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There were two roads out of Ashton, a new one which was
paved, and an older one that wasn’t. People didn’t use the old

road anymore, and it had developed the reputation of being
haunted. Well, Since I had no intention of ever returning to

Ashton, this seemed as good a time as any to find out what lay
down that old road.

Edward Bloom, Big Fish (2003)
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Abstract

In the context of hybrid RANS/LES methods, a promising framework
is represented by the hybrid filter approach proposed by Germano in
2004. The filter, H, is composed by the LES filter F and the statisti-
cal operator RANS E : H = kF+(1−k)E , where k is a blending factor
which varies from 0 (pure RANS) to 1 (pure LES). Applying this filter
to the Navier-Stokes equations it is possible to obtain a new set of for-
mally correct hybrid equations. The hybrid filter has been studied and
analysed, and a new approach for the Reynolds stress tensor has been
proposed. This term that is usually modelled by means of an explicit
RANS model, here it is reconstructed, exploiting the properties of the
hybrid filter, from the LES subgrid stress tensor and the resolved ve-
locity field. As a consequence, no explicit RANS model, and then no
additional equations, are required. This results in a very simple and
cheap hybrid method, in which the RANS contribution is used to in-
tegrate, and not to substitute, LES in the context of coarse grid. The
methodology has been studied using FEMilaro, a gnu license software
originally developed at the mathematics department of Politecnico di
Milano, and improved during this work. The space discretization of
the hybrid filtered equations has been obtained by means of the dis-
continuous Galerkin (DG) finite element method. The approach has
been initially tested with constant and uniform blending factor k for
the turbulent channel flow testcase, obtaining a general improvement
of pure LES results. The simulations have highlighted also a clear
dependence between k and the quantity of turbulent energy modelled
and resolved. In order to set a different value of RANS contribution
in the different parts of the domain, also a space dependent blending
factor has been considered. This modification makes the equations
very complex because of the additional terms related to the non com-
mutativity of k and space derivatives. In order to obtain a simple and
applicable formulation a piecewise constant blending factor has been
used. In fact, keeping the blending factor constant in the element, the
additional terms related to the space derivatives go to zero. Moreover,
the discontinuity between two consecutive elements are treated with
the standard numerical fluxes of the DG approach used for the space
discretization. Numerical simulations have been performed for the
turbulent channel flow testcase and for periodic hill flow, showing a
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significant improvement of the pure LES for the first testcase. On
the other hand, no significant benefits have been obtained for the
periodic hill flow, probably this is related to the difficulty of deter-
mining an appropriate blending factor function for a more complex
geometry. However, the results obtained confirm that the hybrid fil-
ter with RANS reconstruction approach can be a promising technique
for turbulence modelling. In fact, it can reasonably be expected that,
introducing the right value of the blending factor, the methodology
analysed can be suitable for improve accuracy of the turbulence de-
scription for coarse grid. Therefore, future work will be focused on
the research of a reliable criterion for the choice of the optimal value
of the blending factor, element by element.



Sommario

Nel contesto dei metodi ibridi RANS/LES un approccio molto pro-
mettente è rappresentato dal filtro ibrido proposto da Germano nel
2004. Il filtro (H) è composto dal filtro LES (F) e dall’operatore sta-
tistico RANS (E): H = kF+(1−k)E ; dove k rappresenta un peso che
varia tra 0 (pura RANS) e 1 (pura LES). Applicando il filtro ibrido al-
le equazioni di Navier- Stokes è possibile ottenere un nuovo sistema di
equazioni filtrate formalmente corrette. Il filtro ibrido è stato studia-
to e analizzato, ed un nuovo approccio per il calcolo del tensore degli
sforzi di Reynolds è stato proposto. Questo termine è generalmente
modellato utilizzando un modello RANS. Nell’approccio utilizzato in
questa tesi invece il termine viene ricostruito a partire dallo sforzo sot-
to griglia LES e dal campo di velocità risolto, sfruttando le proprietà
del filtro ibrido. Di conseguenza il modello RANS non è più necessa-
rio, risparmiando le relative equazioni e ottenendo una metodologia
semplice ed economica. Il metodo è stato analizzato utilizzando il
software FEMilaro, sviluppato dal dipartimento di Matematica del
Politecnico di Milano e arricchito nel corso di questa tesi. La discre-
tizzazione spaziale è ottenuta utilizzando l’approccio degli elementi
finiti di tipo Discontinuous Galerkin (DG). Il nuovo approccio è stato
inizialmente testato utilizzando un peso k costante ed uniforme per
il canale piano turbolento, ottenendo un generale miglioramento dei
risultati ottenuti con la simulazione LES. Le simulazioni hanno anche
mostrato una chiara dipendenza tra il peso k ed il rapporto tra energia
turbolenta risolta e modellata. Al fine di impostare un diverso valo-
re del contributo RANS nelle diverse aree del dominio è stato anche
analizzato il caso di un fattore di peso dipendente dallo spazio. Que-
sta dipendenza rende le equazioni molto più complesse, a causa della
comparsa di termini aggiuntivi legati alla non commutatività tra la
derivata spaziale e il filtro ibrido. Per ottenere una formulazione più
semplice ed applicabile è stato utilizzato un peso costante a tratti. In
questo modo, mantenendo il peso costante all’interno degli elementi, i
termini aggiuntivi si annullano mentre le discontinuità tra gli elementi
sono trattate utilizzando i normali flussi numeri che caratterizzano il
metodo DG utilizzato per la discretizzazione spaziale. Le simulazioni
numeriche sono state effettuate per il canale piano e per il flusso tra
colline periodiche, ottenendo per il primo caso un netto miglioramen-
to rispetto alla pura LES. Per quanto riguarda le colline periodiche
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invece non sono stati ottenuti significativi vantaggi, probabilmente a
causa della difficile scelta di un peso ottimale. Tuttavia i risultati
confermano che la metodologia può rappresentare una promettente
strategia per la modellazione numerica di flussi turbolenti. Infatti
può essere ragionevolmente supposto che, utilizzando il giusto peso,
sia possibile migliorare l’accuratezza delle simulazioni numeriche su
griglie troppo lasche per una pura LES. Gli sviluppi futuri saranno
quindi concentrati sull’elaborazione di una strategia per l’ottenimen-
to di un fattore di peso ottimale per ogni elemento del dominio di
calcolo.
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Chapter 1

Introduction

In this chapter an introduction about the topic of hybrid RANS/LES meth-
ods is presented. The first section concerns a brief history of fluid dynamics
from the origins to the computational fluid dynamics. This part is mainly
based on [1],[2] and the purpose is to provide an historical background for
the computational fluid dynamics (CFD), summarizing the most important
steps that led to the formulation of Navier-Stokes equations and after to
their modelling. After the general introduction about the history of fluid
science, the framework of the hybrid RANS/LES methods with the differ-
ent models and strategies is described in details. Finally, the motivation
and the outline of this work is presented.

1.1 Historical notes

1.1.1 From the origins to the Navier-Stokes equations

As the great part of science and our culture, also fluid dynamics traces its
roots to the Greeks. In fact, even tough some fluid knowledges and hy-
draulic techniques were known and applied for irrigation and sailing since
prehistoric age, Aristoteles (384-322 BC) laid the foundations for modern
science introducing the concept of continuum and fluid resistance. More-
over, also the first quantitative result is due to a Greek scientist, Archimedes

1



2 CHAPTER 1. INTRODUCTION

(287 - 212 BC), who studied the fluid statics and the pressure. He under-
stood that in fluid the pressure is linearly proportional to the depth, and
that each point of wetted surface is subjected to same force. His famous
principle: ”Any object, wholly or partially immersed in a fluid, is buoyed
up by a force equal to the weight of the fluid displaced by the object” can be
considered the first quantitative result in fluid physics. Moreover, he also
grasped the effect of the pressure gradient, supposing that a fluid moves
from high pressure to low pressure zone.

After Archimedes we have to wait more then 1500 years to have other
improvements in fluid dynamics. In fact, Romans built a lot of complex
aqueduct but did not achieve scientific results and no results was achieved
also during the middle ages. With Leonardo da Vinci (1452 - 1519) starts
a new era for fluid dynamics. His interest in fluids, and most specifically
in aerodynamics, grow up with his fascination with flight. He observed
the birds’ flight and draw a lot of flight machines, ornithopter, with the
purpose to imitate the birds and the bats giving to the men the possibility
of flying. Obviously, he never succeeded, and he probably neither really
tried to build such machines. However, his contribution to fluid dynamics
is more related to his observation of rivers and channels. First of all, he
understood that for the the conservation of mass the product between the
flow velocity and the conduct area have to be constant. He also observed
and draw the vortical structure in separated flow. Moreover he understood
the principle which is in the basis of the modern wind tunnel: ”The same
force as is made by the thing against the air, is made by the air against the
thing”.

In the following century the fluid dynamics research was mainly dedi-
cated to reduce the drag for the ship, especially for military purpose. A
huge develop from theoretical point of view started in the seventeenth cen-
tury with Isaac Newton (1642-1727) who studied the law of motion and
dedicated the second book of his Principia (1687) to fluids. His main pur-
pose was to study the resistance, in particular he found a contradiction
between Kepler statements, that affirmed that planet’s motion was lack-
ing of dissipative phenomena, and the Descartes assumption according to
which the space was filled with matter. As was already clear, also from
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experience, a body moving in a fluid it is subject to a resistance force.
Newton studied this force and found out that it was proportional to the
flow density, the body reference surface, i.e. the circle built on the diameter
for a planet, and, most important the square of the velocity. This impor-
tant result, obtained theoretically by Newton, was already known thanks
to the experiments performed by Mariotte and Huygens. Some conflicts
about the credits of this finding still remain, in fact Mariotte published the
results before, in the 1673, but Huygens, who accused Mariotte of plagia-
rism, obtained the same results some years before. Anyway, what really
matters is that up to this point scientists, including also Galileo, believed
that aerodynamics force was simply proportional to the velocity. The rea-
sons were also for philosophical: why in a perfect world could exit a non
linear relationship between force and velocity?

Nevertheless, the most important improvements for fluid dynamics ar-
rived in the 18th century. At the beginning of this century, in the University
of Basel in Swiss, a thirteen years old boy called Leonard Euler (1707-1783)
starts his studies under the supervision of the professor Johann Bernoulli
(1667 - 1748), the father of Daniel Bernoulli (1700 - 1782). Euler, in par-
ticular, and Daniel Bernoulli lay the foundation for modern fluid dynamics.
Daniel Bernoulli was the first one to use the term hydrodynamics in his
most famous works called Hydrodinamica, and his name is strictly linked to
the famous principle: P1 + 1

2ρv
2
1 = P2 + 1

2ρv
2
2; even tough he just stated that

the pressure decreases as the velocity increases. The first one who really
formalized the Bernoulli principle was Euler. Euler was a very brilliant sci-
entist and he produced a huge amount of articles, despite he become blind
in the middle of his career. His most important work from fluid dynam-
ics point of view, are the governing equations for inviscid flow, which now
are known as Euler equations. Those equations represents a landmark for
fluid dynamics, in fact they are still a valid model to describes some fluid
phenomena.

In order to have a complete model we just need to add another ingre-
dient to the Euler equations: viscosity. Two scientists did that during the
19th century, their names were Louis Marie Henri Navier (1785 - 1836) and
George Gabriel Stokes (1819 - 1903). Navier and Stokes worked indepen-
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dently and with totally different approach. Navier was a civil engineer and
he was famous as bridge builder, he wrote firstly the complete governing
equations for fluids including the friction in 1833, even tough he did not
understand the role of shear stress. In fact, he add the correct term to the
Euler equation in order to take into account some generic molecular forces.
On the counter part, Stokes was a great mathematician and physicist, pro-
fessor at Cambridge university where he held the Lucasian Chair, the same
held by Newton two century before, until his death. Stokes did not know the
works of Navier and derived correctly the modern Navier-Stokes equation
in 1845. He started from the concept of internal shear stress and, differently
from Navier, he considered the constant that multiply the second derivative
of the velocity as the viscosity coefficient. Nevertheless, there is also a third
scientist who worked at the Navier-Stokes equations. He knew the results
obtained by Navier but he understood also their physical meaning, so he
correctly derived the equations two years before Stokes. This scientist is
Adhémar Jean Claude Barré de Saint-Venant (1793-1886) but his name is
now associated only to the stress analysis and shallow waters equations.

From physical point of view, Navier–Stokes equations probably repre-
sent the goal of fluid dynamics and no modifications have been applied since
1845.

Nevertheless, after having derived the governing equations the challenge
is moved to how to use it and how to integrate them. Navier–Stokes equa-
tions are non linear and only for very particular conditions it is possible to
find an analytical solution. Moreover, these few solutions are unstable and
they presents strong discrepancy with respect to the real flow observed in
the experiments.

This behaviour was clear since the birth of Navier–Stokes equations.
As noted by Darrigol [3], in 1840’s Stokes already suspected that these
differences were related to instability phenomena. In the same years, Saint-
Venant explicitly spoke about tumultuous character of the fluid motion,
about forty years before the 1883, year of the well-known experiment in
which Osborne Reynolds (1842-1912) showed the transition from laminar
to turbulent regime in the pipe flow.

A great part of the fluid dynamics research between the second half of



1.1. HISTORICAL NOTES 5

nineteenth century and the twenties century has been dedicated to find a
good way to apply and simplify Navier–Stokes and Euler equations in order
to obtain realistic results also for turbulent flow.

In these years several simplified theories and models to compute aero-
dynamics load were developed. Probably the most important researches
in this fields have been carried out by Ludwig Prandtl (1875 - 1953), who
described the boundary layer and studied the stall phenomena.

However,especially looking at our days, the main important idea is prob-
ably due to Reynolds. In 1895, noting the similarity with kinetic gas the-
ory, he proposed to apply a statistical approach to the fluid equations. His
intuition consisted in averaging the Navier–Stokes equations, obtaining a
new set of equations, now called Reynolds-Averaged Navier Stokes (RANS)
equations. RANS equations are characterized by a new, unknown term the
Reynolds stress tensor, which need to be modelled. Nevertheless, RANS
equations was not applicable at the beginning of 20th. This approach will
become very popular only several decades later, when the computers dras-
tically transformed the approach to fluid dynamics.

1.1.2 The computer era: The birth of Computational Fluid
Dynamics

In the second half of 20th, science, and more in general our life, has dras-
tically changed. The computers become rapidly faster and cheaper, for
fluid dynamics point of view this means the beginning of new era. Let us
consider that in 1922 Lewis Fry Richardson in the book ”Weather Predic-
tion” [4] supposed to predict the weather using a ”computer” consisting in
64000 humans working together in a theatre. Less then forty years later,
the first computations using linear potential began available. In the fol-
lowing decades the computational capability of computers rapidly grow up,
and began sufficient to compute Euler equations (1980) and finally, in the
nineties, also RANS began feasible for industrial and research application.

