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Abstract

Helicopters experience a severe level of vibrations on the main rotor due to the asymmetrical airflow
in forward flight. These vibratory loads are transmitted to the fuselage and degrade the flight comfort,
while causing structural components wear. Therefore the objective of this research is the study and
design of actively controlled systems that are able to suppress these loads, with the aim to set the basis
for further investigations about the presented topics.

Due to the necessity of reproducing the complex behavior of the rotor with a sufficient level of
accuracy in forward flight, before designing control systems, the first part of the thesis focuses on
the development of a computationally efficient aeroservoelastic rotor simulation toolbox. The flexible
multibody approach, together with a here developed semi analytical method for the sectional prop-
erties computation of a generic anisotropic beam including possible piezoelectric and piezomagnetic
actuators, is exploited for the structural modeling and then coupled to three different aerodynamic
models of increasing accuracy. Starting form the simple aerodynamics integrated in the multibody
software, more sophisticated models, which are based on the hybrid approach, are developed by ex-
ploiting both the full potential analysis and the free wake geometry. The closed loop simulations are
hence carried out within the Simulink environment. The first rotor analysis are aimed at validating the
proposed code with experimental data and similar methods available in the literature.

The thesis focuses on actively twisted blades having distributed piezoelectric actuators along the
blade span and the second part of this work compares three advanced active control algorithms in
order to assess their advantages and limitations. At first, linearized model-based periodic controllers
are designed on the multibody model and then their robustness is verified on the more accurate aero-
dynamic models. The second approach is a nonlinear adaptive recurrent neural network control and
it does not require the knowledge of a numeric rotor model. After that, the classical adaptive higher
harmonic control is enhanced to properly take into account actuator saturations. These controllers
show satisfactory results and they are all computationally efficient, thus having real time capabilities.

Having analyzed different active control strategies, the third part of this thesis studies other actu-
ation mechanisms to perform individual blade control. Using the higher harmonic control, the active
twist solution is compared to the active trailing edge flaps approach, which has shown to be much
more effective for vibrations reduction than the actively twist blades, at least for the considered trim
configuration and with the current position of the piezoelectric actuators.

The last chapter shows an experimental activity performed at the German Aerospace Center. Indi-
vidual blade control is here achieved through actuators in the non rotating frame by using the multiple
swashplate system. Blade tracking control is then successfully performed in order to suppress vibra-
tory loads in hover due to the blades dissimilarity.
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Sommario

Gli elicotteri sono soggetti a grandi vibrazioni sul rotore principale a causa del flusso d’aria asimmet-
rico in volo avanzato. Questi carichi vibratori sono trasmessi alla fusoliera e degradano il comfort del
volo deteriorando i componenti strutturali. Pertanto, lo scopo di questa ricerca è lo studio e la pro-
gettazione di sistemi di controllo attivo che sono in grado di sopprimere questi carichi, con l’obiettivo
di gettare le basi per ulteriori approfondimenti sugli argomenti presentati.

A causa della necessità di riprodurre con un buon livello di fedeltà il complesso comportamento
del rotore in volo in avanti, prima di progettare sistemi di controllo, la prima parte della tesi si
concentra sullo sviluppo di uno strumento per la simulazione aeroservoelastica di rotori, che sia com-
putazionalmente efficiente. L’approccio multicorpo con l’ aggiunta di componenti flessibili, insieme
ad un metodo semi analitico, qui sviluppato, per il calcolo delle proprietà sezionali di una generica
trave anisotropa con possibili attuatori piezoelettrici e piezomagnetici, viene sfruttato per la model-
lazione strutturale e poi accoppiato a tre diversi modelli aerodinamici sempre più accurati. A partire
dalla semplice aerodinamica integrata nel codice multicorpo, modelli più sofisticati, che si basano
su un approccio ibrido, sono stati sviluppati sfruttando sia il potenziale completo sia il calcolo della
scia libera. Le simulazioni ad anello chiuso sono quindi svolte all’interno dell’ambiente Simulink. Le
prime analisi del rotore sono finalizzate a convalidare il codice proposto con i dati sperimentali e con
metodi simili disponibili in letteratura.

La tesi si concentra sullo svergolamento attivo delle pale attraverso attuatori piezoelettrici dis-
tribuiti lungo l’ apertura e la seconda parte di questo lavoro mette a confronto tre algoritmi di con-
trollo attivo avanzati al fine di valutare i loro vantaggi e limiti. In primo luogo vengono progettati
controllori linearizzati periodici, che richiedono la conoscenza di un modello numerico del sistema
da controllare, sul modello multicorpo e la loro robustezza viene convalidata usando un modello aero-
dinamico più accurato. Il secondo approccio non richiede la conoscenza del modello del rotore ed
è un controllo non lineare adattativo basato sulle reti neurali ricorrenti. Infine, il controllo classico
ad armoniche successive, nella sua versione adattiva, è stato migliorato per tenere adeguatamente
in conto di eventuali saturazioni degli attuatori. Questi controllori mostrano risultati soddisfacenti e
sono tutti computazionalmente efficienti, avendo così capacità di operare in tempo reale.

Dopo aver analizzato diverse strategie di controllo attivo, la terza parte di questa tesi studia altri
meccanismi di attuazione per effettuare un controllo individuale delle pale. Utilizzando il controllo
ad armoniche successive, la soluzione dello svergolamento attivo delle pale viene confrontata con la
pala avente una superficie aerodinamica mobile al bordo di uscita, la quale dimostra di essere molto
più efficace nel ridurre le vibrazioni dello svergolamento attivo, almeno per la condizione di volo
considerata e con la presente posizione degli attuatori piezoelettrici.

L’ultimo capitolo mostra un’attività sperimentale svolta presso il German Aerospace Center. Il
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comando individuale delle pale viene qui realizzato tramite attuatori nel sistema non rotante utiliz-
zando il doppio piatto oscillante. Viene quindi eseguito un controllo individuale sul passo collettivo
delle pale al fine di sopprimere i carichi vibratori in hover, causati dal fatto che nella realtà le pale
non sono perfettamente identiche.
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Introduction

Helicopters are flying machines that have an indispensable role in aviation. The advantage of using
rotating wings to provide lift and propulsion give them the possibility to fly at zero or low air-speeds
and to move in almost any direction, because they are able to hover and to take off and land vertically,
thus operating in situations where conventional fixed-wing aircraft are not suitable. These unique
capabilities makes the helicopter the best candidate to perform a huge number of operations both civil
and military, such as: rescue missions, police surveillance, oil rig servicing, transport of humans and
goods etc., and its employment has grown in recent years, thanks also to the technological progress.
Therefore the increasing demand from the industries and hence the huge number of people involved
during the operating life of a rotary-wing aircraft leads to the need of producing more and more
efficient and safe helicopter.

The conventional helicopter architecture is composed by a main rotor mounted on the fuselage,
which has the function of providing the required lift and control forces, and a tail rotor, which gen-
erates lateral forces to counteract the rotation of the fuselage that naturally opposes the rotation of
the main rotor. Rotating blades allow a large variety of operating conditions, but the fact of having
rotating parts at high angular speed increases design difficulties and makes helicopters sophisticated
machines, working in a complicated aerodynamic environment as it is well explained in [1]. While in
hover, due to the absence of the advance velocity, each blade experiences the same distribution of in-
cident airflow, which is linear and proportional to the blade radius and the blade rotation, in forward
flight the aircraft speed is added to that of the rotor rotation and the aerodynamic loads of the blade
become a function of the azimuth angle, leading to an asymmetrical loading of the rotor disk. For the
advancing blade the relative velocity of the wind is higher, because the free stream velocity is summed
to the one caused by the rotation and the blade tips experience more serious compressibility effects
up to the transonic regime where shock waves may happen. On the other side, the advance velocity is
subtracted to the retreating blade one and reverse flow conditions occur near the blade root for ele-
vated forward speed, letting the blade sections operate in stall and thus causing high levels of drag.
The wake released by a helicopter rotor is much more intricate than that released by a fixed wing.
Each blade releases a wake and because of the rotation its geometry is quite complex and dominated
by strong tip vortices that interact with the blades giving birth to the so called blade vortex interaction
(BVI) phenomenon, very important for the blade loading. Moreover the rotor wake impacts with the
fuselage and other non-rotating parts and it is an additional source of excitation for these components.

The connection of the blades to the rotor hub has to expect three hinges at the blade root to ensure
the correct load handling and the transmission of control forces to govern the flight dynamics of the
helicopter. The pitch hinge is necessary to change the blade pitch and then to modify the blade angle of
attack to control the desired lift over the rotor revolution. Two other hinges, the flap and the lead-lag
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one, are required to take care of velocity asymmetry in forward flight by changing the local angle of
attack through the flap motion and to alleviate the high moment at the blade root due to the Coriolis
forces, respectively. This solution can be achieved either through mechanical hinges or through the
proper design of a flexbeam at the blade root with predefined flexibilities at concentrated points to
allow the blade root deflections; the rotor with flexible hinges are called hingeless, when only the
pitch hinge is mechanical or bearingless when all the hinges are designed within the flexbeam. The
typical design of rotor blades produces aerodynamic bodies with very large radius with respect to the
chord, ensuring hover efficiency, hence they are slender bodies and very flexible. Due to their high
flexibility, the blades could not be used to sustain high loads in static applications, but the rotational
speed of the rotor has a stiffening effect on the blades through centrifugal loads, providing to the
blades the required stiffness to sustain the whole helicopter. As it can be understood from the complex
motion of the blades, inertial loads play an important role in the blade dynamics and if their effects
are not considered appropriately during the design phase the coupling of the inertial and Coriolis
forces with the dynamic motion of the blades can destabilize the rotor system. Moreover, in contrast
to the fixed-wing vehicles, the blades are usually built using composite layers for the external surface,
foams, honeycomb structures and other to fill the inner cavities, leading to an anisotropic section with
strong elastic couplings.

The combination of the unsteady aerodynamic loads and the asymmetrical disk loading in forward
flight with the blade motion and the large structural deformations leads to great oscillatory loads that
are transmitted to the fuselage causing high levels of vibrations and noise that limit the helicopter
applicability. The main sources of rotorcraft vibrations are the main and the tail rotor, the gearbox,
the engine and the fuselage. However more that 90% of the vibratory loads are generated by the main
rotor, which is therefore the subject to be studied to reduce these effects. Due to the alternate loading
of the rotor blades over the rotor revolution in forward flight, the aerodynamic loads excite multiple
frequencies of the rotor angular speed Ω. As discussed before, the returning wake and the impact
of the released blade vortices on the other blades contributes to increase the periodic excitation. If
considering the blades identical, it can be demonstrated through a Fourier analysis and the summation
of the loads generated by all rotating blades that not all frequencies are transmitted to the fuselage,
i.e. to the non rotating system, but they depend on the number of blades N mounted on the rotor hub
[2]. In particular for the vertical force and the torque of the hub only the steady and the multiples
of the N/rev harmonics of the blade root force and moment are not filtered by the hub. On the other
hand, the multiples of the N/rev harmonics of the in plane forces and moments of the hub, with respect
to the rotor disk, are generated by the multiples of the (N− 1)/rev and the (N + 1)/rev of the blade
loads and moments.

The low frequency content of the rotor helicopter excitations are referred as vibrations, while the
higher one is responsible for the noise. While helicopter noise has a strong impact in what concern
the inner and outer environment of the fuselage and is mainly related to the passage of the vehicle
near inhabited areas, structural vibrations cause passenger and crew discomfort and fatigue prob-
lems that affect the reliability and the operating life of the whole machine. They also reduce weapon
effectiveness and makes it difficult to read the navigation instruments. It is interesting to emphasize
that the overall vibrations of an helicopter can be up to ten times higher than that of a conventional
fixed-wing aircraft [3]. Moreover, the reduction of vibrations can significantly improve the reliability
and strongly reduce maintenance costs [4]. That explains why a huge interest in alleviating these
problems has involved aeronautical researchers.
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Having explained the main features and problems of helicopter rotors, one can immediately un-
derstand that the complex blade motion, the nonlinear effects, together with the unsteady and periodic
aerodynamic loads represent a challenge to the vibration analysis and reduction, since it requires a
demanding multidisciplinary analysis of the aerodynamics, structural dynamics and possible active
control techniques. Therefore, in order to properly assess the vibration suppression problem and come
up with a feasible and safe solution, coupled aeroservoelastic designs and simulations are needed
based on reduced order mathematical models that are accurate enough to reproduce the main char-
acteristics of the rotor to ensure a robust vibration alleviation method, without losing computational
efficiency, which is a fundamental requisite since the design is an iterative process, which requires a
huge number of simulations.

Whenever an active control solution is chosen to alleviate the vibratory loads, the traditional ap-
proaches have often used oversimplified mathematical models to approximate the aerodynamics and
the structure dynamics of the blades, to easily handle the controller design through coupled closed
loop simulations. Without talking about the more recent computational fluid dynamics (CFD), which
is too time consuming and it is not suitable for the preliminary design phase, since very time con-
suming simulations are required to simulate a few rotor revolutions with a good level of accuracy,
well established models, adequate to approximate the rotor blades aerodynamics can be found in
the literature. The basic approach, which exploits the blade element method (BEM) by dividing the
blade into several strips, is derived from the classical unsteady aerodynamic airfoil theory through
the Theodorsen function using either the indicial function representation [1, 5] or finite states approx-
imations [6, 7, 8]. A more sophisticated blade aerodynamics can be derived by a rational function
approximation of the two-dimensional unsteady CFD analysis of the airfoil motion [9, 10]. Moreover
in most cases the wake geometry is usually not reproduced and the induced velocity is modeled through
simplified mathematical models [1, 2, 11, 12, 13]. For controller design purposes it is preferred to
perform the aeroservoelastic coupled closed loop simulation after reducing these aerodynamic models
to linear and quasi-steady ones, in which only the periodic velocity terms are retained [14, 15, 16, 13].

Similar considerations arise from the literature for the structural modeling of the blades. Due to
their slenderness they can be approximated as equivalent beams, which are preferred over the com-
putationally demanding three-dimensional finite elements method (FEM). The most common method
used to model the elastic torsion and the bending structural deformations of the blade is the Euler-
Bernoulli beam. The derivation of the dynamic equation of motion of the blade is usually performed
after the one dimensional finite element discretization of the blade through the Hamilton’s principle
[16]. Another common method to discretize the beam problem is the computation of the mode shapes
of the rotating beam [17, 13].

Although the classical modeling approach presented before has been widely used in the litera-
ture to perform helicopter vibration analysis and to study active control systems in the preliminary
design phase, the comparison with experimental data shows that such simplified models and quasi-
steady aerodynamic assumptions fail to predict the blade loads, especially when active actuators in
the rotating systems, such as actively controlled flaps, are employed to modify the aerodynamic forces
[18, 19].

The general description of a helicopter’s main problems, such as vibrations and noise, presented
in this section, and a brief overview of the classical simulation methods that are used for vibration
analysis and control purposes, summarizes the main issues that the researchers in this field have to
face and overcome. In order to increase the reliability of the active control strategies, which seem
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to be the most effective way to reduce rotorcraft vibrations, and to increase the chance that active
controls for vibrations alleviation will be implemented in true flying helicopters, the research has
to investigate for possible more accurate design and simulation methods, computational efficient and
without oversimplifying the problem, as well as the applicability and adaptability of the several control
theories to the smart structures that are being implemented to design technologically advanced rotor
blades [20].

Methods for Vibration Reduction

The problem of vibrations reduction of helicopters has been analyzed with different methods. The ear-
liest approach to alleviate vibratory loads involved the usage of passive absorbers. They are usually
composed by a single degree of freedom system with a mass and a spring, properly tuned to notch the
desired harmonics [21, 22]. A review of passive vibration reduction methods can be found in [23].
The main drawbacks of such devices are that they can be designed and tuned mostly for a specific
condition and add an undesirable weight. In [24] the blade pitch link is replaced by a spring/damper
element to develop a passive vibration reduction device. Another passive approach involves optimiza-
tion techniques to design advanced blade geometries and to modify their elastic and mass properties,
so to minimize the aeroelastic response and hence reducing the oscillatory loads [25, 26]. Thanks to
the use of composite materials, the shape of the blades can be easily altered and there is a large set of
available design variables, such as the ply angle and thickness or mass balance position, which can
be exploited within an optimization study.

While passive approaches and the structural optimization, are very useful for developing an aeroe-
lastically efficient helicopter, active control techniques act directly on the source of vibrations by ap-
propriately modifying the aerodynamic loads and can be the most effective way to alleviate vibrations.
The first actuator that has been exploited to directly actuate the blades is the already available swash-
plate. This solution is well known in the literature as the higher harmonic control (HHC) method
[27, 28]. By moving the swashplate at harmonics higher than the rotor frequency, it is possible to
change the blade pitch to modify the aerodynamic loads and achieve the desired objective. Even if this
approach does not require modifications of the blades and of the rotor hub, it requires a significant
actuation power and it is not able to control the blades independently when the rotor has more than
three blades.

For these reasons the study of active controls has evolved into the individual blade control (IBC)
approach, in which each blade can be controlled independently and a set of different and more efficient
actuators are exploited and investigated. The possibility of using an on-blade actuator to reduce
vibration and noise was also supported by the advent of smart materials, which are light weight and
require a smaller actuation power. A review of active control methods can be found in [29, 30, 31].
In this section the most used approaches for vibratory loads reduction using IBC actuators are briefly
described.

• Active pitch links
A first individual blade control strategy does not require any modification of the blades and
the IBC actuation capabilities are achieved by acting on the pitch links. The main idea is to
design an active pitch link able to modify its stiffness and damping properties during the rotor
revolution in order to mitigate the loads that are transmitted to the hub [32]. For example,
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inside the pitch link, two springs have the ends attached to the opposite walls and can slide one
with respect to another. An external input is applied through a piezoelectric stack that provides
a friction forces that induces the contact between the two springs, thus varying adaptively the
overall stiffness and damping properties in real time, leading to vibrations and noise reduction
potentials.

• Actively twisted blades
Thanks to the smart structures development and to the improvement of piezoelectric actuators
with Macro-Fiber Composite (MFC) piezoelectric patches, which are able to maximize the ac-
tuation capability by exploiting the primary direction of the material polarization, it is possible
to control the blade twist in an efficient manner with a moderate actuation power. To produce
this actuation mechanism, piezoelectric actuators are then distributed along the blade span and
embedded within the composite layers of the outer surface of the blade so to generate a twist-
ing torque. Since these actuators are on the rotating system, the control voltage computed to
change the aerodynamic loads is provided by means of high voltage slip rings. This solution
has been widely investigated in recent years for vibration control purposes [33, 34], and ex-
perimental tests carried out at NASA [35] and DLR [36, 37] proved the feasibility of such a
control method. An example of the capabilities of the actively twisted blades to alleviate rotor
vibrations is presented in [38]. By using an appropriate control of the twist these smart blades
can be also used to reduce the noise generated by the blade vortex interaction, as shown in
[39]. Despite the results shown in the literature seem to be very promising for the future of the
rotary-wing aircraft, the high level of technology required to design the blades represents the
limit of such a solution. In fact apart from production costs that are much higher than that of
a conventional blade, a deeper study on composite materials as well as on fatigue problems
mitigation has to be done before implementing this approach in conventional helicopters.

• Active trailing edge flaps
Being inspired by what is already implemented on fixed-wing aircraft, active trailing edge flaps
have seen a growing interest for rotorcraft applications as well. They are used to actively
modify the blade aerodynamic loads and most of the studies focus on the ability to reduce
helicopter vibrations [40, 41, 42, 43]. The aerodynamic loads are modified by the flap motion,
which can affect the blade bending during the rotation. Since the harmonic aerodynamic loads
are multiples of the rotating rotor frequency, the active flaps have to be actuated at similar
frequencies, therefore a piezoelectric actuator, which has a high bandwidth, is usually preferred
over an electric motor. Apart form the size of the trailing edge flaps, another important design
parameter that influences the performance is the position of the flaps along the blade span.
This solution is very effective in reducing vibratory loads, even with small flap deflections.
When a greater control authority is demanded, as in the recent works aimed at removing the
swashplate and to perform primary rotor control by using trailing edge flaps, the deflection is
limited by high friction forces that arise because of the high angular speed and of centrifugal
forces [44, 45, 46]. The application of multiple flaps on the blades has been investigated and
it is shown that they can achieve a better vibration reduction than a single one [43, 47]. The
study of the active trailing edge flap capabilities is not only limited to vibration alleviation
applications, but they can also be employed to enhance rotor power performance [48] and to
reduce the noise by acting on the blade vortex interaction [49].
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• Gurney flaps
An actuation mechanism similar to the trailing edge flap is the gurney flap. It is a small trailing
edge tab positioned at 90 degrees with respect to the chord of the airfoil. This device induces
a low pressure zone on the suction side and helps the boundary layer flow stay attached all
the way to the trailing edge of the airfoil. As shown in several aerodynamic studies, this effect
is very interesting because it increases the lift over a large range of angles of attack without
significantly increasing the drag [50, 51, 52, 53, 54]. Therefore this solution has been investi-
gated for rotorcraft performance enhancement, especially in hover and in light stall conditions
to increase the flight envelope of the helicopter. Due to their capabilities to modify both the lift
of the blade and its mechanical behavior, they have been also investigated to reduce vibrations
and noise [55, 56, 57]. By increasing its length, the gurney flap shows an increase in the drag
and pitching moments that outweigh the benefits, therefore its length is usually limited to the
2% of the airfoil chord.

• Morphing blades
Another method, which is gaining a significant attention in recent years is the active modifica-
tion of the blade aerodynamic loads through a morphing technology. The basic idea behind this
concept is to mimic flying animals that are able to adapt the wings by modifying their shape
to the situations they encounter during the flight without using moving parts such as flaps. For
rotorcraft applications several methods have been studied to actively modify the shape of the
airfoil of a rotor blade to increase performance while maintaining stability and control. The
first approach is the design of an airfoil with a variable droop leading edge [58, 59]. By ac-
tively inducing the downward motion of the airfoil nose, it is possible to increase the lift. As
a consequence of this nose motion, the airfoil experiences a reduction of the maximum lift, the
drag and the pitching moment. Although this solution could be employed to reduce helicopter
vibrations, because it suppresses the dynamic stall in the retreating blade, the decrease in the
maximum lift, due to the leading edge deployment, leads to a reduction of the helicopter max-
imum speed. The second attempt to modify the airfoil shape is the variable camber technique.
The variation of the airfoil camber has the same effect as a gurney flap increasing the lift, while
maintaining the same chord length. Therefore this approach could be used to reduce rotor vi-
brations and to expand the flight envelope [60, 61, 62]. To realize this active camber actuation,
a compliant mechanism composed by piezoelectric bars with variable length. Recent develop-
ments show the application of chiral structures to this end [63]. To increase the lift of an airfoil
another parameter that can be actively modified is the length of the chord. Therefore a trailing
edge extension mechanism is shown in [64]. By doing so, the lift augmentation is obtained
with a minimal increase of the lift/drag ratio. However the drag that arises due to the trailing
edge extension constitutes a problem for the blade efficiency. Even if these approaches are very
promising to enhance rotorcraft performance, the design, the manufacture and maintenance of
the blades become very complicated.

A completely different approach to alleviate the loads transmitted to the helicopter body is represented
by the active control in fuselage. In practice, this method does not act at the blade level and does
not require actuators in the rotating system. The basic principle is the connection of a number of
hydraulic actuators among specific points in the fuselage to suppress the vibration signals [65, 66].
This approach is very promising to reduce the fuselage vibration level, but it requires a very accurate
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and detailed model of the rotor/fuselage dynamics in order to determine the optimum placement of the
actuators, which is in most cases not easy to obtain. Another disadvantage of directly controlling the
vibrations in the fuselage is the fact that the aerodynamic loads, which are the sources of rotorcraft
excitations are non modified, thus it is non able to reduce noise and increase rotor performance.

Thesis Objectives

This thesis focuses on the study of the vibrations produced by a helicopter rotor and the aim of this
project is the research and development of control systems in conjunction with SMART rotor technolo-
gies able to suppress vibratory loads in forward flight using individual blade control.

