunay insertion Elements in the cavity New node
Edge collapse Elements sharing the node to be deleted Node to be deleted

Table 3.1: Three-steps procedure details for the considered local mesh adaptation
techniques. For each technique adopted in the present work, the elements composing
the polyhedron that delimits the finite volumes influenced by the grid modification are
indicated, along with the chosen collapse points.

3.1.2 Edge creation

During the three-steps procedure, the connectivity change may require the cre-
ation of new grid edges to restore the correct topology. Consequently, new node-
pairs, and therefore new interfaces, are generated to comply with the dual mesh
definition. These modifications occur at ζ = 1/2, so the new interfaces sweep
a non-null volume only during the expansion phase. Despite this, no difficulties
arise in applying the three-steps procedure and the numerical fluxes and the in-
terface velocities can be computed normally as shown in Subsection 2.3.2 and
Section 2.5, respectively.

3.1.3 Edge deletion

When the connectivity change requires to delete an edge i-k, the corresponding
portion of the interface ∂Cik is collapsed to reach a null area at ζ = 1/2 and then
it is no more expanded. Suppose that this modification occurs in the adaptation
phase performed between the time level tn and tn+1, then the interface has a
null area for any tm ≥ tn+1 and hence ηmik = 0. However, during the collapse
phase the interface possibly sweeps a non-null volume ∆Acol

ik 6= 0, so the interface
velocity νmik is different from zero. Indeed, if no other grid modifications nor
deformations occur, according to Equations (2.41) the interface velocity is νn+1

ik =
α−1∆An+1

ik /∆t. Moreover, for a p-steps integration scheme the interface velocity
νmik depends on the volume swept during the previous p time levels, then νmik 6= 0
for m ≤ n+ p+ 1.

For what concerns the integrated velocity for the removed interface, a dis-
tinction between the magnitude and the unit vector is made. Because of the null
area of integration, ηmik = 0 for tm ≥ tn+1, while the normal unit vector can be
defined as η̂mik = limt→tn+1 η̂ik(t) and it is taken here as η̂n+1

ik = η̂nik. Hence, the
numerical flux associated to a deleted node-pair reads

Φn+1
ik = Φ(un+1

i , un+1
k , νn+1

ik , η̂n+1
ik , 0) .

The null value of ηik affects the expressions of the integrated numerical fluxes
given in Subsection 2.3.2 as explained below. The first term in Equation (2.28)—
as well as the first one in Equation (2.27)—is null, thus the first order flux becomes

ΦI
ik(ui, uk, νik, η̂ik, 0)n+1 = −un+1

i + un+1
k

2
νn+1
ik − 1

2
|Ã|(uk − ui) ,

where the Roe matrix is composed only by the ALE contribution and it does
not depend on ũ and η̂ik. The Eulerian part of the Jacobian matrix AEUL is
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proportional to ηik = ηikη̂ik and it is indeed null, so AALE = −(v ·n)I5. Therefore
the eigenvectors matrices are then identity matrices and the Roe matrix reduces
to

Ã(ũ, η̂ik, 0, νik)n+1 = −νn+1
ik I5 .

As a result, the high-resolution fluxes of Equation (2.30) can be evaluated for a
deleted node-pair as

ΦHR
ik = −un+1

i + un+1
k

2
νn+1
ik − |ν

n+1
ik |
2

[
Υ− I5

]
(uk − ui) (3.1)

without requiring any special additional routine.
However, a modification of the entropy fix is required, because the Mach

number of the intermediate state is singular for η̂ik = 0. Therefore the threshold

δ̃ in Equation (2.29) is modified as follows

δ̃ =

{
0.2 M(ũ, η̂ik, ηik, νik) if ηik > 0,

0.2 |νik| if ηik = 0.

To sum up, the numerical flux associated to a deleted node-pair consists only
of the ALE contribution. The balance of the conservative variables is enforced by
means of the interface velocities which are different from zero even if the interface
has been collapsed. The number of time steps required by the interface velocity
associated to a removed node-pair to become identically null depends on the
adopted time integration scheme. Furthermore, the DGCL has an intrinsically
differential nature that, as shown in [70], makes the interface velocities influenced
by the history of the volume deformation independently of the time integrator.

3.1.4 Special care in node-pair modification

An important remark has to be done about the distinction between grid edge and
node-pair when grid topology changes. As defined in Section 2.3, a node-pair is
defined as a couple of interacting nodes. Although for a finite volume dual-mesh
discretization it is natural to associate the node-pair i-k to the grid edge i-k,
particular care has to be taken when re-constructing the topology after local grid
adaptation.

Consider for instance the sequence of grid modifications shown in Figure 3.5
that affects the same group of elements during the same time step ∆tn. First, the
edge e1 between the node i-k is split, then the new nodes i,k and j are moved and
finally the node j is removed. In the last modification, a new edge e2 is created
to connect again nodes i and k. From the point of view of the grid topology, it
is not necessary to recognize that an edge connected the two nodes has already
existed and it was named e1. In fact, the adaptation algorithm usually generates
the new edge e2 and it does not look for any relations with the previous edge, as
described in next chapter.

On the contrary, according to node-pair definition, the nodes i and k form
one and only one node-pair. Thus, the algorithm is required to identify this
situation to restore the previous node-pair, along with the associated interface.
Only one interface velocity has to be computed, by summing the volume swept
by the interface due to the different modifications.
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Figure 3.5: Sequence of modifications involving the same node-pair during the time
step ∆tn. Picture a shows the initial configuration: the edge e1 connects the nodes i
and k, which form the node-pair cik. Then the edge is split (Picture b), the nodes i, j
and k are moved (Picture c) and, finally, the node j is collapsed over k (Picture d). In
this last operation, a new edge e2 is created to connected the nodes i and k, which have
been already connected by the node-pair cik at the beginning of the time step. Thus,
the node-pair cik has to be restored, along with its interfaces and swept volumes.

The same care has to be taken for grid modifications in successive time steps.
As already explained, if a p-steps time integrator is used, the removed interfaces
enter the governing equations for p time levels after they have been removed.
Hence, when creating a new edge between two existing nodes, a search among
the interfaces removed in the previous p time steps has to be carried out to check
if a node-pair connecting the same two nodes has already existed and, thus, has
to be restored.

3.2 ALE scheme with variable topology

The finite volume node-pair formulation of the governing equations within the
ALE framework (2.41) is now modified to deal with variable grid topology. To
this end, the notation is improved to take into consideration that the grid and
the connectivity between finite volumes and grid entities change over time. For
instance, the set of nodes that compose the grid at time level tn+1 is denoted as
Kn+1.

Moreover, a subscript is introduced to state the time interval at which the
variable is considered, by using the standard notation according to which square
and round brackets indicate respectively to include or exclude the endpoint of
the interval. The set of finite volumes that shared a portion of their boundary
with Ci in the interval from tn+1−p to tn+1 but that do not share anymore any
portions at time level tn+1 is thus denoted as

K[n−p,n+1)
i,6= = {k ∈ K, k /∈ Kn+1

i,6= such that νn+1
ik 6= 0} .

As observed in the previous section, this set is non-null when some edges con-
nected to i have been removed. It is important to notice that this set includes
also the interfaces that, because of successive modifications, were created and
deleted during the same time interval, i.e. that were not present at tn+1−p and

are not present at tn+1 but have been existed in between. Similarly, K[n−p,n+1]
i,6=

is the whole set of the finite volumes that share or have shared their boundary

with Ci, i.e. K[n−p,n+1]
i,6= = K[n−p,n+1)

i,6= ∪ Kn+1
i,6= .
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To fulfill the DGCL, the volume swept by an interface during the whole
time interval can be computed by summing the contributions of all the collapse
and expansion phases experienced by the interface. Although this choice is not
mandatory, it can be implemented in an extremely straightforward way. Indeed,
after each local modification, the volume swept by all the involved interfaces is
computed and summed to the one at the current time level. At the end of the
time level, the whole swept volume is stored, so it is possible to retrieve it during
the computation of the interface velocities at next time levels.

In the following subsections, the modifications to the system of governing
equations (2.41) required by node insertion and deletion are described, both
in case of domain or boundary adaptation. Finally, the complete system of
governing equations for adaptive grids is given.

3.2.1 ALE scheme for a new node

When a new node is added to the triangulation, a new equation to enforce the
balance of the conservative variables over the new finite volume has to be added
to the governing equation system. Similarly, additional IVC conditions are re-
quired to compute the new interface velocities. As stated in Subsection 3.1.2,
the computation of the numerical fluxes and the interface velocities requires no
modifications with respect to the equations presented in the previous chapter. If
a new node i is inserted between the time step tn and tn+1, the volume of the
new finite volume and its interfaces are simply null for all time steps previous
than tn+1. Therefore, the additional governing equations due to the domain node
insertion read

a−1V
n+1
i un+1

i = −∆t
∑

k∈Kn+1
i, 6=

Φ(ui, uk, νik, η̂ik, ηik)n+1 i new

α−1∆V n+1
ik = ∆t νn+1

ik , k ∈ Kn+1
i,6= .

(3.2)

The previous equations allow to compute the solution at the new node as a
function of the actual metrics, without requiring the knowledge of any previous
solutions.

In the case of a boundary node insertion, the contributions of the boundary
fluxes and the interface velocities have to be taken into account in addition to the
domain one. If the node i was inserted on the boundary, the new finite volume
has a portion of its boundary lying on the domain boundary ∂Ω and shares the
rest of its boundary with other finite volumes. Thus, the governing equations for
the new node inserted over the boundary are

a−1V
n+1
i un+1

i = −∆t
[ ∑
k∈Ki, 6=

Φ(ui, uk, νik, η̂ik, ηik)n+1

+ Φ∂(ui, νi, ξ̂i, ξi)
n+1
]
, i ∈ Kn+1

∂ new

α−1∆V n+1
ik = ∆t νn+1

ik , k ∈ Kn+1
i,6=

α−1∆V n+1
i,∂ = ∆t νn+1

i , i ∈ Kn+1
∂ new

(3.3)

where K∂ highlights that i is a boundary node.
The systems of Equations (3.2) and (3.3) allow to treat in a conservative way

the node insertion, by computing the volume changes due to the grid modification
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through the three-steps procedure described in Section 3.1, which ensures the
fulfillment of the DGCL.

3.2.2 ALE scheme for a removed node

When a node is removed between the time level tn and tn+1, all the interfaces
associated to the edges connected to it are collapsed and removed, as well as
the associated control volume. However, as explained in Subsection 3.1.3, since
these interfaces swept a non-null volume before collapsing, the interface velocities
associated to the removed edges are not null. As a consequence, a non-null
integrated numerical flux at the time level tn+1, more precisely in the purely ALE
contribution given by Equation (3.1). Therefore, the balance of the conservative
variables has to be enforced also over the removed finite volume and the additional
governing equations for a removed domain node i are

p∑
q=0

aqV
n−q
i un−qi = −∆t

∑
k∈K[n−p,n+1)

i, 6=

Φ(ui, uk, νik, η̂ik, 0)n+1, i removed

p−1∑
q=−1

αq∆V
n−q
ik = ∆t νn+1

ik , k ∈ K[n−p,n+1)
i,6=

(3.4)

where the summation in the left hand side of the first equation starts from q = 0
since V n+1

i = 0. The right hand side of the first equation depends on the solution
on the removed node evaluated at tn+1, which is required for the computation of
the solution on other nodes since an implicit time scheme is used to integrate in
time the governing equations. For instance, if the removed node i was connected
to k by an edge that is no longer present in the grid, the flux Φn+1

ik is required to
compute the actual solution at node k, but the computation of this flux requires
the knowledge of the value of un+1

i , which is computed via Equation (3.4).

The IVC conditions, i.e. the equations on the second rows of System (3.4),
are defined for the set of the nodes that have been connected to the removed
node i in the previous p steps, namely for the removed interfaces. The interface
velocity νik remains different from zero for the next p time steps, i.e. νn+p

ik =
αp−1∆V n+1 6= 0. Then, the additional equations for a removed node have to
be enforced for the p steps successive the deletion. Since the last non-null swept
volume is ∆V n+1

i , at t = n + p + 1 the swept volumes included in the IVC
conditions are all null, so the equations for the removed node i can be dropped
from the system of governing equations.

Similar to the node insertion procedure, if the node to be removed i lies on
boundary ∂Ω also the contribution of the boundary interfaces has to be included
in the additional equations. Moreover, as observed for the domain removed inter-
faces in Subsection 3.1.3, also the non-null contributions associated to removed
interfaces have to be considere. Indeed, although the boundary interface ∂Ci∩∂Ω
has a null area, the numerical flux across it and the associated interface veloci-
ties are not null. Similarly to ηik, the boundary integrated normal ξi has a null

magnitude, i.e. ξn+1
i = 0, while its unit vector is taken as ξ̂

n+1

i = ξ̂
n

i . Therefore,
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the additional governing equations for a removed boundary node are

p∑
q=0

aqV
n−q
i un−qi = −∆t

∑
k∈K[n−p,n+1)

i, 6=

Φ(ui, uk, νik, η̂ik, 0)n+1

− Φ∂(ui, νi, ξ̂i, 0)n+1
]
, i ∈ Kn+1

∂ removed

p−1∑
q=−1

αq∆V
n−q
ik = ∆t νn+1

ik , k ∈ K[n−p,n+1)
i,6=

p−1∑
q=−1

αq∆V
n−q
i,∂ = ∆t νn+1

i , i ∈ K[n−p,n+1)
∂

(3.5)

where the boundary flux Φ∂ consists only in the ALE contribution, namely Equa-
tions (2.16) for a removed boundary interface reduces to Φ∂ = −uiνi. Since the
Eulerian contribution of the fluxes is null, the boundary conditions are not im-
posed on the removed node, so the boundary state is taken as u∂i = ui.