But, there is not only Euler and RANS equations. In the 1963, Smagorin-
sky [5] firstly proposed a novel mathematical model for fluid equations. The
main purpose was related to the meteorology, in particular the aim was to
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predict the atmospheric currents. The approach was based on filtering
the Navier-Stokes equations, to the end of resolving only the large eddies
and using a model for the remaining, smaller, ones. Therefore, this new
methodology provide an instantaneous representation of the flow field and
it is capable of describing turbulent fluctuations. This approach is now
known as Large Eddy Simulation (LES).

From practical point of view, the difference with respect to RANS is
that the LES model concerned only the smaller scales that can be supposed
more universal, i.e. less dependent to the external characteristic of flow.
Therefore, the LES models can be simpler with respect to the RANS ones,
requiring less calibration constants and equations. On the other hand,
the need of resolving the large eddy strongly increase the grid accuracy
required, leading to a huge increase of the computational cost.

In the last thirty year, numerical simulations of fluid phenomena have
been widely performed both from industry and research applications. For
this reason the development of RANS and LES models has been one of the
most studied topic in fluid science.

As discussed in the previous section, RANS approach was formulated
at the end of 19th century, therefore several models were proposed. The
great part of the models is based on the concept of eddy viscosity and in
particular to the well known Boussinesq hypothesis. This hypothesis states
that the Reynolds stress tensor is proportional to the mean strain rate
tensor by the eddy viscosity coefficient. Thanks to Boussinesq assumption
the problem begin finding the correct value for the eddy viscosity.

A huge amount of eddy viscosity models have been proposed in the last
decades: the simpler algebraic, or zero-equations, models like Cebeci-Smith
[6] or Baldwin-Lomax [7], the one equation models like the classical Prandtl
mixing layer model or the Spalart-Allmaras model [8] and finally the two
equations models like k − ε [9], k − ω [10] and k − ωSST [11].

Besides the eddy viscority models there is another important categories
RANS model: Reynolds stress equation model (RSM) or second moment
closure model [12]. In these methods the computations of the Reynolds
stress tensor is obtained solving an equation for each component of the
unknown tensor.
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Due to the greater simplicity of the model, the variety of LES mod-
els is more limited. The most classical model is the Smagorinsky model
[5], which is a zero equations model based on the Boussinesq hypothesis.
The eddy viscosity depends on a static and uniform coefficient known as
Smagorinsky coefficient. The most significant improvement has been ob-
tained introducing a dynamic procedure for the computation of the local
value of the Smagorinsky coefficient [13], [14], which then can vary in time
and space. The dynamic procedure allow also to have negative values of
eddy viscosity that enables the back-scatter, i.e. the energy transfer from
the small scales to the large scales, improving the accuracy of the model.

1.2 Hybrid RANS/LES methods

1.2.1 Why Hybrid RANS/LES Methods?

Both from industrial and research point of view, very often is required a
good description of turbulent flows and their unsteady features, such as
forces and vortical structures. This requirement have to take into account
a practical and very important limitation: the computational cost.

As previously discussed, the LES is able to represents an instantaneous
picture of the flow, ensuring good accuracy, but it is very demanding in term
of cost. Therefore, although the huge improvements in computer science,
is still far from being applicable for complex geometries. In a famous paper
of 2000 [15] Spalart stated that an LES simulation for a complete wing will
be unfeasable until the 2045. In a well resolved LES in fact, we have to
model a great part of turbulent kinetic energy, at least the 80% of the total
amount, according to the literature [16], this leads to the need of a very fine
grid, that in certain condition can be comparable to the ones required by
a DNS. Moreover, even tough with a smaller coefficient, similarly to DNS
also LES depends on the Reynolds number [17]. As highlighted by Gopalan
[18], in a fully resolved LES simulation of a wall bounded flow, the number
of the grid points scales with the Reynolds number as N ∼ Re1.76 , while
for RANS the dependency concerns only the wall normal direction and the
number of grid points scales as N ∼ lnRe. Nevertheless, we remark that
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RANS can only provide a description of the mean quantities.
Therefore, we can identify a sort of chiasmus: LES is sufficiently detailed

but too expensive, RANS is sufficiently cheap but too superficial. For
these reasons, seems natural trying to combine the two approach, obtaining
hybrid RANS/LES methods.

1.2.2 Framework

The first question to be answered is: how to combine a time dependent
approach like LES with a statistical one like RANS? This issue is not a
trivial question. First of all, we should notice that in the field of hybrid
methods we almost always refer to unsteady–RANS (URANS), in which
the solution is time dependent [19],[20]. The fundamental assumption for
URANS is a clear scale separation, i.e. the temporal scales of turbulence
have to be sufficiently smaller of scales of the flow analysed, for a review we
refer to [21]. Moreover, as higligthed by [22], even tough RANS and LES
have a very different basis, they are very similar from structural point of
view. Let see the RANS and LES momentum equation for incompressible
flow, for RANS we have:

∂t〈ui〉E + ∂xj (〈ui〉E〈uj〉E) + ∂i〈p〉E = ∂xj
(
ν∂xj 〈ui〉E

)
− τEij , (1.1)

whereas for LES we have:

∂t〈ui〉F + ∂xj (〈ui〉F〈uj〉F) + ∂i〈p〉F = ∂xj
(
ν∂xj 〈ui〉F

)
− τFij . (1.2)

where 〈〉 are used to represent quantities filtered F ,averaged E or hybrid -
filtered. The two equations have different unknowns, 〈ui〉E and 〈ui〉F , but
are formally identical and the only difference is related to the stress tensor
τij which represents the Reynolds stress for RANS and the subgrid stress
tensor for LES. Therefore, in principle, changing this term we can move
from a RANS to LES, this concept is known as implicit filtering and is
fundamental for most of hybrid models. In this context the distinction be-
tween RANS and LES is not always clear. A fundamental characteristic of
LES is the presence of a filter that depends to the step size of the computa-
tional grid. According to [22] this dependencies is fundamental to identify
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an proper LES, in RANS in fact we have dependencies only on geometric
features like wall distance and physical quantities.

The DES and the unified methods

One of the first and probably the most famous hybrid model, the Detached
Eddy Simulation (DES)[23], exploits the idea of implicit filtering. The DES
in fact is based on the Spalart-Allmaras turbulence model [8]. The model
consists in an empirical transport equation for the quantity ν̃:

∂tν̃+〈ui〉E∂xi ν̃ = cb1S̃ν̃+
1

σ

[
∂xi ((ν + ν̃)) ∂xi ν̃ + cb2 (∂xi ν̃)2

]
−cw1fw

(
ν̃

d

)2

.

(1.3)
ν̃ is then linked to the turbulent viscosity used to model Reynolds stress
tensor by the relation ν̃ = νt/fν1 (y+). In order to switch to an LES model
Spalart and Allmaras introduced a modification on the last terms of eq. 1.3,
substituting the wall distance d with an explicit function of the grid step
size. Therefore, in the final model the equation is the same in the whole
domain and the original length scale d is replaced by

d̃ = min(d,CDES∆) (1.4)

where CDES is a constant and ∆ was originally defined as the maximum
grid size in the three direction: ∆ = max(∆x,∆y,∆z).

From eq. 1.4, we can see that close to wall where the d is minimum
the model turns to RANS, while where the distance from the wall is grater
then CDES∆ a pure LES simulation is performed. Therefore, in DES ”the
boundary layer is treated by RANS, and regions of massive separation are
treated with LES” [24]. From theoretical point of view RANS is used as
a wall model for LES, this concept was firstly proposed by Schumann [25]
and extended in [26], while examples of applications can be found also in
[27].

The main problem related to DES is represented by the presence of
grey areas between LES and RANS. In fact, in the RANS area the velocity
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fluctuations are strongly limited and their kinetic energy is obtained by
modelling. On the contrary, in LES, where the modelled part is just the
20% of the total amount of energy, the solution exhibit strong fluctuations
that need to be resolved. After the transition to LES we can incur in a
situation in which modelled stresses are reduced without a correct compen-
sation by the resolved ones. This phenomena has been defined as modelled
stress depletion [28] and results in a lack of energy and momentum transfer
between LES and RANS. This can produce a log-layer characterized by
unphysichal eddies and streaks whose dimensions is dependent to the grid
size [29] [30].

In general, problems at the interface between RANS and LES are very
common in hybrid methods, Piomelli et Al. [31] showed that a possi-
ble strategies to fix these problems can be represented by introducing a
backscatter model consisting in an artificial forcing term in the interface
region.

In the specific of DES this problems is mainly related to a too early
transition to LES. As explained by [28] in fact, for certain grids a small
step size could lead to CDES∆ < d, see eq. 1.4, also in the boundary layer
where we would need to use RANS.

In order to fix this flaw, the same authors proposed a new version of
DES called DDES, i.e. Delayed Detached Eddy Simulation [28]. In this
new method the eq. 1.4 is modified in

d̃ = d− fdmax(0, d− CDES∆). (1.5)

Where fd is a function designed to avoid a too early transition to LES,
ensuring that the boundary region is treated by RANS.

In the review provided by Frölich and Von Terzi [22], methods like DES
and DDES are classified as unified methods. The main characteristic of
this typology is that the unknown is a generic hybrid quantity , e.g. the
velocity 〈ui〉H, and the following equation is solved for the whole domain:

∂t〈ui〉H + ∂xj (〈ui〉H〈uj〉H) + ∂i〈p〉H = ∂xj
(
ν∂xj 〈ui〉H

)
− τHij . (1.6)

In the context of unified methods, different strategies exist to determine
the term τHij . For example it is possible to introduce a clear interface
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between RANS and LES area and then put respectively τHij = τEij or τHij =

τFij . The interface can be fixed and constant, hard interface (e.g. DES),
or depending step by step on the solution, soft interface (e.g. DDES).
This class of unified methods is the most popular, and DES and DDES
are implemented in almost every commercial CFD software. Therefore
interfacing methods have been applied in a wide range of applications:
from the study of the flow over a delta wing [32] to the analysis of the
slipstream of a train [33], but also in mixing process simulation [34], heat
transfer problems [35] and several other studies.

However it is also possible to move from RANS to LES in a smooth
manner, this the case of the blending models. Here there is no more a
distinction between RANS and LES, but τHij it is the result of linear com-

bination between the RANS model τEij and the LES ones τFij . One of the
first attempt to obtain a blending model can be found in [29].

The idea is similar to the shear-stress transport model [11]. This RANS
turbulence model, known as k−ωSST , is combination of k−ω model near
to the walls and k − ε away. In fact, in order to transform the k − ωSST
RANS model to an hybrid method we can maintain the same formalism
substituting the k − ε model with an LES model [36],[37].

In a blending model a critical point is represented by the choice of the
correct blending factor. The issue is not trivial, especially considering that,
differently from the method with interface, here RANS is not used simply
as wall model but could coexist with LES in a wider area of the domain.
Usually the blending factor is related to the distance from the wall distance
and to the grid size [38], but could be also computed using a dynamic
procedure [39].

Although it presents significant differences with respect to the methods
described above, Frölich and Von Terzi considered also the FSM (Flow Sim-
ulation Methodology) methods [40], [41],[42] as a unified-blending model. In
fact, in FSM methods LES is not explicitly modelled and the hybrid method
is obtained by damping the RANS model:

τHij = f∆(
∆

lK
)τEij . (1.7)
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The f∆ depends on the grid size ∆ and a characteristic local length scale
of turbulence, for example the Kolmogorov length-scale.Therefore, f∆ is
space and time dependent and varies from 1, pure RANS, to 0 removing
the model, i.e. DNS, where ∆ ≈ lK .

Segregated methods

Another possibility to obtain an hybrid method is simply to divide a priori
the domain in RANS and LES area, we called these methods segregated.
It is worth noting that this approach is completely different from a unified
model with hard or soft interface: here different equations are solved in
the different regions and, most important, the solution continuity at the
interfaces is lost. Doing that it is possible to save cost applying LES only
in certain areas. Moreover, at least in principle, we can combine a real
stationary RANS simulation with a completely unsteady LES.

This approach is very suitable for the cases in which totally different
flow conditions are present in the domain. For example, in [43] a segregated
approach has been used to model the flow in a gas turbine engine, using a
RANS solver for the turbine and an LES solver for the flow in the combustor
which is characterized by complex phenomena like detached flows, chemical
reactions and heat release.

The main problem for this approach is to allow exchange of informations
between the RANS and LES regions, therefore the coupling conditions be-
come of fundamental importance. Obtaining boundary condition for RANS
is relatively easy, in fact it is possible to evaluate RANS variable just aver-
aging the LES solution. The point here is to avoid problems of reflections
in the LES domain. The problem become harder when boundary condi-
tions for LES are needed, because the unsteady fluctuations have to be
reconstructed starting from the mean flow computed by means of RANS
simulation. This situations become critical when the flow is directed from
the RANS region toward the LES region.

The two most common approaches are the vortex method [44] [45], [46]
and the enrichment technique [47].

In the vortex method, similarly to what already seen for the grey areas in
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the unified methods [31], a velocity perturbation is added to the mean flow,
but in this case the perturbations is obtained by means of series of vortex.
As stated by [48] the advantage is that the velocity field is temporally and
spatially correlated. Moreover, it takes into account the anisotropy of the
flow in the near-wall region, leading to a more realistic representation of
turbulence with respect to the ones obtained adding a random perturbation.

Concerning the enrichment technique, the boundary conditions for LES
are obtained reconstructing the LES solution in some ghost nodes in RANS
region and vice versa. For an example of application we remand to [49],
where the flow over an airfoil at Mach=0.16, near to stall conditions has
been studied. A generalization of enrichment procedure, based on convec-
tive boundary conditions for velocity, have been proposed in [50]. In this
method no calibration constant are required, and a study of the pressure
coupling condition for incompressible case is performed.

Besides these techniques several other approaches have been studied
in the literature. For example in [43] the fluctuation obtained by means a
previous LES computation are added to RANS field, in [51] was suggested to
use a random turbulence generator, in [52] a review of the existing coupling
technique and a method based on turbulent viscosity reconstruction are
proposed. This last approach has been successfully applied to the study of
shock wave - boundary layer interaction [53].