The basic requirement for designing a robust controller is to have available an adequate mathe-
matical model describing the essential dynamics of the system to be controlled. Since the modeling of
rotorcraft vibrations is a strongly coupled aeroelastic problem, in which the nonlinear and complex
structural dynamics of the blades interacts with unsteady aerodynamic loads that depend on the com-
plex rotor wake structure, linearized and quasi-static mathematical models fail to properly represent
the rotor system behavior. Although advances in computer technology has made it possible more and
more accurate high fidelity CFD aeroelastic simulations, capable of reproducing blade loads close to
experimental data, the computational time needed to perform such analysis is still overwhelming for
the design of a controller, which is usually conceived in the preliminary phase of a project and requires
several tuning simulations. As a matter of fact, nowadays the vibration suppression studies are per-
formed using oversimplified models of the helicopter, which may lead to unsatisfactory performance
if applied on real rotary-wing aircraft.

Therefore the first objective of the present work is to investigate the possibility of developing an
aeroservoelastic rotor simulation toolbox with a good level of accuracy that can be used profitably
for both controller design and validation before the experimental tests. A high level of fidelity can
be achieved for the structural modeling with low computational effort through multibody softwares,
taking into account both nonlinear structural couplings and generic complex motions, as done in this
work. Without using full three-dimensional finite element representations, the flexibility of the blades
is correctly taken into account through geometrically nonlinear beam models and precise properties
computations. The first contribution of this thesis is the development of a new semianalytical algorithm
to compute the section properties of a generic beam section with embedded piezoelectric and piezo-
magnetic actuators. The equation of motion are then solved within the multibody software, without
reducing or linearizing the resulting rotor dynamic system. The best way to alleviate the computational
cost of the aerodynamic simulations, as outlined in the literature, is to exploit the hybrid methods, in
which the blade near field aerodynamics is analyzed through a different method, often more accu-
rate, than the one used to model the far field released rotor wake. Because of the need to keep the
simulation time within reasonable levels and of the different degree of approximations available, two
methods are exploited and compared, with the aim of understanding which effect is predominant and
requires a more accurate modeling. In the first proposed method a full potential CFD solver is used
to simulate the blade unsteady aerodynamics coupling it to a generalized wake mathematical model;
In the second method the computational time is invested into the rotor wake modeling through vortex
filaments, while the blade aerodynamics is approximated with the well known blade element theory
adding unsteady corrections. It is important to emphasize that such methods are not meant to replace
full CFD aeroelastic models, which are very useful for high fidelity loads prediction and validation
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studies for the final design stage, but the whole work is aimed at enhancing the controller design by
providing more accurate and computationally fast mathematical models.

The second objective of this thesis is to compare other control theories and to overcome the classi-
cal higher harmonic control algorithm. Although this classical method has proved to be quite effective
for vibration reduction and simple to be designed, it still relies on a quasi-static rotor model. There-
fore more complex control techniques are investigated to understand their limits and applicability to
the vibration reduction problem. Starting from the linear periodic system control theory, which per-
mits to take into account the periodicity of the rotor blades in forward flight, the attention is moved
to a complete black-box nonlinear adaptive control through neural networks that does not introduce
further modeling approximations. The main contribution of this work is not in the development of new
controller algorithms. Since such advanced control systems are usually tested on simple academic
cases, this work implements these controllers on complex aeroelastic systems, such as the helicopter
rotor, and encourages the development of the literature in this research field. This is very useful to as-
sess the possibility of a future practical application. One of the main problem that one can encounter
during experimental tests is the actuator saturation due to undesired control activity. This issue is
handled in this thesis as well and the classical higher harmonic control algorithm is enhanced by
imposing actuator constraints.

The whole study considers an active twist rotor with piezoelectric actuators distributed along the
blade span. The last objective of the thesis is to compare the chosen actuation mechanism with other
SMART rotor approaches and therefore the rotor vibrations are reduced through active trailing edge
flaps to study the most effective solution. To do so, the aeroservoelastic code is extended to include the
modeling of movable aerodynamic surfaces. The last part of the thesis is related to an experimental
activity ccaried out at the German Aerospace Center (DLR), where the multiple swashplate system
(META) is beeing developed. This method permits to individually control the blades for rotor perfor-
mance enhancement and vibration reduction without actuators on the rotating frame. In this activities
the enhanced higher harmonic controller algorithm with the actuator constraints handling is imple-
mented within the real time environment and it has been tested on an experimental rotor model. This
application is of significant value because it widens the possibility that actively controlled rotors will
be employed in the near future to ensure a more comfortable and safer flight.

Thesis Outline

Due to the complexity of rotorcraft vibration problem and to the multidisciplinary analysis required,
the thesis deals with a number of topics ranging from the modeling of the helicopter rotor to the
different controller algorithms to reduce vibratory loads. Therefore it is useful to divide the work into
three parts. The content of these parts is briefly overviewed hereinafter.

• Part I: Helicopter Rotor Modeling
The first part of the work covers the modeling approach of the helicopter rotor and proposes
a new aeroservoelastic rotor simulation code that can be used for controller design and vali-
dation purposes. Chapter 1 explains the modeling approach chosen to approximate the struc-
ture dynamics. First a semianalytical method to compute the stiffness properties of a generic
anisotropic beam including magneto-electro-elastic couplings to model both piezoelectric and
piezomagnetic actuators is developed and validated with similar methods available in the liter-
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ature; then a multibody rotor model of an active twist rotor is built starting from an available
numerical model of the Bo105 rotor. In Chapter 2 the hybrid aerodynamic simulation methodol-
ogy is exploited to improve the approximation level of accuracy for helicopter rotor simulations.
Two techniques are shown. In the first section a full potential CFD solver is used to simulate the
aerodynamic of the blades, while the induced velocity generated by the rotor is taken into ac-
count through the Peters-He generalized wake model. The proposed solution is validated at first
with CFD Euler simulations and then with the experimental data of the Hart II rotor model. The
second section shows a different aerodynamic simulation code, in which the blade aerodynam-
ics is approximated through the blade element method corrected to take into account unsteady
effects. A free wake code considering only trailing edge tip vortices is developed and coupled
to the blade aerodynamic model, thus being able to simulate the blade vortex interaction. This
code is validated using experimental data of the Hart II rotor and similar methods available in
the literature.

• Part II: Control Systems Design
The second part of the thesis presents the control systems that have been exploited to minimize
the rotorcraft vibrations. Several techniques are implemented on the same rotor model and trim
configurations in order to compare the different solutions. In Chapter 3 the periodic behavior of
the rotor in forward flight is taken into account by the controller and both the full information
H2 control and the static output feedback one for periodic systems have been considered. The
controller are designed on the multibody rotor model and then validated to the more complex
hybrid aerodynamic solvers. Chapter 4 presents the black-box approach to control the rotorcraft
vibrations by exploiting the recurrent neural networks. The parameters of the nonlinear adap-
tive neural network controller are tuned within the multibody simulations and then validated on
the free wake aerodynamic code. The higher harmonic control is revised in Chapter 5. After
presenting the classical and adaptive algorithm, the method is modified to introduce actuator
constraints through a quadratic optimization. The HHC controller capabilities are first assessed
on the hybrid CFD aeroelastic simulation code and then the potential of having properly taken
into account actuator constraints is shown through simulations with the free wake code.

• Part III: Comparison with Different Control Strategies
In the third part of the study other individual blade control methods are considered and com-
pared to the active twist rotor approach. In Chapter 6 the aeroelastic free wake code is improved
in order to model trailing edge flaps and the vibrations are reduced using the enhanced HHC
algorithm imposing a limit for the flap deflection. The results are then compared to the ones
obtained with the actively twisted blades. The IBC approach described in Chapter 7 differs from
the previous ones, because the blades are controlled using a double swashplate, hence without
actuators in he rotating frame. The HHC algorithm capable of handling actuator constraints is
implementer within the real time environment and then linked to an experimental rotor model
of the Hart II available at the German Aerospace Center. Results regarding the blades tracking
control in hover are shown.

The last chapter points out the conclusions and the main findings of this work. A brief summary of the
study is provided and the original contribution in the vibration suppression research field is analyzed.
The last section proposes some ideas for future works to extend and improve this work.
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Helicopter Rotor Modeling
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Chapter 1

Structural Approximation

The structural model of an helicopter rotor is particularly critical because of its complex motion
at high angular velocities that generate strong inertial couplings and large structural displacement
that are intrinsically nonlinear. Even if a linearization around a trim condition and the use of the
modal reduction for the flexible blades can reproduce the response of a rotor subsystem, they often
result as rough approximations adapt only for fast simulations. One of the main goals of this work
is to provide a reliable and computationally efficient aeroelastic model of the helicopter rotor with
the purpose of designing controllers robust enough to reduce the risks and the level of uncertainty
during real experiments. Therefore, as correct as possible modeling of the structure is mandatory
and, to such an end, a deformable multibody model is probably the best choice. While a rigid body
representation of the command chain, i.e. swashplate and pitch links is usually a good approximation,
well characterized flexible blades are of utmost importance, especially for vibratory loads predictions
and transient analysis.

In the literature and in most of the rotor simulation codes, due to their slender shape the blades
are represented with equivalent beams, provided the correct sectional stiffness and mass properties
are given. The blade section of a helicopter blade is usually composed by different materials, com-
posite layers and internal foam, that make it very complex and anisotropic. Therefore a classical
Euler-Bernoulli beam formulation is not able to consider all the structural couplings and the correct
estimation of the stiffness matrix of the equivalent beam section is a significant issue and likely the
most important aspect when dealing with the structure of a rotor.

The first section of this chapter is aimed at providing a semianalytical tool to compute a full
coupled (6x6) stiffness matrix for a generic anisotropic beam section with the possibility to include
piezoelectric layers as actuators [67]. Piezoelectric devices are used for many different applications,
either as actuators or sensors. Their relatively high operational bandwidth makes them suitable for
applications where a reduction of structural vibrations and noise radiation is sought [68, 69]. Many
applications involve piezoelectric devices embedded into slender beams. As an example, piezoelectric
patches can be used to actively twist helicopter rotor blades. This solution should allow a reduction of
loads and vibrations in the fuselage, as shown in [70] and [71]. Thanks to such methods it is possible
to have an accurate estimate of the main structural properties even in a preliminary design phase.
Starting form a review of the most relevant methods for the evaluation of the sectional properties
available in the literature, the methon here developed is presented and validated through three exam-
ples. This method is then extended to model piezomagnetic effects as well. The last section describes
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1.1. CHARACTERIZATION OF PIEZOELECTRIC BEAM STIFFNESS MATRIX

the multibody model of the active twist rotor used throughout the thesis.

1.1 Characterization of Piezoelectric Beam Stiffness Matrix

Piezoelectrically actuated beams has been studied by researchers for several years and a still valid
review, albeit not very recent, about piezoelectric structures modeling can be found in [72]. Three
dimensional finite element models are often used to predict the response of beams with embedded
piezelectric patches, e.g. in [73]. However, many works strives to avoid the complexity and cost of a
full three dimensional model through simpler yet reliable models. The simplest beam model is based on
the Euler-Bernoulli approximation, as in [74], and [75]. These works accounts only for the axial beam
strain, and not for the change of dimension of the beam section. This allows to obtain an analytical
expression for the cross-section properties. This kind of models can be improved by accounting for
shear deformations, as found in [76] and [77]. The former proposes a Timoshenko model for the core
section and neglects the shear deformation for the external layers; the latter accounts for a parabolic
distribution of the shear strain. It must be noted, though, that many of these specialized formulations
must resort to constitutive equations specialized for an axial stress state. This fact, by itself, somewhat
limits their applicability to the case of complex sections made of laminated composite materials. The
use of mixed variational principles have been advocated by [78] to overcome the intrinsic limitations
of the Euler-Bernoulli kinematic approximation.

In recent years countless papers on the beam sections structural properties characterization have
been published; the interested reader can find a recent, partial overview in [79]. A general pro-
cedure for computing the stiffness matrix of a beam of arbitrarily complex geometry and made of
composite materials was proposed in [80]. The procedure is based on a semi-analytical expansion
of the unknown displacement field, with the stiffness matrix computed from the set of the so-called de
Saint-Venant’s solutions. To do so, the cross-section is discretized into finite elements, and the null
eigenvalue solutions of a system of homogeneous second order differential equations along the beam
axis sought. Since then, many similar works have been published on the subject, some of them spe-
cializing the theory to the case of thin-walled beams. Among them, it is worth mentioning the works
published by Hodges and his co-workers, who approach the problem by aiming at an asymptotically
correct solution. Their work is summarized in [81]. Following [80] and [81] extensions to the case of
integrated piezoelectric devices were proposed in [82], [83] and [84].

A slightly different approach for the beam section characterization was proposed by [85]. Starting
from Giavotto et al., [85] departs from it by resorting to the Hamiltonian structure of the solid beam
differential equations, and do not add any (redundant) section rigid motion field to the section finite
element displacement. This approach is strongly linked to Mielke’s works on the de Saint-Venant’s
solutions [86]. A similar procedure, based on the works by Zong and co-workers, [87, 88], was
proposed by [89].

This work extends [85] to electro-elastic beams. The related problem is first reformulated by
accounting for both the structural and the electric virtual work. It is then shown that, when piezo-
electric effects have to be accounted for, the governing second order system of equations is no more
homogeneous. Rather, it has the charge per unit span imposed on the electrodes as a forcing term.
The generalized beam stiffness can thus be computed by accounting for both the homogeneous and
the particular solutions of the system. Along a similar line it is worth citing the work of [90]. They
adopt the same formalism as [85], and recognize that piezoelectric materials can be accounted for
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CHAPTER 1. STRUCTURAL APPROXIMATION
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Figure 1.1: Straight beam geometry.

by considering not only the general solutions of the system but also the particular ones. They look
for the analytical solution of a clamped beam, obtained by accounting for both of the null eigenvalue
solutions and of the decaying ones and neither carry out a finite element discretization of the beam
section nor attempt to compute the generalized stiffness matrix of the beam.

The here proposed approach should provide, with the same mesh and finite element family, the
same results that can be obtained by following [82], [83] or [84]. The main difference between
the proposed approach and the above mentioned works is conceptual. As explained above, all these
works define the three dimensional displacement field by superposing a warping field onto the section
motion. With the proposed approach, instead, the unknown displacement filed is defined without any
redundancy. It is thus not necessary to further impose the indefinite equilibrium equations of the beam
solving the three dimensional beam problem for a set of self-balanced internal forces, as in [82]. As a
consequence, it is no more required to assume that the average section motion of the three dimensional
model coincides with that of the mono-dimensional beam model. Moreover, departing from [82], the
electrodes equipotentiality constraint is naturally accounted for, without the need of modifying the
equation set any more. Furthermore, each independent electrode requires now the solution of a single
additional system of linear equations, while two were required in [82]. Differently from [83] and
[84], no asymptotic expansion is carried out. Thus, the result of the proposed procedure naturally
leads to a beam stiffness matrix that does account for the shear deformation. In other words, it gives
the actual stiffness matrix, computed from the so-called de Saint-Venant’s solutions, of a given section,
regardless of the beam length. Together with the stiffness matrix of the beam section, the algorithm
provides also input-output electric equations for the piezoelectric components.

1.1.1 Kinematical Model and Constitutive Laws

Consider a geometrical model of a beam with the conventions of Fig. 1.1. Let x(ξ 1,ξ 2,ξ 3) be the
position of a point in the reference configuration, where ξ 3 represents the coordinate along the straight
axis of the beam and ξ 1 and ξ 2 are two local coordinates on the beam section. Assume the local
coordinate ξ 3 to be perpendicular to the plane defined by ξ 1 and ξ 2 and, without loss of generality,
coincident with the curvilinear abscissa s. The covariant base vector g3 = ∂x/∂ξ 3 is thus equal to the
versor n, normal to the ξ 1, ξ 2 plane; the covariant base vector coincides with and to the contravariant
one, g3 = g3 = n. Let x′(ξ 1,ξ 2,ξ 3) be the position of a point in the deformed configuration, so that
u = x′− x is the displacement of the point. The deformation gradient F is given by

F = x′/⊗ = x′/⊗S + x′,3⊗g3 (1.1)

where gi are the three contravariant base vectors relative to the coordinates on the beam, x′/⊗ stands
for the gradient of vector x′, x′/⊗ = x′,i⊗ gi and x′/⊗S = x′,1⊗ g1 + x′,2⊗ g2. The somewhat awkward
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notation x′/⊗S is introduced to decompose the deformation gradient F into a component along the
direction of the beam axis and a term on the section plane. We are interested in the analysis of
straight beams, with constant contravariant base vectors gi along the span. The virtual variation of
the deformation gradient is given by

δF = δx′/⊗S +δx′,3⊗g3 (1.2)

Assuming infinitesimal deformations and displacements, the strain tensor can be computed as

ε = 1
2

(
F +FT

)
− I (1.3)

Linear constitutive laws are considered for both the structural and the piezoelectric regions. The
relation between the Cauchy stress tensor S and the small strain tensor ε is given by

S = E : ε. (1.4)

The piezoelectric constitutive law is{
S
D

}
=

[
E −E T 231

E ε

]{
: ε

·E

}
, (1.5)

where E and ε are the piezoelectric and the dielectric tensors, D is the dielectric displacement, the
electric field E is equal to minus the gradient of the electric potential V ,

E =−V/⊗ =−V/⊗S−V,3g3, (1.6)

and the operator (·)T 231 applied to the third-order tensor E = Ei jkgi ⊗ g j ⊗ gk transforms it into
E T 231 = Ei jkg j⊗gk⊗gi.

1.1.2 Virtual Work Principle

Consider the electromechanical virtual work principle (VWP) for a beam of length L with end loads
and electric charges qC per unit surface imposed on the surface boundary ∂VP

´
V δε : SdV +

´
Vp

δE ·DdVP =
´

A δx′(L) · f (L)dA+
´

A δx′(0) · f (0)dA
+
´

AP
δV (L)q(L)dAP +

´
AP

δV (0)q(0)dAP +
´

∂VP
δV qCd∂VP

(1.7)

where VP is the volume of the piezoelectric regions, E = −V/⊗ is understood, and q and qC are the
electric charges on the beam ends and the beam lateral surface, respectively. The electric charges are
equal to the normal component of the electric displacement D, q = D ·n. The integral

´
∂VP

δV qCd∂VP

on the piezoelectric surface boundary ∂VP is understood to be carried out only on the surface where
the potential V is left free, i.e. where the surface charge can be imposed; wherever the potentials were
imposed the electric charge would be unknown.

Following a well-consolidated procedure (e.g. [80, 85]) Eq. (1.7) can be transformed by integrat-
ing by part all the terms that have, as virtual variation, the derivative with respect to ξ 3 of either
the deformed position vector x′ or the electric potential V . This allows to transform Eq. (1.7) into
a set of two differential equations in the ξ 3 direction. In doing so the volume integral involving the
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contravariant base vector g3 can be evaluated as
´

V (·)g
3dV =

´
L

´
A(·)ndAdξ 3, where A is the surface

spanned by {ξ 1, ξ 2}|ξ 3=const. Integration by part leads to

−
´

VP
δV/⊗S ·DdVP +

´
VP

δV n ·D,3dAPdξ 3−
[´

AP
δV (n ·D−q)dAP

]
L

+
[´

AP
δV (n ·D−q)dAP

]
0
=
´

∂VP
δV qCd∂VP,

(1.8)

−
´

V δx′⊗n : S,3dAdξ 3 +
´

V δx′/⊗S : SdAdξ 3

+
[´

A δx′ · (S ·n− f )
]

L−
[´

A δx′ · (S ·n− f )
]

0 = 0.
(1.9)

Equation (1.9) is derived by taking into account the symmetry of the stress tensor, so that δε : S = δF :
S. Using the constitutive law, eq. (1.5) and the definitions of the small strain tensor ε and electric field
vector E, eqs. (1.3, 1.6), into eqs. (1.8, 1.9) introduces the second derivative of the deformed position
and electric potential, x′,33 and V,33, and brings the equations to their final form. The terms at the
boundary are nothing but the definition of the natural boundary conditions.

Equations (1.8, 1.9) can be reduced to a set of second order ordinary differential equations with a
finite number of unknowns by using a finite element approximation. To do so, the unknown displace-
ment u = x′− x and electric potential V are interpolated over the cross sections by means of suitable
interpolating functions Npi and Ni, and the nodal values of the electric potential Vi and displacement
ui are assumed to be functions of the ξ 3 coordinate:

V = ∑i Npi(ξ
1,ξ 2)Vi(ξ

3),
u = ∑i Ni(ξ

1,ξ 2)ui(ξ
3).

(1.10)

The final result is the following set of second-order differential equations in the nodal unknowns:[
Muu MuV

MT
uV −MVV

]{
u,33
V ,33

}
+

[ (
CT

uu−Cuu
) (

CT
Vu−CuV

)(
CT

uV −CVu
) (

CVV −CT
VV
) ]{ u,3

V ,3

}
+

[
−Euu −EuV

−ET
uV EVV

]{
u
V

}
=

{
0

QC

}
,

(1.11)

or, with a more compact notation,

M
{

u,33
V ,33

}
+H

{
u,3
V ,3

}
+E

{
u
V

}
=

{
0

QC

}
. (1.12)

The matrices of eq. 1.11 are obtained taking into account the symmetries of the elastic tensor E, the
symmetry of the third order tensor E = E T 132 and the symmetry of the second order tensor ε = εT .
The domain of integration E is the area of a single finite element. All the sub-matrices have to be
assembled, as it is customary.

Muu(i, j) =
ˆ

E
NiN jn ·E ·ndA (1.13)

MuV (i, j) =
ˆ

E
NiNp jn ·E T 231 ·ndA (1.14)

MVV (i, j) =
ˆ

E
Npin · ε ·nNp jdA (1.15)
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Cuu(i, j) =
ˆ

E
Ni/⊗S ·E ·nN jdA (1.16)

CuV (i, j) =
ˆ

E
Nin ·E T 231 ·Np j/⊗SdA (1.17)

CVu(i, j) =
ˆ

E
Npi/⊗S ·E ·nN jdA (1.18)

CVV (i, j) =
ˆ

E
Npi/⊗S · ε ·nNp jdA (1.19)

Euu(i, j) =
ˆ

E
Ni/⊗S ·E ·N j/⊗SdA (1.20)

EuV (i, j) =
ˆ

E
Ni/⊗S ·E T 231 ·Np j/⊗SdA (1.21)

EVV (i, j) =
ˆ

E
Npi/⊗S · ε ·Np j/⊗SdA (1.22)

Note that the matrix Euu is four times singular because of three rigid translations and of the rigid
rotation around the beam section ξ 3 axis. These rigid body motions must be constrained. The matrix
EVV is singular as well, because the electric potential is defined up to an independent constant for
each independent electric region. Thus, it is singular as many times as the number of the independent
piezoelectric regions. Conductive surfaces, i.e. equipotential surfaces, are not modeled explicitly, but
they are represented by the nodes on the boundaries of each piezoelectric device. The same equation
number is given to the nodes which represent the same electrode, so to satisfy the equipotentiality
constraint along the section plane1. Therefore, each electrode has a unique electric potential. Con-
straining the potential value of one electrode for each independent piezoelectric region brings matrix
EVV to full rank.