3.2.3 Conservative ALE governing equations for
adaptive grids

All modifications described in the previous subsections are now combined to
obtain the conservative system of the ALE governing equations for adaptive grids,
namely

p∑
q=−1

aqV
n−q
i un−qi

∆t
=−

∑
k∈Kn+1

i, 6=

Φ(ui, uk, νik, η̂ik, ηik)n+1

− Φ∂(ui, νi, ξ̂i, ξi)
n+1

−
∑

k∈K[n−p,n+1)
i, 6=

Φ(ui, uk, νik, η̂ik, 0)n+1, i ∈ Kn+1

p∑
q=0

aqV
n−q
i un−qj

∆t
=−

∑
k∈K[n−p,n+1)

i, 6=

Φ(ui, uk, νik, η̂ik, 0)n+1

− Φ∂(ui, νi, ξ̂i, 0)n+1 , i ∈ K[n−p,n+1)

p−1∑
q=−1

αq∆V
n−q
ik = ∆t νn+1

ik , k ∈ K[n−p,n+1]
i,6=

p−1∑
q=−1

αq∆V
n−q
i,∂ = ∆t νn+1

i , i ∈ K[n−p,n+1]
∂

(3.6)

where the first and the second equations expresses the balance of conservative
variables for, respectively, all the nodes of the triangulation at time level tn+1

and for the finite volumes associated to the nodes removed between tn−p and
tn+1, for which the interface velocities are non-null, i.e.

K[n−p,n+1) =
{
j /∈ Kn+1 : ∃k such that νn+1

ik 6= 0
}
.
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These two equations are therefore different versions of the same Euler equations
and they are mutually exclusive: if the node i belongs to the actual triangulation
Kn+1 the first one has to be enforced, if it is removed during the previous p steps,
the second one has to be solved.

The last rows of the previous system express the IVC conditions that allow
to compute the cell volume changes due to mesh deformation and adaptation
so that the DGCL is matched. Thanks to the described three-steps procedure,
the solution can be conservatively computed within the ALE framework even if
topology changes occur due to grid adaptation.



Chapter 4
Three-dimensional mesh
adaptation strategy

The mesh adaptation strategy exploited to modify the grid spacing and to
deal with large boundary displacements is here described. The first section
explains how the target grid spacing is computed by means of an indicator
based on solution gradients. This information is given as input to the ex-
ternal library Mmg3d which modifies the grid through a suitable mix of the
local mesh adaption techniques described in Section 4.2. Then, Section 4.3
presents the algorithm to re-locate the internal grid points when the bound-
aries experience rigid movements and deformation. Finally, an overview of
the complete numerical simulation procedure for moving-bodies problems is
given in Section 4.4.

4.1 Metric construction

Mesh adaptation has proved to be a valuable tool in CFD simulations [10, 22, 46,
64, 99]. However, its effectiveness is strictly related to the capability of specifying
a suitable grid spacing which allows to increase the solution accuracy without
increasing excessively the number of nodes. As observed in Subsection 1.3.1,
different criteria can be used to identify the regions of the grid where refinement
is required and the ones where coarsening operations would not undermine the
solution accuracy.

In this work, criteria based on the solution variations are chosen for their
simplicity and error estimators are built using the gradient and the Hessian of
relevant flow variables. The underlying idea of this kind of adaptation criteria
is that the largest errors occur where the solution exhibits the largest gradients,
therefore the solution accuracy can be increased by gathering mesh points in
these regions.

This section explains the construction of the metric that expresses the tar-
get grid spacing. First of all, an error estimator is computed as detailed in
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Subsection 4.1.1 and the target grid spacing is specified following the procedure
explained in Subsection 4.1.2. Then, the grid spacing is translated into a metric
field. Finally, a possible extension to adaptation criteria based on error estimates
is briefly discussed in Subsection 4.1.4.

4.1.1 Error estimator computation

In several applications, error estimators based on first or second order derivatives
of a relevant flow variable are well suited to drive mesh adaptation [92, 10, 23]. To
efficiently relate the grid spacing to the behavior of the solution, it is necessary to
compute an initial solution. For steady problems, mesh adaptation is an iterative
process, in which the solution computed over the grid obtained in the previous
iteration is used to compute the new adapted grid. For unsteady problems, at
each time level, the initial solution is the one obtained at the previous time level
or during the prediction phase, as explained in Section 4.4.

In this work, the error indicator can be based on density, pressure, temper-
ature, Mach number or entropy, which can be easily obtained directly from the
conservative variables or by means of thermodynamic relations [20]. However,
in some problems of aeronautical interest it is desirable to refine the grid mesh
near vortical structures and the vorticity of the solution, i.e. ω = ∇ × u where
u = m/ρ is the fluid velocity, is a more recommended choice for the error indi-
cator. Following [49], within the node-pair finite-volume formulation presented
in Section 2.3, the vorticity at the node i can be computed as

ωi =
1

Vi

ξi × mi

ρi
+

1

2

∑
k∈Ki, 6=

ηik ×
(
mi

ρi
+
mk

ρk

) . (4.1)

After the variable chosen as sensor has been evaluated in all grid points, the
gradient or the Hessian matrix are computed. Similarly to Equation (4.1), the
gradient of a scalar quantity s at the node i is computed by resorting to the
node-pair finite volume discretization [49] as

∇si =
1

Vi

siξi +
∑

k∈Ki, 6=

si + sk
2

· ηik

 . (4.2)

The previous relation allows to calculate the approximated value of the gradient
at each node by looping on all node-pairs sharing the node i. Since a scalar
estimator error ε is required to compute the isotropic target metric field, at each
grid node i it is taken as the norm of the gradient, i.e. εi = Vi‖∇si‖, where the
volume Vi helps to avoid over-refinement.

The second derivative of the flow variable is used more frequently as error
indicator than its gradient. Indeed, the interpolation and truncation errors are
proportional to the second order derivative of the solution [22, 130], and the
Hessian matrix is of fundamental importance in anisotropic mesh adaptation to
specify a grid spacing according to the directional behavior of the solution [64, 5].
Moreover, as the grid gets more refined near, for instance, a shock, the gradient
tends to infinity. In this work, the Hessian matrixH(si) is computed as the gradi-
ent of each component of ∇si, namely by applying twice Equation (4.2). A scalar
error estimator is obtained as the module of the two vectors resulting from the
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projection of the Hessian matrix along the directions parallel and perpendicular
to the local velocity, respectively, as follows

εi(si) = Vi

√
E(τ̂ , si)2 + E(ζ̂, si)2 whit E(p, si) = pTH(si)p , (4.3)

where p is a generic vector, while τ̂ and ζ̂ are the unit-vectors tangent and normal
to the velocity, respectively.

Finally, different error estimators can be mixed together by suitable weights to
take into account different flow variables. Consider for instance that, for a certain
problem, two different error estimators ε1 and ε2 are supposed to be required to
detect all relevant flow features. Therefore, the compound error estimator εi at
each point is built as

εi = w1
ε1,i

maxi∈K(ε1,i)
+ w2

ε2,i
maxi∈K(ε2,i)

where w1 and w2 are two user-defined positive weights, such that w1 + w2 = 1,
that are used to control the relative importance of each single estimator.

4.1.2 Target grid spacing

The target grid spacing is obtained by starting from an initial couple of grid and
solution. For each node of the grid, the average length `i of the connected edges
is computed, namely

`i =
1

Ni

∑
k∈Ki, 6=

‖xi − xk‖

where Ni is the number of nodes connected to i by an edge. Then, after the error
estimator εi is computed at each node as described in the previous subsection,
the refinement and coarsening thresholds are defined as

τR = µ+ kRσ τC = kCµ

τR1
= µ+ 2kRσ τC1

= kCµ/2

where µ and σ are the mean and the standard deviation of the error estimator over
the whole domain and kR and kC are two user-defined parameters to control the
refinement and coarsening, respectively. Finally for each node, the target average
length ¯̀

i is defined as

¯̀
i =



0.25 `i if εi ≥ τR1
,

0.5 `i if εi ≥ τR ,
`i if τC < εi < τR

2 `i if εi ≤ τC ,
4 `i if εi ≤ τC1

.

(4.4)

The choice of defining two thresholds for refinement and two for coarsening,
namely τR1 > τR and τC1 < τC , allows a better control of the grid spacing, since
where a much larger (lower) error is estimated the average edge length is reduced
(increased) more markedly. A final check is performed to avoid excessively small
or large edges, i.e. ¯̀

i = min(max( ¯̀
i, `min), `max).

With the illustrated procedure, a discrete map of desired edge size is obtained,
on the basis of which the metric field used to drive grid adaptation is built.
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Multi-passage strategy

A possible drawback of the described solution-based adaptation procedure is that,
when applied to flow fields characterized by phenomena of different intensities,
the grid may be over-refined near the strongest features, whereas the weaker ones
may be undetected. For instance, if the flow field encloses both a shock wave
and a smooth, continuous rarefaction wave, the grid would probably be refined
near the shock, where the error estimator peaks are located, but it would remain
unaltered (and so over-coarsened) near the weaker feature.

To circumvent this shortcoming, modifications of the classical error estimates
have been proposed in the literature [92, 130]. In this work, the solution pro-
posed by Aftosmis [2], i.e. a multiple evaluation of the error estimation for each
adaptation step, is adopted. This technique, called in the following multi-passage,
consists in re-computing at each passage the refinement and coarsening thresholds
excluding the nodes already marked for refinement in the previous passages. In
the first passage the thresholds τR and τC are computed in the standard way. In
the next passages, the mean and the standard deviation are evaluated excluding
the nodes on which the error is greater than the refinement thresholds computed
at the previous passage. Since the mean decreases because of the exclusion of
the maximum values, the refinement and coarsening thresholds decrease at every
passage allowing to capture also less intense features, as illustrated in Figure 4.1.
Finally, the refinement and coarsening thresholds obtained in the last passage
are used in Equation (4.4) to compute the target grid spacing, which, thanks
to this strategy, presents low values also near the weaker features. At the same
time, since the coarsening threshold obtained in the last passage is lower than the
initial one, the target edge size is increased for a smaller number of grid points
and an excessive coarsening is thus avoided. At the current level of development,
the number of passages is a user-defined parameter, which, in the present work,
varies between 3 and 5, according to the problem under consideration. In a future
development, a control on this parameter may be implemented on the basis of
the statistical analysis of the error distribution.

4.1.3 From the grid spacing to the metric map

Metric maps are widely used in mesh adaptation to prescribe the edge length [18,
22, 64, 4, 36, 32, 26]. For a three-dimensional domain Ω, the metric field M(x)
is a field of symmetric positive matrices of R3×3, that defines a Riemannian
structure over Ω [52].

The metric fieldM(x) can be used to control the size of edges. According to
the equi-distribution principle, the goal of mesh adaptation is to obtain a unit
mesh with respect to this metric, i.e. a mesh that has all edges of unit length [18].
The length of a vector w in the M-metric space is given by

‖w‖M=
√
wTMw . (4.5)

Now the construction of the metric tensor is described for the isotropic case,
i.e. when the desired edge length is the same in all directions. Suppose that in
a certain point i of the mesh the desired edge size in the Euclidean space given
by Equation (4.4) is ¯̀

i. Then, the metric at the point i can be expressed as
M(xi) = ¯̀−2

i I3, where I3 is the 3× 3 identity matrix. The metric field M(x) is
computed for all nodes in this way and it is stored on a fixed background mesh.
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Figure 4.1: Multi-passage strategy application. The rectangles on the right show
the variation of τR and τC due to the 3-passages strategy applied to the grid at left
(in 2D for clarity). Since the error estimator values at the nodes 4 and 6 is greater
than τR computed at first passage (MP 1), the nodes (indicated by ) are marked for
refinement and excluded from the list of nodes used to computed the thresholds in the
next passages. Thus, in the second passage, the mean µ is lower, as is the refinement
threshold. These new thresholds lead to the refinement of the nodes 3 and 5, marked
by . The final thresholds τR and τC are then computed in the third passage (MP 3)
by excluding also these nodes.

During the mesh adaptation process, the length of each edge is computed in
the M-metric space to establish if a modification is required. To measure the
edge length, an interpolation of the metrics defined at its endpoints is required.
In the Mmg3d library [36], for the generic edge eik, a linear interpolation function
is defined as ¯̀(s) = ¯̀

i + s(¯̀
k − ¯̀

i), with ¯̀(0) = ¯̀
i and ¯̀(1) = ¯̀

k. Therefore the
length of the edge eik can be computed as

‖eik‖M =

∫ 1

0

√
‖eik‖T ¯̀(s)−2 I3 ‖eik‖ ds

= ‖eik‖
∫ 1

0

1
¯̀(s)

ds =
‖eik‖
¯̀
k − ¯̀

i
ln

( ¯̀
k

¯̀
i

) (4.6)

where ‖eik‖ = eT
ik eik is the classical Euclidean edge length, while ‖eik‖M is the

length computed in theM-metric space. To avoid division by zero, if the metrics
at the endpoints are equal, the edge length is measure as

‖eik‖M = ‖eik‖/¯̀
i .

In practical cases, as pointed out also in [32], it is usually not possible nor
convenient to reach a perfectly unit mesh. Thus, an edge eik is not modify if

`coll ≤ ‖eik‖M ≤ `ref

where `coll and `ref are two parameters used to control grid adaptation. In this
work they are set `coll = 0.3 and `ref = 2.5.

Anisotropic metric

In isotropic mesh adaptation, the metric map M(xi) is actually a scalar matrix
that depends on one single parameter ( ¯̀

i) and it allows to control only the mesh
edge size, regardless the edge orientation. Indeed, the geometric locus of all
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points P at distance h from a given point O is a sphere centered at O of radius
h. Differently, in the anisotropic mesh adaptation the metric map Man(xi) is
a general 3 × 3 symmetric positive definite matrix which allows to control the
size, the shape and the orientation of the mesh elements. To better understand
how mesh elements are represented within the Man-metric space, the map is
decomposed as Man = RΛR−1, where R is eigenvector matrix and Λ is the
diagonal matrix of the eigenvalues. The distance in terms of the anisotropic map
Man is still given by Definition (4.5) but, given a point O, the locus of the points
P such that ‖P −O‖Man = h is represented by an ellipsoid, centered at O. The
shape of the element is associated to the lengths of the semi-axes of the ellipsoid,
which are defined by the eigenvalues Λ, while the orientation (of the ellipsoid and
of the element) is defined by the eigenvectors R.