Second generation URANS

Recently, hybrid methods are evolving from the original concept of wall
modelling LES, i.e. an LES simulation in which RANS is used to model
the flow near to the wall. Several new hybrid methods are seen no more as
the coupling of two different approaches like RANS and LES, but as inter-
mediate approaches more similar to an evolution of the unsteady RANS.
Frölich and Von Terzi collected these methods in a third category of hy-
brid methods, called 2nd generation URANS. The difference between this
category and the previous ones is that there is no more an explicit de-
pendencies from the grid size, therefore we can not strictly speak of LES
methods. Nevertheless, 2nd G-URANS aims to resolve a significant part of
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turbulent fluctuations simply reducing the modelled contribution. In order
to do that, a possibility is to introduce a damping factor for the original
Reynolds stress tensor, similarly to what happens in the FSM methods.
This is the strategy applied in the PANS, i.e. Partially Averaged Navier-
Stokes, model [54]. PANS method is based on a constant damping factor,
prescribed a priori and depending only on the amount of energy that we
want to resolve without involving the grid resolution, this is the difference
with respect to FSM approach, see eq.1.7.

The PANS has been widely applied for cavitation problems [55],[56],[57].
Recently, comparisons with LES and URANS using the cavity flow as test-
cases [58], [59] have been published. For the case considered the main
flow statistics obtained with PANS are comparable to the ones obtained
with URANS, probably as a consequence of the limited range of turbu-
lence scales exhibited by the flow. Nevertheless, PANS approach seems to
improve URANS results regarding the description of the flow structures.
A similar very approach is represented by PITM, i.e. Partially Integrated
Transport Model, [60], a RANS based model in which a dissipation equation
is used to obtain the length scale of subgrid turbulence.

Scale-Adaptive Simulation (SAS) [61] is another relevant 2nd G-URANS
method. SAS model is based on the k−kL model [62], a transport equation
for the quantity kL where L is an integral length scale of turbulence and
k is the turbulent kinetic energy. Menter et Al. introduced the Karman
length-scale into the turbulence scale equation, obtaining a dynamic model
capable of resolving turbulent fluctuations and to switching to a standard
RANS simulation in the regions of stable flow. For an overview of SAS
methods we remand to [63]. This approach has been successfully applied
in many testcases improving the URANS results [64], in particular seems
to suitable for massive separated flow [65].

Filtering approach

In addition to the categories analysed by Frölich and Von Terzi, we can
add a fourth strategy, represented by the hybrid filter methods. In these
methods the equations are derived applying the hybrid filter directly to
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the Navier-Stokes equations. Doing that, is possible to obtain a new set of
exact equations which already contain RANS and LES terms.

In the literature we can find two example: the additive filter proposed
by Germano in 2004 [66] and the spatial filter proposed by Hamba in 2011
[67]. The latter is defined as

〈ui〉H =

∫
dx′G(x− x,∆)ui(x

′) (1.8)

where G is the filter operator, but the filter width ∆ is now a function of
the position , independent of the grid spacing. Therefore, where ∆ has the
same size of grid spacing a pure LES is obtained, while, if ∆ increase the
simulation move toward a RANS, until reaching a pure RANS simulation
in the limit of ∆→∞.

Hamba analysed in particular the effect of the extra terms that appear
as a consequence of the non-commutativity between the filter and the space
and time derivative. In his study shows that the extra terms are active
in the transition area between RANS and LES, allowing the energy and
momentum transfer. Therefore, extra terms act similar to the stochastic
forcing terms added in the unified methods [31], but in this case they are
not artificial.

The Germano hybrid filter is based on the weighted sum of the LES filter
with the statistical operator RANS, and is the one analysed in this work.
Up to now, Rajamani and Kim [68] for incompressible flow and Sanchez-
Rocha and Menon [69], [70] for compressible flow, studied this approach
focusing the attention on the role of the extra terms.The Germano hybrid
filter will be described in detail in the following chapter.

In general, the strength of the filtering approaches rely on the reduction
of empiricism: once the filter is defined the LES/RANS coupling is obtained
mathematically without further assumptions. On the other hand,the draw-
back is that the equations are not simply to be implemented, and modelling
all the additional terms is not trivial. Despite some promising results, these
problems have restricted the applications of this strategy only to academic
research.
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1.3 Motivation of the work and outline

The purpose of this work is to analyse the Germano additive filter [66], in
order to understand the perspectives of the technique for complex simula-
tions and practical applications. In particular, we investigate an innovative
approach that exploit the numerical properties of the hybrid filter, leading
to a method in which no explicit RANS model is needed. The procedure,
called RANS-reconstruction, allows to reconstruct the Reynolds stress ten-
sor from the resolved velocity field and the LES sub-grid stress tensor [71].

In this framework we are no more oriented to a classical wall modelling
LES, i.e. an hybrid approach in which RANS is simply used as a wall
model, but to an LES simulation in which the RANS contribution is used
to model part of the energy unresolved for the low grid resolution .

In the following chapter the Germano hybrid filter will be presented.
In chapter 3 the numerical approach based on the Discontinuous Galerkin
finite element method is introduced and the LES modelling is described
in details. RANS-reconstruction procedure and the hybrid methodology
studied is presented in chapter 4, while the numerical results obtained with
new formulation are reported in chapter 5.

Finally, in the chapter 6 concluding remarks and future perspectives are
reported.



Chapter 2

Hybrid filter approach

In this chapter the hybrid filter approach proposed by Germano [66] is
described. The definition of hybrid filter, its properties and the related
hybrid filtered equations are shown in the first section, while in the second
section a resume of the studies already conducted by Rajamani and Kim
[68] and Sanchez-Rocha and Menon [69], [70] is presented.

2.1 Germano’s hybrid filter

In 2004 Germano [66] proposed a new approach for hybrid RANS/LES
methods. He introduced an hybrid additive filter, obtained combining a
statistical operator RANS with an LES filter. The hybrid filter is given by

H = kF + (1− k)E , (2.1)

where k is a blending factor and F and E are respectively the LES filter
and the statistical RANS operator. The blending factor, in general, can
vary between 1, resulting in a pure LES, to 0 yielding a pure RANS.

The assumptions made by Germano are:

EH = E , EF = E , F ∂

∂x
=

∂

∂x
F . (2.2)

Notice that (2.2) is the standard assumption of commutativity between
filtering and differentiation for LES models. Such an assumptions is not

17
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strictly satisfied by the operator F that will considered here. However, we
will ignore the resulting error, as it is often done in LES modelling, when
a non-uniform filter is used [72]. Nevertheless, the non commutative terms
can not be ignored for the hybrid filter. In fact, we observe that it does not
commute with space and time derivatives

H ∂

∂x
=

∂

∂x
H− ∂k

∂x
(F − E) , H ∂

∂t
=

∂

∂t
H− ∂k

∂t
(F − E) . (2.3)

Therefore, additional terms appear in the hybrid equations if the blending
factor is space or time dependent.

The definition of the hybrid filter 2.1, together with the assumptions
2.2, leads to the following relations:

〈ui〉E = 〈〈ui〉H〉E (2.4)

〈ui〉F =
〈ui〉H − (1− k)〈ui〉E

k
(2.5)

where 〈〉E means RANS average, while 〈〉H and 〈〉F stand for respectively
the hybrid and the LES filter operator. Starting from the incompressible
Navier-Stokes equations

∂

∂xj
uj = 0 (2.6)

∂

∂t
ui +

∂

∂xj
(uiuj) +

∂

∂xi
p− ν ∂

2ui
∂xj2

= 0, (2.7)

applying the hybrid filter 2.1, and assuming a time-invariant blending
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factor k, we obtain a new set of hybrid filtered equations

∂

∂xj
〈uj〉H =

∂

∂xj
k (〈uj〉F − 〈uj〉E) (2.8)

∂

∂t
〈ui〉H +

∂

∂xj
(〈ui〉H〈uj〉H) +

∂

∂xi
〈p〉H − ν

∂2〈ui〉H
∂xj2

=

∂

∂xi
k (〈p〉F − 〈p〉E) +

∂

∂xi
(〈uiuj〉F − 〈uiuj〉E)

− 2ν
∂

∂xi
k
∂

∂xj
(〈ui〉F − 〈ui〉E)− ν ∂

2k

∂xj2
(〈ui〉F − 〈ui〉E)

− ∂

∂xj
τH(ui, uj), (2.9)

where the term τH(ui, uj) = 〈uiuj〉H − 〈ui〉H〈uj〉H is the hybrid turbulent
stress term, which is given by

τH(ui, uj) =kτF (ui, uj) + (1− k)τE(ui, uj)+

k(1− k)(〈ui〉F − 〈ui〉E)(〈uj〉F − 〈uj〉E). (2.10)

In 2.10, τF (ui, uj) = 〈uiuj〉F − 〈ui〉F〈uj〉F represents the LES subgrid
stress tensor,τE(ui, uj) = 〈uiuj〉E −〈ui〉E〈uj〉E is the Reynolds stress tensor
and k(1 − k)(〈ui〉F − 〈ui〉E)(〈uj〉F − 〈uj〉E) is an additional stress terms
related to the additivity of the filter[66], usually known as Germano stress.
It is worth to notice that this last term explicitly couples RANS and LES
velocity and does not appear in the traditional blending models [29],[36],
[39]. In fact, the Germano stress, together with the extra terms, represents
a peculiarity of the hybrid method herein studied.

As highlighted Rajamani and Kim [68], from the continuity equation 2.8
we can see that the velocity is no more divergence free. This look strange,
in fact can leads to a fail in the mass conservation. However, the same



20 CHAPTER 2. HYBRID FILTER APPROACH

authors show that the equation is divergence free on the average:

〈 ∂
∂xj
〈uj〉H〉E = 〈 ∂k

∂xj
(〈uj〉F − 〈uj〉E)〉E

∂

∂xj
〈〈uj〉H〉E =

∂k

∂xj
(〈〈uj〉F〉E − 〈〈uj〉E〉E) (2.11)

∂

∂xj
〈uj〉E = 0.

The rhs of continuity equations can be ignored in LES or RANS area,
as well as the region in which the k is constant, but become relevant in the
case of a smooth transition between RANS and LES [68].

A relevant aspect of the hybrid filter approach is that it make up a gen-
eral framework, in which the subgrid and the Reynolds stress tensor in 2.10,
can be modelled using respectively any LES and RANS turbulence model.
More than that, the stresses can be also reconstructed from a precedent nu-
merical simulation, using experimental data or, concerning the RANS term,
reconstructed implicitly from LES model and resolved quantities exploiting
the hybrid filter properties, as we will see in the chapter 5.

2.2 Early results

Rajamani and Kim [68] studied the hybrid filter approach for the incom-
pressible case. In particular they analysed the role of the Germano stress
and of the additional terms related to the non commutativity, which will
be referred to as extra terms (HT).

They demonstrated that the contribution of HT and Germano stress is
very relevant in the transition area. In particular, by means of an a priori
test, they showed that the absence of the Germano stress led to significant
errors in the total shear profile, and that HT can reach the 33% of the total
amount of the rhs of the momentum equation 2.9.

In the numerical simulations of the turbulent channel flow, no super
streaks nor velocity discrepancies have been observed in the log layer for
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DDES, obtaining results similar to the ones obtained by Piomelli[31] with
a stochastic and artificial forcing term.

Sanchez-Rocha & Menon [69], [70] generalized the approach to the com-
pressible Naveir-Stokes equation

∂

∂t
ρ+

∂

∂xj
(ρuj) = 0 (2.12)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂

∂xi
p− ∂

∂xj
σij = 0 (2.13)

∂

∂t
(ρE) +

∂

∂xj
(ρEuj) =

∂

∂xj

(
(σij − pδij)ui + κ

∂T

∂xj

)
(2.14)

in which

p = ρRT , ρE = ρCvT +
1

2
ρukuk (2.15)

σij = µ

(
Sij −

1

3
Skkδij

)
, Sij =

∂ui
∂xi

+
∂uj
∂xj

(2.16)

where µ is the dynamic viscosity, E is the total energy, κ is the heat con-
ductivity, T is the temperature and R is the ideal gas constant.

In order to obtain the filtered equations for compressible flow we define
also the Favre hybrid filter for a generic variable ψ

{ψ}H =
〈ρψ〉H
〈ρ〉H

. (2.17)

and the following second order central moments:

〈τ(a, b)〉x = 〈ρ〉x ({ab}x − {a}x{b}x) (2.18)

〈χ(a, b)〉x = {ab}x − {a}x〈b〉x (2.19)

〈ζ(a, b)〉x = {ab}x − {a}x{b}x, (2.20)

where x stands for E ,H or F , 2.18 is equivalent to the one already seen
for the momentum equation for the incompressible case, and 2.19 and 2.20
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are related to the energy equations. Exploiting the Favre filter 2.17 and
the definition of the hybrid filter 2.1, the second order central moments are
given by

〈τ(a,b)〉H = (1− k)〈τ〉E + (k)〈τ〉F+ (2.21)

〈ρ〉H
[ 〈ρ〉E
〈ρ〉H

{a}E{b}E(1− k)

(
1− (1− k)

〈ρ〉E
〈ρ〉H

)
− k(1− k)

〈ρ〉E〈ρ〉F
〈ρ〉H

{a}E{b}F
]

+

〈ρ〉H
[ 〈ρ〉F
〈ρ〉H

{a}F{b}Fk
(

1− k 〈ρ〉F〈ρ〉H

)
− k(1− k)

〈ρ〉E〈ρ〉F
〈ρ〉H

{a}F{b}E
]

〈χ(a,b)〉H = (1− k)〈χ〉E + k〈χ〉F+ (2.22)[
{a}E〈b〉E(1− k)

(
1− (1− k)

〈ρ〉E
〈ρ〉H

)
− k(1− k)

〈ρ〉E
〈ρ〉H

{a}E〈b〉F
]

+[
{a}F 〈b〉Fk

(
1− k 〈ρ〉F〈ρ〉H

)
− k(1− k)

〈ρ〉F
〈ρ〉H

{a}F 〈b〉E
]

〈ζ(a,b)〉H = (1− k)〈ζ〉E + k〈ζ〉F+ (2.23)[
{a}E{b}E(1− k)

(
1− (1− k)

〈ρ〉2E
〈ρ〉2H

)
− k(1− k)

〈ρ〉E〈ρ〉F
〈ρ〉H

{a}E{b}F
]

+[
{a}F{b}Fk

(
1− k 〈ρ〉

2
F

〈ρ〉2H

)
− k(1− k)

〈ρ〉E〈ρ〉F
〈ρ〉H

{a}F{b}E
]
.