1.1.3 Beam Section Characterization

Consider the internal work of the piezoelectric beam

δLi =
´

V δε : SdV +
´

Vp
δE ·DdVP (1.23)

By following the same steps of the previous sections but without integrating by part, the internal work
is equal to

δLi =
´

L


δu,3
δV ,3
δu
δV


T 

Muu MuV CT
uu CT

Vu
−MT

uV MVV −CT
uV CT

VV
Cuu CuV Euu EuV

−CVu CVV −ET
uV EVV




u,3
V ,3
u
V

dξ 3 , (1.24)

or, with a shorter notation
δLi =

´
L δqT KFEMqdξ 3, (1.25)

1Equipotentiality along the beam axis will be imposed in the stiffness matrix computation.
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where q =
{

uT
,3 V T

,3 uT V T }T is the (N×1) vector of state variables.
As in [85], the stiffness matrix of the beam is recovered by projecting the three dimensional prob-

lem into a suitable vector space. Therefore the six generalized deformations ψ of the beam energet-
ically conjugated to the internal forces and to the electric potentials applied on the nC independent
electrodes VC become the new generalized coordinates. We then assume that the state variable q can
be approximated as

q≈
[
Qst Qp

]{ ψ

VC

}
, (1.26)

where matrices Qst and Qp are (N×6) and (N×nc), respectively. The matrix Qst represents the beam
section behavior for a null electrode potential, i.e. for null forcing terms in Eq. (1.11). The matrix
Qp, instead, describes the beam behavior whenever an electric potential is applied, i.e. it describes a
particular solution of eq. (1.11). Substituting (1.26) into eq. (1.25) leads to

δLi =
´

L δ

{
ψT

V T
C

}[
Qst Qp

]T KFEM
[
Qst Qp

]{ ψ

VC

}
dξ 3. (1.27)

The virtual work per unit length of the beam is the work of the generalized internal forces ϑ and of the
imposed electrodes charges Qc for the virtual variations of the beam generalized deformations δψ and
of the electrodes potential δV c, respectively. It must be equal to the virtual work of the corresponding
three dimensional solid, i.e. to the integrand of eq. (1.27). For a beam with linear constitutive laws
the internal forces ϑ and electric charges Qc can be computed as{

ϑ

Qc

}
=

[
Kψψ KψV

−KT
ψV KVV

]{
ψ

VC

}
,

where the section stiffness matrix Kψψ , the actuation/sensor matrix KψV and the capacitance matrix
KVV define the overall generalized stiffness of the beam section and have dimension of (6×6), (6×nC)
and (nC×nC), respectively. Therefore, the following relation must hold{

δψ

δVC

}T [ Kψψ KψV

−KT
ψV KVV

]{
ψ

VC

}
=

{
δψ

δVC

}T [
Qst Qp

]T KFEM
[
Qst Qp

]{ ψ

VC

}
(1.28)

for every possible δψ , δVC, ψ and VC, so that the beam section stiffness matrix can be computed as[
Kψψ KψV

−KT
ψV KVV

]
=
[
Qst Qp

]T KFEM
[
Qst Qp

]
.

The problem is to compute meaningful matrices Qst and Qp, such that Eq. (1.26) do well ap-
proximate the overall beam behavior. The procedure, already explained in [85] for the matrix Qst , is
discussed in the following paragraphs. The two matrices Qst and Qp can be computed independently
and the computation of the stiffness matrix requires three steps:

1. a linear combination Q̃st of the columns of Qst is determined in Section 1.1.3.1 by exploiting the
homogeneous problem of equations (1.11) with the electrodes of each independent piezoelectric
region short–circuited;
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2. the matrix Qp is determined in Section 1.1.3.2 by computing the particular solution of the prob-
lem (1.11); this can be accomplished either by imposing the electric charge per unit length on
the electrodes, and solving for the unknown independent electrodes potential, or by directly
imposing the potentials and computing the unknown charges.

3. the matrix Qst is computed from Q̃st in Section 1.1.3.3 by imposing that the beam generalized
deformations must be, by definition, energetically conjugated to the internal forces computed
for the three dimensional beam model.

The procedure is detailed in paragraphs 1.1.3.1–1.1.3.3 below.

1.1.3.1 Homogeneous Solution

Equations (1.12) can be reduced to a system of first order differential equations[
M 0
0 I

]
q,3 =

[
−H −E

I 0

]
q+
{

QC
0

}
(1.29)

or, with a shorter descriptor form notation

Dq,3 = Aq+BQC. (1.30)

The first term of the vector base Q̃st can be determined through the solution of the homogeneous
problem of Eq. (1.30) with short–circuited electrodes. The piezoelectric electrodes equipotentiality
along the beam axis implies not only that the electrode potentials are null, but also their derivatives.
The homogeneous short–circuited problem

q̃,3 = Ãq̃ (1.31)

has 12 null eigenvalues, as shown in [85]. The solutions corresponding to the null eigenvalues are
organized in four polynomial Jordan chains; each chain originates from one of the four rigid body
motions of the section, and represent the central solution of the beam. Two polynomial chains grows
up to a third order polynomial, while the other two grow up to a linear polynomial. All the remaining
solutions of the homogeneous short–circuited problem are exponentially decaying, and are called
extremity solutions. Since we are neglecting end effects, only the polynomial solutions are of interest.
The sought fourth polynomial solutions assume the following form

q̃ =
[

x1 x2 x3 x4
]


1 ξ 3 (ξ 3)2

2
(ξ 3)3

6
0 1 ξ 3 (ξ 3)2

2
0 0 1 ξ 3

0 0 0 1

k, (1.32)

where the vector k defines the amplitude of each polynomial. The generalized eigenvectors xi, i =
{1,2,3,4} of the homogeneous problem can be computed by resolving a set of systems of linear equa-
tions:

Ed0 = 0
Ed1 = −Hd0
Edi = −Hdi−1−Mdi−2, i≥ 2

(1.33)
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Note that a similar approach was suggested also by [91]. The initial eigenvectors d0 are known
beforehand: they represent the four rigid motions stemming from the null space of E. In fact, matrix
E is four times singular and has to be constrained while resolving the Jordan chains. The resulting
generalized eigenvectors are computed as follows

x1 =

[
0
d0

]
. . . xi =

[
di−1
di

]
(1.34)

Once the 12 generalized eigenvectors are computed, the vector base Qst is constructed by using only
the 6 eigenvectors which contribute to the deformation of the beam. These vectors are respectively the
last two vectors associated to the bending and the last vector related to the axial and to the torsional
rigid motions:

Q̃st =
[

x3bend1 x4bend1 x3bend2 x4bend2 x2axial x2torsional
]
. (1.35)

1.1.3.2 Particular Solution

In order to compute the vector base Qp we exploit the particular solution of Eq. (1.12). This allows to
compute the solution when an electric potential is applied to the electrodes. Since the applied potential
V c is constant, the particular solution is constant as well. Considering eq. (1.12), the particular
solution is given by

E
{

u
V

}
pt

=

{
0

QC

}
. (1.36)

As stated before, the matrix Qp can be computed either by imposing the electric charge per unit length
on the electrodes, or by directly imposing the electric potentials. If the first approach is used, unit and
opposite charges QC are applied at the master and slave electrode for each piezoelectric region and

the solution
{

u
V

}
pt

is then computed. Since we are interested in the behavior of the beam under

unit applied electric potential at the electrodes VC, and not to unit charges, the matrix built with the
different solutions as columns must be multiplied at the right by the inverse matrix of the electrodes
electric potentials. If the second approach is used instead, i.e. if the solution is directly computed by
applying unit electric potential difference on each piezoelectric region, no post-processing is required.

Since the particular solution is constant, its derivative is zero and the sought vector base Qp is

Qp =

 0{
u
V

}
pt

 (1.37)

1.1.3.3 Computation of the Generalized Beam Stiffness Matrix

Having computed the generalized eigenvectors Q̃st and the solution Qp for applied unit potential on
the electrodes VC the state variable vector q can be approximated as

q =
[
Q̃st Qp

]{ kd
VC

}
(1.38)
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where vector kd defines the amplitude of the 6 eigenvectors. However, the vector kd is not, in gen-
eral, energetically conjugated to the internal forces of the beam. A further step is thus needed in
order to compute the correct stiffness matrix. Following the same approach as [85], a coordinate
transformation G is sought for the short–circuited solutions so that

kd = Gψ. (1.39)

This is equivalent to transform the state variable vector q through a linear combination of the columns
of matrix Qst = Q̃stG. Consider the internal work per unit length of the beam (1.25) projected onto
kd:

δ L̃i = δψ
T GT Q̃T

stKFEMQ̃stGψ = δψ
T GT K̃Gψ. (1.40)

The transformation matrix G is obtained by imposing that the internal work of Eq. (1.40) must be
equal to the external work. Since the piezoelectric regions are kept short–circuited the external work
is equal to the product of the virtual generalized deformations and the internal forces of the beam,

δ L̃istruct = δψ
T

ϑ , (1.41)

where the internal forces are defined as

ϑ =

ˆ
A

[
I

x×

]
S ·ndA. (1.42)

Consider the constitutive law S = Eε − eT E and Eqs. (1.1) and (1.6). The structural external work
can be computed as

δ L̃istruct = δψ
T [ LT Y T RT ZT

]
Q̃stkd = δψ

T [ LT Y T RT ZT
]

Q̃stGψ, (1.43)

where the matrices L, Y , R and Z are computed from Eq. (1.42) with the finite element discretization
of Eq. (1.10). Equating Eqs. (1.40) and (1.43) leads to

δψ
T GT K̃Gψ = δψ

T [ LT Y T RT ZT
]

Q̃stGψ. (1.44)

Note that only the structural deformations have to be transformed. Equation (1.44) must be verified
for every possible deformation Gψ , so it is equivalent to a system of linear equations

K̃
T

G = Q̃T
st
[

LT Y T RT ZT
]T

. (1.45)

Then the sought coordinate transformation G can be found by solving Eq. (1.45). The generalized
stiffness matrix K of the beam section can finally be computed as

K =

[
G 0
0 I

]T [
Q̃st Qp

]T KFEM
[
Q̃st Qp

][ G 0
0 I

]
. (1.46)

After having computed the stiffness matrix, the finite element model of the beam can be obtained
as usual, considering that the generalized deformations ψ can be expressed as a combination of the

36



CHAPTER 1. STRUCTURAL APPROXIMATION

Table 1.1: Piezoelectric material properties.

Piezoelectric (PZ21)
E11 = E22, GPa 5.9017E+1
E33, GPa 4.0906E+1
ν12 0.3413
ν13 = ν23 0.3856
G12 = G23 = G13, GPa 2.2E+1
E311, C/m2 -5.3979
E322, C/m2 -5.3979
E333, C/m2 2.2836E+1
ε11 = ε22, F/m 3.1892E-8
ε33, F/m 1.3846E-8

displacements of the beam axis as in [92]

ψ =



ψ1
ψ2
ψ3
γ1
γ2
γ3


=



s1,3
s2,3
s3,3
α1,3
α2,3
α3,3


+



0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





s1
s2
s3
α1
α2
α3


(1.47)

where si and αi are the three translations and the three rotations of the beam axis respectively.

1.1.4 Examples

The first two examples deal with beams made of homogeneous material and thin piezoelectric patches.
The host structure material is an isotropic epoxy resin with elastic modulus E = 3.5 GPa and Pois-
son coefficient ν = 0.34. An orthotropic piezoceramic material is used for the piezoelectric patches.
Table 1.1 reports the piezoelectric material properties computed in a local coordinate system, with
the polarization applied in the direction of the local z axis. The stiffness matrix computed with the
proposed method is compared with results obtained using the software Abaqus and, when available,
with literature results obtained with ANBA [82] and VABS [84].

1.1.4.1 Example 1 : Beam with two Piezoelectric Patches

In this example a rectangular beam section with two piezoelectric actuators is considered. Two piezo-
electric patches are attached on the upper and lower faces of the beam, as shown in Fig. 1.2. The beam
core is 0.1x0.05 m and the piezoelectric patches are 0.002 m thick. The beam section is discretized
with a 6x6 mesh, the piezoelectric patches with one element through the thickness. The electrodes are
represented by the nodes on the sides above and below the piezoelectric patches; the potentials on the
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Figure 1.2: Rectangular section.

Table 1.2: Rectangular section beam properties.

Kψψ KψV KVV

EA, N 4.1107E+07 TzV 1, C/m 1.627 Cii, F/m 1.2688E-6
(GA)x, N 1.3074E+07 TzV 2, C/m 1.627 Ci j, F/m -2.1555E-8
(GA)y, N 6.8735E+06 MxV 1, C -4.254E-2
GJ, Nm2 1.2050E+4 MxV 2, C 4.254E-2
(EJ)x, Nm2 1.9673E+4
(EJ)y, Nm2 3.4482E+4

electrodes in contact with the core of the section are fixed to zero, so that the electric fields have the
same direction of the material polarization (direction 3 of Tab. 1.1).

The computed stiffness matrix is reported in Tab. 1.2. A three dimensional beam of length 2 m
has been analyzed with Abaqus, with isostatic constraints applied on one of the sections. Two load
conditions are considered. In the first one an electric potential of 1000 V is applied on both electrodes.
In the second one the same electric potential is applied on the lower electrode only. In order to
compare the deformations obtained with the present method and the ones obtained with the three
dimensional model, the results of the latter needs to be post-processed. The axial beam deformation is
estimated as the mean value, computed over the section, of the three dimensional axial deformation.
The curvature around the y axis is estimated as the derivative of the section rotation, and is computed
by dividing the rotation of the end section by the total beam length. Table 1.3 compares the computed

Step: Step−2
Increment      1: Step Time =    1.000

ODB: Trave2piezofitlung.odb    Abaqus/Standard 6.11−1    Wed Jun 05 15:37:41 ora legale Europa occidentale 2013

X

Y

Z

Figure 1.3: Rectangular section beam Abaqus model.
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Table 1.3: Rectangular section beam: deformation obtained by applying a 1000 V potential to both
(left) and one (right) electrodes.

both electrodes lower electrode
Present Abaqus Present Abaqus

Axial deformation ψz -7.9159E-5 -7.8498E-5 -3.958E-5 -3.8671E-5
Curvature γx 0.0 0.0 2.1623E-3 2.1072E-3

Printed using Abaqus/CAE on: Fri Nov 14 12:23:11 CET 2014

 CSYS−1Z

Y

X

−1.35e−04
−1.15e−04
−9.43e−05
−7.37e−05
−5.31e−05
−3.26e−05
−1.20e−05
+8.56e−06
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Figure 1.4: Triangular section beam with 100 V applied on the lower electrode: ε11. Abaqus 3D model
(left) and present beam section model (right).

deformations.
Figures 1.4 and 1.5 compare the deformation field ε11and ε12 predicted, when an electric potential

of 1000 V is applied on both electrodes. They are based on the Abaqus model and the proposed section
characterization procedure. It should be remarked that the contouring algorithms used by Abaqus and
by the present beam section code are different. Abaqus plots the contour after computing, for each
material domain, the nodal average of a deformation. The beam section code, instead, post-processes
a deformation by projecting it onto the same finite element space used to approximate its parent
displacement.

1.1.4.2 Example 2 : Triangular Section

The triangular section of Fig. 1.6 was first considered in [82]. The section core is made of epoxy
resin, with three piezoelectric patches attached to each side of the beam. The polarization direction
of the piezoelectric materials is normal to the sides of the section and points to the host structure
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Figure 1.6: Triangular section.

Table 1.4: Triangular section beam properties.

Kψψ KψV

Present ANBA Present ANBA
EA, N 1.4915E+6 1.4915E+6 TzV 1, C/m 0.32549 0.3255
(GA)x, N 3.7123E+5 3.70485E+5 TzV 2, C/m 0.32549 0.3255
(GA)y, N 3.7122E+5 3.70485E+5 TzV 3, C/m 0.32549 0.3255
GJ, Nm2 1.8189E+1 1.8156E+1 MxV 1, C -1.9486E-3 -1.929E-3
(EJ)x, Nm2 4.0748E+1 4.0749E+1 MxV 2, C 9.741E-4 9.77E-4
(EJ)y, Nm2 4.0747E+1 4.0749E+1 MxV 3, C 9.741E-4 9.77E-4

MyV 1, C 2.3E-8 2.8E-10
KVV MyV 2, C 1.685E-3 1.6927E-3

Present ANBA MyV 3, C -1.685E-3 -1.6927E-3
CViVi, F/m 1.9269E-6 1.9303E-6
CViV j, i6= j, F/m -1.7807E-8 -2.075E-8

center. The three inner electrodes are unloaded, with the electric potential applied to the outer ones.
The electrodes are numbered as in Fig. 1.6. The beam core sides are 0.02 m wide; the piezoelectric
patches are .25 mm thick. The beam section has 4 elements on each side, with one element through the
thickness for the piezoelectric patches. The center of the triangular section is located in the origin of
the reference system. The results, shown in Table 1.4, are almost indistinguishable from those reported
in [82], obtained with the ANBA code. As for the previous example, the behavior of a three dimensional
beam of length 0.5 m has been analyzed with Abaqus. Two load conditions are considered. In the first
one an electric potential of 100 V is applied on each electrode; only the lower electrode is loaded in
the second load condition. The deformations of the three dimensional model are post-processed as in
the previous example. As can be seen form Tab. 1.5 the results obtained with the three dimensional
model and the proposed method show a good agreement. Figures 1.8 and 1.9 compare the deformation
fields ε11and ε12, as predicted, for this case, by the three dimensional Abaqus model and the proposed
section characterization procedure.

This test case is used as a mean to verify the effectiveness of modeling this kind of structures as
beams characterized by the computed stiffness matrix. To do so, the axis displacement due to 100 V
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Table 1.5: Deformation due to a 100 V applied to all electrodes (left) and to the lower electrode (right).

all electrodes lower electrode
Present Abaqus Present Abaqus

Axial deformation ψz -6.547E-5 -6.4235E-5 -2.1823E-5 -2.1409E-5
Curvature γx 0.0 0.0 0.478E-2 0.466E-2
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Figure 1.8: Triangular section beam with 100 V applied on the lower electrode: ε11. Abaqus 3D model
(left) and present beam section model (right).
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Table 1.6: Displacements of the end section.

Present Abaqus
sx, m -4.954E-4 -4.986E-4
sy, m 2.860E-4 2.879E-4
sz, m -1.091E-5 -1.063E-5
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Figure 1.10: Two layered section.

on the left electrode is computed by means of a beam model and compared with that of the three
dimensional FEM analysis. The beam model uses the stiffness matrix of Tab. 1.4 and has the same
discretization along the beam axis of the three dimensional model. Table 1.6 compares the beam end
section displacements with the average end section displacements of the 3D FEM model.

1.1.4.3 Example 3 : Two Layered Beam

The case study analyzed by [84] is considered. The rectangular cross section is composed of an
aluminum layer bounded to a thick piezoelectric layer. A voltage of 10 kV is applied on the surface
of the piezoelectric material, with the interface between the piezoelectric and the aluminum layers
grounded. The piezoelectric material is polarized along the global y axis, that corresponds to the
piezoelectric local z axis. Both layers are 5 mm thick and the section is 20 mm wide. The mesh, shown
in Fig. 1.10, has 40x8 elements. The aluminum elastic modulus is equal to E = 68.9 GPa, its Poisson
coefficient to ν = 0.25. The properties of the piezoelectric material are reported in Tab. 1.7.

The computed stiffness matrix is shown in Tab. 1.8. The results are compared with those reported
by [84]; however, no comparison is possible for the shear stiffness since that work is based on the
variational asymptotic method. The only significant difference in Tab. 1.8 is that for the torsional
stiffness GJ, 122.18 Nm2 vs. 130.04 Nm2. At a first glance, this could be imputed to the fact that VABS
results are computed using 80 8-noded parabolic elements, while the present results are computed by
using 320 4-noded bilinear elements. However, increasing the number of elements from 320 to 5120
brings the torsional stiffness from 122.18 Nm2 down to 121.78 Nm2.
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Table 1.7: Material properties.

PZT4
E11 = E22, GPa 8.13E+1
E33, GPa 6.45E+1
ν12 0.329
ν13 = ν23 0.432
G12, GPa 3.06E+1
G13 = G23, GPa 2.56E+1
E311 = E322, C/m2 -5.2
E333, C/m2 1.508E+1
E212 = E123, C/m2 1.27E+1
ε11 = ε22, F/m 6.761E-9
ε33, F/m 5.874E-9

Table 1.8: Comparison with the VABS method.

Kψψ KψV

Present VABS Present VABS
EA, N 1.5026E+7 1.5026E+7 TzV , C/m -0.20263 -0.20245
KMxsz , Nm 3.0589E+3 3.0622E+3 MxV , C -4.832E-4 -4.8434E-4
KTxsy , Nm 1.7179E+5 —
KMzsx , Nm 1.1645E+3 —
(GA)x, N 4.4191E+6 —
(GA)y, N 4.2307E+6 — KVV

GJ, Nm2 1.2218E+2 1.3004E+2 Present VABS
(EJ)x, Nm2 1.2796E+2 1.2777E+2 C, F/m 4.0073E-8 —
(EJ)y, Nm2 5.0096E+2 5.0081E+2
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1.2 Extension to Piezomagnetic Beams

After having validated the semianalytical method for the computation of piezoelectric beam sections
properties, this formulation can be easily extended to include the modeling of piezomagnetic materials
to allow the correct representation of magneto-electro-elastic devices, which are very interesting for
the vibration control of structures as shown in [93, 94]. Therefore there is the need to develop an
appropriate beam model, capable of considering all the couplings of the different physical phenomena
in an accurate way. A relevant work in the literature for the modeling of magneto-electro-elastic beams
can be found in [95, 96, 97, 98], in which a dynamic two-dimensional beam model is built through the
variational boundary element method. By using the same approach explained in the previous section
for piezoelectric beam, the aim of this work is to extend the modeling of magneto-electro-elastic beam
to the three dimensional domain, thus reducing the approximation assumptions.

The first step is the definition of the fully coupled linear constitutive law
S
D
B

=

 E −E T 231 −DT 231

E ε G T 231

D G µ


: ε

·E
·H

 , (1.48)

where µ is the magnetic permeability, D is the piezomagnetic constants tensor, G is the matrix de-
scribing the direct magneto-electric coupling, B is the magnetic induction and the magnetic field H is
equal to minus the gradient of the magnetic potential φ ,

H =−φ/⊗ =−φ/⊗S−φ,3g3. (1.49)

After that, the virtual work principle of eq. 1.7 has to be completed by adding the following volume
integrals that introduce the virtual work of the magnetic field H

´
VM

δH ·BdVM =
´

AM
δφ(L)J(L)dAM +

´
AM

δφ(0)J(0)dAM +
´

∂VM
δφJCd∂VM ,

where VM is the volume of the piezomagnetic regions, and J and JC are the current density on the
beam ends and the beam lateral surface, respectively. The current density is equal to the normal
component of the magnetic induction B, J = B ·n. The integral

´
∂VM

δφJCd∂VM on the piezomagnetic
surface boundary ∂VM is understood to be carried out only on the surface where the potential φ is left
free, i.e. where the surface current density can be imposed; wherever the potentials were imposed the
electric charge would be unknown.

Following the sectional finite element discretization, the final result is a set of second-order differ-
ential equations

M


u,33
V ,33
φ ,33

+H


u,3
V ,3
φ ,3

+E


u
V
φ

=


0

QC
JC

 . (1.50)

As in the previous section, conductive surfaces, i.e. equipotential surfaces, are not modeled explicitly,
but they are represented by the nodes on the boundaries of each piezoemagnetic device and they are
treated in the same way as the piezoelectric conductors for the beam stiffness matrix computation.
The sectional stiffness matrix K can be obtained with the same algorithm presented in the previous
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Figure 1.11: Two layered section.

section by exploiting both the homogeneous solution and the particular one of eq. 1.50, leading to the
magneto-electro-elastic beam constitutive law

ϑ

QC
JC

= K


ψ

VC

φC

 .

Similarly to the piezoelectric beam, this relationship permits to model both piezomagnetic actuators,
by imposing the magnetic potential φC on the conductive surfaces and piezomagnetic sensors consid-
ering the three dimensional couplings.

1.2.1 Example

The validation of the proposed three-dimensional beam section analysis formulation for magneto-
electro-elastic beams has been done by reproducing the example reported in [96]. A simply supported
two layered CoFe2O4/BaTiO3 laminated beam with a length L = 0.3 m and an overall thickness of
h= 0.02 m, whose material properties are well detailed in [96], is studied. The beam undergoes a uni-
formly quasi-static distributed load q = 1− e(−t/0.15) N/m, while the electric and magnetic potentials
at the beam top surface are set to zero. The sketch of the layered beam section is shown in fig. 1.11.
A total of 400 elements are used to discretize the beam section, while 100 beam elements approximate
the beam axis.

In the reference, the authors analyze this problem through a boundary element method, thus per-
forming a two-dimensional beam analysis. After reaching the steady state solution, the through the
thickness distribution of both the electric potential and the magnetic one is observed at the section in
the middle of the beam at z = L/2. Figure 1.12 reports the comparison of the potentials distribution
between the boundary element method and the semianalytical method presented in this chapter. Being
the proposed approach a three-dimensional one, the potential distribution is computed by averaging
the potential values along the x axis. From the graphs it can be seen that even if the shape of the
potentials distribution is the same for both approaches, the three-dimensional analysis exhibits higher
electric and magnetic potential values.
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Figure 1.12: Comparison with ROSITA.

Although this example provides a first glimpse of the capabilities of the proposed approach, further
comparisons have to be done by exploiting three-dimensional finite element analysis or experimental
data to validate the magneto-elastic extension.