Anisotropic adaptation is not used in the present thesis, because it has not
been implemented in the software at the current level of development. How-
ever, no particular problems are expected in extending the proposed strategy
to the anisotropic case. The main difference concerns the construction of the
metric map, which require an error indicator capable to detect the variations
of the solution along different direction, like for instance the Hessian operator.
Once the anisotropic metric map is built, all the edge lengths can be computed
through Definition (4.5) and the proposed approach does not require any further
modification.

4.1.4 Extension to different error estimates

The previous sections describe how the metric map is built on the basis of the
derivatives of flow variables. This choice of adaptation criteria has been justified
by the fact that the present work focuses on the development of a novel adaptive
scheme and the choice of the error indicator plays a minor role in the whole ap-
proach. Thus, a simple criterion has been preferred to a more accurate one. Nev-
ertheless, the described strategy can be easily extended to different adaptation
criteria, in particular an estimate of the numerical error can be straightforwardly
implemented.

Thanks to a posteriori analysis, the error due to the numerical approximation
can be related to the grid spacing. Mesh adaptation can be used to equi-distribute
this error over the mesh by locally modifying the element size, until the desired
accuracy is matched [37, 30, 53].

Suppose that u is the exact solution, or a relevant scalar flow variable (e.g.
the density), of the considered problem and uh is the solution obtained solving
the discrete governing equations over the mesh Th. Following [53], an indirect
approach can be used to estimate the approximation error, which is defined as
eI = ‖u − uh‖. Denoting Πhu the linear interpolate of u on an element of
Th, the approximation error can be bounded by the interpolation error as eI ≤
c‖u−Πhu‖, where c = d2

2(d+1)2 is a constant depending on the spatial dimension

d (c = 9/32 in 3D).

As shown in [37], the interpolation error over the mesh depends on the Hessian
matrix of the variable u. More precisely, on a point x in some neighborhood of
the point x0 it can be estimated as eI(x) ≈ 1/2(x− x0)THu(x0) (x− x0).

Hence, it is possible to control the error over the mesh by defining a suitable
metric map that relates the edge length to the numerical error. To this end, at
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each grid point the metric map M(xi) can be defined as M = RΛ̃L with

Λ̃ = diag

{
min

(
max

(
c|λp|
ε

,
1

`2max

)
,

1

`2min

)}
,

where λp, R and L are respectively the p-th eigenvalue, the matrix of the right and
of the left eigenvectors of the Hessian matrix Hu(xi) and ε is a given threshold
for the maximum tolerate error. This metric map can be used to enforce an unit
mesh as described in Subsection 4.1.3. As a final remark, it should be noticed
that the metric map M is anisotropic by nature, since the eigenvectors define
the principal directions of the flow and the eigenvalues give the associated edge
lengths.

4.2 Local mesh adaptation techniques

To efficiently perform three-dimensional mesh adaptation, the capabilities offered
by the library Mmg3d, developed by Cécile Dobrzynski and collaborators [36, 35],
are exploited. Mmg3d is a fully automatic surface and volume tetrahedral re-
mesher, which iteratively modifies an initial tetrahedral grid to produce an almost
unit mesh with respect to the prescribed isotropic metric field.

The software implements a series of different local modifications, like node in-
sertion, node deletion, edge swapping and point relocation, that can be performed
both on the interior and on the surface of the grid. Each local modification is
performed only if it results in a mesh quality improvement, according to the
following quality definition

Qm = αVm/
(∑6

i=1`
2
i

)3/2
, (4.7)

where Vm is the volume of the element, `i is the edge length and α is a constant
parameter introduced to obtain Qm = 1 for a regular tetrahedron, to which
corresponds the maximum quality. As the value of Qm decreases, the quality
of the element deteriorates. Indeed, the value Qm = 0 indicates a degenerated
tetrahedron [29].

Moreover, to avoid abrupt element size variation over the mesh, the maximum
variation that can occur between two adjacent edges is limited by the gradation
control technique [19]. Indeed, if the nodes vi, vk, vj are connected by the edges
eik and ejk, it is required that

1

hgrad
≤ ‖eik‖‖ejk‖

≤ hgrad

where hgrad is the user-defined gradation parameter.
For what concerns the surface mesh, i.e. the boundary of the computational

domain, it can be partitioned into different regions, each represented by a contin-
uous ideal geometry locally reconstructed through cubic Bézier curves. During
mesh modification, the geometric criterion of the Hausdorff distance is used to
control the gap between the ideal geometry and the actual one [17]. More pre-
cisely, a lower value of the maximum allowable Hausdorff distance results in
more precise approximation of the curved surfaces, which are indeed discretized
by smaller elements.
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Figure 4.2: Edge split. Left, initial configuration: four tetrahedra share the edge eik.
Right, final configuration: the edge between i and k is split by inserting the new node
j in the midpoint, each tetrahedron that had the edge eik is split in two tetrahedra by
the new dashed edges. For instance, the tetrahedron i–k–v1–v2 is split in i–j–v1–v2 and
j–k–v1–v2.

The following subsections give a brief overview of the local operators of
Mmg3d exploited in the present work to modify the grid. A thorough description
can be found in [34, 29, 36].

4.2.1 Node insertion

Three different strategies are used to insert a new node in the triangulation,
namely edge split, element split and Delaunay insertion.

Splitting the edge eik consists in inserting a new point, replacing the initial
edge by two new edges and updating the local mesh connectivity. If the edge lies
on a boundary face, the position of the new node is computed by means of the
Bézier curve representing the involved triangular face, otherwise it is inserted at
the middle of the edge. All the elements sharing the edge eik have to be modified:
each of them is divided into two tetrahedra and two new edges are created to
connect the new point to the two nodes of the element different from i and k, as
shown in Figure 4.2.

Element split is usually performed at the beginning of the adaptation proce-
dure, when two or more faces of a grid element m pertaining to different bound-
aries, i.e. to different portions of the surface mesh. In this case, to simplify the
re-construction of the ideal geometry, the element m is split into four tetrahedra
by inserting a new node in its barycenter. As illustrated by Figure 4.3, the four
initial faces pertain now to four different elements and each of them can pertain
to a different boundary. This operation is performed to split an element initially
lying on two or more boundaries, thus element split is performed even if it does
not lead to a quality improvement and no minimal angle conditions are enforced.
However, since it is performed at the beginning of the mesh adaptation, the
shapes of the tetrahedra resulting from an element split can be improved in the
successive steps of adaptation.

Finally, also Delaunay triangulation is exploited to insert a new node and
to reconstruct the correct topology. Once the position of the new node p is
determined according to the metric field, the cavity of the point p has to be
identified. This amounts to identifying all tetrahedra having a circumsphere
that contains the new point [52]. Labeling rmK the radius of the circumsphere of
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Figure 4.3: Element split. Left, initial configuration. Right, final configuration: the
tetrahedron is split by inserting the new point j at its barycenter. Four new tetrahedra
are created connecting each original face with the point j.

element m, which is the distance between any vertex of m and its circumcenter
Om, the cavity can be defined as the set of elements for which results

‖Omp‖/rmK < 1 .

All the elements of the cavity are then deleted and new tetrahedra are formed
by joining the new node to the external faces of its cavity. In order to avoid
the creation of very poor quality tetrahedra (the so-called slivers), a procedure
of cavity correction is carried out, which consists in explicitly checking that all
the resulting tetrahedra have a positive volume. With respect to the simple
edge split, the new tetrahedra generated by Delaunay triangulation show usually
better qualities. An anisotropic Delaunay triangulation can be easily performed,
by computing the lengths rmK and ‖Omp‖ in the prescribed anisotropic metric
field [36].

4.2.2 Node deletion

If an edge results too short with respect to the metric field or to the prescribed
minimum edge length, it is collapsed by merging its endpoints into a single one.
Suppose that, for the edge eik, the node i is collapsed onto k. All the elements
sharing the edge eik are removed from the grid and all the other elements sharing
the node i are modified and connected to the node k, as shown in Figure 4.4.
Despite the simplicity of the deletion procedure, some checks have to be per-
formed before collapsing an edge to assess the fulfillment of quality and validity
criteria. If the resulting tetrahedra are not acceptable, namely they have a poor
quality or a negative volume, the edge collapse is not carried out. Moreover, for
the edges that lie on the surface a check concerning the geometric approximation
(Hausdorff distance criterion) is performed.

4.2.3 Edge swap

Edge swap is a powerful technique to increase the mesh quality by modifying
only the local connectivity but keeping unchanged the number and the position
of the grid nodes. If the edge eik is selected for swap, the whole element bubble
of the edge Bmik is re-meshed, namely all the elements sharing the edge. Since a
large (combinatorial) number of different configurations are possible, a two-steps
procedure is used to simplify the selection of the final configuration, as illustrated
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Figure 4.4: Element collapse. Left, initial configuration: element bubble of the node
j. Right, final configuration: the edge eij is collapsed by collapsing the node j onto
i. The tetrahedra that shared the edge eij are deleted, while the ones that shared the
edge ejk are modified by substituting the node j with i.
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Figure 4.5: Edge swap. Left, initial configuration: four tetrahedra share the edge
eik. Middle, intermediate configuration: the edge eik is split by inserting the new node
j in the midpoint. Right, final configuration: the node j is collapsed on the node v3
and the new edge between v1 and v3 is created. Some tetrahedra created by the split,
namely the ones that shared the edge between j and v3, are deleted while the others
are modified by swapping the node j with the node v3.
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in Figure 4.5. First, the edge is split at its midpoint and new edges are created
to connect the new node to all the other nodes of the bubble Bmik. Then, a loop
on these new edges is started and the collapse of each single edge is tested: if it
leads to a valid configuration that increases the mesh quality, it is performed and
the swap procedure ends, otherwise the next edge is tested.

A simpler procedure is performed if the edge to be swapped lies on the sur-
face. In this case, the edge is shared by two boundary faces and only one swap
configuration is possible. More specifically, the edge shared by the couple of tri-
angular faces is deleted and the other two nodes of the elements are connected
by a new edge.

4.2.4 Node relocation

This last operation aims at improving mesh quality by modifying the position
of the grid nodes. To this end, a loop on all nodes is performed and the new
grid position x̃i for the generic node i is computed. For the internal node i, a
barycentric regularization over the elements sharing the node i is performed. The
position x̃i is computed as the average of the barycenters of the elements sharing
the node i weighted by the cell volume, namely

x̃i =
∑
m∈Bm

i

Vmxm

/ ∑
m∈Bm

i

Vm

where Bmi is the set of elements sharing the node i, Vm and xm are the volume
and the coordinates of barycenter of the element m, respectively. The node i is
moved in the new position x̃i only if the worst quality among the elements of the
bubble Bmi is improved.

For nodes lying on the surface mesh, the optimal position is computed by
considering the ideal geometry [29]. The new position is first computing as the
average of the coordinates of the barycenters of the boundary elements sharing
the node i projected onto the plane tangent to the point i, then the new position
is projected onto the ideal geometry.

4.3 Mesh displacement

This section briefly describes the mesh deformation strategy used when a known
movement is imposed to the boundary of the computational domain. According
to the ALE formulation presented in Section 2.2, at each time step a suitable
mapping of the actual mesh to a new valid one that is conformed to the new
boundary is required. This is usually achieved in two-steps: first, the new po-
sitions of all boundary points are obtained by a given movement law, then the
internal nodes are re-located.

As explained in Subsection 1.2.2, different techniques have been proposed to
move the internal grid points keeping fixed the connectivity. In the present work,
a mesh displacement strategy is developed on the basis of the elastic analogy pro-
posed by Batina [12], which is easy to be implemented and requires a reasonable
computational cost. The mesh is indeed considered as the union of deformable
bodies, each of which represents a grid element, subject to a prescribed move-
ment at the boundary. The complete displacement field is obtained by solving
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the equilibrium equations for the stress field with Dirichlet boundary conditions
expressing the prescribed boundary movement. A standard finite element ap-
proach, as described in [13], is used.

Assuming an isotropic elastic material, the stress tensor σ can be expressed
in terms of the strain tensor ε by the constitutive equation σ = Eε, whit

σ = [σxx, σyy, σzz, σxy, σyz, σzx]T, ε = [εxx, εyy, εzz, εxy, εyz, εzx]T,

E =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1/2− ν 0 0
0 0 0 0 1/2− ν 0
0 0 0 0 0 1/2− ν



where ν is the Poisson’s ratio, which is chosen as 0 ≤ ν ≤ 0.35 to avoid a bad-
conditioning matrix, while E is the Young modulus and it is used to control the
stiffness of each mesh element.

Since the smallest elements are usually gathered near the walls or near the
relevant flow features, i.e. where an higher accuracy is sought and therefore an
higher mesh quality is required, the local element stiffness Em is set as inversely
proportional to element size. More precisely, the following definition is adopted

Em =
1

mini,k∈Ke
‖xi − xk‖β

, (4.8)

where Ke is the set of the edges of the element m and β is a parameter than can
be used to control the stiffness variation (in this work β = 1/2). Thanks to this
approach, the largest elements account for the major part of the deformation,
while the smallest grid elements move almost rigidly, without undermining their
shape.

Lastly, it should be noticed that, in some problems, different type of move-
ments are imposed to adjacent boundaries, like for instance when performing
the simulation of a rigidly moving wing connected to the wall at its root. In
this cases, the boundary nodes that lie on the wall are constrained to remain
on this surface but, at the same time, they have to follow the wing movement.
This can be view as a 2D displacement problem in which the role of the internal
points is played by the wall nodes while the boundary movement is imposed for
the points that lie on the wing root or on the intersection between the wall and
a different boundary of the 3D problem. Thus, a bi-dimensional version of the
previously described elastic analogy can be applied to obtain the displacement of
the wall points, that is then used as boundary condition in the three-dimensional
displacement problem.

4.3.1 Robust strategy for large displacements

Robustness is a fundamental property of each mesh deformation strategy, which
should be able to deal with significantly large boundary displacements preserving
an acceptable grid quality and preventing mesh invalidation, that occurs when an
element of the grid has a negative volume. In such a situation, the condition (2.4)
is not satisfied and therefore the ALE mapping between the initial and final mesh
cannot be defined.
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To increase the robustness of the deformation technique, the iterative strat-
egy illustrated in Figure 4.6 is adopted. Suppose to start from the grid Kn,
which should be mapped into the new grid Kn+1 taking into account a bound-
ary displacement ∆Xn+1. The grid Kn+1,∗ is computed by applying the elastic
analogy approach previously described with an imposed boundary displacement
equal to ∆Xn+1. Then, the validity of the mesh Kn+1,∗ is assessed by com-
puting the volume of each element. If the test is successful, the computed grid
is used as the grid Kn+1 and the deformation step is finished. Otherwise, a
new grid Kn+ 1

2 ,∗ is computed by considering an half boundary displacement, i.e.