Therefore, applying the hybrid filter to the compressible Navier–Stokes equations
we finally obtain the new set of hybrid equations [69]:

∂〈ρ〉H
∂t

+
∂

∂xj
(〈ρ〉H{uj}H) = HT ρ (2.24)

∂〈ρ〉H{ui}H
∂t

+
∂

∂xj

(
〈ρ〉H{ui}H{uj}H + 〈p〉Hδij − {σij}H + τH(ui, uj)

)
= HT ρuj

(2.25)

∂〈ρE〉H
∂t

+
∂

∂xj

(
〈ρ〉H{E}H{uj}H + 〈p〉H − 〈κ〉H

∂{T}H
∂xj

− {σij}H{uj}H

+τH(E, uj) + χH(uj , p)− χH(
∂T

∂xj
, κ− ζH(σij,ui))

)
= HT ρE

(2.26)
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where HT ρ, HT ρuj and HT ρE represent the extra terms related to the non
commutativity between hybrid filter and time and space derivatives:

HT ρ =

∂k

∂xj
(〈ρ〉F{uj}F − 〈ρ〉E{uj}E) +

∂k

∂t
(〈ρ〉F − 〈ρ〉E) (2.27)

HT ρuj =

∂k

∂xj

(
〈ρ〉F{ui}F{uj}F − 〈ρ〉E{ui}E{uj}E + τF (ui, uj)− τE(ui, uj)

+(〈p〉F − 〈p〉E)δij − ({σij}F − {σij}E)−
∂

∂xj

(
∂k

∂xj
(〈µ〉F{ui}F − 〈µ〉E{ui}E)

+
∂k

∂xi
(〈µ〉F{uj}F − 〈µ〉E{uj}E)−

2

3

∂k

∂xk
(〈µ〉F{uk}F − 〈µ〉E{uk}E)δij

)
+
∂k

∂t
(〈ρ〉F{ui}F − 〈ρ〉E{ui}E) (2.28)

HT ρE =

∂k

∂xk

(
〈ρ〉F{uj}F{E}F − 〈ρ〉E{uj}E{E}E + τF (E, uj)− τE(E, uj)+

{uj}F 〈p〉F − {uj}E〈p〉E + χF (uj , p)− χE(uj , p)− 〈κ〉F
∂{T}F
∂xj

+ 〈κ〉E
∂{T}E
∂xj

−χF (
∂T

∂xj
, κ) + χE(

∂T

∂xj
, κ)− {σij}F{ui}F + {σij}E{ui}E

−ζF (σij , ui) + ζE(σij , ui)
)

+
∂k

∂t
(〈ρ〉F{E}F − 〈ρ〉E{E}E) (2.29)

Eq. 2.24,2.25,2.26 represent the most general equations. Sanchez-Rocha and
Menon in [69] focused they attention on the effect of the extra terms related to non
commutativity between hybrid filter and space derivative. They perform several
simulations of a channel flow with different blending factor, avoiding the time

dependences and then zeroing the
∂k

∂t
in eq.2.27, 2.28 and 2.28. The remaining

extra terms a posteriori from previous LES simulations. The results confirmed the
importance of the extra terms in avoiding unphysical phenomena in the transition
area. The authors stressed the concept performing also a simulation with a step
function of the blending factor which led to a zonal simulation with no transition
area between LES a RANS. In this case the extra terms are zero and anomalous
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phenomena peaks of velocity normal gradient in the buffer layer has been shown.
However, it is clear that eq. 2.24,2.25,2.26 are very difficult to be applied,

and the modelling of every extra terms is a very challenging problems. As a
consequence, further hypothesis are required in order to make hybrid filter ap-
proach suitable for applications also for compressible flow. For example, in [70]
Sanchez–Rocha & Menon proposed a first order approximation of the extra terms,
confirming the results obtained in the previous work.



Chapter 3

Numerical Approach and
LES modelling

In this section the numerical approach is described. In particular, we focused
the attention on the Discontinuous Galerkin (DG) finite element method used for
the space discretization and on the LES modelling. Three different LES subgrid
models have been considered and described: the standard Smagorinsky model
3.3.1 , the dynamic model 3.3.2 and finally the anisotropic dynamic model3.3.3.
In the last section 3.4, the numerical simulations performed in order to validate
the models, and then to decide the best one to be used in the hybrid method, are
shown. The main subject and the numerical results presented in this chapter has
been published in [73].

3.1 Why Discontinous Galerkin?

The Discontinuous Galerkin finite element method can be seen as an intelligent
combination of the finite element and the finite volume methods [74]. This ap-
proach in fact, as a classical finite element methods, allows an high order accuracy
and h-p adaptivity, i.e. the possibility of increase the quality of the approxima-
tion both changing the size of the element or the order of the polynomial basis
functions.

Nevertheless, similarly to the finite volume method, the solution is discontinu-
ous and the coupling between is obtained by means of arbitrary numerical fluxes.

25
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As a results, we have a very simple and local mass matrix, which leads to a good
scalability and parallelizability, very important for the huge amount of degree of
freedoms that are typical of CFD problems.

Moreover,in the specific of LES simulations, a further advantage is the possibil-
ity of defining a filter simply by projecting the solution on a lower order polynomial
space. This turns to be very useful for the dynamic procedure [13], in which dif-
ferent filtering levels are required, and is coherent with the Variational Multiscale
(VMS) framework introduced in [75], and applied for LES of incompressible flows
in [76], [77], [78] (see also the review in [79]).

In the last years the interest in DG approach for fluids problems is arising,
we can found many examples from RANS simulation [80], [81], to LES. In this
context, example of DG-VMS approach can be found in [82], [83] and [73], or in
the work performed by Renac et Al. [84] with the Aghora software. The same
high order DG approach has been successfully used also for DNS simulation [85].

3.2 Model Equations

We start considering the compressible Navier-Stokes equations in dimensionless
form

∂

∂t
ρ+

∂

∂xj
(ρuj) = 0 (3.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

1

γMa2

∂

∂i
p− 1

Re

∂

∂xj
σij = ρfi (3.2)

∂

∂t
(ρe) +

∂

∂xj
(ρhuj)−

γMa2

Re

∂

∂xj
(uiσij)

+
1

κRePr

∂q

∂xj
= γMa2ρfjuj , (3.3)

where ρ, u and e respectively represent the density, velocity and specific total
energy, p is the pressure, f is a generic forcing term, h is the specific enthalpy
defined by ρh = ρe+ p and σ and q are the diffusive momentum and heat fluxes.
γ = cp/cv is the ratio between the specific heats at constant pressure and volume
respectively. The Mach number Ma, the Reynolds number Re and the Prandtl
number Pr are defined as

Ma =
Vr

(γRTr)
1/2

, Re =
ρrVrLr
µr

, P r =
cp
κ

(3.4)
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where the subscript r indicates a reference quantities,R is the ideal gas constant
R = cp − cv and κ = R/cp.

The set of equations 3.1-3.3 is completed with the state equations of ideal gas,
which is dimensionless form is simply

p = ρT, (3.5)

Introducing the specific internal energy ei:

e = ei +
γMa2

2
ukuk, (3.6)

it is possible to express the temperature T in terms of the velocity and the specific
total energy

T =
κ

1− κei. (3.7)

Finally, the diffusive momentum and the heat flux are given by:

σij = µSdij , qi = −µ ∂
∂i
T, (3.8)

with Sij =
∂

∂j
ui +

∂

∂i
uj and Sdij = Sij −

1

3
Skkδij .

In accordance with the Sutherland’s hypothesis [86] the dynamic viscosity µ
is assumed to depend only on the temperature

µ(T ) = Tα. (3.9)

with α = 0.7.

3.2.1 Filtering and discretization

The LES equations are obtained applying to the Navier-Stokes equations an appro-
priate filter operator 〈·〉, which is characterized by a spatial scale ∆. Considering
that in this chapter hybrid and RANS operator do not appear, for sake of simplic-
ity we will consider implicit the subscript F to indicate the LES filter. As already
explained, in a correct LES simulation this length scales has to be related to the
grid step size. Our approach exploits the DG method used for the discretization,
resulting in a ∆ that depends on local element size and on the degree of the poly-
nomial basis function used in each element. As a result, the ∆ is a piecewise
constant function in space.
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In order to avoid subgrid terms arising in the continuity equation we define
the Favre average {·}:

〈ρui〉 = 〈ρ〉{ui}, 〈ρe〉 = 〈ρ〉{e}. (3.10)

Similarly, for the internal energy and the enthalpy we have

〈ρei〉 = 〈ρ〉{ei}, 〈ρh〉 = 〈ρ〉{h} = 〈ρ〉{e}+ 〈p〉,

as well as for the temperature, which, according to state equations (3.5), yields

〈ρT 〉 = 〈ρ〉{T} = 〈p〉. (3.11)

Finally the relationship between the temperature and the specific total energy
(3.6) becomes

〈ρ〉{e} = 〈ρ〉{ei}+
γMa2

2
(〈ρ〉{uk}{uk}+ τkk) , 〈ρ〉{ei} =

1− κ
κ
〈ρ〉{T},

(3.12)
where

τij = 〈ρuiuj〉 − 〈ρ〉{ui}{uj}. (3.13)

In order to obtain the filtered version of (3.1-3.3), we just need to define the
filtered counterpart of the diffusive fluxes (3.8)

{σij} = µ(T ){Sij}d, {qi} = −µ(T )
∂

∂i
{T}, (3.14)

where {Sij} =
∂

∂j
{ui}+

∂

∂i
{uj} and {Sij}d = {Sij} −

1

3
{Skk}δij .

Therefore, neglecting the commutation error of the filter operator with respect
to space and time differentiation, the filtered equations are given by
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∂

∂t
〈ρ〉+

∂

∂j
(〈ρ〉{uj}) = 0 (3.15)

∂

∂t
(〈ρ〉{ui}) +

∂

∂j
(〈ρ〉{ui}{uj}) +

1

γMa2

∂

∂i
〈p〉 − 1

Re

∂

∂j
{σij}+ 〈ρ〉fi

= − ∂

∂j
τij −

∂

∂j
εsgs
ij (3.16)

∂

∂t
(〈ρ〉{e}) +

∂

∂j
(〈ρ〉{h}{uj})−

γMa2

Re

∂

∂j
({ui}{σij}) +

1

κRePr

∂

∂j
{qj}

= − ∂

∂j
(ρhuj)

sgs
+
γMa2

Re

∂

∂j
φsgs
j −

1

κRePr

∂

∂j
θsgs
j + γMa2〈ρ〉fj{uj},

(3.17)

where

εsgs
ij = 〈σ〉ij − {σij}, (ρhui)

sgs
= 〈ρhui〉 − 〈ρ〉{h}{ui},

φsgs
j = 〈uiσij〉 − {ui}{σij}, θsgs

i = 〈q〉i − {qi}.
(3.18)

Coherently with [87] and [88] and on the fact that

〈σ〉ij ≈ {σij}, 〈q〉i ≈ {qi} (3.19)

we neglect the term
∂

∂j
φsgs
j , as well as εsgs

ij and θsgs
j . Concerning the subgrid

enthalpy flux, we proceed as follows. First of all, notice that using (3.5) and (3.6),
as well as their filtered counterparts (3.11) and (3.12), we have

ρh =
1

κ
ρT +

γMa2

2
ρukuk, 〈ρ〉{h} =

1

κ
〈ρ〉{T}+

γMa2

2
(〈ρ〉{uk}{uk}+ τkk) .

Introducing now the subgrid heat and turbulent diffusion fluxes

Qsgs
i = 〈ρuiT 〉 − 〈ρ〉{ui}{T} = 〈ρ〉 ({uiT} − {ui}{T}) (3.20a)

J sgs
i = 〈ρuiukuk〉 − 〈ρ〉{ui}{uk}{uk} = 〈ρ〉{uiukuk} − 〈ρ〉{ui}{uk}{uk} (3.20b)

we have

(ρhui)
sgs

=
1

κ
Qsgs
i +

γMa2

2
(J sgs
i − τkk{ui}) . (3.21)



30 CHAPTER 3. NUMERICAL APPROACH AND LES MODELLING

Notice that, introducing the generalized central moments τ(ui, uj , uk) as in [89],
with

τ(ui, uj , uk) = 〈ρ〉{uiujuk}−{ui}τjk−{uj}τik−{uk}τij−〈ρ〉{ui}{uj}{uk}, (3.22)

J sgs
i in (3.20b) can be rewritten as

J sgs
i = τ(ui, uk, uk) + 2{uk}τik + {ui}τkk. (3.23)

Summarizing, given the above approximations and definitions, the filtered equa-
tions (3.15-3.17) become

∂

∂t
〈ρ〉+

∂

∂j
(〈ρ〉{uj}) = 0 (3.24)

∂

∂t
(〈ρ〉{ui}) +

∂

∂j
(〈ρ〉{ui}{uj}) +

1

γMa2

∂

∂i
〈p〉 − 1

Re

∂

∂j
{σij} = − ∂

∂j
τij + 〈ρ〉fi

(3.25)

∂

∂t
(〈ρ〉{e}) +

∂

∂j
(〈ρ〉{h}{uj})−

γMa2

Re

∂

∂j
({ui}{σij}) +

1

κRePr

∂

∂j
{qj}

= − 1

κ

∂

∂j
Qsgs
j −

γMa2

2

∂

∂j

(
J sgs
j − τkk{uj}

)
+ γMa2〈ρ〉fj{uj}. (3.26)

The filtered equations (3.24-3.26) are then discretized in space by means of
DG finite element method. The DG approach here employed is analogous to that
described in [90] and relies on the so called Local Discontinuous Galerkin (LDG)
method, see e.g. [91], [92], [93], [94], for the approximation of the second order
viscous terms. The procedure herein described is the same available in [73], for
the details we refer to [95].

In the LDG method, equations (3.24-3.26) are rewritten introducing an auxil-
iary variable G, so that

∂

∂t
U +∇ · Fc(U)−∇ · Fv(U,G) +∇ · Fsgs(U,G) = S

G −∇ϕ = 0,
(3.27)

where U = [〈ρ〉, 〈ρ〉{u}T , 〈ρ〉eT ]T and ϕ = [{U}, {T}]T collects the variables
whose gradients are required for flux computations, i.e. velocity and temperature.

The fluxes Fc,Fv,Fsgs, respectively convective, viscous and sub-grid, ans the
source term S are given by
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Fc =

 〈ρ〉{u}
〈ρ〉{u} ⊗ {u}+ 1

γMa2 pI
〈ρ〉h̃{u}

 ,Fv =

 0
1
Re σ̃

γMa2

Re {u}T σ̃ − 1
κRePr q̃


and

Fsgs =

 0
τ

1
κQsgs + γMa2

2 (Jsgs − τkk{u})

 ,S =

 0
〈ρ〉f

γMa2〈ρ〉f · {u}

 .
where τ , Qsgs and Jsgs will be obtained by means of a subgrid models. It is worth
noting that this structure is absolutely general and, according to the concept of
implicit filtering [96], is the same used also for the hybrid RANS/LES method.