1.3 Multibody Rotor Model

The test case chosen as the subject of the simulations and analysis shown in the next chapters is an
available numerical model of the Bo105 rotor [99]. It is a 4 blades hingeless rotor with only one
physical hinge for the blade pitch, while the flap and lag main deflections are obtained through the
deflection of an ad hoc designed flexbeam located at the blade root. In order to design an active
twist rotor, which will be exploited throughout this thesis, capable of reducing hub loads vibrations by
modifying the periodic aerodynamic loads in forward flight condition, the original blades of the Bo105
rotor are replaced with actively twisted ones, including macro-fiber composite (MFC) piezoelectric
actuators with interdigitated electrodes. These actuators exploit the primary piezoelectric direction of
polarization, thus allowing to achieve a high strain rate with low actuation power. They are oriented
in such a way that the strain is applied at ±45 to generate maximum torsional authority.

Since an accurate structural modeling is demanded for a reliable loads estimation, we decided
to use the free software MBDyn [100, 101] to build the rotor model in a nonlinear multibody envi-
ronment. MBDyn is a general purpose multibody software developed at Politecnico di Milano by the
Dipartimento di Scienze e Tecnologie Aerospaziali. This code deals with Initial Value Problems (IVP)
by solving Differential Algebraic Equations (DAE). The equations of motion are based on Newton-
Euler principles and the kinematic constraints are enforced through Lagrange multipliers. It is also
possible to model flexible bodies as nonlinear beams and plates with the full constitutive law of the
material.

46



CHAPTER 1. STRUCTURAL APPROXIMATION

-0.015-0.01-0.005 0
 0.005 0.01 0.015 0.02 0.025

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0
Figure 1.13: Blade section discretization.

Table 1.9: Mass properties of the piezoelectric section.

Data Piezoelectric section
xCG −1.5 ·10−3 m
yCG 3.92 ·10−3 m
M 5.843 Kg/m
IXX 6.792 ·10−4Kgm
Iyy 3.118 ·10−2 Kgm
IZZ 3.186 ·10−2 Kgm

In the developed multibody model the swashplate and the pitch links are represented with rigid
bodies, and each blade is modeled using five geometrically exact finite volume nonlinear beam ele-
ments [102]. MBDyn is also able to handle piezoelectrically actuated beams provided the stiffness
and the piezoelectric coupling matrices of the blade section are known. The beam section stiffness
and and mass data of the original Bo105 blades are known. The section properties of the actively
twisted blades, on the contrary, have to be computed. An accurate way to compute such properties,
still accounting for three dimensional elastic and piezoelectric constitutive laws, is the semianalytical
approach described in [103, 104, 105]. The three dimensional continuum is decomposed into the one
dimensional domain of the beam model and the two dimensional domain of the beam section. A finite
element discretization of the beam section, such as that shown in fig. 1.13, allow to compute, by means
of the previously shown semi-analytic procedure, the sought generalized beam section stiffness matrix.
Such a method was already used to optimize the piezoelectric blade section in [91]; the position of the
elastic axis and of the center of mass were constrained during the optimization to avoid aeroelastic
instabilities. Considering the blade section in fig. 1.13 with the x axis along the blade span and the
y axis pointing from the trailing edge to the leading edge located in the elastic axis of the section at
25% of the chord, the computed mass properties of the equivalent beam section are reported in tab.
1.9, where xCG and yCG are the position of the center of mass with respect to the elastic axis of the
blade section, M is the weight per unit length and IXX , IYY and IZZ are the inertia moments per unit
length. The semianalytical method used to determine the blade stiffness matrix Kψψ , shown in eq.
1.51, provides a full (6x6) relation taking into account all material couplings. It also computes the
piezoelectric coupling matrix KVV , reported in eq. 1.52, which is used to transmit mechanical forces
due to the electric potential V . The terms of the stiffness matrix Kψψ are organized so that it multiplies
the displacements related to the three linear displacements along x, y and z and the three curvature
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Table 1.10: BO 105 model data with original and piezoelectric blade.

Rotor data BO 105 blade Piezoelectric blade
R 4.9 m 4.9 m
p 0.23 m 0.23 m
ϑp 2.5◦ 2.5◦

c 0.3025 m 0.3025 m
ϑtw −8◦ −8◦

Ω 44.4 rad/s 44.4 rad/s
α 3◦ 3◦

νβ 1.11 1.1
νξ 0.69 0.73
νϑ 3.63 3.89

along x, y and z, respectively.

Kψψ =



6601.878 211.403 1.86 −1.073 −12.462 72.417
907.462 13.787 0 0.318 13.859

82.216 0 −0.273 0.386
0.658 −0.072 −0.075

0.822 −0.749
33.505

 ·104 (1.51)

KVV =



−128.245
−85.34
−8.343
−1.948
2.393
−9.09


·10−2 (1.52)

Rotor data, together with the first frequencies of the original passive blades and of the optimized
piezoelectric blades, are shown in tab. 1.10, where R is the blade radius, p is the pitch bearing
position, ϑp is the precone angle, c is the blade chord, ϑtw is the blade twist, Ω is the rotor angular
velocity, α is the shaft angle and νβ , νξ and νϑ are the non-dimensional flap, lag and torsional
frequency, respectively.

Even if MBDyn is a general purpose multibody software, it contains some specialized elements for
the simulation of helicopter rotors; among them, it provides simple aerodynamic elements, such as the
blade theory and linear inflow models. Taken together, these elements allow to quickly approximate the
system response with a level of accuracy that is deemed suitable to reproduce representative vibratory
loads in forward flight, at least for a preliminary design of the controller. The simulations were
performed by combining the blade element method (BEM) with the Drees inflow model. The required
data are the lift, drag and moment coefficients, CL, CD and CM of the blade NACA 23012 airfoil,
with respect to the Mach number and to the aerodynamic angle of attach. This rotor model will be
later extensively used as a low fidelity model to design the vibration controller because of the low
computational effort it requires.
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Figure 1.14: Rotor shaft inclination.

Table 1.11: BO 105 trim data.

Rotor forces µ = 0.23 µ = 0.33
TZ 20010 N 20200 N
MX 740 Nm 1030 Nm
MY −85 Nm −1400 Nm

Once the multibody rotor model is built, the rotor is trimmed in forward flight at two advance
velocity parameters µ = 0.23 and µ = 0.33. The swashplate is set so that the rotor thrust and moments
reproduce a realistic condition for both advance velocities. The rotor shaft is inclined forward by 3◦

and the chosen absolute reference frame, to which the hub forces are referred, is shown in fig. 1.14.
Table 1.11 presents the target of the rotor forces for each trim configuration.

The coupling between MBDyn and Simulink is already available, thus allowing aeroservoelastic
simulations. MBDyn can be easily coupled to external softwares using bidirectional socket commu-
nication to exchange information between a server program and one or more client programs. The
interface between the two programs is managed through Matlab MEX-functions. The closed loop sim-
ulation can be entirely performed in the Simulink environment, in which the multibody model of the
rotor appears as Simulink blocks, hence there are no limitations imposed on the controller design.

Having developed a method to properly compute the sectional properties of helicopter beams,
together with the nonlinear beam formulation of the multibody approach, it is possible to provide a
high level of fidelidy for the rotor structural modeling. Althoug the aerodynamics provided by MBDyn
is quite simple, it permits to have fast simulations while representing the main features of the rotor
behavior, therefore it will be extensively used throughout this work to iteratively design the active
vibration control systems, which will be then validated using more sophisticated aerodynamic models,
presented in the following chapter.
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Chapter 2

Hybrid Aerodynamic Models

The accurate prediction of the blades and hub loads of a rotor in forward flight is a very challeng-
ing task. The flow around the blade is unsteady with strong nonlinear and three dimensional effects,
as transonic regions and dynamic stall. Moreover the wake shed by the blades generates a complex
induced velocity distribution and blade vortex interactions (BVIs), which strongly modify the aerody-
namic loads. Due to the rotary movement at high angular velocity and to the blade kinematics, the
accurate modeling of the inertial couplings and the structural motion play an important role in the
aeroelastic analysis as well.

While relying on multibody simulations with a beam model of the blades provides a sufficient
level of accuracy for the structure with a relatively low computational effort, a complete aerodynamic
model considering all the nonlinear effects is nowadays possible only through computational fluid
dynamic (CFD), which requires a substantial computational time to perform a full rotor analysis
[106, 107, 108]. For industrial users and during the design phase such expensive simulations are
prohibitive and it is common practice to adopt simplified methods, without undue approximations
in the modeling process. This approach is often referred as hybrid CFD method; the aerodynamic
near field of the blade is solved with a CFD tool while the far field and the wake are modeled through
simpler models, which are by far less expensive than CFD analysis. Several examples of this technique
can be found in the literature. In [109] the near field of the blade is computed through a Navier-Stokes
based CFD software and the rotor wake is approximated by a potential rigid/free wake obtained with
a collection of piecewise linear bound and trailing tip vortex elements. Euler equations are used in
[110] to compute the blade flow in the vicinity of the blade and full potential flow is considered to
model the flow region far away from the rotor. A Lagrangian wake model is used to take into account
the effect on other blades. A similar approach, in which the flow around the blade is modeled using
Navier-Stokes based equations can be found in [111]. A hybrid code is developed in [112], where the
Navier-Stokes solution of the blade aerodynamics is coupled with a far field wake modeled as trailing
edge vortices of all blades. The approach proposed in [113] is a weak coupling between the wake and
the Navier-Stokes based solution of the blade near field, in which the boundary conditions of the mesh
boundaries are provided by a time marching free-wake rotor analysis computed with another software.
Couplings between a Reynolds Averaged Navier-Stokes (RANS) solver and a free wake model of the
blade tip vortices can be found in [114, 115, 116]. Another linearized method to realize a hybrid
approach is presented in [117, 10, 118], where the CFD RANS-based code is used before the full rotor
analysis to generate frequency domain aerodynamic response to basic motions. Subsequently, the
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frequency domain loads are converted to the time domain using the Rational Function Approximation
(RFA) approach. This procedure is repeated for different airfoil configurations leading to a parameter
varying linearized state space model for the airfoil response, function of the Mach number, the airfoil
angle of attach and position of the control surfaces. This model provides cross-sectional unsteady
lift, moment, and drag coefficients that can be used at each time step of the simulation within the
blade element theory. The RFA model is then linked to a free wake model. In the original RFA model
the cross-sectional aerodynamic loads were obtained in the frequency domain using a doublet lattice
unsteady potential flow solver [9].

Two different solutions to obtain a hybrid rotorcraft aerodynamics solver are proposed in this
chapter. The goal of this work is to obtain an aerodynamic code that gives a good approximation
of the rotor aerodynamics, which can be useful both for the preliminary rotor design and for the
tuning and testing of control systems, hence without spending a great amount of simulation time. In
the first method a greater attention is given to the blades and a full potential CFD solver is used to
approximate the near field aerodynamics. In order to limit the simulation time the wake structure
is not modeled and the induced velocity is computed through the Peters-He model, which enhances
the higher harmonics content of the classical linear inflow ones. The second method does not rely
on a CFD approach and the blade element method is improved considering unsteady effects and tip
losses. In contrast to the first hybrid code, the free wake geometry of the tip vortices of the blades is
modeled, providing a more sophisticate inflow estimation and the possibility to simulate blade vortex
interactions (BVIs). The two methods are presented in the following sections and they are validated
using experimental data of the Hart II rotor to assess their applicability and limitations.

2.1 Full Potential CFD with Peters-He Inflow

The aim of this section is to develop an aeroservoelastic rotor simulation tool with an intermediate
level of accuracy between the classical blade element method with simple inflow models and a full
potential CFD simulation, able to model the main features of the rotor behavior. The main goal is
to overcome the limitations of the simple quasi-steady blade element method combined with linear
inflow models available in MBDyn and to provide a hybrid code, which allows the user to perform
fast simulations. To achieve our objectives, without losing the advantages of a multibody approach
to model the structure, the multibody software MBDyn is coupled to the developed hybrid CFD code
that simulates the rotor aerodynamics. The near field of all blades are simulated independently with
a full potential software and the rotor wake is computed with the Peters-He inflow model, thus cou-
pling the individual blade flow fields and considering higher harmonics in the predicted inflow. The
choice of the potential flow approximation introduces some limitations, it is nonetheless adopted a
fast aerodynamic solver. The use of the Peters-He inflow model represents a good compromise in view
of enhancing the frequency content of the induced velocity, with respect to linear inflow approaches,
without modeling the wake geometry.

2.1.1 Blade Aerodynamics

The aerodynamic loads of the rotor blades are computed using a two-field full potential formula-
tion through the open source CFD software ST developed at Dipartimento di Scienze e Tecnologie
Aerospaziali, Politecnico di Milano [119]. Attached flows past aerodynamic bodies at high Reynolds
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numbers ensure thin boundary layers and narrow vortical regions. The absolute motion field of such
a flow can be suitably defined by a discontinuous velocity potential φ ,

~V = ∇φ , (2.1)

where the vorticity bounded to lines or surfaces is related to the jump of φ across them. This is the
so-called quasi-potential flow. Assuming the viscous stress and the heat sources to be negligible, the
governing equations of the flow are:

• the continuity equation,
∂ρ

∂ t
+∇ · (ρ∇φ) = 0, (2.2)

• Bernoulli theorem,
∂φ

∂ t
+H−H∞ = 0. (2.3)

Both the potential function φ and the density function ρ can be defined on a reference domain RG

moving according to an absolute velocity field ~VG on a spatial domain Rg. Let us define the integral
form of the continuity equation, eq. 2.2, in the fixed spatial domain Rg:

ˆ
v

∂ρ

∂ t
dv+

ˆ
v
∇ ·
(

ρ~V
)

dv = 0. (2.4)

Defining the total time derivative with respect to RG as:

d∗
dt

=
∂∗
∂ t

+∇∗ ·~VG, (2.5)

and applying the divergence theorem the continuity equation, eq. 2.4, becomes:
ˆ

v

(
dρ

dt
−∇ρ ·~VG

)
dv+

ˆ
γ

ρ~V ·~ndγ = 0, (2.6)

which represents an Arbitrary Lagrangian Eulerian (ALE) formulation independent from the time
derivative of the control volume. The Bernoulli theorem, eq. 2.3, in the spatial domain Rg with the
fluid at rest is:

∂φ

∂ t
+

1
2
|∇φ |2 + c2

∞

γ−1

((
ρ

ρ∞

)γ−1

−1

)
= 0. (2.7)

Applying the total time derivative, eq. 2.5, to the potential function the ALE form becomes

dφ

dt
−∇φ ·~VG +

1
2
|∇φ |2 + c2

∞

γ−1

((
ρ

ρ∞

)γ−1

−1

)
= 0. (2.8)

The related integral form is
ˆ

v

(
dφ

dt
−∇φ ·~VG +H−H∞

)
dv = 0. (2.9)
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(a) External domain of the blade. (b) Blade mesh and wake discretization.

Figure 2.1: Aerodynamic mesh.

The integral equations, Eqs. 2.6 and 2.9, are treated trough a node centered finite volume discretization
in space obtaining a set of first order nonlinear Ordinary Differential Equations (ODEs) in time:

A
∂x(t)

∂ t
= f (x(t)) , xT =

{
ρT ϕT

}
. (2.10)

Thanks to the two fields approach the pressure continuity on the wake must also be applied easily,

∆(ρ) = 0. (2.11)

The line/surface which represents the wake is part of the domain discretization and is not trimmed
according to the motion field. The spatial discretization uses triangles and tetrahedrons and the
approximation for ρ and ϕ is based on linear shape functions within each element with solution
variables located at the vertices. Time marching solutions are obtained through a first/second order
implicit integration schemes. References [120, 121, 122] should be consulted for a more detailed
presentation of the discretization scheme, treatment of supersonic regions and boundaries, assembly
of the discrete equations, implicit time marching integration and solution schemes.

The near field aerodynamics of each blade is simulated independently with the described full
potential CFD method and a typical unstructured mesh of the blade is shown in fig. 2.1a, where
the blade body is isolated form other blades and immersed in a hemispherical far field. Being the
proposed CFD approach a potential one, it is necessary to set the structure and position of the blade’s
wake in the meshing process, as shown in fig. 2.1b.

2.1.2 Peters - He Generalized Wake Model

Since the aerodynamic near field of the blades is computed through a full potential CFD analysis,
a compromise solution is here pursued for the rotor wake approximation, in order to provide a rea-
sonable computational time. A full CFD analysis or the use of a time marching free wake method is
avoided by adopting the finite states inflow model developed by Peters-He [12]. This method approx-
imates the rotor inflow by considering a series expansion using higher harmonics both in the azimuth
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ad blade radius coordinates; it is conceptually an evolution of the classical Pitt-Peters induced ve-
locity model [11], which is steady and considers only constant and linear terms. Starting from the
potential flow Laplace equations in elliptical coordinates, its solution can be found by using Legendre
functions of the first and the second kind. By manipulating those equations it is possible to impose a
solution for the vertical induced velocity, w, as function of the radius, r, the blade azimuth, ψ , and the
nondimensional time, t̄:

w = ∑
k, j

φ
k
j (r)

[
ak

j(t̄)cos(kψ)+bk
j(t̄)sin(kψ)

]
(2.12)

where the flow potential, φ k
j , is approximated with Legendre functions and the unknowns of the prob-

lem, ak
j and bk

j, are computed through the solution of the following system of equations{
Gȧ+2V∞Lc−1a = τc

Gḃ+2V∞Ls−1b = τs (2.13)

where the superscript notation c ad s refers to the cosine and sine components. After deciding the
number of the desired inflow harmonics in Eq. 2.12, k, the number of states, Nstates, in the system
of equations 2.13 can be computed as Nstates = k(k+ 1)/2. For the computation of the terms of the
matrices G, Lc and Ls and a more detailed presentation of the theory, which is beyond the scope of
this work, the reader is referred to [12, 123].

On the contrary it is interesting to recall the expressions of the generalized force components,
τc and τs, because they are related to the lift of the blade and are the ones that allow the coupling
between the near field blade analysis and the rotor wake. They can be computed as

τ
0c
j =

1
2π

nblades

∑
q=1

[ˆ
S

Pnz

ρΩ2R3 φ
0
j (r)dS

]
(2.14)

τ
kc
j =

1
π

nblades

∑
q=1

[ˆ
S

Pnz

ρΩ2R3 φ
k
j (r)dS

]
cos(kψq) (2.15)

τ
ks
j =

1
π

nblades

∑
q=1

[ˆ
S

Pnz

ρΩ2R3 φ
k
j (r)dS

]
sin(kψq) (2.16)

where P is the pressure, nz is the z-component of the element normal, S is the surface of the lifting
body and r =

√
x2 + y2 is the radial coordinate.

2.1.3 Aeroservoelastic Code Setup

The complete aeroservoelastic analysis tool is obtained by coupling MBDyn with Matlab, to simulate
the rotor aerodynamics with the full potential software ST and the Peters-He inflow model, and with
Simulink to have no limitations in the controller design. MBDyn is already designed to be coupled
with external softwares using bidirectional socket communications to exchange data and a conceptual
block diagram of the simulation tool developed in this work is shown in fig. 2.2.

The coupling between MBDyn and Simulink is available in the original version of the software and
can be easily configured. The user can entirely design the controller within the Simulink environment,
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Figure 2.2: Aeroservoelastic code structure.

the two Simulink Blocks that read and write data for MBDyn being already provided by MBDyn itself.
These blocks are connected with proper MBDyn functions that allow to manage the measures of the
sensors and the control signals during the simulation.

While further modifications are not needed for the coupling with Simulink, the interface for Mat-
lab has been developed to fulfill our goals. Since MBDyn supports the python language as a means to
exchange data with external programs, it has been decided to exploit the free software matpy [124],
which is a very useful python interpreter for Matlab. In particular the coupling interface was coded
so that MBDyn sends the position and the velocity of the structural nodes of the blades to Matlab and
receives the aerodynamic forces computed by ST with the Peters-He inflow model. These operations
are managed by using the “external structural mapping” element of MBDyn. It also has an internal
energy-conserving moving least squares algorithm [125] that permits to compute the aeroelastic in-
terface matrix H between the blade structural and aerodynamic nodes, us and ua, which is in turn used
also inside Matlab to map the structural displacements and velocities to the aerodynamic domain and
to correctly compute the aerodynamic forces acting on the structural nodes, as shown in fig. 2.3.

At each time step of the simulation the blade movement is considered in the CFD environment
as a transpiration boundary condition together with the induced velocity computed by Peters-He,
through which all the blades are coupled. The relation between ST and the inflow model involves the
computation of the generalized force components, τc and τs, where the pressure, P, on the blade is
directly obtained from the CFD solution of ST . Working with identical blades the computational effort
and the required memory are considerably reduced with respect to a complete rotor model. In fact, the
preprocessing phase, involving the calculation of normals, cells volumes etc, and the factorization for
the numerical integration scheme, are computed only for one blade. Since a full potential formulation
can model attached flows only and requires an a priori identification of a trailing edge to model lifting
bodies, this approach is not capable to reproduce reverse flow conditions, which are experienced at
the retreating blade root in high forward flight velocities. To avoid this problem we decided to neglect
part of the blade root loads when reverse flow occurs, thus allowing an increased error in the loads
estimate with the increasing forward flight speed. A further issue that has to be taken into account
before coupling ST to the Peters-He inflow model, is the role of the induced velocity of the blade’s
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Figure 2.3: Aeroelastic interface handling.

wake computed by the CFD solver. Since the Peters-He model is formulated through the actuator disk
model, it already considers all induced velocity sources and therefore the wake influence of each blade
has to be subtracted during the simulation, otherwise the mean value of the inflow will be higher than
expected. Therefore, the surface elements of the wake of fig. 2.1b are considered as panels having
a circulation equal to the potential difference and their contribution to the blade induced velocity,
computed through the Biot-Savart law, is subtracted at each time step.

2.1.4 Model Validation

The first simulation presented in this work is focused on the validation of the proposed hybrid aero-
dynamic approach. In fact, while the full potential code ST has already been validated for fixed wing
aircraft in [120, 121, 122], we want to test if the adaptation for rotary wing simulations and the
coupling with the Peters-He inflow model to reproduce the rotor wake gives reasonable and reliable
results. To this aim a simple blade using the NACA 0012 airfoil is taken into account. The blade has
a chord c = 0.3 m and a radius R =5 m with a root cutout of 1 m and it has an angle of attach equal
to 6◦. The rotor angular velocity is Ω =39.7 rad/s and the free stream advancing and vertical speed
are equal to V∞x =15 m/s and V∞z =-1 m/s respectively. In this case there is no coupling with MBDyn
and the blade pitch is kept constant. The reference solution is the one obtained with a full CFD Euler
simulation carried out with ROSITA [126, 127], a compressible solver developed at Dipartimento
di Scienze e Tecnologie Aerospaziali at Politecnico di Milano. ROSITA numerically integrates the
RANS equations, in systems of moving, overset, multi-block grids. The adopted Chimera approach is
derived from that originally proposed by Chesshire and Henshaw [128], with modifications to further
improve robustness and performance. The governing equations are discretized in space by means of
a cell-centred finite-volume implementation of the Roe scheme [129]. Time advancement is carried
out with a dual-time formulation [130], employing a second order backward differentiation formula
to approximate the time derivative and a fully unfactored implicit scheme in pseudo-time.

The first step is to compare the simulation results with a single blade rotating in an unperturbed
flow field and hence without inflow. The total vertical force Fz generated by the blade over one revolu-
tion is shown in fig. 2.4. As it can be seen the two plots are very close and the slight difference could
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Figure 2.4: Root vertical force of the blade. Simulation with one blade.

be attributed to the differing volume discretizations.
After ensuring that the full potential aerodynamics of ST provides good results, we proceed with

the addition of the inflow model simulating up to the 5th harmonic. The results using four blades are
reported in fig. 2.5. The comparison of the computed vertical force Fz of one blade in this case is
very promising and shows the potentiality of our approach. It can be seen that the signal obtained
by ST reproduces the main features of the Euler simulation in what concerns the harmonic content.
Even if the amplitudes predicted by ST have a lower magnitude, this simple wake model coupled to
a robust control design is able to provide a sufficient level of reliability that can be profitably used
as an intermediate simulation tool for both the design and validation of controllers and aeroelastic
simulations of rotors. A further investigation about the induced velocity distribution can be done
through the Fourier analysis of the predicted inflow by the two methods. While the more complicated
Euler simulation exhibits all the harmonic content from the 1/rev to the 8/rev, the inflow prediction with
Peters-He has only a relevant peak for the 4/rev harmonic. Figures 2.6 and 2.7 compares the mean
value and the magnitude of the 4/rev harmonic of the vertical induced velocity of the rotor for both
of the codes. It can be seen that the shape of the computed inflow is very similar and the difference
in the intensity, especially for the 4/rev harmonic, gives us the explanation of the underestimation of
the blade root load harmonics of fig. 2.5b. It is also interesting to notice that the simulation time
required to achieve such results is about 10 minutes for one rotor revolution (it depends on the mesh
size) using 200 time steps and it is not even comparable with the computational cost of the ROSITA
Euler simulation, which requires a highly parallelized algorithm. The details about the computational
effort are summarized in tab. 2.1.