∆Xn+ 1
2 = ∆Xn+1/2.

If this mesh does not satisfy the validity check either, the boundary displace-
ment is split in half again and the procedure is repeated (d loop) till a valid mesh
Kn+τ,∗ is obtained or for a certain number of time Nd, which in this work is set
as 12. In the first case, the strategy is re-started for the remaining part of the
displacement, namely for the interval between n + τ and n + 1. In the second
case, edge swapping and point-relocation are exploited to restore the grid qual-
ity [9, 51] before applying the elastic analogy approach. These mesh adaptation
techniques can be efficiently used to eliminate very small and very large angles in
grid elements, which most likely lead to negative volumes, without modifying the
number of grid nodes, thus without increasing the computational time required
by the computation of the solution at the actual time step.

4.4 Summary of the computational procedure

The mesh adaptation strategy described in the previous section of this chapter is
now included in the complete computational procedure. For steady simulations
this operation is quite straightforward and the resulting iterative procedure con-
sists essentially in three-steps—steady solution computation, error estimate and
mesh adaptation—which are repeated till reaching a fixed-point of the pair mesh
and solution. On the contrary, different strategies can be adopted to exploit
mesh adaptation in unsteady problems, since the grid changes during the time
steps. The first option concerns the frequency at which the mesh is adapted,
i.e. if mesh adaptation is performed every time level or after a given number of
time steps. This choice depends on how large the boundary displacement and
the variation of the solution are, but it does not influence the implementation of
mesh adaptation phase in the complete computational procedure.

The second, and more relevant, question concerns the solution used to com-
pute the error estimator and thus to drive grid modifications. The standard
approach, see for instance [22, 90], consists basically in one steady adaptation
step at each time level. For the time interval between tn and tn+1, it can be
summarized as

I. Error estimator computation on the basis of solution un.

II. Mesh adaptation to obtain the new grid Kn+1.

III. Interpolation of the solution un over the new grid, if required.

IV. Computation of the solution un+1 on the grid Kn+1, starting from the
solution un.
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Figure 4.6: Robust strategy for large displacements. Starting from the initial grid
Kn, a final grid Kn+1 is obtained to comply with the displacement ∆Xn+1. A non-
dimensional time 0 ≤ τ ≤ 1 is introduced to span the time interval between tn and
tn+1. If the elastic analogy does not lead to a valid mesh, the displacement is reduced,
by means of a linear function ∆X(∆τ) that is defined to express the displacement in
terms of τ . If after a certain number Nd of reductions a valid mesh is not found, the
mesh quality is increased by mesh adaptation (edge swap and point relocation only)
and the procedure restarts with the new mesh Kn+τp . The variable τp indicates the
percentage of the performed displacement.
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This procedure is acceptable only if sufficiently small time steps are adopted,
otherwise a significant delay arises between the solution and the mesh adaptation,
which is not able to correctly follow the flow features.

A different approach is used in this work to allow larger time steps. At the
beginning of the time step, after the mesh has been deformed to comply with
the boundary movement, the solution is computed in the so-called prediction
phase. The unsteady adaptation procedure is now detailed with reference to
Figure 4.7. At the beginning of the time step between tn and tn+1, the grid and
the solution are respectively label as Kn and u(tn,Kn). Then, the following steps
are performed:

I. Mesh deformation: the continuous domain is updated to the new position
(if required) and consequently the computational grid is deformed. The
new grid is labeled Kn+ to state that it is an intermediate grid between Kn
and Kn+1.

II. Prediction phase: the solution at the new time step, over the grid Kn+, is
computed.

III. Error estimator computation on the basis of the new solution u(tn+1,Kn+).

IV. Mesh adaptation: the grid Kn+ and the metric map computed on the basis
of the new solution M(u(tn+1,Kn+)) are passed as inputs to the library
Mmg3d, which performs local grid modifications.

V. Mesh update: the flow solver receives from Mmg3d all performed local
modifications ∆Kn+, that are needed to compute the volume swept by
the finite volume interfaces through the three-steps procedure describes in
Section 3.1.

VI. Computation of the solution un+1 on the grid Kn+1, using as initial guess
the solution u(tn+1,Kn+).

It should be reminded that, thanks to the ALE interpretation of the local grid
modifications as a series of continuous deformations, the interpolation of the old
solution over the new grid is not required.

As indicated by loop s in Figure 4.7, multiple adaptation cycles can be per-
formed, i.e. the steps III, IV and V can be repeated. In this case, the error estima-
tor is re-computed over the adapted grid Kn+

s and a new metric mapM(u(Kn+
s+1))

is passed to Mmg3d. Since the solution is not re-computed at each iteration, few
adaptation cycles are usually required to reach a good match between the target
grid spacing and the adapted grid Kn+

s+1.
Of course, if the time step is sufficiently small, the prediction phase can be

skipped and the metric map can be built on the basis of the previous solution
u(Kn), as in the standard approach.

A final remark concerns the computation of the solution, which is performed in
a parallel way in order to reduce the computational time of the overall procedure.
Thus, before the steps II and VI the grid is partitioned using the library Metis [75]
among several processors. Mesh adaptation is performed instead sequentially,
then at the end of these steps the complete solution is gathered in one processor
only. It should be noticed that, due to grid adaptation, the grid partitioning
computed before the step II cannot be used for the computation of the solution
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at step VI. Details about the data structure used to handle different grid partitions
can be found in [40].
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Figure 4.7: Computational procedure for unsteady problems. At the beginning of
the time step, the mesh deformation strategy is applied to update the grid Kn to the
grid Kn+ that complies with the boundary displacement. A prediction phase is then
performed to compute the solution at time tn+1 over this new grid. This solution is used
to built the metric fieldM(u(tn+1,Kn+) that is passed as input to Mmg3d to drive mesh
adaptation. The re-mesher communicates to FlowMesh all performed modifications
∆Kn+, so that it can update the finite volumes discretization and compute the swept
volumes. The mesh adaptation procedure, highlighted by the thick dashed line, can be
repeated (loop s). Finally, the solution at the time level tn+1 over the adapted grid
Kn+1 is computed.





Chapter 5
Numerical simulations of
reference ideal and non-ideal
compressible fluid flows

Simulations of reference compressible fluid flows are carried out to assess the
validity of the numerical solution strategy here proposed and implemented.
First, bi-dimensional problems are tackled. The results of a regular, steady
shock reflection and the unsteady flow field around an oscillating NACA
0012 profile are presented in Subsections 5.1.1 and 5.1.2. Then, the three-
dimensional adaptive strategy described in the previous chapter is tested
through numerical simulations of a piston-induced shock-tube flow. Finally,
two-dimensional simulations of under-expanded nozzle jets are carried out to
asses grid adaptation criteria for steady inviscid flows in the proximity of the
liquid-vapor-saturation curve, where non-ideal compressible-fluid behavior is
expected.

5.1 Ideal-gas reference flows

This first section presents the results of two simulations that assess the validity
of the developed numerical tool in two-dimensions. To this end, the flow solver
FlowMesh is linked to Mmg2d, the bi-dimensional version of the re-mesher Mmg3d.
The importance of these tests is due to the fact that the data structures of the bi-
dimensional version of the re-mesher are very similar to those of three-dimensional
version. The linking between the flow solver and the re-mesher plays a crucial
role in the whole numerical procedure, because the computation of the swept
volumes requires a prompt communication from Mmg3d and FlowMesh. Hence,
the assessment of the numerical procedure in two dimensions represents a first,
fundamental test also for its three-dimensional counterpart.
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Figure 5.1: Regular shock reflection results: computational grids and pressure contour
plots at three different adaptation levels. From top to bottom: original grid (202 nodes,
344 elements), grid and solution after 4 adaptation cycles (9 429 nodes, 18 665 elements),
final grid and solution at the 10-th adaptation level (4 092 nodes, 8 087 elements).
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Figure 5.2: Regular shock reflection results: pressure profile at y = 0.5. Comparison
of the non-dimensional pressure profile obtained after 4 and 10 adaptation levels.

In this section, a steady and an unsteady flow simulations are presented. In
Subsection 5.1.1, the results of a regular shock reflection are presented, while
in Subsection 5.1.2 describes the numerical investigation of the transonic flow
around an oscillating airfoil. In both tests, the polytropic ideal-gas model is
adopted and the integrated numerical fluxes are computed through the high-
order formulation of Definition (2.30).

5.1.1 Regular shock reflection in dilute gas conditions

The simple, regular reflection of a shock wave over a solid wall is simulated under
the ideal gas assumption to verify the performances of the proposed adaptation
strategy. The computational domain is a rectangular unstructured mesh with a
solid wall at the bottom. The initial solution consists in a uniform flow with at
Mach M = 2.377 and incidence α = −10.95◦. On the left boundary a flow parallel
to the wall at Mach M = 2.9 is imposed, while on the top one the initial values
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of pressure and density are enforced by means of Riemann boundary conditions.
Due to the different boundary conditions, an oblique shock is generated from
the top-left angle of the domain, which is reflected at the wall as a shock with
different intensity. After the second shock, the flow is again parallel to the wall,
but with a different Mach number. Therefore, the flow appears as divided into
three separate uniform regions: before the first shock, downstream the reflected
shock and between two waves.

The initial grid is a uniform unstructured grid, made of 202 nodes and 344 tri-
angles. The error estimator is based on the Hessian of the Mach number and the
refinement threshold is computed with 5 passages to capture both shock waves.
Ten complete adaptation cycles are performed. Figure 5.1 shows the evolution
of the grid and the solution at different adaptation level. All the variables are
made dimensionless by means of the following reference values Pref = 1 atm and
Tref = 288.15 K.

As expected, the accuracy of the solution increases with adaptation cycles. A
good agreement between the profile of the pressure along the line y = 0.5 over
the final grid and the exact solution is achieved, as illustrated in Figure 5.2.

5.1.2 Transonic flow around the oscillating NACA 0012 airfoil

Two-dimensional compressible inviscid flow computations around an oscillating
NACA 0012 airfoil are presented. The pitching motion of the airfoil is prescribed
by the following sinusoidal function

α(t) = α∞ + α0 sin(ωt) ,

with an initial angle of attach α∞ = 0.016◦ and an oscillation amplitude of
α0 = 2.51◦ around the quarter-chord. The oscillating frequency ω is computed
so that the reduced frequency is k = ωc/u∞ = 0.1628, where c is the airfoil chord
and u∞ is the free-stream velocity, as in [83].

A steady transonic simulation of the airfoil at the fixed incidence α = α∞ and
with a free-stream flow at Mach M∞ = 0.755 is performed first. The initial grid
is composed by 1 088 nodes and 1 902 triangles. To enhance the accuracy of the
steady solution, an adaption step is carried out and the solution is recomputed
on the new grid, made of 2 968 nodes and 5 651 elements.

The steady results are used to start the unsteady adaptive simulation, in
which two complete oscillation periods are computed. A Backward Euler scheme
then is used for time integration and two different time-steps are tested: ∆t0 and
2∆t0 obtained by subdividing the whole computational time T sim = 4π/ω into
200 and 100 time steps, respectively. Defining a non-dimensional reference time
as explained in Subsection 2.1.2, one obtains T sim = 87.1778 and ∆t0 = 0.43589.

Because of the large time-step chosen for the simulations, the solution changes
significantly between two consecutive time steps and therefore the adaptation
cycle is performed at every time step. The Hessian of the Mach number is
chosen as the error estimator and three passages are performed to compute the
refinement and coarsening threshold. Figure 5.3 shows the computational grids
at different time steps for the simulation performed with ∆t0. The initial grid
at the beginning of the unsteady computation is shown at the top-left corner,
then the grids at every quarter of the second period are shown in the remaining
pictures. A low coarsening threshold is chosen because two-dimensional grids
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have a limited number of points with respect to the available computational
power and therefore the mesh adaptation process is driven with the primary aim
of increasing the solution accuracy disregarding the reduction of grid points.

Figure 5.4 shows the contour lines of the Mach number and the pressure.
Thanks to mesh adaptation the shock that moves from the upper to the lower
airfoil surfaces is well capture. However, the slip line is not well resolved, probably
because the intensity of the discontinuity across the wake is significantly too
weak with respect to the intensity of the shock, therefore even the multi-passage
strategy is not able to detect it. The choice of different error estimators, based for
instance on the derivatives of entropy or vorticity, may possibly allow to capture
better this flow feature.

The effect of variation of the time step is finally investigated in terms of lift
coefficient. The lift coefficient is an integral quantity and for a wing is defined as

CL(t) =

∮
∂Ωwing

CP (s, t)n∞(s, t) ds

where ∂Ωwing indicated the wing surface and n∞ is the component normal to the
free-stream of the surface outwards normal. Within the node-pair finite-volume
formulation here adopted it can be computed as

CL(t) =
∑

k∈K∂,wing

CP (uk, t) ξ̂k,∞(t) .

The curve CL-α obtained with the two different time steps are shown in Figure 5.5
along with the experimental results provided by Landon [83]. The deviation be-
tween the numerical and the experimental data is due to the inviscid approxima-
tion used in the present work. However, a good agreement with other inviscid
numerical results, such for instance those provided by Batina[12], is observed. As
expected, the curve CL-α shows the hysteresis due to the phase lag between the
variation of angle of attack and the lift in time [100]. No relevant differences can
be observed between the results obtained with different time steps.

5.2 Three-dimensional piston-induced shock-tube
flows

The piston-induced shock-tube flow test is carried out to assess the three-dimen-
sional adaptation strategy developed in the present work. A tube of length L
with a square section, closed at one end by a wall and at the other one by a
piston, initially contains a gas with γ = 1.4 (e.g. air) at uniform state P0, T0,
u0 = 0. The piston is instantaneously started and moves at constant speed VP
towards the wall. A shock forms at the initial time and it travels through the
tube with a constant velocity Vs, see for instance [122]. The resulting flow is
therefore separated in two regions: the first one between the shock and the wall,
where the fluid is still in quiescent state, the second one between the piston and
the shock where the fluid moves at velocity u = VP . When the shock reaches
the wall, it is reflected again as a normal shock but with a different intensity and
travels back towards the piston with a different speed.