The discretization is then obtained using the classical method of lines, therefore
we start from space discretization and then we use a time integrator to advance
in time. In this case a fourth order, five stage, Strongly Stability Preserving
Runge–Kutta method (SSPRK) [97] has been used.

As usual, to obtain the DG discretization , we consider a tessellation Th of the
computational domain Ω into non-overlapping tetrahedral elements K.

Introducing the finite element space of the polynomial functions of degree at
most q on the element K, which is defined as:

Vh =
{
vh ∈ L2(Ω) : vh|K ∈ Pq(K), ∀K ∈ Th

}
(3.28)

the DG formulation for problem (3.27) will be: find the solution (Uh,Gh) ∈
( (Vh)5 , (Vh)4×3 ) such that, ∀K ∈ Th, ∀vh ∈ Vh, ∀rh ∈ (Vh)3,

d

dt

∫
K

Uhvh dx−
∫
K

F(Uh,Gh) · ∇vh dx

+

∫
∂K

F̂(Uh,Gh) · n∂Kvh dσ =

∫
K

Svh dx, (3.29a)

∫
K

Gh · rh dx +

∫
K

ϕh∇ · rh dx

−
∫
∂K

ϕ̂n∂K · rh dσ = 0, (3.29b)
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where Uh = [ρh , ρhuh , ρheh]T ,ϕh = [Uh, Th]T , n∂K represents the outward nor-

mal on ∂K and the terms F̂ and ϕ̂ are the numerical fluxes. These terms represent
the only connection between adjacent elements, which would be otherwise uncou-
pled. The numerical fluxes are needed to solve the ambiguity of double valued
functions at the interface between adjacent elements and to weakly impose the
boundary conditions on ∂Ω. There are different ways to define the numerical
fluxes [90], in this work we use the Rusanov flux for F̂ and the centered flux for
ϕ̂.

The solution and the test functions are defined in terms of orthogonal basis
functions, this is a quite natural choice considering that in DG there are no con-
straints related to the continuity; this approach is commonly defined as modal DG.
We also mention that all the integrals are evaluated by means of the quadrature
formulae reported in [98]. In order to have a correct evaluation for the products,
we have used formulae which are exact for polynomial of degree up to 2q.

Let us consider now the definition of the filter operators 〈·〉 with the associ-
ated Favre decompositions. We follow the guidelines proposed in [99], [100], [83],
defining the filter operators in terms of some L2 projectors. Given a subspace
V ⊂ L2(Ω), let ΠV : L2(Ω)→ V be the associated projector defined by∫

Ω

ΠVu v dx =

∫
Ω

u v dx, ∀u, v ∈ V,

where the integrals are evaluated with the same quadrature rule used in (3.29).
For v ∈ L2(Ω), the filter 〈·〉 is now defined by

〈v〉 = ΠVhv, (3.30)

or equivalently v ∈ Vh such that∫
K

〈v〉vh dx =

∫
K

vvh dx ∀K ∈ Th, ∀vh ∈ Vh. (3.31)

Notice that the application of this filter is built in the discretization process and
equivalent to it. Therefore, once the discretization of equations (3.27) has been
performed, only the filtered quantities are computed by the model.

We also remark that these filters do not commute with the differentiation
operators. As previously discussed, according to a not uncommon practice in LES
modelling [101]. An analysis of the terms resulting from non zero commutators
between differential operators and projection filters is presented in [83].
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3.3 Subgrid models

3.3.1 Smagorinsky model

Originally proposed by Smagorinsky in 1963 [5], the classical Smagorinsky model
is the first and probably the most famous LES model. This model, as well as the
following, exploits the eddy viscosity hypothesis and the deviatoric part of the
subgrid stress tensor τij is modelled as

τij −
1

3
τkkδij = − 1

Re
〈ρ〉νsgs{Sij}d. (3.32)

νsgs is the turbulent viscosity and is given by

νsgs = ReC2
S∆2|{S}|fD (3.33)

where CS = 0.1 is the Smagorinsky constant, |{S}|2 =
1

2
{Sij}{Sij}, ∆ is

the filter scale and fD is Van Driest damping function [102] . This function is
applied in order to zeroing the eddy viscosity at the wall and to reduce the scale
∆ according to the smaller size of turbulent structures close to the wall [101]. In
(3.33) is defined as

fD(y+) = 1− exp
(
−y+/A

)
, (3.34)

where A is a constant, hereinafter the value A = 25 is employed, and y+ =
ρru

d
τd

d
wall

µr
, with dd

wall denoting the (dimensional) distance from the wall and ud
τ the

(dimensional) friction velocity.
We also notice that the Reynolds number has been included in the definition

of νsgs so that the corresponding dimensional viscosity can be obtained as νsgs,d =
µr
ρr
νsgs.

In accordance with [103], for this model the isotropic part of the subgrid stress
tensor is not explicitly modelled, in fact,by defining a modified pressure gradient,
it can be included into the pressure contribution. In alternative it is possible to
follow the guidelines given in [104], according to that, the τkk is then modelled as

τkk = CI〈ρ〉∆2|{S}|2. (3.35)

The subgrid temperature flux (3.20a) is assumed to be proportional to the resolved
temperature gradient and is modelled with the eddy viscosity model

Qsgs
i = − Pr

Prsgs
〈ρ〉νsgs ∂

∂xi
{T}, (3.36)
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where Prsgs is a subgrid Prandtl number. Notice that the corresponding dimen-
sional flux is Qsgs,d

i = qrQ
sgs
i [105].

Finally, the turbulent diffusion J sgs
i , in analogy with RANS models, the term

τ(ui, uj , uk) in (3.23) is neglected [106], yielding

J sgs
i ≈ 2{uk}τik + {ui}τkk. (3.37)

3.3.2 Dynamic model

A great improvement of the Smagorinsky model has been obtained with the dy-
namic procedure proposed by Germano in 1991 [13] and improved by Lilly [14]. In
this approach, the coefficients CS and CI of the Smagorinsky model are no more
constant and chosen a priori for the whole domain, but are dynamically computed
from the resolved field.

The deviatoric part of the subgrid stress tensor is very similar to the (3.32)

τij −
1

3
τkkδij = −〈ρ〉CS∆2|{S}|{Sij}d. (3.38)

It is worth to notice that we do not need any more to use a damping function to cor-
rect results in the wall region [13]. Moreover, differently from classical Smagorinsky
model the coefficient is now CS and no more CS

2. Thanks to the dynamic proce-
dure in fact, CS can assume also negative values, leading to a positive work done
by the subgrid stresses on the mean flow. This phenomena is known as backscatter,
and is an important improvement with respect to the Smagorinsky model which is
dissipative by construction. Nevertheless, the positive total dissipation is ensured
using a limiting factor.

In order to compute dynamically the coefficients CS and CI , we need to in-
troduce test filter operator 〈̂·〉. The test filter is simply obtained by projecting
the solution on a new finite element space, characterized by a lower order of the
polynomial basis functions. Similarly to (3.28), we can define it as

V̂h =
{
vh ∈ L2(Ω) : vh|K ∈ Pq̂(K), ∀K ∈ Th

}
, (3.39)

with 0 < q̂ < q. Therefore, with the same approach used for the LES filter (3.30),
the test filter is defined as:

〈v〉 = ΠVhv, (3.40)

.
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The test filter is also associated to a Favre filter, denoted by ·̆, through the
Favre decomposition, for a generic variable φ, we have

ρ̂φ = ρ̂φ̆. (3.41)

Applying the test filter to the momentum equation (3.2) and proceeding as before
we arrive at

∂

∂t
(ρ̂ŭi) +

∂

∂xj
(ρ̂ŭiŭj) +

1

γMa2

∂

∂xi
p̂− 1

Re

∂

∂xj
σ̂ij

= − ∂

∂xj
(τ̂ij + Lij) (3.42a)

where

Lij = ̂〈ρ〉{ui}{uj} − 〈̂ρ〉 ˘{ui} ˘{uj} (3.43)

is the Leonard stress tensor. Assuming now that model (3.38) can be used to
represent the right-hand-side of (3.42a) implies

τ̂dij + Ldij = −〈̂ρ〉∆̂2| ˘{S}|CS ˘{S}drs. (3.44)

Substituting (3.38) for τdij and applying a least square approach [14] provides the
required expression

CS =
LdijRij
RklRkl

, (3.45)

where

Rkl = ̂〈ρ〉∆2|{S}|{S}dkl − 〈̂ρ〉∆̂2| ˘{S}| ˘{S}dkl. (3.46)

The dynamic procedure is also applied to the isotropic components of the subgrid
stress tensor

τkk = CI〈ρ〉∆2|{S}|2. (3.47)

where the CI coefficient is determined by

CI =
Lkk

〈̂ρ〉∆̂2| ˘{S}|2 − ̂〈ρ〉∆2|{S}|2
(3.48)

Let us now consider the subgrid stress terms in the energy equation, namely
Qsgs and Jsgs. According to [95] and [73] we treat both of them within the same
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dynamic framework used for the subgrid stresses. Concerning the subgrid heat
flux, we let

Qsgs
i = −〈ρ〉∆2|{S}|CQ

∂

∂xi
{T}, (3.49)

where the coefficient CQ can be computed locally by the dynamic procedure. To
this aim, we define the temperature Leonard flux

LQi = ̂〈ρ〉{ui}{T} − 〈̂ρ〉 ˘{ui} ˘{T}, (3.50)

we apply the test filter to the energy equation and we observe that, thanks to the
similarity hypothesis, model (3.49) should be also applied in the resulting equation,
so that

Q̂sgs
i + LQi = −〈̂ρ〉∆̂2| ˘{S}|CQ

∂

∂xi
˘{T}. (3.51)

Substituting (3.49) for Q̂sgs
i , applying the least squares method yields

CQ =
LQi RQi
RQk R

Q
k

, (3.52)

where

RQi =
̂

〈ρ〉∆2|{S}| ∂
∂xi
{T} − 〈̂ρ〉∆̂2| ˘{S}| ∂

∂xi
˘{T}. (3.53)

For the dynamic procedure we do not neglect the term τ(ui, uk, uk) in (3.23),
but instead adopt a scale similarity model as in [87] where such term is approxi-
mated as a subgrid kinetic energy flux

τ(ui, uk, uk) ≈ 〈ρ〉{uiukuk} − 〈ρ〉{ui}{ukuk}. (3.54)

In analogy with the other subgrid terms, we modelled τ(ui, uk, uk) as a function
of the gradient of the resolved kinetic energy, letting

τ(ui, uk, uk) = −〈ρ〉∆2|{S}|CJ
∂

∂xi

(
1

2
{uk}{uk}

)
. (3.55)

Introducing the kinetic energy Leonard flux

LJi = ̂〈ρ〉{ui}{uk}{uk} − 〈̂ρ〉 ˘{ui} ˘{uk} ˘{uk} (3.56)
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and proceeding exactly as for the previous terms we arrive at

CJ =
LJi RJi
RJkRJk

, (3.57)

where

RJi =
̂

〈ρ〉∆2|{S}| ∂
∂xi

(
1

2
{uk}{uk}

)
− 〈̂ρ〉∆̂2| ˘{S}| ∂

∂xi

(
1

2
˘{uk} ˘{uk}

)
. (3.58)

To avoid numerical instabilities, all the model coefficients are assumed to be aver-
aged over each element, while they are not averaged in time.

3.3.3 Anisotropic dynamic model

The dynamic procedure described in the previous section leads to an isotropic
subgrid viscosity. For this reason there are some limitations such as the alignment
of the subgrid flux tensors with the gradients of the corresponding quantities. To
overcome these problems Abbà et Al. proposed an anisotropic extension of the
dynamic procedure [107]. The approach has been the extended to the compressible
flow in [95] and [73].

Also in this model the subgrid stress tensor τij is assumed proportional to the
strain rate tensor, but in this case the proportionality is through a fourth order
symmetric tensor as follows

τij = −〈ρ〉∆2|{S}|Bijrs{Srs}. (3.59)

To compute dynamically the tensor Bijrs, we observe that a generic, symmetric
fourth order tensor can be represented as

Bijrs =

3∑
α,β=1

Cαβaiαajβarαasβ , (3.60)

where aij is a rotation tensor, i.e. an orthogonal matrix with positive determinant,
and Cαβ is a second order, symmetric tensor. Therefore (3.60) represents a gen-
eralization of the orthogonal diagonalization for symmetric second order tensors.
According to that we can define the following algorithm:

1. choose a rotation tensor aij
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2. compute the six components of Cαβ by means of the classical dynamic pro-
cedure

3. define Bijrs using (3.60), thereby completely determining the subgrid flux
(3.59).

The rotation tensor aij can be chosen arbitrarily, and in principle can be any
rotation tensor, possibly varying in space and time. The values of the components
Cαβ depend on the choice of aij , resulting in general in different subgrid fluxes.
Many different choices have been proposed in the past, essentially trying to identify
at each position three directions intrinsically related to the flow configuration;
examples are a vorticity aligned basis, the eigenvectors of the velocity strain rate, or
the eigenvectors of the Leonard stresses [108], [107], [109]. However, the numerical
results do not seem to exhibit a strong dependency on the choice of aij , for this
reason we simply set aij = δij .

Following the same assumption already done for the dynamic model, we can
write:

τ̂ij + Lij = −〈̂ρ〉∆̂2| ˘{S}|Bijrs ˘{S}rs. (3.61)

Now, multiplying (3.61) by aiαajβ and summing over i, j, using the orthogonality
of the rotation tensor,

aiαajβ (τ̂ij + Lij) = −〈̂ρ〉∆̂2| ˘{S}|Cαβarαasβ ˘{S}rs,

substituting (3.59) for τij and solving for Cαβ provide the required expression

Cαβ =
aiαLijajβ

arαasβ

(
̂〈ρ〉∆2|{S}|{Srs} − 〈̂ρ〉∆̂2| ˘{S}| ˘{S}rs

) . (3.62)

Assuming now aij = δij we immediately have

Cij =
Lij(

̂〈ρ〉∆2|{S}|{Sij} − 〈̂ρ〉∆̂2| ˘{S}| ˘{S}ij
) (3.63)

and
τij = −〈ρ〉∆2|{S}|Cij{Sij}, (3.64)

where no summation over repeated indices is implied in the above formula. In this
model the deviatoric and isotropic parts of the subgrid stress tensor are modelled
together, without splitting the two contributions. Similarly to the dynamic model,
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the coefficients Cij are averaged over each element and a limiting coefficient is
introduced to ensure positive total dissipation.