Although the comparison with the Euler solution shows satisfactory results, apart form a little
shift in the mean value, the main differences, especially the ones related to the harmonics of the blade
load, could be due to the presence of blade vortex interactions, which are not taken into account by
our induced velocity model. To better evaluate the aerodynamic prediction of the presented hybrid
approach, another simulation to decrease BVI effects is carried out by increasing the climbing rotor
velocity up to V∞z =-5 m/s, so that the rotor wake is pushed down by the free stream velocity, while
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(a) Root vertical force of the blade. Simulation with four blades.
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(b) Fourier analysis of the force signal. V∞x =15 m/s and V∞z =-1
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Figure 2.5: Comparison with ROSITA.

Table 2.1: Computational details.

#Cells #Unknowns #CPUs Freq. CPU CPUtime/rev
ST 58 k 116 k 1 1.6 GHz 10 min

ROSITA 4.3 M 21.5 M 8 2.4 GHz 16 h

59



2.1. FULL POTENTIAL CFD WITH PETERS-HE INFLOW

(a) Mean nondimensional inflow - Euler simulation.

(b) Mean nondimensional inflow - Peters-He.

Figure 2.6: Comparison of the mean inflow over one rotor revolution.
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(a) 4/rev harmonic of the inflow - Euler simulation.

(b) 4/rev harmonic of the inflow - Peters-He.

Figure 2.7: Comparison of the nondimensional 4/rev harmonic of the induced velocity.
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Figure 2.8: Comparison with ROSITA.

Table 2.2: Mean value comparison - Root vertical force.

ST ROSITA Difference
Vz =-1 m/s 4057.7 N 3719.2 N 9.1 %
Vz =-5 m/s 2906.8 N 2895.2 N 0.4 %

leaving the other parameters unchanged. As it can be seen from the results of figs. 2.8a and 2.8b, the
correlation of the blade root force harmonics with less BVI is improved and the whole amplitude of
the force signal better approximates the one of the Euler computation. The mean values of the loads
for both of the simulations are compared in tab. 2.2, showing that error on the mean value is correctly
recovered in the second simulation where there is less influence of BVI effects.

To conclude the validation study of the proposed simulation code, it has been compared with the
experimental data of the Hart II baseline trim condition [131]. Figure 2.9 confronts the experimental
normal force coefficient CnM2, without the mean value, of the airfoil section at 87% of the radius R,
with our hybrid CFD code and the two hybrid approaches described in [114]. In the first method
the lifting line theory is combined with the free wake (FW) geometries of the tip vortices only, while
in the second approach a more accurate and time consuming RANS-based CFD code is used for the
near field aerodynamics of the blade and both the tip and root vortices are modeled to simulate the
wake geometry. As can be seen in the figure, even if the Peters-He model is very simple and does not
model the geometry of the wake it is still able to reproduce the main characteristics of the sectional
load. In fact, while the trend of the low frequency behavior is followed quite correctly, the high
frequency content of the normal force coefficient, which is due to the presence of the vortices released
by the blades, cannot be approximated. In order to evaluate the mean value prediction of the hub
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Figure 2.9: Hart II Baseline condition. Sectional normal force coefficient comparison with ST and
Peters-He.

loads, the trim angles of the swashplate used to achieve this forward flight configuration, are shown
in fig. 2.13 together with the experimental data, the blade element theory combined with the dynamic
inflow of MBDyn and the two hybrid method presented in [114]. While the cyclic cosine and sine
angles predicted by our code are pretty close to the experimental ones and the prediction error is in
agreement with the other simulation methods, the collective angle is a little bit overestimated and for
this case it exceeds the experimental value by 0.7◦.

This validation study points out the strength and weakness of the proposed hybrid approach.
Thanks to the full potential CFD method it is possible to correctly take into account the unsteadi-
ness of the aerodynamic loads as well as compressibility effects, tip losses and an approximation of
shock waves. This main limitations of this near field blade aerodynamics modeling is the impossibility
to simulate both the static and dynamic stall, which could be very important in rotorcraft applications,
and the fact that the potential solver cannot handle reverse flow conditions that occur in the blade root,
mainly leading to an error in the hub mean forces prediction. The choice of a mathematical model for
the induced velocity computation, as the Peters-He approach, helps to speed up the whole simulation,
in contrast with more sophisticated free wake geometry methods, which are very time consuming. Al-
though the Peters-He model increases the harmonic content of the induced velocity, with respect to
linear inflow models, its main limitation is that BVI effects are not modeled. These effects are very
important for a proper estimate of the 4/rev harmonic of the vertical loads and are responsible for the
higher frequency content of the airloads.

2.2 Blade Element Method with Free Wake Geometry

In contrast to the previous hybrid CFD code, in this section the modeling of the blade near field aero-
dynamics is relaxed and the computational time is invested into the wake geometry representation.
Therefore a free wake code is presented and coupled with MBDyn. The purpose of the development
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Figure 2.10: Free wake evolution.

of a more complex wake structure is demanded by the fact that an induced velocity model leads to
an underestimation of the harmonic content of the resulting blade load, especially the 4/rev one of
the vertical force, as shown in the previous section. Another important advantage of representing the
rotor wake is the consideration of BVI effects that have a great influences on the airloads. Being the
numerical free wake analysis of all blades a quite time consuming task, the CFD approach to model
the blade aerodynamics is abandoned and it has been decided to improve the classical and computa-
tionally faster blade element method instead. By doing so, it is possible to develop an aeroelastic code
capable of providing a good level of accuracy about loads prediction with an affordable simulation
time; a very important aspect when dealing with controller design and validation.

2.2.1 Free Wake Code Description

The first step of this approach is the enhancement of the quasi-static blade element theory to simulate
the near field aerodynamics of the blades. The blade span is divided into strips, with more elements
at the blade root and tip, as shown in fig. 2.10, so that the user is able to define a tip loss factor with
a higher level of accuracy by simply scaling the lift of the outer strips. The lift, drag and aerodynamic
moment of the strip is computed through the data sheet for the CL, CD and CM coefficients that was
used for the MBDyn simulations, thus taking into account the static stall and the compressibility
effects thanks to the Prandtl-Glauert correction. While the classic blade element method considers
the instantaneous aerodynamic angle of attach, in this work the effective angle of attach is corrected
by accounting for unsteady effects. The unsteady effects are divided into two parts: the unsteady
angle of attach related to the airfoil motion is computed by using both the Theodorsen lift deficiency
function, but its variation due to the interaction between the blades and the tip vortices are better
represented by the Kussner function, since they can be considered as gusts [132, 133].

After having implemented an unsteady and fast blade element method for the blade loads com-
putation, the second step is the generation of the rotor wake. To limit the computational burden, we
decided to simulate only the tip vortices, which are the most relevant one and permit to consider the
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main effects of the rotor wake. At each time step a single vortex filament is released from the tip of each
blade with a circulation Γ that can be computed from the aerodynamic loads of the blade strips. After
computing the loads of every blade element, it is possible to calculate the equivalent bound circulation
through the Kutta-Jukovsky theorem and then the strength of the tip vortex that is going to be released
at a given time step is set to the 80% of the maximum bound circulation of the blade outer portion, as
suggested in the literature [134], with a dual-peak model in case of a negative load on the outer por-
tion of the blade tip [135]. Another important model parameter, crucial for the proper estimation of
the BVIs, is the size of the vortex core. Since we are only using the tip vortex to approximate the rotor
wake, reproducing the physical size of the core vortex would overestimate the blade vortex interaction
loads [136]. Therefore we assume that the blade tip vortex initial radius r0 is overestimated and set
equal to 50% of the blade chord [137]. In this free wake code the vortex aging follows Squire’s law
[138, 136] and the vortex core radius rc becomes a function of the time and the initial core radius r0

rc =
√

r2
0 +4σδνt, (2.17)

where σ is a constant equal to 1.25643, δ is the vortex growth rate set to 100 in this work, ν is the
kinematic viscosity and t is the simulation time that is related to the wake age. An example of the
rotor wake evolution in the first steps of the simulation is reported in fig. 2.10. Since we modeled
the unsteady aerodynamic effects and the tip loss function that approximate the main features of the
near wake released by the blades, the far wake influence, represented by the tip vortices, is activated
after 30◦ of rotor revolution in order not to duplicate the induced velocity contribution. The mutual
induction among the trailing vortex filaments and the blade bound circulations are computed through
the Biot-Savart law

vind = Kv
Γ

4π

r1× r2

|r1× r2|2

[
r0 · r1

|r1|
− r0 · r2

|r2|

]
, (2.18)

which gives the velocity induced by a vortex filament, defined by two points P1 and P2, on a control
point as shown in fig. 2.11. The factor Kv desingularizes the Biot-Savart equation when the evaluation
point distance tends to zero and prevents a high induced velocity in the vicinity region of the vortex
core radius. As suggested in [139], the velocity profile of the rotor tip vortices, in order to take into
account the effect of a viscous vortex core can be modeled as
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Figure 2.12: Hart II Baseline condition. Sectional normal force coefficient comparison with the free
wake code.

Kv =
h2√

r4
c +h4

, (2.19)

where h is defined as the perpendicular distance of the control point as

h =
|r1× r2|

l
. (2.20)

The velocity of the points that form the vortex filaments, which is given by the mutual induction among
the wake vortices and the bound circulations of the blades and the free stream velocity, is then inte-
grated to update the position and the geometry of the wake at each time step.

The entire aerodynamic code is written in Matlab and therefore it is coupled with MBDyn exploit-
ing the same elements discussed in the previous section. The multibody software sends to Matlab the
position and the velocity of the blades structural nodes through the “external structural mapping” ele-
ment and receives the aerodynamic forces to be applied on the structural nodes. The communication
is managed using the software mat py.

2.2.2 Model Validation

To assess the quality of the aerodynamic approximation provided by the developed free wake code , it
has been validated with the experimental data of the Hart II baseline trim condition [131] and other
results presented in the literature, as done for the full potential hybrid code presented in the previous
section. The normal force coefficient of the section at 87%R over one rotor revolution is compared
in fig. 2.12 and permits to evaluate the BVI prediction and the loads estimation capabilities of the
code. The normal force coefficient predicted by this hybrid free wake approach (BEM + FW Tip in
the figure) is very close to the one obtained with the lifting line theory with only the free wake of tip
vortex and it is able to predict the position of the BVI. However, both of the codes overestimate the BVI
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Figure 2.13: Hart II Baseline trim comparison.

peaks. It can be seen that by adding the root vortices, thus increasing the computational cost, the BVI
peaks are reduced to acceptable levels and the low frequency content of the normal force coefficient is
better approximated. The comparison of the swashplate angles to reach the desired trim condition is
given in fig. 2.13. As can be seen in the figure, the trim angles are very close to the experimental data
and comparable with the more complex and time consuming hybrid method of [114] using a RANS
equation solver and the free wake of both the blade tip and root vortices.

The comparison between our free wake code and the experimental data shows the improvements
of the proposed hybrid code. It is possible to obtain very satisfactory results and accurate loads
prediction with a reasonable simulation time, which vary with respect to the growing wake. The
improved blade element method for the near field aerodynamic representation is not computationally
expensive and is stable in all flow conditions, because of the tabular force coefficients structure. Even
if the static stall is considered, this approach does not comprise the dynamic stall and the tip losses
have to be adjusted every time a new simulation is required. In this case shock waves cannot be
simulated. The wake modeling increases the airloads prediction capabilities and the influence of the
vortices on the blades are well approximated, giving a good approximation of the induced velocity
field that is observed in the trim analysis. The limits of the free wake approach are given by the fact
that there is not a general rule to tune some simulation parameters, such as the vortex core radius and
aging, the quantity of the bound vorticity released at each time step and the position of the released
tip vortex. Although the main characteristics of the inflow are reproduced by the tip vortices only, the
introduction of the root vortices would provide a more sophisticated and accurate solution.
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Chapter 3

Periodic Controllers

The rotor subsystem in forward flight exhibits a nonlinear and complex behavior, in what concerns
both the structural dynamics of the blades and the dissimilar aerodynamic field. It limits the pos-
sibility to achieve satisfactory performance through linearized time invariant controller theories. In
particular the periodicity of the dynamical system plays an important role and more sophisticated
solutions to design a vibration controller taking into account this issue can be found by exploiting the
periodic control theory. Even if such controllers are linear and require a linearization of the controlled
system, they achieve good performance because the periodicity is properly accounted. Several works
about helicopter control that considers the periodicity of the system can be found in the literature. A
model following approach to stabilize lag and pitch moments using periodic control is proposed in
[140]. Periodic vibration controllers can be found in [141, 142], where the baseline loads alleviation
by means of IBC is considered as a disturbance rejection problem. Active twist flaps are used in [143]
to reduce hub loads by a dynamic compensator arising from the periodic H2 and H∞ design.

In this chapter we start from a review of the periodic H2 design and of the periodic output feedback
(POF) technique to reduce hub loads as shown in [144, 145]. The two solutions are then compared
and it is shown that satisfactory results can be achieved by using the static POF approach, which
represents an advantage in terms of the computational cost for its design and for the simplicity of the
control law that can be profitably used for scheduling purposes. The last part of the work investigates
the robustness of the two controllers. The aim is to show that even if a simple design model is used in
the design phase of the periodic vibration controllers, it is still possible to predict satisfactory loads
reduction when a more complex numerical model, that better approximates the real rotor behavior, is
used.

3.1 Periodic System Identification

The design of a linear periodic controller requires a previous knowledge of the the process behavior
and hence the estimate of a linearized periodic state space model of the system to be controlled.
Dealing with a helicopter in forward flight, the system is obviously periodic, and this has to be taken
into account while identifying the model. Classical identification procedures for linear time invariant
(LTI) systems cannot be used for periodic systems; thus, a periodic subspace identification algorithm
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[146] is used to find a linear discrete-time periodic (LTP) model of the blade in the form

xk+1 = Akxk +Bkuk
yk = Ckxk +Dkuk

(3.1)

where the system matrices have period N. Without loss of generalization, external disturbances are
here not not cconsidered because we are working with simulations, but in case of practical tests this
formulation can still be valid because it is possible to filter the disturbances through low-pass filters.

After collecting the required input/output time histories signals from numerical simulations, they
are organized in input/output Hankel matrices Uk,s and Yk,s for k = 1...N as follows

Uk,s =


uk uk+1 · · · uk+s−1

uN+k uN+k+1 · · ·
...

... · · ·
...

u(n−1)N+k · · · u(n−1)N+k+s−1

 (3.2)

Yk,s =


yk yk+1 · · · yk+s−1

yN+k yN+k+1 · · ·
...

... · · ·
...

y(n−1)N+k · · · y(n−1)N+k+s−1

 (3.3)

where N is the period, n is the total number of simulations and s is the length of each experiment.
Here the Hankel matrices are computed using a single numerical simulation. Considering the QR
factorization of the compound square matrices

[
Uk,s Yk,s

]
=
[

Q1k Q2k

][ R11k R12k

R21k R22k

]
(3.4)

the observability matrix Ok is given by the row space of matrix R22k and can be computed through its
singular value decomposition (SVD)

R22k = UkΣkVT
k (3.5)

Ok = ṼT
k (3.6)

The order of the identified system is chosen according to the magnitude of the singular values of Σk
and then the observability matrix is computed as ṼT

k , which contains the first rows and columns of VT
k

up to the defined system order. Afterwards, the matrices Ak and Ck can be obtained by exploiting the
observability matrix at the instants k+1 and k, see [146, 143] for details. The periodicity is imposed
by setting ON+1 = O1.

An output error approach is used for the identification of the matrices Bk and Dk, which are com-
puted through the minimization of the squared 2-norm error between the real and the model output,
yreal and y respectively:

min
Bk,Dk

‖ yreal− y ‖2
2 . (3.7)

After identifying the linearized blade model, performance specifications and model disturbances
have to be introduced in the generalized plant. The block diagram of the complete design model is
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Figure 3.1: Generalized plant.

shown in fig. 3.1 where z are the controlled outputs. We want to minimize the blade root shear force Fz,
y are the measures, w are white noise disturbances and u the control signal. The shaping filters Wdist
models the baseline loads, which are now reintroduced as output disturbances of the system. While
the sensors noise is modeled with white noises having a constant amplitude Wn, the performance of
the controller are defined by means of the hand-tuned frequency weighting function Wper f to impose
the proper reduction of the harmonics of the blade root load Fz; it is adjusted in the controller design
phase to obtain the best vibration reduction. The resulting generalized plant model including possible
weight dynamics is then described with the following linear periodic model

xk+1 = Akxk +B1k wk +B2k uk,

zk = C1k xk +D11k wk +D12k uk, (3.8)

yk = C2k xk +D21k wk +D22k uk.

3.2 H2 Periodic Controller

This section describes the design of the optimal H2 controller, that stabilizes the system and minimizes
the H2 norm of the transfer function between the plant disturbance and the desired performance.
Starting from the identified generalized plant model a dynamic output feedback controller can be
found by solving two Discrete Time Periodic Riccati Equations (DTPRE) [147] corresponding to the
filtering and the state feedback control problem:

Qk+1 = AkQkAT
k +B1k B

T
1k−

(
AkQkCT

2k
+B1k D

T
21k

)
(3.9)

+
(
D21k D

T
21k

+C2k QkCT
2k

)−1 (AkQkCT
2k
+B1k D

T
21k

)
,

Pk = AT
k Pk+1Ak +CT

1k
C1k −

(
AT

k Pk+1B2k +CT
1k

D12k

)
(3.10)

+
(
DT

12k
D12k +BT

2k
Pk+1B2k

)−1 (AT
k Pk+1B2k +CT

1k
D12k

)
.
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A cyclic QZ decomposition method is used, as described in [148, 149], for the solution of eqs. 3.9
and 3.10. Once the solutions of the Riccati equations have been obtained, the periodic control system
can be easily defined by [147, 143]

ξk+1 = AC
k ξk +BC

k yk, (3.11)

uk = CC
k ξk +DC

k yk.

The the controller matrices AC
k , BC

k , CC
k and DC

k of eqs. 3.11 can be computed by following the
procedure outlined in [143] as described in [144]. It can be derived by the filtering and control theory
in H2 described in [147] by combining the observer and the full information state feedback control.
After solving the two periodic Riccati equations 3.9 and 3.10, the sought matrices are given by

AC
k = Ak−LkC2k +B2k Kk−B2k L

O
k C2k , (3.12)

BC
k = Lk +B2k L

O
k , (3.13)

CC
k = Kk−LO

k C2k , (3.14)

DC
k = LO

k , (3.15)

where

Lk =
(
AkQkCT

2k
+B1k D

T
21k

)(
C2k QkCT

2k
+D21k D

T
21k

)−1
, (3.16)

LO
k =

(
KkQkCT

2k
+WkDT

21k

)(
C2k QkCT

2k
+D21k D

T
21k

)−1
, (3.17)

Kk =−
(
BT

2k
Pk+1B2k +DT

12k
D12k

)−1 (BT
2k

Pk+1Ak +DT
12k

C1k

)
(3.18)

and
Wk =−

(
BT

2k
Pk+1B2k +DT

12k
D12k

)−1 (BT
2k

Pk+1B1k +DT
12k

D11k

)
. (3.19)

Should matrix D22k be non null, i.e. should direct feedthrough be present, then the matrices would
have to be modified into [150]

ÃC
k = AC

k −BC
k D22k T

−1
k CC

k , (3.20)

B̃C
k = BC

k −BC
k D22k T

−1
k DC

k , (3.21)

C̃C
k = T−1

k CC
k , (3.22)

D̃C
k = T−1

k DC
k , (3.23)

where
Tk = DC

k D22k + I (3.24)

and I is the identity matrix.
The order of the controller is the same as the order of the generalized plant of eq. 3.8 and it de-

pends on the selected frequency weighting functions and shaping filters for performance specification
and the disturbance modeling. The dynamic compensator structure is here necessary because the sys-
tem state is not available and have to be reconstructed by the controller, in the next approach a direct
output feedback controller, which does not require any knowledge of the system state, is presented.
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3.3 Periodic Output Feedback Controller

The second approach analyzed in this work consists in the design of a periodic output feedback (POF)
static controller, where the control law is a direct feedback relationship of the sensors measures of the
form

uk = Kkyk,

where the gain matrix Kk can either be periodic with period N or a constant matrix equal for all
sample times. Assuming that there is no direct feedthrough in the system response, i. e. matrix
D22k = 0 in eqs. 3.1 and 3.8, the periodic output feedback (POF) control law is obtained by minimizing
the quadratic performance index

J = E

[
∞

∑
k=0

(
zT

k Qkzk +uT
k Rkuk

)]
, (3.25)

where Qk and Rk are symmetric periodic user defined weighting matrices. In the general case no
closed form solutions can be found to this problem and a design solution must be found by resorting
to a numerical optimization procedure. The problem can be reformulated, as explained in [151], as

J(K ) = tr(σPG ), (3.26)

∇K J(K ) = 2(RK C 2 +BT
2 σPA )S C T

2 , (3.27)

where the gradient of the cost function is provided as well since efficient optimization algorithms
require it. The script notation X indicates the block diagonal matrix X = diag(X1, . . . ,XN) re-
lated to the cyclic sequence of the periodic matrix Xk; the notation σX denotes the K-cyclic shift
σX = diag(X2, . . . ,XN ,X1). Matrices P and S satisfy the Discrete Periodic Lyapounov Equations
(DPLEs)

P = A
T

σPA +Q (3.28)

and
σS = A S A

T
+G (3.29)

respectively, where A = A +B2K C2 is the closed loop matrix and Q = Q+C T
2 K T RK C2. Ma-

trix G is defined as G = diag(0, . . . ,0,X0), where X0 represents the influence of initial conditions
and disturbances on the state dynamics defined as X0 = E

[
x0xT

0
]
. In the closed loop system the

perturbed initial conditions are x0 = x0 +(B1N +B2N KND21N )w and assuming null cross-correlation
between the initial conditions x0 ad the disturbances w, i.e. E

[
x0wT

]
= 0, the matrix X0 is given by

X0 = E
{

x0xT
0
}
+B1N E

{
wwT

}
BT

1N
+B2N KND21N E

{
wwT

}
BT

1N
+B1N E

{
wwT

}
DT

21N
KT

NBT
2N

+B2N KND21N E
{

wwT
}

DT
21N

KT
NBT

2N
(The variance matrices are here approximated as identity matri-

ces).
An important issue that has to be solved at each iteration of the optimization procedure, is the

solution of the Reverse-Time Discrete Periodic Lyapounov Equation (RTDPLE) 3.28 and the Forward-
Time Discrete Periodic Lyapounov Equation (FTDPLE) 3.29, whose solution algorithms are detailed
in [151, 152]. If the monodromy matrix ΦA(N) of the dynamical system has no reciprocal eigenval-
ues, then it is possible to use a very simple solution method, based on reducing these problem to a
single Lyapounov equation to compute a periodic generator. These equations can be solved by using
standard methods. The rest of the solution is computed by backward- or forward-time recursion. This
method is briefly described below for both equations.
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• Solution of the RTDPLE: The periodic generator can be computed through the solution of the
following discrete Lyapounov equation (DLE)

P1 = Φ
T
A(N)P1ΦA(N)+

N

∑
j=1

Φ
T
A( j,1)Q jΦA( j,1),

where ΦA( j, i) is the transition matrix and the backward-time recursion is given by

PN−i = AT
N−iPN+1−iAN−i +QN−i i = 0, . . . ,N−2

• Solution of the FTDPLE: The periodic generator can be computed through the solution of the
following DLE

S1 = ΦA(N)S1Φ
T
A(N)+

N

∑
j=1

ΦA(N +1, j+1)G jΦ
T
A(N +1, j+1);

the forward-time recursion is given by

Si = Ai−1Si−1AT
i−1 +Gi−1 i = 2, . . . ,N.