The numerical investigation is carried out starting from the non-dimensional
initial conditions P0 = 1 and ρ0 = 1 and imposing the shock wave Mach number
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Figure 5.3: Computational grid at different time steps of the unsteady adaptive for
the transonic pitching airfoil with ∆t = ∆t0. From the top-left to the bottom-right:
grid at t = 0T , t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and t = 2T = T sim.
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Figure 5.4: Mach contour lines at different time steps of the unsteady adaptive for
the transonic pitching airfoil with ∆t = ∆t0. From the top-left to the bottom-right:
solution at t = 0T , t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and t = 2T = T sim.
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Figure 5.5: Lift coefficient hysteresis of the transonic pitching airfoil. The results
obtained with the two different time-steps are shown, along with the experimental
results [83].

Ms = 2. As a consequence, the non-dimensional shock speed is Vs = 2
√
γ and

the piston velocity is VP = 1.25
√
γ.

The simulation is stopped before the shock wave is reflected by the wall,
more precisely when it has performed the displacement ∆xs = 0.9L, thus at
T sim = 0.3803. This time interval is divided into 90 time-steps. The fluid be-
havior is described by a polytropic ideal gas model. The high-order integrated
numerical fluxes and the Backward Euler scheme are used for the spatial and
time integration.

The initial computational grid consists in a rectangular box of length L along
x and 0.1L along y and z. The grid is made by 185 639 tetrahedra and 34 548
nodes. It is shown in Figure 5.6 along with the initial uniform solution. Since the
left side (at x = 0) represents the piston, during the simulation the computational
domain becomes progressively smaller. According to the elastic analogy (see
Section 4.3), the major part of this deformation has to be absorbed by the larger
grid elements. To facilitate this task, a non-uniform initial spacing is used, whit
the smallest elements gather near the piston where a shock is expected to form.

This test case represents a valuable benchmark for the mesh adaptation strat-
egy, because the shock wave moves through the domain and therefore grid re-
finement is required to correctly capture the shock front, but mesh adaptation is
of primary important also to allow such a significant domain deformation, which
requires coarsening to avoid extremely small grid elements.

In order to correctly detect the shock wave, the Hessian of the pressure is
used as error estimator and mesh adaptation based on solution is performed at
each time level. On the contrary, the mesh adaptation step inside the robust
deformation strategy for large displacement is performed only when required, as
explained in Subsection 4.3.1.
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Figure 5.6: Initial mesh and initial uniform solution for piston-induced shock-tube
test case, with P0 = 1, ρ0 = 1 and u = 0.

Four different combinations of the adaptation parameters and strategies pre-
sented in Chapter 4 are tested and they are summarized in Table 5.1. In addition
to different coarsening and refinement thresholds, different numbers of multi-
passage and adaptation cycles, i.e. s iterations in Figure 4.7, are compared. The
profiles obtained at centerline y = z = 0.05L obtained with these combinations
are shown in Figure 5.7, along with the exact solution. The corresponding grids
obtained at t = 0.211, i.e. at a displacement of the piston ∆xp = 0.3125, are
shown in Figure 5.8. As expected, the multi-passage strategy and a lower value
of the refinement threshold kR lead to a better detection of the shock wave. To
avoid an excessive increase in the number of grid points, a lower value of kR is
combined with an higher value of the coarsening threshold kC . Comparing test
C and D, it seems preferable a lower refinement threshold than an additional
adaptation cycle. Indeed, test D provides a solution at the center-line closer to
the exact solution than the one obtained in C. Furthermore, performing an ad-
ditional adaptation cycle with the same refinement thresholds—test C compared
to A—does not guarantee an improvement in the solution. This is due to the
fact that the solution prediction step is carried out only before the first adapta-
tion cycle, i.e. at the beginning of the adaptation strategy. Then, during mesh
adaptation, when a points is inserted, the solution on the new point is retrieved
empirically from the nearest old point, on which the solution is computed during
the prediction step, and this solution is used to drive mesh adaptation in next
adaptation cycle. Unfortunately, if the elements have been already refined many
times during the same time step, this solution may deviate significantly from the
correct one. Therefore, the mesh modifications in the following adaptation cycle
may occur in the wrong positions.
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Test kR kC Multi-passage Adapt. Cycles (s)

A 2.8 0.75 3 2
B 2.6 0.85 1 2
C 2.8 0.75 3 3
D 2.4 0.8 3 2

Table 5.1: Combinations of adaptation parameters and strategies used in different
test cases for piston-induced shock-tube test case.

Figure 5.7 shows also the results obtained in the test E, which is performed
using the same adaptation parameters of test D but a smaller time step, i.e.
the whole time T sim is divided into 360 time-steps. The smaller time step does
not lead to a significant improvement in the solution. Moreover, two oscillations
appear for the piston displacement ∆xp = 0.5625, that, as explained in the
following, are probably related to the errors generated by the shock-capturing
scheme in the computation of the slowly moving shocks.

The grid and the pressure contour at different time steps are shown in Fig-
ure 5.9 and Figure 5.10, for the test case D only. Mesh refinement allows to
correctly follow the shock wave that moves through the domain. Moreover, as
it can be noticed for the mesh at time t = 0.38, mesh coarsening is correctly
applied to the region that has been previously refined to capture the shock once
the shock has moved forward.

Finally, Figure 5.11 depicts the pressure, Mach and density profile at the
centerline of the tube. A good agreement with the exact solution is reached, as
proved by the correct location of the shock wave at the four time steps illustrated.
Unfortunately, the shock front is represented over a significant spatial interval,
possibly because of a too coarse initial grid. Moreover, two distinct oscillations
in the solutions are clearly visible in Figure 5.11 and for test E in Figure 5.7.
These are more apparent as the grid is refined and are not present during the
initial part of the simulations. It is believed that these numerical artifacts are
created as the shock wave, which is initially a discontinuity, settles down on its
viscous numerical profiles. Indeed, it is well known that in conservative shock
capturing schemes disturbances associated to the other characteristic fields are
generated as an initial discontinuity is represented over a finite number of grid
points/elements [88, 7].

Finer initial grids are not tested, because of the quite high computational
time, that for this test lasts for 40 hours on 12 Cores of Intel Xeon. However,
this test has assessed the validity of the three-dimensional adaptation strategy
proposed in the previous chapter.

5.3 Under-expanded nozzle jets of non-ideal
compressible-fluids

Numerical simulations of supersonic under-expanded nozzle jets operating close
to the liquid-vapor saturation curve are performed to study the effectiveness of
different adaptation criteria in the so-called non-ideal compressible-fluid dynam-
ics (NICFD) region. Since the relationships among the diverse flow variables
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Figure 5.7: Comparison between the solution obtained with different mesh adapta-
tion parameters for the piston-induced shock-tube problem. Centerline pressure (top)
and Mach (bottom) profiles obtained at three different times with the combinations of
adaptation parameters reported in Table 5.1, along with the test E that is performed
with the same adaptation parameters of test D but with a smaller time step. The piston
displacements at the three times are ∆xp = 0.125, ∆xp = 0.3125 and ∆xp = 0.5625,
respectively.
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Figure 5.8: Mesh at t = 0.211, i.e. at a displacement of the piston ∆xp = 0.3125.
From top to bottom, results obtained in test A, B,C and D, according to definitions
given in Table 5.1.
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Figure 5.9: Mesh of piston-induced shock-tube problem at different times. From
top to bottom, mesh at a displacement of the piston ∆xp = 0.0625, ∆xp = 0.125,
∆xp = 0.3125, ∆xp = 0.5625.
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Figure 5.10: Pressure contour plot of piston-induced shock-tube problem at different
times. From top to bottom, the contour plot of the pressure at a displacement of the
piston ∆xp = 0.0625, ∆xp = 0.125, ∆xp = 0.3125, ∆xp = 0.5625.
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Figure 5.11: Solution of piston-induced shock-tube flow at center-line, i.e. y = z =
0.05. Pressure, density and Mach profiles obtained at different times are compared with
the exact solution.
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Figure 5.12: Top: weakly under-expanded jet. The interception shock is reflected as
an oblique shock and the flow downstream is therefore supersonic. This configuration
is referred to as a regular reflection (RR). Bottom: Mach reflection (MR) of a highly
under-expanded jet with Mach disk formation. Downstream of the triple point, a slip
line separates the subsonic flow near the jet-center (downstream of the normal shock)
from the outer region of the flow at supersonic speed.
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strongly depend on the assumed thermodynamic model, the selection of the
proper error indicator is not straightforward if the fluid thermodynamic departs
from the well-known ideal-gas conditions, for which a wide literature regarding
the effectiveness of the error indicators is already available [92, 10, 46]. In NICFD,
non-ideal thermodynamics results in large compressibility of the fluid, non-ideal
dependence of the speed of sound on the density, critical point phenomena, phase
transition. Therefore, the applicability of mesh adaptation criteria derived for
the constant-specific-heat ideal-gas case is questionable in these highly non-ideal
flow conditions. This section presents a first, tentative assessment of the local
mesh adaptation criteria for steady two-dimensional NICFD.

Under-expanded jets represent a valuable benchmark for mesh adaptation
techniques because of the complex flow structure, depicted in Figure 5.12, which
includes oblique and normal shock waves, supersonic expansions and shear dis-
continuities. A supersonic jets is said to be under-expanded if it exits from a
nozzle at a pressure higher than the ambient one. In such a case, the expansion
continues outside the nozzle and a Prandtl-Meyer expansion fan forms at the
nozzle edge, from which a constant-pressure slip line detaches to separates the
jet flow from the quiescent gas. After a first reflection at the jet symmetry axis,
the expansion fan is reflected by the slip line as an isentropic compression fan.
Propagating downstream, compression waves possibly coalesce into an oblique
intercepting shock, which is reflected at the symmetry axis. If the jet is highly
under-expanded, i.e. the ratio between the exit pressure and the ambient one is
sufficiently large, a normal shock, called Mach disk, occurs and a subsonic region
is observed near the centerline. The Mach disk ends at a triple point, where a
further slip line develops to separate the supersonic region (behind the reflected
oblique shock) from the subsonic one. In axisymmetric flows, the interception
shock and the Mach disk form the so-called barrel shock configuration. Follow-
ing further interaction with the slip line and the symmetry line, a complex flow
structure is observed downstream the Mach disk, which influences the shape of
the slip line, namely, of the jet shape with respect to the quiescent ambient.

Guardone and co-workers [60] numerically investigated gas non-ideality and
caloric imperfection for under-expanded jets of nitrogen gas in supercritical con-
ditions using a finite volume scheme for real gases and modeling the fluid ther-
modynamics by means of the polytropic van der Waals approximation. Their
results in dilute gas regime agree fairly well with the experimental results of
Katanoda and co-workers [77, 76]. Following [60], two-dimensional simulations
are performed to study the impact of different solution-based adaptation crite-
ria on the solution of under-expanded nozzle jets in NICFD. The van der Waals
thermodynamic model is used to take into account, at least qualitatively, non-
ideal compressible-fluid effects, which are observed in the proximity of the critical
point. The VThermo library, now included in FluidProp [24], has been linked to
FlowMesh to compute the fluid thermodynamics.

5.3.1 Setup of numerical simulations

Since the present work aims at investigating the flow structure downstream of
the supersonic exit section of the nozzle, only this latter region is simulated. The
computation domain is a 30L×10L rectangular grid composed by triangular ele-
ments, where L is the size of the nozzle exit section which is located on the lower
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part of the left boundary, i.e. for x = 0, 0 ≤ y ≤ 0.5L. As regards boundary
conditions, the nozzle exit section, namely, the inlet section of the computa-
tional domain, is represented by a supersonic inlet and the remaining part of the
left boundary by a solid wall. A symmetric condition is imposed on the lower
boundary, which represents the jet center-line, while constant ambient pressure
is enforced along the upper boundary. Non-reflecting boundary conditions are
imposed on the right boundary (x = 30L) since both supersonic and subsonic
flow regions are possibly observed.

The quasi mono-dimensional theory is used to compute the inflow bound-
ary conditions at the nozzle exit, which depend on the stagnation or reservoir
state (pressure and temperature) of the gas and the ambient pressure. Eight
different operating conditions are considered for nitrogen vapor. The operating
conditions are shown in the thermodynamic plane P -v in Figure 5.13 and gath-
ered in Table 5.2, where the subscripts 0, e and a indicate respectively variables
in the reservoir, on the exit section and in the ambient. All variables are re-
duced with respect to their critical values, namely scaled by TC = 126.192 K
and PC = 3.396 MPa. The reduced ambient pressure is equal to 0.2 in all cases.
To identify the diverse operating conditions, four different values of the ambi-
ent density are chosen which identify four different isentropes: the one through
Pa/PC = 0.2, va/vC = 15 (cases 1 and 2 in Table 5.2) in the dilute gas re-
gion and three in the non-ideal compressible-fluid region. Along each curve, two
pressure ratios Pe/Pa (3.5 and 5) are investigated. Flow quantities at the exit
section, including the Mach number reported in Table 5.2, are computed accord-
ing to the one-dimensional theory of gasdynamics nozzle, under the assumption
of isentropic flows at constant total specific enthalpy [122].

In the following, the results of one operating condition are discussed in details.
The selected test is the one indicated as 8 in Table 5.2 because it presents the
most significant non-ideal compressible-fluid effects, as revealed by the value of
the compressibility factor, which is equal to 0.771 at the exit section.

A reference solution is computed for case 8 over a fine grid of 86 381 nodes
and 257 858 elements. In Figure 5.14 the pressure and the Mach contours are
shown above and below the symmetry line, respectively. The most significant
features of the flow, namely the constant-pressure line which separates the jet
from the ambient fluid and the shock reflection which takes place at jet center
line around x/L = 8, are well captured. Another relevant feature is the inter-
action between the constant-pressure line and the reflected shock, which occurs
very close to the symmetry axis and results in a strong rarefaction wave being
reflected towards the axis. Similar flow structures are obtained also in the other
operating conditions listed in Table 5.2. Note that the flow downstream of the
triple point is not investigated because the viscosity plays a major role in mo-
mentum transfer [77], therefore flow features cannot be correctly captured under
the inviscid approximation considered here.