The procedure for the computation of the subgrid heat flux is very similar, we
start defining

Qsgs
i = −〈ρ〉∆2|{S}|BQir∂r{T}, (3.65)

where BQir is a symmetric tensor. Assuming that BQir is diagonal in the reference
defined by the rotation tensor a we have

BQir =

3∑
α=1

CQα aiαarα, (3.66)

where the three coefficients CQα can be computed locally by the dynamic procedure.
As usual, model (3.65) should be also applied to model the rhs of the test filtered
energy equation:

Q̂sgs
i + LQi = −〈̂ρ〉∆̂2| ˘{S}|BQir∂r ˘{T}. (3.67)

Substituting (3.65) and (3.66) for Q̂sgs
i , multiplying by aiα, summing over i and

solving for Cα yields

CQα =
aiαLQi

arα

(
̂〈ρ〉∆2|{S}|∂r{T} − 〈̂ρ〉∆̂2| ˘{S}|∂r ˘{T}

) . (3.68)

The same procedure is also applied to model the subgrid kinetic energy flux

τ(ui, uk, uk) ≈ 〈ρ〉{uiukuk} − 〈ρ〉{ui}{ukuk}. (3.69)

Coherently with the other subgrid terms, we define the symmetric tensor BJir

BJir =

3∑
α=1

CJαaiαarα, (3.70)

letting

τ(ui, uk, uk) = −〈ρ〉∆2|{S}|BJir∂r
(

1

2
{uk}{uk}

)
. (3.71)

Proceeding exactly as for the previous terms we arrive at

CJα = aiαLJi /Mα, (3.72)

where

Mα = arα

(
̂

〈ρ〉∆2|{S}|∂r
(

1

2
{uk}{uk}

)
− 〈̂ρ〉∆̂2| ˘{S}|∂r

(
1

2
˘{uk} ˘{uk}

))
.
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Table 3.1: Grid and simulation parameters
Moser et Al Present

Ma — 0.2

Reb — 2800

Lx 4π 2π

Lz
4
3
π 4

3
π

∆+
x 17.7 23

∆z+ 5.9 10

∆+
ymin/∆

+
ymax 0.05/4.4 0.65/7.9

3.4 Numerical Results

All the simulations performed hereinafter are realized using the finite element
toolkit FEMilaro [110], a FORTRAN/MPI library, available under GPL license.
The software has been improved and partly developed during this thesis, in par-
ticular concerning the implementation and the optimization of the LES and the
hybrid RANS/LES modelling.

3.4.1 Turbulent channel flow

The first test case considered for the numerical simulations is the turbulent channel
flow at Ma =0.2 with a skin friction Reynolds numbers: Reτ = 180. The results
were compared to DNS data obtained by the incompressible numerical simulation
of Moser et al. (MKM) [111].

The computational domain size, in dimensionless units, is 2π × 2× 4/3π, rep-
resenting respectively Lx, Ly and Lz. We use x for streamwise direction, y for
normal direction and z for spanwise direction. No-slip, isothermal boundary con-
ditions have been prescribed at the wall (y = ±1), while periodic conditions have
been applied for the remaining directions.

The structured mesh used is composed by Nx = 8, Ny = 16, Nz = 12 hexahe-
dra in the x, y, z directions, each hexahedra is then divided into Nt = 6 tetrahedral
elements. The grid is uniform in x and z directions, while, to increase the resolu-
tion near the wall, in the normal direction (y) the planes that define the hexahedra
are given by:

yj = − tanh (ω (1− 2j/Ny))

tanh (ω)
j = 0, . . . , Ny, (3.73)
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where the parameter ω is set fixing the position of the first element.
Mesh resolution can be estimated using the following formula:

∆i =
Hi

3
√
NtNq

i = x, y, z, (3.74)

whereHi represents a characteristic element size and Nq is the number of degrees of
freedom for each finite element, in this case employing 4th degree basis functions we
have Nq = 35. Multiplying (3.74) by Reτ , i.e. the skin friction Reynolds number,
we obtain the grid spacing estimation in wall units, ∆+

i , reported in Table 3.4.1.
In order to maintain a constant mass flux along the channel a body force in

streamwise direction has been added. This forcing term fx(t) can be considered
as a PI controller term [112]. In fact is composed by a proportional terms, which
depends on the difference between the mass flux calculated at each time step Q(t)
and the prescribed value Q0, and an integral terms, which allows to avoid the
accumulation of the errors:

fx(t) = − 1

ρb

[
α1 (Q(t)−Q0) + α2

∫ t

0

(Q(s)−Q0) ds

]
, (3.75)

the constants α1 and α2 are respectively 0.1 and 0.2.
The results obtained with this forcing terms are good, and therefore no deriva-

tive terms have been considered.
All the considered numerical simulations start from a laminar Poiseille profile.

The turbulence is obtained adding a perturbation to the velocity in the x direc-
tion. This random perturbation is computed from a fixed number of iteration of
logistic map: ξk+1 = 3.999ξ(k)(1 − ξ(k)). As a result, we can obtain a definition
of the random perturbation which allows the repeatability of the results. After
the statistical steady turbulent regime was reached, the simulations were contin-
ued enough to have a well verified time invariance for the mean profiles. In the
simulations herein shown the sample used for statistics computation is ate least
60 non-dimensional time units.

The statistics are computed averaging the solution, both in space and time,
on a set of fixed planes, parallel to the wall. For a generic quantity ϕ we have:

< ϕ > (|y|) =
1

2TLxLz

∫ tf−T

tf

∫ Lx

0

∫ Lz

0

(ϕ(t, x,−|y|, z) + ϕ(t, x, |y|, z)) dz dx dt.

(3.76)
where T is the time used for statistics computation.
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Figure 3.1: Streamline velocity u, mean profiles: (left) cartesian represen-
tation ,(right) logarithmic representation

τw Reτ uτ/Ub
DNS 11.21 178 0.06357

Anis. dyn. 10.38 171 0.0608

Iso. dyn. 10.62 172 0.0614

Smag. 9.98 167 0.0596

Table 3.2: Mean flow quantities for the numerical experiments at Mach=
0.2. The results obtained with anisotropic dynamic, isotropic dynamic and
classical Smagorinsky model are compared with DNS results obtained by
Moser et Al.[111].



3.4. NUMERICAL RESULTS 43

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 30 60 90 120 150 180

y+

u
−
rm

s

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b b

b

b

b
b

b

b

b

b b

−− DNS
Ani
Dyn
Smag

(a)

0

0.3

0.6

0.9

0 30 60 90 120 150 180

y+

v
−
rm

s

b

b

b

b

b
b

b

b b

b

b

b

b

b b

b

b b

b

b

b

b

b

b
b b b

(b)

0

0.3

0.6

0.9

1.2

0 30 60 90 120 150 180

y+

w
−
rm

s

b

b

b

b b
b

b

b b

b

b

b

b
b

b

b

b b

b

b

b

b
b

b
b

b b

(c)

0

−0.4

−0.8

−1.2

0 30 60 90 120 150 180

y+

τ u
v

b

b

b

b
b

b

b

b

bb

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

(d)

Figure 3.2: Velocity root mean square (rms) profiles and shear stress tensor,
from the left: streamwise velocity u rms , normal velocity v rms, spanwise
velocity w rms and shear stress tensor τuv. The LES results are compared
to the DNS data.
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The numerical results show significant differences between Smagorinsky and
two dynamic models. In particular, the comparison with DNS data highlights a
globally better performance of the dynamics models with respect to Smagorinsky.
Concerning the mean velocity ( Fig.3.1) the Smagorinsky one shows an underes-
timation in the buffer region, this is probably related to the dissipative nature of
the Smagorinsky model. This is confirmed by Table 3.4.1 in which the mean value
of τw, Reτ and uτ are reported. The differences become greater in the velocity
root mean square profiles and in the shear stress (Fig.3.2). Here both the dynamic
models well represent the streamwise flutuations, and only a small underprediction
is observed for normal and spanwise directions. On the other hand, Smagorinsky
always overestimates the fluctuations in the center of the channel, especially for
the streamwise component where the overestimation reaches also the buffer region.
Moreover, the fluctuations are underestimated in near the wall for spanwise and
normal direction.

This behaviour is confirmed also by the shear stress (Fig.3.2(d)), here Smagorin-
sky does not present the correct trend at the wall and the shear stress is consider-
ably overestimated.

Therefore, the results highlight that the dynamic models perform better then
the classical Smagorinsky model. Moreover, the computational cost is quite sim-
ilar:using the same configuration and machine, the average wall clock times per
time step needed by the isotropic and anisotropic dynamic models were 26% and
34% larger,respectively, than that of the Smagorinsky model.

3.4.2 Periodic hill flow

To evaluate the performance of the implemented subgrid scale models in a more
complex setting, in which e.g. separation and reattachment arise and a less triv-
ial geometry is considered, turbulent channel flow over a periodic hill has been
simulated. First studied in [113], the periodic hill flow has become an important
test case for CFD and in particular for RANS and LES simulations that has been
discussed in a number of ERCOFTAC workshops [114], [115], [116]. Despite the
apparently simple geometry, the periodic hill test case presents some challenging
feature, like the massive flow separation from a curved surface, the high sensitivity
of the reattachment point location to the separation and the strong acceleration of
the flow. Most of the results in the published literature refers to the incompress-
ible case [117], [118], while a compressible simulation can be found in [119]. Here
we employ the modified geometry defined in [120]. For this test, only the perfor-
mance of the dynamic models has been assessed, considering the generally inferior



3.4. NUMERICAL RESULTS 45
h

4,5 h 9 h

3
,0

3
6

 h

Figure 3.3: Periodic hill geometry: Lx = 9.0h, Lz = 4.5h, Ly = 3.036h

performance of the simpler Smagorinsky model in the previous plane channel test
case.

The computational domain (Fig. 3.3) is a periodic plane channel constricted by
two hills of the height h of about one third of the total channel, placed respectively
at the inflow and at the outflow. Domain dimensions are: Lx = 9.0h for streamwise
direction , Lz = 4.5h for spanwise direction and Ly = 3.036h for the height.

The Mach number is still Ma = 0.2, while the Reynolds number is Re = 2800.

A structured hexahedral mesh, where each hexahedron is divided into 6 tetra-
hedra, is used to resolve the boundary layer close to the hill profile, while a fully
unstructured, three-dimensional mesh is used in the bulk region. The total number
of elements is 16662. For the structured, boundary layer mesh, we have Nz = 12 el-
ements in the spanwise direction, which, using basis functions of degree q = 4, leads
to a ∆z/h ' 0.062. In order to accurately describe the hill shape, the streamwise
resolution varies from ∆x/h ' 0.062 between the two hills to ∆x/h ' 0.023 at the
top of the hill. The mesh is refined in the normal direction to reach ∆y/h ' 0.0032
at the bottom wall, whereas, in order to reduce the computational cost, no mesh
refinement has been applied close to the upper wall.

Figure 3.4 shows a two dimensional section of the mesh, the dotted lines indi-
cate the position of the point sections in which the statistics are evaluated.

The no-slip and isothermal wall boundary conditions are imposed at both up-
per and lower surfaces. Cyclic boundary conditions are imposed in the streamwise
and spanwise directions where the flow is assumed to be periodic. As in the chan-
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Figure 3.4: Section in the (x − y) plane of the mesh used for the periodic
hill simulations; the dotted lines at x/h = 0.5, 2, 4, 6 denote the positions
of the mean profiles displayed in the following figures.

nel flow simulation, a varying in time driving force is applied to keep constant
mass flow.

A first view of the results is provided in Figure 3.5, in which the averaged values
of the streamwise velocity component are displayed along the channel, as computed
using the anisotropic dynamic model. The two dimensional representation has
been obtained averaging the solution both in time and in space, over the spanwise
direction. The figure highlights the flow separation after the first hill and the
following reattachment, showing a qualitative agreement with the DNS results
reported in the literature. The performances of the two LES model have been
studied analysing the velocities and turbulent stress profiles averaged over the
spanwise direction and time at the four different positions indicated in Figure 3.4.
More specifically, the four positions are: x/h = 0.5, just after the separation;
x/h = 2, at the beginning of the flat floor, is inside the main recirculation bubble;
x/h = 4 just before the reattachment; and the last one x/h = 6 is located in the
reattached flow region. The results obtained have been compared to the DNS data
provided by Breuer [117].

The mean streamwise velocity profiles (Fig. 3.6), for both the dynamic models,
show an excellent agreement with DNS results. Some discrepancies are presented
in the mean normal velocity profiles in Figure 3.7. Here, the dynamic isotropic
model presents a better agreement with the DNS with respect to the anisotropic
model.

On the other hand, the anisotropic model describes better the turbulent stresses
( Figure 3.8-3.10), even tough the positions of the peaks in all the profiles and the
shape of the shear layer are well captured by both dynamic models.
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Figure 3.5: Averaged streamwise velocity representation with isolines in
the period hill flow test case obtained using the anisotropic dynamic model.
The average is both in time and space.

Therefore, from these results, it is hard to understand which models is more
suitable for LES modelling in the hybrid method. Nevertheless, we have observed a
greater robustness of the anisotropic model, especially in the simulations performed
at higher Mach [73]. For this reason, the LES subgrid stress tensor in the hybrid
stress tensor (2.10), will be modelled using the anisotropic dynamic model.
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Figure 3.6: Mean streamwise velocity profiles in the periodic hill flow test
case at different locations along the channel;; (a): x/h = 0.5; (b): x/h = 2;
(c): x/h = 4; (d): x/h = 6.
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Figure 3.7: Mean normal velocity profiles in the periodic hill flow test case
at different locations along the channel; (a): x/h = 0.5; (b): x/h = 2; (c):
x/h = 4; (d): x/h = 6.
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Figure 3.8: Turbulent stresses profiles in the periodic hill flow test case,
streamwise component at different locations along the channel; (a): x/h =
0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6.The profiles are obtained
considering both the resolved and the modelled contributions.