3.4 Simulation Results

3.4.1 Controllers Design

The periodic controller are designed and tested on the trim configuration having the advancing pa-
rameter equal to µ = 0.23. The design model is based on the low fidelity aerodynamic theory provided
by MBDyn, thus allowing to tune the controllers with a reasonable computational effort. The interfer-
ence among the actuation of one blade and the forces on other blades is almost null due to the very
simple aerodynamic model. Therefore, each blade is considered independent and the IBC controller
is designed considering only a single blade. We are interested into the linearized input/output relation
between the voltage V applied on the blade and the blade sensors measures. In order to well represent
the blade response, we chose to measure the blade root shear force Fz and five vertical accelerations
at locations uniformly distributed along the blade span.

The periodic load and the accelerations on the blade of the reference trimmed configuration are
saved; they will be subsequently subtracted to the excited response signals to linearize the system
around the trimmed configuration. The blade are excited with a random voltage with an amplitude of
40 V filtered above 6/rev so to limit higher harmonics in the dynamic response. Being the Bo105 a four
blades rotor, the most important harmonics for the vibratory hub loads are the 3/rev and the 4/rev
and all output signals have been filtered before the identification to consider only those harmonics,
hence reducing the size of the state space model. The controllers should minimize the 4/rev harmonic
of the blade root shear force Fz to reduce the hub vertical force and reduce the 3/rev harmonic as
well to alleviate the vibratory loads associated to the moments of the blade root loads. The aeroelastic
multibody simulation requires a small integration time step; the simulations are performed with N =
140 time steps for every rotor revolution. The direct identification of such signals will lead to the
computation of 140 linear systems spanning the period. Since we want to reduce the computational
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Figure 3.2: System order.

burden of both the identification and the controller design, we decimated the system outputs to N = 28
time steps per rotor revolution, still approximating the outputs required for the identification with a
good level of accuracy. Hints about the order of the identified system can be found by analyzing the
singular value magnitudes of the matrix R22k at each time step. The best compromise between data
fitting and system order is given by retaining the most important singular values. For example, fig. 3.2
shows the singular values computed for the first time step. Based on the singular values, the chosen
linear periodic model of the blade is a 14th order system for every time step spanning the period.

Being the design model identified, the generalized plant is built and model disturbances as well
as performance specifications are modeled. While the white noise amplitude of the sensors noise is
assumed to have a value of Wn = 0.1, the baseline loads are reintroduced as output disturbances by
the shaping filters Wdist for all the measure channels and fig. 3.3 shows for simplicity only the baseline
tip acceleration. The frequency weighting function to impose the performance of the controller output,
Fz, is tuned through several simulations so to have the optimize the controller effectiveness and the
selected functions for both the H2 controller and the POF one are reported in figs. 3.4a and 3.4b.
The performance weighting matrix Qk of the POF cost function J of eq. 3.25 is the identity matrix,
because the performance specifications have been taken into account by Wper f , and is kept constant
for the whole period, while the other weight matrix is Rk, which prescribes further limitation for
the control signal, is tuned until satisfactory loads reduction is achieved and in this example it has
a value of 5000. The design of this controller is faster than the H2 one because of the less number
of parameters involved in the optimization and due to the more efficiency in the solution of the two
DPLEs in contrast to the solution of the DTPREs [149].

Closed loop simulations are carried out by coupling MBDyn and Simulink; since the multi-
body simulation and the controller have been designed using different sample times, Simulink Rate-
Transition blocks are used to implement a sample and hold procedure, thus overcoming this issue.
The results of the vibration reduction achieved by the periodic controllers are summarized in fig. 3.5,
which shows the magnitude of the hub load harmonics with and without control. Although a signif-
icant passive load reduction is obtained by simply replacing the Bo105 blades with the piezoelectric
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Figure 3.4: Controller performance specifications
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Figure 3.5: Vibrations reduction on the design model.

79



3.4. SIMULATION RESULTS

0 1 2

−100

−80

−60

−40

−20

0

20

40

60

80

100

Voltage on blade 1

Revolutions

V
o
lt
a
g
e
 (

V
)

 

 

POF Control
H
2
 Control

Figure 3.6: Applied voltage on blade 1.

ones,the closed loop simulations with both controllers allow to further alleviate the hub loads. The
4/rev harmonic of the hub force and moments FZ , MX and MY is reduced through the H2 controller
by 24%, 60% and 86% respectively. The static output feedback controller allows a reduction of 43%,
65% and 58%. Note that both of the active solutions are satisfactory, with comparable performances.
The H2 has a better capability to reduce the moment MY , while the direct output feedback approach
better alleviates the force FZ . On the average, the simpler static output feedback controller can be a
valid substitute of the H2 controller dynamic compensator, in spite of its faster algorithm and fewer
design parameters. Note also that higher than the 4/rev harmonics are only marginally excited. The
applied voltage on the first blade is shown in fig. 3.6. The control signal is a sequence of steps be-
cause of controller sampling time. The control effort remains quite low, and doesn’t exceed 80 V in
both simulations. Note also that the control voltage computed by the static output feedback control
has a lower frequency content than that of the H2 dynamic compensator; this may lead to better ro-
bustness properties, since it does not excite high harmonics that may not have been considered in the
controller design phase.

3.4.2 Controllers Validation

In this section the periodic controllers designed using the simple aerodynamic model are adopted to
reduce the loads predicted by the model coupled with the free-wake code to evaluate their robustness.
Figure 3.7 shows the computed rotor wake and the nondimensional inflow for the baseline condition.
Dealing with the time marching wake of the tip vortices, it is possible to model the blade vortex
interaction and to have a good approximation of the induced velocity of the rotor. We state that
this validation model is a very useful test-bed for robustness validation because the dynamics of the
blades is different, since the swashplate setting is changed to reach the same trim configuration of
the previous model, and the well approximated induced velocity increases the harmonic content of the
aerodynamic loads. The baseline loads of fig. 3.8, estimated by the free wake model, are almost an
order of magnitude higher than those those of fig. 3.5, estimated with the simple inflow model.
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Figure 3.7: Free wake aerodynamics (baseline condition).

The closed loop results are shown in fig. 3.8. Even if the improved aerodynamic model introduces
new dynamics and raises the hub loads, none of the two controllers destabilize the rotor system and
a good load reduction is still obtained by both of them. The moment MX of fig. 3.8b is reduced by
more than 75% using both of the controllers. Looking at the force FZ of fig. 3.8a, the static output
feedback controller seems to be more robust and allows a greater reduction than that achieved by
the H2 controller. Such a behavior could be explained by the fact that the dynamic system of the H2
theory implies a feedback relationship with a periodic state space model, which involves a very large
number of controller parameters to be designed and introduces additional dynamics in the closed loop
system. On the contrary, the direct output feedback control law is a simple gain matrix that is kept
constant throughout the period of the system. It is also interesting to notice, that even in the validation
case the higher 8/rev and 12/rev harmonics of the hub loads are only negligibly excited. Figure 3.9
reports the applied control voltage. The control activity is significantly higher than that of fig. 3.6
because of the higher loads, but it remains bounded and acceptable, since it doesn’t surpass 800 V.
The application of a high voltage on the helicopter for control purposes remains still a problem for
crew safety but the computation of such a value is coherent with what can be found in the literature
showing experimental activities. In fact in [35] the active twist blades are excited with an amplitude
of 1000 V to assess vibrations reduction capabilities, while in [153] a voltage of ±500 V is applied
for blade de-icing. From these results we can conclude that the choice of using the periodic static
output feedback controller instead of the H2 one is fully justified by both reduction capabilities and
robustness properties. Moreover, it involves fewer parameters in the design phase and it can be easily
scheduled to cover the whole flight envelope of the helicopter, because we only have to interpolate a
simple algebraic gain matrix depending on the rotor trim condition only. It is useful to remember that
the interpolation of state space models, when they arise form an identification procedure or a model
reduction technique, is not straightforward, as outlined in [154, 155].

To complete the study on the periodic controllers, the robustness properties of the POF controller
have been also tested on the rotor model simulated with the hybrid full potential CFD aerodynamics
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Figure 3.8: Validation of the periodic controllers on the Free Wake model.
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Figure 3.9: Applied voltage on blade 1 in the periodic controller validation phase on the Free Wake
model.

combined with the Peters-He inflow model. The Mach number distribution on the advancing blade
and the nondimensional inflow for the baseline condition is shown in fig. 3.10. Closed loop results
regarding the achieved loads reduction is shown in fig. 3.11. Even if the aerodynamic model is
different from both the simple one provided by MBDyn and the Free Wake approach, the controller
is able to halve the hub moment vibrations and to ensure the stability of the system. On the other
hand the 4/rev harmonic of the vertical force FZ is increased. Such behavior could be due to the
underestimation of the 4/rev loads, since the BVI is not simulated in this aerodynamic model. Being
the hub moments vibrations an order of magnitude higher than the one of the vertical force, the
controller fails to provide a simultaneous reduction because it has been designed considering a model
in which all of the 4/rev hub loads harmonics have a comparable value. Instead of redesigning the
controller, which is the usual procedure in the preliminary phase to meet the required performance in
the validation model as well, we propose an alternative solution using only a different pass band filter
for the system outputs. Since the 4/rev harmonic of the measured signals is underestimated by this
hybrid aerodynamic model, the pass band filter shown in fig. 3.13 is applied to the blade root shear
force Fz and the five accelerations along the blade span, so to artificially increase the 4/rev harmonic
content of the signals and hence mitigating the negative effect of the controller on the hub shear force
FZ . This approach leads to a better performing controller, as shown in fig. 3.11; the hub vertical
force FZ is now only marginally excited and a little improvement of the moments reduction can be
appreciated. The control activity for both cases is shown in fig. 3.12 and it remains within acceptable
levels. Even if this last example may be not very useful as a validation study, it is very representative
and effective to assess the potential of the periodic output feedback control when working far away
from the design assumptions. It shows also that satisfactory performance of the controller can be
recovered by simply shaping the measures through appropriate filters without altering the closed loop
stability.
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(a) Mach distribution of the advancing Bo105 blade at azimuth Ψ =
90◦. The wake is opened to represent the potential discontinuity ∆φ

on it, typical of lifting bodies.

(b) Peters-He nondimensional mean inflow over one rotor revo-
lution.

Figure 3.10: Hybrid full potential CFD aerodynamics (baseline condition).
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Figure 3.11: POF controller validation on the hybrid full potential CFD code.
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Figure 3.12: Applied voltage on blade 1 in the POF control validation phase on the hybrid full potential
CFD code.
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Figure 3.13: Pass band filter applied to the system output to amplify the 4/rev harmonic.
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Chapter 4

Neural Networks Control

Aeroelastic systems change their properties in relation to the considered flight condition and an effi-
cient control law should be able to carry out its functions over the whole flight envelope without los-
ing its efficiency. Moreover, nonlinear effects may play an important role in aeroelastic response and
should be taken into account to increase the performance of the control system. Helicopter rotors show
all of the issues outlined and in the case of vibrations reduction it is possible that the use of a nonlinear
adaptive control strategy could be the right path to follow to address such a problem. While model
based methods require the previous knowledge of the system to be controlled and inevitably introduce
approximations in the representation of the aeroelastic response, the black-box approach, such as the
one of the neural networks based controllers, is very interesting because of its capability to quickly
adapt to model variations and because the identification of the controlled system can be carried out
on-line. While different nonlinear adaptive control techniques aimed at suppressing aeroelastic vibra-
tions for fixed-wing aircraft such as feedback linearization [156], sliding mode [157], immersion and
invariance [158] and neural networks [159, 160, 161] have been tested on numerical and experimen-
tal models, helicopter vibrations are usually reduced by means of linear controllers [162, 163] and
nonlinear control applications are preferred for flight dynamics problems as in [164]. The interest
in controllers based on neural networks is growing for helicopter applications; for example in [165]
a nonlinear adaptive control with a neural network compensator is proposed for trajectory tracking
of a model-scaled helicopter. An application of an adaptive neural network identifier to compute a
model relating the higher harmonic blade pitch motion to the vibration state can be found in [166].
Vibrations reduction analysis, where a real-time capable Neural Network controller is employed to
actuate movable aerodynamic surfaces of the blades can be found in [15, 167]; in [167] the unknown
parameters of the rotor model are estimated through an extended Kalman filter.

In this chapter we focus on the application of a nonlinear adaptive neural network control to the
helicopter’s vibrations reduction problem. In order to represent a dynamic process we use discrete
recurrent neural networks (RNN), whose structure is shown in fig. 4.1, instead of the static ones. The
jth neuron output at the kth time step is computed as

y j(k) = f (v j(k)) (4.1)
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Figure 4.1: Recurrent neural network structure.

and the neuron internal activity v j(k) is given by

v j(k) =
Nin

∑
i=1

Wji(k)ui(k) (4.2)

where Nin is the number of the network’s input parameters ui and Wji are the components of the
synaptic weights matrix that are initialized with random values and updated at each time step to tune
the network. In is useful to notice that among the input parameters there is a constant bias set to −1
to shift the origin of the neuron’s activity value. All neurons in this work use the hyperbolic tangent
activation function shown in fig. 4.2

y j =
√

3tanh
(

2
3

v j(k)
)

(4.3)

as suggested by [168]. The chosen activation function limits the network outputs to ±
√

3 and sat-
urates when the input is too high, leading to the instability of the learning algorithm. The network
should be able to learn its evolution path from the input-output data pairs only. The memory is in-
cluded through a time delay applied to the hidden neurons, defining the state of the network. In this
case the input layer u is composed by a set of external input x and the set of the delayed output of the
hidden neurons. The output layer simply consists of the first outputs of the hidden layer yvisible. An
RNN presents many advantages over static networks because of their smaller size and faster learning.
They also have a reduced computational cost, which is very important for real-time control problems
[161].

The complete black-box controller is constituted by an identifier network (ID-RNN) and a con-
troller network (CO-RNN) connected in series, whose synaptic weights matrices WID and WCO are
tuned on-line and hence during the simulation. In the following sections these two blocks are explained
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Figure 4.2: Neuron’s activation function.

in details and in the last part of this chapter this controller is employed to reduce the hub vibrations
of the Bo105 helicopter rotor by means of active twist blades in two different trim configurations to
test the adaptive properties of the proposed controller.

4.1 Identifier Network

Neural networks are very promising and common in system identification because they are able to
approximate generic nonlinear functions within a desired accuracy. The identifier reproduces the
input-output relationship of the system and can be seen as a nonlinear map P from the inputs uID(k)
to the prediction of the outputs at the (k+1)th time step yID(k+1)

yID(k+1) = P(uID(k)). (4.4)

The input vector of the identifier network is composed by the delayed feedback form both the hidden
and visible neurons yvisible

ID (k) and yhidden
ID (k), the measured variables to be identified yM(k), the control

signals acting on the system γ(k) and the bias −1

uID(k) =
{

yvisible
ID (k), yhidden

ID (k), yM(k), γ(k), −1
}
.T (4.5)

Subjected to the same input of the physical model, the ID-RNN should be able to minimize the error
between its output and the measured one computed and the training law of the network’s synaptic
weights WID can be obtained through an optimization algorithm that minimizes the following cost
function

EID(k) =
1
2

NM

∑
j=1

(
yM j(k)− yID j(k)

)2
. (4.6)

where NM is the number of the physical system output that we want to identify. Since we are interesting
in a nonlinear on-line identification, which leads to an accurate description of the plant under control
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at each sampling time, we use here the Real Time Recurrent Learning (RTRL) algorithm. Adjustments
are made to the synaptic weights in real time, while the networks continues to perform its signal
processing function [169, 170]. Given that yID(k) depends on WID, the simplest approach to minimize
the error of eq. 4.6 is a gradient descent method such as

WIDkl (k+1) =WIDkl (k)−η
∂EID(k)

∂WIDkl (k)
(4.7)

and the weights variation goes in the opposite direction of the gradient of the identification error. The
parameter η is the learning rate that governs the ID-RNN training velocity and has to be properly
tuned through design simulations: High values may destabilize the training algorithm, leading to a
divergence of the synaptic weights, while too low values limit the adaption to system variations.

The term ∂EID(k)
∂WIDkl (k)

of eq. 4.7 can be computed by following the chain of partial derivatives as
shown in eqs. 4.8 and 4.9

∂EID(k)
∂WIDkl (k)

=−
NM

∑
j=1

(
yM j(k)− yID j(k)

) ∂yID j(k)
∂WIDkl (k)

(4.8)

∂yID j(k)
∂WIDkl (k)

= f ′
(
vID j(k)

)(Nneurons
ID

∑
i=1

WID ji(k)
∂yID j(k)
∂WIDkl (k)

+δ jkuIDl (k)

)
, (4.9)

where Nneurons
ID is the chosen number of the ID-RNN neurons. To effectively compute the error gradient,

the RTRL algorithm introduces an approximation. The weights variation during the training phase is

neglected and the term
∂yID j (k)

∂WIDkl (k)
of eq. 4.9 is replaced with the one computed at the previous time step

(k−1)
∂yID j(k)
∂WIDkl (k)

=
∂yID j(k)

∂WIDkl (k−1)
, (4.10)

which is initialized as the null matrix at the beginning of the simulation. This approximation has been
verified through simple simulations and does not invalidate the identification algorithm.

4.2 Controller Network

The control strategy can be considered by a nonlinear map G form the inputs uCON(k) to the prediction
of the suitable control signals at the (k+1)th time step γ(k+1) to obtain the desired system outputs
yre f (k+1)

γ(k+1) = G(uCON(k)). (4.11)

The inputs to the CO-RNN uCON(k) are, apart from the delayed feedback yvisible
CON (k) and yhidden

CON (k), the
outputs of the ID-RNN yID(k+1), the control signals acting on the system γ(k) and the bias −1

uCON(k) =
{

yvisible
CON (k), yhidden

CON (k), yID(k+1), γ(k), −1
}T (4.12)
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Similarly to the ID-RNN case, the training of the controller can be interpreted as an optimization
algorithm which minimizes the following cost function:

ECON(k) =
1
2

NM

∑
j=1

(
yre f

j (k+1)− yID j(k+1)
)2

+
1
2

ρ

NC

∑
j=1

γ
2
j (k), (4.13)

where yre f (k+ 1) is the reference output and NC is the number of control signals. The tunable pa-
rameter ρ is defined as the control signal penalization and is used to limit the control effort in a way
similar to to what is done in a classical LQG controller. In this case, the penalty term is necessary
to avoid the divergence of the control [160, 161]. As shown for the ID-RNN, the gradient descent
algorithm is used to minimize the cost function of eq. 4.13 and to update the synaptic weights WCON

WCONkl (k+1) =WCONkl (k)−η
∂ECON(k)

∂WCONkl (k)
(4.14)

The gradient of the cost function can be derived analytically:

∂ECON(k)
∂WCONkl (k)

=−
NM

∑
j=1

(
yre f

j (k+1)− yID j(k+1)
) ∂yID j(k+1)

∂WCONkl (k)
+ρ

NC

∑
j=1

γ j(k)
∂γ j(k)

∂WCONkl (k)
, (4.15)

where the presence of the cross term
∂yID j (k+1)
∂WCONkl (k)

makes it explicit the coupling between the two networks
and it can be computed as

∂yID j(k+1)
∂WCONkl (k)

= f ′
(
vID j(k)

) NC

∑
i=1

WID j(i+Nneurons
ID +NM )

(k) f ′
(
vCON j(k)

)(Nneurons
CON

∑
i=1

WCON ji(k)
∂yCON j(k)
∂WCONkl (k)

+δ jkuCONl (k)

)
.

(4.16)
The term related to the control penalization can be obtained as

NC

∑
j=1

γ j(k)
∂γ j(k)

∂WCONkl (k)
=

NC

∑
j=1

yCON j(k)
∂yCON j(k)

∂WCONkl (k)
. (4.17)

Similarly to what explained for the ID-RNN, the variation of the weights is neglected and
∂yCONj (k)

∂WCONkl (k)
is

given by
∂yCONj (k+1)
∂WCONkl (k)

computed at the previous time step.

Once the identifier and the controller networks are implemented the dynamic black-box controller
is connected to the aeroelastic system as shown in fig. 4.3. It is useful to remark that all external
inputs to the networks have to be normalized to avoid the saturation of the activation functions of eq.
4.3. Therefore the measures yM(k) and the control signals γ(k), which enter in the ID-RNN block
are divided by a scaling factor and then the outputs of the CO-RNN block γ(k + 1) are multiplied
by a gain to adjust the bounds of the control action (note that γ(k + 1) and γ(k) share the same
normalization factor). These scaling and amplification factors are design parameters that have to
be properly tuned, along with the network parameters, to ensure the correct function of the neural
networks and to provide a suitable magnitude of the control activity.
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yID(k + 1), γ(k)CO-RNN

Figure 4.3: Neural network controller architecture.

4.3 Simulation Results

4.3.1 Controller Design

The neural network controller is here adapted to suppress helicopter vibrations and is applied to
the multibody model of the Bo105 rotor. Here only the simple aerodynamics provided by MBDyn is
considered, because of its low computational effort in the design simulations that are carried out by
the coupling between MBDyn and Simulink, in which the RNN control is implemented. Following the
same idea for the design of the periodic controllers, we are interested in minimizing the 4/rev and the
3/rev harmonics of the blade root shear force Fz to minimize the 4/rev harmonic of the hub vertical
force FZ and to act on the 4/rev harmonic of the hub moments MX and MY .

The identifier approximates on-line the nonlinear map between the applied voltage on the blade V
and the blade root shear force Fz, while the controller computes the voltage to be applied to minimize
the blade response. Therefore, to match the notation of the previous sections, the measured output
of the physical system is yM(k) = Fz(k), the control signal is γ(k) = V (k) and the identified output is
yID(k+1) = FIDz(k+1). Since we want to consider only the harmonics of the blade force Fz that have
to be minimized by the controller, the pass-band filter shown in fig. 4.4 is applied to the blade response
before the ID-RNN. The reference signal yre f (k+ 1) is equal to 0 for the whole simulation. Even in
this application, the controller is designed for the blade having initial azimuth ψ = 0 only and taking
into account the periodicity of the system, the same control signal is delayed and applied to the other
blades.

The two trim configurations, at advancing parameters of µ = 0.23 and µ = 0.33, are analyzed and
we choose to use 120 time steps per rotor revolution for both simulations. Since there is not a general
rule to apply, the controller parameters are tuned through several simulations for the higher advancing
velocity case, where vibrations are significantly stronger. The results of the networks tuning are shown
in tab. 4.1. A scaling factor of 200 is applied to the filtered measure of the blade root vertical force Fz,
while a gain of 300 is used for the controller output V . It is important that the measured variable is
normalized to avoid the network saturation, but in the meantime the input to the identifier should have
an adequate magnitude with respect to system noises for the learning algorithm to perform correctly.
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Figure 4.4: Filter used on the system output Fz.

Table 4.1: Networks parameters.

ID-RNN CO-RNN
Nneurons 3 3
η 2 ·10−1 1 ·10−1

ρ - 1 ·10−4
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To show the potentiality of the proposed adaptive controller, the already designed controller is
used for the other flight condition. Results for both cases are shown in figs. 4.5 and 4.6. As it can
be seen in such figures, a great reduction of vibratory loads is achieved and up to 90% reduction is
obtained in the flight condition where the controller parameters have been tuned. It is interesting to
notice that even for the flight condition at µ = 0.23 the results are good and the drop of vibratory loads
is satisfactory. Figures 4.7 and 4.8 show the computed control signals for the two configurations. The
maximum amplitude of the electric potential remains within reasonable levels, it does not exceed peaks
of 300 V; note that due to the nature of the synaptic function of eq. 4.3 and to the chosen controller
gain 300, the maximum voltage allowed by the neural controller is about 520 V.

4.3.2 Controller Validation

After having tuned the two networks, the ID-RNN and the CO-RNN, on the design model, showing
the capability of the neural controller to adapt itself in different flight conditions, the next step is to
verify the robustness of the proposed controller to assess the possibility and the effects of a practical
implementation. The validation model is built by coupling the multibody rotor with the free wake
aerodynamic code described previously and the rotor is trimmed at µ = 0.23. The parameters of the
networks, shown in tab. 4.1, are left unchanged and the black-box controller is fed back to the rotor
model. The crucial aspect of practical implementations, when dealing with neural networks, is that
we usually do not have an exact estimate of the magnitude of the real system loads. Therefore if the
normalization of the input measures to the ID-RNN is not appropriate, saturation or performance
degradation may occur. While a gain of 800 is used to limit the control activity, we can easily measure
the baseline loads, after the trim condition is reached, and then tune the normalization factors for the
blade root shear force trying to maintain the same proportions achieved during the design phase of
the controller.