The adaptive simulations are started from a low accuracy initial solution,
computed using the first-order upwind scheme and a preliminary grid adaptation
procedure is carried out on this solution, resulting in a grid composed by 8408
nodes and 24629 triangular elements. This solution is used as the initial condition
in the following high-resolution computations.
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Figure 5.13: Operating conditions of under-expanded nitrogen jets in the thermody-
namic plane P/PC-v/vC. All variables are scaled with respect to their critical values,
i.e. TC = 126.192 K and PC = 3.396 MPa. The nozzle discharges at an ambient
pressure Pa/PC = 0.2. Four isentropes, along which the expansions take place, are
shown. According to the indexes used in Table 5.2, simulations 1,3,5,7 (indicated with
�) are characterized by a ratio Pe/Pa = 3.5, simulations 2,4,6,8 (indicated with I) are
characterized by a ratio Pe/Pa = 5.0.

Reservoir Nozzle exit Ambient Expansion ratio
P0/PC v0/vC Pe/PC ve/vC Me Ze va/vC P0/Pa v0/va

1 1.75 3.266 0.7 6.15 1.220 0.950 15.00 8.75 0.218
2 2.50 2.579 1.0 4.79 1.215 0.950 15.00 12.5 0.172
3 4.90 1.045 0.7 3.50 1.994 0.819 8.80 24.5 0.119
4 7.00 0.890 1.0 2.72 2.010 0.811 8.80 35.0 0.101
5 3.50 1.187 0.7 3.33 1.750 0.801 8.40 17.5 0.141
6 5.00 0.996 1.0 2.58 1.754 0.792 8.40 25.0 0.119
7 1.75 1.683 0.7 3.15 1.237 0.781 8.00 8.75 0.210
8 2.50 1.359 1.0 2.44 1.226 0.771 8.00 12.5 0.170

8id 2.50 1.317 1.0 2.53 1.223 1.000 8.00 12.5 0.165

Table 5.2: Operating conditions considered for under-expanded nitrogen jets.

Figure 5.14: Reduced pressure (top) and Mach number (bottom) contour plots of the
reference solution of the under-expanded nozzle jet.
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Figure 5.15: Comparison of the results for the under-expanded nozzle jet obtained
with different estimators after 3 adaptation steps, using 2 multi-passages. In the legend,
grad and Hess indicate respectively the gradient and the Hessian operator, D is the
density and Ref is the reference solution. Reduced density and Mach number are shown
along three lines at three different positions across the jet center line.

5.3.2 Assessment of mesh adaptation criteria

Three different x = const . sections of the computational domain are selected to
compare the density and the Mach number profiles obtained in different simu-
lations. These sections, depicted in Figure 5.15, are located: (A) near the exit
section where the Prandtl-Meyer expansion takes place, (B) near the section of
maximum width of the jet and (C) across the reflected shock.

The first comparison is carried out by using simple error estimators, based
on one variable only. The gradient and the Hessian of pressure, Mach number,
density and temperature are tested to drive the adaptation, with kR = 2.5 and
kC = 0.25. As shown in Figure 5.15, the Hessian-based estimator is found to
perform better than the one based on the gradient, although for simplicity the
gradient-based estimator is shown for the pressure only. The expansion fan (sec-
tion A) is well captured by all estimators, with the only exception of the Hessian
of the temperature, which leads to a lower, less accurate maximum value of the
density at the end of the expansion. For x/L = 5, all the estimators produce an
insufficient refinement at the slip line which results in large deviations from ref-
erence density profile, probably because of an insufficient number of adaptation
steps. Using the Hessian of the Mach number or of the density delivers numerical
results that are closer to the reference ones. In all simulations the impact of the
estimator on the Mach profiles is less dramatic than on the density. The region
of the grid near the reflected shock (x/L = 9) is not adequately refined, since
the solutions obtained after 3 steps—very similar for all estimators—are very
different from the reference one.
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Figure 5.16: Comparison of the results for the under-expanded nozzle jet obtained
with different compound estimators after 3 adaptation steps, using 2 multi-passages.
In the legend, G and H indicate respectively the gradient and the Hessian operator, D
is the density and Ref is the reference solution. Reduced density and Mach number
are shown along two lines at two different positions across the jet center line. These
positions are the same B and C of Figure 5.15.

Subsequently, different compound error estimators are compared, with kR =
2.5 and kC = 0.25. Figure 5.16 reports a comparison of the density and Mach
number across the slip-line and the reflected shock computed by combining the
Hessian of the pressure with an additional sensor, which is the Hessian of the
Mach, gradient of the density, gradient of the temperature or the gradient of the
Mach. The Hessian of the pressure allows to better capture shock waves since
the pressure is continuous across the slip line. Based on these results the best
estimators appear to be the ones that include the derivatives of the Mach number
or of the density. This result agrees with the fluid behavior in NICFD, which is
characterized by a large fluid compressibility κ = (∂ρ/∂P )s. Thus, for the same
expansion ratio, larger density gradients are observed in non-ideal compressible-
fluid flows with respect to ideal gas ones and so density-based estimators are
more suitable for mesh adaptation in NICFD regimes.

As observed also by the previous test, the estimator based also on the tem-
perature under-predicts the density value across the slip line at both positions.
In general the use of compound estimators produces results that are in better
agreement with the reference. Tests including the temperature as third vari-
ables in the error estimator have been performed but no significant improvement
was observed. Unfortunately, neither the constant-pressure line nor the reflected
shock are sufficiently defined and more adaptation steps or multi-passages are
therefore required.

To well capture the reflected shock (at x/L = 9), which has an intensity lower
than interception shock, the multi-passage strategy is exploited and 5 passages
are proved to be sufficient to detect also this feature. As regards the constant-
pressure line, it should be pointed out that, because of linearity of the associated
characteristic field, slip lines are extremely hard to capture using an artificial vis-
cosity numerical scheme, such as the Roe scheme used here to capture non-linear
shock waves. To this end, grid adaptation procedure is of primary importance to
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Figure 5.17: Solutions of the under-expanded nozzle jet obtained using the estimator
H(P )+H(ρ) and 5 multi-passages at different adaptation steps (from 3 to 10). Reduced
density and Mach number are shown along two lines at two different positions across
the jet center line. These positions are the same B and C of Figure 5.15.

attain an acceptable level of spatial resolution, thus reducing the effect of numer-
ical viscosity adequately. Figure 5.17 shows how the solution varies by increasing
the number of adaptation steps (from 3 to 10), using 5 multi-passages and the
error estimator H(P ) + H(ρ). Six steps proved to be sufficient to obtain con-
vergence of the adaptation procedure, i.e. to obtain a computational grid which
satisfies the imposed level of error uniformity (kC and kR). The number of grid
nodes after six adaptation steps is 41 644 nodes. A comparison of the grid and
the Mach contour plot after 1 and 6 adaptation steps is shown in Figure 5.18.

Furthermore, Figure 5.19 shows the number of grid nodes and elements at each
adaptation level for the estimator H(P ) +H(ρ) using 2 and 5 multi-passages. If
only 2 passages are performed, the number of grid nodes reaches a maximum
value after five steps (14 222 nodes, 27 797 elements). In the following steps,
the number of removed nodes is greater then the new ones. When 5 passages
are carried out, the number of nodes increases more rapidly during the first five
steps, then it follows still an increasing trend but less steep.

Finally, a comparison to the ideal gas model results was performed. The
boundary conditions at the nozzle exit section were computed imposing the same
ambient conditions, pressure ratios Pe/Pa and P0/Pe and reservoir pressure of the
real-gas case 8. The numerical values are displayed in the last row of Table 5.2.
Figure 5.20 compares the solution computed with van der Waals gas model and
ideal gas model after six adaptation steps and using the error estimator H(P ) +
∇(ρ). As expected, the ideal gas model shows a different location of the shock
reflection and, in particular, the reflected shock is downstream the one predicted
by the reference solution. Furthermore, the same combination of adaptation
parameters applied to the ideal gas case results in a different and less refined
grid with respect to the van der Waals model (17 229 nodes).
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Steps

N
o
d
e
s

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
Nodes

Triangles

2MP

5MP

[x10
3
]

Figure 5.19: Increase of grid nodes and elements with adaptation steps using 2 and 5
multi-passages, and the estimator H(P ) +H(ρ).



88 5.3 Under-expanded nozzle jets of non-ideal compressible-fluids

x/L

y

0 5 10 15

0

1

2

3

4

/L 0

1

2

3

4 Mach: 0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4

0

y/L

M
a

c
h

0 1 2 3
0

0.05

0.1

0.15

0.2

0

1

2

C: x/L=9.0

y/L

M
a

c
h

0 1 2 3
0

0.04

0.08

0.12

0

1

2

3

4B: x/L=5.0

van der Waals Ideal gas Mach number Nondimensional density

Figure 5.20: Solution of the under-expanded nozzle jet obtained using the estimator
H(P ) +∇(ρ) and 5 multi-passages with van der Waals gas model and ideal gas model.
Top: Mach contour plot, with van der Waals model above the center-line and the ideal
gas model below. Bottom: reduced density and Mach number along two lines at the
section B and C of Figure 5.15.



Chapter 6
Three-dimensional flows
around wings

The proposed three-dimensional conservative adaptive scheme is here as-
sessed for problems of aeronautical interest, by performing numerical sim-
ulations of standard test cases involving flows around wings. Section 6.1
presents a steady computation of transonic flow around the ONERA M6
wing, during which mesh adaptation is exploited to achieve a grid spac-
ing suitable to resolve the peculiar lambda shock. An oscillating infinite-
span NACA 0012 wing is then investigated in Section 6.2 and the three-
dimensional results are compared with the bi-dimensional ones obtained in
the previous chapter. To assess the capability of dealing with arbitrary large
movements, an unsteady simulation of the wing traveling through the still
domain at the flight velocity (laboratory reference frame) is performed. Fi-
nally, similar simulations are carried out also for a finite-span NACA 0012
wing, a model which is of primary importance in rotor-crafts CFD since it
can represent the tip of a rotor blade.

6.1 Transonic steady flow around ONERA M6 wing

The popular test case of the transonic flow around the ONERA M6 wing is tackled
to assess the capability of the conservative adaptive scheme to correctly capture
the shock wave that occurs over three-dimensional wing in standard flight condi-
tions. The inviscid solution is computed for a free-stream Mach M∞ = 0.8395 and
an angle of attack α = 3.06◦, with an ambient pressure Pref = 3.11866 atm and
a temperature Tref = 255.6 K. In such flight conditions, the well-known lambda-
shock appears on the upper surface of the wing. As explained by Kuzmin [80],
this peculiar configuration is due to the swept leading edge of the wing and to
a small curvature of the ONERA D profile, which is used to build the M6 wing.
The polytropic ideal gas model is adopted to describe fluid behavior and the
high-order formulation is used to computed the integrated numerical fluxes.
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The computational domain consists in a rectangular box, in which the root
plane is characterized by z = 0, the opposite plane by z = 9.2c, the lateral planes
by x = ±16c and the upper and lower planes by y = ±14c, where c is the wing
chord at the root, with x = 0 at the leading edge and x = c at the trailing edge.
The wing span is approximately b = 1.48c.

The initial mesh contains 93 432 nodes and 517 364 tetrahedra, with a quite
uniform spacing over the wing surface. Six complete cycles of mesh adaptation
and solution computation are performed. The grids and the Mach contour plots
at different adaptation cycles are shown in Figure 6.1. The peculiar lambda-
configuration formed by the Mach iso-lines becomes more and more definite as
more adaptation cycles are performed. Starting from a relatively coarse grid, the
coarsening strategy is exploited only in the last two cycles, and, even in these
cycles, a weak coarsening threshold is used. Thus, the number of grid points
progressively increases: the mesh contains 341 481 nodes after 3 adaptation cycles
and 626 227 nodes after six. However, it should be noticed that the adaptation
strategy is capable of identifying precisely where the refinement is required and
the grid spacing is reduced in a quite limited region of the grid.

The profile of the pressure coefficients obtained on the final grid at six dif-
ferent sections along the wing span are shown in Figure 6.2, along with the
experimental data [114]. The deviation between the converged numerical results
on the adapted grid and the experimental results can possibly be justified by
the inviscid approximation adopted in the present work. Nevertheless, a good
agreement in the central part of the wing and quite far from the shock is reached.

To evaluated the solution improvement achieved thanks to mesh adaptation,
a numerical simulation on a fixed fine grid is performed. Figure 6.3 displays the
fixed computational grid, which is composed by 525 688 nodes and 3 065 274
elements, and the solution. The lambda-shock appears to be less resolved with
respect to the solution obtained after six and even after three adaptation levels.
The improvement in the solution appears more clearly in Figure 6.4 which shows
the pressure coefficient profiles at z/b = 0.65 obtained with different adaptation
cycles and over the fixed fine grid. It can be noticed that three adaptation steps
are sufficient to reach a better accuracy with respect to the fixed grid, despite a
reduction of about 65% of the grid points.

A final remark concerns the computational time. The whole adaptive simula-
tion (six mesh adaptation steps plus six solution computations) takes 8d− 17h :
10m on 12 Cores of Intel Xeon CPU X5650, 2.67 GHz. Such an high computa-
tional time is due to the fact the software tool is still under-development and it
is not optimized, and only a rough parallelization of the solution computation
procedure is available, see Subsection 4.4. Nevertheless, a comparison between
the fixed-grid computation and a single adaptation step can give a rough estimate
of the overhead due to adaptation. The fifth adaptation step is chosen for this
comparison, because the number of grid nodes increases from 470 428 to 558 683
and so it is comparable with the number of nodes of the fixed grid. On the same
12 Cores, the fixed computation takes 29h−29m while the adaptation step takes
38h−2m, so an overhead of about 27% occurs, but an higher accuracy is reached.
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Figure 6.1: Grid and Mach contour plots of the transonic ONERA M6 flow after
different adaptation cycles. In the first line, initial grid and solution; in the second and
third line, grid and solution after 3 and 6 adaptation cycles.
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Figure 6.2: Pressure coefficients at different sections of the ONERA M6 wing at
M∞ = 0.8395 and α = 3.06◦. Comparison between the numerical results obtained after
six adaptation steps and the experimental ones [114].
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Figure 6.3: Fixed fine grid and solution for the ONERA M6 wing at M∞ = 0.8395
and α = 3.06◦.
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6.2 Infinite-span NACA 0012 wing

Numerical simulations of the infinite-span NACA 0012 wing are performed and
compared to the bi-dimensional results. The flow around an infinite-span wing
is indeed bi-dimensional since it varies only in the x and y directions and the
behavior of the flow around each section along the span (z direction) is equal to
the one around the airfoil.