3.4. NUMERICAL RESULTS 51

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.01 0.02 0.03 0.04

y/h

τ v
v
/
U
b
2

b
b

b
b

b

b

b

b

b

b

b
b

b
b
b

b
b

b
b

b

b

b

b

b

b

b
b

b
b
b

−− DNS
Ani
Dyn

(a)

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.02 0.04 0.06

y/h

τ v
v
/
U
b
2

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b
b

b
b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b
b
b

b
b
b
b

(b)

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.02 0.04 0.06

y/h

τ v
v
/
U
b
2

b
b

b
b

b
b
b

b

b

b

b

b

b

b

b
b

b
b
b
b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b
b

b
b
b

(c)

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.01 0.02 0.03 0.04

y/h

τ v
v
/
U
b
2

b
b

b
b

b
b
b

b

b

b

b

b

b

b

b
b

b
b

b
b
b

b
b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b
b

b
b
b

(d)

Figure 3.9: Turbulent stresses profiles in the periodic hill flow test case,
normal component at different locations along the channel; (a): x/h = 0.5;
(b): x/h = 2; (c): x/h = 4; (d): x/h = 6. The profiles are obtained
considering both the resolved and the modelled contributions.
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Figure 3.10: Turbulent stresses profiles in the periodic hill flow test case,
shear stress component at different locations along the channel; (a): x/h =
0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6. The profiles are obtained
considering both the resolved and the modelled contributions.



Chapter 4

Hybrid methodology

In this chapter the hybrid methodology here studied and developed is presented. In
the first section we introduce the hybrid equations and the modelling approach for
subgrid terms in momentum and energy equations, while, in the second section,
we present the RANS reconstruction used to obtain the Reynolds stress tensor
without using an explicit RANS model.

4.1 Model equations

Let us start from the Navier Stokes compressible equations (3.1)-(3.2). Applying
the hybrid filter (2.1) and considering the the same hypothesis of the LES, we
obtain a set of equations very similar to (3.24)-(3.26):
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∂

∂t
〈ρ〉H +

∂

∂j
(〈ρ〉H{uj}H) = HTρ (4.1)

∂

∂t
(〈ρ〉H{ui}H) +

∂

∂j
(〈ρ〉H{ui}H{uj}H) +

1

γMa2

∂

∂i
〈p〉H −

1

Re

∂

∂j
{σij}H =

− ∂

∂j
τHij + 〈ρ〉Hfi +HTm (4.2)

∂

∂t
(〈ρ〉H{e}H) +

∂

∂j
(〈ρ〉H{h}H{uj}H)− γMa2

Re

∂

∂j
({ui}H{σij}H) +

+
1

κRePr

∂

∂j
{qj}H = − 1

κ

∂

∂j
Qj
H − γMa2

2

∂

∂j

(
Jj
H − τkkH{uj}H

)
+

+ γMa2〈ρ〉Hfj{uj}H +HTe. (4.3)

where all the terms are the same already defined for (3.1)-(3.2).
The difference is related to the additional terms HT that depends on the

noncommutativity between hybrid filter and space and time derivatives. In fact,
these terms, which are usually neglected in LES simulations, have to be considered
in hybrid simulations, as shown by [68], [69] and [70] and as already discussed in
chapter 2.

4.1.1 Momentum equation

Here we will consider only a nearly incompressible flow. Therefore, the sub-grid
stress tensor τHij in (4.2) can be approximated as:

τHij (ρ, ui, uj) ≈ 〈ρ〉HτHij inc (ui, uj) . (4.4)

where the term τHij inc is the hybrid incompressible subgrid stress tensor already
defined in (2.10):

τH(ui, uj) =kτF (ui, uj) + (1− k)τE(ui, uj)+

k(1− k)(〈ui〉F − 〈ui〉E)(〈uj〉F − 〈uj〉E). (4.5)

.
This formulation is useful to understand one of the strengths of hybrid filter

approach: in fact, as already mentioned in chapter 2, the last term, i.e. the
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Germano stress, explicitly couples LES and RANS velocity making the transition
between RANS and LES smoother and reducing interface problems. Anyway, in
order to obtain a more suitable formulation, we can substitute the filtered velocity
〈u〉F

〈ui〉F =
〈ui〉H − (1− k)〈ui〉E

k
, (4.6)

in 4.5, obtaining:

τH(ui, uj) =kτF (ui, uj) + (1− k)τE(ui, uj)+

1− k
k

(〈ui〉H − 〈ui〉E)(〈uj〉H − 〈uj〉E). (4.7)

Doing that the subgrid stress tensor depends on the resolved velocity instead
of the LES velocity that needs to be reconstructed.

We remark that (4.7) is absolutely general, and τF (ui, uj) and τE(ui, uj), can
be modelled using respectively any LES and RANS model.

As discussed in the previous chapter, we have chosen the anisotropic dynamic
model presented in [107] as LES model. Concerning the Reynolds stress tensor
τE(ui, uj), in addition to the explicit modelling by means of a RANS model we have
also other alternatives: for example we can obtain it by using DNS/LES data or
from experimental results, but we can also reconstruct it implicitly exploiting the
hybrid filter.The latter is the approach herein proposed and tested, the procedure
called RANS reconstruction will be described in 4.2.

4.1.2 Energy equation

As shown in chapter 2, the application of the hybrid filter to energy equation leads
to several additional terms, making modelling very costly and difficult. To avoid
this problem here a different approach has been adopted.

Following the guidelines given by Lenormand [121] and Knight [106] for the
LES approximation of energy equation, the sub-grid stress tensor can be reduced
to two contributions: heat flux (Q) and turbulent diffusion(J).

Extending these assumptions to the dynamic–anisotropic model, we have

ϑj = Qj + Jj ≈ ρ̄∆2|S |CQj ∂jT + ρ̄∆2|S |CJj uk∂juk − τFjkuk −
1

2
ujτ
F
kk, (4.8)

where S represents the rate of strain tensor, and coefficient Cq and CJ are com-
puted using a dynamic procedure.
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In the proposed hybrid formulation, the first two terms are the same of LES,
while in the latter ones the τF is substituted by τH, the same calculated for
momentum balance by means of (4.14).

Thanks to this correction, hybrid terms enter into the energy equation mod-
ifying the turbulent diffusion. Considering the simplicity of the implementation
and that it does not require any computational overhead, this seems to be a good
compromise, especially at the low Mach number.

Notice that the resulting method turns out to be rather general; in fact, it can
be extended to any LES model in which sub-grid turbulent diffusion is modelled
starting from the Knight proposal [106]

Jj ≈ τjkuk −
1

2
ujτkk (4.9)

4.2 RANS reconstruction

The Reynolds stress tensor τE(ui, uj) can be written as

τE(ui, uj) =〈uiuj〉E − 〈ui〉E〈uj〉E =

=〈〈uiuj〉H〉E − 〈〈ui〉H〉E〈〈uj〉H〉E+ (4.10)

〈〈ui〉H〈uj〉H〉E − 〈〈ui〉H〈uj〉H〉E =

=〈τH(ui, uj)〉E + τE(〈ui〉H, 〈uj〉H)

where, splitting velocity at H level in average and fluctuating part,
〈u〉H = 〈〈u〉H〉E + 〈u〉′H, the latter term becomes:

τE(〈ui〉H,〈uj〉H) = (4.11)

= 〈(〈〈ui〉H〉E + 〈ui〉′H)(〈〈ui〉H〉E + 〈ui〉′H)〉E − 〈〈ui〉H〉E〈〈uj〉H〉E =

= 〈(〈ui〉H − 〈ui〉E)(〈uj〉H − 〈uj〉E)〉E .

Substituting the hybrid stress tensor definition (4.7) in (4.10) one obtains
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τE(ui, uj) = k〈τF (ui, uj)〉E + (1− k)τE(ui, uj)+ (4.12)

1− k
k
〈(〈ui〉H − 〈ui〉E)(〈uj〉H − 〈uj〉E)〉E+

τE(〈ui〉H, 〈uj〉H).

Using now relation (4.11), the Reynolds stress tensor becomes:

τE(ui, uj) = 〈τF (ui, uj)〉E +
1

k2
τE(〈ui〉H, 〈uj〉H). (4.13)

Inserting relation (4.13) in (4.7), we can finally obtain the expression of τH(ui, uj),
namely

τH(ui, uj) =kτF (ui, uj)+

(1− k)〈τF (ui, uj)〉E +
1− k
k2

τE(〈ui〉H, 〈uj〉H)+

1− k
k

(〈ui〉H − 〈ui〉E)(〈uj〉H − 〈uj〉E). (4.14)

Therefore, we have obtained a very simple formulation with the great advan-
tage to avoid the need of an explicit RANS model, and then without introducing
the related additional equations. In this formulation we just need to compute some
average quantities, from computational point of view this operations are not so
demanding and different strategies can be applied. For example we can use a pure
time average, with a fixed time interval or a running time average, or we can also
use an hybrid space and time average in order to reduce the initialization of the
average quantities.

The main drawback is related to the term 1
k2 in (4.13). In fact, this term

leads to an ill conditioned problem for low values of k. In fact, although at least
in principle, considering (4.6), a lower limit for k should be set also in the tradi-
tional approach (i.e. using an explicit RANS model), the square term k2 at the
denominator leads to a greater value for this limit.

As we increase k we move to LES, and then we have to solve a greater number
of turbulent scales. As a consequence, this drawback make impossible a classical
wall-modelling LES approach. However, the simplicity of the formulation obtained
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leads to a very small additional cost related to the computation of the hybrid terms.
Therefore, in our opinion, this approach can be suitable to integrate the LES in
the context of coarse grid, i.e. for a grid that is too coarse for a well resolved LES,
but anyway finer then a RANS grid.



Chapter 5

Numerical Results

In this section the results of the numerical simulations performed with the hybrid
methodology introduced in chapter 4 are presented. In the first section we consider
the constant blending factor case, we compare the hybrid results with the pure LES
simulation and we analysis the effect of the blending factor. In the second section
we introduce a space dependent blending factor and we show the results obtained
for the turbulent channel flow and the periodic hill flow testcases.

5.1 Constant blending factor

As already discussed above, the non-commutativity of the hybrid filter with the
derivatives leads to several additional terms HT in the governing equations. In
order to perform a preliminary study, in this first part we will use a constant and
uniform value of the blending factor.

Clearly, this configuration is not optimal, in fact the number of turbulent scales
resolved in the domain is not constant and then the RANS contribution should
increase where the number of scales resolved decreases and vice versa. However,
this analysis is useful to understand the capability and the potentiality of the
methodology, and also to analyse the effect of the different blending factors.

Therefore, all the additional terms, which depend on the k derivatives, are
equal to zero. We remark that this is not an approximation: we do not neglect
any terms, but on the basis of this assumption the additional terms are simply
zero.
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5.1.1 Turbulent channel flow

The test case considered for these numerical simulations is the turbulent channel
flow at Ma =0.2 with two different skin friction Reynolds numbers: Reτ = 180, 395.
The results were compared to DNS data obtained by the incompressible numerical
simulation of Moser et al. (MKM) [111].

Three different values of blending factor k for the hybrid method have been
tested: k = 0.5, k = 0.75 and k = 1.0, i.e. pure LES. As previously mentioned,
the anisotropic dynamic model [107] has been used as LES model.

The computational domain is the same of the LES shown in section 3.4.1, so
in dimensionless units, is 2π × 2 × 4/3π. Also the boundary conditions are the
same: no-slip, isothermal boundary conditions have been prescribed at the wall
(y = ±1) and periodic conditions have been applied for the remaining directions.

The same grid has been used, for both the skin friction Reynolds numbers, this
results in two different space resolutions: a finer one for the lower Reynolds number
Reτ = 180, and a coarser for the higher Reτ = 395. In general, the mesh is coarser
then the one used in section 3.4.1 for Reτ = 180, and is composed by Nx = 6,
Ny = 12, Nz = 10 hexahedra that are divided into Nt = 6 tetrahedral elements.
The grid is uniform in x and z directions, while, to increase the resolution near the
wall, in the normal direction (y) the planes that define the hexahedra are given
by:

yj = − tanh (ω (1− 2j/Ny))

tanh (ω)
j = 0, . . . , Ny, (5.1)

where the parameter ω is set fixing the position of the first element.
The grid parameters and the dimension details are reported in Table 5.1.1.
For the lower Reynolds number the resolution is near to the ones required to

a well resolved LES [122], whereas for Reτ = 395 the grid is too coarse for such
simulation.

The initial conditions and the statistics computation procedure are the same
of 3.4.1, as well as the body force added to maintain a constant mass flux along
the channel.

Mean velocity profiles (Fig. 5.1) do not show significant differences for the cases
considered. As expected, the results are close to the DNS data for Reτ = 180 and
are poor for the simulations at Reτ = 395, in which the resolution decrease.

Figures 5.3- 5.5 show the velocity r.m.s. profiles. In general the simulations
overestimate the peak in streamwise direction and, on the counterpart, underes-
timate the whole profile in normal and spanwise direction. Although the results
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Reτ = 180 Reτ = 395

Moser et Al Present Moser et Al Present

Ma — 0.2 — 0.2

Reb — 2800 — 6880

Lx 4π 2π 4π 2π

Lz
4
3
π 4

3
π 4

3
π 4

3
π

∆+
x 17.7 31.68 10.0 69.5

∆z+ 5.9 12.8 6.5 28.1

∆+
ymin/∆

+
ymax 0.05/4.4 0.65/11.52 0.03/6.5 1.4/25.28

Table 5.1: Hybrid method simulations with constant blending factor for
the turbulent channel flow testcase: grid and simulations parameters.

obtained are quite similar, the hybrid method with k = 0.75 gives the better results
for Reτ = 180, whereas for Reτ = 395 the better results are the ones obtained
with the lower value of the blending factor. This trend is confirmed also by the
shear stress profiles (Fig. 5.6). Therefore, considering that k = 1.0 is a pure
LES, the results show that using an appropriate value of the blending factor it is
possible to improve the LES results.

Clearly, this is only a feasibility study for the methodology and further analysis
are required. Nevertheless, these simulations suggest that the hybrid method
with the reconstruction of the Reynolds stress tensor can be a valid technique to
integrate the LES when the grid resolution is too coarse to resolve the appropriate
quantities of turbulent scales. Moreover, the increase of computational cost for the
hybrid method with respect to the pure LES is negligible, in fact only algebraic
operations are added.

Finally, it is interesting to notice that, differently from what expected, the
results obtained with k = 0.75 are not in general closer to pure LES, i.e. k = 1, then
the ones obtained with k = 0.50. This highlights the complexity of the interaction
between LES and RANS field and in particular the not trivial dependence of the
simulations with respect the choice of the parameter k.