The results of the closed loop simulation are shown is fig. 4.9. The nonlinear adaptive controller
fully satisfies our expectations and is able to properly adapt to the behavior of this rotor model using
a more accurate aerodynamic prediction. It can be seen that the 4/rev harmonic of the hub loads FZ ,
MX and MY are reduced by 43%, 83% and 65% respectively, providing only a marginal excitation to
the higher 8/rev and 12/rev harmonics and the computed control activity, represented in fig. 4.10,
has peaks smaller that 500 V.

The results obtained in this section are very interesting and the adaptive nonlinear black-box
approach shows the potential for the vibration reduction of helicopters. However, the fact that there
is not a general rule to tune the network parameters and the normalization factors makes it difficult
to design an adaptive controller to cover the flight envelope and further investigations is required in
order to use neural networks in real helicopters.
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Figure 4.5: NN control. Vibrations reduction for the trim condition at µ = 0.23.
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Figure 4.6: NN control. Vibrations reduction for the trim condition at µ = 0.33.
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Figure 4.7: NN control. Applied voltage on blade 1 at µ = 0.23.
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Figure 4.8: NN control. Applied voltage on blade 1 at µ = 0.33.
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Figure 4.9: NN Controller validation on the Free Wake model for the trim condition at µ = 0.23.
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Figure 4.10: Applied voltage on blade 1 in the NN control validation on the Free Wake model at
µ = 0.23.
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Chapter 5

Higher Harmonic Control

A widely studied control system to actively reduce vibrations in rotorcraft applications uses the actua-
tion of the blades at higher harmonics to generate unsteady forces that counteract the vibratory loads.
The control signal uk is computed as a sum of harmonics higher than the 1/rev

uk =
N

∑
n=2

(
γc,ncos(nΩkdt)+ γs,nsin(nΩkdt)

)
, (5.1)

whose coefficients, γc,n and γs,n are obtained through the higher harmonic control (HHC) algorithm.
In the first applications, the HHC technique moves the already available swashplate to control the
pitch of the blades at higher frequencies as reported in [27, 28]. However, this approach is not
able to control the blades individually, so that harmonics arising from rotor dissimilarities having
a frequency non multiple of the rotational one cannot be reduced. In recent years, HHC has been
extensively employed in individual blade control (IBC) applications thanks to its effectiveness and
simplicity; for example in [171] the vibrations are reduced by means of microflaps and HHC. The
implementations of such a controller are not only limited to vibration suppression, but it is also used
to mitigate other problems, e. g. noise, or to improve the efficiency of rotary wing aircraft. In [172]
the HHC algorithm is employed to alleviate the blade vortex interaction related noise, while in [48] a
simultaneous vibration reduction and performance enhancement is performed.

Although HHC provides very good results, it suffers from some limitations. First of all, it is
based on a quasi-static and linear approximation of the rotor behavior, which cannot be very effective
when strong nonlinearities occur, especially when a non adaptive version is used. Moreover, the
actuator saturations is not taken into account. Several studies have been performed in the literature
to solve these issues to increase HHC performance in real implementations. In order to make the
controller more robust to model uncertainties, a H∞ approach for the HHC is presented in [173, 174].
The problem of providing a suitable and realistic control effort, considering the actuator saturations
is usually treated in very simple ways, which degrade controller performance [175]. The simplest
method is the truncation of the signal as it reaches the saturation value. Another approach is to
multiply the control signal by a scaling factor, or the weights used to design the controller can be
properly tuned to limit the control action. A very effective actuator constraints handling is shown in
[176], where a nonlinear constrained optimization is carried out to minimize the cost function of the
HHC technique.
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In this chapter an adaptive version of the HHC algorithm is presented and then the actuator con-
straints are included in the design process of the control signal through an elegant way, as suggested
by [177], relying on the quadratic programming, which is more suitable for real time capabilities. Af-
ter showing the effectiveness of the classical adaptive controller through a closed loop simulation, two
verifications with different imposed constraints on the control signal are shown to assess the capability
of the proposed solution.

5.1 Classic Adaptive Higher Harmonic Control

The main approximation of the HHC algorithm is the modeling of the rotor subsystem for each step
k with a quasi static linear transfer function between the cosine and sine amplitudes of the blade
control signal harmonics, represented in the vector γ , and the cosine and sine amplitudes of the hub
loads harmonics, comprised in the vector f

fk+1 = fk +Tk
(
γk+1− γk

)
. (5.2)

Being this equation based on a quasi static assumption of the rotor behavior, the step k is usually
updated after a certain number of rotor revolutions to let the system reach the steady state condition.

The transfer matrix Tk has to be properly identified to achieve good results in the closed loop
simulations and since the helicopter rotor exhibits a strong nonlinear behavior, depending on the
swashplate orientation and the flight condition, an adaptive on-line identification algorithm is the
best choice. In this work we decided to use the recursive least squares (RLS) algorithm as suggested
in [178] and the matrix Tk can be updated at each step k following these equations

Kk+1 =
(
α +4γT

k Pk4γk
)−14γkPk

Tk+1 = Tk +(4fk−Tk4γk)Kk+1,

Pk+1 = Pk
( 1

α
I−4γkKk+1

) (5.3)

where the matrix K is the gain, P is the covariance error matrix, 4fk = fk− fk−1, 4γk = γk− γk−1
and α is the exponential window parameter acting as a forgetting factor varying 0 < α ≤ 1.

After having obtained an accurate estimate of the transfer matrix Tk, the classical HHC algorithm
computes the harmonics of the control signal to be applied at the subsequent step γk+1 through the
minimization of the following quadratic cost function J

minγ J =
1
2
(
fT
k+1Wzfk+1 + γ

T
k+1Wγγk+1 +4γ

T
k+1W4γ4γk+1

)
. (5.4)

The weighting matrices Wz, Wγ and W4γ , applied to the hub loads to be reduced, the control signal
harmonics and to their increment respectively, are properly tuned in the controller design phase in
order to achieve the required performance. The minimization of the quadratic cost function of eq. 5.4
can be carried out analytically and the harmonics of the control signal can be computed as

γk+1 =
(
TT

k WzTk +Wγ +W4γ

)−1 [TT
k Wz (fk−Tkγk)−W4γγk

]
; (5.5)

the control signal is then reconstructed as in eq. 5.1. The computation of the control signal is repeated
every several k steps until the hub vibrations are sufficiently reduced and convergence is reached. The
on-line identification is kept active during the control updates to ensure a reliable estimate of the rotor
transfer function during the application of the control signal, since the rotor behavior is nonlinear.
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5.2 Actuator Constraints Handling

The prediction of the magnitude of the computed signal is a crucial aspect of the classical approach,
as the actuators may reach the saturation point or undesirably high control inputs may occur. As
described before, this issue is taken into account properly by a nonlinear constrained optimization of
the cost function J of eq. 5.4 as explained in [176].

Being the nonlinear optimization algorithms very expensive to be used into real time applications,
a more elegant way to handle actuator constraints, as proposed by [177] , is presented in this work.
The main idea is to replace the nonlinear constraints with a set of linear inequalities, so that the prob-
lem can be solved using quadratic programming. The constraints on the control signal are taken into
account by imposing a limitation V̄ on the magnitude of each harmonic n composing the signal. Being
the exact nonlinear form of the constraint

√
γ2

c,n + γ2
s,n ≤ V̄ not suitable for a fast implementation, it is

relaxed and a stricter set of linear constraints, formulated as the sum of the absolute values |γc,n| and
|γs,n|, is used, leading to the following optimization problem

minγ J = 1
2

(
fT
k+1Wzfk+1 + γT

k+1Wγγk+1 +4γT
k+1W4γ4γk+1

)
s.t. |γc,n|+ |γs,n| ≤ V̄

(5.6)

where n represents the index of the constrained harmonic of the signal. By substituting the quasi
static approximation of the rotor model of eq. 5.2 into eq. 5.6 and ignoring all the terms independent
from γk+1, since it is a minimization problem, the cost function can be written considering only the
quadratic and the linear term, as shown in eq. 5.7

minγk+1J =
1
2
(
γ

T
k+1HHγk+1 +ggT

γk+1
)
. (5.7)

To obtain a set of linear inequalities necessary for the implementation using the quadratic program-
ming approach, the following change of variable is needed

γ = x+−x−, (5.8)

with the new introduced variables x+ and x− always positive. Substituting the change of variable of
eq. 5.8 into the constraints of eq. 5.6, they can be reformulated as:

−
(
x+c,n + x−c,n

)
−
(
x+s,n + x−s,n

)
>−V̄

x+ > 0
x− > 0

. (5.9)

The change of variable of eq. 5.8 is substituted to the cost function of eq. 5.6 as well, leading to the
classical quadratic optimization problem

minxk+1J = 1
2

(
xT

k+1Hxk+1 +gT xk+1
)

s.t. Cx > d (5.10)

where H =

[
HH −HH
−HH HH

]
and g =

{
gg
−gg

}
. This optimization problem is solved at each step

of the controller k in this work through the interior point method as explained in [179, 180]. The
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interior point algorithm is very fast and usually reaches the solution after few iterations, providing an
optimization method capable to operate in real time applications within the controller step k, which
usually comprises 3 or 5 rotor revolutions. An implementation of this controller for the tracking
control of an experimental rotor model using the multiple swashplate can be found in [181].

5.3 Simulation Results

The simulations carried out in this section are aimed at showing the effectiveness of the presented HHC
algorithm and the Bo105 rotor model trimmed at an advance parameter of µ = 0.23 is considered as
test case. The quasi static model of eq. 5.2 in these examples maps the cosine and sine amplitudes of
the applied voltage V , stacked in the vector γ , directly to the cosine and sine amplitudes of the 4/rev
harmonic of the hub loads represented in the vector f. We limited our study to the minimization of the
hub shear force FZ and the two hub moments MX and MY , while the control signal is composed by
harmonics ranging from the 2/rev to the 5/rev, leading to a (6x8) transfer matrix T. Note that the
computed harmonics of the control voltage are the same for the four blade and then the phase of the
four control signals are shifted according to the azimuth position of the blades

VkNb
=

5

∑
n=2

(
γc,ncos

(
nΩkdt +(Nb−1)

π

2

)
+ γs,nsin

(
nΩkdt +(Nb−1)

π

2

))
,

where Nb is the index of the blade.
The identification of the transfer matrix Tk is done on-line during the simulation and its estimate

is updated every 3 rotor revolutions. The RLS algorithm requires the initialization of some parameters
and while the initial gain K0 and the initial value of the transfer matrix T0 are set to the null matrix,
the covariance error matrix P0 is initialized as an upper triangular unit matrix multiplied by a gain
equal to 100. The forgetting factor α = 0.9 is considered. The initial magnitude of the covariance
error matrix P drives the velocity of the identification algorithm, while the forgetting factor α is
used to emphasize more recent data with respect to the old ones; it is a parameter that governs the
adaptiveness properties.

The adaptive HHC algorithm is implemented in Simulink and the first closed loop simulation is
carried out without imposing the constraints on the control signal. The multibody rotor model is
coupled with the hybrid full potential CFD code with the Peters-He wake model and the reduction of
the hub vibrations are analyzed. The weighting matrices of the cost function of eq. 5.4 are properly
tuned through a couple of simulations to achieve the desired performance; in particular the matrix Wz

is a diagonal unit matrix having the first two diagonal parameters related to the hub shear force FZ

equal to 10, otherwise the controller could amplify the hub vertical vibration because its magnitude
is much smaller that the one of the two moments. The control weighting matrix Wγ is chosen as the
unit matrix and the one related to the controller update increment is set to the null matrix. Figure
5.1 shows the 4/rev harmonic of the hub loads computed with the simple aerodynamic of MBDyn,
the hybrid full potential CFD aerodynamics and the vibration alleviation achieved thanks to the HHC
controller. It can be seen that the HHC controller is very effective, especially if we consider the hub
vertical force FZ that is reduced by 81%, and is able to alleviate at the same time the three hub loads.
The 4/rev harmonic of the two hub moments MX and MY experience a reduction of 23% and 24%,
respectively. The control signal applied on the first blade is shown in fig. 5.2.
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Figure 5.1: Classical adaptive HHC on the hybrid full potential CFD code.
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Figure 5.2: Classical adaptive HHC. Applied voltage on blade 1 on the hybrid full potential CFD code.
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After having evaluated the capability of the HHC method, the multibody rotor model is coupled
with the Free Wake aerodynamic code. The purpose is both to test such controller with a more complex
wake modeling including the BVIs and to exploit the constrained HHC version to achieve satisfactory
results even if the control signal is limited. The analyzed trim configuration is the same of the pre-
vious simulation at an advance parameter of µ = 0.23 and two different constraints on the actuator
harmonic are considered. In the first simulation, the main goal is to verify the reduction capability
of the developed quadratic optimization algorithm, while maintaining the applied voltage within ac-
ceptable levels; therefore each harmonic of the control signal is limited to a magnitude of 300 V. The
second simulation is aimed at showing the performance of the proposed HHC method when a strong
limit on the actuator is prescribed and each harmonic of the blade voltage is limited to 100 V. The
alleviation of the 4/rev loads achieved by both of the simulations with respect to the baseline case is
shown in fig. 5.3, while the related control signals are compared in fig. 5.4. Once again the HHC
algorithm provide a simultaneous alleviation of the three hub vibrations. In the first simulation, where
the control authority is high, a reduction of 71% is obtained for the hub shear force FZ and the two
hub moments MX and MY are reduced by 46% and 43%, respectively. It is very interesting to observe
that in the second simulation, in which the signal harmonics are strongly limited, the controller is still
able to reduce all the hub loads 4/rev harmonic. This shows the effectiveness of using an optimization
algorithm to handle actuator constraints. In fact while the two hub moments MX and MY are only
reduced by 11% and 17%, the hub force FZ reduction of 54% is very satisfactory considering that the
control signal magnitude, shown in fig. 5.4 is much smaller than the one obtained with the first simu-
lation. It is important to notice that the optimization constraints are not violated and that the higher
harmonics, the 8/rev and the 12/rev, are only marginally excited by both of the controller actions.
These results are very interesting for practical implementation and experimental analysis, because
the actuator saturation can be avoided very safely without losing real time capabilities thanks to the
quadratic programming approach and the relaxation of the nonlinear constraints.

With respect to the other controllers analyzed in this thesis, the HHC algorithms presents some
advantages, because it is very easy to be implemented and, if an adaptive version is used, the model
of the system is not required. In contrast to the neural network approach, the HHC is based on a
quasi-static frequency response model of the helicopter and it can not approximate nonlinear effects.
Moreover the control signal is constrained to be composed by the sum of a finite number of harmonics,
thus limitating the possibility to generate a more complex signal. Although the HHC has demonstrated
to be very effective for this kind of problems, the on-line identification of the rotor response transfer
matrix requires several rotor revolutions and the application of random control input that may increase
temporarily the rotor vibrations. This issue is avoided if other controllers, for example the periodic
ones that are designed after an off-line identification of the system, are used.
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Figure 5.3: Adaptive HHC with actuator constraints on the Free Wake model.
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Figure 5.4: Adaptive HHC with actuator constraints. Applied voltage on blade 1 on the Free Wake
model.
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Chapter 6

Active Trailing Edge Flaps

Until now, we proposed actively twisted blades to perform individual blade control to reduce the vi-
brations transmitted by the rotor to the fuselage. Even if this solution has demonstrated to be very
promising and effective throughout this study, it will become more and more feasible with the future
advances of the technology because it involves a quite complex manufacturing of the blade and the
application of a rather high electric voltage on the rotating system, which might cause safety prob-
lems. Therefore the natural evolution of the vibration reduction study is to investigate other actuation
devices in order to understand what could be the most effective solution with respect to the actual
technological capabilities of the rotor industry.

The actuators analyzed in this chapter are the trailing edge flaps that are very common in the
aerospace field, especially for conventional aircraft, in which they are used to perform attitude flight
and active aeroelastic control [160, 182, 183]. In contrast to fixed-wing aircraft, where the ailerons
are actuated through hydraulic systems, the actuators of aerodynamic surfaces on rotor blades are
usually piezoelectric because of their high bandwidth, crucial to properly generate aerodynamic loads
that oppose the vibrations, and the reduced size, very important due to the slender nature of the
blade. This approach has been widely investigated in the literature and showed to be very effective for
vibrations reduction, however if great deflection angles are required, as in the case of primary rotor
control, the friction forces that arise because of the high angular speed play a major role, leading to
a degradation of the overall performance [44, 45].

In the present study, we decided to add a single trailing edge flap to the actively twisted blade
as shown in fig. 6.1. By doing so, it is possible to build a SMART rotor blade with two actuation
systems. Although in this work only the active flaps have been used to suppress helicopter vibrations,
having two individual blade control mechanisms on the blade could be very profitable in meeting
multiple performance requirements simultaneously, thus facilitating the control problem. For example
one could use the distributed piezoelectric actuators to enhance the rotor power performance and the
active flaps to suppress vibrations, or it could be possible to use the trailing edge flaps for primary
rotor control, hence eliminating the heavy swashplate, and perform the vibration reduction through
the actively twisted blades.

After explaining the adopted strategy to model the effects of the active flaps on the blade loads, a
closed loop simulation is shown and the results are compared with those obtained by using the active
twist rotor in the same trim condition.
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Active Flap

Piezoelectric Actuator

Figure 6.1: Active blade with trailing edge flap.

6.1 Flap Modeling

In this work the modeling of the trailing edge flap does not imply any modification of the structural
properties of the blade, and for a preliminary study it is sufficient to consider only the effect of the
flap deflection δ on the aerodynamic lift and moment. Therefore, following the blade element method
approach, the loads related to the flap deflection have been computed at the airfoil level through the
Kussner-Schwarz theory [184], which allows to compute the difference of pressure between the upper
and the lower sides of a thin airfoil subject to an unsteady periodic motion including the possibility to
modify the shape of the mean line while moving, then the resulting flap related loads are summed to
the blade aerodynamic forces. Given a periodic motion of the trailing edge flap only,

z =

{
0

−(x− xF)δ (ω)

x < xF

x > xF
(6.1)

the lift and moment produced by the airfoil with respect to 25% of the chord c can be computed as L(ω) = 1
2 ρv2c2π

(
C(k)(P0 +P1)+

jk
2 (P0 +P2)

)
δ (ω)

M c
4
(ω) =−ρv2

( c
2

)2
π

(
P1 +P2 +

jk
2

(
P0−P2 +

P1−P3
2

))
δ (ω)

= Ham(k) δ (ω) (6.2)

where
P0 =

jk
π

√
1− x̃2

F +(1− jkx̃F)
arccos(x̃F )

π

Pn =
jk

π(n2−1)

(
nx̃Fsin(narccos(x̃F))−

√
1− x̃2

Fcos(narccos(x̃F))

)
+

+ 1
nπ

(1− jkx̃F)sin(narccos(x̃F))

(6.3)

C(k) is the Theodorsen’s lift deficiency function, k is the reduced frequency and x̃F is the position of
the aileron hinge divided by the semichord. The adopted notation of the signs of the aerodynamic
forces and the flap deflection is shown in fig. 6.2.

Being the aerodynamic transfer function Ham(k) expressed in the frequency domain, the next step
is to reformulate the problem into a time domain state form, in order to ease the implementation
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Figure 6.2: Airfoil force notation.

within the aeroelastic rotor simulation toolbox. One of the possible method is to parametrize the
transfer function of eq. 6.2 in a Rogers-like formulation

Ham(k)∼= D0am + jkD1am +( jk)2D2am +
6

∑
i=1

Aiam

jk+ pi
(6.4)

whose unknown matrices D0am , D1am , D2am, Aiam and poles pi have been identified through a nonlin-
ear least squares optimization, using either the Gauss-Newton or the Levenberg-Marquardt algorithm.
Knowing the definition of the reduced frequency k = ωla

V∞
, where the reference length la is the semichord

of the airfoil, this formulation can be easily converted into a time dependent state space representation

ẋa =−V∞

la
Aaxa +

V∞

la
Baδ (t)

fa = D0amδ (t)+ la
V∞

D1amδ̇ (t)+
(

la
V∞

)2
D2amδ̈ (t)+Caxa

(6.5)

where fa is the vector containing the airfoil lift L and moment M c
4

and the state space matrices Aa, Ba

and Ca are defined as follows

Aa =


Ip1 0 · · ·

0 . . . 0
... 0 Ip6

 Ba =

 A1am
...

A6am


Ca =

[
I · · · I

]
.

It is then straightforward to integrate this formulation for the flap loads computation inside the free
wake code. The Prandtl-Glauert correction is added to take into account compressibility effects.

6.2 Simulation Results

Starting from the numeric rotor model of the Bo105 with actively twisted blades, a trailing edge flap
is added to each blade within the free wake aerodynamic simulation code. The center of the flap is
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located at 78.9% of the blade span and it is 1.166 m wide, with the hinge of the flap supposed to be
at 75% of the blade chord. After having computed the correct aerodynamic transfer function with
respect to the flap geometry, the state space model of eq. 6.5 that relates the flap deflection to the
generated lift and moment on the airfoil is built and integrated in the rotor simulation toolbox. The
trim configuration analyzed by the present simulation is the one at the advance parameter µ = 0.23.

The rotor vibrations are suppressed using the revised version of the adaptive HHC algorithm in-
cluding actuator constraints explained in the previous chapter. The objective of the controller is to
reduce the 4/rev harmonics of the hub loads FZ , MX and MY by applying a control signal with harmon-
ics ranging from the 2/rev to the 5/rev. In order to avoid an unfeasible great control effort, because of
the elevated friction forces, the control inputs have been constrained and each flap deflection harmonic
is limited up to 1◦. The controller weighting matrices Wz and Wγ are identity matrices and W4γ is
the null matrix. The results of the closed loop simulation are shown in fig. 6.3 and they are compared
with the vibration reduction study performed using the active twist rotor, in which each harmonic of
the control voltage has been constrained below 300 V. The solution achieved by the active twist blade
design is good, if compared to the baseline loads; the vertical force’s 4/rev harmonic is reduced by
72% and the one of the two hub moments MX and MY is reduced by 47% and 43% respectively. Even if
such a result is quite promising, it can be seen that the trailing edge flap is much more effective in this
condition and suppresses almost the 100% of the 4/rev loads. It is interesting to notice that the higher
harmonics are only marginally excited by both individual blade control techniques. The required flap
deflection is shown in fig. 6.4. As prescribed through the constrained HHC algorithm, the flap angle
over the rotor revolution remains very low and it does not exceed 0.6◦.

This analysis has demonstrated the capabilities of the active trailing edge flap system to reduce ro-
tor vibrations as reported in the literature and set the basis for further investigations. In this work we
considered only one trim condition and it would be very interesting to see if the flaps are able to sup-
press the vibrations better than the actively twisted blades throughout the flight envelope. Moreover,
the position of the piezoelectric patches for the active twist rotor could be revised and optimized to im-
prove vibration reduction capabilities, since in the present thesis the optimization has been performed
on the beam section considering only static requirements.

The study of the vibration reduction capabilities of the actuating mechanism has to be completed
by analyzing another important load path that has not been considered in the current simulations.
Since the swashplate is represented using two rigid nodes set in motion through file drivers, the loads
of the pitch links are not transmitted to the rotor hub and therefore they have not been introduced in the
control cost function for vibrations reduction. Although such an approximation does not invalidate the
work of this thesis, whose purpose is to analyze the capability to reduce vibrations of both advanced
contol systems and different actuators, it is still interesting to investigate at least the effect that the
two individual blade control solutions proposed have on the pitch link loads. Figure 6.5 shows the
harmonics of the pitch link load for the first blade and a comparison is made among the baseline loads
and the modified loads after employing the HHC control, at first using actively twisted blades and then
the trailing edge flaps. It can be noticed that, if not properly included in the control cost function, there
is the risk that the pitch link related load is increased and this could cause undesirable stresses and
fatigue problems for this primary component. Therefore it is very important to consider these loads
during the design of a rotor and of a vibration control system. It can be noticed from the harmonic
comparison that both the active twist and the active flaps increase the harmonic content of the pitch
link load. In paticular, even if the flaps are much more effective for vibration suppression in this flight
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Figure 6.3: Vibration suppression using active flaps for the trim condition at µ = 0.23.