The computational domain is built as shown in Figure 6.5. The wing span
is equal to its chord c and the far-field consists in a cylindrical surface with a
radius of 12c, centered at the leading edge. To model the infinite span, the lateral
planes at z = 0 and z = c are considered as walls, which, under the considered
inviscid approximation, corresponds to a symmetry boundary condition.

In all the numerical experiments presented in this section the flow behavior
is modeled under the polytropic ideal gas assumption and the high-order for-
mulation is used to computed the integrated numerical fluxes. For unsteady
simulations, the Backward Euler scheme is chosen for the time integration.

6.2.1 Steady simulation in the wing reference

A steady simulation of the infinite-span NACA 0012 wing at M = 0.755 and
α∞ = 0.016◦ is performed and used as the initial condition for the unsteady
simulations presented in the next subsections.

A quite coarse grid made of 26 142 nodes and 94 561 triangles is used to
start the simulation. Since the domain geometry is re-constructed by Mmg3d
from the initial grid, very small elements are gathered on the wing surface to
allow an accurate representation of the wing geometry. To increase the accuracy
of the solution computed on this grid, two adaptation steps are performed and
the grids and the solutions of Figure 6.6 are obtained. The final grid contains
105 002 nodes and 555 229 tetrahedra. Figure 6.7 shows the details of the final
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grid near the trailing and leading edge.

6.2.2 Transonic flow around the oscillating NACA 0012 wing

The same unsteady simulation of the transonic flow around a pitching NACA
0012 airfoil of Subsection 5.1.2 is performed over the infinite-span wing. There-
fore, the wing experiences an oscillation with amplitude α = α∞+sin(ωt) around
the line connecting the quarter-chord of all sections. The external boundary rep-
resenting the far-field is kept fixed, while the mesh on the boundaries representing
the walls are deformed to allow the movement of the wing roots.

A combined error estimator is used to drive grid adaptation to follow the shock
that moves from the upper to the lower surface of the wing and also to refine
the grid near the trailing edge, where vorticity is released because of the pitching
motion. The Hessian of the pressure and of the magnitude of the vorticity are
mixed (with relative weights of 0.83 and 0.17, respectively) and 3 steps are carried
out while computing the refinement and coarsening thresholds by means of the
multi-passage strategy.

As in the bi-dimensional test, two different non-dimensional time steps are
used, ∆t = ∆t0 and ∆t = 2∆t0, which result respectively in the 200 and 100
iterations for the whole simulation time T sim = 4π/ω = 87.1778.

Figure 6.8 displays the grids obtained at different time steps for the simula-
tion performed with ∆t0. The figure displays the initial time t = 0 at the top-left
corner, then starting from the top-right corner it shows the grid during the sec-
ond period, more precisely at t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and
t = 2T . With respect to the bi-dimensional case, to avoid an excessive increase
in the number of grid points, the coarsening feature of Mmg3d is exploited. With
the adaptation parameters kR = 2.92 and kC = 0.7, the number of grid points
oscillates between approximately 100 000 and 190 000 during the whole simula-
tion. The maximum is reached at t = 1.25T and t = 1.75T when the incidence
is maximum (in absolute value) and the shock has the strongest intensity. Fig-
ure 6.9 shows the grid near the leading and trailing edge at t = 1.25T , t = 1.75T
and t = 2T , to highlight the deformation that the mesh experiences in order to
follow the movements of the wing, which reaches the maximum amplitude at the
trailing edge.

Figure 6.10 shows the contour lines of the Mach number at the time steps
shown also in Figure 6.8. Thanks to mesh adaptation the shock over the upper
and the lower airfoil surfaces is well captured. As in the bi-dimensional test,
the slip line behind the trailing edge is not well resolved, however the refinement
that occurs in this region indicates that the error estimator is capable of detecting
the release of vorticity, but much more nodes are required to resolve the shear.
Unfortunately, as for the M6 wing test, the computational time is large. The
simulation with 200 time-steps takes 19d − 18h : 2m on 12 Cores of Intel Xeon
CPU X5650, 2.67GHz, while the 100 time-steps simulations takes 12d−10h : 36m.
In all tests, at each time step, the solution of the System (2.33) is the most time-
consuming part.

The bi-dimensional character of the flow is well reproduced in the three-
dimensional results. As it can be noticed in the Mach contour plot of Figure 6.11,
the solution along all the wing span is practically the same. Figure 6.12 and
Figure 6.13 highlight better this result for several time steps. The former shows
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Figure 6.6: Grid and Mach contour plots of the transonic steady flow around the
infinite-span NACA 0012 wing after different adaptation cycles, plane at z = c. In the
first line, initial grid and solution; in the second and third line, grid and solution after
1 and 2 adaptation cycles.
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Figure 6.7: Details of the grid near the leading and trailing edge for the transonic
steady flow around the infinite-span NACA 0012 after 2 adaptation cycle.

three pressure iso-lines at three different sections, namely at z/b = 0.25, at
z/b = 0.5 and at z/b = 0.75, while the latter displays the pressure coefficients
over the wing surface at the same three sections. A nearly null deviation can be
detected between different wing sections.

The results obtained for different values of the time step ∆t are compared
in Figure 6.14, which depicts the lift coefficient versus the angle of attack, along
with the results obtained in the bi-dimensional simulation of Subsection 5.1.2.
No significant differences can be noticed between the curves. However, it should
be noticed that, increasing the time step, the refinement parameters is increased
to kR = 3.1 to avoid an excessive growth of the number of grid points.

Furthermore, the effect of the prediction step is investigated. In addition to
the simulation previously described in which a prediction step is performed, an
additional simulation is carried out skipping the prediction phase. The results
are compared through the curve CL-α of Figure 6.14. Although only one solution
computation is performed at each time step, instead of two as in the simulation
with the prediction step, a comparable computational time was required. More
precisely, the 200 time-steps simulation takes 20d−1h : 11m on 12 Cores of Intel
Xeon CPU X5650, 2.67GHz. This quite surprising result is due to the fact that
with the prediction step the computation of the solution on the adapted grid is
faster because the initial guess solution (computed during the prediction step) is
close to the final one.

Moreover, the importance of the prediction step is confirmed by the impos-
sibility to obtain the solution of the 100 times-steps simulations with the same
parameters but without the prediction step. Probably, due to high unsteadiness
of the problem, with the time step ∆t = 2∆t0 the adaptation is carried out on
a mesh that is too different from the actual one and therefore the convergence
is extremely difficult to achieve during the computation of the solution over the
new adapted grid.

Finally, the conservativeness of the proposed adaptive strategy is assessed by
evaluating the integral value of the density over the domain during the simulation,
which is shown in Figure 6.15 for the three different tests, i.e. using the time steps
∆t0 and 2∆t0 and without performing the prediction step. The variation around
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Figure 6.8: Detail of the computational grids for the pitching infinite-span NACA
0012 wing at different time steps using ∆t = ∆t0, plane at z = c. From the top-left
to the bottom-right: grid at t = 0T , t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and
t = 2T = T sim.
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Figure 6.9: Details of the grids near the trailing and leading edge for the pitching
infinite-span NACA 0012 wing at different time steps using ∆t = ∆t0. From top to
bottom: grid at t = 1.25T , t = 1.75T and t = 2T = T sim.
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Figure 6.10: Mach contour lines of the flow around the pitching infinite-span NACA
0012 wing at different time steps using ∆t = ∆t0, plane at z = c. From the top-left
to the bottom-right: grid at t = 0T , t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and
t = 2T = T sim.
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the mean value is very limited, below the 0.05%, and the larger variation occurs
in the initial part of the simulation. This fact is probably due to the different
adaptation parameters used in the steady and unsteady simulations. After some
time, this difference becomes irrelevant and the integral value remains constant,
proving the conservative character of the adaptive scheme.

6.2.3 Unsteady simulation in the laboratory reference

The capability of dealing with large displacements of solid boundaries is now
assessed. The same flow around the infinite-span NACA 0012 wing described in
Subsection 6.2.1 is now simulated. Instead of performing the simulation in the
wing reference frame as usual, the simulation is performed in the laboratory ref-
erence frame, namely the wing travels through the domain at the actual velocity
and at the far-field quiescent air conditions are enforced.

The initial solution is obtained by subtracting to the solution obtained in
the steady simulation the free-stream, both in term of the momentum m and
of the total energy Et. Then, a displacement of one chord in the negative x-
direction, i.e. ∆x = −c, is imposed to the wing with a velocity corresponding
to M∞ = 0.755. The same angle of attack α∞ = 0.016◦ is kept to be able to
compare the results.

The whole simulation time, which corresponds to a non-dimensional time
T sim = 1.1294, is divided into 125 time steps, so that the Courant number on the
minimum allowed grid edge is 2. A Backward Euler scheme is used to perform
time integration. The error estimator composed by the Hessian of the pressure
and of the vorticity is used to drive solution-based adaptation, with kR = 2.91
and kC = 0.7. Two different simulations are carried out using different weights for
the pressure and the vorticity in the compound error estimator: in the simulation
labeled Unsteady A wP = 83% and wω = 17%, while in the simulation labeled
Unsteady B wP = 67% and wω = 33%, where wP and wω are the weights of the
Hessian of the pressure and of the vorticity, respectively.

Figures 6.16 and 6.17 show the grid and the pressure contour lines at the
beginning of the simulation Unsteady A and when one third, two thirds and the
whole displacement is carried out. As expected the variation in the number of
grid points is quite limited, since also the variations in the solution are small.

A quantitative comparison is displayed in Figure 6.18 which shows the varia-
tion of the lift coefficient during the unsteady simulations and the value obtained
in the steady one. In both cases, the variations around the steady value remain
limited, assessing the capability of the proposed approach to deal with large
boundary displacement.

Finally, Figure 6.19 displays the variation in time of the integral value of the
density over the domain, for both test cases. As for the pitching test case, the
variation around the mean value is very limited, below the 0.05%, assessing the
conservativeness of the proposed adaptive scheme.

6.3 Finite-span NACA 0012 wing

Finally, some simulations of the flow around the finite-span NACA 0012 wing are
performed. Such a flow field is fully three-dimensional. Indeed, the difference
between the pressure on the upper and lower wing surface results in a circulatory
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Figure 6.11: Mach contour plot of the flow around the pitching infinite-span NACA
0012 wing at different time steps using ∆t = ∆t0. Only the wall at z = 0 and the
upper wing surface are visible. From the top-left to the bottom-right: grid at t = 0T ,
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Figure 6.12: Pressure iso-lines of the flow around the pitching infinite-span NACA
0012 wing at different time steps. The iso-lines of the pressure reduced with respect
to the free-stream value at P/P∞ = 0.75, P/P∞ = 0.85 and P/P∞ = 0.91 at three
different section are compared. From the top-left to the bottom-right: grid at t = 0T ,
t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and t = 2T = T sim.
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Figure 6.13: Pressure coefficient over the pitching infinite-span NACA 0012 wing
at different time steps at three different section are compared. From the top-left to
the bottom-right: grid at t = 0T , t = 1.0T , t = 1.25T , t = 1.5T , t = 1.75T and
t = 2T = T sim.
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Figure 6.15: Variation in time of the integral value of the density over the domain for
the transonic pitching infinite-span NACA 0012 wing. The results obtained with the
two different time-steps and without the prediction step (with ∆t = ∆t0) are shown.
The mean value is also displayed, along with the variations ±0.05% around the mean
value.
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Figure 6.16: Mesh on the plane z = c at the beginning, at 33%, at 66% and the end
of one chord displacement for the unsteady simulation of the infinite-span NACA 0012
wing at M∞ = 0.755 in the laboratory frame. The initial position of the trailing edge
is indicated by the dashed vertical line.
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Figure 6.17: Pressure contour lines on the plane z = c at the beginning, at 33%, at
66% and the end of one chord displacement for the unsteady simulation of the infinite-
span NACA 0012 wing at M∞ = 0.755 in the laboratory frame. The initial position of
the trailing edge is indicated by the dashed vertical line.



108 6.3 Finite-span NACA 0012 wing

 0.005

+ 0.005

 X

C
L

0 0.2 0.4 0.6 0.8 1

0.005

0

0.005

0.01

0.015
Unsteady A

Unsteady B

Steady

Figure 6.18: Lift coefficient for the simulation of the infinite-span NACA 0012 wing
at M∞ = 0.755 in the laboratory frame. The results of the unsteady simulation are
compared with the value obtained in the steady simulation, CL = 0.0043. Two different
set of adaptation parameters are compared.
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Figure 6.19: Variation in time of the integral value of the density over the domain for
the unsteady simulation of the infinite-span NACA 0012 wing in the laboratory frame.
The results obtained with the two different set of adaptation parameters are compared.
The mean value is also displayed, along with the variations ±0.05% around the mean
value.
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Figure 6.20: Computational domain for the simulations of the flow around the finite-
span NACA 0012 wing.

motion near the wing tips, where vortices develop. The aerodynamic coefficients
of a finite span wing are significantly different from the ones of the airfoils, mainly
because of the induced drag due to the down-wash that occurs near the wing
ends. Beside fixed-wing applications, this kind of simulations are of interest
for the rotor-craft CFD community. For instance, a periodically pitching finite-
span wing can represent the variation in the angle of attack that a rotor blade
experiences during a complete rotation [85].

The numerical investigations presented in this section refer to a NACA 0012
wing with a span of half chord, namely b = 0.5c. The computational domain,
represented in Figure 6.20, consists, in addition to the wing, in three surfaces:
the wall at the wing root (z = 0), the opposite plane at z = 2c and the cylin-
drical surface representing the far-field. As for the infinite-span wing tests, the
polytropic ideal gas model and the high-order scheme are used.