5.1.2 Analysis of blending factor’s effect

The blending factor strongly impacts on the amount of the quantities resolved
and modelled. As shown by Figure 5.7 for the shear stress and by Figure 5.8
for the turbulent kinetic energy, the resolved part is the most important in pure
LES. As the blending factor decreases, k = 0.75, the resolved part decreases and
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Figure 5.1: Velocity mean profile, streamwise direction : (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.2: Velocity mean profile, logarithmic rappresentation, streamwise
direction : (left) Reτ = 180, (right) Reτ = 395.
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Figure 5.3: Velocity r.m.s. profile, streamwise direction : (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.4: Velocity r.m.s. profile, normal direction : (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.5: Velocity r.m.s. profile, spanwise direction: (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.6: Shear stress profile, τuv: (left) Reτ = 180, (right) Reτ = 395.
The resolved and modelled stress contribution are plotted together.
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modelled one increases. Finally, for k = 0.5, the modelled contribution becomes
greater then the resolved one. Therefore, at least theoretically, the blending factor
permits a direct control of the resolved kinetic energy. As stressed by Pope [123],
the ratio between the turbulent kinetic energy of the resolved motion and the
total turbulent energy could be a conceptually simple measure of the turbulence
resolution in a LES simulation, and moreover this kind of criterion seems to be
very suitable in the hybrid RANS/LES framework [124]. This ratio for the DNS is
one, everything is resolved, and for RANS is zero, everything is modelled. Usually
for LES this ratio is near to one, or presumed as that, at least as indicated by the
postprocessing procedures that usually do not consider the subgrid contributions.
A basic question is the following: is it really possible to perform LES simulations
with a resolution ratio of 0.7, or of 0.5, or less? This point is very important not
only theoretically, but also as regards the hybrid RANS/LES methods, that try
to join zonally RANS and LES computations. From the results shown in Figure
5.7-5.8, we can see that, in our new reconstruction method, the ratio between
resolved and modelled energy scales approximately as k2. This seems reasonable,
in fact if we define a resolution factor RF for a pure LES as

RF =
τE(〈ui〉F , 〈ui〉F)

τE(ui, ui)
, (5.2)

and an equivalent one RH for a generic hybrid RANS/LES filter,

RH =
τE(〈ui〉H, 〈ui〉H)

τE(ui, ui)
. (5.3)

Substituting the H - filtered velocity definition 〈u〉H: 〈u〉H = k〈u〉F + (1 −
k)〈u〉E in (5.3), and remembering that

τE(〈ui〉H, 〈ui〉H) = 〈〈ui〉H〈ui〉H〉E − 〈〈ui〉H〉E〈〈ui〉H〉E ,

it is easy to verify that RH ∼ k2RF . Therefore, considering that for a well resolved
LES RF ∼ 1, we have that RH ≈ k2.

5.2 Space dependent blending factor

In the previous section we have seen that the results obtained with a fixed value
blending factor are close and in part better then the ones obtained with k = 1.0,
i.e. pure LES. Therefore, it can reasonably be expected that introducing a variable
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Figure 5.7: Comparison between resolved (continuous line) and modelled
(dashed line) contributions to the shear stress τuv: (left) Reτ = 180, (right)
Reτ = 395.
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Figure 5.8: Comparison between resolved (continuous line) and modelled
(dashed line) contributions to the turbulent kinetic energy tke: (left) Reτ =
180, (right) Reτ = 395.
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blending factor the methodology analysed can be suitable for improve accuracy of
the turbulence description for coarse grid.

In fact, as discussed above, the value of k should be related to the accuracy
of the mesh, and in particular to its capability to resolve a certain number of
turbulent scales. A variable blending factor can be useful to set the optimal value
of RANS reconstruction contribution in every part of the domain.

On the other hand, we have seen that using a variable blending factor makes
the equations very complex because of the additional terms.

A possible solution is to use a piecewise constant function of k. In fact, if we
keep the blending factor constant in the element, the additional terms will be equal
to zero and the discontinuity between two consecutive elements do not represent
a problem considering the DG approach used for the space discretization.This
approach seems to be a good compromise in order to obtain a simple formulation,
suitable for applications. The approach is similar to the one presented [69], where
a zonal RANS/LES formulation has been tested using a discontinuous blending
factor equal to zero in RANS zone and equal to one in the LES zone. However, here
the numerical method is different and, most important, the transition is smoother
and starts from mixed RANS/LES area.

5.2.1 Turbulent channel flow

The first testcase analysed is the turbulent channel flow, the grid and the parameter
are the same described in 5.1.1.

As customary for hybrid methods we consider a wall distance y dependent
blending factor. k depends to y according to the following parabolic law:

k(y) =

{
−0.617y2 + 1.111y + 0.5, for y < 0.9

1, for y ≥ 0.9.

the lower value is equal to k = 0.5 at the wall, and we recover a pure LES simulation
in the center of the channel. Figure 5.9 show the blending factor values along the
channel, the value of k in each elements is obtained fro k(yb), where yb represents
the distance from the wall to the barycenter of the element.

The grids and the parameters of the simulation are the same of the section
5.1.1, and are still compared with the DNS data provide by [111] and with pure
LES results.

The mean velocity profiles (Fig. 5.10, 5.11) show a good agreement for Reτ =
180, here both the hybrid method and the pure LES well describe the streamwise
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Figure 5.9: Blending factor function k(y) for the turbulent channel flow
testcase.

component of the velocity. Nevertheless, in the logarithmic representation the
hybrid methods show a better fit. The results get worse for Reτ = 395 in which
the velocity is overestimated in buffer layer and underestimated in center of the
channel.

Greater differences are shown in the rms profiles (Fig. 5.12-5.14). Here the
hybrid method shows significant benefits with respect to the pure LES for every
component of the velocity. The better results are the ones obtained for the span-
wise component, but in general the profiles are closer to DNS especially near to
the wall, i.e. where RANS reconstruction contribution is greater. The better be-
haviour of hybrid method is also confirmed by the shear stress profiles (Fig. 5.15).
As already done for the constant blending factor results, it is also interesting to
analyse the separated contribution of the modelled and resolved contribution for
the shear stress shown in Figure 5.16. As we can see the modelled contribution
is prevalent near to the wall, where k is smaller, and decrease as the k increases,
reaching very low values near to the centerline.

Therefore the obtained with a very simple function of k are in very good
agreement with the DNS results. Probably better results could have been obtained
with a different function, in particular for the simulation with Reτ = 395 where the
same function used for Reτ = 180 has been used, even tough the mesh accuracy is
very different, and then a greater contribution of RANS reconstruction could have
been useful to integrate the resolved contribution.
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Figure 5.10: Velocity mean profile, streamwise direction : (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.11: Velocity mean profile, logarithmic representation, streamwise
direction : (left) Reτ = 180, (right) Reτ = 395.
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Figure 5.12: Velocity r.m.s. profile, streamwise direction : (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.13: Velocity r.m.s. profile, normal direction : (left) Reτ = 180,
(right) Reτ = 395.
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Figure 5.14: Velocity r.m.s. profile, spanwise direction : (left) Reτ = 180,
(right) Reτ = 395.

0

−0.2

−0.4

−0.6

−0.8

0 30 60 90 120 150 180

y+

τ u
v

b
b

b

b

b

b b

b

b

b

b

b

bb
b

b

b

b

b b

b
b

b

b

b

b

−− DNS
Ani
Hyb

0

−0.2

−0.4

−0.6

−0.8

0 60 120 180 240 300 360

y+

τ u
v

b

b

b

b

b b b

b

b

b

b

b

bb

b

b

b
b b

b

b

b

b

b

b

b

Figure 5.15: Shear stress profile, τuv: (left) Reτ = 180, (right) Reτ = 395.
Modelled and resolved contribution are plotted together.
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Figure 5.16: Comparison between resolved (continuous line) and modelled
(dashed line) contributions to the shear stress τuv: (left) Reτ = 180, (right)
Reτ = 395.

5.2.2 Periodic hill flow

As we have done for LES in 3.4.2, also for the hybrid method it is important to
test the method in a more geometrically complex testcase like the periodic hill
flow. The geometry of the testcase is the same described in 3.4.2. In this case
the geometry of the channel changes along the streamwise direction and therefore
is more difficult to determine the blending factor. In general, from our tests, we
have obtained better results using a k = k(x, y) instead of using blending factor
dependent only with the wall distance. More specifically, better results have been
obtained increasing the RANS contribution in recirculation area. The blending
factor used for the numerical simulations is represented in (Fig. 5.17) and is based
on parabolic law starting from k = 0.7 at the wall and is damped in order to reach
the lowest value for x/h = 2.5, i.e. approximately at the center of the separated
flow.

The grid is coarser then the ones used in 3.4.2, and the total number of elements
is now 14756, with a reduction of the ∼ 12% with respect to the previous one.
The structured boundary layer mesh, is still composed by Nz = 12 elements in
the spanwise direction that, using the same basis functions of degree q = 4, leads
to a ∆z/h ' 0.062. The streamwise resolution varies from ∆x/h ' 0.09 between
the two hills to ∆x/h ' 0.031 at the top of the hill. As usual, the mesh is refined
in the normal direction and the resolutions is ∆y/h ' 0.006 at the bottom wall.
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Figure 5.17: 2D representation of the blending factor k(x, y) for the periodic
hill flow.

Also in this case no mesh refinement has been applied close to the upper wall.

The statistics are computed for the same positions of section 3.4.2: x/h =
0.5, 2, 4, 6. The streamwise mean velocity profiles (Fig. 5.18) do not show signifi-
cant differences except for x/h = 4, in which the hybrid method performs slightly
better then LES, and for x/h = 6. The normal mean velocity component (Fig.5.19)
shows a greater sensitivity, at the beginning of the first hill x/h = 0.5, and also for
x/h = 4, LES is in excellent agreement with DNS, while in the separated region
x/h = 2 the hybrid method is closer to the DNS.

In general, the results obtained with LES and hybrid method for the mean flow
are quite similar. Greater differences appear for the stress profiles (Fig.5.20 - 5.22).
Here LES performs slightly better then hybrid method especially for τuu (Fig.5.20)
and τvv (Fig.5.21), while for shear stress profiles (Fig.5.15) the performances are
more similar.

Therefore, the good results obtained for the turbulent channel flow are not
confirmed for the periodic hill flow. Probably this can be related to the difficult
choice of the blending factor: the massive separated region and the variability
of the reattachment point location make the choice of the blending factor very
difficult. Moreover, a time variable blending factor would pose serious theoretical
problems, not only related to the noncommutativity between k and hybrid filter
that could be resolved adding additional terms, but also for the noncommutativity
between k and the RANS operator. In fact, as is customary in the applications
the RANS average is based on time, more specifically in this work on a running
time average has been used. Therefore the choice of the optimal blending factor
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is still an open problem.
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Figure 5.18: Mean streamwise velocity profiles in the periodic hill flow test
case at different locations along the channel; (a): x/h = 0.5; (b): x/h = 2;
(c): x/h = 4; (d): x/h = 6.
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Figure 5.19: Mean normal velocity profiles in the periodic hill flow test case
at different locations along the channel; (a): x/h = 0.5; (b): x/h = 2; (c):
x/h = 4; (d): x/h = 6.
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Figure 5.20: Turbulent stresses profiles in the periodic hill flow test case,
streamwise component at different locations along the channel; (a): x/h =
0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6.The profiles are obtained
considering both the resolved and the modelled contributions.
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Figure 5.21: Turbulent stresses profiles in the periodic hill flow test case,
normal component at different locations along the channel; (a): x/h = 0.5;
(b): x/h = 2; (c): x/h = 4; (d): x/h = 6. The profiles are obtained
considering both the resolved and the modelled contributions.
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Figure 5.22: Turbulent stresses profiles in the periodic hill flow test case,
shear stress component at different locations along the channel; (a): x/h =
0.5; (b): x/h = 2; (c): x/h = 4; (d): x/h = 6. The profiles are obtained
considering both the resolved and the modelled contributions.
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Chapter 6

Concluding remarks and
perspectives

A novel procedure for the computation of RANS stress have been studied and
tested for the hybrid filter approach proposed by Germano. This procedure, called
RANS reconstruction, exploits the mathematical properties of the hybrid filter and
allows to reconstruct the Reynolds stress tensor without using an explicit RANS
model.

The RANS/LES method has been implemented using a variational multi-
scale approach combined to a DG-FEM space discretization. The methodology
have been tested for LES considering three different subgrid models: the classi-
cal Smagorinsky model, the dynamic isotropic model and, finally, its anisotropic
extension. The last one has been chosen as LES model for hybrid RANS/LES
simulation.

The hybrid method have been tested for the turbulent channel flow and peri-
odic hill flow testcases, in near incompressible condition (Mach = 0.2) and using
both fixed and space-dependent blending factors.

More specifically, in order to analyse the role this parameter, three different
constant blending factors have been considered for the turbulent channel simu-
lations: k = 0.75, k = 0.50 and k = 1.0, i.e. pure LES, and two Reynolds
numbers,Reτ = 180, 395 . The results highlighted the importance of the blending
factor to determine the ratio between energy resolved and modelled. Moreover,
the profiles obtained with k = 0.75 and k = 0.50, are close and in part better then
the ones obtained with k = 1.0, i.e. pure LES.
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After having performed the simulations with constant values, also the space
dependent blending factors have been considered. In order to avoid additional
terms, a piecewise constant function of wall distance has been chosen. This is
made possible The simulations for the channel flow show a very good performance
of the hybrid method, which improves the the results obtained with pure LES,
both for Reτ = 180 and Reτ = 395. The same results have not been obtained for
the more complex periodic hill flow. Here the hybrid method is able to provide a
good representation of the flow features, but do not improve the results obtained
with pure LES. This can be related to a not optimal choice of the blending factor
that for this flow is not trivial.

In our opinion, considering the simplicity and the very small additional cost,
the hybrid filter approach with Reynolds stress reconstruction can be a very
promising approach for turbulence modelling. The open problem is how to choose
the correct value of the blending factor, and therefore the future works will be
focused on this point.

In fact, from the results obtained, it can reasonably be expected that, once
an optimal strategy for choosing the right blending factor will be developed, the
methodology analysed will be suitable to improve accuracy of the turbulence de-
scription, in particular considering simulation with grids coarser than the ones
required by a well resolved LES.
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[118] J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M.A. Leschziner.
Highly resolved Large-Eddy Simulation of separated flow in a channel with
streamwise periodic constrictions. Journal of Fluid Mechanics, 526:19–66,
2005.

[119] D. You, S. T. Bose, and P. Moin. Grid-independent large-eddy simulation of
compressible turbulent flows using explicit filtering. In Center for Turbulence
Research, Proceedings of the Summer Program, 2010.
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spesso surreali, in pausa pranzo e più in generale il rapporto con i miei compagni
di avventura. Un grazie speciale va alle due persone che hanno condiviso con me

95



non solo i tre anni di dottorato, ma anche i cinque della laurea: Barbara, senza la
quale probabilmente sarei stato sbranato dai coyote sulla Dead Valley o mi sarei
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Buonanotte