115



6.2. SIMULATION RESULTS

0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Control activity − Flap deflection

Revolutions

δ
o

Figure 6.4: Flap deflection signal.

condition, it is not as good for the pitch link. In fact, while the 4/rev harmonic is greatly amplified by
both approaches, the trailing edge flaps cause an additional huge increase of the 2/rev and the 3/rev
harmonics. This investigation about the pitch link loads points out that it is an important load path to
be considered in further steps of the rotor design. We are well aware that after this preliminary study
of the possible control system architecture, the next step is to consolidate the procedure and validate
the vibration controllers including the pitch link loads.
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Figure 6.5: Pitch link load analysis for blade 1.
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Chapter 7

Multiple Swashplate

The purpose of the following chapter is to present an alternative solution differing from the other
ones previously presented. The main characteristics of the individual blade control is the availability
of actuators in the rotating frame, thus leading to a more complex manufacture of the blades and
to certification problems due to an unconventional rotor design. The strategy reported in this chap-
ter exploits actuators in the nonrotating frame, by enhancing the rotor command chain to allow the
possibility of controlling the pitch of each blade independently by using two swashplates.

The multiple swashplate, Mehrfachtaumelscheibe (META) in German, system has been developed
and patented in 2008 by the German Aerospace Center (DLR) [185, 186, 187] and exploits the well
known and consolidated technology of the swashplate to develop an IBC capable mechanism. The
main advantage of using such a device is that only minor modifications are required to the design of
the conventional rotor, hence working not far from the standards of the helicopter industry. Therefore
the certification of this system for modern helicopters should be easier, since it is possible to ensure a
higher level of safety if compared to other IBC mechanisms.

After explaining the basic operating principles and the method to control the multiple swashplate,
this chapter presents an experimental activity performed at the DLR during my PhD leave abroad
aimed at testing the IBC capabilities of the META system for the blade tracking control problem.

7.1 Operating Principles

The multiple swashplate system is aimed at overcoming the limitations of the classical HHC performed
with a single swashplate. It achieves full individual blade control capabilities without using actuators
in the rotating frame. The basic idea of this control mechanism derives from the assumption that
a single swashplate is able to control up to 3 blades independently. Therefore for helicopters with
four to six blades, a second swashplate is sufficient in providing a full IBC capable system. The META
concept has the advantage that the rotor can still be designed conventionally and being the swashplate
a well known system, the costs for maintenance do not increase significantly compared to conventional
rotors without IBC capability. An example of the META control system for a 6 blades rotor is shown
in fig. 7.1. It can be clearly seen that three blades are connected to the inner swashplate and three
blades to the outer one. As in conventional rotors, the architecture of the single swashplate is not
modified and the collective and cyclic control is performed through three electro-hydraulic actuators
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Figure 7.1: Multiple swashplate mechanism.

in the nonrotating frame.
In contrast to IBC approaches using actuator in the rotating frame, all control signals with the

META system are generated in the nonrotating frame and then transmitted to the blades through the
swashplate. Therefore, the determination of a relationship among the electro-hydraulic actuators and
the blade pitch is necessary. Starting from the definition of the blade pitch as a Fourier series with a
certain number of harmonic Nharm in the rotating frame

ϑp (t) = ϑ0 +
Nharm

∑
n=1

(ϑnccos(nψp)+ϑnssin(nψp)) (7.1)

where p is the blade index and ψp is the blade azimuthal angle, it is possible to write a generalized
control law for the swashplate in the nonrotating frame by using the multiblade coordinate transfor-
mation, as described in [188]

θ = θ0 +
Nharm

∑
n=1

(θnccos(ψ)+θnssin(ψ))+θ2 (7.2)

where the coefficients of the Fourier series are computed by the pitch angles in the rotating frame as
follows

θ0 =
1
N

Np

∑
p=1

ϑp (t) (7.3)

θnc =
2
N

Np

∑
p=1

ϑp (t)cos(nψp) (7.4)
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θns =
2
N

Np

∑
p=1

ϑp (t)sin(nψp) (7.5)

θ N
2
=

1
N

Np

∑
p=1

ϑp (t)(−1)p . (7.6)

The so called reactionless mode θ N
2

occurs only on rotors with more than 3 blades and an even num-
ber of blades. Therefore, having up to 3 blades per swashplate, it is possible to transmit all rotor
harmonics to the rotating frame. Moreover, the full IBC capability is given by the fact that the number
of the blades is equal to the three degree of freedom of the swashplate.

The rotor control law of eq. 7.2 can not be directly employed to individually command the blades
and a further step is needed to connect the values of the Fourier coefficients to the length of the
actuators that is required for a proper motion of the swashplate. Supposing that a maximum of three
blades can be connected to a single swashplate, the following discussion has to be repeated for the
second swashplate as well. A first method could be to solve the kinematic path between the time
dependent blade pitch angle and the position of the swashplate. Since the analytical formulation is
quite complex to be solved, it would be rather time consuming for real time implementation, therefore
an approximate method is preferred. For this reason it is necessary to simplify the computation of the
required actuators lengths and use a transformation matrix M that relates the control input vector θ

with the actuators position lS, thus developing a suitable control law for the swashplate

lS = Mθ + lSre f . (7.7)

The vector θ comprises the rotor control coefficients θ0, θc and θs and the vector lSre f contains the
reference lengths of the three actuators in the neutral position. In order to compute this matrix,
several measures of the rotor trim state are needed. The constant Fourier coefficients θ0, θc and θs of
the primary rotor control are then related to the corresponding constant actuator lengths. By doing
so it is possible to approximate the kinematic path either through a linear expression, leading to a
constant 3x3 matrix for each swashplate, or by using a polynomial expression for the matrix M up to
the 5th order of the control coefficients as shown in [185, 186]. Once the swashplate control law of
eq. 7.7 has been determined from the rotor primary control, it is possible to superimpose the higher
harmonic content of the IBC commands. Following eqs. 7.3-7.5 it is possible to transform the higher
harmonics of the blade pitch into time dependent Fourier coefficients in the nonrotating frame and
then they are added to those of the primary control

θ = θPrimary +θIBC

leading to time variant actuator lengths through eq. 7.7.
Thanks to the IBC capability, the applications of this actuating system are many. One of the goal of

the META project was to investigate the feasibility of splitting the tip path plane of the rotor through
IBC control [186]. This would be very important for reducing the effects of the BVIs because it is
possible to generate vertically spaced blade tip vortices with a consequent reduction of the BVI noise.
The individual blade pitch control can also be used to perform vibration reduction studies as well as
blade tracking control. This last application will be described in the following section.
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7.2 Tracking Control in Hover

In this section, the problem of blade tracking control in hover is analyzed. In the numerical models
of helicopter rotors, the loads transmitted by the blades to the hub are composed only by harmonics
that are multiple of the number of the rotor blades multiplied by the rotor rotational frequency. Due
to the manufacturing technology, it is obvious that the blades, as well as the connections such as
the pitch links and the pitch horns, are designed to be as similar as possible, but they still present
some differences. Therefore in real applications the rotor hub is subjected to loads that contains all
harmonics multiples of the 1/rev, because the blade dissimilarities do not cancel the periodic loads
as expected in the ideal numerical world. The basic idea of the blade tracking control is to actively
control the blade pitch in order to eliminate the effects of these dissimilarities by artificially making
the blades behave in the same manner.

The work reported here is based on an experimental activity performed at the DLR during my PhD
study, more details on this study can be found in [181]. An experimental rotor model of the Hart II
rotor is equipped with the META actuating mechanism, shown in fig. 7.2, to carry out IBC tests and
verify the capabilities of this system. Since the Hart II is a 4 blades rotor, two swashplates are needed
and each swashplate is connected to two blades. During May 2015 the META system has been tested
to perform tracking control in the DLR’s rotor testing hall in hovering condition. The idea of this study
is to independently modify the mean value of the blade pitch ϑ0 to reduce the 1/rev hub loads due to
the rotor imbalances through the HHC algorithm modified to include actuator constraints described
in the previous chapter.

The primary rotor controls (collective and dynamic pitch) of META are set by the test operator
at the piloting rack for both swashplates simultaneously using comparatively slow, but highly accu-
rate electric motors controlled by Easy to use Positioning System (EPOS) -modules, which are part
of the META actuation system. The second, hydraulic part of the actuation system, which has less
control authority but is capable of moving with frequencies up to 100 Hz, is needed to realize the
dynamic blade control signals for HHC, IBC and in-flight blade tracking. The control software for
these hydraulic actuators runs independently on a dedicated dSPACE real-time processor (RTP) and
can be accessed through a graphical user interface (GUI), running on a separate display PC. Sig-
nal measurement and recording is handled by the DLR’s own second generation Transputer-based
extendible data acquisition system (TEDAS II), which is capable of recording up to 250 channels at
sampling rates of 2048/rev. The control software for the META system is compiled from a Simulink
model using the Matlab/Simulink compiler and then distributed among the four individual cores of the
processor used in the RTP-unit. The cores are assigned the following dedicated tasks:

• core 1: calculation of IBC signals and conversion to actuator strokes;

• core 2: hydraulic actuator piston position control, measurement and signal routing;

• core 3: dedicated (otherwise inaccessible) core for network communications;

• core 4: miscellaneous.

Since they are directly tied into the rotor control system, cores no. 1 and 2 have to run at a frequency
equal to 256/rev (4.48 kHz) synchronously to the model rotor in order to ensure correct phase settings
for the control signals. This is achieved via an external trigger signal from the RTR’s azimuthal pulse
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Figure 7.2: Tracking control experiment. Measure points.
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synchronizer (APS). Due to the relatively high sampling rate and the complexity of the tasks, those
two cores have little margin with regards to task execution time, and were thus deemed unsuitable for
the addition of more functionality. Cores no. 3 and 4 run largely independently and can be set to any
arbitrary sampling rate best suited for the assigned task. In order to decouple the task of vibration
control from the most computationally demanding functions and to avoid issues with synchronization
or task execution times the HHC control algorithm was integrated to run solely on core no. 4 with a
base sampling rate of 400 µs (2500 Hz).

To allow enough time for transients to settle down after changing the control signals, an identifica-
tion step is only triggered if at least one second (or 17.5 rotor revolutions) has passed and the dynamic
response of the rotor system has stabilized. The identification cycle is programmed to operate auto-
matically, as soon as an identification step is finished, a new set of randomly generated control signals
is calculated and realized by the META system. Once the transients have died out, a new identification
step is triggered and the cycle continues until stopped manually. Once the transfer matrix T is fully
identified, it can then be stored on hard disk and, if necessary, reloaded into the control software.
For controller operation, the identified transfer matrix is then passed, along with the current control
inputs, to the HHC algorithm. The amplitude limits for HHC operation or maximum collective offsets
can be set by the user prior to each controller run. Since the HHC algorithm itself includes optimiza-
tion loops and thus can differ in execution time, an internal rate transition was introduced into the
Simulink model in order to allow enough time for the full and successful execution of the algorithm.
First simulations showed that a maximum execution time of five seconds (≈90 rotor revolutions) is
suitable for controller operation and offers a large execution time margin in case of possible devia-
tions. When an optimization run is finished, the calculated control coefficients are manually adopted
by the user and passed on to the META control task, which then synthesizes the corresponding blade
control signals and drives the hydraulic actuators accordingly. This semi-closed loop approach was
selected to ensure the safe operation of the experimental model.

7.2.1 Experimental Results

The test is carried out at a reduced thrust of 1500 N in hover and 4 vertical Z force transducer are
used at the bottom of the rotor test rig, as shown in fig. 7.2. For the T matrix identification, random
blade offsets (within the predetermined controller limits of 0.3o) were automatically introduced into
the system to produce and measure a corresponding change in rotor imbalance necessary for the
identification process. The transfer T is a 8 × 4 matrix (four blade offsets, eight 1/rev coefficients for
four Z-force transducers). After 10 consecutive random identification steps, the only partly populated
transfer matrix was assumed to be identified with sufficient accuracy and saved to hard disk. In the
next step, all dynamic actuator input were set so zero and the HHC algorithm was activated. After each
completion of the algorithm the proposed individual blade offsets were displayed in the GUI and then
manually adopted and applied to the META system. While a total elimination of the rotor imbalance
was impossible due to recirculation occurring in the closed space of the test hall, a reduction of the
1/rev Z-forces measured by the rotor balance to 8.66% of the baseline level was achieved after four
consecutive controller runs. Figure 7.3 shows both part of the identification process as well as the
four controller steps leading to the final control solution. Each point in the plot represents the average
1/rev vibration component of Z-forces measured by the four sensors on the rotor balance for one set
of individual blade offsets. The final blade pitch offsets that allow the minimization of 1/rev vibratory
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Figure 7.3: Minimization of the 1/rev hub loads through the blade tracking control.

Table 7.1: Pitch control offsets.

Blade 4ϑ0deg
1 +0.31o

2 +0.03o

3 −0.07o

4 +0.33o

Z-forces are summarized in tab. 7.1.
Although the vibratory loads have been minimized, the individual blade offsets led to a net increase

in rotor thrust of 115 N (7.7%). The severity of the rotor imbalances partly depends on rotor thrust
and this effect can bias the results in either direction. To prevent, or at least mitigate this effect in the
future, a feed-forward thrust compensation has been added within the control software, automatically
lowering the collective pitch setting by the mean value of the individual blade offsets. With the thrust
compensation enabled, a second test was performed, again at a reduced thrust setting of 1500 N and
with blade offsets limited to a maximum of 0.3o. After the initial identification phase using random
inputs, the controller algorithm was able to reduce 1/rev Z-forces by 87.4% after the first step, with
a final reduction of 94.2% after three controller runs. The individual blade offsets measured during
the third controller run are listed in tab. 7.2. The sum of all individual blade offsets in this case
equals zero, thus keeping the thrust substantially constant during the test without need for further
manual inputs by the operator. Accordingly the maximum thrust offset during the application of the
last controller solution was measured at −11.8 N, equaling less than 1% of baseline thrust.

The next step of this study will be to carry out vibration reduction in forward flight and to inves-
tigate various different flight conditions. Based on the simulation results and also the successful test
of the in-flight tracking mode of the controller, the algorithm is expected to perform as planned in
HHC-tests during the upcoming windtunnel campaign.
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Table 7.2: Pitch control offsets with equalized thrust.

Blade 4ϑ0deg
1 +0.15o

2 −0.18o

3 −0.18o

4 +0.21o
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Concluding Remarks and Future Works

Helicopter rotor blades in forward flight experience a highly complex aerodynamic environment,
which can be the source of many problems, such as dangerous vibrations and noise for structural
integrity and passengers comfort. These complicated aerodynamic phenomena, which are mainly re-
lated to dynamic stall, shock waves and blade vortex interactions, couple with the elastic motion of
the blades, causing fluctuating aeroelastic loads that are very difficult to predict through numerical
softwares in the preliminary design phase. Therefore one of the contribution of this thesis is the devel-
opment of an aeroservoelastic rotor simulation toolbox that allows to carry out accurate simulations
with a limited computational effort at an early stage of rotor design. Therefore the work aims at
studying vibratory loads reduction, one of the main issue for helicopters in forward flight, by employ-
ing several advanced active control strategies that are usually implemented for simple and academic
problems. The study has focused on the main rotor only because it is the prime source of vibrations.
Since the purpose of this work is to study advanced active control systems, almost the entire thesis ex-
ploits an active twist rotor as test case, leaving to the last two chapters the comparison with different
devices associated to individual blade control, such as the active trailing edge flaps and the multiple
swashplate. The concluding remarks and the main findings of this thesis are detailed below.

In the first chapter an improved general new method for modeling anisotropic, straight and linear
beam sections with embedded piezoelectric devices is presented. The stiffness matrix per unit length
of the beam is correctly evaluated by accounting for a completely coupled three-dimensional piezo-
electric constitutive law. To do so, the solutions related to the the so-called de Saint-Venant’s concept
are considered along with a set of particular solutions obtained by independently loading the beam
piezoelectric patches with an electric potential. The new formulation does not require any redundant
assumption, thus allowing to straightforwardly develop the related model and to compute the gener-
alized constitutive law of a beam section. No asymptotic expansion is required, so that the obtained
results remain valid independently from the beam slenderness. The proposed approach is validated
through three-dimensional finite element models and similar semi-analytical methods showing a high
level of accuracy. This formulation is then extended to include the modeling of piezomagnetic beams
and the code is validated with a simple example and a two-dimensional boundary element method
presented in the literature. This approach limits the application of the finite element method to the
beam section only for the section properties computation and the resulting stiffness matrix can then
be used within more complex structural codes, without the need of a complex full three-dimensional
finite element model. Further validation analysis with experimental data or three-dimensional models
are needed for the piezomagnetic beam model formulation. After that, a multibody active twist rotor
model is built as test case for the vibration control study, starting from a numeric model of the Bo105.

The study of the helicopter vibrations is a very demanding task and requires an accurate model-
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ing of the aerodynamic phenomena, which can not be represented properly if considering the simple
aerodynamic theories provided by the multibody software. Since the use of CFD codes for the whole
rotor is prohibitive in terms of computational time for the iterative design of active vibration control
systems, there is the need of a new strategy that provides an intermediate level of fidelity to model the
main effects of the rotor behavior in forward flight. In the second chapter of the thesis, the hybrid
modeling approach is exploited, in which the blade aerodynamics and the rotor wake are modeled us-
ing different techniques, and two aerodynamic codes have been developed in this work and validated
with the experimental data of the Hart II rotor:

• Full potential CFD and Peters-He wake model. In the related first trial, more attention is given
to the blade aerodynamics and a full potential CFD code is used to approximate the unsteady
and compressibility effects of the blade loads. The Peters-He generalized wake model is coupled
to such a CFD code to enhance the harmonic content of the rotor inflow without physically sim-
ulating the wake, thus being beneficial for the overall computational time. Even if this approach
is very accurate for the advancing blade aerodynamics and can also reproduce shock waves, it
has some limitations. First of all, the reverse flow condition cannot be simulated, because of
the fixed wake structure of the potential approach. Moreover, blade vortex interactions are not
taken into account, since the wake is not directly modeled. This leads to an underestimation of
the blade loads, especially for the 4/rev harmonic.

• Unsteady blade element method and free wake of the tip vortices. After evaluating the limita-
tions of the previous hybrid CFD code, a deeper consideration is given to the modeling of the
wake, while relaxing the near field aerodynamic approximation. In this hybrid code, the blade
aerodynamics is approximated with an unsteady blade element theory and the free wake geome-
try of the tip vortices only, the most relevant ones, is computed. Having modeled the rotor wake,
the advantage of this code is the possibility to simulate blade vortex interactions, hence leading
to a more realistic loads estimate. Although the unsteady blade element method combined with
the coefficient data of the airfoil and the tip loss correction provides a good approximation of
the blade loads, shock waves and dynamic stall can not be taken into account by this formu-
lation. Although increasing the simulation time, this code can be enhanced by introducing the
free wake of the root vortices.

Being available an adequate low fidelity model of the rotor, based on the multibody approximation with
integrated simple aerodynamics, and an intermediate fidelity one, obtained by coupling the multibody
software to one of the two hybrid aerodynamic codes above, from the third to the fifth chapter this work
proceeds with the study and design of vibration controllers. The purpose is to analyze advanced active
control strategies and to adapt them to the problem of vibrations suppression. The contribution of this
work is the application of different control systems to very complex and nonlinear examples, aiming
at reproducing actual flight situations. It is also very important to consider that all the controllers
considered in this thesis possess real time capabilities, thus being employable into real tests. The
main findings of the studied controllers are listed below.

• Periodic controllers. The main advantage of the periodic controllers is the possibility to take
into account the periodicity of the rotor during the design phase. Two different periodic con-
trollers have been analyzed, at first a dynamic compensator full information H2 controller is
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designed and then it has been compared to the solution obtained through the static output feed-
back one. The design model shows a significant vibratory loads reduction with a small control
effort. Furthermore, the performance of the two periodic controllers seem to be similar. This
means that the direct periodic output feedback, which involves fewer design parameters, has
a faster design algorithm and is easier to be realized, can be a valid substitute of the optimal
H2 approach. Moreover, using only an algebraic gain matrix in the control law would allow
to cover all the flight envelope by simply interpolating, with a gain scheduling technique, the
gain matrices, avoiding the problems that could arise when interpolating state space models
[154, 155]. The validation model, with the free wake aerodynamic code, shows that taking
into account the periodicity of the rotor in forward flight leads to robust controllers, even if
model uncertainties are not considered in the design phase. In fact, there is no spillover, and
both controllers manage a vibratory loads reduction with satisfactory performance, a promis-
ing result for a practical implementation. The disadvantage of using periodic controllers is that
their design is carried out off-line on linearized identified periodic models that have to correctly
represent the real system.

• Recurrent neural networks controller. A recurrent neural network based nonlinear adaptive
controller has been investigated for complex aeroelastic problems and adapted to the problem
of rotor vibrations reduction. Thanks to its general formulation and to the black-box approach,
it can be easily employed in a large class of problems. The examples in this work show the
RNN control capability to improve helicopter performance. Very good results are obtained in
the vibration study and, due to the on-line learning feature of this controller, the validation
based on the high fidelity free wake model exhibits good performance. Despite the potential of
using a neural network approach, the choice of the controller parameters, such as the number of
neurons and the learning rate, is not trivial and the search for a general rule remains an open
problem. When considering a practical implementation of such a well performing controller,
these issues should be carefully addressed as well as network saturation problems.

• Improved higher harmonic control with actuator constraints. The last control system studied
is already used in helicopter applications, because of its simplicity and robustness. It is here
improved to avoid actuator saturations, which is one of the main problems for its practical adop-
tion. Therefore, the control effort limitations are included through an optimization, constraining
each harmonic of the signal, in such a way to be easily amenable to an efficient quadratic pro-
gramming approach. As the neural network approach, the HHC algorithm is adaptive and does
not require the previous knowledge of the system to be controlled. Thanks to the actuator con-
straints, it is possible to safely guarantee that the control signals remain within desired and
acceptable levels. The application of this controller to the aeroelastic rotor model shows its
potential and effectiveness in vibrations reduction, nevertheless this approach has some limi-
tations. First of all, even if the model is identified on-line, it is based on a quasi-static linear
response of the rotor. Second, the computed control signal has a limited and imposed harmonic
content, therefore it is not possible to generate an arbitrary, more versatile, signal. Another dis-
advantage of this approach is that the first time steps of the controllers run are used to identify
the transfer matrix of the rotor response through random control input that could temporarily
increase the vibratory loads. An alternative, to avoid this issue, could be the off-line identifica-
tion of the rotor transfer matrix for a set of operating conditions and then the application of a
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gain scheduling technique to interpolate the rotor transfer matrix.

Once the control design study has been concluded, the thesis moves into the investigation of different
architectures apt to individual blade control and in the sixth chapter the active twist solution is com-
pared with active trailing edge flaps. Since they are already used in fixed-wing aircraft, active flaps
are more conventional than distributed piezoelectric actuators. Therefore they are widely presented
in the literature because of their effectiveness. Such a comparison shows that active flaps are able
to totally suppress the hub vibrations. We are aware that only static constraints have been used to
optimize the active twist blade in order to maximize the actuation power, therefore a deeper study and
a new optimization has to be carried out to investigate whether the active blade twist can achieve the
same results as the active flaps and if the active flaps are very effective in all flight conditions.

The final chapter is related to the experimental activity performed at the German Aerospace Cen-
ter, in which the multiple swashplate system is studied. The analysis focused on the IBC capabilities
of the META system. This work is very important because the HHC control with actuator constraints
has been implemented and tested within the real time environment on an experimental rotor model,
showing very good results for the blade tracking control in hover. The next steps of this work have
to be developed in the wind tunnel, to test the vibration reduction capabilities of the META system in
forward flight.

To conclude, this thesis spans a wide range of topics from the aeroservoelastic rotor modeling
to advanced control systems design. The main objective of this work is to set the basis for a more
accurate analysis aimed at investigating and validating the obtained results. Since the pitch link loads
have not been considered into the control cost function, the first step to improve this work could be
to repeat the controllers design including these loads. Afterward, it would be interesting to focus on
a single IBC approach and to perform a vibration reduction analysis for the whole flight envelope,
either through a gain scheduling technique or through an adaptive controller, to further investigate
which controller can achieve the best performance over a significant flight envelope.
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