6.3.1 Steady simulation

A steady simulation of the finite-span wing is first performed at Mach M∞ =
0.755 and α = 0.016◦. The initial grid contains 15 484 nodes and 58 261 elements.
Six mesh adaptation cycles are carried out by using an error estimator based on
the Hessian of the pressure and of the vorticity. With respect to the infinite-span
wing test, a more marked refinement is performed, especially near the trailing
edge and the wing tip, where vortices are supposed to form.

Figure 6.21 displays the grid and the Mach contour plot at the beginning
of the simulation and after three and six adaptation steps. As expected, the
pressure distribution differs significantly from the one obtained in the infinite-
span wing of Subsection 6.2.1, despite the equal free-stream conditions and the
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Test kR kC wP wω Comput. time

A 3.2 0.65 0.5 0.5 3d− 7h : 54m
B 2.9 0.68 0.77 0.23 5d− 9h : 37m
C 2.93 0.68 0.77 0.23 4d− 19h : 48m
D 2.9 0.65 0.77 0.23 6d− 12h : 31m
E 2.9 0.62 0.77 0.23 7d− 17h : 16m

Table 6.1: Combinations of adaptation parameters and strategies used in different test
cases for the unsteady simulation of the transonic flow around the finite-span NACA
0012 wing. The error estimator is composed by mixed the Hessian of the pressure and
of the vorticity according to the relative weights wP and wω. The computational time
required by the whole simulation is reported in the last column.

angle of attack. No shock is observed over the upper wing surface.

6.3.2 Unsteady simulation in the laboratory reference

The same transonic flow around the finite-span NACA 0012 wing of the previous
subsection, i.e. at Mach M∞ = 0.755 and α = 0.016◦, is now simulated in the
laboratory reference frame. As described in Subsection 6.2.3, a quiescent flow
is enforced over the far-field boundary and the wing experiences a movement of
one chord through the domain at the actual velocity. The time required by the
whole movement is divided into 125 time steps and time integration is performed
through the Backward Euler scheme.

Mesh adaptation is performed at each time step and different error estimators
are tested. Figure 6.22 shows the grid at different times obtained using kR = 2.9,
kC = 0.65 and three steps in the multi-passage strategy. During the simulations
the number of grid points progressively decreases, because of the coarsening that
occurs mainly in central part of the wing.

The capability of the conservative adaptive ALE scheme is confirmed in the
present test by the limited variations in the pressure field and in the lift coefficient,
respectively shown in Figures 6.23 and 6.24 at the beginning, at one third, at
two thirds and at the end of the one chord displacement.

Different error estimators are compared in terms of lift coefficient. The re-
sults of the five combinations of adaptation parameters reported in Table 6.1 are
compared in Figure 6.25. In all cases, the variations around the value obtained
in the steady simulation are limited, proving that the validity of the conserva-
tive adaptive scheme is not dependent on a particular combination of adaptation
parameters.

In such a test case, the capability of well resolving the grid where vorticity
is released is an important feature. To this end, Figure 6.26 shows the iso-lines
for |ω| = 0.7, at different time steps. Unfortunately, the coarsening that occurs
in the central part of the wing modifies improperly the grid, thus the capability
of detecting vorticity deteriorates during the simulation. A better resolution
may be achieved by a finer grid or a more intense refinement. However this
possibility has not been investigated because the computational time, reported
for the five simulations in Table 6.1, are quite large, at least at the current level
of development. A more effective parallelization of the code is recommended to
compute the solutions over a grid sufficiently fine to well resolve wing-tip vortices.
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Figure 6.21: Grid and Mach contour plots of the transonic steady flow around the
finite-span NACA 0012 wing after different adaptation cycles. In the first line, initial
grid and solution; in the second and third line, grid and solution after 3 and 6 adaptation
cycles.
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Figure 6.22: Surface mesh viewed from z = 2c at the beginning, at 33%, at 66% and
the end of one chord displacement for the unsteady simulation of the finite-span NACA
0012 wing at M∞ = 0.755 in the laboratory frame. The initial position of the trailing
edge is indicated by the dashed vertical line.
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Figure 6.23: Pressure contour lines view from the plane z = 2c at the beginning,
at 33%, at 66% and the end of one chord displacement for the unsteady simulation of
the finite-span NACA 0012 wing at M∞ = 0.755 in the laboratory frame. The initial
position of the trailing edge is indicated by the dashed vertical line.
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Figure 6.24: Lift coefficient for the simulation of the finite-span NACA 0012 wing
at M∞ = 0.755 in the laboratory frame. The results of the unsteady simulation are
compared with the value obtained in the steady simulation, CL = 0.00024.
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Figure 6.25: Lift coefficients for a finite-span NACA-0012 wing at M∞ = 0.755. The
different error estimators listed in Table 6.1 are compared.
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Figure 6.26: Iso-surface of vorticity magnitude |ω × v| = 0.7 at the beginning, at
33%, at 66% and the end of one chord displacement of the simulation of the finite-span
NACA 0012 wing in the laboratory reference frame. Also pressure contour lines are
shown.





Chapter 7
Conclusions and future
developments

A novel interpolation-free conservative scheme for adaptive three-dimensional
grids was presented for tetrahedral elements. The finite volume discretization
of the Euler equations was obtained by a node-pair formulation, which allows
to store all grid information in an edge-based data structure and to discharge
element-related information. The Arbitrary Lagrangian-Eulerian formulation
was exploited to enforce the governing equations over dynamic grids in a conserva-
tive fashion, even in presence of topology modifications due to mesh adaptation.
Indeed, thanks to the three-steps procedure, proposed for bi-dimensional prob-
lems by Guardone and co-workers [59, 71] and here extended to three-dimensional
problems, the volume changes due to local mesh adaptation are treated as a series
of fictitious continuous deformations of the finite volumes that compose the com-
putational domain. Thus, contrary to standard adaptive schemes, the proposed
approach does not require any interpolations of the solution between different
grids and the conservative and stability properties of the ALE scheme are pre-
served.

To overcome the numerical difficulties that arises when performing three-
dimensional mesh adaptation, especially in terms of computational efficiency and
mesh quality, the tetrahedral re-mesher Mmg3d developed by Dobrzynski [36]
was exploited to perform node insertion, node deletion, edge swap and point
displacement. The target grid spacing was computed on the basis of an error
estimator obtained from the derivatives of some relevant flow variables, as for
instance the Hessian of the pressure, of the Mach number or of the vorticity. The
three-steps procedures requires that the volume change due to mesh adaptation
is computed immediately after the modification, otherwise it may be impossible
to retrieve the history of all modifications. Hence, the re-mesher was linked
to the flow solver FlowMesh, actually under development at the Department of
Aerospace Science and Technology of Politecnico di Milano, which was provided
by a new data structure inter-operable with Mmg3d. Suitable communication
functions were added to re-mesher to promptly pass the information about the
performed local modification to the flow solver. Moreover, the grid velocity
is computed as a function of the volume change so that the Discrete Geometric
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Conservation Law is automatically fulfilled even if grid topology changes. To this
end, for all possible local mesh adaptation operators a procedure that computes
the volume change taking as inputs the positions of the involved nodes before
and after the grid modification was developed and implemented in FlowMesh.

A robust deformation strategy to follow arbitrary large boundary displace-
ments was developed starting from the elastic analogy proposed by Batina [12]. If
the displacement performed with fixed connectivity is not sufficient, mesh adap-
tation is exploited to restore or increase the mesh quality. Moreover, when the
boundaries of the computational domain experience large movements, a predic-
tion step is carried out to compute the solution after mesh deformation, so that
the target grid spacing refers to the updated geometry. Otherwise, the mesh is
adapted with a significant delay with respect to the solution.

Different test cases were performed to evaluate the capabilities of the pro-
posed strategy. First, the validity of the numerical procedure, in particular the
exchange of information between the re-mesher and flow solver, was assessed in
bi-dimensional problems within the ideal-gas region, since the communication
functions implemented in the bi-dimensional version of the re-mesher were very
similar to those implement in Mmg3d. Then, the three-dimensional adaptation
strategy was assessed thanks to the piston-induced shock-tube flow problem,
which presented two main difficulties: firstly the computational domain experi-
enced a large deformation (at the end of the simulation the length of the domain
had been reduced by more than an half), secondly the shock that formed at the
beginning of the motion traveled through the domain. The numerical strategy
successfully dealt with both tasks and a good agreement between the numerical
results and the analytical solution, in particular in terms of shock location, was
achieved with different combinations of adaptation parameters. Moreover, an in-
vestigation about the adaptation criteria in the so-called non-ideal compressible-
fluid flow regime was carried out through different numerical simulations of super-
sonic under-expanded nozzle jets operating close to the liquid-vapor saturation
curve. In this region, the fluid behavior departs significantly from the one pre-
dicted by the ideal gas model and the selection of the proper error estimator may
be not straightforward because of the larger fluid compressibility, the non-ideal
dependence of the speed of sound on the density and critical point phenomena.
In the performed simulations, the estimators that included the derivatives of the
Mach number or of the density proved to be more suitable to detect the relevant
flow features.

Three-dimensional accurate simulations of aeronautical interest were carried
out using the proposed conservative adaptive interpolation-free strategy. The
steady transonic flow around the ONERA M6 wing were numerically computed
to assess the capability of the present approach to accurately capture the relevant
flow features. Thanks to six mesh adaptation cycles, the peculiar lambda-shock
that formed in the considered flight conditions over the upper wing surface was
well resolved, even if the initial grid spacing over the wing surface was uniform
and quite coarse. Then, unsteady simulations of the flow around the pitching
infinite-span NACA 0012 wing were performed. The bi-dimensional character
of this flow was accurately reproduced in the three-dimensional results and a
good agreement with the bi-dimensional results obtained for the pitching airfoil
was obtained. To assess the capability of the proposed approach of dealing with
large boundary displacements, the flow around the infinite-span NACA 0012
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wing was numerically investigated from the laboratory reference frame, namely
a quiescent flow was enforced over the boundary domain (i.e. the far-field) and
the wing was moved through the domain at the flight velocity. With respect to
the standard steady simulation in the wing reference frame, the results of the
unsteady simulation showed a limited variation, more precisely the oscillations
of the lift coefficient around the steady value are less than 0.005%. In both
infinite-span wing problems, the conservativeness of the proposed method was
proved by a limited variation of the integral value of the density over the domain.
Finally, some simulations of the fully three-dimensional flow around the finite-
span NACA 0012 wing were performed. This kind of simulations are of primary
interest for the rotor-craft CFD community, since they can represent the periodic
motion experienced by a rotor blade. The capability of accurately predicting the
flow fields characterized by large boundary deformations was confirmed by the
the unsteady simulation of the finite-span wing at Mach 0.755 in the laboratory
reference frame.

All the performed tests proved that the developed numerical strategy is ca-
pable to successfully deal with arbitrarily large displacements of the boundary
of the computational domain and to properly modify the grid spacing according
to the solution in a conservative fashion. These features make the proposed ap-
proach well-suited to perform numerical investigations of geometrically complex
and three-dimensional moving-body problems and of flow fields where the exact
location of the relevant flow features is not known a priori, which are of primary
importance in many applications, like for instance in rotor-craft simulations,
turbo-machinery analysis, load separation problems and design of aeronautical
control surfaces.

Unfortunately, no numerical investigations of complex geometries were car-
ried out because the actual level of development of the flow solver is not sufficient
to perform these simulations within an acceptable computational time. Indeed,
only a rough parallelization of the solution computation procedure is available
within the numerical tool. An optimization of the whole numerical strategy is re-
quired to thoroughly exploit the conservative three-dimensional adaptive scheme
in complex domains. Besides a more efficient parallelization of the solution com-
putation, also the mesh adaptation strategy has to be optimized to make a full
use of the available computational resources. However, the distribution of the
mesh adaptation procedure among several processors is not straightforward, be-
cause the re-mesher operators require neighborhood information. Therefore, an
high amount of communications between adjacent sub-domains is required to
achieve a mesh quality comparable to the one obtained in a sequential procedure.
Nevertheless, sequential re-meshers can be used within a parallel framework, as
proposed in [81], in an iteratively fashion. The initial mesh is partitioned into
several sub-domains and an existing serial mesh adaptation algorithm is exploited
on each sub-mesh. The interface made by the grid edges that cross different sub-
domains is not modified by the sequential re-meshers. At the end of the iteration,
the sub-domains are modified so that the nodes that were located on the inter-
face are moved along with all the connected elements into a single sub-domain.
Then, the whole algorithm starts again and mesh adaptation is carried out over
the modified sub-domains. Indeed, at each iteration the interface moves to a new
position and in some iterations mesh adaptation is performed over the whole
domain.
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A further development of the implemented strategy could be the enhancement
of the error estimator. In the present thesis, error estimators based on the flow
variables were chosen since they are simple and easy to be implemented. However,
more accurate alternatives are available, like for instance the estimators based
on the interpolation or discretization errors. To overcome the local character
of these estimators, adjoint-based estimators could be implemented to obtain a
local indicator for mesh adaptation related to the error in the output quantity of
interest [46]. Moreover, anisotropic metric maps could be introduced to obtain a
target grid spacing which provides different edge lengths in different directions.
The implementation of anisotropic estimators would be quite straightforward
since it affects a limited portion of the software and it would provide, at equal
adaptation parameters, a saving in the number of the inserted nodes. Indeed, for
instance, if a shock wave is detected, the grid would be refined only across the
shock, but not along the other directions.

Furthermore, the present strategy can be easily extended to hybrid grids.
Thanks to the grid transparency of the median-dual mesh approach and to the
node-pair representation, in the flow solver all grid information is associated to
the edges, so the use of different kinds of element would pose no problems in the
solution computation. However, to efficiently perform mesh modifications the re-
mesher Mmg3d works only with simplex elements, i.e. tetrahedra in 3D, which
allow a fast research of adjacent elements. Nevertheless, the proposed approach
can be extended to hybrid grids composed by a region of tetrahedral elements
and other regions in which mesh adaptation is not required, like for instance
the computational meshes used in viscous simulations composed by a region of
prismatic elements with an high aspect ratio near the solid walls and tetrahedral
elements elsewhere.
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